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Abstract 

Canada is a world leader in flax production, and the expansion of the crop into the northern 

region of the prairies requires early flowering, consequently early maturing cultivars to 

overcome the frost damage. New sources of variation for flowering time thus hold great interest. 

Flax genomics resources including chromosome level assembly are now sufficiently developed 

to examine traits with complex inheritance. An early flowering mutant ‘RE2’ was selected from 

cultivar ‘Royal’ after treatment with 5-Azacytidine (5-AzaC). The mutant line flowered nearly 

seven to 13 days earlier than the progenitor ‘Royal’. A large recombinant inbred line (RIL) 

population encompassing 656 lines, derived from ‘Royal’ x ‘RE2’ was used to identify the 

potential genomic region underlying the trait. Firstly, the RIL population was phenotyped for 

early vigour, days to- start of flowering, full flowering, maturity and height in three field seasons 

(2015, 2016 and 2017) using a modified augmented design type 2, and once in the growth-

cabinet. Secondly, the distributional extremes for flowering time identified from the RIL 

population were subjected to sequencing based bulked segregant analysis. Thirdly, the QTL-seq 

bioinformatics pipeline (Takagi et al. 2013) was used for the identification of SNP, which were 

annotated using SnpEff. QTL-seq pipeline identified a SNP upstream of the flax gene 

homologous to Arabidopsis LUMINIDEPENDENS. Later, the sequencing data were reanalysed 

with customized variant calling steps succeeded by statistical analysis using QTLseqr (Mansfeld 

and Grumet 2018), a recent improved pipeline. QTLseqr detected two genomic regions having 

significant association with early flowering trait on chromosomes 9 and 12. The variants in these 

regions were found to be associated with genes encoding LATE EMBRYOGENESIS 

ABUNDANT (LEA) HYDROXYPROLINE-RICH GLYCOPROTEIN FAMILY, 

MAINTENANCE OF MERISTEMS-LIKE, CYTOCHROME P450 87A3 and PHLOEM 

PROTEIN 2-A12, based on homology analysis. As ‘RE2’ was derived from the population 

resulting from the treatment of ‘Royal’ with the demethylating agent 5-AzaC, whole genome 

bisulfite sequencing data were generated to identify variation in methylation patterns and its 

association with early flowering. A total of 260,193 cytosines were transformed from methylated 

state in the late flowering bulk to the unmethylated state in the early flowering bulk, potentially 

owing to the hypomethylating action of 5-AzaC. Out of the 127 significant differentially 

methylated regions (DMRs) detected, 59 were overlapping with genes, and 35 DMRs and 33 

DMRs were within the upstream- (5kb interval) and intergenic regions, respectively. 
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Interestingly, a cluster of significant DMRs were also present on chromosome 12. Three DMRs 

(on chromosomes 1, 6 and 7) were overlapping the genes whose homologues encode 

FASCICLIN-LIKE ARABINOGALACTAN group of proteins, and two DMRs (on chromosome 

12) were present upstream to SUPPRESSOR OF FRI 4 and FRIGIDA-ESSENTIAL 1. This study 

is first of its kind in flax, providing the basis for identifying novel epialleles underlying the early 

flowering phenotype. 
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Chapter 1 Introduction 

 

Canada is the world leader in flax production and exports (www.saskflax.ca) with the majority of 

flax grown in the Province of Saskatchewan (~75% based on Canada Grains and Oilseeds 

Outlook, by AAFC). However, the climate throughout the Canadian Prairie provinces is harsh, 

resulting in a short growing season with a duration of 110 frost-free days (FFD). This 

environment imposes limits on flax production in Saskatchewan (Figure 1.1). In order to expand 

the area of flax production beyond current growing areas typically restricted to areas of southern 

Saskatchewan and Manitoba with a greater number of FFD, into the more northern parts of the 

prairies, there is a need to develop early flowering and subsequently early maturing cultivars, 

able to escape the potential frost damage during the physiological seed maturity phase. In 

addition, with the changing climate, cropping areas are expected to expand into further northern 

latitudes in the 21st century (King et al. 2018), and hence, developing cultivars with adaptation to 

these regions is of prime interest. Further, early flowering genotypes possibly escape high 

temperature and drought stress, and breeding for earlier flowering has been carried out in other 

crops in western Canada including chickpea (Bueckert and Clarke 2013). 

 

Figure 1.1 Flax growing regions in Canada (Image source: Flax Council of Canada) 

http://www.saskflax.ca/
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Flowering time is a complex trait governed by nearly 300 genes associated with eight different 

physiological pathways. These include responses to photoperiod, aging, vernalization, ambient 

temperature and regulations through the circadian clock, phytohormones, nutrition (particularly 

trehalose-6-phosphate; Wahl et al. 2013) and the autonomous flowering pathways. In 

Arabidopsis, the molecular mechanisms underlying flowering time have been elucidated in detail 

(Bouché et al. 2015). Key floral integrator genes including, FLOWERING LOCUS T (FT; Yoo et 

al. 2005) and TWIN SISTER OF FT (Yamaguchi et al. 2005), that govern the transition from 

vegetative to reproductive phase act as convergence points linking these diverse pathways 

(Andrés and Coupland 2012). In contrast to Arabidopsis, the genetic control of flowering time is 

not well understood in non-model plant species and direct extrapolation from Arabidopsis to flax 

might be misleading since they diverged ~106 million years ago (http://www.timetree.org/; 

Hedges et al. 2006). 

Variation in flowering time occurs naturally and the cultivar ‘Royal’ is among the moderately 

early flowering flax genotypes (McGregor 1953). ‘Royal’ is an older flax cultivar, that has been 

superseded by other cultivars with improved agronomic performance including traits leading to 

higher yield and oil content, along with improved resistance to diseases. However, the alleles 

controlling flowering time remain valuable towards the development of earlier flowering flax 

varieties. Among the 29 flax cultivars that have been registered in Canada since 2000, ‘2126’, a 

low linoleic acid containing flax cultivar is the earliest, taking ~95 days to maturity (Dribnenki et 

al. 2005). Although this improvement is significant, it has been estimated that a cultivar with 

duration of ~90 days is desirable for northern part of the prairies (Duguid 2009). Efforts to 

further reduce the flowering time of ‘Royal’ include unconventional approaches including 

altering chromatin structure through epigenetic modification (Fieldes 1994; Fieldes and Amyot 

1999). These approaches not only provide additional insight into the regulation of flowering time 

in flax, but also explore the potential prospects for exploiting both genetic and epigenetic 

variation towards crop improvement. 

Methodologies to alter chromatin structure can be applied to plants using pharmacological 

inhibitors that restrict chromatin modifications. One such approach targets alterations to DNA 

methylation patterns using 5-Azacytidine (5-AzaC), a cytidine analog that inhibits methylation 

(Veselý et al. 1978). The utility of this approach was demonstrated in flax where three early 

http://www.timetree.org/
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flowering lines named ‘RE1’, ‘RE2’ and ‘RE3’ were selected from a population of the variety 

‘Royal’ after mutagenesis using 5-AzaC (Fieldes 1994). The early flowering trait identified after 

5-AzaC treatment was found to be heritable and was observed to be stably transmitted through 

meiosis for at least nine generations (Sun 2015, M. Sc., Thesis, University of Saskatchewan). 

