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Abstract

Given a set of points in the Euclidean plane, we are interested in its triangulations, i.e., the maximal

sets of non-overlapping triangles with vertices in the given points whose union is the convex hull of

the point set. With respect to the area of the triangles in a triangulation, several optimality criteria

can be considered. We study two of them. The MaxMin area triangulation is the triangulation of

the point set that maximizes the area of the smallest triangle in the triangulation. Similarly, the

MinMax area triangulation is the triangulation that minimizes the area of the largest area triangle

in the triangulation. In the case when the point set is in a convex position, we present algorithms

that construct MaxMin and MinMax area triangulations of a convex polygon in O(n2 logn) time

and O(n2) space. These algorithms are based on dynamic programming. They use a number

of geometric properties that are established within this work, and a variety of data structures

specific to the problems. Further, we study polynomial time computable approximations to the

optimal area triangulations of general point sets. We present geometric properties, based on angular

constraints and perfect matchings, and use them to evaluate the approximation factor and to achieve

triangulations with good practical quality compared to the optimal ones. These results open new

direction in the research on optimal triangulations and set the stage for further investigations on

optimization of area.
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Chapter 1

Introduction

1.1 Triangulation

Definition 1 (Triangulation) Let S be a set of n points in two-dimensional Euclidean space

(plane). A set T of triangles is called a triangulation of the point set S if and only if:

– every triangle of T has its vertices in S

– no triangle of T contains a point from S in its interior

– every two triangles in T have disjoint interiors

– the union of all the triangles in T is exactly the convex hull of S.

The sides of the triangles in T are called edges of the triangulation. It follows from the definition

above that no two edges of a triangulation intersect properly. In some texts on computational

geometry [19], a triangulation is defined, equivalently, as a set of edges. We prefer the definition

given above because triangles and their characteristics are the main focus of our work.

When we talk about a point set, we mean a point set in general position, i.e., no three points of

the set being collinear, and no four points of the set being co-circular. This assumption is commonly

made to avoid degeneracies. There are computational issues arising from and results on dealing

with degeneracies, perturbation techniques, etc. These are not a focus of our considerations. We

are also considering a special case of a planar point set. We say that the point set is in a convex

position when all the points of the set are on the convex hull, i.e. the points of the set are vertices

of a convex polygon. In this case, the points of the set are also called vertices, and the edges of

the triangulation are also called diagonals.

Property 2 Let S be a set of n points in the plane, h of which are on the convex hull of S. Every

triangulation of S has exactly 2n− h− 2 triangles and exactly 3n− h− 3 edges.

Hence, the triangulation has linear complexity with respect to the size of the point set, considering

both the triangles and the edges. This fact is very useful when analyzing time and space require-

1



ments of various algorithms for optimal triangulation.

Figure 1.1 on the following page shows two different triangulations of a sample point set.

1.2 Optimization and optimality criteria

Triangulations of point sets in the plane have been studied for the last three decades as one of

the important structures in computational geometry. There are three important characteristics of

a triangle: edge lengths, angles and area. While length and angle based optimality criteria are

relatively well studied, there are no results on area based optimization. This served as a major

motivating factor of this study. As it will be further revealed, it is possible and sometimes useful

to consider area as a constraint rather than as a general optimization criterion. The need to study

optimal triangulations, apart from the mathematical challenges that are abundant here, is dictated

by practical applications. Triangulations with special properties and characteristics are used in

computer graphics [46, 50], terrain approximation, multivariable analysis, numerical methods, mesh

generation [6, 52, 53], etc. Connected subgraphs of triangulations such as Gabriel Graph and

Relative Neighbourhood Graph are used in wireless networking and ad hoc routing [11]. Further,

computing a triangulation with particular properties is typically far from trivial. As it is shown

in [43], even determining whether a set of edges with vertices in the point set S contains a subset

that forms a triangulation of S is an NP -complete problem. Part of the complexity of computing

a triangulation with particular properties arises from the number of possible triangulations.

Property 3 For a point set S of n points in the plane, there are

Ω(2.33n) ≤ t(S) ≤ O(59n−Θ(log n))

different triangulations, where t(S) denotes the number of the different triangulations of the point

set S [4].

While the lower bound of Θ(2.33n) is attained for special point sets called double circles, establishing

a precise upper bound is a very interesting combinatorial problem that is still open. We seek

algorithms that run in polynomial time and are capable of selecting or constructing a triangulation

with specific properties amongst the exponentially many potential candidates. There are optimality

criteria based on edge length, angles, areas and other elements of the individual triangles in a

triangulation [6, 52, 54]. Further, in connection with those criteria, we can consider MinMax

and MaxMin problems. The first quantifier defines the optimization that is done over all possible

triangulations of the given point set, and the second quantifier specifies the optimization that is done

within the respective elements (edges, angles, triangles) of a particular triangulation. For example,

MinMax angle stands for the triangulation that minimizes the maximum angle in a triangulation

over all possible triangulations of the given point set.

2



Figure 1.1: Two different triangulations of a point set with n = 9, h = 6 consisting
of 3n− h− 3 = 18 edges and 2n− h− 2 = 10 triangles
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Figure 1.2: The Minimum Weight Triangulation of a set of nine points

We can also have global optimization criteria based on the triangulation as a whole, as opposed to

the individual elements. For example, the triangulation that has minimum total length of its edges

is known in the literature as Minimum Weight Triangulation (MWT). The MWT is important for

minimum cost routing/connectivity, but it earned its fame by the numerous attempts to prove or

disprove whether computing the MWT is an NP-complete problem. This is by far the most studied

problem in the area of optimal triangulations [5, 7, 8, 15, 16, 18, 21, 22, 23, 24, 28, 29, 31, 42, 44,

47] and it is still open [19, 45, 48, 54]. Figure 1.2 gives an illustration of the Minimum Weight

Triangulation of the same nine-point set that was presented in Figure 1.1 on the preceding page.

Another global optimization criterion might be exactly the opposite – the triangulation with the

maximum total edge length. It is called MAT and interesting results on it were reported recently

[30]. It is worth noting that angles and area cannot give meaningful global optimization criteria

as their sum is constant for the given point set. However, higher order characteristics such as

sums of squares, variances and standard deviations of area have been considered in the literature

[17, 54]. An excellent summary of the optimal triangulations studied in the literature can be found

in Lambert’s thesis [38].
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1.3 Quality measures

As previously mentioned, practical reasons dictate preference of one optimal triangulation over

another for a specific purpose. Thus, the optimality criteria are connected to the quality measures.

Definition 4 (Quality measure) A quality measure is a function that allows us to quantita-

tively compare two triangulations. It can be any reasonable function or composition of functions

that arises from our needs. For example, the sum of the lengths of the edges of a triangulation T ,

denoted by w(T ), is one quality measure.

Definition 5 A triangulation T of a planar point set S is called locally optimal with respect to

a quality measure η if and only if for each of the triangles in T , all the convex quadrilaterals of

which it is a part are triangulated in a way that optimizes the quality measure η.

Local optimality with respect to η does not guarantee global optimality with respect to the same

quality measure, i.e. usually there are multiple locally optimal triangulations with different values

of their quality measures. There are also situations in which a globally optimal triangulation might

not be locally optimal. Generally, in such cases it is algorithmically harder to find the optimal

triangulation.

Definition 6 A quality measure is called decomposable if and only if any optimal trinagulation

with respect to it is locally optimal.

Decomposability is an important property of a quality measure, as it has algorithmic implications.

Most of the quality measures that we consider in this thesis are decomposable. Those that are

not decomposable are explicitly mentioned as such. In particular, the MaxMin and MinMax Area

triangulations are decomposable. In the case of MinMax and MaxMin Area, the quality measures

can be defined as follows:

Definition 7 Denote by A∆ the area of the triangle ∆. Let µ(T ) be the quality measure that

represents the minimum area of a triangle in a given triangulation T , i.e.

µ(T ) = µ0 ⇔ ∀∆ ∈ T : A∆ ≥ µ0, ∃∆
′ ∈ T : A∆′ = µ0

Similarly, λ(T ) is the quality measure that represents the maximum area of a triangle in a given

triangulation T , i.e.

λ(T ) = λ0 ⇔ ∀∆ ∈ T : A∆ ≤ λ0, ∃∆
′′ ∈ T : A∆′′ = λ0

5



Figure 1.3: MinMax Area triangulation (left) and a “fat” triangulation (right) of
a five-point set

In the literature on mesh generation, there is an ongoing discussion about the quality of the triangles

themselves [6, 52]. Generally a triangle is considered good if it is “fat”, i.e. all of its angles are

above certain value. In particular, there are two types of triangles that have to be avoided, “flat”

triangles (with two angles close to 0◦) and “needle” triangles (with two angles close to 90◦). The

area of an individual triangle has no significance unless compared to the areas of other triangles,

to the average area of triangles in the triangulation, or to the area of the (convex hull of the)

set. Examples can be constructed that show triangulations containing only fat triangles that have

arbitrarily large difference between the largest and smallest areas of their triangles on one hand,

and triangulations that contain only equal area triangles that have arbitrarily small angles on the

other hand. Figure 1.3 illustrates the difference between optimizing area and optimizing angles.

This observation leads to the conclusion that optimizing area might be needed in some cases where

optimizing angles does not give nice results (and vice versa), and these two quality measures are

not necessarily related. The two optimal area triangulations that we study – MinMax and MaxMin

area triangulations – both aim to provide more even distribution of the area between the triangles,

which is desirable in many applications: maps, numerical methods, etc.
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1.4 Optimization and decision problems

We can consider three types of problems with respect to optimal triangulations.

Definition 8 (Optimization problem) Given a planar set of points S and an optimality crite-

rion represented by the quality measure η, the optimization problem is

“Find the triangulation(s) T of S that optimize(s) the value of η over all possible triangulations of

S.”

Definition 9 (Decision problem) Given a planar set of points S, a quality measure η, and a

real number τ , the decision problem is

“Is there a triangulation T of S such that η(T ) ≥ τ (or η(T ) ≤ τ)?”

Definition 10 (Construction problem) Given a planar set of points S, an optimality criterion

represented by the quality measure η, and a real number τ , the construction problem is

“Find a triangulation T of S such that η(T ) ≥ τ .”

Of course, the optimization, the construction, and the decision problems are interdependent.

Property 11 The optimization problem with respect to a single-triangle-based quality measure

is decidable in polynomial time if and only if the construction problem is decidable in polynomial

time.

Proof. The “only if” direction is trivial. If we can solve the optimization problem in polynomial

time, then let T ∗ be the optimal triangulation found. For each value of τ, τ ≤ η(T ∗), the triangula-

tion T ∗ found by the optimization problem is a solution to the construction problem. For all other

values of τ, τ > η(T ∗), there is no solution to the construction problem. In the “if” direction, we

use the fact that the quality measure is based on triangles. We can compute all possible triangles

with vertices in S. There are exactly
(

n
3

)

∈ O(n3) of them in case S is in convex position, and

strictly less than that number otherwise. Further, we can sort them, say by descending value of

the quality measure. All this takes O(n3 logn) time. After that we start binary search for the, say

smallest, value of τ , call it τ∗, such that construction problem has a solution. This solution is our

optimal solution for the optimization problem. As for the timing, we have O(log n) calls to the

construction problem, which has by our assumption a polynomial time complexity, O(nk), for some

constant k. This takes O(nk logn) overall time. We also had a preprocessing time of O(n3 logn).

Finally, the optimization problem is decidable in O(nj logn), where j = max (k, 3). �

Note that the statement of Property 11 can be strenghtened. If, instead of the single-triangle-based

quality measure, we had an single-edge-based quality measure then similar reasoning will give us

7



polynomial time computability in the “if” direction. The proof implies that the same is true for any

quality measure, not necessarily edge- or triangle-based, as long as we have a polynomial number

of discrete values for the quality measure that have to be checked by invoking the construction

problem as a subroutine.

If we can solve the optimization problem, we can solve the decision problem. The converse of

this is not generally true. However, if the decision problem can be solved, it can be called as a

subroutine to find the “best” triangle in the solution of the optimization problem. If the set S is in

convex position, and the quality measure is decomposable, we can then repeat the process. In the

convex case removing any triangle with vertices in S will result in at least one and at most three

new interior disjoint convex sets. Thus, we have constant number of nested calls to the decision

problem subroutine at each level. Moreover, the total number of these calls (levels) will be O(n) as

we have to discover O(n) triangles (remember that the number of triangles in each triangulation

is O(n)). Therefore, in the case of a point set in convex position, a polynomial algorithm for the

decision problem yields a polynomial algorithm for the optimization problem.

1.5 Delaunay triangulation, flips, locally optimal triangula-

tions

Definition 12 (Delaunay Triangulation) Given a planar set of points S, the Delaunay Tri-

angulation (DT) of S consists of all triangles with vertices in S such that their circumscribed

circles do not have interior points from the set S.

This is only one of the many equivalent ways to define the Delaunay triangulation [49]. It is also

known as the dual of the Voronoi diagram, in a sense that there is an edge between two points in

the Delaunay triangulation iff their Voronoi regions share an edge. Figure 1.4 on the next page

shows the Delaunay triangulation of the same point set that appears in Figure 1.1 on page 3 and

Figure 1.2 on page 4. Both the Voronoi diagram and the Delaunay triangulation have been studied

extensively [10, 14, 35, 38, 44, 51]. They have nice generalizations in higher dimensions and many

interesting properties [49]. For example,

Property 13 The Delaunay triangulation of a planar point set S is the MaxMin angle triangulation

of S. It is also the MinMax circumradius triangulation of S [49].

The Delaunay triangulation can be computed in optimal O(n log n) time and O(n) space by a

variety of methods, including plane sweep, divide and conquer, etc.

From the point of view of optimization, it is important to mention the flipping algorithm and the

properties of the Delaunay triangulation with regard to edge flips.
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Figure 1.4: The Delaunay triangulation (bold lines) and the Voronoi diagram
(light lines) of a point set
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Figure 1.5: Edge flip

Definition 14 If two triangles △ABC and △ACD in a triangulation share an edge (AC in this

case) and form a convex quadrilateral ABCD, then replacing the triangles △ABC and △ACD
with the triangles △ABD and △BCD is called a flip.

A flip is also commonly called edge flip in the literature with the understanding that in fact we

remove the edge AC from the triangulation, replacing it with the edge BD. This is illustrated in

Figure 1.5.

The optimization criterion usually indicates whether a flip is beneficial, i.e. which of the two possible

triangulations of a convex quadrilateral is preferred. A flip represents the smallest possible local

change in a triangulation. The algorithmic idea is simple – we can look at the convex quadrilaterals

within the triangulation one at a time, and make flips in order to achieve better triangulation. This

technique is very similar to some of the heuristic approaches in linear optimization, where the goal

is to achieve a “good” local optimum by improving the current best solution. As it was previously

mentioned there is no guarantee that the flips will lead to the globally optimal triangulation.

However, there is one notable exception. If a flip has the property that the fourth point is outside

of the circumscribed circle of the triangle formed by the other three points, it is called Delaunay

flip.
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Property 15 The Delaunay triangulation is the only locally optimal triangulation with respect to

the Delaunay flip [48].

This property gives an interesting algorithmic result, and a connection between all the triangulations

of a given point set. From each triangulation, we can obtain every other triangulation using not

more than O(n2) flips. The directed graph whose nodes represent the triangulations of a point set,

and arcs reflect the direction of a Delaunay flip is connected and has a unique sink – the Delaunay

triangulation. Again, this is under the assumption that we don’t have four (or more) co–circular

points in the set which leads to multiple Delaunay triangulations. To conclude this subsection,

there is no other quality measure known for which the locally optimal triangulation is necessarily

globally optimal. Thus, one has to seek more elaborate algorithmic ideas in order to optimize

quality measures that are not optimized by the Delaunay triangulation.

1.6 Other optimal triangulations

Definition 16 (Greedy Triangulation) The Greedy Triangulation of a planar set of points

S is produced by the following algorithm: List all possible edges between pairs of points in S. Sort

the list in ascending order of edge length. Repeat the following step, until the list is empty: add

the first edge in the list to the current triangulation, and discard from the list all the edges that

intersect properly this edge.

Although it does not optimize any particular characteristic, the Greedy triangulation is well studied

– mainly in connection to MWT [20, 39, 40, 41, 44]. The described algorithm for construction of

the Greedy triangulation is not time optimal; it can be computed optimally in O(n logn) time for

general set of points and in linear time for a convex polygon [19, 48, 59].

Figure 1.6 on the next page shows the Greedy triangulation of the sample set of nine points as

in Figure 1.1 on page 3, Figure 1.2 on page 4, and Figure 1.4 on page 9. We used the same point

set in the figures throughout this chapter in order to illustrate that the optimal triangulations with

respect to different optimality criteria have distinct triangle sets, geometric properties, and visual

appearance.

A large class of optimal triangulations can be computed using the edge insertion method [9].

The idea is to start with an arbitrary triangulation and improve it by inserting an edge that previ-

ously was not in the triangulation, removing all edges intersected by the newly inserted edge, and

re-triangulating the resulting polygonal regions, see Figure 1.7 on page 14. To be convergent, this

procedure requires that particular conditions are in place.
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Figure 1.6: The Greedy Triangulation of a set of nine points
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Definition 17 (Anchor conditions, [9, 54]) Given a planar set of points S, a quality measure

η, and a triangulation T of S, a triangle ∆ ∈ T has an anchor if ∆ is in the optimal triangulation

of S with respect to η, or in an optimal triangulation the triangle ∆ is intersected by an edge

emanating from one of its vertices. This vertex is called an anchor for this triangle. Depending

on the quality measure η, there are two possibilities:

– only the worst triangle in a triangulation, with respect to η, has an anchor (weak anchor

condition)

– every triangle in a triangulation has an anchor (strong anchor condition)

Property 18 ([9, 54]) The edge insertion algorithm computes the optimal triangulations in

– O(n2 logn) time and O(n) space if η satisfies the strong anchor condition

– O(n3) time and O(n2) space if η satisfies the weak anchor condition.

Two quality measures that are known to satisfy the strong anchor condition are MinMax angle and

MaxMin height of a triangle. Two quality measures that satisfy only the weak anchor condition

are MinMax eccentricity and MinMax slope [9, 54].

As a part of our work, we investigated the relationship between the MinMax area, MaxMin area,

and the two anchor conditions.

There is another optimal triangulation that is computable in polynomial time by an algorithm that

does not use any of the methods described above.

Property 19 The triangulation that minimizes the maximum edge length over all possible trian-

gulations (MinMax Length triangulation) of a given planar set of points S can be computed in

O(n2) time and space [54].

The algorithm that computes MinMax Length triangulation uses a variety of methods that were

developed in computational geometry, mainly with connection to MWT and the Delaunay triangu-

lation. Those include inclusion/exclusion regions, the relative neighborhood graph, and others. We

will discuss them in Chapter 3, in connection with our algorithmic approach to the optimal area

triangulations.

1.7 Summary of the previous results on optimal triangula-

tions

The results on optimal triangulations, prior to our research on optimization of area, are summarized

in Table 1.1 on page 16. There are some “unknown” entries which stand for “no significant research
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Figure 1.7: Edge insertion. Top: part of the existing triangulation surround-
ing the “worst” triangle △ABC. Middle: introduction of the new edge AD.
Bottom: re-triangulation of the new polygonal regions ABP5P4P3P2P1D and
DR1R2R3R4R5CA.
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on the problem has been reported, the problem has been defined, known to be interesting, and

conjectured to be very hard”. The last three optimal triangulations in the table, the so-called δ-

triangulations, represent yet another meaningful optimization that can be done. Instead of finding

the MinMax area and MaxMin area triangulations, we might want to find a triangulation in which

the maximum difference between the area of the largest and smallest area triangles is minimized –

this is the MinMax δ-area triangulation. Similarly, it is interesting to know these for length and

angles.
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Table 1.1: Comparison between the known optimal triangulation algorithms

Optimal

Triangulation

General

Point Set

Convex poly-

gon

Algorithms

Minimum Weight

(Min Total

Edge Length)

Unsolved, no

polynomial time

algorithm known

O(n3) time,

O(n2) space

Heuristics for general case [19,

48],

Klincsek’s for convex polygon

[37]

Greedy O(n log n) time,

O(n) space

O(n) time,

O(n) space

Plane sweep, divide and conquer

[19, 54, 59]

Delaunay

(MaxMin Angle)

O(n log n) time,

O(n) space

O(n) time,

O(n) space

Plane sweep, divide and conquer,

edge flipping [19, 48, 1]

MinMax Length O(n2) time,

O(n2) space

O(n2) time,

O(n2) space

Problem specific [54]

MinMax Angle O(n2 logn) time,

O(n) space

O(n2 logn) time,

O(n) space

Edge insertion [9, 26, 54]

MaxMin Height O(n2 logn) time,

O(n) space

O(n2 logn) time,

O(n) space

Edge insertion [9, 54]

MinMax

Eccentricity

O(n3) time,

O(n2) space

O(n3) time,

O(n2) space

Edge insertion [9, 54]

MinMax Slope O(n3) time,

O(n2) space

O(n3) time,

O(n2) space

Edge insertion [9, 54]

MaxMin Area Unknown O(n3) time,

O(n2) space

No algorithms published for the

general problem, Klincsek’s for

convex polygon [37, 54]

MinMax Area Unknown O(n3) time,

O(n2) space

No algorithms published for the

general problem, Klincsek’s for

convex polygon [37, 25, 54]

MinMax δ-angle Unknown O(n6) time,

O(n2) space

No algorithms published for the

general problem, modified Klinc-

sek’s for convex polygon [13]

MinMax δ-area Unknown O(n6) time,

O(n2) space

No algorithms published for the

general problem, modified Klinc-

sek’s for convex polygon [13]

MinMax

δ-length

Unknown O(n3) time,

O(n2) space

No algorithms published for the

general problem, modified Klinc-

sek’s for convex polygon [13]
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Chapter 2

MinMax and MaxMin area triangulations of a

convex polygon

The problem of finding the MinMax Area triangulation of a point set is mentioned as one of the

open problems in Edelsbrunner’s book [25]. This problem has application to the interpolation of

two-dimensional functions. We also study the MaxMin Area triangulation of a point set, which has

not been mentioned previously in the literature. In this chapter, we study the particular case of

a planar point set – where the points form the vertices of a convex polygon. We first review the

best algorithmic solution known for these two problems in section 2.1. In the following section,

we provide the necessary geometric background for our algorithms by investigating the properties

and structure of the optimal triangulations. In section 2.3 we present algorithms for computing the

MaxMin and MinMax area triangulations of a convex polygon, and prove the O(n2 logn) time and

O(n2) space bounds. Then in section 2.4 we discuss an algorithm for the MaxMin Area decision

problem that runs in O(n2 log logn) time and O(n2) space.

2.1 Klincsek’s algorithm

If the point set is in convex position, there is a dynamic programming algorithm by Klincsek [37]

that finds the optimal triangulation with respect to a large number of criteria. The algorithm runs

in Θ(n3) time and requires Θ(n2) space. We will review this algorithm, because it illustrates the

dynamic programming scheme that is used with modification in our algorithm. It is also useful as

an illustration of the inherent structure of the problem of optimally triangulating a convex polygon.

Given a convex polygon P in the plane, let us denote the vertices of P by v1, v2, v3, . . . , vn. Further,

we shall assume for the rest of the chapter that vi+k·n = vi that is the vertices of the polygon are

enumerated modulo n, and that the order of the vertices from v1 to vn is their clockwise order.

As it was mentioned before, any line segment connecting two points of our point set is called an

edge. In the particular case considered within this chapter, the proper diagonals of P are also called

simply diagonals. The edges of the convex hull of P are also called boundary edges.
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Definition 20 (Subpolygons) Given the clockwise ordering of the vertices of a convex polygon

P , we denote by Pij the subpolygon of P containing vertices vi through vj . We call the edge vivj

base edge of Pij . Further, we call the angles of Pij adjacent to its base edge, namely ∠vi+1vivj

and ∠vivjvj−1, base angles of Pij . Sometimes we refer to the optimal area triangulation problems

associated with the subpolygons of P as subproblems.

The algorithm uses dynamic programming with a square table Best[n, n] to record the results.

The field Best(p, q).value records the quality measure η of the optimal triangulation of the sub-

polygon Ppq, which we denote by η(T •(Ppq)). Another field, Best(p, q).index, records the index

of the vertex that is connected to the edge vpvq in the optimal triangulation of the subpolygon

Ppq with respect to the quality measure η. The algorithm computes the optimal triangulations of

all subpolygons Ppq of P in order of their size, starting with triangles (subpolygons of size 3) and

going up to the n-gon (polygon P itself). This is done relying on the fact that the base edge of

Ppq is connected to some other vertex vr in any triangulation, hence in the optimal triangulation,

of Ppq. Additionally, by the time we need to compare (through the operator denoted by ≺η in the

algorithm) the optimal solutions for polygons of smaller size, namely Ppr and Prq, their optimal

values are already computed.

Algorithm 21 (Klincsek’s algorithm) Given a simple, not necessarily convex, polygon P with

no self-intersections in the plane and a decomposable quality measure η, the following algorithm

finds the triangulation T • of P that is optimal with respect to η:

for i := 1 to n do {initializes the table for triangles}
Best(i, i+ 2).value := η(△vivi+1vi+2);Best(i, i+ 2).index := i+ 1

endfor

for s := 3 to n− 1 do {gives the size of the subpolygon}
for i := 1 to n do {gives the starting vertex of the subpolygon}

for j := i+1 to i+ s do {gives the current intermediate vertex under consideration}
CurrentV alue := opt(η(T •(Pij)), η(△vivjvi+s), η(T

•(Pj,i+s)));

if CurrentV alue ≺η Best(i, i+ s).value then

{compares the best triangulation so far with the current, updates if necessary}
Best(i, i+ s).index := j;

Best(i, i+ s).value := CurrentV alue

endif

endfor

endfor
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Figure 2.1: Klincsek’s algorithm: computing the solution for Pi,i+s from the
subproblems of smaller size Pij , Pj,i+s and △vivjvi+s at the intermediate vertex vj

endfor

retrieve the optimal triangulation T •(P ) from Best(1, n).

