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Abstract

This thesis examines methodologies and software to construct explicit Runge–Kutta (ERK) pairs for

solving initial value problems (IVPs) by constructing efficient six-stage fifth-order ERK pairs without stan-

dard simplifying assumptions. The problem of whether efficient higher-order ERK pairs can be constructed

algebraically without the standard simplifying assumptions dates back to at least the 1960s, with Cassity’s

complete solution of the six-stage fifth-order order conditions. Although RK methods based on the six-stage

fifth-order order conditions have been widely studied and have continuing practical importance, prior to this

thesis, the aforementioned complete solution to these order conditions has no published usage beyond the

original series of publications by Cassity in the 1960s.

The complete solution of six-stage fifth-order ERK order conditions published by Cassity in 1969 is not

in a formulation that can easily be used for practical purposes, such as a software implementation. However,

it is shown in this thesis that when the order conditions are solved and formulated appropriately using a

computer algebra system (CAS), the generated code can be used for practical purposes and the complete

solution is readily extended to ERK pairs. The condensed matrix form of the order conditions introduced

by Cassity in 1969 is shown to be an ideal methodology, which probably has wider applicability, for solving

order conditions using a CAS. The software package OCSage developed for this thesis, in order to solve the

order conditions and study the properties of the resulting methods, is built on top of the Sage CAS.

However, in order to effectively determine that the constructed ERK pairs without standard simplifying

assumptions are in fact efficient by some well-defined criteria, the process of selecting the coefficients of ERK

pairs is re-examined in conjunction with a sufficient amount of performance data. The pythODE software

package developed for this thesis is used to generate a large amount of performance data from a large

selection of candidate ERK pairs found using OCSage. In particular, it is shown that there is unlikely to

be a well-defined methodology for selecting optimal pairs for general-purpose use, other than avoiding poor

choices of certain properties and ensuring the error coefficients are as small as possible. However, for IVPs

from celestial mechanics, there are obvious optimal pairs that have specific values of a small subset of the

principal error coefficients (PECs). Statements seen in the literature that the best that can be done is

treating all PECs equally do not necessarily apply to at least some broad classes of IVPs. By choosing ERK

pairs based on specific values of individual PECs, not only are ERK pairs that are 20–30% more efficient

than comparable published pairs found for test sets of IVPs from celestial mechanics, but the variation in

performance between the best and worst ERK pairs that otherwise would seem to have similar properties

is reduced from a factor of 2 down to as low as 15%. Based on observations of the small number of IVPs

of other classes in common IVP test sets, there are other classes of IVPs that have different optimal values

of the PECs. A more general contribution of this thesis is that it specifically demonstrates how specialized

software tools and a larger amount of performance data than is typical can support novel empirical insights

into numerical methods.
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Chapter 1

Introduction and overview of the thesis

Numerical methods for solving differential equations are important tools for many applications in science

and engineering, as well as a component of many pieces of software. Runge–Kutta methods for ordinary

differential equations are particularly important for many application areas that require high-quality numer-

ical solutions, due to their efficiency, adaptivity, and stability properties at higher orders, i.e., higher order

numerical methods have a higher potential for accuracy. Specific applications are too many to enumerate

but include: celestial mechanics [7][72, pgs.129–131][122, 159], fluid mechanics [29, 203], motion of rigid

bodies [72, pg.244][73, pgs.8–11], chemical and biological systems [86], electronic circuits [13], and control

systems [12].

The main research problem addressed by this study is the construction of new families of explicit Runge–

Kutta methods, both without standard simplifying assumptions and with the minimal number of standard

simplifying assumptions, and showing that they can be practical and efficient. Despite the importance of

Runge–Kutta methods and their utilization for real-world problems, the full algebraic solution of the equations

that must be satisfied to construct them, in particular, the order conditions solved without necessarily using

standard simplifying assumptions [32], has no known prior usage for constructing efficient higher order Runge–

Kutta methods [128]. In this study, efficient higher-order Runge–Kutta pairs without simplifying assumptions

are constructed as part of the process of finding more general families of the well-known and well-studied six-

stage fifth-order explicit Runge–Kutta pairs. In order to qualitatively distinguish efficient methods, new work

involving more performance data than what is typically used to study numerical methods is used to evaluate

the coefficient selection process. Examination of this performance data helps determine the properties that

are often the principal cause of the largest differences in efficiency between explicit Runge–Kutta pairs from

the same family, which otherwise would seem to have similar properties. The performance data in this

study shows that explicit Runge–Kutta pairs, both with and without standard simplifying assumptions,

constructed in a systematic manner can be 20–30% more efficient for solving some test sets of initial-value

problems, specifically initial-value problems from celestial mechanics, than existing published methods that

otherwise appear similar. This result has practical significance because the performance of explicit Runge–

Kutta pairs on these test sets is also shown to be well correlated with more complex initial-value problems

based on real-world celestial mechanics problems.

A second research problem, already mentioned briefly and that must be addressed in order to find a
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well-defined solution to the main research problem, is that the quantity and scope of experimental data

presented in the literature for comparing different explicit Runge–Kutta methods may not yet be sufficient

to clearly distinguish among the individual pairs that can be constructed from the multiple families that

make up the solution to a particular set of explicit Runge–Kutta order conditions. In fact, with increasing

amounts of performance data the families used and the coefficients selected for many published Runge–Kutta

methods can start to appear rather arbitrary. Due to this, in order to draw quantitative, informative, and

reproducible conclusions on the construction of explicit Runge–Kutta methods, a much larger amount of

performance data than is typical for studies into numerical methods is generated by solving many initial-

value problems with large numbers (thousands) of explicit Runge–Kutta methods. This study demonstrates

that this can be readily accomplished by taking advantage of recent advances in available software tools

and easily available computational resources. A further contribution from studying the coefficient selection

process is that it shows how to eliminate poorly performing pairs in a systematic and well-defined way.

These poorly performing pairs often appear similar to the best pairs when using the properties described

in the literature. In particular, by systematically examining the properties responsible for the variation in

performance between explicit Runge–Kutta pairs, the amount of variation between the best performing and

worst performing pairs, that otherwise appear to have similar properties, can sometimes be reduced from a

factor of 2 to as low as about 15%. This assists finding a solution to the main research problem by giving a

quantitative assessment of which explicit Runge–Kutta methods are in fact most efficient.

These research problems are addressed with the help of data generated by two Python-based software

packages, OCSage and pythODE, developed primarily by the author for this study. The Python language has

become extremely popular for scientific computing because the NumPy package supports array operations

with similar syntax and functionality to Matlab. Using Python for scientific computing also has the

advantage, in comparison to some other platforms commonly used for scientific computing, of a complete

standard library that easily supports a diverse array of common computing tasks, e.g., data structures, file

operations, operating system functions, object serialization, networking, etc. The popularity of Python

can be further explained because there are many mature and widely used Python-based libraries for many

computing tasks that are either not available in or as alternatives to the Python standard library, e.g.,

libraries for building user interfaces or connecting to databases. Furthermore, the SciPy project [91], which

NumPy is now a part of, provides free and open-source libraries that have much of the same basic functionality

as commercial problem-solving environments for scientific computing, e.g., Matlab, but can easily take

advantage of the voluminous and well-tested Python libraries for general-purpose computing. The Python-

based Sage computer algebra system [57], which integrates SciPy [91] and many other popular mathematical

libraries written in many different languages, is used as a platform for the software tools developed for this

study. The OCSage package, developed for this study, is approximately 11,000 lines of Python code built

upon Sage [57] for solving the Runge–Kutta order conditions and studying their solutions. The pythODE

package, developed to its current form for this study, is approximately 13,000 lines of Python code built upon
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Sage [91] for generating large amounts of performance data for initial-value problem methods. Furthermore,

both of these software tools integrate a PostgreSQL relational database that turned out to be essential in

managing the data from the many different experiments conducted for this study. Using a proper database

is not common in the study of numerical methods and this study helps demonstrate the potential of using

these otherwise ubiquitous tools to support studies into numerical methods.

The work presented within this study has importance beyond the detailed investigation of specific families

of explicit Runge–Kutta methods. There are many variations on the types of differential equations and

appropriate types of numerical methods to solve them found in the literature; these could be the subject of

future studies similar to this one that require the complete solution of order conditions, substantial amounts

of performance data, and that can make use of the software tools described herein.

1.1 Organization of this thesis

This thesis is organized in the following manner:

• This chapter provides a brief overview of the thesis and its contributions.

• Chapter 2 gives an overview of the mathematical theory of modern initial-value problem solvers for

ordinary differential equations. Examples of the behaviour of ordinary differential equations and their

numerical solutions are included near the beginning to motivate the theory presented in the remainder

of Chapter 2. Chapter 2 concludes by demonstrating the methodologies used to construct published six-

stage fifth-order explicit Runge–Kutta pairs, in order to motivate the material presented in Chapter 3

chapter.

• Chapter 3 gives the construction of six-stage fifth-order embedded Runge–Kutta pairs without standard

simplifying assumptions. Although this was a subject of papers by Cassity in 1966 and 1969 [31, 32], the

original paper was extremely terse and did not include sufficient details for a software implementation.

The full details for the complete solution of the order conditions for six-stage fifth-order explicit Runge–

Kutta methods are given in Chapter 3. Furthermore, Chapter 3 presents new work that extends the

solution to embedded pairs, and in combination with finding efficient embedded pairs in later chapters

gives the solution to a well-known open problem in the study of numerical methods. There are 17

families that characterize the complete solution to the six-stage fifth-order order conditions and 14

families that characterize the complete solution for embedded pairs based on the six-stage fifth-order

explicit Runge–Kutta order conditions.

• Chapter 4 describes the OCSage software package that integrates and extends many of the ideas that

have been presented in the literature for using software to study and solve Runge–Kutta order conditions

(as opposed to solving by hand or standard usage of a computer algebra system) into a single software

package built upon a single platform, i.e., the Sage package that incorporates a Python software
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ecosystem in a computer algebra focused platform. Because these ideas were originally implemented

in wide variety of languages, it is particularly important that they be incorporated into an integrated

package built on a single platform. The OCSage package implements the solution of the order conditions

described in Chapter 3 and generates Python code that can be used to quickly narrow down the

number of candidates for new explicit Runge–Kutta methods. Furthermore, the OCSage package allows

searching the free parameters of a family and storing the results in a PostgreSQL database.

• Chapter 5 describes the pythODE software package that allows testing many candidate numerical meth-

ods on many initial-value problems. The advantages of using modern software technology such as

Python-based platforms and a PostgreSQL database for performance testing numerical methods are

discussed in detail. The overall structure of the pythODE package is also described in detail. Extensive

performance data is presented on both the existing methods discussed in Chapter 2 and the families

presented in Chapter 3. Observations are given that show a well-defined construction procedure for

explicit Runge–Kutta pairs that is specific to initial-value problems from celestial mechanics, but that

can also be applied to other classes of initial-value problems. Finally, specific explicit Runge–Kutta

pairs are presented to show that methods from the families constructed in Chapter 3, including those

without simplifying assumptions, can be competitive and even improve on published pairs.

• Chapter 6 concludes the thesis and gives several directions for future work.

1.2 Contributions of this thesis

• In Chapter 3, the solution to the six-stage fifth-order explicit Runge–Kutta order conditions published

by Cassity [31, 32] in 1966 and 1969 is explicitly described in an appropriate formulation that has

enough detail to support software implementation. Cassity’s original publications [31, 32] in 1966 and

1969 are extremely terse and left out many details important for a software implementation.

• In Chapter 3, this solution to the six-stage fifth-order explicit Runge–Kutta order conditions is further

extended to embedded pairs. These are the first higher-order explicit Runge–Kutta pairs to be published

without standard simplifying assumptions that can exactly satisfy the appropriate order conditions. The

other claims by Tsitouras [182, 183] to higher-order explicit Runge–Kutta pairs that do not satisfy the

standard simplifying assumptions are shown in Chapter 4 to only ever be able to approximately satisfy

the order conditions, even when corrected from the originally published coefficients. In Chapter 5, it

is further shown that Tsitouras’ pairs can have unexpected performance issues at high accuracies when

using them to solve certain initial-value problems.

• In Chapter 3, the importance of the condensed matrix form of the order conditions introduced by

Cassity in 1969 is demonstrated through the solution of the six-stage fifth-order explicit Runge–Kutta

order conditions without standard simplifying assumptions. The condensed matrix form has not seen
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any published usage since Cassity first presented it in 1969 [32]. However, the condensed matrix form

is particularly suitable for studying and solving order conditions using contemporary computer algebra

systems. In particular, the condensed matrix form has a great deal of potential for future studies that

use computer algebra systems to give more complete solutions to Runge–Kutta order conditions.

• In Chapter 4, the OCSage package is described. This package generates code that provides a useful

implementation of the solutions to the Runge–Kutta order conditions. The generated code includes

implementations that calculate the many properties used to describe explicit Runge–Kutta pairs. In

particular, OCSage combines several pieces of functionality, which were originally described across several

publications [18, 19, 28, 58], and extends them into a single integrated software package built on top

of the modern Sage platform that includes integration with a PostgreSQL database. The design of

OCSage is discussed in detail in order to help others build software tools that help tackle specific research

questions in the study of numerical methods, which would otherwise be difficult with simple ad-hoc

programs. An open-source release of the OCSage package is planned, ensuring that other researchers do

not need to replicate the long development process that led to OCSage, but can instead use or modify

it as they see fit. This will allow the many research problems that can be addressed by studies similar

to this study to be more accessible to the community.

• In Chapter 4, the OCSage package is also used to search the free parameters of the new explicit Runge–

Kutta families from Chapter 3. For the first time, this gives a clear picture of the limits of and tradeoffs

between the different properties involved in Runge–Kutta method construction. This is shown by figures

that give some representative data from the searches of the free parameters. Although other researchers

may have had some idea of these tradeoffs, this is the first time data showing tradeoffs in the choice of

free parameters for Runge–Kutta families has been published in detail.

• In Chapter 5, the pythODE package is described. This package uses the Python-based scientific com-

puting ecosystem and a PostgreSQL database to allow testing many explicit Runge–Kutta pairs on

many initial-value problems. The pythODE package uses a PostgreSQL database that allows more so-

phisticated performance analysis of candidate explicit Runge–Kutta pairs than has been previously

published in the literature. Like OCSage, many design details are discussed that will help others build

software tools for tackling specific research questions in numerical methods that would be difficult with

just simple ad hoc programs. There is a planned open-source release of the pythODE package, ensuring

that other researchers do not need to replicate the long development process that led to pythODE but

can instead use or modify it as they see fit. This will allow the many research problems that can be

addressed by studies similar to this one to be more accessible to the community.

• In Chapter 5, contrary to what is often both implicitly and explicitly assumed in the literature, the

magnitude of error coefficients of higher order than the leading error coefficient can be important. Al-

though the importance of the higher order error coefficients has been mentioned in the literature [16],
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it is shown that guidelines more restrictive than those given by other authors are beneficial for perfor-

mance. In particular, it is shown that the widely used Dormand–Prince pair performs as well as can be

expected on a test set of IVPs given the magnitude of its higher-order error coefficients. However, by

reducing the magnitude of the higher-order error coefficients, there are many pairs that are otherwise

similar to the Dormand–Prince pair with up to 20% better performance.

• In Chapter 5, it is shown that properties other than the leading error coefficient, including the individual

values of the principal error coefficients, are often more important for explaining performance differences

between the explicit Runge–Kutta pairs. In fact, it is also shown that, contrary to what has been

stated in the literature, specific principal error coefficients can be individually important and one of

the most significant factors in determining the performance for solving some classes of IVP. This is

especially the case for IVPs from celestial mechanics, where well-defined patterns emerge from the

large number explicit Runge–Kutta pairs used to solve a wide variety of IVPs. However, it is shown

that minimizing the leading error coefficient, often one of the only properties discussed with respect to

method construction, does remain important. One family from Chapter 3 also allows the leading error

coefficient to be minimized arbitrarily. When the leading error coefficients are aggressively minimized,

pairs from this family they can perform extremely well in some cases. However, study of the principal

error coefficients of explicit Runge–Kutta pairs with an aggressively minimized leading error coefficient

shows performance can be extremely sensitive to the specific values selected for the method coefficients.

Although the extremely small leading error coefficients found can seem to be advantageous during

limited performance testing, until this sensitivity is better understood, it is difficult to recommend

pairs with aggressively minimized leading error coefficients for practical usage.

• In Chapter 5, it is shown that some of the classic properties that have been presented in the literature

to help predict the performance of explicit Runge–Kutta pairs do not account for the performance

differences seen. Performance testing shows that these properties do not vary in a large enough range

to be useful and are either not correlated with performance at all or not correlated enough to be a

useful predictor of performance.

• In Chapter 5, new explicit Runge–Kutta pairs from the families found in Chapter 3 are presented,

including ones constructed without standard simplifying assumptions. In particular, the new explicit

Runge–Kutta pairs without standard simplifying assumptions are shown to be at least comparable to

pairs with standard simplifying assumptions and often provide an unexpected competitive advantage

for IVPs derived from celestial mechanics problems.
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Chapter 2

Mathematical background

“It is difficult to keep a cool head when discussing the various derivatives...”
(S. Gill 1956, through Hairer et al. 1993)

This chapter introduces the mathematical background required to understand variable-stepsize ordinary

differential equation solvers that use explicit Runge–Kutta embedded pairs. Section 2.1 defines the ordinary

differential equations and the associated initial-value problems that are studied in this thesis. Section 2.2

gives examples of specific ordinary differential equations, and Section 2.3 gives two basic examples of numer-

ical methods. Section 2.4 introduces the basic theory of the numerical methods used to solve initial-value

problems. Section 2.5 introduces Runge–Kutta methods and the order conditions necessary for construct-

ing them, which form the foundation for the new families of the explicit Runge–Kutta pairs constructed in

Chapter 3. However, prior to that material being presented in Chapter 3, Section 2.6 introduces the ad-

ditional theory required to extend explicit Runge–Kutta methods to embedded pairs that provide a cheap

error estimate. Section 2.7 gives specific examples of the construction methodology used for classic explicit

Runge–Kutta methods and pairs.

2.1 Overview of ODEs

An equation for an unknown function y in terms of its derivatives is known as a differential equation (DE).

If the unknown function y depends on only one independent variable t, i.e., y = y(t), then the equation is

known as an ordinary differential equation (ODE) and has the general form

dy(t)

dt
= f(t,y(t)), t0 < t < tf , (2.1a)

where y(t) : R → Rm is a function with the independent variable time t ∈ R and f : R × Rm → Rm is

typically called the right-hand side (RHS) of the ODE. The reader should be aware that the abbreviation

RHS is sometimes used to describe the right-hand side of algebraic equations (with LHS used to describe the

left-hand side of the same equations). However, when this is the case it should always be clear by context, and

in this thesis the term RHS without referring to a specific algebraic equation always describes the RHS of an

ODE (2.1a). An initial-value problem (IVP) is an ODE (2.1a) together with specific additional information
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about the solution. This additional information is known as the initial condition and is given by

y(t0) = y0, (2.1b)

where t0 ∈ R is known as the initial time and y0 ∈ Rm is known as the initial value [72, pgs.2–3]. The form

of the ODE given by (2.1a) is sometimes known as the state-space form [167, pg.88].

When the derivative of y explicitly depends only on t, then (2.1) becomes a quadrature problem with the

form

dy(t)

dt
= f(t), y(t0) = y0, t0 < t < tf , (2.2)

with the solution given by the integral

y(t) = y(t0) +

∫ tf

t0

f(t)dt.

In order to further simplify the analysis of (2.1a), the RHS can be converted into autonomous form by

defining a new dependent variable, t = Ym+1(t),

Y(t) =

y(t)

t

 =

 Ȳ(t)

Ym+1(t)

 ,

where Ȳ(t) represents the first m components of Y(t). The autonomous form is an equivalent ODE that

simplifies some analysis because the RHS does not explicitly contain t, i.e.,

dY

dt
(t) = F(Y(t)),

where

F(y(t)) =

f(Ym+1(t), Ȳ(t))

1

 .

Without loss of generality, the autonomous form of an ODE (2.1a) can be stated as

dy

dt
(t) = f(y(t)), (2.3)

which is the notation used for the autonomous form of an ODE in this thesis with initial condition (2.1b)

when (2.3) is part of an IVP.
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2.1.1 PDEs

Another widely seen class of DEs are partial differential equations (PDEs), which are a common source of

ODEs solved in practice because each PDE can be approximated with a system of ODEs. The PDEs that

are solved using IVP methods in this thesis have partial derivatives in both space and time, rather than only

derivatives with respect to a single independent variable (usually time) as with ODEs. In Section 2.2, two

examples of PDEs that are implemented in pythODE, which is described in Chapter 5, are presented.

2.1.2 Second-order ODEs

Many first-order ODEs (2.1a) solved in practice are derived from second-order ODEs that can be defined as

an IVP of the form

d2y(t)

dt2
= f

(
t,y(t),

dy(t)

dt

)
, t0 < t < tf , (2.4a)

y(t0) = y0, (2.4b)

dy(t0)

dt
=
dy0

dt

∣∣∣∣
t=t0

, (2.4c)

where two initial conditions, i.e., (2.4b) and (2.4c), are now required for an IVP. However, in order to take

advantage of the existing analysis and commonly available software for first-order ODEs, IVPs (2.4) based on

second-order ODEs (2.4a) can easily be treated as IVPs based on first-order ODEs using the reformulation

dy(t)

dt
dȳ(t)

dt

 =

 ȳ(t)

f(t,y(t),
dy(t)

dt

 , (2.5a)

y(t0)

ȳ(t0)

 =

 y0

dy0

dt

∣∣∣∣
t=t0

 , (2.5b)

where (2.5a) can easily be seen to be a system of first-order ODEs that is equivalent to (2.4a) when y(t)

and ȳ(t) correspond to y(t) and
dy(t)

dt
, respectively, from (2.4a). It can also easily be seen that if the two

initial conditions (2.5) correspond to the initial conditions y(t0) (2.4b) and
dy(t0)

dt
(2.4c), then (2.5) is a

first-order IVP equivalent to (2.4). When second-order ODEs (2.4a) are described in this thesis, any analysis

of first-order ODEs (2.1a) can be applied directly by using the first-order formulation (2.5) and for this

study it can also be assumed that second-order IVPs (2.4) are implemented in software using the first-order

formulation (2.5).
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2.1.3 Existence of solutions

A function f(y(t)) is said to be Lipschitz continuous on D = {t0 ≤ t ≤ tf , t ∈ R, y(t) ⊆ Rm} if a constant

L can be chosen such that

||f(ya(ta))− f(yb(tb))|| ≤ L||ya(t)− yb(t)||, (2.6)

for any ya(ta), yb(tb) ∈ D. If f(y(t)) is Lipschitz continuous then the corresponding IVP is well-posed, i.e., a

unique differentiable solution y(t) exists throughout the interval t ∈ D, and the solution varies continuously

with varying initial conditions (2.1b) [10, pg.9; 27, pg.23; 72, pg.37; 108, pg.5; 171, pg.431]. The importance

of Lipschitz continuity is that it does not require the first derivative, i.e., f(y(t)) for y(t) in (2.1a), to be

continuous. This is important because many IVPs (2.1) have the RHS defined piecewise, and Lipschitz

continuity can still guarantee a well-posed IVP. However, even if all derivatives of y(t) are continuous but

unbounded, the normally strong condition of having all derivatives of y(t) continuous does not guarantee a

well-posed IVP or that a solution exists on all of D [152, pg.7]. Methodologies that handle IVPs that are not

well-posed, i.e., IVPs that are ill-posed, are beyond the scope of this thesis.

2.1.4 The Jacobian matrix and linearization

An important property of both ODEs (2.1a) and the numerical methods used to solve them is stability, which

encompasses a large variety of different concepts [10, pg.23]. The specific definitions of the stability properties

relevant to some applications of the IVP methods studied in this thesis are given in Section 2.5.4. However, a

lack of stability can generally be thought of as extreme sensitivity to initial conditions and can occur even for

well-posed IVPs. The stability of IVP solutions and the stability of the analogous numerical solution can also

be qualitatively different from each other. For instance, there are IVPs, e.g., see (2.14) and (2.21a) below,

that have extremely stable solutions that can in fact cause instability for the numerical methods studied

in this thesis. This is the concept of stiffness that is demonstrated in an example in Section 2.3.2 and is

discussed in Section 2.5.4.

To help study the stability of both ODEs (2.1a) and numerical methods (as well as to study a wide range

of other properties), it is useful to consider the linear approximation of (2.1a) at t as a system of linear

constant-coefficient ODEs [73, pg.15]. This linearized system is given by

dy

dt
(t) = Jf (y(t)) y(t), (2.7)

where y(t) is the solution to the linearized system of ODEs and Jf ∈ Rm×m is the Jacobian matrix given by

Jf =


∂f1

∂y1
· · · ∂f1

∂ym
...

. . .
...

∂fm
∂y1

· · · ∂fm
∂ym

 . (2.8)
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For the purposes of stability analysis in this thesis, Jf is assumed to be diagonalizable; i.e., there exists an

invertible matrix P such that Λ = diag(λ1, λ2, . . . , λm) = P−1JfP. The case where Jf is not diagonalizable

is covered by Higham and Trefethen [78], but is beyond the scope of this thesis. A change of variables

u(t) = P−1ȳ(t) gives the ODE system
du

dt
(t) = Λu(t), (2.9)

which is equivalent to (2.7). This change of variables decouples the ODEs and allows (2.3) to be considered

as m scalar test problems of the form
du

dt
(t) = λu(t), (2.10)

where λ ∈ C is the eigenvalue associated with a particular component of the ODE in (2.9). The general form

of the scalar test problems (2.10) can also be known as the scalar test equation or just test equation [152,

pg.65]. Despite the approximations that take place, the decoupled test equations (2.10) have been found

useful for analytically studying stability and other behaviours over a single step of a numerical method.

Some solutions of the test equation (2.10) are given in the next section along with other examples of the

solutions of other IVPs.

2.2 Some simple examples of IVPs and their solutions

In this section some simple examples of specific IVPs are given for the benefit of the reader. The reader

should be aware that some terminology in this section, although in common use for the study of numerical

methods, might not yet be defined in this thesis. Therefore, the reader should refer back to this section for

specific examples of IVPs that motivate the discussion in this thesis as it unfolds.

The generic definition of an ODE (2.1a) uses a vector y for the dependent variables and t (commonly

corresponding to time) for the independent variable. However, when specific ODEs (2.1a) are defined, it is

beneficial to use whichever variable names are commonly used to represent corresponding quantities in the

physical model. In the examples that follow, it is obvious which variable names that a specific ODE uses

correspond to t and y in the generic definition of an ODE (2.1a).

The test equation

The test equation (2.10) is already defined in Section 2.1.4, and using an initial condition of y = 1 at t0 = 0

gives one of the simplest possible IVPs (2.1). Solutions for different λ ∈ R of (2.10) are shown in Figure 2.1,

where it can clearly be seen that when λ > 0 the solution y grows exponentially with t and when λ < 0

the solution y decays exponentially with t. Although the numerical solution of IVPs defined using complex

numbers are generally beyond the scope of this thesis, the solutions of the test equation (2.10) with λ ∈ C

are important for analyzing the common situation where the Jacobian (2.8) has complex eigenvalues. With

several representative λ ∈ C it can be seen in Figure 2.2 that solutions of (2.10) with λ ∈ C are oscillatory
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in the complex plane.
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Figure 2.1: Solutions to the test equation (2.10) with real λ and y(0) = 1.
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Figure 2.2: Solutions to the test equation (2.10) with complex λ.

The “Non-stiff A3” IVP, an extremely simple ODE

An IVP, which is also known as problem “A3” of the “non-stiff DE” test set (further described in Sec-

tion 5.3.1) [83], is given by

dy(t)

dt
= y cos t, y(0) = 1, tf = 20, (2.11)
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and has an analytic solution of y(t) = esin(t) [83] that is shown in Figure 2.3. The “A3” IVP (2.11) is a simple

non-autonomous ODE (2.1a) that is ideal for testing and demonstrating IVP solvers, but it does not directly

model a specific phenomenon.

0 5 10 15 20

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y(t)

Figure 2.3: The solution of the “A3” IVP (2.11) from the “non-stiff DE” test set.

The “Stiff B1” IVP, a linear oscillatory constant coefficient ODE

Consider the linear constant coefficient IVP given by

dy1(t)

dt
= −y1 + y2, y1(0) = 1,

dy2(t)

dt
= −100y1 + y2, y2(0) = 0,

dy3(t)

dt
= −100y3 + y4, y3(0) = 1,

dy3(t)

dt
= −10000y3 − 100y4, y4(0) = 0,

tf = 20, (2.12)

which is problem “B1” of the “stiff DE” test set (further described in Section 5.3.1) [55]. Due to (2.12)

being a linear constant coefficient ODE, the Jacobian (2.8) of (2.12) is constant with constant eigenvalues

of −1 ± 10i, −100 ± 100i. It can be seen that the solutions to (2.12) in Figure 2.4 are rapidly decaying

oscillatory solutions, as expected from the representative solutions to the test equation (2.10) that are shown

by Figures 2.1 and 2.2.
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Figure 2.4: The solution of the “B1” IVP (2.12) of the “stiff DE” test set [55] with y1 (red), y2 (green),
y3 (blue), and y4 (black). It can just be seen that y3 and y4 decay extremely quickly and are barely
visible.

The “Non-stiff” “D1”–“D5” IVPs, 2-body celestial mechanics problems

Problems “D1” through “D5” of the “non-stiff DE” test set [83], which is further described in Section 5.3.1,

can be represented by a ODE system that represents many 2-body celestial mechanics problems. This ODE

system is given by

dx(t)

dt
= x̄(t), x(0) = 1− ε,

dy(t)

dt
= ȳ(t), y(0) = 0,

dx̄(t)

dt
=

−x(t)

(x(t)2 + y(t)2)3/2
, x̄(0) = 0,

dȳ(t)

dt
=

−y(t)

(x(t)2 + y(t)2)3/2
, ȳ(0) =

(
1 + ε

1− ε

)
, (2.13)

where x(t), y(t) are functions representing spatial coordinates and x̄(t), ȳ(t) are respectively their derivatives,

i.e., velocities, and ε is the orbital eccentricity, with ε ∈ [0, 1) representing a closed periodic orbit. Many

celestial mechanics problems including (2.13) are naturally defined as second-order ODEs (2.5a). An eccen-

tricity of ε = 0 corresponds to circular orbit. The solutions of the “D1”, “D3”, and “D5” IVPs (2.13) from the

“non-stiff DE” test set [83] with eccentricities of ε = 0.1, 0.5, 0.9, respectively, are shown in Figure 2.5. The

governing ODE is the same regardless of the eccentricity and the eccentricity is determined by the initial

conditions only. The system of ODEs (2.13) is often known as the “Kepler problem” because if the bodies
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are assumed to be a Sun and a planet then Kepler’s three classic laws of celestial mechanics can be derived

directly from (2.13), although polar coordinates are usually used for this derivation in most references [174,

pgs.47–60].
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Figure 2.5: Solutions of the “D1” (blue), “D3” (green), and “D5” (red) IVPs (2.13) from the “non-stiff
DE” test set [83], with ε = 0.1, 0.5, 0.9 respectively. The curve can viewed as a satellite of negligible
mass orbiting around a massive body indicated by the black circle.

The van der Pol IVP

An important non-linear ODE is the van der Pol equation, with a specific IVP given by

dy1

dt
= y2, y1(0) = 2,

dy2

dt
=

1

ε

(
(1− y2

1)y2 − y1

)
, y2(0) = 0, (2.14)

where ε is a non-physical parameter. The van der Pol IVP (2.14) has oscillatory solutions and complete

cycles. The parameters ε = 1 with tf = 8 and ε = 0.001 with tf = 2 are illustrated by Figures 2.6a

and 2.6b, respectively. The original importance of the van der Pol equation was that it provided a simple

mathematical description of vacuum tube oscillations in the 1920s [115]. Since then, the van der Pol equation

has become one of the most widely studied ODEs and found application as a simple system that can describe

a wide range of oscillatory phenomena in many applications [117]. An important numerical property is that

when ε � 1 there can be stability issues with some numerical methods including those constructed in this

thesis [73, pgs.4–6, 22–23]; this is the phenomena of stiffness that is demonstrated in Section 2.3 and defined
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in Section 2.5.4.

An Arenstorf orbit IVP

A particular family of 3-body celestial mechanics problems, with analytic solutions known as Arenstorf orbits,

describe a body with negligible mass (such as a satellite) travelling in a periodic orbit around the centre of

mass of two other bodies with non-negligible masses (such as a planet and a moon) [7]. A common example

of an Arenstorf orbit has two bodies with the same ratio of masses as the Earth and the Moon but with

a circular orbital motion [72, pgs.129–131][106][110, pgs.161–165][173, pgs.513–514]. A rotating coordinate

system is chosen so that both the Earth-like and Moon-like bodies remain fixed, allowing the governing

equations to be transformed to only describe the satellite [158]. The IVP describing this Arenstorf orbit is

given by

dx(t)

dt
= x̄(t),

dy(t)

dt
= ȳ(t),

dx̄(t)

dt
= x(t) + 2ȳ(t)− (1− µ)

x(t) + µ

D1
− µx(t)− (1− µ)

D2
,

dȳ(t)

dt
= y(t) + 2x̄(t)− (1− µ)

y(t)

D1
− µy(t)

D2
,

D1 =
(
(x(t) + µ)2 + y(t)2

)3/2
, D2 =

(
(x(t) + (1− µ))2 + y(t)2

)3/2
, µ = 0.012277471,

x(0) = 0.994, y(0) = 0, x̄(0) = 0, ȳ(0) = −2.00158510637908252240537862224,

t0 = 0.0, tf = 17.0652165601579625588917206249, (2.15)

where x(t), y(t) are functions representing the spatial coordinates and x̄(t), ȳ(t) respectively are their deriva-

tives, i.e., their velocities, µ is the ratio of mass of the two massive bodies, i.e., the Moon/Earth mass ratio,

and tf is the time the satellite completes and orbit an returns to the initial condition. Note that the “Aren-

storf orbit” (2.15) is scaled for analysis purposes and neither the units of mass, time, or space represent SI or

other common systems of units. Although the initial conditions that give an Arentstorf orbit are derived by

analytic methods, they do not have closed-form values. Therefore, ȳ(0) and tf are published as high-precision

numeric values [72, pgs.129–131][110, pgs.161–165].

Due to the periodic solution and an extreme sensitivity to error, the “Arenstorf orbit” IVP (2.15) is a severe

test of adaptive IVP solvers [37][110, pgs.161–165] that is used effectively by Hairer et al. for motivating the

clear advantage to adaptivity [72, pgs.129–131] (their example is reproduced below in Figure 2.11). Because

the periodic solution of the IVP (2.15) always returns to the initial conditions and small numerical difficulties

quickly lead to large errors, it is easy to visualize the performance of numerical methods when solving (2.15),

making it ideal for demonstrations such as shown by Figure 2.11 in Section 2.3.1.

Briefly described in Section 5.3.4 are 28 other IVPs that are also restricted three-body problems [158],

16



3 2 1 0 1 2 3

y1(t)

3

2

1

0

1

2

3

y2(t)

(a) A solution to the van der Pol IVP (2.14) with ε = 1.
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(b) A solution to the van der Pol IVP (2.14) with ε = 0.001.

Figure 2.6: Solutions to the van der Pol IVP (2.14).

which were originally published by Sharp and are used for performance testing IVP methods in Chapter 5. A

set of distinct IVPs that are derived from similar physical systems are ideal for performance testing numerical

methods because it ensures that any conclusions reached can be confidently generalized beyond a single IVP.

The “Pleiades” IVP

Because variable-stepsize explicit Runge–Kutta methods are extremely important for solving celestial me-

chanics problems, numerous different types of IVPs of this class are used for performance testing in addition

to (2.13) and (2.15). The “Pleiades” IVP was developed and named as such by Hairer et al. [72, pgs.245–246]

because it simulates the motion due to gravity of seven stars and the real Pleiades star cluster is famous for

its seven brightest stars. However, the “Pleiades” IVP should not be taken to represent the configuration of or

be an actual model of the Pleiades star cluster. The stars in the “Pleiades” IVP have several close approaches

(quasi-collisions) that result in rapidly varying derivatives that require an adaptive stepsize for an accurate

and efficient solution [72, pgs.246]. Consider a plane with star i ∈ {1, 2, . . . , 7} at coordinate xi, yi and mass

mi = i, leading to the equations of motion

d2xi
dt2

=
∑
i 6=j

mj(xj − xi)/ri,j , (2.16a)

d2yi
dt2

=
∑
i 6=j

mj(yj − yi)/ri,j , (2.16b)
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Figure 2.7: The solution of the “Arenstorf orbit” IVP (2.15). The curve can viewed as a massless body
orbiting in-between two massive bodies represented by the large and small circles, where the massive
bodies are orbiting about a common centre of gravity but a rotating coordinate transformation makes
them appear stationary.

where

ri,j = ((xi − xj)2 + (yi − yj)2)3/2, i, j = 1, . . . , 7, (2.16c)

with initial conditions

x1(0) = 3, x2(0) = 3, x3(0) = −1, x4(0) = −3, x5(0) = 2, x6(0) = −2, x7(0) = 2,

y1(0) = 3, y2(0) = −3, y3(0) = 2, y4(0) = 0, y5(0) = 0, y6(0) = −4, y7(0) = 4,
dx6

dt
(0) = 1.75,

dx7

dt
(0) = −1.5,

dy4

dt
(0) = −1.25,

dy5

dt
(0) = 1,

(2.16d)

and with the other
dxi
dt

(0) = 0,
dyi
dt

(0) = 0. The solution to (2.16) with t0 = 0 and tf = 3 is shown by

Figure 2.8.

A semi-discretized PDE for the one-way wave equation

Systems of ODEs that are solved in practice are often those derived from PDEs that have spatial derivatives

in addition to time derivatives. Systems of PDEs can be solved numerically by first approximating (semi-

discretizing) each PDE with a system of ODEs and then numerically solving the ODEs, a procedure known

18



6 4 2 0 2 4 6

xi(t)

4

2

0

2

4

6

yi(t)

Figure 2.8: Solutions to the “Pleiades” IVP with star 1 x1, y1 (blue), star 2 x2, y2 (green), star 3 x3, y3

(red), star 4 x4, y4 (cyan), star 5 x5, y5 (magenta), star 6 x6, y6 (yellow), and star 7 x7, y7 (black). The
start of each star path is indicated by a circle and the end is indicated by a square.

as the method of lines [86, pgs.94–95][143, pg.14]. A specific example of a PDE is a one-dimensional variable

coefficient one-way wave (or advection) equation that is given by

∂u(t, x)

∂t
+ c(x)

∂u(t, x)

∂x
= 0, c(x) =

1

5
+ sin2(x− 1), (2.17)

where x ∈ R : 0 ≤ x ≤ 2π represents a single dimension in space and t ∈ R : 0 ≤ t ≤ 8 represents

time [152, pg.114][178, pg.24]. The unknown function u(t, x) describes a “wave height”, “concentration”, or

“velocity” depending on the specific physical manifestation of (2.17). A set of initial conditions commonly

used specifically for (2.17) [152, pg.114][178, pg.24] is u(x, 0) = e−100(x−1)2 , in conjunction with the periodic

spatial boundary conditions u(t, 0) = u(t, 2π). The single PDE (2.17) can be approximated with a system of

N ODEs by approximating the unknown function u(t, x) at N spatial points that are uniformly spaced by ∆x

and the solution to each ODE, i.e., y0, y1, . . . , yN , are the approximations of each spatial point. This requires

replacing the spatial derivative
∂u(t, x)

∂x
with an approximation such as the divided difference formula

∂u(t, x)

∂x
≈ yn − yn−1

∆x
, (2.18)
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which specifically applies when c(x) > 0 and is one form of one of the most basic semi-discretization methods

that is known as first-order upwind finite differences [86, pgs.52–53, 149]. A semi-discretization of
∂u(t, x)

∂x
that is typically more accurate is

∂u(t, x)

∂x
≈ 2yn+1 + 3yn − 6yn−1 + yn−2

6∆x
, (2.19)

which also specifically applies when c(x) > 0 and analogously to the concepts that are defined for IVP

methods in Section 2.4.3 converges spatially at a usually more accurate third-order rather than first-order

as for (2.18) [86, pg.60]. In fact, advanced semi-discretization methods for PDEs can use many variations of

linear divided differences similar to the semi-discretizations (2.18) and (2.19), non-linear semi-discretization

formulae, or even techniques such as fast Fourier transforms [152, pg.114][178, pg.24]. These advanced semi-

discretization techniques can be studied further in the references [86, 120, 143, 178]. The resulting system of

ODEs from (2.17) using the semi-discretization (2.18) gives the IVP

dyi(t)

dt
= −c(x)

yi+1 − yi
∆x

, i ∈ 1, . . . , N − 1, (2.20a)

dyN (t)

dt
= −c(x)

y1 − yN
∆x

, (2.20b)

yi(0) = exp

(
−100

(
i

(
2π

N

)
− 1

)2
)
, i ∈ 1, . . . , N, (2.20c)

where (2.20b) approximates the spatial boundary conditions of (2.17) and (2.20c) approximates the initial

condition of (2.17). Using (2.19) for semi-discretization of (2.17) gives a similar set of IVPs to (2.20).

The solutions to (2.17) with N = 128 using (2.18) is given by Figure 2.9a and using (2.19) is given by

Figure 2.9b. Based on the solution given in the original reference [178], it can clearly be seen that the semi-

discretization (2.19) is more accurate than the semi-discretization (2.18), which continues to be the case with

N = 128 no matter how accurately the system of IVPs resulting from semi-discretization is solved. In order

to achieve a similarly accurate solution to the original PDE (2.17) with the semi-discretization (2.18) as that

obtained with the semi-discretization (2.19), N � 128 is required.

The class of PDEs with properties similar to (2.17) are known as hyperbolic PDEs, where simple examples

can often be identified by inspection as PDEs that have only first-order spatial and time derivatives [143,

pg.5]. Hyperbolic PDEs, which are widely used for mathematical modelling in application areas such as fluid

flow and wave phenomena [112, pgs.1–3][120, pgs.2–3], often require specialized solution techniques. The

explicit Runge–Kutta methods constructed in this thesis, as well as more sophisticated methods of which

they form a component, continue to be extremely important for the solution of semi-discretized hyperbolic

PDEs [2, 11, 94, 96, 129, 203]. It is often important to consider the class of underlying PDE and the specific

semi-discretization method when selecting or designing numerical methods to solve IVPs derived from semi-

discretized PDEs [11][86, pgs.149, 419][197].
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(a) Solutions to the one-way wave equation (2.20)
with (2.18) used for semi-discretization.
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(b) Solutions to the one-way wave equation (2.20)
with (2.19) used for semi-discretization.

Figure 2.9: Solutions to the one-way wave equation (2.20).

A semi-discretized PDE for the heat equation

Another common class of PDEs are parabolic PDEs, which often arise while modelling phenomena such as

diffusion and heat conduction [120, pgs.7][143, pgs.1–2]. Parabolic PDEs have different numerical properties

than hyperbolic PDEs. Therefore, they require different numerical methods for semi-discretization and solving

the resulting IVPs. A specific example of a semi-discretized parabolic PDE, which was used by Fehlberg [61]

for testing one of the original examples of the class of Runge–Kutta methods studied in this thesis (see (2.78)

in Section 2.7), is

∂u(t, x)

∂t
=

1

4

e2

2 + x2
e−u(x,t) ∂

2u(t, x)

∂x2
, (2.21a)

u(t = 0, x) = 2
(
1− log(2− x(t)2)

)
, (2.21b)

u(t, x = 0) :
∂u(t, x)

∂x
= 0, (2.21c)

u(t, x = 1) : u = 2 + log(1 + t), (2.21d)

with an analytic solution of

u(t, x) = 2 + log(1 + t)− 2 log(2− x2), (2.22)
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where the variables t ∈ R and x ∈ R correspond to time and a spatial dimension respectively as described

for (2.17). Parabolic PDEs can sometimes be identified by inspection because simple examples have second-

order spatial derivatives in combination with first-order time derivatives [143, pgs.5].

The unknown function u(x, t) in (2.21) can often be seen as a “temperature” when modelling heat con-

duction or a “concentration” when modelling diffusion. The second-order spatial derivative in (2.21a) can be

approximated (semi-discretized) by the divided difference formula

∂2u(t, x)

∂x2
≈ yn+1 − 2yn + yn−1

∆x2 , (2.23)

where the unknown function u(t, x) is approximated at time t by the variables y0, y1, . . . , yN , which cor-

respond to N points in x that are uniformly spaced by ∆x. The known analytic solution (2.22) to (2.21)

can be used to evaluate how well the semi-discretization and IVP method in combination actually simulate

the original PDE (2.21). Fehlberg [61] used higher-order semi-discretization methods that are often more

accurate than the semi-discretization (2.23).

For testing IVP methods, semi-discretized parabolic PDEs, such as (2.21), can severely test the stabil-

ity properties of an IVP method and impose severe stepsize restrictions in comparison to semi-discretized

hyperbolic PDEs, such as (2.17). It is sometimes quite reasonable to solve the IVPs resulting from semi-

discretization of parabolic PDEs to coarse spatial tolerances using the methods constructed in this thesis.

However, when fine spatial tolerances are required (either for the parabolic PDE itself or another component

of a more complex PDE) the stability restrictions can quickly become severe. This is further discussed as

the phenomenon of stiffness in Section 2.5.4. The resulting system of ODEs from (2.21) using the semi-

discretization (2.23) results in the IVP given by

y0 = y1,

d(yi(t))

dt
=

1

4

e2(
2 + ( iN )2

)e−yi (yi+1 − 2yi + yi−1

∆x2

)
, i = 1, 2, . . . N

yN = 2 + log(1 + t), (2.24)

where the solution of these IVPs with N = 32 is given by Figure 2.10 and where the analytic solution (2.22)

to the original PDE (2.21) indicates a high accuracy is achieved.

2.3 Simple examples of numerical methods for IVPs

Specific examples of numerical methods that are in the same families as the new methods derived in this

thesis are first introduced in Section 2.7. However, the introduction of those classes of numerical methods in

Section 2.7 first benefits from the theory introduced prior to Section 2.7. To help motivate this mathematical

theory as it is introduced, two simpler but commonly used numerical methods for IVPs are demonstrated
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Figure 2.10: A solution to the semi-discretized PDE (2.22) using (2.23) for semi-discretization.

in this section. Like the last section, the reader should refer back to this section as this chapter unfolds if

some terminology here is not understood at first. Both of the numerical methods introduced in this section

are referenced throughout the thesis. Although both of these methods are also over 100 years old they

continue to be used in practice. Sometimes this is because practitioners are not aware of or do not have

the expertise and resources to implement better methods. However, sometimes practitioners use certain

numerical methods because they have formed the standard practice in particular fields and are therefore the

most trusted methods available.

The Forward Euler method

The forward Euler (FE) method [152, pg.49], also known as Euler’s method [27, pg.45][86, pg.24] or explicit

Euler [86, pg.35], takes a step in t using a simple linear approximation based on evaluating the RHS of the

IVP (2.1). The formula for a step of size ∆t = tn+1 − tn of FE giving a numerical approximation yn+1 at

tn+1, by using the previous numerical approximation yn at tn (or the initial condition (2.1b) if the step is

the first), is given by

yn+1 = yn + ∆tnf(tn, yn). (2.25)

Successive steps of (2.25) are evaluated until the time tf is reached, with yn+1 at tf taken as a numerical

approximation of the solution (or a numerical solution) to the IVP (2.1) at tf .
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The classic four-stage fourth-order explicit Runge–Kutta method

A step in t with a stepsize of ∆tn = tn+1 − tn of a widely used numerical method for IVPs (2.1) is given by

k1 = f(tn, yn), (2.26a)

k2 = f(tn +
∆t

2
, yn +

∆t

2
k1), (2.26b)

k3 = f(tn +
∆t

2
, yn +

∆t

2
k2), (2.26c)

k4 = f(tn + ∆t, yn + ∆t k3), (2.26d)

yn+1 = yn + ∆t
1

6
(k1 + 2k2 + 2k3 + k4) , (2.26e)

which is an obviously more complex method than FE (2.25) because it uses successive formulae (stages) to

find the final numerical approximation yn+1 at tn+1. The numerical method (2.26) is one of the Runge–Kutta

methods originally derived by Kutta in 1901 [72, pg.138]. However, (2.26) is often the only Runge–Kutta

method known to many practitioners and is sometimes presented as “the Runge–Kutta method” as a result.

However, Runge–Kutta methods are actually a general class of numerical methods, which for this thesis are

formally defined in Section 2.5. Furthermore, it becomes obvious as the thesis unfolds and in performance

testing in Chapter 5 that thinking of (2.26) as “the Runge–Kutta method” is extremely limiting. In the

remainder of this thesis, the specific method (2.26) is referred to as RK4.

A more precise definition of a Runge–Kutta method is given in Section 2.5. Runge–Kutta methods are

a class of IVP methods with one or more stages, such as the four stages of the RK4 method (2.26). The

FE method (2.25) is a Runge–Kutta method with only a single stage. The definition of the order of a

numerical method is given in Section 2.4.3. However, using a given stepsize ∆t a fourth-order method, such

as RK4 (2.26), can often be significantly more accurate a first-order method, such as FE (2.25). In comparison

to other classes of IVP methods, adding stages to Runge–Kutta methods can give many additional degrees

of freedom in their construction. This means that many desirable properties, such as high order and certain

stability properties, can occur in combinations with each other that are not possible with other classes of

IVP methods, such as multi-step methods.

The RK4 method (2.26) starts out with an evaluation of the RHS at the beginning of the full step ∆t

that is used to give a solution at the midpoint of the full step ∆t with a miniature FE (2.25) step that then

allows another RHS evaluation (2.26b) at the midpoint of the full step ∆t. It should be observed that this

second RHS evaluation (2.26b) is based on a solution at the end of the second miniature step, and this can

intuitively seem less correct than evaluating the RHS at the beginning of a (miniature) step as FE (2.25)

does. However, a simple linear approximation based on an RHS evaluation at any t within the full step ∆t is

always a viable numerical method [27, pgs.86–87] and can often be used as a building block for more complex

numerical methods. The third stage (2.26c) uses the RHS evaluation (2.26b) to find a third RHS evaluation

that is also at the midpoint of the full step ∆t. The last stage uses this latest RHS evaluation (2.26c)
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for a fourth RHS evaluation (2.26d) at the end of the full step ∆t. Finally, a linear combination of these

four stages, i.e. (2.26a), (2.26b), (2.26c), and (2.26d) is used to give the numerical approximation yn+1 at

tn+1 using the RK4 method (2.26). Observe that a linear combination of several RHS evaluations, some of

which seem “crude” and others more “refined” at first glance, is required to obtain the best properties for the

Runge–Kutta method as a whole.

2.3.1 Examples of numerical solutions

In order to demonstrate the benefits of more complex numerical methods as well as adaptivity, the “Arenstorf

orbit” IVP (2.15) is solved with three numerical methods. The solutions are shown in Figure 2.11, which

is replicated (using the pythODE software package described in Chapter 5) from the classic demonstration

by Hairer et al. [72, pgs.130–132]. Notice that although the solution using the FE method (2.25) with

∆t = 0.0004 appears stable, it does not at all resemble the exact solution shown by Figure 2.7. In fact, with

a slightly larger stepsize the solution using the FE method (2.25) loses stability and the x(t), y(t) coordinates

of the numerical solution quickly (although not exponentially) blow up to � 100. The solution using the

RK4 method (2.26) with ∆t = 0.004 not only takes 2.5 times less work (the number of RHS evaluations

are often a good proxy for computational work), it also gives a solution that starts to appear qualitatively

correct.

The adaptive Dormand–Prince method (2.79) [47], which is one of the prototypical examples of the classes

of new methods derived in this thesis only requires 96 steps for a solution with no apparent inaccuracies. This

is about 34 times less computational work than the still obviously inaccurate solution using fixed-stepsize

RK4 (2.26). In Figure 2.11 it can be observed that near the initial conditions (and solution after one orbit) is

where the adaptive method needs to take small steps but away from this region it can be seen that much larger

steps can be taken. There also exist adaptive solvers, e.g., the step-doubling error estimation described in

Section 2.6.1, using FE (2.25) and RK4 (2.26) that require somewhat greater cost than the Dormand–Prince

method (2.79) [47] but can still be much more economical than a fixed stepsize.

Even with a fixed stepsize of ∆t = 0.00001, the simple FE (2.25) method still gives a noticeably inaccurate

solution to (2.15) at tf (not shown). With the more complex formula for the RK4 (2.26) method, ∆t = 0.001

is all that is necessarily to eliminate any noticeable inaccuracies in the solution of (2.15) (also not shown).

The order of convergence (order), introduced below in Section 2.4.3, is the most significant property from

additional stages that leads to the increased accuracy seen. FE (2.25) has an order of one, RK4 (2.26) has

an order of four, and the Dormand–Prince method (2.79) has an order five.

2.3.2 Examples of unstable numerical solutions

As an example of how the explicit Runge–Kutta methods constructed in this thesis can exhibit instability,

consider the van der Pol IVP (2.14) solved with ε = 10−3 using RK4 (2.26) and several different stepsizes ∆t

in Figure 2.12. With a stepsize of ∆t = 0.00083, the solution is stable and accurate although it appears a
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Figure 2.11: The “Arenstorf orbit” IVP (2.15) solved using FE (2.25) (blue, ∆t = 0.0004) taking
42664 steps with 42664 evaluations of the RHS, RK4 (2.26) (green, ∆t = 0.004) taking 4267 steps using
17068 evaluations of the RHS, and the adaptive Dormand–Prince method (2.79) that is introduced
in Section 2.7.3 (red with each solution point a black dot) taking only 96 steps with 501 evaluations
of the RHS. It is clearly seen that the adaptive Dormand–Prince method (2.79) method is by far the
most accurate and requires the fewest steps.

bit jagged due to the large steps taken at certain portions of the solution. With a stepsize of ∆t = 0.00084,

the solution loses stability just before completing a cycle. With a stepsize of ∆t = 0.00085, the solution loses

stability much earlier before completing even half a cycle and the bottom-right of Figure 2.12 shows the same

stepsize, i.e., ∆t = 0.00085, but clearly demonstrates the catastrophic blowup to extremely large numbers

≈ 10100. This example shows how a numerical solution can be unstable even when the IVP being solved is

extremely stable; this is the phenomena of stiffness that is discussed in detail in Section 2.5.4.

2.4 Numerical analysis of IVPs

2.4.1 Basic formulation of numerical methods

It is well-known that many ODEs and the IVPs based on them, such as most of the IVPs shown in the

previous section, do not have closed-form solutions. Therefore, the only solutions that can often be computed
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Figure 2.12: Examples of a stable numerical solution with ∆t = 0.00083, as well unstable numerical
solutions with ∆t = 0.00084 and ∆t = 0.00085. The full extent of the catastrophic blow-up with
∆t = 0.00085 can be seen by the scale in the lower-right corner.

are approximations. In addition, because the exact solutions to ODEs are defined on a continuous domain,

approximate solutions can only be computed at a finite number of discrete points using numerical methods.

A numerical method for an IVP (2.1) is a formula for a numerical solution yn at time tn in terms of the

numerical solutions yn−1,yn−2, . . . ,y1,y0 at times tn−1, tn−2, . . . , t1, t0 that is given by

yn = Ψ(yn−1,yn−2, . . . ,y1,y0), (2.27)

where Ψ : Rn → Rn is the numerical method or numerical formula for one step. The process of applying

the formula Ψ to obtain yn from the previous solutions of y in (2.27) is known as a timestep with a stepsize

of ∆tn = tn+1 − tn for a step taken from tn+1 to tn. If only the previous solution at yn−1 is used in the

formula Ψ(yn−1) then the IVP (2.1) method is known as a single-step method. Otherwise, if other previous

solution points are used, the IVP method is known as a multi-step method. Although only single-step Runge–

Kutta methods are studied in this thesis, the reader should be aware that multi-step methods provide strong

competitors that could be a topic for future studies based on this thesis.

2.4.2 Series expansion of numerical solutions

A local solution ỹn(t) is an exact solution of the ODE (2.1a) that satisfies a given solution to the ODE (2.1a)

yn at tn (that can be an exact solution or numerical solution depending on the context) as the initial
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condition (2.1b) [154]. The Taylor series [72, pg.46] that gives the exact solution ỹn(tn + ∆t) in terms of the

known solution ỹn(tn) is given by

ỹ(tn + ∆t) = ỹ(tn) +

∞∑
i=1

(∆t)i

i!

d(i−1)

dt(i−1)
f(ỹ(tn)), (2.28)

which is presented as a formulation that is convenient for studying numerical methods for IVPs (2.1) and

that can easily be seen to be equivalent to more commonly used formulations [72, pg.46] of the Taylor series

because
d(i)

dt(i)
ỹ(tn) =

d(i−1)

dt(i−1)
f(ỹ(tn)). The derivative of a numerical method for an IVP is found by taking

the derivative of the numerical formula (2.27) at the beginning of the desired timestep by using Leibniz’

formula [72, pg.144], i.e.,

(∆t ψ(ỹn))
(q) |∆t=0 = q (ψ(ỹn))

(q−1) |∆t=0,

to evaluate derivatives of terms of the numerical formula Ψ (2.27) that contain ∆t and where ∆t ψ(ỹn) is a

term of Ψ (2.27) with a factor of ∆t. Numerical formulae exist with factors that are non-linear in ∆t but

these are beyond the scope of this study. As with any other mathematical expression, the higher derivatives

of a numerical method are found by repeatedly taking first derivatives. This allows the Taylor series of a

numerical method at yn to be defined as the Taylor series (2.28) using the numerical formula (2.27) for the

function ỹ(tn) and with the derivatives of the numerical method used as the derivatives of ỹ(tn) in (2.28).

Using the formulation (2.28) ensures that the Taylor series expansion exactly reflects a timestep of the

numerical method [72, pg.144].

A truncated Taylor series (2.28) can in fact be used as a numerical method, and these are known as Taylor

series methods [27, pg.107][40], which can be used to give extremely accurate numerical solutions. However,

practical implementations of Taylor series methods require computing high-order derivatives, which can lead

to a much more difficult implementation than the IVP methods described in this thesis, require additional

libraries for tasks such as automatic differentiation, and are not efficient for solving many IVPs in practice

to the typical (often coarse) accuracies desired [138].

2.4.3 Errors in numerical solutions

The global error of a numerical solution of an IVP (2.1) at time tn+1 is defined as

Eglobal,n+1 = y(tn+1)− yn+1, (2.29)

where y(tn+1) is the exact solution of the IVP (2.1) at tn+1 given the initial condition (2.1b) at t0, and yn+1

is the numerical solution at timestep n + 1 with a time of tn+1 using the initial condition at time t0 [72,

pg.159].

The local error of the timestep from tn to tn+1 with a stepsize ∆t of the numerical solution yn+1 is given
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by

Elocal = ỹn(tn+1)− yn+1, (2.30)

where ỹn(tn+1) is the local solution at tn+1 using the numerical solution yn at tn as an initial condition and

yn+1 is the numerical solution at the end of timestep n+ 1 using the numerical solution yn at tn as an initial

condition [72, pg.156]. In the context of IVPs, the global error and local error are often be referred to as the

global truncation error [108, pg.57] and local truncation error [108, pgs.56,152], respectively. There can be

several variants on the definition of local truncation error for different classes of IVP methods [108, pg.27]

and to avoid confusion the term “truncation error” is not used further in this thesis.

The asymptotic behaviour of the local error is O(∆tn
p+1), where p is known as the order of convergence of

the numerical method. The asymptotic behaviour of the global error is O(∆tn
p) because a numerical method

takes O
(
tf−t0

∆t

)
steps in total over the solution interval assuming tf − t0 = O(1) [147]. When ∆t is large, the

order of convergence may not be an accurate description of the asymptotic behaviour of a numerical method

even with a substantial reduction in ∆t. However, when ∆t is small enough that the order of convergence

does accurately describe the behaviour of a numerical method, then the value of ∆t is known as being in the

asymptotic region. In general, numerical methods with a higher order of convergence have the potential for

higher accuracy, as already shown by Figure 2.11. In addition, due to the faster convergence of higher-order

methods, extremely inaccurate solutions such as those seen with FE (2.25) and RK4 (2.26) in Figure 2.11

can be often be diagnosed and eliminated with a minimal increase in computational cost. For example, for

the numerical solutions shown by Figure 2.11 when using the first-order FE (2.25) a 400-fold increase in

computational cost was required to mostly eliminate the visible inaccuracy, whereas when using the fourth-

order RK4 method (2.26) only a 4-fold increase in computational cost eliminated any visible inaccuracy in

the solution.

2.4.4 Convergence and consistency of numerical methods

To have any possibility of a viable numerical method for solving IVPs or to give any guarantees whatsoever

that the numerical solution at discrete points is a useful approximation of the true solution defined on a

continuous domain, a numerical method must have the property of convergence. A numerical method for an

IVP (2.1) is called convergent if for any Lipschitz continuous (2.6) IVP, the numerical solution approaches

the exact solution in the limit of the stepsize going to zero [108, pg.152]. This is shown by the relation

lim
∆t→0

y(tn) = yn,∀ tn ∈ [t0, tf ]. (2.31)

However, the above definition of convergence is difficult to apply directly for determining whether a numerical

method is convergent. A necessary condition for a numerical method to be convergent is that a numerical

method must also be consistent, i.e., ensuring that the cumulative errors of each step approaches zero in the
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limit where the stepsize goes to zero [108, pgs.28,152]. Consistency can be ensured by the relation

lim
∆t→0

1

∆t
Elocal = 0. (2.32)

It may seem that removing the 1
∆t factor from (2.32) might give a viable numerical method because in the limit

the local error at each step would still go to zero. However, this is not sufficient for convergence because on

average Elocal must converge faster than ∆t. For the numerical methods studied in this thesis (Runge–Kutta

methods), a specific consistency condition [108, pg.152] that can be found from (2.32) is always equivalent

to convergence and is defined below in Section 2.5. However, for some classes of numerical methods, such as

multistep methods, consistency (2.32) is not always a sufficient condition for convergence [108, pg.31].

This thesis is concerned with variable-stepsize methods, which can sometimes have complicated behaviour

at coarse ∆t. However, it can easily be seen that the above conditions for convergence and consistency still

hold for variable stepsizes when the limit ∆t→ 0 is replaced by max ∆t→ 0.

2.5 Runge–Kutta methods

Given a solution at tn to an IVP (2.1), a Runge–Kutta (RK) method finds a numerical approximation at

tn+1 by using linear combinations of f(t, y(t)) from (2.1a) evaluated at intermediate abscissae that generally

lie within the timestep tn ≤ t ≤ tn+1. The formula for an RK method is given by

ki = f

tn + ∆tnci, yn + ∆tn

s∑
j=1

ai,j kj

 , i = 1, 2, . . . , s, (2.33a)

yn+1 = yn + ∆tn

s∑
i=1

bi ki, (2.33b)

where the ki ∈ Rm (2.33a) are the s intermediate stages of the RK method that are the derivatives f(tn +

∆tnci, y) of a numerical approximation of y(tn + ∆tnci) [27, pgs.86,123][72, pg.134][108, pg.149]. The

coefficients defining the particular RK method (2.33) are the values of ai,j , bi, and ci. The ai,j values are the

elements of a matrix A ∈ Rs×s. The values of bi and ci are elements of the vectors b, c ∈ Rs, respectively.

Every RK method can be used as a method for solving quadrature problems, which only requires using the

b and c vectors (2.2) vectors [27, pgs.86–87][72, pg.132]. Therefore, the components of the b vector are

sometimes known as the quadrature weights [27, pg.87] and the components of the c vector are sometimes

known as the quadrature points [172, pg.238]. An important reason for relating the RK method (2.33) to the

underlying method for solving quadrature problems (2.2) is that in some cases the order or other properties

of the underlying quadrature method for solving a quadrature problem (2.2) are different from the RK

method (2.33) applied to a non-quadrature IVP. This can cause issues for many ODEs (2.1a), such as those

that have regions where they are “near quadrature” problems [27, pgs.192–193][50, 136].

Particular RK methods (2.33) where the summation in (2.33a) has an upper bound of i − 1 instead of
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s are known as explicit Runge–Kutta (ERK) methods because each stage ki only depends on the previous

stages kj : j < i, a property that allows each stage ki to be explicitly computed. Otherwise, an RK method

is known as an implicit Runge–Kutta (IRK) method, where some stages depend on other stages that cannot

be explicitly computed before them and hence require the solution of implicit systems of equations to apply

the numerical formula. This thesis is only concerned with ERK methods, but it should be clear from the

context which statements apply to all RK methods and which statements apply only to certain classes of RK

methods such as ERK methods. A specific RK method is usually specified as a Butcher tableau, given by

c A

bT
=

c1 a1,1 a1,2 . . . a1,s

c2 a2,1 a2,2 . . . a2,s

...
...

...
. . .

...

cs as,1 as,2 . . . as,s

b1 b2 . . . bs

(2.34)

where A is a strictly lower triangular matrix in the case of an ERK method [27, pgs.86,92,196][72, pgs.134–

135, pg.205][73, pgs.71,118][108, pgs.149–151]. As an example, the Butcher tableaux (2.34) of

the FE method (2.25) and RK4 method (2.26) are respectively given by

0 0

1

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

In order to simplify the construction of RK methods (2.33), the row-sum conditions [58, 168] given by

ci =

s∑
i

aij , (2.35)

are almost universally assumed in the literature and are always assumed in this thesis.

2.5.1 Elementary differentials and order conditions

The Taylor series (2.28) of a numerical method (2.27) for IVPs can be used to study the order of convergence

and error of RK methods. The function y(t) representing the solution of an IVP (2.1) is unknown. However,

the first derivative of y(t) is the known function f(t,y(t)), i.e., the RHS of the ODE (2.1), that can be used

to explicitly find the higher derivatives of y(t). The expressions for the first and higher derivatives can be

described using constructs known as elementary differentials, which is terminology first introduced by John

Butcher [25][27, pgs.134–138][70]. The first derivative of the solution of y(t) is associated with an elementary
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differential contained in the set

F1(f(y(t))) = {f(y(t))}. (2.36a)

The elementary differentials associated with higher-order derivatives form a set of expressions. The set of

elementary differentials associated with derivative q of y(t) is the set Fq(y(t)) containing a representative of

each equivalent expression in the set F̄q(f(y(t))) that is defined as

F̄q(f(y(t))) =

Fq(f(y(t))) =
∑m
i=1

(∑m
h1,h2,...,hβ=1

∂βfi(y(t))

∂yh1
∂yh2

. . . ∂yhβ
(Fδ1)h1

(Fδ2)h2
. . . (Fδβ )hβ

)
ei

q = 1 + δ1 + δ2 + . . .+ δβ

β ∈ 1, 2, . . . , q − 1

δj ∈ 1, 2, . . . , q − 1

Fδj ∈ Fδj (y(t))


, (2.36b)

where Fq = Fq(f(y(t))) : Rm → Rm is a representative elementary differential of order q, yhi is component

hi of y(t), (Fδj )hi is component hi of the elementary differential Fδj , and ei ∈ Rm, i ∈ 1, 2, . . . ,m, are the

standard basis vectors [72, pgs.145–150][108, pgs.157–162].

The indices of the elementary differential expressions (2.36b) occur in a regular and recursive pattern.

Therefore, a more compact representation of each elementary differential can be found by considering each

elementary differential (2.36) isomorphic to a rooted tree [27, pgs.88–90,134–138][72, pgs.147–149]. The inner

summation of (2.36b) given by

m∑
h1,h2,...,hβ=1

∂βfi(y(t))

∂yh1
∂yh2

. . . ∂yhβ
(Fδ1)h1

(Fδ2)h2
. . . (Fδβ )hβ ,

can be seen as having the ∂βfi(y(t)) and ∂yhi expressions isomorphic to the root and the lowest branches of

a rooted tree, respectively. This is shown by

∂βfi(y(t))

∂yh1
∂yh2

. . .
∂yhβ

with each component Fδ1 , Fδ2 , . . . , Fδβ of the elementary differential, i.e., (Fq)j (2.36b), recursively attaching

to the roots of the lowest branches as shown by
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∂βfi(y(t))

∂yh1
∂yh2

. . .
∂yhβ

(Fδ1)h1 (Fδ2)h2
(Fδβ )hβ

and using the elementary differential corresponding to (2.36a) for terminating a branch as shown by

(f(y(t)))hj

The elementary differential (2.36a) corresponds to the single root r . The rooted tree corresponding to an

elementary differential (2.36) is often used to denote the one of the equivalent expressions from Fq(y(t)) that

have a structure corresponding to that tree. For example, the tree

��AArr rr r

corresponds to one of the equivalent expressions F ∈ Fq(f(y(t))), s.t. q = 5 from (2.36) that all have a

structure corresponding to that same tree. This equivalence is shown for one of these expression in F ∈

Fq(f(y(t))), s.t. q = 5 by

��AArr rr r
∼=

m∑
i=1

 m∑
h1,h2,h3=1

∂3fi(y(t))

∂yh1
∂yh2

∂yh3

(f(y(t)))h1
(f(y(t)))h2

 m∑
j1=1

∂fh3
(y(t))

∂yj1
(f(y(t)))j1

 ei.

If all rooted trees with q vertices are enumerated [27, pgs.134–138][72, pgs.147–149], this corresponds exactly

to all equivalent elementary differentials of order q, a property that is exploited heavily to generate code

implementing elementary differentials and other related expressions in the OCSage software package described

in Chapter 4.

The elementary differentials (2.36) of order q can be used to express derivative q of an unknown function

y(t) (2.1a) by the equivalent expressions

dq

dtq
y(t) =

∑
F∈Fq(f(y(t)))

α(F) F,

dq

dtq
y(t) =

∑
F∈Fq(f(y(t)))

q!

σ(F) γ(F)
F, (2.37)

where α(F) is the number of distinct ways of labelling a tree, γ(F) is known as the density of the tree, and
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σ(F) = q!
α(F)γ(F) is known as the order of the symmetry group of the tree, all of which are all explained and

derived in detail by Butcher [27, pgs.123–131][24] and others [72, pgs.147–149], in addition to as implemented

in OCSage. The Taylor series expansion (2.28) of the exact solution of y(t) (2.1a) in terms of f(t, y) can be

given using the elementary differentials (2.36) [72, pgs.148–149] as one of the equivalent expansions

y(tn + ∆t) = y(tn) + ∆t f(y(t)) + . . .+
∆tq

q!

∑
F∈Fq(f(y(t)))

α(F) F + . . . ,

y(tn + ∆t) = y(tn) + ∆t f(y(t)) + . . .+ ∆tq
∑

F∈Fq(f(y(t)))

1

σ(F) γ(F)
F + . . . . (2.38)

To use a particular elementary differential F (2.36) to find the derivative of the numerical solution of an

RK method (2.33), an additional quantity known as the scalar sum Φ(F) is required and is given by

Φ(F) =

s∑
i=1

bi Φi(F), (2.39a)

where Φi(F) is defined as

Φi(F) =

s∑
j1,j2,...,jς=1

a%(j1),j1 a%(j2),j2 . . . a%(jς),jς , (2.39b)

where each factor a%(jk),jk corresponds to one of the ai,j coefficients of the RK method (2.33).

The set of edges of the rooted tree corresponding to F is given by {%(jk), jk : jk ∈ {j1, j2, . . . , jς}} with

each element being edge k, where its closest vertex to the root is given by %(jk) and its furthest vertex from

the root is jk alone [72, pg.150]. This gives the scalar sum (2.39) a particular structure linking the subscripts

between successive factors to form the product that composes each term of the summation. An example of

a correspondence between a rooted tree and a scalar sum is

��AAri1ri3 ri4ri2 ri5
∼=

s∑
i1=1

bi1

s∑
i2,i3,i4,i5=1

a%(i2),i2a%(i3),i3a%(i4),i4a%(i5),i5

=

s∑
i1=1

bi1

s∑
i2,i3,i4,i5=1

ai1,i2ai1,i3ai1,i4ai4,i5

=

s∑
i1=1

bi1

s∑
i6=1

ci1ci1ai1,i6ci6 ,

where the symbol∼= indicates the tree is isomorphic to the scalar sums and using the row-sum conditions (2.35)

the ai,j corresponding to branch tips can be replaced by ci. It can now be seen that in addition to being

isomorphic to an elementary differential F ∈ Fq(f(y(t))) itself, depending on context, each rooted tree can

also be seen as isomorphic to the scalar sum Φ(F) (2.39) derived from the elementary differential F [27,

pgs.140–144][72, pgs.151–153].

Following Butcher [27, 124–125] and [108, 164–165], a more compact notation for rooted trees used within
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the text of this thesis is given by the example

[τ2[τ ]] ∼= ��AArr rr r
, (2.40)

where the symbol τ corresponds to vertices at the end of a branch, the elements in the outer square brackets

are the elements branching off of the root of the tree, and each layer of square brackets corresponds to a

branch of the tree. Multiple elements within a set of square brackets corresponds to a vertex with multiple

branches extending from it. More examples of this square-bracket notation along with equivalent rooted trees

and scalar sums can be found in Tables B.1, B.2, and B.3.

Although the row sum conditions (2.35) are generally assumed when specifying the scalar sums (2.39) and

order conditions (2.43), they are not strictly required for low-order RK methods, e.g., see Hairer et al [72,

pg.134]. It is still unknown whether the row-sum conditions (2.35) are required for higher-order RK methods.

In addition, the row-sum conditions (2.35) are necessary for the intermediate numerical approximation of

y at tn + ∆tnci for each stage of an RK method (2.33) to have an order of convergence of at least one,

and therefore for the individual stages to be convergent and consistent. Whether practical and efficient RK

methods without the row-sum conditions (2.35) could be constructed remains an open problem.

The derivative of the numerical solution of an RK method can now be given by the two equivalent

expressions

dq

dtq
yn =

∑
F∈Fq(f(y(t)))

α(F) γ(F) Φ(F) F,

dq

dtq
yn =

∑
F∈Fq(f(y(t)))

q!

σ(F)
Φ(F) F, (2.41)

where α(F), γ(F), and σ(F) are the same functions on trees used in (2.38) [27, pg.145–146][72, pg.151]. These

derivatives of the numerical solution allow the Taylor series of the numerical solution of an RK method to

be given by the two equivalent expansions

yn(tn + ∆t) = y(tn) + ∆t f(y(t)) + . . .+
∆tq

q!

∑
F∈Fq(f(y(t)))

α(F) γ(F) Φ(F) F + . . . ,

yn(tn + ∆t) = y(tn) + ∆t f(y(t)) + . . .+ ∆tq
∑

F∈Fq(f(y(t)))

1

σ(F)
Φ(F) F + . . . . (2.42)

It can clearly be seen that the terms involving the elementary differential F in the Taylor series of the

numerical solution (2.42) differs from the Taylor series of the exact solution (2.38) only by the extra factors

of γ(F) and the scalar sum Φ(F) in the Taylor series of the numerical solution (2.42) [27, pgs.147–148][72,

pg.158]. Therefore, the terms corresponding to F of the Taylor series of the exact solution (2.38) and

numerical solution (2.42) are only equal if γ(F)Φ(F) = 1, i.e., the order condition corresponding to F [27,
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pg.147][47][72, pg.153][94][108, pg.165], that is often given in the form

Φ(F)− 1

γ(F)
= 0, F ∈ Fq(f(y(t))). (2.43)

If all of the order conditions (2.43) that correspond to all elementary differentials of the orders up to q are

satisfied, then the RK method in question will be order of convergence q [27, pgs.147–148][72, pgs.153–154].

A summary of the number of trees for each order, total number of order conditions for each order, and

minimum number of stages necessary for ERK methods of a particular order is given in Table 2.1. Some

relatively narrow bounds on the minimum number of stages to achieve up to fourteenth-order are known

because examples of ERK methods of up to fourteenth-order have been constructed while attempting to

maintain a relatively minimal number of stages [59], only up to eighth-order are the bounds precisely known.

In fact, ERK methods of arbitrarily order high can be constructed with s = p2

4 + 1 stages where order p is an

even number [72, pgs.232]. However, it can be seen that even for eighth order, this would lead to a 17-stage

ERK method, which is much higher than the minimum number of stages for this order as well as much higher

than the number of stages used for practical eighth-order ERK methods.

Table 2.1: Number of trees for each order, total number of order conditions for each order, and
minimum number of stages smin(q) required for ERK Methods of order q. OC = order conditions.

q # trees total # OC smin(q) [72, pg.179]
1 1 1 q = 1
2 1 2 q = 2
3 2 4 q = 3
4 4 8 q = 4
5 9 17 q + 1 = 6
6 20 37 q + 1 = 7
7 48 85 q + 2 = 9
8 115 200 q + 3 = 11
9 286 486 12 ≤ smin(q) ≤ 17
10 719 1205 13 ≤ smin(q) ≤ 17

Like other expressions found from the elementary differentials (2.36), depending on the context in which

a rooted tree is used, the rooted tree may be considered isomorphic to the order condition associated with

an elementary differential F rather than the elementary differential F itself. Certain types of rooted trees

and the corresponding order conditions have special names. The quadrature conditions [27, pg.175][72,

pgs.175,208][73, pg.71] or bushy trees [168] refer to the trees of the form

. . .

because these are the only trees of order ≤ q that must be satisfied for an RK method to solve quadrature

problems (2.2) with order of convergence q. The one-leg trees [72, pg.175] are those of the form

36



. . .

Also important for this study are the trees of height two, which are any trees of height two, rather than height

one like the bushy trees. Of particular importance to ERK method construction described in Chapter 3 are

the non-branching trees of height two, which is terminology used exclusively in this thesis, that are those

trees of height two that do not split into branches above the root. The tall trees are those of the form

with the expression for the corresponding elementary differential F ∈ Fq(f(y(t))) (2.36) only involving

f(t,y(t)) and
d

dt
f(t,y(t). Therefore, the tall trees (that also include the tree r (2.36a)) are the only non-zero

components of derivatives of the RHS of (2.1a) when the RHS of (2.1a) is a linear function. In this study, it

is sometimes convenient to simply call trees of height greater than two the taller trees, although this name is

used in a way that is clear from context and not an exact definition.

Finally, the expressions for the elementary differentials (2.36) are just the components of an expression that

gives for y(t) the order q Fréchet derivative, which is the derivative generalized to vector valued functions [108,

pgs.158–161]. Furthermore, using the elementary differentials (2.36) the expressions for derivatives (2.37)

and (2.41) are a special case of Faà di Bruno’s formula (2.1a) [72, pgs.149–150], which is the chain rule

generalized to higher derivatives and vector-valued functions.

2.5.2 Simplifying assumptions

Although construction of ERK methods is not discussed in detail until Section 2.7 and Chapter 3, it can be

seen from Table 2.1 that when constructing higher-order RK methods, i.e., fifth-order or higher for ERK meth-

ods, that solution of the order conditions can become difficult. This is because with increasingly higher orders,

ERK method construction involves simultaneously solving a rapidly increasing number of order conditions

(multivariate polynomials) that are of increasingly high degree. Therefore, when constructing higher-order

RK methods, additional expressions known as simplifying assumptions are almost always introduced that

exploit patterns in the elementary differentials (2.36) and values of γ(F) (2.41) to reduce the algebraic com-

plexity of finding a solution to the order conditions [25][27, pgs.157–161][72, pgs.175–185]. It is shown below
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that the patterns the simplifying assumptions exploit can often be visualized using rooted trees.

At this point, it can be noted that one of the main contributions of this thesis is constructing higher-order

ERK methods, specifically six-stage fifth-order ERK methods, using the complete algebraic formulation of

the order conditions rather than the more limited algebraic formulation resulting from when the standard

simplifying assumptions are used. The construction of ERKmethods using the complete algebraic formulation

of the order conditions is presented in Chapter 3. Before that, in Section 2.7 the construction of published

six-stage fifth-order ERK methods using the standard simplifying assumptions is shown.

Although others are used, especially when constructing ERK methods higher than fifth order [72, pgs.181–

185], the common simplifying assumptions important to this study are

B(p) :

s∑
i=1

bi c
q−1
i =

1

q
, q = 1, 2, . . . , p, (2.44a)

C(η) :

s∑
j=1

ai,j c
q−1
j =

cqi
q
, i = 1, 2, . . . , s, q = 1, 2, . . . , η, (2.44b)

D(ζ) :

s∑
i=1

bi c
q−1
i ai,j =

bj
q

(
1− cqj

)
, j = 1, 2, . . . , s, q = 1, 2, . . . , ζ. (2.44c)

The expressions B(p) (2.44a) are simply the quadrature conditions of order p that must be satisfied by any RK

method of order p. However, B(p) (2.44a) are commonly included as simplifying assumptions because when

the appropriate instances of all three conditions given by (2.44) are taken together, they are often a major

component of a reduced system, i.e., a set of equations that is a simplification of the original order conditions

and is much easier to solve because the reduced system can have a much lower degree or even be linear in

the unknowns [72, pgs.175–185,208–210][73, pgs.71–77]. The simplifying assumptions C(η) (2.44b), which

are sometimes called the row simplifying assumptions [94], allow all pairs of order conditions corresponding

to trees with the forms

. . . . . .

to be satisfied simultaneously when the pair of order conditions can be written in the form

∑
i,j

bi ai,j cjΦ̃i =
1

γ1
,
∑
i

bi c
2
i Φ̃i =

1

γ2
, γ1 = 2 γ2,

where the circled vertices are the only parts that are different between the two order conditions, the order

condition corresponding to the particular scalar sum Φ̃i is also satisfied, and Φ̃i is an arbitrary subtree

represented by the two non-circled vertices. If C(η) (2.44b) is satisfied for a particular i this means that the

quadrature conditions of order η are satisfied for stage i of the RK method. The value η from C(η) (2.44b)
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is sometimes known as the stage order, of either a particular stage or of the method as a whole, if either all

or a significant subset of stages satisfy the quadrature conditions up to η. Stage order is more important for

IRK methods [73, pg.226] but also appears in the literature in the context of ERK methods [191, 193]. The

simplifying assumptions D(ζ) (2.44c), which are sometimes called the column simplifying assumptions [94],

allow all order conditions corresponding to pairs of one-leg trees and non-one-leg trees with the forms

. . .

to be satisfied simultaneously when the pair of order conditions can be written in the form

∑
i,j

bi ai,j Φ̃j =
1

γ1
,
∑
j

bj cj Φ̃j =
1

γ2
, γ1 = 4 γ2,

where the circled vertices are the only parts that are different between the two order conditions, the order

condition corresponding to the particular scalar sum Φ̃j is also satisfied, and Φ̃j is an arbitrary subtree repre-

sented by the three non-circled vertices [27, pgs.157–161][72, pgs.175–185]. Specific examples of applying the

standard simplifying assumptions to ERK method construction are given in Section 2.7. With an appropriate

procedure, the standard simplifying assumptions are also used to help satisfy ERK order conditions where the

groups of vertices analogous to the circled ones above do not attach to the root. This can be seen specifically

in examples of ERK method construction that is shown in Sections 2.7.1 and 2.7.2.

2.5.3 Error of RK methods

Rigorous bounds on the local error (2.30) can be found for many numerical methods, including an expression

for RK methods of order p given by

||ỹ(tn+1)− yn+1|| ≤ ∆tp+1

(
1

(p+ 1)!
max
ζ∈[0,1]

||y(p+1)(tn + ζ∆t)||+ 1

p!

s∑
i=1

|bi| max
ζ∈[0,1]

||k(p)
i (ζ∆t)||

)
, (2.45)

that holds when the IVP is Lipschitz continuous (2.6) and thus well-posed, all partial derivatives up to

order p exist and are continuous, and ζ ∈ [0, 1] indicates that the solution is bounded by the derivatives

of the solution and stages within the step itself [72, pg.157]. Using the definitions of convergence (2.31)

and consistency (2.32) from Section 2.4.4 with (2.45) it can be shown that any RK method that is at least

first order is consistent and converges [108, pg.152]. In fact, the necessary and sufficient condition for an

RK method to be consistent (which immediately implies convergence for RK methods) is simply the order

condition (2.43) for first order [108, pg.152], i.e., (B.1a) for six-stage fifth-order ERK methods. With these

properties known, RK methods of orders greater than or equal to one can now be studied freely throughout
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the rest of the thesis without additional concern as to whether the constructed methods converge and are

consistent. Although expressions derived from (2.45) are often used to estimate local error in lower-order

methods, the bound (2.45) quickly becomes too imprecise to use for higher-order methods [72, pg.158].

From (2.45) it is possible to estimate a bound on global error for an RK method [72, pg.160] of

||Eglobal|| ≤ max(∆t)p
C

L
(exp(L(tf − t0)− 1) , (2.46)

where C is an arbitrary constant and the first-order partial derivatives have the bounds required for the

Lipschitz condition L (2.6).

Analytic error bounds such as (2.46) and (2.45) often become exponentially less restrictive with increasing

tf − t0 or ∆t, respectively. Therefore, analytic bounds are usually of limited use in practice, especially for

higher-order methods and large stepsizes. An example showing the limited utility of analytic bounds for

practical purposes can be seen in the paper by Higham and Trefethen [78], where Figure 2 in their paper

shows that the upper and lower analytic bounds on the numerical solution of a relatively simple IVP differ

by over 20 orders of magnitude after a relatively small tf − t0. Further examples of the limited practicality

of many analytic bounds on the numerical solutions of IVP methods are also discussed by Lambert [108,

pgs.59–62]. However, an important observation to guide the construction of RK methods is that the first

term inside the parenthesis is dependent on the properties of the whole ERK method and the second term is

dependent on the properties of the individual stages [72, pg.157]. This justifies examining the error properties

of the individual stages in some cases. Hairer et al. give an example where the individual stages of an ERK

method are too far away from the solution, sometimes adversely affecting the performance of that ERK

method [72, pg.254].

A practical methodology to help study both local and global error is to examine the error terms, i.e.,

the terms of the Taylor series of the local error that is the difference between the Taylor series of the local

solution (2.38) and the Taylor series of the numerical solution (2.42). The leading error term, i.e., the lowest

order error term, is often dominant, and its properties are often used alone to study the local error and

compare different numerical formulae [16][72, pg.158]. In fact, Lambert raised the issue of authors studying

the leading error term as the “local error” [108, pg.63]. Performance data in Chapter 5 shows that studying

just the magnitude of the leading error term in isolation is rarely adequate and that studying the components

of the error terms corresponding to the individual elementary differentials as well as higher-order error terms

is often necessary.

For many first- and second-order numerical methods, the value of the leading error term can be accurately

estimated because the magnitude of the appropriate term of the Taylor series of the local error is easily

found using divided differences to calculate the appropriate derivatives [148]. For higher-order RK methods,

finding an accurate estimate of the leading error term requires evaluating each of the many elementary

differentials (2.36) in the corresponding derivative (2.41) of yn. Using divided differences to estimate these

higher derivatives is generally considered impractical [72, pg.158][138].
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The coefficient corresponding to each elementary differential, but excluding any powers of ∆t, in the Taylor

expansion of the local error is known as the principal error coefficient (PEC) [189, 190] corresponding to that

elementary differential (2.36). The PEC is of course zero when the order condition (2.43) corresponding to

a particular elementary differential (2.36) is satisfied. The PEC, sometimes given as A(F) when referring to

a specific F, corresponding to an elementary differential F (2.36) [47, 94, 136] is

PEC = A(F) =
1

σ(F)

(
Φ(F)− 1

γ(F)

)
, (2.47)

where γ(F) and σ(F) correspond to the functions on rooted trees introduced with (2.41) [94] and Φ(F)

corresponds to the appropriate scalar sum (2.39). A definition [72, pg.158] normalizing the PEC corresponding

to an elementary differential F (2.36) is

PEC = Ā(F) = 1− γ(F) Φ(F), (2.48)

which is different in value from (2.47) because a factor of α(F)
q! has been removed, and originates from Hairer

et al. [72, pg.158] but is not otherwise widely used in the literature. However, this study finds that the PEC

definition (2.48) is extremely useful because it can easily be seen that Ā(F) = 1 implies that the component

of the error corresponding to F is the same as if the Taylor series of the numerical method (2.42) were a

truncation of the Taylor series of the local solution (2.38). If Ā(F) = 0, this implies that the component

corresponding to F is identical in the Taylor series of the local solution (2.38) and the Taylor series of the

numerical method (2.42), meaning that the error component corresponding to F has a PEC of zero. If

Ā(F) = −1 then the error of the component corresponding to F is equal but opposite in magnitude of the

truncation just described for Ā(F) = 1. If |Ā(F)| > 1, this implies that the magnitude of the error from the

PEC corresponding to F is greater than if the Taylor series of the numerical method (2.42) were a simple

truncation of the Taylor series of the exact solution (2.38). The advantages of using the PEC definition

(2.48) is further demonstrated in Chapter 5.

Without IVP- or solution-specific information, it is generally assumed that no elementary differen-

tial (2.36) or corresponding PEC can easily be argued to be more important than any other [15, 16][27,

pg.151]. On the contrary, in Chapter 5 it can now shown that some PECs are more important for certain

classes of IVPs. However, under the assumption that all PECs are of equal importance, a common measure of

the magnitude of the error term of order q that has proven useful in practice is the root-mean square (RMS)

or 2-norm of all of the individual PECs (2.47) of order q. This measure is generally known as the error

coefficient of order q, with the leading error coefficient corresponding to the error coefficient of the leading

error term [16, 47, 94]. Finally, because of the asymptotic behaviour of the global error with an increasing

number of (smaller) steps, which is discussed in Section 2.4.3, an order p method satisfies the order condition

up to order p and has a leading error coefficient that has an order of convergence for individual steps of

(p+ 1), but a global order of convergence of p.
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2.5.4 Stiffness and the stability of RK methods

Even when using stepsizes that are small enough for a desired accuracy for some IVPs, many classes of IVP

methods, including explicit and therefore ERK methods, exhibit catastrophic instability, i.e., the numerical

solution exponentially accumulates error even when the magnitude of the local errors are initially considered

acceptable. When an IVP method is constrained by stability to use a stepsize that is excessively small relative

to the accuracy required, it is said that the problem is stiff in the interval where this occurs. Stiffness has

historically been seen as a phenomenon without a rigorous mathematical definition because it is a transient

phenomena and cannot be characterized by limits such as t→∞ and t→ t0 [78]. However, Söderlind has now

found a rigorous mathematical definition of stiffness, which can be further examined in the references [165].

A good working definition of stiffness is that an implicit method designed for stiff IVPs, i.e., a stiff method

that requires the relatively expensive solution of implicit systems of equations, outperforms IVP methods

designed to be most efficient on non-stiff problems, i.e., non-stiff methods that are often but not necessarily

explicit methods [108, pg.220].

Even for IVPs derived from relatively small systems of ODEs, the degree of stiffness can be so severe that

an IVP that is readily solved in under a second with commonly used implicit IVP solvers can take over a

week when using virtually any explicit IVP solver [27, 73, 108]. An example of a small IVP system from a

practical application with stiffness this severe is a model of atmospheric pollution described by Hundsdorfer

and Verwer [86, pg.6], a system of four ODEs that is not described in detail in this thesis because the stiffness

precludes reasonably using it to test the performance of the new ERK methods constructed herein. A more

reasonable demonstration of stiffness is the van der Pol IVP (2.14), where ε� 1 results in an extremely stiff

problem, as already demonstrated in Section 2.3.2 using ε = 10−3. As a more extreme example of stiffness,

when solving the van der Pol IVP (2.14) with ε = 10−6 the best explicit methods described in this thesis take

just over a million steps, whereas solving the same problem for a similar accuracy typically takes well under a

thousand steps with most of the numerous implicit methods designed for stiff problems that are described by

Mazzia and Magherini [115]. The severe stepsize restriction and large numbers of steps required by explicit

methods when solving stiff IVPs are not enough to offset the cost of solving the implicit systems of nonlinear

equations for the relatively small number of steps required by an implicit method when solving a stiff IVP.

Linear stability theory, i.e., the analysis of a step of the numerical method (2.27) using the test equa-

tion (2.10), has been found effective to characterize stiffness for many IVPs. The linearization and decoupling

of the components of an IVP using the frozen Jacobian is already described in Section 2.1.4, and applying this

procedure to the test equation (2.10) allows the study of the stability of a numerical method. It can easily be

seen from the analytic solution to the test equation (2.10) (as well as in the examples of solutions to (2.10)

in Figures 2.1 and 2.2) that if <(λ) ≤ 0, then the exact solution of the test equation remains bounded as

t → +∞. Therefore, it is desirable that any numerical method applied to (2.10) also produces a bounded
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solution when <(λ) ≤ 0. Applying an RK method to the test equation (2.10) yields

un+1 = un +R(λ∆tn), (2.49)

where R(λ∆tn) is the stability function of a particular RK method (2.33) and corresponds to one step of that

RK method applied to the test equation (2.10) with an initial condition u0 = 1. It is easily seen that this

numerical solution of the test equation (2.10) over one step (2.49) remains bounded as t→ +∞ if and only if

R(λ∆tn) ≤ 1. The values of λ∆tn, λ ∈ C where a numerical method remains bounded when solving (2.10)

define the region of absolute stability in the complex plane that is also often called just the stability region.

The case where Jf is not diagonalizable is not required for this thesis but can be studied as a similar but more

sophisticated analysis of stiffness by Higham and Trefethen [78]. The stability function R(z) of a specific RK

method (2.33)[73, pg.41][94] with z = λ∆t can be given using the coefficients from Butcher tableau (2.34)

by

R(z) =
det(I− zA + z1b)

det(I− zA)
=
P (z)

Q(z)
. (2.50)

For ERK methods the function R(z) is a polynomial because Q(z) = 1 when A is strictly lower triangular and

it can be shown that this gives a stability region that is always bounded [108, pg.200]. A bounded stability

region means a large enough |z| always leads to the numerical solution (2.49) of the test equation (2.10)

becoming unbounded even when R(z) ≤ 0 and the exact solution to the test equation (2.10) is bounded.

The stability functions for FE (2.25) and RK4 (2.26) are 1 + z and 1 + z+ 1
2z

2 + 1
6z

3 + 1
24z

4, respectively.

These can clearly be seen to be the Taylor series of the function ez truncated to the appropriate order and

representing the numerical solution to the test equation (2.10) from one step of the appropriate method. The

regions of absolute stability for FE (2.25) and RK4 (2.26) are shown in Figures 2.13a and 2.13b, respectively.

An important quantity to quickly characterize a stability region is its length along the negative real axis.

This is because many stiff IVPs have eigenvalues that are relatively close to the negative real axis and some

important IVP methods have their unbounded region only along the negative real axis. Another important

quantity is the distance along the imaginary axis that the stability region extends. It can clearly be seen in

Figure 2.13a that the stability region of FE (2.25) only touches the imaginary axis at the origin, whereas the

stability region of RK4 (2.26) extends a significant distance along the imaginary axis. The stability along

the imaginary axis for RK4 (2.26) is advantageous for many types of problems, such as oscillatory ODEs

and semi-discretized hyperbolic PDEs, where it helps control dispersion and dissipation [82]. The imaginary

stability is another benefit of RK4 (2.26) over FE (2.25), in addition to being higher order.

Other stability regions for specific ERK methods that will be introduced in Section 2.7 can be examined

in Figures 2.14, 2.15, and 2.16. An interesting observation is that the size and shape of the stability region

of RK methods depends only on the value of the elementary differentials (2.36) corresponding to the tall

trees [73, pg.16]. This can easily be seen because the linearized RHS is always a linear constant-coefficient
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expression with its derivatives greater than the first always zero. Therefore, the expressions corresponding to

the tall trees are the only ones that do not have derivatives greater than the first in the product corresponding

to the elementary differentials (2.36).

IRK methods (and many other implicit methods) can have unbounded stability regions, i.e., with

limz→∞R(z) = 0 in some direction in the left half of the complex plane. Often the stability polynomials of

IRK methods are the rational Padé approximations of ez and can be further examined in the references [73,

pgs.48–49][108, pgs.232–233]. Although not shown in this thesis, practical implicit methods often have just

an arc around the negative real axis corresponding to the unbounded stability region and some have stability

regions that include the whole left-hand side of the complex plane. Other IVP methods have stability regions

that include parts of the right complex plane where the numerical solution remains bounded even though

the solution to the test equation (2.10) does not. This adds dampening to the numerical solution that can

sometimes be beneficial and sometimes not [108, pgs.229–231].

Bounded stability regions constrain many numerical methods to a small stepsize when solving stiff prob-

lems. If this relatively small step size occurs because the solution is not smooth or is rapidly changing, this

small stepsize may be expected due to accuracy considerations, then the problem is not considered stiff in

that interval. Stiffness can often be confusing for practitioners when solution components such as e−1000 t

are present that decay quickly and contribute little to the solution over timescales of t ≈ 1, but can be the

source of catastrophic instability and intractable restrictions on stepsize when using non-stiff methods [171,

pg.489].

Discussions of stiffness by non-experts have often assumed λ� ∆t or large Lipschitz coefficients L (2.6),

giving an imprecisely defined stiff region. However, several authors [78][108, pgs.213–224][165] have shown

through extensive analysis and examples that guidelines based on eigenvalues and Lipschitz coefficients cannot

be used to definitively define or diagnose stiffness. Due to the lack of a precise mathematical definition, there

are always instances where some IVPs meeting particular guidelines for stiffness do not exhibit stiffness in

the interval under study. Due to all of these issues and as mentioned before, the best working definition

of stiffness is that an IVP is stiff in an interval if it can be solved most efficiently in that interval with an

implicit method designed for stiff problems, i.e., one with an unbounded stability region [108, pg.220].

Despite the well-established utility, there are limitations to applying classic linear stability theory too

precisely. This is because either or both of the steps involved in linearizing the ODE and then freezing these

coefficients may not give a linear constant-coefficient ODE that reflects the behaviour of the original non-

linear ODE [108, pgs.261–264]. In particular, Higham and Trefethen warn that non-diagonalizable matrices

Λ may cause issues with standard linear stability theory and require additional theory beyond the scope of

this thesis to resolve [78]. However, despite these limitations, linear stability theory has proven remarkably

useful in diagnosing many stability issues with solving IVPs in order to design numerical methods and solvers

that address these stability issues.