The heritability of this trait enabled the generation of three recombinant inbred line (RIL) 

populations developed by crossing each of the three early flowering lines to the progenitor 

genotype ‘Royal’. The crosses and RIL populations were developed at the Crop Development 

Centre, University of Saskatchewan. These RIL populations offer a unique genetic resource to 

elucidate the underlying factors controlling the variation in these early flowering lines. These 

genetic resources were examined to characterize the factors underlying the observed variation in 

flowering time between ‘Royal’ and the early flowering line ‘RE2’. 

The use of a DNA methylation inhibitor to induce new phenotypic variation has the potential to 

do so without altering the favourable allelic combinations selected by flax breeders in their 

vision for ‘Royal’ since, negligible primary sequence variation is induced by 5-AzaC (Xu et al. 

2016). The use of 5-AzaC to induce new phenotypic variation suggests that the underlying 

variation might result from alterations in DNA methylation patterns between ‘RE2’ and its 

progenitor genotype ‘Royal’. Although, the possibility exists that exposure to 5-AzaC might act 

as a weak mutagen inducing a genetic mutation (Single Nucleotide Polymorphisms-SNP or 

chromosomal rearrangements) resulting in the observed phenotypic variation. The stable 

inheritance of early flowering time in ‘RE2’, and the moderate heritability of flowering time trait 

in ‘RC’ x ‘RE2’ RIL population, probably suggest that a genetic mutation might underlie this 

variation. However, the origin and the number of loci responsible for this variation is unknown 

and is the subject of this thesis. 

1.1 Objectives and hypotheses tested 

Since the genetic basis of variation for the phenotype of early flowering time in ‘RE2’ is 

unknown, there is a need to uncover the underlying cause. Firstly, the trait was identified from a 

population treated with 5-AzaC suggesting that changes in DNA methylation control the variant 

flowering time trait. However, the trait was found to be stable for multiple generations 

suggesting, a potential genetic control might have been induced and selected. The compound 5-

AzaC is a known hypomethylating chemical suggesting a possible epigenetic basis for the origin 
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of early flowering trait, though the mutagenic potential of 5-AzaC (i.e. its ability to cause genetic 

mutations) has not been thoroughly investigated and genetic variation remains a possibility. This 

thesis characterizes the basis (genetic or epigenetic) of the trait and was taken up for 

investigation with the following objectives: 

1. To perform field-based phenotyping of recombinant inbred line (RIL) mapping populations 

(‘Royal’ x ‘RE2’ and ‘RE2’ x ‘Royal’) using modified augmented design type 2 (MAD2). 

2. To identify individuals representing the distributional extremes of the phenotypic spectrum for 

flowering time (early- and late- flowering) corrected for potential soil heterogeneity. 

3. To perform whole genome sequencing-based BSA using individuals representing extremes of 

the variation for flowering time, for identifying causative or linked SNP underlying the 

phenotype. 

4. To perform bisulfite sequencing of individuals representing extremes of the variation for 

flowering time for identification of potential hypomethylated regions associated with early 

flowering phenotype. 

Null hypothesis: ‘The phenotypic variation, induced by 5-AzaC, observed for flowering time in 

‘RE2’ as early flowering trait, is governed by specific genomic regions (Quantitative trait loci - 

QTLs) harboring candidate genes underlying the trait’. 

Alternative hypothesis: ‘The early flowering phenotype of ‘RE2’, induced by 5-AzaC, is 

conditioned by the epiallelic state of certain discrete loci, beyond DNA sequence variation’. 
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Chapter 2 Literature Review 

2.1 Flax 

Flax (Linum usitatissimum L.) taxonomically placed under the family Linaceae, is a 

multifunctional crop. Flax, along with seven other crops belonging to Neolithic agriculture were 

unearthed in the fertile crescent zone (Lev-Yadun et al. 2000) indicating its early domestication. 

The crop was introduced into Canada ~400 years ago by French immigrants (Atton 1989) who 

later spread it across the continent. There was an increase in demand for flaxseed oil during the 

second world war, as well as a rise in world flax consumption in the mid-20th century increasing 

the scope of commercial flax production in the country (www.saskflax.ca). Today Canada has 

grown into the world's leading producer (591,000 tonnes, 2016-2017 data; source: Statistics 

Canada) and exporter (500,000 tonnes, 2016-2017 data; source: Statistics Canada) of the crop 

with most of the production since 1993/94 in the province of Saskatchewan (www.saskflax.ca). 

2.2 Significance of early flowering lines 

Flax production in Canada is currently restricted to the southern parts of Saskatchewan and 

Manitoba due to the risk of damage by early fall frost in the northern part of prairies at maturity 

phase. Frost during the maturity stage of the crop results in unfilled seeds, lower oil content and 

reduced ability for germination (Gubbels et al. 1994). However, enhanced seed quality due to 

lower ambient temperature and longer photoperiods lead to higher concentrations of unsaturated 

fatty acids in the linseed oil exhibiting the advantages of flax production in northern prairies 

(Dillman and Hopper 1943; Sosulki and Gore 1964). Hence, the development of early flowering 

cultivars would help to overcome the frost damage in northern prairies and make harvest easier 

by avoiding tangling of green stems in farm equipment in the current growing regions as well, 

without compromising on oil quality. 

2.3 Flax breeding 

Flax is a diploid (2n=2x=30) and self-pollinating annual requiring a growing period of 90-150 

days to reach maturity (Diederichsen and Richards 2003). ‘Non-shattering’ was the earliest 

selected trait since domestication of the crop (Cullis 2007). In Canada, there has been flax 

breeding since early 1900s. Breeding objectives were increased yield and disease resistance, 

initially for wilt-resistance followed by rust-resistance (Cullis 2007). Currently, breeding 

objectives vary with requirements of different production areas (Duguid 2009) including yield, 

http://www.saskflax.ca/
http://www.saskflax.ca/
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early maturity (early flowering), oil content and fatty acid profile, and resistance to evolving 

races of the pathogens. Flax being an autogamous crop involves the development of pure-line 

varieties through conventional breeding methods such as pedigree and single seed descent. The 

absence of male sterility in flax has made it difficult to exploit heterosis (Hall et al. 2016). The 

University of Saskatchewan’s Crop Development Centre’ (CDC) flax breeding program was 

established in 1974 to fulfil the needs of the provincial producers. 

2.4 Molecular basis of flowering time 

Flowers bear the reproductive organs which produce male and female gametes of the plants, 

further producing seeds which are of high economic significance. The switch controlling the 

transition from vegetative to reproductive phase is critical, where the shoot apical meristem is 

transformed to an inflorescence meristem. Hence, manipulation of flowering time remains one of 

the prime objectives in crop breeding.  

Flowering time is controlled by both external and internal environmental cues such as 

photoperiod, vernalization and hormonal signals (Andres and Coupland 2012). 
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SHOOT APICAL MERISTEM: SOC - SUPPRESSOR OF OVEREXPRESSION OF CONSTANS; FD - FLOWERING LOCUS D; 

FLORAL MERISTEM IDENTITY GENES: LFY- LEAFY; AP1 - APETALA 1; AGL24 - AGAMOUS-LIKE 24; FUL - FRUITFULL; 

LEAVES: GI - GIGANTEA; CO - CONSTANS; PIF4 - PHYTOCHROME INTERACTING FACTOR 4; FLM - FLOWERING LOCUS 

M; FLC - FLOWERING LOCUS C; FLT - FLOWERING LOCUS T; TSF - TWIN SISTER OF FT; SPL - SQUMOSA PROMOTER 

BINDING PROTEIN LIKE; SVP - SHORT VEGETATIVE PHASE   

Figure 2.1 Overview of pathways involved in controlling flowering time (Used with permission from Bouché et al. 2015). 
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Eight distinct genetic pathways are involved in flowering time: 

1. Photoperiod pathway 

2. Autonomous pathway 

3. Circadian clock 

4. Vernalization pathway 

5. Aging pathway 

6. Thermosensory pathway 

7. Gibberellin signalling 

8. Endogenous sugars 

The floral integrator genes such as FLOWERING LOCUS T (FT) act as the convergence point 

of these diverse pathways (Andres and Coupland 2012) (Figure 2.1). 