Time and Space Analysis. Initialization of the table Best, which is not mentioned explicitly in

the algorithm, takes quadratic time in n,O(n2), because of its quadratic size. The purpose of the

initialization is to set the value fields appropriately: with zeros if we have to maximize, and with a

large enough value if we have to minimize, depending on the nature of the quality measure η. The

three nested loops are executed in Θ(n3) time as each of the indices has Θ(n) possible values. The

optimal triangulation is then retrieved in linear time, O(n), using the information contained in the

index fields of the subproblems involved.

The fact that the Klincsek’s algorithm finds the optimal triangulation by “blindly” computing the

optimal triangulations of all subpolygons is its major strength, because it is universal, i.e., it allows

optimization over broad class of quality measures. At the same time, it is the major drawback of

the algorithm, as it performs too much computation. In some cases, the specifics of the quality

measure can be used to reduce the computation. It is our intention to reveal specific properties of

the two area-related measures that will allow us to compute the optimal area triangulations more

efficiently. In section 2.3 of this chapter, we improve on Klincsek’s algorithm for the MaxMin Area

and the MinMax Area triangulations of a convex polygon.
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It also has to be noted that some of the optimal triangulations admit better problem-specific

algorithms that are not based on dynamic programming. The Greedy and the Delaunay triangula-

tions are computable in linear time and space for convex polygons [19, 54, 59]. Some other optimal

triangulations can also be computed within time and space bounds that are better than those of

the general dynamic programming algorithm, for example by edge insertion [9, 54].

2.2 Geometric properties of the MaxMin and MinMax area

triangulations

In this section we investigate the structure of the optimal area triangulations. To develop an algo-

rithm that has better running time than the generic algorithm presented in the previous section, we

need to establish some properties of the MaxMin and MinMax area triangulations. First, we discuss

the location of the worst (smallest area or largest area) triangle within the triangulation. Then, we

show that large class of subproblems (called 2-zone subpolygons) admit faster algorithmic solution

within the dynamic programming scheme, due to the fact that their optimal area triangulations

are sleeves. Further, we show that we can construct the optimal area triangulations, both MaxMin

and MinMax, based only on the solutions of the 2-zone subproblems. This relies to the unimodality

properties of the optimal triangulations that are proven inside this section. Finally, we show that

the optimal triangulation contains specific type of diagonal or triangle, which serve as a basis to

our algorithmic approach discussed in the subsequent sections.

Denote by Mµ(P ) the MaxMin area triangulation of the convex polygon P and by µ∗(P ) the area

of the smallest area triangle in Mµ(P ). Denote by Mλ(P ) the MinMax area triangulation of the

convex polygon P and by λ∗(P ) the area of the largest area triangle in Mλ(P ).

First we recall the following well-known result from elementary geometry [12].

Property 22 Given a triangle △DEF in the plane and a triangle △PQR inscribed in it so that

P ∈ EF,Q ∈ FD,R ∈ DE:

A△PQR ≥ min(A△DQR, A△ERP , A△FPQ)

In other words, if we inscribe a triangle inside another triangle, the inscribed triangle is not the

smallest in terms of area compared to the three other triangles that are adjacent to the sides of the
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inscribed triangle. Using this property we will establish a useful fact about the “worst” triangle in

the MaxMin area triangulation of a convex polygon.

Lemma 23 Given a convex polygon P in the plane and a triangulation T of P , the triangle in T

that has smallest area has at least one edge on the boundary of P .

Proof. Suppose that in the triangulation T the smallest area triangle is △vivjvk, where i < j < k

and no two of the vertices vi, vj , vk are adjacent along the boundary of P , i.e. j − i > 1, k − j >
1, i− k > 1. Please refer to Figure 2.2 on the next page. Let us denote by D, E and F respectively

the vertices of the other triangles in T adjacent to the edges vivj , vjvk and vkvi. Because of

the convexity, the edges DE, EF and FD properly intersect the interior of △vivjvk. Consider

now another triangle, △D′E′F ′ obtained by the intersection of the lines parallel to the sides of

△DEF and passing trough the points vi, vj and vk. △vivjvk is inscribed in △D′E′F ′ and thus, by

Property 22 on the preceding page, A△vivjvk
≥ min(A△D′vivj

, A△E′vjvk
, A△F ′vkvi

). But we also

have A△D′vivj
> A△Dvivj

, since we have enlarged the triangle △Dvivj . Clearly the point D is

inside △D′vivj . Similar reasoning can be applied to the other two triangles enlarged: △Evjvk and

△Fvkvi, showing that A△E′vjvk
> A△Evjvk

and A△F ′vkvi
> A△Fvkvi

. Thus, for areas we have:

A△vivjvk
≥ min(A△D′vivj

, A△E′vjvk
, A△F ′vkvi

) > min(A△Dvivj
, A△Evjvk

, A△Fvkvi
)

This contradicts our assumption that △vivjvk is the smallest area triangle in the triangulation T .

The contradiction means that at least two of the vertices of △vivjvk are adjacent, i.e. the triangle

has a boundary edge. �

It follows from Lemma 23 that the measure µ in the case of a convex polygon satisfies the weak

anchor condition as per Definition 17 on page 13. This gives as an equivalent result, by edge inser-

tion, to Klincsek’s algorithm for MaxMin area triangulation of a convex polygon. More important

for the advancement towards our goal is that this lemma reduces the potential candidates for a

worst triangle from O(n3) to O(n2).

Definition 24 (Complementary subpolygons) We call the subpolygons Pij and Pji comple-

mentary. The union of Pij and Pji is P .

Here we recall another classical result about convex polygons.

Property 25 (Distance unimodality [55]) The distance between the straight line defined by

an edge of a convex polygon and the vertices of the polygon in clockwise (or counterclockwise)

order along its boundary is unimodal as a function of the vertex index.
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Figure 2.2: Lemma 23 on the preceding page, the worst triangle
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In other words, for two fixed vertices of P , vi and vj , we have d(vk, vivj) = F (k), and the function

F (k) is unimodal over the interval [i, j]. By symmetry, it is also unimodal over the interval [j, i].

The above property implies that the area of the triangles with a given base edge in a convex polygon

is also unimodal as a function of the (index of) the third vertex. Namely, if we fix the vertices vi and

vj of P , then A△vivjvk
= G(k), and G(k) is unimodal, as a function of k, over the intervals [i, j] and

[j, i]. Another way of looking at this property (the unimodality of area) is by defining the threshold

lines. For each value τ of the threshold, there is a line parallel to the given edge and such that the

points on that line form triangles with area equal to τ . We will concentrate only at the threshold

line that lies on the same side of the edge as the polygon itself. Then, another way of describing

the unimodality with relation to the threshold lines is to say that if the function is unimodal, then

its threshold line cuts out of the polygon a contiguous piece (or does not intersect the polygon at

all). If the function is not unimodal, the pieces that lie on different sides of the threshold line may

alternate more than once as we go along the boundary of the polygon in a chosen direction. One

example of such a function is the perimeter of the triangle formed by two fixed vertices vi and vj of

P and any third vertex vk. We have P△vivjvk
= H(k), and the threshold lines of H(k) are ellipses

with foci vi and vj . They are convex downwards with respect to the line vivj , and thus H(k) may

not be, and in general it is not, unimodal as a function of k over the intervals [i, j] or [j, i].

Definition 26 Given convex polygon P , for a diagonal vivj of P we will denote by Top(vivj) the

vertex of P in the interval [vi, vj ] that is farthest from the line through the edge vivj . If there

are two such vertices, we use the one preceding the other in the clockwise order from vi to vj as

Top(vivj).

Note that Top(vivj) and Top(vjvi) are two different vertices, lying in different half-planes with re-

spect to the line vivj . The value of the function Top for all the diagonals in P can be computed in

O(n2) time by rotating calipers. This approach is due to Toussaint [56]. The important observation

is that as we go along the edges of the boundary of P in say counterclockwise order, the Top of

the current boundary edge will also move in counterclockwise direction. Consider two edges that

are adjacent along the boundary of the polygon P in counterclockwise order, for example v2v1 and

v1vn. According to Definition 26 if we draw a line, parallel to the line determined by the edge v2v1

through Top(v2v1), the entire polygon P will lie inside the parallel strip formed by these two lines.

We claim that Top(v1vn) is either equal to Top(v2v1) or precedes it in the (clockwise) order. To see

this, consider a movement of the line, determined by the edge v1vn, parallel to itself in the direction

of the polygon P . Because of the convexity of P at its vertex Top(v2v1), and of the relative slope

of the edges v2v1 and v1vn, by the time this line hits Top(v2v1) it would already have gone past all

the vertices of P between vn and Top(v2v1).
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Algorithmically, this means that we can compute the value of the function Top for the bound-

ary edges of a convex polygon in linear time. We start at an arbitrary edge. We compute the

Top vertex for this edge – even using brute force it takes only linear, O(n), time. Further, we

follow the edges of the polygon in a chosen direction. We also move the other jaw of the calipers,

i.e. keep track of all the vertices along the boundary, following the first Top vertex in the cho-

sen direction. Relative to the currently considered edge, we are interested in a drop in the value

of the distance. Once such a drop is detected, the previous vertex was the Top for the consid-

ered edge, we record it and proceed. When we return to the edge that we began with, the pointer

tracking the Top has done one full rotation around the polygon. Thus, the process takes O(n) time.

In order to compute the value of the function Top for all the diagonals of a convex polygon,

we need to slightly modify the previous approach. For each vertex vi, we are going to consider

the fan of diagonals, in a chosen (clockwise or counterclockwise) order. It is easy to see that the

previous property still holds, the Top vertices of the successive diagonals will rotate in the same

direction along the boundary of P . Moreover, we are not going to make more than one full rotation

around the polygon, as the overall angle at the given vertex vi is less than 180◦ and the diagonals

in the fan are sorted by their slope. The same property was used in the generic rotating calipers

approach [56]– the slopes of the edges along the boundary of a convex polygon are sorted and the

overall angle (i.e. the sum of the exterior angles of a convex polygon) is 360◦. Note that Top(vivj)

is different from Top(vjvi) when vivj is a proper diagonal of P . Thus, each will be computed

separately from the fans of vi and vj , respectively. Overall, we have n fans of diagonals, computing

the value of Top for each fan takes O(n) time, which results in O(n2) time.

We are going to classify the subpolygons of a convex polygon P according to the sum of their

base angles, compared with the integer multiples of 90◦. We call this property zonality of the

subpolygons.

Definition 27 (Zonality) Given a convex polygon P in the plane and a clockwise ordering of its

vertices, we say that the subpolygon Pij containing vertices vi through vj is a k–zone subpolygon

if and only if

k =

⌈

∠vjvivi+1 + ∠vj−1vjvi

90◦

⌉

Observe that k ∈ {1, 2, 3, 4}. Further, the boundary edges, i.e., the polygons Pi,i+1 have zonality

zero.

Definition 28 (Zonality function) Let z(Pij) be a function defined over the subpolygons of the

convex polygon P in the plane and having its values in the set {0, 1, 2, 3, 4}, such that z(Pij) = k

iff Pij is k-zone subpolygon.
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Figure 2.3: Definition 27 on the previous page, zonality of the subpolygons:
z(P59) = 1, z(P82) = 2, z(P52) = 3, and z(P86) = 4

For an illustration of the zonality, please refer to Figure 2.3.

Property 29

z(Pij) + z(Pji) ≤ 5

Proof. According to Definition 27 on the previous page, z(Pij) =
⌈

∠vjvivi+1+∠vj−1vjvi

90◦

⌉

. Using

the definition of the ceiling function, we can rewrite this as:

z(Pij)− 1 <
∠vjvivi+1 + ∠vj−1vjvi

90◦
≤ z(Pij)

Multiplying both sides by 90◦ gives us the following equivalent form:

90◦ [z(Pij)− 1] < ∠vjvivi+1 + ∠vj−1vjvi ≤ 90◦z(Pij)

Similarly, for the zonality of the polygon Pji we can obtain:

90◦ [z(Pji)− 1] < ∠vi−1vivj + ∠vivjvj+1 ≤ 90◦z(Pji)

Adding together the left hand sides of the last two inequalities gives:

90◦ [z(Pij) + z(Pji)− 2] < ∠vjvivi+1 + ∠vj−1vjvi + ∠vi−1vivj + ∠vivjvj+1
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We will rewrite the right hand side of the above inequality, grouping together the first and third

term, and respectively the second and fourth term:

90◦ [z(Pij) + z(Pji)− 2] < (∠vjvivi+1 + ∠vi−1vivj) + (∠vj−1vjvi + ∠vivjvj+1)

Note that the sums in brackets on the right hand side represent exactly the internal angles of the

polygon P at the vertices vi and vj respectively:

∠vjvivi+1 + ∠vi−1vivj = ∠vi−1vivi+1,∠vj−1vjvi + ∠vivjvj+1 = ∠vj−1vjvj+1

Since the polygon P is convex, both angles are less than or equal to 180◦, or:

∠vjvivi+1 + ∠vi−1vivj = ∠vi−1vivi+1 < 180◦,∠vj−1vjvi + ∠vivjvj+1 = ∠vj−1vjvj+1 < 180◦

Adding the two inequalities together yields:

(∠vjvivi+1 + ∠vi−1vivj) + (∠vj−1vjvi + ∠vivjvj+1) = ∠vi−1vivi+1 + ∠vj−1vjvj+1 < 360◦

Substituting from before, we have:

90◦ [z(Pij) + z(Pji)− 2] < 360◦ ⇔ z(Pij) + z(Pji)− 2 < 4⇔ z(Pij) + z(Pji) < 6

Which, given the fact that the zonalities z(Pij) and z(Pji) are integers is equivalent to:

z(Pij) + z(Pji) ≤ 5

�

Property 30 Let vi, vj and vk be three vertices of P in the same clockwise order. Then:

z(Pij) + z(Pjk) + z(Pki) ≤ 6

The proofs is similar to the proof of Property 29 on the preceding page and is omitted.

We now study area triangulations in 2-zone subpolygons. We can think of a 2-zone subpolygon as

subpolygon that is entirely contained in a parallel strip formed by lines through the endpoints of

its base edge.

Lemma 31 (MaxMin area in 2-zone polygons) Let Pij be a 2-zone polygon. Given a thresh-

old τ , if there exists a triangulation T of Pij such that µ(T ) ≥ τ , then there exists a triangulation

T ′ of Pij such that µ(T ′) ≥ τ , and the triangulation T ′ contains one of the triangles △vivi+1vj or

△vivj−1vj .
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Figure 2.4: Retriangulation in a 2-zone polygon, MaxMin area
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Proof. The triangulation T contains a triangle △vivkvj for some i + 1 ≤ k ≤ j − 1, as shown in

Figure 2.4 on the previous page. If k = i + 1 or k = j − 1 we are done. Otherwise, the vertex

vk will be either between Top(vivj) and vj or between vi and Top(vivj). Assume, without loss of

generality, that vk is between Top(vivj) and vj . Since Pij is a 2-zone subpolygon for all edges of

the chain between Top(vivj) and vj , the farthest vertex of Pij is vi. We construct T ′ from T by

connecting all the vertices from the range vk+1 . . . vj−1 to vi. In the triangulation T , each of the

edges of the chain vk . . . vj is connected to another vertex of this chain, since the edge vkvj is a part

of the triangulation T (remember that T contains △vivkvj). The part of T inside the subpolygon

Pik will remain unchanged in T ′.

To see that µ(T ′) ≥ τ , consider an edge u from the chain vk . . . vj . It is connected in T to a vertex

u∗ from the range vk+1 . . . vj−1. Because of the fact that the point vi is farther from u than u∗,

connecting u to vi will increase the area of the triangle adjacent to u in the new triangulation T
′

,

compared to the area of the triangle that was adjacent to u in the triangulation T . Thus, connecting

all the edges in the chain vk . . . vj to vi either increases the smallest area triangle (if it was part of

Pkj) or does not influence the value of the smallest area triangle (if it was part of Pik). In both

cases µ(T ′) ≥ µ(T ) ≥ τ . Thus, the triangle △vivj−1vj will be in T ′. �

Note that the proof of Lemma 31 on page 26 automatically implies that the same is true for all

1-zone subpolygons.

Lemma 32 (MinMax Area in 2-zone polygons) Let Pij be a 2-zone polygon. Given a thresh-

old τ , if there exists a triangulation T of Pij such that λ(T ) ≤ τ , then there exists a triangulation

T ′′ of Pij such that λ(T ′′) ≤ τ , and the triangulation T ′′ contains one of the triangles △vivi+1vj

or △vivj−1vj .

Proof. The triangulation T contains a triangle △vivkvj for some i + 1 ≤ k ≤ j − 1, as shown

in Figure 2.5 on the next page. If k = i + 1 or k = j − 1 we are done. Otherwise, the vertex

vk will be either between Top(vivj) and vj or between vi and Top(vivj). Assume, without loss of

generality, that vk is between Top(vivj) and vj . We will show that the triangulation T ∗, obtained

by flipping the edge vjvk in T , has the property λ(T ∗) ≤ τ . To see this, consider vl – the other

vertex incident to the edge vjvk in T . Suppose we replace the edge vkvj by vivl, where k < l < j.

We have A△vivkvj
> A△vivlvj

because the point vl is closer to the edge vivj than the point vk.

Similarly, A△vivkvj
> A△vivkvl

because the point vl is closer to the edge vivk than the point vj .

Thus, removing the edge vkvj and introducing the edge vivl, we obtain two triangles △vivlvj and

△vivkvl that are both smaller in area than the previously existing triangle △vivkvj . Therefore T ∗

is either strictly better than T if △vivkvj was the worst triangle of T , or of the same quality as T

otherwise. In other words λ(T ∗) ≤ τ . If l = j − 1 we are done, T ′′ ≡ T ∗. Otherwise we will repeat

the described procedure until we arrive at vj−1, the final triangulation obtained will be T ′′. �

28



Figure 2.5: Retriangulation in a 2-zone polygon, MinMax area
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Again, note that the proof of Lemma 32 on page 28 implies that for all zone 1-subpolygons the

same property is in place. Furthermore, Lemmas 31 on page 26 and 32 on page 28 establish that

the MaxMin and MinMax area triangulations of up to 2-zone polygon Pij always contain one of

the triangles △vivi+1vj or △vivj−1vj immediately adjacent to the base edge vivj .

Definition 33 Let P be a convex polygon with n ≥ 4 vertices. There are three possible types of

triangles in a triangulation of P :

– Triangles that have two edges from the boundary of the polygon P and one edge that is a

proper diagonal of P . Triangles of this type are called ears.

– Triangles that have one edge from the boundary of the polygon P and two edges that are

proper diagonals of P . Triangles of this type are called boundary triangles.

– Triangles whose all three edges are proper diagonals of P . Triangles of this type are called

internal triangles.

Property 34 Every triangulation T of a convex polygon P with n ≥ 4 vertices contains at least

two ears.

Proof. This can be proven by either a counting argument or induction. The inductive proof is

given here. Note that in case of a triangle (a polygon with three vertices), its only triangulation

contains one ear, the triangle itself.

Base case: For n = 4 both possible triangulations of a convex quadrilateral contain exactly two

ears. The same is true for n = 5, all possible triangulations of a convex pentagon contain exactly

two ears and one boundary triangle.

Inductive hypothesis: Every triangulation of a convex polygon with up to n vertices contains two

ears.

Inductive step: Let Q be a polygon with n+1 vertices. Consider a triangulation T of Q. It contains

a proper diagonal d of Q, which divides the polygon into two convex polygons R and S such that

Q = R∪S. Let R have n1 vertices, and S have n2 vertices, where n1 +n2 = n+2. If n1 ≥ 4, n2 ≥ 4

by the inductive hypothesis every triangulation of R and S has at least two ears. Thus, the parts

of T , TR and TS respectively, have at least two ears each. Each ear of TR and TS will be an ear in

T unless it has d as an edge, as d is a boundary edge of both R and S, but a proper diagonal of

Q. There can be at most two ears containing d – one in TR and one in TS . Therefore, there will

be at least 4 − 2 = 2 ears in T . When either n1 or n2 is equal to 3, the triangulation TR or TS is

a triangle, but this triangle will be an ear of T . The other part will yield at least one more ear, as

its triangulation has at least two, and at most one of these is adjacent to d. �
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Definition 35 A triangulation T of a convex polygon P that contains exactly two ears and all

other triangles are boundary triangles is called a sleeve.

Corollary 36 There exist MaxMin and MinMax area triangulations of a 2-zone polygon Pij that

are sleeves.

Proof. Lemmas 31 on page 26 and 32 on page 28 show that the optimal area triangulations of

Pij contain a triangle with base edge vivj and third vertex immediately adjacent to vi or vj . This

triangle, by Definition 33 on the previous page is an ear of the optimal triangulation. Further, we

can see that the remaining polygon is a 2-zone polygon and thus satisfies the premises of the two

lemmas. Therefore the optimal triangulation contains an ear adjacent to its base edge, which is a

boundary triangle of the optimal triangulation of Pij . This is true unless the remaining part is a

triangle itself, in which case it will be an ear of the optimal triangulation, its second ear. Thus, the

optimal triangulations, both MaxMin and MinMax area, of a 2-zone polygon Pij consist of exactly

two ears (the base triangle and some other ear) and all other triangles have exactly one boundary

edge. There are no internal triangles, i.e., triangles whose edges are all proper diagonals of the

polygon. �

In order to handle 3-zone and 4-zone convex polygons, we introduce the following lemma.

Lemma 37 In every triangulation T of a convex polygon P , there exists a triangle △vivjvk, such

that

z(Pij) ≤ 2, z(Pjk) ≤ 2, z(Pki) ≤ 2

If such a triangle is non-degenerate (i.e., has three distinct vertices) we call it a 2-2-2-zone trian-

gle.

Proof. Property 30 on page 26 implies that only one of the subpolygons surrounding an internal

triangle can be of zonality 3 or more. Thus, consider any triangle △vpvqvr of T . If it has the

desired property we are done. If it does not have the property then without loss of generality we

can assume that z(Ppq) ≥ 3. By Property 29 on page 25 we have that z(Pqp) ≤ 2. Proceeding

into the interior of the subpolygon Ppq , it contains some triangle △vpvqvr1
of T . If it has the

desired property, we are done. Otherwise, we can repeat this in the interior of the subpolygon Ppr1

say, which is a proper subpolygon of the previous polygon Ppq. This procedure stops whenever a

triangle with the desired property is found or if we reach an ear (which will mean in our terms

that the polygon P itself has a zonality of 2 and any of its triangles has the claimed property).

Note that if we have a proper diagonal such that both subpolygons associated with it have zonality

of two or less (call it a 2-2-zone diagonal), then both triangles adjacent to such a diagonal are

2-2-2-zone triangles. However, it is not always the case that in a triangulation we have a 2-2-zone

diagonal. �
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One important consequence of Lemma 37 and Corollary 36 on the preceding page is that the struc-

ture of the optimal triangulation, in both MaxMin and MinMax area cases is specified. The optimal

triangulation contains at most one internal triangle and at most three ears, all other triangles are

boundary triangles.

In the next few properties we are going to use the three standard functions for the vertices of

the convex polygon P : index(), pred(), and succ(), defined as follows:

– index(vi) = i

– pred(vi) = v(i−1) mod n

– succ(vi) = v(i+1) mod n

Observe that in the series of subpolygons Pi,i+2, Pi,i+3, . . . , Pi,i−1 ≡ P formed by connecting the

vertex Pi to all other vertices of P in clockwise order, the zonality of the subpolygons is monoton-

ically increasing. Since we are going to consider only up to 2-zone subpolygons, we introduce the

following:

Definition 38 Let vi be a vertex of P . We will denote by MaxCW (vi) the last (in the clockwise

order from vi) vertex of P such that z(Pi,index(MaxCW (vi))) ≤ 2. In other words, in the series of

the subpolygons Pi,i+2, Pi,i+3, . . . , Pi,index(MaxCW (vi)), all the subpolygons have zonality of 2 or

less, and z(Pi,succ(index(MaxCW (vi)))) ≥ 3. Analogously, we will define MaxCCW (vi) to be the last

vertex in the counterclockwise order from vi, such that z(Pindex(MaxCCW (vi),i)) ≤ 2.

Property 39 MaxCCW (vi) = Top(vi−1vi), and MaxCW (vi) = Top(vivi+1) or MaxCW (vi) =

succ(Top(vivi+1)).

Proof. Consider vj = Top(vi−1vi), and draw a line through vj parallel to the edge vi−1vi. By the

definition of Top(vi−1vi) the entire subpolygon Pji will lie in the strip between these two parallel

lines. Thus z(Pji) ≤ 2. Therefore all the subpolygons Pji, Pj+1,i, . . . , Pi−2,i will have zonality of

2 or less, and obviously because of the slope of the edge vj−1vj , z(Pj−1,i) ≥ 3. Consequently,

MaxCCW (vi) = Top(vi−1vi). Repeating the same reasoning with respect to edge vivi+1, for

MaxCW (vi) two possibilities exist. If there is an edge parallel to vivi+1 then MaxCW (vi) =

succ(Top(vivi+1)), otherwise MaxCW (vi) = Top(vivi+1). �

Figure 2.6 on the next page illustrates the situation addressed by the following lemma. Recall that

µ(T ) represents the minimum area of a triangle in a given triangulation T .