However, despite implicit methods being more efficient for stiff IVPs, it is important to study stiffness
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when constructing explicit methods such as ERK methods because they are often used when the restriction

on ∆t is only moderate, a condition known as mild stiffness. Robust ERK-based IVP solvers should be

able to gracefully handle mild stiffness if it occurs unexpectedly, or if the practitioner accepts losing some

computational efficiency by using a solver based on simpler-to-implement explicit methods as opposed to the

much more complex implementations generally required of implicit methods. The IVPs from semi-discretized

PDEs described in Section 2.2 represent mildly stiff IVPs that are commonly solved with ERK methods. In

general, semi-discretized hyperbolic PDEs tend to be less stiff than semi-discretized parabolic PDEs.

2.6 Error estimation and variable-stepsize ERK methods

Many RK solvers in practice use variable stepsizes, and many IVPs actually require variable stepsizes to

efficiently obtain a high-quality solution, e.g., the “Arenstorf orbit” IVP (2.15) as demonstrated by Figure 2.11,

or similar issues that occur due to quasi-collisions in the Pleiades IVP (2.16). Variable-stepsize solvers using

RK methods directly control only the local error (2.30) by changing the stepsize to take advantage of the

asymptotic properties of a convergent numerical method. Therefore, although variable stepsize solvers do not

directly control the global error (2.29) because the bounds on global error (2.29) also diminish asymptotically

with decreasing bounds on the local error (2.30) due to (2.46), reducing the stepsize with the intention of

reducing the local error (2.30) generally has the effect of reducing the global error (2.29) too [77, 164].

To provide an efficient error estimate for RK methods, an embedded pair is constructed by incorporating a

second RK method (2.33) of generally lower order. This second RK method can usually be evaluated cheaply

with no extra RHS evaluations and just a single additional matrix-vector multiplication because this second

method uses the same A matrix and c vector and only differs in using a different b vector, i.e., b̂. The

Butcher tableau that describes an ERK embedded pair is given by

c A

bT

b̂T

=

c1 0 0 . . . 0

c2 a2,1 0 . . . 0
...

...
...

. . .
...

cs as,1 as,2 . . . 0

b1 b2 . . . bs

b̂1 b̂2 . . . b̂s

(2.51)

and is an extension of the definition of a Butcher tableau (2.34) for an ERK method.

The embedded error estimate for solution yn+1 found by taking the difference between the two component

methods of an embedded pair is given by

Èn+1 = yn+1 − ŷn+1, (2.52)
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where ŷn+1 is the solution from the RK method using the b̂ vector (2.51) and yn+1 is the solution from the

RK method using the b vector (2.51). The expression

Èn+1 = ||ŷn+1 − yn+1||, (2.53)

is used when a scalar number representing the magnitude of the embedded error estimate is required. In

this thesis, the use of a superscript circumflex “ ˆ ” denotes variables used to correspond to properties or

solutions from the lower-order component of an embedded pair, e.g., ŷ [47, 136, 187]. Sometimes an error

estimate È might end up being an extremely poor estimate of the local error due to unknown properties of

the ODE (2.1a). However, it can still form a good heuristic for step control [72, pg.168]. A value for the

“error estimate”, which may not be even remotely similar to the actual local error, is indicated by the grave

accent “ ` ” in this thesis. The embedded error estimate from an embedded pair of orders (p, p − 1) is an

O(∆tp+1) estimate of the local error (2.30) of the RK method of order p−1 for the embedded pair. The utility

of Èn+1 and the related values described above for step control, even when inaccurate or inappropriate, is

demonstrated by the popularity of local extrapolation, where the higher-order method (with the presumably

more accurate solution) of an ERK embedded pair is used to advance the integration. Local extrapolation

often works in practice even though Èn+1 only makes mathematical sense for estimating the error of the

lower-order method of an ERK pair [72, pg.168].

In some cases, the constituent methods of an embedded pair can have different numbers of stages; this

can easily be allowed by setting some components of the appropriate b and b̂ vectors to zero. An extension of

embedded pairs consisting of three distinct ERK methods has been constructed by Bogacki and Shampine [16]

in order to provide both a cheaper preliminary and more expensive refined error estimate. Methods consisting

of three distinct ERK methods, i.e., eighth-, fifth-, and third-order ERK methods, that are all used together

to provide a single high-quality error estimate have been constructed by Dormand and Prince and published

by Hairer et al. in their book [72, pgs.254–255]. However, the construction of ERK methods with more than

two components is not studied further in this thesis. In addition, although these extensions of embedded pairs

might logically be called “embedded triples”, there are also embedded pairs in conjunction with a high-order

interpolant called “Runge–Kutta triples” [49]. Interpolants are not addressed further in this thesis either.

In order to guide a search for better ERK embedded pairs (the subject of Chapters 4 and 5), it is necessary

to consider a number of error coefficients, not just the leading error coefficient of the method used to advance

the integration. The error coefficient of order q is referred to using the notation

Aq = ||A(Fq)||2, Fq ∈ Fq(f(y(t))), (2.54)

where A(Fq) is the PEC (2.47) for the elementary differential F (2.36) and || ||2 corresponds to the standard

2-norm. Norms other than the standard 2-norm have occasionally been discussed for the error coefficients,

especially by Verner [189, 190], and they are further examined in Chapter 5. The notation used for these
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other norms of the error coefficients is

|Aq|1 = ||A(Fq)||1, Fq ∈ Fq(f(y(t))), (2.55a)

|Aq|2 = ||A(Fq)||2, Fq ∈ Fq(f(y(t))), (2.55b)

|Aq|∞ = ||A(Fq)||∞, Fq ∈ Fq(f(y(t))), (2.55c)

|Āq|1 = ||Ā(Fq)||1, Fq ∈ Fq(f(y(t))), (2.55d)

|Āq|2 = ||Ā(Fq)||2, Fq ∈ Fq(f(y(t))), (2.55e)

|Āq|∞ = ||Ā(Fq)||∞, Fq ∈ Fq(f(y(t))), (2.55f)

where || ||1 corresponds to the standard 1-norm and || ||∞ corresponds to the standard ∞-norm.

For an RK method of order p, Ap is the leading error coefficient. In order to help evaluate the suitability

of the error estimate for embedded ERK pairs, the characteristic numbers [189, 190], in addition to Aq, that

are commonly used are defined as

B = Â(p+2)/Â(p+1), (2.56a)

C = ||τ̂ (p+2) − τ (p+2)||2/Â(p+1), (2.56b)

D = max(|aij |, |bi|, |b̂i|, |ci|) ∀ i, j ∈ {1, 2, . . . , s}, (2.56c)

E = A(p+2)/Â(p+1), (2.56d)

SR = min (Real(z)) s.t. |R(z)| < 1, (2.56e)

ŜR = min (Real(z)) s.t. |R̂(z)| < 1, (2.56f)

where the B characteristic number measures the dominance of the leading term of the error estimate, the

C characteristic number measures the degree to which the second error term of the error estimate vanishes

thus ensuring the leading error term of the lower-order method remains relatively dominant, limiting the D

characteristic number ensures the magnitude of the Butcher tableau (2.34) coefficients do not become too large

and lead to unnecessary roundoff errors, the E characteristic number measures the relative magnitude of the

leading error terms of both the lower-order and higher-order components of the embedded pair, SR measures

the length of the stability region along the negative real axis for the higher-order method of an embedded pair,

and ŜR measures the length of the stability region along the negative real axis for the lower-order method of

an embedded pair. An examination of published guidelines for selecting these characteristic numbers along

with supporting performance data is given in Section 5.13. However, the classic guidelines are that B and

C characteristic numbers should be made as small as possible so they approach 1.0 [94, 96, 189, 190]. The

E characteristic number is less widely mentioned in the literature than the A, B, C, and D characteristic

numbers, but the classic guidelines based on observations by Shampine [146] is that it should be less than

1.0 and closer to 0.5. The unfortunately similar notation of the characteristic numbers (2.56) and the
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simplifying assumptions (2.44) using capital letters is standard notation and generally follows other notable

publications [47, 72, 94, 136, 190].

2.6.1 Step-doubling error estimation

Step-doubling error estimation estimates the local error based on Richardson extrapolation [72]. It can be

used with any numerical method for which the order of convergence p is known. It requires three steps to be

taken from the current time tn, i.e., two regular steps of size ∆tn to give the solution yn+1 and one double

step of size 2 ∆tn to give the solution ŷn+1. An estimate of the local error is using step-doubling is

y(tn + 2 ∆tn)− yn+1 =
yn+1 − ŷn+1

2p − 1
+O(∆tp+2

n ), (2.57)

with an order of convergence of p + 1 [72]. Step-doubling error estimation is not studied in detail in this

thesis. However, it is implemented in the pythODE software package described in Chapter 5. Further details

on step-doubling can be found in excellent expositions by Shampine [145], Hairer et al [72, pgs.164–165], and

Stoer and Bulirsch [171, pgs.448–451].

2.6.2 Stepsize selection and control

In order to select the next stepsize using an error estimate from an embedded RK pair (2.52), heuristics

have traditionally been used. However, these traditional heuristics can be extended and put on a sound

theoretical basis using linear feedback control theory [66, 67, 164]. For determining whether an error estimate

is acceptable and for the step-controller to respond appropriately, a tolerance value is needed to compare with

the error estimate. However, a single fixed user-specified tolerance value rarely leads to robust step control

even for simple IVPs. Therefore, an absolute-relative norm [66] is generally required. A common formula

giving an absolute-relative norm for finding an acceptable tolerance value for the local error estimate is

Tn+1,i = Trel,i max(yn,i, yn+1,i) + Tabs,i, (2.58)

where Trel,i and Tabs,i are respectively the user specified relative tolerance and absolute tolerance for compo-

nent i of the IVP (2.1) solution y [72, pg.167]. However, somewhat different formulae for absolute-relative

norms than (2.58) are also in use [66, 67][150, pg.234]. The relative tolerance is the primary means for the

user to indirectly control the global accuracy of the solution, and the choice sometimes needs to take into

consideration the sensitivity of the IVP to perturbations. An example of a sensitive IVP is the Pleiades

IVP (2.16) where the quasi-collisions shown in Figure 2.8 may require tolerances at certain intermediate

t0 ≤ t ≤ tf that are much tighter than the tolerances that would be required for the same desired accuracy

but for a slightly perturbed Pleiades IVP (2.16) without quasi-collisions. The relative tolerance should be

less than 1.0 to be a viable way to control global error. Otherwise, the acceptable local error estimates would
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be greater than the solution value itself. The author’s experience has shown that relative tolerances should

be less than 0.1 for the numerical solution to start reflecting the true solution for at least some IVPs, and

relative tolerances in an approximate range of 0.01 to 0.0001 are typical for finding a solution of “coarse”

accuracy. If an exceedingly high accuracy is required, experience has shown that relative tolerances as low as

10−14 can be effective, although this value is probably too close to the unit roundoff for 64 bit floating-point

numbers (≈ 1.11× 10−16) when solving at least some IVPs. Therefore, relative tolerances in the range 10−8

to 10−12 are typical when an extremely accurate solution is needed without regard to computational cost.

The absolute tolerance used for the absolute-relative norm ensures that the step controller does not make the

stepsizes too small if max(yn,i, yn+1,i) in (2.58) begins to vanish. The absolute tolerances are often smaller

than the corresponding relative tolerances because they often act mostly as a safety measure when solution

components vanish, and the relative tolerance should dominate the tolerance formula (2.58) for most steps

of typical IVP solutions. However, when some IVPs are scaled to certain physical units, for example, if any

of the examples of celestial mechanics problems in Section 2.3 were rescaled to meters or centimetres, some

values of components that are � 1.0 would still be considered vanishing, and absolute tolerances could be

required that are well above 1.0 even when solving to higher accuracies.

In many cases, The absolute and relative tolerances are uniform values across the components of an

IVP, unless the user has a specific reason to use different tolerance values for different solution components.

Examples of where different tolerances may be required for different solution components are IVPs based on

chemistry problems, such as the stiff atmospheric pollution problem presented by Hundsdorfer and Verwer [86,

pg.6], where different chemical components have widely different ranges.

Gustafsson [66, 67] was probably the first [73, pg.28] to formally use classic control theory to study stepsize

control for numerical methods. A good general reference on linear control theory used in the course of this

study is the book by Haidekker [68]. A good review of the application of control theory to numerical methods

for IVPs is the paper by Söderlind [164]. Analogous to the convergence, consistency, and stability properties

already discussed for the numerical integration method itself, there are several similar conditions that are

necessary to ensure a variable stepsize IVP solver has the possibility of giving a viable solution [164]. Using

T to represent a generic value for tolerance, these necessary conditions are:

• Tolerance convergence: limT→0 ||yn − y(tn)|| = 0.

• Computational stability : A small change in tolerance produces only a small change in results.

• Tolerance proportionality : c · T ≤ ||yn − y(tn)|| ≤ C · T, hopefully with C
c / 10.

Although these are conditions on the global error, they can in fact be satisfied by controlling a suitable local

error estimates, because it can be shown if local error per unit time is kept below a tolerance, then global

error can be bounded by a constant multiple of that tolerance [164]. Harder to quantify are the general

assumptions that the norm used for the error estimate is smooth and reflects the actual behaviour of the

local error [164].
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To achieve the just-mentioned goals, using ψ̀n as a function that allows examining the behaviour of the

error estimate independent of changes in ∆tn, there are two assumptions made to model the integration

process [164]:

• Constant asymptotic behaviour of the error estimate: ψ̀n∆tkn = Èn+1.

• Slow variation of the error estimate: ||ψ̀n+1|| ≈ ||ψ̀n||.

Based on the assumptions used to model the integration process, the classic and still commonly used

formula [72, pg.168][108, pg.146][152, pg.47][171, pg.448] to estimate the optimal stepsize is

∆topt = ∆tn

(
Tn+1

Èn+1

)(1/k)

, (2.59)

where k is generally one greater than the minimum order of the two component methods in the ERK

embedded pair, for example, if an embedded pair has methods of fourth- and fifth-order then k = 5 is used.

If
(
Èn+1

Tn+1

)
≥ 1.0 then the step is rejected and ∆topt is used to retry the current step; otherwise the step

is accepted and ∆topt is used for the next step. If the error estimate were exact and the two assumptions

modelling the integration process held exactly, then the standard step control formula (2.59) perfectly adjusts

the next stepsize so
(
Èn+2

Tn+2

)
would be 1.0 when the error estimate is computed for this next step, without

either excessive local error with
(
Èn+2

Tn+2

)
> 1.0 or excessive cost with

(
Èn+2

Tn+2

)
< 1.0.

However, the assumptions modelling the integration process only hold roughly for the solution of IVPs,

i.e., the norm used for the error estimate may not be smooth, and the local dynamics of the IVP may not

always match the ideal process assumptions. Especially outside of the asymptotic region, the differential

system can have unanticipated behaviour [72, pg.168]. Consider a step where local conditions mean that the

error is unexpectedly large or small. Therefore, directly applying any formula, such as (2.59), based on the

expected asymptotic behaviour could cause extreme step changes that would require multiple rejected steps

to reduce the stepsize back to a more appropriate value or extra undersized steps to increase the stepsize back

to the ideal value. At worst, extreme step changes could unexpectedly cause a loss in the stability of the step

controller and a completely incorrect solution. A safer and less aggressive approach to using only (2.59) is

to use limiters and safety factors at the possible cost of a small number of extra steps due to slower changes

when extreme step changes would actually be most efficient [72, pg.168]. Although the specific heuristics used

as limiters and their implementation details can vary between software packages, an example the heuristics

used by default in pythODE to find a new stepsize from the optimal stepsize (2.59) is

∆tnew = αmin(amax∆tn,max(∆topt, amin∆tn)), (2.60)

where amax and amin are values representing the maximum amounts by which the stepsize can increase and

decrease, respectively, and α ≤ 1.0 is a safety factor. Typical values are α = 0.9, amin = 0.2, and amax = 5.0

for an accepted step. The value of amax = 1.0 is often used after a rejected step [72, pg.167] in order to
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avoid a stepsize increase after a step is rejected and to ensure repeated rejections lead to a decreasing stepsize

sequence (the stepsize for a retry after a rejected step will never be larger than α∆tn). Using heuristics such

as (2.60) ensures that extreme step changes due to unanticipated behaviour are limited so that a variable

stepsize IVP solver uses as few extra steps as possible while avoiding loss of stability.

Although (2.59) was originally a heuristic that had been validated with practical experience, it can be

seen as one form of an integrating controller (or I controller) [164]. An integrating controller is known in the

context of numerical methods as an integrating step controller or I step control [73, pg.28][164]. In order to

study the behaviour of a step controller (2.59), it is convenient to restate (2.59) by using a fixed tolerance T

and taking logarithms in order to give the linear difference equation

log(∆tn+1) = log(∆tn) +
1

k
(log(T )− log(r̀n+1)), (2.61)

where log(T )− log(r̀n+1) is the control error, log(T ) is the setpoint, and log(∆t) is the control (the quantity

controlled) itself. Discrete linear feedback control for RK methods works because the controller attempts

to set the control error (corresponding to the difference between the tolerance and error estimate, with the

setpoint being where the control error is zero) for a process (corresponding to the integration itself (2.27))

equal to zero by changing a control (corresponding to the stepsize). The difference equation (2.61) can be

solved to give

log(∆tn) = log(∆t0) +
1

k

n∑
n=1

(log(T )− log(r̀n)), (2.62)

where the origin of the name “integrating controller” becomes apparent because the summation corresponds

to an integral that would appear in an analogous continuous controller. However, continuous controllers are

not relevant to this study and not discussed further. What can also be observed is that the summation in the

gain of an integrating controller (2.62) is an attempt to keep the total sum of all past control errors as zero.

Linear feedback step controllers are known as “linear” because scaling the control errors (or summing control

errors in more complex controllers) causes a proportional change in the control itself (the proportional change

is actually with respect to the control given by log(∆t) on the LHS of (2.62)) [68, 164].

Solving the difference equation of a more general version [164] of an integrating step controller using the

same logarithmic form as (2.61) gives

log(∆tn) = (1− k kI)n log(∆t0) + kI

n∑
m=1

(1− k kI)(n−m)(log(T )− log(ψ̀m−1)), (2.63)

where kI is known as the integral gain of the integrating controller and k describes the behaviour of the

asymptotic process model as before. It can clearly be seen that the classic step controller (2.62) is actually

a version of (2.63) with an integral gain kI of 1
k . The classic step controller (2.62) with k kI = 1.0 (2.63) is

also known as a deadbeat controller, i.e., it attempts to completely eliminate the control error for the next

51



step [164]. A gain higher than that of a deadbeat control results in fast oscillatory control where if k kI > 2.0

the controller is unstable. If k kI < 1.0, then the lower gain results in slow smooth control [164]. Therefore,

rather than (2.59) being the only possible way of selecting the next step given a particular asymptotic

behaviour, there is a tradeoff between response time of the controller and stability [164]. The strategy

described for (2.59) is sometimes known as error per step (EPS). Another classic although less commonly

used stepsize strategy, is limiting error per unit step (EPUS) with k one lower than is described for (2.59).

For example, if using EPUS with an embedded pair consisting of fourth- and fifth-order methods, then (2.59)

would have k = 4 rather than k = 5. However, rather than a specific choice, EPUS can now be seen as one

specific instance of slow smooth control [164].

It is important for the assumption on the specific asymptotic behaviour to be at least approximately

correct. For instance, the ERK pairs primarily studied later in this thesis have a fifth-order error estimate,

i.e., the expected asymptotic behaviour of the process is k = 5. However, if the solver is in a region of an ODE

where the error estimate is converging at a rate greater than tenth-order, the step controller would actually

be unstable. If a fast response is desired, the potential for instability can be worse if the IVP method does

not exhibit the correct asymptotic behaviour. Therefore, although it is not possible to eliminate instability

entirely, it is desirable to design numerical methods as carefully as possible to increase the chances of correct

asymptotic behaviour. More advanced linear controllers that extend the ideas behind I controllers are also

available. Advanced linear controllers commonly seen in IVP software are known as proportional-integral (PI)

and proportional-integral-derivative (PID), and may provide some advantages for difficult IVPs but are not

examined in this study, but can be studied further in the references [68, 164].

In implementations of embedded RK pairs where local extrapolation is used, the actual value of the

error estimate no longer has the pretense of resembling the local error of the higher-order component of the

embedded pair that is used to advance the solution. However, the error estimate from an embedded pair

used in local extrapolation mode remains a useful quantity for step-size selection because it is expected that

the higher-order method provides a more accurate solution than the lower-order method, or at least locally it

can be bounded by some constant multiple of the error of the lower-order method. Practical experience has

shown that well-designed embedded pairs using local extrapolation can give superior performance, although

several examples are given in Section 5.6 that show that local extrapolation may not always be superior.

2.7 Prologue: Classic six-stage fifth-order ERK pairs using stan-

dard simplifying assumptions

The families of ERK embedded pairs that are studied in depth consist of a six-stage fifth-order ERK method

in combination with either a six-stage fourth-order ERK method or a seven-stage fourth-order ERK method,

with the resulting embedded pair referred to with the shorthand 5(4)6 ERK pair regardless of whether the

fourth-order method has six stages or seven stages. These variations are studied together because most of
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the complexity of constructing a 5(4)6 ERK pair comes from the six-stage fifth-order ERK method, and it

is clearly seen in Chapter 3 that there is only a small difference between adding either a six- or seven-stage

fourth-order ERK method to form a 5(4)6 ERK pair. When referring specifically to a six-stage fifth-order

method that forms a pair with a six-stage fourth-order method, the shorthand is 5(4)6(6) ERK pair. When

referring specifically to a six-stage fifth-order method that forms a pair with a seven-stage fourth-order

method the shorthand is 5(4)6(7) ERK pair.

The methodologies for finding solutions to the systems of order conditions (2.43) are extensive; for instance,

see the numerous examples in the references [25, 26, 155, 161, 187, 188, 189, 190, 191, 194]. For higher-order

methods, the order conditions are rarely solved directly from the form given by (2.43). Often the simplifying

assumptions (2.44) (or other possible algebraic simplifications) are used to find a more restrictive but more

easily solved algebraic system, i.e., a reduced system. In most cases, the number of unknowns is greater

than the number of equations, and the algebraic system or order conditions can be solved explicitly in terms

of a chosen set of the unknowns that are called free parameters. Once the order conditions are solved as

expressions explicitly for the other unknowns in terms of the free parameters, then a corresponding Butcher

tableau (2.34) can quickly be found for any set of specific values of the free parameters. For each reduced

system that is solved, one or more specific Butcher tableaux (2.51) are usually published in addition to the

details and expressions defining a more general family of RK methods. When referencing a published family

by naming it after a specific method, unless stated otherwise, the name used in this thesis is the family in

the original publication where the specific method was originally published. For instance, the “RKF4(5)6(6)

family” (see Section 2.7.2 for more details and construction of the RKF4(5)6(6) method (2.78)) refers to the

family of 5(4)6(6) ERK pairs originally published by Fehlberg in 1969 [61].

For the ERK method construction described in this section, the families are simple enough that they

can readily be constructed and described in detail using hand computations (rather being forced to rely

on a computer algebra system) from using the simplifying assumptions (2.44). However, in Chapter 3, the

ERK construction methodologies presented that do not reduce the complexity of the algebraic system of

the order conditions or require a reduction in the number of free parameters; these methodologies are made

possible because of the sophisticated software tools that are presented in full detail in Chapter 4. It is seen in

Section 3.3 that some classic methods given in this section belong to more general families that have more free

parameters available because these general families do not require the C(3) simplifying assumptions (2.44b)

that were originally used. However, the simplifying assumptions (2.44) do not necessarily decrease the number

of free parameters available for an ERK method of a particular order with a particular number of stages.

In general, it is best to think of the beneficial effect of simplifying assumptions as replacing more complex

higher-degree order conditions with usually simpler equations that are often the simplifying assumptions

themselves.
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2.7.1 A six-stage fifth-order ERK method based on John Butcher’s ideas

In the same paper showing the non-existence of fifth-order five-stage ERK methods [25], Butcher presented

the construction of a seven-stage sixth-order ERK method. Hairer et al. [72, pg.175] used these ideas to

show the construction of a six-stage fifth-order ERK method using the C(2) simplifying assumptions (2.44b)

and D(1) simplifying assumptions (2.44c). A complication to using the C(2) simplifying assumptions (2.44b)

is that it can easily be seen that the C(2) simplifying assumptions (2.44b), or in fact any C(η) simplifying

assumptions (2.44b) with η ≥ 2, cannot be satisfied for any ERK method when i = 2. This restriction on using

the C(2) simplifying assumptions (2.44b) is because the LHS of (2.44b) is always zero when i = 2 (because

the only terms of the summation in (2.44b) with any non-zero values in the case of the C(2) simplifying

assumptions (2.44b) are a2,1 c1 and a2,2 c2 that both evaluate to zero for ERK methods) but that the RHS

of (2.44b) must be non-zero (because c2 = 0 would reduce the number of effective stages). This is remedied

by the constraint b2 = 0 and not requiring the C(2) simplifying assumptions (2.44b) to hold when i = 2.

Having b2 = 0 still allows standard reductions for the C(2) simplifying assumptions (2.44b) for subtrees

attached to the root exactly as shown in Section 2.5.2. Taking into account this limitation to using the C(2)

simplifying assumptions (2.44b), the only remaining order conditions left after applying the C(2) simplifying

assumptions (2.44b) and the D(1) simplifying assumptions (2.44c) are the order conditions corresponding to

the trees

(2.64a)

(2.64b)

that cannot immediately be reduced with the C(2) simplifying assumptions (2.44b). This is because b2 = 0

only remedies the i = 2 issue with the C(2) simplifying assumptions (2.44b) for sub-trees attached to the

root and not sub-trees above the root such as the ones circled. It is important to note that these circled

subtrees for (2.64a) and (2.64b) can be equivalent when using the C(2) simplifying assumptions (2.44b) to

construct IRK methods because the issue with i = 2 no longer applies. IRK method construction using the

standard simplifying assumptions (2.44) can be studied further in the references [72, pg.208]. However, the

limitation that prevents using the C(2) simplifying assumptions (2.44b) when i = 2 can be overcome to find

an appropriate reduced system for ERK method construction. This is done by multiplying (2.64b) by 1
2 and

subtracting it from (2.64a) to give the expression

∑
i,j

bi ci ai,j
(
aj,k − c2j/2

)
= 0, (2.65)
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where the C(2) simplifying assumptions (2.44b) make the expression inside of the parenthesis vanish except

when j = 2 in (2.65). When j = 2 for (2.65) the other factor in the summation in (2.65) must vanish to

ensure the order conditions (2.64a) and (2.64b) are satisfied. Combined with the C(2) simplifying assump-

tions (2.44b), this reduces (2.65) to the condition

6∑
i=3

bi ci ai,2 = 0, (2.66)

that along with the C(2) simplifying assumptions (2.44b) and (2.64b) is now sufficient to satisfy (2.64a).

Finally, to satisfy the order condition corresponding to the tree [τ [τ2]] (2.64b), subtracting the order conditions

corresponding to the trees [[τ2]] and c3 times [[[τ ]]] from [τ [τ2]] (2.64b) gives

∑
i,j

bi(1− ci)ai,jcj(cj − c3) =
1

60
− c3

24
, (2.67)

which is an expression that has fewer terms and is more convenient to use than (2.64b) because c6 = 1 means

the terms involving a6,i to vanish.

The resulting reduced system consisting of the appropriate simplifying assumptions (2.44) along with

(2.66) and (2.67) is now easily solved as a straightforward sequence of linear systems, despite the extreme

non-linearities in the original order conditions. The quadrature conditions (2.44a) can be solved for the b

vector by solving the linear system



1 1 1 1 1 1

0 c2 c3 c4 c5 c6

0 c22 c23 c24 c25 c26

0 c32 c33 c34 c35 c36

0 c42 c43 c44 c45 c46





b1

0

b3

b4

b5

b6


=



1

1
2

1
3

1
4

1
5


,

for b1, b3, b4, b5, b6 where it can be noted that b2 = 0 due to the previously discussed restrictions on the C(2)

simplifying assumptions (2.44b).

In each of the following steps, quantities already computed are substituted back into the conditions still

to be solved, and terms involving only known quantities are moved to the RHS. Taking a4,2 as an arbitrary

parameter and using (2.44b) with i = 3, 4, a3,2, a4,3 can be found by solving the system

c2 0

0 c3

a3,2

a4,3

 =

 c23
2

c24
2 − a4,2 c2

 .
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Using (2.66) with j = 2, a5,2, a6,2 can be found by solving the system

 b5 b6

b5c5 b6c6

a5,2

a6,2

 =

−(∑4
i=3 biai,2

)
+ b2(1− c2)

−
∑4
i=3 bi ci ai,2

 ,

using the now-known ai,j quantities for the RHS. Using (2.67) and (2.44b) with i = 5 allows a5,3, a5,4 to be

found by solving the system 0 b5(1− c5)c4(c4 − c3)

c3 c4

a5,3

a5,4

 =

−∑5
i=3 bi(1− ci)ai,2 c2(c2 − c3) + 1

60 −
c3
24

−(a5,2 c2) +
c25
2

 ,

using the now-known ai,j quantities for the RHS and where it can now clearly be seen that the form of (2.67)

is advantageous because all terms involving a6,i vanish. However, as mentioned above, directly using (2.64b)

instead would have terms involving a6,i that would be more complicated to solve than the straightforward

solution of a linear system. Using the D(1) simplifying assumptions (2.44c) with j = 3, 4, 5 allows a6,3, a6,4,

a6,5 to be found by solving the system


b6 0 0

0 b6 0

0 0 b6



a6,3

a6,4

a6,5

 =


−
(∑5

i=1 bi ai,3

)
+ b3(1− c3)

−
(∑5

i=1 bi ai,4

)
+ b4(1− c4)

−
(∑5

i=1 bi ai,5

)
+ b5(1− c5)

 ,

using the now-known ai,j quantities for the RHS. Finally, using the row-sum condition (2.35) allows a2,1,

a3,1, a4,1, a5,1, a6,1 to be found by solving the linear system



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





a2,1

a3,1

a4,1

a5,1

a6,1


=



c2

−a3,2 + c3

−
∑3
i=2 a4,i + c4

−
∑4
i=2 a5,i + c5

−
∑6
i=2 a6,i + c6


.

because all the ai,j quantities outside of the first column of the A matrix are now known.

2.7.2 The Runge–Kutta–Fehlberg 5(4)6(6) ERK pair

The Runge–Kutta–Fehlberg 4(5) method (RKF4(5)6(6)), which was first constructed by Fehlberg in 1969 [61],

was one of the first widely used higher-order ERK embedded pairs. Although replaced in Matlab by the

Dormand–Prince method (see the next subsection) in the 1990s [153]1, RKF4(5)6(6) continues to be a widely

used ERK method. The specific procedure given for constructing RKF4(5)6(6) in this subsection is based

1https://blogs.mathworks.com/cleve/2014/05/26/ordinary-differential-equation-solvers-ode23-and-ode45/
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on the original work by Fehlberg [61] where the specifics of construction are described by Hairer et al. [72,

pg.175].

In contrast to the six-stage fifth-order ERK method from Section 2.7.1 that is not constructed as an

embedded pair, in order to construct find the RKF4(5)6(6) family the C(2) and C(3) simplifying assump-

tions (2.44b) are used. The presence of b vector components in the expressions for the D(1) simplifying

assumptions (2.44c) introduces difficulties constructing embedded pairs. Therefore, this different set of sim-

plifying assumptions than those used in Section 2.7.1 is typically used to find a reduced system.

As already discussed in Section 2.7.1, when performing reductions using the C(2) and C(3) simplifying

assumptions (2.44b) for ERK methods, the constraint b2 = 0 is required. Similar to the procedure used to

find (2.65), reductions involving subtrees above the root no longer work for the C(η) simplifying assump-

tions (2.44b) with η ≥ 2, i = 2. Following a similar procedure to the one that led to (2.65), the conditions

s∑
i

biai,2 = 0, (2.68a)

s∑
i

biciai,2 = 0, (2.68b)

s∑
i,j

biai,jaj,2 = 0, (2.68c)

now allow the C(2) and C(3) simplifying assumptions (2.44b) to be used for the appropriate subtrees not

attached to the root in a similar manner to (2.65).

After using the C(2) and C(3) simplifying assumptions (2.44b), the reduced system consists of the C(2) and

C(3) simplifying assumptions (2.44b), the quadrature conditions (2.44a), the relations (2.68a) and (2.68b),

and the order condition corresponding to the tree

AA��rr
rrr

(2.69)

The order condition (2.69) is easy to incorporate into a reduced system because coefficients from the A

matrix only appear linearly. The remaining condition (2.68c) is addressed below because it is automatically

satisfied by the rest of the reduced system for the RKF4(5)6(6) family.
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The quadrature conditions (2.44a) can be solved for the b vector by solving the linear system



1 1 1 1 1 1

0 c2 c3 c4 c5 c6

0 c22 c23 c24 c25 c26

0 c32 c33 c34 c35 c36

0 c42 c43 c44 c45 c46





b1

0

b3

b4

b5

b6


=



1

1
2

1
3

1
4

1
5


, (2.70)

in an identical procedure to that described in Section 2.7.1. To simultaneously satisfy the simplifying as-

sumptions C(2) and C(3) (2.44b) with i = 3, the necessary constraint to be found when both assumptions

must be satisfied simultaneously is found by the procedure

a3,2 c2 =
c23
2
, a3,2 c

2
2 =

c33
3
,

a3,2 c
2
2 =

c23c2
2
, a3,2 c

2
2 =

c33
3
,

c23c2
2

=
c33
3
,

c33
3

=
c23c2

2
,

0 =
c33
3
− c23c2

2
,

0 = c23

(c3
3
− c2

2

)
,

c3 =
3

2
c2. (2.71)

The expression (2.71) allows immediately determining a3,2, a4,2, a4,3 because it ensures consistency of the

linear system 
c2 0 0

c22 0 0

0 c2 c3

0 c22 c23



a3,2

a4,2

a4,3

 =



c23
2

c33
3

c24
2

c34
3

 . (2.72)

The C(2) and C(3) simplifying assumptions (2.44b) with i = 4, 5 along with the relations (2.68a) and (2.68b)

give the linear system 
c2 c3 c4 0

c22 c23 c24 0

b5 0 0 b6

b5c5 0 0 b6c6




a5,2

a5,3

a5,4

a6,2

 =



c25
2

c35
3

−
∑4
i=3 ai,2

−
∑4
i=3 ciai,2

 , (2.73)

that can be solved for a5,2, a5,3, a5,4, a6,2 using the ai,j quantities of the RHS that are now known. The

C(2) and C(3) simplifying assumptions (2.44b) with i = 6 along with the remaining order condition (2.69)
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give the linear system
c3 c4 c5

c23 c24 c25

b6c
3
3 b6c

3
4 b6c

3
5



a6,3

a6,4

a6,5

 =


−a6,2c2 +

c26
2

−a6,2c
2
2 +

c36
3

−
∑5
i=3,j biai,j c

3
j − b6a6,2 c

3
2 + 1

20

 ,

that can be solved for a6,3, a6,4, a6,5 using the ai,j quantities of the RHS that are now known. Finally,

using (2.35), a2,1, a3,1, a4,1, a5,1, a6,1 can be found by solving the linear system



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





a2,1

a3,1

a4,1

a5,1

a6,1


=



c2

−a3,2 + c3

−
∑3
i=2 a4,i + c4

−
∑4
i=2 a5,i + c5

−
∑6
i=2 a6,i + c6


,

because all the ai,j quantities outside of the first column of the A matrix are now known.

The following discussion shows how to find the constraints required for an embedded pair. This discus-

sion is the solution to exercise II.5.1 of Hairer et al. [72, pgs.185–186] and is a good introduction to the

methodologies used for constructing ERK pairs in Chapter 3. In order to find a distinct b̂ vector that only

satisfies the fourth-order ERK order conditions (but not the fifth-order ERK order conditions) when using

the C(2) and C(3) simplifying assumptions (2.44b), a b̂ vector satisfying the fourth-order conditions can be

found by solving the linear system



1 1 1 1 1 1

0 c2 c3 c4 c5 c6

0 c22 c23 c24 c25 c26

0 c32 c33 c34 c35 c36

0 0 a3,2 a4,2 a5,2 a6,2





b̂1

0

b̂3

b̂4

b̂5

b̂6


=



1

1
2

1
3

1
4

0


, (2.74)

which are the required conditions for a fourth-order ERK method because satisfying (2.68a) (in the fifth row)

allows the simplifications

rr
rr
C(2)+(2.68a)←→

AA��rr
rr

C(3)+(2.68a)←→ r rrrAA��
��AAr r

rr
C(2)←→ r rrrAA��

Although when (2.74) is non-singular the b̂ vector found is a unique solution, any unique solution of (2.74)
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for the b̂ vector would be identical to the b vector because the conditions given by (2.74) for fourth-order

ERK are a subset of the conditions for fifth-order ERK. Therefore, to find a b̂ vector distinct from the b

vector, the system (2.74) must be singular.

Consider the sub-matrix of rows 2–5 and columns 2–6 of (2.74) along with using the hint from exercise

II.5.1 in Hairer et al. [72, pgs.185–186]. This hint is to find arbitrary multipliers α, β, γ that lead to a linear

dependency in order to ensure (2.74) is singular and consistent. The linear dependency suggested by Hairer

et al.’s hint is given by the system 
c3 c23 c33

c4 c24 c34

c5 c25 c35

c6 c26 c36



α

β

γ

 =


a3,2

a4,2

a5,2

a6,2

 . (2.75)

To find a consistent solution for (2.75), it is helpful to use linear combinations of rows to find a simpler

equivalent linear system, such as 
c3 c23 c33

c4 c24 c34
1
2

1
3

1
4

1
3

1
4

1
5



α

β

γ

 =


a3,2

a4,2

0

0

 . (2.76)

The linear combination giving a new row 5 of (2.76) can be found by multiplying each row i of (2.75) by bi+2

and summing these to form the linear combination that is the new row 5. It can clearly be seen that the

resulting sums in the first, second, and third columns now correspond to the second-, third-, and fourth-order

quadrature conditions. The RHS of the summation giving the new row 5 corresponds to (2.68a), which

evaluates to zero. The linear combination giving a new row 6 of (2.76) can be found by multiplying row i

of (2.75) by bi+2 ci and summing these to form the linear combination that is the new row 6. It can clearly

be seen that the resulting sums in the first, second, and third columns correspond to the second-, third-, and

fourth-order quadrature conditions. The RHS of the summation giving the new row 6 corresponds to (2.68b),

which evaluates to zero.

Specific expressions for a3,2, a4,2 (these would have been found while solving (2.72)) give

a3,2 =
3

4
c3,

a4,2 = − (3c23c
2
4 − 2c3c

3
4)

6(c22c3 − c2c23)
.

Because the augmented matrix for (2.76) must have the same rank as the coefficient matrix, in order to have
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rank 3 or lower the determinant must be zero, i.e.,∣∣∣∣∣∣∣∣∣∣∣∣

c3 c23 c33 a3,2

c4 c24 c34 a4,2

1
2

1
3

1
4 0

1
3

1
4

1
5 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where expanding and using known values for a3,2, a4,2, c3 (using the Sage computer algebra system [57])

gives

(45c22c4 − 24c2c4 − 3c2 + 4c4)(3c2 − 2c4)c4 = 0, (2.77)

where if c3 6= c4 this leads directly to a constraint on c4 of

c4 =
3c2

4− 24c2 + 45c22
,

with the multipliers from (2.76) given by

α =
3
2c2

15 c32 − 12 c22 + 2 c2
, β =

−6c2
15 c32 − 12 c22 + 2 c2

, γ =
5 c2

15 c32 − 12 c22 + 2 c2
.

In Section 3.3, it is shown that if c6 6= 1, then (2.77) is a necessary condition for six-stage fifth-order ERK

methods that satisfy the C(2) simplifying assumption (2.44b) even when not part of a 5(4)6(6) ERK pair.

The final condition (2.68c) required for the fifth-order method still remains to be satisfied, but the second

part of exercise II.5.1 in Hairer et al [72, pgs.185–186] is to show that it is already satisfied by the rest

of the reduced system used for the RKF4(5)6(6) family. Observe that the trees [[τ ]], [[τ2]], [[τ3]] only differ

from (2.68c) by substituting the factors cj , c2j , c3j for the factor aj,2. Using Sage [57] it can be verified that

α rr
r

+ β
AA��rr

rr
+ γ

AA��rr
rrr
= α

1

6
+ β

1

12
+ γ

1

20
= 0,

which can be factored to give

∑
i,j

biai,j(αcj + βc2j + γc3j ) = 0,

where from (2.75) it is known that αcj + βc2j + γc3j = aj,2 and with substitutions leads directly to the

condition (2.68c).

The free parameters used for the RKF4(5)6(6) family are c2, c5, c6, demonstrating that the construction

of an embedded pair comes at the cost of free parameters. Based on the method construction just described,
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the Butcher tableau published by Fehlberg [61] for the RKF4(5)6(6) method is given by

0

1
4

1
4

3
8

3
32

9
32

12
13

1932
2197
− 7200

2197
7296
2197

1 439
216

−8 3680
513

− 845
4104

0

1
2
− 8

27
2 − 3544

2565
1859
4104

− 11
40

b 16
135

0 6656
12825

28561
56430

− 9
50

2
55

b̂ 25
216

0 1408
2565

2197
4108

− 1
5

0

(2.78)

2.7.3 The Dormand–Prince 5(4)6(7) ERK pair

The Dormand–Prince 5(4) pair, with the notation DP5(4)6(7) used for it in this thesis, was first published

in 1980 by Dormand and Prince [47]. It continues to be widely used, including as one of the explicit IVP

methods in the popular commercial software package Matlab [153].

The DP5(4)6(7) method is a 5(4)6(7) ERK pair where the extra stage for the lower-order method of the

embedded pair allows implementations to use a procedure known as first same as last (FSAL) [72, pg.167].

This FSAL property allows seven stages to be used with a minimal amount of extra work for the fourth-order

method when the six-stage fifth-order method is used to advance the integration. This is because if a step is

not rejected, the evaluation of the RHS (2.1a) for the seventh stage can be used as the initial RHS evaluation

for the next step. Because the seventh stage is used as the first stage of the next step and would have to be

evaluated anyways, when a step is not rejected, the effective number of stages of the DP5(4)6(7) method is

six.

The construction of DP5(4)6(7) presented here is based on the original paper by Dormand and Prince [47]

and this discussion in Hairer et al. [72, pgs.178–179]. Unlike the case for RKF4(5)6(6) where finding b̂ 6= b

required careful analysis, the b̂ vector for the seven-stage fourth-order method is always distinct from the

b vector for the six-stage fifth-order method because b7 = 0 and b̂7 6= 0, making the method construction

more straightforward. This easier construction procedure also allows the explicit use of the D(1) simpli-

fying assumptions (2.44c) along with the C(2) and C(3) simplifying assumptions (2.44b). The quadrature
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conditions (2.44a) can be solved for the b vector by solving the linear system



1 1 1 1 1 1

0 c2 c3 c4 c5 c6

0 c22 c23 c24 c25 c26

0 c32 c33 c34 c35 c36

0 c42 c43 c44 c45 c46





b1

0

b3

b4

b5

b6


=



1

1
2

1
3

1
4

1
5


,

in an identical procedure to that described in Section 2.7.1. Like the RKF4(5)6(6) method (2.78), satisfying

the C(2) and C(3) simplifying assumptions (2.44b) simultaneously requires c3 = 3
2c2 (2.71), and this allows

immediately finding a3,2, a4,2, a4,3 from


c2 0 0

c22 0 0

0 c2 c3

0 c22 c23



a3,2

a4,2

a4,3

 =



c23
2

c33
2

c24
2

c34
3

 .

Using (2.66) with j = 2 allows a5,2, a6,2 to be found by solving

 b5 b6

b5c5 b6c6

a5,2

a6,2

 =

−(∑4
i=3 biai,2

)
+ b2(1− c2)

−
∑4
i=3 biciai,2

 ,

using the now-known ai,j quantities for the RHS. Using (2.67) and (2.44b) with i = 5 allows a5,3, a5,4 to be

found by solving 0 b5(1− c5)c4(c4 − c3)

c3 c4

a5,3

a5,4

 =

−∑5
i=3 bi(1− ci)ai,2c2(c2 − c3) + 1

60 −
c3
24

−(a5,2c2) +
c25
2

 ,

using the now-known ai,j quantities for the RHS. Using (2.44c) with j = 3, 4, 5 allows a6,3, a6,4, a6,5 to be

found by solving 
b6 0 0

0 b6 0

0 0 b6



a6,3

a6,4

a6,5

 =


−
(∑5

i=1 biai,3

)
+ b3(1− c3)

−
(∑5

i=1 biai,4

)
+ b4(1− c4)

−
(∑5

i=1 biai,5

)
+ b5(1− c5)

 ,

using the now-known ai,j quantities for the RHS. Finally using (2.35) allows a2,1, a3,1, a4,1, a5,1, a6,1 to be
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found by solving 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





a2,1

a3,1

a4,1

a5,1

a6,1


=



c2

−a3,2 + c3

−
∑3
i=2 a4,i + c4

−
∑4
i=2 a5,i + c5

−
∑6
i=2 a6,i + c6


,

because all the ai,j quantities outside of the first column of the A matrix are now known.

The published Butcher tableau for the well-known DP5(4)6(7) ERK method is given by

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

− 56
15

32
9

8
9

19372
6561

− 25360
2187

64448
6561

− 212
729

1 9017
3168

− 355
33

46732
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

− 2187
6784

11
84

b 35
384

0 500
1113

125
192

− 2187
6784

11
84

0

b̂ 5179
57600

0 7561
16695

393
640
− 92097

339200
187
2100

1
40

(2.79)

for which Dormand and Prince use the notation RK5(4)7FM. The free parameters for the family described

in this subsection, including (2.79) and the two additional published pairs described in the next subsection,

are c2, c4, c5 along with b̂7 6= 0 as an additional free parameter for the fourth-order method.

2.7.4 Other ERK pairs in the DP5(4)6(7) family

The DP5(4)6(7) method is not the only specific Butcher tableau (2.51) that Dormand and Prince published

using the DP5(4)6(7) family. In the same paper [47] that the DP5(4)6(7) method was presented, Dormand

and Prince gave another 5(4)6(7) ERK pair with a Butcher tableau of

0

2
9

2
9

1
3

1
12

1
4

5
9

55
324
− 25

108
50
81

2
3

83
330
− 13

22
61
60

9
110

1 − 19
28

9
4

1
7
− 27

7
22
7

1 19
200

0 3
5
− 243

400
33
40

7
80

b 19
200

0 3
5
− 243

400
33
40

7
80

0

b̂ 431
5000

0 333
500
− 7857

10000
957
1000

193
2000
− 1

50

(2.80)
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for which they use the notation RK5(4)7FS [47] but which in this thesis is referred to as the DP5(4)S6(7)

pair. The stability region of DP5(4)S6(7) (2.80) is given in Figure 2.15, and is larger than the one for

DP5(4)6(7) (2.79) given by Figure 2.14.

In a followup paper in 1986 [48], Dormand and Prince revisited their coefficient selection process and gave

another 5(4)6(7) ERK pair with a Butcher tableau of

0

1
5

1
5

3
10

3
40

9
40

6
13

264
2197

− 90
2197

840
2197

2
3

932
3645

− 14
27

3256
5103

7436
25515

1 − 367
513

30
19

9940
5643

− 29575
8208

6615
3344

1 35
432

0 8500
14553

− 28561
84672

405
704

19
196

b 35
342

0 8500
14553

28561
84672

405
704

19
196

0

b̂ 11
108

0 6250
14553

− 2197
21168

81
176

171
1960

1
40

(2.81)

for which they use the notation RK5(4)7FC [48] but which in this thesis is referred to as the DP5(4)C6(7)

pair. The stability region of DP5(4)C6(7) (2.81) is given by Figure 2.81 and represents a compromise be-

tween the stability region size of DP5(4)6(7) (2.79) and DP5(4)S6(7) (2.80). Dormand and Prince found that

DP5(4)C6(7) (2.81) often gave better overall performance despite a leading error coefficient (2.54) nearly four

times the size of the DP5(4)6(7) pair (2.79) [47, 48].

2.7.5 A Dormand–Prince 5(4)6(6) ERK pair

The DP5(4)M6(6) pair by Dormand and Prince [47] is given by the Butcher tableau

0

1
5

1
5

3
10

3
40

9
40

3
5

3
10
− 9

10
6
5

2
3

226
729
− 25

27
880
729

55
729

1 − 181
270

5
2
− 266

297
− 91

27
189
55

b 19
216

0 1000
2079

− 125
216

81
88

5
56

b̂ 31
540

0 190
297
− 145

108
351
220

1
20

(2.82)

which was originally published in the same paper as DP5(4)6(7) (2.79). The original notation used by

Dormand and Prince for the DP5(4)M6(6) method (2.82) is RK5(4)6M. Like the DP5(4)6(7) method (2.79),

the DP5(4)M6(6) method (2.82) explicitly uses the C(2) and C(3) simplifying assumptions (2.44b) as well

as the D(1) simplifying assumption (2.44c). The only difference in method construction for a 5(4)6(6) ERK
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pair such as the DP5(4)M6(6) method (2.82) as compared to a 5(4)6(7) ERK pair, such as the DP5(4)6(7)

method (2.79), is that the former requires a condition for singularity of a linear system that is similar to that

seen constructing RKF4(5)6(6) (2.78), which ensures that the system (2.74) is singular. The specifics of the

construction of the DP5(4)M6(6) method (2.82) can be found in the original paper that also presented the

DP5(4)6(7) method (2.79) [47].

2.7.6 The Cash–Karp 5(4)6(6) ERK pair

The CK4(5)6(6) pair by Cash and Karp [30] is given by the Butcher tableau

0

1
5

1
5

3
10

3
40

9
40

3
5

3
10
− 9

10
6
5

1 − 11
54

5
2

70
27

35
27

7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

b 37
378

0 250
621

125
594

0 512
1771

b̂ 2825
27648

0 18575
48384

13525
55296

277
14336

1
4

(2.83)

The CK4(5)6(6) pair (2.83) is used by the commercial software package Maple as well as well IVP solvers used

by the popular open-source statistics and scientific computing platform R [114]. Although the construction

procedure was not explicitly detailed by Cash and Karp, a quick calculation shows that the CK4(5)6(6) pair

satisfies the C(2) and C(3) simplifying assumptions (2.44b) in its construction as well as the D(1) simplifying

assumption (2.44c) with i ∈ {3, 4, 5}.

2.7.7 The 5(4)6(7) ERK pair from Papakostas and Papageorgiou

The PP5(4)6(7) pair by Papakostas and Papageorgiou [128] is given by the Butcher tableau

0

9
40

9
40

21
64

91
1024

245
1024

17
18

2512481
1928934

− 752845
137781

1641520
321489

90
91

167600779485
95414145736

− 1480997775
200449886

17446962744
2621673509

− 4711141359
138253149944

1 502734007
269217270

6511090
829521

977303027168
139196025045

− 31502187
18516316

− 18516316
12851752535

1 47641
481950

0 9183428608
18507820275

8673642
2202775

− 2605848518
189659475

− 4389
430

b 47641
481950

0 9183428608
18507820275

8673642
2202775

− 2605848518
189659475

− 4389
430

0

b̂ 41590501
460262250

0 9282227273728
17674968362625

4486060422
2103650125

1016614753973
181124798625

3133053
181124798625

1
20

(2.84)
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The PP5(4)6(7) pair (2.84) is notable because it is a classically constructed 5(4)6 ERK pair (as opposed

to using the new construction procedures introduced in Chapter 3, which probably require a computer

algebra system) that satisfies only the C(2) simplifying assumptions (2.44b) but not the C(3) simplifying

assumptions (2.44b). Also note that the values c4 = 17
18 and c5 = 90

91 are extremely close to each other as well

as to c6 = c7 = 1; this type of nearness is suspected to sometimes cause performance issues from roundoff

error [47], despite the PP5(4)6(7) pair (2.84) having an extremely small error leading error coefficient of

A6 = 0.0000655 (2.54) that is nearly six times smaller than the DP5(4)6(7) pair (2.79) [47].
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(a) The stability region for the FE method (2.25).
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(b) The stability region for the RK4 method (2.26).

Figure 2.13: Some stability regions for simple classic ERK methods.
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Figure 2.14: The stability regions for the component methods of the DP5(4)6(7) pair (2.79). The
fifth-order method is the solid line and fourth-order method is the dashed line.
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Figure 2.15: The stability regions for the component methods of the DP5(4)S6(7) pair (2.80). The
fifth-order method is the solid line and fourth-order method is the dashed line.
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Figure 2.16: The stability regions for the component methods of the DP5(4)C6(7) pair (2.81). The
fifth-order method is the solid line and fourth-order method is the dashed line.
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Chapter 3

The complete solution of the order conditions for

six-stage fifth-order ERK methods

“The traditional problem of choosing the coefficients leads to a nonlinear algebraic jungle, to which
civilization and order were brought in the pioneering work of J.C.Butcher...”
(R. Alexander 1977)

In this chapter, solutions to the order conditions for six-stage fifth-order ERK methods and 5(4)6 ERK

pairs are found, including solutions that do not use common simplifying assumptions, especially the C(2)

simplifying assumptions (2.44b). As demonstrated in Section 2.7, the vast majority of higher-order (generally

considered to mean fifth-order or greater) ERK methods, and many other RK methods in general, have

been constructed using certain common simplifying assumptions (that generally means the C(2) and C(3)

simplifying assumptions (2.44b), see discussions in the references [47, 61, 72, 128, 190, 192, 193, 195] and

elsewhere). It has already been mentioned in Section 2.5.2 that it is shown by Cassity [32] (as well as in this

chapter) that the commonly used D(1) simplifying assumptions (2.44c) must always hold for six-stage fifth-

order ERK methods when c6 = 1. By contrast, in papers published in 1966 and 1969, Cassity [31, 32] showed

that solutions exist to the order conditions for six-stage fifth-order ERK methods that in fact do not require

the C(2) simplifying assumptions (2.44b). In this chapter, Cassity’s derivation of the complete algebraic

solution for six-stage fifth-order ERK methods [31, 32] is examined, clarified, and replicated in detail. This

includes the derivation of the constraints just described in a new explicit formulation that directly supports

implementation in software such as computer algebra systems (CASs). Note that like Cassity, this thesis

uses the terminology complete algebraic solution rather than general algebraic solution. This indicates that

all cases of the full algebraic formulation are solved and not reduced in complexity by using simplifying

assumptions (2.44), except as an additional special case. However, unlike a general solution, the complete

solution does not usually address the cases where many of the linear systems solved can be singular. Instead

of the standard simplifying assumptions, there are additional constraints specific to each case that must

be used for the families of six-stage fifth-order ERK methods and 5(4)6 ERK pairs derived from Cassity’s

work [31, 32] and these are presented in Section 3.4.

Cassity’s work [32] is the only known description of the complete algebraic solution of the six-stage fifth-

order ERK order conditions or in fact of a complete solution of any set of order conditions fifth order and

higher. Therefore, the use of this or any other higher-order complete algebraic solution to construct practical
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higher-order ERK methods and pairs without the common simplifying assumptions is a known open problem

in the study of numerical methods. The nature of the open problem is stated explicitly by Papakostas and

Papageorgiou [128] in the following passage:

“A complete characterization of the solution of the 17 order conditions for a fifth-order method
is given by Cassity [32]. However, the results of his study have not found any practical imple-
mentation. No analogous study exists for fifth-order pairs. All methods and pairs of orders five
or higher are constructed according to certain types of simplifying assumptions, applied to the
original system of order conditions.”

Constructing practical 5(4)6 ERK pairs from Cassity’s work [32], including the analogous study for fifth-order

pairs, is the specific open problem this thesis addresses.

Finding the complete solution to the six-stage fifth-order ERK order (B.1)–(B.5), including the explicit

expressions required for a fourth-order embedded method, is made possible because with appropriate variable

substitutions these order conditions can be viewed as a sequence of linear systems (with a single quadratic

equation in several cases) despite being highly non-linear. This alternate formulation of the six-stage fifth-

order ERK order conditions that can be solved as a sequence of linear systems was a significant finding

of Cassity in 1969 [32]. In addition, it is explicitly shown how to use Cassity’s formulation of the order

conditions to construct specific ERK methods, because the explicit expressions for the ERK coefficients in

terms of the free parameters and the associated construction procedure are not fully described in Cassity’s

work or addressed elsewhere in the literature. This explicit construction procedure is further extended to

embedded ERK methods and this represents the new work presented in this chapter that is not found

elsewhere in the literature.

It is also shown in Chapter 4 that the particular formulation of the order conditions as linear systems

that is introduced by Cassity and used in this thesis is well-suited to thoroughly solving and studying the

order conditions using CASs such as Sage [57]. This is in comparison to the more ad-hoc procedures that

can be found in many journal articles and textbooks such as those by Butcher [27] and Hairer et al. [72], that

allow the order conditions to be easily solved by hand and fully presented in limited space. The software tool

OCSage, which is built upon Sage [57] to study and utilizes the complete solution of these order conditions,

is further described in Chapter 4. However, the mathematics can be fully described before presenting the

software tools that are used for this study.

3.1 Review of ERK method construction without standard simpli-

fying assumptions

Cassity provides only high-level information supporting his published mathematical expressions as the ac-

tual complete solution [32] of the six-stage fifth-order ERK order conditions, with the only specific ERK

Butcher tableau (2.34) without the C(2) simplifying assumptions (2.44b) he published being from a prior

partial solution in his 1966 paper [31]. As well, there are only scant details on the procedure that might be
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used to construct an actual ERK method from the mathematical expressions provided. However, there is a

1968 abstract for a conference talk by Cassity and Steinkopff with the title “Optimization of parameters for

the complete solution of the fifth-order Runge–Kutta equations” [33] indicating that the specific procedure

for construction was known but not published. Using OCSage, the published mathematical expressions from

Cassity’s work [32] have been verified and found identical to the expressions derived in this chapter. However,

in Section 3.4.1, small extensions are found to Cassity’s published complete solution where a quadratic irra-

tionality (a square root) occurs in the situations where Cassity mentioned he purposely limited his solutions

so that the ERK coefficients would be rational expressions in the free parameters. Using modern CASs, it is

no longer necessary to be restricted to much simpler rational expressions. These small extensions are part of

the contribution this thesis makes and are not contained in Cassity’s published expressions [32] or elsewhere

in the literature.

Cassity’s work on the complete solution [32] is known to have been cited by at least 15 other studies (from

a search on Google Scholar in early 2018), and none of those citing studies constructed new ERK methods

with, or otherwise utilized, any part of his complete algebraic solution. In the time since Papakostas and

Papageorgiou [128] published the comment given above, two other studies that claim to give numerical

solutions to higher-order ERK order conditions that do not use the C(2) simplifying assumptions (2.44b)

have appeared [99, 183]; however neither are based on either Cassity’s work [31, 32] or another complete

algebraic solution of the ERK order conditions. Cassity’s partial algebraic solution and the two other studies

are described in the following papers:

• Cassity [31] in 1966 gave a complete solution to a restricted version of the six-stage fifth-order ERK order

conditions with b2 = 0 that is derived in full in Section 3.3. This restricted solution with b2 = 0 encom-

passes six-stage fifth-order ERK methods constructed using the C(2) simplifying assumptions (2.44b)

plus an additional family without the C(2) simplifying assumptions (2.44b) that also has b2 = 0. Cassity

also gave a partial solution to the six-stage fifth-order ERK order conditions with b2 6= 0 and presented

a single ERK method with b2 6= 0 that does not use the C(2) simplifying assumptions (2.44b) based

on this partial solution. Note that Verner does present this single tableau with b2 6= 0 in a technical

report [191], but it is taken verbatim from Cassity’s 1966 paper [31] and not used further. However,

this ERK method with b2 6= 0 was not subject to the refinements necessary for practical usage and it

was not indicated that it was ever used to solve any IVPs. The author has not found the form of this

partial complete solution to the six-stage fifth-order order conditions useful for constructing practical

ERK methods (it involves solving unnecessarily difficult equations that are found from the expansion

of determinants into degree-sixteen polynomials, where it is not obvious how to explicitly find the real

(non-complex) solutions [31]). The formulation of the complete solution in Section 3.4 from Cassity’s

1969 paper [32] means it is not necessary to consider this partial complete solution any further.

• Tsitouras [182, 183] uses an evolutionary optimization method (differential evolution) along with a

symbolic/numeric solution process to solve the order conditions and generate many candidate 5(4)6
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ERK pairs. However, there are few details, such as supporting characteristic numbers, as to why the

two specific embedded pairs presented were selected, the extent to which the complete solution space

of the system solved was explored using his symbolic/numeric techniques, or how to build upon the

research.

In addition, the published coefficients of the embedded ERK pairs in Tsitouras’ 2011 journal article [183]

do not satisfy the appropriate order conditions at all, and thus are incorrect and unusable. However, it is

highly likely this is just a transcription error. Coefficients that satisfy the appropriate order conditions

to about the magnitude of 64-bit unit roundoff appear for a different ERK pair of the same family in

a 2009 conference paper also published by Tsitouras [182]. Corrected and higher precision coefficients

for the ERK pair presented Tsitouras’ 2011 paper [183] have been published online by Peter Stone.1

It should be further noted that in the course of this thesis work, the author (Andrew Kroshko) has

found the pairs given by Tsitouras (both the original coefficients and those corrected by Peter Stone)

cannot exist with exact coefficients (in terms of rational numbers, algebraic numbers, or any other

analytic expressions); this is despite satisfying the order conditions (2.43) to at least approximately the

magnitude of 64-bit unit roundoff, the specifics of these issues are further addressed in Section 4.15.1.

In fact, the residuals of the order conditions (and other properties, such as determinants that must be

zero) are significantly greater than the values of similar residuals from when the coefficients of methods

such as DP5(4)6(7) (2.78) and RKF4(5)6(6) (2.79) are converted to floating-point numbers. A more

detailed discussion of how Tsitouras’ pairs compare to the families constructed in this chapter is given

in Section 4.15.1.

• Khashin [99] uses a symbolic/numeric approach to solve ERK order conditions and constructs higher-

order ERK methods that do not use the C(2) simplifying assumptions (2.44b). However, no embedded

pairs are constructed, the fifth-order ERK case is not addressed, the study is limited to ERK methods

of orders higher than but not including fifth order, and no discussion of the performance of how the

new methods performed solving IVPs was included. Due to a similar use of numerical optimization in a

symbolic/numeric solution process to Tsitouras’ work [182, 183], it is likely that embedded pairs based

on Khashin’s ERK methods would have similar issues to Tsitouras’ ERK methods.

Although the overall approach to constructing ERK methods used in this thesis could be called a symbol-

ic/numeric approach, it is different from the symbolic/numeric approaches described and named as such by

Tsitouras [182, 183] and Khashin [99]. In this thesis, the order conditions are solved with a purely symbolic

(algebraic) approach, giving all calculated coefficients as explicit expressions of the free parameters (a process

described in this chapter), after which a search of the coefficient space of the free parameters is done using

numerical computation (described in Chapter 4) to find good candidate formulae for a particular family.

1Peter Stone was a mathematics professor at Vancouver Island University who has since retired. He has not published
his calculations related to Tsitouras’ methods (and many others) beyond his personal website. The author of this thesis
(Andrew Kroshko) did similar calculations for both correcting and finding Tsitouras’ pairs to higher precision, but Peter Stone’s
calculations give much lower residuals.
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The advantage of the process used in this thesis is that it allows complete and systematic searches that can

completely characterize the space of free parameters to whatever precision is desired (at least for 5(4)6 ERK

pairs), and every solution, even if it must be approximated by floating-point numbers for practical imple-

mentations, can be made as near as floating-point tolerance allows to exactly satisfying the order conditions.

Arbitrary-precision arithmetic provided by Sage is used for the final coefficients of the methods presented

in this thesis. This ensures that all coefficients are found as accurately as possible and that residuals from

checking the order conditions are typically much smaller than unit roundoff for 64-bit floating-point numbers.

3.2 Variable substitutions and condensed matrix form

The mathematical notation used throughout this thesis is chosen to be consistent with the modern literature

on RK methods, which in turn is based on notation commonly attributed to Butcher [25]. Much of the

notation in Cassity’s work [31, 32] on the complete solution of the order conditions for six-stage fifth-order

ERK methods differs from modern notation. For example, Cassity refers to the A matrix from the Butcher

tableau (2.34) as c, the b vector from the Butcher tableau (2.34) as R, and the c vector from the Butcher

tableau (2.34) as a. However, where no equivalent standard notation for a concept exists other than Cassity’s

original work and there are no conflicts, the original notation has been preserved for clarity and continuity

with the original work, e.g., the multipliers given by (3.28).

3.2.1 Variable substitutions

Common variable substitutions used when finding the complete solution of the order conditions for six-stage

fifth-order ERK methods are given by

pi =

s∑
j=1

ai,j cj , (3.1a)

qi =

s∑
j=1

ai,j c
2
j , (3.1b)

ri =

s∑
j=1

bj aj,i, (3.1c)

si =

s∑
j=1

bj cj aj,i,
2 (3.1d)

2The s vector with si components is a different variable from the number of stages s.
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with additional corresponding substitutions given by

Pi =

s∑
j=1

ai,j cj −
1

2
ci, (3.2a)

Qi =

s∑
j=1

ai,j c
2
j −

1

3
c2i , (3.2b)

Ri =

s∑
j=1

bj aj,i − bi(1− ci), (3.2c)

Si =

s∑
j=1

bj cj aj,i −
1

2
bi(1− c2i ). (3.2d)

The variable substitutions given by (3.1) and (3.2) were originally those used by Butcher to prove the non-

existence of a five-stage fifth-order ERK method [25]. The variable substitutions (3.1) and (3.2), as well as

some special cases of them, are the ones used by Cassity [31, 32] and in this chapter to eliminate the extreme

non-linearity of the six-stage fifth-order ERK order conditions and find the complete solution. As mentioned

in Section 2.5.2, the row-sum conditions given by (2.35) are always assumed in this thesis as well.

In this chapter, the notation b̃ = {b3, b4, b5, b6}, c̃ = {c3, c4, c5, c6}, p̃ = {p3, p4, p5, p6}, and P̃ =

{P3, P4, P5, P6} are used for certain subsets of vectors in the Butcher tableau (2.34) or the substitutions

given by (3.1) and (3.2).

3.2.2 Condensed matrix form

As already mentioned, although the order conditions for fifth-order ERK (B.1)–(B.5) are highly non-linear

and difficult to solve as explicit families, an observation commonly made in the literature (see discussions in

the references [25, 47, 61, 128, 190, 192, 193, 195] and elsewhere) including popular texts [27, 72, 73], with

statements such as the “non-linear algebraic jungle” used in the context of closely related IRK methods (see

the references [1][73, pgs.91][108, pgs.179–182]). Part of a decomposition of the solution of multi-variate

polynomials can be represented as the solution of single-variable polynomials, and if these single variable

polynomials are greater than degree five, the classic Abel–Ruffini theorem indicates that there may be solu-

tions that are not expressible in radicals, much less as rational functions [41, pgs.28–29]. Therefore, given

the importance of RK order conditions, it is fortunate they have a solution in radicals even at higher orders

and it is even more fortunate a complete solution is available to an important system such as the six-stage

fifth-order ERK order conditions.

Despite the complexities of solving general multi-variate systems of polynomials, the procedure outlined

by Cassity [32] along with appropriate variable substitutions (3.1) allows repeated expressions to be collected.

For six-stage fifth-order ERK methods, the solution given by Cassity allows all coefficients to be given either

as rational functions of the free parameters or for 3 of the 6 solution cases described in Section 3.4.1 requires

a single quadratic irrationality (square root). In Section 3.4.1, new work gives the complete solution of two
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of the three solution cases requiring quadratic irrationality that were given by Cassity [32] only as restricted

cases that had a solution in terms of rational functions. Cassity mentions knowingly applying restrictions

to simplify these cases [32]. However, this makes his 1969 paper on the complete solution of the six-stage

fifth-order order conditions incomplete.

In order to illustrate the patterns in the order conditions that allow their complete solution, with the

variable substitutions used by Luther and Konen [113] that were also used by Cassity [31] in his 1966 paper

to reformulate the order conditions, observe the patterns in the order conditions (B.1)–(B.5) for six-stage

fifth-order ERK methods when written out using the substitutions (3.1). These reformulations and other

similar reformulations of the order conditions are critical to finding the complete solution to the six-stage

fifth-order ERK order conditions.

Taking advantage of the patterns in the order conditions, a formulation is used that is known as the

condensed matrix form (CMF), which is a term currently used exclusively by Cassity [32] and in this thesis.

CMF allows the order conditions to be analyzed and solved as a sequence of linear systems, which easily

accommodates the cases requiring a quadratic irrationality (square root) mentioned above. Due to the well-

known and easily applied results on the existence and uniqueness of solutions for linear systems, this allows

the complete solution (and by extension the general solution if desired) to be found. Because the concept of

CMF is not formally defined outside of the extremely limited body of work mentioned, all equations involving

matrices given in this chapter are in CMF, and the particulars are introduced in the context of the derivation

of the complete solution for ERK methods as this chapter unfolds. A more formal definition must wait

for future work on more systems of order conditions other than just the six-stage fifth-order ERK methods

discussed in this thesis.

3.3 Complete solution of a restricted system of six-stage fifth-order

ERK order conditions with b2 = 0

The complete solution of the six-stage fifth-order ERK order conditions with the restriction b2 = 0 was first

described by Cassity in 1966 [31]. This section follows Cassity’s treatment closely, except that the term

CMF was introduced by Cassity only in 1969 [32]; thus the term CMF is not used in the original work on

the restricted system from 1966 [31] but is used in this section where it would have been appropriate in the

original work. At the end of this section, new work is presented that extends this complete solution of the

restricted system with b2 = 0 to embedded pairs and includes families that are generalizations of the families

upon which the popular RKF4(5)6(6) method (2.78) and DP5(4) method (2.79) are based.

A summary of the constructed families with b2 = 0, free parameters, and examples of Butcher tableaux (2.34)

are given in Table 3.1 for single ERK methods and Table 3.2 for embedded pairs. For comparison purposes,

the constructed families are again summarized in the analogous tables for the complete solution with b2 6= 0

that is covered in Section 3.4, with Table 3.3 for single ERK methods and Table 3.4 for embedded pairs.
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Although the unrestricted complete solution with b2 6= 0 is discussed in the next section, the C(2)

simplifying assumptions (2.44b) and other solutions with b2 = 0 occur as a singularity of the unrestricted

complete solution covered in Section 3.4. This requires a special case of the more complicated Cases V and VI

(see Section 3.4.1) of the complete solution with b2 6= 0. Because the restricted case with b2 = 0 appears as

an immediately obvious special case that was published first, has lower complexity, and due to the continued

importance of RK methods constructed with the C(2) simplifying assumptions (2.44b), the restricted system

with b2 = 0 is addressed separately and before the complete solution.

3.3.1 Consistency of the quadrature conditions and non-branching conditions

of height two

Completely solving the six-stage fifth-order order conditions with b2 = 0 requires analyzing and solving

several linear systems in sequence, which helps motivate the CMF required for finding the complete solution

with b2 6= 0 in the next section. The condition b2 = 0 is shown in Section 2.7.1 to be required by the C(2)

simplifying assumptions, but following Cassity’s paper [31] in this section it is shown the converse is not true,

i.e., b2 = 0 does not require the C(2) simplifying assumptions (2.44b).

Consider the quadrature conditions (B.1), i.e., τ , [τ ], [τ2], [τ3], [τ4], required for six-stage fifth-order ERK

with b2 = 0 that are given by the linear system

1 1 1 1 1

0 c3 c4 c5 c6

0 c23 c24 c25 c26

0 c33 c34 c35 c36

0 c43 c44 c45 c46





b1

b3

b4

b5

b6


=



1

1
2

1
3

1
4

1
5


, (3.3)

where the first row is obviously linearly independent of the other rows and can be largely ignored for analyzing

ERK construction based on the restricted system. In this thesis, the components of the c vector are always

assumed to be distinct, and this implies that the rows corresponding to the quadrature conditions are linearly

independent; observe that the determinant given by (C.4) is for a matrix that matches the lower four rows

of (3.3) and that this determinant must be non-zero when the components of the c̃ vector are assumed to

be distinct and non-zero. This non-zero determinant implies that the b vector is completely determined by

the five equations in five variables of (3.3) when the components of the c vector are distinct. The existence

of six-stage fifth-order ERK methods with non-distinct c components has been established by Konen and

Luther [102]. However, no specific ERK methods with non-distinct c components are known from either

their work or the general literature, and the case of constructing actual six-stage fifth-order ERK methods

with non-distinct c components is not considered further in this thesis and remains an open problem.

Many of the explicit expressions and constraints that arise from the construction of ERK methods follow

patterns involving rational functions of algebraic expressions, such as symmetric polynomials and Vander-
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monde determinants (C.2) in the free parameters (that are mainly but not exclusively the components of

the c vector). In the case of (3.3), explicit expressions for the b̃ vector follow this form. Methodologies

suitable for finding the appropriate rational functions in terms of components of the c vector are to either use

Cramer’s rule [6, pgs.111] with the relations (C.5) to calculate determinants of the form (C.6), or Gaussian

elimination [6, pg.8] in order to solve for the b̃ vector from rows 2–5 of (3.3). Either methodology yields

b3 =

(
1

2
c4c5c6 −

1

3
(c4c5 + c4c6 + c5c6) +

1

4
(c4 + c5 + c6)− 1

5

)
∆456

∆3456
,

b4 =

(
1

2
c3c5c6 −

1

3
(c3c5 + c3c6 + c5c6) +

1

4
(c3 + c5 + c6)− 1

5

)
∆356

∆3456
,

b5 =

(
1

2
c3c4c6 −

1

3
(c3c4 + c4c5 + c4c6) +

1

4
(c3 + c4 + c6)− 1

5

)
∆346

∆3456
,

b6 =

(
1

2
c3c4c5 −

1

3
(c3c4 + c3c5 + c4c5) +

1

4
(c3 + c4 + c5)− 1

5

)
∆345

∆3456
, (3.4)

where ∆ijk and ∆ijkl are Vandermonde determinants defined in Appendix C by (C.7) that can be used to

simplify the expression ∆345

∆3456
to match the form of the expressions given by Cassity [31]. The values of b̃

from (3.4) now uniquely determine b1 from the order condition corresponding to τ .

Now that the quadrature conditions (3.3) have been satisfied, consider the linear system with the quadra-

ture conditions (3.3) as the upper sub-matrix and the non-branching conditions of height two (B.2), i.e., [τ ],

[τ2], [τ3], [τ4], [[τ ]], [τ [τ ]], [τ2[τ ]], [[τ ]2], given by



0 c3 c4 c5 c6

0 c23 c24 c25 c26

0 c33 c34 c35 c36

0 c43 c44 c45 c46

0 p3 p4 p5 p6

0 c3p3 c4p4 c5p5 c6p6

0 c23p3 c24p4 c25p5 c26p6

0 p2
3 p2

4 p2
5 p2

6




b3

b4

b5

b6

 =



1
2

1
3

1
4

1
5

1
6

1
8

1
10

1
20



, (3.5)

where it was just seen that the b̃ vector is completely determined by the upper sub-matrix of (3.5), and this

allows the consistency of the lower sub-matrix of (3.5) to be examined separately. Consider the equations

represented by the lower sub-matrix of (3.5) with the now-known values of the b̃ vector multiplied with the

RHS coefficient matrix and with the p̃ vector taken out as the vector of unknowns. This gives the linear
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system 
b3 b4 b5 b6

b3c3 b4c4 b5c5 b6c6

b3c
2
3 b4c

2
4 b5c

2
5 b6c

2
6

b3p3 b4p4 b5p5 b6p6




p3

p4

p5

p6

 =


1
6

1
8

1
10

1
20

 . (3.6)

An issue with using (3.6) directly to determine the consistency of (3.5) is that p̃ appears linearly only in the

first three equations but quadratically in the last equation. Therefore, (3.6) is not yet a linear system with

p̃ as the unknown vector. To address this, adding linear combinations of the other rows of (3.5) (multiplied

out with the already-determined b̃ vector) to rows of the lower sub-matrix of (3.5) (also multiplied with the

already-determined b̃ vector) can be used to find an equivalent homogeneous linear system with the desirable

unknowns (the p̃ vector) only appearing linearly. To find this homogeneous linear system by using (3.5),

subtract 1
2 times rows 3–5 from rows 6–9 respectively and 1

4 times row 5 from row 10 to yield an equivalent

system to (3.6) in terms of the P̃ vector defined in (3.2) that can be simplified to


b3 b4 b5 b6

b3 c3 b4 c4 b5 c5 b6 c6

b3 c
2
3 b4 c

2
4 b5 c

2
5 b6 c

2
6

b3 (P3 + c23) b4 (P4 + c24) b5(P5 + c25) b6(P6 + c26)




P3

P4

P5

P6

 =


0

0

0

0

 , (3.7)

where further subtracting the third row from the fourth row of (3.7) and factoring out the P̃ vector gives


b3 b4 b5 b6

b3 c3 b4 c4 b5 c5 b6 c6

b3 c
2
3 b4 c

2
4 b5 c

2
5 b6 c

2
6

b3 p3 b4 p4 b5 p5 b6 p6




P3

P4

P5

P6

 =


0

0

0

0

 , (3.8)

where for this homogeneous linear system to be consistent, the conditions that must hold is either (or both

of):

1. The determinant of the RHS coefficient matrix of (3.8) vanishes, allowing P̃ 6= 0; hence the C(2)

simplifying assumptions (2.44b) are not satisfied. With the determinant of the RHS vanishing but

P̃ 6= 0, this is the “nontrivial” solution [163, pg.60] of the homogeneous linear system (3.8).

2. The homogeneous linear system (3.8) is satisfied by the “trivial” solution [163, pg.43], i.e., P̃ = 0,

which can easily be seen from (3.2) to imply the C(2) simplifying assumptions (2.44b). Note that the

determinant of the RHS coefficient matrix is also always zero in this case because the C(2) simpli-

fying assumptions (2.44b) imply row 4 is 1
2 times row 3 of (3.8) and hence linearly dependent. The

C(2) simplifying assumptions (2.44b) can therefore be seen as the “trivial” solution [163, pg.43] of the
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homogeneous linear system (3.8).

Considering the first case (without the C(2) simplifying assumptions (2.44b) satisfied) and with the deter-

minant of (3.8) as zero, factoring the b̃ vector out of the columns of (3.8) and writing this determinant as

co-factors gives an equivalent relation of

p3∆456 − p4∆356 + p5∆346 − p6∆345 = 0, (3.9)

which is linear in the p̃ vector. Note that the expression (3.9) is also satisfied when the C(2) simplifying

assumptions (2.44b) hold; this can easily be shown by substituting pi = 1
2 c

2
i and simplifying.

With a distinct c vector, the first three rows of (3.8) are linearly independent. Note the similarity to the

rows of the quadrature conditions (3.3) (see the form of the determinant (C.4)), except for the presence of

the b̃ vector in each column that can be factored out. Therefore, the condition (3.9) for a zero determinant

of (3.8) implies the last row of (3.5) is linearly dependent on some or all of the other three rows. This result

also holds for the linear system (3.6) because only matrix operations that result in an equivalent system are

used to get to (3.8). Hence, due to the linear dependence of the last row of (3.5) and (3.6), this row and the

corresponding order condition [[τ ]2] can be replaced by (3.9) giving the linear system


b3 b4 b5 b6

b3c3 b4c4 b5c5 b6c6

b3c
2
3 b4c

2
4 b5c

2
5 b6c

2
6

∆456 −∆356 ∆346 −∆345




p3

p4

p5

p6

 =


1
6

1
8

1
10

0

 , (3.10)

as equivalent to (3.6). The p̃ vector now appears linearly in all equations of (3.10), where if the determinant

of the RHS coefficient matrix is nonzero and p̃ is solved for, the solution corresponds to P̃ = 0, i.e., the C(2)

simplifying assumptions (2.44b). However, if the determinant of the coefficient matrix of (3.10) is zero, i.e.,

the rank of the coefficient matrix is 3, this allows one of the four components of the p̃ vector to be a free

parameter independent of the components of the c̃ vector. With the b̃ vector known explicitly in terms of

the c̃ vector (3.4), this condition for a zero determinant of the coefficient matrix of (3.10) can be found and

with some simplification is given as

8

9
c3c4c5c6

−1

2
(c3c4c5 + c3c4c6 + c3c5c6 + c4c5c6)

+
1

3
(c3c4 + c3c5 + c3c6 + c4c5 + c4c6 + c5c6)

−1

4
(c3 + c4 + c5 + c6) +

1

5
= 0. (3.11)

Note that this condition is generally not satisfied when the C(2) simplifying assumptions (2.44b) hold because

81



the RHS coefficient matrices are different between (3.8) (which always has a zero determinant even for the

trivial solution) and (3.10) (which only requires a zero determinant when the non-trivial solution of (3.8) is

considered). Note also that either solution gives the same number of free parameters; the expression (3.11)

requires a constraint on one of c3, c4, c5, c6 but allows one of p3, p4, p5, p6 to be a free parameter.

3.3.2 Solving the taller trees

After the consistency of the quadrature conditions and non-branching conditions of height two (3.5) is es-

tablished, continuing to follow the original work by Cassity [31] allows the explicit solution of the remaining

order conditions. Consider the specific variable substitutions given by

r∗3 = b4 a4,3 + b5 a5,3 + b6 a6,3, (3.12a)

s∗3 = b4c4a4,3 + b5 c5 a5,3 + b6 c6 a6,3, (3.12b)

r∗4 = b5a5,4, (3.12c)

r†4 = b6a6,4, (3.12d)

r∗5 = b6a6,5, (3.12e)

which are the variable substitutions used by Cassity [31], but using notation that follows the more general-

purpose variable substitutions defined by (3.1).

Consider the CMF consisting of the order conditions from (B.3) and (B.4) given by



c3(c2 − c3) 0 c4(c2 − c4) c4(c2 − c4) c5(c2 − c5)

c23(c2 − c3) 0 c24(c2 − c4) c24(c2 − c4) c25(c2 − c5)

0 c3(c2 − c3) c5c4(c2 − c4) c6c4(c2 − c4) c5c6(c2 − c5)

p3 0 p4 p4 p5

0 p3 p4c5 p4c6 p5c6





r∗3

s∗3

r∗4

r†4

r∗5


=



1
6c2 −

1
12

1
12c2 −

1
20

1
8c2 −

1
15

1
24

1
30


, (3.13)

where row 1 is derived from subtracting (B.3a) from c2 times (B.2a) to get an expression c2[[τ ]] − [[τ2]]

equivalent to (B.3a), row 2 is derived from subtracting (B.4d) from c2 times (B.3a) to get an expression

c2[[τ2]]− [[τ3]] equivalent to (B.4d), row 3 is derived from subtracting (B.3b) from c2 times (B.2b) to get an

expression c2[τ [τ ]]− [τ [τ2]] equivalent to (B.3b), row 4 is (B.4a) [[[τ ]]], and row 5 is (B.4b) [τ [[τ ]]].

It can now be observed from (3.13) that the “condensed” in CMF is likely named as such because sub-

tracting order conditions and multiplying by c2 to find equivalent order conditions eliminates certain columns

in the resulting linear system (by eliminating an extra column on the left of (3.13) that would be present if

this multiplying and subtracting with c2 was not done); this is seen to be particularly important in the next

section where b2 6= 0.

Cassity originally used the sum of the order conditions [τ [[τ ]]] + [[τ [τ2]]] = 7
120 for row 5 when presenting
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the analogous system to (3.13) [31]. This is because many authors from the era Cassity published in often

only derived the order conditions for RK methods when used to solve a single ODE rather than a system of

ODEs (2.1a) [31, 102, 113]. This is understandable because working with only single ODEs gives expressions

for elementary differentials that are much simpler to work with than daunting expressions such as (2.36) that

arise from finding the elementary differentials for systems of ODEs. Analyzing single ODEs gives the correct

order conditions for systems of ODEs up to order four [27, pgs.148–149]. However, for a single ODE, the

fifth-order conditions [τ [[τ ]]] and [[τ [τ2]]] are just permutations of identical expressions that allows them to

be treated as a single order condition as Cassity did in his 1966 paper [31], whereas for systems of ODEs

they are distinct expressions [27, pgs.148–149]. However, when c6 = 1, the order condition [[τ [τ2]]] is satisfied

when [τ2[τ ]] from row 7 of (3.5) is also satisfied, because it will be shown in the next section that the D(1)

simplifying assumptions (2.44c) must hold for six-stage fifth-order ERK methods when c6 = 1. Cassity also

notes at the end of his 1969 paper [32], which only uses the order conditions suitable for systems of ODEs,

that one of the six-stage fifth-order ERK methods that he derived with c6 6= 1 in his 1966 paper [31] is only

valid for solving a single ODE rather than a system.

Even if only the two elementary differentials corresponding to [τ [[τ ]]] and [[τ [τ2]]] require considering

systems of ODEs to give correct order conditions for fifth-order RK methods, higher-order elementary differ-

entials are important for finding the error coefficients (2.47) and other characteristic numbers (2.56) required

to construct efficient RK methods. The set of elementary differentials from a single ODE and systems of

ODEs become increasingly divergent with higher order [27, pgs.148–149]. Therefore, analyzing elementary

differentials for systems of ODEs is extremely important despite having to work with daunting expressions

such as (2.36) if accurate values of higher-order error coefficients are to be found. In line with modern practice,

in this thesis only elementary differentials and RK methods suitable for systems of ODEs are considered.

Because the p vector is already known from (3.5), the equations (3.13) can be solved for the variables de-

fined by (3.12), i.e., r∗3 , s∗3, r∗4 , r
†
4, r
∗
5 . Excluding the first column of the A matrix of the Butcher tableau (2.34)

that is solved afterwards by applying (2.35), the 10 remaining non-zero components of A can now be given

by 9 equations derived by using the definition of the four non-zero components of the p vector (3.1) and the

expressions for the special variable substitutions (3.13). The necessary values of the coefficients a5,4, a6,4, a6,5

can be found immediately from solving the last three equations of (3.13). However, there are still two order

conditions remaining, [[[τ2]]] and [[[[τ ]]]]. The condition [[[τ2]]] has an equivalent expression that is a linear

equation in the still-unknown values of A when it is reformulated as the linear combination of c2[[[τ ]]]− [[[τ2]]]

to give the expression

a4,3 c3 (c2 − c3)(b5 a5,4 + b6 a6,4) + (a5,3 c3 (c2 − c3) + a5,4 c4 (c2 − c4)) a6,5 b6 =
1

24
c2 −

1

60
. (3.14)

This idea of reformulating order conditions as linear combinations with other conditions is used extensively

in the next section for the complete formulation with b2 6= 0.

Using the Sage CAS it can be found that both c2[[[τ ]]] − [[[τ2]]] and [[[[τ ]]]] contain the factor (c6 − 1),
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therefore both conditions are immediately satisfied when c6 = 1. However, without the benefit of a modern

CAS, Cassity used linear combinations of [[[[τ ]]]] (3.14) and other order conditions to rewrite [[[[τ ]]]] as

(p4 c3 (c2 − c3)− p3 c4 (c2 − c4)) b6 a6,5 a5,4 =
1

120
c3 (c2 − c3)− p3

(
1

24
c2 −

1

60

)
, (3.15)

that is also a linear equation in the still unknown values of the A matrix. When c6 6= 1 but the C(2)

simplifying assumptions (2.44b) hold, then (3.15) simplifies to

(10c23 c4 − 8c3 c4 − c3 + 2c4)(c6 − 1) = 0, (3.16)

where the left-hand factor is best chosen as a constraint on c4 if c6 6= 1. However, for the case with b2 = 0

where c6 6= 1 and the C(2) simplifying assumptions (2.44b) do not hold, there results a different expression

than (3.16) that is examined shortly. Substituting the expression for c4 (3.16) into (3.14) and solving the

resulting expression gives a constraint on the a6,3 coefficient. This constraint on a6,3 for c6 6= 1 is exactly

the constraint on a6,3 for subsequently finding a 5(4)6(6) ERK pair (the constraint for the 5(4)6(6) ERK pair

is regardless of whether c6 = 1 or c6 6= 1), which is given below by (3.21), where it can also be seen that

the constraint on c4 required for a 5(4)6(6) ERK pair regardless of the value of c6 is identical to (3.16) when

c6 6= 1.

Using linear combinations of the already-satisfied and still-unsatisfied order conditions to find equivalent

relations that are linear in some still-unknown coefficients is an important idea to solving the highly non-

linear system of order conditions as a sequence of linear systems. The author found that at least some of the

simplification and rewriting done by Cassity to find relatively simple constraints to satisfy the order conditions

continues to be necessary for the order conditions to be practically solvable, even when using a CAS. However,

there are many potential variations on the specific formulation of the expressions that he found that would

work equally well. When the expressions for the order conditions are used directly without simplifications,

even when using a CAS, simple but necessary conditions such as (3.16) are rarely obvious. Otherwise, the

output of the CAS usually remains as high-degree multi-variate systems of polynomial equations rather than

giving explicit expressions for the Butcher tableau coefficients. Despite the now-straightforward appearance

of the solution procedure, even given Cassity’s papers [31, 32] to work from, finding the sequence of steps and

expressions used to completely solve the six-stage fifth-order order conditions in this thesis was the result

of an iterative research process where the first attempts often ended with seemly unsolvable high-degree

multi-variate polynomials. Complete solutions of more complicated systems of order conditions than studied

in this thesis (for instance, for ERK order conditions higher than fifth-order) should also be possible using

CMF and CASs. However, the complexity of these higher-order order conditions will make insights analogous

to those Cassity had leading to the explicit solution of order conditions more important than ever.
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The special case of b2 = 0 and c6 6= 1 without the C(2) simplifying assumptions

When b2 = 0 and c6 6= 1 without the C(2) simplifying assumptions (2.44b), the condition (3.16) can be

simplified to

−(680c22c
2
3c4 − 120c22c

2
3 − 480c22c3c4 − 480c2c

2
3c4 + 30c22c3 + 30c2c

2
3 + 90c22c4 + 348c2c3c4 + 90c23c4+

36c2c3 − 72c2c4 − 72c3c4 − 9c2 − 9c3 + 18c4)(c2 − c3)c2(c6 − 1) = 0, (3.17)

where the first factor can be solved to give a constraint on c4. This constraint on c4 can then be back-

substituted into an expression for a6,3 found from (3.14) that is different from the expression (3.21) when

the C(2) simplifying assumptions (2.44b) are satisfied. It can be noted at this point that Cassity’s original

work [31] introduced the condition (3.11) as a second case for b2 = 0 for when the C(2) simplifying assump-

tions (2.44b) are not satisfied, but did not give (3.17) as one of the constraints or indicate that a separate

constraint was necessary.

3.3.3 Solving for the Butcher tableau A matrix

With the now-known values of p̃ from finding the consistency conditions for (3.5), the expressions (3.12), the

condition (3.14), and using a6,3 as a free parameter, the other 9 non-zero values of the A matrix outside the

first column can be found from the linear systems

1 0 0 0 0

0 c2 0 0 0

0 0 b5 0 0

0 0 0 b6 0

0 0 0 0 b6





a2,1

a3,2

a5,4

a6,4

a6,5


=



c2

p3

r∗4

r†4

r∗5


,



c2 c3 0 0 0 0

0 0 c2 c3 0 0

0 0 0 0 c2 c3

0 b4 0 b5 0 b6

0 b4c4 0 b5c5 0 b6c6





a4,2

a4,3

a5,2

a5,3

a6,2

a6,3


=



p4

p5 − a5,4c4

p6 − a6,5c5 − a6,4c4

r∗3

s∗3


.
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Finally, the first column is found from the row-sum conditions (2.35) given by


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




a3,1

a4,1

a5,1

a6,1

 =


c3 − a3,2

c4 − a4,2 − a4,3

c5 − a5,2 − a5,3 − a5,4

c6 − a6,2 − a6,3 − a6,4 − a6,5

 ,

because all the ai,j quantities outside of the first column of the A matrix are now known.

Table 3.1: Cases and free parameters for the restricted solution for six-stage fifth-order ERK methods.

Case Free parameters Subcases Example
c6 = 1, b2 = 0 with C(2) a6,3, c2, c3, c4, c5 1 (A.1)
c6 6= 1, b2 = 0 with C(2) c2, c3, c5, c6 1 (A.2)
c6 = 1, b2 = 0 w/o C(2) a6,3, c2, c3, c4, c5 1 (A.3)
c6 6= 1, b2 = 0 w/o C(2) c2, c3, c5, c6 1 (A.4)

3.3.4 Constructing the 5(4)6(6)C(2) family

The material in this subsection is part of the new work presented in this thesis and not found in Cassity’s

original work [31, 32] or elsewhere in the literature.

The classic ERK pairs that are included in the more general family discussed in this section, e.g., the

RKF4(5)6(6) method (2.78) from Section 2.7.2 and the RK5(4)6M method (2.82) described by Dormand

and Prince [47] in the same paper as DP5(4)6(7) (2.79), all use the C(3) simplifying assumptions (2.44b) in

addition to the C(2) simplifying assumptions (2.44b). This is because neither the C(2) or C(3) simplifying

assumptions (2.44b) involve the b and b̂ vectors but in combination are sufficient to simplify the order

conditions enough to be readily solved. As already discussed in Section 2.7, simplifying assumptions that

involve both the b and b̂ vectors would greatly complicate the classic approach to solving order conditions.

However, by using CMF in combination with a CAS it is possible to find the complete solution for 5(4)6

ERK pairs.

Beginning with the fourth-order quadrature conditions and non-branching order conditions of height two,

the fourth-order method of a 5(4)6(6) ERK pair only requires the order conditions corresponding to rows 1–4

and rows 6,7 of (3.5). The CMF using the order conditions up to fourth-order of τ , [τ ], [τ2], [τ3], [[τ ]], [τ [τ ]]
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is given by



1 1 1 1 1

0 c3 c4 c5 c6

0 c23 c24 c25 c26

0 c33 c34 c35 c36

0 p3 p4 p5 p6

0 c3p3 c4p4 c5p5 c6p6





b̂1

b̂3

b̂4

b̂5

b̂6


=



1

1
2

1
3

1
4

1
6

1
8


, (3.18)

where the b̂ vector must be distinct from the b vector for an effective embedded pair. It is easily seen that

the last two rows of (3.18) are automatically satisfied when the C(2) simplifying assumptions (2.44b) hold

and that this results in the LHS coefficient matrix of (3.18) being rank 4 with 5 unknowns. Therefore, one

of the components of the b̂ vector is a free parameter, arbitrarily chosen as b̂6 in this subsection.

After satisfying the order conditions contained in (3.18), there are only two order conditions remaining,

i.e., [[τ2]] and [[[τ ]]], and subtracting similarly to (3.13) to give equivalent conditions, i.e., c2[[τ ]]− [[τ2]] and

2[[[τ ]]], gives a CMF of

 (c2 − c3)c3 (c2 − c4)c4 (c2 − c5)c5

2 p3 2 p4 2 p5




r̂3

r̂4

r̂5

 =

 1
6 c2 −

1
12

1
12

 , (3.19a)

where 
b̂4 a4,3 +b̂5 a5,3 +b̂6 a6,3

+b̂5 a5,4 +b̂6 a6,4

+b̂6 a6,5

 = r̂i, i ∈ {3, 4, 5}, (3.19b)

that are a set of variable substitutions introduced fully in the next section but that are also useful for

constructing 5(4)6(6) ERK pairs in the context of the restricted system with b2 = 0.

All quantities in the definition of the r̂i vector (3.19b) are known values from the A matrix and the

solution to (3.18). Therefore, it is possible to multiply out the equations for (3.19a) (working with the

resulting equations significantly benefits from a CAS and are too large to include here) to get two conditions

that are linear in the free parameters a6,3 (a free parameter of the fifth-order method) and b̂6. However,

it can be seen that the two equations represented by (3.19a) are nearly identical except for substitution of

corresponding terms in the RHS coefficient matrix, i.e., swapping (c2 − ci)ci for 2pi, and the addition of one

term, i.e., 1
6c2, for the LHS of the first equation. Due to this similarity between the two conditions and that

the terms in the r̂ vector add the majority of the “complexity”, many terms cancel out when simultaneously

satisfying both equations. If the second equation of (3.19b) is solved for a6,3 and this expression for a6,3 is
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substituted into the first equation, after simplification using Sage [57], the resulting condition to satisfy the

first equation of (3.19a) is given by

(
60b̂6c3c4c5c6 − 60b̂6c3c4c

2
6 − 60b̂6c3c5c

2
6 − 60b̂6c4c5c

2
6 + 60b̂6c3c

3
6 + 60b̂6c4c

3
6 + 60b̂6c5c

3
6−

60b̂6c
4
6 − 30c3c4c5 + 20c3c4 + 20c3c5 + 20c4c5 − 15c3 − 15c4 − 15c5 + 12

)
(3.20a)(

10 c23c4 − 8 c3c4 − c3 + 2 c4
)

(3.20b)

(30c3c5c6 − 20c3c5 − 20c3c6 − 20c5c6 + 15c3 + 15c5 + 15c6 − 12) (3.20c)

c2(c3 − c4)(c3 − c5)(c3 − c6)c6 (3.20d)

= 0,

where this is a single equation with the factors grouped for clarity and at least one that must vanish.

Examining the factors of the constraint (3.20):

• The term (3.20a) vanishing implies b̂6 = b6; hence this violates the requirement the components of an

embedded pair be distinct for an effective error estimate. However, this is the only term of (3.20) that

contains b̂6, and if the other factors are the ones that vanish, this allows b̂6 to be a free parameter for

the fourth-order method of the embedded pair.

• The term (3.20b) vanishing is the condition already known by the first factor of (3.16) and actually

constitutes a necessary condition for a 5(4)6(6) ERK pair when b2 = 0 (even when c6 = 1, unlike the

first factor of (3.16) that is only required for the fifth-order method when c6 6= 1).

• The term (3.20c) cannot vanish because the expression appears in the denominator of many other

expressions for the coefficients.