2.4.1 Photoperiod and Circadian clock pathways 

Early experiments have shown that day length has a major influence on flowering time, 

classifying plants into short day, long day and day neutral based on their responses (Garner 

and Allard 1920). The study of the model organism Arabidopsis thaliana has led to the 

dissection of the underlying pathway. CONSTANS (CO) and FT have a principal role in the 

response to day length (Koorneef et al. 1991). 

Classical experiments indicate that the signals for flowering are produced in the leaves and 

transmitted to the shoot apex through the phloem which was named ‘florigen’. The FT 

protein is transmitted through the phloem in a similar pattern (Corbesier et al. 2007) and 

hence it has been hypothesized as the ‘florigen’. 

In photoperiod-sensitive plants, circadian clock is responsible for day length measurement. 

The clock regulated genes by means of both internal and external coincidence control light 

dependent flowering. The mediation between circadian rhythm and the photoperiod pathway 

is done by CO which is regulated by the plant clock-controlled FLAVIN-BINDING, KELCH 

REPEAT, F-BOX 1 (FKF1) and GIGANTEA (GI) (Suarez-Lopez et al. 2001; Greenham and 

McClung 2015). GI expression is complexly linked with other genes of the circadian clock 

such as CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1), LATE-ELONGATED HYPOCOTYL 

(LHY) and EARLY FLOWERING 3 (ELF3) (Fowler et al., 1999). CRYPTOCHROME 2 

(CRY2) and PHYTOCHROME A (PHYA) photoreceptors are essential for enhanced CO 

expression (Yavnovsky and Kay 2002). The level of CO expression is found corresponding to 
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the FKF1-GI complex formed in the presence of blue light, by degradation of CYCLING 

DOF FACTORS (CDF) (Sawa et al. 2007; Fornara et al. 2009) and enhancing its stability 

(Song et al. 2012). Also, CRY2 mediates blue light mediated suppression of CONSTITUTIVE 

PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSOR OF PHYTOCHROME A 1 (SPA1) 

complex which is responsible for proteolysis of CO (Zuo et al. 2011). 

Under long day conditions high levels of CO mRNA is found only in the end of light period 

which cannot be achieved under short day conditions (Suarez-Lopez et al. 2001) considering 

the stabilization of CO under light, this facilitates early flowering under the former condition. 

CO binds to FT promoter region and brings about its transcriptional activation (Tiwari et al. 

2010). FD transcribed bZIP domain transcription factor interacts with FT and has a role to 

play in its expression (Abe et al. 2005). CO through FT also activates SOC1 (Yoo et al. 2005) 

which along with FT activates the floral meristem identity genes such as LEAFY (LFY), 

APETALA (AP1), AGAMOUS-LIKE 24 (AGL24), FRUITFULL (FUL). 

2.4.2 Vernalization pathway 

FLOWERING LOCUS C (FLC), a MADS box domain protein is primarily a repressor of 

flowering initiation (Michaels and Amasino 1999). FLC is epigenetically silenced by 

prolonged exposure to cold, a process called vernalization. The duration of cold treatment is 

proportional to the extent to which flowering is accelerated. Two plant homeodomain 

proteins VERNALIZATION INSENSITIVE 3 (VIN3) and VERNALIZATION 5 (VRN5) 

associated with Polycomb Repressor Complex 2 (PRC2) accumulate in the region of FLC, 

containing its promoter, first exon and parts of the first intron, and modify lysine 27 of 

histone-3 (H3) with trimethylation (Qüesta et al. 2016). From a mechanistic perspective, 

during vernalization, a three-dimensional chromatin loop involving the promoter, first exon 

and intron of the FLC gene and the downstream promoter of the gene encoding a long non-

coding RNA (COOLAIR) is disrupted leading to repression of FLC (Zhu et al. 2015). 

2.4.3 Aging and thermosensory pathways 

The SQUAMOSA PROMOTER BINDING LIKE (SPL) genes are found to be immediate 

activators of the floral meristem identity genes but are repressed by the microRNA 156 

(miR156) during the juvenile stages of the plant. With aging, there is decrease in the levels of 

the miR156 facilitating SPL expression (Fornara and Coupland 2009) leading to transition to 

flowering phase. 
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While low temperature treatment (vernalization) is required for flowering in few crops, 

including a few species of flax, control of flowering under low temperature is brought about 

by SHORT VEGETATIVE PHASE-FLOWERING LOCUS M-β (SVP-FLMβ) complex 

belonging to the MADS box transcription factor family by repressing the FT gene (Pose et al. 

2013). Under warmer conditions, the transcription factor PHYTOCHROME INTERACTING 

FACTOR 4 (PIF4) binds to FT, the floral integrator and activates its transcription (Kumar et 

al. 2012). 

2.4.4 Floral organ development 

During the process of flower development, the transition to floral meristem is by the 

activation of LEAFY (LFY), APETALA 1 (AP1), PISTILLATA (PI), the floral meristem 

identity genes, by an integrator of varied pathways responding to environmental cues, such as 

the FT. In the floral meristem, AP1 and AGAMOUS LIKE-24 (AGL24), the determinants of 

the inflorescence meristem fate, are repressed (Yu et al. 2004). These homeotic genes which 

determine the floral organ identity are grouped into three classes namely, A, B and C, 

influencing the formation of different whorls of a flower, though their functions are 

overlapping (Bowman et al., 1991). LFY along with UNUSUAL FLORAL ORGANS (UFO) 

and AP1 activates APETALA 3 (AP3) and along with WUSCHEL (WUS) activates 

AGAMOUS (AG) (Ng and Yanovsky 2001; Lenhard et al., 2001). 

The proper development of petals, stamens and carpels requires SEPALATA 1 (SEP1), 

SEPALATA 2 (SEP2) and SEPALATA 3 (SEP3), called the class E genes, the triple mutants of 

which result in the development of sepals in all the whorls (Pelaz et al., 2000). The class D 

group of genes confer ovule identity (Colombo et al., 1995). In Arabidopsis thaliana, SEED 

STICK (STK) and SHATTERPROOF 1 (SHP1) and SHATTERPROOF 2 (SHP2) along with 

AG influence the ovule identity (Table 2.1). The A, B, C and E class genes, except AP2 

encode MADS domain transcription factors. They form ‘protein quartets’ (complexes of four 

proteins) which control the genes of floral organ development. 
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Table 2.1 Classes of genes involved in flower development 

Class Genes Function 

A AP1 and AP2 Sepal identity in whorl-1 and petal identity in whorl-2  

B AP3 and PI Petal identity in whorl-2 along with class A and stamen 

identity in whorl-3 along with class C 

C AG Stamen identity in whorl-3 and carpel identity in whorl-4 

D STK, SHP1 Ovule identity 

E SEP1, SEP2, SEP3 Petals, stamen and carpel development 

 

The cadastral genes restrict the boundary for the activity of other genes. LEUNIG (LUG) and 

SEUSS (SEU) repress the activity of the gene AG in the whorls 1 and 2 of the flower (Sridhar 

et al., 2004), while SUPERMAN (SUP) maintains the boundary of AP3, since its mutant 

resulted in the development of stamens in the innermost whorl, thus its function being 

specifying boundaries for male and female floral organs and also the termination of floral 

meristem (Breuil-Broyer et al., 2016). 