Lemma 40 (Intervals of admissibility for MaxMin Area) Let Pij be a subpolygon of P such

that z(Pji) ≤ 2. Consider the interval between MaxCCW (vj) and Top(MaxCCW (vj), vj) of ver-

tices of Pij . Given a threshold τ , if there exist two vertices k1 and k2 in the interval such that there
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Figure 2.6: Intervals of admissibility for MaxMin area

exist triangulations T1 of Pk1j and T2 of Pk2j , respectively such that µ(T1) ≥ τ and µ(T2) ≥ τ , then

for each vertex k in the interval between k1 and k2 there exists a triangulation T of Pkj such that

µ(T ) ≥ τ . The largest such interval is called the CCW interval of admissibility for MaxMin

area with respect to vj and τ .

Proof. The idea of this proof is similar to that of Lemmas 31 on page 26 and 32 on page 28.

We will show how to obtain T from T1 and T2. Please refer to Figure 2.6. The subpolygon

between MaxCCW (vj) and vj is 2-zone by definition. This means that for all the edges between

MaxCCW (vj) and Top(MaxCCW (vj), vj), the vertex vj is the farthest vertex. Then, we can

obtain T by adding to T2 a fan from vj to the vertices in the chain between k and k2. Because

of the existence of T1, we know that all the edges in the chain between k and k2 are contained in
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triangles of T1 that have area larger than τ . In T we connect them to vj that is at least as far as

the vertex that they were connected to in T1. Remember that the internal triangles do not matter

here as the worst triangle in the MaxMin area triangulation has a boundary edge. �

This argument is symmetric, in the interval between Top(vi,MaxCW (vi)) and MaxCW (vi), there

is an interval of vertices (possibly empty) such that a triangulation of the subpolygon between

vi and any of these vertices that satisfies the given threshold condition is possible. This is the

CW interval of admissibility with respect to vi and τ . It should be mentioned that, depending

on the shape of the polygon, Top(vi,MaxCW (vi)) could precede MaxCCW (vj) in the clockwise

order. Similarly, Top(MaxCCW (vj), vj) can be to the right of MaxCW (vi). However, the key

observation here is that Top(vi,MaxCW (vi)) is to the left of Top(MaxCCW (vj), vj), i.e. the in-

terval from MaxCCW (vj) to Top(MaxCCW (vj), vj), and the interval from Top(vi,MaxCW (vi))

to MaxCW (vi) completely cover the interval between MaxCCW (vj) and MaxCW (vi). Refer to

Figure 2.6 on the previous page. Thus, we have a solid basis for checking all possible triangles

satisfying the premises of Lemma 37 on page 31 under the measure µ.

There is another important consequence of Lemma 40 on the previous page. Recall that we denoted

the value of the minimum area in the MaxMin Area triangulation of the subpolygon Pij by µ∗(Pij).

Corollary 41 (Unimodality of the optimum) Let vi be a vertex of P . µ∗(Pik), as a function

of the vertex vk, is unimodal over the interval [Top(vi,MaxCW (vi)),MaxCW (vi)]. Similarly,

µ∗(Pmi), considered as a function of the vertex vm, is unimodal over the respective interval of

vertices of P – [MaxCCW (vi), T op(MaxCCW (vi), vi)].

Proof. For any two values of the threshold area, τ1 and τ2, such that τ2 > τ1, the admissibility inter-

val of τ1 will include the admissibility interval of τ2. This is true since µ∗(Pij) ≥ τ2 and τ2 > τ1 imply

µ∗(Pij) > τ1. This geometric inclusion property implies the unimodality of the function. Specifi-

cally, for area threshold of zero, τ = 0, the admissibility interval coincides with the entire interval:

[Top(vi,MaxCW (vi)),MaxCW (vi)] in CW direction, and [MaxCCW (vi), T op(MaxCCW (vi), vi)]

in CCW direction. If we set the threshold value above the area of the polygon P , τ > AP , then

obviously the admissibility intervals will be empty. Note that the functions that we defined here

are discrete and we use the term unimodality in this sense. �

Recall that λ(T ) represents the maximum area of a triangle in a given triangulation T .

Lemma 42 (Intervals of admissibility for MinMax Area) Let Pij be a subpolygon of P such

that z(Pji) ≤ 2. Consider the interval of the vertices (if any) of Pij following Top(vivj) in the clock-

wise order and lying in the parallel strip defined by the lines perpendicular to the edge vivj at its

endpoints. Given a threshold τ , if there exist two vertices k1 and k2 in the interval such that there

exist triangulations T1 of Pk1j and T2 of Pk2j , respectively, such that λ(T1) ≤ τ, A△vik1vj
≤ τ and
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Figure 2.7: Intervals of admissibility for MinMax area

λ(T2) ≤ τ, A△vik2vj
≤ τ , then for each vertex k in the interval between k1 and k2 there exists a

triangulation T of Pkj such that λ(T ) ≤ τ, A△vikvj
≤ τ . The largest such interval is called CCW

interval of admissibility of vj for MinMax area with respect to vi and τ .

Proof. We will show how to construct the triangulation T . We will add to the existing triangulation

T2 a fan from the vertex vj to the vertices of the chain between k and k2. Figure 2.7 illustrates

this construction. To see that these triangles satisfy the area condition, consider any edge e in

the chain from k to k2. In the chain from k1 to k2 each point is closer to the edge vivj than its

predecessor. This means that A△(e,vj) < A△(e,vi), because the point vj is closer to the edge e

than the point vi. Let us denote the endpoints of the edge e by vl and vr, where vl is the one

preceding vr in the clockwise order. Here l and r stand for “left” and “right”, respectively. We

have A△(e,vi) < A△vivlvj
since the point vr is closer to the edge vivl than the point vj . In turn

A△vivlvj
< A△vikvj

since the point vl is closer to the edge vivj than the point k. For the same

reason A△vikvj
< A△vik1vj

≤ τ . Thus, we have established that all the triangles in the fan from vj

to the vertices of the chain between k and k2 have area smaller than the threshold, likewise with

the triangle △vikvj . Hence, λ(T ) ≤ τ . �

Symmetrically, in the ascending chain of vertices preceding Top(vivj) in the clockwise ordering and

lying inside the strip defined above, those vertices vm that satisfy λ(T ) ≤ τ, A△vivmvj
≤ τ for some
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triangulation T of the polygon Pim form an interval – the CW interval of admissibility of vi

for MinMax area with respect to vj and τ . Of course, here we are restricted by the strip and one

or both of these intervals might not exist.

Recall that we denoted the value of the maximum area in the MinMax Area triangulation of

the subpolygon Pij by λ∗(Pij).

Corollary 43 Let vi be a fixed vertex of P . λ∗(Pik) as a function of the vertex vk is unimodal

over the part of the interval [vi, T op(vivj)] lying inside the parallel strip perpendicular to the edge

vivj for every other vertex vj following vi in the clockwise order. Similarly, λ∗(Pmi) considered as

a function of the vertex vm is unimodal over the part of the interval [Top(vjvi), vi] lying inside the

parallel strip perpendicular to the edge vjvi at its endpoints for every other vertex vj preceding vi

in the clockwise order.

Proof. Identical to the proof of Corollary 41 on page 34. �

To summarize the results of this section, we have shown that the worst triangle in a MaxMin Area

triangulation is adjacent to the boundary of the polygon. We have described a way to classify sub-

problems based on the angles formed by their extreme edges. Some special cases exist. Polygons

that can be inscribed in a parallel strip through the endpoints of their base edge can be triangulated

using one of the two triangles immediately adjacent to the base edge. Every triangulation contains

a triangle such that the three outside parts can be treated more easily than the general case. Based

on this, we only need to check small number of possible triangles and these checks are facilitated

by the fact that the points that admit triangulations with respect to a given threshold value of area

form intervals.

In the case of MinMax Area, although the worst triangle does not necessarily have a boundary

edge, the optimal triangulation still uses one of the triangles immediately adjacent to the base edge

of a subpolygon for the above described special types of subpolygons. Intervals of admissibility can

be constrained to the interior of the parallel strip, perpendicular to the edge and passing through

its endpoints. As we shall see further, this is enough to obtain a similar algorithmic result to that

of MaxMin Area. Considerations in this section also reveal the specific structure of the two optimal

area triangulations.
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2.3 Algorithmic approach

2.3.1 General algorithm

The general algorithm used to compute the MaxMin and MinMax area triangulations of a convex

polygon P is based on the dynamic programming approach. We solve all subproblems (i.e. find the

optimal area triangulations of the subpolygons) in order of increasing size, starting with the trian-

gles and going up to the polygon P itself. However, we will not solve subproblems with zonality of

more than two. Instead, if we detect that a subproblem is not a one- or two-zone problem, we will

proceed to the next subproblem. After running through all possible subproblems, we will use the

data collected, to determine the answer in the following way. The optimal triangulation contains

either a diagonal that has both subproblems associated with it solved or a triangle that has all

three subproblems associated with it solved, see Figure 2.8 on the following page. The algorithm

will use special data structures to achieve the claimed space and time bounds. The overall scheme

used to construct the two optimal triangulations is the same. However, the search for the optimal

triangulations after the dynamic programming phase, and the data structures used are different,

based on the specific properties of the two triangulations derived in previous section.

The array SubPr[] is used to carry the results of the dynamic programming phase. In the entry

SubPr[i, j] we store the index k of the vertex vk that is connected to the edge vivj in the optimal

triangulation of Pij , or zero if z(Pij) ≥ 3. In addition, if the index is non-zero, the SubPr[i, j]

entry also stores the value of the maximal/minimal area for the subproblem. Thus the entries in

SubPr[i, j] have two fields – for the indices and areas of the optimal triangulations being computed.

All these data structures are global for the described algorithm. The searching phase, performed

in step iv., creates and uses additional data structures, which will be introduced and explained

later in this section. These are all of quadratic size, O(n2), as it will be shown in the subsequent

analysis.

Algorithm 44 (Optimal Area Triangulation)

Input: Convex polygon P represented by the list of its n vertices in clockwise order.

Output: Triangulation T1 (MaxMin Area triangulation) of P such that the minimum area triangle

in T1 has maximum area over all triangulations of P , and triangulation T2 (MinMax Area triangu-

lation) of P such that the maximum area triangle in T2 has minimum area over all triangulations

of P .

i. Compute, for each edge and diagonal of P , the most distant vertex of P .

Store the results in the array Top[1..n, 1..n].

Compute the arrays MaxCW [1..n] and MaxCCW [1..n] from Top[1..n, 1..n].
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Figure 2.8: Top: for the diagonal vivj both Pij and Pji are 2-zone subpolygons.
Bottom: for △vivjvk, all three polygons Pij , Pjk, and Pki are 2-zone subpolygons
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ii. Initialize the array SubPr[1..n, 1..n] with zeros.

for i := 0 to n do

set the area fields of SubPr[i, (i+ 2) mod n] with the area of △vivi+1vi+2;

set the index fields of SubPr[i, (i+ 2) mod n] with (i+ 1) mod n.

iii. for l := 3 to n− 1 do

for i := 1 to n do

if z(Pi,i+l) ≤ 2 then

set the area fields of SubPr[i, (i+ l) mod n] with the minimum/maximum area in

the optimal triangulations of Pi,i+l;

set the index fields of SubPr[i, (i+ l) mod n] with the index of the vertex adjacent

to vivl in each of the optimal triangulations of Pi,i+l

iv. for i := 1 to n do

for j := 1 to n do

if SubPr[j, i] 6= 0 then

if SubPr[i, j] 6= 0 then

compare to the current best triangulations and update if necessary

else

search in [i, j] for a k such that the triangle △vivkvj yields a solution;

compare to the current best triangulations and update if necessary

v. Construct the two optimal triangulations T1 and T2 obtained from the search in iv.

Lemma 45 Steps i. to iii. of Algorithm 44 are performed in O(n2) time, using O(n2) space.

Time and Space Analysis. As it was mentioned earlier in the text, the computation of the values

in the array Top[] in step i. can be performed in O(n2) time. The idea used is again the rotating

calipers [56], but instead of considering edges on the boundary of P one after another and moving

the calipers accordingly, we consider the fan of edges that are incident to one particular vertex and

move the calipers to compute the Top[] of the edges in this fan. This is done in O(n) time since the

calipers do not make more than one full rotation around the boundary of P . We have n vertices,

and for each vertex we perform two rotations, as we consider the fan of diagonals adjacent to the

vertex in both the clockwise and the counterclockwise directions, hence there are 2n such passes

and the task is completed in O(n2) time.

The computation of MaxCW [] and MaxCCW [] requires linear time, due to their relationship

with the values in Top[] given by Property 39 on page 32. The initialization of SubPr[] in step ii.

takes O(n2) time. In step ii. we also initialize the entries in SubPr[] that correspond to triangles.

This takes linear time. Step iii. performs the dynamic programming and solves all subproblems of

zonality up to two reflecting the solutions in SubPr[] as discussed. There are two nested loops, in
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each of the iterations through the inner loop, we only perform constant number of checks and value

assignments. This is based on the fact that for each subproblem we only have to compare the two

possible triangulations containing the triangles immediately adjacent to the base, as it was proven

in Lemmas 31 on page 26 and 32 on page 28. Thus, step iii. also takes O(n2) time.

The claimed time and space bounds follow.

Further we will analyze in detail step iv. of the Algorithm 44 on the preceding page, separately

for MaxMin and MinMax area triangulations, as they are performed differently. We will show that

step iv. takes O(n2 logn) time and O(n2) space in both cases. To achieve efficient search for the

optimal triangulations, within the claimed time and space bounds, we use specific data structures

that are different for the MaxMin and MinMax area triangulations. We explain the data structures

and properties that are used to find the MaxMin and MinMax area triangulations based on the

data gathered during the dynamic programming, starting with the MaxMin area triangulation.

2.3.2 MaxMin Area triangulation

Lemma 23 on page 21 establishes that the worst triangle, in the case of MaxMin area, contains a

boundary edge. If the optimal MaxMin area triangulation contains a non-degenerate 2–2–2–zone

triangle, we do not have to account for its area as it is not going to be the worst triangle. We

may also assume that we discover the desired 2–2–2–zone triangle from the edge vivj such that

µ∗(P ) = µ∗(Pji). We try to find a vertex vk in the interval [vi, vj ] such that µ∗(Pik) ≥ µ∗(Pji)

and µ∗(Pkj) ≥ µ∗(Pji). In fact it is sufficient to know that the desired vertex vk exists in the

interval [vi, vj ]. We do not need to find the exact vertex until we need the optimal triangulation.

Remember that the subinterval of [vi, vj ] that contains vertices forming 2–2–2–zone triangles with

base vivj is completely covered by the intervals of unimodality of µ∗(Pik) and µ∗(Pkj), as shown

in Corollary 41 on page 34. Thus, if we have to check whether there is triangulation of a cer-

tain quality, we may divide this task into two parts. Check whether there is a vertex with the

desired property in [Top(vi,MaxCW (vi)),MaxCW (vi)], and whether there is such a vertex in

[MaxCCW (vj), T op(MaxCCW (vj), vj)]. Let’s consider the first part. We are looking for a vertex

vk in [Top(vi,MaxCW (vi)),MaxCW (vi)]. µ
∗(Pik) will be unimodal over this interval. Thus we

have to find the portion of this interval in which µ∗(Pik) ≥ µ∗(Pji). According to Lemma 40 on

page 33 this portion is a subinterval. Now we are interested in whether there is some vk in the

interval of admissibility of vi and µ∗(Pji) such that µ∗(Pik) ≥ µ∗(Pji). It is important to emphasize

that µ∗(Pkj) is generally not unimodal in this interval. A natural way to represent this problem is

a two-dimensional range search with a 3–sided open query rectangle. Please refer to Figure 2.9 on

the following page for illustration.
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Figure 2.9: Range searching, MaxMin area triangulation

If we represent µ∗(Pji), µ
∗(Pkj) and µ∗(Pik) as functions of k over the interval of vertices be-

tween Top(vi,MaxCW (vi)) and MaxCW (vi), then the query rectangle will be given by the lines

y = µ∗(Pji), x = vleft and x = vright, where vleft preceding vright are the endpoints of the interval

of admissibility of vi and µ∗(Pji). The x coordinate axis represents the indices of the vertices of the

original polygon P in [Top(vi,MaxCW (vi)),MaxCW (vi)], and the y coordinate axis represents

area. Once again, we only need to check whether there is a point from the curve y = µ∗(Pkj) (green

curve in the figure) inside the query rectangle. This kind of range searching can be performed using

the approach of [19]. For a data set of n points in the plane, we can build a tree structure of linear

size, O(n). The time required to build the data structure, i.e., the preprocessing time is O(n logn).

Then, the queries of the specified type, 3–sided open rectangle, can be answered in logarithmic

time, O(log n), by a search in the tree.

The preprocessing of the polygon is done using the data from the dynamic programming phase.

For each vertex vi, we are going to keep four data structures: two arrays containing the values of

µ∗(Pik) (solutions of the subproblems starting from vi in clockwise order) and µ∗(Pmi) (solutions of

the subproblems ending at vi in counterclockwise order); and two data structures that correspond

to the first two arrays preprocessed in a way that is required to answer range searching queries of the

specified type. As we have n vertices, we have to build 4n data structures of linear size. Thus the

space used will be quadratic, O(n2), and the preprocessing will require O(n2 logn) time. Compu-
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tationally, there is one more issue. We have to find the sides of the query rectangle. The bottom is

given by µ∗(Pji), found by lookup in the SubPr[j, i]. We also have to compute the sides of the rect-

angle, vleft and vright. Using the unimodality of µ∗(Pik), this can be done by three binary searches

in the array representing values of µ∗(Pik): one to determine the point of the maximum, and two in

each of the parts to find the two intersection points with the given value of area, µ∗(Pji). Thus, per

diagonal we only spend O(log n) time inside the nested loops of step iv. in Algorithm 44 on page 39.

Lemma 46 Step iv. of Algorithm 44 on page 39 computes the MaxMin Area triangulation in

O(n2 logn) time and O(n2) space.

2.3.3 MinMax Area triangulation

In the case of MinMax area triangulation the approach is a bit different. We are not guaranteed that

the worst triangle has a boundary edge. In fact it is easy to construct a six point example where

the largest area triangle in MinMax area triangulation has no boundary edge. As Figure 2.10 on

the next page shows, the optimal triangulation (dotted edges) contains an internal triangle which

is largest in terms of area. All other possible triangulations of this point set, using either dashed

or solid edge(s) have larger value of λ. Therefore, we cannot use the value of λ∗(Pji) to guide the

search.

Furthermore, we are restricted to unimodality within a parallel strip, perpendicular to the diagonal

of reference, vivj at its endpoints. The intervals of unimodality of λ∗(Pik) and λ∗(Pkj) do not

necessarily share more than the vertex Top(vivj). Together though, they still cover the parallel

strip. Nevertheless, this is enough to guarantee an algorithmic result with the same time and space

complexity as in MaxMin area case. Instead of using the value of λ∗(Pji), we are going to use the

fact that for each triangle at least one of its vertices lies in the parallel strip perpendicular to the

opposite side in its endpoints. This is true for the vertex opposite the largest side of the triangle.

To see that, recall that in a triangle the larger side is opposite the larger angle. Therefore we have

two cases: the largest side is opposite an acute angle, and the largest side is opposite a non-acute

angle. In the first case, each of the vertices of the triangle (which is an acute triangle, given that its

largest angle is acute) lies within the parallel strip perpendicular to its opposite side. In the second

case, the vertex of the triangle opposite its largest side lies in the parallel strip perpendicular to

the largest side since the two angles adjacent to the largest side are acute. Thus, if the optimal

MinMax Area triangulation contains a non-degenerate 2–2–2–zone triangle, we will discover it from

its largest side vivj with the third vertex vk lying within the parallel strip. Otherwise, there will

be a diagonal that has both subproblems associated with it solved, and Mλ(P ) will be found when

the named diagonal is examined.
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Figure 2.10: Six-point counterexample for the anchor condition
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Figure 2.11: Staircase structures and the search for MinMax pair

It remains to consider the problem of finding vertex vk in the strip perpendicular to vivj so as to

minimize max(λ∗(Pik), λ∗(Pkj)). Let vij
left and vij

right be respectively the leftmost and the rightmost

vertices of P in the perpendicular strip of the edge vivj . Depending on the position of Top(vivj)

with respect to the interval [vij
left, v

ij
right], we have two possibilities. If Top(vivj) ∈ [vij

left, v
ij
right], then

λ∗(Pik) will be unimodal over [vij
left, T op(vivj)] and λ∗(Pkj) will be unimodal over [Top(vivj), v

ij
right]

by Corollary 43 on page 36. Otherwise, exactly one of the two functions will be unimodal over the

entire interval [vij
left, v

ij
right]: it will be λ∗(Pkj), if Top(vivj) precedes vij

left in the clockwise order of

vertices of P , and λ∗(Pik), if Top(vivj) follows vij
right in the clockwise order of vertices of P , again

by Corollary 43 on page 36.

Without loss of generality, we can illustrate the algorithmic approach with the case where λ∗(Pkj)

is unimodal over the entire interval [vij
left, v

ij
right]. Denote the vertex where the minimum of λ∗(Pkj)

over this interval is attained by vij
min. This situation is illustrated in Figure 2.11.

To be able to find the index k for which max(λ∗(Pik), λ∗(Pkj)) is minimum we need to introduce

some monotonicity in λ∗(Pik). It seems natural to use staircase structures for this purpose. In the

interval of increase of λ∗(Pkj), we need the staircase structure for λ∗(Pik) that represents only the

points of λ∗(Pik) that decrease the area, i.e., points are rejected that lie NE (in the I quadrant)

relative to a point of λ∗(Pik). Please, refer to Figure 2.12 on the next page for an illustration
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Figure 2.12: Rejection of points in the staircase structures, NE case

of the rejection rule. To see that this is true, consider two points on λ∗(Pik): (x1, λ
∗(Pix1

)) and

(x2, λ
∗(Pix2

)) for x1 < x2. Assume that λ∗(Pix1
) ≤ λ∗(Pix2

), that is the point (x2, λ
∗(Pix2

)) for

x1 < x2 lies in the I quadrant relative to a coordinate system with an origin at (x1, λ
∗(Pix1

)).

Keeping in mind that λ∗(Pkj) is increasing in the interval, we can see that λ∗(Px1j) ≤ λ∗(Px2j)

and therefore max(λ∗(Pix1
), λ∗(Px1j)) ≤ max(λ∗(Pix2

), λ∗(Px2j)). As we need to minimize the

maximum, the point (x2, λ
∗(Pix2

)) can be rejected from our considerations. Analogously, for the

interval of decrease of λ∗(Pkj) we need the staircase structure for λ∗(Pik) that represents points of

λ∗(Pik) that increase the area, i.e., points are rejected that lie NW (in the II quadrant) relative to

a point of λ∗(Pik). We call a staircase NE if it is built by the NE (I quadrant) rejection rule and

NW if it is built by the NW (II quadrant) rejection rule.

It is the intersection points between the two staircase filtered versions of λ∗(Pik) and the unimodal

λ∗(Pkj), i.e., the points where the two functions change their dominance one over the other, where

we find the locally best MinMax Area triangulation. Only the two entries adjacent to each point
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of intersection, either to the left or to the right, have to be compared to determine the MinMax

Area triangulation for each part of the interval. Using binary search, we need O(log n) time to

determine vij
min in the interval [vij

left, v
ij
right]. In addition, we have to perform at most two binary

searches to find the intersection points and MinMax points in each of the two parts [vij
left, v

ij
min] and

[vij
min, v

ij
right], respectively. In order to do this, we need to compute the data structures representing

the staircase filtered versions of λ∗(Pik) and λ∗(Pkj). Thus, for each vertex vi we are going to keep

seven arrays: two arrays containing the values of λ∗(Pik) (solutions of the subproblems starting from

vi in clockwise order) and λ∗(Pki) (solutions of the subproblems ending at vi in counterclockwise

order), and four arrays that correspond to the staircase filtered versions of the first two arrays -

NW and NE in both directions. One additional array per vertex stores the values of vij
min sorted

in clockwise order. This array is used to guide the construction of the staircase arrays. For each

diagonal vivj , we can find the vertex vij
min, a binary search achieves this in O(log n) time. Thus,

we have O(n logn) time per vertex to precompute all the values of vij
min and we can sort them

within the same time. Given the fact that we have to build n such arrays of linear size, we will

be within O(n2 logn) time and O(n2) storage space. The arrays representing the solutions of the

subproblems starting and ending at vi will also be precomputed, and this takes O(n2) time and

O(n2) space. The arrays representing the staircase structures will be built during the process of

examining diagonals adjacent to vi.

When we examine the diagonal vivj we have to find the points vij
left and vij

right – the ends of the

interval of vertices of P lying inside the strip. This can be done by two binary searches over the

indices of the interval [vi, vj ], hence in O(log n) time. To be able to build and handle staircase

structures efficiently we need to examine the diagonals adjacent to the vertex vi in a particular

order. This order is given by the location of the vertex vij
min.