• The terms (3.20d) cannot vanish because that would imply that some components of the c vector are

equal. However, these particular conditions cannot hold because Konen and Luther [102] have shown

these particular c vector components cannot be equal in a six-stage fifth-order ERK method. Also note

that c2 or c6 cannot vanish because this would imply an ERK method with only five stages.

After the expression (3.20) is satisfied (by the factor (3.20b)) the constraint on c4 can be substituted into

the expression for a6,3 found from the second equation of (3.19a) to provide a second restriction on a6,3 that

gives the necessary conditions for an embedded pair. These two additional restrictions to free parameters of
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six-stage fifth-order ERK method with b2 6= 0 are given explicitly as

c4 =
1
2c3

(5c23 − 4c3 + 1)
,

a6,3 =
N(c3 − c6)c6

2(10c23 − 8c3 + 1)(10c23 − 12c3 + 3)(20c3c5 − 15c3 − 10c5 + 8)(c3 − c5)c23
, (3.21)

N =
(
600c53c5c6 − 1600c43c

2
5c6 + 1000c53c

2
6 − 400c53c5 + 400c43c

2
5 − 1200c53c6 + 920c43c5c6 + 2680c33c

2
5c6

−2400c43c
2
6 + 300c53 + 320c43c5 − 520c33c

2
5 + 1950c43c6 − 2730c33c5c6 − 1580c23c

2
5c6 + 2260c33c

2
6

−400c43 + 60c33c5 + 180c23c
2
5 − 1072c33c6 + 1896c23c5c6 + 400c3c

2
5c6 − 1064c23c

2
6 + 143c33 − 55c23c5

−10c3c
2
5 + 238c23c6 − 528c3c5c6 − 40c25c6 + 252c3c

2
6 − 8c23 − 4c3c5 − 20c3c6 + 56c5c6 − 24c26

)
,

where the expression for a6,3 is also greatly simplified in comparison to the expanded second equation

of (3.19a) because the factor (3.20a) involving b̂6 that would imply b̂ = b is eliminated. By substitut-

ing in the appropriate value for c3 = 3
2c2 to accommodate the C(3) simplifying assumptions (2.44b) and

using the appropriate value for the free parameter b̂6, the appropriate expressions in this section in fact

recover the coefficients of both the RKF4(5)6(6) method (2.78) and the RK5(4)6M method (2.82).

Therefore, it has been shown that the classic condition given by (3.16) is a necessary condition to construct

a 5(4)6(6) ERK pair with the C(2) simplifying assumptions (2.44b). However, by using CMF it is not necessary

to incorporate the C(3) simplifying assumptions (2.44b), and it is possible to solve the order conditions in a

less restricted way than when the original family containing the RKF4(5)6(6) method (2.78) was constructed.

This family just constructed is referred to as the 5(4)6(6)C(2) family. The free parameters in comparison to

the classic RKF4(5)6(6) method (2.78) are given by the following tableaux:

F = RKF4(5)6(6) (2.78) free parameters (uses C(2) and C(3) simplifying assumptions (2.44b))

C = Additional free parameters for the complete solution with only the C(2) simplifying assumptions (2.44b)

X = Computed parameter

0 0 0 0 0 0 0

F X 0 0 0 0 0

C X X 0 0 0 0

X X X X 0 0 0

F X X X X 0 0

F X X X X X 0

X 0 X X X X

X 0 X X X C

The implications of the additional free parameters are discussed when performance testing in the searches

in Chapter 4 and Chapter 5. An example of a Butcher tableau without the C(3) simplifying assump-
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tions (2.44b) satisfied, in order to contrast with the RKF4(5)6(6) method (2.78) is given by (A.5), where

it can easily be seen that c3 6= 3
2c2, implying that the C(3) simplifying assumptions (2.44b) do not hold;

see (2.71).

3.3.5 Constructing the 5(4)6(7)C(2) family

The material in this subsection is part of the new work presented in this thesis and not found in Cassity’s

original work [31] or elsewhere in the literature.

The classic ERK pairs that are included in the more general family discussed in this section are the family

found by Dormand and Prince discussed in Section 2.7.3 that contains DP5(4)6(7) [47] and the family found

by Papakostas and Papageorgiou [128] containing the PP5(4)6(7) pair (2.84). The family found by Papakostas

and Papageorgiou [128] does not use the C(3) simplifying assumptions (2.44b). However, it has one less free

parameter than the family found in this subsection. This indicates that an additional advantage of using

CMF is also that it allows the maximum number of free parameters, and not just eliminating the dependence

on simplifying assumptions for construction.

The construction of the general family of 5(4)6(7) ERK pairs with the C(2) simplifying assumptions (2.44b)

follows a similar procedure to that just used to construct the family of 5(4)6(6) ERK pairs in the previous

subsection. The CMF for the quadrature conditions and non-branching conditions of height two up to fourth

order τ , [τ ], [τ2], [τ3], [[τ ]], [τ [τ ]] is given by



1 1 1 1 1 1

0 c3 c4 c5 c6 c7

0 c23 c24 c25 c26 c27

0 c33 c34 c35 c36 c37

0 p3 p4 p5 p6 p7

0 c3p3 c4p4 c5p5 c6p6 c7p7





b̂1

b̂3

b̂4

b̂5

b̂6

b̂7


=



1

1
2

1
3

1
4

1
6

1
8


, (3.22)

where c7 = 1 and p7 =
∑
bici = 1

2 because the definition of p7 (3.1) for the seventh row of the A matrix for a

5(4)6(7) ERK pair corresponds to the [τ ] order condition. The last two equations of (3.22) are automatically

satisfied because of the C(2) simplifying assumptions (2.44b), and this leaves a rank-4 linear system with

6 equations and 6 unknowns. Therefore, both b̂6 and b̂7 can be free parameters when only satisfying the

system (3.22).

Following the same procedure from Section 3.3.4, after satisfying the equations from (3.22), there are

only two order conditions left, i.e., [[τ2]] and [[[τ ]]], and subtracting similarly to (3.13) to give equivalent
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conditions, i.e., c2[[τ ]]− [[τ2]] and 2[[[τ ]]], gives a CMF of

 (c2 − c3)c3 (c2 − c4)c4 (c2 − c5)c5 (c2 − c6)c6

2 p3 2 p4 2 p5 2 p6




r̂3

r̂4

r̂5

r̂6

 =

 1
6 c2 −

1
12

1
12

 , (3.23a)

with 

b̂4 a4,3 +b̂5 a5,3 +b̂6 a6,3 +b̂7 a7,3

+b̂5 a5,4 +b̂6 a6,4 +b̂7 a7,4

+b̂6 a6,5 +b̂7 a7,5

+b̂7 a7,6


= r̂i, i ∈ {3, 4, 5, 6}, (3.23b)

where all coefficients in the definition of the r̂i vector are known expressions. Therefore, it is possible to

multiply out the equations for (3.23) (the resulting expressions are too large to include here) to get two

equations that must vanish and are linear in the free parameter a6,3 (a free parameter of the fifth-order

method) and containing terms involving b̂6 and b̂7. Following similar reasoning discussed for the analogous

case in Section 3.3.4, if the second equation of (3.23) is solved for b̂6 and this expression for b̂6 is substituted

into the first equation, after simplification using Sage [57], the resulting condition to satisfy this equation

from the first row of (3.23) is given by

(
60 a6,3c

5
3c4c5 − 60 a6,3c

4
3c

2
4c5 − 60 a6,3c

4
3c4c

2
5 + 60 a6,3c

3
3c

2
4c

2
5 − 40 a6,3c

5
3c4 + 40 a6,3c

4
3c

2
4 − 40 a6,3c

5
3c5

+40 a6,3c
4
3c4c5 + 40 a6,3c

4
3c

2
5 − 40 a6,3c

2
3c

2
4c

2
5 + 30 a6,3c

5
3 − 30 a6,3c

3
3c

2
4 − 30 a6,3c

3
3c4c5 + 20 c43c4c5

+30 a6,3c
2
3c

2
4c5 − 20 c33c

2
4c5 − 30 a6,3c

3
3c

2
5 + 30 a6,3c

2
3c4c

2
5 − 20 c33c4c

2
5 − 24 a6,3c

4
3 + 24 a6,3c

3
3c4 − 10 c43c4

+15 c33c
2
4 + 24 a6,3c

3
3c5 − 24 a6,3c

2
3c4c5 − 20 c33c4c5 + 45 c23c

2
4c5 + 60 c23c4c

2
5 − 10 c3c

2
4c

2
5 + 9 c33c4 − 31 c23c

2
4

−10 c23c
2
5 − 40 c3c4c

2
5 + 10 c24c

2
5 + 2 c33 + 17 c23c4 + 16 c3c

2
4 + 14 c23c5 + 45 c3c4c5 − 6 c24c5 + 10 c3c

2
5 − 8 c23

−45 c23c4c5 − 19 c3c
2
4c5 − 16 c3c4 − 14 c3c5 + 6 c3

)
(3.24a)

(30 c3c4c5 − 20 c3c4 − 20 c3c5 − 20 c4c5 + 15 c3 + 15 c4 + 15 c5 − 12) (3.24b)

(10 c3c4 − 5 c3 − 5 c4 + 3) (3.24c)

(10 c3c5 − 5 c3 − 5 c5 + 3) (3.24d)

b̂7 (3.24e)

c2(c3 − c4)(c3 − c5)(c3 − 1)c3 (3.24f)

= 0,

where similar to the constraint (3.20) described for 5(4)6(6) ERK pair from Section 3.3.4, the factors are
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grouped for clarity and at least one factor must vanish. Examining the factors of the constraint (3.24):

• The term (3.24a) vanishing allows solving for a constraint on the free parameter a6,3, which only appears

linearly in (3.24). This is the only term of (3.24) that can vanish and is a necessary condition.

• The terms (3.24b), (3.24c), and (3.24d) appear in the denominator of some expressions when the

components of the c vector are distinct and therefore cannot vanish.

• The term (3.24e) cannot vanish because b̂7 = 0 would imply the two methods of the embedded pair are

not distinct, or at least that the fourth-order method has six stages rather than seven. This case of a

fourth-order method with six stages was already covered above in Section 3.3.4.

• The term (3.24f) cannot vanish because this would imply that some components of the c vector are

equal. Note also that c2 cannot vanish because this would imply the fifth-order ERK method has only

five effective stages.

The free parameters in comparison to the classic DP5(4)6(7) method (2.79) are given by the following tableaux:

D = Free parameters for DP5(4)6(7) (2.79) (uses the C(2) and C(3) simplifying assumptions (2.44b))

C = Additional free parameters for the complete solution with only the C(2) simplifying assumptions (2.44b)

X = Computed parameter

0 0 0 0 0 0 0 0

D X 0 0 0 0 0 0

C X X 0 0 0 0 0

D X X X 0 0 0 0

D X X X X 0 0 0

X X X X X X 0 0

X X 0 X X X X 0

X 0 X X X X 0

X 0 X X X X D

a6,3 =− N1(c3 − 1)

2(30c3c4c5 − 20c3c4 − 20c3c5 − 20c4c5 + 15c3 + 15c4 + 15c5 − 12)(c3 − c4)(c3 − c5)c23
,

N1 =
(
20c33c4c5 − 20c23c

2
4c5 − 20c23c4c

2
5 − 10c33c4 + 15c23c

2
4 + 25c3c

2
4c5 + 40c3c4c

2
5 − 10c24c

2
5

−c23c4 − 16c3c
2
4 − 45c3c4c5 + 6c24c5 − 10c3c

2
5 + 2c23 + 16c3c4 + 14c3c5 − 6c3

)
,

b̂6 =− N2

60(10c23c4 − 8c3c4 − c3 + 2c4)(c3 − 1)(c4 − 1)(c5 − 1)
,

N2 =
(

60b̂7c
2
3c4 − 56b̂7c3c4 − 10c23c4 − 8b̂7c3 + 16b̂7c4 + 8c3c4 + c3 − 2c4

)
(30c3c4c5 − 20c3c4 − 20c3c5 − 20c4c5 + 15c3 + 15c4 + 15c5 − 12),
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It can be seen that using the CMF allows an additional free parameter over the family used to originally

construct DP5(4)6(7) (2.79). This family just constructed is referred to as the 5(4)6(7)C(2) family. An example

of a Butcher tableau without the C(3) simplifying assumptions (2.44b) satisfied, that can be contrasted with

DP5(4)6(7) (2.79) is given by (A.7), where it can easily be seen that c3 6= 3
2c2, implying that the C(3)

simplifying assumptions (2.44b) do not hold.

3.3.6 Lack of embedded pairs without C(2) simplifying assumptions and b2 = 0

Six-stage fifth-order ERK methods with b2 = 0 and without the C(2) simplifying assumptions (2.44b), i.e.,

the expression (3.11) holds, do not allow 5(4)6(6) ERK pairs or 5(4)6(7) ERK pairs. This is because when

b2 = 0 and the C(2) simplifying assumptions (2.44b) do not hold, the only possible way to satisfy the last

two conditions of (3.18) and (3.22) is with the solutions b̂6 = b6 and b̂6 = b6 with b̂7 = 0, respectively. In

Section 3.5 below, it is seen that allowing b2 6= 0 gives enough freedom to allow 5(4)6(6) ERK pairs and

5(4)6(7) ERK pairs without the C(2) simplifying assumptions (2.44b).

Table 3.2: Cases and free parameters for the restricted solution for six-stage fifth-order ERK embed-
ded pairs.

Case 6(6) free params Subcases 6(7) free params Subcases Example
c6 = 1, b2 = 0 with C(2) c2, c3, c5, b̂6 1 c2, c3, c4, c5, b̂7 1 (A.5) (A.7)
c6 6= 1, b2 = 0 with C(2) c2, c3, c5, c6, b̂6 1 No N/A (A.6)

3.4 Complete solution of six-stage fifth-order ERK order conditions

The complete solution for the six-stage fifth-order ERK conditions described in this section follows as closely

as possible the solution described by Cassity in 1969 [32], except for changes to reflect contemporary notation,

reformulations advantageous for using a CAS and to support implementations in software, and for additions to

the mathematics already mentioned that are noted where they occur. Cassity’s paper [32] has few details on

how the constraints he gives are found, especially the relatively complicated expressions required as constraints

for the quadrature conditions and non-branching conditions of height two (3.27a) that are described fully in

Section 3.4.1. Also important is that Cassity’s paper [32] does not give the complete solution in an explicit

form suitable for computer implementation, whereas this section and the supporting material for this thesis

do. Cassity [32] does indicate that finding the singular solutions that would be necessary for a general solution

would be straightforward. However, as already mentioned, the additional singularities in the linear systems

to be solved are not covered in this thesis.

A summary of the constructed families with b2 6= 0 and free parameters are given in Table 3.3 for

single ERK methods. For comparison purposes, the families with b2 = 0 constructed in Section 3.3 are also

summarized in this table.
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Several special variable substitutions, already used when defining (3.19b) and (3.23b) in Section 3.3, based

on the general ones (3.1) are given by
b4 a4,3 +b5 a5,3 +b6 a6,3

+b5 a5,4 +b6 a6,4

+b6 a6,5

 = r̃i, i ∈ {3, 4, 5} = r̃, (3.25a)

and 
b4 c4 a4,3 +b5 c5 a5,3 +b6 c6 a6,3

+b5 c5 a5,4 +b6 c6 a6,4

+b6 c6 a6,5

 = s̃i, i ∈ {3, 4, 5} = s̃. (3.25b)

A six-stage fifth-order ERK method has order conditions for orders 1 and 2, i.e., τ, [τ ], that are given by

6∑
1

bi = 1, (3.26a)

6∑
i=2

bi ci =
1

2
, (3.26b)

which can be largely ignored while analyzing the complete solution, analogous to the situation with the first

row of (3.3) for the restricted system with b2 = 0 from Section 3.3.

The linear system for b̃ that describes conditions equivalent to the quadrature conditions (B.1) and non-

branching conditions of height two (B.2), i.e., [τ2], [τ3], [τ4], [[τ ]], [τ [τ ]], [τ2[τ ]], [[τ ]2], is given in CMF by the

linear system



c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) c6(c2 − c6)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5) c26(c2 − c6)

c33(c2 − c3) c34(c2 − c4) c35(c2 − c5) c36(c2 − c6)

2p3 2p4 2p5 2p6

2c3p3 2c4p4 2c5p5 2c6p6

2c23p3 2c24p4 2c25p5 2c26p6

4p2
3 4p2

4 4p2
5 4p2

6


b̃ =



1
2 c2 −

1
3

1
3 c2 −

1
4

1
4 c2 −

1
5

1
3

1
4

1
5

1
5


, (3.27a)

where similar to previously seen equations such as (3.13), (3.19), and (3.23); row 1 is c2[τ ] − [τ2], row 2 is

c2[τ2]− [τ3], row 3 is c2[τ3]− [τ4], row 4 is 2[[τ ]], row 5 is 2[τ [τ ]], row 6 is 2[τ2[τ ]], and row 7 is 4[[τ ]2].

The order conditions [[τ2]], [[τ3]], [[[τ ]]], [[τ [τ2]]] are constructed by adding a leg to create a one-legged

order condition from two quadrature conditions and two non-branching conditions of height two that are

rows 1, 2, 4, 5 of (3.27a). In the context of CMF this is done by substituting r̃ for b̃ in order to give the
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linear system 
c3(c2 − c3) c4(c2 − c4) c5(c2 − c5)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5)

2p3 2p4 2p5

2c3p3 2c4p4 2c5p5

 r̃ =


1
6 c2 −

1
12

1
12 c2 −

1
20

1
12

1
20

 , (3.27b)

where row 1 corresponds to c2[[τ ]]− [[τ2]], row 2 corresponds to c2[[τ2]]− [[τ3]], rows 3 corresponds to 2[[[τ ]]],

and row 4 corresponds to 2[[τ [τ2]]]. The CMF for the order conditions [τ [τ2]] and [τ [[τ ]]] is given by the

linear system c3(c2 − c3) c4(c2 − c4) c5(c2 − c5)

2p3 2p4 2p5

 s̃ =
1

2

 1
4c2 −

2
15

2
15

 , (3.27c)

which corresponds to additional order conditions where row 1 of (3.27c) is c2[τ [τ ]] − [τ [τ2]] and row 2 is

2[τ [[τ ]]].

The final order conditions, i.e., [[[τ2]]] and [[[[τ ]]]], are given by the system

c3(c2 − c3) c4(c2 − c4)

2p3 2p4

r4 a4,3 +r5 a5,3

+r5 a5,4

 =
1

2

 1
12 c2 −

1
30

1
30

 , (3.27d)

where row 1 of (3.27d) is c2[[[τ ]]]− [[[τ2]]] and row 2 is 2[[[[τ ]]]].

The particular partitioning of the order conditions into CMF by Cassity [32] given by (3.27) makes a well-

defined solution procedure possible for the complete solution of the order conditions (B.1)–(B.5) for six-stage

fifth-order ERK. In Cassity’s first attempt from 1966 [31], which is already discussed in Section 3.1, he found

that a similar procedure to that given for the restricted system in Section 3.3 could be used. However, as

already discussed in Section 3.1 it does not easily lead to explicit expressions for ERK method construction

and is not discussed further in this thesis.

3.4.1 Solving quadrature conditions and non-branching conditions of height two

To start finding the complete solution, notice that (3.27a) represents seven equations with four unknowns

and that directly determining the consistency conditions required is much less straightforward than for the

analogous linear system (3.5) from the restricted system with b2 = 0. This is because with b2 6= 0 it is no

longer possible to eliminate RHS values of the lower sub-matrix with integer multiples of rows from the upper

sub-matrix in order to find a homogeneous linear system that determines consistency. However, (3.27b) is four

equations with three unknowns; therefore examining (3.27b) first leads to a more straightforward procedure

(because it is rank deficient by one rather than three like the linear system (3.27a)) for determining consistency

conditions. Directly following the procedure described by Cassity [32], the multipliers λ : µ : ν : ω are defined
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and the linear system 
c3(c2 − c3) c23(c2 − c3) 2p3 2c3p3

c4(c2 − c4) c24(c2 − c4) 2p4 2c4p4

c5(c2 − c5) c25(c2 − c5) 2p5 2c5p5

1
6c2 −

1
12

1
12c2 −

1
20

1
12

1
20




λ

µ

ν

ω

 =


0

0

0

0

 , (3.28)

that is required for the consistency of (3.27b). The last row of (3.28) gives the expression

G2 ≡
(

1

6
c2 −

1

12

)
λ+

(
1

12
c2 −

1

20

)
µ+

1

12
ν +

1

20
ν = 0. (3.29a)

Now observe that the first three rows of (3.28) have the same entries as the corresponding first three columns

of rows 1, 2, 4, 5 of (3.27a). Using this observation with (3.27a), consider the linear combination

λ row1 + µ row2 + ν row4 + ω row5.

From this linear combination, it can be seen that the first three rows of (3.28) imply that the first three

columns of rows 1, 2, 4, 5 of (3.27a) must sum to zero (with a few minor considerations described below when

one of the multipliers vanishes). Consider the same linear combination applied to the fourth column and the

RHS of (3.27a) that respectively leads to the expressions

F6 ≡ c6(c2 − c6)(λ+ µc6) + 2p6(ν + ωc6), (3.29b)

G3 ≡ F6b6 =

(
1

2
c2 −

1

3

)
λ+

(
1

3
c2 −

1

4

)
µ+

1

3
ν +

1

4
ω, (3.29c)

which do not necessarily vanish. The resulting reduced version of (3.27a) that can usually be considered is



c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) c6(c2 − c6)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5) c26(c2 − c6)

c33(c2 − c3) c34(c2 − c4) c35(c2 − c5) c36(c2 − c6)

2p3 2p4 2p5 2p6

0 0 0 F6

0 0 0 0

4p2
3 4p2

4 4p2
5 4p2

6


b̃ =



1
2 c2 −

1
3

1
3 c2 −

1
4

1
4 c2 −

1
5

1
3

G3

0

1
5


, (3.30)

where row 5 reduces to F6 b6 = G3 due to the just described linear combination of the first three columns

of rows 1, 2, 4, 5 vanishing, and only the expressions (3.29b) and (3.29c) remain for the fourth column and

RHS, respectively. Additionally, row 6 is linearly dependent on the other rows, as can be seen by considering
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the linear combination from (3.27a) of

λ (row2 − row1) + µ (row3 − row2) + ν (row5 − row4) + ω (row6 − row5).

This linear combination leads to the linear system
c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) c26(c2 − c6)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5) c26(c2 − c6)

2p3 2p4 2p5 2p6

2c3p3 2c4p4 2c5p5 2c6p6




b3(1− c3)

b4(1− c4)

b5(1− c5)

b6(1− c6)

 =


1
6c2 −

1
12

1
12c2 −

1
20

1
12

1
20

 , (3.31)

where the RHS and first three columns are identical to (3.27b), meaning that consistency with b6 6= 0 requires

F6(1− c6) = G2 = 0. This can be seen because using the multipliers from (3.28) implies linear combinations

of both the first three columns of the coefficient matrix and RHS of (3.31) all sum to zero. A similar linear

combination of the fourth column of the coefficient matrix of (3.31) sums to F6(1 − c6), which must vanish

because the RHS and all other columns sum to zero. Therefore, either or both of F6 = 0 or (1 − c6) = 0

imply that c6 = 1 is required. The linear dependence of row 6 on combinations of rows 1–5 of (3.27a) also

means that the order condition corresponding to row 6 is generally satisfied when the conditions from rows

1–5 are satisfied. The exceptions to this are addressed when the specific cases are described in detail below.

This leads to the defining conditions for each of the six major cases of the complete solution of the six-

stage fifth-order order conditions. Note that (3.28) can still be rank 3 even when only three of its four rows

are linearly dependent. When one of the multipliers λ : µ : ν : ω are zero but G3 and F6 do not vanish, this

requires c6 = 1 and leads to cases I–IV, corresponding to Case I with λ = 0, Case II with µ = 0, Case III

with ν = 0, and Case IV with ω = 0. When G3 = F6 = 0 with c6 = 1 and none of λ : µ : ν : ω are required

to be zero, this leads to Case V. Case VI is identical to Case V in regards to satisfying (3.27a), except that

c6 6= 1. The C(2) simplifying assumptions (2.44b) occur when λ = 0 leads to singularities for Case V and

VI [32], which are best handled using the restricted system with b2 = 0 from Section 3.3 that is discussed

further in the context of the complete solution in Section 3.4.5.

When c6 = 1, subtracting consecutive rows of (3.27a) as described above leads to the linear system (3.31),

where the RHS is identical to (3.27b) and the coefficient matrix has three identical columns to (3.27b).

Therefore, in order for the two linear systems (3.27a) (which implies (3.31) as a constraint) and (3.27b) to

be consistent with each other when c6 = 1, their unknowns must also be equal, i.e.,

bi(1− ci) = ri, i ∈ {3, 4, 5}. (3.32)

This is equivalent to the D(1) simplifying assumptions (2.44c) with i ∈ {3, 4, 5}. From (3.32), it can be shown

that when c6 = 1, the D(1) simplifying assumptions (2.44c) for all i always hold. However, when c6 6= 1 it

was observed that none of the D(1) simplifying assumptions (2.44c) generally hold.
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An additional condition, which leads to specific expressions for each case, comes directly from (3.28) being

at most rank 3, implying that the determinant of the augmented matrix of (3.27b) must vanish for (3.28) to

be consistent. The simplified and factored expression for this determinant is

− N1(µν − λω)(c2 − c3)(c2 − c4)(c2 − c5)(c3 − c4)(c3 − c5)c3(c4 − c5)c4c5
60 (c3ω + ν)(c4ω + ν)(c5ω + ν)

= 0,

N1 = (10 c2λ+ 5 c2µ− 5λ− 3µ+ 5 ν + 3ω),

that is only valid for one factor and leads to

(10c2λ+ 5c2µ− 5λ− 3µ+ 5ν + 3ω) = 0, (3.33)

because this is the only factor that can vanish with distinct components of the c vector because the other

factors either imply non-distinct components of the c vector or appear in the denominators of other expressions

required for the complete solution. The particular form that the expression (3.33) assumes with any case-

specific substitutions is important and is described along with each individual case below.

Case I:

The material outlining the non-restricted solutions of this case is part of the new work presented in this thesis

and not found in Cassity’s original work [31] or elsewhere in the literature.

The expressions particular to the solution of Case I given by Cassity [32] are:

c6 = 1, c2 =
3

5
, 2 p6 =

8

5
, F6 b6 = G3 6= 0, (3.34a)

λ : µ : ν : ω = 0 : µ : −3

5
ω : ω, (3.34b)

5c3c4c5(5µ2 + 41µω − 100ω2)− 60(c3c4 + c3c5 + c4c5)(2µ− 5ω)ω+

45(c3 + c4 + c5)(µ− 4ω)ω + 108ω2 = 0. (3.34c)

The particular form of the homogeneous system (3.28) for Case I is given by


c23(c2 − c3) 2p3 2c3p3

c24(c2 − c4) 2p4 2c4p4

c25(c2 − c5) 2p5 2c5p5

1
12c2 −

1
20

1
12

1
20



µ

ν

ω

 =


0

0

0

0

 , (3.35)
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with the particular expressions (3.29) for Case I given by

G2 =

(
1

12
c2 −

1

20

)
µ+

1

12
ν +

1

20
ω = 0, (3.36a)

F6 = µ(c2 − 1) + 2p6(ν + ω) 6= 0, (3.36b)

G3 = F6 b6 =

(
1

3
c2 −

1

4

)
µ+

1

3
ν +

1

4
ω 6= 0. (3.36c)

Solving for pi, i ∈ {3, 4, 5} from (3.35) gives

−2 pi (ν + ciω) = c2i (c2 − ci)µ,

pi = −c
2
i (c2 − ci)µ
2 (ν + ciω)

, (3.37)

where if the values for c2 and ν from Cassity’s solution (3.34) are used, it is easily seen that the expressions

for pi, i ∈ {3, 4, 5} (3.37) reduce to

pi =
c2iµ

2ω
. (3.38)

However, there is a more complete solution for Case I than the one given by Cassity in 1969 (3.34) [32], and

it is now convenient to use because of the capabilities of modern CASs. This more complete solution means

it is not necessary to consider other possible simplifications similar to those of c2 = 3
5 and ν = − 3

5ω from

Cassity’s solution (3.34b) that lead to convenient forms of the pi, such as (3.38).

Before looking at the more complete solution, using the values (3.38) reduces (3.27a) to



c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) (c2 − 1)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5) (c2 − 1)

c33(c2 − c3) c34(c2 − c4) c35(c2 − c5) (c2 − 1)

c23
µ
ω c24

µ
ω c25

µ
ω 2p6

c33
µ
ω c34

µ
ω c35

µ
ω 2p6

c43
µ
ω c44

µ
ω c45

µ
ω 2p6

c43
µ2

ω2 c44
µ2

ω2 c45
µ2

ω2 4p2
6




b3

b4

b5

b6

 =



1
2 c2 −

1
3

1
3 c2 −

1
4

1
4 c2 −

1
5

1
3

1
4

1
5

1
5


,

where subtracting µ
ω times row 6 from row 7 and incorporating the results from the discussion earlier in this
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section (see the discussion about how the system (3.30) is formed) gives



c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) (c2 − 1)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5) (c2 − 1)

c33(c2 − c3) c34(c2 − c4) c35(c2 − c5) (c2 − 1)

c23
µ
ω c24

µ
ω c25

µ
ω 2p6

0 0 0 F6

0 0 0 0

0 0 0 4p2
6 − 2µωp6




b3

b4

b5

b6

 =



1
2 c2 −

1
3

1
3 c2 −

1
4

1
4 c2 −

1
5

1
3

G3

0

1
5 −

µ
ω

1
5


, (3.39)

where rows 5 and 7 can be solved to compute the value of b6 along with finding the constraint 2 p6 = 8
5 , and

using now-known values of b̃ allows row 4 to be reduced to the constraint given by Cassity (3.34c), which

was verified using Sage [57]. The simplifications that Cassity used, i.e., c2 = 3
5 and ν = − 3

5ω, along with

the calculated values for b6, p6, and the constraint from row 4, now give all of the expressions for Cassity’s

solution [32]. One of the c3, c4, c5 needs to be fixed to satisfy the expression from row 4 of (3.39); in this

thesis, c5 is arbitrarily selected. Although c3 or c4 could be fixed as well, choosing any of c3, c4, c5 results in

the same family of ERK methods, e.g., having c3 and c4 as arbitrary parameters and solving for c5 gives the

same set of coefficients as having c3 and c5 as arbitrary parameters and solving for c4.

However, as mentioned above, despite purporting to give a complete solution, Cassity [32] was satisfied

to find simplifications that would ensure the calculated coefficients would be rational expressions in terms of

the free parameters. Hence the statement in his 1969 paper [32] of

“In spite of extreme non-linearities in the defining equations, it is found that solutions for all but
one case can be expressed rationally in terms of properly selected parameters; one case requires
a single quadratic irrationality.”

that indicates finding easier to use rational expressions at the cost of the full complete solution was acceptable,

because from the above passage it is apparent that he knew that he was not fully describing the complete

solution of the six-stage fifth-order ERK order conditions (B.1)–(B.5). However, given the size and complexity

that any quadratic irrationality generally gives to expressions for the calculated coefficients in terms of the

free parameters, it is understandable why it would be desirable to use the simplifications whenever possible for

demonstrating the existence of solutions in 1969, before computer algebra was in widespread use. Although

computer algebra was first seen in the 1960s [121], it was not until the 1980s that powerful CASs, such as

Maple, were in widespread use [93].

The entire complete solution of Case I, which allows c2 to be an extra free parameter because it no longer

needs to be fixed as c2 = 3
5 , can now be presented. In order to ensure consistency of the one-legged order

conditions (3.27b), a constraint on ν can be found using (3.33) to give

ν = − (5c2µ− 3µ+ 3ω)

5
,
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which is more general than (but is also satisfied by) Cassity’s simplifications for c2 and ν for Case I (3.34).

With the general expressions for pi (3.37), the equivalent linear system to (3.27a) without the simplifications

can now be given as



c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) (c2 − 1)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5) (c2 − 1)

c33(c2 − c3) c34(c2 − c4) c35(c2 − c5) (c2 − 1)

2p3 2p4 2p5 2p6

0 0 0 F6

0 0 0 0

4p2
3 4p2

4 2p2
5 2p2

6




b3

b4

b5

b6

 =



1
2 c2 −

1
3

1
3 c2 −

1
4

1
4 c2 −

1
5

1
3

G3

0

1
5


, (3.40)

where the Sage CAS easily handles directly substituting the expressions for p̃ (3.37) without simplifications

similar to those used leading to (3.39). The conditions corresponding to rows 4, 5, 7 of (3.40) can be solved

together in terms of the free parameters c2, c3, c4, µω (the expressions satisfying the conditions for (3.27a) that

do not incorporate the a6,3 free parameter), with b6, p6, c5 being chosen as additional constraints to ensure the

over-determined system (3.40) is consistent. The procedure used in software to satisfy the expressions (3.40)

in terms of only the free parameters c2, c3, c4, µω for this case is given by the following steps.

• Intermediate expressions for b̃ that still explicitly contain p6 and c5 are found from the first three rows

of (3.40).

• An intermediate expression for b6 is found from row 5 of (3.40), which still explicitly contains c5 and

p6.

• An intermediate expression for p6 is found from row 4 of (3.40), which still explicitly contains c5.

• Substitute these intermediate expressions for b̃, b6, p6 into row 7 of (3.40) and simplify to a quadratic

equation in terms of the constraint c5 that is only in terms of the free parameters c2, c3, c4, µ
ω . An

expression for the constraint on c5 requires solving this quadratic equation, and this means Case I is

one of the three cases requiring a quadratic irrationality (square root) for the full complete solution.

• This expression for c5 can now be substituted back into the intermediate expression for p6 to obtain

an expression for p6 in terms of only the free parameters c2, c3, c4, µ
ω that satisfies the condition

corresponding to row 4 of (3.40).

• Row 5 of (3.40) is satisfied by b6 and the expressions for c5 and p6 are used to obtain expressions in

terms of the free parameters c2, c3, c4, µω for b6.

• Finally, the expression for b6 in terms of the free parameters c2, c3, c4, µ
ω are further used to obtain

expressions in terms of these free parameters for b̃.
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When this procedure is applied, explicit expressions are available for b̃, b6, p6, c5 in terms of only the free

parameters c2, c3, c4, µω .

The constraint on c5 contains a square root from applying the quadratic formula. Because the radical in

the quadratic formula has a plus/minus sign in front of it, there are two sub-cases, named Ia and Ib, which

are considered separately for computer implementation.

Case II:

The material outlining the non-restricted solutions of this case is part of the new work presented in this thesis

and not found in Cassity’s original work [31] or elsewhere in the literature.

The expressions particular to the solution of Case II given by Cassity [32] are:

c6 = 1, 2p6(10c22 − 12c2 + 3) = 3(c2 − 1)(3c2 − 1), F6 b6 = G3 6= 0, (3.41a)

λ : µ : ν : ω = 5c2 − 3 : 0 : −5c2(2c2 − 1) : 5(2c2 − 1),∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 ω[− 1
3 (λ− 2p6ω) + ( 1

4λ−
1
5ω)]

c3 c4 c5 ω[− 1
4 (λ− 2p6ω) + ( 1

4λ−
1
5ω)]

c23 c24 c25 ω[− 1
5 (λ− 2p6ω) + ( 1

4λ−
1
5ω)]

c33 c34 c35 [( 1
4c2 −

1
5 )λ+ 1

5ω](λ− 2p6ω)− λG3 − ν( 1
4λ−

1
5ω)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.41b)

The particular form of the homogeneous system (3.28) for Case II is given by


c3(c2 − c3) 2p3 2c3p3

c4(c2 − c4) 2p4 2c4p4

c5(c2 − c5) 2p5 2c5p5

1
6c2 −

1
12

1
12

1
20



λ

ν

ω

 =


0

0

0

0

 , (3.42)

with particular expressions (3.29) for Case II given by

G2 =

(
1

6
c2 −

1

12

)
λ+ ν

1

12
+ ω

1

20
= 0, (3.43a)

F6 = (c2 − 1)λ+ 2p6(ν + ω) 6= 0, (3.43b)

G3 =

(
1

2
c2 −

1

3

)
λ+

1

3
ν +

1

4
ω 6= 0. (3.43c)

Solving for pi from (3.42) gives

−2pi(ν + ci ω) = ci(c2 − ci)λ,

pi = −ci(c2 − ci)λ
2(ν + ci ω)

. (3.44)

If the values from Cassity’s solution (3.41) are used, it is easily seen that the expressions for pi (3.44) reduce
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to

2pi = ci
λ

ω
. (3.45)

However, following the same discussion from Case I, there is a more general version of the complete solution.

Before looking at this more general version of the complete solution, using the values (3.45) reduces (3.27a)

to 

c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) (c2 − 1)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5) (c2 − 1)

c33(c2 − c3) c34(c2 − c4) c35(c2 − c5) (c2 − 1)

c3
λ
ω c4

λ
ω c5

λ
ω 2p6

c23
λ
ω c24

λ
ω c25

λ
ω 2p6

c33
λ
ω c34

λ
ω c35

λ
ω 2p6

c23
(
λ
ω

)2
c24
(
λ
ω

)2
c25
(
λ
ω

)2
4p2

6




b3

b4

b5

b6

 =



1
2 c2 −

1
3

1
3 c2 −

1
4

1
4 c2 −

1
5

1
3

1
4

1
5

1
5


,

where subtracting λ
ω times row 5 from 7 and incorporating the results from the discussion earlier in this

section (see the discussion about how the system (3.30) is formed) gives



c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) (c2 − 1)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5) (c2 − 1)

c33(c2 − c3) c34(c2 − c4) c35(c2 − c5) (c2 − 1)

c3
λ
ω c4

λ
ω c5

λ
ω 2p6

0 0 0 F6

0 0 0 0

0 0 0 4p2
6 − 2p6

λ
ω




b3

b4

b5

b6

 =



1
2 c2 −

1
3

1
3 c2 −

1
4

1
4 c2 −

1
5

1
3

G3

0

1
5 −

1
4
λ
ω


, (3.46)

where, similar to the restricted solution of Case I, rows 5 and 7 can be solved to compute the value of b6

along with the value of p6 from Cassity’s solution (3.41a) and c5 can be chosen without loss of generality as

the constraint to ensure row 4 is satisfied; see the discussion for Case I for further details.

The more complete solution of Case II has an extra free parameter because the multipliers no longer depend

exclusively on the choice of c2. In order to ensure consistency of the one-legged order conditions (3.27b), ν

can be found using (3.33) to give

ν = −10c2λ− 5λ+ 3ω

5
,

which is also satisfied by the simplifications for Cassity’s solution for Case II (3.41). With the expressions

for pi (3.44) without the simplifications, the linear system (3.27a) now becomes the equivalent linear sys-
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tem (3.27a) given by



c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) (c2 − 1)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5) (c2 − 1)

c33(c2 − c3) c34(c2 − c4) c35(c2 − c5) (c2 − 1)

2p3 2p4 2p5 2p6

0 0 0 F6

0 0 0 0

4p2
3 4p2

4 4p2
5 4p2

6




b3

b4

b5

b6

 =



1
2 c2 −

1
3

1
3 c2 −

1
4

1
4 c2 −

1
5

1
3

G3

0

1
5


, (3.47)

where the Sage CAS easily handles directly substituting the expressions for p̃ (3.44) without reductions

similar to those used leading to (3.46). The conditions corresponding to rows 4, 5, 7 of (3.47) can be solved

together in terms of the free parameters c2, c3, c4, λ
ω (the expressions satisfying the conditions for (3.27a)

do not incorporate the a6,3 free parameter) with b6, p6, c5 being chosen as additional constraints to en-

sure that the over-determined system (3.47) is consistent. The procedure used in software to satisfy the

expressions (3.47) in terms of only the free parameters c2, c3, c4, λω for this case is given by:

• Intermediate expressions for b̃ that still explicitly contain p6 and c5 are found from the first three rows

of (3.47).

• An intermediate expression for b6 is found from row 5 of (3.47), which still explicitly contains c5 and

p6.

• An intermediate expression for p6 is found from row 4 of (3.47), which still explicitly contains c5.

• Substitute these intermediate expressions for b̃, b6, p6 into row 7 of (3.47) and simplify to a quadratic

equation in terms of the constraint c5 that contains only the free parameters c2, c3, c4, λω as coefficients.

An expression for the constraint on c5 requires solving this quadratic equation, and this means Case II

is one of the three cases requiring a quadratic irrationality (square root) for the full complete solution.

• This expression for c5 can now be substituted back into the intermediate expression for p6 to obtain

an expression for p6 in terms of only the free parameters c2, c3, c4, λ
ω that satisfies the condition

corresponding to row 4 of (3.47).

• Row 5 of (3.47) is satisfied by b6 and the expressions for c5 and p6 are used to obtain expressions in

terms of the free parameters c2, c3, c4, λω for b6.

• Finally the expression for b6 in terms of the free parameters c2, c3, c4, λ
ω are further used to obtain

expressions in terms of these free parameters for b̃.

When this procedure is applied, explicit expressions are available for b̃, b6, p6, c5 only in terms of the free

parameters c2, c3, c4, λω . The constraint on c5 contains a square root from applying the quadratic formula.
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Because the radical in the quadratic formula has a plus/minus sign in front of it, there are two sub-cases that

are named IIa and IIb, which are are easiest to consider separately for computer implementation.

Case III:

The expressions particular to the solution of Case III given by Cassity [32] are:

c6 = 1, 2p6 = 1, F6 b6 = G3 6= 0, (3.48a)

λ : µ : ν : ω = λ : µ : 0 : −5

3
(2c2 − 1)λ−

(
5

3
c2 − 1

)
µ, (3.48b)∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 5[5(2c2 − 1)(16c2 − 5)λ2 + (40c2 − 23)c2λµ− 2c22µ
2]

c3 c4 c5 15[5(2c2 − 1)(3c2 − 1)λ+ (9c2 − 5)c2µ]λ

c23 c24 c25 15[(2c2 − 1)(8c2 − 3)λ+ (5c2 − 5)c2µ]λ

c33 c34 c35 9[(15c22 − 13c2 + 3)λ+ (5c2 − 3)c2µ]λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.48c)

The particular form of the homogeneous system (3.28) for Case III is given by


c3(c2 − c3) c23(c2 − c3) 2c3p3

c4(c2 − c4) c24(c2 − c4) 2c4p4

c5(c2 − c5) c25(c2 − c5) 2c5p5

( 1
6c2 −

1
12 ) ( 1

12c2 −
1
20 ) 1

20



λ

µ

ω




0

0

0

0

 , (3.49)

with the particular expressions (3.29) for Case III given by

G2 =

(
1

6
c2 −

1

12

)
λ+

(
1

12
c2 −

1

20

)
µ+

1

20
ω = 0, (3.50a)

F6 = (c2 − 1)λ+ (c2 − 1)µ+ 2p6ω 6= 0, (3.50b)

G3 =

(
1

2
c2 −

1

3

)
λ+

(
1

3
c2 −

1

4

)
µ+

1

4
ω 6= 0. (3.50c)

Solving for pi, i ∈ {3, 4, 5} from (3.49) gives

−2ω ci pi = ci(c2 − ci)(λ+ ciµ),

pi = − (c2 − ci)(λ+ ciµ)

2ω
. (3.51)

However, unlike Case I and Case II above, the solution given by Cassity is in fact the complete solution

for Case III. This can be seen from the expression (3.33) to ensure consistency of the one-legged order

conditions (3.27b), where ω can be found using (3.33) to give

ω = −10c2λ+ 5c2µ− 5λ− 3µ

3
, (3.52)
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which is exactly the expression for ω given by Cassity’s solution (3.48b). Using the values (3.51) this re-

duces (3.27a) to



c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) (c2 − c6)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5) (c2 − c6)

c33(c2 − c3) c34(c2 − c4) c35(c2 − c5) (c2 − c6)

− (c2−c3)(λ+c3µ)
ω − (c2−c4)(λ+c4µ)

ω − (c2−c5)(λ+c5µ)
ω 2p6

−c3 (c2−c3)(λ+c3µ)
ω −c4 (c2−c4)(λ+c4µ)

ω −c5 (c2−c5)(λ+c5µ)
ω 2p6

−c23
(c2−c3)(λ+c3µ)

ω −c24
(c2−c4)(λ+c4µ)

ω −c25
(c2−c5)(λ+c5µ)

ω 2p6

(c2−c3)2(λ+c3µ)2

ω2

(c2−c4)2(λ+c4µ)2

ω2

(c2−c5)2(λ+c5µ)2

ω2 4p2
6




b3

b4

b5

b6

 =



1
2 c2 −

1
3

1
3 c2 −

1
4

1
4 c2 −

1
5

1
3

1
4

1
5

1
5


,

where incorporating the results from the discussion earlier in this section (see the discussion about how the

system (3.30) is formed) gives



c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) (c2 − c6)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5) (c2 − c6)

c33(c2 − c3) c34(c2 − c4) c35(c2 − c5) (c2 − c6)

− (c2−c3)(λ+c3µ)
ω − (c2−c4)(λ+c4µ)

ω − (c2−c5)(λ+c5µ)
ω 2p6

0 0 0 F6

0 0 0 0

0 0 0 4p2
6 + 2p6(c2λ+(c2µ−λ)−µ)

ω




b3

b4

b5

b6



=



1
2 c2 −

1
3

1
3 c2 −

1
4

1
4 c2 −

1
5

1
3

G3

0

1
5 +

( 1
3 c2λ+ 1

4 (c2µ−λ)− 1
5µ)

ω


,

where in this case the new row 7 is found from the linear combination of

row7 = row7 + c2λ row4 − (c2µ+ λ) row5 + µ row6.

In (3.53a), similar to the restricted solutions of Case I and Case II, rows 5 and 7 can be solved to compute

the value of b6 along with the value of p6 from Cassity’s solution (3.41a). Note that in this case, a quadratic

irrationality (square root) is not required and all calculated coefficients are rational expressions of the free

parameters. As well, similar to Cases I and II, c5 can be chosen without loss of generality as the constraint

to ensure row 4 of (3.53a) is satisfied.
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Case IV:

The expressions particular to the solution of Case IV given by Cassity [32] are:

c6 = 1, F6 b6 = G3 6= 0, (3.53a)

λ : µ : ν : ω = λ : µ : − (2c2 − 1)λ−
(
c2 −

3

5

)
µ : 0, (3.53b)∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 ( 1
3F6 − 2p6G3)µ

c3 c4 c5 ( 1
4F6 − 2p6G3)µ

c23 c24 c25 ( 1
5F6 − 2p6G3)µ

c33 c34 c35 [( 1
4c2 −

1
5 )λ+ 1

5c2µ+ 1
5ν]F6 − 2p6G3[(c2 − 1)λ+ c2µ+ 2p6ν]

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (3.53c)

∣∣∣∣∣∣∣∣
1 1 1 −[( 1

2 c2 −
1
3 )F6 − (c2 − 1)G3]µ3

c3 c4 c5 [( 1
2 c2 −

1
3 )F6 − (c2 − 1)G3]λµ2 + ( 1

3F6 − 2p6G3)µ2ν

c23 c24 c25 −[( 1
2 c2 −

1
3 )F6 − (c2 − 1)G3]λ2µ− ( 1

3F6 − 2p6G3)λµν + ( 1
4F6 − 2p6G3)µ2ν

c33 c34 c35 −[( 1
2 c2 −

1
3 )F6 − (c2 − 1)G3]λ3 + ( 1

3F6 − 2p6G3)λ2ν − ( 1
4F6 − 2p6G3)λµν + ( 1

5F6 − 2p6G3)µ2ν

∣∣∣∣∣∣∣∣ = 0. (3.53d)

The particular form of the homogeneous system (3.28) for Case IV is given by


c3(c2 − c3) c23(c2 − c3) 2p3

c4(c2 − c4) c24(c2 − c4) 2p4

c5(c2 − c5) c25(c2 − c5) 2p5

( 1
6c2 −

1
12 ) ( 1

12c2 −
1
20 ) 1

12



λ

µ

ν

 =


0

0

0

0

 , (3.54)

with the particular expressions (3.29) for Case IV being given by

G2 = (
1

6
c2 −

1

12
)λ+ (

1

12
c2 −

1

20
)µ+

1

12
ν = 0,

F6 = (c2 − 1)λ+ (c2 − 1)µ+ 2p6ν 6= 0,

G3 =

(
1

2
c2 −

1

3

)
λ+

(
1

3
c2 −

1

4

)
µ+

1

3
ν 6= 0.

Solving for pi from (3.54) gives

−2 ν pi = ci(c2 − ci)(λ+ ciµ),

2pi = −ci
(c2 − ci)(λ+ ciµ)

ν
. (3.55)

However, unlike Case I and Case II above but like Case III, the solution given by Cassity is in fact the complete

solution for Case IV that also requires a quadratic irrationality (square root). This is likely because Cassity

could not find a simplification to (3.55) that functioned like (3.38) and (3.45) for Cases I and II, respectively.

This can be seen because in order to ensure consistency of the one-legged order conditions (3.27b), ν can be

107



found using (3.33) to give

ν = −10c2λ+ 5c2µ− 5λ− 3µ

5
, (3.56)

which is exactly the expression for ν given by Cassity’s solution (3.53b). With the expressions for pi (3.55)

that are particular to Case IV, incorporating the results from the discussion earlier in this section, noting

that ω = 0 means rows 4 and 5 are reduced similarly to how rows 5 and 6 are reduced respectively in Cases

I, II, III (this is a variant mentioned in the discussion of the procedure used to form the system (3.30)), gives



c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) (c2 − 1)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5) (c2 − 1)

c33(c2 − c3) c34(c2 − c4) c35(c2 − c5) (c2 − 1)

0 0 0 F6

0 0 0 0

2c23p3 2c24p4 2c25p5 2p6

4p2
3 4p2

4 4p2
5 4p2

6




b3

b4

b5

b6

 =



1
2 c2 −

1
3

1
3 c2 −

1
4

1
4 c2 −

1
5

G3

0

1
5

1
5


, (3.57)

where the Sage CAS easily handles directly substituting the expressions for p̃ (3.55). The conditions cor-

responding to rows 4, 5, 7 of (3.57) can be solved together in terms of the free parameters c2, c3, c4, λ
ω

(the expressions satisfying the conditions for (3.27a) do not incorporate the a6,3 free parameter) with b6,

p6, c5 being chosen as additional constraints to ensure the over-determined system (3.57) is consistent. The

procedure used in software to satisfy the expressions (3.57) in terms of only the free parameters c2, c3, c4, λω
for this case is given by:

• Intermediate expressions for b̃ that still explicitly contain p6 and c5 are found from the first three rows

of (3.57).

• An intermediate expression for b6 is found from row 4 of (3.57), which still explicitly contains c5 and

p6.

• An intermediate expression for p6 is found from row 6 of (3.57), which still explicitly contains c5.

• Substitute these intermediate expressions for b̃, b6, p6 into row 7 of (3.57) and simplify to a quadratic

equation in terms of the constraint c5 that contains only the free parameters c2, c3, c4, λω as coefficients.

An expression for the constraint on c5 requires solving this quadratic equation. Therefore, this means

Case IV is one of the three cases requiring a quadratic irrationality (square root) for the full complete

solution.

• This expression for c5 is now substituted back into the intermediate expression for p6 to obtain an ex-

pression for p6 in terms of only the free parameters c2, c3, c4, λω that satisfies the condition corresponding

to row 6 of (3.57).
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• Row 4 of (3.57) is satisfied by b6 and the expressions for c5 and p6 are used to obtain expressions in

terms of the free parameters c2, c3, c4, λω for b6.

• Finally the expression for b6 in terms of the free parameters c2, c3, c4, λω can be further used to obtain

expressions in terms of these free parameters for b̃.

When this procedure is applied, explicit expressions are now available for b̃, b6, p6, c5 only in terms of only

the free parameters c2, c3, c4, λω .

Rows 6 and 7 of (3.57) correspond to (3.53c) and (3.53d) respectively of Cassity’s solution; this was

verified by expanding his published expressions [32] and comparing terms with the generated expressions in

OCSage. The formulation of these constraints as determinants is not required when using a CAS because

explicit constraints can be solved for directly.

The constraint on c5 contains a square root from applying the quadratic formula. Because the radical in

the quadratic formula has a plus/minus sign in front of it, there are two sub-cases that are named IVa and

IVb, which are considered separately for computer implementation.

Cases V and VI:

The solutions for Case V and Case VI are identical except that Case V requires c6 = 1 and Case VI requires

c6 6= 1 with two additional conditions given in Section 3.4.2.

The expressions particular to the solution of Case V/VI given by Cassity [32] are:

c6 = 1, F6 = G3 = 0, (3.58a)

λ : µ : ν : ω = λ : µ : −(4c2 − 1)λ− c2µ :
10

3
c2λ+ µ, (3.58b)

λν



∣∣∣∣∣∣∣∣∣∣∣∣

X3 X4 X5 X6

c3X3 c4X4 c5X5 c6X6

c23X3 c24X4 c25X5 c26X6

Y3 Y4 Y5 Y6

∣∣∣∣∣∣∣∣∣∣∣∣
c2 −

∣∣∣∣∣∣∣∣∣∣∣∣

X3 X4 X5 X6

c3X3 c4X4 c5X5 c6X6

c23X3 c24X4 c25X5 c26X6

c3Y3 c4Y4 c5Y5 c6Y6

∣∣∣∣∣∣∣∣∣∣∣∣

 = 0, (3.58c)

Xi = 10c2i − 12ci + 3, i = 3, 4, 5, 6,

Yi = (4− 5ci)(λ+ µci)
2, i = 3, 4, 5, 6. (3.58d)

The particular form of the homogeneous system (3.28) for Case V/VI is given by


c3(c2 − c3) c23(c2 − c3) 2p3 2c3p3

c4(c2 − c4) c24(c2 − c4) 2p4 2c4p4

c5(c2 − c5) c25(c2 − c5) 2p5 2c5p5

1
6c2 −

1
12

1
12c2 −

1
20

1
12

1
20




λ

µ

ν

ω

 =


0

0

0

0

 , (3.59)
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with particular expressions (3.29) for Case V/VI given by

G2 =

(
1

6
c2 −

1

12

)
λ+

(
1

12
c2 −

1

20

)
µ+

1

12
ν +

1

20
ν = 0,

F6 = c6(c2 − c6)(λ+ µc6) + 2p6(ν + ωc6) = 0,

G3 = F6 b6 =

(
1

2
c2 −

1

3

)
λ+

(
1

3
c2 −

1

4

)
µ+

1

3
ν +

1

4
ω = 0.

Solving for pi from (3.28) gives

2pi(−ν − ci ω) = ci(c2 − ci)(λ+ ci µ),

2pi = −ci(c2 − ci)(λ+ µ ci)

(ν + ci ω)
. (3.60)

However, unlike Case I and Case II above but like Cases III and IV, the solution given by Cassity is in

fact the full complete solution for Cases V and VI. The multipliers ν and ω can be found by simultaneously

solving for ν, ω, and p6 from the three equations

10c2λ+ 5c2µ− 5λ− 3µ+ 5ν + 3ω = 0,

F6 = c6(c2 − c6)(λ+ µc6) + 2p6(ν + ωc6) = 0,

G3 = F6 b6 =

(
1

2
c2 −

1

3

)
λ+

(
1

3
c2 −

1

4

)
µ+

1

3
ν +

1

4
ω = 0,

where the solution for ν and ω are exactly that of Cassity’s solution in (3.58b), and the solution for p6 (not

explicitly given by Cassity [32]) is

p6 =
3(c2 − 1)(λ+ µ)

2(3c2λ+ 3c2µ− 3λ− 3µ)
.

With the expressions for pi (3.60) that are particular to Case V, the linear system (3.27a) now becomes



c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) c6(c2 − c6)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5) c26(c2 − c6)

c33(c2 − c3) c34(c2 − c4) c35(c2 − c5) c36(c2 − c6)

2 c3(c2−c3)(λ+µc3)
(−ν−ωc3) 2 c4(c2−c4)(λ+µc4)

(−ν−ωc4) 2 c5(c2−c5)(λ+µc5)
(−ν−ωc5) 2c6 p6

0 0 0 0

0 0 0 0

4
c23(c2−c3)2(λ+µc3)2

(−ν−ωc3)2 4
c24(c2−c4)2(λ+µc4)2

(−ν−ωc4)2 4
c25(c2−c5)2(λ+µc5)2

(−ν−ωc5)2 4p2
6




b3

b4

b5

b6

 =



1
2 c2 −

1
3

1
3 c2 −

1
4

1
4 c2 −

1
5

1
3

0

0

1
5


, (3.61)

that comes from incorporating the results from the discussion earlier in this section (see the discussion about

how the system (3.30) is formed). Because F6 = G3 = 0, rows 5 and 6 now both vanish because they are

linear combinations of other rows. The first four rows of (3.61) can be solved for b̃, therefore leaving only
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row 7 as an additional constraint. Row 7 of (3.61) is exactly the constraint (3.58c) given by Cassity after

both are expanded and compared using Sage [57]. Case VI involves exactly the solution to either subcase of

Case V, except c6 6= 1 and two additional constraints are required; they are described below in Section 3.4.2

because they do not involve quadrature conditions and non-branching conditions of height two. However, it

can clearly be seen from (3.58c) that, despite the complicated-looking determinant, with c2 as a constraint, it

can be factored into two sub-cases that each give a different possible constraint on c2. The explicit constraints

on c2 are

c2 =
N

D
, (3.62)

N =2000c3c4c5c6λ
2 + 1800c3c4c5c6λµ+ 480c3c4c5c6µ

2 − 1500c3c4c5λ
2 − 1500c3c4c6λ

2 − 1500c3c5c6λ
2−

1500c4c5c6λ
2 − 1200c3c4c5λµ− 1200c3c4c6λµ− 1200c3c5c6λµ− 1200c4c5c6λµ− 270c3c4c5µ

2−

270c3c4c6µ
2 − 270c3c5c6µ

2 − 270c4c5c6µ
2 + 1200c3c4λ

2 + 1200c3c5λ
2 + 1200c4c5λ

2 + 1200c3c6λ
2+

900c3c5λµ+ 900c4c5λµ+ 900c3c6λµ+ 900c4c6λµ+ 900c5c6λµ+ 180c3c4µ
2 + 180c3c5µ

2 + 180c4c5µ
2+

180c3c6µ
2 + 1200c4c6λ

2 + 1200c5c6λ
2 + 900c3c4λµ+ 180c4c6µ

2 + 180c5c6µ
2 − 990c3λ

2 − 990c4λ
2−

990c5λ
2 − 990c6λ

2 − 720c3λµ− 720c4λµ− 720c5λµ− 720c6λµ− 135c3µ
2 − 135c4µ

2 − 135c5µ
2−

135c6µ
2 + 828λ2 + 594λµ+ 108µ2,

D =5000c3c4c5c6λ
2 + 4000c3c4c5c6λµ+ 900c3c4c5c6µ

2 − 4000c3c4c5λ
2 − 4000c3c4c6λ

2 − 4000c3c5c6λ
2−

4000c4c5c6λ
2 − 3000c3c4c5λµ− 3000c3c4c6λµ− 3000c3c5c6λµ− 3000c4c5c6λµ− 600c3c4c5µ

2−

600c3c4c6µ
2 − 600c3c5c6µ

2 − 600c4c5c6µ
2 + 3300c3c4λ

2 + 3300c3c5λ
2 + 3300c4c5λ

2 + 3300c3c6λ
2+

3300c4c6λ
2 + 3300c5c6λ

2 + 2400c3c4λµ+ 2400c3c5λµ+ 2400c4c5λµ+ 2400c3c6λµ+ 2400c4c6λµ+

2400c5c6λµ+ 450c3c4µ
2 + 450c3c5µ

2 + 450c4c5µ
2 + 450c3c6µ

2 + 450c4c6µ
2 + 450c5c6µ

2 − 2760c3λ
2−

2760c4λ
2 − 2760c5λ

2 − 2760c6λ
2 − 1980c3λµ− 1980c4λµ− 1980c5λµ− 1980c6λµ− 360c3µ

2−

360c4µ
2 − 360c5µ

2 − 360c6µ
2 + 2322λ2 + 1656λµ+ 297µ2,

leading to Case VIa, where substituting c6 = 1 gives

c2 =
N

D
, (3.63)

N =500 c3c4c5λ
2 + 600 c3c4c5λµ+ 210 c3c4c5µ

2 − 300 c3c4λ
2 − 300 c3c5λ

2 − 300 c4c5λ
2 − 300 c3c4λµ−

300 c3c5λµ− 300 c4c5λµ− 90 c3c4µ
2 − 90 c3c5µ

2 − 90 c4c5µ
2 + 210 c3λ

2 + 210 c4λ
2 + 210 c5λ

2+

180 c3λµ+ 180 c4λµ+ 180 c5λµ+ 45 c3µ
2 + 45 c4µ

2 + 45 c5µ
2 − 162λ2 − 126λµ− 27µ2,

D =1000 c3c4c5λ
2 + 1000 c3c4c5λµ+ 300 c3c4c5µ

2 − 700 c3c4λ
2 − 700 c3c5λ

2 − 700 c4c5λ
2 − 600 c3c4λµ−

600 c3c5λµ− 600 c4c5λµ− 150 c3c4µ
2 − 150 c3c5µ

2 − 150 c4c5µ
2 + 540 c3λ

2 + 540 c4λ
2 + 540 c5λ

2+

420 c3λµ+ 420 c4λµ+ 420 c5λµ+ 90 c3µ
2 + 90 c4µ

2 + 90 c5µ
2 − 438λ2 − 324λµ− 63µ2,

that leads to Case Va and

c2 =
λ

4λ+ µ
, (3.64)
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which corresponds to ν = 0 from (3.58c) and leads to Cases Vb and VIb. For Case V when c6 = 1 is

substituted directly into the condition corresponding to the bottom row of (3.61), the Sage CAS easily

simplifies and factors this expression into (3.63) and (3.64). However, for Case VI with c6 6= 1 as a free

parameter, a significant amount of manual algebraic manipulation and simplification is required before the

Sage CAS can simplify and factor the bottom row of (3.61) into (3.62) and (3.64). This clearly demonstrates

that careful analysis of the order conditions is still necessary despite contemporary access to powerful software

for computer algebra.

3.4.2 Solving the taller trees

Continuing to follow Cassity’s described solution procedure [32], once the quadrature conditions and non-

branching conditions of height two (3.27a) as well as the one-leg order conditions (3.27b) are satisfied, a

straightforward procedure ensures that the other order conditions are satisfied (similar to how relatively

straightforward solving (3.13) for the restricted system with b2 = 0 is in Section 3.3).

The linear system (3.27c) is under-determined with two equations and three unknowns. Furthermore, the

two rows in (3.27c) are identical to rows 1 and 3 of (3.27b). Therefore, (3.27c) must be solved considering the

solutions to (3.27b) to ensure that all solutions are consistent with both. Following Cassity’s procedure [32],

the solutions of the over-determined system (3.27b) can be used to find the unique consistent solution to the

under-determined system (3.27c) by subtracting (3.27c) from c6 times (3.27b) to eliminate b6 and allowing

the vector (r̃c6 − s̃) of size 2 to be solved for. This subtraction gives the system

c3(c2 − c3) c4(c2 − c4) c5(c2 − c5)

2p3 2p4 2p5

 (r̃c6 − s̃) =

 1
6 c2 −

1
12

1
12

 c6 −
1

2

 1
4c2 −

2
15

2
15

 ,

that simplifies toc3(c2 − c3) c4(c2 − c4)

2p3 2p4

(r3c6 − s3)

(r4c6 − s4)

 =

 1
6 c2 −

1
12

1
12

 c6 −
1

2

 1
4c2 −

2
15

2
15

 , (3.65)

because the substitutions (3.25) give s5 = r5c6, eliminating the third column and third unknown s5 from

immediate consideration. When c6 = 1, a consistent solution results in s5 = r5. When c6 6= 1 for Case VI, a

consistent solution results in s5 = r5c6.

When c6 = 1, applying the variable substitutions (3.25) and the D(1) simplifying assumptions (2.44c),

which always hold for six-stage fifth-order ERK when c6 = 1 (see the discussion concerning (3.32)), then

(r3 − s3) = b4(1− c4) a4,3 + b5(1− c5) a5,3 = r4 a4,3 + r5 a4,3 and (r4 − s5) = b5(1− c5) a5,4 = r5 a5,4. These

are exactly the unknown expressions for the final remaining linear system (3.27d). This shows that when

c6 = 1 this final remaining linear system (3.27d) is equivalent to the already satisfied linear systems (3.27b)

and (3.27c).
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When c6 = 1, all order conditions in (3.27) are now satisfied. However, if c6 6= 1, the final remaining

linear system (3.27d) requires additional consideration.

Case VI with c6 6= 1

When c6 6= 1, (3.27b) and (3.27c) are no longer equivalent to the remaining linear system (3.27d). Therefore

with c6 6= 1, (3.27d) becomes two further conditions that must be satisfied. The c6 coefficient becomes a new

free parameter, and two other free parameters must be used to ensure both conditions represented by (3.27d)

are satisfied.

Similar to when c6 6= 1 for the restricted case with b2 = 0 described in Section 3.3.2, the free parameters

best used to satisfy (3.27d) are c4 and a6,3 because the constraints are rational expressions. Both conditions

of (3.27d) are linear in a6,3. Arbitrarily choosing the second condition of (3.27d), this expression can be solved

for a6,3 and substituted into the first condition of (3.27d). This first condition of (3.27d) then simplifies to

(
λ2(200c23c4 − 240c3c4 + 90c4 + 30c3 − 36)

+λµ(240c23c4 − 228c3c4 + 72c4 + 30c23 − 36c3 − 9)

+ µ2(90c23c4 − 72c3c4 + 18c4 − 9c3)
)

c2(c3 − c4)(c6 − 1) = 0, (3.66)

where the first factor is exactly the constraint given by Cassity, c2 = 0 and (c3 − c4) = 0 do not give valid

six-stage fifth-order ERK methods for reasons already discussed, and (c6 − 1) = 0 corresponds to Case V.

The first factor of (3.66) is best solved with c4 as a constraint and leaving c3 as a free parameter, because c4

only appears linearly. This expression for c4 can be back-substituted into the expression for a6,3 found from

the second condition of (3.27d) to obtain an expression for a6,3 only in terms of the free parameters. Note

that deriving the expression (3.66) for Case VI is one of the more challenging expressions to find with the

Sage CAS. Although there was little manipulation required, the final procedure still required more than an

hour of CPU time to do the appropriate simplification and factoring to obtain the expression (3.66).

3.4.3 Solving for the Butcher tableau A matrix

All the solutions of the order conditions in CMF (3.27) that are required to find the A matrix are now known,

i.e., b̃, r̃, and s̃, that give the linear systems
1 0 0 0

0 c2 0 0

0 0 b5(c6 − c5) 0

0 0 0 b6




a2,1

a3,2

a5,4

a6,5

 =


c2

p3

r4c6 − s4

r5

 ,
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c2 c3 0 0 0 0

0 0 c2 c3 0 0

0 0 0 0 c2 c4

0 b4 0 b5 0 0

0 0 0 0 0 b6

0 b4c4 0 b5c5 0 0





a4,2

a4,3

a5,2

a5,3

a6,2

a6,4


=



p4

p5 − a5,4c4

p6 − a6,5c5 − a6,3c3

r3 − a6,3b6

r4 − b5a5,4

s3 − a6,3b6c6


,

where a6,3 is chosen as a free parameter in the A matrix, except for Case VI where it is determined from the

procedure described above. Similarly to Section 3.3.3, the row-sum conditions (2.35) give the system


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




a3,1

a4,1

a5,1

a6,1

 =


c3 − a3,2

c4 − a4,2 − a4,3

c5 − a5,2 − a5,3 − a5,4

c6 − a6,2 − a6,3 − a6,4 − a6,5

 ,

that can be solved for the first column because all the ai,j quantities outside of the first column of the A

matrix are now known.

3.4.4 Procedure for finding the complete solution

A summary of the procedure for finding the complete solution is as follows:

1. Choose the appropriate free parameters for the particular case according to Table 3.3.

2. Solve for the p3, p4, p5 using the appropriate formula for the particular case from Section 3.4.1.

3. Solve for the fourth column of (3.27a).

(a) For Cases I (restricted), II (restricted), III: solve for b6, p6 for the appropriate case as described in

Section 3.4.1.

(b) For Cases I, II, IV: solve for b6 as described in Section 3.4.1.

(c) For Case V, VI: solve for p6 as described in Section 3.4.1.

4. Solve for bi, i ∈ {3, 4, 5}.

(a) For Cases I, II, III, IV: solve for bi, i ∈ {3, 4, 5} using the first three rows of the quadrature

conditions from (3.27a).

(b) For Cases V, VI: solve for bi, i ∈ {3, 4, 5} using the first four rows of the quadrature conditions

from (3.27a).

5. Solve for the more complex constraints from (3.27a) if they are not precomputed expressions, and

back-substitute where necessary.
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(a) For Cases I, II, IV: solve for p6, c5 as described in Section 3.4.1.

(b) For Cases I (restricted), II (restricted), III: solve for c5 as described in Section 3.4.1.

(c) For Cases V, VI: solve for c2 as described in Section 3.4.1.

6. Solve for r̃ from three of the rows of the now consistent linear system of the one-legged trees (3.27b).

(a) For Cases I, II, III, V, VI: rows 1, 2, 3 of (3.27b) are used because it can easily be seen that ω 6= 0

means that the last row is always linearly dependent on the first three rows.

(b) For Case IV: rows 1, 3, and 4 of (3.27b) are used in order to incorporate row 4 because when

ω = 0, row 4 is not linearly dependent on the other rows and must be considered.

7. Solve for (r̃c6 − s̃) from (3.65) in order to satisfy (3.27c).

• Additionally for Case VI: find constraints for c4 and a6,3 as described in Section 3.4.2.

8. Solve for the A matrix of the Butcher tableau (2.34) using the linear systems in Section 3.4.3.

9. Solve for b1 and b2 using (3.26).

Table 3.3: Cases and free parameters for the complete solution to six-stage fifth-order ERK methods.
N/S means that the associated tableaux constructed by the author took up too much space to include
in this thesis.

Case Free parameters Subcases Example

I (Cassity’s restricted) a6,3, c3, c4,
λ
ω 1 (A.8)

I (full) a6,3, c2, c3, c4,
λ
ω 2 N/S

II (Cassity’s restricted) a6,3, c2, c3, c4 1 (A.9)

II (full) a6,3, c2, c3, c4,
µ
ω 2 N/S

III a6,3, c2, c3, c4,
λ
µ 1 (A.10)

IV a6,3, c2, c3, c4,
λ
µ 2 N/S

V a6,3, c2, c3, c5,
λ
µ 2 (A.11) (A.12)

VI c2, c3, c6,
λ
µ 2 (A.13) (A.14)

V b2 = 0 with C(2) from Section 3.3 a6,3, c2, c3, c4, c5 1 (A.1)

VI b2 = 0 with C(2) from Section 3.3 c2, c3, c5, c6 1 (A.2)

V b2 = 0 w/o C(2) from Section 3.3 a6,3, c2, c3, c4, c5 1 (A.3)

VI b2 = 0 w/o C(2) from Section 3.3 c2, c3, c5, c6 1 (A.4)
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3.4.5 The complete solution and standard simplifying assumptions

It can clearly be seen that for Cases V and VI that if λ = 0 and the expressions for ν and ω are substi-

tuted into (3.60), then it immediately simplifies to pi =
c2i
2 , i ∈ {3, 4, 5}, i.e., the C(2) simplifying assump-

tions (2.44b). Based on the discussion in Section 2.7.1, this leads immediately to b2 = 0, which requires

considering the restricted case that is presented in Section 3.3. If b2 = 0, the linear systems giving the order

conditions in CMF (3.27) for b2 6= 0 do not have the same ranks that are assumed for the procedure given in

this section. Therefore, the CMF used for the special case of b2 = 0 in Section 3.3 is required.

3.5 5(4)6 ERK pairs without C(2) simplifying assumptions

The embedded pairs without the C(2) simplifying assumptions (2.44b) that are derived in this section are

not part of Cassity’s work [31, 32] at all or found anywhere else in the current literature. Constructing an

embedded pair using the complete solution of six-stage fifth-order ERK order conditions without the C(2)

simplifying assumptions (2.44b), as already mentioned at the beginning of this chapter, was a known open

problem in the study of numerical methods [128].

A summary of the constructed families with b2 6= 0, free parameters and examples of Butcher tableaux

are given in Table 3.4 for embedded pairs. For comparison purposes, the constructed families with b2 = 0

are also summarized in these tables just mentioned.

Analogous to when constructing the six-stage fifth-order ERK method, when constructing the fourth-order

method of a corresponding pair this Section employs the notation ˜̂
b = {b̂3, b̂4, b̂5, b̂6} for the six-stage fourth-

order component of an embedded pair or ˜̂
b = {b̂3, b̂4, b̂5, b̂6, b̂7} for the seven-stage fourth-order component of

an embedded pair. The corresponding variable substitution to r̃ when constructing the six-stage fourth-order

component method of a 5(4)6(6) ERK pair is


b̂4 a4,3 +b̂5 a5,3 +b̂6 a6,3

+b̂5 a5,4 +b̂6 a6,4

+b̂6 a6,5

 = ri, i ∈ {3, 4, 5} = ˜̂r.

The corresponding variable substitution for r̃ for the seven-stage fourth-order component of a 5(4)6(7) ERK

pair is 

b̂4 a4,3 +b̂5 a5,3 +b̂6 a6,3 +b̂7 b3

+b̂5 a5,4 +b̂6 a6,4 +b̂6 b4

+b̂6 a6,5 +b̂6 b5

+b̂7 b6


= ri, i ∈ {3, 4, 5, 6} = ˜̂r.

These two possible definitions of ˜̂r for either six- or seven-stage fourth-order components of 5(4)6 ERK pairs
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can always be distinguished by context.

3.5.1 5(4)6(6) ERK pairs without the C(2) simplifying assumptions

An effective 5(4)6(6) ERK pair requires finding b̂ 6= b from the linear system consisting of the order conditions

[τ2], [τ3], [[τ ]], [τ [τ ]] that are given in CMF by


c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) c6(c2 − c6)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5) c26(c2 − c6)

2p3 2p4 2p5 2p6

2c3p3 2c4p4 2c5p5 2c6p6


˜̂
b =


1
2 c2 −

1
3

1
3 c2 −

1
4

1
3

1
4

 , (3.67)

where the rows come from the same subtractions and multiplications used for the corresponding order condi-

tions to give (3.27a). The linear system (3.67) is only singular for Cases V and VI, and therefore only gives a

valid embedded pair with b̂ 6= b for these cases because it can easily be seen that F6 = G3 = 0 is a necessary

condition for the coefficient matrix of (3.67) to have a determinant that is zero, and therefore be singular.

For Cases I, II, III, IV, the non-singular nature of the coefficient matrix of (3.67), which is because none of

the rows are linearly dependent due to distinct c components with F6 6= 0 and G3 6= 0, means that any b̂

vector satisfying (3.67) must equal the already computed b vector and will not meet the requirements for an

effective embedded pair. Considering Cases V and VI, taking one of the components of b̃ as a free parameter

that is distinct from the corresponding component of the b vector is necessary to ensure the 5(4)6(6) ERK

pair consists of two distinct methods. It can easily be seen that appropriate expressions to satisfy τ and [τ ]

are given by

6∑
1

b̂i = 1,

6∑
i=2

b̂i ci =
1

2
, (3.68)

and, analogous to the construction already seen of single fifth-order methods, can be disregarded until the

end of method construction.

Case V with c6 = 1

There are still two taller fourth-order trees left after (3.67) and (3.68) are satisfied. These correspond to the

trees [[τ2]], [[[τ ]]] given in CMF by the linear system

c3(c2 − c3) c4(c2 − c4) c5(c2 − c5)

2p3 2p4 2p5

 ˜̂r =

 1
6 c2 −

1
12

1
12

 , (3.69)

where the equation corresponding to each row is formed from the same subtractions and multiplications used

for the corresponding order conditions (3.27b) for the fifth-order component. The only solution of (3.69)

117



found consistent with (3.27d) for Case VI is b̂6 = 0. Notice that, similar to the corresponding situation

constructing embedded pairs in Section 3.3.4, most of the complexity in expanding (3.69) comes from the r̂

vector because it incorporates expressions for coefficients of the A matrix in terms of the free parameters.

For Case V when c6 = 1, solving the equation corresponding to the second row of (3.69) for a6,3, which

appears linearly in the equations corresponding to both rows, gives one constraint on the a6,3 free parameter

of the fifth-order method (this expression is not given here due to its size). Using this value of a6,3 and

substituting it into the first row of (3.69), then factoring using Sage [57], gives an expression equivalent to

the first row of (3.69) of

(
1800 b̂6c2c3c4c5λ

2 + 2160 b̂6c2c3c4c5λµ+ 540 b̂6c2c3c4c5µ
2 − 1800 b̂6c2c3c4λ

2 − 1800 b̂6c2c3c5λ
2−

1800 b̂6c2c4c5λ
2 − 1800 b̂6c3c4c5λ

2 − 400 c2c3c4c5λ
2 − 2160 b̂6c2c3c4λµ− 2160 b̂6c2c3c5λµ−

2160 b̂6c2c4c5λµ− 2160 b̂6c3c4c5λµ− 780 c2c3c4c5λµ− 540 b̂6c2c3c4µ
2 − 540 b̂6c2c3c5µ

2 − 540 b̂6c2c4c5µ
2−

540 b̂6c3c4c5µ
2 − 270 c2c3c4c5µ

2 + 1800 b̂6c2c3λ
2 + 1800 b̂6c2c4λ

2 + 1800 b̂6c3c4λ
2 + 300 c2c3c4λ

2+

1800 b̂6c2c5λ
2 + 1800 b̂6c3c5λ

2 + 300 c2c3c5λ
2 + 1800 b̂6c4c5λ

2 + 300 c2c4c5λ
2 + 600 c3c4c5λ

2+

2160 b̂6c2c3λµ+ 2160 b̂6c2c4λµ+ 2160 b̂6c3c4λµ+ 570 c2c3c4λµ+ 2160 b̂6c2c5λµ+ 2160 b̂6c3c5λµ+

570 c2c3c5λµ+ 2160 b̂6c4c5λµ+ 570 c2c4c5λµ+ 870 c3c4c5λµ+ 540 b̂6c2c3µ
2 + 540 b̂6c2c4µ

2 + 540 b̂6c3c4µ
2+

180 c2c3c4µ
2 + 540 b̂6c2c5µ

2 + 540 b̂6c3c5µ
2 + 180 c2c3c5µ

2 + 540 b̂6c4c5µ
2 + 180 c2c4c5µ

2 + 270 c3c4c5µ
2−

1800 b̂6c2λ
2 − 1800 b̂6c3λ

2 − 240 c2c3λ
2 − 1800 b̂6c4λ

2 − 240 c2c4λ
2 − 450 c3c4λ

2 − 450 1800 b̂6c5λ
2−

240 c2c5λ
2 − c3c5λ2 − 450 c4c5λ

2 − 2160 b̂6c2λµ− 2160 b̂6c3λµ− 450 c2c3λµ− 2160 b̂6c4λµ− 450 c2c4λµ−

630 c3c4λµ− 2160 b̂6c5λµ− 450 c2c5λµ− 630 c3c5λµ− 630 c4c5λµ− 540 b̂6c2µ
2 − 540 b̂6c3µ

2 − 135 c2c3µ
2−

540 b̂6c4µ
2 − 135 c2c4µ

2 − 180 c3c4µ
2 − 540 b̂6c5µ

2 − 135 c2c5µ
2 − 180 c3c5µ

2 − 180 c4c5µ
2 + 1800 b̂6λ

2+

198 c2λ
2 + 360 c3λ

2 + 360 c4λ
2 + 360 c5λ

2 + 2160 b̂6λµ+ 369 c2λµ+ 495 c3λµ+ 495 c4λµ+ 495 c5λµ+

540 b̂6µ
2 + 108 c2µ

2 + 135 c3µ
2 + 135 c4µ

2 + 135 c5µ
2 − 297λ2 − 405λµ− 108µ2

)
(3.70a)(

200 c23c4λ
2 + 240 c23c4λµ+ 90 c23c4µ

2 − 240 c3c4λ
2 + 30 c23λµ− 228 c3c4λµ− 72 c3c4µ

2 + 30 c3λ
2 + 90 c4λ

2−

36 c3λµ+ 72 c4λµ− 9 c3µ
2 + 18 c4µ

2 − 36λ2 − 9λµ
)
c2 (3.70b)

= 0,

where the factor (3.70a) is the only one involving b̂6, and solving for b̂6 when this factor vanishes implies

b6 = b̂6. The other factor (3.70b) (the value in the parenthesis, but excluding the c2 outside the parenthesis

because c2 cannot be vanish for reasons already discussed) contains c4 linearly and leads to a constraint on

c4 of

c4 =
−3(10c3λ− 12λ− 3µ)(c3µ+ λ)

2(100c23λ
2 + 120c23λµ+ 45c23µ

2 − 120c3λ2 − 114c3λµ− 36c3µ2 + 45λ2 + 36λµ+ 9µ2)
,

that along with the already mentioned expression for a6,3 gives the necessary conditions for an embedded

pair for Case V without the C(2) simplifying assumptions (2.44b).

The resulting constraints are more complex than for the corresponding embedded pair from the restricted
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system with the C(2) simplifying assumptions (2.44b) in Section 3.3. However, analogous to the case in

Section 3.3, factoring out the expressions involving b̂6 similarly allows finding an embedded pair.

Case VI with c6 6= 1

The only consistent fourth-order component of a pair for Case VI with c6 6= 1 and without the C(2) simplifying

assumptions (2.44b) is when b̂6 = 0. The implications of not having a free parameter for the fourth-order

component of an ERK pair are further discussed in Chapters 4 and 5.

3.5.2 5(4)6(7) ERK pairs without the C(2) simplifying assumptions

The complete solution of the six-stage fifth-order ERK order conditions also allows for constructing 5(4)6(7)

ERK pairs without the C(2) simplifying assumptions (2.44b) when using cases I, II, III, VI from Section 3.4.1.

The FSAL operating mode requires c6 = c7 = 1 and a distinct b̂ 6= b vector that satisfies the linear system

consisting of the order conditions [τ2], [τ3], [[τ ]], [τ [τ ]] given in CMF by


c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) (c2 − 1) (c2 − 1)

c23(c2 − c3) c24(c2 − c4) c25(c2 − c5) (c2 − 1) (c2 − 1)

2p3 2p4 2p5 2p6 2p7

2c3p3 2c4p4 2c5p5 2p6 2p7


˜̂
b =


1
2 c2 −

1
3

1
3 c2 −

1
4

1
3

1
4

 , (3.71)

where for Case V (there are no Case VI 5(4)6(7) ERK pairs because c6 = 1 is required for the FSAL operating

mode) it appears there is the possibility of two free parameters. However, for (3.71) to be consistent, the

augmented matrix must be the same rank as the coefficient matrix [163, pg.62], which for Case V is rank 3

without the C(2) simplifying assumptions (2.44b) and rank 2 with the C(2) simplifying assumptions (2.44b).

It can be easily seen that the seventh row of the Butcher tableau is the b vector for a 5(4)6(7) ERK pair,

consequently p7 =
∑
bici = 1

2 because this expression for the seventh row corresponds exactly to the [τ ]

order condition. Determining the rank of the augmented matrix of the linear system (3.71) requires looking

at determinants known as basis minors; see the references [163, pgs.58–59] for more information. The

determinants of all combinations of four columns of the augmented matrix of (3.71) must vanish if the

augmented matrix is to have rank 3 and the linear system (3.71) is to be consistent. If these determinants

do not vanish, then augmented matrix has rank 4 and the linear system (3.71) will not be consistent.

Combinations of columns lead to determinants with a common form, an example is the determinant with

columns 1, 2, 3, 5 that is given by

−3
(
10λ2 + 12λµ+ 3µ2

)
b̂7(c2 − c3)(c2 − c4)(c2 − c5)c22(c3 − c4)(c3 − c5)c3(c4 − c5)c4c5λ = 0, (3.72)

where ci, i > 2, cannot be zero because this reduces the effective number of stages and the c vector is

assumed distinct; ruling out factors that are differences of the ci, b̂7 corresponds to a six-stage embedded

119



pair that is addressed in Section 3.5.1, and the factor
(
10λ2 + 12λµ+ 3µ2

)
appears on the denominators of

the expressions for the b vector, and therefore it cannot vanish either. All of the other determinants lead to

similar conditions that cannot hold except for when λ = 0. Therefore, to construct a 5(4)6(7) ERK pair from

Case V requires λ = 0 that leads to the C(2) simplifying assumptions (2.44b) as a consistency condition, a

special case already addressed in Section 3.3.5.

In contrast, the situation with Cases I, II, III, IV is different. Because the RHS coefficient matrix of (3.71)

is already rank 4, the augmented matrix is also rank 4, implying that there is no additional consistency

condition for (3.71) to obtain a different ˜̂
b vector from the different RHS when b̂7 is a free parameter. Cases

I, II, III, IV are covered in this subsection because they allow construction of 5(4)6(7) ERK pairs without

the C(2) simplifying assumptions (2.44b). Unlike where the C(2) simplifying assumptions (2.44b) are used

in Section 3.3.5, in these cases the linear system (3.71) only admits one free parameter for the fourth-order

method, and that is taken as b̂7. It can easily be seen that the expressions to satisfy τ and [τ ] for the

seven-stage fourth-order embedded pair are given by

7∑
1

b̂i = 1,

7∑
i=2

b̂i ci =
1

2
. (3.73)

Analogous to the 5(4)6(6) ERK pair addressed in Section 3.5, there are still two taller fourth-order trees

left after (3.71) and (3.73) are satisfied, corresponding to the trees [[τ2]] and [[[τ ]]] given by the linear system

c3(c2 − c3) c4(c2 − c4) c5(c2 − c5) c6(c2 − 1)

2p3 2p4 2p5 2p6

 r̂ =

 1
6 c2 −

1
12

1
12

 , (3.74)

where the rows are constructed using the same subtractions used for the corresponding order conditions

for (3.27b). The specifics of finding a family of 5(4)6(7) ERK pairs for each of cases I, II, III, and IV can now

be addressed individually.

Case I:

Cassity’s restricted Case I using the simplifications leading to (3.38) does allow finding two families of 5(4)6(7)

ERK pairs. However, experimentation shows that this family of 5(4)6(7) ERK pairs does not give methods

with even moderately small error coefficients or other desirable properties. Therefore, only the full complete

solution of Case I introduced in this thesis is used.

Similar to procedures already described in Sections 3.3.4, 3.3.5, and 3.5, the equation corresponding to

the second row of (3.69) can be solved for a6,3. Then substituting this expression for a6,3 in the equation

corresponding to the first row of (3.69) and simplifying gives

(25c2c3µ− 10c2µ− 10c3µ+ 10c3ω + 6µ− 6ω) b̂7c2c4 = 0,
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where, as already discussed extensively, b̂7 = 0, c2 = 0, and c4 = 0 do not give effective embedded pairs.

Because c4 cannot be used as a constraint such as it is in most other embedded pair construction in this

thesis, arbitrarily choosing to constrain c3 to satisfy the condition for a 5(4)6(7) ERK pair gives the expression

c3 =
2

5

((5c2 − 3)µ+ 3ω)

((5c2 − 2)µ+ 2ω)
.

Similar to the construction of other families of 5(4)6(7) ERK pairs, the expression for a6,3 is too complex to

give here.

The seven-stage fourth-order component of the pair does not satisfy any fifth-order conditions. However,

the smallest value of the leading error coefficient A6 is much larger than in other families, making this case

difficult to recommend for practical use.

Case II:

Cassity’s restricted Case II using the simplifications leading to (3.45) does allow for finding a family of 5(4)6(7)

ERK pairs. However, experimentation shows that this family of 5(4)6(7) ERK pairs does not give methods

with relatively small error coefficients or other desirable properties. Therefore, only the full complete solution

of Case II introduced in this thesis is used.

Similar to procedures already described in Sections 3.3.4, 3.3.5, and 3.5, the equation corresponding to

the second row of (3.69) can be solved for a6,3. Then substituting this expression for a6,3 in the equation

corresponding to the first row of (3.69) and simplifying gives

(
20c2c3c4λω − 10c23c4ω

2 + 10c22λ
2 − 5c2c3λω + 6c3c4ω

2 + 3c2λω
)
b̂7c2 = 0,

where, for reasons already discussed, b̂7 = 0 and c2 = 0 do not give effective embedded pairs. Arbitrarily

choosing to constrain c4 (without loss of generality as already described) to satisfy the condition for a 5(4)6(7)

ERK pair gives the expression

c4 = − (10c22λ
2 − (5c2c3 − 3c2)λω)

(5(4c2c3 − 3c2)λω − 2(5c23 − 3c3)ω2)
.

Similar to other construction of other families of 5(4)6(7) ERK pairs, the expression for a6,3 is too complex

to give here.

The seven-stage fourth-order component of the pair satisfies the [[τ ]2] fifth-order condition, which can

cause numerical issues, making this case difficult to recommend for practical usage.

Case III:

Case III also allows construction of a family of 5(4)6(7) ERK pairs. Similar to procedures already described

in Sections 3.3.4, 3.3.5, and 3.5, the equation corresponding to the second row of (3.69) can be solved for

a6,3. Then substituting this expression for a6,3 in the equation corresponding to the first row of (3.69) and

121



simplifying gives

−(200c22c
2
3c4λ

3 + 200c22c
2
3c4λ

2µ+ 20c22c
2
3c4λµ

2 − 15c22c
2
3c4µ

3 − 200c2c
2
3c4λ

3 − 30c22c
2
3λ

2µ− 120c22c3c4λ
2µ−

160c2c
2
3c4λ

2µ− 15c22c
2
3λµ

2 − 60c22c3c4λµ
2 − 15c2c

2
3c4λµ

2 − 30c22c3λ
3 − 90c22c4λ

3 + 60c2c3c4λ
3+

50c23c4λ
3 − 15c22c3λ

2µ+ 15c2c
2
3λ

2µ− 45c22c4λ
2µ+ 90c2c3c4λ

2µ+ 30c23c4λ
2µ+ 18c2c3c4λµ

2 + 15c2c3λ
3+

45c2c4λ
3 − 30c3c4λ

3 − 9c2c3λ
2µ+ 18c2c4λ

2µ− 18c3c4λ
2µ− 9c2λ

3)

(800c22c
2
3c4λ

2 + 200c22c
2
3c4λµ− 10c22c

2
3c4µ

2 − 450c22c
2
3λ

2 − 900c22c3c4λ
2 − 650c2c

2
3c4λ

2 − 135c22c
2
3λµ−

270c22c3c4λµ− 115c2c
2
3c4λµ+ 480c22c3λ

2 + 375c2c
2
3λ

2 + 240c22c4λ
2 + 750c2c3c4λ

2 + 125c23c4λ
2+

150c22c3λµ+ 75c2c
2
3λµ+ 75c22c4λµ+ 150c2c3c4λµ− 135c22λ

2 − 420c2c3λ
2 − 75c23λ

2 − 210c2c4λ
2−

150c3c4λ
2 − 45c22λµ− 90c2c3λµ− 45c2c4λµ+ 117c2λ

2 + 90c3λ
2 + 45c4λ

2 + 27c2λµ− 27λ2)

b̂7c2(c3 − c4)λ = 0,

where, for reasons already discussed, b̂7 = 0 and c2 = 0 do not give effective embedded pairs, and the second

factor appears on the denominator of the expressions for b̃. Therefore, only the first factor can vanish.

Arbitrarily choosing to constrain c4 (without loss of generality, as already described) to ensure that this first

factor vanishes gives the expression

c4 =
3(10c2c3λ+ 5c2c3µ− 5c3λ+ 3λ)(c3µ+ λ)c2λ

D
,

D = (200c22c
2
3λ

3 + 200c22c
2
3λ

2µ+ 20c22c
2
3λµ

2 − 15c22c
2
3µ

3 − 200c2c
2
3λ

3 − 120c22c3λ
2µ− 160c2c

2
3λ

2µ−

60c22c3λµ
2 − 15c2c

2
3λµ

2 − 90c22λ
3 + 60c2c3λ

3 + 50c23λ
3 − 45c22λ

2µ+ 90c2c3λ
2µ+ 30c23λ

2µ+

18c2c3λµ
2 + 45c2λ

3 − 30c3λ
3 + 18c2λ

2µ− 18c3λ
2µ).

Similar to other construction of other families of 5(4)6(7) ERK pairs, the expression for a6,3 is too complex

to give here.

The seven-stage fourth-order component of the pair satisfies the [τ4], [τ2[τ ]], [τ [τ2]], [τ [[τ ]]], [[τ ]2] fifth-

order conditions, which can cause numerical issues making this case difficult to recommend for practical

usage.

Case IV:

Similar to procedures already described in Sections 3.3.4, 3.3.5, and 3.5, the equation corresponding to

the second row of (3.69) can be solved for a6,3. Then substituting this expression for a6,3 in the equation
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corresponding to the first row of (3.69) and simplifying gives

−(200c22c3c4λ
2µ+ 100c22c3c4λµ

2 + 100c2c
2
3c4λµ

2 + 75c2c
2
3c4µ

3 + 50c22c3λ
2µ− 100c22c4λ

2µ− 100c2c3c4λ
2µ+

25c22c3λµ
2 + 25c2c

2
3λµ

2 − 50c22c4λµ
2 − 70c2c3c4λµ

2 − 50c23c4λµ
2 − 30c2c3c4µ

3 − 30c23c4µ
3 + 50c22λ

3+

25c22λ
2µ+ 25c2c3λ

2µ+ 75c2c4λ
2µ− 15c2c3λµ

2 + 30c2c4λµ
2 + 30c3c4λµ

2 + 18c3c4µ
3 − 15c2λ

2µ)b̂7c2 = 0,

where, as already described, b̂7 = 0 and c2 = 0 do not give effective embedded pairs. Choosing to constrain

c4 (without loss of generality as already described) to satisfy the condition for a 5(4)6(7) ERK pair gives the

expression

c4 =
−5(10c2λ+ 5c2µ+ 5c3µ− 3µ)(c3µ+ λ)c2λ

D
,

D = (200c22c3λ
2 + 100c22c3λµ+ 100c2c

2
3λµ+ 75c2c

2
3µ

2 − 100c22λ
2 − 100c2c3λ

2 − 50c22λµ− 70c2c3λµ−

50c23λµ− 30c2c3µ
2 − 30c23µ

2 + 75c2λ
2 + 30c2λµ+ 30c3λµ+ 18c3µ

2)µ.

Similar to other construction of other families of 5(4)6(7) ERK pairs, the expression for a6,3 is too complex

to give here.

The seven-stage fourth-order component of the pair satisfies the fifth-order condition [τ4], which can cause

numerical issues, making this case difficult to recommend for practical usage.

Table 3.4: Cases and free parameters for the complete solution to six-stage fifth-order ERK embedded
pairs. 6(6) refers to families of 5(4)6(6) ERK pairs and refers to families of 6(7) refers to 5(4)6(7) ERK
pairs. N/S means that the associated tableaux constructed by the author took up too much space to
include in this thesis.

Case 6(6) free params Subcases 7(7) free params Subcases Examples

I (full) N/A N/A c2, c4,
µ
ω , b̂7 2 N/S

II (full) N/A N/A c2, c3,
λ
ω , b̂7 2 N/S

III N/A N/A c2, c3,
λ
µ , b̂7, 1 (A.19)

IV N/A N/A c2, c3,
λ
µ , b̂7 2 N/S

V w/o C(2) c3, c5,
λ
µ , b̂6 2 No N/A (A.15) (A.16)

VI w/o C(2) c3, c5,
λ
µ 2 No N/A (A.17) (A.18)

V with C(2) c2, c3, c5, b̂6 1 c2, c3, c4, c5, b̂7 1 (A.5) (A.7)

VI with C(2) c2, c3, c5, c6, b̂6 1 No N/A (A.6)
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Chapter 4

The OCSage package for solving the order conditions

and extensively studying the properties of IVP meth-

ods

“Since the local extrapolation mode is being adopted one way of choosing the three c’s would be
to make the principal truncation term ’small’ for the 5th order formula. For general systems of
equations this is of course a prohibitive task.”
(J.R. Dormand and P.J. Prince 1980)

This chapter describes the OCSage (Order Conditions for Sage) package, which is comprised of a set of

software tools developed using Sage, a relatively popular open-source CAS [57]. Development of the OCSage

package was initiated in 2013 to support the study and construction of RK methods. In order to support

the work in this thesis, OCSage has been under continuous development ever since. The version of OCSage

presented along with this thesis (OCSage version OCSage.ak2018.v1) was developed exclusively by the author

(Andrew Kroshko) over a period of 5 years. In addition, OCSage has been designed in a manner that can

eventually be extended into a software package with wider applicability than the specific study in this thesis.

One of the principal reasons for developing OCSage is that previous publications that present new em-

bedded RK pairs often gave little information on the tradeoffs examined, except in a qualitative sense (for

example, Bogacki and Shampine use mostly qualitative reasoning to construct an embedded pair consisting of

second- and third-order ERK methods, which is used in Matlab [15]) or by simply claiming that the authors

found a “small” leading error coefficient, such as Dormand and Prince did for the DP5(4)6(7) pair (2.79) [47].

In addition, new RK methods that are presented in the literature were often not thoroughly compared against

all of the popular existing RK methods that were in practical use at the time of publication, e.g., see the

references [16, 30]. However, due to limitations in computing resources and publication space in the past,

it is understandable why many publications used qualitative reasoning, did not perform thorough testing,

and did not include substantial data supporting new RK method construction. It is seen in Chapter 5 that

drawing clear conclusions about RK methods with similar qualitative properties requires a large amount of

data to support well-defined conclusions. By using modern computing technology to develop tools such as

OCSage (and pythODE in Chapter 5), it is possible to give a clear indication of the tradeoffs of different RK

families and sets of free parameters.