During the juvenile stages of the crop, all these floral organ identity genes are repressed by 

genes such as EMBRYONIC FLOWER 1 (EMF1), EMF2 and FERTILIZATION-

INDEPENDENT ENDOSPERM (FIE) (Chanvivattana et al., 2004). 

2.5 Mapping of genomic regions underlying flowering time 

Since the first study of tagging of a quantitative trait (seed size) using a qualitative trait (seed-

color; Sax 1923), quantitative trai locus (QTL) mapping strategies have been widely used to 

identify genomic regions harboring candidate genes underlying various phenotypes in several 

crops. Advent of DNA markers helped accurate positioning of genomic regions controlling 

target phenotypes. Conventional QTL mapping studies have identified genomic regions 

governing flowering time in crops such as Brassica napus, grapevine, watermelon and tomato 

(Table 2.2). 
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Table 2.2 Studies of QTL mapping for flowering time in crop plants 

Crop Number of identified QTLs 

for flowering time 

Reference 

Rapeseed (Brassica napus) 4 Luo et al. 2014 

Rapeseed (Brassica napus) 4 Liu et al. 2016 

Grapevine 6 Duchêne et al. 2012 

Grapevine 8 Fechter et al. 2014 

Tomato 2 Nakano et al. 2016 

Watermelon 1 McGregor et al. 2014 

 

2.6 Effect of 5-Azacytidine on plant genome 

The eukaryotic genomes carry epigenetic marks on DNA and histones (Suzuki and Bird 

2008). DNA methylation may occur on cytosine in varied sequence contexts such as at 

symmetric sites CG, CHG and also asymmetric sites CHH (Law and Jacobsen 2010). 

5-Azacytidine (5-AzaC), a DNA methylation inhibitor is a cytidine analog with a nitrogen 

atom in place of carbon at the fifth position of the ring (Figure 2.2). During cytosine 

methylation reaction, ‘C’ at the sixth position of the cytosine ring forms a covalent bond with 

DNA methyltransferases which transfers the methyl group from S-adenosyl methionine of 

metabolite pool to the ‘C’ at the fifth position of the ring. Methyltransferases will be released 

from its covalent linkage after the methyl-transfer reaction (Zhang et al. 2013). However, the 

non-methylable nature of 5-AzaC due to the presence of ‘N’ in place of ‘C’ in the fifth 

position of the ring, prevents the methyl-transfer reaction needed for the release of 

methyltransferases. This leads to genome-wide demethylation due to reduction in the number 

of available DNA methyltransferases, in addition to specific hypomethylation at sites where 

5-AzaC is incorporated (Pecinka and Liu 2014). 
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Currently, bisulfite sequencing remains the most efficient technology to investigate the 

methylation status at single nucleotide level (Figure 2.3). During this process, the bisulfite 

anion gets added at the C5-C6 double bond of unmethylated cytosine generating a cytosine 

sulfonate which in turn undergoes hydrolysis and deamination to form uracilsulfonate. Under 

alkaline condition, the sulfonate group is released giving rise to uracil. This event when 

followed by PCR amplification and sequencing, 5-methylcytosine is read as cytosine while 

the unmethylated cytosine as thymine (Peng et al. 2016). 5-Azacytidine has been used to 

study the effects of differential methylation of DNA on phenotypes of various crop and non-

crop species over years. Some of the studies are listed below (Table 2.3). 

 

 

 

Figure 2.2 Chemical structure of cytidine and 5-Azacytidine (Used with permission from 

Claus and Lübbert 2003) 

Figure 2.3 Principle of bisulfite sequencing (Used with permission from Peng et al. 2016) 
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Table 2.3 Effect of 5-Azacytidine on plant species 

Crop Genotypic/phenotypic observation Reference 

A. Crop plants 

Rice  Reduced plant height Sano et al. 1990 

Triticale Observation of inherited hypomethylation Heslop-Harrison 1990 

Tobacco Hypomethylated repetitive DNA sequences which are inherited; dwarf 

phenotypes 

Vystok et al. 1995 

Triticale The expression of rye rDNA in treated plants is higher Amado et al. 1997 

Wheat  Reduces vernalization requirement in winter wheat Horvath et al. 2003 

Wheat Increase in callus formation rate helping in developing doubled haploid 

population 

Belchev et al. 2004 

Rice Inheritance of dwarf phenotype and resistance to Xanthomonas oryzae pv 

oryzae as the result of hypomethylation 

Akimoto et al. 2007 

Brassica rapa Lines with decreased flowering time and epialleles showing prospects of 

hypomethylated population in crop breeding 

Amoah et al. 2012 

Wild potato Early flowering phenotypes Marfil et al. 2012 

Sugarcane Lines showing smut tolerance and herbicide (Imazapyr) tolerance Munsamy et al. 2013 

Spinach Lines showing reduction in days to flowering and monoecy Li et al. 2015 

B. Non-crop plants 

Melandrium album Expression of andromonoecy in male plants Janousek et al. 1996 

Perilla frutescens var. 

crispa 

Flowering under non-inductive photoperiods and dwarf phenotype Kondo et al. 2010 

Silene armeria Flowering under non-inductive photoperiod Kondo et al. 2010 
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Trifoliate orange Increased expression of citrus floral integrator and floral identity genes Zhang et al. 2014 

Strawberry Early- and late- flowering phenotypes, reduced rosette diameter Xu et al. 2016 
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From the above studies (Table 2.3), it is evident that 5-AzaC is known to induce genome-wide 

DNA demethylation with potential impact on epigenetic regulation of gene expression. However, 

the true mutagenic potential of 5-AzaC has not been investigated in detail, so far. Preliminary 

results from comparison of resequencing data from ‘Royal’ and its three early flowering 

derivatives (‘RE1’, ‘RE2’ and ‘RE3’) had uncovered around 400 high quality SNP. (Dr. Stephen. 

J. Robinson, personal communication). The SNP were filtered with a quality score cut-off of 

5000, which is a phred-like probability score, scaled-up to measure the quality of variant call for 

a given nucleotide position in the reference (De Pristo et al. 2011). However, the origin of these 

SNP need to be investigated further since there is a lack of evidence in literature in support of the 

potential of 5-AzaC to induce point mutations. Moreover, since ‘RE1’, ‘RE2’, ‘RE3’ used for 

generating RILs are nine generations past 5-AzaC treatment (Sun 2015, M. Sc., Thesis, 

University of Saskatchewan), the SNP may represent the accumulated point mutations over 

multiple generations, and thus still can be used as tags for Differentially Methylated Regions 

(DMRs) between normal and early flowering lines.  

A large body of evidence suggested that hypomethylated genomic condition would lead to 

activation of transposable elements because of the resetting of the epigenetic mechanisms 

repressing the transcription and transposition of these elements (Grandbastien 2015). 

Transposition of jumping genes would create genetic variation including insertions-deletions 

(InDels). Changes in DNA methylation levels may lead to significant heritable phenotypic 

variation in eukaryotes (Johannes et al. 2008). The hypomethylation of transposable elements 

lead to their transposition into genes resulting in phenotypic variation as well (Miura et al. 2001). 