We need to consider the two intervals [vij
left, v

ij
min] and [vij

min, v
ij
right] separately, find their MinMax

points, and compare them to find the overall MinMax point for the interval [vij
left, v

ij
right]. Consider

computing the NE staircase structure that is used to determine the local MinMax point in the

interval [vij
min, v

ij
right]. We examine the diagonals vivj adjacent to vi in a special order – the order of

decreasing of their vij
min, instead of their clockwise (or counterclockwise) order. This special order

gives us the opportunity to efficiently compute and update the staircase structures, which is central

to the efficiency of the algorithm. For the first diagonal in the mentioned order, we compute the NE

staircase structure by examining all the points from vij
min down to vi−1 rejecting some according to

the NE rejection rule. The points that represent the staircase structure will be kept in an array.

When each subsequent diagonal is examined, its respective vij
min is going to be to the left of the

previous one, so we have to examine the points between these two consecutive locations of vij
min

and to update the staircase structure at its left end. It might be necessary, in doing this, to go

over the points in the beginning of the array and reject them, if they are dominated by a point to
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the left. The key here is to notice that we are going to examine each point exactly twice, i.e., each

point can enter the staircase structure once and leave the staircase structure exactly once. However,

once rejected, a point can never reappear. This guarantees that over all diagonals adjacent to a

vertex, we spend linear time on updates in the staircase structures, leading to overall O(n2) time

and space spent on this process. Finally, given the current staircase structure, we can find its

intersection with λ(Pkj) in logarithmic time by binary search. The binary search should be guided

by the indices of the points represented in the staircase structure as these indices are a subset of

the indices in λ(Pkj). It remains to mention that trimming the array representing NE staircase

structure from right (effectively finding the position of vij
right) is also a logarithmic time operation,

done by a simple binary search in the array representing the staircase structure. The intervals

[vij
left, v

ij
min] are handled in one more pass through the diagonals adjacent to vi in the opposite

order – increase of vij
min. During this pass the NW staircase structures are used analogously to

determine the intersection points with λ(Pkj). Thus, for each diagonal vivj , we can find the vertex

vk that gives the MinMax Area triangulation of Pij in logarithmic time. Therefore, the overall time

spent is O(n2 logn). After examining each diagonal, we have to keep the index of the vertex to

which it is connected in the 2–2–2–zone triangle that is part of the optimal triangulation. Moreover,

we are able to do so because we compute the exact best triangulation for each diagonal. After the

completion of the process, the MinMax area triangulation can be retrieved in linear time given the

information about the index without any further checks. This settles our final claim.

Lemma 47 Step iv. of Algorithm 44 on page 39 computes the MinMax Area triangulation in

O(n2 logn) time and O(n2) space.

Theorem 48 Algorithm 44 on page 39 computes the MaxMin and MinMax Area triangulations

of a convex polygon P in O(n2 logn) time and O(n2) space.

Proof. It was established by Lemma 45 on page 39 that steps i. through iii. of Algorithm 44 on

page 39 take quadratic time and space. Lemma 46 on page 42, and Lemma 47 showed that step

iv. takes O(n2 logn) time and O(n2) space. It remains to consider the step v. of the algorithm.

This last step of the algorithm is done in linear time, O(n). In fact, during the search phase, in

iv., we do not maintain a complete triangulation as currently best. Once we know which diagonal

generates the optimal triangulation and the value of the optimal area, we can retrieve the whole

triangulation (list of its edges, for example) in linear time. In fact, each edge within a solved

subproblem is retrieved in constant time per edge. In the unsolved part we can allow ourselves to

test each vertex once to find the one that yields the best triangulation. �
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2.4 Better solution to the MaxMin decision problem

The MaxMin and MinMax area decision and construction problems can be solved in O(n2 logn)

time and O(n2) space by solving the optimization problem as shown in previous section. However,

the MaxMin Area decision and construction problems can be solved more efficiently. This is due

to the fact that the function µ∗ is unimodal from both sides over a large interval of the boundary

of the subpolygon as shown in Corollary 41 on page 34. To achieve the better time bound of

O(n2 log logn), we have to use special data structure, called Van Emde-Boas priority queue during

the search phase of the algorithm. Van Emde-Boas priority queues [57, 58] are data structures that

operate over a universe of keys (usually integers) of size N in a way that the operations insertion,

deletion, membership testing, finding predecessor and successor are performed in O(log logN) time.

The size of the priority queue is O(N). We can use as universe of keys the set of indices of the

vertices of the polygon P , i.e. [1..n]. Here we outline in detail the algorithmic approach that was

first presented in [32].

We will define a function M(τ) that returns true if there is a triangulation T of P such that

µ(τ) ≥ τ and false otherwise.

M(τ) uses an array Table[n, n]. It is similar to the arrays Best[n, n] and SubPr[n, n], used by

Algorithm 21 on page 19 and Algorithm 44 on page 39, respectively. In the entry Table[i, j], we

store the index k of the vertex vk that is connected to the edge vivj in a triangulation (if such

triangulation exists) of an up to 2–zone subpolygon Pij that satisfies the threshold condition, or

zero otherwise. The algorithm will set to zero all entries in Table[] that correspond to subproblems

of zonality three or higher. The information in Table[] is duplicated in two arrays of priority queues

R and C. The array R has n priority queues that encode the non-zero entries of the rows of Table[],

and the array C has n priority queues that encode the non-zero entries of the columns of Table[]. In

R[i], we insert all indices j that correspond to an element Table[i, j] > 0. Similarly, in the priority

queue C[j], we insert all indices i that correspond to an element Table[i, j] > 0. Again, the zero

entries in the rows and columns of Table[] are not represented in R and C.

Algorithm 49 (The function M(τ):)

(a) Initialize Table[] with zeros, initialize R and C with empty queues.

(b) For every possible pair (i, j), in the order of dynamic programming, if z(Pij) ≤ 2, check

whether an admissible triangulation exists and if so – update Table[i, j], R[i] and C[j] ac-

cordingly. Use the method of Lemma 31 on page 26.
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(c) Check for each entry in Table[], whether both Table[i, j] and Table[j, i] are non-zero, if so –

return true.

(d) Check for every non-zero entry Table[j, i], whether there exists k ∈ (i, j) such that Table[i, k]

and Table[k, j] are non-zero and A△vivkvj
≥ τ , if so – return true. Lemma 37 on page 31

allows us to search only for a k that yields 2–zone subproblems and Lemma 40 on page 33

allows us to do this efficiently.

(e) Return false.

Lemma 50 The function M(τ) is computed in O(n2 log logn) time and O(n2) space by Algo-

rithm 49.

Time and Space Analysis. Each individual entry in the arrays R and C is a van Emde–Boas

priority queue. These priority queues are a central part of the efficiency of the algorithm. As it

was mentioned, Van Emde–Boas priority queues work with a universe of keys of size N so that

the operations of insertion, deletion, membership testing, finding predecessor and successor are

performed in O(log logN) time. The size of the priority queue is linear in N – O(N). In our

algorithm, the universe of keys is the set of indices of the vertices of the polygon P , i.e. [1, n].

Thus, the size of each individual priority queue is O(n) and the overall size of the arrays R and

C is O(n2). Now, we analyze the timing of the computation of the function M(τ). Initializations

of Table[] and the arrays R and C in (a) is done in O(n2) time. After that, in (b), we have two

nested loops that compute the values of Table[] for all subproblems of zonality two or less. There

are O(n2) iterations through this program segment. In every iteration, we perform a constant

number of checks and logical operations and at most two insertions in the priority queues, if the

subproblem has an admissible triangulation. Therefore, the total time for the execution of the two

nested loops is O(n2 log logN). If the subproblem is a triangle, we only need to check whether the

area of this triangle is larger than the threshold value τ . If so, we reflect this in the queues R and C

and in the Table[]. If the subproblem is larger in size than a triangle but has zonality of two or less,

Lemma 31 on page 26 imples that we only need to check the two triangles that are immediately

adjacent to the base edge, if any of them is larger in area than the threshold value τ and the rest of

the subpolygon has admissible triangulation, we have to record the admissible triangulation of the

subproblem in the queues and R and C and in the Table[]. When the algorithm has gone through

all subproblems and has identified all subproblems that have admissible triangulations, we have to

obtain the answer for the polygon P as a whole. This is done in (c) and (d).

In (c) we have two nested loops, both of O(n) iterations, giving us O(n2) overall iterations. In each
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iteration we check one of the induced subproblems. If both the subproblem and its complementary

subproblem have been found to have an admissible triangulation, we can return true and thus exit

the computation of the function M(τ). So, the time for (c) is O(n2). In (d) we have to look for

the possibility of the current edge vivj being a base of a triangle with the property of Lemma 37

on page 31. To check this, we use the results and procedure of Lemma 40 on page 33. Namely, if

such a triangle exists, with the given edge as a base, we only have to check certain intervals. We

know, from the discussion following Lemma 40 on page 33, that admissible subproblems that start

from vi and end between Top(vi,MaxCW (vi)) and MaxCW (vi), if any, form an interval. Thus,

we can look in the priority queue R[i] for these subproblems. This is done by insertion of the two

ends of the interval – Top(vi,MaxCW (vi)) and MaxCW (vi) in R[i] and then querying R[i] about

their respective successor and predecessor. If those exist, we denote them by k1 and k2 and use

them to find an admissible subproblem that starts between k1 and k2 and ends at vj . Again, this

is done efficiently by inserting k1 and k2 in the priority queue C[j]. We also insert Top(vivj) there,

and then query the queue C[j] about the successor or/and predecessor of Top(vivj) in the interval

[k1, k2]. If either of these vertices is found to give admissible triangulation, we have to record it in

the queues R and C, and in the Table[] and return true for M(τ). If we cannot find such a vertex,

we have to symmetrically try to find a vertex in the admissible interval [k3, k4] of subproblems

ending at vj , such that the triangulation of P is admissible. If such a vertex exists we return true

for M(τ). Otherwise, we exit this iteration. If none of the iterations has resulted in the return of

true for M(τ), we have to conclude that a triangulation of P given this threshold is impossible,

and return false for M(τ). As we have mentioned, there are O(n2) overall iterations. Within each

iteration we only have a constant number of constant time operations or van Emde–Boas priority

queue operations that are performed in O(log logn) time. Thus, the total time complexity of the

fragment in (d) and therefore of the computation of M(τ) is O(n2 log logn). The space that data

structures use is O(n2). Finally, the triangulation can be recovered from the data in Table[] in

linear time, O(n) , because it has linear complexity and each time we look up in Table[] we add at

least one (and at most two) new edge(s) to the triangulation.

From the analysis in this section we can conclude the following:

Theorem 51 The MaxMin Area decision problem for a convex polygon can be solved within

O(n2 log logn) time and O(n2) space. The MaxMin Area construction problem can be solved

within the same time and space bounds.

2.5 Open problems and directions for future research

Our approach, based on dynamic programming, leads to algorithms that have time complexity of

more than O(n2) due to the fact that the search phase is separate from the dynamic programming
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phase. Moreover, an exhaustive search of O(n2) possibilities is required. It is interesting to know

whether an algorithmic approach to MaxMin and MinMax area triangulations is possible that

combines the two phases. The problem has no apparent complexity of more that quadratic. Thus,

we strongly believe that further geometric and algorithmic results are likely to improve the bounds

achieved here.

Further, assuming that these two problems admit a quadratic time solution, it is interesting to

know whether they belong to the class of 3-sum hard problems [45]. These are problems that

have been shown to have quadratic time solution, but no better solution is known. One problem,

that is related to the two problems considered in this chapter and is known to be 3-sum hard, is

finding the minimum (maximum) area triangle with vetices in a given set of n points [19].
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Chapter 3

MaxMin and MinMax area triangulations of gen-

eral point sets

In the previous chapter, we outlined algorithms that efficiently compute the MaxMin and MinMax

area triangulations of a convex polygon. They were based on geometric properties that are specific

for this situation. In the case of general point set, we cannot derive similar properties that will

help us to efficiently search for the optimal triangulation. Although it has been conjectured [9, 54]

that a condition similar to, but weaker than, the weak anchor condition exists for a class of quality

measures, the MaxMin and MinMax area do not appear to belong to such a class. Being unable to

decide whether the general problem is computable in polynomial time, we take another approach

– to find a reasonable in quality, and practical in terms of computational effort, approximation

of either of the two optimal area triangulations. We derive upper bounds for the approximations

computed. This has not been previously done in the literature. Experimental results on Minimum

Variance Area triangulation are obtained in [17]. The authors use so-called LMT-skeletons in

angularly-restricted triangulations, and dynammic programming to complete the triangulation once

a connected subgraph has been computed. No discussion is provided about the quality of the

triangulations obtained by this method.

3.1 Angular constraints, α-triangulations, forbidden zones

Definition 52 (α-triangulation) Given a planar point set S and an angle α such that 0◦ < α ≤
60◦, a triangulation T of S is called an α-triangulation if and only if all the angles in the triangles

of T are greater than or equal to α. Note that all the angles (of the triangles) in an α-triangulation

are in the interval [α, 180◦ − 2α].

For example, the bottom triangulation of Figure 1.1 on page 3 is a 4◦-triangulation and the top

one is a 17◦-triangulation. Only the vertices of a regular triangular grid represent a point set that

admits a 60◦-triangulation.

As it was pointed out in the introductory chapter, there is no guarantee for the quality in terms

of area of a “fat” triangulation, and reciprocally there is no guarantee for the “fatness” of a good
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area triangulation. We will show that a reasonable compromise can be achieved. The rest of this

chapter will be devoted to this.

Knowing that all the angles are in some interval, we can derive an interesting property of the edges

of an α-triangulation. We are going to define a region of the plane surrounding each possible edge

of the triangulation with the property that if this region contains some point(s) of S then we can

reject the edge as a possible part of an α-triangulation.

Definition 53 (i-th order triangles) Given a planar point set S and an angle α such that

0◦ < α ≤ 60◦, we call an edge AB, A,B ∈ S, internal if there are points from S in both

half-planes with respect to the line AB. For an internal edge AB, we define the isosceles triangle

△AV1B with angles ∠V1AB = ∠ABV1 = α as a first order triangle with respect to the edge

AB. We call the point V1 a first order vertex with respect to the edge AB. Similarly, we call

the edges AV1 and V1B first order edges with respect to the edge AB. Note that the point V1 is

generally not a point from the set S. It is just a part of an auxiliary construction. Recursively, on

each i-th order edge, we can build an isosceles triangle with base angles of α, and it will be (i+1)-th

order triangle with respect to the original edge AB. As it is clear from the construction method,

for i > 1, there are multiple i-th order triangles, edges and vertices. The vertices in particular

can be enumerated by double indexing Vij meaning that Vij is the j-th vertex of i-th order, where

i = 2, 3, . . . , j = 1, 2, . . . , 2i−1, and the index j is running clockwise from the leftmost i-th order

triangle (which is incident to A) to the rightmost i-th order triangle (which is incident to B). The

construction is illustrated in Figure 3.1.

Figure 3.1: Construction of the i-th order (i ≤ 4) triangles that form part of the
forbidden zone of the edge AB for α = 20◦
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Definition 54 (Free zone) For each triangle of i-th order, we can define its free wedge as the

interior of the angle opposite of its internal angle of 180◦ − 2α, as illustrated in Figure 3.2. The

union over all values of i, i = 1, 2, . . . of all free wedges for all i-th order triangles of the edge AB

is the free zone of the edge AB. Note that some of the i-th order triangles lie entirely in the free

wedges of triangles of lower order. Such triangles are not needed in the recursive construction of

the free zone. So, they are not recursively considered, although the numbering of vertices treates

them and their recursive descendants as existing. In Figure 3.1 on the preceding page it can be

seen that two potential 4th order triangles (shaded interior, dotted lines) are not considered as they

lie inside the free wedge of the 1st order triangle. The recursion also stops whenever we reach a

triangle whose interior is properly intersected by the line AB. The part of such a triangle’s free

zone that is in the same half-plane with respect to AB as the first order triangle is also a part of

the free zone of the edge AB. The free zone lies in both half-planes with respect to the edge AB,

thus the construction above has to be applied twice, in each of the half-planes defined by the line

AB.

Figure 3.2: Free wedge of an i–th order triangle

Definition 55 (Forbidden zone) The complement of the free zone of the edge AB is the forbid-

den zone of the edge AB. Points for which all local circular neighbourhoods contain both points

from the free zone and from the forbidden zone are called boundary points of the forbidden zone.

They form the boundary of the forbidden zone.

We now introduce additional notation that will help us in the following considerations of the geome-

try of the forbidden zone throughout this chapter. Denote by VL and VR the two intersection points

of the boundary of the free wedge of first order (i.e., angle opposite ∠AV1B) with the boundaries

of the left and the right free wedges of second order (i.e., angles opposite ∠AV21V1 and ∠V1V22B),

respectively. In a similar fashion, denote by VL1 the intersection point of the boundary of the free
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wedge of the leftmost triangle of third order (the angle opposite ∠AV31V21) with the boundary of

the free wedge of the leftmost triangle of second order; denote by VR1 the intersection point of

the boundary free wedge of the rightmost triangle of third order (the angle opposite ∠V22V34B)

with the boundary of the free wedge of the rightmost triangle of second order. We are going to

use extensively the points VL, VR, VL1, and VR1 in the discussion throughout the rest of this chap-

ter. Please, refer to Figure 3.3 on page 57 for an illustration. In general, the other “breakpoints”

of the boundary of the forbidden zone can be defined as follows. Denote by VLi the intersection

point of the boundary free wedge of the leftmost triangle of (i + 2)-th order (the angle opposite

∠AVi+2,1Vi+1,1) with the boundary of the free wedge of the leftmost triangle of (i+1)-th order; de-

note by VRi the intersection point of the boundary free wedge of the rightmost triangle of (i+2)-th

order (the angle opposite ∠Vi+1,2iVi+2,2i+1B) with the boundary of the free wedge of the rightmost

triangle of (i+ 1)-th order. Here the subscripts L and R stand for left and right, respectively.

Assume that the edge AB is horizontally aligned, with A to the left of B, and the words “above”

and “below” have their usual meaning. Now we can specify the boundary of the top part (the one

that is above the line AB) of the forbidden zone of the edge AB as a chain of line segments.

Property 56 The boundary of the forbidden zone of the edge AB, above AB, as per Definition 55

on the preceding page consists on the left of the chain of line segments V1VL, VLV21, V21VL1, VL1V31,

V31VL2, . . . , as many edges as needed until the chain intersects the line AB to the left of A. On

the right, the boundary of the forbidden zone consists of the line segments V1VR, VRV22, V22VR1,

VR1V34, V34VR2, . . . , as many as necessary until the chain intersects the line AB to the right of B.

Proof. To show that the named chains form the boundary of the forbidden zone, we have to show

that:

(1) no free wedge of a generated triangle of any order shares interior points with the region

bounded by the chains and AB, and

(2) every point on the named chains is contained in the boundary of the free wedge of a triangle

of some order.

Certainly, the free wedge of the first order triangle is exterior to the region, and shares with it

only the boundary segments V1VL and V1VR. Similarly, for the free wedge of the left second order

triangle △AV21V1, it shares with the region only the boundary segments VLV21 and V21VL1. We

have to consider the interior of the triangle △V21VLV1, as it might share interior points with free

wedges of triangles of higher order. According to the construction of the forbidden zone, the angles

of △V21VLV1 are as follows: ∠V21V1VL = α, ∠V1V21VL = 2α, ∠V21VLV1 = 180◦ − 3α. Therefore,

the third order triangle that is built on V21V1 as a base, will have its vertex V32 on the segment
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V1VL. The free wedge of this triangle, consequently, will lie entirely inside the free wedge of△AV1B

and will share only the line segment V32VL, which is a proper part of the segment V1VL, with the

boundary of the region. Further, the fourth order triangle, built on V21V32 as a base, will have its

vertex V43 on the segment V21VL. The free wedge of this triangle, consequently will lie entirely

inside the free wedge of △AV21V1 and will share only the line segment V43VL, which is a proper

part of the segment V21VL, with the boundary of the region. From these two steps we can see that

the subsequent higher order triangles will have their vertices on the segments V1VL and V21VL,

alternately, and their free wedges will lie entirely inside the free wedges of the triangles △AV1B

and △AV21V1, respectively. Taking infinitely many steps, we reach the conclusion that no interior

point of a free wedge of a higher order triangle lies inside the triangle △V21VLV1. Thus, triangle

△V21VLV1 lies entirely inside the forbidden zone of AB. Note that this serves also as a proof of

the fact that the triangle △V21VLV1 is completely covered by higher order triangles. This fact will

be used in the proof of the next Property 57. A similar argument establishes that the triangles

containing all the convex corners of the boundary are completely contained in the forbidden zone

of AB, e.g. △V31VL1V21. Although trivial, it should be mentioned that the generated i-th order

triangles themselves are completely inside the forbidden zone since they are interior disjoint with

their own free zones. �

To summarize the results of this proof, we have established that the boundary of the forbidden zone

contains certain line segments. Along the boundary, convex vertices of angle 180◦ − 3α alternate

with reflex vertices of angle 180◦ + 2α, and the forbidden zone is in fact the region tiled by the i-th

order triangles, i = 1, 2, . . ., that do not lie inside the free wedges of lower order triangles. The last

fact is very useful as it helps to intuitively understand the geometry of the forbidden zone, and it

can be used as an alternative definition of it from here onwards.

Property 57 If there is a point of the set S in the forbidden zone of the internal edge AB, then

AB is not a part of any α-triangulation of S.

Proof. In fact, the forbidden zone was defined to ensure this property. Using the notation from

Definition 53 on page 53 which is also used in Figures 3.1 on page 53 and 3.3 on the following page,

we are going to prove the claim by induction. Assume the edge AB is part of some α-triangulation

of S, call this triangulation TAB. For the triangles of TAB, we recursively define the distance from

AB as follows:

• A triangle that has AB as a side has distance one from AB.

• All the triangles that have an edge of a triangle at distance i from AB as a side, and whose

distance has not been defined yet, have distance i+ 1 from AB.
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Figure 3.3: The forbidden zone of the edge AB, the boundary line (red) after first
three iterations

Call X the point of the set S that is in the forbidden zone. The induction is going to be on i – the

order of the triangle (with respect to the construction of the forbidden zone) within whose closure

the point X lies. The same variable i is used for the distance from AB in the triangulation TAB.

We call the part of TAB consisting of all triangles of distance up to i from AB the traced part of

TAB.

We are going to prove inductively that the triangles of TAB of distance up to i from AB completely

cover up to i-th order triangles of the forbidden zone.

The base case is i = 1 and we have a single 1st order triangle – △ABV1. We are going to prove

that if X lies within △ABV1 then any triangulation containing the edge AB has to have angles

smaller than α. We have already assumed the contrary, i.e. that the edge AB is part of some

α-triangulation of S, denoted by TAB. Given the placement of X inside △ABV1 there are three

possibilities as shown in Figure 3.4 on the next page:

First, X can be connected to both A and B in TAB, which means that △ABX will be part of

the triangulation TAB. This will immediately violate the angular constraint, as at least one of the

angles ∠XAB and ∠XBA is smaller than α. Second, the point X can be connected to only one

of the ends of AB in TAB, say to A. Then the edge XB is not in the triangulation TAB, and

therefore it should be intersected by at least one edge incident to A, thus forming angles of less

than α (remember that ∠XAB itself is at most α). Third possibility is that X is not connected to

either of the points A or B in TAB. Then, there is an edge in the triangulation TAB that properly

intersects the interior of the triangle △ABX, thus separating X from AB. If there are multiple

edges with this property, consider the lowest of them, call it Y Z. By lowest we mean the one that

cuts off from △ABX a part adjacent to AB with the smallest area. The edges AB and Y Z are

in the triangulation TAB, and by our choice of Y Z no other edge of TAB intersects the interior

of the quadrilateral ABZY without being incident to A or B. Thus, one of the diagonals of this

quadrilateral, either AZ or BY is part of the triangulation TAB. This also violates the angular
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Figure 3.4: Possible placements of the point X with respect to the triangulation
TAB in the base case of Property 57 on page 56
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constraint as both AZ and BY lie inside the angles ∠XAB and ∠XBA, respectively. If so, any of

them will form with the edge AB angles of less than α. Figure 3.4 on the preceding page illustrates

the three subcases of the base case.

To summarize our findings, we have shown in the base case analysis that if a point X from the set

S lies within the first order triangle △ABV1, then the edge AB is not in any α-triangulation of

S. Additionally we have shown that if AB is in some α-triangulation TAB of S, then no edge of

this triangulation properly intersects the interior of △ABV1. There is one more important thing

to notice. The point of S to which the edge AB is connected in TAB can only lie in the free wedge,

i.e. the angle of 180◦ − 2α opposite ∠AV1B. Denote this point by W1, please refer to Figure 3.5

on the next page. If we consider the 2nd order triangles, the △ABW1 can have edges coinciding

with the base edges of these triangles: AW1 coinciding with AV1, or BW1 coinciding with BV1.

Another possibility is that the edges AW1 and BW1 intersect the interior of the triangles △AV21V1

and △V1V22B, respectively. And the last possible case is that △ABW1 contains an entire 2nd order

triangle in its interior.

There can be points of S inside the angles ∠V1AB and ∠V1BA, outside △ABV1, but they cannot

be connected to the edge AB in the triangulation TAB.