124



Although the need for more sophisticated software to study numerical methods in addition to the need

to simply conduct more detailed computational studies has been discussed in the literature [166], many of

these discussions do not give specifics about the nature of the software that would have to be developed or

the resources that would be required to develop it. A substantial contribution to the study of numerical

methods that development of OCSage (as well as pythODE in Chapter 5) gives is demonstrating the specifics

of the software required to conduct more detailed computational studies of numerical methods. It is only

by constructing an integrated software system and demonstrating specific research problems where this new

software is actually required, e.g., in this thesis thoroughly studying the construction of efficient higher-order

ERK pairs without standard simplifying assumptions, that specific conclusions can be reached about how

better computing technology can improve the study of numerical methods. In particular, in this chapter and

Chapter 5, the software system developed is described in detail to give a good picture of the components

required and their complexity. In addition, examples of execution times are included throughout to help give

a clear idea of the computational resources required and where the bottlenecks might be, both in terms of

computational performance and software development resources. This can greatly help other researchers who

either want to use OCSage and pythODE directly or develop their own software for similar purposes.

In Section 4.4, the OCSage package applies the theory of rooted trees associated with RK methods to help

generate Python code that implements the scalar sums (2.39), after which the generated code is used to

implement expressions for the order conditions (2.43) and error coefficients (2.47). In Section 4.7, the order

conditions (2.43) can then be solved to further generate (as Python-based source code) explicit expressions

for the RK Butcher tableau coefficients (2.34) and RK error coefficients (2.47) in terms of the free parameters

of the specific RK family, after which these expressions can also be used to determine more complex quantities,

such as the other characteristic numbers (2.56). The code is generated in two different forms by OCSage to

allow utilization from either the Sage [57] or SciPy [91] platforms (discussed below), therefore allowing

complete integration of the capabilities of a CAS with high-performance numerical computing. As discussed

in Section 4.9, the generated code is used for a high-performance numerical search of the parameter space

of families of 5(4)6 ERK pairs, and the results are stored in a PostgreSQL database [92],1 where it is used

for plotting, data analysis within the PostgreSQL database itself, or by the pythODE package as described in

Chapter 5.

4.1 Sage, SciPy, and other important software components

The Sage platform [57] can narrowly be thought of as a CAS, or more broadly as an extensive platform to

support scientific and mathematical computing, but with a strong computer algebra focus. Sage uses the

Python programming language as the primary interface to both its own specific functionality and nearly

100 other software components that it incorporates, including many common Python-based libraries such

1https://www.postgresql.org/
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as SciPy [91] as well as non-Python-based libraries that are widely used for scientific computing, e.g.,

ATLAS [200] for numerical linear algebra and Maxima2 for symbolic algebra. A principal reason to use a

Python-based platform is because for many studies (including the one in this thesis) available computa-

tional resources are adequate and efficiency of programmer-hours is paramount. This is why Python-based

platforms have become widely used for scientific computing and why they are used for both OCSage (and

pythODE in Chapter 5). In addition, a majority of the tasks and development effort in many modern scientific

software packages is for functionality that is non-mathematical and administrative [201], and Python excels

at these tasks in comparison to many other platforms used for scientific computing.

Sage [57] has its own Python-based library of functionality for many common mathematical tasks, with

a focus on computer algebra. Like many CASs, there is a large set of functionality for symbolic mathematics

that can be pictured by examining the section of the Sage reference manual3 called “Symbolic calculus”4

that describes the functions and methods used for tasks such as the manipulation of algebraic expressions

(for example, gathering terms, expanding expressions, sums and products of expressions), automatic simplifi-

cation, factorization, and other standard mathematical operations (for example, square roots, trigonometric

functions, series expansion, greatest common divisors). These are all obviously useful for the mathematics

described in Section 2.7 and Chapter 3. Functionality to support linear algebra and matrices can be pictured

by examining the section of the Sage reference manual called “Linear algebra”,5 which describes sophisticated

classes that are used to implement objects representing matrices (as well as vectors) that have many features

to support symbolic manipulation of these matrices and that are especially useful for studying the mathe-

matics from Chapter 3. Other examples of functionality to support popular mathematical computing tasks,

but not required for the study described in this thesis, can be pictured by examining sections of the Sage

reference manual called “Geometry and Topology”,6 “Number Theory, Algebraic Geometry”,7 “Probability

and Statistics”,8 etc.

There are some differences in the Python-based interpreter for Sage [57] in comparison to standard

Python or most other scientific computing tools that also build on Python, such as SciPy [91]. This is

because the standard Sage interpreter uses a preparser that converts non-standard Python-based syntax,

which can be more convenient for computer algebra, into standard Python syntax. The two types of

source files are generally differentiated because the standard Python interpreter uses source files with the

.py extension and those using Sage interpreter use source files with the .sage extension. To illustrate

the preparser, consider the Python expression z = 1/2 that, in the absence of the Sage preparser, would

assign the integer 0 to z in standard Python 2.x, or assign 0.5 to z when using standard Python 3.x

or when using the statement from __future__ import __division__ in Python 2.x. However, when

2http://maxima.sourceforge.net/
3http://doc.sagemath.org/html/en/reference/
4http://doc.sagemath.org/html/en/reference/calculus/index.html
5http://doc.sagemath.org/html/en/reference/#linear-algebra
6http://doc.sagemath.org/html/en/reference/#geometry-and-topology
7http://doc.sagemath.org/html/en/reference/#number-theory-algebraic-geometry
8http://doc.sagemath.org/html/en/reference/#probability-and-statistics
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using the Sage interpreter the value assigned to z when executing the expression z = 1/2 is a Sage object

representing the rational number 1
2 . Rational expressions involving variables can be similarly defined when

using the Sage interpreter. If using the preparser is not desired, the standard Python interpreter built into

Sage [57] can be run with the command

sage -python <<script name>>.py

after which normal Python syntax can be used like the Python interpreter with any other standard Python

installation, but with built-in access to all of the additional functionality provided with the Sage package.

The equivalent of the above expression, i.e., z = 1/2 as evaluated when using the Sage interpreter, in the

syntax of the standard Python interpreter, but not using the Sage [57] preparser, are the statements

from sage.all import *
z = Rational ((1,2))

However, this is not nearly as convenient for sophisticated symbolic computation with rational expressions

(this code snippet also works in the Sage interpreter). It should be obvious from the types of expressions

used when constructing RK methods in Section 2.7 and Chapter 3 that the convenient syntax when using the

preparser for working with rational expressions, including mixed symbolic/numeric expressions, is of great

benefit to the study described in this thesis.

All the following examples of the Sage interpreter syntax (using the preparser) have similarly equivalent

forms as function calls for a standard Python interpreter. The Sage preparser allows both

a**b
a^b

to be used for exponentiation (the ˆ operator in the second expression is the bitwise EXCLUSIVE OR

operation when used with the standard Python interpreter). The Sage preparser allows avoiding the

multiplication operator, e.g., shown by the equivalent expressions

z = 3*exp(y)
z = 3exp(y)

where the second expression would be illegal syntax if used with the standard Python interpreter. The

Sage preparser allows a compact syntax for symbolically defining mathematical functions, such as given by

f(x,y,z) = sin(x^3 - 4*y) + y^x

that would also be illegal syntax for the standard Python interpreter because the function call syntax cannot

be assigned to. This Sage syntax is useful for symbolically defining a function to use for tasks such as working

with standard calculus operations, e.g., integration and differentiation.

Sage also offers a web-based notebook with interactive worksheets. This notebook has proven to be

extremely useful for exploring the mathematics that led to finding the complete solution of the order conditions

for 5(4)6 ERK pairs explicitly in terms of the free parameters that are described in Chapter 3. An example

of a worksheet running in the Firefox web browser9 that was used in exploring the mathematics presented in

9https://www.mozilla.org/en-US/firefox/products/
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Chapter 3 is shown in Figure 4.1. The code provided with OCSage that allows for reproducing the worksheet

shown in Figure 4.1 is further described in Section 4.6. Furthermore, functions provided by OCSage can

use the Sage notebook to generate a “report” on a particular ERK method using the generated code in

Section 4.7 by specifying only the free parameters of the particular RK family. An example of this “report”

for the DP5(4)C6(7) pair (2.81) [48] is given by Figure 4.2, where it can be seen that the Butcher tableau (2.34)

is given, the order conditions (2.43) are checked, the characteristic numbers (2.56) are generated, and the

linear stability regions discussed in Section 2.5.4 are plotted. In addition, although not shown because of

space considerations a few other plots with information not used directly in this thesis, as well as bar graphs

of PECs (2.47) similar to Figure 4.12 and others like it, are also included in the “report”.

To install Sage for this thesis work, the source code for Sage is downloaded from the Sage website10 as

a tar.gz file and compiled on the Linux machine where it is used. There are also binary packages of Sage

for many common Linux distributions and OS X, as well as a virtual appliance to use on Windows and a live

Linux version that boots from a USB key. As an example, the tarball of the source for Sage 8.0 (released

July 21, 2017) is a 611.66 MB tar.gz file containing the source code for all the necessary libraries. Building

Sage is as simple as running the make command in the directory created by untarring. Using 8 threads took

just under 2 hours to build Sage 8.0 on the relatively generic desktop computer used for the study in this

thesis.11

Software libraries used

The uniform Python-based interface that Sage [57] provides also integrates many standard scientific and

mathematical computing libraries in order to make it much easier to pursue studies combining sophisticated

symbolic computation, numeric computation, simulation, and sophisticated data analysis. Although there is

neither space nor the necessity to describe all of the nearly 100 component libraries here, specific libraries

included with Sage [57] that are important to OCSage are described. Standard libraries in the Python

computing ecosystem included with Sage that are used extensively by this study are:

• NumPy:12 A Python-based library [125, 126, 185] that implements versatile numeric arrays, which

are heavily inspired by and have similar syntax and functionality to those in the commercial Matlab

software platform. The NumPy package also provides a great deal of the basic functionality (for

example, fancy indexing, masking, matrix operations, iterators, type handling, basic mathematical

functions such as exponential and trigonometric operations, as well as basic implementations of more

complex mathematical operations such as Fourier transforms) required to used these numeric arrays

for contemporary scientific computing.

10http://www.sagemath.org/
11A homebuilt quad-core 3.8GHZ AMD A10-5800K with 16GB of memory is used for all timings in this thesis. In addition, a

homebuilt quad-core 3.0GHZ AMD Phenom II X4 945 with 4GB of RAM is used to assist in long computations. Both of these
computers run Debian Linux Jessie, i.e. Debian Linux version 8.

12http://numpy.org/

128

http://www.sagemath.org/
http://numpy.org/


• matplotlib:13 A Python-based library that can generate an enormous variety of plots from NumPy

arrays (see the sample gallery on the matplotlib website14) The matplotlib library is loosely based

on the state-machine-like interface for plotting in Matlab. However, it also includes an object-oriented

API more suitable for use internally by software packages [87]. The matplotlib library is used for all

the data plots in this thesis.

• SciPy:15 The SciPy package [91] extends NumPy with many optimized high-level functions for com-

mon tasks in scientific computing (for example, special functions, linear algebra, signal processing,

optimization) that are also heavily inspired by, but not necessarily identical to, those in Matlab. The

SciPy package [91] is included with Sage [57] and used by OCSage, but it is more commonly used

on its own (in a similar manner to the command-line interface of Matlab) as the basis for scientific

computing software.

Non-Python-based libraries used directly by Sage are:

• Maxima:16 A CAS written in Lisp that provides most of the core symbolic algebraic manipulations for

Sage [57].

• Singular:17 A computer algebra library that is used by Sage [57] for many more difficult tasks, such

as factoring polynomials. It is noted in the documentation for Sage 8.0 (see the relevant section of

the reference manual18) that factoring polynomials with rational coefficients is done using Singular

rather than Maxima because the former is “very fast” and the latter is “dreadfully slow”. This differ-

ence substantially affects the speed of some operations in OCSage because the quadratic irrationality

(square roots) in some cases of the complete solution of the six-stage fifth-order ERK order conditions

means Sage must resort to slower operations in Maxima rather than faster operations in Singular

(see Sections 3.2 and 3.4 for more discussion of the quadratic irrationality that is introduced into some

expressions when solving the six-stage fifth-order ERK order conditions). In practice, this means that

operations that might require less than a minute with rational expressions for the calculated coefficients

in terms of the free parameters (such as the families corresponding to Cases III, V, VI derived in Sec-

tion 3.4.1), the equivalent operations with expressions containing quadratic irrationality (such as the

families corresponding to Cases I, II, IV derived in Section 3.4.1) might take 20–30 minutes. Although

notably slower and sometimes inconvenient, to complete the study in this thesis it was not necessary

to improve this aspect of performance.

13http://matplotlib.org/
14http://matplotlib.org/gallery.html
15http://scipy.org/
16http://maxima.org
17https://www.singular.uni-kl.de/
18http://doc.sagemath.org/html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.

Expression.factor

129

http://matplotlib.org/
http://matplotlib.org/gallery.html
http://scipy.org/
http://maxima.org
https://www.singular.uni-kl.de/
http://doc.sagemath.org/html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.factor
http://doc.sagemath.org/html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression.factor


Figure 4.1: A sample of exploratory calculations for the family corresponding to Case V derived in
Section 3.4.1 being done in a worksheet in the Sage notebook running in a Firefox web browser.

Many of the component libraries of Sage have a wide array of incompatible APIs in many different

languages, e.g., Maxima uses Common Lisp and Singular uses C++. Therefore, one of the advantages

of Sage [57] is that it provides a common interface with a consistent set of versions for a diverse array of

libraries. Sometimes, the only interface to particular software packages is a command prompt or similar

interface meant to be used by a human can occur for some older open-source software packages that provide

particular functionality or when interfacing with closed-source commercial software such as Maple and

Mathematica. In these cases, Sage uses the Python-based Pexpect library [57], which simulates sending

textual commands to the command prompt just like a human would and reading the resulting output in order

to allow software to interface with these packages. The Singular library used to have only a command-line-

based interface requiring the use of Pexpect by Sage. However, the Sage project has now created a proper

C++ API for Singular, and over time is also doing this for many other important libraries. However,

Pexpect continues to be useful to the Sage project in order to provide interactive interfaces for the Sage

notebook or interfacing with closed-source commercial software such as Maple and Mathematica through

their command-line interfaces. Although Sage can interface to Maple and Mathematica, which have

extremely powerful algebraic capabilities, the versions available to the author were often out-of-sync with the

latest Sage version. Therefore, these commercial packages are not used for this study because any advantages

they would confer are not strictly required.
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Figure 4.2: A “report” in the Sage notebook giving the properties of the DP5(4)C6(7) pair (2.81).
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4.2 Review of existing software to analyze Runge–Kutta methods

Software for algebraically studying the RK order conditions (2.43) has already been described in the literature

and gave substantial insights that assisted in developing OCSage. Therefore, despite most of these existing

software packages being developed before 2005, it is important to review these published packages first.

However, in comparison to the software that is reviewed here, the OCSage package is much larger, with

approximately 11,000 lines of code rather than at most several hundred lines of code for the software packages

reviewed here. OCSage also benefits from being developed in an era with readily available high-performance

and multi-core computing, and where the Python scientific computing ecosystem is broadly integrated and

widely used. These are all aspects that make developing a more complex software package much easier than

in the past.

CASs date back to the 1960s [121], and commercial CASs such as Maple were in widespread use by the

1980s [93]. Some of the first dedicated software packages to build upon a CAS to systematically generate and

solve the order conditions (2.43) are from Keiper in 1990 and Harrison in 1994 (neither of which were named

or published in the literature, but were mentioned in the references and discussion by Famelis, Papakostas,

and Tsitouras [58]). Two other early packages (also unnamed) that were published through peer-reviewed

journals are from Sofroniou in 1994 [168] that was built upon the commercial CAS Mathematica, and from

Bendtsen in 1996 [14] that was built upon the commercial CAS Maple. In 2001, Bornemann published

two packages [18, 19] in order to give the option of either Mathematica or Maple, respectively, and

these have been used and/or referenced by several authors in further research [51, 95, 196]. The (unnamed)

Mathematica package by Famelis, Papakostas, and Tsitouras from 2004 [58] appears to have been extremely

useful in both preceding and subsequent publications by the original authors [58, 181, 184]. An advantage to

the algorithms used by Famelis, Papakostas, and Tsitouras is, compared to previous approaches, they were

demonstrated to be up to many orders of magnitude faster for generating expressions above order twelve

for scalar sums (2.39), order conditions (2.43), error coefficients (2.47) [58]. Another published tool is the

unnamed software package by Cameron [28] that is built on the commercial software package Matlab, which

is focused on numerical computing and hence is required to use Maple when CAS functionality is required.

This package by Cameron [28] automatically generates explicit expressions for the PECs (2.47), and it has

been used by at least one other author [142]. In comparison to OCSage, the preceding packages are relatively

small. In many cases, the code even fits into the text of the original paper [58]. However, these packages

act more as helper functions for studying RK methods with the commercial software package for which they

were written, rather than as a more independent set of tools.

The studies by Tsitouras [182, 183] and Khashin [99] previously mentioned in Section 3.1 also use computer

algebra to solve order conditions, but instead of generating explicit expressions that are amenable to high-

performance evaluation, numeric values of at least some free parameters are substituted, and these simpler

equations are then solved for each set of free parameters using relatively slow algebraic methods. The
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advantages of software packages such as Mathematica, which is similar to Sage in having both strong

CAS and numerical computing capabilities, becomes extremely clear in these cases. However, it is seen in

Section 4.15.1 that in the study by Tsitouras [182, 183] this led to ERK pairs that do not exactly satisfy the

order conditions and do not have corresponding pairs in exact arithmetic.

4.3 Overview of the OCSage package

The OCSage package contains all needed components for studying the full process of solving order conditions

and selecting coefficients to construct RK methods, in a more complete and integrated software package

than those reviewed in the last section. Although it will be mentioned where the specific algorithms and

functionality are inspired by the code in other published packages, the OCSage package is much larger and

develops relevant functionality much further than any other known packages for a similar purpose. The

additional complexity of OCSage comes from aspects such as:

• The functions and classes that represent the large number of details that must be addressed to support

a thorough study of the mathematics as presented in Chapter 3.

• The functions and classes that support code generation and unit testing to ensure the mathematics

remains correct throughout the development process, neither of which are provided by any other known

package supporting the construction of RK methods.

• Code that supports searching the free parameters of RK families and storing the results in a PostgreSQL

database, as well as plotting those results from that database.

• Many of the other large and small complexities that are commonly expected when moving from simple

implementations of a task to software useful for serious research or other practical applications.

Despite being somewhat specialized to this study, OCSage could be extended to study other types of classically

constructed RK methods with as little as a few hundred lines of code. Thoroughly implementing method

construction using CMF (as shown in Chapter 3) for RK method families other than ERK or even ERK

methods other than 5(4)6 ERK pairs would likely require several thousand additional lines of code specific to

the RK method family of interest. Although not addressed currently, the issue that would arise of duplicated

but specialized code for implementing CMF could be mitigated by a more general library of code based on

the functions for, but not specialized to, 5(4)6 ERK pairs.

The OCSage package first finds the purely algebraic solution of the order conditions the families of 5(4)6

ERK pairs constructed in Section 2.7 and Chapter 3. This is in addition to replicating the algebraic solution

of many published ERK families up to eighth order. The solutions of the order conditions are then used

to generate Python code (for both the standard Python interpreter and Sage interpreter) that gives the

method coefficients of the above-mentioned ERK families (as well as error coefficients, stability properties,
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and other characteristic numbers) as callable Sage or Python functions with the most general possible set

of free parameters as arguments. These generated functions can then be used to narrow down candidate

methods by searching for methods with promising characteristic numbers (2.56).

Due to the requirement for a purely symbolic solution of order conditions and numeric search in the same

package, the OCSage package is a mix of code using the Sage interpreter with the preparser as described in

Section 4.1, and code using the standard Python interpreter when making heavy use of SciPy, NumPy, and

matplotlib. Although it would have been possible to make use of only one interpreter, it was found that

it was most straightforward to use the interpreter best suited for either symbolic or numerical computing,

as required by each source code file. The specific advantage in OCSage of using the Sage interpreter for

manipulating symbolic expressions has already been discussed, and a specific advantage to using SciPy is

that it allows some source files in OCSage, such as erk_search.py described in Section 4.9, to be used without

a full Sage installation (the installation of Sage 8.0 used for this study takes up 7.7GB on disk). Using just

SciPy could be an advantage for leveraging computing resources such as disk- or quota-limited computers

that already have a standard SciPy installation.

Although most files for OCSage are split between a main package directory and subdirectories, in the

following overview and the next sections, they are collected as functional units with respect to the main

package directory.

• The source files for generating trees and the source files with the generated trees, as well as the

source files making possible their utilization by providing code for the scalar sums (2.39), order condi-

tions (2.43), and PECs (2.47) are:

maketrees_cached.sage

maketrees.sage

generated_trees/*

generated_trees/rk_trees01.py

...

generated_trees/rk_trees12.py

generated_trees/rk_trees.py

orderconditions.py

orderconditions_scipy.py

that are covered in Section 4.4.

• The source file containing code specific to the mathematics of 5(4)6 ERK pairs in Chapter 3 is:

erk5_6s_functions.sage

that is just under 3000 lines long, covered in Section 4.5, and used extensively by the next two functional
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units of source code files that are about to be described, which themselves are covered fully in Section 4.6

and Section 4.7.

• The files specific to symbolically computing the solutions to the order conditions for contexts such as

the Sage notebook in Figure 4.1 and unit testing are:

sagenb/*

unittests_worksheet/*

that are covered in Section 4.6.

• The source files used to actually solve the order conditions and generate expressions for Butcher

tableau (2.34) coefficients and error coefficients in terms of the free parameters, generated as either

SciPy [91] or Sage code, are:

rkclasses.py

erk_classic.sage

erk_cmf.sage

erk_fixed.sage

generated_sage/*

generated_scipy/*

that are covered in Section 4.7.

• In order to verify that the order conditions are being solved correctly, several source files that implement

unit tests are given by:

unittests_generated_scipy.py

unittests.py

unittests_regenerate.py

unittests_worksheet/unittests_worksheet.py

where the files in unittests_worksheet have already been mentioned and are covered in Section 4.8.

• The source file that uses the generated code to numerically search the free parameters of the solved

order conditions is:

erk_search.py

that is covered in Section 4.9. The output of this last source file is stored in a PostgreSQL database

for either analysis within the database itself, use by plotting functions contained within the figures

supporting Sections 4.12–4.14, or use by the pythODE package covered in Chapter 5.
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4.4 Generating code to implement the scalar sums

For this study of 5(4)6 ERK pairs, code implementing the scalar sums (2.39) up to order ten is generated

automatically and allows the order conditions (2.43) up to order five along with five additional orders of

non-zero error coefficients to be examined (for the fourth-order method of a 5(4)6 ERK pair, this allows

the order conditions (2.43) up to order four along with six additional orders of non-zero error coefficients

to be examined). This puts the study in this thesis in line with other studies of fifth-order ERK methods

that sometimes find numerical values for error coefficients up to order ten [16] for the small number of RK

methods that they constructed or compared.

The program to generate the scalar sums (2.39) up to order twelve is the maketrees.sage source code

file, and the files themselves are put into the directory generated_trees/ as the files rk_trees01.py to

rk_trees12.py. In order to avoid inefficiencies from having to evaluate unnecessarily high-order expressions

for the scalar sums (2.39), the generated expressions for the scalar sums (2.39) are put in these separate

files, which are called from the Python function rk_classic_scalar_sums in rk_trees.py and that must

specify a maximum order for the scalar sums (2.39) to be returned. The maketrees.sage program generates

the scalar sums (2.39) that can then be used to form the order conditions (2.43), PECs (2.47), and other

characteristic numbers (2.56). An example of the generated code for specific scalar sums (2.39) in Python

syntax can be seen in the last row of Figure 4.3 (with the corresponding tree in the first row), where

the rest of the specific algorithm is described below in Section 4.4.1 after this overview of generating code

implementing the scalar sums (2.39) is given. Also provided as part of the generated code in rk_trees.py

are the calculated values of α, γ, σ corresponding to each scalar sum (2.39) generated. See the discussion and

references in Section 2.5.1 for the definitions of α, γ, σ.

Using a single core of the desktop computer used for this study, maketrees.sage takes only about 2

seconds to generate code implementing the RK scalar sums (2.39) up to order six and takes only 17 seconds

to generate code implementing the RK scalar sums (2.39) up to order twelve, after which point it starts to

take much longer for each additional order. Although generating code implementing the scalar sums (2.39) as

nested sum statements is relatively convenient, the statements themselves can be time consuming and resource

intensive to evaluate, such as deeply nested summations or loops tend to be in most software. Although code

for scalar sums (2.39) up to order twelve is generated because this only takes a few additional seconds more

than order ten, the nested sum statements for orders above ten are currently too inefficient to actually utilize.

Actually running the nested sum statements returns the fully expanded expressions for the scalar sums (2.39)

of general RKmethods, with the total number of terms (the terms are the products of the Butcher tableau (2.34)

coefficients inside the summations given by (2.39)) for all scalar sums (2.39) at each order for a particular

number of stages given in column five of Table 4.1. However, by comparing column five of Table 4.1 to

column six, which gives the total number of non-zero terms for ERK scalar sums (2.39), it can be seen that

the effect of the zero coefficients, due to the strictly lower-triangular nature of the Butcher tableau (2.34) of
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ERK methods, drastically reduces the number of terms in the expanded expressions for the scalar sums (2.39)

of ERK methods in comparison to general RK methods, especially for scalar sums (2.39) of order of six or

greater. This allows error terms and order conditions (2.43) associated with these higher-order ERK scalar

sums (2.39) to be computed relatively easily from purely symbolic expressions. On the other hand, it can

easily be seen that using fully expanded purely symbolic versions of the most general scalar sums (2.39) for

high-order RK methods with large numbers of stages may in fact be intractable even at orders of ten or

below.

Table 4.1: Some values of the number of non-unique trees generated and unique trees at each order,
in addition to the number of terms in the expanded scalar sums for 6 and 7 stages. ∗Values specific to
the algorithms and methodology used by OCSage.

order stages non-unique trees generated∗ unique trees terms in RK terms in ERK
1 6 N/A (base case) 1 6 6
1 7 7 7
2 6 1 1 5 5
2 7 6 6
3 6 2 2 35 15
3 7 48 21
4 6 6 4 240 35
4 7 378 56
5 6 16 9 1710 90
5 7 3087 161
6 6 50 20 12255 231
6 7 25434 462
7 6 150 48 89520 630
7 7 213170 1399
8 6 490 115 659690 1654
8 7 1799820 4158
9 6 1576 286 4960310 4391
9 7 15466588 12623
10 6 5238 719 37678270 11461
10 7 134236420 37962

The reason that the expanded versions of the nested sum statements in the generated Python code for

scalar sums (2.39) can be used efficiently and within the resource limitations of a typical desktop computer

from the nested sum statements, even up to order ten, is because it is easy to pre-calculate the relatively

small number of non-zero terms of the fully expanded scalar sums (2.39) for ERK methods. In order to speed

up the process of loading the expanded and simplified scalar sums (2.39) for individual scripts, the program

maketrees_cached.sage uses the nested sum expressions for the trees generated (see example in the last row

of Figure 4.3), expands and simplifies them for ERK methods, and stores these expressions in the quickly

loadable binary format provided by Sage, i.e., .sobj files. The pre-calculation of all ERK scalar sums (2.39)

for up to order ten and seven stages takes 82 minutes the desktop computer used for this study, with the Sage

.sobj files taking up only 1.9MB and all .sobj files loading together taking about 5 seconds. With the .sobj
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files being so small on disk, these pre-calculated expressions do not consume a notable amount of memory

when loaded into memory on a modern desktop computer. However, despite the expense of pre-calculating,

except when being re-generated as part of the normal software development process, creating these .sobj

files only has to be done once unless different orders and numbers of stages are required.

For convenience in some scripts or during some phases of software development, loading the scalar

sums (2.39) for ERK methods using the nested sum statements directly (without pre-calculating) up to

order seven with 7 stages adds only about 5 seconds to each execution of a script, although by order eight

with 7 stages it adds about 45 seconds to each execution of a script.

Although with the simplifications that the lower triangular ERK Butcher tableau (2.34) allows, using

scalar sums (2.39) for practical purposes above order ten would be possible, it would take much longer

to pre-calculate the expanded expressions and the combinatorial computational complexity of the current

implementation in OCSage would quickly make this intractable. To illustrate this, counting the number of

terms in the RK scalar sums (2.39) for six-stage RK up to tenth order and seven-stage up to ninth order to

fill in Table 4.1 took several hours on the desktop computer used for this study. Furthermore, as implemented

currently, counting the number of terms in the RK scalar sums (2.39) for seven-stage tenth-order required a

special script to count the terms of the scalar sums in small groups with 16GB of memory on the computer

used. In fact, the process of expanding the appropriate nested sum expression and counting all 14,606,622

terms of just the tallest tenth-order general RK tree alone consumed 6881MB of memory and took nearly an

hour on the desktop computer used for this study. Pre-computing the ERK scalar sums (2.39) up to order 12

would likely be possible in a couple of weeks on a computer with around 1TB of memory using the existing

code, with the resulting precomputed scalar sums (2.39) still likely being small enough to be useful on a

typical desktop computer. Beyond that, more sophisticated code generation algorithms other than just using

the relatively simple nested sum statements might make pre-computing the ERK scalar sums for orders up to

12, or even greater, possible on a standard desktop computer. However, none of these possible enhancements

are necessary for this study.

4.4.1 Algorithms used for maketrees.sage

The source file maketrees.sage generates the trees as nested Python lists and tuples in a similar manner to

that described by Bornemann [18, 19], which is also similar to the representation of the rooted trees as nested

sets described by Butcher [27, pg.125]. All possible nested lists and tuples isomorphic to all appropriate

rooted trees are generated using a greedy methodology, an example of these data structures can be seen in

the second row of Figure 4.3 with the corresponding rooted tree in the first row. This is done by starting

out with the data structure corresponding to the single vertex r and then adding a new branch and leaf to

create the data structure isomorphic to the rooted tree of order 2, i.e, rr . At each iteration, new rooted trees

are generated by adding a single branch and leaf to each vertex of all existing rooted trees of the currently

highest order, in order to generate the complete (but non-unique) set of rooted trees with one additional
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order.

��DD��TTr rr rr
y

(’f’, [’f’, ’f’, ’f’, ’f’])

y
[0, 0, 0, 0]

y
[’bi1’, ’ci1’, ’ci1’,

’ci1’, ’ci1’]y
[[’bi1’, ’ci1’]]

y
sum(bi1*ci1*ci1*ci1*ci1
for bi1 ,ci1 in zip(b,c))
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rr r

y
(’f’, [(’f’,

[’f’, (’f’, [’f’])])])

y
[(0, 1, ’f’), 1, (1, 2, ’f’), 2]

y
[’bi1’, ’Ai1i2’,

’ci2’, ’Ai2i3’, ’ci3’]y
[[’bi1’, ’Ai1i2’],
[’ci2’, ’Ai2i3’, ’Ai2’],
[’Ai3’, ’ci3’]]

y
sum(
sum(
sum(bi1*Ai1i2*ci2*Ai2i3*ci3
for bi1 ,Ai1i2 in zip(b,Ai2))
for ci2 ,Ai2i3 ,Ai2

↪→ in zip(c,Ai3 ,At))
for Ai3 ,ci3 in zip(At,c))

rr
rr
r

y
(’f’, [(’f’,

[(’f’,
[(’f’, [’f’])])])])y

[(0, 1, ’f’), (1, 2, ’f’),
(2, 3, ’f’), 3]y

[’bi1’, ’Ai1i2’, ’Ai2i3 ’,
’Ai3i4 ’, ’ci4’]y

[[’bi1’, ’Ai1i2 ’],
[’Ai2i3’, ’Ai2’],
[’Ai3’, ’Ai3i4’],
[’ci4’, ’Ai4’]]y

sum(
sum(
sum(
sum(bi1*Ai1i2*Ai2i3*Ai3i4*ci4
for bi1 ,Ai1i2 in zip(b,Ai2))
for Ai2i3 ,Ai2 in zip(Ai3 ,At))
for Ai3 ,Ai3i4

↪→ in zip(At ,Ai4))
for ci4 ,Ai4 in zip(c,At))

Figure 4.3: Examples of the sequence of data structures used to generate scalar sums corresponding
to three representative fifth-order rooted trees.

During generation of the set of the next highest order of rooted trees, this set can contain duplicates of

many of these rooted trees because each rooted tree can sometimes be constructed in several different ways

from the current set of highest order trees using this branch addition procedure. However, these duplicates can

be efficiently eliminated as each order is generated by use of Python’s built-in sort function on the nested

data structures corresponding to the trees. This is similar to what was described by Bornemann [18, 19], where

the Maple and Mathematica sort functions he used behave identically to the Python sort function for
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this application. Then the duplicates can easily be removed by checking for equality of the data structures

between adjacent entries in the sorted lists using the Python == operator. See columns three and four of

Table 4.1 for the exact number of non-unique trees generated by maketrees.sage from the unique trees at

each lower order and number of unique trees after deduplication for each order (that is also identical to the

number of trees already given in Table 2.1). It was noted by Bornemann [19] that this greedy approach

to generating trees is generally as efficient and much easier to code than earlier methods that required the

use of efficient integer partition algorithms. Considering that scalar sums (2.39) only need to be generated

infrequently and the greedy approach takes less than a minute on a typical modern desktop computer, this

makes the greedy approach even more appropriate than in 2002.

Examples of the sequence of data structures used to get from the rooted tree to the nested sum expressions

for the scalar sums (2.39) are given in Figure 4.3. The steps that correspond to each line in Figure 4.3, with

the arrows showing the progression of the algorithm along the columns, are described as follows:

• On the first line of Figure 4.3 are three examples of the rooted trees that have code representing their

scalar sums (2.39) shown as examples of code generation.

• On the second line of Figure 4.3 are examples of the Python data structures consisting of nested lists

and tuples that get generated greedily and correspond to rooted trees, and that are then sorted to help

remove duplicates. This data structure is analogous to the square bracket notation shown in (2.40),

except with a few more elements required for a Python implementation. A vertex that branches is

represented as a tuple, with ’f’ being the first element of the tuple representing the component of the

elementary differential (2.36) corresponding to that vertex, and the second element of the tuple being

a list of all the vertices that branch from the current vertex of interest. Any of these vertices in this

list that branch further are represented by a similarly constructed tuple to what was just described in

that list. Otherwise, vertices that terminate after branching are represented as just the string ’f’ in

this list of vertices that branch from the same parent vertex.

The particular data structure just described was originally conceived to support order conditions (2.43)

for partitioned Runge–Kutta methods [11][72, pgs.302–308], which are not addressed in this study or

currently implemented by the associated software, but could readily be added to the implementation

by changing ’f’ to something else. For instance, the strings ’f1’ and ’f2’ have been used together in

the past to represent the rooted trees and corresponding elementary differentials (2.36) of 2-partitioned

RK methods known as implicit-explicit Runge–Kutta methods, see discussion by Ascher, Ruuth, and

Spiteri [11], as well as others [94].

• On the third line of Figure 4.3, the data structures are given that begin to build the structure of the

scalar sums (2.39) by giving the coupled pairs of indices in the scalar sums (2.39) as tuples, and using

integers for terminating branches. The ’f’ is now redundant information for standard RK rooted trees

(although required in the specific implementation in OCSage), but will be useful for future studies of
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partitioned methods as mentioned above.

• On the fourth line of Figure 4.3, the components of the rooted tree are now represented by the cor-

responding coefficients of the Butcher tableau (2.34) according to how the scalar sums (2.39) are con-

structed; see the discussion in Section 2.5.1. These list elements now correspond to the product of the

indexed variables for each term of the specific scalar sum (2.39); observe how the groupings correspond

to the multiplication in the sixth line of Figure 4.3 described below.

• On the fifth line of Figure 4.3 is the data structure that gives the set of variables that need to be

iterated for each of the sum statements in the generated Python code.

• The sixth line of Figure 4.3 is the final Python expression that implements each of the scalar sum (2.39),

by expanding to that scalar sum (2.39) itself when evaluated.

Finally, functions to actually use the scalar sums (2.39) for order conditions, error coefficients, and other

expressions, such as (2.66), are defined in orderconditions.py (which is a Python source file called from

.sage scripts), along with orderconditions_scipy.py for a small number of functions that currently need

to be called with Python rather than Sage.

4.5 Code specific to constructing 5(4)6 ERK pairs

The next two sections following this one extensively use code contained in the source file

erk5_6s_functions.sage, which contains most of the functionality specific to constructing the 5(4)6 ERK

pairs described in Chapter 3. The erk5_6s_functions.sage source file is just under 3000 lines long, which is

about 25% of the OCSage package, indicating the complexity of fully implementing the mathematics described

in Chapter 3 for study. As a comparison, the mathematics describing the classic 5(4)6 ERK pairs in Section 2.7

could probably be implemented with several hundred lines of code in commonly used CASs such as Maple,

Mathematica, and Sage [57]. However, studying the method construction in Chapter 3 using the thorough

and data-intensive methodology of this thesis would be extremely difficult to implement as a simple script

using common CASs, and a specialized software tool similar to OCSage would still have to be built. There

are two nearly identical applications of the functionality contained in erk5_6s_functions.sage:

1. Solving the order conditions (2.43) using the Sage worksheets for exploring the mathematics, either

using numerical values for the free parameters or finding expressions leading to the calculated Butcher

tableau (2.34) coefficients. These scripts, which are also used for the unit testing described in Section 4.8,

contain identical statements to those in the final versions of the worksheets for the Sage notebook that

was used for the mathematics in Section 2.7 and Chapter 3.

2. Solving the order conditions (2.43) in order to generate code giving the Butcher tableau (2.34) coeffi-

cients explicitly in terms of the free parameters. This generated code is primarily used to systematically

141



search the free parameters of ERK methods. The solution of the order conditions done in a way that

supports code generation is described in Section 4.7, and using this generated code to search for specific

RK formulae is then described in Section 4.9.

Although the mathematical expressions and relevant code are nearly the same, there are slight differences

in applying the solution procedures as well as using the software interface for each of the above applica-

tions. Generally, each piece of functionality to implement the mathematics in Chapter 3 has three function

definitions associated with it in erk5_6s_functions.sage:

• A Sage function sagenb_«name of functionality»(vardict,**kwds) that is called for the first ap-

plication above, i.e., worksheets for the Sage notebook and unit testing.

• A Sage function «name of functionality»(vardict,**kwds) that is used for the second application

above, i.e., code generation.

• A Sage function _«name of functionality»(vardict,**kwds) that is used internally for actually

implementing the specific piece of mathematical functionality.

An example of these functions to calculate the {p3, p4, p5} vector from equation (3.51) for the family corre-

sponding to Case III derived in Section 3.4.1 is given in Listing 4.1.

Listing 4.1: Functions to implement equation (3.51) used for the family corresponding to Case III

derived in Section 3.4.1.

def sagenb_erk5g_6s_p_III (** kwds):
vardict=get_globals_as_dict ()
global p3,p4,p5
p3 ,p4,p5 = _erk5g_6s_p_III(vardict ,** kwds)

def erk5g_6s_p_III(vardict ,** kwds):
return _erk5g_6s_p_III(vardict ,** kwds)

def _erk5g_6s_p_III(vardict ,symbolic=False):
for v in vardict:

exec("%s = vardict[’%s’]" % (v,v))
p3 = -((c2 - c3)*(la + c3*mu)/om)/2
p3 = factor_if_symbolic(p3)
p4 = -((c2 - c4)*(la + c4*mu)/om)/2
p4 = factor_if_symbolic(p4)
p5 = -((c2 - c5)*(la + c5*mu)/om)/2
p5 = factor_if_symbolic(p5)
ocp("Calculated p3,p4 ,p5 from multipliers: ")
ocp(’p3: ’);
ocv(p3);
ocp(’p4: ’);
ocv(p4);
ocp(’p5: ’);
ocv(p5);
return p3,p4,p5

The vardict argument to the functions in Listing 4.1 contains a dictionary of the Sage variables or the

already calculated values for these variables.

Some of the utility functions for output used in the above example are:

• The Sage function ocp(obj) prints the string representation of a Sage object as textual output,

either for terminals or when used within a Sage worksheet. See some of the description text within
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the example of a Sage notebook in Figure 4.1.

• The Sage function ocv(obj) prints Sage objects as either their textual representation when called

from a terminal or uses the pretty-print functionality built into Sage worksheets. An example of

pretty-printing of the algebraic expressions (that Sage internally formats with LATEX) is the example

of a Sage notebook in Figure 4.1.

Sometimes the algebraic procedures differ slightly between worksheets and code generation. Selecting the

appropriate functionality is easily accomplished by adding a Boolean keyword argument

symbolic=«True/False» to a small number of appropriate function calls. The keyword argument

constraint_solution=«0/1» is also used to select one of two subcases for Cases I, II, IV, V, VI described

in Section 3.4.1.

There are also global constants defined in erk5_6s_functions.sage that give a list of algebraic variables

to help easily set up the Sage notebook worksheets (and scripts derived from them) for the mathematics in

Chapter 3. Specific examples of how the functions similar to the example given by Listing 4.1 are utilized in

Python and Sage scripts are described in the appropriate sections below.

4.6 Exploring the mathematics using a Sage notebook

To initially explore the mathematics described in Chapter 3, worksheets in the Sage notebook were created,

an example of part of one is already shown in Figure 4.1. The functions in the source file

erk5_6s_functions.sage described in the previous section were developed over the course of an iterative

exploration that eventually obtained the specific mathematical formulation of the complete solution of 5(4)6

ERK pairs presented in Chapter 3. The final versions of these worksheets use the functions from the source file

erk5_6s_functions.sage exclusively. If any further exploration is needed, the functions from the source file

erk5_6s_functions.sage can be used up to the point detailed exploration is desired, after which appropriate

algebraic expressions can be used directly in the worksheet so the appropriate mathematics can be explicitly

explored.

However, the configuration directories (by default stored in ~/.sage) used by the Sage notebooks are not

easily portable between computers or easily archived. An appropriate textual format for export cannot be

updated automatically as the notebooks are worked on (as opposed to the iPython notebook .pynb format

commonly used for SciPy-based iPython notebook worksheets and its successor Jupyter19) but must be

manually exported and imported each time a worksheet is stored in a portable format, transferred, or backed

up. For future explorations of RK methods beyond the work in this thesis, using Jupyter notebooks may be

desirable because these support using Sage in the notebook directly from a file that can easily be transferred

between computers, stored in version control, or published.

19https://ipython.org/notebook.html
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Therefore, to provide the code used in the notebooks for the purposes of this thesis, the statements from

the notebooks are transferred to Sage scripts that can be readily run from a terminal. A user can either

run these scripts directly and view the output on a terminal, or the statements can be pasted one by one

into a Sage notebook or a Jupyter notebook to recreate the notebooks used to explore the mathematics

presented in Chapter 3.

An example is given by Listing 4.2, where the script erk5gIIIs6_unittest.sage solves for the explicit

expressions of the calculated Butcher tableau coefficients in terms of the free parameters for Case III of the

complete solution (as can be seen from the name, this script is also used for the unit tests described in

Section 4.8) of the six-stage fifth-order ERK order conditions (see Section 3.4.1).

Listing 4.2: The erk5gIIIs6_unittest.sage file to demonstrate the solution of the family corre-

sponding to Case III derived in Section 3.4.1 and use it in unit tests.

#!/usr/local/bin/sage
import sys

load(os.path.join(os.getenv("OCSAGE_ROOT"),’init.sage’))
load_ocsage(’sagenb_erk5_6s_functions.sage’);
# set some fixed parameters here:
c2 =43/193; c3 =257/3121; c4 =133/143; c6=1;la=1;mu=3;a63 =342/897
# load in some predefined values:
load_ocsage(’sagenb_erk5_6s.sage’);
om= -5/3*(2*c2 -1)*la - (5/3*c2 -1)*mu;nu=0;
sagenb_erk5g_6s_mult ();
sagenb_erk5g_6s_b6_III ();
sagenb_erk5g_6s_p_III ();
sagenb_erk5g_6s_q ();
sagenb_erk5g_6s_constraint_III ();
sagenb_erk5g_6s_q_b1b2 ();
sagenb_erk5g_6s_higher ();
sagenb_erk5g_6s_A1 ();
sagenb_erk5g_6s_A2 ();
sagenb_erk5g_6s_A3 ();
load_ocsage(’sagenb_check_erk5_6s.sage’);
load_ocsage(’sagenb_checkerk.sage’)
check_erk(A,b,c);

if len(sys.argv) > 1:
fh=open(sys.argv[1],’w’)
fh.write(dumps ((A,b,c)));
fh.close()

In Listing 4.2, it can clearly be seen that the functions from the source file erk5_6s_functions.sage de-

scribed in the previous section are the only substantial functionality. If a filename is included as a command-

line argument to scripts such as the example in Listing 4.2, the Sage function dumps is used to serialize the

calculated Butcher tableau (2.34), and it is stored in the filename provided for later verification by the unit

tests.

4.6.1 Code for setting up OCSage

The OCSage package provides the init.sage source file that is loaded in the second line of Listing 4.2, which

contains functions such as load_ocsage that works like the standard the Sage load function to load files

in the OCSage directory based on the environment variable $OCSAGE_ROOT. The sagenb/ directory in the

OCSage package contains several source files with functions that help study RK methods in the interactive
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shell or notebooks, such as initializing the many variables seen in method construction in Chapters 2 and 3

or loading expressions for the order conditions.

4.7 Generating code from the solution of the order conditions

For the vast majority of studies of RK methods, the solution of the order conditions (2.43) is presented

only for small sets of specific values (usually rational numbers) selected for the free parameters of the RK

family of interest. As mentioned before, in this study, the expressions for the calculated Butcher tableau (2.34)

coefficients in terms of the free parameters are purely symbolic. These symbolic solutions are used to generate

the code for the search process described in Section 4.9, which allows the characteristic numbers (2.56) for

millions of sets of free parameters to be found orders of magnitude faster than when solving the order

conditions anew for each individual set of free parameters. If the order conditions (2.43) were algebraically

solved anew for each set of free parameters tested, only thousands could be done in several hours, such as

was indicated in the studies by Tsitouras [182, 183] (in addition to the issues mentioned in Chapter 3 with

using numerical methods to directly solve the order conditions). Although many studies have found explicit

symbolic expressions in terms of the free parameters for constructing the RK families of interest, the sheer

quantity of code required to support the complete solution described in Chapter 3 in the way it is used in

this study would make it extremely difficult to code manually.

Due to the large number of families describing 5(4)6 ERK pairs in Section 2.7 and Chapter 3 (as well as

other RK methods that are were not derived in thesis), when generating the code that gives the calculated

coefficients of a Butcher tableau (2.34) explicitly in terms of the free parameters, it is imperative to reuse

the common functionality in solving the order conditions and code generation processes in order to keep

the software complexity manageable. Ideally, solving the appropriate systems of equations (in this study

this is only the order conditions (2.43), but this can easily include conditions similar to order conditions

that are often imposed in other studies of RK methods [20, 21, 142]) in the appropriate sequence should be

implemented so that it requires the minimum possible amount of code to specify the relevant information for

a particular family. In conjunction with the functions in erk5_6s_functions.sage, the ERKSolve class and

its subclasses that are described in this section largely accomplish this.

The Python classes defined by the OCSage source file rkclasses.py are:

• The class ERKSolve that is used for solving ERK methods using procedures such as those in Section 2.7.

• The subclass ERKCassitySolve of ERKSolve for six-stage fifth-order methods and 5(4)6(6) ERK pairs

using CMF defined in Chapter 3.

• The subclass ERKCassitySolveFSAL of ERKSolve for 5(4)6(7) ERK pairs using the CMF defined in

Chapter 3.

The rkclasses.py source file includes support for parallelism using the multiprocessing library. All
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solutions and code generation for all ERK families studied in this thesis took several weeks of computation

time using 4 cores on the desktop computer used for this study. However, development of OCSage required

many iterations, and the sometimes large execution time for solving the order conditions during development

became onerous during testing. This was especially the case when the procedures were not yet in a more

optimized form or when the code still had bugs that could substantially add to the execution time before

they became apparent. In these cases, using 4 cores instead of 1 core was found to be even more beneficial

than it was for the final data itself.

Solving the order conditions for specific RK families is implemented either by overriding or adding certain

methods to one of ERKSolve, ERKCassitySolve, or ERKCassitySolveFSAL. The actual solution of the order

conditions occurs by executing the method solve(self) for these classes in order to generate the source files

with the generated code, an example of which is given in Listing 4.3, in the directories generated_sage/

and generated_scipy/.

4.7.1 Solving for classic ERK families with the ERKSolve class

An example of using the ERKSolve class to solve for the classic ERK pair family containing the RKF4(5)6(6)

pair, described in Section 2.7.2, is given by Listing 4.3.

Listing 4.3: The Fehl45_6 subclass of ERKSolve to set up code generation for the ERK family

containing the RKF4(5)6(6) pair.

class Fehl45_6(ERKSolve):
label = ’fehl45s6 ’
n=6
methodorders =(5,4)
def banner(self):

self.wo(’################################################################################ ’)
self.wo(’6 stage ERK Fehlberg 4(5)’)
self.wo(’################################################################################ ’)

def init(self):
self.substitutions = {self.b[1]:0}
self.symbolic_substitutions = {self.c[2]:3/2* self.c[1],

self.c[3]:3* self.c[1] / ((4 - 24* self.c[1]) + 45* self.c[1]*
↪→ self.c[1])}

self.conditions = [self.step1 ,
self.step2 ,
self.step3 ,
self.step4 ,
self.step5]

def step1(self ,A,b,c):
conditions = [self.classic_order_conditions [1][0] ,

self.classic_order_conditions [2][0] ,
self.classic_order_conditions [3][0] ,
self.classic_order_conditions [4][0] ,
self.classic_order_conditions [5][0]]

conditions = self.substitute(conditions)
variables = [self.b[0],self.b[2],self.b[3],self.b[4],self.b[5]]
output = solve(conditions ,*variables ,solution_dict=True)
return output [0]

def step2(self ,A,b,c):
conditions = butcher_simplifying_C(self.A,self.b,self.c,2,start=3,end =4) + \

butcher_simplifying_C(self.A,self.b,self.c,3,start=3,end=4)
conditions = self.substitute(conditions)
variables = [self.A[2][1] ,

self.A[3][1] ,
self.A[3][2]]

output = solve(conditions ,*variables ,solution_dict=True)
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return output [0]

def step3(self ,A,b,c):
conditions = butcher_simplifying_C(self.A,self.b,self.c,2,start=5,end =5) + \

butcher_simplifying_C(self.A,self.b,self.c,3,start=5,end=5) + \
[erk_column_conditions1(self.A,self.b,2),
erk_column_conditions2(self.A,self.b,self.c,2)]

variables = [self.A[4][1] ,
self.A[4][2] ,
self.A[4][3] ,
self.A[5][1]]

conditions = self.substitute(conditions)
output = solve(conditions ,*variables ,solution_dict=True)
return output [0]

def step4(self ,A,b,c):
conditions = [sum(

sum(bi*Aij*cj**3
for bi,Aij in zip(self.b,Aj))

for Aj,cj in zip(self.A.T,self.c)) == 1/20] + \
butcher_simplifying_C(self.A,self.b,self.c,2,start=6,end=6) + \
butcher_simplifying_C(self.A,self.b,self.c,3,start=6,end=6)

conditions = self.substitute(conditions)
variables = [self.A[5][2] , self.A[5][3] , self.A[5][4]]
self.wo("----------")
self.pp(conditions)
self.wo(variables)
output = solve(conditions ,*variables ,solution_dict=True)
return output [0]

def step5(self ,A,b,c):
conditions = self.classic_order_conditions [0]
conditions = self.substitute(conditions)
variables = [self.A[1][0] ,

self.A[2][0] ,
self.A[3][0] ,
self.A[4][0] ,
self.A[5][0]]

output = solve(conditions ,*variables ,solution_dict=True)
return output [0]

def init_emb(self):
self.substitutions_emb = {self.bhat [1]:0 ,

self.bhat [5]:0}
self.conditions_emb = [self.step1_emb]

def step1_emb(self ,A,b,c,bhat):
conditions = [self.classic_order_conditions_emb [1][0] ,

self.classic_order_conditions_emb [2][0] ,
self.classic_order_conditions_emb [3][0] ,
self.classic_order_conditions_emb [4][0]]

conditions = self.substitute(conditions)
variables = [bhat[0],bhat[2],bhat[3],bhat [4]]
output = solve(conditions ,*variables ,solution_dict=True)
return output [0]

<<...>>

if __name__ == ’__main__ ’:
STARTTIME = time.time()
# XXXX: these must be defined before the pool to have effect!
rkclasses.SUPPRESS_EMB=False
rkclasses.SUPPRESS_STABILITY=False
rkclasses.SUPPRESS_ERRORTERMS=False
rkclasses.REDIRECT_STDOUT=True
rkclasses.SOLVE_PARALLEL=True
if rkclasses.SOLVE_PARALLEL:

from multiprocessing import Pool
rkclasses.POOL = Pool(processes =4)

ERROR_TERMS =9
<<...>>
rkclasses.rksolvemaster(Fehl45_6 , do_emb=True , do_stability=True ,do_errorterms=ERROR_TERMS)
<<...>>
if rkclasses.SOLVE_PARALLEL:

rkclasses.POOL.close()
rkclasses.POOL.join()

print("--- %s seconds ---" % (time.time() - STARTTIME))
print "Preparsing ./ generated_sage"
p = subprocess.Popen([’bash’,’-c’,’sage -preparse *.sage’], cwd=os.path.join(os.getcwd (),’

↪→ generated_sage ’))
p.wait()
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In Listing 4.3, steps similar to what is described in Section 2.7.2 are defined using the methods step1(self)

through step5(self). In each of the step«number» methods, the relevant order conditions (including any

simplifying assumptions or reworking of the order conditions) are defined and solved using the built-in Sage

solve function. Analogous to the step«number» methods when an embedded pair is being constructed

are the step«number»_emb methods that are called after the sequence of step«number» methods. In this

example, it can be noted that the reduced system for the family containing the RKF4(5)6(6) pair (2.78) could

in fact be solved simply by using a single call of the built-in Sage solve function. However, experience has

shown that except for extremely simple reduced systems, solving with the Sage solve function, as opposed

to setting up a sequence of systems, does not necessarily give a good indication whether all solutions are

being returned or whether these returned solutions are complete solution of the appropriate reduced system.

In fact, once the complexity of the reduced system for the family containing the DP5(4)6(7) pair (2.79) is

reached, the Sage solve function (at least in Sage version 8.0) is no longer sufficient to find an appropriate

solution without solving the reduced system as a sequence of solutions.

The attributes provided by the ERKSolve class for use while solving are:

• The classic_order_conditions attribute contains expressions for the order conditions for the higher-

order component of an RK pair.

• The classic_order_conditions_emb attribute contains expressions for the order conditions for the

higher-order method of an RK pair, but only if the option for solving for an embedded pair is enabled.

• The A attribute contains a Sage matrix of the Sage variables corresponding to the A matrix of the

Butcher tableau (2.34).

• The b attribute contains a Sage vector of the Sage variables corresponding to the b vector of the

Butcher tableau (2.34).

• The c attribute contains a Sage vector of the Sage variables corresponding to the c vector of the

Butcher tableau (2.34).

• The bhat attribute contains a Sage vector of the Sage variables corresponding to the b̂ vector of the

Butcher tableau (2.34), but only if the option for solving for an embedded pair is enabled.

The user-configurable attributes of ERKSolve that are demonstrated by Listing 4.3 are:

• The label attribute is set as a unique and descriptive string corresponding to each RK family, which

is used for tasks such as naming the filenames of the generated code or identifying the ERK method

family in the PostgreSQL database.

• The n attribute is set to the number of stages, the natural name for this attribute would be s, but s is

used elsewhere (for example, see (3.1) and (3.27c)). Because the number of stages is used so often in

the code, a single letter attribute is desirable.

148



• The methodorders attribute is set as a Python tuple of the higher and lower method orders, respec-

tively, of an ERK pair. If only a single method is being solved for, rather than a pair, then the second

element of the tuple can be None. In the case of the RKF4(5)6(6) pair (2.78), although the classic im-

plementation uses the fifth-order method as error estimator, hence the 4(5) in RKF4(5)6(6) pair (2.78);

the implementation to construct ERK pairs in OCSage requires the higher-order method to be first with

self.methodorders=(5,4). The actual implementation of the resulting pair in a numerical solver can

choose to use local extrapolation independent of how the order conditions are solved.

• The substitutions attribute is set as a dictionary of coefficients or other mathematical variables in

the solution that have a numerical value (usually a rational number) they are always equal to.

• The symbolic_substitutions attribute is set as a dictionary of coefficients or other mathematical vari-

ables in the solution that have algebraic expressions they always equal. The symbolic_substitutions

attribute must currently be separate from the substitutions attribute because internally the values

in the substitutions attribute need to be applied first.

• The conditions attribute is set as a Python list containing the sequence of methods to be run without

arguments, generally the user-defined step«number» methods (described below), in order to solve the

order conditions.

• The conditions_emb attribute is set as a list of methods to run without arguments, generally the

user-defined step«number»_emb methods (described below), in order to solve the order conditions of

the lower-order component of an ERK pair. The conditions_emb attribute is optional and generally

set in the init_emb method. The methods listed in the conditions_emb attribute are used to solve

the order conditions for the lower-order method of an embedded pair after the order conditions for the

higher-order method have been solved with the methods listed by the conditions attribute.

The methods of the ERKSolve class as demonstrated by the example above are:

• The banner(self) method is overridden to provide a textual description that is printed to the terminal

before solving the order conditions and generating the code.

• The init(self) method sets up the class prior to solving the order conditions, it is here that the

attributes described above are generally set by the user.

• The init_emb(self) method is optional and sets up the class prior to solving the order conditions for

the lower-order method of an embedded pair in an analogous manner to init(self).

• The solve(self) method is what is called by the user to actually solve the order conditions and is

typically called right after instantiating the user-defined subclass of ERKSolve.

• The substitute(self,expressions) method (only shown in Listing 4.5) can be used like the Sage

substitute function to substitute already calculated values into a list of expressions given by the
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expressions argument. These used to be done automatically after each function given by the conditions

attribute, but as already mentioned it was found that this led to excessively large generated expressions.

• The wo(self,obj)method and pp(self,obj)method are convenience methods for printing and pretty-

printing objects to the terminal or Sage notebook, respectively. The output includes a newline and

also assures the textual output can be redirected to a file if the proper options are configured.

• The user-defined step«number» methods contain the code for each step of solving the order conditions

(for a single ERK method or for the higher-order component of an ERK pair). The step«number»

methods are also listed in the conditions attribute. These methods must return a dictionary giving

the solved-for variables and the Sage expressions giving their solutions.

• The user-defined step«number»_emb methods contain the code for each step of solving the order condi-

tions (for the lower-order component of an ERK pair). The step«number»_emb methods are also listed

in the conditions attribute. These methods must return a dictionary giving the solved-for variables

and the Sage expressions giving their solutions.

The generated code

Listing 4.4 demonstrates the generated code through the generated_scipy/fehl45s6.py OCSage file, that

is generated by running the solve(self) method from the Fehl45_6 class in Listing 4.3.

Listing 4.4: A representative sample of the generated SciPy code for the ERK family containing

RKF4(5)6(6) pair (2.78).

from __future__ import division
from scipy import array
from scipy import roots
from scipy import linalg
from scipy import sqrt
import scipy as sp
import numpy as np

def fehl45s6_coefficients(x):
c2 = x[0]
c5 = x[1]
c6 = x[2]
b2 = 0
c4 = 3*c2/(45* c2**2 - 24*c2 + 4)
c3 = 3/2*c2
b6 = -1/20*(675* c2**3 - 780*c2**2 - 20*(45* c2**3 - 51*c2**2 + 18*c2 - 2)*c5 + 282*c2 - 32) /(2*(45*

↪→ c2**2 - 24*c2 + 4)*c6**4 - 9*c2**2*c5*c6 - (135*c2**3 - 72*c2**2 + 2*(45* c2**2 - 24*c2 +
↪→ 4)*c5 + 18*c2)*c6**3 + 9*(c2**2 + (15*c2**3 - 8*c2**2 + 2*c2)*c5)*c6**2)

b5 = -1/20*(675* c2**3 - 780*c2**2 - 20*(45* c2**3 - 51*c2**2 + 18*c2 - 2)*c6 + 282*c2 - 32) /(2*(45*
↪→ c2**2 - 24*c2 + 4)*c5**4 + 9*c2**2*c5**2 - 9*(15* c2**3 - 8*c2**2 + 2*c2)*c5**3 - (2*(45* c2
↪→ **2 - 24*c2 + 4)*c5**3 + 9*c2**2*c5 - 9*(15* c2**3 - 8*c2**2 + 2*c2)*c5**2)*c6)

b4 =1/540*(184528125* c2**9 - 492075000* c2**8 + 590490000* c2**7 - 419904000* c2**6 + 195372000* c2**5
↪→ - 61772544* c2**4 + 13291776* c2**3 - 1880064* c2**2 - 30*(8201250* c2**9 - 21596625* c2**8 +
↪→ 25660800* c2**7 - 18098640* c2**6 + 8361792* c2**5 - 2627424* c2**4 + 562176* c2**3 - 79104* c2
↪→ **2 + 6656*c2 - 256)*c5 - 10*(24603750* c2**9 - 64789875* c2**8 + 76982400* c2**7 - 54295920*
↪→ c2**6 + 25085376* c2**5 - 7882272* c2**4 + 1686528* c2**3 - 237312* c2**2 - (36905625* c2**9 -
↪→ 95134500* c2**8 + 111099600* c2**7 - 77215680* c2**6 + 35217504* c2**5 - 10938240* c2**4 +
↪→ 2315520* c2**3 - 322560* c2**2 + 26880* c2 - 1024)*c5 + 19968* c2 - 768)*c6 + 158976* c2 -
↪→ 6144) /(405* c2**6 - 216*c2**5 + 18*c2**4 - 3*(2025* c2**7 - 2160*c2**6 + 846*c2**5 - 144*c2
↪→ **4 + 8*c2**3)*c5 - (6075* c2**7 - 6480* c2**6 + 2538*c2**5 - 432*c2**4 + 24*c2**3 - (91125*
↪→ c2**8 - 145800* c2**7 + 98010* c2**6 - 35424* c2**5 + 7200*c2**4 - 768*c2**3 + 32*c2**2)*c5)*
↪→ c6)
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b3 =4/135*(540* c2**2 - 15*(45* c2**2 - 28*c2 + 4)*c5 - 5*(135* c2**2 - 2*(90* c2**2 - 57*c2 + 8)*c5 -
↪→ 84*c2 + 12)*c6 - 333*c2 + 48) /(405* c2**6 - 216*c2**5 + 18*c2**4 - 6*(45* c2**5 - 24*c2**4
↪→ + 2*c2**3)*c5 - 2*(135* c2**5 - 72*c2**4 + 6*c2**3 - 2*(45* c2**4 - 24*c2**3 + 2*c2**2)*c5)*
↪→ c6)

b1 = -1/540*(2025* c2**3 - 2340*c2**2 - 60*(45* c2**3 - 51*c2**2 + 18*c2 - 2)*c5 - 10*(270* c2**3 -
↪→ 306*c2**2 - (405*c2**3 - 450*c2**2 + 150*c2 - 16)*c5 + 108*c2 - 12)*c6 + 846*c2 - 96)/(c2
↪→ **2*c5*c6)

a43 = -6*(45*c2**3 - 24*c2**2 + 2*c2)/(91125* c2**6 - 145800* c2**5 + 102060* c2**4 - 39744* c2**3 +
↪→ 9072* c2**2 - 1152*c2 + 64)

a42 =9/2*(135* c2**3 - 72*c2**2 + 8*c2)/(91125* c2**6 - 145800* c2**5 + 102060* c2**4 - 39744* c2**3 +
↪→ 9072* c2**2 - 1152*c2 + 64)

a32 =9/8*c2
a62 = -1/2*(135* a32*b3*c2**3 - 72*a32*b3*c2**2 + 6*(2* a32*b3 + a42*b4)*c2 - 2*(45*( a32*b3 + a42*b4)

↪→ *c2**2 + 4*a32*b3 + 4*a42*b4 - 24*( a32*b3 + a42*b4)*c2)*c5)/(45* b6*c2**2*c6 - 24*b6*c2*c6
↪→ - (45*b6*c2**2 - 24*b6*c2 + 4*b6)*c5 + 4*b6*c6)

a54 = -1/54*(18225* a32*b3*c2**7 - 2430*( a32*b3*(5*c6 + 8) + 5*a42*b4*c6)*c2**6 + 162*(4* a32*b3 *(20*
↪→ c6 + 13) + 5*a42*b4*(16*c6 + 1))*c2**5 - 432*( a32*b3 *(13*c6 + 4) + a42*b4*(13*c6 + 1))*c2
↪→ **4 - 4*(2025* b5*c2**4 - 2160*b5*c2**3 + 936*b5*c2**2 - 192*b5*c2 + 16*b5)*c5**4 + 72*( a42
↪→ *b4*(16* c6 + 1) + 2*a32*b3*(8*c6 + 1))*c2**3 + (18225* b5*c2**5 + 1620*b5*c2 **4*(5* c6 - 12)
↪→ - 216*b5*c2 **3*(40* c6 - 39) + 288*b5*c2 **2*(13* c6 - 6) - 48*b5*c2*(16* c6 - 3) + 64*b5*c6)
↪→ *c5**3 - 96*( a32*b3*c6 + a42*b4*c6)*c2**2 - 9*(2025* b5*c2**5*c6 - 2160*b5*c2**4*c6 + 936*
↪→ b5*c2**3*c6 - 192*b5*c2**2*c6 + 16*b5*c2*c6)*c5**2) /(45* b5*c2**4*c6 - 24*b5*c2**3*c6 + 2*
↪→ b5*c2**2*c6 - (45*b5*c2**4 - 24*b5*c2**3 + 2*b5*c2**2)*c5)

a53 = -2/27*(18225* a32*b3*c2**7 - 2430*( a32*b3*(5*c6 + 8) + 5*a42*b4*c6)*c2**6 + 81*( a32*b3 *(160* c6
↪→ + 89) + 10* a42*b4*(16* c6 + 1))*c2**5 - 54*( a32*b3 *(89*c6 + 20) + a42*b4*(89*c6 + 8))*c2
↪→ **4 + 2*(2025* b5*c2**4 - 2160*b5*c2**3 + 936*b5*c2**2 - 192*b5*c2 + 16*b5)*c5**4 + 18*( a42
↪→ *b4*(40* c6 + 1) + 2*a32*b3*(20* c6 + 1))*c2**3 - (4050* b5*c2**4*c6 - 135*b5*c2 **3*(32* c6 -
↪→ 3) + 72*b5*c2 **2*(26* c6 - 3) - 12*b5*c2*(32* c6 - 3) + 32*b5*c6)*c5**3 - 24*( a32*b3*c6 +
↪→ a42*b4*c6)*c2**2 + 9*(45* b5*c2**3*c6 - 24*b5*c2**2*c6 + 4*b5*c2*c6)*c5**2) /(2025* b5*c2**6*
↪→ c6 - 2160* b5*c2**5*c6 + 846*b5*c2**4*c6 - 144*b5*c2**3*c6 + 8*b5*c2**2*c6 - (2025* b5*c2**6
↪→ - 2160* b5*c2**5 + 846*b5*c2**4 - 144*b5*c2**3 + 8*b5*c2**2)*c5)

a52 =1/2*(135* a32*b3*c2**3 - 18*( a32*b3*(5*c6 + 4) + 5*a42*b4*c6)*c2**2 - 8*a32*b3*c6 - 8*a42*b4*
↪→ c6 + 6*(a42*b4*(8*c6 + 1) + 2*a32*b3*(4*c6 + 1))*c2)/(45*b5*c2**2*c6 - 24*b5*c2*c6 - (45*
↪→ b5*c2**2 - 24*b5*c2 + 4*b5)*c5 + 4*b5*c6)

a65 = -1/20*(455625*(8* a32*b3 + (8*a42 + 27*a43)*b4 + (8*a52 + 27*a53)*b5 - 4*a62*b6)*c2**9 -
↪→ 729000*(8* a32*b3 + (8* a42 + 27*a43)*b4 + (8* a52 + 27*a53)*b5 - 4*a62*b6)*c2**8 +
↪→ 24300*(168* a32*b3 + 21*(8* a42 + 27* a43)*b4 + 21*(8* a52 + 27*a53)*b5 + (75*c6**3 - 79*a62)*
↪→ b6)*c2**7 - 270*(5888* a32*b3 + 736*(8* a42 + 27*a43)*b4 + 736*(8* a52 + 27*a53)*b5 + (10800*
↪→ c6**3 + 675*c6**2 - 2464* a62)*b6 + 675)*c2**6 + 1080*(336* a32*b3 + 42*(8* a42 + 27* a43)*b4
↪→ + 42*(8* a52 + 27*a53)*b5 + (1965* c6**3 + 180*c6**2 - 116* a62)*b6 + 270)*c2**5 - 360*(128*
↪→ a32*b3 + 16*(8* a42 + 27*a43)*b4 + 16*(8* a52 + 27*a53)*b5 + 2*(1224* c6**3 + 117*c6**2 - 16*
↪→ a62)*b6 + 567)*c2**4 + 8*(320* a32*b3 + 40*(8* a42 + 27*a43)*b4 + 5*(64* a52 + 216* a53 + 27*
↪→ a54)*b5 + 40*(684* c6**3 + 54*c6**2 - a62)*b6 + 9936)*c2**3 - 96*(5*(64* c6**3 + 3*c6**2)*b6
↪→ + 189)*c2**2 + 384*(5* b6*c6**3 + 6)*c2 - 128) /(2*(91125* b6*c2**6 - 145800* b6*c2**5 +
↪→ 102060* b6*c2**4 - 39744* b6*c2**3 + 9072*b6*c2**2 - 1152* b6*c2 + 64*b6)*c5**3 - 9*(30375* b6
↪→ *c2**7 - 48600* b6*c2**6 + 35370* b6*c2**5 - 14688* b6*c2**4 + 3648* b6*c2**3 - 512*b6*c2**2 +
↪→ 32*b6*c2)*c5**2 + 9*(2025* b6*c2**6 - 2160*b6*c2**5 + 936*b6*c2**4 - 192*b6*c2**3 + 16*b6*
↪→ c2**2)*c5)

a64 =1/540*(1366875*(8* a32*b3 + (8* a42 + 27*a43)*b4 + (8* a52 + 27*a53)*b5 - 4*a62*b6)*c2**9 -
↪→ 2187000*(8* a32*b3 + (8*a42 + 27* a43)*b4 + (8*a52 + 27* a53)*b5 - 4*a62*b6)*c2**8 +
↪→ 218700*(56* a32*b3 + 7*(8* a42 + 27*a43)*b4 + 7*(8* a52 + 27* a53)*b5 + (25*c6**3 - 28*a62)*b6
↪→ )*c2**7 - 810*(5888* a32*b3 + 736*(8* a42 + 27*a43)*b4 + 736*(8* a52 + 27*a53)*b5 + 16*(675*
↪→ c6**3 - 184* a62)*b6 + 675)*c2**6 + 19440*(56* a32*b3 + 7*(8* a42 + 27*a43)*b4 + 7*(8* a52 +
↪→ 27* a53)*b5 + 7*(45* c6**3 - 4*a62)*b6 + 45)*c2**5 - 1080*(128* a32*b3 + 16*(8* a42 + 27* a43)*
↪→ b4 + 16*(8* a52 + 27*a53)*b5 + 32*(69* c6**3 - 2*a62)*b6 + 567)*c2**4 + 24*(320* a32*b3 +
↪→ 40*(8* a42 + 27* a43)*b4 + 5*(64* a52 + 216* a53 + 27*a54)*b5 + 40*(567* c6**3 - 4*a62)*b6 +
↪→ 9936)*c2**3 - 864*(80* b6*c6**3 + 63)*c2**2 + 768*(5* b6*c6**3 + 9)*c2 + 10*(546750* a62*b6*
↪→ c2**8 - 54675*(15* c6**2 + 16* a62)*b6*c2**7 + 14580*(25* c6**3 + 90*c6**2 + 42*a62)*b6*c2**6
↪→ - 324*(1800* c6**3 + 2835* c6**2 + 736* a62)*b6*c2**5 + 3888*(105* c6**3 + 92*c6**2 + 14*a62)
↪→ *b6*c2**4 - 432*(368* c6**3 + 189*c6**2 + 16*a62)*b6*c2**3 + 192*(189* c6**3 + 54*c6**2 + 2*
↪→ a62)*b6*c2**2 + 256*b6*c6**3 - 576*(8* c6**3 + c6**2)*b6*c2)*c5 - 384) /(135* b6*c2**5 - 72*
↪→ b6*c2**4 + 6*b6*c2**3 - (2025* b6*c2**6 - 2160*b6*c2**5 + 846*b6*c2**4 - 144*b6*c2**3 + 8*
↪→ b6*c2**2)*c5)

a63 = -1/135*(1366875*(8* a32*b3 + (8*a42 + 27*a43)*b4 + (8*a52 + 27*a53)*b5 + 8*a62*b6)*c2**9 -
↪→ 2187000*(8* a32*b3 + (8*a42 + 27* a43)*b4 + (8*a52 + 27* a53)*b5 + 8*a62*b6)*c2**8 +
↪→ 72900*(168* a32*b3 + 21*(8* a42 + 27* a43)*b4 + 21*(8* a52 + 27*a53)*b5 + 158* a62*b6)*c2**7 -
↪→ 810*(5888* a32*b3 + 736*(8* a42 + 27*a43)*b4 + 736*(8* a52 + 27*a53)*b5 + 4928* a62*b6 + 675)*
↪→ c2**6 + 3240*(336* a32*b3 + 42*(8* a42 + 27*a43)*b4 + 42*(8* a52 + 27* a53)*b5 + (75*c6**3 +
↪→ 232* a62)*b6 + 270)*c2**5 - 1080*(128* a32*b3 + 16*(8* a42 + 27*a43)*b4 + 16*(8* a52 + 27* a53)
↪→ *b5 + 16*(15* c6**3 + 4*a62)*b6 + 567)*c2**4 + 24*(320* a32*b3 + 40*(8* a42 + 27*a43)*b4 +
↪→ 5*(64* a52 + 216* a53 + 27*a54)*b5 + 40*(117* c6**3 + 2*a62)*b6 + 9936)*c2**3 - 288*(80* b6*c6
↪→ **3 + 189)*c2**2 + 384*(5* b6*c6**3 + 18)*c2 - 20*(546750* a62*b6*c2**8 - 874800* a62*b6*c2
↪→ **7 - 7290*(25* c6**3 - 79*a62)*b6*c2**6 + 81*(3600* c6**3 + 225*c6**2 - 2464* a62)*b6*c2**5
↪→ - 648*(315* c6**3 + 30*c6**2 - 58* a62)*b6*c2**4 + 216*(368* c6**3 + 39*c6**2 - 16*a62)*b6*c2
↪→ **3 - 96*(189* c6**3 + 18*c6**2 - a62)*b6*c2**2 - 128*b6*c6**3 + 144*(16* c6**3 + c6**2)*b6*
↪→ c2)*c5 - 384) /(273375* b6*c2**9 - 437400* b6*c2**8 + 294030* b6*c2**7 - 106272* b6*c2**6 +
↪→ 21600* b6*c2**5 - 2304* b6*c2**4 + 96*b6*c2**3 - 2*(91125* b6*c2**8 - 145800* b6*c2**7 +
↪→ 98010* b6*c2**6 - 35424* b6*c2**5 + 7200*b6*c2**4 - 768*b6*c2**3 + 32*b6*c2**2)*c5)

a51=-a52 - a53 - a54 + c5
a41 = -(45*( a42 + a43)*c2**2 - 3*(8* a42 + 8*a43 + 1)*c2 + 4*a42 + 4*a43)/(45*c2**2 - 24*c2 + 4)
a61=-a62 - a63 - a64 - a65 + c6
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a31=-a32 + 3/2*c2
a21=c2
bhat4 =1/54*(546750* c2**7 - 1148175* c2**6 + 1049760* c2**5 - 544644* c2**4 + 173664* c2**3 - 34128* c2

↪→ **2 - (820125* c2**7 - 1676700* c2**6 + 1501740* c2**5 - 765936* c2**4 + 240624* c2**3 - 46656*
↪→ c2**2 + 5184*c2 - 256)*c5 + 3840*c2 - 192) /(135* c2**5 - 72*c2**4 + 6*c2**3 - (2025* c2**6 -
↪→ 2160* c2**5 + 846*c2**4 - 144*c2**3 + 8*c2**2)*c5)

bhat3 =2/27*(135* c2**2 - 2*(90* c2**2 - 57*c2 + 8)*c5 - 84*c2 + 12) /(135* c2**5 - 72*c2**4 + 6*c2**3
↪→ - 2*(45* c2**4 - 24*c2**3 + 2*c2**2)*c5)

bhat1 =1/54*(270* c2**3 - 306*c2**2 - (405*c2**3 - 450*c2**2 + 150*c2 - 16)*c5 + 108*c2 - 12)/(c2
↪→ **2*c5)

bhat5 = -(45*c2**3 - 51*c2**2 + 18*c2 - 2) /(2*(45* c2**2 - 24*c2 + 4)*c5**3 + 9*c2**2*c5 - 9*(15* c2
↪→ **3 - 8*c2**2 + 2*c2)*c5**2)

return c2,c5,c6,b2 ,c4,c3,b6,b5 ,b4,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,
↪→ a21 ,bhat4 ,bhat3 ,bhat1 ,bhat5

def fehl45s6_tableau(x,cached_coefficients=None):
if cached_coefficients:

c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,
↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = cached_coefficients

else:
c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,

↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = fehl45s6_coefficients(x)
return {’A’:array ([[0,0,0,0,0,0],

[a21 ,0,0,0,0,0],
[a31 ,a32 ,0,0,0,0],
[a41 ,a42 ,a43 ,0,0,0],
[a51 ,a52 ,a53 ,a54 ,0,0],
[a61 ,a62 ,a63 ,a64 ,a65 ,0]]),

’b’:array([b1 ,0,b3 ,b4 ,b5,b6]),
’c’:array([0,c2 ,3/2*c2 ,3*c2/(45*c2**2 - 24*c2 + 4),c5,c6]),
’bhat’:array([bhat1 ,0,bhat3 ,bhat4 ,bhat5 ,0])}

def fehl45s6_numpy_mask(x,cached_coefficients=None):
if cached_coefficients:

c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,
↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = cached_coefficients

else:
c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,

↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = fehl45s6_coefficients(x)
param_mask = sp.zeros(x[0]. shape ,dtype=bool)
param_mask = param_mask | sp.logical_not(sp.isreal(b6))
param_mask = param_mask | sp.logical_not(sp.isreal(b5))
param_mask = param_mask | sp.logical_not(sp.isreal(b4))
param_mask = param_mask | sp.logical_not(sp.isreal(b3))
param_mask = param_mask | sp.logical_not(sp.isreal(b1))
param_mask = param_mask | sp.logical_not(sp.isreal(a43))
param_mask = param_mask | sp.logical_not(sp.isreal(a42))
param_mask = param_mask | sp.logical_not(sp.isreal(a32))
param_mask = param_mask | sp.logical_not(sp.isreal(a62))
param_mask = param_mask | sp.logical_not(sp.isreal(a54))
param_mask = param_mask | sp.logical_not(sp.isreal(a53))
param_mask = param_mask | sp.logical_not(sp.isreal(a52))
param_mask = param_mask | sp.logical_not(sp.isreal(a65))
param_mask = param_mask | sp.logical_not(sp.isreal(a64))
param_mask = param_mask | sp.logical_not(sp.isreal(a63))
param_mask = param_mask | sp.logical_not(sp.isreal(a51))
param_mask = param_mask | sp.logical_not(sp.isreal(a41))
param_mask = param_mask | sp.logical_not(sp.isreal(a61))
param_mask = param_mask | sp.logical_not(sp.isreal(a31))
param_mask = param_mask | sp.logical_not(sp.isreal(a21))
param_mask = param_mask | sp.logical_not(sp.isreal(bhat4))
param_mask = param_mask | sp.logical_not(sp.isreal(bhat3))
param_mask = param_mask | sp.logical_not(sp.isreal(bhat1))
param_mask = param_mask | sp.logical_not(sp.isreal(bhat5))
return param_mask

def fehl45s6_max_coefficient_magnitude(x,cached_coefficients=None):
if cached_coefficients:

c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,
↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = cached_coefficients

else:
c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,

↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = fehl45s6_coefficients(x)
coefficient_list = [b1 ,0,b3,b4,b5 ,b6] + [bhat1 ,0,bhat3 ,bhat4 ,bhat5 ,0] + [0,0,0,0,0,0,a21

↪→ ,0,0,0,0,0,a31 ,a32 ,0,0,0,0,a41 ,a42 ,a43 ,0,0,0,a51 ,a52 ,a53 ,a54 ,0,0,a61 ,a62 ,a63 ,a64 ,a65 ,0] +
↪→ [0,c2 ,3/2*c2 ,3*c2/(45* c2**2 - 24*c2 + 4),c5 ,c6]

coefficient_max = sp.zeros_like(coefficient_list [0])
for c in coefficient_list:

coefficient_max = sp.maximum(coefficient_max ,sp.absolute(c))
return coefficient_max
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def fehl45s6_min_c_distance(x,cached_coefficients=None):
if cached_coefficients:

c2,c5,c6,b2 ,c4,c3,b6,b5 ,b4,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,
↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = cached_coefficients

else:
c2,c5,c6,b2 ,c4,c3,b6,b5 ,b4,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,

↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = fehl45s6_coefficients(x)
c_list = [0,c2 ,3/2*c2 ,3*c2/(45* c2**2 - 24*c2 + 4),c5 ,c6]
c_list [0] = np.zeros_like(c2)
if len([0,c2 ,3/2*c2 ,3*c2 /(45*c2**2 - 24*c2 + 4),c5,c6]) == 7:

c_list = c_list [:-1]
c_list [-1] = np.ones_like(c2)

else:
if not hasattr(c_list[-1],’shape’):

c_list [-1] = np.ones_like(c2)
c_array = np.stack(c_list ,axis =0)
min_c_distance = np.min(np.diff(np.sort(c_array ,axis =0),axis =0),axis =0)
return min_c_distance

def fehl45s6_b_diff(x,cached_coefficients=None):
# XXXX: workaround for fehl45s6
bhat6=None
if cached_coefficients:

c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,
↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = cached_coefficients

else:
c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,

↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = fehl45s6_coefficients(x)
if bhat6 is None:

return sp.nan*sp.ones_like(c2)
else:

return abs(b6-bhat6)

def fehl45s6_orders(x,cached_coefficients=None):
return (5, 4)

def fehl45s6_stability(x,z,cached_coefficients=None):
if cached_coefficients:

c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,
↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = cached_coefficients

else:
c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,

↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = fehl45s6_coefficients(x)
return 1/2*(2*(45* a32*a43*a54*a65*b6*c2**3 - 24*a32*a43*a54*a65*b6*c2**2 + 4*a32*a43*a54*a65*b6*

↪→ c2)*z**6 + (45*(2* a32*a43*a54*b5 + (2* a32*a43*a64 + (2*a32*a53 + (2* a42 + 3*a43)*a54)*a65)
↪→ *b6)*c2**3 - 24*(2* a32*a43*a54*b5 + (2* a32*a43*a64 + (2*a32*a53 + (2* a42 + 3*a43)*a54)*a65
↪→ )*b6)*c2**2 + 4*(2* a32*a43*a54*b5 + (2* a32*a43*a64 + (2*a32*a53 + (2* a42 + 3*a43)*a54)*a65
↪→ )*b6)*c2)*z**5 + (45*(2* a32*a43*b4 + (2*a32*a53 + (2* a42 + 3*a43)*a54)*b5 + (2* a32*a63 +
↪→ (2* a42 + 3*a43)*a64 + (2* a52 + 3*a53)*a65)*b6)*c2**3 - 24*(2* a32*a43*b4 + (2*a32*a53 + (2*
↪→ a42 + 3*a43)*a54)*b5 + (2*a32*a63 + (2*a42 + 3*a43)*a64 + (2*a52 + 3*a53)*a65)*b6)*c2**2 +
↪→ 2*(4* a32*a43*b4 + 2*(2* a32*a53 + (2* a42 + 3*a43)*a54)*b5 + (4* a32*a63 + 2*(2* a42 + 3*a43)
↪→ *a64 + (4*a52 + 6*a53 + 3*a54)*a65)*b6)*c2)*z**4 + (45*(2* a32*b3 + (2*a42 + 3*a43)*b4 +
↪→ (2* a52 + 3*a53)*b5 + (2*a62 + 3*a63)*b6)*c2**3 - 24*(2* a32*b3 + (2* a42 + 3*a43)*b4 + (2*
↪→ a52 + 3*a53)*b5 + (2* a62 + 3*a63)*b6)*c2**2 + 2*(4* a32*b3 + 2*(2* a42 + 3*a43)*b4 + (4*a52
↪→ + 6*a53 + 3*a54)*b5 + (4*a62 + 6*a63 + 3*a64)*b6)*c2 + 2*(45* a65*b6*c2**2 - 24* a65*b6*c2 +
↪→ 4*a65*b6)*c5)*z**3 + (135* b3*c2**3 - 72*b3*c2**2 + 6*(2* b3 + b4)*c2 + 2*(45* b5*c2**2 -
↪→ 24*b5*c2 + 4*b5)*c5 + 2*(45* b6*c2**2 - 24*b6*c2 + 4*b6)*c6)*z**2 + 90*c2**2 + 2*(45*( b1 +
↪→ b3 + b4 + b5 + b6)*c2**2 - 24*(b1 + b3 + b4 + b5 + b6)*c2 + 4*b1 + 4*b3 + 4*b4 + 4*b5 + 4*
↪→ b6)*z - 48*c2 + 8) /(45*c2**2 - 24*c2 + 4)

def fehl45s6_stability_length(x,cached_coefficients=None):
eps=1e-12
if cached_coefficients:

c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,
↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = cached_coefficients

else:
c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,

↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = fehl45s6_coefficients(x)
if type(x[0]) == sp.ndarray:

stability_length_array = sp.empty_like(x[0])
poly = sp.array ([<<...>>])

else:
stability_length_array = sp.array ([0.])
poly = sp.array ([<<...>>])

poly_size_one = poly [0]. shape
new_poly = []
for e in poly:

if not type(e) is sp.ndarray:
new_poly.append(sp.ones(poly_size_one)*e)

else:
new_poly.append(e)
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poly = sp.array(new_poly)
it = sp.nditer(poly[0], flags =[’multi_index ’,’refs_ok ’])
while not it.finished:

# if sp.isfinite(it):
if True:

poly_individual = sp.array([t[it.multi_index] for t in poly])
poly_p1 = sp.array(poly_individual ,copy=True)
poly_n1 = sp.array(poly_individual ,copy=True)
poly_p1 [-1] = poly_p1 [-1] - 1.
poly_n1 [-1] = poly_n1 [-1] + 1.
try:

roots_p = sp.roots(poly_p1)
roots_n = sp.roots(poly_n1)

except linalg.LinAlgError:
roots_p = [0.]
roots_n = [0.]

real_p = -sp.inf
real_n = -sp.inf
for root in roots_p:

if abs(root.imag) < eps and root.real < -eps:
real_p = max(real_p ,root.real)

for root in roots_n:
if abs(root.imag) < eps and root.real < -eps:

real_n = max(real_n ,root.real)
stability_length_array[it.multi_index] = -max(real_n ,real_p)

it.iternext ()
return stability_length_array

def fehl45s6_stability_emb(x,z,cached_coefficients=None):
if cached_coefficients:

c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,
↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = cached_coefficients

else:
c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,

↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = fehl45s6_coefficients(x)
return 1/2*(2*(45* a32*a43*a54*bhat5*c2**3 - 24* a32*a43*a54*bhat5*c2**2 + 4*a32*a43*a54*bhat5*c2)*

↪→ z**5 + (45*(2* a32*a43*bhat4 + (2*a32*a53 + (2* a42 + 3*a43)*a54)*bhat5)*c2**3 - 24*(2* a32*
↪→ a43*bhat4 + (2*a32*a53 + (2*a42 + 3*a43)*a54)*bhat5)*c2**2 + 4*(2* a32*a43*bhat4 + (2*a32*
↪→ a53 + (2*a42 + 3*a43)*a54)*bhat5)*c2)*z**4 + (45*(2* a32*bhat3 + (2* a42 + 3*a43)*bhat4 +
↪→ (2* a52 + 3*a53)*bhat5)*c2**3 - 24*(2* a32*bhat3 + (2* a42 + 3*a43)*bhat4 + (2*a52 + 3*a53)*
↪→ bhat5)*c2**2 + 2*(4* a32*bhat3 + 2*(2* a42 + 3*a43)*bhat4 + (4*a52 + 6*a53 + 3*a54)*bhat5)*
↪→ c2)*z**3 + (135* bhat3*c2**3 - 72* bhat3*c2**2 + 6*(2* bhat3 + bhat4)*c2 + 2*(45* bhat5*c2**2
↪→ - 24* bhat5*c2 + 4* bhat5)*c5)*z**2 + 90*c2**2 + 2*(45*( bhat1 + bhat3 + bhat4 + bhat5)*c2**2
↪→ - 24*( bhat1 + bhat3 + bhat4 + bhat5)*c2 + 4* bhat1 + 4*bhat3 + 4*bhat4 + 4* bhat5)*z - 48*
↪→ c2 + 8) /(45*c2**2 - 24*c2 + 4)

def fehl45s6_stability_emb_length(x,cached_coefficients=None):
eps=1e-12
if cached_coefficients:

c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,
↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = cached_coefficients

else:
c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,

↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = fehl45s6_coefficients(x)
if type(x[0]) == sp.ndarray:

stability_length_array = sp.empty_like(x[0])
poly = sp.array ([<<...>>])

else:
stability_length_array = sp.array ([0.])
poly = sp.array ([<<...>>])

poly_size_one = poly [0]. shape
new_poly = []
for e in poly:

if not type(e) is sp.ndarray:
new_poly.append(sp.ones(poly_size_one)*e)

else:
new_poly.append(e)

poly = sp.array(new_poly)
it = sp.nditer(poly[0], flags =[’multi_index ’,’refs_ok ’])
while not it.finished:

# if sp.isfinite(it):
if True:

poly_individual = sp.array([t[it.multi_index] for t in poly])
poly_p1 = sp.array(poly_individual ,copy=True)
poly_n1 = sp.array(poly_individual ,copy=True)
poly_p1 [-1] = poly_p1 [-1] - 1.
poly_n1 [-1] = poly_n1 [-1] + 1.
try:

roots_p = sp.roots(poly_p1)
roots_n = sp.roots(poly_n1)

except linalg.LinAlgError:
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roots_p = [0.]
roots_n = [0.]

real_p = -sp.inf
real_n = -sp.inf
for root in roots_p:

if abs(root.imag) < eps and root.real < -eps:
real_p = max(real_p ,root.real)

for root in roots_n:
if abs(root.imag) < eps and root.real < -eps:

real_n = max(real_n ,root.real)
stability_length_array[it.multi_index] = -max(real_n ,real_p)

it.iternext ()
return stability_length_array

def fehl45s6_error_6(x,cached_coefficients=None):
if cached_coefficients:

c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,
↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = cached_coefficients

else:
c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,

↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = fehl45s6_coefficients(x)
return sqrt(<<....>>)

def fehl45s6_error_trees_6(x,cached_coefficients=None):
if cached_coefficients:

c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,
↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = cached_coefficients

else:
c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,

↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = fehl45s6_coefficients(x)
return array ([<<....>>])

def fehl45s6_error_conditions_6(x,cached_coefficients=None):
if cached_coefficients:

c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,
↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = cached_coefficients

else:
c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,

↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = fehl45s6_coefficients(x)
return sqrt(<<....>>)

def fehl45s6_error_conditions_trees_6(x,cached_coefficients=None):
if cached_coefficients:

c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,
↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = cached_coefficients

else:
c2 ,c5,c6,b2 ,c4 ,c3,b6,b5 ,b4 ,b3,b1,a43 ,a42 ,a32 ,a62 ,a54 ,a53 ,a52 ,a65 ,a64 ,a63 ,a51 ,a41 ,a61 ,a31 ,a21 ,

↪→ bhat4 ,bhat3 ,bhat1 ,bhat5 = fehl45s6_coefficients(x)
return array ([<<....>>])

<<....>>

The initial import statements ensure the proper libraries are loaded. The «...» placeholder shows where

large expressions have been omitted; they can be found in full in the OCSage code. The last placeholder

in Listing 4.4 indicates the last four functions (described below) are duplicated to whatever order of error

coefficients are necessary. Similar sets of four functions are also generated for the lower-order method of an

embedded pair.

Generating code describing mathematical expressions for Python-family interpreters from a Python or

Sage script turns out to be remarkably easy. The string representations (that are obtained by the __repr__

method built into every Python object) of the objects containing Sage expressions are executable Sage

code. Only a small number of changes are necessary to make this code executable in a standard Python

interpreter using SciPy, e.g., changing the ^ operator to **, ensuring appropriate library functions are

imported for operations such as square roots, etc.

In order to search the space of free parameters (described below in Section 4.9) as efficiently as possible,

most of the generated SciPy functions [91] other than «label»_tableau can be used vectorized, i.e, the
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argument x to the functions in Listing 4.4 can accept Sage or SciPy vectors and matrices for the free

parameters, and give back the desired characteristic numbers (2.56) as a vector or matrix, respectively. Note

that although the generated function for the Butcher tableau fehl45s6_tableau(x) in Listing 4.4 cannot

be vectorized because it returns a dictionary, this does not substantially affect any studies because the actual

Butcher tableau coefficients only need to be generated when performance testing them and the computational

work to test them on sets of IVPs greatly exceeds the time spent calculating the corresponding tableaux.

This vectorization reduces the penalty of using a high-level language like Python to the minimum by taking

advantage of the high-performance array operations provided by SciPy [91].

The functions generated as shown in Listing 4.4 are:

• The fehl45s6_tableau function returns a dictionary containing the calculated values of the Butcher

tableau (2.34) based on the free parameters given by the argument x.

• The fehl45s6_numpy_mask function is generated code giving a NumPy array mask representing where

invalid values (often nan or complex numbers) occur for any calculated coefficients. Use of this function

is not strictly necessary to use the generated code in Listing 4.4 for the classic case of RKF4(5)6(6)

pair (2.78). However, masks are essential to using vectorization for certain ERK families, such as Cases

I, II, IV derived in Section 3.4.1 and many other potential RK families, where the expressions for the

coefficients can evaluate to complex numbers or otherwise invalid values. Checking for these invalid

values and returning a mask is of great assistance in using the results of these generated functions,

including tasks such as plotting with matplotlib. The white patches within the coloured areas in the

figures in Sections 4.12 and 4.13 are invalid values, i.e., nan, inf, or complex values, that are handled

seamlessly by NumPy and matplotlib once masked off.

• The fehl45s6_max_coefficient_magnitude function returns the maximum absolute value of the

Butcher tableau coefficients (2.34).

• The fehl45s6_orders function returns the tuple of the orders for the ERK family containing the

RKF4(5)6(6) pair (2.78).

• The fehl45s6_stability function returns the stability polynomial (a rational expression in generated

Sage code or numerical value in generated SciPy code)) for the fifth-order method of the ERK family

containing the RKF4(5)6(6) pair (2.78).

• The fehl45s6_stability_length function returns the length of the stability region for the fifth-order

method of the ERK family containing the RKF4(5)6(6) pair (2.78).

• The fehl45s6_stability_emb function returns the stability polynomial (that is generally an exact

numerical value or symbolic expression when using generated Sage code, or a floating-point value

when using generated SciPy code) for the fourth-order method of the ERK family containing the

RKF4(5)6(6) pair (2.78).
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• The fehl45s6_stability_emb_length function returns the length of the stability region for the fourth-

order method of the ERK family containing the RKF4(5)6(6) pair (2.78).

• The fehl45s6_error_6 returns the sixth-order error coefficient of the fifth-order method in the ERK

family containing the RKF4(5)6(6) pair (2.78).

• The fehl45s6_error_trees_6 returns the individual values of the PECs (2.47) rather than their norm.

• The fehl45s6_error_conditions_6 function returns the norm of the PECs (2.48).

• The fehl45s6_error_conditions_trees_6 function returns the individual values of the PECs (2.48)

rather than their norm.

4.7.2 Solving for ERK families with CMF with the CassitySolve class

The ERKCassitySolve subclass of ERKSolve supports generating code for the specific 5(4)6 ERK pairs that

use CMF and are described in Chapter 3. The main additional functionality added by the ERKCassitySolve

subclass is that the calculated variables used extensively in Chapter 3 are added as class members, e.g.,

F6, G3,p, s, r−s, r∗3 , s
∗
3, r
∗
4 , r
†
4, r
∗
5 , λ, µ, ν, ω, as well as specialized methods for substituting these variables into

expressions properly. An example of using the ERKCassitySolve class that sets up the solution of the order

conditions and code generation for the family corresponding to Case III derived in Section 3.4.1 is given in

Listing 4.5.