2.7 Early flowering studies in flax 

Treatment of flax seeds with 5-AzaC led to modified phenotypes such as decreased plant height, 

fewer leaves and reduction in time to flower (Fieldes 1994). The study of successive progeny of 

these lines showed stable inheritance of the modified phenotypes (Fieldes and Amyot 1999). The 

earliness in flowering was suggested to be due to hastening of the late vegetative phase (Fieldes 

and Harvey 2004). Studies on response to photoperiod of the three epimutant lines ‘RE1’, ‘RE2’ 

and ‘RE3’ along with five adapted Canadian cultivars namely ‘CDC Sorrel’, ‘CDC Bethune’, 

‘Flanders’, ‘Prairie thunder’ and ‘Royal’ were carried out by Jia Sun (2015) in the Universty of 

Saskatchewan by transfering plants between short day and long day conditions at different time 
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points. The results indicate that the five Canadian cultivars are highly sensitive to photoperiod 

and the epimutant line ‘RE2’, earliest flowering among all the eight lines studied, was the least 

photoperiod sensitive line. 

2.8 Principle of bulked segregant analysis (BSA) 

Most traits of agricultural importance are quantitative in nature involving many genes with minor 

effects, environmental effects and their interaction (Holland 2007). Identification of these 

quantitative trait loci has a significant impact from a breeding perspective. Bulked segregant 

analysis was proposed by Michelmore et al. (1991) as a quick method to identify markers to 

genomic regions controlling distinct phenotypes. Two bulks, each with extreme values for the 

trait of interest are generated from the segregating population of a single cross. The individuals 

within each pool/bulk are uniform for the particular trait but not for other loci and hence, the 

marker that is polymorphic between the two pools is linked to the genomic region responsible for 

the trait of interest. The application of bulk segregant analysis was extended to identify the 

markers linked with QTL in later studies (Mansur et al. 1993). 

The segregating population with phenotypic extremes for BSA include F2, BC1, Doubled 

Haploids (DHs) and Recombinant Inbred Lines (RILs) of which DHs and RILs are most 

preferred because of their homozygosity which is maintained over generations, making them 

suitable for evaluation under different environments over years (Zou et al. 2016). The BSA 

combined with NGS also requires precise phenotyping (Sun et al. 2010) since the power of this 

strategy is primarily dependent on the accuracy to group the individuals based on the phenotypic 

value (Zou et al. 2016). 

2.9 Principle of quantitative trait locus -sequencing (QTL-seq) 

The recent QTL-seq methodology is a novel strategy which combines the advantages of both 

BSA and whole genome resequencing, enabling the identification of genomic regions 

accountable for the extreme trait values between the two bulks and also among the two parents 

(Figure 2.4). As QTL-seq involves neither marker development nor individual marker-based 

genotyping, it is cost effective and less time consuming than conventional QTL analysis. 

Two parents with contrasting phenotypes for the trait of interest are crossed to generate a 

mapping population segregating for the trait. When more number of loci are involved, the 

frequency of the trait of interest will show a normal distribution in the F2. The phenotype is 
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scored in the progeny of the mapping population based on which two bulks with highest and 

lowest values are generated. The DNA of the bulks are resequenced and aligned to the reference 

genome. The bulked DNA is expected to contain genomic regions from both parents for most of 

the part except those segments harboring the QTL for the trait of interest. 

A statistical parameter called SNP index (ratio between the count of alternate SNP to total 

number of reads aligned to the reference assembly corresponding to the SNP position) generated 

by genome-wide scan (chromosome-wise) will help to identify regions underlying the mutant 

phenotype. The observed SNP-index is ‘0’ when all the short reads from resequencing are the 

same as the reference genome sequence and it is 1 while all the short reads are as that of the 

other parent. A SNP-index of 0.5 would indicate the equal representation of both parental 

genomes in the bulk. Candidate genes underlying a few important agronomic traits have already 

been successfully mapped using the QTL-seq method (Table 2.4). 
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Figure 2.4 Principle of QTL-seq strategy and estimation of SNP-index (Used with permission 

from Takagi et al. 2013) 
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Table 2.4 List of traits mapped by adopting the QTL-seq method 

  

Crop Phenotype 

Number of 

identified 

QTLs 

Reference 

 

Rice 

Resistance to blast  1 

Takagi et al. 2013 Seedling vigor 1 

Seedling vigor under low temperature 3 

Cold tolerance 6 Yang et al. 2013b 

Cucumber Early flowering 1 Lu et al. 2014 

Tomato  
Fruit weight 3 Illa-Berenguer et al. 

2015 Locule number 3 

Chickpea  100 seed weight  1 Das et al. 2015 

Sorghum Stem moisture 1 Han et al. 2015 

Pigeon pea 
Fusarium wilt resistance 4 

Singh et al. 2015 
Sterility mosaic resistance 3 

Chickpea Pod number 2 Das et al. 2016 

Cucumber Fruit length 8 Wei et al. 2016 

Rice  Salinity tolerance  21 Tiwari et al. 2016 

Chickpea  Plant height 6 Kujur et al. 2016 

Foxtail millet Panicle branching 1 Masumoto et al. 2016 

Cucumber  Subgynoecy 4 Bu et al. 2016 

Brassica 

napus 
Branch angle 1 Wang et al. 2016 

Cucumber Downy mildew resistance 5 Win et al. 2016 

Chickpea 
100 seed weight 2 

Singh et al. 2016 
Root/total plant dry weight 1 

Soybean Phytophthora root rot resistance 1 Zhong et al. 2018 

Broccoli x 

Cabbage 
Flowering time 1 Shu et al. 2018 

Rice Dwarfness 1 Kadambari et al.2018 
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Chapter 3 Phenotypic Characterization of RIL Mapping Population Derived from a Cross 

of ‘Royal’ Flax and ‘RE2’ an Early Flowering Derivative Line 

 

3.1 Abstract 

‘Royal’, a heritage flax cultivar, and three early flowering lines ‘RE1’, ‘RE2’ and ‘RE3’ derived 

from treatment with an epimutagen 5-Azacytidine (5-AzaC) were previously found to exhibit an 

early flowering phenotype observed to be heritable over nine generations. The line ‘RE2’, was 

found to be least photoperiod sensitive. A Recombinant Inbred Line (RIL) population was 

developed by crossing ‘RE2’ with ‘Royal’. This mapping population was grown at the Kernen 

Crop Research Farm, University of Saskatchewan, over three years - 2015, 2016 and 2017 using 

the modified augmented design type 2 (MAD2) and evaluated for a range of phenotypic traits 

including, days to- start of flowering, full flowering, maturity; and height. The observed 

phenotypic values were adjusted using a MAD2 statistical pipeline. The adjusted phenotypic 

values were used to estimate statistical and genetic parameters, such as, coefficient of variation 

(CV), genotypic coefficient of variation (GCV) and heritability. The average days to start of 

flowering in the 2016 crop season was 38- and 33 days for ‘Royal’ and ‘RE2’, respectively. 

However, the days to anthesis for the RILs ranged from 30 days to 52 days with a mean of 37 

days. The flowering time trait was moderately heritable with a broad sense heritability value of 

0.49. The individuals of the RIL population were ranked based on days to flowering. The high 

and low bulks were constituted from the RILs exhibiting early- and late flowering time. The 

early- and late flowering bulks consisted of 13 and 11 individuals, respectively from the 

distributional extremes of the segregating population, representative of a single meiotic event, 

which was used to identify the potential genomic region underlying early flowering trait 

employing QTL-seq, a novel mapping by sequencing methodology. QTL-seq is a modified Bulk 

Segregant Analysis (BSA) utilising next generation sequencing reads. The distinctness of the 

bulks for days to flowering were confirmed using an independent field experiment with lines 

constituting the bulks and checks, in a Randomized Complete Block Design (RCBD) in 2017. 
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3.2 Introduction 

The expansion of flax production to the northern regions of the Canadian Prairies is currently not 

feasible due to the short growing season and early fall frost. The crop currently grown at 

northern latitudes is highly susceptible to frost damage before reaching physiological maturity. 