Our inductive hypothesis is that X does not lie inside any of the triangles of up to i-th order. In

addition, we assume the traced part of the triangulation TAB up to distance i from AB completely

includes the part of the forbidden zone up to i-th order in its interior. For the sake of notation

completeness we are going to denote the vertices of the traced part of TAB by Wij , where i is the

same as the induction variable (i.e. the order of the triangles in the construction of the forbidden

zone) and j is an index, assigned in clockwise order. As Wij are vertices of TAB, it should be

noted that they are points of the set S (Wij ∈ S), unlike Vij which are auxiliary points having no

connection to the set S. Note that here we may need more or less than 2i−1 triangles, depending

on the position of the points in S, to cover the forbidden zone up to i-th order. This means that

the outer edges of the traced part of TAB, i.e. those edges that have only one triangle adjacent

to them in the traced part of TAB can interact with the (i + 1)-th order triangles in one of the

following four ways:

(1) they can be aligned or coincide with the base edge of an i+ 1-th order triangle

(2) they can intersect the interior of an (i+ 1)-th order triangle being incident to one of its base

vertices

(3) they can intersect the interior of an (i+ 1)-th order triangle without being incident to one of

its base vertices

(4) the traced part of TAB can completely enclose in its interior an (i+ 1)-th order triangle.
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Figure 3.5: The part of the forbidden zone of the edge AB up to i-th order
triangles and the traced part of the triangulation TAB up to distance i in the proof
of Property 57 on page 56
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For the inductive step, we have to show that if the point X lies in some (i+ 1)-th order triangle,

with respect to the construction of the forbidden zone of the edge AB, then the edge AB cannot

be part of any α-triangulation of S. The method is the same, as for the base case, i.e., we are

going to show that this leads to the violation of the angular constraint. Consider the four possible

cases as per the inductive hypothesis. In case (4), we have a direct violation of the definition of

triangulation, as X would lie inside one of the triangles of TAB. Thus TAB cannot exist. Cases

(1), (2) and (3) correspond to the three situations resolved in the base case analysis. We have to

consider three possibilities for X - being directly connected to an edge of TAB (here we talk about

the edge that shares points with the (i + 1)-th order triangle in which X lies), to only one of its

endpoints, or not being connected to it. The violations of the angular constraints are derived in the

same manner. The three possibilities correspond to the three situations presented in Figure 3.4 on

page 58, in this order. It remains to note that if we go outside of the convex hull of S in building

the forbidden zone, the property claimed is trivially true – there are no points of S inside the part

of the forbidden zone that is outside the convex hull of S. �

Forbidden zones are used in computational geometry under different names in variety of situa-

tions, e.g., for defining different subgraphs of triangulations. They were extensively investigated

in connection with MWT as a tool for rejection of edges. Here we have in mind slightly different

approach. If we know that a certain triangle is in some α-triangulation of S, then we can derive

constraints on the positions of the other points of S, in other words we are guaranteed some empty

space around the triangle in question.

3.2 Parameters of the forbidden zone

3.2.1 Size, shape and analytical form

In this section, we are going to describe the forbidden zone of an edge AB in terms of analytical

geometry. For this purpose, and for the rest of this section, we will assume that the edge AB

has a length of 2a, where a is a positive real number. The edge will be aligned with the x–axis

of a two–dimensional Cartesian coordinate system in a way that its midpoint coincides with the

origin O(0, 0). Thus the endpoints of AB have coordinates A(−a, 0) and B(a, 0). We consider an

angle α ≤ 30◦. The reason for this further restriction on the value of α is the following: while the

forbidden zone was described for any α ≤ 60◦, in our algorithmic approach we are going to use

only the values of α ≤ 30◦. This will be discussed in detail at the appropriate place further in this

chapter.

From the proof of Property 56 on page 55 it follows that:
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Property 58 The forbidden zone of the edge AB properly contains the trapezoid ABVR1VL1 (see

Figure 3.3 on page 57). Base angles of the trapezoid, adjacent to the side AB, are equal to 3α,

and the angles adjacent to the side VL1VR1 are equal to 180◦ − 3α. The height of the trapezoid

is (AB/2) tanα = a tanα. Additionally, the forbidden zone of the edge AB properly contains the

triangles △V21VLV1 and △V1VRV22, placed on the top of the trapezoid ABVR1VL1.

Next, we are going to compute the coordinates of VL, VR, VL1, and VR1 under the current assump-

tions.

By the construction of the forbidden zone:

∠BAV1 = ∠ABV1 = ∠V1AVL = ∠V1BVR = ∠VLAVL1 = ∠VRBVR1 = ∠VL1V1VL = ∠VR1V1VR = α

Recalling that the midpoint of AB is O(0, 0), the point V1 is a vertex of the right triangle △OBV1

with OB = a, ∠BOV1 = 90◦ and ∠OBV1 = α, therefore OV1 = a tanα and the point V1 has

coordinates (0, a tanα). The line V1VR has a slope of tanα, and using the fact that the point V1 is

on the line, the equation of the line is:

AVR ≡ V1VR : y = x tanα+ a tanα = (x+ a) tanα

Analogously, the line V1VL has a slope of − tanα, and using that the point V1 is on the line, the

equation of the line is:

BVL ≡ V1VL : y = −x tanα+ a tanα = (a− x) tanα

It is easy to verify the above equations by substituting the coordinates of A into the equation for

V1VR and the coordinates of B into the equation for V1VL.

The line AVL has a slope of tan 2α, and using the fact that the point A lies on the line we obtain

the equation:

AVL : y = (x+ a) tan 2α

Similarly, for the line BVR we obtain the equation:

BVR : y = (a− x) tan 2α

Now we are ready to determine the coordinates of the points VL and VR by intersecting the pairs

of lines AVL and BVL, and AVR and BVR, respectively. For example, for VL we have:

(x+ a) tan 2α = (a− x) tanα⇔ x(tanα+ tan 2α) = a(tanα− tan 2α)⇔ x =
a(tanα− tan 2α)

tanα+ tan 2α

We are going to use the following two well-known trigonometric identities:

sin θ1 cos θ2 ± sin θ2 cos θ1 = sin(θ1 ± θ2)
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to transform the fraction as follows:

tanα− tan 2α

tanα+ tan 2α
=

(sinα cos 2α− sin 2α cosα)/(cosα cos 2α)

(sinα cos 2α+ sin 2α cosα)/(cosα cos 2α)
=

sin(−α)

sin 3α
= − sinα

sin 3α

Thus, the x–coordinate of the point VL is −a sinα/ sin 3α. The y–coordinate of VL is found by

substituting the above x–coordinate into one of the equations, for example:

y = (a− x) tanα = a

(

1 +
sinα

sin 3α

)

tanα =
a(sinα+ sin 3α) tanα

sin 3α

Here, we use another well-known trigonometric formula:

sin θ1 + sin θ2 = 2 sin
θ1 + θ2

2
cos

θ1 − θ2
2

to transform the expression into:

a(sinα+ sin 3α) tanα

sin 3α
=

2a sin 2α cosα tanα

sin 3α
=

2a sin 2α sinα

sin 3α

Finally, the coordinates of the point VL are (−a sinα/ sin 3α, 2a sin 2α sinα/ sin 3α). Because of the

symmetry with respect to the y–axis, the coordinates of VR are (a sinα/ sin 3α, 2a sin 2α sinα/ sin 3α).

Next, we will find the coordinates of the points V21 and V22. The line V21V22 ≡ VL1VR1 is parallel

to the x–axis and passes through the point V1, therefore it has equation:

VL1VR1 : y = a tanα

To find the x–coordinate of V21, we have to substitute the above y in the equation of the line AVL.

a tanα = (x+ a) tan 2α⇔ x =
a(tanα− tan 2α)

tan 2α

Developing the expression further, we get:

x =
a(tanα− tan 2α)

tan 2α
=
a(sinα cos 2α− cosα sin 2α)

cosα cos 2α tan 2α
=

a sin(−α)

cosα sin 2α
= − a sinα

2 sinα cos2 α
= − a

2 cos2 α

Therefore the coordinates of the two points are: V21(−a/2 cos2 α, a tanα) and symmetrically with

respect to the y–axis V22(a/2 cos2 α, a tanα). The equations of the non-parallel sides of the trape-

zoid, AVL1 and BVR1 are obtained similarly:

AVL1 : y = (x + a) tan 3α BVR1 : y = (a− x) tan 3α

From these two equations, taking into account that both VL1 and VR1 have an y–coordinate of

a tanα we can determine their x–coordinates, for VL1 we have:

a tanα = (x+ a) tan 3α⇔ x =
a(tanα− tan 3α)

tan 3α
=
a(sinα cos 3α− cosα sin 3α)

cosα cos 3α tan 3α

Further development yields:

x =
a sin(−2α)

cosα sin 3α
= −2a sinα

sin 3α
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The coordinates are: VL1(−2a sinα/ sin 3α, a tanα) and VR1(2a sinα/ sin 3α, a tanα). It is inter-

esting to note that the x–coordinate of VL1 is exactly twice the x–coordinate of VL.

In our further considerations we are going to use the part of the forbidden zone consisting of

the trapezoid ABVR1VL1 and the two triangles △V21V1VL and △V1V22VR. It is useful to describe

analytically the boundary of this region. We denote the boundary by B(x).

B(x) =
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





















































































(x+ a) tan 3α for − a ≤ x ≤ −2a sinα/ sin 3α (the segment AVL1)

a tanα for − 2a sinα/ sin 3α ≤ x ≤ −a/2 cos2 α (the segment VL1V21)

(x+ a) tan 2α for − a/2 cos2 α ≤ x ≤ −a sinα/ sin 3α (the segment V21VL)

(a− x) tanα for − a sinα/ sin 3α ≤ x ≤ 0 (the segment VLV1)

(x+ a) tanα for 0 ≤ x ≤ a sinα/ sin 3α (the segment V1VR)

(a− x) tan 2α for a sinα/ sin 3α ≤ x ≤ a/2 cos2 α (the segment VRV22)

a tanα for a/2 cos2 α ≤ x ≤ 2a sinα/ sin 3α (the segment V22VR1)

(a− x) tan 3α for 2a sinα/ sin 3α ≤ x ≤ a (the segment VR1B)

(3.1)

Corollary 59 For α = 30◦, the forbidden zone of the edge AB = 2a includes the rectangle

ABVR1VL1 with height a/
√

3. On top of this rectangle the forbidden zone includes two right

triangles △V21VLV1 and △V1VRV22 with bases of 2a
3 and angles of 30◦ at V1. Refer to Figure 3.6.

Figure 3.6: Parameters of the forbidden zone of the edge AB = 2a for α = 30◦

We are going to use the 30◦ forbidden zone in the proof of Lemma 72 on page 74, therefore we

rewrite the analytical form of its boundary (the rectangle and two triangles part) for α = 30◦. Note

that in this case the segments AVL1 and VR1B are vertical, and thus vanish from the expression

64



for the boundary. Trivially they have the equations:

AVL1 : x = −a VR1B : x = a

The boundary is given by:

B(x) =






















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
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







a/
√

3 for − a ≤ x ≤ −2a/3 (the segment VL1V21)

√
3(x+ a) for − 2a/3 ≤ x ≤ −a/2 (the segment V21VL)

(a− x)/
√

3 for − a/2 ≤ x ≤ 0 (the segment VLV1)

(x + a)/
√

3 for 0 ≤ x ≤ a/2 (the segment V1VR)

√
3(a− x) for a/2 ≤ x ≤ 2a/3 (the segment VRV22)

a/
√

3 for 2a/3 ≤ x ≤ a (the segment V22VR1)

We mentioned several times that the boundary of the forbidden zone will intersect the line AB

outside of the segment AB. It is interesting to know exactly when this is going to happen, that is

for what value of i does the boundary of the free wedge of the leftmost (or the rightmost) i-th order

triangle intersect the line AB. This depends on the value of α. Denote by nα the number with the

property that nα · α ≥ 180◦, but (nα − 1)α < 180◦. Therefore nα is the smallest number of angles

α that are necessary to fill but not exceed an angle of 180◦. In our considerations of matching

triangles it is also important to know how many angles of magnitude α are enough to fill a right

angle, we denote this number by n1. Of course this number is equal to the half of nα when nα is

even and to the half of nα + 1, otherwise. Explicitly:

nα =

⌈

180◦

α

⌉

n1 =

⌊

nα + 1

2

⌋

Note that in an i-th order triangle, the lengths of each of the two equal sides are equal to the length

of the base multiplied by a factor of 1/2 cosα. Thus di the length of the side of the i-th order

triangle is:

di =
AB

2i cosi α

This parameter is also important for our future considerations as it represents the distance from the

endpoints of the segment AB to the parts of the forbidden zone that lie outside of the trapezoid near

the intersection with the line AB. It is easy to see that the point of intersection of the boundary

of the forbidden zone is at a distance d∗ which satisfies the inequality

dnα
≤ d∗ ≤ dnα+1

3.2.2 Transformations of the forbidden zone

Here we are going to study and describe the properties of the forbidden zone of the edge AB under

various planar transformations such as extension of the base edge, contraction of the base edge,

and rotation about one of the endpoints.
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Corollary 60 If a segment A′B′ properly contains another segment AB then the forbidden zone

of A′B′ properly contains the forbidden zone of AB.

Proof. To begin we show the containment of the trapezoid and the two top triangles.

From the analytical geometry approach taken in previous subsection 3.2.1, we can use Equation 3.1

on page 64 which describes the boundary of the forbidden zone of a segment of length 2a with

respect to a point that is at a distance x from the midpoint of that segment. Now, consider

extension of the segment to the right by a length of 2h, where h is a positive real number. This

means that the new coordinates of the midpoint O′ are (0, h) and the length of the segment has

changed, so its half length is now a+ h instead of a. Note that the coordinate system is relative to

the new midpoint O′. Thus if we want to return to the original coordinate system centered at O –

the midpoint of AB we need to translate it back by h units, which corresponds in analytical form

to the substitution:

{a← a+ h, x← x− h}

It can now be verified by Equation 3.1 on page 64 that each point that was in the forbidden zone

of the original segment is also in the forbidden zone of the extended segment.

We can also use our knowledge of the geometry of the forbidden zone to see that the described

extension of the segment results in the following: the left endpoint A ≡ A′ stays the same, so do the

lines AV1, AVL and AVL1. The points V ′
1 , V ′

L and V ′

L1 move along these lines farther from A. The

point B′ is strictly to the right of B, therefore the lines B′V ′
1 , B′V ′

R and B′V ′

R1 are parallel to BV1,

BVR and BVR1, respectively and strictly to the right of them. Hence, the claimed containment of

the forbidden zones.

Similarly, an extension of the segment to the left by a length of 2h is equivalent to the substitution:

{a← a+ h, x← x+ h}

Again, Equation 3.1 on page 64 verifies that any point that was in the forbidden zone of the segment

before its extension is still in the forbidden zone after the extension. Figure 3.7 on the following

page presents an illustration.

To complete the proof we must mention that the larger segment A′B′ can be obtained by its proper

part AB by two extensions – one to the right and one to the left, by appropriate lengths (not

necessarily equal). Each of these extensions was shown to have the claimed property.

So far we have only proven the containment of the parts of the forbidden zones that we are using

in our considerations – the trapezoid and the two top triangles. However, it is easy to see how the

proof can be generalized to include the other parts of the forbidden zone. One way to see this is

by using the boundary chain representation of the forbidden zone. As all the vertices along the

chain are defined by intersection of lines from A and B, when the edge is extended, say to the
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Figure 3.7: Segments AB and A′B′ and their respective forbidden zone boundaries

right (outwards from B), all the vertices of the new chain will move outwards on their respective

lines relative to their previous positions. As a result the boundary segments will alternatingly

slide outwards or move outwards parallel to themselves. To conclude the argument we have to use

the fact that the forbidden zone is monotone in the y-coordinate direction. This is true whenever

α ≤ 30◦. The y-monotonicity of the trapezoidal part can be derived directly from its analytical

expression. For the outside parts we can use the fact that they correspond to trapezoidal parts of

higher order edges. �

Note that the contrapositive of the statement of Corollary 60 is also useful. If we shrink an edge,

as opposed to extending it, all the points that were outside of the forbidden zone of the original

edge remain outside of the forbidden zone of the shorter edge.

Before we consider the rotation of the entire forbidden zone resulting from a rotation of the base

edge about one of its endpoints, we are going to consider a simpler case. Let triangle △ABX be

such that the angle at B, ∠ABX = α is acute. Consider a clockwise rotation of △ABX about B

at an angle 0 < ϕ < α. We are interested in the relative position of the points from the interior of

△ABX relative to the interior of the triangle △A′BX ′ – the image of △ABX under the described

rotation. This is the subject of the next lemma.

Lemma 61 Given a triangle △ABX with an acute angle at B, ∠ABX = α, a rotation of △ABX
about B in clockwise direction at an angle 0 < ϕ < α will keep the points of the interior of △ABX
in the interior of the rotated triangle △A′BX ′ or on the other side of the segment BA′ when the

angle at X , ∠AXB, is non–acute.

Proof. To prove this lemma we need to use the property of a circle stating that a line perpendic-

ular to the diameter at its endpoint is tangent to the circle (i.e., it has only one point in common
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with the circle), and any other line that forms a smaller than the right angle with the diameter at

its endpoint intersects the circle on the same side where the acute angle is formed. Amazingly, this

proposition appears in Book III of Euclid’s “Elements” [27].

Please refer to Figure 3.8 on the next page. Because of the fact that ∠AXB is not acute, the point

A lies outside of the circle centered at B with a radius of BX . We are going to prove first that

the point X lies inside the rotated triangle △A′BX ′. To see that this is true consider the position

of the segment BX . It forms an angle of ϕ with its image BX ′, therefore it lies in the interior

of the angle ∠A′X ′B. Moreover, X and X ′ are on the circle by construction and A′ is outside of

the circle as is the entire segment A′X ′ according to Euclid’s above mentioned proposition. This

means that the extension of the segment BX intersects A′X ′, which establishes our claim. Also

note that the point A lies below the line A′B by the properties of the rotation. Thus, the side AX

intersects the side A′B at a point U , which is internal for both segments. Therefore, the triangle

△UBX is contained in the interior of△A′BX ′, and the rest, triangle△AUB is on the other side of

the segment BA′. It is easy to construct a counterexample for the case when ∠AXB is acute. We

need to use again Euclid’s proposition and based on the fact that AX intersects the circle, position

X ′ (i.e. choose ϕ) so that X is not inside △A′BX ′, i.e. the segment BX properly intersects the

segment A′X ′. �

Corollary 62 Consider a rotation of the segment AB in a clockwise direction about the point B

at an angle 0◦ < ϕ < 180◦. Let the image of A under this rotation be A′. For α ≤ 25◦, all the

points of the forbidden zone of AB lying to the right (in the same half–plane as point B) of the line

AVL1 are either inside the forbidden zone of A′B or on the other side of the segment A′B. When

α > 25◦, the same property is guaranteed for the part of the forbidden zone that lies to the right

(in the same half–plane as point B) of the line AVL.

Proof. First we will establish the claim for the trapezoidal part plus the two triangles on top of it.

We are going to triangulate this part of the forbidden zone, using triangles incident to B and use

the result of Lemma 61 on the preceding page. One way to triangulate is to consider the triangles

△AVLB, △V1VRB, and △V22VR1B. Together they form the part of the forbidden zone lying to

the right of the line AVL. Given that ∠AVLB = ∠V1VRB = ∠V22VRB = 180◦ − 3α and that

180◦− 3α ≥ 90◦ for α ≤ 30◦, we can directly use the previous lemma and conclude that the points

inside the described part of the forbidden zone of AB will either remain inside the forbidden zone

of A′B or fall below the line A′B.

Under certain conditions, the entire forbidden zone may have this property. To see this, we need to

use a different triangulation. This time it includes the triangles △AVL1B, △VL1V21B, △V21VLB,

△V1VRB, and △V22VR1B. The last two triangles were shown to have the necessary property for
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Figure 3.8: Lemma 61 on page 67. Top: ∠AXB ≥ 90◦, Bottom: ∠AXB < 90◦
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any value of α. The triangles △VL1V21B and △V21VLB have angles, respectively, ∠VL1V21B =

180◦ − ∠V1V21B = 180◦ − ∠V21BA and ∠V21VLB = 180◦ − 3α. But ∠V21BA < ∠V1BA = α, it

follows then that ∠VL1V21B > 180◦ − α > 150◦. Thus, the two triangles satisfy the premises of

Lemma 61 on page 67. The only triangle remaining to consider is △AVL1B. Its angle ∠AVL1B is

not guaranteed to be right or obtuse. Numerical calculations show that the measure decreases with

the increase of α over the interval [0◦, 30◦]. At a value of approximately 25.2987058◦ this angle

becomes acute. Therefore, for all the values of α ∈ [0◦, 25◦], the premises of Lemma 61 on page 67

are satisfied and the trapezoidal part of the forbidden zone plus the two top triangles has the

claimed rotational property. Using the same argument as in the proof of Corollary 60 on page 66,

i.e., the fact that the parts of the forbidden zone, outside of the trapezoid plus the two triangles on

top, are trapezoidal parts of higher order edges, we can verify the claim of this corollary. For the

entire part of the forbidden zone surrounding the point B, we can claim the containment property,

regardless of the value of ϕ. This is true because this part of the forbidden zone is tiled by triangles

adjacent to B and having top angles of 180◦ − 3α, in fact connecting B to all convex vertices on

the right part of the boundary chain will generate the desired triangulation. It is also clear from

the approach taken in this proof that in the vicinity of A, we will have smaller angles as we connect

B to the chain vertices of higher order close to A. Thus, we cannot claim that entire part of the

forbidden zone there will have this rotational property. Depending on the value of α the coverage

will vary. �

Here the contrapositive of the statement of Corollary 62 on page 68 is also meaningful. If we rotate

an edge, in counterclockwise direction about one of its endpoints, all the points that were outside

of the forbidden zone of the original edge remain outside of the forbidden zone of the rotated edge.

The transformational properties of the forbidden zone established in this subsection are going

to be useful in the case analysis carried out in the subsequent sections.

3.3 Subgraphs of the Delaunay triangulation

Definition 63 For a given planar set of points S, the minimum spanning tree is defined as the

straight edge tree connecting all the points in S and having minimum total edge length amongst

all spanning trees of S. We denote the minimum spanning tree of S by MST (S).

Definition 64 For a given planar set of points S, the relative neighbourhood graph of S,

denoted by RNG(S) consists of all edges AB, where A,B ∈ S, such that there is no point X from

S such that XA < AB and XB < AB. In other words, there is no point of S that is closer to both

A and B than they are to each other.
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This definition is equivalent to saying that the region formed by the intersection of the circles with

radii |AB| centered at A and B is empty of points of S. This region is known in the literature as

a lune of the edge AB. The lune is illustrated in Figure 3.9.

Figure 3.9: The construction of the lune of the edge AB

Corollary 65 ([36]) Every edge of MST (S) is an edge of RNG(S).

Proof. To see the validity of the claim, assume that there is some point X of S in the lune of an

edge AB of MST (S). X cannot be connected to both A and B in the MST (S) because it will

form a cycle in MST (S), which is a tree, i.e. has no cycles. Therefore we can replace AB with a

shorter edge - XA or XB, thus obtaining a spanning tree of smaller overall length. �

Definition 66 For a given planar set of points S, the Gabriel graph of S, denoted by GG(S)

consists of all edges AB, where A,B ∈ S, such that there is no point from S in the circle with

diameter AB.

Corollary 67 Every edge of RNG(S) is an edge of GG(S).
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Figure 3.10: The lune and the Gabriel circle of the edge AB

Proof. The lune of an edge properly includes the circle with a diameter this edge as shown in

Figure 3.10. Thus, if the lune of an edge is empty of points of S, so will be the circle defining the

Gabriel graph for this edge. �

Corollary 68 Every edge of GG(S) is an edge of DT (S), where DT (S) denotes the Delaunay

triangulation of S considered as a graph.

Proof. It is one of the properties of the Delaunay triangulation, not mentioned earlier, that an

edge is a Delaunay edge if and only if there exists a circle passing through its endpoints that does

not enclose any other point from S. If an edge is a Gabriel edge, by its definition such a circle

exists, therefore it is also a Delaunay edge. �

Thus, we have established the following important relationship between the subgraphs of the De-

launay triangulation.

Property 69 ([48]) For a planar point set S:

MST (S) ⊆ RNG(S) ⊆ GG(S) ⊆ DT (S)
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Corollary 70 ([48]) Given a planar point set S, the graphs MST (S), RNG(S), GG(S), and

DT (S) are all planar and connected.

Proof. The planarity of the four graphs follows from the planarity of the Delaunay triangulation,

DT (S), which is a supergraph of the other three. The connectedness follows from the connectedness

of the minimum spanning tree, MST (S), which is a subgraph of the other three. �

It is important to mention that all four graphs can be computed within O(n log n) time and O(n)

space [19].

Corollary 70 has two important implications. First, because of the connectedness of these subgraphs

of the Delaunay triangulation, it is enough to establish that any of them is a part of an optimal

triangulation, in order to claim polynomial time computability of the same. In fact, a connected

graph, spanning the point set S, together with its convex hull edges will subdivide the interior of

the convex hull into disjoint simple polygons whose union is exactly the convex hull of S. Second,

because of the planarity, all the subgraphs of the Delaunay triangulation have linear complexity

(linear number of edges with respect to the size of the point set). Therefore, there will be a linear

number of regions in the subdivision, as each internal edge can be part of at most two simple

polygon boundaries. A major consequence of this is the applicability of the Klincsek’s algorithm

to finding the optimal triangulation with respect to the quality measure considered. As each of

the diagonals considered in the Klincsek’s algorithm will be considered at most once, and each of

the polygons has linear (in n, the size of S) number of vertices, the optimal triangulation will be

computed within O(n3) time and O(n2) space. Our algorithmic approach will exploit this result, as

in certain cases the relative neighbourhood graph will be part of our approximating triangulation

as proven in Theorem 74 on page 78.