Listing 4.5: The ERKCondensed_erk5gso1s6_mixin mixin and ERKCondensed_erk5gIIIs6 subclass

of ERKSolve setting up code generation for the family corresponding to Case III derived in Section 3.4.1.

class ERKCondensed_erk5gso1s6_mixin(object):
def step1(self ,A,b,c):

vardict=deepcopy(self.vardict)

G3 = erk5g_6s_mult(vardict ,symbolic=True)
G3 = self.substitute(G3)
return {self.G3:G3}

def step2(self ,A,b,c):
# calculate b6 , etc.
raise NotImplementedError

def step3(self ,A,b,c):
# find constraints
raise NotImplementedError

def step4(self ,A,b,c):
vardict=deepcopy(self.vardict)
b3 ,b4,b5 = erk5g_6s_q(vardict ,symbolic=True)
return {self.b[2]:b3,

self.b[3]:b4,
self.b[4]:b5}

def step5(self ,A,b,c):
vardict=deepcopy(self.vardict)
# find Q using real values
b1 ,b2 = erk5g_6s_q_b1b2(vardict ,symbolic=True)
return {self.b[0]:b1,

self.b[1]:b2}

def step6(self ,A,b,c):
# find constraints
raise NotImplementedError
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def step8(self ,A,b,c):
vardict=deepcopy(self.vardict)
a21 ,a32 ,a54 ,a65 = erk5g_6s_A1(vardict ,symbolic=True)
return {self.A[1][0]:a21 ,

self.A[2][1]:a32 ,
self.A[4][3]:a54 ,
self.A[5][4]: a65}

def step9(self ,A,b,c):
vardict=deepcopy(self.vardict)
a42 ,a43 ,a52 ,a53 ,a62 ,a64 = erk5g_6s_A2(vardict ,symbolic=True)
return {self.A[3][1]:a42 ,

self.A[3][2]:a43 ,
self.A[4][1]:a52 ,
self.A[4][2]:a53 ,
self.A[5][1]:a62 ,
self.A[5][3]: a64}

def step10(self ,A,b,c):
vardict=deepcopy(self.vardict)
_,_,_,a31 ,a41 ,a51 ,a61 = erk5g_6s_A3(vardict ,symbolic=True)
return {self.A[2][0]:a31 ,

self.A[3][0]:a41 ,
self.A[4][0]:a51 ,
self.A[5][0]: a61}

class ERKCondensed_erk5gIIIs6_mixin(ERKCondensed_erk5gso1s6_mixin ,ERKCassitySolve):
""
def init(self):

self.substitutions = {self.nu:0,
self.c[5]:1}

self.symbolic_substitutions = {self.om: -5/3*(2* self.c[1]-1)*self.la - (5/3* self.c[1]-1)*self.
↪→ mu}

self.conditions = [self.step1 ,
self.step2 ,
self.step3 ,
self.step4 ,
self.step5 ,
self.step6 ,
self.step7 ,
self.step8 ,
self.step9 ,
self.step10]

def step2(self ,A,b,c):
vardict=deepcopy(self.vardict)
# calculate b6 symbolically
G3 = erk5g_6s_mult(vardict ,symbolic=True)
G3 = self.substitute(G3)
vardict[’G3’]=G3
# p6,b6 = erk5g_6s_b6_III (3/5, self.b[5],self.p[5],self.F6 ,G3 ,0,self.mu , -3/5* self.om,self.om)
p6,b6 = erk5g_6s_b6_III(vardict ,symbolic=True)
return {self.b[5]:b6,

self.p[5]:p6}

def step3(self ,A,b,c):
vardict=deepcopy(self.vardict)
# TODO: update to case 2
# calculate Q symbolically
b3,b4,b5 = erk5g_6s_q(vardict ,symbolic=True)
vardict[’b3’]=b3
vardict[’b4’]=b4
vardict[’b5’]=b5
# calculate p
p3,p4,p5 = erk5g_6s_p_III(vardict ,symbolic=True)
vardict[’p3’]=p3
vardict[’p4’]=p4
vardict[’p5’]=p5
b3,b4,b5,b6 ,c5,p5 = erk5g_6s_constraint_III(vardict ,symbolic=True)
# return restriction to give formula for c5
return {self.c[4]:c5}

def step6(self ,A,b,c):
vardict=deepcopy(self.vardict)
# find p using real values
# p3,p4 ,p5 = erk5g_6s_p_III(self.c[1],self.c[2],self.c[3],self.c[4],self.p[2],self.p[3],self.

↪→ p[4],self.la,self.mu,self.nu,self.om)
p3,p4,p5 = erk5g_6s_p_III(vardict ,symbolic=True)
return {self.p[2]:p3,

self.p[3]:p4,
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self.p[4]:p5}

def step7(self ,A,b,c):
vardict=deepcopy(self.vardict)
p3,p4,p5=erk5g_6s_p_III(vardict ,symbolic=True)
vardict[’p3’]=p3
vardict[’p4’]=p4
vardict[’p5’]=p5
r3,r4,r5,rs3 ,rs4 ,s3 ,s4 = erk5g_6s_higher(vardict ,symbolic=True)
return {self.r[2]:r3,

self.r[3]:r4,
self.r[4]:r5,
self.rs[2]:rs3 ,
self.rs[3]:rs4 ,
self.s[2]:s3,
self.s[3]:s4}

class ERKCondensed_erk5gIIIs6(ERKCondensed_erk5gIIIs6_mixin ,ERKCassitySolve):
""
label = ’erk5gIIIs6 ’
n=6
methodorders =(5,None)
def banner(self):

print ’################################################################################ ’
print ’6 Stage ERK 5 with stage order 1 and b_2 \neq 0, case III , solved using condensed

↪→ matrix notation ’
print ’################################################################################ ’

class ERKCondensed_erk5gIIIs6FSAL7(ERKCondensed_erk5gIIIs6 ,ERKCassitySolve):
""
label = ’erk5gIIIs6FSAL7 ’
n=7
methodorders =(5,4)
def banner(self):

print ’################################################################################ ’
print ’6 Stage ERK 5 with stage order 1 and b_2 \neq 0, case III FSAL , solved using condensed

↪→ matrix notation ’
print ’################################################################################ ’

def init(self):
ERKCondensed_erk5gIIIs6_mixin.init(self)
self.substitutions.update ({self.c[6]:1,

self.b[6]:0})
self.conditions = [self.step0a ,

self.step0b ,
self.step1 ,
self.step2 ,
self.step3 ,
self.step4 ,
self.step5 ,
self.step6 ,
self.step7 ,
self.step8 ,
self.step9 ,
self.step10 ,
self.step11]

def init_emb(self):
self.symbolic_substitutions_emb = {}
self.substitutions_emb = {}
self.conditions_emb = [self.step1_emb ,

self.step2_emb]

def step0a(self ,A,b,c):
vardict=deepcopy(self.vardict)
vardict[’bhat7’]=var(’bhat7 ’)
vardict[’c7’]=1
G3 = erk5g_6s_mult(vardict ,symbolic=True)
G3 = self.substitute(G3)
vardict[’G3’]=G3
p6,b6 = erk5g_6s_b6_III(vardict)
vardict[’b6’]=b6
vardict[’p6’]=p6
b3,b4,b5 = erk5g_6s_q(vardict ,symbolic=True)
vardict[’b3’]=b3
vardict[’b4’]=b4
vardict[’b5’]=b5
p3,p4,p5 = erk5g_6s_p_III(vardict ,symbolic=True)
vardict[’p3’]=p3
vardict[’p4’]=p4
vardict[’p5’]=p5
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b3 ,b4,b5,b6 ,c5 ,p5 = erk5g_6s_constraint_III(vardict)
vardict[’b3’]=b3
vardict[’b4’]=b4
vardict[’b5’]=b5
vardict[’b6’]=b6
vardict[’c5’]=c5
vardict[’p5’]=p5
r3 ,r4,r5,rs3 ,rs4 ,s3 ,s4 = erk5g_6s_higher(vardict ,symbolic=True)
vardict[’r3’]=r3
vardict[’r4’]=r4
vardict[’r5’]=r5
vardict[’rs3’]=rs3
vardict[’rs4’]=rs4
vardict[’s3’]=s3
vardict[’s4’]=s4
a21 ,a32 ,a54 ,a65 = erk5g_6s_A1(vardict ,symbolic=True)
vardict[’a21’] = a21
vardict[’a32’] = a32
vardict[’a54’] = a54
vardict[’a65’] = a65
a42 ,a43 ,a52 ,a53 ,a62 ,a64 = erk5g_6s_A2(vardict ,symbolic=True)
vardict[’a42’] = a42
vardict[’a43’] = a43
vardict[’a52’] = a52
vardict[’a53’] = a53
vardict[’a62’] = a62
vardict[’a64’] = a64
bhat3 ,bhat4 ,bhat5 ,bhat6 = erk5g_6s_q_emb_FSAL(vardict)
vardict[’bhat3’] = bhat3
vardict[’bhat4’] = bhat4
vardict[’bhat5’] = bhat5
vardict[’bhat6’] = bhat6
a63 ,c3 ,c4 = erk5g_6s_higher_FSAL(vardict ,case =3);
return {self.c[3]:c4}

def step0b(self ,A,b,c):
vardict=deepcopy(self.vardict)
vardict[’bhat7’]=var(’bhat7 ’)
vardict[’c7’]=1
G3 = erk5g_6s_mult(vardict ,symbolic=True)
G3 = self.substitute(G3)
vardict[’G3’]=G3
p6 ,b6 = erk5g_6s_b6_III(vardict)
vardict[’b6’]=b6
vardict[’p6’]=p6
b3 ,b4,b5 = erk5g_6s_q(vardict ,symbolic=True)
vardict[’b3’]=b3
vardict[’b4’]=b4
vardict[’b5’]=b5
p3 ,p4,p5 = erk5g_6s_p_III(vardict ,symbolic=True)
vardict[’p3’]=p3
vardict[’p4’]=p4
vardict[’p5’]=p5
b3 ,b4,b5,b6 ,c5 ,p5 = erk5g_6s_constraint_III(vardict)
vardict[’b3’]=b3
vardict[’b4’]=b4
vardict[’b5’]=b5
vardict[’b6’]=b6
vardict[’c5’]=c5
vardict[’p5’]=p5
r3 ,r4,r5,rs3 ,rs4 ,s3 ,s4 = erk5g_6s_higher(vardict ,symbolic=True)
vardict[’r3’]=r3
vardict[’r4’]=r4
vardict[’r5’]=r5
vardict[’rs3’]=rs3
vardict[’rs4’]=rs4
vardict[’s3’]=s3
vardict[’s4’]=s4
a21 ,a32 ,a54 ,a65 = erk5g_6s_A1(vardict ,symbolic=True)
vardict[’a21’] = a21
vardict[’a32’] = a32
vardict[’a54’] = a54
vardict[’a65’] = a65
a42 ,a43 ,a52 ,a53 ,a62 ,a64 = erk5g_6s_A2(vardict ,symbolic=True)
vardict[’a42’] = a42
vardict[’a43’] = a43
vardict[’a52’] = a52
vardict[’a53’] = a53
vardict[’a62’] = a62
vardict[’a64’] = a64
bhat3 ,bhat4 ,bhat5 ,bhat6 = erk5g_6s_q_emb_FSAL(vardict)
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vardict[’bhat3’] = bhat3
vardict[’bhat4’] = bhat4
vardict[’bhat5’] = bhat5
vardict[’bhat6’] = bhat6
a63 ,c3 ,c4 = erk5g_6s_higher_FSAL(vardict ,case =3);
return {self.A[5][2]: a63}

def step11(self ,A,b,c):
return {A[6][0]:b[0],

A[6][1]:b[1],
A[6][2]:b[2],
A[6][3]:b[3],
A[6][4]:b[4],
A[6][5]:b[5]}

def step1_emb(self ,A,b,c,bhat):
vardict=deepcopy(self.vardict)
G3 = erk5g_6s_mult(vardict ,symbolic=True)
G3 = self.substitute(G3)
vardict[’G3’]=G3
p3,p4,p5 = erk5g_6s_p_III(vardict ,symbolic=True)
vardict[’p3’]=p3
vardict[’p4’]=p4
vardict[’p5’]=p5
p6,b6 = erk5g_6s_b6_III(vardict ,symbolic=True)
vardict[’b6’]=b6
vardict[’p6’]=p6
b3,b4,b5 = erk5g_6s_q(vardict)
vardict[’b3’]=b3
vardict[’b4’]=b4
vardict[’b5’]=b5
b3,b4,b5,b6 ,c5,p5 = erk5g_6s_constraint_III(vardict ,symbolic=True)
vardict[’b3’]=b3
vardict[’b4’]=b4
vardict[’b5’]=b5
vardict[’b6’]=b6
vardict[’p5’]=p5
vardict[’p6’]=p6
vardict[’b6’]=var(’b6’)
b6 = erk5g_6s_b6_II_full(vardict)
bhat3 ,bhat4 ,bhat5 ,bhat6 = erk5g_6s_q_emb_FSAL(vardict)
vardict[’bhat3’] = bhat3
vardict[’bhat4’] = bhat4
vardict[’bhat5’] = bhat5
vardict[’bhat6’] = bhat6
return {self.bhat [2]: bhat3 ,

self.bhat [3]: bhat4 ,
self.bhat [4]: bhat5 ,
self.bhat [5]: bhat6}

def step2_emb(self ,A,b,c,bhat):
vardict=deepcopy(self.vardict)
bhat1 ,bhat2=erk5g_6s_q_bhat1bhat2_FSAL(vardict);
return {self.bhat [0]: bhat1 ,

self.bhat [1]: bhat2}

In Listing 4.5, it can clearly be seen that the general-purpose functions for the mathematics from Chapter 3

that are contained in erk5_6s_functions.sage, already described in Section 4.5, are used extensively. It

can also be noted that in some methods in Listing 4.5 that certain mathematical operations are repeated,

such as the step3 method of the ERKCondensed_erk5gIIIs6 class where the p vector is solved for again.

This repetition was found to be the best way to deal with issues where certain Sage expressions needed to

be substituted into other expressions, without either requiring all expressions substituted in or requiring ad-

ditional functionality to cache computations in the ERKSolve class. Because solving the order conditions and

generating the code for all families studied in this thesis takes only a few hours, adding software complexity

to remove this repetition of code and calculations is not desirable at this time.

Also notice the use of mixins, which allow adding code to a class without being a parent class. Mixins

allow many types of code reuse without leading to the well-known issues that multiple inheritance can cause,
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e.g., the “diamond problem” [140, pgs.347–369]. Mixins are used to ensure that there is minimal repetition

of code for supporting all of the cases, subcases, and types of embedded pairs described in Chapter 3.

Although setting up the generation of code for a corresponding embedded pair is not shown in Listing 4.5

due to space considerations, solving the order conditions and generating code for the families of embedded

pairs derived in Chapter 3 follows a similar pattern to that used for the family containing the RKF4(5)6(6)

method (2.78) in Listing 4.3 and can be found in the erk_cmf.sage source file contained within OCSage.

The generated code

The generated code for the Butcher tableau (2.34) of ERK methods in the family corresponding to Case III

is given by Listing 4.6.

Listing 4.6: A representative sample of the generated code for the family corresponding to Case III

of the complete solution of six-stage fifth-order.

def erk5gIIIs6FSAL7_coefficients(x):
bhat7 = x[0]
c2 = x[1]
c3 = x[2]
la = x[3]
mu = x[4]
b7 = 0
c7 = 1
c6 = 1
nu = 0
om = -5/3*(2*c2 - 1)*la - 1/3*(5* c2 - 3)*mu
c4 =3*(10* c2*c3*la + 5*c2*c3*mu - 5*c3*la + 3*la)*(c3*mu + la)*c2*la /(200* c2**2*c3**2*la**3 + 200*

↪→ c2**2*c3**2*la**2*mu + 20*c2**2*c3**2*la*mu**2 - 15*c2**2*c3**2*mu**3 - 200*c2*c3**2*la**3
↪→ - 120*c2**2*c3*la**2*mu - 160*c2*c3**2*la**2*mu - 60*c2**2*c3*la*mu**2 - 15*c2*c3**2*la*
↪→ mu**2 - 90*c2**2*la**3 + 60*c2*c3*la**3 + 50*c3**2*la**3 - 45*c2**2*la**2*mu + 90*c2*c3*la
↪→ **2*mu + 30*c3**2*la**2*mu + 18*c2*c3*la*mu**2 + 45*c2*la**3 - 30*c3*la**3 + 18*c2*la**2*
↪→ mu - 18*c3*la**2*mu)

a63 =1/18*(2560000* c2**5*c3**4*c4**3*la**5*mu + 640000* c2**5*c3**4*c4**3*la**4*mu**2 - 224000* c2
↪→ **5*c3**4*c4**3*la**3*mu**3 - 40000* c2**5*c3**4*c4**3*la**2*mu**4 + 4400* c2**5*c3**4*c4
↪→ **3*la*mu**5 - 100*c2**5*c3**4*c4**3*mu**6 + 160000* c2**5*c3**4*c4**2*la**6 + 2400000* c2
↪→ **5*c3**3*c4**3*la**6 - 4600000* c2**5*c3**4*c4**2*la**5*mu - 4090000* c2**5*c3**3*c4**3*la
↪→ **5*mu - 5440000* c2**4*c3**4*c4**3*la**5*mu - 1698000* c2**5*c3**4*c4**2*la**4*mu**2 -
↪→ 1895000* c2**5*c3**3*c4**3*la**4*mu**2 - 1376000* c2**4*c3**4*c4**3*la**4*mu**2 + 188000* c2
↪→ **5*c3**4*c4**2*la**3*mu**3 + 154500* c2**5*c3**3*c4**3*la**3*mu**3 + 264000* c2**4*c3**4*c4
↪→ **3*la**3*mu**3 + 72700* c2**5*c3**4*c4**2*la**2*mu**4 + 79450* c2**5*c3**3*c4**3*la**2*mu
↪→ **4 + 50200* c2**4*c3**4*c4**3*la**2*mu**4 - 3300* c2**5*c3**4*c4**2*la*mu**5 - 2350* c2**5*
↪→ c3**3*c4**3*la*mu**5 - 2500*c2**4*c3**4*c4**3*la*mu**5 - 90000* c2**5*c3**4*c4*la**6 -
↪→ 4890000* c2**5*c3**3*c4**2*la**6 - 290000* c2**4*c3**4*c4**2*la**6 - 4350000* c2**5*c3**2*c4
↪→ **3*la**6 - 5150000* c2**4*c3**3*c4**3*la**6 + 2901000* c2**5*c3**4*c4*la**5*mu + 6159000* c2
↪→ **5*c3**3*c4**2*la**5*mu + 9699000* c2**4*c3**4*c4**2*la**5*mu + 1365000* c2**5*c3**2*c4**3*
↪→ la**5*mu + 8638000* c2**4*c3**3*c4**3*la**5*mu + 4570000* c2**3*c3**4*c4**3*la**5*mu +
↪→ 1431000* c2**5*c3**4*c4*la**4*mu**2 + 3645000* c2**5*c3**3*c4**2*la**4*mu**2 + 3310500* c2
↪→ **4*c3**4*c4**2*la**4*mu**2 + 1573500* c2**5*c3**2*c4**3*la**4*mu**2 + 3573000* c2**4*c3**3*
↪→ c4**3*la**4*mu**2 + 1063500* c2**3*c3**4*c4**3*la**4*mu**2 + 63450* c2**5*c3**4*c4*la**3*mu
↪→ **3 + 34050* c2**5*c3**3*c4**2*la**3*mu**3 - 179350* c2**4*c3**4*c4**2*la**3*mu**3 + 129450*
↪→ c2**5*c3**2*c4**3*la**3*mu**3 - 132700* c2**4*c3**3*c4**3*la**3*mu**3 - 90600* c2**3*c3**4*
↪→ c4**3*la**3*mu**3 - 30675* c2**5*c3**4*c4*la**2*mu**4 - 107625* c2**5*c3**3*c4**2*la**2*mu
↪→ **4 - 82800* c2**4*c3**4*c4**2*la**2*mu**4 - 33450* c2**5*c3**2*c4**3*la**2*mu**4 - 86725* c2
↪→ **4*c3**3*c4**3*la**2*mu**4 - 15325* c2**3*c3**4*c4**3*la**2*mu**4 + 1350* c2**5*c3**3*c4
↪→ **2*la*mu**5 + 1800*c2**4*c3**4*c4**2*la*mu**5 - 750*c2**5*c3**2*c4**3*la*mu**5 + 1170*c2
↪→ **4*c3**3*c4**3*la*mu**5 + 3114000* c2**5*c3**3*c4*la**6 + 165000* c2**4*c3**4*c4*la**6 +
↪→ 8004000* c2**5*c3**2*c4**2*la**6 + 10233000* c2**4*c3**3*c4**2*la**6 + 195000* c2**3*c3**4*c4
↪→ **2*la**6 + 2676000* c2**5*c3*c4**3*la**6 + 9315000* c2**4*c3**2*c4**3*la**6 + 4375000* c2
↪→ **3*c3**3*c4**3*la**6 - 634500* c2**5*c3**4*la**5*mu - 3204000* c2**5*c3**3*c4*la**5*mu -
↪→ 6021000* c2**4*c3**4*c4*la**5*mu - 1066500* c2**5*c3**2*c4**2*la**5*mu - 13486500* c2**4*c3
↪→ **3*c4**2*la**5*mu - 8116500* c2**3*c3**4*c4**2*la**5*mu + 651000* c2**5*c3*c4**3*la**5*mu -
↪→ 3058500* c2**4*c3**2*c4**3*la**5*mu - 7308000* c2**3*c3**3*c4**3*la**5*mu - 1895000* c2**2*
↪→ c3**4*c4**3*la**5*mu - 386100* c2**5*c3**4*la**4*mu**2 - 2398500* c2**5*c3**3*c4*la**4*mu**2
↪→ - 2623050* c2**4*c3**4*c4*la**4*mu**2 - 2354400* c2**5*c3**2*c4**2*la**4*mu**2 - 6821550* c2
↪→ **4*c3**3*c4**2*la**4*mu**2 - 2375850* c2**3*c3**4*c4**2*la**4*mu**2 - 318600* c2**5*c3*c4
↪→ **3*la**4*mu**2 - 2771550* c2**4*c3**2*c4**3*la**4*mu**2 - 2493300* c2**3*c3**3*c4**3*la**4*
↪→ mu**2 - 351500* c2**2*c3**4*c4**3*la**4*mu**2 - 58725* c2**5*c3**4*la**3*mu**3 - 229950* c2
↪→ **5*c3**3*c4*la**3*mu**3 - 130350* c2**4*c3**4*c4*la**3*mu**3 - 272325* c2**5*c3**2*c4**2*la
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↪→ **3*mu**3 - 155025* c2**4*c3**3*c4**2*la**3*mu**3 + 34425* c2**3*c3**4*c4**2*la**3*mu**3 -
↪→ 88500* c2**5*c3*c4**3*la**3*mu**3 - 205875* c2**4*c3**2*c4**3*la**3*mu**3 + 16175* c2**3*c3
↪→ **3*c4**3*la**3*mu**3 + 7300*c2**2*c3**4*c4**3*la**3*mu**3 + 35325* c2**5*c3**3*c4*la**2*mu
↪→ **4 + 32850* c2**4*c3**4*c4*la**2*mu**4 + 38475* c2**5*c3**2*c4**2*la**2*mu**4 + 119925* c2
↪→ **4*c3**3*c4**2*la**2*mu**4 + 23400* c2**3*c3**4*c4**2*la**2*mu**4 - 1875* c2**5*c3*c4**3*la
↪→ **2*mu**4 + 34185* c2**4*c3**2*c4**3*la**2*mu**4 + 23535* c2**3*c3**3*c4**3*la**2*mu**4 +
↪→ 450*c2**5*c3**2*c4**2*la*mu**5 - 810*c2**4*c3**3*c4**2*la*mu**5 + 450*c2**4*c3**2*c4**3*la
↪→ *mu**5 - 634500* c2**5*c3**3*la**6 - 4837500* c2**5*c3**2*c4*la**6 - 6417000* c2**4*c3**3*c4*
↪→ la**6 - 112500* c2**3*c3**4*c4*la**6 - 4491000* c2**5*c3*c4**2*la**6 - 17068500* c2**4*c3**2*
↪→ c4**2*la**6 - 8478000* c2**3*c3**3*c4**2*la**6 - 57500* c2**2*c3**4*c4**2*la**6 - 558000* c2
↪→ **5*c4**3*la**6 - 5700000* c2**4*c3*c4**3*la**6 - 7897500* c2**3*c3**2*c4**3*la**6 -
↪→ 1837500* c2**2*c3**3*c4**3*la**6 + 576900* c2**5*c3**3*la**5*mu + 1291500* c2**4*c3**4*la**5*
↪→ mu - 26100* c2**5*c3**2*c4*la**5*mu + 7277400* c2**4*c3**3*c4*la**5*mu + 4970250* c2**3*c3
↪→ **4*c4*la**5*mu - 1413000* c2**5*c3*c4**2*la**5*mu + 3168000* c2**4*c3**2*c4**2*la**5*mu +
↪→ 11853450* c2**3*c3**3*c4**2*la**5*mu + 3367250* c2**2*c3**4*c4**2*la**5*mu - 333000* c2**5*c4
↪→ **3*la**5*mu - 1094400* c2**4*c3*c4**3*la**5*mu + 2855250* c2**3*c3**2*c4**3*la**5*mu +
↪→ 3099500* c2**2*c3**3*c4**3*la**5*mu + 387500* c2*c3**4*c4**3*la**5*mu + 530325* c2**5*c3**3*
↪→ la**4*mu**2 + 679950* c2**4*c3**4*la**4*mu**2 + 1188675* c2**5*c3**2*c4*la**4*mu**2 +
↪→ 4481100* c2**4*c3**3*c4*la**4*mu**2 + 1780875* c2**3*c3**4*c4*la**4*mu**2 + 344700* c2**5*c3*
↪→ c4**2*la**4*mu**2 + 4356225* c2**4*c3**2*c4**2*la**4*mu**2 + 4752450* c2**3*c3**3*c4**2*la
↪→ **4*mu**2 + 743550* c2**2*c3**4*c4**2*la**4*mu**2 - 53550* c2**5*c4**3*la**4*mu**2 + 552150*
↪→ c2**4*c3*c4**3*la**4*mu**2 + 1825200* c2**3*c3**2*c4**3*la**4*mu**2 + 763525* c2**2*c3**3*c4
↪→ **3*la**4*mu**2 + 41875* c2*c3**4*c4**3*la**4*mu**2 + 90225* c2**5*c3**3*la**3*mu**3 +
↪→ 87300* c2**4*c3**4*la**3*mu**3 + 192825* c2**5*c3**2*c4*la**3*mu**3 + 378990* c2**4*c3**3*c4*
↪→ la**3*mu**3 + 81900* c2**3*c3**4*c4*la**3*mu**3 + 110025* c2**5*c3*c4**2*la**3*mu**3 +
↪→ 424980* c2**4*c3**2*c4**2*la**3*mu**3 + 132930* c2**3*c3**3*c4**2*la**3*mu**3 + 4050*c2**2*
↪→ c3**4*c4**2*la**3*mu**3 - 1125*c2**5*c4**3*la**3*mu**3 + 118110* c2**4*c3*c4**3*la**3*mu**3
↪→ + 105840* c2**3*c3**2*c4**3*la**3*mu**3 + 5670* c2**2*c3**3*c4**3*la**3*mu**3 - 11025* c2
↪→ **5*c3**2*c4*la**2*mu**4 - 40770* c2**4*c3**3*c4*la**2*mu**4 - 8775*c2**3*c3**4*c4*la**2*mu
↪→ **4 - 43695* c2**4*c3**2*c4**2*la**2*mu**4 - 33480* c2**3*c3**3*c4**2*la**2*mu**4 + 1350* c2
↪→ **4*c3*c4**3*la**2*mu**4 - 8775*c2**3*c3**2*c4**3*la**2*mu**4 - 270*c2**4*c3**2*c4**2*la*
↪→ mu**5 + 963000* c2**5*c3**2*la**6 + 1291500* c2**4*c3**3*la**6 + 2532600* c2**5*c3*c4*la**6 +
↪→ 10278900* c2**4*c3**2*c4*la**6 + 5242500* c2**3*c3**3*c4*la**6 + 33750* c2**2*c3**4*c4*la**6
↪→ + 846000* c2**5*c4**2*la**6 + 9747000* c2**4*c3*c4**2*la**6 + 14409000* c2**3*c3**2*c4**2*la
↪→ **6 + 3473250* c2**2*c3**3*c4**2*la**6 + 6250* c2*c3**4*c4**2*la**6 + 1179000* c2**4*c4**3*la
↪→ **6 + 4806000* c2**3*c3*c4**3*la**6 + 3311250* c2**2*c3**2*c4**3*la**6 + 381250* c2*c3**3*c4
↪→ **3*la**6 + 109800* c2**5*c3**2*la**5*mu - 1360350* c2**4*c3**3*la**5*mu - 1045125* c2**3*c3
↪→ **4*la**5*mu + 972450* c2**5*c3*c4*la**5*mu - 776250* c2**4*c3**2*c4*la**5*mu - 6614100* c2
↪→ **3*c3**3*c4*la**5*mu - 2040000* c2**2*c3**4*c4*la**5*mu + 493200* c2**5*c4**2*la**5*mu +
↪→ 2448900* c2**4*c3*c4**2*la**5*mu - 3685275* c2**3*c3**2*c4**2*la**5*mu - 5221725* c2**2*c3
↪→ **3*c4**2*la**5*mu - 691875* c2*c3**4*c4**2*la**5*mu + 600300* c2**4*c4**3*la**5*mu +
↪→ 598050* c2**3*c3*c4**3*la**5*mu - 1378875* c2**2*c3**2*c4**3*la**5*mu - 659375* c2*c3**3*c4
↪→ **3*la**5*mu - 31250* c3**4*c4**3*la**5*mu - 203400* c2**5*c3**2*la**4*mu**2 - 997515* c2**4*
↪→ c3**3*la**4*mu**2 - 443250* c2**3*c3**4*la**4*mu**2 - 97425* c2**5*c3*c4*la**4*mu**2 -
↪→ 2333475* c2**4*c3**2*c4*la**4*mu**2 - 3118455* c2**3*c3**3*c4*la**4*mu**2 - 531000* c2**2*c3
↪→ **4*c4*la**4*mu**2 + 70650* c2**5*c4**2*la**4*mu**2 - 678555* c2**4*c3*c4**2*la**4*mu**2 -
↪→ 3021210* c2**3*c3**2*c4**2*la**4*mu**2 - 1461330* c2**2*c3**3*c4**2*la**4*mu**2 - 85500* c2*
↪→ c3**4*c4**2*la**4*mu**2 + 78345* c2**4*c4**3*la**4*mu**2 - 366795* c2**3*c3*c4**3*la**4*mu
↪→ **2 - 535650* c2**2*c3**2*c4**3*la**4*mu**2 - 86625* c2*c3**3*c4**3*la**4*mu**2 - 45225* c2
↪→ **5*c3**2*la**3*mu**3 - 141210* c2**4*c3**3*la**3*mu**3 - 42525* c2**3*c3**4*la**3*mu**3 -
↪→ 46800* c2**5*c3*c4*la**3*mu**3 - 307260* c2**4*c3**2*c4*la**3*mu**3 - 206820* c2**3*c3**3*c4*
↪→ la**3*mu**3 - 16200* c2**2*c3**4*c4*la**3*mu**3 - 450*c2**5*c4**2*la**3*mu**3 - 161820* c2
↪→ **4*c3*c4**2*la**3*mu**3 - 218430* c2**3*c3**2*c4**2*la**3*mu**3 - 31860* c2**2*c3**3*c4**2*
↪→ la**3*mu**3 + 900*c2**4*c4**3*la**3*mu**3 - 51030* c2**3*c3*c4**3*la**3*mu**3 - 17550* c2
↪→ **2*c3**2*c4**3*la**3*mu**3 + 675*c2**5*c3*c4*la**2*mu**4 + 13770* c2**4*c3**2*c4*la**2*mu
↪→ **4 + 11745* c2**3*c3**3*c4*la**2*mu**4 + 540*c2**4*c3*c4**2*la**2*mu**4 + 12420* c2**3*c3
↪→ **2*c4**2*la**2*mu**4 - 135*c2**3*c3*c4**3*la**2*mu**4 - 479250* c2**5*c3*la**6 - 2040300*
↪→ c2**4*c3**2*la**6 - 1045125* c2**3*c3**3*la**6 - 438750* c2**5*c4*la**6 - 5567850* c2**4*c3*
↪→ c4*la**6 - 8654175* c2**3*c3**2*c4*la**6 - 2121750* c2**2*c3**3*c4*la**6 - 3750*c2*c3**4*c4*
↪→ la**6 - 1872900* c2**4*c4**2*la**6 - 8354250* c2**3*c3*c4**2*la**6 - 6014625* c2**2*c3**2*c4
↪→ **2*la**6 - 703125* c2*c3**3*c4**2*la**6 - 985500* c2**3*c4**3*la**6 - 2004000* c2**2*c3*c4
↪→ **3*la**6 - 686250* c2*c3**2*c4**3*la**6 - 31250* c3**3*c4**3*la**6 - 215325* c2**5*c3*la**5*
↪→ mu - 22770* c2**4*c3**2*la**5*mu + 1271700* c2**3*c3**3*la**5*mu + 420750* c2**2*c3**4*la**5*
↪→ mu - 257175* c2**5*c4*la**5*mu - 1718370* c2**4*c3*c4*la**5*mu + 1513620* c2**3*c3**2*c4*la
↪→ **5*mu + 2999250* c2**2*c3**3*c4*la**5*mu + 416250* c2*c3**4*c4*la**5*mu - 949410* c2**4*c4
↪→ **2*la**5*mu - 1427130* c2**3*c3*c4**2*la**5*mu + 2085300* c2**2*c3**2*c4**2*la**5*mu +
↪→ 1150875* c2*c3**3*c4**2*la**5*mu + 56250* c3**4*c4**2*la**5*mu - 401850* c2**3*c4**3*la**5*mu
↪→ - 75750* c2**2*c3*c4**3*la**5*mu + 340125* c2*c3**2*c4**3*la**5*mu + 56250* c3**3*c4**3*la
↪→ **5*mu + 2700* c2**5*c3*la**4*mu**2 + 426735* c2**4*c3**2*la**4*mu**2 + 696060* c2**3*c3**3*
↪→ la**4*mu**2 + 126900* c2**2*c3**4*la**4*mu**2 - 35775* c2**5*c4*la**4*mu**2 + 246645* c2**4*
↪→ c3*c4*la**4*mu**2 + 1715040* c2**3*c3**2*c4*la**4*mu**2 + 958365* c2**2*c3**3*c4*la**4*mu**2
↪→ + 58725* c2*c3**4*c4*la**4*mu**2 - 114885* c2**4*c4**2*la**4*mu**2 + 511785* c2**3*c3*c4**2*
↪→ la**4*mu**2 + 935100* c2**2*c3**2*c4**2*la**4*mu**2 + 167400* c2*c3**3*c4**2*la**4*mu**2 -
↪→ 38205* c2**3*c4**3*la**4*mu**2 + 112455* c2**2*c3*c4**3*la**4*mu**2 + 59625* c2*c3**2*c4**3*
↪→ la**4*mu**2 + 7425*c2**5*c3*la**3*mu**3 + 74790* c2**4*c3**2*la**3*mu**3 + 72495* c2**3*c3
↪→ **3*la**3*mu**3 + 6750* c2**2*c3**4*la**3*mu**3 + 675*c2**5*c4*la**3*mu**3 + 76410* c2**4*c3
↪→ *c4*la**3*mu**3 + 161487* c2**3*c3**2*c4*la**3*mu**3 + 37260* c2**2*c3**3*c4*la**3*mu**3 +
↪→ 810*c2**4*c4**2*la**3*mu**3 + 76761* c2**3*c3*c4**2*la**3*mu**3 + 36720* c2**2*c3**2*c4**2*
↪→ la**3*mu**3 - 135*c2**3*c4**3*la**3*mu**3 + 7020* c2**2*c3*c4**3*la**3*mu**3 - 810*c2**4*c3
↪→ *c4*la**2*mu**4 - 4293* c2**3*c3**2*c4*la**2*mu**4 - 324*c2**3*c3*c4**2*la**2*mu**4 +
↪→ 78300* c2**5*la**6 + 1062045* c2**4*c3*la**6 + 1714950* c2**3*c3**2*la**6 + 420750* c2**2*c3
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↪→ **3*la**6 + 1003995* c2**4*c4*la**6 + 4834935* c2**3*c3*c4*la**6 + 3606750* c2**2*c3**2*c4*la
↪→ **6 + 425250* c2*c3**3*c4*la**6 + 1629900* c2**3*c4**2*la**6 + 3532500* c2**2*c3*c4**2*la**6
↪→ + 1240875* c2*c3**2*c4**2*la**6 + 56250* c3**3*c4**2*la**6 + 407250* c2**2*c4**3*la**6 +
↪→ 413250* c2*c3*c4**3*la**6 + 56250* c3**2*c4**3*la**6 + 47925* c2**5*la**5*mu + 385965* c2**4*
↪→ c3*la**5*mu - 193185* c2**3*c3**2*la**5*mu - 587925* c2**2*c3**3*la**5*mu - 84375* c2*c3**4*
↪→ la**5*mu + 517185* c2**4*c4*la**5*mu + 1038015* c2**3*c3*c4*la**5*mu - 1061955* c2**2*c3**2*
↪→ c4*la**5*mu - 677025* c2*c3**3*c4*la**5*mu - 33750* c3**4*c4*la**5*mu + 673245* c2**3*c4**2*
↪→ la**5*mu + 247995* c2**2*c3*c4**2*la**5*mu - 572175* c2*c3**2*c4**2*la**5*mu - 101250* c3**3*
↪→ c4**2*la**5*mu + 118125* c2**2*c4**3*la**5*mu - 29025* c2*c3*c4**3*la**5*mu - 33750* c3**2*c4
↪→ **3*la**5*mu + 7425*c2**5*la**4*mu**2 - 22680* c2**4*c3*la**4*mu**2 - 333693* c2**3*c3**2*la
↪→ **4*mu**2 - 213570* c2**2*c3**3*la**4*mu**2 - 13500* c2*c3**4*la**4*mu**2 + 62640* c2**4*c4*
↪→ la**4*mu**2 - 230121* c2**3*c3*c4*la**4*mu**2 - 560142* c2**2*c3**2*c4*la**4*mu**2 - 109755*
↪→ c2*c3**3*c4*la**4*mu**2 + 61911* c2**3*c4**2*la**4*mu**2 - 177336* c2**2*c3*c4**2*la**4*mu
↪→ **2 - 109620* c2*c3**2*c4**2*la**4*mu**2 + 6210*c2**2*c4**3*la**4*mu**2 - 13635* c2*c3*c4
↪→ **3*la**4*mu**2 - 12960* c2**4*c3*la**3*mu**3 - 40743* c2**3*c3**2*la**3*mu**3 - 12150* c2
↪→ **2*c3**3*la**3*mu**3 - 810*c2**4*c4*la**3*mu**3 - 40338* c2**3*c3*c4*la**3*mu**3 - 27864*
↪→ c2**2*c3**2*c4*la**3*mu**3 - 324*c2**3*c4**2*la**3*mu**3 - 11502* c2**2*c3*c4**2*la**3*mu
↪→ **3 + 243*c2**3*c3*c4*la**2*mu**4 - 181980* c2**4*la**6 - 931770* c2**3*c3*la**6 - 714825* c2
↪→ **2*c3**2*la**6 - 84375* c2*c3**3*la**6 - 902610* c2**3*c4*la**6 - 2070540* c2**2*c3*c4*la**6
↪→ - 743850* c2*c3**2*c4*la**6 - 33750* c3**3*c4*la**6 - 696825* c2**2*c4**2*la**6 - 736875* c2*
↪→ c3*c4**2*la**6 - 101250* c3**2*c4**2*la**6 - 83250* c2*c4**3*la**6 - 33750* c3*c4**3*la**6 -
↪→ 97470* c2**4*la**5*mu - 238707* c2**3*c3*la**5*mu + 183330* c2**2*c3**2*la**5*mu + 134325* c2*
↪→ c3**3*la**5*mu + 6750* c3**4*la**5*mu - 382293* c2**3*c4*la**5*mu - 206658* c2**2*c3*c4*la
↪→ **5*mu + 324135* c2*c3**2*c4*la**5*mu + 60750* c3**3*c4*la**5*mu - 207900* c2**2*c4**2*la**5*
↪→ mu + 39285* c2*c3*c4**2*la**5*mu + 60750* c3**2*c4**2*la**5*mu - 12825* c2*c4**3*la**5*mu +
↪→ 6750* c3*c4**3*la**5*mu - 12960* c2**4*la**4*mu**2 + 32886* c2**3*c3*la**4*mu**2 + 114858* c2
↪→ **2*c3**2*la**4*mu**2 + 24300* c2*c3**3*la**4*mu**2 - 36045* c2**3*c4*la**4*mu**2 + 94365* c2
↪→ **2*c3*c4*la**4*mu**2 + 68607* c2*c3**2*c4*la**4*mu**2 - 11016* c2**2*c4**2*la**4*mu**2 +
↪→ 23976* c2*c3*c4**2*la**4*mu**2 + 7533*c2**3*c3*la**3*mu**3 + 7290* c2**2*c3**2*la**3*mu**3 +
↪→ 243*c2**3*c4*la**3*mu**3 + 6804*c2**2*c3*c4*la**3*mu**3 + 167481* c2**3*la**6 + 403650* c2
↪→ **2*c3*la**6 + 147825* c2*c3**2*la**6 + 6750*c3**3*la**6 + 397710* c2**2*c4*la**6 + 437130*
↪→ c2*c3*c4*la**6 + 60750* c3**2*c4*la**6 + 146475* c2*c4**2*la**6 + 60750* c3*c4**2*la**6 +
↪→ 6750* c4**3*la**6 + 73629* c2**3*la**5*mu + 51273* c2**2*c3*la**5*mu - 61965* c2*c3**2*la**5*
↪→ mu - 12150* c3**3*la**5*mu + 122715* c2**2*c4*la**5*mu - 16767* c2*c3*c4*la**5*mu - 36450* c3
↪→ **2*c4*la**5*mu + 23490* c2*c4**2*la**5*mu - 12150* c3*c4**2*la**5*mu + 7533*c2**3*la**4*mu
↪→ **2 - 17010* c2**2*c3*la**4*mu**2 - 14580* c2*c3**2*la**4*mu**2 + 6804*c2**2*c4*la**4*mu**2
↪→ - 14337* c2*c3*c4*la**4*mu**2 - 1458*c2**2*c3*la**3*mu**3 - 75735* c2**2*la**6 - 86265* c2*c3
↪→ *la**6 - 12150* c3**2*la**6 - 85860* c2*c4*la**6 - 36450* c3*c4*la**6 - 12150* c4**2*la**6 -
↪→ 24300* c2**2*la**5*mu + 2187*c2*c3*la**5*mu + 7290* c3**2*la**5*mu - 14337* c2*c4*la**5*mu +
↪→ 7290* c3*c4*la**5*mu - 1458*c2**2*la**4*mu**2 + 2916*c2*c3*la**4*mu**2 + 16767* c2*la**6 +
↪→ 7290* c3*la**6 + 7290* c4*la**6 + 2916*c2*la**5*mu - 1458*c3*la**5*mu - 1458*la**6) /((800* c2
↪→ **2*c3**2*c4*la**2 + 200*c2**2*c3**2*c4*la*mu - 10*c2**2*c3**2*c4*mu**2 - 450*c2**2*c3**2*
↪→ la**2 - 900*c2**2*c3*c4*la**2 - 650*c2*c3**2*c4*la**2 - 135*c2**2*c3**2*la*mu - 270*c2**2*
↪→ c3*c4*la*mu - 115*c2*c3**2*c4*la*mu + 480*c2**2*c3*la**2 + 375*c2*c3**2*la**2 + 240*c2**2*
↪→ c4*la**2 + 750*c2*c3*c4*la**2 + 125*c3**2*c4*la**2 + 150*c2**2*c3*la*mu + 75*c2*c3**2*la*
↪→ mu + 75*c2**2*c4*la*mu + 150*c2*c3*c4*la*mu - 135*c2**2*la**2 - 420*c2*c3*la**2 - 75*c3
↪→ **2*la**2 - 210*c2*c4*la**2 - 150*c3*c4*la**2 - 45*c2**2*la*mu - 90*c2*c3*la*mu - 45*c2*c4
↪→ *la*mu + 117*c2*la**2 + 90*c3*la**2 + 45*c4*la**2 + 27*c2*la*mu - 27*la**2) *(50* c2*c3*c4*
↪→ la - 5*c2*c3*c4*mu - 30*c2*c3*la - 30*c2*c4*la - 25*c3*c4*la + 15*c2*la + 15*c3*la + 15*c4
↪→ *la - 9*la)*(4*c2*la + c2*mu - la)*(c3*mu + la)*(c2 - c3)*(c3 - c4)*la)

G3 =1/6*(3* c2 - 2)*la - 5/12*(2* c2 - 1)*la - 1/12*(5* c2 - 3)*mu + 1/12*(4* c2 - 3)*mu
b6 =1/4*(4* c2*la + c2*mu - la)/(7*c2*la + 2*c2*mu - 2*la)
p6=1/2
c5 =3/5*(60* b6*c2*c3*c4 - 60*b6*c2*c3 - 60*b6*c2*c4 - 60*b6*c3*c4 - 30*c2*c3*c4 + 60*b6*c2 + 60*b6

↪→ *c3 + 20*c2*c3 + 60*b6*c4 + 20*c2*c4 + 20*c3*c4 - 60*b6 - 15*c2 - 15*c3 - 15*c4 + 12)*la
↪→ /(240* b6*c2*c3*c4*la*p6 + 120*b6*c2*c3*c4*mu*p6 - 36*b6*c2*c3*c4*mu - 120*b6*c3*c4*la*p6 -
↪→ 72*b6*c3*c4*mu*p6 - 36*b6*c2*c3*la - 36*b6*c2*c4*la - 40*c2*c3*c4*la + 36*b6*c3*c4*mu -
↪→ 2*c2*c3*c4*mu + 36*b6*c2*la + 36*b6*c3*la + 18*c2*c3*la + 36*b6*c4*la + 18*c2*c4*la + 20*
↪→ c3*c4*la - 36*b6*la - 12*c2*la - 12*c3*la - 12*c4*la + 9*la)

b5 = -1/60*(60* b6*c2*c3*c4 - 60*b6*c2*c3 - 60*b6*c2*c4 - 60*b6*c3*c4 - 30*c2*c3*c4 + 60*b6*c2 + 60*
↪→ b6*c3 + 20*c2*c3 + 60*b6*c4 + 20*c2*c4 + 20*c3*c4 - 60*b6 - 15*c2 - 15*c3 - 15*c4 + 12) /((
↪→ c2 - c5)*(c3 - c5)*(c4 - c5)*c5)

b4 =1/60*(60* b6*c2*c3*c5 - 60*b6*c2*c3 - 60*b6*c2*c5 - 60*b6*c3*c5 - 30*c2*c3*c5 + 60*b6*c2 + 60*
↪→ b6*c3 + 20*c2*c3 + 60*b6*c5 + 20*c2*c5 + 20*c3*c5 - 60*b6 - 15*c2 - 15*c3 - 15*c5 + 12) /((
↪→ c2 - c4)*(c3 - c4)*(c4 - c5)*c4)

b3 = -1/60*(60* b6*c2*c4*c5 - 60*b6*c2*c4 - 60*b6*c2*c5 - 60*b6*c4*c5 - 30*c2*c4*c5 + 60*b6*c2 + 60*
↪→ b6*c4 + 20*c2*c4 + 60*b6*c5 + 20*c2*c5 + 20*c4*c5 - 60*b6 - 15*c2 - 15*c4 - 15*c5 + 12) /((
↪→ c2 - c3)*(c3 - c4)*(c3 - c5)*c3)

b2= -1/2*(2*b3*c3 + 2*b4*c4 + 2*b5*c5 + 2*b6 - 1)/c2
b1= -1/2*(2*(b3 + b4 + b5 + b6 - 1)*c2 - 2*b3*c3 - 2*b4*c4 - 2*b5*c5 - 2*b6 + 1)/c2
p3 =3/2*( c3*mu + la)*(c2 - c3)/(10*c2*la + 5*c2*mu - 5*la - 3*mu)
p5 =3/2*( c5*mu + la)*(c2 - c5)/(10*c2*la + 5*c2*mu - 5*la - 3*mu)
p4 =3/2*( c4*mu + la)*(c2 - c4)/(10*c2*la + 5*c2*mu - 5*la - 3*mu)
s4 = -1/360*(20* c2*c3*c4*la + 80*c2*c3*c5*la - 5*c2*c3*c4*mu - 5*c2*c3*c5*mu - 60*c2*c3*la - 15*c2*

↪→ c4*la - 10*c3*c4*la - 45*c2*c5*la - 40*c3*c5*la + 30*c2*la + 30*c3*la + 6*c4*la + 24*c5*la
↪→ - 18*la)/((c2 - c4)*(c3 - c4)*(c4 - c5)*la)

r4 = -1/180*(50* c2*c3*c5*la - 5*c2*c3*c5*mu - 30*c2*c3*la - 30*c2*c5*la - 25*c3*c5*la + 15*c2*la +
↪→ 15*c3*la + 15*c5*la - 9*la)/((c2 - c4)*(c3 - c4)*(c4 - c5)*la)

rs4 =1/360*(20* c2*c3*la - 5*c2*c3*mu - 15*c2*la - 10*c3*la + 6*la)/((c2*c3 - c2*c4 - c3*c4 + c4
↪→ **2)*la)
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s3 =1/360*(20* c2*c3*c4*la + 80*c2*c4*c5*la - 5*c2*c3*c4*mu - 5*c2*c4*c5*mu - 15*c2*c3*la - 60*c2*
↪→ c4*la - 10*c3*c4*la - 45*c2*c5*la - 40*c4*c5*la + 30*c2*la + 6*c3*la + 30*c4*la + 24*c5*la
↪→ - 18*la)/((c2 - c3)*(c3 - c4)*(c3 - c5)*la)

r3 =1/180*(50* c2*c4*c5*la - 5*c2*c4*c5*mu - 30*c2*c4*la - 30*c2*c5*la - 25*c4*c5*la + 15*c2*la +
↪→ 15*c4*la + 15*c5*la - 9*la)/((c2 - c3)*(c3 - c4)*(c3 - c5)*la)

r5 =1/180*(50* c2*c3*c4*la - 5*c2*c3*c4*mu - 30*c2*c3*la - 30*c2*c4*la - 25*c3*c4*la + 15*c2*la +
↪→ 15*c3*la + 15*c4*la - 9*la)/((c2 - c5)*(c3 - c5)*(c4 - c5)*la)

rs3 = -1/360*(20* c2*c4*la - 5*c2*c4*mu - 15*c2*la - 10*c4*la + 6*la)/((c2 - c3)*(c3 - c4)*la)
a65=r5/b6
a32=p3/c2
a54=-rs4/(b5*(c5 - 1))
a21=c2
a43=(a63*b6*c5 - a63*b6 - c5*r3 + s3)/(b4*c4 - b4*c5)
a52=(a63*b6*c3*c4 - a54*b5*c4**2 + a54*b5*c4*c5 - a63*b6*c3 - c3*c4*r3 + (b5*c4 - b5*c5)*p5 + c3*

↪→ s3)/(b5*c2*c4 - b5*c2*c5)
a64=-(a54*b5 - r4)/b6
a62=-(a63*b6*c3 - a54*b5*c4 + a65*b6*c5 - b6*p6 + c4*r4)/(b6*c2)
a42=-(a63*b6*c3*c5 - a63*b6*c3 - c3*c5*r3 - (b4*c4 - b4*c5)*p4 + c3*s3)/(b4*c2*c4 - b4*c2*c5)
a53=-(a63*b6*c4 - a63*b6 - c4*r3 + s3)/(b5*c4 - b5*c5)
a51=-a52 - a53 - a54 + c5
a41=-a42 - a43 + c4
a61=-a62 - a63 - a64 - a65 + 1
a31=-a32 + c3
a74=b4
a72=b2
a76=b6
a73=b3
a71=b1
a75=b5
bhat4 = -1/36*(160* c2**2*c3*c5*la**2 + 40*c2**2*c3*c5*la*mu - 2*c2**2*c3*c5*mu**2 - 90*c2**2*c3*la

↪→ **2 - 90*c2**2*c5*la**2 - 130*c2*c3*c5*la**2 - 27*c2**2*c3*la*mu - 27*c2**2*c5*la*mu - 23*
↪→ c2*c3*c5*la*mu + 48*c2**2*la**2 + 75*c2*c3*la**2 + 75*c2*c5*la**2 + 25*c3*c5*la**2 + 15*c2
↪→ **2*la*mu + 15*c2*c3*la*mu + 15*c2*c5*la*mu - 42*c2*la**2 - 15*c3*la**2 - 15*c5*la**2 - 9*
↪→ c2*la*mu + 9*la**2) /((7*c2*la + 2*c2*mu - 2*la)*(c2 - c4)*(c3 - c4)*(c4 - c5)*la)

bhat3 =1/36*(160* c2**2*c4*c5*la**2 + 40*c2**2*c4*c5*la*mu - 2*c2**2*c4*c5*mu**2 - 90*c2**2*c4*la
↪→ **2 - 90*c2**2*c5*la**2 - 130*c2*c4*c5*la**2 - 27*c2**2*c4*la*mu - 27*c2**2*c5*la*mu - 23*
↪→ c2*c4*c5*la*mu + 48*c2**2*la**2 + 75*c2*c4*la**2 + 75*c2*c5*la**2 + 25*c4*c5*la**2 + 15*c2
↪→ **2*la*mu + 15*c2*c4*la*mu + 15*c2*c5*la*mu - 42*c2*la**2 - 15*c4*la**2 - 15*c5*la**2 - 9*
↪→ c2*la*mu + 9*la**2) /((7*c2*la + 2*c2*mu - 2*la)*(c2 - c3)*(c3 - c4)*(c3 - c5)*la)

bhat6 = -1/4*(28* bhat7*c2*la + 8*bhat7*c2*mu - 8*bhat7*la - 4*c2*la - c2*mu + la)/(7*c2*la + 2*c2*
↪→ mu - 2*la)

bhat5 =1/36*(160* c2**2*c3*c4*la**2 + 40*c2**2*c3*c4*la*mu - 2*c2**2*c3*c4*mu**2 - 90*c2**2*c3*la
↪→ **2 - 90*c2**2*c4*la**2 - 130*c2*c3*c4*la**2 - 27*c2**2*c3*la*mu - 27*c2**2*c4*la*mu - 23*
↪→ c2*c3*c4*la*mu + 48*c2**2*la**2 + 75*c2*c3*la**2 + 75*c2*c4*la**2 + 25*c3*c4*la**2 + 15*c2
↪→ **2*la*mu + 15*c2*c3*la*mu + 15*c2*c4*la*mu - 42*c2*la**2 - 15*c3*la**2 - 15*c4*la**2 - 9*
↪→ c2*la*mu + 9*la**2) /((7*c2*la + 2*c2*mu - 2*la)*(c2 - c5)*(c3 - c5)*(c4 - c5)*la)

bhat2 = -1/2*(2* bhat3*c3 + 2*bhat4*c4 + 2* bhat5*c5 + 2*bhat6 + 2* bhat7 - 1)/c2
bhat1 = -1/2*(2*( bhat3 + bhat4 + bhat5 + bhat6 + bhat7 - 1)*c2 - 2* bhat3*c3 - 2*bhat4*c4 - 2* bhat5*

↪→ c5 - 2* bhat6 - 2*bhat7 + 1)/c2
return bhat7 ,c2,c3 ,la,mu,b7,c7 ,c6,nu,om,c4 ,a63 ,G3 ,b6,p6,c5 ,b5 ,b4,b3,b2 ,b1 ,p3,p5,p4 ,s4 ,r4,rs4 ,s3,

↪→ r3,r5,rs3 ,a65 ,a32 ,a54 ,a21 ,a43 ,a52 ,a64 ,a62 ,a42 ,a53 ,a51 ,a41 ,a61 ,a31 ,a74 ,a72 ,a76 ,a73 ,a71 ,a75 ,
↪→ bhat4 ,bhat3 ,bhat6 ,bhat5 ,bhat2 ,bhat1

def erk5gIIIs6FSAL7_tableau(x,cached_coefficients=None):
if cached_coefficients:

bhat7 ,c2,c3,la ,mu ,b7,c7,c6 ,nu ,om,c4,a63 ,G3,b6 ,p6,c5,b5,b4 ,b3,b2,b1,p3 ,p5,p4,s4,r4 ,rs4 ,s3,r3,
↪→ r5,rs3 ,a65 ,a32 ,a54 ,a21 ,a43 ,a52 ,a64 ,a62 ,a42 ,a53 ,a51 ,a41 ,a61 ,a31 ,a74 ,a72 ,a76 ,a73 ,a71 ,a75
↪→ ,bhat4 ,bhat3 ,bhat6 ,bhat5 ,bhat2 ,bhat1 = cached_coefficients

else:
bhat7 ,c2,c3,la ,mu ,b7,c7,c6 ,nu ,om,c4,a63 ,G3,b6 ,p6,c5,b5,b4 ,b3,b2,b1,p3 ,p5,p4,s4,r4 ,rs4 ,s3,r3,

↪→ r5,rs3 ,a65 ,a32 ,a54 ,a21 ,a43 ,a52 ,a64 ,a62 ,a42 ,a53 ,a51 ,a41 ,a61 ,a31 ,a74 ,a72 ,a76 ,a73 ,a71 ,a75
↪→ ,bhat4 ,bhat3 ,bhat6 ,bhat5 ,bhat2 ,bhat1 = erk5gIIIs6FSAL7_coefficients(x)

return {’A’:Matrix ([[0,0,0,0,0,0,0],
[a21 ,0,0,0,0,0,0],
[a31 ,a32 ,0,0,0,0,0],
[a41 ,a42 ,a43 ,0,0,0,0],
[a51 ,a52 ,a53 ,a54 ,0,0,0],
[a61 ,a62 ,a63 ,a64 ,a65 ,0,0],
[a71 ,a72 ,a73 ,a74 ,a75 ,a76 ,0]]),

’b’:vector ([b1 ,b2 ,b3,b4,b5,b6 ,0]),
’c’:vector ([0,c2,c3,c4,c5 ,1,1]),
’bhat’:vector ([bhat1 ,bhat2 ,bhat3 ,bhat4 ,bhat5 ,bhat6 ,bhat7])}

Where the other functions analogous to those given in Listing 4.4 are also provided by the generated code

(not shown due to space limitations). The size of the code in Listing 4.6 compared to Listing 4.4 gives a good

indication of the additional complexity that solving six-stage fifth-order order conditions without standard

simplifying assumptions entails. The total size of generated code for all methods examined in this study is
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225MB, indicating the difficulty that would exist in conducting a similar study to the one in this thesis by

hand coding rather than with generative code.

4.7.3 Generating code for existing methods without solving order conditions

Some published methods are only used in this thesis for comparative purposes, such as pairs by Tsitouras [182,

183], the CK4(5)6(6) pair (2.83) that is part of a family with a singularity at b5 = 0, or ERK methods higher

than fifth order. For these methods, it is not necessary or desirable to work out the symbolic expressions for

the Butcher tableau coefficients in terms of the free parameters. However, it is still desirable to incorporate

these methods into the framework of OCSage. In these cases, where the published coefficients are already

known, it is possible to have the step«number» methods (and the analogous step«number»_emb methods) to

simply return the already-known (published) values of coefficients in the dictionary. The code is generated

that provides all the same functions as seen in Listings 4.4 and 4.6, except the x argument is ignored.

4.8 Unit testing OCSage

Experience has shown that it can be extremely difficult to verify that code implementing sophisticated math-

ematics, especially code implementing numerical methods, is working to specification because subtle errors

can give plausible results that can only be detected by careful study and/or hand verification. Additionally,

the large number of ERK families examined in this thesis would be time consuming to manually test after

each change in the code. Because the interface for using OCSage to construct RK methods involves coding,

it is necessary to test and not just verify manually that the code for a particular RK family is implemented

correctly. Therefore, because OCSage has been under continuous development throughout this study and will

likely remain so if it is used for more studies of RK methods in the future, having unit tests can quickly give

a high level of confidence that any new changes in the code have not broken any existing functionality or that

an installation on a different platform is functioning correctly. The unit tests also fail if Python exceptions

occur, ensuring that all code they cover at least runs without producing runtime errors. As mentioned in

Section 4.6, the Sage source code files derived from the Sage worksheets are used as unit tests, and they

are just one of several sets of unit tests conducted.

The first set of unit tests, in the OCSage source file unittests_worksheet/unittests_worksheet.py

that are already mentioned in Section 4.6, verify the sagenb_«...» and _«..» functions in

erk5_6s_functions.sage that are discussed in Section 4.5. By solving each of the cases described in

Sections 3.3 and 3.4.1 with several sets of rational values for the free parameters, then ensuring the order

conditions are satisfied by the resulting Butcher tableau (2.34), this verifies that RK methods of the desired

order are in fact constructed. This set of unit tests takes just under 10 minutes using one processor core on

the desktop computer used for this study.

The second set of unit tests are in the OCSage source file unittests_generated_scipy.py, which tests
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the generated code (described in Section 4.7) in the OCSage directory generated_scipy/. This is done by

substituting in two sets (although it could be extended to more) of numerical (floating-point) values as the

free parameters of the solution for each ERK family, in order to find two sets of Butcher tableau coefficients,

and then verifying that these Butcher tableau coefficients satisfy the order conditions. Because floating-point

values are used, the residual after substituting the calculated Butcher tableau coefficients back into the order

conditions will generally not be zero, but it should be extremely small. Generally, when order conditions are

expected to be satisfied, ensuring the residual is < 10−12 is adequate in double precision. However, cases

with quadratic irrationality, such as Cases I, II, IV derived in Section 3.4.1, can lead to large and complicated

expressions for some Butcher tableau coefficients in terms of the free parameters that introduce significant

roundoff error due to the large number of terms. In general, for order conditions that are not expected

to be satisfied, e.g., the sixth-order conditions for a fifth-order method, the residuals are typically around

10−3–10−7. This test runs extremely fast, in 1.2 seconds, using one processor core on the desktop computer

used for this study because code, such as that in Listings 4.4 and 4.6, runs extremely fast compared to

finding the algebraic solution anew as does the previous unit test does. Due to this short execution time,

this set of unit tests caught many bugs and other issues during the development of OCSage. Additionally, the

nearly identical generated code in the OCSage directory generated_sage/ can also be verified, specifically

by using the Sage arbitrary precision data type with 512 bits of precision. Using 512 bits of precision, the

residuals from satisfying the order conditions are typically about 10−150, giving a high-degree of confidence

in the accuracy of the generated code. The drawback is that these units tests using this higher-precision

arithmetic take about 11 minutes; this is still short enough to be run regularly but it is not as convenient as

the tests run on the generated code in generated_scipy/. When these tests are run frequently during the

normal write-test-debug cycle, this test suite instills a high degree of confidence that the OCSage package is

continuing to solve the order conditions correctly.

The third set of tests in the source file unittests_regenerate.py incorporates the second set of unit

tests just described, but reruns the solution of the order conditions and generation of code described in

Section 4.7, i.e., the OCSage erk_classic.sage, erk_fixed.sage, and erk_cmf.sage programs. This set of

tests takes much longer, about 65 minutes total using up to four processor cores for the code generation on

the desktop computer used for this study, but it ensures the code generation and generated code continue to

work error free.

All of the above unit tests can be run together using the source file unittests.py, which takes a total

of 75 minutes on the desktop computer used for this study. This is a reasonable time for the developer

to have confidence in full functionality by running everything overnight, during a break, or when otherwise

occupied. In fact, the unit test script is often used to regenerate the generated code described in Section 4.7

because it runs all appropriate scripts and automatically catches many programming errors that may have

been inadvertently introduced.
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4.9 The ERKSearch class for systematically searching coefficients

The erk_search.py source file is used to search the free parameters of the ERK families described in this

thesis. This includes support for parallelism and visualization. Although data showing detailed results of

searching through free parameters of RK method families does not appear to have been published before, sev-

eral authors have mentioned doing searches or using optimization to select RK method coefficients. Dormand

and Prince [47, 136] appear to have used unspecified numerical optimization methods to find promising re-

gions in the space of free parameters for the family containing the DP5(4)6(7) pair (2.79) and they specifically

mention using numerical optimization for their ERK embedded pair [136] with seventh- and eighth-order

methods that was constructed from an ERK family with 10 free parameters. Sharp describes an “interactive”

grid search as the methodology he used to find a minimal leading error coefficient for ERK methods higher

than fifth-order [156]. Tsitouras has extensively used numerical optimization methods to assist the studies

already mentioned on six-stage fifth-order methods [182, 183] and some of his other publications [180]. How-

ever, like other authors, Tistouras presents few details or data showing how the searches were conducted or

why the specific published methods were chosen. It is likely that many authors studying RK methods have

used some kind of optimization technique to narrow down the candidate sets of free parameters and present

the best set of coefficients for their particular study, without specifically mentioning that this was the case.

Due to the lack of specifics in existing publications, the study in this thesis is the first to present and analyze

the results of searching the space of free parameters for RK methods in an explicit, detailed, and thorough

manner.

In order to fully utilize the generated tableaux, error coefficients, and characteristic numbers for construct-

ing better RK methods, it is necessary to examine the characteristic numbers (2.56) of candidate sets of RK

method coefficients. Brute-force search is possible for 5(4)6 ERK pairs using the generated code from OCSage

because valid and practical values for RK free parameters do not extend over the entire real number line.

RK method construction is typically done so that most free parameters are the components of the c vector,

where only values in the interval [0, 1] are traditionally used for ERK methods (values of the c components

less than 0 and greater than 1 are excluded for stability reasons). Free parameters other than components of

the c vector can also be reasonably constrained. For instance, it is commonly accepted [16, 47, 190] that free

parameters involving the A matrix of the Butcher tableau can be constrained to a reasonable interval, such

as [−20, 20], meaning the whole real number line does not have to be examined in the case of free parameters

from the A matrix. Ratios of the multipliers λ, µ, ν, ω defined in Chapter 3 and given by Table 3.4 are also

a free parameter that could in principle extend the whole real number line, but the experience of conducting

searches in the course of this study shows that the space of free parameters is smooth enough that one

multiplier can be fixed at 1.0 and the other varied in the interval [−1.0, 1.0], and then vice versa.

It is widely known that the most practical and efficient numerical formulae are generally selected to have

reasonably small leading error coefficients in comparison to the family they are constructed from [16, 47,
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146, 183]. However, given that Dormand and Prince demonstrated in 1986 [48] that ERK pairs with smaller

leading-error coefficients do not necessarily outperform methods with somewhat larger (but still reasonably

small) leading-error coefficients on some test sets of IVPs, it is more appropriate to search for six-stage

fifth-order ERK methods with a leading error coefficient below a chosen upper bound rather than simply

minimizing the leading error coefficient. In fact, the families of embedded pairs containing the DP5(4)6(7)

pair (2.79) can have arbitrarily small (but not zero) leading error coefficients, i.e., where A6 → 0 and D →∞

as c4 → 1 and c5 → 1 at a particular value of c3, a phenomenon noted in ERK methods by Fehlberg as

far back as 1966 [60]. However, in Chapter 5 it is demonstrated that aggressive minimization of the leading

error coefficient, even with values of the Butcher tableau coefficients that are of “reasonable” magnitude, can

sometimes lead to ERK pairs that perform unexpectedly poorly solving some IVPs. For 5(4)6 ERK pairs,

rough guidelines for small-enough leading error coefficients can be found by taking the ERK embedded pair

derived by Dormand and Prince with an extended stability region [47] as an ERK method with a “good”

leading error coefficient of 0.00181 and the widely used DP5(4)6(7) pair (2.79) as an ERK method with an

“excellent” leading error coefficient of 0.000399.

The scalar sums (2.39), order conditions, and expressions for particular Butcher tableau coefficients are

typically rational functions (except for Cases I, II, IV from Section 3.4.1 in the case of six-stage fifth-order

ERK families that must contain square roots except for certain reduced systems), which can actually be

amenable to study by analytic techniques. Verner analyzes the error estimate for the quadrature problem (2.2)

only, i.e., using the bushy trees only [187]. However, the performance data presented in Chapter 5 clearly

indicates current analytic techniques may not be sufficient to choose the most robust and efficient ERK pairs.

This is because, as shown in Chapter 5, the individual values of the more difficult to analyze PECs are

often the most important, and that tradeoffs between properties, rather than extreme values (for example,

not necessarily minimizing leading error coefficients to the smallest magnitude possible), lead to the best

performing ERK pairs for practical IVPs. For example, consider that the minimum possible leading error

coefficient for the much simpler family of popular four-stage fourth-order ERK methods had to be found

using a combination of analytic techniques and numerical optimization [139]. Furthermore, once a family has

been explicitly constructed, numerical search or optimization are generally the main techniques for finding

the best numerical formulae. Therefore, it is seen in Chapter 5 that performance testing in conjunction with

studying the mathematical properties is required find the pairs with the best performance.

A brute-force search of just over 1 million candidate sets of free parameters for the three-parameter family

containing the fifth-order component of the DP5(4)6(7) pair (2.79) (with c2, c4, c5 as free parameters, and

101 points in [0, 1] tested for each) gives only 15030 sets of free parameters corresponding to leading error

coefficients smaller than 0.0020, and only 202 sets of free parameters corresponding to leading error coefficients

smaller than the 0.000399 of the DP5(4)6(7) pair (2.79). From these numbers, it can clearly be seen that

using rough but well-established guidelines to restrict leading error coefficients (2.47) can drastically reduce

the number of candidate RK formulae to be evaluated. With appropriate insight, other properties can be
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used, in order to reduce the number of candidate formulae even further. The erk_search.py script searches

2-D slices of parameter space, i.e., it does a grid search of two free parameters while keeping others constant.

These two variables that define the 2-D slice can be chosen in a way that gets the maximum possible benefit

from vectorization. In particular, when searching with the ERKSearch class, if the leading error coefficient

for a particular slice of the space of free parameters is always greater than a certain threshold (for example,

greater than 0.0064, for giving the best overall picture of space of free parameters, or greater than 0.0020, for

fine-grained searching for efficient methods) the other properties are not calculated for that slice, allowing for

a huge savings in computational cost and database storage for some ERK families studied. It is also seen in

the figures in the following sections that the space of free parameters tends to be smooth. This makes using

brute-force search a reasonable methodology to give a relatively thorough and systematic search of the sets

of free parameters. For 5(4)6 ERK pairs, there are also free parameters b̂6 or b̂7 for the fourth-order method,

depending on the family of ERK pairs, that can also be reasonably examined by checking a range of values

for regions where the specific fifth-order methods show promise.

The free parameters for each case of the complete solution for six-stage fifth-order ERK methods are given

in Table 3.3, where it can be seen that there are never more than five free parameters. The free parameters

for the six-stage fifth-order component for each family of 5(4)6 ERK pairs are given in Table 3.4, where it

can be seen that there are never more than four free parameters. Even with restrictions on search space due

to insight into reasonable method properties, searches of four- and five-dimensional space of free parameters

are probably close to the limit of what brute-force search can effectively do. However, some modifications

based on the insights gained by the brute-force searches done for this study may allow more sophisticated

searching to effectively find better RK methods from families with more than five free parameters. In

addition to the relatively low-dimensional space of free parameters, brute-force search as the sole method is

really only possible because the smoothness of the space of free parameters allows refinement from broad and

coarse-grained searches to narrow and fine-grained searches with a high degree of confidence that nothing has

been missed. Examples of the relative smoothness of the space of free parameters can be seen in figures in

Sections 4.12–4.15. Therefore, for this study, only brute-force search needs to be used because this provides

the most insight into the process of choosing families and selecting coefficients, and it is unlikely to have

missed anything substantial. Despite clever restrictions to avoid needing to go over the whole search space,

the largest searches done for this study sometimes require PostgreSQL tables that take up to 300GB, although

more sophisticated search strategies would drastically reduce this. For future studies into RK methods with

a greater number of free parameters, it may not be tractable to search as thoroughly as done for this study.

However, the data and resulting insights gained by using brute-force search in this study can guide other

numerical optimization techniques that may be able to find better RK methods for families where brute-force

search is not suitable.

The internals of the ERKSearch class are not given in detail because the usage consists only of setting

attributes in the __init__ method when the ERKSearch class is subclassed for a particular ERK family. The
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attribute search_functions that demonstrates the choices for sets of functions for calculating characteristic

numbers is given in Listing 4.7.

Listing 4.7: The search_functions attribute of the ERKSearch class showing the choices of charac-

teristic numbers (2.56) possible for different searches.

class ERKSearch ()
<<...>>
self.search_functions ={

’simple ’:lambda: [[self.get_error_6_function (), ’error_6 ’, (0.0, 0.0020)]],
<<...>>
’simple -wide -embedded ’:lambda: [

[self.get_error_6_function (), ’error_6 ’, (0.0,
↪→ 0.0020)],

[self.construct_error_ratio_function (), ’error_ratio ’, (0.0, 10.0)
↪→ ],

[self.construct_characteristic_B_function (), ’char_B ’, (0.0, 5.0)],
[self.construct_characteristic_C_function (), ’char_C ’, (0.0, 5.0)],
[self.construct_characteristic_E_function (), ’char_E ’, (0.0, 5.0)],
[self.get_min_c_distance_function (), ’min_c_distance ’, (0.0, 0.2)],
[self.get_max_coefficient_magnitude_function (), ’max_coeff ’, (0.0, 100.0)

↪→ ],
[self.get_b_diff_function (), ’b6_diff ’, (0.0, 2.0)],
[self.construct_error_6_max_condition_function (), ’conditions_6_max ’, (0.0, 5.0)],
[self.construct_error_7_max_condition_function (), ’conditions_7_max ’, (0.0, 5.0)],
[self.construct_error_8_max_condition_function (), ’conditions_8_max ’, (0.0, 5.0)],
[self.construct_error_9_max_condition_function (), ’conditions_9_max ’, (0.0, 5.0)],
[self.construct_error_5_max_condition_emb_function (), ’conditions_5_emb_max ’, (0.0, 5.0)],
[self.construct_error_6_max_condition_emb_function (), ’conditions_6_emb_max ’, (0.0, 5.0)],
[self.construct_error_7_max_condition_emb_function (), ’conditions_7_emb_max ’, (0.0, 5.0)],
[self.construct_error_8_max_condition_emb_function (), ’conditions_8_emb_max ’, (0.0, 5.0)],
[self.construct_error_9_max_condition_emb_function (), ’conditions_9_emb_max ’, (0.0, 5.0)

↪→ ]],
<<...>>
’default -embedded ’:lambda :[

[self.get_error_6_function (), ’error_6 ’, (0.0,
↪→ 0.0013)],

[self.get_error_7_function (), ’error_7 ’, (0.0,
↪→ 0.0064)],

[self.get_error_8_function (), ’error_8 ’, (0.0,
↪→ 0.0064)],

[self.get_error_9_function (), ’error_9 ’, (0.0,
↪→ 0.0064)],

[self.construct_error_ratio_function (), ’error_ratio ’, (0.0, 32.0
↪→ )],

[self.construct_error_ratio_79_function (), ’error_ratio_79 ’, (1.0, 4.0)],
[self.get_error_emb_5_function (), ’error_emb_5 ’, (0.0, 0.0064

↪→ )],
[self.get_error_emb_6_function (), ’error_emb_6 ’, (0.0, 0.0064

↪→ )],
[self.get_error_emb_7_function (), ’error_emb_7 ’, (0.0, 0.0064

↪→ )],
[self.get_error_emb_8_function (), ’error_emb_8 ’, (0.0, 0.0064

↪→ )],
[self.get_error_emb_9_function (), ’error_emb_9 ’, (0.0, 0.0064

↪→ )],
[self.construct_stability_last_term_function (), ’stab_term ’, (0.0,

↪→ 1./256.)],
[self.get_stability_length_function (), ’stab_length ’, (2.0, 7.0)],
[self.get_stability_length_emb_function (), ’stab_length_emb ’, (2.0, 7.0)],
[self.construct_stability_length_difference_function (), ’stab_length_difference ’ ,(-2.0,2.0)],
[self.get_max_coefficient_magnitude_function (), ’max_coeff ’, (0.0, 50.0)

↪→ ],
[self.get_min_c_distance_function (), ’min_c_distance ’, (0.0, 0.5)],
[self.get_b_diff_function (), ’b6_diff ’, (0.0, 2.0)],
[self.construct_characteristic_B_function (), ’char_B ’, (0.0, 5.0)],
[self.construct_characteristic_C_function (), ’char_C ’, (0.0, 5.0)],
[self.construct_characteristic_E_function (), ’char_E ’, (0.0, 5.0)],
[self.construct_error_6_max_condition_function (), ’conditions_6_max ’, (0.0, 10.0)

↪→ ],
[self.construct_error_7_max_condition_function (), ’conditions_7_max ’, (0.0, 10.0)

↪→ ],
[self.construct_error_8_max_condition_function (), ’conditions_8_max ’, (0.0, 10.0)

↪→ ],
[self.construct_error_9_max_condition_function (), ’conditions_9_max ’, (0.0, 10.0)

↪→ ],
[self.construct_error_5_max_condition_emb_function (), ’conditions_5_emb_max ’, (0.0, 10.0)
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↪→ ],
[self.construct_error_6_max_condition_emb_function (), ’conditions_6_emb_max ’, (0.0, 10.0)

↪→ ],
[self.construct_error_7_max_condition_emb_function (), ’conditions_7_emb_max ’, (0.0, 10.0)

↪→ ],
[self.construct_error_8_max_condition_emb_function (), ’conditions_8_emb_max ’, (0.0, 10.0)

↪→ ],
[self.construct_error_9_max_condition_emb_function (), ’conditions_9_emb_max ’, (0.0, 10.0)

↪→ ]]}

In Listing 4.7, observe the use of the Python keyword lambda to create anonymous functions in the data

structures; this reduces loading time and ensures that unnecessary code that might cause errors for some

families is never evaluated. Smaller sets of functions, such as those represented by keys such as ’simple’

and ’simple-wide-embedded’, are much faster than computing all characteristic numbers that might be of

interest, which is done by the more numerous and slower set of functions stored under ’default-embedded’.

Because the selection of functions to be computed can be selected by appropriate command-line arguments

to erk_search.py, this allows quick and preliminary searches to be done before more time-consuming final

searches.

An example of defining a subclass of ERKSearch for the family containing the DP5(4)6(7) pair (2.79),

which shows a set of many different searches conducted in the course of this study, is given in Listing 4.8.

Listing 4.8: An outline of the erk_search.py showing some module variables and the

ERKSearch_dopr54s7 subclass of the ERKSearch class.

<<...>>
PLOT_FUNCTIONS_STANDARD = (’error_6 ’,’error_7 ’,’error_ratio ’,’max_coeff ’,’stab_length ’)
PLOT_FUNCTIONS_FULL = (’error_6 ’,’error_7 ’,’error_8 ’,’error_9 ’,’error_ratio ’,’

↪→ error_ratio_79 ’,’max_coeff ’,’stab_length ’,’conditions_6_ratio ’,’conditions_7_ratio ’)
PLOT_FUNCTIONS_WIDE_EMBEDDED = (’error_6 ’,’char_B ’,’min_c_distance ’,’max_coeff ’,’b6_diff ’,’

↪→ conditions_6_ratio ’,’conditions_7_ratio ’,’conditions_5_ratio_emb ’,’conditions_6_max ’,’
↪→ conditions_7_max ’,’conditions_8_max ’,’conditions_9_max ’,’conditions_5_emb_max ’,’
↪→ conditions_6_emb_max ’,’conditions_7_emb_max ’,’conditions_8_emb_max ’,’conditions_9_emb_max ’,)

PLOT_FUNCTIONS_FULL_EMBEDDED = (’error_6 ’,’error_7 ’,’error_8 ’,’error_9 ’,’error_emb_5 ’,’
↪→ error_ratio_79 ’,’error_emb_6 ’,’error_emb_7 ’,’error_ratio ’,’max_coeff ’,’stab_length ’,’
↪→ stab_length_emb ’,’stab_length_difference ’,’char_B ’,’char_C ’,’char_E ’,’conditions_6_ratio ’,’
↪→ conditions_5_ratio_emb ’,)

<<...>>
class ERKSearch_dopr54s7(ERKSearch):

label=’dopr54s7 ’
plots ={’simple ’:((’c4’,’c5’), (’error_6 ’,)),

’default ’:((’c4’,’c5’), PLOT_FUNCTIONS_STANDARD),
’full’:((’c4’,’c5’), PLOT_FUNCTIONS_FULL),
’full -limited ’:((’c4’,’c5’), PLOT_FUNCTIONS_FULL ,{’c2’:(20 ,30 ,1)}),
’full -embedded -parameter ’:((’c5’,’bhat7 ’), PLOT_FUNCTIONS_FULL_EMBEDDED),
’full -embedded -parameter -limited ’:((’c5’,’bhat7’), PLOT_FUNCTIONS_FULL_EMBEDDED ,{’c2’

↪→ :(20 ,30 ,1)}),
’progression ’:((’c4’,’c5’),(’error_6 ’,’c2’ ,13,48,1)),
# classic dopr m,s,c
’full -embedded -interesting -m’:((’c5’,’bhat7 ’), PLOT_FUNCTIONS_FULL_EMBEDDED ,{’c2’

↪→ :(2,3,1),’c4’:(48 ,49 ,1)}),
’full -embedded -interesting -s’:((’c5’,’bhat7 ’), PLOT_FUNCTIONS_FULL_EMBEDDED ,{’c2’

↪→ :(5,6,1),’c4’:(15 ,16 ,1)}),
’full -embedded -interesting -c’:((’c5’,’bhat7 ’), PLOT_FUNCTIONS_FULL_EMBEDDED ,{’c2’

↪→ :(2,3,1),’c4’:(3,4,1)}),
’full -embedded -interesting -spread -1’:((’c5’,’bhat7 ’), PLOT_FUNCTIONS_FULL_EMBEDDED ,{’c2’

↪→ :(1,2,1),’c4’:(31 ,32 ,1)}),
’full -embedded -interesting -spread -2’:((’c5’,’bhat7 ’), PLOT_FUNCTIONS_FULL_EMBEDDED ,{’c2’

↪→ :(1,2,1),’c4’:(33 ,34 ,1)}),
# 0.99 dopr
’full -embedded -interesting -99’:((’c5’,’bhat7’), PLOT_FUNCTIONS_FULL_EMBEDDED ,{’c2’

↪→ :(4,5,1),’c4’:(61 ,62 ,1)})}
def __init__(self):

ERKSearch.__init__(self)
self.search_variables = {’simple ’:{’bhat7’:[(0.0 , 0.0, 1), False],

’c2’: [(0.0, 1.0, 51), False],
’c4’: [(0.0, 1.0, 51), True],
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’c5’: [(0.0, 1.0, 51), True]},
# 136 (135+1) hits the published formulae that use demoninators of

↪→ 3,5,9,etc. used for classic dopr methods
’default ’:{’bhat7’:[(0.0 , 0.0, 1), False],

’c2’: [(0.0, 1.0, 136), False],
’c4’: [(0.0, 1.0, 136), True],
’c5’: [(0.0, 1.0, 136), True]},

’interesting ’:{’bhat7’:[(0.0 , 0.0, 1), False],
’c2’: [(0.17 , 0.23, 25), False],
’c4’: [(0.5, 1.0, 271),True],
’c5’: [(0.5, 1.0, 271),True]},

’full -embedded ’:{’bhat7 ’:[(-0.2, 0.2, 41), True],
’c2’: [( 0.0, 1.0, 21), False],
’c4’: [( 0.0, 1.0, 21), False],
’c5’: [( 0.0, 1.0, 21), True]},

’complete -embedded ’:{’bhat7 ’:[(-0.2, 0.2, 41),True],
’c2’: [( 0.0, 1.0, 21),False],
’c4’: [( 0.0, 1.0, 21),False],
’c5’: [( 0.0, 1.0, 21),True]},

# makes sure it captures current embedded stuff , not much choice but
↪→ 200

# TODO: this hits everything used currently , may need higher
↪→ resolution

’interesting -embedded ’:{’bhat7 ’:[(-0.2, 0.2, 81), True],
’c2’: [( 25./135. ,32./135. ,8) , False],
’c4’: [( 60./135. ,1.0 , 76), False],
’c5’: [( 60./135. ,1.0 , 76), True ]}}

The attributes that must be defined in subclasses of ERKSearch are:

• The label attribute must correspond to the label attribute used for the particular subclass of the

ERKSolve class, i.e., the RK family, that is used for generating the code used in the search. This label

attribute is used within the PostgreSQL database for both keys and table names, as well as for the

filenames of matplotlib plots.

• The plots attribute describes, for the standard plotting functionality (to be described below), the free

parameters used for the x-axis and y-axis respectively along with a list of characteristic numbers (2.56)

to display in the plot (these lists are typically defined as global constants such as those shown at the

top of Listing 4.7, and the functions specified must have been part of the search).

– The PLOT_FUNCTIONS_STANDARD, PLOT_FUNCTIONS_FULL, and PLOT_FUNCTIONS_FULL_EMBEDDED

global constants define the list of functions to plot and are used to avoid repetitive code in the

plots attribute of subclasses of ERKSearch.

• The search_variables attribute contains a list of dictionaries that represent possible searches (to

be selected on the command line), where each key-value pair in each dictionary gives the information

required for specific free parameters for that particular search, and the dictionary key is a string that

corresponds to the variable name used in the generated code. This information is in a list that gives in

order:

– A tuple giving the arguments to the SciPy linspace function to specify the grid points for

searching with this particular variable.

– A Boolean variable, which can only be True for two of the variables, specifying the variables that

constitute a slice of the search. Due to the benefits of vectorization in searching, it can often be

best to incorporate those variables that lead to slices with the most points. Another strategy is,
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because all pairs that are identical except the value of b̂6 or b̂7 will have the same A6, incorporating

b̂6 or b̂7 into a slice means that slices with too large an A6 will often not need to compute other

characteristic numbers.

Arithmetic operations, e.g., z = 2+2, in Python can be orders of magnitude slower than low-level lan-

guages such as C, C++, or Fortran, largely because of the overhead of the Python interpreter and object

creation. However, leveraging vectorization in combination with libraries such as SciPy for heavy numerical

computation can often bring that difference down to a factor of two to three [201] or even less.20 In particular,

the overall process of brute-force search of the free parameters of RK method families is extremely amenable

to vectorization, hence the performance disadvantage of the Python interpreter is much smaller than would

be expected by benchmarking simple arithmetic operations.

To take advantage of vectorization, a 2D slice of a hypercube of the space of free parameters for the

appropriate RK method family have all of their characteristic numbers calculated together. Although NumPy

supports arrays with more than two dimensions, it was found that 2D slices were generally large enough to

fully exploit vectorization while being small enough to ensure that all searches necessary for this study could

be done within the memory that was available. This is accomplished because the generated code (except

the functions that return the actual Butcher tableau) can take multi-dimensional arrays as arguments, as

already discussed in Section 4.7. The following examples give an idea of how much vectorization speeds up

the searches of the free parameters. When testing using a selection of the functions from Listing 4.7 for the

family containing the DP5(4)6(7) pair (2.79), going from 1×1 input arrays to 21×21 input arrays takes 2.6

times as long, with the latter having 441 points and clearly illustrating the benefits of vectorization. When

moving from 21×21 input arrays to 101×101 input arrays, it takes about 12 times longer, with about 23

times as many points, indicating a continued but increasingly marginal benefit to vectorization. On the

desktop computer used for this study, the scaling starts to become worse, with input arrays of 401×401

taking 22 times longer but with only about 16 times more points than 101×101 input arrays, likely due to

bottlenecks in processes such as memory management. These observations show that for this study, using

2D slices of the parameter space rather than much larger 3D cubes is best for the number of points in a

typical search. However, although these observations may give guidelines for other users, they are dependent

on many factors, such as the specifications of the particular machine and architectures used, the particular

version used for Python and libraries, etc.

An example of how to run the erk_search.py source file is:

python erk_search.py --dopr54s7 complete-embedded default-embedded

that given the class ERKSearch_dopr54s7 in Listing 4.8, the command line argument --dopr54s7 selects

the class defined in the erk_search.py source file with the label attribute equal to ’dopr54s7’ and

complete-embedded as the second argument indexes the key ’complete-embedded’ in the attribute

20https://www.tcm.phy.cam.ac.uk/~mjr/linpack/
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search_variables of the ERKSearch class for the search to perform. The additional ’default-embedded’

argument indexes the appropriate set of functions in the search_functions attribute described in Listing 4.7.

The textual output of running the erk_search.py source file ensures that the user can monitor the slices

as they are being searched, an advantage due to the length of time (many hours) that large searches may

require.

4.9.1 Storage in a PostgreSQL database

It is well-known that using a database management system such as PostgreSQL has many advantages in

comparison to simple file storage. An enormous advantage that a database management system (DBMS),

such as PostgreSQL, gives lies in supporting concurrent storage and retrieval of data by many processes

across the different machines over a network. Experience has shown that declarative languages such as SQL

(as opposed to imperative languages, such as Python) confer many advantages for storage, retrieval, and

transformation of data that can drastically reduce software development costs and eliminate many sources

of error. Databases generally have preexisting functionality to handle many implementation details required

for managing large and complex data sets efficiently, e.g., error handling, managing storage space, indexing,

scalability, etc. This frees the user/developer from having to consider many implementation details, and

allows access to functionality for which they would not otherwise have the development resources. The

largest size of the datasets generated by using erk_search.py for this thesis are 300GB, which for complex

data sets is large enough to be difficult to manage without a tool like a proper database.

For OCSage searches, a partial example of the PostgreSQL table storing data from a search is given in

Listing 4.9. Each search is stored within a table with the name ocsage_data_«datestamp»_«label». The

first sets of columns are pairs of columns named after the strings used as variable names throughout OCSage;

with the variable searched as the first column name in a pair, e.g., c2 for c2; and an integer index within

the hypercube searched as the second column name in a pair, with the column name being the variable

name with the suffix _index, e.g., c2_index refers to the c2 variable. The «variable»_index column is

included because integers are far more efficient and less error prone than floating-point values for grouping

and comparison operations within the PostgreSQL database. Subsequent columns use the string name from

Listing 4.7 that refers to the property from the search_functions attribute and contains its floating-point

value at the set of free parameters for that particular row.

In addition, the searches that have been conducted are contained within the table ocsage_searches,

which contains information such as the timestamp, label, number of datapoints stored, the hostname used,

the command line arguments used, the total execution time, whether the search is successful, and several

more pieces of information. This makes OCSage more convenient to use for a large number of families, such

as this study does, because a lot of essential information is stored automatically and therefore does not need

to be manually recorded and organized. An example of several rows of a PostgreSQL table from a search,

along with the column headings, is given in Listing 4.9. An example of an SQL query for finding ERK pairs
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with certain restrictions on Butcher tableau coefficients and properties is:

SELECT * FROM ocsage_data_20180421T042053_erk5sVVIs6FSAL7 WHERE error_6 > 0.0003

AND error_6 < 0.0005 AND char_e < 10 AND c4 < 0.7 AND c5 < 0.93 ORDER BY

error_6;

Additionally, PostgreSQL allows easily creating new tables from existing tables by either combining

searches or narrowing down a large search into a smaller set of data for examination. The psycopg library

already mentioned in Section 4.1 easily allows querying the database from Python and using pythODE with

the «label»_tableau functions from the generated SciPy code to quickly reproduce the Butcher tableau

from an appropriate table row when needed.

4.9.2 Plotting the results of a search

The data from the searches that stored in the PostgreSQL database can be used to generate plots and figures.

The default methodology in the erk_search.py source file for plotting simply plots the slices from searches

for inspection, in some instances this can be many thousands of slices if a general overview of the space of

free parameters is wanted. Although data in the database could be manipulated for further plotting, for

this study just plotting individual slices is found to be sufficient. An example of these slices can be seen in

Figure 4.8, which is described in detail below along with others like it.

The best matplotlib function to plot figures such as in Sections 4.12 and 4.13 is the imshow function

with the interpolation option turned off. An example of plotting these slices is Figure 4.10, which are only

two of the many plots of slices generated for a search. The command to plot can be given as

python erk_search.py --plot <<datestamp>> <<plot selection>>

that uses «datestamp» to infer the SQL table and the label to plot and where «plot selection» refers to

the key in the plots attribute shown in Listing 4.8. Alternately

python erk_search.py --plotrecent <<label>> <<plot selection>>

finds the most recent search with the label attribute «label» and plots this. In addition to the default .png

format of the plots, a --pdf argument can be added to generate the plots as pdf format.

If too many slices are used or plotting is not carefully restricted when doing fine-grained searches, there

can be issues with performance and resource utilization. For instance, if too many points or slices are used

for families where there can be five parameters, it is easy to generate over 10000 slices, which would need

to be plotted to picture the whole space of free parameters. In one case during initial investigations for

this study, it took only 8 hours to actually do the search but over 24 hours to generate all the plots on the

particular desktop computer used in this study. In addition, many file managers and image viewers have

difficulty efficiently thumbnailing or otherwise allowing efficient browsing of that many images. In these cases,

it is better to narrow down the region of interest in the space of free parameters using just textual database
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searches before doing any plotting. For future studies, more sophisticated data visualization tools may assist

in constructing new ERK pairs.

4.10 Comparison of OCSage output with published values in the lit-

erature

In order to verify the correctness of OCSage, using known free parameters and manually checking the result-

ing Butcher tableaux against ones published in the literature is relatively straightforward, especially when

using rational numbers to give calculated coefficients that can be compared exactly. However, ensuring the

calculated characteristic numbers (2.56) are all correct is a bit more difficult because they are not uniformly

presented in every publication. For instance, they are often presented as floating-point values with few decimal

places, and this is unhelpful for finding the subtle errors that can sometimes creep into the implementations.

Therefore, to ensure OCSage is correct, it is necessary to make comparisons with as many published charac-

teristic numbers as possible. Table 4.2 shows many of the known values of characteristic numbers (2.56) that

have been published for classic ERK methods along with the values calculated by OCSage. It can clearly be

seen that all of these values match those calculated with OCSage when taking into account the precision of

the original publication. In some cases, characteristic numbers were discussed, but numerical values were not

given, or they may have only been shown graphically. In these cases, the values calculated by OCSage have

been deemed consistent with the original publication. Table 4.2 should also give the reader a good idea of

typical characteristic numbers for classic ERK methods.

The code generated to implement the RK scalar sums (2.39) in Section 4.4 can be verified to tenth order

by testing the Butcher tableau coefficients of published higher-order RK methods (up to tenth order) [69][72,

pgs.179–185][136], which is done by verifying that the expressions for the order conditions vanish. This helps

verify the characteristic numbers that incorporate higher-order scalar sums (2.39). However, care is still

needed to ensure that the algorithms and resulting calculated values for α and σ are correct. The values of α

and σ were verified up to eighth order by manually checking with a publication by Butcher [24], which was

tedious because the ordering of the values presented by Butcher is not the same as that resulting from the

sort order produced by generating the code described in Section 4.4.
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Â
7

st
a
b
il
it
y
te
rm

st
a
b
il
it
y
le
n
g
th

fo
u
rt
h
-o
rd
er

st
a
b
il
it
y
le
n
g
th

R
K
F
4
(5
) 6

(
6
)
[1
6
]

0
.0
0
3
4

0
.0
0
6
8

0
.0
0
8
1

0
.0
0
8

-
-

-
-

-
-

R
K
F
4
(5
) 6

(
6
)
[3
0
]

0
.0
0
3
4

0
.0
0
6
8

-
-

0
.0
0
1
8

0
.0
0
5
8

-
-

-
-

R
K
F
4
(5
) 6

(
6
)
[4
7
]

0
.0
0
3
3
6

-
-

-
-

-
-

-
-

-
R
K
F
4
(5
) 6

(
6
)

OC
Sa

ge
0
.0
0
3
3
5
7

0
.0
0
6
7
6
5

0
.0
0
8
0
6
9

0
.0
0
8
0
3
9

0
.0
0
1
8
3
9

0
.0
0
5
8
0
5

0
.0
0
9
4
4
5

0
.0
0
0
4
8
0
7
7

3
.6
7
7
7
0
6

-
D
P
5
(4
) 6

(
7
)
[1
6
]

0
.0
0
0
4
0

0
.0
0
4
0

0
.0
0
4
3

0
.0
0
4
2

-
-

-
-

-
-

D
P
5
(4
) 6

(
7
)
[4
7
]

0
.0
0
0
3
9
9

-
-

-
1

6
0
0

(0
.0
0
1
6
6
6
..
.)