Hence, the development of early flowering and consequently early maturing cultivars suitable for 

the northern part of the grain belt is a prime objective of flax improvement. Early flowering and 

maturing cultivars are also suitable for current flax growing region, as a more determinant 

growth habit where there is no reflowering after late summer rainfall, and capsule and stem 

browning occur simultaneously will reduce the tangling of green stems in harvest equipment (i.e. 

address straw management issues in flax production). 

In crop plants, most of the agronomically important traits are controlled by multiple genes, each 

with a minor effect on the phenotype (Holland 2007; Mackay 2009). Flowering time is one such 

quantitative trait. By conventional linkage mapping and quantitative trait locus (QTL) analysis, 

multiple quantitative loci governing flowering time have been mapped in many crops such as 

brassica (Liu et al. 2016), chickpea (Daba et al. 2016) and pearl millet (Kumar et al. 2017b). 

However, genetic control of flowering time in crop plants, especially candidate genes underlying 

flowering is not well understood from these conventional studies. 

In recent times, next generation sequencing based mapping strategies such as MutMap (Abe et 

al. 2012) and QTL-seq (Takagi et al. 2013) have been developed. In QTL-seq, initially, the 

method involves evaluating a biparental mapping population, for the trait of interest in different 

environments. The individuals exhibiting extreme phenotypes, consistently in different 

environments, are chosen to constitute the bulks utilized for DNA sequencing followed by 

downstream analysis. 

Varied kinds of genetic mapping populations including F2, recombinant inbred lines (RIL), 

doubled haploid (DH), nested association mapping (NAM) population and multiparent advanced 

generation inter-cross (MAGIC) population, each with its own advantages (Bazakos et al. 2017) 

are available. Among the biparental mapping populations, although developing F2 population is 

less time consuming, the heterozygous nature and restricted seed availability are its limitations. 

Recombinant inbred populations are widely used because of their homozygosity, higher number 

of recombination events and immortality, despite the long generation time (Keurentjes et al. 
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2007). Doubled haploids are a rapid way of attaining homozygosity. However, there is 

possibility for only one recombination event and hence, the mapping resolution is limited (Zhang 

et al. 2017). The NAM population is developed by crossing a single reference line to multiple 

inbreds and finally combining families from several resulting biparental populations. Since the 

reference line is common, and it involves multiple parents, NAM combines the advantages of 

linkage mapping and association mapping (Cockram and Mackay 2018). The MAGIC population 

is derived by crossing a set of founders in a series of two-way, four-way and eight-way crosses. 

This not only serves as the mapping population for linkage studies but also serves as the 

reservoir of prebreeding lines representing diverse genetic background of founder lines and 

hence, suitable for selection (Huang et al. 2015). Both NAM and MAGIC populations provide 

high mapping resolution. The major disadvantage is the huge amount of resources needed for the 

generation of these multiparent lines. Since multiple parents are involved, identifying parental 

origin of alleles in the segregating population and mapping them requires special statistical 

methods. 

In flax, a RIL mapping population was developed by crossing the early flowering line ‘RE2’ 

with ‘Royal’. Using this mapping population and the reference genome assembly generated as a 

part of the Total Utilization Flax GENomics (TUFGEN) project as resources, QTL-seq approach 

was deployed to map potential genomic region(s) responsible for early flowering phenotype. 

Identification of flowering time loci will help to unearth the candidate gene(s), which will help to 

deduce the molecular mechanisms involved in flowering, and towards development of diagnostic 

molecular markers that would assist in marker assisted breeding for this trait. 

This chapter discusses the comprehensive phenotypic characterization of the ‘Royal’ x ‘RE2’ 

mapping population using MAD2, to identify individuals that constitute the early- and late 

flowering bulks for flowering time. 

3.3 Materials and methods 

3.3.1 Plant material 

Three early flowering lines, named ‘RE1’, ‘RE2’ and ‘RE3’ were derived from the cultivar 

‘Royal’ (Figure 3.1) upon treatment with the DNA methylation inhibitor 5-AzaC (Fieldes et al. 

1994). The epimutant lines flowered 7 to 13 days earlier than ‘Royal’ (Fieldes and Harvey 2004). 
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Among the three accessions, ‘RE2’ was observed to be earliest flowering and least photoperiod 

sensitive (Sun 2015, M. Sc., Thesis, University of Saskatchewan). The early flowering 

phenotype was found to be stably inherited through meiosis over nine generations. A RIL 

population was developed by crossing ‘RE2’ and its progenitor genotype ‘Royal’, followed by 

advancing the F2 population by single seed descent method for nine generations at the Crop 

Development Centre (CDC), University of Saskatchewan. The final mapping population 

consisted of 656 lines of which 288 lines were from the cross made using ‘RE2’ as the male 

parent, and the remaining 368 lines were derived from its reciprocal, where ‘Royal’ donated the 

pollen gamete. 

 

3.3.2 Field trial 

The field experiments to evaluate the RILs for selected agronomically important traits at 

different phenological stages of the crop were carried out at the Kernen Crop Research Farm, 

Saskatoon (52⁰ 09’ 02.2” N and 106⁰ 32’ 36.7” W; Elevation: 511m; Soil type: Silty clay) in 

2015, 2016 and 2017. RILs were evaluated in the field using the MAD2 (Figure 3.2; Lin and 

Poushinsky 1985) to correct for potential soil heterogeneity. The 7 x 7 lattice design consisted of 

Figure 3.1 Cultivar ‘Royal’ and its three early flowering derivatives ‘RE1’, ‘RE2’ and ‘RE3’ 

and the widely grown flax cultivar ‘CDC Bethune' (Cabinet grown, under long day- 16 hours 

light, eight hours dark conditions; 31 days after seeding) 
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seven rows and seven columns with a total of 49 whole plots. Further, each main plot was 

subdivided into 15 subplots along the rows. The cultivar ‘CDC Bethune’ was used as the main 

plot control and was seeded in the middle subplot of each whole plot. A second cultivar ‘CDC 

Sorrel’ was used as the subplot control and was planted in two subplots of five randomly chosen 

whole plots. The 656 test entries and parents (‘Royal’ – 8 subplots; ‘RE2’ – 8 subplots) were 

randomized among the remaining subplots. The experiments were seeded (50 seeds/hill) on the 

12th May and on the 17th May in 2015 and 2016, respectively. In 2017, the trial was initially 

seeded on the 19th May, but was extensively damaged by cutworms (Agrotis orthogonia), and 

hence, reseeded on the 12th June. 

 

 

Figure 3.2 Model layout of modified augmented design type 2; the plot control is seeded in 

middle subplot of all whole plots and sub plot controls are seeded in two subplots of five 

randomly selected whole plots. Figure adapted and used with permission from Lin and 

Poushinsky 1985. 
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3.3.3 Phenotypic characterization in the field 

Standard flax descriptors were used to phenotype the different traits. The date of emergence of 

individual hills were marked using coloured tags representing specific days. Emergence was 

marked when the seeds in the hill germinated, and the seedlings were visible above the ground. 