Before proving Theorem 74 on page 78, we recall another of Tan’s results in [54] that is important

to this particular setting.

Corollary 71 The relative neighbourhood graph, RNG(S), of a point set S subdivides the convex

hull of the point set into a linear number of interior disjoint simple polygons. Each of these polygons

contains at most one edge of the convex hull of S.

As it was mentioned at the beginning of the chapter, we intend to develop good approximation

algorithms for the MaxMin and MinMax area of a general point set. Our approach relies on the

following observation: the RNG is a part of every 30◦-triangulation. We are going to show that

the RNG is a part of every 30◦-triangulation by showing that the forbidden zone of any possible

edge that could intersect a given edge AB of the RNG contains at least one of the points A or B

in its interior. Thus, in an 30◦-triangulation, if such exists, the RNG edges cannot be intersected

by other legal edges.
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Figure 3.11: Edges PQ and P ′Q′ intersecting the RNG edge AB in Lemma 72
and Lemma 73 on page 77

Keeping the assumptions of the previous section, let us denote the midpoint of the considered edge

AB by O. Further, let us place the edge AB on the x-axis of a coordinate system with an origin

in its midpoint O. The points A and B have coordinates (−a, 0) and (a, 0), respectively, where a

is a positive real number.

Lemma 72 Let PQ be a segment that goes through O such that the points P and Q are on the

boundary of the lune of AB. Then the point B is in the 30◦-forbidden zone of the segment PQ.

Proof. Without loss of generality we can assume that the point P lies in quadrant I. Given P (x, y),

denote the orthogonal projection of the point B onto the segment PQ by HB. Please, refer to

Figure 3.11.
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The idea is to compute the distance BHB and the depth of the forbidden zone of PQ at HB and

show that the first is less than or equal to the second quantity, thus establishing the claim. First,

note that the point O is in fact the midpoint of PQ, because of the central symmetry. It is easy to

see that HB is a point that lies in the interior of the segment OP : the angles of triangle △OBP are

all acute and BHB is an altitude in this triangle. Also remember that we are using a 30◦ forbidden

zone, thus α = 30◦, sinα = 1/2, cosα =
√

3/2, tanα = 1/
√

3. Denote the distance between O and

P by p, and the distance between O and HB by d. We can write the depth B(d) of the forbidden

zone of the segment PQ as a function of d and p as follows:

B(d) =























(p+ d)/
√

3 for 0 ≤ d ≤ p/2
√

3(p− d) for p/2 ≤ d ≤ 2p/3

p/
√

3 for 2p/3 ≤ d ≤ p

(3.2)

The point P lies on the circle centered at A(−a, 0) with a radius of 2a, the equation of this circle

is, therefore, (x+ a)2 + y2 = 4a2. Solving for y we have:

y2 = 4a2 − x2 − 2ax− a2 = 3a2 − 2ax− x2 = (3a+ x)(a− x)

taking into account that y has a non–negative value because of our choice of P , and so do 3a+ x

and a−x, we can take a square root of both sides of the above equation and express y as a function

of x and a as follows:

y =
√

(3a+ x)(a− x)

Further, for the length of OP , as a function of x and a we have:

OP =
√

x2 + y2 =
√

3a2 − 2ax =
√

a(3a− 2x) = p

Again, note that 3a − 2x is a strictly positive term. Now we can obtain the length of BHB as a

function of x and a by expressing the area of △OBP in two different ways. Namely:

A△OBP =
OB · y

2
, A△OBP =

OP · BHB

2

These equalities give:

OB · y
2

=
OP · BHB

2
⇔ BHB =

OB · y
OP

=
a
√

(3a+ x)(a − x)
√

a(3a− 2x)
=

√

a(3a+ x)(a− x)
3a− 2x

Finally, for the length of OHB as a function of x and a we have:

OHB = OB · cos∠BOP =
OB · x
OP

=
ax

√

a(3a− 2x)
=

√

a

3a− 2x
· x = d

We have to verify, therefore, that BHB ≤ B(d) for all values of x and a. Strictly speaking, there

is only one variable here, x, as a is a parameter. This is rather lengthy, but only involves basic
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mathematics.

The first possibility for d according to Equation 3.2 on the previous page is 0 ≤ d ≤ p/2. The right

part of this double inequality, d ≤ p/2 is equivalent to:

√

a

3a− 2x
· x ≤ 1

2

√

a(3a− 2x)⇔ 2x ≤ 3a− 2x⇔ x ≤ 3

4
a

Note that d ≥ 0 is always true for 0 ≤ x ≤ a. Thus, we have to check that for x ∈ [0, 3
4a] the

inequality BHB ≤ (p+ d)/
√

3 holds. This is equivalent to:

√

a(3a+ x)(a − x)
3a− 2x

≤ 1√
3

(

√

a(3a− 2x) +

√

a

3a− 2x
· x
)

We can divide both sides by the common factor
√
a, which is non–zero, followed by the multiplication

of both sides by the (non–zero) factor of
√

3(3a− 2x), the result is:

√

3(3a+ x)(a− x) ≤ 3a− x

Taking into account the fact that 3a− x > 0, we can square both sides and obtain:

3(3a+ x)(a− x) ≤ (3a− x)2 ⇔ 9a2 − 6ax− 3x2 ≤ 9a2 − 6ax+ x2 ⇔ 4x2 ≥ 0

Consequently, for all x ∈ [0, 3
4a] the point B is in the forbidden zone of the segment PQ. The

second possibility for d according to Equation 3.2 on the preceding page is p/2 ≤ d ≤ 2p/3. The

right part of this double inequality, d ≤ 2p/3, is equivalent to:

√

a

3a− 2x
· x ≤ 2

3

√

a(3a− 2x)⇔ 3x ≤ 2(3a− 2x)⇔ 7x ≤ 6a⇔ x ≤ 6

7
a

Note that according to our previous case calculations p/2 ≥ d is equivalent to x ≥ 3
4a. Thus, we

have to check that for x ∈ [ 34a,
6
7a] the inequality BHB ≤

√
3(p− d) holds. This is equivalent to:

√

a(3a+ x)(a − x)
3a− 2x

≤
√

3

(

√

a(3a− 2x)−
√

a

3a− 2x
· x
)

We are going to divide both sides by the common factor
√
a, which is non–zero, and then multiply

both sides by the (non–zero) factor of
√

(3a− 2x), the result is:

√

(3a+ x)(a− x) ≤ 3
√

3(a− x)

Taking into account the fact that a− x > 0, we can square both sides and obtain:

(3a+ x)(a− x) ≤ 27(a− x)2

Further, we can divide by a− x, which gives us:

3a+ x ≤ 27(a− x)⇔ 3a+ x ≤ 27a− 27x⇔ 28x ≤ 24a⇔ x ≤ 6

7
a
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Consequently, for all x ∈ [ 34a,
6
7a] the point B is in the forbidden zone of the segment PQ. The

third and final possibility for d, according to Equation 3.2 on page 75, is 2p/3 ≤ d ≤ p. The right

part of this double inequality, d ≤ p, is equivalent to:

√

a

3a− 2x
· x ≤

√

a(3a− 2x)⇔ x ≤ 3a− 2x⇔ 3x ≤ 3a⇔ x ≤ a

which was assumed to be true. Note that according to our previous case calculations d ≥ 2p/3 is

equivalent to x ≥ 6
7a. Thus, we have to check that for x ∈ [ 67a, a] the inequality BHB ≤ p/

√
3

holds. This is equivalent to:

√

a(3a+ x)(a − x)
3a− 2x

≤ 1√
3

√

a(3a− 2x)

We are going to divide both sides by the common factor
√
a, which is non–zero, and then multiply

both sides by the (non–zero) factor of
√

3(3a− 2x), the result is:

√

3(3a+ x)(a− x) ≤ (3a− 2x)

Given the fact that both sides of the inequality are positive, we are going to square them, obtaining:

3(3a+ x)(a− x) ≤ (3a− 2x)2 ⇔ 9a2 − 6ax− 3x2 ≤ 9a2 − 12ax+ 4x2 ⇔ 6ax ≤ 7x2 ⇔ 6

7
a ≤ x

Consequently, for all x ∈ [ 67a, a] the point B is in the forbidden zone of the segment PQ.

This completes the proof. �

The result of this lemma was suggested by computational experiments done by my supervisor using

the software package Cinderella c©.

Further, we have to consider the edges that cross AB and do not pass through its midpoint O.

Lemma 73 Let P ′Q′ be a segment such that the points P ′ and Q′ are on the boundary of the

lune of AB. Let P ′Q′ intersect AB at a point R such that R is between O and B. Then the point

B is in the forbidden zone of the segment P ′Q′.

Proof. As in the proof of Lemma 72 on page 74, assume that the point P ′ is in quadrant I. Further,

let PQ be a segment parallel to the edge P ′Q′, such that PQ contains O with P and Q on the

boundary of the lune. The situation is illustrated in Figure 3.11 on page 74. The segment BP lies

entirely inside the lune of AB. Thus, BP intersects P ′Q′ in an internal point, which we denote by

P ′′. Similarly, if we construct the segment BQ it will intersect P ′Q′ at an internal point which we

denote by Q′′. By construction △PBQ ∼ △P ′′BQ′′ because of the fact that PQ and P ′′Q′′ are

parallel. Because of the similarity of the two triangles and the scaling property the fact that B is

in the forbidden zone of PQ (established in Lemma 72 on page 74) implies that B is also in the

forbidden zone of P ′′Q′′. Thus, we have two segments, namely P ′′Q′′ and P ′Q′ that satisfy the
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premises of Corollary 60 on page 66. We conclude that B is in the forbidden zone of the edge P ′Q′.

Since any edge crossing AB is parallel to an edge crossing AB and going through its midpoint, the

claim of this lemma is established. �

Theorem 74 Given a planar set of points S, the relative neighbourhood graph of S is part of

every 30◦-triangulation (if such a triangulation exists).

Proof. It is evident form Lemma 72 on page 74 and Lemma 73 on the previous page that the

edges of the relative neighbourhood graph of a planar point set S cannot be intersected by any

other edge in a 30◦-triangulation, if such a triangulation exists. Therefore, they must be in every

30◦-triangulation, if such a triangulation exists. �

The result of Theorem 74 is tight. In other words, there is no guarantee that for an angle α < 30◦

the relative neighbourhood graph will be part of every (or any) α-triangulation. A four-point

example can be constructed that shows this. Consider a pair of points A and B as per the notation

used throughout this section, and two other points C and D “slightly” outside the lune of AB,

placed on the right side of the perpendicular bisector of AB infinitesimally close to it. Analysis

shows that we can make the angles ∠DCB and ∠CDB as close to 30◦ as we want, while keeping

the point B outside of the forbidden zone of the edge CD.

3.4 Approximations to the MaxMin and MinMax area tri-

angulations

As we have mentioned earlier, there are no guarantees for the angle quality of the optimal area

triangulation, and conversely for the area qualities of “fat” triangulations. Therefore, we consider

an approximation approach:

Algorithm 75

Input: Planar set of points S in general position.

Output: Triangulations T̃1 and T̃2 of S that approximate, respectively, the MaxMin and MinMax

area triangulations of S.

(1.) Compute the Delaunay triangulation of S, DT (S). Denote by α∗ the smallest angle in DT (S).

(2.) if α∗ < 30◦ then

T̃1 := DT (S), T̃2 := DT (S)

(3.) else

Compute the optimal area 30◦-triangulations, T 30◦

1 (MaxMin) and T 30◦

2 (MinMax),

of S by Klincsek’s algorithm, using the results of Corollary 70 on page 73 and
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Corollary 71 on page 73.

T̃1 := T 30◦

1 and T̃2 := T 30◦

2 .

Time and Space Analysis. In step (1.) we compute the Delaunay triangulation of S. As we

mentioned in Section 1.5, this takes O(n log n) time. The Delaunay angle, i.e., the smallest angle in

the Delaunay triangulation of the point set, is denoted by α∗. It can be found in linear time, O(n),

for example by brute force. Depending on the value of α∗, we have two cases, treated in steps (2.)

and (3.), respectively:

If α∗ < 30◦, then no 30◦-triangulation of S is possible, as by Property 13 on page 8 the Delaunay

triangulation maximizes the minimum angle. Thus, we are going to use the Delaunay triangulation

as an approximation for both optimal area triangulations.

If α∗ ≥ 30◦, then the set S admits 30◦-triangulation(s). By Theorem 74 on the preceding page,

the relative neighbourhood graph is part of any 30◦-triangulation. Additionally, the relative neigh-

bourhood graph is connected by Corollary 70 on page 73, implying that if we draw the relative

neighbourhood graph and the convex hull, the point set (the interior of its convex hull, that is) will

be subdivided into a set of simple polygons. In addition, any of these polygons has at most one

convex hull edge as shown in Corollary 71 on page 73 [54]. Now we can apply Klincsek’s algorithm

to compute the optimal 30◦-triangulations. This computation requires a cubic time, O(n3). The

optimization is done separately for MaxMin and MinMax area and we have two different optimal

triangulations. We use the optimal area 30◦-triangulations as an approximation for the optimal

area triangulations.

This algorithm has a cubic worst-case running time and subcubic expected running time. It uses

quadratic space, O(n2), in the case we have to perform step (3.), and linear space, O(n), other-

wise.

Whether we can compute a specific 30◦-triangulation, for example the MinMax area one, in sub-

cubic time is not a trivial question. One approach to a strictly subcubic algorithm would be to

obtain one of the locally optimal 30◦-triangulations, in no more than quadratic time, by performing

all area equalizing flips that preserve all angles above 30◦ in the Delaunay triangulation, and then

use this locally area optimal 30◦-triangulation as an approximation to the globally optimal. This

approach can be generalized to obtain a locally optimal α-triangulation for any α < 30◦ by relaxing

the Delaunay triangulation as much as possible by edge flips that equalize the area of the two

triangles inside the convex quadrilateral, while preserving the angular constraint imposed.

If, for practical reasons, we need to approximate the optimal area triangulations by triangula-

tions of certain angular quality, we can introduce a parameter to our algorithm. We need to modify

the algorithm as follows:
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Algorithm 76

Input: Planar set of points S in general position, and an angle α.

Output: Triangulation T̃3 of S that approximates the MaxMin and MinMax area triangulations

of S.

(1’.) Compute the Delaunay triangulation of S, DT (S). Denote by α∗ the smallest angle in DT (S).

(2’.) if α ≤ α∗ then

Tcurrent := DT (S)

repeat

Ttemp := flip(Tcurrent)

Tcurrent := Ttemp

until no flip in Tcurrent is possible

T̃3 := Tcurrent

return T̃3

(3’.) else

return “No α-triangulation of S exists”

Time and Space Analysis. Step (1’.) is the same as step (1.) of the previous algorithm. Thus,

it is performed within O(n log n) time, using linear space, O(n). For the step (2’.) we assume

that we have an implementation of the function flip(T ). This function performs a single reverse

Delaunay flip in the triangulation T . This reverse Delaunay flip has two additional properties: it

is area equalizing, and it yields two new triangles whose angles are greater than or equal to the

input parameter α. We perform as many flips of this type as possible. The resulting triangulation

is locally optimal with respect to both MaxMin and MinMax triangulation. This is due to the fact

that the flip we perform optimizes both quality measures at the same time, as it was explained

previously. Step (2’.) is performed within O(n2) time, using linear space, O(n). Justification for

this was given in Section 1.5, where we considered the properties of the Delaunay triangulation

with respect to the Delaunay flip. Step (3’.) requires constant time and space.

Therefore, this algorithm has a quadratic, O(n2), worst-case running time and subquadratic ex-

pected running time. It uses linear space, O(n).

To evaluate the practicality of these two algorithmic approaches, we need to know how well the

Delaunay triangulation, the locally area-optimized Delaunay triangulation, and the optimal 30◦-

triangulations approximate the optimal area triangulations. More generally, we want to derive the

following result.

Property 77 Given a planar set of points S, two angles α and β, α > β in the interval (0◦, 60◦),

and two triangulations of S – Tα (which is an α-triangulation) and Tβ (which is a β-triangulation).
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Consider a perfect matching between triangles in Tα and Tβ. Let Aα

Aβ
be the ratio of the areas of

a pair of matched triangles from Tα and Tβ , respectively. Then there are functions f1(α, β) and

f2(α, β) such that

f1(α, β) ≤ Aα

Aβ

≤ f2(α, β)

for all choices of the pair of triangulations Tα and Tβ, and the matched pair of triangles within Tα

and Tβ . Furthermore, for fixed α:

lim
β→0◦

f1(β) = 0 lim
β→0◦

f2(β) = +∞

The objective of our study is to find the analytical form of the bounding functions f1(α, β) and

f2(α, β). This is going to be achieved by a case analysis of the matched pairs of triangles, using

forbidden zones and other obvious geometric constraints that arise in these situations.

From the description of the two algorithmic approaches above, it is clear that we are actually

going to deal with α ≤ 30◦. In Algorithm 75, we compute the minimum angle of the approximating

triangulations, it is either 30◦ or α∗ < 30◦. In Algorithm 76, we get this angle as a parameter. Thus,

it can be considered constant from here onwards, and the two bounding functions become functions

of a single variable, β. It is further clear that if we have a reason to believe that the optimal area

triangulations are “fat” enough, we would not need to approximate them. Thus, we will need to run

the approximating algorithms only if β is small compared to what we need in practise. Assuming

that we know the value of β, the two bounding functions are now two constants, and we can find the

approximation factors as follows: the double inequality has the form c1 ≤ Aα

Aβ
≤ c2. Consider for

example the MinMax area triangulation. The worst (largest area) triangle in the α-triangulation,

call it ∆α
max, is matched to some triangle in the β-triangulation, denoted by ∆′. Using the right

hand side of the double inequality we have:

A(∆α
max)

A(∆′)
≤ c2 ⇒ A(∆α

max) ≤ c2 ·A(∆′) ≤ c2 ·A(∆β
max)

or in terms of the quality measures of the two compared triangulations Tα and Tβ we have λ(Tα) ≤
c2 · λ(Tβ). We can assume that Tβ is the optimal MinMax area triangulation, and thus for any

α-triangulation Tα we are guaranteed to be not worse than c2 times Tβ . Hence, the approximation

factor is c2. Similarly, using the left hand side of the double inequality we can see that any α-

triangulation approximates the optimal MaxMin area triangulation by factor of not more than 1
c1

.

Further, it is very interesting to determine the behaviour of the functions when α = β or in other

words how good is, in terms of area, any α-triangulation compared to any other α-triangulation for

a given value of α. This may lead to reasonable probabilistic approaches to approximation of the

optimal area triangulations. Again, the expected behaviour of these two functions as functions of
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a single argument is:

lim
α→0◦

f1(α) = 0, lim
α→0◦

f2(α) = +∞, and lim
α→60◦

f1(α) = lim
α→60◦

f2(α) = 1

3.5 Matching triangles, cases

To evaluate the approximation ratio between a known α-triangulation and the unknown optimal

β-triangulation, we are going to use a result by Aichholzer et al. [2] that establishes the existence

of one-to-one matching between the triangles of any two triangulations of a point set.

Property 78 (Matching, [2]) Given a planar set of points S and two triangulations T1 and T2

of S, there exists a perfect matching (bijective mapping) between the triangles of T1 and T2 such

that each pair of matched triangles have:

– at least one shared vertex

– shared interior points.

This is a very strong theoretical result. Algorithmically, matching of this type can be computed by

using general algorithms for matchings in bipartite graphs. There are algorithms that achieve this

in quadratic time with respect to the size of the graph. It is not known whether we can compute

such matchings more efficiently based on the geometric properties of triangulations, although some

research has recently been done in this area [3]. Neither is it known how many different matchings

with this property exist between a given two triangulations of a point set.

As it will become clear from further analysis, we intend to use perfect matchings to compare two

triangulations, the optimal MaxMin or MinMax area triangulations that we cannot efficiently com-

pute and a specific triangulation that is computable within reasonable time.

We are also going to use the angular constraints that we introduced. Recall that in an α-

triangulation, all the angles are in the interval [α, 180◦ − 2α].

Lemma 79 Given a triangle with a side a, all the angles of which are greater than or equal to α,

the minimal and maximal area of such a triangle are given by:

Amin =
a2

4
· tanα

(occurring when the triangle is an isosceles with both base angles equal to α) and

Amax =
a2

4
· cot

α

2
=
a2

4
· 1

tan α
2
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(occurring when the triangle is an isosceles with a top angle of α).

Proof. Consider the angle of the triangle opposite the side of length a. For a fixed value of this

angle, the vertices of all such triangles lie on a part of a circular arc going through the endpoints

of the side of length a. Therefore the maximum area of the triangle is obtained for the isosceles

triangle (corresponding to the highest point on the circular arc), and the minimum area is obtained

for the triangles with a base angle of α (corresponding to the two lowest points on the arc when

there is a constraint on the smallest angle). Therefore the maximum area is obtained when the

isosceles triangle is as tall as possible, which is when the angle opposite the side of length a is α,

and the minimum area is obtained when both of the base angles are equal to α. �

We will denote, for the rest of the section, a triangle of the α-triangulation by △ABC and will

use the standard notation for its side lengths a, b, c. Similarly the matching triangle of the β-

triangulation will be △A1B1C1 and the sides are going to be a1, b1, c1. We use the following two

formulae for area of a triangle, either two sides and the angle between them:

A△ =
ab

2
sin θ

or a side and three angles:

A△ =
a2

2
· sinφ sinψ

sin θ

(here φ, ψ, θ are the angles opposite sides a, b, c, of the triangle, respectively) which is equivalent

to:

A△ =
a2

2
· sinφ sinψ

sin(φ + ψ)

We now consider the cases as to how the matched triangles from an α-triangulation and a β-

triangulation interact. Based on the angular constraints, we identify the “forbidden zone” around

each edge of the triangulation – the region of the plane that is empty of points from the original

point set. For an edge of length a, the forbidden zone properly includes a trapezoid of height

(a/2) tanα that has base angles of 3α. The non–parallel sides of this trapezoid are, therefore, of

length (a tanα)/(2 sin 3α). With respect to an edge (of length a) of an α-triangulation, any other

point from the set can be either outside of the strip of height (a/2) tanα (Zone 1), inside a circle

with radius (a tanα)/(2 sin 3α) centered at one of its endpoints but outside the trapezoid (Zone 2),

or inside the strip and outside the circles (Zone 3). The situation is illustrated in Figure 3.12 on

the next page.

The structure of the cases has two levels. The first level is based on the number of vertices that the

triangles of the α-triangulation (△ABC) and the β-triangulation (△A1B1C1) share. There can be

• three shared vertices
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Figure 3.12: The forbidden zone of the edge AB and zones 1, 2, and 3

• two shared vertices

• one shared vertex

Cases are considered in the given order. Within the last case, there are subcases based on the

positions of the non-shared vertices relative to the edges of the other triangle (the triangle to which

they do not belong). There are, again, three possible subcases

• point(s) in Zone 1

• point(s) in Zone 2

• point(s) in Zone 3

The detailed structure of the different subcases is explained within the appropriate subsection where

they are considered. Note that in all cases none of the points A,B,C,A1, B1, C1 can lie in the in-

terior of either △ABC or △A1B1C1. This is due to the fact that both △ABC and △A1B1C1 are

triangles of valid triangulations of S, and thus, by Definition 1 on page 1, are empty of points of

S. This property will be important for analyzing the possible placements of the considered points

with respect to the considered triangles. Also note, that each vertex (each one of the six points

named above) is in Zone 1 with respect to the opposite edge of the triangle in which it is a vertex.

This is another consequence of the fact that the triangles △ABC and △A1B1C1 are triangles of

valid triangulations, respectively α-triangulation and β-triangulation, of S.

The rest of this section is technical, it derives the bounding functions for all possible cases of

matching triangles. It can be skipped, through Section 3.6 on page 103, on the first reading.
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3.5.1 Three shared vertices

In this case the triangles are the same, △ABC ≡ △A1B1C1, and the ratio of areas is equal to one.

3.5.2 Two shared vertices (shared edge)

Assume that the two matched triangles share the edge BC ≡ B1C1, which has length a. According

to Lemma 79 on page 83:

(Aα)min =
a2

4
· tanα, (Aα)max =

a2

4
· 1

tan α
2

, (Aβ)min =
a2

4
· tanβ, and (Aβ)max =

a2

4
· 1

tan β
2

Therefore, we can compute:

(

Aα

Aβ

)

min

≥ (Aα)min

(Aβ)max

≥ tanα · tan
β

2

and
(

Aα

Aβ

)

max

≤ (Aα)max

(Aβ)min

≤ 1

tanβ · tan α
2

3.5.3 Exactly one shared vertex

Assume that the two matched triangles share the vertex A, A ≡ A1. Then, depending on the

mutual position of the vertices B,C,B1, C1, we can have two different situations, as illustrated in

Figure 3.13.

Figure 3.13: Exactly one shared vertex
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Namely, one of the angles ∠BAC and ∠B1AC1 can contain the other (as shown on the left), or

it neither of them will contain the other (as shown on the right). Additionally, here it is very

important to consider the positions of the points with respect to the forbidden zones of the edges

of the matched triangle, as the lengths of the edges, and subsequently the bounds obtained will

depend on this. Note, that in the two previous subsections, the results hold regardless of the mutual

position of the points.

Crucial for all subcases that arise in this case is the intersection between a pair of sides, one from

each of the matched triangles.

A pair of intersecting sides

Let the sides AC = b and B1C1 = a1 intersect at the point X , and in addition both pairs of vertices

are outside the strip of the other edge (Zone 1). Please refer to Figure 3.14 for an illustration.