3
.3

[4
8
]

g
D
P
5
(4
) 6

(
7
)

OC
Sa

ge
0
.0
0
0
3
9
9

0
.0
0
3
9
5
6

0
.0
0
4
2
6
0

0
.0
0
4
2
1
6
5
3

0
.0
0
1
1
8
3

0
.0
0
1
8
2
3
8

0
.0
0
4
1
4
1

0
.0
0
1
6
6
6
6

3
.3
0
6
5
6
8

-

D
P
5
(4
)S

6
(
7
)
[4
7
]

0
.0
0
1
8
1

-
-

-
-

-
-

1
1
2
8
0

(0
.0
0
0
7
8
1
2
5
)

5
.7

[4
8
]

g
D
P
5
(4
)S

6
(
7
)

OC
Sa

ge
0
.0
0
1
8
1
3

0
.0
0
2
5
1
0

0
.0
0
2
4
9
4

0
.0
0
2
2
4
6

0
.0
0
0
4
2
1

0
.0
0
2
0
9
2

0
.0
0
2
8
2
4

0
.0
0
0
7
7
1
6
0

5
.7
0
4
6
3
6

-
D
P
5
(4
)C

6
(
7
)
[4
8
]

0
.0
0
1
4
9

-
-

-
4
.4

-
D
P
5
(4
)C

6
(
7
)

OC
Sa

ge
0
.0
0
1
4
8
9

0
.0
0
2
0
6
4

0
.0
0
2
1
7
6

0
.0
0
2
0
3
7

0
.0
0
0
7
4
8

0
.0
0
2
0
5
7
9

0
.0
0
2
6
7
9

0
.0
0
0
9
6
1
5
4

4
.4
3
6
7
7
9

-
D
P
5
(4
)M

6
(
6
)
[4
7
]

0
.0
0
1
2
3

-
-

-
-

-
-

n
c

g
-

D
P
5
(4
)M

6
(
6
)

OC
Sa

ge
0
.0
0
1
2
2
7

0
.0
0
1
6
4
2

0
.0
0
1
6
1
9

0
.0
0
1
4
8
5

0
.0
0
2
2
2
7

0
.0
0
2
8
5
2

0
.0
0
3
2
3
6

0
.0
0
1
2
5
0
0
0

3
.7
3
4
3
6
0

-
B
o
g
a
ck
i–
S
h
a
m
p
in
e
5
(4
)
[1
6
]

0
.0
0
0
0
2
2

0
.0
0
0
2
1

0
.0
0
0
3
5

0
.0
0
0
4
2

-
-

-
-

-
-

C
K
4
(5
) 6

(
6
)
[3
0
]

0
.0
0
0
9

0
.0
0
1
3

-
-

0
.0
0
0
5

0
.0
0
1
1

-
-

-
-

C
K
4
(5
) 6

(
6
)

OC
Sa

ge
0
.0
0
0
9
4
8

0
.0
0
1
3
6
8

0
.0
0
1
4
5
2

0
.0
0
1
3
5
1

0
.0
0
0
5
3
9

0
.0
0
1
1
5
3

0
.0
0
1
3
5
8

0
.0
0
1
2
5
0
0
0

3
.7
3
4
3
6
0

-

L
is
ti
n
g
4.
9:

P
ar
t
of

th
e
Po
st
gr
eS
QL

ta
bl
e
re
su
lt
in
g
fr
om

a
se
ar
ch

of
th
e
E
R
K

fa
m
ily

co
nt
ai
ni
ng

D
P
5(
4)

6
(7

)
.

c2
|

c
2
_
i
n
d
e
x

|
b
h
a
t
7

|
b
h
a
t
7
_
i
n
d
e
x

|
c5

|
c
5
_
i
n
d
e
x

|
c4

|
c
4
_
i
n
d
e
x

|
e
r
r
o
r
_
6

|
e
r
r
o
r
_
7

|
e
r
r
o
r
_
8

|
e
r
r
o
r
_
9

|
e
r
r
o
r
_
r
a
t
i
o

|
s
t
a
b
_
l
e
n
g
t
h

-
-
-
-
-
-+

-
-
-
-
-
-
-
-
-
-+

-
-
-
-
-
-
-+

-
-
-
-
-
-
-
-
-
-
-
-
-+

-
-
-
-
-
-+

-
-
-
-
-
-
-
-
-
-+

-
-
-
-
-
-+

-
-
-
-
-
-
-
-
-
-+

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-+

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-+

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-+

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-+

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-+

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
.
1
1

|
11

|
0

|
0

|
0
.
6
8

|
68

|
0
.
4
1

|
41

|
0
.
0
0
1
5
9
4
4
2
2
7
5
6
5
8

|
0
.
0
0
2
2
5
7
2
0
8
5
5
2
1
4

|
0
.
0
0
2
4
7
9
8
1
8
0
6
7
2
5

|
0
.
0
0
2
2
7
9
7
7
5
0
9
4
8
7

|
1
.
4
1
5
6
9
0
1
2
5
3
6

|
3
.
1
0
8
7
7
2
6
7
5
8
1

0
.
1
1

|
11

|
0

|
0

|
0
.
6
9

|
69

|
0
.
4
1

|
41

|
0
.
0
0
1
5
8
8
9
9
1
8
7
0
8

|
0
.
0
0
2
2
5
2
1
4
5
9
6
7
5
6

|
0
.
0
0
2
4
7
2
9
1
0
8
3
3
5
6

|
0
.
0
0
2
2
7
8
0
5
1
4
1
4
6
8

|
1
.
4
1
7
3
4
2
6
6
1
6
9

|
3
.
1
0
8
7
7
2
6
7
5
8
1

0
.
1
1

|
11

|
0

|
0

|
0
.
7

|
70

|
0
.
4
1

|
41

|
0
.
0
0
1
5
8
6
0
8
2
5
5
3
7
4

|
0
.
0
0
2
2
5
1
4
1
9
4
8
5
9
3

|
0
.
0
0
2
4
7
1
5
4
8
1
8
7
0
3

|
0
.
0
0
2
2
8
2
4
3
5
3
5
0
3
5

|
1
.
4
1
9
4
8
4
4
2
7
6

|
3
.
1
0
8
7
7
2
6
7
5
8
1

0
.
1
1

|
11

|
0

|
0

|
0
.
7
1

|
71

|
0
.
4
1

|
41

|
0
.
0
0
1
5
8
5
7
0
8
6
8
4
5
1

|
0
.
0
0
2
2
5
5
1
9
7
6
4
7
2
1

|
0
.
0
0
2
4
7
6
2
8
8
9
7
1
5
7

|
0
.
0
0
2
2
9
3
7
6
9
8
5
0
3
6

|
1
.
4
2
2
2
0
1
7
3
8
0
8

|
3
.
1
0
8
7
7
2
6
7
5
8
1

0
.
1
1

|
11

|
0

|
0

|
0
.
7
2

|
72

|
0
.
4
1

|
41

|
0
.
0
0
1
5
8
7
8
7
2
0
5
4
0
5

|
0
.
0
0
2
2
6
3
6
6
2
8
9
5
4
4

|
0
.
0
0
2
4
8
7
8
0
7
7
7
6
0
1

|
0
.
0
0
2
3
1
3
0
9
0
6
6
1
9
5

|
1
.
4
2
5
5
9
5
2
7
3
6
7

|
3
.
1
0
8
7
7
2
6
7
5
8
1

0
.
1
1

|
11

|
0

|
0

|
0
.
7
3

|
73

|
0
.
4
1

|
41

|
0
.
0
0
1
5
9
2
5
6
2
3
2
2
4
8

|
0
.
0
0
2
2
7
7
0
2
9
2
6
0
9
4

|
0
.
0
0
2
5
0
6
9
5
5
3
2
5
2
3

|
0
.
0
0
2
3
4
1
7
1
4
1
2
4
6
8

|
1
.
4
2
9
7
8
9
7
3
4
9
4

|
3
.
1
0
8
7
7
2
6
7
5
8
1

<
<.

..
>
>

178



4.11 Examination of lower-order ERK methods for comparison

It is instructive to briefly examine some properties of popular lower-order ERK methods in order to give a

frame of reference for the data obtained from searching families of 5(4)6 ERK pairs. In order to construct the

best ERK pairs in a well-defined way, in this study it is shown that the individual PECs must be examined.

Recall from Chapter 2 that the standard definition of PECs (2.47) can be normalized to the definition of

PECs (2.48) so that a value of 1.0 represents the error if the Taylor series of the local solution (2.38) were

simply truncated. The values of the individual PECs (2.47) for the FE method (2.25) are shown by a bar

graph in Figure 4.4 (left side), where the ordering of the bars is the sort ordering for the data structures used

by OCSage to represent the rooted trees. This sort ordering can be seen for scalar sums (2.39) up to sixth

order by their ordering in Tables B.1 and B.2 or up to twelfth order by examining the code in the OCSage

directory generated_trees/. The analogous bar graph for the PECs (2.48) is shown in Figure 4.4 (right

side), where all bars have a value of 1.0 because the FE method (2.25) can be seen as a simple truncation

of the Taylor series. The simple truncation of the Taylor series of the local solution (2.38) done by the FE

method (2.25) is obvious in Figure 4.4 (right side), but not in Figure 4.4 (left side) because of the additional

scaling by α(F)
q! of the PECs (2.47). However, the PECs (2.47) continue to be useful for constructing quantities

such as Aq because each bar is proportional to the contribution to the error from each elementary differential

F ∈ Fq(f(y(t))) (2.36) would make if all F were equal, which is probably still the best assumption that can be

made if no particular IVP or class of IVPs is specified [16, 146]. However, in Chapter 5 it is shown that this

assumption does not necessarily apply to at least some specific classes of IVPs from practical applications.

To illustrate a non-trivial example of the values of the individual PECs (2.47), an analogous figure to

Figure 4.4 for the RK4 method (2.26) is given by Figure 4.5 (left side), with PECs (2.48) for the RK4

method (2.26) given by Figure 4.5 (right side). It can be seen in Figure 4.5 (right side) that with increasingly

higher order, an increasing fraction of PECs (2.48) are 1.0 because an increasing number of scalar sums (2.39)

evaluate to 0.0. This can easily be seen to be because the scalar sums (2.39) of an ERK method evaluate

to 0.0 if the height of the rooted tree corresponding to a scalar sum (2.39) is larger than the number of

stages. The idea of avoiding vanishing PECs has been discussed in the literature [16, 190] but is not seen

to specifically be an issue in the data examined for this thesis. That individual PECs can assume excessive

magnitude does not appear to have been discussed in the literature either but appears to explain the poor

performance of some 5(4)6 ERK pairs at coarse accuracies.

4.12 Search results for classic 5(4)6 ERK pairs

Although the classic six-stage fifth-order ERK methods discussed in Section 2.7 have been under study for

several decades, the specific tradeoffs between the possible families and in the coefficient selection process have

not been presented in any kind of detail in the literature. Only general discussions of the families used and a
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small number of specific methods themselves are usually presented in the literature. Due to this, the relative

merits of different ERK methods are still the subject of at least informal discussion. In this section, OCSage

is demonstrated by presenting data that helps picture the space of free parameters and specific tradeoffs for

the families that were originally used to construct the RKF4(5)6(6) (2.78) and DP5(4)6(7) (2.79) pairs. The

remainder of this chapter should give a clear idea of what the capabilities and limitations of actually using

OCSage to analyze RK families might be.

For illustrative purposes, the upper bound for the leading error coefficient A6 in many searches conducted

with OCSage is often much larger than what is typically used for efficient pairs. Although it is seen in

Chapter 5 that performance is not as simplistically predicted by the magnitude of the leading error coefficient

as sometimes been implied in the literature [16, 146], having error coefficients as small as possible is desirable

and ERK methods with overly large error coefficients do not need to be considered. Although the new efficient

5(4)6 ERK pairs derived for this thesis will have an A6 smaller than about 0.0012, displaying A6 up to 0.0064

gives a better picture of the space of free parameters for the purposes of study. In general, comparing error

coefficients between methods of different orders should only be done to get a rough comparative picture

because in some cases comparing the magnitude of error coefficients between methods of different order can

be misleading. Due to this, even though error coefficients of different orders are actually incorporated into

the formula of classic characteristic numbers like B (2.56a), C (2.56b), and E (2.56d), the precise values of

these classic characteristic numbers (2.56) do not have a precise meaning.

4.12.1 The family derived by Fehlberg containing the RKF4(5)6(6) pair

In this subsection, the original family derived by Fehlberg [61] containing the RKF4(5)6(6) pair (2.78) is

used for illustrative purposes because there are only three free parameters. However, to properly study the

tradeoffs of many classic ERK pairs composed of six-stage fourth- and fifth-order methods, it is much better

to examine the more general family, i.e., the family of 5(4)6(6) ERK pairs from Section 3.3.4, that is studied

in Section 4.13.

Despite using a more restrictive family, many observations of the fifth-order component of the 5(4)6 ERK

pairs in this subsection generally hold for 5(4)6(6) ERK pairs other than the RKF4(5)6(6) pair (2.78), e.g.,

the DP5(4)M6(6) pair (2.82) published by Dormand and Prince [47] in the same paper as the DP5(4)6(7)

pair (2.79), the CK4(5)6(6) pair (2.83), and the multitude of 5(4)6 ERK pairs that have been constructed

by Verner [187]. The CK4(5)6(6) pair (2.83) has b5 = 0, which is not handled by the family of 5(4)6(6)

ERK pairs from Section 3.3.4 and therefore the code currently generated by OCSage. However, perturb-

ing the free parameters slightly (c2 and c5 by 1
300 as well as c3 by 1

200 to preserve the C(3) simplifying

assumptions (2.44b)) gives a method with nearly identical characteristic numbers (2.56) (all within 0.1%)

to the CK4(5)6(6) pair (2.83) that also performs nearly identically in the performance testing described in

Chapter 5. Therefore, for the purposes of the discussion in this chapter, conclusions can be made about

the CK4(5)6(6) pair (2.83) using the OCSage generated code for the 5(4)6(6)C(2) family from Section 3.3.4 by
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using this perturbed method. A modified family that actually contains the CK4(5)6(6) pair (2.83) [30] would

be possible to incorporate. However, to find the families that properly handle non-trivial but unimportant

singularities arising from values such as b5 = 0 would require substantially expanding on Chapter 3 and not

currently yield any additional insights on ERK method construction.

As a representative example of searching the space of free parameters with OCSage, the family that

Fehlberg [61] used to derive the RKF4(5)6(6) pair (2.78) is searched by a uniform sampling of each of the

free parameters c2, c5, c6 at 101 points in the interval [0, 1]. Given these 1,030,301 potential points, a small

number will be invalid for the families presented in this thesis, for example, either c components that are

equal or, similarly to the CK4(5)6(6) pair (2.83), the value of the specific coefficients leads to a singularity.

The smallest sixth-order leading error coefficient A6 of the six-stage fifth-order method found is

0.00087955035750 from using the free parameters c2 = 19
100 , c5 = 82

100 , and c6 = 88
100 . Searches at much higher

resolution give only a slightly smaller A6. However, in the search just described there are also 1458 other

points that have an A6 ≤ 0.0010, many of which could often expected to have at least relatively similar or

even better performance because of the importance of the individual PECs for some classes of IVPs, which

is shown in Chapter 5. It can be noted that for a fifth-order method,
(

0.001
0.00088

) 1
5 = 1.0259 implies a potential

of 2.6% better performance based on the simplistic assumption that global error is directly related to the

magnitude of the leading error coefficient. This simplistic assumption that global error is directly related to

the magnitude of the leading error coefficient is called “relative efficiency” by Shampine [146] and is mentioned

again in Chapter 5 as part of a more detailed discussion of the relative performance of ERK pairs.

The smoothness of the space of free parameters can be seen in Figure 4.7, which shows the value of the

leading error coefficient A6 of six-stage fifth-order component of the pair, with c5 on the x-axis, c6 on the

y-axis, and each sub-figure representing a value of c2 progressing incrementally from 0.02 to 0.36. Outside

of this range of c2 the value of A6 is always extremely large, i.e., close to 0.0064 or even much greater.

Observe that despite the space of free parameters being relatively smooth, there is a rapid increase in A6

from c2 = 0.21 to c2 = 0.24, which indicates that at least some precision may be required when selecting

coefficients. Figure 4.7 also reflects what the possible choices in leading error coefficient for the six-stage fifth-

order component of the other similar classic pairs mentioned above generally looks like [30, 47, 187]. Observe

that in constructing the CK4(5)6(6) pair (2.83), Cash and Karp found the region with a nearly minimal A6,

and that the results of performance experiments in Chapter 5 can easily be used to argue that they found one

of the best overall classic 5(4)6 ERK pairs. Therefore, for the RKF4(5)6(6) pair (and 5(4)6(6)C(2) family from

Section 3.3.4, as well as the similar families corresponding to Cases V and VI derived in Section 3.4.1), looking

at other properties (such as the other characteristic numbers (2.56) or individual values of the PECs (2.48))

beyond the leading error coefficient is necessary to improve on the current state-of-the-art pairs.

Although space does not permit showing the plots for all characteristic numbers for all 35 slices, i.e.,

c2 = 0.02 to c2 = 0.36 in 0.01 increments, that correspond to the slices given by Figure 4.7, two interesting

ones corresponding to c2 = 0.2 and c2 = 0.25 are given by Figure 4.8. Observe in Figure 4.8a (corresponding
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Figure 4.7: The leading error coefficient A6 for the family originally used to derive the RKF4(5)6(6)

pair (2.78) with c2 in the interval [0.02, 0.36].
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to c2 = 0.2) that despite the existence of small leading error coefficients A6 for the fifth-order method, these

occur in conjunction with a much larger leading error coefficient Â5 for the fourth-order method. Having a

much larger leading error coefficient in the error estimator than the method used to advance the solution,

i.e., usually when |b̂6 − b6| is large, is seen in Section 5.12 to sometimes be advantageous and sometimes

disadvantageous. The free parameter c2 = 0.2 used by Cash and Karp [30] for the CK4(5)6(6) pair (2.83)

allows finding the region of smallest A6 when constructing that pair. In Figure 4.8b corresponding to

c2 = 0.25, Â5 can be relatively small but only occurs with A6 that is relatively large. The free parameter

c2 = 0.25 was chosen by Fehlberg [61] for the RKF4(5)6(6) pair (2.78) and although not ideal, it is the

probably the best compromise for this family if the fourth-order component is used to advance the solution,

such as Fehlberg originally intended. The performance experiments done in support of this thesis show that

too few free parameters, such as with the family originally used [61] to construct the RKF4(5)6(6) pair (2.78)

in comparison to the more general 5(4)6(6)C(2) family, can severely impact the potential for good performance.

4.12.2 The family derived by Dormand and Prince containing the DP5(4)6(7)

pair

Figure 4.9 is a similar figure to Figure 4.7 for demonstrating that the leading error coefficient changes

smoothly, but instead shows the fifth-order method of the family containing the DP5(4)6(7) pair (2.79) that

was originally constructed by Dormand and Prince [47]. It can clearly be seen that between c2 = 0.18 and

c2 = 0.23 there are regions of extremely small leading error coefficients (the darkest shading is less than or

equal to the leading error coefficient of the DP5(4)6(7) pair (2.79)). A simplistic relation between the leading

error coefficient and performance indicates that the smallest leading error coefficients found, which are five

times smaller than the A6 of the DP5(4)6(7) pair (2.79), could lead to a potential 41% performance gain over

the DP5(4)6(7) pair (2.79), i.e., (4)
0.2

= 1.41. In fact, increasingly finer grained searches reveal extremely

small leading error coefficients and experimentation shows that this can be taken to an arbitrary degree,

although eventually the Butcher tableau coefficients get extremely large, i.e., D � 100.

However, even if the Butcher tableau coefficients are of reasonable magnitude, e.g., < 40, there are

further practical considerations discussed further in Chapter 5 meaning that even when high accuracies are

desired, the performance gains from aggressively minimized leading error coefficients are often lower than

what would be expected by simplistic considerations. For instance, there are pairs in the family containing

the DP5(4)6(7) pair (2.79) that have a much smaller leading error coefficient than DP5(4)6(7) pair (2.79),

but with c4 > 0.94 and c5 > 0.98. These values of c4 and c5 are close enough to c6 = 1 that they may

hurt performance [47]. In addition, the searches conducted with OCSage show that whenever the leading

error coefficient is around the size of that of the DP5(4)6(7) pair (2.79) or much smaller, certain PECs (2.48)

always assume a magnitude greater than 1.0 and this seems to negatively impact performance at coarse

accuracies. An example of a published pair with an extremely small leading error coefficient is the PP5(4)6(7)

pair (2.84) [128] with A6 ≈ 0.0000654, which was originally constructed from a family with one less free

186



0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0

c 6

A6

0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0

c 6

A7

0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0

c 6

A8

0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0

c 6

A9

0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0

c 6

A5

0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0

c 6

A6

0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0

c 6

A7

0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0

c 6

A8

0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0

c 6

A9

0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0

c 6

A(7/6)

0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0

c 6

D char #

0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0

c 6

SR

0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0

c 6

SR

0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0

c 6

B char #

0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0
c 6

C char #

0.2 0.4 0.6 0.8 1.0
c5

0.2

0.4

0.6

0.8

1.0

c 6

E char #

0.0
0.0004
0.0008
0.0012
0.0016
0.002
0.0024
0.0028
0.0032

0.0
0.0008
0.0016
0.0024
0.0032
0.004
0.0048
0.0056
0.0064

0.0
0.0008
0.0016
0.0024
0.0032
0.004
0.0048
0.0056
0.0064

0.0
0.0008
0.0016
0.0024
0.0032
0.004
0.0048
0.0056
0.0064

0.0
0.0008
0.0016
0.0024
0.0032
0.004
0.0048
0.0056
0.0064

0.0
0.0008
0.0016
0.0024
0.0032
0.004
0.0048
0.0056
0.0064

0.0
0.0008
0.0016
0.0024
0.0032
0.004
0.0048
0.0056
0.0064

0.0
0.0008
0.0016
0.0024
0.0032
0.004
0.0048
0.0056
0.0064

0.0
0.0008
0.0016
0.0024
0.0032
0.004
0.0048
0.0056
0.0064

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0.0
6.25
12.5
18.75
25.0
31.25
37.5
43.75
50.0

2.0
2.625
3.25
3.875
4.5
5.125
5.75
6.375
7.0

2.0
2.625
3.25
3.875
4.5
5.125
5.75
6.375
7.0

0.0
0.375
0.75
1.125
1.5
1.875
2.25
2.625
3.0

0.0
0.375
0.75
1.125
1.5
1.875
2.25
2.625
3.0

0.0
0.375
0.75
1.125
1.5
1.875
2.25
2.625
3.0

(a) The characteristic numbers (2.56) when c2 = 0.2.
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(b) The characteristic numbers (2.56) when c2 = 0.25.

Figure 4.8: Characteristic numbers (2.56) for the family containing the RKF4(5)6(6) pair (2.78).
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Figure 4.9: A6 for the family containing the DP5(4)6(7) pair (2.79) in the interval c2 = [0.02, 0.37].
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Figure 4.10: Characteristic numbers (2.56) for the family containing the DP5(4)6(7) pair (2.79) with
c2 = 0.2.
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parameter than the 5(4)6(7)C(2) family from Section 3.3.5. The performance data in Chapter 5 shows that

the PP5(4)6(7) pair (2.84) [128] often has a small (approximately 10–15%) performance advantage over pairs

such as the CK4(5)6(6) pair (2.83) for high accuracy calculations, despite simplistic considerations of the

leading error coefficient indicating there should be a much greater performance advantage. However, when

solving some IVPs, pairs with small leading error coefficients, such the DP5(4)6(7) (2.79) and PP5(4)6(7) (2.84)

pairs, can unexpectedly be 30–40% less efficient than pairs such as CK4(5)6(6) (2.83) even at high accuracies,

which is investigated further in Chapter 5.

Figure 4.10 shows the space of free parameters for c2 = 0.2 that includes both the DP5(4)6(7) pair (2.79) [47]

and the DP5(4)C6(7) pair [48]. Although Figure 4.10 only reflects the characteristics of the fifth-order method

and not the pair as a whole, an obvious property is that the DP5(4)C6(7) pair (2.81) has much smaller val-

ues of the higher-order error coefficients Aq, q ∈ {7, 8, 9} than the corresponding error coefficients for the

DP5(4)6(7) pair (2.79)). This seems to improve performance at coarse tolerances and helps explain why for

some sets of IVPs Dormand and Prince observed the DP5(4)C6(7) pair (2.81) outperforming the DP5(4)6(7)

pair (2.79) [48]. Dormand and Prince gave an explanation for this observation based on large matching

stability regions. However, no observations made in the course of the study in this thesis indicate that this

is the likely reason.

For a closer look at how choosing the free parameters might affect the error coefficients and resulting

global behaviour, bar graphs of the PECs (2.47) of the DP5(4)6(7) pair (2.79) are given in Figure 4.11a and

the PECs (2.48) are given in Figure 4.11b. In both subfigures of Figure 4.11 the first row to last row give the

fifth-order to eighth-order PECs (2.47) and PECs (2.48) respectively. The first column of both subfigures

of Figure 4.11 corresponds to the fifth-order method, the second column corresponds to the fourth-order

method used for error estimation, and the third column corresponds to their difference that is the actual

error estimate. The other figures with three columns of bar graphs in this chapter also follow this scheme.

A similar figure to Figure 4.11b for the DP5(4)C6(7) pair (2.81) using the PECs (2.48) is given by Fig-

ure 4.12. Comparing Figure 4.11b with Figure 4.12, observe that for the DP5(4)6(7) pair (2.81) many PECs

nearly vanish for both the error estimate and the fifth-order component. Also observe that for the higher-

order error terms, some PECs (2.48) can have a magnitude greater than one, which for these components

leads to errors greater than a simple truncation of the Taylor series of the local solution (2.38) would. This

is undesirable for ERK pairs because it can cause a loss in efficiency, especially at coarse tolerances. In

Figure 4.12 the PECs (2.48)) for the DP5(4)C6(7) pair (2.81) are much closer to the same size and avoid

values greater than 1.0 for the individual PECs.

The characteristic numbers around the DP5(4)6(7) (2.79), DP5(4)S6(7) (2.80), and DP5(4)C6(7) (2.81)

pairs can respectively be seen in Figures 4.13, 4.14, and 4.15. Although these figures are limited to 2D slices

because seeing the full region of the space of free parameters around a pair would require visualizing a 4D

space of free parameters, they give a good idea of what the choice of the b̂7 free parameter affects, along

with helping visualize other tradeoffs in coefficient selection. It can also be seen that if the difference in
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Figure 4.11: The individual PECs for the DP5(4)6(7) pair (2.79).
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Figure 4.12: The individual PECs (2.47), for the DP5(4)C6(7) pair (2.81).

the length along the negative real axis of the stability regions is important, it is possible to get variety of

values including precisely matched stability regions with b̂7 6= 0. As well, there is only a small range where

the stability region of the fourth-order method can be larger along the negative real axis than that of the

fifth-order method. This is in contrast to Figure 4.15 that contains the DP5(4)C6(7) pair (2.81) where it can

be seen that the stability regions are generally the same size with reasonable values of b̂7 and there is little

control otherwise. However, for the nonstiff IVPs used for performance testing in this study, the sizes of

stability regions do not seem to matter and they are not studied further.

With the benefit of visualizations such as those presented in this section as well as the use of a database

such as PostgreSQL described in Section 4.9 to handle large datasets, it is now possible to make well-defined

improvements on some classic 5(4)6 ERK pairs. For instance, it can be seen in Figure 4.10, that there are

other sets of free parameters with essentially the same leading error coefficient as the DP5(4)6(7) pair (2.79),

but with much smaller higher-order error coefficients, which is further discussed in Section 5.9. In this study,

the more general 5(4)6(7)C(2) family from Section 3.3.5 is used for 5(4)6(7) ERK pairs with the C(2) simplifying

assumptions (2.44b) because the C(3) simplifying assumptions (2.44b) are not necessarily required.
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Figure 4.13: Characteristic numbers (2.56) in a search slice with c2 = 0.2 and c4 = 0.8 containing
the DP5(4)6(7) pair (2.79).
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Figure 4.14: Characteristic numbers (2.56) in a search slice with c2 = 0.2222 and c4 = 0.5556
containing the DP5(4)S6(7) pair (2.80).
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Figure 4.15: Characteristic numbers (2.56) in a search slice with c2 = 0.2222 and c4 = 0.4667
containing the DP5(4)C6(7) pair (2.81).
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4.13 Search results for the 5(4)6(6)C(2) and 5(4)6(7)C(2) families

The families of 5(4)6 ERK pairs that use the C(2) simplifying assumptions (2.44b), i.e., the 5(4)6(6)C(2) and

5(4)6(7)C(2) families, are derived in Sections 3.3.4 and 3.3.5, respectively. Both of these families are more

general than, but also include nearly all of the families used to derive the 5(4)6 ERK pairs that have been

published in the literature. As already discussed in Section 3.3, the families of 5(4)6 ERK pairs derived in

Section 3.3 do not require the C(3) simplifying assumptions (2.44b), and this allows the c3 coefficient to

be chosen as a free parameter rather than being dependent on the c2 free parameter. Performance testing

(not shown) indicates the differences in performance from foregoing the C(3) simplifying assumptions (2.44b)

and allowing c2 to be independent of c3 turns out to be relatively small for most IVPs, although the best

performance when solving at least some IVPs comes from when the C(3) simplifying assumptions (2.44b) are

not satisfied.

4.13.1 Search results for the 5(4)6(6)C(2) family

The 5(4)6(6)C(2) family has b̂6 as a free parameter, which allows greater control over the error estimate than

the family originally used to derive the RKF4(5)6(6) pair (2.78) does. Both Dormand and Prince [47], as

well as Verner [187], derive families of 5(4)6 ERK pairs that contain an additional free parameter for the

fourth-order method and both of these families are contained in the 5(4)6(6)C(2) family. Figure 4.17 shows

the change in leading error coefficient A6 with c3 fixed at two different values and c2 varying between 0.05

and 0.39 in increments of 0.01, which demonstrates the limited additional control over minimizing A6 and

further reflects the minor amount of control the additional free parameter gives over most other properties.

Generally, when b̂6 is too far away from b6 the magnitude of the error coefficients for the fourth-order

method always becomes excessive, i.e., > 0.0064. For most published ERK methods the magnitude of the

components of b are limited to the interval [−2, 2] allowing this to be a reasonable search interval in OCSage

for b̂6. This can clearly be seen by inspecting Figures 4.18 and 4.19. It can also be seen in Figure 4.19 that

sometimes only an extremely narrow interval for b̂6 gives acceptable characteristic numbers.

The procedure given here gives a general idea of the procedures used for the remainder of the families of

5(4)6 ERK pairs discussed in this study, although significant differences are noted where they occur. To find

suitable candidate pairs, a broad search is first conducted that just examines the leading error coefficient A6,

although other properties were tried, restricting them to reasonable values does not appreciably reduce the

search space. Each free parameter for the fifth-order method of a pair is sampled throughout the feasible

range at enough points to resolve the features of the space of free parameters (this is checked graphically).

The 5(4)6(6)C(2) family has c2, c3, c5, c6 as free parameters that are each sampled at 101 points. Because only

A6 needs to be calculated, this only takes about an hour on the computer used for this study and gives ranges

of free parameters with A6 ≤ 0.0015 of c2 ∈ [0.0, 1.0], c3 ≈ [0.22, 0.34], c5 ≈ [0.32, 1.0], and c6 ≈ [0.54, 1.0].

Only these ranges are used for more time consuming searches involving more properties than just A6 and

195



this means only 3.75% of the points in the feasible space of free parameters for the fifth-order method of the

5(4)6 ERK pairs need to be further evaluated for the best properties. Preliminary searches such as this were

often done in order to narrow down the search space before conducting expensive searches where many more

properties were calculated.

The minimum leading error coefficient of the 5(4)6(6)C(2) family, which forgoes the C(3) simplifying as-

sumptions (2.44b), when searched with a grid spacing of 0.01 for all free parameters is 0.00087088315076 at

c2 = 0.23, c3 = 0.28, c5 = 0.8, c6 = 0.88, which is only slightly smaller than the family containing RKF4(5)6(6)

pair (2.78). A simplistic relation between the leading error coefficients and performance would indicate about

17% worse performance for even the best pair from the family of 5(4)6(6) ERK pairs from Section 3.3.4, i.e.,(
0.000871
0.000399

)0.2 ≈ 1.17, in comparison to the DP5(4)6(7) pair (2.79). However, it will be seen in the remainder

of the thesis that due to the effect of other properties, methods with somewhat larger error coefficients can

often have equivalent or even better performance solving many IVPs than methods with somewhat smaller

error coefficients.

To further illustrate the choices made in coefficient selection for classic 5(4)6(6) ERK pairs, some of

the tradeoffs of different sets of the free parameters chosen for the DP5(4)M6(6) pair (2.82) can be seen in

Figure 4.19. Figures throughout this chapter, e.g., Figure 4.19, show there is not necessarily a best ERK

pair and there are wide ranges of pairs with similar properties, but there do exist specific tradeoffs depending

on what the most important properties of an ERK pair are considered to be. Many pairs with favourable

combinations of properties were often observed to have components of the c vector that are closely spaced.

However, closely spaced components of the c vector may lead to performance loss due to issues such as

roundoff errors [47]. Although performance tests in Chapter 5 do not specifically show performance loss due

to closely spaced components of the c vector, for real-world usage it is often good practice to be conservative.

4.13.2 Search results for the 5(4)6(7)C(2) family

The 5(4)6(7)C(2) family is more general than but contains the family originally used to construct the DP5(4)6(7)

pair (2.79), which is discussed in Section 4.12.2, and all of the same observations also apply. Searching the

space of free parameters and performance testing done during the course of this study (not shown) indicate

that 5(4)6(7) ERK pairs with A6 ≥ 0.0010 do not provide any advantage over 5(4)6(6) ERK pairs, which is at

least in part because 5(4)6(7) ERK pairs incur an extra stage evaluation when a step is rejected. Therefore,

the most significant advantages to 5(4)6(7) ERK pairs are either the smaller error coefficients than possible

with 5(4)6(6) ERK pairs or large stability regions, such as the DP5(4)S6(7) pair (2.80) has.
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Figure 4.16: The individual PECs (2.47) for the CK4(5)6(6) pair (2.83).

4.14 Observations on families of 5(4)6(6) ERK pairs without the C(2)

simplifying assumptions

In this section, some representative search results are shown for the new families of 5(4)6 ERK pairs without

the C(2) simplifying assumptions (2.44b), which are described in Section 3.5. However, the space of free

parameters for 5(4)6(6) ERK pairs without the C(2) simplifying assumptions (2.44b) is often not as smooth and

can be more fragmented in comparison to families with the C(2) simplifying assumptions (2.44b). Therefore,

a tool such as OCSage becomes essential to narrowing down the regions of the space of free parameters that

might give the best candidates for efficient pairs.

Given that the ratio λ
µ itself is a free parameter for Cases V and VI, rather than individual values of λ

and µ, the best strategy found for searching the families of 5(4)6(6) ERK pair without the C(2) simplifying

assumptions (2.44b) is to search λ in the interval [−1.0, 1.0] with µ = 1 and then µ in the interval [−1.0, 1.0]

with λ = 1. In this section, searching µ ∈ [−1.0, 1.0] with λ = 1 is shown, although searching λ ∈ [−1.0, 1.0]

with µ = 1 is similar.

Because of the fewer free parameters than other families of 5(4)6 ERK pairs, pairs from Case V are

generally not as efficient as pairs from Case VI or the 5(4)6(6)C(2) and 5(4)6(7)C(2) families, this limitation is
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(a) Near the free parameters of the CK4(5)6(6) pair (2.83) with c3 = 3
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(b) Near the free parameters of the RKF4(5)6(6) pair (2.78) with c3 = 3
8
.

Figure 4.17: A6 for the 5(4)6(6)C(2) family with c2 varying between 0.05 and 0.39.
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(a) Near the free parameters for the CK4(5)6(6) pair (2.83) with c2 = 0.2, c3 = 0.3, and c5 = 1.0.
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(b) Near the free parameters for the RKF4(5)6(6) pair (2.78) with c2 = 0.25, c3 = 0.375, and c5 = 1.0.

Figure 4.18: Characteristic numbers (2.56) in search slices for the 5(4)6(6)C(2) family. The free
parameter b̂6 is on the x-axis and c6 is on the y-axis.
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Figure 4.19: Characteristic numbers (2.56) in a search slice for the 5(4)6(6)C(2) family near the
DP5(4)M6(6) pair (2.82) with c2 = 0.2, c3 = 0.3, and c6 = 1.0. The free parameter b̂6 is on the x-axis
and c6 is on the y-axis.
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(a) With c2 = 0.1111 and not satisfying the C(3) simplifying assumptions (2.44b).
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(b) With c2 = 0.2222 and satisfying the C(3) simplifying assumptions (2.44b).

Figure 4.20: Slices showing characteristic numbers of the fifth-order method of the 5(4)6(7)C(2) family
of 5(4)6(7) ERK pairs from Section 3.3.5 at c3 = 0.3333.
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discussed further in Chapter 5. This lack of competitiveness is despite that both subcases of Case V have

minimum leading error coefficients A6 of only slightly greater than 0.0010. In addition, many pairs found in

preliminary searches of Case V with a relatively small leading error coefficients, i.e., A6 < 0.0011, have issues

such as extremely large Butcher tableau coefficients (> 1000) or values of the PECs greater than 1.0, both

of which are likely cause performance loss.

Case VI with c6 6= 1

As seen in Section 3.5.1, all 5(4)6(6) ERK pairs in Case VI require b̂6 = 0. This means that there is no

parameter to “tune” the fourth-order component and hence the error estimate of an embedded pair. Based

on the performance data in Section 5.12, the biggest disadvantage to Case VI is that some IVPs do benefit

from a large value |b̂6 − b6|. However, searches into the space of free parameters of Case VI show the family

has trouble achieving this in combination with other desirable properties. Other than the issue just described

finding large values of |b̂6−b6|, many pairs from Case VI are competitive with the best 5(4)6(6) ERK pairs with

the C(2) simplifying assumptions, including CK4(5)6(6) (2.83). The space of free parameters in comparison

to the leading error coefficient A6 for Cases VIa and VIb is shown in Figures 4.21 and 4.22, respectively.

Figure 4.21 shows the more complicated nature of the space of free parameters for Case VIa that comes from

more complicated expression such as (3.63). The free parameters chosen for examination in Figures 4.21

and 4.22, respectively, include the pairs presented in Section 5.14.

4.15 Properties of the 5(4)6(7) ERK pairs from the complete solution

without the C(2) simplifying assumptions

In this section, the families of the 5(4)6(7) ERK pair from Cases I–VI, which are summarized in Table 3.4,

are discussed. The problem with Cases II, III, IV having the fourth-order component satisfying at least one

fifth-order condition is already mentioned in Chapter 3 and in the extensive experimentation done for the

study in this thesis (not shown) pairs from these families perform unexpectedly poorly given that some pairs

can have leading error coefficients as small as A6 ≈ 0.0007. In addition, searches done with OCSage indicate

that although Case I does not have this problem with the fourth-order component satisfying at least one

fifth-order condition, Case I always has a leading error coefficient A6 > 0.0022. This is a minimal A6 almost

triple that of any other family of 5(4)6 ERK pairs from Chapter 3. Therefore, given the excellent performance

of 5(4)6 ERK pairs from other families, this means Case I cannot currently be recommended either, unless

specific drawbacks of other families are found that Case I does not have.

4.15.1 Tsitouras’ 5(4)6(7) ERK pairs without the C(2) simplifying assumptions

Even though the pairs published by Tsitouras [182, 183], that are already mentioned in Section 3.1, were

claimed to be 5(4)6(7) ERK pairs, the coefficients are published as 64-bit floating-point numbers rather than
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Figure 4.21: Values of A6 of the family corresponding to Case VIa from Section 3.5.1 with c3 = 0.05
and λ = 1.
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Figure 4.22: Values of A6 of the family corresponding to Case VIb from Section 3.5.1 with c3 = 0.12
and λ = 1.
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exact rational numbers. This is because they were found using numerical optimization to solve the order

conditions, rather than an exact symbolic solution of the order conditions, such as that demonstrated in

Section 2.7 and Chapter 3. However, it has already been mentioned in Section 3.1 that Tsitouras’ published

pairs [182, 183] have coefficients that do not satisfy the appropriate order conditions properly at all, likely

due to a transcription error. Peter Stone21 has published (on his personal website) coefficients for Tsitouras’

pair from 2009 [182]22 and corrected coefficients for Tsitouras’ pair from 2011 [183]23 using higher-precision

arithmetic in Maple to calculate the coefficients to 85 digits (about 283 bits of precision).

Within Sage, both standard 64-bit floating-point numbers and the arbitrary precision real number data

type, i.e., sage.rings.real_mpfr.RealNumber,24 allow exact conversion to rational numbers through the

as_integer_ratio and exact_rational methods, respectively. Converting floating point numbers to an

exact representation in terms of rational numbers allows determining information like the degree they satisfy

order conditions (this calculation is better done in exact or arbitrary-precision arithmetic because it is never

actually carried out while using an RK method) by using either exact arithmetic, or arbitrary precision

arithmetic if exact arithmetic turns out to be unfeasible. When using 64-bit floating-point arithmetic, the

residuals from substitution of Tsitouras’ Butcher tableau coefficients into the order conditions are no more

than approximately an order of magnitude greater than 64-bit floating point unit roundoff, i.e., ≈ 1.1×10−16,

and the magnitudes of these residuals do not change substantially when 512-bit precision arithmetic is used

instead. This can be seen in the summary of the residuals for the “fifth-order” components of Tsitouras’ pairs

in Table 4.3, along with two classic ERK pairs for comparison. Notice that Stone’s corrected and higher-

precision coefficients give extremely small residuals for Tsitouras’ pair from 2009 [182] when computing them

with 512-bit precision arithmetic, but not for Tsitouras’ pair from 2011 [183]. Results from using both

standard 64-bit floating-point and 512-bit precision arithmetic are shown in Table 4.3 to demonstrate the

utility of using arbitrary-precision arithmetic to study numerical methods, even if the numerical methods

themselves are only ever implemented with 64-bit floating-point numbers.

Analogous residuals are given for the “fourth-order” components of Tsitouras’ pairs in Table 4.4. Notice

that the “fourth-order” component of Tsitouras’ pair published in 2011 [183] has residuals from the substitution

of the coefficients into the appropriate order conditions required for fourth-order that are much larger than

any other published pairs, i.e., as large as -0.97, and cannot be considered to even approximately satisfy the

necessary order conditions. Because the residuals are close to 64-bit floating-point unit roundoff for Tsitouras’

pair published in 2009 [182] and Peter Stone has given corrected coefficients for Tsitouras’ pair published in

2011 that give residuals similar in magnitude to 64-bit floating-point unit roundoff, the issue with extremely

large residuals for the fourth-order method from Tsitouras’ pair in his 2011 paper [183] is obviously just a

21Peter Stone was a mathematics professor at Vancouver Island University who has since retired. He has not published
his calculations related to Tsitouras’ methods (and many others) beyond his personal website. The author replicated similar
calculations to both correct and find Tsitouras’ pairs to higher precision, but Peter Stone’s calculations were done give much
lower residuals.

22http://www.peterstone.name/Maplepgs/Maple/nmthds/RKcoeff/Runge_Kutta_schemes/RK5/RKcoeff5m_1.pdf
23http://www.peterstone.name/Maplepgs/Maple/nmthds/RKcoeff/Runge_Kutta_schemes/RK5/RKcoeff5n_1.pdf
24http://doc.sagemath.org/html/en/reference/rings_numerical/sage/rings/real_mpfr.html
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simple error transcribing the coefficients for publication.

It is also possible to find the particular solution case of the complete solution from Section 3.4 that

Tsitouras’ pairs are closest to because they also have distinct components of the c vector, which is an

assumption of this study. By substituting the coefficients of Tsitouras’ pair published in 2009 [182] into the

coefficient matrix of (3.28) and using SVD (singular value decomposition) to find the nullspace, this gives

multipliers of approximately λ : µ : ν : ω = −0.7298 : 0.0553 : 0.0368 : −0.6804. A corresponding operation

for Tsitouras’ pair published in 2011 [182] gives multipliers of approximately λ : µ : ν : ω = −0.0392 :

−0.6880 : 0.1019 : −0.7175. Therefore, because Cases I–IV from Chapter 3 require one of the multipliers to

be zero, the “fifth-order” method of Tsitouras’ pairs approximate Case V of the complete solution of six-stage

fifth-order ERK order conditions. In addition, for Tsitouras’ pairs the condition that must vanish for 5(4)6(7)

ERK pairs, i.e., (3.72), evaluates to much larger than 64-bit floating-point unit roundoff (in the range of

10−6 to 10−4, rather than vanishing). Therefore, despite the small residuals from substituting the Butcher

tableau coefficients into the order conditions, this shows that Tsitouras’ pairs do not correspond to 5(4)6 ERK

pairs in exact arithmetic. In Chapter 5 it is shown that Tsitouras’ pairs (using Stone’s corrected coefficients)

perform similarly to many classic 5(4)6 ERK pairs but sometimes have some unexpected behaviour when

solving some IVPs to high accuracy. Therefore, the main disadvantages of using numerical optimization to

solve the order conditions is not only that exploration of the space of parameters is not as easy or efficient,

but also that the RK methods found may not be part of families that are able to satisfy the order condition

in exact arithmetic.

Many published numerical methods, including many based on Runge–Kutta methods, often use numerical

optimization to approximately solve the order conditions or only use 64-bit floating point arithmetic to

compute and publish Butcher tableau coefficients. Several examples are found in the references [34, 94].

However, the drawback of using numerical optimization to solve order conditions is that methods may be

constructed that appear to have compelling properties, but that are actually impossible in exact arithmetic.

Tsitouras’ pairs [182, 183] are an excellent published example of this. Although solving the order conditions

numerically using 64-bit arithmetic may be suitable for many cases, the results of this thesis indicate that a

CAS should be used to find symbolic solutions to explore the families and find the best regions in space of free

parameters. If symbolic solution of the relevant conditions is not possible, then arithmetic more precise than

64-bit floating point should be used and the residuals from the conditions used to construct the numerical

method should be checked carefully.
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Chapter 5

The pythODE package for studying large amounts of

performance data from IVP methods

“From the epistemological point of view this is well-known: a single counterexample falsifes a
theory, and a single example can adequately demonstrate the proper interpretation of a theory; in
contrast, a large number of carefully planned and precisely controlled experiments are needed in
order to corroborate even a modest empirical claim.”
(G. Söderlind and L. Wang 2006)

This chapter describes the pythODE (Python ODE solver) software package that uses RK methods (2.33)

to solve IVPs.1 Performance data from pythODE is used in combination with OCSage to systematically

construct efficient pairs for IVPs from celestial mechanics. IVPs from celestial mechanics are chosen because

there are a sufficient number and variety in published test sets, and it is demonstrated in this chapter that

there can be well-defined optimal pairs for this class of IVPs.

Although not strictly necessary for extremely basic usage, the pythODE package is generally used with

a PostgreSQL database [92]2 that assists setting up numerical experiments, stores the numerical solutions

to the IVPs as well as any other data associated with the numerical solution, manages network transparent

and concurrent storage for the parallel solution of IVPs across many computers and CPU cores, and readily

allows further processing of the data from the numerical experiments for study and visualization. The pythODE

package can also directly utilize the data stored in the PostgreSQL database from the searches of the space of

free parameters conducted by OCSage, such as those described in Section 4.9, by adding performance data for a

specific IVP to each row of a database table corresponding to an ERK method. Overall, this study would have

been much more difficult without the robustness and functionality typical of a proper database system. In

particular, using a proper database helped immensely with allowing reasonably quick and versatile exploration

and transformation of performance data in ways not anticipated when the performance data was generated.

This includes using the robust concurrency of a relational database management system (RDBMS) to easily

query preliminary results of experiments that are not finished running without ever having to specifically

build this feature into pythODE (this would be much harder to incorporate into code managing basic data

files), easily check-pointing long-running experiments to protect against loss in case of interruption, and the

1The pythODE package is designed so that other types of DEs and numerical methods for DEs can be incorporated in the
future.

2https://www.postgresql.org/
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use of the declarative language SQL (that can plan and optimize queries in a way that would be onerous to

do for each individual query in an imperative language) often makes querying and processing data faster and

more robust than direct use of imperative languages such as Python. These tasks are all non-trivial enough

that they would have been difficult without some type of proper database, and it cannot be overemphasized

that using a proper database is one of the key factors making this study possible as a single-thesis study

by one person. Although using a proper database, such as PostgreSQL, rather than ad-hoc approaches for

scientific studies and simulations is becoming increasingly common [64, 75, 76, 89, 100],3 databases seem to

be rarely used for studies into numerical methods themselves. However, based on this study, it is strongly

recommended that future studies incorporating numerical simulations use a proper, robust, and well-tested

database such as PostgreSQL. One of the important contributions of this study is a demonstration of how to

use modern software technology to enhance studies of numerical methods because it is not always obvious how

to leverage even widely used software technology, such as dynamic languages like Python and RDBMSs like

PostgreSQL, for specific scientific and research purposes. This was clearly shown by many of the functional

components of OCSage described in Section 4.3, where they are based on published work that does not appear

to have been utilized further after initial publication and probably required integration into a software system

for practical utility. How to do this, and its utility for research, was not at all obvious based on the common

usage patterns and other guidelines that have been published for Python and PostgreSQL.

Development of the pythODE package started in 2010 to support the Master’s thesis work [103] of the

author. Since that time, the pythODE package has been used by the author to support work that resulted

in two peer-reviewed publications [104, 105]. However, the pythODE package has been under continuous

development since its conception, and the version used for this thesis (pythODE version pythODE.ak2018.v1)

is different than, although a direct development of, the versions of the pythODE package used in these other

publications. Once properly set up, the use of a PostgreSQL database makes the current version of pythODE

substantially more capable and easier to work with than earlier versions that tried to implement directly in

Python functionality that is more appropriately implemented with a relational database. Like OCSage, it

can be expected that with use in other studies subsequent to this study, the pythODE package will continue

to evolve substantially.

Unlike OCSage, the pythODE package also saw work by another author, Adam Preuss in 2011 and 2012, who

later developed a similar package in C++ for his Master’s work [135]. Most of the few thousand lines of code

that Adam wrote, to manage networking (for cluster computing) as well as designing some important data

structures, were largely superseded when pythODE started using a PostgreSQL database in 2016. However,

his valuable contributions substantially shaped the development leading to the version of pythODE presented

in this thesis.

The pythODE package is also a direct descendant of the odeToJava package that is a subject of the peer-

reviewed paper by the author and the advisor (Dr. Raymond J. Spiteri) of this thesis [106]. The odeToJava

3http://www.datacarpentry.org/
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package did not originate with the author but was actually started in the early 2000s by Murray Patterson

at Acadia University [131], with the version published being based on further development by Jesse Rusak at

Dalhousie University. However, the author of this thesis was solely responsible for the initial preparation of

the manuscript [106], and the odeToJava package required substantial additional software development work

in order to be a suitable subject for a peer-reviewed publication. This process of releasing and publishing on

the odeToJava package contributed greatly to the design of pythODE as a software package.

5.1 Tradeoffs in choosing a suitable platform for numerical comput-

ing

One of the important issues encountered when testing numerical algorithms on a broad scale is managing the

many different variations of code components, algorithms, coefficients, heuristics, and other parameters for

the individual algorithms and the problems being solved [17, 149]. Moreover, to effectively evaluate the test

results, there needs to be a flexible and efficient approach for data analysis and presentation. In comparison

to many modern programming languages, although the traditional numerical computing language Fortran

continues to be highly effective for implementing specific numerical formulae as well as standard array and

linear algebra operations, Fortran is not an especially effective platform for the more complex software

engineering required to integrate many diverse software components and libraries together. This is because

without robust and contemporary programming language features, e.g., those that support object-oriented

programming, software to manage the combinations of program input, algorithm components, and output

data can quickly become unnecessarily complex and brittle [8]. Modern features supporting techniques

such as object-oriented programming are now incorporated into recent versions of traditional languages for

numerical computing, such as in more recent versions of Fortran and Matlab [38, 141]. However, for

more complex software development projects, these modern features in Fortran and Matlab are not as

well-integrated, and the software ecosystem is not as mature because it has not seen widespread use beyond

scientific computing. By contrast, popular object-oriented languages used for scientific computing such as

C++ or Python have modern features that are much better integrated, which is probably because they have

seen extensive use and refinement for general-purpose computing. The language features and built-in data

types available to languages such as C++ or Python, which are also well-integrated with available libraries

and software components, are extremely good for building software with diverse and complex specifications.

See the article [87] by John D. Hunter, the late original creator of matplotlib,4 on the problematic experience

of trying to integrate Fortran, C++, and Matlab; or subsequently using Matlab and Java together;

that were experiences that ultimately led to his creation of matplotlib. Like OCSage, pythODE generated

many gigabytes of data for many of the experiments (including the less rigorous initial exploration of the

4http://blog.fperez.org/2013/07/in-memoriam-john-d-hunter-iii-1968-2012.html
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problem space) conducted in support of this thesis. Managing the diverse array of software requirements to

effectively use this amount of data is best done with modern software ecosystems that have already been

proven for this type of data management and accompanying software functionality.

Not all languages and software ecosystems are widely used for serious scientific or numerical computing.

The consequences of being the largest and most ambitious user of a particular tool for a particular task

include: requiring a great deal of extra labour to accomplish tasks that others are readily doing using

standard tools, not easily being able to “Google” issues and bugs with the platform and associated libraries

when they inevitably happen, needing to fix these issues and bugs with limited resources, and likely having

to “reinvent the wheel” on the non-standard platform of choice. When using a non-standard platform for

a particular task, it can be extremely difficult to know where the platform will “fail” in actual usage until

many person-years are invested. In many cases, it has been a widespread community effort to develop certain

platforms as mature tools for the tasks for which they are now commonly used [87, 132, 176, 185]. Therefore,

any attempt to use non-traditional tools for scientific or numerical computing requires careful consideration.

5.1.1 Numerical computing in Java and odeToJava

All of the just-mentioned issues would have affected any continued development or use of odeToJava because

although when first conceived in the early 2000s, many researchers were trying Java as a platform for

numerical computing (see the discussion in the references [9, 101, 175]), continued development of odeToJava

and scaling it up for a wide range of DEs and associated applications (as it is hoped pythODE will be) would

mean taking on an extremely ambitious numerical computing project for Java. This would probably include

considerable development effort for solving issues that might arise with tasks that are otherwise routine in

platforms typically used for numerical computing such as Fortran, Matlab, and Python/SciPy.

In contrast, numerical computing platforms such as Matlab and Maple use Java extensively for com-

ponents such as their GUI [3]. In fact, it has been widely observed that modern scientific and numerical

computing applications increasingly involve a great deal of non-numerical and non-mathematical functional-

ity in order to be effective research tools [149, 166]. Sophisticated commercial software packages for scientific

computing such as Matlab and Maple utilize Java because it is a widely used and extremely suitable

for general-purpose application development, but they also provide a domain specific language for the user-

facing numerical computing component. However, this type of approach is better suited to development

by extremely well-funded organizations that can continuously support a full-time development team, such

as commercial software companies or government-funded laboratories. The need for a domain-specific lan-

guage to make Java more suitable for complex numerical computing tasks is not just based on the author’s

experience. In a recent book on numerical computing in Java, the second chapter [35, pg.27] is on using

Jython, a Python interpreter built on top of the Java virtual machine. However, jython does not have a

direct interface to NumPy but instead allows a NumPy-like interface to the similar library Nd4j written in

Java [35, pg.185]. However, the author does not feel that the available Java libraries are currently as mature,
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capable, or scalable as NumPy. In addition, NumPy itself is now extremely well-tested through being used

by too many numerical computing projects to easily enumerate. A Java-based package, similar to pythODE

(such as odeToJava), moving beyond the relatively small and simple DEs used for this study and using an

array and linear algebra library not based on BLAS and LAPACK would require a substantial amount of

“reinventing the wheel”. In addition, although there are basic equivalents of the many of the mathematical

libraries described in Section 4.1 written in Java, the author does not feel that many of these libraries are

currently as capable or robust as the industry standard numerical libraries already interfaced from SciPy

and Sage. In general, although it also definitely possible to call C/C++/Fortran based libraries from the

JVM (Java virtual machine), if a well-tested and robust interface does not already exist, this will generally

greatly increase the complexity of a project. John D. Hunter also described hitting a wall with using a

combination of Matlab and Java (to handle a database and networking) for analyzing 3D medical image

data as one of the reasons to rewrite his project in Python, which included the initial development of

matplotlib [87]. For Python, it is still better that a well-tested and robust interface to low-level libraries

already exists, such as SciPy or the additional ones that Sage interfaces to that are described in Section 4.1.

However, the barriers to interfacing lower-level languages can be much lower and a quick search online shows

that many research groups have written their own interfaces to any low-level code they needed to interface.

One of the most significant issues with using Java for serious numerical computing is the lack of support

for operator overloading. When developing odeToJava, it became apparent that the basic code implement-

ing numerical algorithms would not be able to be readily reused for operations on datatypes other than

double-precision floating point, such as complex numbers, quadruple-precision floating-point numbers, ar-

rays, matrices, etc., whereas with both OCSage and pythODE, using more advanced data types in place of

double-precision floating point would be possible with relatively minor modifications and testing, albeit pos-

sibly with a significant performance penalty for some datatypes. The undesirability of user-defined operator

overloading is understandable for the large codebases of commercial projects that Java is designed for because

it is difficult to reason about and collaborate on code that has too many layers of abstraction across a large

codebase. Conversely, without operator overloading for numeric data types, including complex numbers and

matrices, it is much more difficult to reason about complex mathematical formulas, especially when working

between written mathematics and source code. Therefore, some of the disadvantages to Java for numerical

computing should be seen more of as tradeoffs with regards to specific requirements of different problem

domains and language design choices.

Another issue with Java (and many low-level languages such as C/C++/Fortran), in comparison to

Python, is that a lot of boilerplate code can be required for relatively simple tasks. This is probably why

Jython is introduced so early in the book mentioned above on numerical computing in Java [35, pg.27].

Static typing and compiled code is of course ideal for Java’s primary purpose of being used for the large

codebases of many commercial projects. Depending on the specific research program and task, languages

requiring a lot of boilerplate code can substantially increase the time required for many experimental and
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research computing tasks in comparison to Matlab or Python. In particular, the author feels that Python

strikes the right balance for both quick scripts and more involved projects for experimental computing

because it has strong but dynamic typing, rather than the weak typing of Matlab or the static typing

of Java that often requires an enormous amount of boilerplate code. With pythODE (specifically using the

pymath_common.py file described in Section 5.4), it is fairly easy to create an environment for Python that

requires minimal preparation or boilerplate code, similar to how Matlab is often used, for experimentation

within packages such as pythODE.

Therefore, despite these many available numerical libraries for Java, the author feels that Java is only

suitable for numerical computing projects if there are project-specific reasons to use Java (prior experi-

ence, an existing setup, community adoption of Java for a particular problem domain, available human

resources, non-numerical computing considerations such as database or GUI support, etc.). However, For-

tran/C/C++ and now Python are more suitable if doing numerical computing that requires robust and

well-tested numerical libraries for projects that do not specifically need to incorporate Java in any way.

Despite some modern features that have been added to languages like Fortran, a modern application such

as OCSage/pythODE involving a lot of non-numerical functionality, such as incorporating a diverse set of

software libraries, networking, data management, complex data structures, and engineering the software for

modularity and flexibility with respect to the problem solved, would probably be one of the more ambi-

tious research computing projects of the type attempted in pure Fortran. Ultimately, any programming

language, software component, or platform choice by an individual or research group should take into consid-

eration community support, the availability, and the integration of libraries and other software components,

the maturity and robustness of the platform, monetary resources available for software development, and

issues regarding either recruiting people with the appropriate skills or training them. Although for the non-

numerical parts of numerical computing projects, Java does have the advantage that it is mature, robust,

there is an enormous community using it, and it easy to find developers with the appropriate skills, for

different numerical computing projects and different research groups, the best choice may be Fortran, C,

C++, Python, R, or some combination. It would be difficult to recommend Java for a project focused

on breaking new ground in numerical computing because the widespread use of Python means that the

Python ecosystem now shares many of these advantages of the Java as a platform for serious software engi-

neering. In addition, Python is now an extremely mature development platform because of its widespread

use for general-purpose computing and application development, but that is also widely used for numerical

computing. In summary, there are a great number of organizational considerations in choosing the most

suitable and sustainable software platform for any project involving numerical computing.

5.1.2 An examination of the choices made in developing pythODE

Despite the sometimes lower performance in comparison to languages such as Fortran, C, and C++ for an

individual researcher or small research group, as indicated by the its explosion in popularity for numerical
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computing, Python can be the ideal choice. Although better performance can always be appreciated,

on modern computing hardware it is often the case for many studies that the amount of development effort

required to just implement a study is a much greater bottleneck than the extra computational time a language

like Python might require. For studies such as the one conducted in this thesis, that are well within the

range of powerful contemporary desktop computers but that have difficult software development challenges

involving a great deal of iteration and experimentation, the Python scientific computing ecosystem built

around SciPy and Sage can eliminate an enormous amount of software development work by allowing all

desired functionality to occur within one language and platform. The author feels that a study such as the

one presented in this thesis has been possible as the work of mostly one person only since approximately 2010

because the scientific computing ecosystem around Python only became mature enough after that point.

Although a software system similar to OCSage and pythODE probably would have been possible for a team to

develop pre-2010 in a language such as C or C++ using available libraries, the scientific Python ecosystem

was not as extensive and robust at that time as it now is at the time of the publication of this thesis.

Although C or C++ are often better performing, the generally more complex codebase that results from

manual memory management and static typing, the greater difficulty initially experimenting with quick and

simple scripts that were essential to the long incremental development process for OCSage and pythODE, and

the system administration tasks and continual maintenance to manage particular combinations of libraries

that would have been required to support the functionality would probably have been prohibitive for one

person. This is supported by the fact that large scientific software projects that do incorporate diverse and

disparate functionality are invariably developed by well-funded teams. For example, the C++ based Chaste

project [118], partially because of the complexity of the specific problem domain, lists approximately 40

people as having been part of the development process.5 Even the SUNDIALS project [80], which is a robust

and production-ready C++ based IVP solver described in more detail the next section, lists current and

past contributions of 15 people and is developed in the context a government-funded laboratory.6 Software

packages such as PetSc for solving PDEs in a high-performance computing environment often incorporate

RK methods, but PetSc is integrated into a large software stack that is developed by a large team and

community.7

The list of topical software on the SciPy website8 shows an incredible diversity of SciPy-based tools

that have proliferated, including some that are highly capable tools developed by individuals and ones that

have seen development by a much larger number of individuals. Examination of the content of the annual

SciPy conference9 indicates that there are many projects being developed as specialized research tools with

a diverse array of functionality, many similar to or greater in size and complexity to OCSage and pythODE,

being developed by individuals or small teams by leveraging the computing ecosystem built around SciPy.

5http://www.cs.ox.ac.uk/chaste/theteam.html
6https://computation.llnl.gov/projects/sundials/team
7https://www.mcs.anl.gov/petsc/
8https://www.scipy.org/topical-software.html
9http://conference.scipy.org/
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The design choices for the OCSage and pythODE packages after 2015 were strongly influenced by examining

the mystic project10 (used for uncertainty quantification and highly constrained non-convex optimization)

because their optimization process can involve thousands of numerical simulations that can include DEs [116].

However, due to pythODE and OCSage being mostly one-person projects targeted to a different purpose, the

mathematical size of the DEs solved by pythODE is much smaller than the types of problems the mystic

project is designed for [127].

Importantly, even for the numerous software projects surrounding mystic,11 which were originally devel-

oped using funding from a 15 million dollar NSF grant,12 it is still emphasized that they used pure Python

to reduce any accessibility barriers to the mystic platform through, for instance, a reduction in the number

of dependencies [116]. Because a stated goal was also to give the mystic platform and supporting packages

widespread availability to scientists and engineers, the pure Python approach also furthers that goal. Even

SciPy is listed as an optional dependency, probably because not all projects would have needed it, and

historically it has sometimes been quite difficult to install/compile the correct version of SciPy on some

platforms, such as Windows, for which pure Python is readily available.

In addition, depending on the individual constraints of a research program, availability of computing

resources, and ability to leverage available high-performance libraries, pure Python may not give enough

of a performance drawback compared to C/C++ to make the extra development time, barriers to entry

for potential users and developers, and fewer number of computers required worthwhile. However, at the

time of writing this thesis in 2018, the author of this thesis feels that what are now standard, widely used,

and robust Python libraries such as SciPy and Cython are not onerous dependencies and would not

contribute excessively to development and usage barriers. Despite that, especially in a research setting where

the intellectual focus is not the software itself, it should be assumed that every extra language, platform,

and other software dependency a software project relies upon will increase the barrier to setup, usage, and

development as well as the costs of continuing use. Even the mixture of Python and SQL in OCSage and

pythODE contributes to the complexity of the software system, although this is an excellent tradeoff to get

the previously mentioned benefits of an RDBMS.

5.2 Review of software to evaluate the performance of IVP methods

Like OCSage, the pythODE package has a significantly different and potentially more complex structure than

many other packages for testing IVPs. This helps pythODE give meaningful insights that are not apparent

with a basic IVP solver because it fully utilizes the capabilities of the Python/SciPy ecosystem, takes

advantage of available parallelism in a way that supports this study, utilizes modern programming language

features, allows a sophisticated experimental setup, and integrates with a PostgreSQL database. However,

10http://trac.mystic.cacr.caltech.edu/project/mystic/wiki.html
11https://github.com/uqfoundation
12http://public.enthought.com/~mmckerns/cit/my/Home.html
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the pythODE package incorporates ideas from software packages that have been published by other authors.

Therefore, it is important to review existing techniques and software packages for evaluating the performance

of IVP methods.

Much of the performance data in published and peer-reviewed studies of numerical methods consists of

a limited number of IVPs and IVP methods that have been implemented in an ad-hoc way, sometimes in

lower-level languages such as Fortran or C, but often utilizing a higher-level language or a platform such

as Matlab. The amount of performance data and context from ad-hoc scripts tends to be extremely limited

and does not give a complete picture of the relative performance from choices made in constructing numerical

methods. The limitations of and possibly misleading conclusions that might be drawn from only small-scale

performance testing are clearly shown below in Section 5.8 when performance testing thousands of ERK

pairs. Small-scale and ad-hoc performance testing methodologies generally only provide enough information

for showing adequate performance, indicating that the mathematics is done correctly and that a performance

advantage may exist over previously known numerical methods [166]. For instance, the only existing IVP

methods that new IVP methods are sometimes compared against are FE (2.25) or RK4 (2.26). Because

ad-hoc scripts are rarely released or discussed in detail, the performance results obtained from them cannot

be peer-reviewed in any detail. This lack of transparency has been discussed as an issue in reproducibility of

published results [98, 111].

There have also been software packages that have specifically been developed for testing numerical algo-

rithms for IVPs. However, it is impossible to describe all software developed to test IVP methods because

individual pieces of published software can have varying levels of maturity, as well as it being relatively

common that unpublished software is used internally by a research group on a continuing basis for peer-

reviewed research. Software is sometimes informally published on the internet or formally published but not

peer-reviewed (such as in association with a technical report [115] or book [72, 73, 134]). Sometimes software

has been released in a limited manner that may be difficult to access because of issues such as internet links

that are broken or have vanished, e.g., see the references [133]. Only a small minority of software packages

developed and used to test IVP methods actually end up being the subject of peer-reviewed publications.

Many software packages tie together existing standalone IVP solvers in order to test the algorithms involved

but they do not have the granularity to easily modify all of the distinct algorithms and the many other com-

ponents that constitute a modern IVP solver. Demonstrating how specifically to implement the component

algorithms of an IVP solver with relatively fine granularity and modularity is one of the major contributions

of the odeToJava package and resulting paper [106].

Before reviewing software packages focused on testing IVP methods in a research setting, there are also

commonly used packages that are “black-box” IVP solvers for users not directly interested in the numerical

algorithms or implementations used. These often have the advantage of a long period of usage and develop-

ment that makes them robust and stable. However, due to the flexibility that software generally allows, there

is a great deal of overlap in any categorization, including which available IVP solver might be considered
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“black box”. Some representative examples of “black-box” IVP solvers are:

• The Fortran-based ODEPACK [79]13 is a collection of various Fortran and C based IVP solvers

that are developed by U.S. government national laboratories (primarily Lawrence Livermore national

laboratory). Two of five component packages of ODEPACK are ideal for solving non-stiff IVPs, that

includes the LSODE package [137] (used by SciPy as discussed below) and the VODE package [23] that

instead implements IVP methods with coefficients that can vary. These solvers generally give extremely

good performance and are considered extremely robust because they are developed for the extensive

array of extremely difficult problems that the work of these labs and defence-related industries can

require solving. The LSODE [137] and VODE packages [23] do not use RK methods but instead rely

exclusively on the multistep methods that are briefly mentioned in Section 2.4.

• The SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equation Solvers) package [80] is a C++

package that is derived from ODEPACK (among several other packages) and is developed by the same

national laboratories as ODEPACK. A component package of SUNDIALS for solving IVPs is CVODE,

which is a C/C++ version of VODE that was originally (and still can be found as) an independent

package [39]. SUNDIALS is also widely used by practitioners who require a high performance and robust

IVP solver. Like VODE and CVODE, SUNDIALS exclusively uses the multi-step methods that are briefly

mentioned in Section 2.4.

• The Matlab IVP solver ode45 uses the DP5(4)6(7) pair (2.79) (ode45 originally used the RKF4(5)6(6)

pair (2.78); see a blog entry14 by the original developer of Matlab, Cleve Moler, for more information).

The Matlab platform also provides several alternatives for solving non-stiff IVPs, such as third- and

second-order ERK pairs [15] as well as variable-order multi-step methods [153]. However, although

the Matlab code for these IVP solvers is available, it is generally too monolithic and specialized to

the specific integration methods to be used for conducting the type of fine-grained experimentation for

which odeToJava and pythODE are designed.

• Most popular mathematical and statistical software platforms now have robust and well-tested for DEs

even if this is not their primary focus [151]. This includes Maple, Mathematica, and R [167]. Similar

to Matlab, they have a selection of well-tested but monolithic IVP solvers, giving the practitioner a

choice of methods. The Maple and R platforms both have the CK4(5)6(6) pair (2.83) as one of the

available IVP methods.

• The FATODE package by Zhang and Sandu [203] incorporates discrete Fortran IVP solvers, which

were heavily inspired by existing publicly available Fortran solvers [202, pg.11], into a single package

that also include ERK methods and IRK methods. One of the major contributions of FATODE is that

13https://computation.llnl.gov/casc/odepack/
14https://blogs.mathworks.com/cleve/2014/05/26/ordinary-differential-equation-solvers-ode23-and-ode45/
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it implements methods for sensitivity analysis of the initial conditions for IVPs, an analysis feature

that gives additional insights into many application areas involving numerical computing, in a package

described by its authors as being of comparable efficiency and utility to software such as SUNDIALS [202,

pg.10]. Although a reasonably effective effort has been made to engineer the methods and solvers being

experimented with into a common platform, FATODE still ties together distinct Fortran solvers that

each implement distinct IVP methods but with some sharing of subroutines and being general enough

to allow specifying arbitrary Butcher tableaux (2.34).15 This includes several embedded ERK pairs that

have a higher-order component ranging from third- to eighth-order, including the classic DP5(4)6(7)

pair (2.79). Also included in FATODE is an advanced eighth-, fifth-, and third-order ERK method that

was already mentioned in Section 2.6.

• The SciPy platform has IVP solvers implemented in the package scipy.integrate.16 These provide

many of the same features, such as interpolation, event detection, and numerous output options, that

give general-purpose full-featured IVP solvers with a similar interface and functionality to the popular

Matlab ones. There are eight different IVP solvers in scipy.integrate, and the specific ones relevant

to the discussion in this thesis are:

– The scipy.integrate.RK23 solver uses the same three-stage third- and second-order Bogacki–

Shampine ERK pair [15] as the Matlab ode23 solver. This solver plays a similar role to ode23

in that lower-order methods can often perform better at coarse tolerances (shown in Section 5.5)

or as an alternative to higher-order methods if undesirable behaviour is seen.

– The scipy.integrate.RK45 solver uses the classic DP5(4)6(7) pair (2.79) and plays a similar role

to the ode45 solver of Matlab as a general-purpose non-stiff IVP solver.

– The scipy.integrate.LSODA solver wraps the Fortran solvers LSODE described above and in-

cludes automatic detection of stiffness with switching between the appropriate stiff/non-stiff IVP

method.

• The SciKit (supplementary add-on to SciPy) odes package17 wraps the SUNDIALS package [80] in

addition to including another implementation of the DP5(4)6(7) pair (2.79) and the same eighth-, fifth-,

and third-order ERK method from Section 2.6 mentioned above for FATODE.

Some representative examples of published software packages focused on testing IVP methods are:

• The “non-stiff DE” test set [83] was first published in 1972 as a collection of Fortran implementations

of IVPs and IVP methods, which could be further expanded to support research. Various versions

of this test set have been used by many authors over the years [40, 48, 56, 84, 145, 155], not always

15http://people.cs.vt.edu/asandu/Software/FATODE/downloads.html
16https://docs.scipy.org/doc/scipy/reference/integrate.html
17https://github.com/bmcage/odes
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using the original Fortran software [16, 128, 181, 182, 183], nor has the code that these other authors

developed and used when testing with the “non-stiff DE” test set always been released. An overview of

the specific IVPs in the “non-stiff DE” test set are described in the next section, with some examples

of IVPs already given, i.e., (2.11), (2.13), and (2.14).

• The “stiff DE” test set [55] was first published in 1975 as a similar software package to the “non-stiff

DE” test set. Although not used in this study because most of the IVPs are too stiff to practically solve

with ERK methods, it is mentioned because of the connection to the “non-stiff DE” test set [83] and

because the IVPs have been implemented in pythODE. The “B1” IVP (2.12) from this test set is used

as a demonstration in Chapter 2.

• The IVPs included in the books by Hairer et al. [72, 73], which have been heavily cited throughout

this thesis [72, 73], are published as code.18 The code is available on Hairer’s personal website.19

Although this code is not the subject of either specific technical reports or peer-reviewed publications,

it is well-known, and influential nonetheless.

• The package by Nowak and Gebauer [124] is what the authors call a “test frame” consisting of an ODE

solver with a web interface, which they describe in a technical report. Although not widely cited, it

is notable because it is one of the first packages to use more modern software technology beyond the

traditional monolithic Fortran solvers to attempt to make testing IVP methods easier.

• The “Bari” test set [115] implements stiff IVPs and DAEs (differential-algebraic equations, which are

beyond the scope of this study) and solves them with implicit methods, including IRK methods. How-

ever, despite being a non-peer-reviewed technical report released along with code that has been used

in support of many publications by the research group, it is widely cited and is one of the most recent

packages specifically for testing IVP methods. It contains two IVPs that are used in this study, dis-

cussed below, as well as valuable discussion on testing IVP solvers. One of these IVPs, the “Pleiades”

IVP (2.16), is also in the collection of IVPs by Hairer et al. already mentioned [72].

• Ketcheson has released a package called NodePy20 that at first glance seems to have similar goals to the

combination of OCSage and pythODE. However, NodePy and the two packages presented in this thesis are

currently targeted to quite different purposes. NodePy seems to be focused on providing an alternative to

by-hand construction of RK methods and ad-hoc programs for basic performance evaluation. It allows

the implementation of a broad range of numerical methods beyond just RK methods. By contrast, the

current versions of OCSage and pythODE have only been used for this study and the limited resources for

software development have largely focused on the requirements of this study. Specifically, the software

packages described in this thesis are currently focused exclusively on ERK methods and handling of the

18http://www.unige.ch/~hairer/software.html
19http://www.unige.ch/~hairer/
20http://nodepy.readthedocs.io/en/latest/index.html#
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large amounts of data required to study the coefficient selection process for six-stage fifth-order ERK

pairs, that then allows finding distinguishing features between the large number of possible families

(including the new families introduced in Chapter 3).

• The odeToJava package [106] by the author and supervisor of this thesis has already been mentioned.

It applies modern software engineering techniques to demonstrate fine-grained experimentation with

the different algorithms that make up a complete IVP solver.

What should be apparent from the lists of software in this section is that there is a broad range of software

to solve IVPs that has been released and published, all to suit different purposes.

5.3 The IVPs from common non-stiff IVP test sets

As indicated in the review of software in Section 5.2, IVPs are often collected into test sets for performance

testing of IVP methods. Sometimes these test sets are presented as a named collection of IVPs and other

times as ad-hoc collections of IVPs that generally appear together in a publication. In order to use them with

pythODE, all tested IVPs have been re-implemented into Python as described in Section 5.4.1. Although

space does not permit giving the mathematical formulation of all IVPs implemented in pythODE, a check

of the pythODE source code shows over 100 distinct IVPs have been used to study the families of ERK

pairs described in this thesis. It is extremely important to test new IVP methods with many different IVPs

because some performance or accuracy issues only become apparent with certain IVPs. For instance, during

the initial development and testing of pythODE the author experienced at least one bug that only occurred

when solving for non-autonomous IVPs. Because the IVPs commonly used to test IVP methods for some

classes of problems, such as celestial mechanics problems, are usually autonomous, these types of bugs will

not always become apparent with limited testing. The examples given in Section 2.2 are representative of

the properties of most IVPs in the following test sets.

5.3.1 The non-stiff DE test set

One of the earliest published collections of IVPs for testing IVP methods is the “non-stiff DE” test set [83],

where the original collection of problems and accompanying code, which is mentioned in the previous section,

was published in 1972. There were five original “classes” of IVPs, with a sixth “class” of IVPs that have

discontinuous RHSs proposed in 1987 by Enright and Pryce [56]. The author feels that these “classes” are

mostly no longer a useful and informative classification system for helping researchers and other practitioners

to test and choose IVP methods. For historical purposes, these “classes” are given by:

• The “non-stiff” IVPs of “Class A” are IVPs that are derived from single ODEs (2.1a), i.e., m = 1, with

all but the first IVP in the class being nonlinear. The simplicity of these ODEs is such that one could

expect to find them incorporated into an exercise in an elementary calculus textbook. One of the two
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IVPs used by Dormand and Prince [47] to first demonstrate the DP5(4)6(7) method (2.79) is the “A3”

IVP (2.11) of this “class”.

• The “non-stiff” IVPs of “Class B” are IVPs that are derived from ODEs (2.1a) that are systems of

size m = 3, except the first that is size m = 2. The first two equations have a linear RHS and

the last three have a non-linear RHS. The author has found that these IVPs rarely have the same

performance characteristics and therefore “Class B” is not a particularly informative grouping. However,

the individual IVPs each have different numerical behaviour and several of these IVPs are individually

discussed below.

• The “non-stiff” IVPs of “Class C” are called “moderate systems” in the original publication [83]. The first

two IVPs (the “non-stiff C1” and “non-stiff C2” IVPs) are linear IVPs of size 10 derived from radioactive

decay chains. The “non-stiff C3” and “non-stiff C4” IVPs are linear IVPs that are similar to the heat

transfer IVP described in Section 2.2 with sizes m = 10 and m = 51, respectively. The fifth IVP (the

“non-stiff C5” IVP is of size m = 20 that simulates of the five outer planets (including Pluto because

it was still classified as a planet at the 1972 publication date) of the solar system. During performance

testing in this study, it was generally observed that the performance of pairs on linear and non-linear

IVPs are not well correlated. Although there are performance issues that strongly affect linear IVPs

(such as the “non-stiff C1”–“non-stiff C4” IVPs) and it is important to include some examples, they

should not be a dominant feature of IVP test sets for numerical methods focused on non-linear IVPs.

• The “non-stiff” IVPs of “Class D” are called “orbit equations” in the original publication [83]. These

are all IVPs based on the basic Kepler IVP (2.13) that is described in Section 2.2 and using a range

of eccentricities from 0.1 to 0.9. The “D3” IVP (2.13) of this “class” is the second of two IVPs used by

Dormand and Prince [47] to demonstrate the DP5(4)6(7) method (2.79).

• The “non-stiff” IVPs of “Class E” are “higher-order” equations of size m = 2 that are derived from single

second order ODEs using the procedure described in Section 2.1.2. The “non-stiff E2” IVP is the Van

der Pol equation (2.14) with ε = 1, although this parameter is not explicit in the implementation in the

“non-stiff DE” test set [83]. However, for examining the effect of ε, the specific formulation (2.14) used

by the “Bari” test set (described below) is used in Section 2.2 and the implementation in pythODE.

• The “non-stiff” IVPs of “Class F” are “problems with discontinuities”, which can provide a severe test

to certain IVP solvers. Crude solutions of discontinuous IVPs [72, pg.197] are possible with the solvers

in pythODE using only the mathematical theory described in Chapter 2. However, these IVPs generally

require dense output (interpolation) and event detection for reliable and accurate solution. Dense out-

put and event detection are beyond the scope of this study and not currently implemented in pythODE.

Discontinuous ODEs are well supported by the IVP solvers built into software such as Matlab, Oc-

tave, SciPy, and many others used in production settings, with details that can be found in the

references [72, pgs.189–202][152, 153].
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The “stiff DE” test set is also implemented in pythODE and divided up into similar “classes”. However,

like the “non-stiff DE” test set, it is not apparent whether the division into these “classes” are actually useful

to either the researcher or practitioner. In order to make implementation in languages such as Fortran

77 easier, IVPs in the “DE test sets” are all scaled to have t ∈ [0, 20]. However, this type of normalization

is analogous to, for instance, software that would require all usernames to be the same length. Modern

programming languages such as Python and C++, as well as databases such as PostgreSQL, handle data

of non-uniform sizes extremely well. Therefore, this makes scaling the solution of all IVPs to the same time

interval completely unnecessary. In addition, this type of restriction would severely limit the potential growth

of any software package that did this because this type of scaling would not be straightforward with all IVPs.

5.3.2 The non-stiff IVPs from Hairer et al.

The non-stiff IVPs that feature prominently in the book by Hairer et al. [72] are implemented in pythODE.

These IVPs are important because they are closer to “real-world problems” than many of the “toy problems”

in the “DE test sets”. Although details are best examined in the references, the IVPs demonstrated in the

book by Hairer et al. are:

• The “Arenstorf orbit” IVP (2.15) has already been described in Section 2.2 [72, pgs.129–131].

• The “Euler rigid body” IVP describes the rotation of a rigid body using DEs originally found by

Euler [72, pgs.244–245]. Many of the IVPs that can be derived from the mechanics of rigid bodies

are an important application of ERK pairs. This “Euler rigid body” IVP is nearly identical to the

“B5” IVP of the “non-stiff DE” test set, except for having different coefficients, initial conditions, and a

time-dependent component to the ODE that simulates the application of a force to the rigid body.

• The “Brusselator” IVP gives a semi-discretized 2D reaction-diffusion PDE using similar finite differences

to those described in Section 2.2 [72, pgs.248–249]. Although the semi-discretized 3D analogue of this

IVP is stiff [73, pg.148], the 2D version [72, pgs.248–249] used in this thesis is non-stiff and a suitable

semi-discretized PDE for testing ERK pairs.

• The “Lorenz” IVP is the system that was originally used to demonstrate chaotic behaviour in atmo-

spheric models [72, pg.245]. Chaotic behaviour is a common difficulty for applications that are simulated

by IVPs and therefore an important class of IVP for testing non-stiff IVP solvers. This IVP is diffi-

cult to meaningfully use for the performance testing found in this thesis because the relatively sudden

onset of chaotic behaviour gives extremely noisy performance data, which is difficult to draw specific

conclusions from.

• The “Pleiades” IVP (2.16) has already been described in Section 2.2 [72, pgs.245–246][115].

• The “hanging string” IVP simulates a hanging string moving under a horizontal force and is modelled

by similar mechanics to a rigid beam, except neither a string nor the IVP that models it is “stiff” [72,
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pgs.247–248]. The similar “rigid beam” IVP, described in Hairer et al. [73, pgs.8–11], is also practically

solvable by ERK methods, albeit inefficiently compared to IRK methods.

5.3.3 The non-stiff IVPs from the “Bari” test set

Several non-stiff IVPs are used from the “Bari” test set [115], where the associated software release is already

described in Section 5.2. These IVPs are:

• The “HIRES” IVP describes a photochemical reaction from the study of plant physiology [115]. This

IVP is mildly stiff. Because the “HIRES” IVP can still be solved reasonably well using solvers based

on ERK methods, it is a good candidate to test performance solving mildly stiff IVPs.

• The “Pleiades” IVP (2.16) has already been described in Section 2.2 because this overlaps with IVPs

published by Hairer et al. [72, pgs.245–246][115]. It is important to include non-stiff IVPs in test sets

for stiff IVP methods such as the “Bari” test set because stiff IVP methods should still be able handle

non-stiff IVPs without issue. This should be the case even if the stiff IVP methods are generally not

as efficient as explicit non-stiff IVP methods when solving non-stiff IVPs.

• The van der Pol ODE (2.14) and corresponding IVPs are already described in Section 2.2. The imple-

mentation used in the “Bari” test set allows choosing ε to change the characteristics of the IVP, giving

either a stiff or non-stiff IVP. Both this version from the “Bari” test given in Section 2.2 as well as the

“non-stiff E2” IVP are implemented in pythODE.

5.3.4 Sharp’s test sets of celestial mechanics IVPs

Sharp has published several collections of IVPs from celestial mechanics [157, 158, 159] that are ideal for

testing non-stiff IVP methods and that have been implemented in pythODE. It is shown below that celestial

mechanics problems based directly on the simple Kepler IVP (2.11) have relatively well-defined optimal ERK

pairs.

Sharp’s restricted three-body test set

The non-stiff “Arenstorf orbit” IVP (2.15), which belongs to the class of restricted three-body problems, has

already been introduced in Section 2.2. In 2004 Sharp published a test set of similar restricted three-body

problems (not all of which can be classified as Arenstorf orbit problems) [158]. These IVPs are convenient

for testing IVP methods because they are 28 IVPs based on only 2 ODEs. One of these ODEs is same ODE

used for the “Arenstorf orbit” IVP (2.15) and the second ODE models an analogous 3D system. The many

different initial conditions give completely different systems with varying degrees of stability and instability,

which are described in detail by Sharp [158]. The last 4 IVPs of the 28 are implemented in pythODE but not
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used by this study because they require at least quadruple-precision arithmetic to use effectively for testing

IVP methods.

IVPs from modelling the solar system

Sharp has also published several overlapping test sets of IVPs from celestial mechanics that describe the

motion of bodies in the solar system [157, 159, 160]. The IVPs used in this thesis are:

• The “Jovian” IVP is based on the “non-stiff C5” IVP, but does not include Pluto and is integrated on

a long timescale to provide a challenging test of IVP methods.

• A variation on the “Jovian” IVP includes a comet that makes six close encounters with Jupiter, with

the last being at 6970 days [160]. In this thesis, this variation on the “Jovian” IVP is referred to as the

“Jovian asteroid” IVP.

• The “Plutonian” IVP is just the “non-stiff C5” IVP from the “non-stiff DE” test set integrated on a

longer time scale. There are important events in the interactions Neptune and Pluto that are important

to simulate accurately and provide a challenge for IVP solvers [157, 159]. However, the specifics of these

events are beyond the scope of this thesis. Despite this, the long-term integration of the “Plutonian”

IVP provides a good test of IVP methods.

• The “nine planets” IVP incorporates all nine planets. This is particularly challenging because Mercury

orbits once every 88 days and Pluto orbits once every 248 years. These different time scales and the

mutual interactions make accurate long-term simulation a challenge for IVP solvers.

• The “DE 102” IVP that Sharp presents in his publications [157, 159] incorporates general relativity

to accurately model the configuration of the solar system, which includes accurately simulating the

Moon from 1411 BC to 3002 AD [122]. Sharp does not provide a detailed description of the “DE 102”

family of problems or their implementation, but extensive discussion and links can be found in the

references [122] and on the internet.21 No published code could be found for the “DE 102” IVP that

Sharp used. However, code is available for a revision called “DE 118” [122].22 What is often available

from organizations such as JPL (Jet Propulsion Labratory) for problems similar to “DE 102” are several

gigabytes of ephemerides that can be interpolated to give positions of bodies in the solar system in

the past or the future, rather than the simulation code itself. Incorporating general relativity makes

the “DE 102” family of problems post-Newtonian, i.e., they can no longer be described as a system

of ODEs with only second-order derivatives. This means some specialized methods, such as Runge–

Kutta–Nyström methods or symplectic methods (a type of structure preserving method), can no longer

be used [157, 159]. Future work could include implementing the ODE from “DE 118” or similar models

21https://www.projectpluto.com/jpl_eph.htm/
22http://www.moshier.net/
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for examining whether the results in this thesis continue to apply for ODEs that cannot be formulated

as second-order ODEs.

Although Sharp tested much higher-order methods than fifth-order and used an extensive number of in-

tegrators other than ERK, these IVPs are all severe tests and give insights into the construction of ERK

methods even when solved with just fifth-order ERK methods. Unlike some of the previous IVPs discussed,

these IVPs do not have published reference solutions, and therefore reference solutions must be generated.

Using pythODE, the reference solutions are generated by using a constant stepsize with a procedure that is

be discussed below in Section 5.6.

5.3.5 Non-stiff advection IVPs

Semi-discretized advection PDEs, such as (2.17), are also implemented in pythODE because ERK methods

are commonly used for solving semi-discretized PDEs when the resulting IVP is non-stiff. The ODEs resulting

from semi-discretization of (2.17) are linear when the semi-discretization is done with methods such as (2.18)

or (2.19). However, other PDEs can have terms that result in the ODE found from semi-discretization being

nonlinear. For example, the shallow water PDE implemented in FATODE [202, 203] has terms containing the

spatial derivatives non-linearly. The semi-discretized shallow water equations are non-linear and an example

of a PDE, which when semi-discretized, is often better solved with ERK methods than IRK methods [202,

pgs.45–48]. In addition, there are also semi-discretization methods that give a non-linear ODE from linear

PDEs. However, because only semi-discretized linear PDEs were implemented, no easily generalizable con-

clusions about either more efficient or more “optimal” methods for semi-discretized PDEs were reached in this

study. Given that there are often many PDEs and semi-discretization methods with a similar mathematical

foundation, analogous to the wide range of celestial mechanics IVPs based on the Kepler IVP (2.13), there

is significant potential to apply similar techniques to those introduced in this study in order to find better

ERK pairs for semi-discretized PDEs. Although a study similar to this one involving semi-discretized PDEs

would push the limits of both the software and available hardware, it is definitely possible in the future as

pythODE develops through use in more studies.

5.4 Overview of the pythODE package

The version of the pythODE package used for this study is about 13,000 lines of code not including auto-

generated code or comments. It is unnecessary to describe within this thesis all of the functional components

of pythODE. This is especially because pythODE is likely to evolve substantially as it gets used for future

studies. Furthermore, it is undesirable to describe unimportant software or implementational details that

are likely to be changed in the future or be different for other studies subsequent to the one in this thesis.

However, the general form of many components has remained the same over the many versions. Similar
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to how OCSage is presented in Section 4.4, in the following overview the files of the pythODE package are

described as functional units with respect to the main package directory.

• The source file that provides the IVPSolver class to coordinate the IVP solution is:

solver.py

Most of the numerical functionality of an IVP solver is provided by modules that the IVPSolver

class coordinates and that are described below. The ConstantIVPSolver, EmbeddedIVPSolver, and

StepDoublingIVPSolver sub-classes of the IVPSolver class coordinate IVP solvers that use a constant

stepsize, an embedded error estimate (2.52), and a step-doubling error estimate (2.57), respectively.

• Various constants and user-configurable variables are stored in the source file:

experiment_common.py

• Some functionality is used repeatedly by both pythODE itself and its supporting scripts. Some of this

functionality to help quickly write these scripts and extend pythODE is included in the source file:

pymathdb/pymath_common.py

A single function call from pymath_common.py imports a large number of Python packages and other

functions commonly used by pythODE (and by the author for other projects). Functions are included

for widely used but simple functionality found throughout pythODE, such as argument parsing, timing

parts of scripts, exception handling and reporting, etc. This greatly simplifies maintenance of pythODE,

experimentation, and creating the many specific scripts that are used to arrive at the results presented

in this chapter. The pymath_common.py source file was originally started as a standalone component

by the author and is still maintained as such because it continues to be useful as a starting point for

new projects.

• The source files containing most of the functional components of an solver are:

modules/basemodules.py

modules/erk.py

modules/stats.py

modules/stepcontrol.py

The basemodules.py source file contains the base class for all other modules. The erk.py source file

contains the ERK and ERKEmbeddedEstimate classes with modules that implement ERK formulae. The

stats.py source file contains modules that record information, such as the number of steps, or write

the solution to a file or data structure. The stepcontrol.py source file contains modules for tasks
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such as estimating the error and determining whether a step should be rejected or not. Even when

using a constant stepsize, modules that do not directly control the stepsize are sometimes required to

reject a step when there are invalid values or other failures in the solution process. Rejecting steps as

soon as there is a problem avoids excessive cost and ensures that the correct reason for solution failure

is recorded. Some of these modules are also specific to the type of solver, for example, step-doubling

error estimation requires some modules to be specific to it even if they are unrelated to step control.

• The directory that contains the definitions of any IVPs implemented is:

odes/*

Specific examples of how IVPs are defined is given in Section 5.3.

• The directory that contains the definitions of numerical methods (mostly ERK methods currently) is:

schemes/*

The code to implement the numerical algorithm, e.g., the code reflecting for RK methods (2.33), itself

is not in this directory, only information such as the Butcher tableau (2.34) coefficients, which are then

used by the appropriate module.

• The source files that are used to solve the chosen IVPs with the chosen RK methods based on a

particularly formatted PostgreSQL table are:

pymathdb/db_solver.py

pymathdb/db_watcher.py

These scripts are in their own directory because they are usable independent of pythODE for tasks that

run a program focused on updating PostgreSQL tables on a small cluster of computers. The format of

the PostgreSQL table used is further described in Section 5.4.3, but in addition to the required format,

it can also contain extra columns with extra information such as data from OCSage searches, without

causing conflicts. The pymathdb/db_watcher.py source file partitions chunks of work to each computer

as necessary and the pymathdb/db_solver.py source file actually solves the IVPs using the IVPSolver

class, including partitioning these among the CPU cores on each computer.

• The directories that define, contain the relevant scripts, and allow visualization of the numerical exper-

iments are:

akroshko_erk56_study/db_loader.py

akroshko_erk56_study/pythode_standard.sh

akroshko_erk56_study/akroshko_erk56_plot.py

basic_examples/*

reference_solution_generate/*
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The basic_examples/ directory contains the code used for the figures in Sections 2.2 and 2.3. The

scripts serve to demonstrate basic usage of pythODE without a PostgreSQL database and are further

described in Section 5.4.2. The akroshko_erk56_study/ directory contains the numerical experiments

for most of the figures in this chapter. The reference_solution_generate/ directory has a similar

structure and function to the akroshko_erk56_study/ directory. These directories are structured in

such a way that it is easily possible to copy them and create similar ones for different studies or purposes

anywhere in the file system.

These directories have many supporting Sage, Python, and shell scripts used by pythODE to support

this study. These study-specific scripts were actually a larger amount of development effort than the

core functionality of pythODE just described and will be extremely important templates for building

on pythODE and this study for future studies. These include Python scripts for setting up specialized

performance experiments, SQL scripts for data manipulation within the PostgreSQL database, and

Python scripts for plotting the final results. However, these scripts are in a constant state of change,

specific to the needs of a particular study, and are not specifically discussed further in this thesis.

Accordingly, these scripts specific to this study will be released along with pythODE because it is

expected that others that want to use pythODE will have to build on the scripts supporting this study

for future studies. Of course, studies that differ substantially from the one presented in this thesis

would require substantially more additional development work to build on this study than ones that

are more similar.

5.4.1 The IVPSolver class and modules

The pythODE package has a modular structure that is a direct descendent of that used and described in the

paper on odeToJava [106]. However, the specific software design presented in this chapter is based heavily

on the insights gained not only from building the odeToJava package [106], but also the author’s Master’s

thesis [103], the publications that pythODE was used to support [104, 105], and the specific needs of this

study.

Before discussing the IVPSolver class itself, it is important to introduce the properties attribute of

that class. The different pieces of information needed for an IVP solver are stored in a Python dictionary

that is the properties attribute of the IVPSolver class. The keys indexing this dictionary are strings

that are globally unique within pythODE and correspond to specific pieces of information used by an IVP

solver implemented within pythODE. The properties attribute is passed to all modules, after which these

modules can read or modify any necessary values. Using a Python dictionary leads to much simpler code

in comparison to the more complex data structures described for odeToJava [106]. Using a simple Python

dictionary lacks some type safety (but also some of the additional complexity sometimes associated with

type safety) that many Java data structures often enforce and was present in the data structure analogous

to properties in odeToJava. However, strict type-safety has been found unnecessary for a research-focused
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software package of the relatively small size of pythODE.

Object-relational managers (ORMs) such as SQLAlchemy23 were examined briefly by the author. However,

it was decided that at this time that full-featured ORMs had many features that were unnecessary, would

probably have negative impact on performance and increase software system complexity, make it harder to

make ad-hoc queries of the database that proved so essential, and make it harder to write tools in languages

other than Python that want to interact with the PostgreSQL tables from OCSage and pythODE. Accordingly,

it was decided to use only built-in PostgreSQL datatypes with the simpler psycopg library24 that was

already mentioned in Section 4.1. However, ORMs may be useful for future numerical computing projects

incorporating RDBMSs.

Instead, for easy serialization or storage in a database, objects in pythODE are often stored using keys that

incorporate the same notation of the code placeholders in this thesis, namely, by using double angle brackets

‘«...»’ around the name of the variable. These placeholders are referred to as string placeholders in this

thesis. This translation to string placeholders became important for avoiding some issues with serializing

some objects with the combinations of packages that the author and Adam Preuss encountered, for example,

incorporating code to support cluster computing with packages such as the multiprocessing and Cython.

For using a database, string placeholders remain important because rather than trying to serialize Python

objects directly in the database, only the human readable string placeholder is stored. This can save space

over storing Python objects directly and is beneficial for easily doing many operations in the database, such

as comparisons, sorting, etc.. The only drawbacks are that there need to be non-interactive passwordless

SSH logins on every machine in a cluster and each machine requires an identical copy of the OCSage and

pythODE source code. However, if a research group has a sufficiently advanced setup (for instance, easy to

configure and reliable non-interactive SSH logins between different computers in combination with modern

version control tools), this is not a significant burden.

An example of a string placeholder is a reference to the IVPSolver object that is stored in a PostgreSQL

database as the text string ‘«IVPSolver»’. After being read by pythODE from the database, each string

placeholder is replaced with the actual pythODE object that is global to the pythode package.

Some examples of information stored in properties and the dictionary keys used to index them for the

actual RK steps when solving an IVP are:

• The values stored using the ‘initial time’ and ‘initial values’ keys define the initial condi-

tions (2.1b) associated with a particular ODE (2.1a), which together define the IVP (2.1).

• The values stored using the ‘current t’ and ‘dt’ keys keep track of the time variable t at the

beginning of the current step and the stepsize of the current step respectively.

• The values stored using the ‘current’ and ‘next’ keys are the numerical solution stored as NumPy

23https://www.sqlalchemy.org/
24http://initd.org/psycopg/
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arrays at the beginning and end of the current step respectively. Of course, the solution at the end of

the current step is not necessarily present or defined until the appropriate module computes it.

• The values stored using the RK method ‘stages’ key are the stages ki from (2.33) as a two-dimensional

NumPy array where each stage corresponds to a row of this array.

• The values stored using the ‘order’ and ‘embedded order’ keys are the orders of the two components

of an RK pair respectively. When pythODE is used in step-doubling or constant-stepsize mode, the

‘embedded order’ key may not be present. It should be noted that these values do not necessarily

correspond to a higher- or lower-order component of an embedded pair. The value stored by the

‘order’ key is the order of the component of an RK pair used to advance the solution, and the value

stored by the ‘embedded order’ key is the order of the component of an RK pair used only to provide

an error estimate.

Some examples of information stored in properties used for the step controller are:

• The values stored using the ‘relative tolerance’ and ‘absolute tolerance’ keys are the relative

and absolute tolerances from (2.58), respectively. The pythODE package transparently handles hav-

ing single floating point values or NumPy arrays, so individual tolerances can be specified for each

component as described in Section 2.6.

• The values stored using the ‘maximum stepsize’, ‘minimum stepsize’, and ‘safety factor’ keys

correspond to amax, amin, and α given by (2.60).