The following traits were recorded: early vigor, start of flowering, full flowering, maturity date, 

maturity score and height. Specifically, early vigor rating was taken when ‘CDC Bethune’ was at 

a height of 10-15 cm. It was scored on a scale of one to nine where one indicated extremely weak 

vigor, five indicated average vigor represented by ‘CDC Bethune’ and a score of nine 

represented extremely vigorous plant growth. Start of flowering was recorded as the number of 

Julian days when 5% of the plants in the hill had reached anthesis and full flowering was 

recorded when 95% of plants in the hill had reached anthesis. Maturity date was noted as the 

Julian day when the seeds rattle in the capsule (75% of the plants) upon shaking. Days to- start of 

flowering, full flowering and maturity from the date of emergence were estimated for plants 

grown in each individual hill. Maturity score was recorded on a single day using an ordinal scale 

of one to five, representing immature to mature plants, respectively. The height (in centimeters), 

measure from ground surface to upper most portion of the plant was recorded at the completion 

of flowering phase. The phenotypic evaluation of the RILs in 2015 field season was carried out 

by Dr. Raja Ragupathy, a former senior colleague in the flax team.  

3.3.4 Phenotypic characterization in the growth cabinet 

The 288 RILs from the ‘Royal’ x ‘RE2’ cross, along with the parents, were grown and evaluated 

in the growth cabinet in 2015-2016 . Each RIL was replicated four times and randomized. Four 

randomly allocated single plants were grown in each pot. Each pot was filled with nearly 3 litres 

of Sungro propagation mix (Sungro Horticulture, Massachusetts, USA) as the growing media. 

The plants were grown under long day conditions with 16 hours of light and eight hours of night 

and the day and night temperatures were 22 oC and 17 oC, respectively. Phenological traits such 

as days to- start of flowering, full flowering, maturity; height and maturity score were recorded 

using the definitions described in section 3.3.3. This data was kindly provided by Dr. Raja 

Ragupathy. 
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3.3.5 Data analysis 

Phenotypic data was analysed using the statistical pipeline involving PERL and SAS scripts 

developed specifically for the MAD2 (You et al. 2013). In brief, the SAS scripts of the pipeline 

perform two discrete ANOVA for plot and subplot controls. Based on the ANOVA results, the 

soil heterogeneity, both additive (along the rows and columns of the plot) and non-additive 

(multi directional), is corrected by adjustment of phenotypic values by three methods: (a) When 

the observed row or column effects were found to be higher than the row x column interactions, 

the plot control means along the rows and columns are used for adjustment (Method 1); (b) 

When the value of the main plot control was significantly greater than the value of subplot 

control, adjustment was based on the regression of the test plots on the plot control (Method 3); 

(c) In cases where both row (or) column effects and their interaction effects were significant, a 

method of adjustment combining methods 1 and 3 was used (Method 1+3). Finally, the 

phenotypic data were adjusted accounting for soil heterogeneity, and the relative efficiencies of 

different methods of adjustment were estimated using a PERL script. As the final step, the values 

from the most appropriate adjustment method were exported (You et al. 2013). 

3.3.6 Identification of phenotypic extremes of the segregating population 

The field phenotypic data for the years 2015, 2016 were analysed using the MAD2 pipeline (You 

et al. 2013). Based on the values for days to start of flowering in the years 2015, 2016, and the 

greenhouse data from 2015-2016, the RILs were sorted by giving the earliest flowering lines the 

highest rank. The individuals with extreme phenotypic values for flowering time from the cross 

‘Royal’ x ‘RE2’ were only used. Among the 288 RIL individuals, 26 early flowering and 27 late 

flowering lines with consistent performance in different environments were identified. Finally, a 

subset of 13 early flowering and 11 late flowering lines, derived from a single meiotic event, 

were used for DNA sequencing. 

3.3.7 Field trial for validation of phenotypic extreme lines 

In addition to the main field trial, in 2017, the 26 early flowering and 27 late flowering lines 

identified from the 288 RILs derived from the ‘Royal’ x ‘RE2’ cross were planted in a 

randomized complete block design with three replicates. The trial was seeded on the 19th May 

(50 seeds/hill) at the Kernen Crop Research Farm, University of Saskatchewan. The three early 
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flowering accessions ‘RE1’, ‘RE2’, ‘RE3’; the cultivars ‘Royal’, ‘CDC Bethune’, ‘CDC Plava’ 

and ‘Prairie Thunder’ were all used as check cultivars in the trial. The range of phenotypic traits 

including, start of flowering, full flowering, days to maturity, maturity score and height were 

recorded following the scoring procedure described above in section 3.3.3. 

3.3.8 Estimation of genetic parameters 

The analysis of phenotypic data was carried out using the statistical model  

yij = µij + Gi + Yj + Eij 

where, 

µ = population mean, 

Gi = genotypic variance 

Yj = year variance 

Eij = error variance. 

The broad sense heritability of the traits was estimated as the ratio of genetic variance to the total 

phenotypic variance observed in the population, determined using the equation  

H2 = 
σg

2

(σg
2 + (

σe
2

ny
))

 

where, 

 σg
2 = genetic variance  

 σe
2 = error variance 

 ny = number of years in which the trait was evaluated. 

The coefficient of variation (CV) and genotypic coefficient of variation (GCV), expressed in 

percentage, were calculated as follows: 

CV = 
σp

x
 x 100 
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GCV = 
σg

x
 x 100 

where, 

 σp = phenotypic standard deviation, 

 σg = genetic standard deviation. 

 x = mean 

3.3.9 Analysis of RCBD trial data 

The data from the RCBD trial comprising of 53 individuals exhibiting extreme phenotypic 

values, with three replications was analysed. The PROC MIXED procedure of SAS version 9.3 

(Copyright © 2011, SAS Institute Inc., Cary, NC, USA) was used. Significant differences among 

the mean values were declared at P < 0.05. The model used for analysis was  

yij = µij + Bi + Tj + Eij 

where,  

yij = value of the dependent variable (the trait of interest), 

Bi = random effect of the blocks, 

Tj = fixed effect (early- and late flowering lines) 

Eij = error. 

3.4 Results 

3.4.1 Growing conditions 

As anticipated, there was considerable variation in local environmental conditions during 2015-

2017 growing season. To highlight these differences the mean environments over 10 years was 

used as a base-line for comparison. The environmental conditions observed over a period of 10 

years (2008-2017) at the Kernen Crop Research Farm are depicted in Figure 3.3. In the year 

2015, there was minimal rain during the initial phase of the growing season with only 25.5% and 

32.3% of the 10-year average rainfall received, for May and June, respectively. In contrast, in 
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2016, the month of May received 21.8% more rainfall than the 10-year average and June 

received 72.8% of the average rainfall. However, in 2017, the growing season with delayed 

seeding, the initial growing phase in the months of June and July received only 68.38% and 

49.29% of the 10-year average rainfall. In addition, the seeding date in the 2017 field season was 

deferred by nearly one month in comparison to other two years. Hence, there was a significant 

difference in the photoperiod to which the plants were exposed after emergence (Figure 3.4). 
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3.4.2 Genetic parameter estimates 

The RIL population was planted in the field and scored for selected range of agronomic traits, 

and the data was summarized using the summary statistics. The RIL population was found to be 

segregating for flowering time in all three years (Figure 3.5). The mean, standard deviation, 

range, CV, GCV and heritability (Table 3.1) were estimated. The average days to flowering for 

the RIL population was observed to be 50.6 days in 2015, 37.0 days in 2016 and 35.4 days in 