Figure 3.14: A pair of intersecting sides B1C1 and AC

Then, using the fact that the points C and A are outside of the forbidden zone of the edgeB1C1, and

the fact that the forbidden zone has width of a1

2 ·tanβ, we haveXC > a1

2 ·tanβ and XA > a1

2 ·tanβ.

But XC +XA = CA = b, so b > a1 tanβ. We can rewrite this as a1 < b/ tanβ. Similarly, because

of the fact that points C1 and B1 are outside of the forbidden zone of the edge AC, and the fact that

the forbidden zone has width of (b/2) tanα, we have XB1 > (b/2) tanα and XC1 > (b/2) tanα.

But XB1 +XC1 = B1C1 = a1, so a1 > b tanα. We can rewrite this as b < a1/ tanα. Thus, we

have bounded a1 from below and above:

b tanα < a1 <
b

tanβ
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Using these inequalities, we can obtain the following bounds for the area of the β-triangle:

(Aβ)min =
a2
1

4
· tanβ ≥ b2

4
· tan2 α · tanβ, (Aβ)max =

a2
1

4
· 1

tan β
2

≤ b2

4
· 1

tan2 β · tan β
2

Then, using the results of Lemma 79 on page 83 for (Aα)min and (Aα)max we can compute the

bounds for the ratio of the areas as follows:

(

Aα

Aβ

)

min

≥ (Aα)min

(Aβ)max

≥
b2

4 · tanα
b2

4 · 1
tan2 β·tan β

2

≥ tanα · tan2 β · tan
β

2

and
(

Aα

Aβ

)

max

≤ (Aα)max

(Aβ)min

≤
b2

4 · 1
tan α

2

b2

4 · tan2 α · tanβ
≤ 1

tanβ · tan2 α · tan α
2

Here the upper and the lower bound are symmetric again:

f2(α, β) =
1

f1(β, α)

This means that the bounds do not depend on which of the angles ∠BAC and ∠B1AC1 contains

the other. To verify that, we can use the double inequality for b expressed in terms of a1:

a1 tanβ < b <
a1

tanα

Repeating the calculations will yield the same bounds.

These are the best bounds that we are going to be able to obtain for the case when one of the

angles ∠BAC and ∠B1AC1 contains the other as shown on the left in Figure 3.13 on page 85 and

in Figure 3.14 on the previous page.

We are going to show that the bounds derived here are worse than the bounds for the shared

edge case. For the lower bounds we have:

tanα tan2 β tan
β

2
< tanα tan

β

2
⇔ tan2 β < 1⇔ tanβ < 1⇔ β < 45◦

For the upper bounds we have:

1

tanβ tan α
2

<
1

tanβ tan2 α tan α
2

⇔ tan2 α < 1⇔ tanα < 1⇔ α < 45◦

Remember that earlier we have specified that 0◦ < β < α ≤ 30◦, so the two inequalities above hold.

Neither of the angles ∠BAC and ∠B1AC1 contains the other

As Figure 3.15 on the following page and the right part of Figure 3.13 on page 85 show, there is a

possibility that neither of the angles ∠BAC and ∠B1AC1 contains the other. Now, we are going
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Figure 3.15: Neither of the angles ∠BAC and ∠B1AC1 contains the other

to obtain better bounds – based on the formula for area that uses the product of two sides and the

included angle. As shown in Figure 3.15, assume the sides BC = a and A1B1 = c1 intersect.

Again, assuming that both pairs of vertices are in Zone 1 with respect to the edge formed by the

other two, we are going to have: c1 tanβ < a < c1/ tanα and a tanα < c1 < a/ tanβ. The sides

AC = b and B1C1 = a1 intersect as well. We can assume that since the situation when B1C1

intersects AB is symmetric – we can interchange the names of the points B and C. Additionally,

we cannot have a situation where either of the points B or C lies inside the triangle △A1B1C1,

as △A1B1C1 is part of a triangulation, and therefore is empty of points of S. Thus we have:

a1 tanβ < b < a1/ tanα and b tanα < a1 < b/ tanβ

Also, for an α-triangle with sides a, b and angles restricted to be larger than α, the minimum and

maximum area are given by (ab/2) sinα ≤ Aα ≤ ab/2, i.e., the minimum area is (ab/2) sinα, when

the angle at point C is exactly α; and when the angle at C is a right angle, we have the maximum

area of ab/2. Similarly, for the β-triangle △A1B1C1: (a1c1/2) sinβ ≤ Aβ ≤ a1c1/2. Substituting,

we obtain:

(Aβ)min ≥
ab

2
· tan2 α · sinβ, (Aβ)max ≤

ab

2
· 1

tan2 β

Thus, the bounds in this case are:
(

Aα

Aβ

)

min

≥ (Aα)min

(Aβ)max

≥
ab
2 · sinα

ab
2 · 1

tan2 β

≥ sinα · tan2 β

and
(

Aα

Aβ

)

max

≤ (Aα)max

(Aβ)min

≤
ab
2

ab
2 · tan2 α · sinβ

≤ 1

sinβ · tan2 α
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In this case, upper and lower bound are symmetric in terms of α and β, regardless of the choice

of triangles, i.e., regardless of whether B lies inside ∠B1AC1 or B1 lies inside ∠BAC. This is

true because in both possible arrangements to compute the bounds we use two pairs of intersect-

ing sides and in each pair one of the sides is form the α–triangle and the other is from the β–triangle.

Recall that we are assuming β ≤ 30◦. To show that these bounds are better than the ones

derived on the basis of only one pair of intersecting sides (the previously analysed case), consider

the inequalities:

tanα · tan2 β · tan
β

2
< sinα · tan2 β ⇔ tan

β

2
< cosα,

which is true whenever α < arccos(tan 15◦) ≃ 74.45◦, since tan β
2 < tan 15◦ < cosα, for the lower

bound, and

1

sinβ · tan2 α
<

1

tanβ · tan2 α · tan α
2

⇔ tanβ · tan2 α · tan
α

2
< sinβ · tan2 α⇔ tan

α

2
< cosβ,

which is true whenever β < arccos(tan 30◦) ≃ 54.74◦, since tan α
2 < tan 30◦ < cosβ, for the upper

bound.

This concludes the cases when all the vertices of the two triangles are situated so that they lie

in Zone 1 with respect to the edges of the other triangle. From this point on, at least one of the

points will be in Zone 2 or Zone 3 with respect of some edge of the other triangle.

We can fix one of the triangles, for example the α–triangle △ABC, and consider all possible

positions of the points B1 and C1 with respect to the forbidden zones of the edges of △ABC. The

case when we have exactly one of the points in Zone 2 is postponed because its consideration will

depend on the developments in the following section. The same is done with the case when at least

one point is in Zone 3. Next, we consider the cases when exactly two points lie in Zone 2.

Placements of points in Zone 2

In analysing the subsequent cases we are going to need inequalities involving distances between

points placed in circles. To facilitate this, we introduce the following lemma:

Lemma 80

(i) Given two circles c1(O1, r1) and c2(O2, r2) whose centres are at a distance O1O2 = d from

each other, the distance between a point X lying within the closure of c1, and another point

Y lying within the closure of c2 satisfies the following inequalities:

d− r1 − r2 ≤ XY ≤ d+ r1 + r2
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Figure 3.16: Lemma 80, the construction in case (i)

(ii) Given a circle c1(O, r1) and a point X in the plane at a distance OX = d from the centre

of the circle, the distance between X and any other point Y lying within the closure of c1

satisfies the following inequalities:

d− r1 ≤ XY ≤ d+ r1

Proof. First, we are going to prove part (i). The interesting case is r1+r2 < d, i.e. interior disjoint

circles. We can construct a circle c(O, r) that is internally tangent to both c1 and c2. The center of

c lies on the central axis of c1 and c2. The diameter of c is equal to 2r = d+ r1 + r2. Both X and

Y lie within the closure of c, therefore XY ≤ d+ r1 + r2. Consider the tangents to c1 and c2 at

their points of intersection with the central axis, inside c. The distance between these two parallel

lines is d− r1 − r2. The points X and Y lie on different sides of the parallel strip defined by these

two tangent lines, therefore d− r1 − r2 ≤ XY . The construction is illustrated in Figure 3.16.

When the circles c1 and c2 intersect, the construction of the tangent circle is the same, hence the

upper bound. The lower bound is trivial, because d− r1 − r2 is negative.
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Note that part (ii) follows from part (i) when r2 = 0. �

When the vertex A is shared, the two points B1 and C1 can be placed in the circles defining Zone

2, centered at A, B, and C, in four different ways. Here we recall, that the radius of the circle

defining Zone 2 for an edge of length a is:

r =
a

2
· tanα

sin 3α

For convenience, we will introduce the constant

k =
1

2
· tanα

sin 3α

thus r = k · a. The four possible distributions of the points in the circles are illustrated in Fig-

ure 3.17 on the following page. We are going to consider the possible placements and derive bounds

for the ratio of the areas.

We start with the placement (a). Here we can constrain two of the sides, AC1 = b1 and AB1 = c1,

of the β-triangle, with respect to two of the sides of the α-triangle, AC = b and AB = c, respec-

tively, using the result of Lemma 80 on the previous page, part (ii). Namely, b− r ≤ b1 ≤ b+ r, and

having in mind that r = k · b we obtain b(1− k) ≤ b1 ≤ b(1+ k). Similarly c(1− k) ≤ c1 ≤ c(1+ k).

For the areas we have: (bc/2) sinα ≤ Aα ≤ bc/2, (b1c1/2) sinβ ≤ Aβ ≤ b1c1/2, and therefore

(Aα)min =
bc

2
· sinα, (Aα)max =

bc

2
, (Aβ)min ≥

bc

2
(1− k)2 · sinβ, and (Aβ)max ≤

bc

2
(1 + k)2

Thus, for the ratio of the areas we have:
(

Aα

Aβ

)

min

≥ (Aα)min

(Aβ)max

≥
bc
2 · sinα

bc
2 (1 + k)2

≥ sinα

(1 + k)2

and
(

Aα

Aβ

)

max

≤ (Aα)max

(Aβ)min

≤
bc
2

bc
2 (1− k)2 · sinβ

≤ 1

(1− k)2 · sinβ

In placement (b), we can constrain two of the sides of the β-triangle, AC1 = b1 and AB1 = c1,

with relation to only one side, AC = b, of the α-triangle, using the result of Lemma 80 on the

preceding page, part (ii): b − r ≤ b1 ≤ b + r, b − r ≤ c1 ≤ b + r, which leads to the follow-

ing: b(1 − k) ≤ b1 ≤ b(1 + k), b(1 − k) ≤ c1 ≤ b(1 + k). Further b2

4 · tanα ≤ Aα ≤ b2

4 · 1
tan α

2

,

b1c1

2 · sinβ ≤ Aβ ≤ b1c1

2 , and therefore

(Aβ)min ≥
b2

2
(1− k)2 · sinβ, (Aβ)max ≤

b2

2
(1 + k)2.

For the bounds we obtain:
(

Aα

Aβ

)

min

≥ (Aα)min

(Aβ)max

≥
b2

4 · tanα
b2

2 (1 + k)2
≥ tanα

2(1 + k)2
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Figure 3.17: Possible placements of B1 and C1 in zone 2
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and
(

Aα

Aβ

)

max

≤ (Aα)max

(Aβ)min

≤
b2

4 · 1
tan α

2

b2

2 (1− k)2 · sinβ
≤ 1

2(1− k)2 · sinβ · tan α
2

Comparing these bounds with the bounds for placement (a), we can see that:

tanα

2(1 + k)2
<

sinα

(1 + k)2
⇔ 1

2
< cosα,

which is true whenever α < 60◦, for the lower bound, and

1

(1 − k)2 · sinβ <
1

2(1− k)2 · sinβ · tan α
2

⇔ tan
α

2
<

1

2
,

which is true whenever α < 2 arctan
(

1
2

)

≃ 53.13◦, for the upper bound. Thus, the bounds in

placement (b) are always worse than those in placement (a).

In the third placement, (c), we are going to relate two of the sides of the β-triangle, B1C1 = a1 and

AC1 = b1, to only one side, AC = b, of the α-triangle. We do this using the result of Lemma 80

on page 90, part (i) and (ii), respectively: b− 2r ≤ a1 ≤ b+ 2r, b− r ≤ b1 ≤ b+ r, or equivalently:

b(1 − 2k) ≤ a1 ≤ b(1 + 2k), b(1 − k) ≤ b1 ≤ b(1 + k). Similar to the analysis of the previous

placement, for the areas we have: b2

4 · tanα ≤ Aα ≤ b2

4 · 1
tan α

2

, a1b1
2 · sinβ ≤ Aβ ≤ a1b1

2 , and

therefore

(Aβ)min ≥
b2

2
(1− k)(1 − 2k) · sinβ, (Aβ)max ≤

b2

2
(1 + k)(1 + 2k).

The bounds are:

(

Aα

Aβ

)

min

≥ (Aα)min

(Aβ)max

≥
b2

4 · tanα
b2

2 (1 + k)(1 + 2k)
≥ tanα

2(1 + k)(1 + 2k)

and

(

Aα

Aβ

)

max

≤ (Aα)max

(Aβ)min

≤
b2

4 · 1
tan α

2

b2

2 (1 − k)(1− 2k) · sinβ
≤ 1

2(1− k)(1− 2k) · sinβ · tan α
2

Again, we are going to compare these to the bounds obtained for placement (b). We have:

tanα

2(1 + k)(1 + 2k)
<

tanα

2(1 + k)2
⇔ 1 + k < 1 + 2k,

which is true whenever k > 0, for the lower bound, and

1

2(1− k)2 · sinβ · tan α
2

<
1

2(1− k)(1 − 2k) · sinβ · tan α
2

⇔ 1− 2k < 1− k,

which is true whenever k > 0 and

1− 2k > 0⇔ k <
1

2
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The last inequality will be shown to be valid in the interval α ∈ (0◦, 30◦], which is sufficient for our

considerations. Thus, the bounds in placement (c) are always worse than those in placement (b).

Note that for the three placements considered so far, the lower bound (the one that gives us the

approximation constant for the MaxMin Area triangulation) does not depend on the angle β.

To show that k < 1/2, we are going to analyze the behaviour of k as a function on α in the

interval (0◦, 30◦]. We transform the expression for k as a function of α as follows:

2k(α) =
tanα

sin 3α
=

sinα

cosα sinα(3 − 4 sin2 α)
=

1

cosα(4 cos2 α− 1)
=

1

4 cos3 α− cosα

Here we used the known trigonometrical equalities:

sin 3α = 3 sinα− 4 sin3 α, and sin2 α+ cos2 α = 1

Further, we are going to show that k(α) is monotonically increasing over (0◦, 30◦]. This is equivalent

to showing that α1 < α2 ≤ 30◦ ⇒ k(α1) < k(α2), which follows:

k(α1) < k(α2)⇔
1

4 cos3 α1 − cosα1
<

1

4 cos3 α2 − cosα2
⇔ 4 cos3 α2 − cosα2 < 4 cos3 α1 − cosα1

The cross multiplication above is valid since k(α) by its definition and geometric meaning is a

positive value. We develop the inequality further:

4 cos3 α2 − 4 cos3 α1 < cosα2 − cosα1 ⇔

⇔ 4(cosα2 − cosα1)(cos2 α1 + cos2 α2 + cosα1 cosα2) < cosα2 − cosα1 ⇔

⇔ 4(cosα2 − cosα1)

(

cos2 α1 + cos2 α2 + cosα1 cosα2 −
1

4

)

< 0

We know that cosx is a decreasing function over (0◦, 30◦]. Therefore α1 < α2 ≤ 30◦ ⇒ cosα1 > cosα2.

Thus, the term 4(cosα2− cosα1) is strictly negative. Dividing by this term we obtain the following

inequality:

cos2 α1 + cos2 α2 + cosα1 cosα2 −
1

4
> 0

We are going to use one more time the fact that cosx is a decreasing function over (0◦, 30◦]. This

means that cosα1 > cosα2 ≥ cos 30◦ =
√

3/2. Thus, cos2 α1 > 3/4. This alone is enough to es-

tablish the validity of the above inequality as the terms cos2 α2 and cosα1 cosα2 are strictly positive.

As k(0◦) is well defined, and equal to 1/6, and additionally k(30◦) = 1/2
√

3 we have:

1

6
< k(α) ≤ 1

2
√

3
for α ∈ (0◦, 30◦]

Thus k(α) < 1/2.
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Finally, the placement (d) should be considered. There, the points B1 and C1 are in the circle

defining zone 2 for the shared vertex A. This is the worst case, as B1 and C1 can be “very close”

to A, thus making the area of the β-triangle small, and increasing the upper bound (the one re-

lated to the approximation constant for the MinMax Area triangulation). However, if we include

the forbidden zones of the edges in the vicinity of the point A, we can derive some constraints.

Without loss of generality we can assume that b ≥ c for the two edges incident to A, AB = c and

AC = b. First, the angle of the α-triangle at A, ∠BAC ≥ α by our assumption. Moreover, the

forbidden zones, the trapezoid part of them form angles of 3α with the edges BA and CA at A.

Therefore, there is a circular sector with a central angle of 7α that is forbidden for the points B1

and C1. Hence, the top angle of the β-triangle is ∠B1AC1 ≥ 7α. The first constraint therefore is

2β+ 7α ≤ 180◦, using the sum of the angles of the triangle △B1AC1, which is a β-triangle. Recall

that β < α, thus this is only possible for β < 20◦.

Figure 3.18: Two constraining circles in placement (d)
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To constrain the lengths of the sides B1A and C1A of the β-triangle, we are going to use the fact

that forbidden zones of edges AB and AC contain a circle around A. If i =
⌈

180◦

2α
− 1

2

⌉

it can be

shown that the the radius of the forbidden circle is k1b for the edge AC (respectively k1c for the

edge AB), where

k1 =
di

l
=

1

(2 cosα)i

l is the length of the base edge of the forbidden zone (either b or c here), and di is the distance

from an endpoint of an edge (in this case A) to the first i-th order vertex of its forbidden zone, as

defined earlier in Section 3.2 on page 65. By the proof of Property 56 on page 55, angles at the

vertices of the boundary of the forbidden zone are either 180◦ − 3α (non-acute when α ≤ 30◦) or

180◦ + 2α (reflex). Therefore, if we rotate the segment AVi,1 = di = k1l towards the interior of the

forbidden zone it stays inside according to Lemma 61 on page 67.

Recall that we assumed b ≥ c. The lengths of the sides B1A and C1A of the β-triangle are

therefore constrained to k1c ≤ b1 ≤ kb, k1c ≤ c1 ≤ kb. Therefore, for the areas of the two triangles

we have: b2

4 · tanα ≤ Aα ≤ c2

4 · 1
tan α

2

, b1c1

2 · sin 2β ≤ Aβ ≤ b1c1

2 , and therefore

(Aβ)min ≥
c2

2
k2
1 · sin 2β, (Aβ)max ≤

b2

2
k2.

The bounds in this case are:
(

Aα

Aβ

)

min

≥ (Aα)min

(Aβ)max

≥
b2

4 · tanα
b2

2 k
2
≥ tanα

2k2

and
(

Aα

Aβ

)

max

≤ (Aα)max

(Aβ)min

≤
c2

4 · 1
tan α

2

c2

2 k
2
1 · sin 2β

≤ 1

2k2
1 · sin 2β · tan α

2

Next we show that when, depending on α and β, this case is possible, the lower bound will be

better than the lower bound found for placement (c), and the upper bound is, as expected, worse

than the upper bound for placement (c). For the lower bounds we have:

tanα

2k2
>

tanα

2(1 + k)(1 + 2k)
⇔ 2k2 + 3k + 1 > k2 ⇔ k2 + 3k + 1 > 0

which is true when k > 0. For the upper bounds we have:

1

2k2
1 sin 2β tan α

2

>
1

2(1− k)(1 − 2k) sinβ tan α
2

⇔ (1− k)(1 − 2k)

2k2
1

> cosβ

In simplifying the expression above we used the following trigonometric equality:

sin 2β = 2 sinβ cosβ

We will show that the two sides of the above inequality are separated by the unity. First we develop

the left hand side:
(1− k)(1− 2k)

2k2
1

=
1− 3k + 2k2

2k2
1

=
1− 3k

2k2
1

+
k2

k2
1
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Now, consider the two additive terms on the left. We have shown that:

1

6
< k <

1

2
√

3
⇒ 1

2
< 3k <

√
3

2
⇒ 1−

√
3

2
< 1− 3k <

1

2
⇒ 1− 3k > 0⇒ 1− 3k

2k2
1

> 0

Additionally, k is the ratio of the length of the third order edge to the length of the base edge,

while k1 is the ratio of the length of the third or higher order edge to the length of the base edge,

thus

k =
d3

l
, k1 =

di

l
for i ≥ 3⇒ k ≥ k1 ⇒

k

k1
≥ 1⇒ k2

k2
1

≥ 1

Therefore
1− 3k

2k2
1

+
k2

k2
1

> 1 > cosβ

Exactly one point in Zone 2

First we are going to assume that the point B1 is in Zone 2 with respect to the edge AB, i.e.,

lies in the Zone 2 defining circle of the point B. The point C1 by this assumption is not in Zone

2 with respect to any of the sides of △ABC. We can constrain the side AB1 of the β-triangle

with relation to the side AB of the α-triangle, using the result of Lemma 80 on page 90, part (ii):

c − r ≤ c1 ≤ c + r, which leads to: c(1 − k) ≤ c1 ≤ c(1 + k). Further c2

4 tanα ≤ Aα ≤ c2

4
1

tan α
2

,

c2
1

4 tanβ ≤ Aβ ≤ c2
1

4
1

tan β
2

, and therefore

(Aβ)min ≥
c2

4
(1− k)2 tanβ, (Aβ)max ≤

c2

4
(1 + k)2

1

tan β
2

.

For the bounds we obtain:

(

Aα

Aβ

)

min

≥ (Aα)min

(Aβ)max

≥
c2

4 tanα
c2

4 (1 + k)2 1

tan β
2

≥ tanα tan β
2

(1 + k)2

and
(

Aα

Aβ

)

max

≤ (Aα)max

(Aβ)min

≤
c2

4
1

tan α
2

c2

4 (1− k)2 tanβ
≤ 1

(1 − k)2 tanβ tan α
2

Next, we consider the opposite situation, point B lies in the Zone 2 with respect to the edge

AB1. Then, we can constrain the side AB of the α-triangle with relation to the side AB1 of the

β-triangle using the result of Lemma 80 on page 90, part (ii): c1 − r ≤ c ≤ c1 + r, which leads to:

c1(1−k) ≤ c ≤ c1(1+k). Further c2

4 tanα ≤ Aα ≤ c2

4
1

tan α
2

,
c2
1

4 tanβ ≤ Aβ ≤ c2
1

4
1

tan β
2

, and therefore

(Aα)min ≥
c21
4

(1 − k)2 tanα, (Aα)max ≤
c21
4

(1 + k)2
1

tan α
2

.

For the bounds we obtain:

(

Aα

Aβ

)

min

≥ (Aα)min

(Aβ)max

≥
c2
1

4 (1 − k)2 tanα
c2
1

4
1

tan β
2

≥ tanα tan
β

2
(1− k)2
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and
(

Aα

Aβ

)

max

≤ (Aα)max

(Aβ)min

≤
c2
1

4 (1 + k)2 1
tan α

2

c2
1

4 tanβ
≤ (1 + k)2

tanβ tan α
2

We are going to compare the bounds obtained for the second case here to those for the first case.

For the lower bounds we have:

tanα tan
β

2
(1 − k)2 < tanα tan β

2

(1 + k)2
⇔ (1− k2)2 < 1

Which is true, based on our analysis for the values of k. Thus the lower bound for the second case

is worse.

For the upper bounds we have:

(1 + k)2

tanβ tan α
2

<
1

(1− k)2 tanβ tan α
2

⇔ (1− k2)2 < 1

True, as shown above. Thus the upper bound for the first case is worse.