Some examples of properties used for output from the modules in modules/stats.py are:

• The values stored using the ‘statistics accepted steps’ and ‘statistics rejected steps’ keys

are the number of steps accepted and rejected by the step controller.

• The value stored using the ‘rejected times’ keys are a list of tuples of the form (properties[’current

t’],properties[’step control eps’]) that give the times steps were rejected and the value of κ̀n+1

from (2.59).

• The values stored using the ‘statistics final reference solution’, ‘statistics final error’,

and ‘statistics final error norm’ keys are, respectively, a reference solution at the final time as

a NumPy vector, the error at the final time based on this reference solution as a NumPy vector, and

the root mean square (RMS) of this error at the final time.

• The values stored using the ‘full solution interval’ and ‘full solution interval times’ keys

represent a numerical solution at a user-specified t found by interpolation if an optional module for

dense output is present. As mentioned before, dense output by interpolation is not discussed in this

thesis but more details can be found in the source code of pythODE.
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In addition, there are properties that are also used to control IVPSolver itself. Some examples are:

• The lists of modules to run by IVPSolver are stored in Python lists using the ‘integration modules’,

‘step control modules’, and ‘statistics modules’ keys. The modules in each list are run in the

same order that keys are given in the lists of modules. The odeToJava package ordered modules auto-

matically for assisting with user interfaces that were originally planned. However, this added complexity

can detract from flexibility as a research platform and it is generally obvious the order the modules

should be in anyways. An example of why separating the modules into different lists is important is step-

doubling error control (2.57), where it is important to ensure the modules in ‘step control modules’

and ‘statistics modules’ are only run once, whereas the modules in ‘integration modules’ are

run three times per step. The small amount of additional complexity that comes from separating the

modules into lists also allows significant code-sharing between different types of solvers.

• The value stored by the ‘reject’ key is False when beginning a step. Any module or part of the

solution process can set this property to True when appropriate conditions force rejection of the current

step. Most modules check the ‘reject’ property for a rejected step before their main functionality is

used. This is especially important if invalid values could cause runtime errors. If the modules themselves

do not handle some exceptions, the pythODE IVPSolver class can appropriately handle many common

mathematical exceptions, such as divide-by-zero or invalid values, that otherwise might occur in the

modules as a rejected step. However, experience has shown that unnecessarily frequent exception

handling can be significantly less efficient than a simple check of whether the step has already been

rejected. However, exception handling is often more efficient than checking the validity of all of the

values in a large NumPy array. Therefore, specific choices must be made for what is most appropriate

for a particular part of the code. In addition, for modules that implement tasks such as file operations,

it is important to know whether a particular step is rejected before potentially irreversible tasks such

as changing files on disk, where relying on the exception handling in the IVPSolver class may be risky.

• The value stored by the ‘abort’ key remains with the value of False, except when an unrecoverable

error or condition has occurred. When a module sets the ‘abort’ property to a Python object other

than False, the solver terminates. A string giving the reason for aborting is often the non-Boolean

value corresponding to the ‘abort’ key. This reason can then be returned to the user, stored in

the PostgreSQL database, or otherwise used further. Common reasons for aborting an IVP solution

are too many rejected steps in a row, exceeding a specified maximum number of steps, mathematical

conditions such as a singular linear system, or the presence of invalid or undefined values that indicate

an unrecoverable state.

• The value stored by the ‘successful’ key is only set to True at the end of the run method (described

below) of the IVPSolver class and indicates the solver has run properly. Note that a solver that

has aborted with the ‘abort’ key corresponding to True will still have the ‘successful’ key set as
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True. The ‘successful’ key therefore corresponds to successful completion of the IVPSolver (without

unhandled exceptions) rather than a successful solution of the IVP, which is instead quickly indicated

by ‘abort’ as False and ‘successful’ as True. The ‘successful’ key is extremely important

when solving hundreds of thousands of combinations of numerical method, IVP, tolerance, or other

parameters because it is important to readily determine from the data in a PostgreSQL database if

there were any unhandled exceptions without checking the output manually.

It can be clearly seen that nearly all information that must be queried or otherwise communicated is stored

in the dictionary corresponding to the properties attribute of the IVPSolver class. This greatly contributes

to the flexibility of pythODE through modules and makes integration with a database straightforward.

Because all modules have read/write access to the properties attribute and because the use of certain

properties can depend on context, this means that careful design and appropriate use of modules is still

required. However, it has been found through experience that the properties attribute is much easier to

work with than the more complex data structures and safeguards that are described in the paper for the

odeToJava package [106].

In order to set up the IVPSolver class, the appropriate information must be provided that defines the

IVP to be solved, the IVP method to be used, and any other information the solver requires. An example

of initializing an IVPSolver class as the solver_object variable and then solving the IVP as done in

pymathdb/db_solver.py source file is given in Listing 5.1 where examples of the arguments are given below.

Listing 5.1: An example of calling IVPSolver

outgoing_properties = solver_object(method_default_properties=method_properties ,
ode_default_properties=ode_properties ,
incoming_properties=incoming_properties_dict).run(globals ())

An example of a value for the method_default_properties keyword argument using the DP5(4)6(7) ERK

pair (2.79) is given in Listing 5.2 where all of the values in this dictionary end up being merged into the

properties attribute. The ‘dense’ property that has the value ‘«DOPR54Dense»’ that is a string placeholder

for a class providing dense output using interpolation, which is not further discussed in this thesis.

Listing 5.2: An example of calling IVPSolver

# Dormand -Prince 5(4) method
dopr54_tableau =

{’ERK A’:sp.array ([[0., 0., 0., 0., 0., 0.,
↪→ 0.],

[1./5. , 0., 0., 0., 0., 0.,
↪→ 0.],

[3./40. , 9./40. , 0., 0., 0., 0.,
↪→ 0.],

[44./45. , -56./15. , 32./9. , 0., 0., 0.,
↪→ 0.],

[19372./6561. , -25360./2187. ,64448./6561. , -212./729. , 0., 0.,
↪→ 0.],

[9017./3168. , -355./33. , 46732./5247. , 49./176. , -5103./18656. , 0.,
↪→ 0.],

[35./384. , 0., 500./1113. , 125./192. , -2187./6784. , 11./84. ,
↪→ 0.]]) ,

’ERK b’:sp.array ([35./384. , 0., 500./1113. , 125./192. , -2187./6784. , 11./84. ,
↪→ 0.]),
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’ERK b embedded ’:sp.array ([ 5179./57600. , 0., 7571./16695. ,
↪→ 393./640. , -92097./339200. ,187./2100. ,1./40.]) ,

’dense ’:’<<DOPR54Dense >>’,
’order ’:5,
’embedded order’:4,
’ERK FSAL’:True}

Implementing IVPs in pythODE

The ode_default_properties keyword argument from Listing 5.1 contains the information required to

define the IVP being solved. An example that gives an implementation of the “Arenstorf orbit” IVP (2.15)

in pythODE is

@All(globals ())
def arenstorf_orbit(t,y):

yp = sp.empty_like(y)
mu = 0.012277471
muhat = 1.0 - mu

d1 = ((y[0] + mu)**2. + y[1]**2.) **1.5
d2 = ((y[0] - muhat)**2. + y[1]**2.) **1.5

yp[0] = y[2]
yp[1] = y[3]
yp[2] = y[0] + 2.*y[3] - muhat*(y[0]+mu)/d1 - mu*(y[0] - muhat)/d2
yp[3] = y[1] - 2.*y[2] - muhat*y[1]/d1 - mu*y[1]/d2
return yp

__all__.append(’arenstorf_orbit_default_properties ’)
arenstorf_orbit_default_properties = {’ivp name’:’Arenstorf orbit’,

’rhs’: ’<<arenstorf_orbit >>’,
’abbreviation ’:’aren’,
’initial time’:0.,
’initial values ’:sp.array

↪→ ([0.994 ,0. ,0. , -2.00158510637908252240537862224]) ,
’final time’:17.0652165601579625588917206249 ,
’final reference solution ’:sp.array

↪→ ([0.994 ,0. ,0. , -2.00158510637908252240537862224])}

The ‘rhs’ property of arenstorf_orbit_default_properties has the value of ‘«arenstorf_orbit»’,

which is a string placeholder for function orbit that defines the RHS. The ‘abbreviation’ property gives

a relatively compact string for referring to a particular IVP for tasks such as generating figure titles, figure

legends, filenames, etc. The ‘final reference solution’ property is a known reference solution at the

final time that is useful for performance evaluation, which for the “Arenstorf orbit” IVP (2.15) is identical to

the initial values.

Although not the subject of the efficient ERK pairs constructed in this thesis, pythODE has features to

make the definition of PDEs of different sizes and sets of parameters relatively easy. An example giving an

implementation of the 1D advection IVP (2.17) with third-order finite differences (2.19) in pythODE is

@All(globals ())
@parametrizable
def advection_initial_values(p):

initial_values = sp.zeros(p[’n’])
window = int(round (0.2/p[’final time’]*p[’n’]))
sd = int(round(window /10))
initial_values [0: window] = signal.gaussian(window ,sd)
return initial_values

@All(globals ())
@parametrizable
class Advection1DThirdOrderUpwind(object):

def __init__(self ,properties):
self.n = properties[’n’]
lower2 = sp.arange(2,self.n)
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lower = sp.arange(1,self.n)
central = sp.arange(0,self.n)
upper = sp.arange(0,self.n-1)
self.M = sp.zeros(( properties[’n’],properties[’n’]))
self.M[lower2 , lower2 -2] = 1./6.
self.M[lower , lower -1] = -6./6.
self.M[central , central] = 3./6.
self.M[upper , upper +1] = 2./6.

def __call__(self ,t,y):
return -sp.dot(self.M,y)*float(self.n)

__all__.append(’thirdorder_upwind_default_properties ’)
thirdorder_upwind_default_properties = {’rhs’:’<<Advection1DThirdOrderUpwind >>’,

’ivp name’:’Advection 1D third order upwind ’,
’abbreviation ’:’advection -1D-3rd’,
’n’:100,
’initial time’:0.,
’initial values ’:’<<advection_initial_values >>’,
’final time’:0.5}

The Python code defining the other semi-discretization methods described in Section 2.2 for the advec-

tion IVP (2.17) are similar. Better efficiency could be obtained by eliminating explicit storage of arrays,

but the code above is sufficient for the purposes of demonstration. Objects referenced in the properties

dictionary that should be initialized with the properties dictionary itself are indicated with the decora-

tor @parametrizable. When changing the value of ‘n’ in the thirdorder_upwind_default_properties

dictionary, the Advection1DThirdOrderUpwind class is always initialized with the correct value. Using the

advection_initial_values function ensures the ‘initial values’ property is a NumPy array of the

correct size that reflects the same initial conditions for the underlying PDE regardless of the value of the

‘n’ property. Using objects marked @parametrizable helps immensely for IVPs that have many parame-

ters dependent on each other, such as semi-discretized PDEs, and where it is desirable to do considerable

experimentation with these parameters. Notice that the above example does not have ‘final reference

solution’ because there is no known exact or analytic reference solution for many semi-discretized PDEs,

and therefore an appropriate value or @parametrizable function must be implemented on a case-by-case

basis. For instance, if the ‘final reference solution’ property is required but there are many different

values of ‘n’, precomputed values of the reference solution could be stored in the PostgreSQL database

instead.

IVPs from celestial mechanics, which are the focus of the optimal ERK pairs constructed in this thesis,

are also amenable to vectorization for all but the smallest IVPs. Knowing how to take advantage of NumPy

array operations and using good implementational practices, which are further discussed in Section 5.5 below,

are essential for many aspects of this study. In particular, the vectorized code in Listing 5.4 is 20–30 times

faster than the basic unvectorized code in Listing 5.3. This is especially important because for the figures

in Section 5.10 involving the “nine planets” IVP, they often took 24 hours each to generate, and the “nine

planets” IVP itself was about 70% of the computational cost of these experiments.

Listing 5.3: Unvectorized Python code for the “nine planets” IVP.

# mass of sun in AU^3 d^-2 mu_Sun =(0.01720209895) **2.

nine_planets_constants = {’mu’:[mu_Sun , # mass of Sun
mu_Sun /6023600. , # mass of Mercury
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mu_Sun /408523.5 , # mass of Venus
mu_Sun /328900.53 , # mass of Earth
mu_Sun /3098710.0 , # mass of Mars
mu_Sun /1047.355 , # mass of Jupiter
mu_Sun /3498.5 , # mass of Saturn
mu_Sun /22869. , # mass of Uranus
mu_Sun /19314. , # mass of Neptune
mu_Sun /3000000.]} # mass of Pluto

@All(globals ())
def nine_planets_rhs_basic(t,y):

yp = sp.zeros (60)
y_pos = sp.zeros ((3 ,10))
ypp = sp.zeros ((3 ,10))
r_norm = sp.zeros ((10 ,10))
r_norm_cubed = sp.zeros ((10 ,10))

for j in range (10):
for k in range (3):

y_pos[k][wget: missing URL
for i in range (10):

for j in range (10):
for k in range (3):

if i != j:
r_norm[j][i] += (y_pos[k][j] - y_pos[k][i]) **2.0

for i in range (10):
for j in range (10):

if i != j:
r_norm_cubed[j][i] = r_norm[j][i]*sp.sqrt(r_norm[j][i])

for i in range (10):
for j in range (10):

for k in range (3):
if i != j:

ypp[k][i] += nine_planets_constants[’mu’][j]*(( y_pos[k][j] - y_pos[k][i])/
↪→ r_norm_cubed[j][i])

# i is just an index here
for i in range (30):

yp[i] = y[30 + i]
for k in range (3):

for i in range (10):
yp[30 + i*3+k] = ypp[k][i]

return yp

Listing 5.4: Vectorized Python code for the “nine planets” IVP.

NINEPLANETS_CONSTANTS =
sp.repeat(sp.repeat(sp.array(nine_planets_constants[’mu’])[sp.newaxis ,:],3,axis =0)[:,:,sp.newaxis

↪→ ],10,axis =2)

NINEPLANETS_ZERO = [(0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,2,2),

(0,1,2,3,4,5,6,7,8,9,
0,1,2,3,4,5,6,7,8,9,
0,1,2,3,4,5,6,7,8,9),

(0,1,2,3,4,5,6,7,8,9,
0,1,2,3,4,5,6,7,8,9,
0,1,2,3,4,5,6,7,8,9)]

@All(globals ())
def nine_planets_rhs(t,y):

y_pos = y[0:30]. reshape ((3,10,1),order=’F’)
y_pos_diff = y_pos.repeat (10,axis =2)
y_pos_diff -= y_pos_diff.swapaxes (1,2)
y_pos_diff_square = y_pos_diff*y_pos_diff
r_norm = y_pos_diff_square.sum(axis =0)
r_norm **= 1.5
y_pos_diff *= NINEPLANETS_CONSTANTS
y_pos_diff [:] /= r_norm
y_pos_diff[NINEPLANETS_ZERO] = 0.
ypp = y_pos_diff.sum(axis =1)
yp=SP_CONCATENATE ((y[30:60] , ypp.flatten(’F’)))
return yp

Finally, for the IVPSolver class, the property ‘incoming_properties’ refers to all other properties

required and overrides keys in ‘method_default_properties’ and ‘ode_default_properties’. The values
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in ‘ode_default_properties’ also override keys in ‘method_default_properties’. Although this feature

is not current used, it could be useful for performance experiments where some of the parameters associated

with a numerical method, such as step control parameters, need to have specific values for a particular IVP.

It could become especially important when studying IRK methods that often require specific tuning of the

parameters for routines, such as non-linear equation solvers, to both the integration method used and the

parameters of the IVP being solved.

Performance measurement of pythODE, discussed in detail in Section 5.5 below, shows that much of the

computational cost of pythODE for all but the smallest IVPs occurs in the RHS evaluations. Therefore, in the

future, despite some significant optimizations possible for Python code implementing the RHS evaluations

and the significant possibility of leveraging the performance of low-level libraries, it will likely be important

to allow efficient implementations of numerical code itself. Numerical code rarely requires the dynamic typing

and automatic memory management that account for much of the performance lost for languages such as

Python, in comparison to lower-level languages. Calling C directly from Python is fairly straightforward,

although the need to recompile modules corresponding to numerical code can add significantly to software

system complexity and increase the barriers to usability. The better possibility of Cython has already

been mentioned, and Cython is actually used widely in projects such as Sage. Although not used for

this study, for simply implementing RHSs or other numerical formulae Cython can be relatively straight-

forward and a limited usage for specific numerical formula, where dynamic typing is not beneficial, would

not substantially add to the overall complexity of the software system. It should be noted that solvers from

the scipy.integrate package for integration of quadrature problems (2.2) allow the RHS to written as a

callback in a low-level language using the scipy.LowLevelCallable class.25 The scipy.LowLevelCallable

class or an adaptation are another option for future versions of pythODE. Once an efficient methodology is

implemented for writing numerical code in a low-level language, the overhead of pythODE solver itself may

be significant enough that it would need to be improved. Careful design would be required to implement

key components in a low-level language while not making the software system too complex and inhibiting

usability.

Calling the IVPSolver class and using IVPSolverModules

The methods of an IVPSolver class that interest a user of the class are given in Listing 5.5.

Listing 5.5: Overview of the internals of IVPSolver.

class IVPSolver(object):
def set_defaults(self):

<<...>>

def initialize(self):
<<...>>

def step(self):

25https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
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<<...>>

def finalize(self):
<<...>>

def run(self ,theglobals ,queue=None):
<<...>>

The set_defaults method allows setting some default (but able to be overridden) values from properties,

initialize sets up the solver, step is repeatedly run for each step, and finalize performs tasks required

after the numerical solution is finished such as updating properties to reflect this or closing open files.

The run method is run by the user or script, such as seen in Listing 5.1, and generally needs access to the

global variables from where the solver is run in order to be able to substitute appropriate placeholder strings

‘«...»’ with the appropriate object.

An example of an IVPSolverModule subclass to count the total steps is given in Listing 5.6.

Listing 5.6: An example of subclassing IVPSolverModule.

@All(globals ())
class TotalSteps(IVPSolverModule):

def set_defaults(self ,properties):
pass

def initialize(self ,properties):
self.count = 0

def step(self ,properties):
self.count += 1

def finalize(self ,properties):
properties[’statistics steps’] = self.count

The set_defaults method allows defaults to be set that incorporate information from the properties

dictionary. Each of the methods initialize, step, and finalize in an IVPSolverModule are called from

the corresponding method in the IVPSolver subclass.

5.4.2 Basic usage of pythODE for solving simple IVPs and plotting the results

In the basic_examples/ directory, there are relatively simple programs that generate the figures for the

examples of the solutions of IVPs from Sections 2.2 and 2.3. These relatively simple programs also serve as

basic usage examples for pythODE. An example of a function to solve the “Arenstorf orbit” IVP (2.15) is given

by Listing 5.7.

Listing 5.7: An example of basic pythODE usage for solving the “Arenstorf orbit” IVP (2.15).

def arenstorf_orbit ():
solver_object = ERKEmbeddedEstimateWritingIVPSolver
method_properties = dopr54_tableau
incoming_properties_dict = {’relative tolerance ’:1e-10,

’absolute tolerance ’:1e-10,
’full solution write interval ’:0.01}

outgoing_properties_keys = {’statistics time’,
’statistics rhs count ’,
’statistics steps’,
’statistics accepted steps ’,
’statistics rejected steps ’,
’statistics final error norm’,
’successful ’,
’solution times values ’,

236



’full solution interval ’,
’full solution interval times ’}

ode_properties = arenstorf_orbit_default_properties
outgoing_properties = solver_object(method_default_properties = method_properties ,

ode_default_properties = ode_properties ,
incoming_properties = incoming_properties_dict
).run(globals ())

outgoing_properties_dict = {k:outgoing_properties[k] for k in outgoing_properties_keys}
pprint(outgoing_properties_dict)
x = zip(* outgoing_properties_dict["full solution interval"])[0]
y1 = [e[0] for e in zip(* outgoing_properties_dict["full solution interval"])[1]]
y2 = [e[1] for e in zip(* outgoing_properties_dict["full solution interval"])[1]]
fig = plt.figure ()
ax = plt.subplot (111)
ax.plot(y1 ,y2)
ax.plot (0.0,0.0 ,’ok’)
ax.plot (1.0,0.0 ,’.k’)
ax.set_xlabel(’$x(t)$’,size =16)
ax.set_ylabel(’$y(t)$’,rotation=0,size =16)
ax.tick_params(labelsize =12)
ax.set_xlim ([ -1.5 ,1.5])
ax.set_ylim ([ -1.5 ,1.5])
ax.axis(’equal ’)
ax.grid(True)
plt.show(ax)
fig.savefig(’example_orbit.pdf’, bbox_inches=’tight’)
plt.close(fig)

This code solves the “Arenstorf orbit” IVP (2.15) and shows a solution corresponding to Figure 2.7 in a

window in addition to writing it to a pdf file. The ERKEmbeddedEstimateWritingIVPSolver object is a

helper class in experiment_common.py that sets up the appropriate modules for this usage.

5.4.3 Using the PostgreSQL database for setup and coordination of pythODE, along

with the analysis of performance data

As mentioned in the introduction to this chapter, in order to do thorough performance testing and support

detailed analysis of the resulting performance data comparing RK formulae and pairs, pythODE is integrated

with a PostgreSQL database.

Some performance testing done for this study can generate up to several gigabytes of data, for example,

when several thousand 5(4)6 ERK pairs are being used to solve all of the IVPs that are described below

along with a wide range of tolerances and step control parameters. As discussed with OCSage in Chapter 4,

although working with this amount of data has now become commonplace, when the data possesses a high

degree of complexity and heterogeneity (as opposed to simple numerical arrays that are a uniform data

type) and requires further manipulation, simple programs in imperative languages can be error-prone and

inefficient, meaning a database should be used.

In principle, many of the manipulations commonly done to data within a database can be accomplished

by imperative programming in common languages such as Fortran, C++, Python, or Matlab. However,

even when dealing with only a limited range of methods, e.g., only ERK methods as this thesis does, impera-

tive code that supports the management of data becomes extremely brittle and error prone as an experiment

proceeds from OCSage, to pythODE, to performance data, and finally to analysis and plotting. A huge ad-

vantage to PostgreSQL (and other relational databases) is that they use the domain-specific and declarative

language SQL (structured query language) [43, 44, 92]. By using a declarative language to specify only the
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result required from a particular manipulation of data, this eliminates many potential issues that would arise

from manipulating data in imperative languages. Languages such as SQL also make it extremely easy to

add additional columns of data in a way that often does not require modifying existing code. During the

course of this study, PostgreSQL was often used for preliminary study of data in ways that are not directly

incorporated into the figures in this chapter.

A principal disadvantage to using an SQL database can be relatively poor performance for some usage

cases, which is a common issue with declarative languages. Routine data manipulations done on several

thousand data points supporting many components of this study often took several milliseconds to several

seconds. Some manipulations on data from searches done by OCSage in Chapter 4 can take tens or hundreds

of seconds. However, good SQL programming practices can often greatly speed up database operations that

are extremely slow when implemented naively. In addition, code written ad-hoc to manage data in languages

such as C or Python can easily end up being much slower than the optimized and well-tested algorithms,

queries, and planning that RDBMSs employ.

Due to these performance limitations, an SQL database can only play a complementary role to operations

on numerical arrays provided by more conventional libraries in languages such as Fortran, C++, Python,

or Matlab. These numerical array operations can easily reach dozens of GFLOPs (billion floating-point op-

erations per second) on common desktop computers,26 whereas typical uses of SQL databases often process

complex and heterogeneous data types at a much lower rate but using much higher-level operations than

just simple arithmetic. Obviously, SQL or database operations in general do not belong in the inner loops

of numerical algorithms. Despite the performance drawbacks in some cases, many of the common applica-

tions where SQL is used also require a great deal of flexibility and adaptability for the data handling and

processing. This is where in comparison to imperative languages, a declarative language such as SQL means

the ever-changing requirements of experimental and research computing require much less development and

troubleshooting time, which is typically much more expensive in terms of dollars than high-level operations

that require seconds to run, but may only be executed a small number of times each time a software package

is run.

Although the IVP solver in pythODE just described in Section 5.4.1 can be used without a PostgreSQL

database, the database quickly became an indispensable software component for conducting this study. When

dealing with disparate requirements and multiple software components, it is often impossible to have the same

data structures across projects or even for different studies or components of the same project. Therefore,

some sort of more advanced data management and manipulation is required. For instance, data may be

required in significantly different configurations for searches of the space of free parameters such as those

done with OCSage, performance testing with pythODE, or when used further for analysis or visualization. As

this study unfolded, data manipulations that are extremely convenient using an RDBMS but that would

be more difficult, brittle, and error-prone in an imperative language often became necessary. In addition,

26https://www.tcm.phy.cam.ac.uk/~mjr/linpack/
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the ease of manipulating data allows quick ad-hoc data manipulations to explore the data before the final

presentation of the results of a study. This versatility and applicability of SQL databases can be seen by the

popularity of the SQLite database as an internal component in many well-known applications.27

Although the many complex features of an SQL RDBMS may be more than necessary for simple numerical

data in a tabular format, many of the more complex features proved useful, and it is fortunate they were

available at some stages of this study. Although there are types of databases other than SQL-based RDBMSs

available, in a book on Python data analysis in astronomy from 2014 by several prominent authors [89, pg.44]

it was noted that Nosql databases are currently inefficient for tabular and array-based data, as well as being

immature compared to SQL-based RDBMS. Considering that the field of astronomy deals with enormous

amounts of numerical data, it is a good place to seek guidance on appropriate techniques for numerical

data. There are also databases focused on the needs of scientific computing and data such as SciDB,28 which

was noted as an alternative to SQL RDBMs because the latter may not be entirely suitable for extremely

large amounts of scientific data [89, pg.44]. However, for OCSage and pythODE it was decided that it is

currently better to build the software system out of well-known components that many people are likely to

have experience with.

The db_solver.py program and its helpers

The pymathdb/db_solver.py program is what actually calls the appropriate IVPSolver subclasses to solve

the desired IVPs once the appropriate table in the PostgreSQL database is set up (the format of this database

table is described below). Another script used is the pymathdb/db_watcher.py program, which automatically

assigns chunks of new work, i.e., the sets of IVPs to be solved at one time by a single computer, when each

computer is done with its current chunk of work.

Using the support for concurrent operations over the network that PostgreSQL provides for cluster com-

puting has a much lower throughput than commonly used cluster computing tools for scientific computing,

such as the OpenMPI implementation of MPI [63, 65]. However, when performance testing IVPs, for each

numerical IVP solution that typically takes up to several seconds, only a small amount of data usually needs

to be communicated to determine the particular IVP to be solved, the numerical method to be used, the

solution at the final time, and the statistics about the solution process. This relatively low rate of data com-

munication is well within the capabilities of a PostgreSQL database operating over a typical LAN (local area

network). That PostgreSQL (and most other SQL) databases are specifically designed to maintain consis-

tency despite multiple concurrent transactions from many different programs that may be on many different

computers is an important reason why using PostgreSQL gives such an enormous benefit to this study. Other

approaches such the socket-based programming that pythODE originally used or the many available software

components for cluster computing, such as OpenMPI, would require additional complexity to achieve the

27https://www.sqlite.org/mostdeployed.html
28https://www.paradigm4.com/
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same functionality anyways.

However, it should be noted that despite this use case being well within the capabilities of a PostgreSQL

database and data rates on typical LANs, good SQL programming practices are still required to avoid

bottlenecks. This includes ensuring that many SELECT and UPDATE operations are done at once (the defaults

are 32768 and 4096, respectively). In experiment_common.py appropriate and configurable delays are built

into pymathdb/db_solver.py to avoid overloading the database while ensuring virtually no efficiency is lost

(by default each computer checks for new work every 10 seconds once it has run out of work). If a particularly

long running IVP solution is one of the last ones in a batch of work and fewer than the available cores are

used, the pymathdb/db_solver.py script starts on the next chunk of work with the free cores. Because

interesting performance experiments invariably seem to have at least some combinations of IVPs and IVP

methods that take inordinately long, assigning new work once the cores are underutilized often gave 2–3

times better performance in comparison to waiting for all work to finish on a computer. With all of these

details taken care of, all cores on all of the machines used are typically at least utilized to at least 90% and

the utilization is usually greater than 95%. For using pythODE on different clusters of computers other than

the one used for this study or for different types of experiments some trial, error, and iterative adjustment to

the tuning parameters contained in experiment_common.py would likely be required. It is also likely that for

some use cases, pymathdb/db_solver.py could easily be modified for use on clusters of computers connected

at network speeds lower than a typical LAN, allowing geographically distributed computers to be used.

There is currently no provision to manage computers that go offline or come online while pythODE is

running. Because the pymathdb/db_solver.py script is just over 300 lines of code, more sophisticated

features can probably be implemented in a straightforward manner. However, the time spent testing the

additional code (several thousand lines may be required) to obtain this next level of robustness should not

be underestimated either.

An important contribution that OCSage and pythODE make (OCSage can be used over a LAN using the

PostgreSQL database connection but cannot yet run a single search over a cluster of multiple computers) is

that they demonstrate how using robust and commonly available software tools (the Python and scientific

Python ecosystems, PostgreSQL, etc.) can be used to increase the utility of available but not formally

organized computing resources. By leveraging robust and available software tools, only several hundred lines

of code beyond the basic numerical functionality of a package such as pythODE is required in order to take

advantage of available computing resources.

The code in pythODE can be used as a template that could have wide applicability to compliment tools

such as OpenMPI [63, 65], which is better for high data transfer rates but does not include concurrent

data storage. The BOINC project, which is used for volunteer grid computing for projects like the well-

known SETI@home project, is definitely overly complicated for a single project that needs to leverage up

to several dozen computers on a LAN to which an individual or research group may have easy access [5].

The complexity of the BOINC project comes from requirements such as automatically distributing binary
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versions of the appropriate software to all participants, managing different versions of software, managing

computers that go online and offline, automatically adapting to different network speeds and hardware, etc.

Although these are all nice features to have, they also substantially increase the complexity of any setup and

configuration to far beyond what is practical for a single study on up to a few dozen computers.

OpenMPI is an excellent set of tools for distributing computations, especially for tasks that are not

embarrassingly parallel. However, OpenMPI is a single component for facilitating cluster computing and

does not specifically address aspects such as the data format and storage. Therefore, OpenMPI would

still have to be integrated into a complete software system to manage disk storage and the data structures

required, including the important feature of concurrent access to the database. Where OpenMPI could be

useful for the future development of pythODE is if larger amounts of data communication becomes required

for larger problems like PDEs or for experiments where the solutions of larger problems are being saved at

every step. In this case, a platform such as OpenMPI could be used in addition to a PostgreSQL database

for transferring large numerical arrays, although this would definitely add to the complexity of the software

system. If storing these larger numerical arrays would be unwieldy for a PostgreSQL database, there are

databases specifically for storing numerical data that could be used in addition to PostgreSQL. However,

the author feels that for studies similar to this study, but at a larger scale, that these additional software

components would compliment the PostgreSQL database rather than replace it because being able to use

SQL to manage the experiments was found to be too essential.

For the reasons just described, many existing tools for clustering such as OpenMPI or BOINC are not

necessarily a good fit to a particular project, even if in principle all the tools under consideration accomplish

the same general task. In fact, one of the reasons why the author made pymathdb a separate directory is to

be able to quickly reuse it for future projects that require a database and cluster computing.

Another reason for using relatively simple programs built on popular tools is that all computers in the

cluster only need a standard Python/SciPy, or preferably Sage, installation and a PostgreSQL client. All

of the software libraries and tools used for this study track the current versions available from the current

version of Sage. However, the Sage platform has normally been restricted to Linux or Apple operating

systems. Although not tested for this thesis, both a standard Python/SciPy installation and PostgreSQL

installation can be installed on Windows, and, with minor modifications, Windows computers could be

included in a cluster. During the final stages of this study, the announcement came that Sage can now be

installed natively on Windows.29 Given that the vast majority of the libraries used by OCSage and pythODE

are included in a Sage installation, once the Windows version of Sage is robust enough if it is not already,

this only increases the number of computers that can easily be incorporated into a cluster.

29http://www.sagemath.org/download-windows.html
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The details of db_loader.py, db_watcher.py, and db_solver.py

A Python script particular to each type of study is the db_loader.py script, which loads the data on the

experiments to be run into a database table. The db_loader.py script does not need to have that name

and can include any functionality the user desires, as long as a PostgreSQL table of an appropriate format

is created by the script.

The pymathdb/db_watcher.py script is run on a designated primary computer of the cluster and controls

the partitioning of the IVPs to be solved into chunks of work for each computer. Currently, the maximum

chunk size is 32,768 IVPs for each computer to solve before getting more work, but this can be changed easily.

The default initial chunk size is chosen so there are initially about four chunks of work per core available,

but this can also be configured easily. As the solutions proceed, once each computer has fewer IVPs to solve

than its number of cores, a new chunk of work is assigned. With some provisions for load balancing about

to be described, this proceeds until no more work can be assigned and all IVPs are solved.

The individual IVPs are currently partitioned into the chunks randomly. Although a publication by

the author and supervisor of this thesis has shown that similar operating parameters give similar solution

costs [105] and that this can be used to help with parallelism when solving many similar IVPs. However,

there is too much variability across the many IVPs tested in this study to currently make effective use of this

idea. The correlation between specific parameters and solution costs is probably better used when scaling up

the solution of many closely related IVPs in a production setting.

There is significant variability in the solution time of IVPs, especially when doing research into numerical

methods, where methods that perform poorly or lose stability for some IVPs often need to be tested for a

particular study. Due to this variability, at least a minimal amount of adaptive load balancing is required.

When there are fewer than the number of computers multiplied by the remaining number of IVPs to be solved,

then the chunk size is recalculated from the remaining number. The default is to allow up to two reductions

to occur in order to avoid many iterations of assigning extremely small numbers of IVPs to a computer, and

this default has been found to be adequate for the experiments done for this study. For different numbers

of computers or if some IVP solutions take particularly long, choosing different default values for chunk size

and number of reductions may be necessary.
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The pymathdb/db_solver.py script is what actually runs the pythODE solver described in Section 5.4.1

on each core by using the function call given by Listing 5.1. An instance of pymathdb/db_solver.py is run

on each computer and checks the database table for newly assigned work when the number of IVPs to be

solved is less than the number of cores being used, by default every 10 seconds. The pymathdb/db_solver.py

script reads the columns of a row corresponding to assigned work, in order to initialize the inputs shown

in Listing 5.1 that are used by the IVPSolver object to construct the properties attribute. The Python

multiprocessing library, which is built into the Python standard library, is used to manage the work

among the individual cores of a computer. After the solution of an IVP is finished, the newly updated

properties are used to update the database row corresponding to that IVP with properties such as the final

values, execution time, number of steps taken, and any other information about the solution process. If the

solution failed, the updated database row reflects this.

The details of the PostgreSQL tables supporting pythODE

The pymathdb/db_solver.py source file requires the PostgreSQL table that gives the information describing

the experiments to be run to be in a particular format. Some columns that are used to set up subclasses of

IVPSolver are:

• The ‘solve_number’ column is a unique 64-bit integer (randomly generated and verified to be unique)

used as a primary key [92, pg.11] that identifies a particular combination of IVP method, IVP, and

any other properties. Having this unique identifier helps when managing cluster computing, as well as

many other tasks conducted within the database because it avoids the need to compare floating-point

values in many cases.

• The ‘solver_object’ column contains a string placeholder for the subclass of the IVPSolver class or

any other pythODE object of similar functionality.

• The ‘method_properties’ column contains a string placeholder that refers to the dictionary that

defines the method to be used, such as the example of dopr54_tableau given in Listing 5.2. The

object referenced in this column is passed to the run method using the ‘method_properties’ keyword

in Listing 5.1.

• If the value for the ‘method_properties’ column is the string placeholder ‘«create_ocsage_tableau»’

for the corresponding function, then there are additional columns hold data to get the tableau from

OCSage generated code described in Chapter 4. The ‘ocsage_properties’ column contains the label

defined in Chapter 4 that indicates the family, and the ‘ocsage tableau parameters’ column contains

an array giving the parameters that the generated code for the family requires; see the example of code

OCSage generates in Listing 4.3. The ‘ocsage sublabel’ column is not used by pythODE when actually

solving IVPs, but it is a unique user-defined string for each method that is useful for plotting, analysis,
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and avoiding floating-point comparisons of the arrays from the ‘ocsage tableau parameters’ col-

umn that would otherwise be necessary when doing database operations that do comparisons between

methods.

• The ‘ode_properties’ column contains a string placeholder for a pythODE object representing the

IVP to be solved. The object referenced in this column is passed to the run method using the

‘ode_properties’ keyword in Listing 5.1.

• The ‘incoming_properties_keys’ column contains an array of other columns to be read from the

database in order to construct an appropriate properties dictionary that gets passed to the run

method using the ‘incoming_properties’ keyword in Listing 5.1.

• The ‘outgoing_properties_keys’ column is an array of the values from the properties attribute that

are put back into the database from the updated properties attribute of the IVPSolver class. Using

the values of ‘outgoing_properties_keys’ to select only certain values from properties is important

because many Python objects used in properties do not lend themselves to easy representation in

the database. In addition, storing all information represented by all properties attributes for all IVPs

solved also wastes storage in the database and network bandwidth unnecessarily.

The names of the columns of the PostgreSQL table correspond directly to the keys in properties attribute

of the IVPSolver subclasses that are used throughout pythODE. In more complex studies, a little care is

required to make sure column names used for other purposes than pythODE do not conflict with keys in

the properties attribute of the IVPSolver subclasses. Like much of both mathematics and computer

programming, care can be required to avoid naming and notation conflicts while keeping names and notation

meaningful. For instance, to use the module ERK, which is a subclass of IVPSolverModule and implements

ERK formulae (2.33), the b vector of the Butcher tableau (2.34) is referred to by the key ‘RK b’ instead of

‘b’. This is because ‘b’ or other single letters are often the well-understood notation for some parameters

of some IVPs. The pythODE package is not complex enough to require implementing namespaces and the

decision was made to make naming parameters for new IVPs as easy and intuitive as possible. An example

of a PostgreSQL table to be read by pythODE is given by Table 5.8. This PostgreSQL table updated with

performance data is given by Table 5.9.

5.4.4 Setup of the PostgreSQL database

To actually run the pymathdb/db_solver.py program just described on all computers in a cluster pythODE

uses the OpenSSH tool,30 which is the standard for secure remote shell logins. For security reasons, the default

for many Linux distributions is to have the PostgreSQL server only listen for connections from localhost.

Many firewalls at institutions also block the default port for PostgreSQL, i.e., port 5432. Therefore, on

30https://www.openssh.com/
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computers other than the one running the PostgreSQL database server, an ssh tunnel is used so that connec-

tions to localhost port 5433 go to localhost port 5432 of the computer the PostgreSQL database server

is on. This different port, i.e., port 5433 rather than 5432, is chosen for computers other than the one the

PostgreSQL database server is on, just in case they have their own PostgreSQL database server installation

that is unused by pythODE.

5.4.5 Plotting from the PostgreSQL database

Plotting and data analysis are generally done with Python scripts that read directly from the PostgreSQL

database, but that are specific to the study being done. Reading from the PostgreSQL database is extremely

convenient because plotting and data analysis often require data in completely different configurations than

the table in Listing 5.8. A declarative language such as SQL makes it straightforward to manipulate data

into the desired configuration and to combine data from different experiments within the database into the

desired format. Additionally, functions from OCSage are called from these scripts to add information such as

characteristic numbers to the PostgreSQL table for the purposes of data analysis or plotting.

5.5 Comparing the output and performance of pythODE to published

IVP solvers

Before performance testing of the newly derived ERK pairs from Chapter 4, it is important to compare and

verify the ERK-based solvers in pythODE with existing IVP solvers. Implementational and even language

differences (experience has shown the author that despite identical expressions, floating-point arithmetic can

sometimes give slightly different values between all of Fortran, C, Matlab, Java, and Python) mean

different implementations of the same algorithm do not give exactly the same behaviour or result. However,

implementing the same algorithm should still give reasonably similar behaviour. The code released by other

researchers, such as Ernst Hairer on his website,31 can provide excellent reference implementations for many

important IVP methods as well as the IVPs themselves. Table 5.1 shows the tolerance, number of total steps,

number of accepted and rejected steps, accuracy, and solution time for solving the “Arenstorf orbit” IVP (2.15)

for several methods based on existing codes in comparison to their analogous pythODE implementations.

The execution times for Fortran, which are measured using the built-in shell command time, are the

minimum from running several dozen trials of the executable from a Linux command prompt. Although

better timings could be made by modifying the code to measure execution time between internal points

within the code, modifying published code is not necessary for a crude demonstration of the relative exe-

cution time using different languages. Measured execution time in pythODE starts at the beginning of the

IVPSolver.initialize method and ends at the end of the IVPSolver.finalize method. Because pythODE

31http://www.unige.ch/~hairer/software.html
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needs to load many libraries and initialize many data structures when individual IVPs are solved and there

can be significant overhead due to the platform itself when pymathdb/db_solver.py is used, the two locations

just described are the best choice for measuring execution time of an algorithm. The timings for Octave

are measured using standard built-in methods, i.e., the tic and toc commands, at similar points within the

script.

In Table 5.1, it can be seen that actual solution and numerical behaviour based on the number of steps of

pythODE solvers is generally within about one percentage point of the codes available from Hairer. It should

also be noted that the self-reported steps, accepted steps, and rejected steps from Hairer’s code does not add

up properly in some cases, whereas the ones from pythODE always do, indicating that Hairer’s codes have

bugs with respect to reporting statistics.

5.5.1 Discussion of the performance of pythODE

The solution times in Table 5.1 for pythODE are about five times faster than the first naive implementations

because pythODE has seen considerable optimization in order to make the study in this thesis possible. Despite

the advantages of Python in constructing many types of software, a side effect of these advantages can be

an extremely high overhead for many operations or library functions. It is especially easy to naively write

inner loops, such as the individual steps of the numerical method, with extremely poor performance.

Based on specific timing and optimization work, some general strategies to get the best performance for

building software in pure Python or extending pythODE are:

• Dictionary key lookups or SciPy array indexing, e.g., x[3], are fast individually but can severely slow

down inner loops. Therefore ensuring individual lookups were only done once by assigning the result

to a variable, e.g., x3=x[3], noticeably sped up pythODE.

• SciPy functions are generally faster than for loops and individual arithmetic operations. However,

many SciPy functions have considerable overhead when used for relatively small arrays. For example,

adding two arrays of size 4 take about 700 nanoseconds and adding two arrays of size 1000 takes about

2000 nanoseconds. Due to non-intuitive relative execution times, it is highly recommended to use

the iPython %timeit command to allow quickly determining the most effective methodologies. Some

specific but not necessarily intuitive examples of performance optimization found while developing

pythODE are:

– The scalar functions built into Python such as math.sqrt are faster for scalar operations than

the corresponding SciPy functions such as scipy.sqrt (in this case for taking square roots). This

is because the latter is heavily polymorphic in order to accommodate elementwise square roots on

multi-dimensional arrays as well as several different scalar datatypes. This is a general trend that

affects a variety of other mathematical functions, such as trigonometric functions.
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– The numpy.dot function is 2–3 times faster for multiplying a NumPy array by a scalar than

to use the built-in multiplication operator (or numpy.multiply function). This is because the

numpy.dot function wraps BLAS without the type-checking that the heavily polymorphic and

overloaded multiplication operator requires.

– The NumPy and SciPy functions providing many linear algebra operations, such as norms, can

have considerable overhead due to being polymorphic. If the size of the operation does not change

during the solution process, such as for error estimation calculations, e.g., the calculation (2.53) or

other operations that depend on the size of a specific IVPs, it can be faster to square and sum ex-

plicitly. For example, a.sum()/length_of_array is about 3–4 times faster than scipy.mean(a) or

a.mean() for arrays up to a length of at least 60 if the length of the array a, i.e., length_of_array,

is always known.

– It is faster to add two arrays of the same size where the second array has the same value in every

element, rather than the equivalent operation of adding a scalar to an array using the addition

operator. Due to this, a considerable speedup of pythODE was obtained by always converting scalar

tolerances to vector tolerances of uniform size before starting an IVP solution.

– Slicing operations on arrays, e.g., a[1:4], are extremely useful operations, but more complex

slicing can be quite slow. Therefore, if similar slices are to be made in an inner loop, e.g., a

selection of rows of the (currently) unchanging A matrix of the Butcher tableau (2.34), it can be

much faster to pre-compute these slices and do a look up instead.

• Python can have relatively high function call overhead compared to other languages. Therefore, once a

particular study has developed and become focused enough, it can be advantageous to combine several

modules needed for that particular study (for instance measurement statistics such as seen in Table 5.1

or the various components of error estimation and step control) into a single module. However, the

original modules used as the basis for the combined module still exist as separate modules. This means

that that in future studies, they can be used separately until that study progresses enough that a single

optimized study-specific module becomes required. Being able to customize modules in a way that is

most efficient for a specific study is an enormous advantage to a modular IVP solver.

In general, even on relatively small IVPs, 90–95% of the measured solution time for pythODE comes

from the actual time-stepping itself, with most of the rest being the initialization cost for objects from the

IVPSolver class. For more costly IVPs, such as the “nine planets” IVP integrated for 7200 days in problem

time, over 99% of the time is spent doing the time-stepping. Despite this computational cost, there are already

mentioned advantages to remaining in pure Python in terms of software system complexity, usability, and

allowing straightforward experimentation. However, because so much of the computational cost comes from

inner loops, there are some enhancements to SciPy that would be make it much easier to write most efficient

pure Python code for implementing numerical methods. Some potential enhancements that would make
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software like pythODE significantly more efficient include:

• Optimized functions for arithmetic involving an array and scalar, in order to avoid using functions like

numpy.dot or creating special arrays for this purpose.

• Specific functions that efficiently combine operations such as multiplications and additions that appear

repeatedly in the inner loops of implementations of numerical methods. For RK methods, the combined

operation of numpy.dot(v,K)*t+y, where v is a vector, K is a matrix, t is a scalar, and y is a vector,

appears in many places.

• Optimized functions for common norms and averages, such as relatively basic equivalents to scipy.mean.

Notably lacking is an efficient function to calculate the widely used root-mean-square.

• Efficient functions to check that an array contains only finite values, not inf (infinity) or nan (not-a-

number). The current best solution is all(sp.isfinite(y)), which is two function calls that check

the vector y. This operation of checking for finite values takes about 4 microseconds for a NumPy

array of size 60, which is often a longer time than many arithmetic operations on the same vector y.

• A large amount of overhead in the step-controller comes from the code sp.maximum(abs(yn),abs(yn1)).

Each of the three component functions has a significant execution time. Therefore, a specialized function

for maximum absolute value would easily eliminate this enormous source of computational cost.

This list of improvements would greatly help making prototyping inner loops or research-focused tools as

efficient as possible. Ultimately once an idea is prototyped, then eventually Cython would be necessary to

further improve performance to where performance could be competitive with lower-level languages.

5.5.2 Putting into perspective the relative performances of software based on

low-level languages and software based on Python

Ultimately, despite the performance disparities between pythODE and the C/Fortran solvers in Table 5.1,

it is important to consider how individual software packages are to be used if an appropriate assessment is

to be made of their relative performances. In order to support specialized research into numerical methods,

pythODE stores and then makes available all solution information to each module at each step, which does have

an additional performance cost. A similar package to pythODE written in C++ could lead to a package with

similar performance to the C and Fortran solvers in Table 5.1. However, to be an effective research tool,

this hypothetical software package could easily be at least an order of magnitude more complex to develop and

use than pythODE. At the present time, if it is desirable to remain in Python, it is important to minimize the

performance bottlenecks with an appropriate choice of library functions, such as those provided by SciPy.

Another good choice if at some point performance becomes extremely critical, would be to incorporate the

static typing and low-level performance provided by platforms such as Cython.
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5.6 Performance testing with pythODE and generating reference so-

lutions using published ERK pairs

Performance testing of IVP methods in the literature is often presented in the form of work-precision diagrams,

examples of which are given in this section and can be found extensively in the references [2, 21, 29, 37, 46, 47,

48, 49, 50, 56, 94, 96, 128, 136, 142, 157, 158, 159, 161, 164, 166, 187, 189, 190, 203]. Typically, the quantity

measuring the work, either CPU time or using a proxy for performance such as counting RHS evaluations, is

indicated by the y-axis of a plot where numerical solutions requiring a greater amount of work are towards

the top. Typically, the so-called “precision” (that is actually the accuracy or a calculation of the global

error (2.29) of the numerical solution) of the solution is given on the x-axis of a plot where greater accuracy

can be at either the left or right, depending on an author’s preference. Lines that are lower than others on

the work-precision diagram indicate numerical methods that are more efficient. The execution time of well-

optimized implementations of different algorithms is often accepted as the “ultimate” standard in assessing the

performance of numerical algorithms [56]. However, due to the relative newness of pythODE, in combination

with all of the potential sources of overhead and spurious timings that using a dynamically typed high-level

language such as Python can lead to, the number of RHS evaluations is instead used as a proxy for the

relative performance of IVP methods. In addition, with the large and sometimes surprising discrepancies in

performance between the performance of SciPy functions (as well as other Python statements and library

functions) discussed in Section 5.5, implementations of different numerical methods that leverage different

functionality in different ways may not have relative performances that correlate well with implementations in

low-level languages. Implementation-independent performance assessment, such as counting RHS evaluations

or the number of steps if there is a fixed number of RHS evaluations per step, without actually timing the

IVP solutions, has been used for many publications [2, 16, 37, 46, 47, 48, 49, 50, 128, 136, 142, 162, 155, 156,

158, 160, 164, 166, 187, 189, 190]. This is because implementation-independent performance measurement

contributes to the reproducibility of results if optimized implementations are not available; i.e., there is no

“noisy” variation that happens in actual timings and it allows exploration of numerical behaviour that is not

necessarily present in methods suitable for practical use or well-optimized implementations. In fact, for most

of the results presented from Section 5.8 and onward, the sometimes substantial variation in timings would

be too large to reliably give the insights seen. In addition, the combination of multiple trials at the multiple

accuracies, which are often aggregated into single data points below, would make it extremely expensive to

eliminate noise due to variation in timings. Ultimately, many IVPs from practice have expensive RHSs and it

can be expected that for these IVPs the computational cost of the expensive RHS evaluations will dominate

in implementations for practical purposes.

The work-precision diagram of classic 5(4)6 ERK pairs for the “non-stiff A3” IVP (2.11) is shown in

Figure 5.1. Also included in Figure 5.1 are the eighth- and seventh-order Dormand–Prince ERK pair [136]

and the third- and second-order by Bogacki–Shampine ERK pair [15] that Matlab uses for its ode23. On
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this extremely simple IVP, all of these pairs show the generally expected asymptotic behaviour except when

solving to coarse accuracies. What can clearly be seen in Figure 5.1 is that at coarse accuracies the third-

and second-order Bogacki–Shampine ERK pair has relatively smooth and predictable behaviour, whereas

higher-order pairs often do not.

Stiff IVPs, which are discussed in Section 2.5.4, do not show the expected asymptotic behaviour when

typical accuracies are sought because of the stepsize restrictions for numerical stability described in Sec-

tion 2.5.4. This is demonstrated by Figure 5.2 for the “stiff B1” IVP (2.12). It can clearly be seen on this

mildly stiff IVP that until the asymptotic region is reached, there is nearly the same cost for a wide range

of accuracies. Although not directly relevant to the pairs constructed for IVPs from celestial mechanics,

performance on stiff IVPs and the characteristics of the linear stability region can be extremely important for

ERK pair construction. In addition to explicit methods being a simpler choice for mildly stiff IVPs, explicit

methods should be able to gracefully handle some stiffness if it unexpectedly occurs.

The performance of the “Brusselator” IVP described in Section 5.3.2 is shown in Figure 5.3. The numerical

behaviour of ERK pairs solving the “Brusselator” IVP is in between non-stiff IVPs and IVPs that are definitely

stiff, such as the “stiff B1” IVP (2.12). The CK4(5)6(6) pair (2.83) outperforms most, except for extremely

high accuracy where the DP5(4)6(7) method (2.79) and the eighth- and seventh-order Dormand–Prince ERK

pair is most efficient. Possible justification for lower-order numerical methods still being widely used for IVPs

from semi-discretized PDEs is also clearly seen from Figure 5.3. At coarse tolerances and poor accuracies,

the third- and second-order Bogacki–Shampine ERK pair [15] incurs less computational cost and behaves

more predictably than any of the higher-order pairs tested. The author’s best hypothesis is that higher-

order methods have less leeway for the actual asymptotic behaviour to be different from the asymptotic

behaviour assumed by the step controller, which can lead to the instability discussed in Section 2.6. Given

the regularity that calls appear in the literature for higher-order numerical methods to be adopted more

widely by practitioners [36, 74, 169, 198, 199], this phenomenon (including the widespread use of low-order

methods without stepsize control) should be more carefully examined in the future, especially with large

amounts of performance data and fine-grained experimentation.

5.6.1 Performance tradeoffs of local extrapolation

Recall from Section 2.6 that local extrapolation is when an embedded pair advances the solution using the

higher-order component, despite the error estimate actually being for the lower-order component. Except for

several important IVPs, in the course of this study local extrapolation usually provided a clear advantage for

all 5(4)6 ERK pairs at most tolerances tested. These exceptions are important because although pairs such

as the RKF4(5)6(6) pair (2.78) were originally designed to be used without local extrapolation by minimizing

the leading error coefficient A5 of the fourth-order component, subsequent studies have generally concluded

that they usually work best using local extrapolation anyways [47, 146].

The advantage of local extrapolation for solving the van der Pol IVP (2.14), the “Arenstorf orbit”
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Figure 5.1: A work-precision diagram from solving the “non-stiff A3” IVP (2.11). BS32 represents
the third- and second-order Bogacki–Shampine ERK pair [15], RKF45 represents the RKF4(5)6(6)

pair (2.78), CK54 represents CK4(5)6(6) pair (2.83), DP54 represents the DP5(4)6(7) pair (2.79), PP54
represents the PP5(4)6(7) pair (2.84), and DP78 represents the eighth- and seventh-order Dormand–
Prince ERK pair [136].
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Figure 5.2: A work-precision diagram from solving the “stiff B1” IVP (2.12). BS32 represents
the third- and second-order Bogacki–Shampine ERK pair [15], RKF45 represents the RKF4(5)6(6)

pair (2.78), CK54 represents CK4(5)6(6) pair (2.83), DP54 represents the DP5(4)6(7) pair (2.79), PP54
represents the PP5(4)6(7) pair (2.84), and DP78 represents the eighth- and seventh-order Dormand–
Prince ERK pair [136].
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Figure 5.3: A work-precision diagram from solving the “Brusselator” IVP described by Hairer et
al. [72, pg.248]. BS32 represents the third- and second-order Bogacki–Shampine ERK pair [15], RKF45
represents the RKF4(5)6(6) pair (2.78), CK54 represents CK4(5)6(6) pair (2.83), DP54 represents the
DP5(4)6(7) pair (2.79), PP54 represents the PP5(4)6(7) pair (2.84), and DP78 represents the eighth-
and seventh-order Dormand–Prince ERK pair [136].
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IVP (2.14), the “non-stiff D2” IVP (2.13), and the “non-stiff D5” IVP (2.13) is shown in Figures 5.4, 5.5,

5.6, and 5.7, respectively. It can clearly be seen that, except for specific ranges of accuracy on specific

IVPs, local extrapolation gives clearly superior performance overall. This is what was also observed for the

overwhelming majority of IVPs described in Section 5.3. The only exception in the just-mentioned figures is

when solving the “Arenstorf orbit” IVP (2.14) with the CK4(5)6(6) pair (2.83), where local extrapolation is

not more efficient when solving to typical accuracies. This warrants further investigation, but the author’s

best hypothesis is that because the “Arenstorf orbit” IVP (2.14) is a severe test of step control, an error

estimate more representative of the actual local error may be an advantage in this case. This hypothesis

could be verified by examining the behaviour of a more accurate method for error estimation, such as the

step-doubling error estimation described in Section 2.6.1.

However, given that the focus of efficient pairs in this thesis are IVPs from celestial mechanics, it is

important to further examine whether local extrapolation might be a drawback when solving some practical

IVPs from celestial mechanics. In Figures 5.8 and 5.9 respectively, the “Jovian asteroid” IVP and “nine

planets” IVP are solved with the 5(4)6(6) ERK pairs described in Section 2.7, both with and without local

extrapolation. What can easily be observed, is that the pairs designed with Â5 < A6, i.e., the CK4(5)6(6)

pair (2.83) and the RKF4(5)6(6) pair (2.78), perform best without local extrapolation on these two IVPs. The

pair designed with Â5 > A6, i.e., the DP5(4)M6(6) pair (2.82), performs best with local extrapolation on these

two IVPs. In addition, the CK4(5)6(6) pair (2.83) without local extrapolation performs unexpectedly well on

the “Jovian asteroid” IVP and the RKF4(5)6(6) pair (2.78) without local extrapolation performs unexpectedly

well on the “nine planets” IVP. Because local extrapolation is currently the standard technique, the pairs

constructed in this thesis are designed to use local extrapolation. However, based on this observation of longer-

term integration of these two celestial mechanics IVPs, future work should examine whether, especially when

scaling up from simple test sets of IVPs to real-world IVPs, local extrapolation is in fact the ideal strategy in

many situations. In addition, if it is not ideal, the standard IVP test sets should be updated to reflect this.

Therefore, given these observations of the performance data, only local extrapolation is used for the remainder

of this study. However, given the historical discussion and that the error estimate in local extrapolation is

less likely to reflect the local error, a detailed study of local extrapolation should be done in the future. In

particular, if high-order methods are to be more predictable at coarse tolerances, this is one aspect that

should be examined.

5.6.2 The performance of the PP5(4)6(7) pair and Tsitouras’ pairs

After finding correct coefficients for Tsitouras’ pairs, as described in Section 4.15.1, despite the issue discussed

with their claimed properties not being able to exactly satisfy the order conditions, on most IVPs tested the

performance is fairly similar to other 5(4)6 ERK pairs if the properties are also fairly similar. Only for the

numerical solution of a few IVPs tested do potential issues appear, specifically for several IVPs from Sharp’s

restricted 3-body test set described in Section 5.3.4.
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Figure 5.4: A work-precision diagram demonstrating local extrapolation when solving the van der
Pol equation (2.14). RKF54 and RKF45 represent the RKF4(5)6(6) pair (2.78) with and without local
extrapolation, respectively. CK54 and CK45 represent the CK4(5)6(6) pair (2.83) with and without
local extrapolation, respectively. DP654 and DP645 represent the DP5(4)M6(6) pair (2.82) with and
without local extrapolation, respectively.
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Figure 5.5: A work-precision diagram demonstrating local extrapolation when solving the “Arenstorf
orbit” IVP (2.15). RKF54 and RKF45 represent the RKF4(5)6(6) pair (2.78) with and without local
extrapolation, respectively. CK54 and CK45 represent the CK4(5)6(6) pair (2.83) with and without
local extrapolation, respectively. DP654 and DP645 represent the DP5(4)M6(6) pair (2.82) with and
without local extrapolation, respectively.
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Figure 5.6: A work-precision diagram demonstrating local extrapolation when solving the “non-stiff
D2” IVP (2.13). RKF54 and RKF45 represent the RKF4(5)6(6) pair (2.78) with and without local
extrapolation, respectively. CK54 and CK45 represent the CK4(5)6(6) pair (2.83) with and without
local extrapolation, respectively. DP654 and DP645 represent the DP5(4)M6(6) pair (2.82) with and
without local extrapolation, respectively.
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Figure 5.7: A work-precision diagram demonstrating local extrapolation when solving the “non-stiff
D5” IVP (2.13). RKF54 and RKF45 represent the RKF4(5)6(6) pair (2.78) with and without local
extrapolation, respectively. CK54 and CK45 represent the CK4(5)6(6) pair (2.83) with and without
local extrapolation, respectively. DP654 and DP645 represent the DP5(4)M6(6) pair (2.82) with and
without local extrapolation, respectively.
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Figure 5.8: A work-precision diagrams demonstrating local extrapolation when solving the “Jovian
asteroid” IVP. RKF54 and RKF45 represent the RKF4(5)6(6) pair (2.78) with and without local ex-
trapolation, respectively. CK54 and CK45 represent the CK4(5)6(6) pair (2.83) with and without local
extrapolation, respectively. DP654 and DP645 represent the DP5(4)M6(6) pair (2.82) with and without
local extrapolation, respectively.
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Figure 5.9: Work-precision diagram demonstrating local extrapolation when solving the “nine plan-
ets” IVP. RKF54 and RKF45 represent the RKF4(5)6(6) pair (2.78) with and without local extrap-
olation, respectively. CK54 and CK45 represent the CK4(5)6(6) pair (2.83) with and without local
extrapolation, respectively. DP654 and DP645 represent the DP5(4)M6(6) pair (2.82) with and with-
out local extrapolation, respectively.
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In Figure 5.10, two IVPs from Sharp’s restricted 3-body test set no longer steadily converge when solved

to high accuracy by Tsitouras’ pairs (corrected by Stone). In addition, the PP5(4)6(7) pair (2.84) with

an extremely small leading error coefficient of A6 = 0.000065497266725264854 shows the same behaviour

and the DP5(4)6(7) pair (2.79) shows the behaviour to a small degree. However, Tsitouras’ pair from 2009

(corrected by Stone) also shows the same behaviour of not converging steadily at the highest accuracies

with A6 = 0.00052322700318498973 (an A6 that is slightly larger than the DP5(4)6(7) pair (2.79)). The

author’s hypothesis is that this inconsistent convergence at the highest accuracies may be a combination of

any of: roundoff error due to somewhat large Butcher tableau (2.34) coefficients, inexactly satisfying the

order conditions in the case of Tsitouras’ pairs, and an extremely small leading error coefficient that gives

inconsistent asymptotic behaviour and might even lead to instability in some cases.

These observations indicate that caution should be used for ERK pairs with aggressively minimized leading

error coefficients or ERK pairs from families that have properties that do not allow them to exactly satisfy

the order conditions. These types of pairs can perform extremely well in terms of average performance for

test sets such as the “non-stiff DE” test set, but occasionally show unexpectedly inconsistent or otherwise

poor behaviour. In Section 5.11 below, it is shown that more aggressively minimized leading error coefficients

often mean that performance can be extremely sensitive to the small changes in the properties of the ERK

pair and coefficients of the Butcher tableau (2.34).

5.6.3 Generating reference solutions for IVPs

The vast majority of IVPs derived from real-world applications do not have known exact solutions and high-

precision numerical solutions are not published or otherwise available. Therefore, in order to evaluate the

performance of numerical methods solving these IVPs, reference solutions must be generated. Reference

solutions are high-precision numerical solutions that are assumed to be much more accurate than the nu-

merical solutions found while performance testing numerical methods. The reference solutions for particular

IVPs can often be found using high-accuracy methods that are impractical for most efficiently solving the

IVPs to reasonable tolerances, such as high-order RK methods using a small constant stepsize or the Taylor

series methods mentioned in Section 2.4.2. Many authors also use quadruple-precision arithmetic to generate

reference solutions despite a huge performance loss on widely available computing hardware compared to

double-precision arithmetic.
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For this study, all tested IVPs can be solved relatively quickly (a few seconds to a few minutes) when used

for performance testing. Therefore, the extra effort to generate reference solutions for those IVPs that do

not have a published one is fairly minor. Happily, pythODE readily allows generating reference solutions with

many different ERK pairs and allows easily comparing them in order to increase the confidence level in the

reference solution used. Neither quadruple- or arbitrary-precision arithmetic is required to generate reference

solutions that effectively support this study. Reference solutions are generated that minimize the error when

used in double-precision computations by looking at the RMS of the change in successive solutions at the

final time tf . Seeking too small of a stepsize (when using a constant stepsize) or too small of a tolerance

(when using embedded error estimation) can lead to a reduction in accuracy due to excessive round-off error.

Therefore, in order to get a better picture of the behaviour of the reference solutions, candidate reference

solutions are generated using many of the same published ERK pairs that are also used in the performance

testing below. A reduction in accuracy is diagnosed by a steadily increasing change in the solutions between

successive reductions in either stepsize (when using a constant stepsize) or tolerances (when using embedded

error estimation). Both a constant stepsize and a variable stepsize were used as candidates for a reference

solution, and the one judged to be highest accuracy is used as the reference solution. The most commonly

used pair for the reference solutions is the eighth- and seventh-order ERK method constructed by Dormand

and Prince [136]. As an example of these different stepsize strategies, the reference solution for the “nine

planets” IVP was highest quality if a constant stepsize was used, whereas for the reference solution for the

“Jovian asteroid” IVP, the highest quality reference solution utilized a variable stepsize.

5.7 Studying the relative performance of large numbers of ERK

pairs with pythODE

In order to determine specific criteria for constructing ERK pairs, it is important to examine the overall

importance and effect on performance of specific properties and associated characteristic numbers. In fact,

the performance data presented in Section 5.11 shows that the specific values of specific PECs (2.48) are the

largest factor in determining the performance of individual ERK pairs for at least one class of IVPs, i.e.,

IVPs found from celestial mechanics. Additionally, it can be seen from Figures D.1 and D.2 that different

values of the PECs (2.48) than those found for celestial mechanics IVPs may be a principal determining

factor for other classes of IVPs. This importance of specific PECs,including that it can be used to help find

better ERK pairs for some classes of IVPs, is an aspect of the performance of RK methods that has not been

previously discussed in the literature.

To provide empirical support to specific guidelines for construction of ERK pairs, a large number of

randomly selected sets of free parameters (up to several thousand) from searches done with OCSage are

performance tested in order to observe whether better performing pairs have certain values of characteristic

numbers and PECs. Initial observations were often made based on a sample of free parameters selected
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uniformly and randomly from the PostgreSQL tables described in Chapter 4 containing the searches of the

free parameters, whereas in many of the figures in the remainder of this chapter, a fixed number of randomly

selected pairs for each of a set of identically sized ranges of values of the specific property being investigated

is used. For example, if the property under investigation spans the interval [−0.040, 0.040], rather than

6400 randomly selected pairs, 16 sub-intervals of 0.05 are used with 400 randomly selected pairs in each

sub-interval. It was found that this careful sampling enormously reduced the possibility of bias and false

conclusions that could be drawn, for instance, due to some values of the parameter under investigation being

much more common than other values.

Although insights gained empirically from performance testing randomly selected sets of numerical meth-

ods are not as rigorous as those found by more theoretical studies, performance testing can provide new

and valuable insights into the specific tradeoffs inherent in the coefficient selection process. As long as the

possible limitations of larger-scale empirical performance testing are considered when interpreting the per-

formance data, a better idea of the effect of specific properties of ERK pairs than what is currently known

can be found. A possible issue that must be considered are that false conclusions could be drawn about

the importance of characteristic numbers that are only correlated with other properties actually responsible

for the observed behaviour, which may not currently correspond to or be obvious from known characteristic

numbers. However, despite the inherent limitations of empirical studies, the procedure developed for this

study gives insights into the construction of ERK pairs that would simply not be apparent from only limited

performance testing.

It is shown below that the standard error coefficients and other characteristic numbers, e.g., (2.56), are not

always the dominant factors in performance differences between ERK pairs. When researchers have presented

numerical methods in the literature that are genuinely competitive with what has been available previously,

they have invariably experimented with many combinations of free parameters before choosing the specific

numerical methods that they actually published. It is understandable that in the past researchers could

not easily report all of the ad-hoc experimentation done. However, this means many published and widely

used numerical methods are not published with much justification as to why a specific set of coefficients

were selected, it remains unknown how “optimal” they actually are for a particular purpose, and it is usually

impossible for anyone to reproduce the steps that lead to the specific numerical methods that were published.

This is especially the case if the research is decades old. What the performance data generated from a software

system such as OCSage and pythODE used together allows, is expanding on the ad-hoc procedures of the past

to give a well-defined, systematic, and reproducible approach to choosing the best numerical methods, or at

least knowing the circumstances upon which a method is chosen.

5.7.1 The specific procedure for evaluating large numbers of ERK pairs

As seen from Figures 5.1–5.10, the work-precision diagrams from solving IVPs with a few ERK pairs can

be extremely noisy and it can be difficult draw specific conclusions by visual inspection alone. Because the
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author feels that the CK4(5)6(6) pair (2.83) is the most consistently performing of the 5(4)6 ERK pairs from

Section 2.7 across a wide range of accuracies and IVPs, in this study performance is normalized with respect

to the CK4(5)6(6) pair (2.83). For example, an ERK pair that has a normalized performance of 1.0 at a

particular accuracy on a particular IVP would have exactly the same computational cost (determined by the

number of RHS evaluations) as the CK4(5)6(6) pair (2.83) to obtain that accuracy. For overall performance

on a particular IVP or set of IVPs, the normalized performances at coarse, medium, and fine accuracies is

averaged. Therefore, an ERK pair with an overall averaged performance of 1.0 on a particular IVP or set of

IVPs would have the same average computational cost as the CK4(5)6(6) pair (2.83) when the performance

at coarse, medium, and fine accuracies are averaged. The accuracies chosen are found by the author’s

examination of a work-precision diagram for each IVP and a subjective determination of what typical coarse,

medium, and fine accuracies are from the right-side, middle, and left-side, respectively, of that work-precision

diagram.

In general, it is not necessarily known whether the IVPs of interest to practitioners solved to the desired

accuracy correspond to the behaviour at coarse, medium, and fine accuracies, or even some combination of

these in different regions of the ODE being solved. Therefore, the average of the normalized performance

at these three accuracies is the overall performance measurement used to judge the performance of ERK

pairs, although performance at the individual accuracies is always strongly considered. A consistent and

normalized methodology of assessing performance provides much better information than is often presented

in the literature. In many publications, performance is indicated without specifying the accuracy sought,

only a single point of accuracy is indicated, or only a small number of pairs and IVPs are tested in a way

that appears to give an obvious advantage to the newly constructed numerical method.

The tolerances used for the I step controller described in Section 2.6.2 are 12 values of relative tolerance

Trel (2.58) from 10−1 to 10−12, each spaced by a factor of 10. A relative tolerance of 10−1, which is only

about 10 times smaller than the solution values themselves. A relative tolerance of 10−12 is where excessive

computational cost due to issues such as floating-point roundoff start to become noticeable. For this study, the

corresponding absolute tolerance Tabs (2.58) is 100 times less than the relative tolerance used, i.e., 12 values

from 10−3 to 10−14 each spaced by a factor of 10. It is ideal that the absolute tolerances remain relatively

small because they are usually more of a safety factor to protect against if one of the solution components

begins to vanish. These tolerances do not generally give the performance at precisely the desired values

of coarse, medium, or fine accuracies. Therefore, interpolation between the actual data points representing

computational cost is used to find the expected computational cost for a particular accuracy. Although

individualizing the selection of relative and absolute tolerances for each IVP could be done for future studies,

experimentation by the author with different schemes for selecting absolute and relative tolerances did not

affect the overall conclusions from the performance experiments done for this study.

Other step controllers such as the PI step controllers were also tested in order to make sure that they

do not change the general conclusions made. For all IVPs tested in this study, rejected steps were rare at
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fine tolerances, an example of this can clearly be seen in Table 5.1. However, incorporating PI or other more

advanced step controllers into this study would be a complication to the focus on the families and coefficient

selection process for ERK pairs. Therefore, experimentation with different schemes for stepsize control must

be left to future work.

In Figures 5.11–5.45 below, which are described in detail where they appear, the scatter plots in first

column give the normalized computational cost required at coarse tolerances, the scatter plots in the second

column give the normalized computational cost required at medium tolerances, the scatter plots in the third

column give the normalized computational cost required at fine tolerances, and the scatter plots in the fourth

column give the average of these three normalized computational costs. Table 5.2 gives symbols that appear

on many of these scatter plots to show the values that classic 5(4)6 ERK pairs from Section 2.7 correspond

to.

Table 5.2: Symbols used by some figures, where indicated, in this chapter to represent published
5(4)6 ERK pairs.

SymbolMethod
` The RKF4(5)6(6) pair (2.78)
e The CK4(5)6(6) pair (2.83)
a The DP5(4)M6(6) pair (2.82)
f The PP5(4)6(7) pair (2.84)
F The DP5(4)6(7) pair (2.79)
b The DP5(4)C6(7) pair (2.81)
d The DP5(4)S6(7) pair (2.80)

5.8 Observations of the relative performance of different families

and leading error coefficients

The effect of the leading error coefficient of 5(4)6 ERK pairs from the 5(4)6(6)C(2) and 5(4)6(7)C(2) families

on various IVPs is demonstrated in this section. This shows that, although important, a small leading error

coefficient is not sufficient to ensure the best performance. For the families without the C(2) simplifying

assumptions (2.44b), the figures lead to similar conclusions to those from the families with the C(2) simplifying

assumptions (2.44b). Therefore, these families without the C(2) simplifying assumptions (2.44b) are only

addressed starting in Section 5.10.

The “A3” IVP

In Figure 5.11, the performance solving the “A3” IVP (2.11) from the “non-stiff DE” test set in relation

to the leading error coefficient A6 is shown at coarse, medium, fine, and averaged accuracies. What can

clearly be seen is that, for this relatively simple IVP, the best-performing pairs have the smallest leading
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error coefficient and that this relationship holds between families, with the 5(4)6(7)C(2) family having pairs

with the best performance overall because the leading error coefficient A6 can be minimized arbitrarily.

In Figure 5.11, at each of the coarse, medium, and fine tolerances there are a small number of pairs that

perform at a normalized performance of 0.5, i.e., only half the computational cost to obtain the specified

accuracy as CK4(5)6(6) (2.83). However, when the coarse, medium, and fine tolerances are averaged there

are no pairs found that have a performance near 0.5 averaged accuracy. This demonstrates a more general

observation by the author that there are pairs that are “optimal” for specific accuracies on individual IVPs

but often this “optimal” performance does not translate to the IVP as a whole or to related IVPs. This is

why the decision was made to use three different accuracies. This also supports the general observation made

that any specific conclusions drawn should apply to at least several different accuracies sought and ideally

to more than one IVP. During the initial explorations of performance data in support of the study in this

thesis, the author found it relatively easy to find ERK pairs that performed extremely well at a particular

tolerance on a particular IVP, but had at best had average performance at different tolerances or on closely

related IVPs.

This also clearly illustrates the source of an issue that has been discussed for both numerical methods [111,

166, 186] and extensively for other areas of research into algorithms and computational methodologies [22, 42,

45, 88, 90], that is that many studies compare relatively few numbers of methods that are either deliberately

or incidentally “tuned” on a small number of problems. “Good candidates” for these “tuned” methods are

clearly visible in Figure 5.11, in addition to many other figures throughout this chapter. This clearly indicates

the importance of using larger amounts of performance data than is typically used to support most studies

into numerical methods.

The “Arenstorf orbit” IVP

The “Arenstorf orbit” IVP (2.15) is an IVP where the magnitude of the leading error coefficient A6 is still

important, but is not necessarily the most dominant factor governing performance between different pairs or

families. In Figure 5.12, the performance solving the “Arenstorf orbit” IVP (2.15) is shown in comparison

to the leading error coefficient A6. It can be seen that nearly the best overall pair for the “Arenstorf orbit”

IVP (2.15) is in fact the CK4(5)6(6) pair (2.83). In particular, on this challenging IVP for variable-stepsize

solvers, there are pairs from the 5(4)6(7)C(2) family that perform as well as the CK4(5)6(6) pair (2.83),

even though many published pairs perform quite poorly overall. Notice that the PP5(4)6(7) method (2.84)

performs relatively better at low accuracy and performs progressively worse at fine accuracy. Even though the

PP5(4)6(7) method (2.84) often performs extremely well on many tested IVPs when seeking high accuracy due

to the extremely small value of A6, this observation of poor performance at high accuracy on a challenging IVP

should raise more questions about the real-world performance and robustness of an aggressively minimized

leading error coefficient. Observe that pairs in the 5(4)6(6)C(2) family often perform as well as pairs in the

5(4)6(7)C(2) family even when the former have a much larger leading error coefficient. This clearly indicates
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(a) The 5(4)6(6)C(2) family.

(b) The 5(4)6(7)C(2) family.

Figure 5.11: The performance solving the “non-stiff A3” IVP (2.11) in comparison to the leading
error coefficient. See Table 5.2 for the symbols indicating published 5(4)6 ERK pairs.
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(a) The 5(4)6(6)C(2) family.

(b) The 5(4)6(7)C(2) family.

Figure 5.12: The performance solving the “Arenstorf orbit” IVP (2.15) in comparison to the leading
error coefficient. See Table 5.2 for the symbols indicating published 5(4)6 ERK pairs.

that a more thorough understanding is needed of the relationship between the properties of ERK pairs and

performance solving IVPs.

The “non-stiff B2” and “non-stiff B3” IVPs

In Figure 5.13, the performance in relation to the leading error coefficient is shown for the “non-stiff B2” and

“non-stiff B3” IVP, from the “non-stiff DE” test set that each model a chemical reaction. The “non-stiff B2”

IVP is a linear IVP and the “non-stiff B3” IVP is a non-linear IVP. Only the 5(4)6(7)C(2) family is shown

because this demonstrates the numerical behaviour most clearly. Observe that minimizing the leading error

coefficient to the extent possible with the 5(4)6(7)C(2) family is actually detrimental for these IVPs. This is a

phenomenon that has also been observed for all other linear IVPs that were tested in the course of this study.

It was further observed that the leading error coefficient rarely had relevance to the performance of ERK

pairs for solving linear IVPs. This is because, as discussed in Section 2.5.1, the only non-zero elementary

differentials for IVPs with linear RHSs are those corresponding to the tall trees. In addition, despite being
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relatively easy to study, observations made by the author throughout this study indicate that non-stiff linear

IVPs may only have limited applicability for studying the performance of many non-stiff non-linear IVPs.

In particular, in many studies phenomenon such as dispersion, dissipation, and linear stability are examined

through the scalar test equation (2.10) with appropriate λ when studying the numerical solution of non-linear

IVPs [4, 82, 160, 179]. However, this practice should be revisited.

For IVPs with quadratic RHSs, such as the “non-stiff B3” IVP, the only elementary differentials (2.36)

that are non-zero are those corresponding to trees that have no more than 2 branches extending from any

vertex, which can easily be seen by examining the expressions for elementary differentials (2.36). This means

for IVPs that have quadratic RHSs, at most only 11 of the 20 PECs of the sixth-order error term are non-

zero. This helps explain why performance testing by the author, similar to that shown in Section 5.10 below,

showed that the best performing pairs for each of the “non-stiff B2” IVP and “non-stiff B3” IVP were not

well correlated. This and other observations by the author indicate that caution should be used in assuming

that the performance of different IVPs will be correlated based on similar origin or similar mathematical

classification. Although these two IVPs and computational chemistry in general are not the focus of this

study, this example is included to illustrate the potentially severe loss of performance that could occur

with a blind overemphasis on leading error coefficients. Considering that many of the examples the author

has seen in the literature and text books discuss using the Matlab ode45 solver for solving IVPs from

chemistry [53, 109, 170], future work could include implementing a more IVPs from computational chemistry

into pythODE to see if general conclusions about better ERK pairs for this important application could be

found.

The average performance solving the IVPs from the “non-stiff DE” test set

Although finding improved average performance solving the IVPs from the “non-stiff DE” test set or any other

arbitrary set of IVPs is not alone considered to be a notable research result in the contemporary literature,

the average performance on test sets does have both illustrative and historical value. Publications that have

measured the average performance of IVP methods on IVPs from the “non-stiff DE” test set include many in

the references [30, 155, 161, 162, 180, 182, 183]. In Figure 5.14, the average performance solving the IVPs of

“non-stiff DE” test set in relation to the leading error coefficient is shown for the family of 5(4)6(6) ERK pairs

with the C(2) simplifying assumptions (2.44b) and the family of 5(4)6(7) ERK pairs with the C(2) simplifying

assumptions (2.44b). It is interesting to observe that the CK4(5)6(6) pair (2.83) (with A6 = 0.000948) and

the DP5(4)M6(6) pair (2.82) (with A6 = 0.00123) have better average performance solving the “non-stiff

DE” test set at all accuracies than the DP5(4)6(7) pair (2.79) (with A6 = 0.000399). This is despite both

5(4)6(6) ERK pairs mentioned having a leading error coefficient that is 2 to 3 times larger than the DP5(4)6(7)

pair (2.79). The CK4(5)6(6) pair (2.83) has better performance than even the PP5(4)6(7) pair (2.84) (with

A6 = 0.0000654, i.e., an extreme minimization of A6) at all but fine accuracies. In addition, observe that

there are pairs from the 5(4)6(7)C(2) family in Figure 5.14b that perform extremely poorly, which are explained
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(a) The “non-stiff B2” IVP.

(b) The “non-stiff B3” IVP.

Figure 5.13: The performance solving the “non-stiff B2” and “non-stiff B3” IVPs in comparison to
the leading error coefficient using the 5(4)6(7)C(2) family. See Table 5.2 for the symbols indicating
published 5(4)6 ERK pairs.
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(a) The 5(4)6(6)C(2) family.

(b) The 5(4)6(7)C(2) family.

Figure 5.14: The average performance solving the ”non-stiff DE” test set in comparison to the leading
error coefficient. See Table 5.2 for the symbols indicating published 5(4)6 ERK pairs.

in the next section. In this chapter, it is repeatedly seen that even when an aggressively optimized leading

error coefficient is advantageous, it does not provide the performance advantage expected from the just the

“relative efficiency”, see the discussion about (5.1) below. The dominant factors in the performance of ERK

pairs for celestial mechanics IVPs are addressed in Section 5.11. Only then can properties such as the classic

characteristic numbers (2.56) be addressed in Section 5.13. More importantly, it is seen in Figures 5.11–5.13

that the performance variation on individual IVPs or specific classes of IVPs (shown below in Figure 5.15

for the “non-stiff D” IVPs (2.13)) can be much greater than for large and diverse sets of IVPs, such as the

“non-stiff DE” test set.

The “non-stiff D” IVPs

In order to reach informative and quantitative conclusions about performance of RK pairs or the importance

of characteristic numbers on the IVPs under study, not only is investigation at multiple accuracies required,

but it is also necessary to consider at least several IVPs representative of the application that a numerical
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method is being constructed for. As an example, the “D1”–“D5” IVPs (2.13) in the “non-stiff DE” test set are

the same ODE but with different initial conditions based on a single parameter, i.e., the eccentricity ε of the

orbit. Therefore, these make an excellent set of IVPs for demonstrating the difference between performance

on an individual IVP and averaging the performance of closely related IVPs. In particular, the average

performance of the “D1”–“D5” IVPs (2.13) at coarse, medium, and fine accuracies shown in Figure 5.15

is never quite as good as that on the individual IVPs (not shown). This additionally demonstrates that

numerical methods can be “tuned” for best performance on a particular IVP at multiple accuracies, but that

the “tuning” may not carry over to closely related IVPs. In general, only examining the performance solving

individual IVPs or too few IVPs means that conclusions reached are unlikely to be generalizable. Conversely,

averaging the performance of too many IVPs that are unrelated in their numerical behaviour means that after

pairs with obviously poor properties are excluded, it is difficult to make further quantitative and well-defined

improvements. In Section 5.10 below, it is shown that there is a significant but not a perfect correlation in

the performance of ERK pairs solving the “D1”–“D5” IVPs (2.13), which are also fairly well correlated to

performance solving more complex IVPs from celestial mechanics.

5.8.1 Mathematical demonstrations

The wide range of performance seen in the figures in this section (as well as many others in this chapter)

support the observation by Söderlind (the quotation at the beginning of this chapter) that most evaluations of

numerical methods in the literature are in fact “mathematical demonstrations” rather than rigorous empirical

experiments [166]. Of course, “mathematical demonstrations” are extremely important because they verify

that any theoretical results of a study are correct, that there exists at least one case where the results of a

study are visible as numerical behaviour and that the study may lead to an alternative to existing numerical

methods. However, “mathematical demonstrations” are rarely sufficient to draw well-defined and generalizable

conclusions about the difference between specific IVP methods, families, or even distinctly different types of

numerical methods. In particular, with enough experimentation “tuning” ERK pairs, the author’s experience

has shown it would be possible to argue that many ERK pairs from the families constructed in Chapter 3

are better than all of the classic pairs from Section 2.7 on the Kepler IVP (2.13). It would be even easier

to argue based on limited experimentation with “tuned” pairs that many of the families from Chapter 3 are

the best for the “Arenstorf orbit” IVP (2.15) because of the factor of two variation in performance shown in

Figure 5.12 for similar values of the leading error coefficient. Even for the average performances solving the

“non-stiff DE” test set shown in Figure 5.14, there is enough variation in performance that it would often be

possible to “tune” pairs to obtain a result that was expected a priori.

Relative efficiency and leading error coefficient

An aggressively minimized leading error coefficient gives a narrow range of performance because the aggres-

sively minimized leading error coefficient occurs within a relatively small region of parameter space. Due to
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the smoothness of the space of free parameters for most families of ERK pairs, shown in Chapter 4, all of the

pairs found from small regions of space of free parameters often have similar properties. In Figure 5.12, the

performance of the “Arenstorf orbit” IVP (2.15) is an example where an aggressively minimized leading error

coefficient, such as that found by using numerical minimization to find the minimum value possible, would

be severely detrimental to performance.

The simplistic ratio implying that the leading error coefficient is directly related to the global error was

given the name “relative efficiency” by Shampine as a way of evaluating 5(4)6 ERK pairs in 1986 [146]. An

example of calculating relative efficiency for comparing the RKF4(5)6(6) method (2.78) and the DP5(4)6(7)

method (2.79) based on using the fifth-order component to advance the solution is

”relative efficiency” ≈
(

0.003357

0.000399

) 1
5

≈ 1.53, (5.1)

implying that the DP5(4)6(7) method (2.79) on average have 1.53 times less computational cost than the

RKF4(5)6(6) method (2.78). However, the only IVPs solved in this section where the ratio shown by (5.1)

holds true for the two aforementioned ERK pairs are the “A3” IVP (2.11) and the “Arenstorf orbit” IVP (2.15).

Close inspection of Figure 5.12 for the “Arenstorf orbit” IVP (2.15) shows the discrepancy between the

DP5(4)6(7) method (2.79) and RKF4(5)6(6) method (2.78) does not have to do with the magnitude of the

leading error coefficient alone. Many authors, both before and since Shampine explicitly discussed “relative

efficiency” in 1986 [146], have used at the magnitude of the leading error coefficient as an attempt to predict

the potential performance of numerical methods for IVPs. However, in this study by using software packages

such as OCSage and pythODE, a more complex appraisal is made using the larger amount data now available.

Hence, the term “relative efficiency” is not used further in this thesis. However, it can also be seen from the

preceding Figures 5.11–5.15 that pairs with smaller leading error coefficients do have better potential for the

best performance as long as other criteria are considered. As long as the minimization is not too aggressive

and appropriate performance testing of candidate IVP methods is done, if no other criteria for coefficient

selection are obvious, then presenting the pair with smallest leading error coefficient is still justified.

Unexpectedly good performance on some IVPs of the CK4(5)6(6) pair

In Figure 5.12 and Figure 5.14, for both the “Arenstorf orbit” IVP (2.15) and the “non-stiff DE” test set [83],

respectively, the CK4(5)6(6) pair (2.83) performs among the absolute best (in one experiment the author

found this was the 99th percentile of pairs found in a search by OCSage) of the randomly chosen pairs with

leading error coefficients A6 ≤ 0.0010 from the 5(4)6(6)C(2) family. Although not mentioned in the original

paper [30] or any other publications, the author feels that this observed performance is too coincidental.

When the CK4(5)6(6) pair (2.83) was constructed it was probably “tuned” for best performance on both the

DE test set and the “Arenstorf orbit” IVP (2.15) together. In fact, although the CK4(5)6(6) pair (2.83) does

in fact perform extremely well on many IVPs, it does not perform among the absolute best of randomly
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(a) The 5(4)6(6)C(2) family.

(b) The 5(4)6(7)C(2) family.

Figure 5.15: The average performance solving the “non-stiff D” IVPs (2.13) in comparison to the
leading error coefficient. See Table 5.2 for the symbols indicating published 5(4)6 ERK pairs.

selected pairs for any other of the many IVPs tested in this study, other than a few contained in the “non-stiff

DE” test set [83]. The “non-stiff DE” test set [83] has been around since 1972 and the “Arenstorf orbit”

IVP (2.15) appeared in the first edition from 1987 [71] of the book by Hairer, Nörsett, and Wanner [72] that

is extensively referenced throughout this thesis. Therefore, it is highly probable that CK4(5)6(6) pair (2.83)

was found by “tuning” using the “Arenstorf orbit” IVP (2.15) and “non-stiff DE” test set [83].

5.9 The norms used for error coefficients and the need to avoid large

higher-order error coefficients

Higher-order error coefficients, e.g., the error coefficients Aq, q ≥ 7 that are of higher order than the leading

error coefficient A6 for 5(4)6 ERK pairs, can substantially affect the performance of ERK pairs, although the

effects are visible to a much greater degree for some families. The ratios of the leading error coefficient to

the next error coefficient, such as A7

A6 for 5(4)6 ERK pairs, has been mentioned by other authors [16, 30, 96,
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128, 161]. Several authors have addressed A7

A6 and proposed limits so it does not adversely affect performance

for six-stage fifth-order ERK: Sharp and Smart suggest A7

A6 < 2.5 [161], Bogacki and Shampine suggest
A7

A6 < 10.0 (2.54) [16], and Papakostas and Papageorgiou suggest A7

A6 < 25.0 [128]. However, experimentation

by the author shows that limiting the actual magnitude of higher-coefficients such as A7 is a better indicator

than the just-shown ratios of actual performance solving IVPs.

In particular, the 5(4)6(7)C(2) family has much larger ranges of many properties than other families and

this means the performance difference between good and poor properties is often more obvious. This is in

part because of the singularity for the 5(4)6(7)C(2) family discussed in Section 4.12.2, i.e., where A6 → 0 and

D → ∞ as c4 → 1 and c5 → 1 at a particular value of c3, that seems to allow other error coefficients and

properties to sometimes have a much wider range. The just described singularity and the wider ranges of

other properties seem to be because the 5(4)6(7)C(2) family has all of c3, c4, c5 as free parameters, whereas

for nearly all of the other families studied in Chapter 3, with the exception of the family using Case I from

Section 3.5.2 that uses c5 instead, c4 must be used for satisfying the order conditions of the fourth-order

component.

The average performance solving the “non-stiff DE” test set is useful for illustrating the effect of higher-

order error coefficients and showing the differences from different norms used for the error coefficients. The

use of the∞-norm in addition to the 2-norm appears to have been first discussed in the context of embedded

RK pairs by Verner [189, 190]. For the IVPs tested in this thesis, the 2-norm was always observed to be the

most predictive for evaluating potential performance based on the leading error term. However, the different

possible norms of the PECs (2.47) defined by (2.55) were found to be useful for studying the contribution of

the seventh-order error term. The average performance of 3200 randomly selected pairs from the 5(4)6(7)C(2)

family with A6 ∈ [0.00035, 0.00040] solving the “non-stiff DE” test set in comparison to different seventh-order

error coefficients is shown in Figure 5.16. The performance of the 5(4)6(7)C(2) family in relation to the value

of A7 is shown in Figure 5.16a. In Figure 5.16a, it can clearly be seen that a large A7 is detrimental to overall

performance because the pairs with the worst performance are almost always associated with relatively large

A7, whereas the best performing pairs always have an A7 somewhat smaller than the A7 = 0.003956 of the

DP5(4)6(7) pair (2.79). This is particularly obvious at low accuracies, but is seen even at high accuracies

where it would commonly be assumed that the leading error term would completely dominate performance.

However, |A7|1 is clearly seen in Figure 5.16b to be even better at indicating poorly performing pairs because

poorly performing pairs always have larger values of |A7|1 than is strictly necessary for the specific range of

A6 under study. The effectiveness of |A7|1 is probably because, in comparison to A7, the 1-norm used by

|A7|1 gives more weighting to individual PECs that are larger than strictly necessary for the specific range

of A6 under study. Although |A7|∞ should still be examined when constructing new 5(4)6 ERK pairs, based

on the experience with the IVPs examined during this study it seems to be less useful than |A7|1 and A7.

Error coefficients based on the PECs (2.48), which can be seen as the PECs (2.48) normalized to what

their value would be if the numerical method was a simple truncation of the Taylor series of the local
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(a) Using A7 (2.55b).

(b) Using |A7|1 (2.55a).

(c) Using |A7|∞ (2.55c).

Figure 5.16: The performance solving the “non-stiff DE” test set of 3200 pairs with A6 ∈
[0.00035, 0.00040] from the 5(4)6(7)C(2) family in comparison to different error coefficients that use
the PECs (2.47) of the seventh-order error term. The red F symbol indicates the value of the seventh-
order error coefficient and the performance of the DP5(4)6(7) pair (2.79).
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solution (2.38), can also be examined. In Figure 5.17, the overall trend is similar to Figure 5.16 except that

|Ā7|1 appears to be an even better indicator of performance than |A7|1 for the 5(4)6(7)C(2) family. This is

probably because individual PECs (2.48) may be under-represented due to the scaling by 1
σ(F) in (2.47).

However, using the normalized definition, i.e., the PECs (2.48), ensures that PECs that are otherwise under-

represented by (2.47) and have larger than appropriate magnitudes, now have a greater contribution when

calculating the norm being used for the error coefficient.

However, despite Figures 5.16 and 5.17 showing the importance of |A7|1 and |Ā7|1 to the average perfor-

mance solving the “non-stiff DE” test set, detailed examination of the performance data by the author (not

shown) indicates that the most informative norm of the seventh-order error term is often IVP dependent.

Further experimentation by the author (not shown) also showed that overly minimizing A7, for example,

by making A7 ≤ 0.0020 for A6 ∈ [0.00035, 0.00040] for the 5(4)6(7)C(2) family, is severely detrimental to

performance solving some IVPs but not others. An additional guideline is that limiting the D characteristic

number (2.56c) as much as possible is important because large PECs for error terms greater than seventh-

order were observed to be correlated with large values of the D characteristic number (2.56c).

An investigation by the author (not shown) of the performance data on the “non-stiff DE” test set sum-

marized in Figure 5.14 also supports Dormand and Prince’s observation from 1986 [48], that is when the

“non-stiff D” IVPs (2.13) are removed, the DP5(4)C6(7) pair (2.81) with A6 = 0.001489 outperforms the

DP5(4)6(7) pair (2.79) with A6 = 0.000399. The author’s hypothesis for Dormand and Prince’s observation

is that A7 = 0.002064 for the DP5(4)C6(7) pair (2.81) is much smaller than A7 = 0.003956 for the DP5(4)6(7)

pair (2.79). This possible explanation of this historical observation must remain a hypothesis because it is

difficult to compare the overall effect of the seventh-order error coefficients when A6 is not held within a

narrow range, such as what was done for Figures 5.16 and 5.17. However, it is important to mention because

it indicates that despite the strong emphasis in the literature on the effect of the leading error term, there is

historical precedent of observing that the leading error term may not be the only important factor.

The popular DP5(4)6(7) pair (2.79) is definitely not “optimal” because it has A7 = 0.003956 and there are

pairs with A6 ≤ 0.000400 and A7 as small as 0.00120, even though A7 that small is definitely over-minimized

for some IVPs. It is clearly seen in Figure 5.17a that the DP5(4)6(7) pair (2.79) performs as well as can be

expected given value of A7 and, with all other things being equal, finding an otherwise similar pair except

with A7 = 0.0025 instead could lead to a 20% improvement in average performance solving the “non-stiff DE”

test set. However, an A7 that might be somewhat larger than optimal, such as for the DP5(4)6(7) pair (2.79),

seems to only result in a slight but still noticeable loss in performance (up to 40–50%) in comparison to

the severe performance loss sometimes seen for pairs with an over-minimized A7. This is likely why the

DP5(4)6(7) pair (2.79) remains in use, the influence of the seventh-order error coefficient is modest and the

non-optimality only becomes apparent with a substantial amount of performance data.
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(a) Using |Ā7|2 (2.55e).

(b) Using |Ā7|1 (2.55d).

(c) Using |Ā7|∞ (2.55f).

Figure 5.17: The average performance solving the “non-stiff DE” test set of 3200 pairs with A6 ∈
[0.00035, 0.00040] from the 5(4)6(7)C(2) family in comparison to different error coefficients that use the
PECs (2.48) of the seventh-order error term. The redF symbol indicates the value of the seventh-order
error coefficient and the performance of the DP5(4)6(7) pair (2.79).
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5.10 Correlations and tradeoffs in performance on select IVPs for

ERK pairs from the same family

In this section, performance data is presented that shows that once the obviously undesirable properties, such

as overly large error higher-order coefficients, are removed that it is probably not possible to find the “best”

or “optimal” 5(4)6 ERK pairs for the extremely diverse classes of IVPs that are commonly solved in practice.

Because of the enormous diversity of IVPs solved in practice, there is already a general expectation that

there are generally no universally “best” IVP methods or “best” numerical methods. However, it is important

to examine performance data to see how this manifests itself in practice and to determine the circumstances

under which more optimal IVP methods can be constructed.

Even well-accepted and generally excellently performing pairs, such as the CK4(5)6(6) pair (2.83) or the

DP5(4)6(7) pair (2.79), have important representative IVPs that they do not perform comparatively well on,

in addition to other important representative IVPs that they do perform comparatively well on. Some of the

performance variation of IVP methods with similar numerical properties can be attributed to the discrete

number of steps and that quantities based on theoretical considerations, such as the PECs up to a certain

order, do not fully represent the numerical solution. In addition, many theoretical properties only hold

exactly in an asymptotic limit and they cannot be used to exactly predict performance for solving IVPs in

practice. However, the tradeoffs shown below and examining specific PECs in the remainder of this chapter

show that the substantial amount of variation in performance for relatively small ranges of the leading error

coefficient seen in Figures 5.11–5.14 can be substantially reduced for IVPs based on the Kepler IVP (2.13).

More importantly, this can help guide future work to reduce the amount of unexplained performance variation

when solving additional classes of IVPs.

To demonstrate that there are 5(4)6 ERK pairs that are more “optimal” than others for solving IVPs

from celestial mechanics based on the Kepler IVP (2.13), the relative performance of 3200 randomly selected

pairs from each of the 5(4)6(6)C(2) family (with A6 ∈ [0.00095, 0.00100] that would contain the CK4(5)6(6)

pair (2.83)), 5(4)6(7)C(2) family (with A6 ∈ [0.00035, 0.00040] that would contain the DP5(4)6(7) pair (2.79)

and A7 < 0.0050), and the Case VIb family (with A6 ∈ [0.00100, 0.00110] because A6 < 0.00100 was observed

to hurt performance and µ = 1, λ ∈ [−1, 1]) are shown in Figures 5.18, 5.19, and 5.20, respectively. In this

section, the performance presented for each 5(4)6 ERK pair is the average at the coarse, medium, and fine

accuracies chosen for the particular IVP or set of IVPs. The author also examined each of the coarse,

medium, and fine tolerances individually (not shown), and the tradeoffs appeared nearly the same as seen

in Figures 5.18, 5.19, and 5.20. The rows of Figures 5.18, 5.19, and 5.20 correspond to instances of the

Kepler IVP from the “non-stiff D” IVPs (2.13) (with eccentricities ε ∈ [0.1, 0.3, 0.5, 0.7, 0.9]) in addition to

the “non-stiff D6” IVP (2.13) with ε = 0.99. The columns of Figures 5.18, 5.19, and 5.20 correspond to

examples of IVPs from celestial mechanics that are more complex than the simple Kepler IVP (2.13), i.e.,

the “Arenstorf orbit” IVP (2.15), the “Pleiades” IVP (2.16), the “Jovian” IVP (solved to 7200 days) [157], the
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“Jovian asteroid” IVP (solved to 7200 days) [160], and the “Nine planets” IVP (solved to 7200 days) [157], in

addition to the average performance solving the “non-stiff D” IVPs (2.13).

What can clearly be seen from Figures 5.18, 5.19, and 5.20 is that for each of the more complex IVPs from

celestial mechanics, the performance solving them is strongly correlated with at least one of the “non-stiff

D” IVPs (2.13). However, the correlation is rarely with the specific “non-stiff D” IVP (2.13) that would be

expected, based on the eccentricities present in the individual orbits that constitute the more complex IVP

from celestial mechanics. For instance, the “nine planets” IVP (with eccentricities of the individual orbits

of at most 0.09) has strongly correlated performance with the “non-stiff D2” IVP (2.13) with ε = 0.3 but is

less correlated with the “non-stiff D1” IVP (2.13) with ε = 0.1. The performance solving the Pleiades and

the “Jovian asteroid” IVPs are most strongly correlated with the “non-stiff D5” IVP (2.13) with ε = 0.9, in

addition to being reasonably well correlated with the “non-stiff D6” IVP (2.13) with ε = 0.99. This indicates

that the performance solving simpler Kepler-based IVPs with eccentricities close to 1.0 is correlated to the

performance solving more complex Kepler-based IVPs with close approaches. The performance solving the

more complex IVPs from celestial mechanics derived from the Kepler IVP (2.13) is also fairly well correlated

with the average performance solving the “non-stiff D” IVPs (2.13), which for illustrative purposes is in both

a row and a column of Figures 5.18, 5.19, and 5.20.

These correlations in performance are actually contrary to the discussion in a recent paper by Sharp,

Castillo-Rogez, and Grazier from 2012 [160]. Where they studied a different class of ERK methods (Runge–

Kutta–Nyström methods, which are specific to IVPs based on second order ODEs (2.4)) they observed that

performance on the basic Kepler problem (2.13) was often not applicable to larger/more complex problems

from celestial mechanics in terms of performance for numerical methods. This was done specifically by Sharp

et al. by solving Kepler IVPs (2.13) with only a few numerical methods but many eccentricities ε ∈ [0.0, 0.9],

a range they justified because the maximum eccentricity of the planetary orbits is ε = 0.09 and that the

vast majority of minor bodies also have eccentricities in this range [160]. However, despite Sharp et al. [160]

including authors from JPL (the Jet Propulsion Laboratory),32 that study was not able to use the large

amount of performance data on thousands of individual IVP methods that is now available by using OCSage

and pythODE. Excellent future work requiring significant computational resources would be combining the

long integration times of Sharp et el. [160] with the techniques of this study.

The “Arenstorf orbit” IVP (2.15) is somewhat different from other IVPs based on the Kepler IVP (2.13)

because the performance solving it is less correlated with the “non-stiff D” IVPs (2.13) in comparison to

the other IVPs from celestial mechanics. This somewhat different numerical behaviour might be because

the “Arenstorf orbit” IVP (2.15) has an incredibly close pass of the massless satellite (corresponding to an

eccentricity extremely close to 1.0) or it might be because the “Arenstorf orbit” IVP (2.15) uses a rotating

frame of reference.

32https://www.jpl.nasa.gov/
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Figure 5.18: The performance solving the “non-stiff D” IVPs (2.13) in comparison to other ce-
lestial mechanics IVPs using 3200 randomly selected pairs from the 5(4)6(6)C(2) family with A6 ∈
[0.0010, 0.00110]. See Table 5.2 for the symbols indicating published 5(4)6 ERK pairs.
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Figure 5.19: The performance solving the “non-stiff D” IVPs (2.13) in comparison to other ce-
lestial mechanics IVPs using 3200 randomly selected pairs from the 5(4)6(7)C(2) family with A6 ∈
[0.00035, 0.00040] and A7 ≤ 0.0050. See Table 5.2 for the symbols indicating published 5(4)6 ERK
pairs.
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Figure 5.20: The performance solving the “non-stiff D” IVPs (2.13) in comparison to other
celestial mechanics IVPs using 3200 randomly selected pairs from the family of Case VIb with
A6 ∈ [0.0010, 0.00110], µ = 1, λ ∈ [−1, 1]. See Table 5.2 for the symbols indicating published 5(4)6
ERK pairs.
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5.10.1 Tradeoffs in performance when solving IVPs other than celestial mechan-

ics IVPs

In contrast, IVPs from “non-stiff B” class of IVP along with the “Euler rigid body” IVP published by Hairer

et al. [72, pgs.244–245], which were discussed in Section 5.3, are not well correlated in performance, either

with each other or with the celestial mechanics IVPs just discussed. This is shown by Figures 5.21 and 5.22

for the 5(4)6(6)C(2) and 5(4)6(7)C(2) families, respectively. It can be seen that non-correlated performance and

tradeoffs are more common than the performance being correlated. However, this study focus on systemati-

cally constructing and finding the reasons that some pairs are more optimal for IVPs from celestial mechanics

based on the Kepler IVP (2.11). Therefore, finding systematic construction methodologies and more optimal

ERK pairs for other classes of IVPs will have to be left as future work.

5.11 Finding the best values of individual PECs for the higher-order

component of 5(4)6 ERK pairs for efficiently solving IVPs from

celestial mechanics

The primary application of the efficient 5(4)6 ERK pairs constructed for this study are IVPs from celestial

mechanics that are based on the Kepler IVP (2.13), such as the IVPs that are the subject of Figures 5.18,

5.19, and 5.20. IVPs from celestial mechanics are the obvious class for a deeper study into the differences in

performance between pairs because there are several dozen IVPs from celestial mechanics in the IVP test sets

implemented by pythODE. Furthermore, the author’s experience during this study shows that having many

available examples of IVPs of a particular class appears to be essential for reaching well-defined conclusions

on the efficiency of ERK pairs based on performance data. IVPs from celestial mechanics were also the class

of IVP that most obviously had more optimal 5(4)6 ERK pairs. This is probably because many important

IVPs from celestial mechanics are based directly on and have a similar mathematical structure to the simple

Kepler IVP (2.13). In addition, these pairs that are efficient for IVPs from celestial mechanics generally work

well as general-purpose 5(4)6 ERK pairs for most other IVPs described in Section 5.3.

The most important factors found in determining the performance on many of the IVPs tested with 5(4)6

ERK pairs (when using local extrapolation) are the specific values of individual PECs of the higher-order

component. Obviously, the PECs are a concept that has appeared throughout the literature on RK methods

because they form the basis of many of the classic characteristic numbers (2.56). However, the overall

importance of specific ranges of values for specific PECs has not previously been discussed in the literature.

In fact, to find the best performing and avoid the worst performing 5(4)6 ERK pairs for solving IVPs from

celestial mechanics, certain PECs must have values within certain narrow ranges specific to the individual

PEC. In Figures D.1 and D.2, additional performance data is shown indicating that individual examples from

other classes of IVPs exhibit a similar phenomenon. Currently, the optimal ranges for the PECs must be
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Figure 5.21: The tradeoffs in performance between solving selected IVPs and the “non-stiff D”
IVPs (2.13) using randomly selected pairs from the 5(4)6(6)C(2) family. See Table 5.2 for the symbols
indicating published 5(4)6 ERK pairs.
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Figure 5.22: The tradeoffs in performance between solving selected IVPs and the “non-stiff D”
IVPs (2.13) using randomly selected pairs from the 5(4)6(7)C(2) family and A7 ≤ 0.0050. See Table 5.2
for the symbols indicating published 5(4)6 ERK pairs.
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found empirically without the support of a theoretical explanation. However, now that it is known that ideal

ranges of PECs exist for different classes of IVPs, this phenomenon cannot be ignored when constructing

new ERK pairs. This is because even if the leading error coefficient is small and other classic characteristic

numbers (2.56) are in acceptable ranges, for some applications there can still be a performance difference

of up to a factor of two or more between ERK pairs that otherwise appear to have similar properties. If a

theoretical explanation of this phenomena is discovered in the future, this will further increase the reliability

and confidence that IVP methods that are the most efficient and suitable can be selected for a particular

class of IVP.

Important IVPs from celestial mechanics are often solved to an extremely long duration in problem

time and therefore can take substantial computational effort to solve. Therefore, the number and density

of data points seen in the figures in this section cannot be readily examined for larger celestial mechanics

IVPs integrated for longer periods of time, given the current limitations in available hardware and software.

However, the author did limited testing (not shown) with IVPs such as the “nine planets” IVP (solved to

7200 days) and found that the behaviour shown in this section is still present. In addition, in the conclusion

of this chapter it is shown that representative pairs with the best properties do in fact perform extremely

well (and sometimes unexpectedly well on individual IVPs) solving the larger IVPs from celestial mechanics

integrated for longer periods of time.

The searches of the space of free parameters that OCSage allows, discussed in Chapter 4, mean that

examining the values of the individual PECs for extremely large numbers (millions) of ERK pairs is now

possible. Testing the performance of smaller subsets (thousands) of these ERK pairs with pythODE allows

observing whether some PECs are more important than others for some classes of IVPs.

5.11.1 Examining the effect of the PEC corresponding to the rooted tree [τ [[τ 2]]]

The PEC that most obviously has more optimal values when solving IVPs from celestial mechanics using

5(4)6 ERK pairs is the one corresponding to the rooted tree [τ [[τ2]]]. For quite a few other IVPs tested (not

just IVPs from celestial mechanics) it was also observed that the value of the PEC (2.48) corresponding to

the rooted tree [τ [[τ2]]] is the one having the most dominant effect on performance. In Figures 5.23–5.27, the

performance of 5(4)6 ERK pairs from selected families on selected IVPs is shown for 6400 randomly selected

values in the interval [−0.040, 0.040] of the PEC (2.48) corresponding to [τ [[τ2]]]. This is done by taking 400

randomly selected points in each interval of size 0.005. The family used in each of Figures 5.23–5.27 and the

range of leading error coefficients used is given below when the particular figure and family are discussed in

detail.

The 5(4)6(6)C(2) family

It can clearly be seen from Figure 5.23 that the best performance for the 5(4)6(6)C(2) family with A6 ∈

[0.00095, 0.00100] on IVPs from the “non-stiff D” IVPs (2.13) occurs when the PEC (2.48) corresponding to
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[τ [[τ2]]] has a value of about -0.020. The range of values where the best-performing pairs occur is wider

for the individual “non-stiff D2” and “non-stiff D5” IVPs (2.13) in Figures 5.23b and 5.23c, respectively, in

comparison to the average performance solving the “non-stiff D” IVPs (2.13) in Figure 5.23a. In addition,

in Figure 5.23d the “Arenstorf orbit” IVP (2.15) has an optimal value of the PEC (2.48) corresponding to

[τ [[τ2]]] of around -0.010.

The 5(4)6(7)C(2) family

In contrast to the 5(4)6(6)C(2) family, it can clearly be seen from Figure 5.24 that for the 5(4)6(7)C(2) family

with A6 ∈ [0.00035, 0.00040], the best performance on IVPs from the “non-stiff D” IVPs (2.13) occurs when

the PEC (2.48) corresponding to [τ [[τ2]]] has a value slightly less than 0.005. The numerical behaviour is

also quite different for the “Arenstorf orbit” IVP (2.15) in comparison to IVPs based more directly on the

Kepler IVP (2.13) because the PEC (2.48) corresponding to [τ [[τ2]]] does not appear to have an optimal

value. However, Figure 5.28 shows values of the PECs (2.48) corresponding to [τ2[[τ ]]] ≡ [[τ ][[τ ]]] (this

specific equivalence between trees holds for any family of ERK pairs that satisfy the C(2) simplifying as-

sumptions (2.44b)) is actually the most dominant factor in performance for the “Arenstorf orbit” IVP (2.15)

but does not have a significant impact on performance solving the “non-stiff D” IVPs (2.13). It was also

observed (not shown) that the PEC (2.48) corresponding to [τ2[[τ ]]] ≡ [[τ ][[τ ]]] does not appear to have an

optimal value for the “Arenstorf orbit” IVP (2.15) when it is solved with pairs from the 5(4)6(6)C(2) family.

This indicates that although there are general trends concerning the PECs that might have optimal values,

the specific optimal values of the PECs (2.48) can be dependent on the specific IVP and family of ERK pairs.

The families using Case VI

In Figures 5.25 and 5.26, the performance is shown for the families from cases VIa and VIb, respectively,

from Section 3.5.1 in comparison to the value of the PEC (2.48) corresponding to [τ [[τ2]]]. The optimal

value of the PEC (2.48) corresponding to [τ [[τ2]]] for the family from Case VIa is relatively close to zero

for the “non-stiff D” IVPs (2.13), close to -0.01 for the “non-stiff D2” IVP 5.23b, and extremely broad for

the “non-stiff D5” IVP (2.13), whereas for the family from Case VIb the optimal is extremely broad for the

“non-stiff D” IVPs (2.13), it has a strong optimal value of -0.01 for the “non-stiff D2” IVP 5.23b, and it has

extremely broad optimal value for the “non-stiff D5” IVP (2.13) that trends towards positive values. As seen

when these families were constructed in Chapter 3 and from the listings of generated code in Section 4.7,

the expressions for the Butcher tableau coefficients in terms of the free parameters are much more complex

than if the C(2) simplifying assumptions (2.44b) hold. Therefore, it is unsurprising that the correlation

between the values of specific PECs (2.48) and performance appears to be more complex for these families.

However, although it is not something that could be thoroughly studied here, based on these broader ranges

of optimal values and other experimentation done for this study, the author feels that there may be fewer

performance tradeoffs between solving different IVPs when using 5(4)6 ERK pairs from families without the
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(a) The average performance solving the “non-stiff D” IVPs (2.13).

(b) The performance solving the “non-stiff D2” IVP (2.13) with ε = 0.3.

(c) The performance solving the “non-stiff D5” IVP (2.13) with ε = 0.9.

(d) The performance solving the “Arenstorf orbit” IVP (2.15).

Figure 5.23: The value of the PEC (2.48) corresponding to [τ [[τ2]]] for the 5(4)6(6)C(2) family with
A6 ∈ [0.00095, 0.00100]. See Table 5.2 for the symbols indicating published 5(4)6 ERK pairs.
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(a) The performance solving the “non-stiff D” IVPs (2.13).

(b) The performance solving the “non-stiff D2” IVP (2.13) with ε = 0.3.

(c) The performance solving the “non-stiff D5” IVP (2.13) with ε = 0.9.

(d) The performance solving the “Arenstorf orbit” IVP (2.15).

Figure 5.24: The value of the PECs (2.48) corresponding to [τ [[τ2]]] for the 5(4)6(7)C(2) family. See
Table 5.2 for the symbols indicating published 5(4)6 ERK pairs.
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C(2) simplifying assumptions (2.44b).

The families using Case V

In Figure 5.27 the limitations of families with fewer free parameters, in comparison to other families, can

be seen from the performance of Cases Va and Vb from Section 3.5.1. It can clearly be seen that for the

“non-stiff D” IVPs (2.13) that Case V does not have enough freedom in its free parameters to find pairs that

are competitive with the other families just discussed. Somewhat more freedom in parameter choice can

be found by using larger values of A6. However, this is still not enough for ERK pairs from Case V to be

competitive with those from other families.

The requirement of finding families with sufficient free parameters

These observations of different families and the need for enough free parameters (degrees of freedom) mean

that a significant advantage to finding the complete solution of the order conditions is that it removes

uncertainty about not having enough of the correct free parameters or that the best case might not be the

one that was solved for. In addition, the sometimes poor performance of an aggressively minimized leading

error coefficient was often observed to be due to the often small region of space of free parameters near the

minimal value of the leading error coefficient, which usually has PECs (2.48) that deviate from otherwise

more optimal values. The disadvantage of an aggressively optimized leading error coefficient can clearly be

seen in Figures 5.12 and 5.15 where the smallest leading error coefficients have a limited performance range

that is much worse than the best performance from the family overall. This observation of the sometimes

poor performance of aggressively minimized leading error coefficients probably applies to other properties.

Numerical optimization to find the smallest leading error coefficient [81, 85, 123, 128, 129, 130, 180, 194] or

stability properties [62, 97, 107, 123, 129, 130, 177] are sometimes the subject of publications. However, the

practical merits of aggressively optimizing properties of IVP methods should be reconsidered.

A hypothesis as to why there are optimal values of PECs

A clue as to why there may be optimal values of some PECs can be seen in Figure 5.29. It can be seen that

there is no optimal value of the PEC (2.48) corresponding to [τ [[τ2]]] for the “Jovian” IVP solved for 400

days, where less than 10% of an orbit is completed for any of the simulated planets. In constrast, the “Jovian”

IVP solved for 7200 days, where there are almost two complete orbits of Jupiter and two-thirds of an orbit

of Saturn, shows a strong optimal value for [τ [[τ2]]]. When the “nine planets” IVP is solved for only 20 days,

with only less than a third of an completed for any of the planets, at high accuracy there is a somewhat

distinct optimal value of the PEC (2.48) corresponding to [τ [[τ2]]]. However, a much stronger optimal value

of the PEC corresponding to [τ [[τ2]]] appears when the “nine planets” IVP is solved for 400 days, with full

orbits being completed by the three inner planets. Based on these observations (as well as other similar ones

by the author), it is reasonable to hypothesize that the optimal value of the PEC (2.48) corresponding to
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(a) The performance solving the “non-stiff D” IVPs (2.13).

(b) The performance solving the “non-stiff D2” IVP (2.13) with ε = 0.3.

(c) The performance solving the “non-stiff D5” IVP (2.13) with ε = 0.9.

(d) The performance solving the “Arenstorf orbit” IVP (2.15).

Figure 5.25: The value of the PEC (2.48) corresponding to [τ [[τ2]]] for the family using Case VIa
from Section 3.5.1.
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(a) The performance solving the “non-stiff D” IVPs (2.13).

(b) The performance solving the “non-stiff D2” IVP (2.13) with ε = 0.3.

(c) The performance solving the “non-stiff D5” IVP (2.13) with ε = 0.9.

(d) The performance solving the “Arenstorf orbit” IVP (2.15).

Figure 5.26: The value of the PEC (2.48) corresponding to [τ [[τ2]]] for the family using Case VIb
from Section 3.5.1.
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(a) The performance of the family using Case Va solving the “non-stiff D” IVPs (2.13).

(b) The performance of the family using Case Vb solving the “non-stiff D” IVPs (2.13).

Figure 5.27: The value of the PEC (2.48) corresponding to [τ [[τ2]]] for the families using Case V
from Section 3.5.1.

(a) The performance solving the “non-stiff D” IVPs (2.13).

(b) The performance solving the “Arenstorf orbit” IVP (2.15).

Figure 5.28: The value of the PEC (2.48) corresponding to [τ2[[τ ]]] for the 5(4)6(7)C(2) family. See
Table 5.2 for the symbols indicating published 5(4)6 ERK pairs.
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[τ [[τ2]]] only becomes defined with longer integrations that include full orbits. A further hypothesis is that

this is possibly due to cancellation of local errors from different parts of the periodic solution.

During the course of this study, other possibilities that were examined (not shown) to try and explain the

optimal values of the PEC (2.48) corresponding to [τ [[τ2]]] included energy conservation (the Hamiltonian),

conservation of angular momentum, and linear dispersion or dissipation. Both energy conservation (the

Hamiltonian) and angular momentum showed similar behaviour to the variable-stepsize method tested on

the “Arenstorf orbit” IVP (2.15) in the paper on odeToJava [106], where the error increased to certain

magnitude and appeared to remain near that magnitude even during long integrations, although the error

may have been growing slowly. This is likely because, in the tests by Sharp et al. [160], they only observed the

expected quadratic error growth after 100,000 periods of the Kepler IVP (2.13), something that to examine

using the methodologies in this study, must be left to future work. Because there do not seem to be specific

values of the PECs corresponding to the tall trees that are more optimal for celestial mechanics IVPs, despite

the numerical behaviour solving the scalar test equation (2.10) with appropriate λ sometimes being discussed

in the literature with respect to non-linear IVPs that can include celestial mechanics IVPs [4, 82, 160, 179],

linear dispersion or dissipation do not seem to be why optimal values occur either. Therefore, the optimal

values of the PECs (2.48) observed in this study are likely a non-linear effect. However, now that it is known

from this study, determining the ideal values of the PECs (2.48) must now be considered if the best possible

ERK pairs are to be constructed for a particular application area, regardless of whether the specific reasons

for this behaviour are known.

5.11.2 Examining the effect of the PEC corresponding to [[τ 4]] for the families

with the C(2) simplifying assumptions, while restricting the PEC corre-

sponding to [τ [[τ 2]]]

The 5(4)6(6)C(2) family

Based on Figure 5.23, the PEC (2.48) corresponding to [τ [[τ2]]] is restricted to the relatively narrow range

of [−0.0175,−0.0225], which is where the best average performance solving the “non-stiff D” IVPs (2.13)

occurs. Experimentation by the author (not shown) indicates that when the best values of the PEC (2.48)

corresponding to [τ [[τ2]]] occupies a fairly broad range, it is sometimes necessary make an arbitrary choice

of a narrow interval for examining subsequent PECs. This is because a narrower range often leads to more

obvious optimal values for subsequently examined PECs (2.48). Experimentation with the different families

and individual IVPs shows that each different but arbitrary and narrow range of values leads to slightly

different optimal values of the subsequently examined PECs (2.48). This is probably because the values of

the elementary differentials (2.36), order conditions (2.43), and PECs are often dependent on each other. For

the PECs (2.48) examined subsequently to the one corresponding to [τ [[τ2]]], it was found to be sufficient to

select random pairs uniformly over the entire range of interest, rather than sampling in smaller intervals as
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(a) The “Jovian” IVP described in Section 5.3.4 solved for 400 days.

(b) The “Jovian” IVP described in Section 5.3.4 solved for 7200 days.

(c) The “nine planets” IVP described in Section 5.3.4 solved for 20 days.

(d) The “nine planets” IVP described in Section 5.3.4 solved for 400 days.

Figure 5.29: The value of the PEC (2.48) corresponding to the [τ [[τ2]]] in comparison to the per-
formance using the 5(4)6(6)C(2) family to solve different IVPs from celestial mechanics for different
amounts of time.
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described above for the PEC (2.48) corresponding to [τ [[τ2]]].

Examination of the performance using the 5(4)6(6)C(2) family to solve the “non-stiff D” IVPs (2.13) with

the PEC (2.48) corresponding to [τ [[τ2]]] restricted to the interval [−0.0225,−0.0175] shows that the next

most important PEC (2.48) is the one corresponding to [[τ4]]. In Figure 5.30a, the value of the PEC (2.48)

corresponding to [[τ4]] for 3200 pairs from the 5(4)6(6)C(2) family, with the PEC (2.48) corresponding to

[τ [[τ2]]] restricted to the interval [−0.0225,−0.0175], is shown in relation to performance solving the “non-

stiff D” IVPs (2.13). It can be seen that when the PEC (2.48) corresponding to [τ [[τ2]]] restricted to the

interval [−0.0225,−0.0175] that the best performance occurs when the PEC (2.48) corresponding to [[τ4]]

has values in the interval [−0.02, 0.00].

The 5(4)6(7)C(2) family

In Figure 5.31, examination of the performance of the 5(4)6(7)C(2) family solving the “non-stiff D” IVPs (2.13),

with the PEC (2.48) corresponding to [τ [[τ2]]] restricted to [0.0025, 0.0050], shows that the next most domi-

nant PEC (2.48) is also [[τ4]]. It can be seen that this is mostly because if the PEC (2.48) corresponding to

[[τ4]] is greater than zero better performance is had at coarse accuracy.

5.11.3 Examining the effect of the PEC corresponding to [τ 5] for the 5(4)6(6)C(2)

family, while restricting the PECs corresponding to [τ [[τ 2]]] and [[τ 4]]

Based on Figure 5.30a, the PEC (2.48) corresponding to [[τ4]] for the 5(4)6(6)C(2) family can be restricted

to the range [−0.015, 0.005]. For subsequently restricted PECs (2.48) the range chosen can generally be

a bit wider than for the PEC (2.48) corresponding to [τ [[τ2]]]. As shown in Figure 5.32a, examination

shows that after applying the above restriction based on [τ [[τ2]]] and [[τ4]] that keeping the PEC (2.48)

corresponding to the bushy tree [τ5], i.e., the sixth-order quadrature condition, as small as possible gives

the best performance solving the “non-stiff D” IVPs (2.13). Additionally, observe that pairs that perform

better solving the “Arenstorf orbit” IVP (2.15) occur when the PEC (2.48) corresponding to [τ5] is at the

larger end of its range. This indicates a tradeoff between the most efficient pairs for solving the “Arenstorf

orbit” IVP (2.15) IVP and IVPs based more directly on the Kepler IVP (2.13). In fact, with the restrictions

on the PECs (2.48) corresponding to [τ [[τ2]]] and [[τ4]], the best performance solving the “Arenstorf orbit”

IVP (2.15) is in fact when the PEC (2.48) corresponding to [τ5] is at the larger end of the range seen. What

can also be observed from Figure D.3 is that using smaller values of the PEC (2.48) corresponding to the

bushy tree [τ5] is not at all obvious as a well-defined way of finding the best pairs for the “non-stiff D”

IVPs (2.13), unless the PECs (2.48) corresponding to [τ [[τ2]]] and [[τ4]] are restricted first.
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(a) The performance solving the “non-stiff D” IVPs (2.13).

(b) The performance solving the “non-stiff D2” IVP (2.13) with ε = 0.3.

(c) The performance solving the “non-stiff D5” IVP (2.13) with ε = 0.9.

(d) The performance solving the “Arenstorf orbit” IVP (2.15).

Figure 5.30: The value of the PEC (2.48) corresponding to [[τ4]] for 5(4)6(6)C(2) family with [τ [[τ2]]]
restricted to [−0.0175, 0.0225]. See Table 5.2 for the symbols indicating published 5(4)6 ERK pairs.
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(a) The performance solving the “non-stiff D” IVPs (2.13).

(b) The performance solving the “non-stiff D2” IVP (2.13) with ε = 0.3.

(c) The performance solving the “non-stiff D5” IVP (2.13) with ε = 0.9.

(d) The performance solving the “Arenstorf orbit” IVP (2.15).

Figure 5.31: The value of the PEC (2.48) corresponding to [[τ4]] for the 5(4)6(7)C(2) family with
[τ [[τ2]]] restricted to [0.0025, 0.0050]. See Table 5.2 for the symbols indicating published 5(4)6 ERK
pairs.
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(a) The performance solving the “non-stiff D” IVPs (2.13).

(b) The performance solving the “non-stiff D2” IVP (2.13) with ε = 0.3.

(c) The performance solving the “non-stiff D5” IVP (2.13) with ε = 0.9.

(d) The performance solving the “Arenstorf orbit” IVP (2.15).

Figure 5.32: The performance in comparison to the value of the PEC (2.48) corresponding to
[τ5] for the 5(4)6(6)C(2) family with [τ [[τ2]]] restricted to [−0.0175, 0.0225] and [[τ4]] restricted to
[−0.015, 0.005]. See Table 5.2 for the symbols indicating published 5(4)6 ERK pairs.
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5.11.4 Examining the effect of the seventh-order PECs for the 5(4)6(7)C(2) family,

while restricting the PECs corresponding to [τ [[τ 2]]] and [[τ 4]]

As seen in Section 5.9, the seventh-order error coefficient assumes greater importance when the leading error

coefficient is aggressively minimized while constructing ERK pairs from the 5(4)6(7)C(2) family. In particular,

after the PECs (2.48) corresponding to [τ [[τ2]]] and [[τ4]] are constrained to the intervals [0.0025, 0.0050]

and [0.0040, 0.0060], respectively, the next most obvious determinants of performance are the seventh-order

PECs (2.48). There are several seventh-order PECs (2.48) that show the relatively similar behaviour, i.e.,

those corresponding to [τ6], [[τ2][[τ ]]], [[τ ][[τ2]]], [τ [[[τ2]]]], and [[τ [[τ2]]]]. Observe that except for the

PEC (2.48) corresponding to [[τ2][[τ ]]], all of these rooted trees correspond to adding a new branch to

[τ [[τ2]]], which corresponds to the PEC (2.48) shown to have the most dominant effect on performance in

Section 5.11.1. For the exception of [[τ2][[τ ]]], it can easily be seen that the tree [[τ2][[τ ]]] can be constructed

from [τ [[τ2]]] by moving a subtree and adding a new branch.

In Figure 5.33, the performance in comparison to the PEC (2.48) corresponding to [[τ [[τ2]]]] is shown

because this is the PEC mentioned above that gives the most distinct optimal behaviour for the IVPs under

consideration in this section. Additionally, the “non-stiff D6” IVP (2.13) with ε = 0.99 is included in Fig-

ure 5.33d because this shows that the observed behaviour much more distinct as ε→ 1. The behaviour seen

in Figure 5.33 clearly indicates that one of the consequences of an aggressively optimized leading error coef-

ficient is a greater sensitivity of the performance on specific IVPs to the specific Butcher tableau coefficients

selected, especially when significant stepsize changes are required, such as for the “non-stiff D6” IVP (2.13).

Without a clear theoretical understanding of why there are optimal values for certain PECs (2.48), it would

be difficult to know whether the performance of pairs chosen on the basis of the more optimal values of the

seventh-order PECs (2.48) seen in Figure 5.33 is actually generalizable. This sensitivity to the specific coeffi-

cients selected is most noticeable at high accuracies. However, the author’s best hypothesis is that it is related

to the aggressively minimized leading error coefficient in conjunction with the stability of the step controller

and asymptotic behaviour of the solution, rather than issues with floating-point arithmetic. This hypothesis

could be readily checked by re-doing the calculations in higher-precision arithmetic. Unfortunately, it is not

currently feasible to test this hypothesis with pythODE because neither Python nor SciPy currently have

the required support for quadruple-precision (or higher) floating-point arithmetic.

5.11.5 Examining restrictions on the PECs for Case VI from Section 3.5

The more complex space of free parameters of the family based on Case VI from Section 3.5 makes the process

of finding the properties of the most efficient pairs more involved. Although pairs from Case VI that can be

recommended for use are found by this study, hopefully once there is a better theoretical understanding of

why there are specific values of PECs (2.48) that are more optimal, further improvements and a narrower

range of best performances may be found.
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(a) The performance solving the “non-stiff D” IVPs (2.13).

(b) The performance solving the “non-stiff D2” IVP (2.13) with ε = 0.3.

(c) The performance solving the “non-stiff D5” IVP (2.13) with ε = 0.9.

(d) The performance solving the “non-stiff D6” IVP (2.13) with ε = 0.99.

(e) The performance solving the “Arenstorf orbit” IVP (2.15).

Figure 5.33: The performance of the 5(4)6(7)C(2) family in comparison to PECs corresponding to
PECs (2.48) corresponding to [[τ [[τ2]]]]. See Table 5.2 for the symbols indicating published 5(4)6 ERK
pairs.
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As mentioned in Chapter 4, each subcase of Case VI is searched with both λ = 1, µ ∈ [−1, 1] and

µ = 1, λ ∈ [−1, 1]. Each of these subcases searched, i.e., VIa and VIb, requires a different strategy for

selecting the most efficient sets of free parameters. Because much of the discussion of selecting the best pairs

from Case VI is similar to the 5(4)6(6)C(2) and 5(4)6(7)C(2) families, only the overall performance solving

the “non-stiff D” IVPs (2.13) is shown. Case VI is particularly interesting among the families of 5(4)6(6)

ERK pairs constructed in Chapter 3 because there is no equivalence (equality) among the PECs (2.48) of

sixth-order. For example, for 5(4)6 ERK pairs with the C(2) simplifying assumptions (2.44b) the equivalence

[τ5] ≡ [τ3[τ ]] ≡ [τ [τ ]2] always holds. In constrast, there are no such equivalent sixth-order PECs (2.48) for

5(4)6 ERK pairs from Case VI. As an aside, Case V does has multiple equivalences because c6 = 1 means

it always requires the D(1) simplifying assumptions (2.44c). Unfortunately, to fully exploit this property

a theoretical understanding of why there are specific optimal values of PECs (2.48) is required. If future

work finds that equivalence (equality) among the PECs (2.48) can cause issues with performance or other

numerical behaviour, for example, by introducing problematic corner cases, then there may be a specific

advantage to finding ERK pairs without the C(2) simplifying assumptions (2.44b).

Although the PEC (2.48) corresponding to [τ [[τ2]]] is the most dominant indicator of performance for

IVPs from celestial mechanics, as already seen in Section 5.11.1, the two subcases of Case VI and different

areas of each space of free parameters have different subsequent PECs (2.48) that are important.

Case VIa with λ = 1, µ ∈ [−1, 1] did not achieve the performance required to be competitive with other

families and is not mentioned further. Case VIa with λ = 1, µ ∈ [−1, 1] has the second most dominant

PEC (2.48) as the one corresponding to [[[τ ]2]] that is shown in Figure 5.34a. The next most dominant

PEC (2.48) is the seventh-order one corresponding to [[τ5]] that is shown in Figure 5.34b. In Figure 5.34, it is

obvious that the selection of the best pairs for celestial mechanics from Case VI can be much more sensitive

to the particular coefficients than the 5(4)6(6)C(2) family.

Case VIb with λ = 1, µ ∈ [−1, 1] has the second most dominant PEC (2.48) as the one corresponding

to [τ3[τ ]] that is shown in Figure 5.35a. The next most dominant PEC (2.48) is the seventh-order one

corresponding to [τ [[τ [τ ]]]] that is shown in Figure 5.35b. Case VIb with µ = 1, λ ∈ [−1, 1] has the second

most dominant PEC (2.48) as the one corresponding to [τ2[τ2]] that is shown in Figure 5.36a. Then the next

most dominant PEC (2.48) is [τ5] that is shown in Figure 5.36b.

5.11.6 An appraisal of selecting coefficients using the values of the PECs

After the restrictions given in Section 5.11.3 for the 5(4)6(6)C(2) family, a further restriction for the 5(4)6(6)C(2)

family can be given on the PEC (2.48) corresponding to [τ [[τ2]]]. This is shown specifically in Figure 5.37,

where the best performance can clearly be seen to occur if the PEC (2.48) corresponding to [τ [[τ2]]] is further

restricted to < −0.020 while carefully avoiding values that are too close to −0.020. Detailed investigation of

the performance data (not shown) shows that all of the individual IVPs from the “non-stiff D” IVPs (2.13)

contribute to this need for a further restriction. The behaviour when the PEC (2.48) corresponding to [τ [[τ2]]]
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(a) The performance in comparison to the value of the PEC (2.48) corresponding to [[[τ ]2]] with [τ [[τ2]]] restricted
to [−0.0125,−0.0075].

(b) The performance in comparison to value of the of the PEC (2.48) corresponding to [[τ5]] [[[τ ]2]] ≤ −0.06 and
[τ [[τ2]]] restricted to [−0.0125,−0.0075].

Figure 5.34: The average performance of the “non-stiff D” IVPs (2.13) using Case VIa with λ =
1, µ ∈ [−1, 1].

(a) The performance in comparison to the value of the PEC (2.48) corresponding to [τ3[τ ]] with [τ [[τ2]]] restricted
to [−0.0125,−0.0075].

(b) The performance in comparison to the value of the PEC (2.48) corresponding to [τ [[τ [τ ]]]] with [τ3[τ ]] < 0.0070
and [τ [[τ2]]] restricted to [−0.0125,−0.0075].

Figure 5.35: The average performance of the “non-stiff D” IVPs (2.13) using Case VIb with λ =
1, µ ∈ [−1, 1].
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(a) The performance in comparison to the value of the PEC (2.48) corresponding to [τ2[τ2]] with [τ [[τ2]]] restricted
to [−0.020,−0.015].

(b) The performance in comparison to the value of the PEC (2.48) corresponding to [τ5] with [τ2[τ2]] ≤ 0.000 and
[τ [[τ2]]] restricted to [−0.020,−0.015].

Figure 5.36: The average performance of the “non-stiff D” IVPs (2.13) using Case VIb with µ =
1, λ ∈ [−1, 1].

Figure 5.37: The average performance solving the “non-stiff D” IVPs (2.13) in comparison to the
value of the PEC (2.48) corresponding to [τ [[τ2]]] with the PEC (2.48) corresponding to [[τ4]] restricted
to [−0.015, 0.0005] and [τ5] ≤ 0.0035. See Table 5.2 for the symbols indicating published 5(4)6 ERK
pairs.
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is extremely close or exactly −0.020 may give clues for future work that will help assist in determining exactly

why there are specific values of PEC (2.48) that consistently give better performance.

The overall effect of restricting the values of PECs (2.48) on the 5(4)6(6)C(2) and 5(4)6(7)C(2) is shown in

Figures 5.38 and 5.39, respectively. The overall effect of restricting the values of PECs (2.48) on the families

of VIa from Section 3.5.1 with λ = 1, µ ∈ [−1, 1] and VIb with µ = 1, λ ∈ [−1, 1] from Section 3.5.1 is shown

in Figures 5.40 and 5.41, respectively.

Examining performance of 5(4)6 ERK pairs solving the “non-stiff D” IVPs (2.13) and restricting the values

of the PEC (2.48) to certain ranges that have been empirically determined is an excellent methodology for

eliminating the worst performing pairs from consideration, as well as ensuring the best performing pairs are

included. Figure 5.38 shows the effect of restrictions discussed of the PECs (2.48) on the 5(4)6(6)C(2) family

is bringing the performance variation between individual pairs, most of which is not explained by other

properties that have been examined in the literature, from nearly a factor of two down to as low as 15%. The

author considers 15% to be an amount that, barring results to the contrary in future studies, is probably

due to the expected variation inherent between individual ERK pairs. However, these restrictions on the

PECs (2.48) are subject to at least some judgment and arbitrary choices. Therefore, different restrictions on

the PECs (2.48) than presented in this study are often equally useful. As expected based on the correlation in

performance between these simpler IVPs and the more complex IVPs from celestial mechanics in Section 5.10,

it is shown below that pairs constructed in a systematic manner do give at least equivalent, and often

surprisingly better performance, on some more complex IVPs from celestial mechanics in comparison to

published 5(4)6 ERK pairs. Finally, even though there is eventually a clear tradeoff in performance for

the Kepler IVP (2.13) in comparison to the “Arenstorf orbit” IVP (2.15), pairs constructed to perform best

solving the “non-stiff D” IVPs (2.13) perform consistently better solving the “Arenstorf orbit” IVP (2.15)

than randomly selected pairs with otherwise similar properties.

5.12 Selecting the lower-order component of an ERK embedded

pair

With the narrowed regions of the space of free parameters by selecting appropriate range of the PECs (2.48)

discussed in Section 5.11 shown in Figure 5.38a and 5.39a, it is now easier to examine the selection of the

lower-order component of 5(4)6 ERK pairs, i.e., using either b̂6 or b̂7 depending on the family. The exception

is Case VI from Section 3.5 with b̂6 = 0, where the lower-order component of a pair for this family must

be selected in conjunction with choosing the higher-order component of a pair. In Figure 5.42, the effect

of the choice of b̂6 is shown for the 5(4)6(6)C(2) family when solving selected “non-stiff D” IVPs (2.13). In

Figure 5.43, the effect of the choice of b̂7 is shown when solving the 5(4)6(7)C(2) family for a selection of

“non-stiff D” IVPs (2.13).
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It is clearly be seen from Figures 5.42 and 5.43 that there is at best little advantage to any choice of b̂6 and

b̂7 in terms of the average performance solving the “non-stiff D” IVPs (2.13). This is because in selecting b̂6

and b̂7, for any value selected there are unavoidable tradeoffs between the coarse, medium, and fine accuracies

as well as between individual IVPs. Better methodologies for selecting the lower-order component of an ERK

pair are probably where some of the largest future improvements can be made to the coefficient selection

process beyond what is already shown by this study. However, these improvements would likely have to be

made in conjunction with detailed study of the error estimation and improved step-control schemes. For

example, the control theory briefly discussed in Section 2.6.2 would have to be applied in a more in-depth

way than has previously been done for IVP methods. Although advanced PID control is often an option

in IVP solvers, a data-intensive empirical assessment of behaviour and tradeoffs between I, PI, and PID

step control using pythODE would be of great benefit to understanding Figures 5.42 and 5.43. An important

benefit of knowing the effect of individual PECs on performance is that if their effect is not accounted for,

the effects examined in further studies into aspects of ERK method construction such as error estimation

and step control may be hard to detect. In fact, it is extremely difficult to see even the behaviour seen in

Figures 5.42 and 5.43, or any well-defined behaviour at all, if the PECs (2.48) are not restricted.

5.13 Revisiting the classic characteristic numbers

With the data provided by pythODE and OCSage, it is possible to evaluate the effectiveness of the classic

characteristic numbers (2.56) in the coefficient selection process. The most complete and most recent ex-

positions of the classic characteristic numbers (2.56) for selecting coefficients for RK methods are those by

Kennedy and Carpenter from 1999 [96] and 2001 [94]. Although the latter addresses IMEX methods (already

mentioned briefly in Section 4.4.1), both publications include much of the theory discussed in Chapter 2 that

is directly applicable to just ERK pairs. Previous expositions of the classic characteristic numbers (2.56) are

those by Verner from 1990 [189] and 1991 [190], which also addresses different norms of the PECs. The classic

characteristic numbers (2.56) were originally introduced by Dormand and Prince in 1981 for the construction

of eighth- and seventh-order embedded ERK pairs [136], but they also mention using them in the construc-

tion of the DP5(4)6(7) pair (2.79) the year prior [47]. Although the ideal values of the classic characteristic

numbers (2.56) (close to unity) have some intuitive reasoning behind making the error estimate resemble the

actual local error in some sense, this reasoning is only applicable in asymptotic limit. However, there are

generally many assumptions and simplifications between the mathematical description of numerical methods

and actual real-world behaviour [78].

The guidelines published in the literature for coefficient selection [16, 47, 94, 136, 189, 190] mentioning

the classic characteristic numbers (2.56) are generally qualitative and there is actually little published data

or rigorous analysis to support any specific quantitative guidelines. The standard recommendations are that

the B and C characteristic numbers be “of order unity” [94, 96, 190], “small” [136], or that the B and C
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(a) The performance solving the “non-stiff D” IVPs (2.13).

(b) The performance solving the “non-stiff D2” IVP (2.13) with ε = 0.3.

(c) The performance solving the “non-stiff D5” IVP (2.13) with ε = 0.9.

(d) The performance solving the “Arenstorf orbit” IVP (2.15).

Figure 5.42: The performance of different values of b̂6 for the 5(4)6(6)C(2) family with restrictions on
the PECs (2.48) discussed in Section 5.11.
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(a) The performance solving the “non-stiff D” IVPs (2.13).

(b) The performance solving the “non-stiff D2” IVP (2.13) with ε = 0.3.

(c) The performance solving the “non-stiff D5” IVP (2.13) with ε = 0.9.

(d) The performance solving the “Arenstorf orbit” IVP (2.15).

Figure 5.43: The performance of different values of b̂7 for the 5(4)6(7)C(2) family with restrictions on
the PECs (2.48) discussed in Section 5.11.
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characteristic numbers should be “similar in size” [189, 190]. In fact, Bogacki and Shampine appear to have

used the extra degrees of freedom of families of seven-stage fifth-order ERK pair to find ERK pairs with the

B and C classic characteristic numbers (2.56) much closer to one than is practical when constructing efficient

5(4)6 ERK pairs [16]. Despite the lack of rigorous analysis to support the classic characteristic numbers,

there are simplistic arguments that particular values of the classic characteristic numbers imply that the

error estimate better reflects the leading error coefficient and has appropriate asymptotic behaviour.

Shampine also introduced the E characteristic number (2.56d) in 1986 [146] and mentioned the best values

were less than 0.5. However, Shampine did not call the E characteristic number (2.56d) by the notation “E”

in his 1986 paper [146], and other than use by Kennedy and Carpenter [94, 96] (who appear to be the first

to use the notation “E”), the E characteristic number (2.56d) has not been mentioned by others since. The

behaviour of the E characteristic number (2.56d) (not shown), which gets smaller as Â5 gets bigger, often

looks like the inverse of Figures 5.42 and 5.43.

However, it is important to examine the classic characteristic numbers empirically. In Figures 5.44 and 5.45

the B and C numbers are shown for the performance solving the “non-stiff D” IVPs (2.13) with the restrictions

discussed in Section 5.11. At best, the classic characteristic numbers (2.56) should be checked to make sure

that they are not extremely large, indicating that an error estimate may not even remotely resemble the

actual local error. In addition, overly minimizing the C characteristic number (2.56b) within the relatively

narrow range that it occurs for most families often reduces performance, such as seen from Figure 5.44d.

The behaviour seen in Figures 5.44 and 5.45 is similar to what was seen on all IVPs examined during this

study. Therefore, without compelling evidence in future studies, the B (2.56a) and C (2.56b) characteristic

numbers are not likely to be useful. The E characteristic number (2.56d) is probably still useful because,

without performance data to the contrary, good practice dictates that the error coefficients of the error

estimate should be relatively close in magnitude to that of the method used to advance the solution.

5.14 Final selection of efficient 5(4)6 ERK pairs and examples of

their overall performance

To present ERK pairs for practical use, no more than a few pairs must be selected out of possibly hundreds of

candidate ERK pairs still remaining after performance testing and applying the appropriate restrictions, such

as those described in Section 5.11. Irregardless of the what the performance data on IVP test sets indicates,

final selection of ERK pairs must be based on good practice from the literature, experience, and common

sense. Each ERK pair that is a final candidate and its properties should be manually inspected before its

selection for use. An advantage to software such as OCSage is that nearly all conceivable properties can be

checked for anything out of place in comparison to other successful ERK pairs. Sage notebooks, such as

shown in Figure 4.1, helped a great deal with inspecting the properties of individual ERK pairs. Although

there are probably many other undesirable properties that can be discovered through examination of data
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(a) The B characteristic number (2.56a) with the restrictions described in Section 5.11.3.

(b) The B characteristic number (2.56a) without the restrictions described in Section 5.11.3.

(c) The C characteristic number (2.56b) with the restrictions described in Section 5.11.3

(d) The C characteristic number (2.56b) without the restrictions described in Section 5.11.3.

Figure 5.44: The values of the classic characteristic numbers (2.56) in comparison to performance
solving the “non-stiff D” IVPs (2.13) for the 5(4)6(6)C(2) family. See Table 5.2 for the symbols indicating
published 5(4)6 ERK pairs.
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(a) The B characteristic number (2.56a) with the restrictions described in Section 5.11.4.

(b) The B characteristic number (2.56a) without the restrictions described in Section 5.11.4.

(c) The C characteristic number (2.56b) with the restrictions described in Section 5.11.4.

(d) The C characteristic number 2.56b without the restrictions described in Section 5.11.4.

Figure 5.45: The values of the classic characteristic numbers (2.56) in comparison to performance
solving the “non-stiff D” IVPs (2.13) for the 5(4)6(7)C(2) family. See Table 5.2 for the symbols indicating
published 5(4)6 ERK pairs.
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from further performance testing, some specific undesirable properties to avoid that might not be found by

only performance testing using standard IVP test sets are:

• A large magnitude of the coefficients of the Butcher tableau (2.34), i.e., the D characteristic num-

ber (2.56c), when equivalent pairs with coefficients of a smaller magnitude exist. However, the best

performing pairs from some families do require that the magnitude of the coefficients of the Butcher

tableau (2.34) are at least somewhat large. For instance, pairs from the 5(4)6(7)C(2) family with

A6 ∈ [0.00035, 0.00040] suffer from severe performance loss on many IVPs tested if the D characteristic

number (2.56c) is forced to be less than approximately 10, as opposed to a D characteristic num-

ber (2.56c) of 12 that the DP5(4)6(7) pair (2.79) has. Investigation (not shown) indicates that this is

probably because the overly minimized the D characteristic number (2.56c) means the values of the

PECs (2.48) do not end up in the ideal ranges that are discussed in Section 5.11. Although published

guidelines for the D characteristic number (2.56c) include arbitrary upper limits, such as 20 [94], any

upper limit is probably both overly conservative and not conservative enough depending on the specific

application and family under study.

• An extremely small magnitude of the coefficients of the Butcher tableau (2.34) may give issues with

roundoff error because the values in the summations given by (2.33) might unnecessarily be significantly

different in magnitude from each other. Although not observed during this study, the author expects the

effect may become noticeable when the magnitude of the coefficients are less than approximately 10−3.

Future work may actually identify specific IVPs and circumstances where extremely small coefficients

cause an issue, but even if no empirical evidence is immediately forthcoming overly small coefficients

should still be avoided.

• A relatively small distance between the components of the c vector of the coefficients of the Butcher

tableau (2.34) may be disadvantageous if alternatives exist that are further apart. This is because

relatively close components of the c vector may result in roundoff error due to subtractive cancellation

while applying the ERK formula (2.33). However, because numerical methods are based on mathemat-

ical analysis, the intuitive idea of it being better to “evenly sample” the timestep is not necessarily a

valid one. In fact, many of the better pairs constructed in this study have some components of the c

vector closer together than many of the published 5(4)6 ERK pairs. Future performance testing may

identify specific instances where the components of the c vector must be relatively far apart.

• A magnitude of the PECs (2.48), including the higher-order ones (greater than the sixth-order

PECs (2.48) for 5(4)6 ERK pairs), that is too large. However, large PECs (2.48) sometimes necessary, for

instance, for the 5(4)6(7)C(2) family with leading error coefficients less than approximately 0.0007. Based

on searches in OCSage, to have a leading error coefficient of A6 ∈ [0.00035, 0.00040] the author found

the magnitude of at least one sixth-order PEC (2.48) needs to be greater than 0.5 and the magnitude

of at least one seventh-order PEC (2.48) needs to be greater than 1.5. The author’s hypothesis is that
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these large PECs (2.48) (greater than the 1.0 that corresponds to a simple truncation of the Taylor

series) are responsible for the poorer performance often seen at coarse accuracies from the 5(4)6(7)C(2)

family, such as that clearly seen in Figures 5.12 and 5.14. However, convincing empirical evidence based

on performance data is difficult to find because of the difficulty in doing controlled experimentation on

the magnitude of the PECs within the same family of 5(4)6 ERK pairs.

Finally, as mentioned during their construction in Section 3.5.2, 5(4)6(7) ERK pairs based on Cases II–IV

have at least one PEC of the error estimate that vanishes. Experimentation by the author (not shown)

indicated that the best pairs from Cases II–IV in Section 3.5.2 do not perform as well as pairs from the

5(4)6(7)C(2) family, even when the leading error coefficients are held within a similar range. It is difficult to

demonstrate conclusively that it is vanishing PECs in the error estimate that account for poor performance.

However, this disadvantage and these obvious issues with performance based on the author’s experimentation

unfortunately preclude constructing competitive pairs from Cases II–IV.

5.14.1 Specific systematically constructed 5(4)6 ERK pairs for IVPs from celes-

tial mechanics

A 5(4)6(6) ERK pair from the 5(4)6(6)C(2) family with b̂6 = 16
100 , c2 = 17

100 , c3 = 111
400 , c5 = 37

50 , c6 = 97
100 , and

A6 = 0.00099349206670410308 is given by

0 0 0 0 0 0 0

17
100

17
100

0 0 0 0 0

111
400

111
2176

12321
54400

0 0 0 0

4440
8801

2669262363480
11588973888817

− 5516850960000
11588973888817

511416960000
681704346401

0 0 0

37
50

14132565029
43090920000

− 553076
997475

240226496
456193431

8027473394837
18247737240000

0 0

97
100

− 5120038304072421907
7923144265858800000

2759941
1994950

21902499100519684
41940232036704045

− 12153241848828251604905771
9397967194784642403600000

12406183577011
12360503097360

0

b 929924623
10612816560

0 1062260224000
2727224432613

69974267288050869263
903872117573852239440

1124213000
3263218219

25558830000
253187419939

b̂ 2220456409
17095387500

0 220277882624
1230696946125

143300388952607809
344718214609612500

2047038807
17734881625

4
25

(5.2)

A 5(4)6(7) ERK pair from the 5(4)6(7)C(2) family with b̂7 = 19
100 , c2 = 21

100 , c3 = 8
25 , c4 = 189

200 , c5 = 121
125 ,

and A6 = 0.00037118380356134293, and A7 = 0.0021952940095218451 is given by

0 0 0 0 0 0 0 0

21
100

21
100

0 0 0 0 0 0

8
25

8
105

128
525

0 0 0 0 0

189
200

274239
163840

− 158193
25600

178605
32768

0 0 0 0

121
125

1237893283
632100000

− 142865063
19753125

941885901
150500000

− 534336
32921875

0 0 0

1 5108222489
2176330464

− 5939975
686973

3106763821
423960480

47548864
711017055

− 63962500
670387509

0 0

1 209687
2195424

0 64565
132192

1095680
143451

− 117578125
10820304

32713
8976

0

b 209687
2195424

0 64565
132192

1095680
143451

− 117578125
10820304

32713
8976

0

b̂ 1682001271
27095191200

0 4890084329
8157348000

− 48340794112
8852122125

55191322375
5341623408

− 1569602453
332336400

19
100

(5.3)

In comparison to the DP5(4)6(7) pair, the slightly smaller A6 = 0.00037118380356134293 and

A7 = 0.0021952940095218451 that is half the size, gives a noticeable performance advantage. In fact, even

though (5.3) is designed for specifically for IVPs from celestial mechanics it outperforms the DP5(4)6(7)

pair (2.79) on the DE test set. For instance, at coarse accuracies the relative performance of (5.3) is 1.120,

as compared to 1.212 for the DP5(4)6(7) pair (2.79). At medium accuracies the relative performance of (5.3)
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is 0.953, as compared to 1.139 for the DP5(4)6(7) pair (2.79). At fine accuracies the relative performance

of (5.3) is 0.996, as compared to 1.110 for the DP5(4)6(7) pair (2.79). The average relative performance of

(5.3) at these three accuracies is 1.02, as compared to 1.15 for the DP5(4)6(7) pair (2.79). From Figure 5.16a,

where larger A7 obviously limits performance to poorer than the performance of (5.3), a large part of the

13% improvement of (5.3) over the DP5(4)6(7) pair (2.79) can be explained because A7 is half the magnitude.

The only disadvantage is that the coefficients c4 and c5 are quite close to each other, i.e., only 0.023 apart,

but no performance issues were observed at all. In addition, the pair (5.3) has c3 6= 3
2c2 indicating the C(3)

simplifying assumptions (2.44b) do not hold.

A 5(4)6 ERK pair from the family of Case VIa from Section 3.5.1 with c3 = 1
20 , c5 = 13

25 , c6 = 21
25 , λ = 1,

µ = 1
20 , and A6 = 0.0010015924255361622 is given by

0 0 0 0 0 0 0

130423
1686340

130423
1686340

0 0 0 0 0

1
20

11604217947619
185317498140320

− 2338343040603
185317498140320

0 0 0 0

560598
1305545

964610812948440399985238334
231329828196216947882562545

54868046273222769408036159262248
5332846529407389299536714349885

− 573635841781318297580743872
40888850351605079621973995

0 0 0

13
25

95760524682082902186857
18895244081025815057500

25852185784292621161042125036
2118193616992771455094739375

− 70272518143127078688
4172909512748013125

a5,4 0 0

21
25

1747766103716327637517452336879
230084898732443633332458842500

882514701303568805682044155098829782276
36842273983934121854066752877843063125

− 5541840845785320883332917664
183708428474733993572550625

a6,4 a6,5 0

b 2348485259067
8871271251752

3922132895764465192589600000
5872246334802503764098922647

− 380663679119360
508768444851861

b4 b5 b6

b̂ 152247684684077
5702960090412

72682052843815326250000
913184738885140853319

− 220099607407680
2146702298953

b̂4 b̂5 0

(5.4)

where

a5,4 =
9116255266251006479145738991

104332788008330505730977711500

a6,4 = −
185910751560849132730575289703029242479337

57798187131226002778822350285897989211500

a6,5 =
25318468986182328502392

9471884261242742621113

b4 = −
71580763182220370377131155

7163024525369848435546548

b̂4 =
9228714523524644748910082619845

12799364981549519594631318038568

b5 = −
584186192486875

1932517170833184

b̂5 =
436879786949375

60391161588537

b6 =
363103380659006875

915008712245089056

A 5(4)6 ERK pair from the family of Case VIb from Section 3.5.1 with c3 = 19
100 , c5 = 59

100 , c6 = 93
100 ,

λ = 87
200 , µ = 1, and A6 = 0.0010421361266417699 is given by

0 0 0 0 0 0 0

87
548

87
548

0 0 0 0 0

19
100

16423799
117302100

58636
1173021

0 0 0 0

3080625
7462541

11057599740550145998887
60259870336240444931045

− 36302066831535658723093011
25791224503910910430487260

291147144922376059714875
177870513820075244348188

0 0 0

59
100

57505606497
211339283500

− 2167924978867294488436
1174694888560455416925

36290924455352
19232440320407

a5,4 0 0

93
100

− 146220051201
1056696417500

− 1026958049518772362845753321
213297834823450382229083375

5237438842838617686
744776251407761075

a6,4 a6,5 0

b 1
9

− 46846519179740720959
41636784944697265008

32768063548125
21064948510048

b4 b5 b6

b̂ 1
9

− 4656020795272057
562948337588184

9146437429375
853984399056

b̂4 b̂5 0

(5.5)
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a5,4 =
87009257695563850306661624

314730063661088520551779875

a6,4 = −
107960044466372640479768685309228533403

35812831808554499204992715677072875625

a6,5 =
2015399920718943

1080426934963525

b4 = −
7266460491070015036455302451538220

26448076934779075783419666789805113

b̂4 = −
268006812283711038148838690

68526533600483112168190101

b5 =
57927004473125

106243144437472

b̂5 =
3160979800625

1339199299632

b6 =
2892660895646875

15390326667308292

A 5(4)6 ERK pair from the family of Case VIb from Section 3.5.1 with c3 = 3
25 , c5 = 63

100 , c6 = 9
10 , λ = 1,

µ = 189
200 , and A6 = 0.0010209372714612293 is given by

0 0 0 0 0 0 0

200
989

200
989

0 0 0 0 0

3
25

62402538537
240190750000

− 33579648537
240190750000

0 0 0 0

25302015
66137108

345603933531037058539363
2314331616359715385309696

2737482275093524131724921461
4705036176059301378334611968

− 205011692154787712856773125
588129522007412672291826496

0 0 0

63
100

78503299596631
545713384000000

232759838096826285869796999
2617439966115426176984000000

− 1038800899496279
6684259524105920

b5,4 0 0

9
10

28000415251
545713384000

735483690568874712405846628465797
266522647260111674222316132315200

− 634911910987274180
507006395490979667

b6,4 b6,5 0

b 1
9

6294806203400478990763
14003493110096036396570

− 673143584028125
3511001459536974

b4 b5 b6

b̂ 1
9

8967142302929690493
2029197668467763570

− 604308517939375
270077035348998

b̂4 b̂6 0

(5.6)

a5,4 =
40219872432416927223343448238

72779150714949638064154459375

a6,4 = −
7379535097853814040669542524024908467

4498580332780928740501248325214051750

a6,5 =
450665515849591575

459007423158614054

b4 =
10097387978891962518746538504188864

89623164940722331647369576114791115

b̂4 = −
4377006790513940937881634158

1571353800093831364544408895

b5 =
1712175742300000

5958340165765791

b̂5 =
988338099053750

662037796196199

b6 =
287314685967350

1243391658829983

5.14.2 Overall performance of the pairs presented in this section

Table 5.3 gives method abbreviations for the specific pairs tested in Figures 5.46–5.49.

It is immediately seen from Figures 5.46–5.50 that although the eighth- and seventh-order Dormand–

Prince ERK pair [136] is often the most efficient at high accuracies, even when using small values for the

tolerances (such as 10−14) it is extremely difficult to reach the highest possible accuracies for many IVPs.

This is also seen to a lesser extent for the sixth- and fifth-order ERK pair from Verner [72, pg.181][187],

which is commonly seen in software including FATODE [203].

What can also clearly be seen is that the optimized methods from this study, i.e., (5.2)–(5.6), do tend
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Table 5.3: Abbreviations used for the work-precision diagrams in Figures 5.46–5.49.

’BS32’ The Bogacki–Shampine third- and second-order pair [15].
’RKF45’ The RKF4(5)6(6) pair (2.78) using the fourth-order component to advance the step.
’RKF54’ The RKF4(5)6(6) pair (2.78) using the fifth-order component to advance the step.
’CK54’ The CK4(5)6(6) pair (2.83).
’DP54’ The DP5(4)6(7) pair (2.79).
’PP54’ The PP5(4)6(7) pair (2.84).
’V65’, The Verner sixth- and fifth-order pair [72, pg.181].
’DP78’ The Dormand–Prince seventh- and eighth-order pair [136].
’VVI’ The pair given by (5.2).

’VVIFSAL’ The pair given by (5.3).
’VIAMU’ The pair given by (5.4).
’VIBLA’ The pair given by (5.5).
’VIBMU’ The pair given by (5.6).

towards the lower end and sometimes consistently outperform classic pairs. In particular, observe on “non-

stiff D5” and “non-stiff D6” IVPs (2.13) in Figures 5.47 and 5.48, respectively, that the pair (5.3) significantly

outperforms most other methods and especially DP5(4)6(7) pair (2.79). This is likely because of the much

smaller A7 = 0.0021 and more consistent asymptotic behaviour in the former. Even for the “nine planets”

and “Jovian asteroid” IVPs in Figures 5.49 and 5.50 respectively, the pair (5.3) converges more consistently.

The limits of trying to correlate performance of between the simple Kepler IVP (2.13) and more complex

IVPs can also be seen because although the pairs constructed, i.e., (5.2)–(5.6), do quite well solving the

“nine planets” and “Jovian asteroid” IVPs in Figures 5.49 and 5.50, they are not always the best performing.

However, the pairs constructed, i.e., (5.2)–(5.6), have much more consistent convergence behaviour compared

to pairs such as the DP5(4)6(7) pair (2.79) and PP5(4)6(7) pair (2.84). Even the pair (5.3) with a leading

error coefficient of A6 = 0.00037118380356134293 has more consistent convergence.

However, choosing random pairs according to just the error coefficients gives a much larger range of per-

formance in 5(4)6 ERK pairs than seen in Figures 5.46–5.50 (the author plotted several thousand pairs to

make an extremely crowded work-precision diagram in order to observe this). Therefore, ensuring that the

PECs fall within appropriate ranges, which is not always reflected by the classic error coefficients Aq (2.54),

individual PECs with large magnitude tend to be obscured by the 2-norm. This systematic way of construct-

ing embedded pairs is far more well-defined than trial and error. It may even lead to better ways of selecting

pairs once a theoretical understanding of why some PECs are dominant is found.
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Figure 5.46: A work-precision diagram from solving the “non-stiff D2” IVP (2.13) with ε = 0.3. See
Table 5.3 for method abbreviations.
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Figure 5.47: A work-precision diagram from solving the “non-stiff D5” IVP (2.13) with ε = 0.9. See
Table 5.3 for method abbreviations.
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Figure 5.48: A work-precision diagram from solving the “non-stiff D6” IVP (2.13) with ε = 0.99. See
Table 5.3 for method abbreviations.
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Figure 5.49: A work-precision diagram from solving the “Jovian asteroid” IVP described in Sec-
tion 5.3.4. See Table 5.3 for method abbreviations.
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Figure 5.50: A work-precision diagram from solving the “nine planets” IVP described in Section 5.3.4.
See Table 5.3 for method abbreviations.
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Chapter 6

Conclusions and recommendations for future work

6.1 Conclusions

This study shows that efficient and competitive 5(4)6 ERK pairs exist that do not satisfy even the ubiquitously

used C(2) simplifying assumptions (2.44b) and D(1) simplifying assumptions (2.44c). Even with the new work

presented on the values of specific PECs being a significant factor in the performance of ERK pairs, it is

still not clear whether forgoing the standard simplifying assumptions may actually lead to better performing

ERK pairs. At this time, it can only be concluded that 5(4)6 ERK pairs without the simplifying assumptions

can perform at least as well as otherwise similar pairs that satisfy the standard simplifying assumptions.

However, close examination of some of the figures from Chapter 5 indicates that forgoing the standard

simplifying assumptions may lead to more favourable performance tradeoffs among some IVPs. Therefore,

possible research directions to explore this is discussed as future work in Section 6.2.5 below.

An additional benefit to finding the complete solution is that it gave confidence that any observations

about the different families of 5(4)6 ERK pairs were not an artifact of a restricted solution, especially having

fewer free parameters (degrees of freedom) than necessary. Despite sometimes being portrayed as “cheap” in

the literature, finding the complete solution for ERK pairs based on the six-stage fifth-order order conditions

in Chapter 3 showed that constructing embedded ERK pairs, in comparison to just a single ERK method,

does require giving up potentially important free parameters. However, given that ERK pairs have the

enormous advantage of error estimation and step control, finding the complete solution ensures as few free

parameters are given up as possible and allows the practitioner to be confident that they are using the best

ERK pairs that can be constructed for a given order and number of stages.

During the preliminary investigations into numerical behaviour of RK pairs for this study, the author

observed that aggressively minimizing the leading error coefficient (or attempting to find more optimal RK

pairs based on other properties) often resulted in RK pairs with unexpectedly poor performance. At best,

attempting to systematically construct RK pairs using information available in the literature often did not

seem to be any more effective than choosing coefficients randomly. This experience highlights the importance

of showing, at least for some classes of IVPs, the importance of specific values of individual PECs (2.47) to

the performance of ERK pairs. Not only does this study show that it is in fact possible to minimize trial

and error by systematically selecting the coefficients for ERK pairs in a well-defined way. It finally addresses
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an observation by Verner in the early 1990s [189, 190] that the classic characteristic numbers (2.56) seemed

to be insufficient for distinguishing between ERK pairs from the same family. In fact, based on performance

data in this study, the classic characteristic numbers (2.56) that have featured in many studies do not appear

to be an important factor for selecting ERK pairs. This also means that, for at least some classes of IVPs,

the implicit or explicit [16] assumption common in the literature that the best that can be done is treating

all PECs (2.47) of equal importance can no longer be assumed.

The result of this new insight into the performance differences between ERK pairs, which otherwise seem

similar, is that it will allow determining with confidence the best ERK pairs for many classes of IVP as well

as confidently determining where existing pairs are inadequate. Appropriately selecting properties such as

the magnitude of the leading error coefficient still remains important. However, being able to reduce the

possibility of inappropriate choices and increase the confidence that the best choice has been made when

selecting ERK pairs by examining the individual PECs (2.47) will prove invaluable for many applications.

The performance data in Chapter 5 shows that more systematic recommendations can now be made, instead

of relying on the trial and error that has commonly been used when selecting specific IVP methods.

In addition, restrictions on the full parameter space of a family, using properties such as the PECs (2.48)

even if they are not under study, may be required to better study specific aspects of the construction of ERK

pairs. This was seen by the effect of the value of b̂6 or b̂7 shown in Section 5.12, which was not at all obvious

if the PECs (2.48) were not restricted. For any empirical study of numerical methods, restrictions on the

dominant factors in performance should become commonplace if they are not the properties under study.

Otherwise, it may be impossible to tell if the properties under study are the actual cause of the performance

differences observed.

IVP methods, including ERK methods, are well-studied in the literature and have been the subject of

many software packages and other pieces of published code. However, this study shows that a complete

software system that incorporates a proper database is probably required for a complete, in-depth, and

rigorous empirical study into the construction and performance of IVP methods. Because of the larger

amount of performance data than is typically presented by studies into numerical methods that was required

to have confidence in any observed behaviour, the author feels strongly that this study would not have been

possible without building a complete software system that uses a proper database. There are many other

possible empirical studies of IVP methods that would be significantly more complicated than this one and

this would certainly require software similar to, and often even more complex, than what is described in

thesis.

The software developed is additionally important because, based on experience with the families of 5(4)6

ERK pairs, every family of IVP methods studied required at least some unique consideration. The observation

made during this study that the values of specific PECs (2.48) explained most of the performance variation

within a specific family was surprising to the author. However, the specific observation on the importance

of individual PECs may not apply to studies of other IVP methods, and it will be essential to empirically
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to determine the specific properties that are in fact most important. Therefore, because there may be more

surprises in additional studies similar to this one, for future studies, it is necessary to have software, such as

OCSage and pythODE, that can examine help examine the implications of every known property that might

prove to be the dominant factor in the performance differences between IVP methods.

6.2 Future work and other research directions based on the work in

this thesis

6.2.1 The requirement for more extensive non-stiff IVP test sets

Something that became obvious during this study is that for most classes of non-stiff IVPs, the current

non-stiff IVP test sets are inadequate for selecting ERK pairs in a systematic and well-defined way. Other

than IVPs from celestial mechanics, there are not enough representatives of any other class of IVPs in the

currently published non-stiff IVP test sets. In addition, many IVPs in published test sets are relatively

simple, and it is not clear that their numerical properties correspond well enough to IVPs from real-world

applications for studies similar to this one. If the observation based on Figure 5.29 holds for more classes of

IVPs, i.e., that more optimal pairs only emerge after the IVP is solved for a sufficient amount of problem

time, then test sets incorporating IVPs that are solved for longer amounts of problem time are necessary as

well. The short integration times for many IVPs in published test sets (for instance, setting the final time

of all IVPs in the “non-stiff DE” test set to tf = 20 [83]) are understandable because these IVP test sets

originated in the 1970s and 1980s, when computer resources were more limited than they are today. However,

relatively simple IVPs will remain important for connecting the empirically observed numerical behaviour of

IVP methods to theory and because they have a lower computational cost for generating performance data.

Therefore, for other classes of IVPs, additional study is required to determine appropriate test sets that

also have a correlation in numerical performance between relatively simple IVPs and IVPs from real-world

applications, analogous to how a performance correlation was seen between simple Kepler IVPs (2.13) and

more complex IVPs from celestial mechanics. In order to have confidence in any conclusions reached, these

new IVP test sets should contain many IVPs (the author feels this should at least a dozen) from the same

class, including several IVPs that are relatively simple, and several more IVPs that directly correspond to

real-world applications.

6.2.2 Future work involving the solution of ERK order conditions

Future work on the six-stage fifth-order order conditions can include finding families with singularities that

were deliberately not addressed in Chapter 3, such as ERK pairs that have components of the c vector equal

to each other. In addition, the techniques in Chapter 3 and the OCSage package described in Chapter 4 can

be readily applied to find better solutions to systems of order conditions higher than fifth-order, as well as

332



more complex IVP methods based on RK methods.

6.2.3 Future work on better pairs for solving IVPs from celestial mechanics and

other classes of IVPs

The most obvious class of IVPs with well-defined optimal ERK pairs are the IVPs from celestial mechanics

based on the Kepler IVP (2.13). This is, in part, because there are many IVPs in test sets that are based

on the relatively simple Kepler IVP (2.13). The optimal value, different from the Kepler IVP (2.13), for the

PEC (2.48) corresponding to the rooted tree [τ [[τ2]]] for the two instances of the Euler rigid body problem

(see the “non-stiff B5” IVP in Figure D.1 and the subfigure labelled “Euler” in Figure D.2 that was mentioned

in Section 5.3.2) is probably apparent because of the well-defined and well-studied mathematical structure

of IVPs from mechanics in general. The fact that there may be different ERK pairs that are the best

for rigid body problems, in comparison to celestial mechanics, may have an important application in fields

such as computer graphics. However, there are many important classes of IVPs that have well-defined and

well-studied mathematical structure that are all candidates for finding better application-specific ERK pairs.

6.2.4 Future development of OCSage, pythODE, and software tools in general

OCSage and pythODE are currently single-purpose software prototypes that demonstrate the possibilities of a

software system for substantially enhancing the study and construction of IVP methods. Even in cases where

the methods constructed are not meant for practical use, it is shown when studying the effects of b̂6 and b̂7

in Section 5.12, that using these software packages can narrow down the full spaces of free parameters and

make the study of particular properties much clearer.

Careful decisions will need to be made about the future development of OCSage and pythODE so that they

have adequate performance for their expected usage, but that the overall software system does not become

too complex for the available development resources. In particular, to effectively study the best IVP methods

for large IVPs, such as semi-discretized PDEs, the capability to handle at least several orders of magnitude

more computational cost is required in comparison to what is used for the celestial mechanics IVPs studied

in this thesis. However, this is not as daunting as it might seem at first because a combination of using more

than just two computers, further optimization of the code, and incorporating numerical libraries written

using low-level languages will easily amount to the ability to handle several orders of magnitude additional

computational cost.

Software packages similar to OCSage and pythODE could form the basis for building a collection of uni-

versal reference implementations for IVP method construction and IVPs would strongly benefit the study of

numerical methods for IVPs. This is because, in many publications, many of the details of both IVP method

construction and the IVPs used for performance testing remain unpublished. On the one hand, this is un-

derstandable because of the difficulties and limited cost/benefit tradeoff that comes from preparing research

code for publication. However, having a software platform of reference implementations for IVPs and IVP
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methods would greatly enhance reproducibility, and the ability of other researchers to build on each other’s

work.

6.2.5 Theoretical studies of the numerical behaviour observed in this thesis

Ultimately, to fully realize the potential of the systematic construction of ERK pairs based on the values of the

PECs (2.48) described in Chapter 5, the specific mathematical reasons for the numerical behaviour observed

should be found. Other than the cancellation of error that can occur in periodic IVPs, another hypothesis

for the observed optimal values of PECs might be a non-linear analogue to dispersion or dissipation. Given

the well-studied mathematical structure of the Kepler IVP (2.13), with the clues given by the performance

data from Chapter 5, the specific reasons why more optimal pairs exist can probably be found. Because there

are many classes of IVPs with well-studied mathematical structure, the results of a theoretical study on the

numerical behaviour observed for the Kepler IVP (2.13) could be immediately be extended to other classes

of IVPs.

Determining if there are any practical advantages or disadvantages to ERK pairs not satisfying the clas-

sic C(2) simplifying assumptions (2.44b) will have wait until this theoretical understanding of why certain

PECs (2.47) have the largest effect on performance. In particular, without the C(2) simplifying assump-

tions (2.44b) the values of certain PECs (2.47) are not multiples of each other, i.e., the analogous PECs (2.48)

are not equal, and it should be investigated whether this property can provide an advantage for some classes

of IVPs. Some of the performance data presented in Chapter 5 shows that there may in fact sometimes be

an advantage to not satisfying the C(2) simplifying assumptions (2.44b). For instance, comparing the trade-

offs between the “non-stiff D” IVPs (2.13) and more complex IVPs from celestial mechanics in Figures 5.18

and 5.20, it can be seen that pairs from Case VIb often have a more favourable tradeoff in comparison to

pairs from the 5(4)6(6)C(2) family. A theoretical understanding of these observed tradeoffs that seem to favour

not satisfying the C(2) simplifying assumptions (2.44b) may lead to ERK pairs with a well-defined advantage

precisely because they do not satisfy the C(2) simplifying assumptions (2.44b).

6.2.6 Computational studies using specialized pythODE modules

Specialized pythODE modules could be written to study virtually any numerical behaviour on a step-by-step

basis. For instance, if used in combination with the generated code from OCSage, it is feasible to write

specialized pythODE modules to track the contribution of each PEC (2.47) to the error of the IVP solution

at each step. This would have an extremely high computational cost in comparison to just solving the IVPs

under consideration. However, it would provide valuable information to help determine whether certain values

of the PECs (2.48) promote a cancellation of error, under what circumstances, or if another phenomenon is

responsible.
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6.2.7 Futher study of error estimation and step control

From Section 5.10, there appear to be unavoidable tradeoffs in the performance between individual IVPs

based on the specific value selected for b̂6 or b̂7. This was also observed when solving many different classes

of IVPs, where “oversized” error estimates often favoured IVPs that require large stepsize changes and more

“accurate” error estimates favoured those that do not. Therefore, study of better step-control schemes may

lead to better overall performance for embedded ERK pairs. Considering that control-theoretic studies of

IVP methods do not yet draw on much of the enormous literature on control theory, the improvement could

be quite substantial. Once the effects of different values of the PECs of the fifth-order component of a 5(4)6

ERK pair are removed, in Figures 5.42–5.43 the behaviour b̂6 and b̂7 look remarkably like those observed

when solving linear IVPs. This also means that if step-control can be better analyzed for linear IVPs, then

it can probably be analyzed for simple non-linear IVPs such as the Kepler IVP (2.13).

6.2.8 Controlling roundoff error

Although performance issues that appeared to be due to roundoff error were occasionally observed during this

study, they are not significant overall in comparison to the local and global errors of the IVP method. However,

because roundoff error can become substantial for many applications when scaling beyond the relatively simple

IVPs in many test sets, it is important to choose pairs that reduce roundoff. Although spacing the components

of the c vector sufficiently far apart and reducing the magnitude of D characteristic number (2.56c) have

been considered in the literature as methodologies of reducing roundoff error, no significant effects were seen

from applying these particular methodologies in this study. A more detailed study of the effects of coefficient

choice on roundoff error needs to be conducted. In particular, different strategies for summation have been

described for IVP methods in the literature, and consideration of these different implementation strategies

for RK formulae should be incorporated into the construction of ERK pairs [54].

6.2.9 Are “cheap” error estimates actually cheap?

One conclusion from the method construction in this study is that embedded ERK pairs are not necessarily as

“cheap” as they have been portrayed. When constructing a six-stage fifth-order ERK method, incorporating

an embedded pair for giving an error estimate generally requires giving up several free parameters. This either

leads to having less flexibility in terms of choosing the error coefficients for 5(4)6(6) ERK pairs or giving up

fewer free parameters but having an extra RHS evaluation when a step is rejected for 5(4)6(7) ERK pairs.

The step-doubling error estimate defined in Section 2.6.1 should be considered, although the author thinks

that it is not likely that step-doubling will actually provide enough of an advantage over embedded pairs to

compensate for the 50% increase in RHS evaluations. Following a similar pattern to the eighth-order ERK

method with fifth- and third-order ERK methods as error estimators from Dormand and Prince [72, pgs.254–

255], a second- and third-order error estimate used with a six-stage fifth-order ERK method might provide
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an advantage by allowing more free parameters for the fifth-order ERK component. Another alternative is

to consider seven-stage fifth-order pairs, where the many free parameters the complete solution will provide

might give an advantage that offsets the computational cost of an extra stage.

6.2.10 Are there specific advantages to lower-order IVP methods?

Lower-order IVP methods remain in common use, especially for semi-discretized PDEs, despite some authors

calling for more common usage of high-order numerical methods, with the expectation that this will achieve

better accuracy and efficiency [36, 74, 169, 198, 199]. It is clearly seen from the limited experimentation

with the Brusselator IVP in Section 5.6 that there may in fact be some justification for continued use

of low-order IVP methods. Large amounts of performance data may be crucial to either identifying the

advantages that might be inherent to lower-order IVP methods or finding specific improvements that must

be made to higher-order IVP methods for them to be competitive at coarse accuracies. The narrower range of

stability for step-control when using higher-order methods, which is briefly described in Section 2.6.2, is one

possibility. However, lower-order IVP methods remain in use for applications where there is no step-control

as well. Therefore, detailed investigation in conjunction with performance data will be required to test any

hypotheses.

6.2.11 A study of other properties of IVP methods

Properties and characteristic numbers for which performance testing did not show a well-defined effect are

generally not discussed within this thesis. These include many properties that have been studied in the

literature, such as the linear stability region, the differences in stability regions between components of an

embedded RK pair, dissipation, dispersion, contractivity, etc. [4, 82, 94, 160, 179] All of these properties

should be studied in detail using the large amounts of performance data now available from OCSage and

pythODE. In particular, the author hypothesizes that for stiff IVP methods, classic properties like linear

stability are necessary but not sufficient for constructing the most efficient IVP methods and that properties

such as the values of individual PECs may become important. However, future studies of more complex

numerical methods, such as those for stiff IVPs, will have to account for effects such as the ones that might

occur from coupling between the integration methods and the numerical methods used to solve the systems

of linear or non-linear equations.

6.2.12 Fitness functions for constructing IVPs using meta-heuristic search and

optimization methods

The families constructed from the six-stage fifth-order order conditions are complex enough to support new

work and insights into IVP methods, but simple enough to be practical for simple techniques involving grid

searches and performance testing a smaller random set of the pairs found. Many families of IVP methods,
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especially combinations of more basic numerical methods, have many more free parameters. Therefore,

techniques must be found to handle method construction involving the spaces of free parameters with more

than four or five free parameters. Many of the contemporary optimization methodologies based on meta-

heuristics, such as particle swarm [52, 144], may be ideal for this.

However, because efficient ERK method construction does not appear to be a straightforward and well-

defined minimization problem, some modifications to how meta-heuristics are often used may be necessary.

The author’s experience early in this study showed that published information on selecting coefficients for

RK methods is insufficient to construct a well-defined fitness function. In many cases, the author found RK

methods that had seemingly similar properties but significantly different performance solving many IVPs.

The fitness function implicitly used in Chapter 5 is an average of the performances of the Kepler IVP (2.13)

with different eccentricities and accuracies. This is justified because most of the more complex IVPs tested

from celestial mechanics usually had the performance solving them strongly correlated with the performance

solving at least one instance of the tested Kepler IVPs (2.13). Any practical and useful fitness function will

likely require a combination of characteristic numbers and performance testing. This makes the software

system consisting of OCSage and pythODE ideal for the evaluation of the fitness functions that meta-heuristic

optimization methods would require. In order to find well-defined fitness functions for constructing RK

methods, developing additional test sets for other important classes of IVPs will be essential as well.
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Appendix B

Expressions for elementary differentials, rooted trees,

scalar sums, and order conditions

B.1 Order conditions using variable substitutions

B.1.1 Standard six-stage fifth-order order conditions using variable substitu-
tions

The fifth-order quadrature conditions can be written without requiring any standard variable substitutions
as r

b1 + b2 + b3 + b4 + b5 + b6 = 1, (B.1a)

rr
b2c2 + b3c3 + b4c4 + b5c5 + b6c6 =

1

2
, (B.1b)

AA��r rr
b2c

2
2 + b3c

2
3 + b4c

2
4 + b5c

2
5 + b6c

2
6 =

1

3
, (B.1c)

r rrrAA��
b2c

3
2 + b3c

3
3 + b4c

3
4 + b5c

3
5 + b6c

3
6 =

1

4
, (B.1d)

��DD��TTr rr rr
b2c

4
2 + b3c

4
3 + b4c

4
4 + b5c

4
5 + b6c

4
6 =

1

5
. (B.1e)

355



The fifth-order non-branching conditions of height two that involve just b, c,p, along with alternate forms
involving s, can be written as

rr
r
b3p3 + b4p4 + b5p5 + b6p6 =

1

6
,

r3c3 + r4c4 + r5c5 =
1

6
, (B.2a)

��AAr r
rr
b3c3p3 + b4c4p4 + b5c5p5 + b6c6p6 =

1

8
,

s3c3 + s4c4 + s5c5 =
1

8
, (B.2b)

��AArr rr r
b3c

2
3p3 + b4c

2
4p4 + b5c

2
5p5 + b6c

2
6p6 =

1

10
, (B.2c)

��AAr rrr r
b3p

2
3 + b4p

2
4 + b5p

2
5 + b6p

2
6 =

1

20
. (B.2d)

The fifth-order conditions that involve q can be written as

AA��rr
rr

b3q3 + b4q4 + b5q5 + b6q6 =
1

12
,

r2c
2
2 + r3c

2
3 + r4c

2
4 + r5c

2
5 =

1

12
, (B.3a)

��AA
��AAr rr r r

b3c3q3 + b4c4q4 + b5c5q5 + b6c6q6 =
1

15
, (B.3b)

AA��r
rr
r rr

b4a4,3q3 + b5(a5,4q4 + a5,3q3) + b6(a6,5q5 + a6,4q4 + a6,3q3) =
1

60
,

r4(a4,3c3 + a4,2c2) + r5(a5,2c2 + a5,3c3 + r5a5,4c4) =
1

60
. (B.3c)
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The remaining fifth-order conditions, except the tall tree of fifth-order, can be written as

rr
rr

b4a4,3p3 + b5(a5,4p4 + a5,3p3) + b6(a6,5p5 + a6,4p4 + a6,3p3) =
1

24
,

r3p3 + r4p4 + r5p5 =
1

24
, (B.4a)

��AAr rr rr

b4c4a4,3p3 + b5(c5a5,4p4 + c5a5,3p3) + b6(c6a6,5p5 + c6a6,4p4 + c6a6,3p3) =
1

30
, (B.4b)

��AArr
rr r

b4a4,3c3p3 + b5(a5,4c4p4 + a5,3c3p3) + b6(a6,5c5p5 + a6,4c4p4 + a6,3c3p3) =
1

40
,

r3c3p3 + r4c4p4 + r5p5c5 =
1

40
,

��AAr rr rr
+

��AArr
rr r

b4a4,3p3(c3 + c4) + b5(a5,4p4(c5 + c4) + a5,3p3(c5 + c3)) + b6(a6,5p5(c6 + c5) + a6,4p4(c6 + c4)+

a6,3p3(c6 + c3)) =
7

120
, (B.4c)

AA��rr
rrr

b3a3,2c
3
2 + b4(a4,3c3 + a4,2c2) + b5(a5,4c4 + a5,3c3 + a5,2c2) + b6(a6,5c5 + a6,4c4 + a6,3c3 + a6,2c2) =

1

20
,

r2c
3
2 + r3c

3
3 + r4c

3
4 + r5c

3
5 =

1

20
, (B.4d)

where in [113] and [31] the order conditions for the trees ��AAr rr rr
+

��AArr
rr r
are combined additively because these

authors only found the order conditions for single ODEs rather than systems. Finally, the tall tree of fifth-
order can be written as

rr
rr
r

b5a5,4a4,3p3 + b6(a6,4a4,3p3 + a6,5(a5,4p4 + a5,3p3)) =
1

120
,

r5a5,4p4 =
1

120
. (B.5)
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B.1.2 Standard fourth-order seven-stage order conditions using variable substi-
tutions

The fourth-order quadrature conditions can be written asr
b1 + b2 + b3 + b4 + b5 + b6 + b7 = 1, (B.6a)

rr
b2c2 + b3c3 + b4c4 + b5c5 + b6c6 + b7c7 =

1

2
, (B.6b)

AA��r rr
b2c

2
2 + b3c

2
3 + b4c

2
4 + b5c

2
5 + b6c

2
6 + b7c

2
7 =

1

3
, (B.6c)

r rrrAA��
b2c

3
2 + b3c

3
3 + b4c

3
4 + b5c

3
5 + b6c

3
6 + b7c

3
7 =

1

4
, (B.6d)

rr
r
b3p3 + b4p4 + b5p5 + b6p6 + b7p7 =

1

6
,

r3c3 + r4c4 + r5c5 + r5c5 + r6c6 =
1

6
, (B.7a)

��AAr r
rr
b3c3p3 + b4c4p4 + b5c5p5 + b6c6p6 + b7c7p7 =

1

8
,

s3c3 + s4c4 + s5c5 + s6c6 + s7c7 =
1

8
, (B.7b)

AA��rr
rr

b3q3 + b4q4 + b5q5 + b6q6 + b7q7 =
1

12
,

r2c
2
2 + r3c

2
3 + r4c

2
4 + r5c

2
5 + r6c

2
6 =

1

12
, (B.8a)

rr
rr

b4a4,3p3 + b5(a5,4p4 + a5,3p3) + b6(a6,5p5 + a6,4p4 + a6,3p3) + b7(a7,6p6 + a7,5p5 + a7,4p4 + a7,3p3) =
1

24
,

r3p3 + r4p4 + r5p5 + r6p6 =
1

24
, (B.9a)

1
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Table B.1: Rooted trees and scalar sums up to fifth-order.

p tree Φ

1 τ r ∑
bi

2 [τ ] rr ∑
bici

3 [τ2] AA��r rr ∑
bic

2
i

[[τ ]] rr
r ∑

biai,jcj

4 [τ3] r rrrAA�� ∑
bic

3
i

[τ [τ ]] ��AAr r
rr ∑

biciai,jcj

[[τ2]]
AA��rr

rr ∑
biai,jc

2
j

[[[τ ]]] rr
rr ∑

biai,jaj,kck

5 [τ4] ��DD��TTr rr rr ∑
bic

4
i

[τ2[τ ]] ��AArr rr r ∑
bic

2
i ai,jcj

[[τ ]2] ��AAr rrr r ∑
biai,jcjai,kck

[τ [τ2]] ��AA
��AAr rr r r ∑

biciai,jc
2
j

[τ [[τ ]]] ��AAr rr rr ∑
biciai,jaj,kck

[[τ3]]
AA��rr

rrr ∑
biai,jc

3
j

[[τ [τ2]]]
��AArr
rr r

∑
biai,jcjaj,kck

[[[τ2]]]

AA��r
rr
r rr

∑
biai,jaj,kc

2
k

[[[[τ ]]]] rr
rr
r

∑
biai,jaj,kak,lcl
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Table B.2: Rooted trees and scalar sums of sixth-order.

p graph Φ

6 [τ5] AA@@����
rrrrr r ∑

bic
5
i

[τ3[τ ]] ��DD��TTr rr rr r ∑
bic

3
i ai,jcj

[τ [τ ]2] ��TTr rr rr r ∑
biciai,jcjai,kck

[τ2[τ2]] ��AA
��AAr rrr

r r ∑
bic

2
i ai,jc

2
j

[τ2[[τ ]]] ��AAr rrr
rr ∑

bic
2
i ai,jaj,kck

[[τ ][τ2]] ��AA
��AAr r

rr r r ∑
biai,jcjai,kc

2
k

[[τ ][[τ ]]] ��AAr rrr rr ∑
biai,jcjai,kak,lcl

[τ [τ3]] ��AA
��AAr r
rr r r ∑

biciai,jc
3
j

[τ [τ [τ ]]] ��AA
��AAr rr r rr ∑

biciai,jcjaj,kck

[τ [[τ2]]] ��AA

��AA

r rr rr r
∑
biciai,jaj,kc

2
k

p graph Φ

6 [τ [[[τ ]]]] ��AAr rr rr
r

∑
biai,jcjai,kak,lcl

[[τ4]]
��DD��TTrr
rrrr ∑

biai,jc
4
j

[[τ2[τ ]]]
��TTrr
rrr r

∑
biai,jc

2
jaj,kck

[[[τ ]2]]
��TTrr
rr rr

∑
biai,jaj,kckaj,kck

[[τ [τ ]2]]
��TT
AA��

rr
rr r r

∑
biai,jcjaj,kc

2
k

[[τ [[τ ]]]]
��TTrr
rr rr

∑
biai,jcjaj,kak,lcl

[[[τ3]]]

AA��

rr
r rrr ∑

biai,jaj,kc
3
l

[[[τ [τ ]]]]

AA��

rr
r r
rr

∑
biai,jaj,kckak,mcm

[[[[τ2]]]]

AA��

rr
rr
rr

∑
biai,jaj,kak,lc

2
l

[[[[[τ ]]]]] rr
rr
rr

∑
biai,jaj,kak,lal,mcm

360



Table B.3: Selected rooted trees and scalar sums of seventh-order. Only seventh-order rooted trees
and scalar sums that are specifically mentioned in Chapter 5 are included.

p tree graph Φ

7 [τ6] ��DD��TT��@@ rrr rr rr ∑
bic

5
i

[[τ2][[τ ]]] ��AA
��AA r rr rrrr ∑

biai,jc
2
jai,kak,lcl

[[τ ][[τ2]]] ��AA

��AA

r rr rr r r
∑
biai,jcjai,kak,lc

2
l

[τ [[τ [τ ]]]] ��AA

��AA

r rr rr rr
∑
biciai,jaj,kckak,lcl

[τ [[[τ2]]]] ��AA

��AA

r rr rr
r r

∑
biciai,jaj,kak,lc

2
l

[[τ5]]
AA@@����r

rrrrr r ∑
biai,jc

5
j

[[τ [[τ2]]]]
��AA

��AA

rr
rr rr r

∑
biai,jcjaj,kak,lc

2
l
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Appendix C

Linear algebra relations

C.1 Vandermonde matrices

A Vandermonde matrix [163, pg.15] is an n× n matrix given by
1 1 . . . 1
x1 x2 . . . xn
x2

1 x2
2 . . . x2

n
...

...
. . .

...
x

(n−1)
1 x

(n−1)
2 . . . x

(n−1)
n

 (C.1)

A more common and classical definition of the Vandermonde matrix is the transpose of the definition given
by (C.1) and Shilov [163, pg.15]. However, many of the properties of Vandermonde matrices (including all
that are important in this thesis) are invariant to transposition.

The Vandermonde determinant of a 3× 3 Vandermonde matrix, ∆ijk, is given by

∆ijk =

∣∣∣∣∣∣
1 1 1
ci cj ck
c2i c2j c2k

∣∣∣∣∣∣ = (ck − cj)(ck − ci)(cj − ci), (C.2)

which can be found by using any general-purpose formula for a determinant and simplifying appropri-
ately [163, pg.15].

The Vandermonde determinant of a 4× 4 Vandermonde matrix, ∆ijkl, is given by

∆ijkl =

∣∣∣∣∣∣∣∣
1 1 1 1
ci cj ck cl
c2i c2j c2k c2l
c3i c3j c3k c3l

∣∣∣∣∣∣∣∣ = (ci − cj)(ci − ck)(ci − cl)(cj − ck)(cj − cl)(ck − cl), (C.3)

which can be found by using any popular general-purpose methodology for determinants and simplifying
appropriately [163, pg.15].

C.1.1 Specific matrices

There are some specific forms of matrices in this thesis that require consideration. Matrices that can be
factored into products including a Vandermonde matrix are ones that appear when considering fifth-order
quadrature conditions (B.1), e.g., in Sections 3.3 and 3.4, given by∣∣∣∣∣∣∣∣
ci cj ck cl
c2i c2j c2k c2l
c3i c3j c3k c3l
c3i c3j c3k c3l

∣∣∣∣∣∣∣∣ = ci cj ck cl

∣∣∣∣∣∣∣∣
1 1 1 1
ci cj ck cl
c2i c2j c2k c2l
c3i c3j c3k c3l

∣∣∣∣∣∣∣∣ = ci cj ck cl(ci − cj)(ci − ck)(ci − cl)(cj − ck)(cj − cl)(ck − cl),

(C.4)
which arises because the c components can be factored out of the columns of (C.4), see [163, pg.11]. This
form can be viewed as a member of the generalized Vandermonde determinants [119, pg.14]. Note that in
this case the determinant is non-zero and the matrix is non-singular if the c components are distinct.
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Other similar determinants such as∣∣∣∣∣∣
ci cj ck
c2i c2j c2k
c3i c3j c3k

∣∣∣∣∣∣ = cicjck∆ijk,

∣∣∣∣∣∣
1 1 1
c2i c2j c2k
c3i c3j c3k

∣∣∣∣∣∣ = (cicj + cick + cjck)∆ijk,∣∣∣∣∣∣
1 1 1
ci cj ck
c3i c3j c3k

∣∣∣∣∣∣ = (ci + cj + ck)∆ijk, (C.5)

can be factored into a product that includes Vandermonde determinants. Consider Cramers rule applied to∣∣∣∣∣∣∣∣
a 1 1 1
b ci cj ck
c c2i c2j c2k
d c3i c3j c3k

∣∣∣∣∣∣∣∣
= a

∣∣∣∣∣∣
ci cj ck
c2i c2j c2k
c3i c3j c3k

∣∣∣∣∣∣− b
∣∣∣∣∣∣
1 1 1
c2i c2j c2k
c3i c3j c3k

∣∣∣∣∣∣+ c

∣∣∣∣∣∣
1 1 1
ci cj ck
c3i c3j c3k

∣∣∣∣∣∣− d
∣∣∣∣∣∣
1 1 1
ci cj ck
c2i c2j c2k

∣∣∣∣∣∣ (C.6)

where swapping the columns keeps things the same.
The expressions using Vandermonde determinants (C.1), such as (C.5), can give useful relations such as

∆ijkl

∆ijk
= (ci − cl)(cj − cl)(ck − cl), (C.7)

that appear throughout this thesis.
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Appendix D

Performance of some IVPs in comparison to the val-

ues of selected PECs
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Figure D.1: The performance of the 5(4)6(6)C(2) family when solving the IVPs from the “DE test set”
in comparison to different values of the PEC (2.48) corresponding to [τ [[τ2]]].
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Figure D.2: The performance of the 5(4)6(6)C(2) family when solving other selected IVPs in compar-
ison to different values of the PEC (2.48) corresponding to [τ [[τ2]]].

366



Figure D.3: The performance of the 5(4)6(6)C(2) family when solving the IVPs from the “non-stiff D”
class (2.13) in comparison to different values of the sixth-order PECs (2.48). The ordering used for
the PECs is left-to-right top-to-bottom in the same order as Table B.2.
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