This raises the question of how do these bounds compare to the bounds obtained for the placements

in the previous subsection, where two of the points were known to lie in Zone 2 with respect to

the sides of the other triangle. We are going to show that these bounds are worse than the bounds

obtained for the placement (c). For the lower bounds we have:

tanα tan
β

2
(1 − k)2 < tanα

2(1 + k)(1 + 2k)
⇔ tan

β

2
<

1

2(1− k2)(1 + k − 2k2)

Thus we have to investigate the behaviour of the functions 1− k2 and 1 + k− 2k2 for the values of

k ∈ (1/6, 1/2
√

3]. 1− k2 is a parabola growing downwards with a top at k = 0, therefore 1− k2 is

decreasing over the interval (1/6, 1/2
√

3]. The maximum value of 1− k2 over (1/6, 1/2
√

3] is then

attained at k = 1/6 and equals 35/36. 1 + k − 2k2 also is a parabola growing downwards with a

top at k = 1/4. The top of this parabola lies inside the interval (1/6, 1/2
√

3] and the maximum

value is therefore 9/8. As the two functions do not attain their maxima for the same value of k,

the maximum of their product is strictly less than the product of the respective maxima, which is

35/32. The minimum value of 1 − k2 over (1/6, 1/2
√

3] is then attained at k = 1/2
√

3 and equals

11/12. The minimum value of 1 + k − 2k2 is attained at k = 1/6 and equals 10/9. As the two

functions do not attain their minima for the same value of k, the minimum of their product is

strictly less than the product of the respective minima, which is 55/54.In other words we have:

2 · 55

54
< 2(1− k2)(1 + k − 2k2) < 2 · 35

32
⇔ 16

35
<

1

2(1− k2)(1 + k − 2k2)
<

27

55

Thus, we can maximally strenghten the inequality for β requiring that

tan
β

2
<

16

35
⇔ β < 2 arctan

(

16

35

)

≃ 49.134◦
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For the upper bounds we have:

(1 + k)2

tanβ tan α
2

>
1

2(1− k)(1− 2k) sinβ tan α
2

⇔ cosβ >
1

2(1− k2)(1 + k − 2k2)

As cosβ is a decreasing function in (0◦, 30◦], we have to maximally strenghten the right hand side

of the inequality. Based on the previous analysis, we require that:

cosβ >
27

55
⇔ β < arccos

(

27

55

)

≃ 60.599◦

The case that remains to be considered is when B1 is in the circle defining Zone 2 of the point A

(the shared vertex). Consider the position of the point C1. If C1 is in Zone 3 with respect to any

of the sides of △ABC, this situation belongs to the case considered in the next subsection. Note

that C1 cannot belong to Zone 2 of any of the sides of △ABC by the assumption at the beginning

of this subsection (if it were, the case is considered previously). It remains then for C1 to be in

Zone 1 of some of the sides of △ABC. In this case, consider the side B1C1 of the △AB1C1. It

intersects either AB or AC, or both of them. Further, A ≡ A1 is in Zone 1 with respect to B1C1,

as △AB1C1 is a valid β-triangle. Now consider the positions of the points B and C with respect to

the side B1C1. If either of B or C is in Zone 1 relative to B1C1, then we have a “pair of intersecting

sides” ((AB,B1C1) or (AC,B1C1)) as considered earlier. If either of the points B or C is in Zone

3 relative to B1C1, we are going to consider the case in the next subsection. If both B and C

are in Zone 2 relative to B1C1, then this is a placement considered previously. This concludes the

considerations under this subsection.

At least one point in Zone 3

Without loss of generality assume that B1 is the point that is in Zone 3 with respect of one of the

sides of △ABC, i.e., B1 is in Zone 3 of point A or point B (these are the only two distinct cases,

as the points B and C can be renamed arbitrarily). First, we consider the case when B1 is in Zone

3 with respect to the point B. Note that the point C1 cannot belong to either Zone 2 or Zone 3

with respect to B. If C1 is in Zone 2 with respect to B, this is a previously considered placement

– one point in Zone 2. If C1 is in Zone 3 with respect to B, this this will violate the convexity

constraints, as ∠B1BC1 180◦, please refer to Figure 3.12 on page 84.

To constrain the length of the side AB1 = c1 we are going to use the minimum given by the position

of B1 at the intersection of the Zone 2 circle and the line defining Zone 1 and Zone 3. The maximum

length of c1 is given by the position of B on the boundary of the forbidden zone of AB1 such that

∠BB1A = β. Note that ∠BB1A ≥ β, otherwise a β-triangulation will not exist. Also note that
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∠BB1A is always acute as △BB1A has one obtuse angle, namely ∠B1BA ≥ 180◦ − 3α. Angle

∠BAB1 must obey the same requirement, it has to be greater than or equal to β. Furthermore,

because of the fact that ∠B1BA is obtuse, the orthogonal projection of B onto AB1 is an internal

point for the segment AB1. We know that B lies outside of the forbidden zone of AB1. Since B

projects orthogonally in an internal point on AB1, B cannot lie in Zone 3 with respect to AB1. If

it lies in Zone 2 with respect to AB1 then this case has been previously considered. Thus, we can

assume that B is in Zone 1 with respect to AB1. Please refer to Figure 3.19 for an illustration of

this placement of points.

Figure 3.19: Placement of B1 inside Zone 3, minimal length position

Consider the triangle △AB(B1)min. In this triangle AB = c, B(B1)min = kc and ∠AB(B1)min =

180◦ − 3α. Applying the law of cosines we find the third side, A(B1)min:

(c1)
2
min = (A(B1)min)

2 = c2 + k2c2 + 2kc2 cos 3α = c2(1 + k2 + 2k cos 3α)

⇒ (c1)min = c
√

1 + k2 + 2k cos 3α

The maximum possible length of c1 is obtained when the triangle△BB1A is isosceles with ∠B1BA =

180◦ − 2β. Then applying the law of sines, having in mind that AB = BB1 = c and ∠BB1A =

∠BAB1 = β we obtain:

(c1)max

c
=

sin(180◦ − 2β)

sinβ
=

sin 2β

sinβ
= 2 cosβ ⇔ (c1)max = 2c cosβ

Therefore,

c
√

1 + k2 + 2k cos 3α ≤ c1 ≤ 2c cosβ

Finally, we can bound the area of the α- and β-triangles as follows:

c2

4
tanα ≤ Aα ≤

c2

4

1

tan α
2

c2

4
(1 + k2 + 2k cos 3α) tanβ ≤ c21

4
tanβ ≤ Aβ ≤

c21
4

1

tan β
2

≤ c2 cos2 β

tan β
2

For the bounds we obtain:
(

Aα

Aβ

)

min

≥ (Aα)min

(Aβ)max

≥
c2

4 tanα

c2 cos2 β

tan β
2

≥ tanα tan β
2

4 cos2 β
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and

(

Aα

Aβ

)

max

≤ (Aα)max

(Aβ)min

≤
c2

4
1

tan α
2

c2

4 (1 + k2 + 2k cos 3α) tanβ
≤ 1

(1 + k2 + 2k cos 3α) tanβ tan α
2

Next, we compare these bounds with the bounds obtained in the previous subsection. We have an

interesting result here – the lower bound is worse than the previously obtained, while the upper

bound is better. Comparing the lower bounds we have:

tanα tan β
2

4 cos2 β
< tanα tan

β

2
(1− k)2 ⇔ cos2 β >

1

4(1− k)2 ⇔ cosβ >
1

2(1− k)

By the previous analysis

1

6
< k <

1

2
√

3
⇔ 2
√

3− 1

2
√

3
< 1− k < 5

6
⇔ 6

5
<

1

1− k <
2
√

3

2
√

3− 1
⇔

⇔ 3

5
<

1

2(1− k) <
√

3

2
√

3− 1
=

6 +
√

3

11

Thus we have to require that

cosβ >
6 +
√

3

11
⇔ β < 45.338◦

Comparing the upper bounds we have:

1

(1 + k2 + 2k cos 3α) tanβ tan α
2

<
(1 + k)2

tanβ tan α
2

⇔ 1

(1 + k2 + 2k cos 3α)
< (1 + k)2

which is true because the two sides of the inequality are separated by the unity:

1

(1 + k2 + 2k cos 3α)
< 1 < (1 + k)2

Next, we have to consider the possibility of the point B being in Zone 3 with respect to the side

AB1 of the β-triangle. Similarly to the previous case, we have:

c1
√

1 + k2 + 2k cos 3β ≤ c ≤ 2c1 cosα

Consequently, we can bound the area of the α- and β-triangles as follows:

c21
4

(1 + k2 + 2k cos 3β) tanα ≤ c2

4
tanα ≤ Aα ≤

c2

4

1

tan α
2

≤ c21
cos2α

tan α
2

c21
4

tanβ ≤ Aβ ≤
c21
4

1

tan β
2

For the bounds we obtain:

(

Aα

Aβ

)

min

≥ (Aα)min

(Aβ)max

≥
c2
1

4 (1 + k2 + 2k cos 3β) tanα
c2
1

4
1

tan β
2

≥ (1 + k2 + 2k cos 3β) tanα tan
β

2

and
(

Aα

Aβ

)

max

≤ (Aα)max

(Aβ)min

≤
c21

cos2 α
tan α

2

c2
1

4 tanβ
≤ cos2 α

4 tanβ tan α
2
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We show that these bounds are better than the bounds obtained for the case when a single point

is placed in Zone 2 (previous subsection). Comparing the lower bounds we have:

tanα tan
β

2
(1 + k2 + 2k cos 3β) > tanα tan

β

2
(1− k)2 ⇔ 1 + k2 + 2k cos 3β > 1 + k2 − 2k⇔

⇔ 2k(cos 3β + 1) > 0

Comparing the upper bounds we have:

cos2 α

4 tanβ tan α
2

<
(1 + k)2

tanβ tan α
2

⇔ cos2 α

4
< (1 + k)2

which is true because the two sides of the inequality are separated by the unity:

cos2 α

4
≤ 1

4
< 1 < (1 + k)2

It remains to consider the case when B1 is in Zone 3 at A (the shared vertex). The consideration

is similar to the one at the end of the previous subsection. C1 cannot be in either Zone 3 or Zone

2 with respect to any of the edges at A, because this will create non–convexity, ∠B1AC1 > 180◦.

Therefore C1 is in Zone 2 with respect to both AB and AC. Further, if C1 is in Zone 2 or Zone 3

with respect to the third side, BC of △ABC this situation has already been considered. Thus, C1

is in zone 1 of the side BC as well. Remember that B1C1 intersects two of the sides of △ABC. If

BC and B1C1 intersect we will have a “pair of intersecting sides” case considered earlier, as B1 also

lies in Zone 1 of BC. Otherwise, consider the location of points B and C with respect to B1C1. If

either of them is in Zone 1 relative to B1C1, then we have a “pair of intersecting sides” ((AB,B1C1)

or (AC,B1C1)) as considered earlier. If either of the points B or C is in Zone 3 relative to B1C1,

it was the case considered earlier in this subsection. Finally, if both B and C are in Zone 2 relative

to B1C1, this is again a placement considered previously. These are all the cases possible within

the premises of the current subsection.
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3.6 Approximation factors

In Section 3.5 we considered all possible cases of matched triangles and positions of the points

with respect to the forbidden zones. First, we considered the trivial case when the two matched

triangles share three vertices. Second, we considered the case when they share an edge. Third, we

considered the case when the matched triangles share only one vertex. In this case there are several

subcases, depending on the mutual positions of the triangles and the non-shared points. Namely,

the non-shared points can lie in Zones 1, 2 or 3 with respect to the triangles. Recall that

k =
tanα

2 sin 3α

We studied the behaviour of function k(α) within the case analysis. The bounds we derived for f1

and f2 are summarized in Table 3.1 on the following page. Recall that f1 and f2 were the respective

lower and upper bounds for the ratio between the areas of the matched triangles

f1(α, β) ≤ Aα

Aβ

≤ f2(α, β)

Along with the derivation of the bounds, in the previous section we have determined some relations

between them. We will briefly recall their relationship, using the abbreviated notation for the cases

as per Table 3.1 on the following page. Both bounds for case (2s) are worse than those for case

(3s). Both bounds for case (1p) are worse than those for case (2s). In addition, both bounds in

case (1p) are worse than those in case (2p). For the placements of two points inside Zone 2, as

per Figure 3.17 on page 92 we have established that upper bound for case (d) is worse than the

upper bound for case (c), which in turn is worse than the upper bound for case (b), which in turn

is worse than the upper bound in case (a). For the lower bounds in these four placements, we have

established that the lower bound for case (c) is worse than both lower bounds for the cases (d) and

(b). In turn, the lower bound in case (b) is worse than the lower bound in case (a). Comparing

cases (2B) and (2B1), we have shown that the lower bound for case (2B1) is worse than the lower

bound for case (2B), but the upper bound for case (2B) is worse than the upper bound for case

(2B1). Regarding the lower bounds for cases (3B) and (3B1) we established that the lower bound

for case (3B) is worse than the lower bound for case (2B1), which in turn is worse than the lower

bound for case (3B1). Regarding the upper bounds for cases (3B) and (3B1) we established that

the upper bound for case (2B1) is worse than the upper bounds for both of them. Thus, it remains

to consider the relationships between the lower bounds for the cases (1p), (c) and (3B) in order to

determine the value of f1. To determine the value of f2 we have to compare the upper bounds for

cases (1p), (d) and (2B).
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Table 3.1: Bounding functions f1 and f2 for the different cases considered in
Section 3.5

Case Subcase f1 f2

3 shared

vertices

(3s) 1 1

2 shared

vertices

(2s) tanα tan β
2

1
tan β tan α

2

1 shared

vertex,

both points

in Zone 1

1 pair only (1p),

one angle con-

tains the other

tanα tan2 β tan β
2

1
tan β tan2 α tan α

2

2 pairs (2p),

no angle

containment

sinα tan2 β 1
sin β tan2 α

2 points

in Zone 2,

Figure 3.17

on page 92

(a) sin α
(1+k)2

1
(1−k)2 sin β

(b) tan α
2(1+k)2

1
2(1−k)2 sin β tan α

2

(c) tan α
2(1+k)(1+2k)

1
2(1−k)(1−2k) sin β tan α

2

(d) tan α
2k2

1
2k2

1
sin 2β tan α

2

Only 1 point

in Zone 2

(2B)
tan α tan β

2

(1+k)2
1

(1−k)2 tan β tan α
2

(2B1) tanα tan β
2 (1 − k)2 (1+k)2

tan β tan α
2

Point in

Zone 3

(3B)
tan α tan β

2

4 cos2 β
1

(1+k2+2k cos 3α) tan β tan α
2

(3B1) (1+k2 +2k cos 3β) tanα tan β
2

cos2 α
4 tan β tan α

2
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We start with the lower bounds. First we show that the lower bound for (1p) is worse than

the lower bound for (c):

tanα tan2 β tan
β

2
<

tanα

2(1 + k)(1 + 2k)
⇔ tan2 β tan

β

2
<

1

4k2 + 6k + 2

We will show that this is true, by showing that the two sides of the inequality are separated by 1/5

tan2 β tan
β

2
<

1

5
<

1

4k2 + 6k + 2

First, consider the left hand side. As tanβ is an increasing function over the interval (0◦, 30◦], we

have

tan2 β tan
β

2
< tan3 β < tan3 30◦ =

1

3
√

3
=

1√
27

<
1√
25

=
1

5

Consider now the right hand side. The denominator is a quadratic function of k (the graph of

which is a parabola that is concave upwards), with roots k = −1 and k = −1/2. Recall that

k ∈ (1/6, 1/2
√

3]. Therefore, in this interval the function 4k2 + 6k + 2 is strictly increasing, and

attains its maximum value at k = 1/2
√

3. The maximum value is (7 + 3
√

3)/3. Thus, we have

4k2 + 6k + 2 ≤ 7 + 3
√

3

3
⇔ 1

4k2 + 6k + 2
≥ 3

7 + 3
√

3

It remained to verify that

1

5
<

3

7 + 3
√

3
⇔ 7 + 3

√
3 < 15⇔ 3

√
3 < 8⇔

√
27 <

√
64

which is now evident.

Next we show that the lower bound for (1p) is worse than the lower bound for (3B):

tanα tan2 β tan
β

2
<

tanα tan β
2

4 cos2 β
⇔ sin2 β <

1

4
⇔ sinβ <

1

2
⇔ β < 30◦

The results of the case analysis for the lower bounds are summarized in Figure 3.20 on the following

page. The top level corresponds to the worst bound, links correspond to comparisons between

bounds such that the top of the two linked cases has worse lower bound than the bottom one.
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Figure 3.20: Comparison between the lower bounds, f1

For the upper bounds, three cases remain to be considered: (1p), (d) and (2B). We show that the

upper bound for (1p) is worse than the upper bound for (2B), as follows:

1

tanβ tan2 α tan α
2

>
1

(1− k)2 tanβ tan α
2

⇔ (1 − k)2 > tan2 α⇔ 1− k > tanα

Previously we have shown that:

1

6
< k <

1√
12
⇒ 6−

√
3

6
< 1− k < 5

6

and additionally

tanα <
6−
√

3

6
⇔ α < arctan

(

6−
√

3

6

)

≃ 32.42◦

The upper bounds for the cases (1p) and (d) can be compared analytically, but this is not necessary.

Remember that the case (d) is possible only when 2β+7α ≤ 180◦, which is a considerable constraint

on the values of β. As it will be seen further, the lower bound for case (d) is much worse (when

this case is possible) because of the fact that it contains a high power (3rd and above) of a very

small number.

The results of the case analysis for the upper bounds are shown in Figure 3.21 on the next page.

The dashed link corresponds to the comparison between the cases (1p) and (d). Case (d) is not

always possible, but when possible is worse than (1p).
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Figure 3.21: Comparison between the upper bounds, f2

Theorem 81 For 0◦ < β < α ≤ 30◦ the bounding functions for the ratio of the area of the matched

triangles from Tα and Tβ are:

f1 = tanα tan2 β tan
β

2

and

f2 = max

(

1

tanβ tan2 α tan α
2

,
1

2k2
1 sin 2β tan α

2

)

As discussed previously, the approximation factor 1/f1 shows how many times the smallest area

triangle in the approximating α -triangulation can be smaller than the smallest area triangle in

the optimal (MaxMin area) triangulation. Similarly, f2 gives the ratio of the largest area triangle

in the approximating triangulation, compared to the largest area triangle in the optimal (MinMax

area) triangulation. Sample values of the approximation factors are presented in Table 3.2.

Table 3.2: Sample values of the approximation factors

α β 1/f1 f2

30◦ 28◦ 24.57 21.06

30◦ 26◦ 31.54 22.96

30◦ 24◦ 41.11 25.15

30◦ 22◦ 54.59 27.71
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Table 3.2: Sample values of the approximation factors (continued)

α β 1/f1 f2

30◦ 20◦ 74.15 30.76

28◦ 26◦ 34.25 29.09

28◦ 24◦ 44.64 31.86

28◦ 22◦ 59.27 35.11

28◦ 20◦ 80.51 38.98

28◦ 18◦ 112.48 43.66

26◦ 24◦ 48.66 40.90

26◦ 22◦ 64.62 45.07

26◦ 20◦ 87.77 50.03

26◦ 18◦ 122.62 56.04

26◦ 16◦ 177.43 63.50

24◦ 22◦ 70.79 58.74

24◦ 20◦ 96.15 65.21

24◦ 18◦ 134.32 73.04

24◦ 16◦ 194.37 82.77

24◦ 14◦ 294.26 95.19

22◦ 20◦ 105.96 86.59

22◦ 18◦ 148.02 97.00

22◦ 16◦ 214.19 109.91

22◦ 14◦ 324.27 126.40

22◦ 12◦ 521.22 884.24

20◦ 18◦ 164.31 750.86

20◦ 16◦ 237.76 832.85

20◦ 14◦ 359.96 940.09

20◦ 12◦ 578.58 1085.09

20◦ 10◦ 1010.05 1290.41

18◦ 16◦ 266.34 3693.27

18◦ 14◦ 403.22 4168.80

18◦ 12◦ 648.12 4811.80

18◦ 10◦ 1131.45 5722.28

18◦ 8◦ 2228.31 7100.40

16◦ 14◦ 456.90 19320.47
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Table 3.2: Sample values of the approximation factors (continued)

α β 1/f1 f2

16◦ 12◦ 734.40 22300.46

16◦ 10◦ 1282.08 26520.11

16◦ 8◦ 2524.96 32907.05

16◦ 6◦ 6023.76 43626.28

14◦ 12◦ 844.62 28557.64

14◦ 10◦ 1474.48 33961.27

14◦ 8◦ 2903.89 42140.29

14◦ 6◦ 6927.76 55867.17

14◦ 4◦ 23488.63 83460.37

12◦ 10◦ 1729.56 167255.17

12◦ 8◦ 3406.25 207535.87

12◦ 6◦ 8126.23 275139.11

12◦ 4◦ 27552.07 411032.29

12◦ 2◦ 221022.46 820062.07

10◦ 8◦ 4106.13 4126162.52

10◦ 6◦ 9795.92 5470228.84

10◦ 4◦ 33213.14 8172013.99

10◦ 2◦ 266435.54 16304214.75

8◦ 6◦ 12290.27 116323732.58

8◦ 4◦ 41670.26 173776855.99

8◦ 2◦ 334278.46 346707088.60

The approximation factors were calculated for each even value of α ∈ (0◦, 30◦] and for the even

values of α − 10◦ ≤ β ≤ α − 2◦. Numerical values confirm that if the optimal area triangulations

are relatively “fat” then they can be approximated well by a triangulation that is “fat”, such as the

Delaunay Triangulation. The opposite is also evident, as the smallest angle in the optimal trian-

gulation becomes smaller, we cannot have practical theoretical bounds. Both observations suggest

that in approximating optimal area, it might be useful to employ a randomized algorithm, but no

research in this direction is reported here. We also observe that the approximation factor for the

MaxMin Area triangulation (1/f1) grows slower with the decrease of α, but for same α it grows

faster with the decrease of β, compared to the respective growth of the approximation factor for

the MinMax Area triangulation (f2) under the same circumstances. In addition to the relatively

faster growth of f2 with the decrease of α, this approximation factor grows by orders of magnitude,
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when the worst case (d) is possible. In the table, this is first present between α = 22◦, β = 14◦ and

α = 22◦, β = 12◦, there the increase is by a factor of 8. The difference between 1/f1 and f2 for

α = 2◦, β = 1◦, which is not presented in the table, is 22 orders of magnitude – 108 against 1030.

In conclusion, we hope that our approaches and results shed some light and serve as a basis for fur-

ther developments on the nature, complexity and computation of the exact MaxMin and MinMax

area triangulations of a general point set.
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Chapter 4

Conclusions

The research presented in this thesis focuses on computing the MaxMin and the MinMax area

triangulations (collectively called optimal area triangulations) of a set of points in the plane. This

problem has not been studied in depth previously. However, it is mentioned that the the MinMax

area triangulation is a hard open problem in one of the recent surveys of open problems in Com-

putational Geometry presented (see the last chapter in Edelsbrunner’s book [25]).

The first main contribution of this thesis is the development of algorithms that compute the exact

optimal area triangulations of a convex polygon in O(n2 logn) time and O(n2) space. This is an

improvement of almost a linear factor over the best previously known algorithm by Klincsek [37].

Although the two optimal area triangulation of a convex polygon are of equal computational com-

plexity, the MaxMin decision problem admits better solution – O(n2 log logn) due to the specific

properties of this quality measure and using efficient data structures. This constitutes another

contribution of the thesis, that has already been published [32].

In the case when the point set is in general position, the problem of finding the exact MinMax

and MaxMin area triangulation is still of unknown complexity. The third main contribution of this

study is the development of subcubic time algorithm that approximates the optimal triangulations

within practical factors. The algorithmic approach combines two well-known concepts in the com-

putational geometry literature – matchings between two different triangulations [2], and exclusion

regions [7, 18]. The novelty is the introduction of angular constraints on the approximating tri-

angulation, the definition of a forbidden zone (exclusion region) based on these constraints, and

then the derivation of the bounds on the approximation factors [33]. Another contribution is the

property that the relative neighbourhood graph is a part of every 30◦-triangulation of a general

point set, presented in Theorem 74 on page 78 of this thesis, and in [34].

The new results presented in this thesis allow some rows of the table presented in Chapter 1

to be updated as follows:
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Table 4.1: Comparison between the known optimal triangulation algorithms, up-
dated

Optimal

Triangulation

General

Point Set

Convex polygon Algorithms

MaxMin Area O(n3) time,

O(n) space

approximation

algorithm

O(n2 logn) time,

O(n2) space,

O(n2 log logn) time,

O(n2) space for the

decision problem

Modified dynamic programming

for the convex case, angular con-

straints for the approximation al-

gorithm in the general case

MinMax Area O(n3) time,

O(n) space

approximation

algorithm

O(n2 logn) time,

O(n2) space

Modified dynamic programming

for the convex case, angular con-

straints for the approximation al-

gorithm in the general case

The future research in this area can be directed towards strengthening the geometric and algorith-

mic properties of the optimal area triangulation in the convex case. A quadratic time algorithm

might be possible for the two optimal triangulations considered in Chapter 2. Further, it is inter-

esting to know whether there is a quadratic lower bound on the complexity of such an algorithm.

The approximation results presented in Chapter 3 of this thesis can be extended in two direc-

tions. First, the bounds derived here are worst-case bounds, based on a strongly localized notion

of matching. De-localizing the matching might help, because in fact the worst triangles do not

need to be close to each other in two different triangulations. Also, a precise analysis of the match-

ing using the local optimality might improve the bounds on the approximation factors. Another

interesting extension will be to look at the possibility of a randomized algorithm for generation

of an approximating triangulation. The major problem, whether the exact MaxMin and MinMax

area triangulations of a general point set are computable in polynomial time, is still open. Further

structural properties of the optimal triangulations may help to settle this question.

It is also interesting to look at the generalization of these two problems in three dimensions. Namely,

to consider the MinMax and MaxMin volume tetrahedralizations, or near-average volume terahe-

dralizations, of a point set in the three-dimensional space. The solution to one of these three

problems will lead to a speed-up of the existing algorithms for approximate weighted shortest tours

in three-dimensional scenes with obstacles. The exact solution of the last problem is NP-complete
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Free zone, 54

Gabriel graph, 71

General position, 1

Internal edge, 53

Internal triangle, 30

Interval of admissibility, 33, 35

Klincsek’s algorithm, 18, 73, 79

Minimum spanning tree, 70

Needle triangle, 6

Optimality criteria, 2

Perfect matching, 81, 82

Problems

Construction, 7

Decision, 7

MinMax and MaxMin, 2

Optimization, 7

Quality measure, 5

Relative neighbourhood graph, 70

Sleeve, 20, 31

Subpolygon, 18

Subproblem, 18

Traced part, 57

Triangulation, 1

δ-triangulations, 15

Delaunay, 70

Delaunay triangulation, 8

Greedy triangulation, 11
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Locally optimal, 5

Minimum Weight Triangulation, 4

MinMax length, 13

Unimodality, 21

Voronoi diagram, 8

Zonality, 24
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