2017 (Table 3.2). The plot control (‘CDC Bethune’) and sub plot control (‘CDC Sorrel’) took the 

longest average-duration for the start of flowering in 2015, with corresponding values 54.2 days 

and 52.9 days, respectively. The least number of days to reach the start of flowering was 

observed in one of the RILs (EF RIL-280-23) in 2017, taking 25 days from emergence. This 

contrasted to maximum number of days to start of flowering recorded in 2015 field season as 64 

days from emergence (EF RIL-271-34, EF RIL-288-2). Days to flowering had a relatively high 

CV of 17.67%. The CV was the lowest for days to maturity (3.07%) and highest for maturity 

score (27.12%). The GCV was relatively low for all traits, with maturity score having the lowest 
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Figure 3.4 The distribution of daylength (in hours) during the crop season (May to September) at 

Kernen Crop Research Farm, Saskatoon, Saskatchewan. Daylength was estimated using a 

formula described in Kirk 1994. The red arrows depict the seeding date in the three field seasons. 
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GCV of 0.004%. The estimated CV and GCV values suggest the extent of phenotypic- and 

genetic variabitlity, respectively, in the population for the individual traits. Among the traits 

under study, days to start of flowering, days to full flowering and height exhibit moderate 

heritability values of 0.49, 0.42 and 0.43, respectively, while other traits present very low broad 

sense heritability values. The parents had no variability for the traits including early vigor, days 

to maturity and maturity score. Hence, these traits did not segregate in the RIL population, 

further resulting in the very low broad sense heritability values. 

 

 

 

Figure 3.5 The RIL population segregating for flowering time in three field seasons (A) 2015, 

(B) 2016, (C) 2017, at the Kernen Crop Research Farm, University of Saskatchewan, Saskatoon, 

Saskatchewan. (Used with permission from Dr. Raja Ragupathy). 
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Table 3.1 Genetic parameters and phenotypic estimates for different agronomic traits in the ‘Royal’ x ‘RE2’ RIL population over the 

years 2015-2017 

Trait Mean ± SD Min Max CV (%) GCV (%) H2 

Early vigor 5.90 ± 1.44 1.00 9.00 24.41 0.01 7.73E-07 

Days to start of flowering 41.04 ± 7.25 25.00 64.00 17.67 2.85 0.49 

Full flowering 48.21 ± 7.85 32.00 73.00 16.28 2.43 0.42 

Height (cm) 55.22 ± 6.41 19.57 78.90 11.61 4.71 0.43 

Maturity score 3.65 ± 0.99 1.13 5.47 27.12 0.004 1.36E-07 

Days to maturity 98.05 ± 3.01 76.41 110.00 3.07 0.23 0.02 

Mean - population mean; SD - standard deviation; Min - Minimum; Max - Maximum; CV - coefficient of variation; 

GCV - genetic coefficient of variation; H
2 

- broad sense heritability.
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Table 3.2 Mean values of parental lines checks cultivars and RIL population in 2015, 2016 

and 2017 

2015 

Traits CDC 

Bethune$ 

CDC 

Sorrel$ 

Royal @ RE2 @ Royal x RE2 RILs* 

Early Vig 7.00 7.55 7.30 5.85 6.80 (4.00 - 9.28) 

Startflwr 54.22 52.86 50.50 47.25 50.62 (47.00 - 64.00) 

Fullflwr 62.63 60.93 58.75 55.75 58.51 (52.00-73.00) 

Height 58.22 63.21 53.50 38.50 51.34 (28.00 - 63.00) 

Mat Days 102.10 104.57 100.75 96.75 98.78 (92.00 - 110.00) 

2016 

Traits CDC 

Bethune$ 

CDC 

Sorrel$ 

Royal @ RE2 @  Royal x RE2 RILs* 

Early Vig 4.65 4.93 4.57 6.38 5.22 (1.00 - 9.00) 

Startflwr 42.32 42.64 37.65 33.35 37.00 (29.62 - 52.08) 

Fullflwr 49.65 50.68 44.91 41.01 44.22 (37.06 - 59.32) 

Height 69.47 70.46 55.51 54.65 57.22 (19.57 - 78.90) 

Mat Days 103.42 104.07 98.43 93.38 97.93 (90.00 - 108.00) 

2017 

Traits CDC 

Bethune$ 

CDC 

Sorrel$ 

Royal @ RE2 @  Royal x RE2 RILs* 

Early Vig 5.00 5.14 5.00 5.00 5.66 (3.00 - 9.00) 

Startflwr 39.40 39.64 36.38 32.63 35.39 (25.00 - 46.00) 

Fullflwr 45.17 44.71 42.75 39.25 41.81 (32.00 - 52.00) 

Height 64.33 71.45 58.05 48.03 57.15 (37.52 - 68.19) 

Mat Days 95.13 99.58 98.60 98.71 97.38 (76.14 - 106.84) 

 @Parents (‘Royal’ and ‘RE2’); 
$Check cultivars (CDC Bethune – main plot control; CDC Sorrel – subplot control); 

*Mean (min – max) values of segregating RIL populations; 

Early vig-early vigor; Startflwr-days to start of flowering; Fullflwr-days to full flowering; 

Mat sco-maturity score; Mat days-days to maturity. 
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3.4.3 Correlation between phenological traits 

The correlation among the phenological traits in the field data from three years and 2015-

2016 growth cabinet data are presented in the Tables 3.3, 3.4, 3.5 and 3.6. The days to start of 

flowering is highly correlated with days to full flowering in all the three seasons - 2015 (0.87, 

P < 0.01), 2016 (0.89, P < 0.01), 2017 (0.84, P < 0.01) in the field; and the relationship was 

strongest in the growth cabinet (0.96, P < 0.05). Height was strongly correlated with days to 

start of flowering (0.83, P < 0.05) and full flowering (0.80, P < 0.05) in the 2015-2016 

growth cabinet data, and a moderate correlation was observed only in the 2015 field data 

(0.33, P < 0.05). In the year 2016, days to maturity exhibited moderate correlation with days 

to start of flowering (0.57, P < 0.05) and days to full flowering (0.52, P < 0.05). In 2016 field 

season, the correlation between maturity score and maturity date was moderate and negative 

(-0.55, P < 0.05), whereas in 2017, it was weak and negative (-0.31, P < 0.05). 

 

Table 3.3 Pearson correlation coefficient for phenological traits in the RIL population-2015 

field data 
 

Startflwr Fullflwr Height Mat sco Mat days 

Early vig 0.20** 0.21**  0.50** -0.17** NS 

Startflwr   0.87**  0.33** -0.43** 0.19** 

Fullflwr      0.34** -0.38** 0.14** 

Height       -0.39** NS 

Mat sco         NS 

* Indicates significance at 5% level ** Indicates significance at 1% level; NS- Not 

significant. Early vig-early vigor; Startflwr-days to start of flowering; Fullflwr-days to full 

flowering; 

Mat sco-maturity score; Mat days-days to maturity. 
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Table 3.4 Pearson correlation coefficient for phenological traits in the RIL population-2016 

field data 
 

Startflwr Fullflwr Height Mat sco Mat days 

Early vig -0.18** -0.18** -0.22**  0.20** -0.26** 

Startflwr    0.89**  0.22** -0.22**  0.57** 

Fullflwr      0.31** -0.15**  0.52** 

Height        NS  0.16** 

Mat_sco         -0.55** 

* Indicates significance at 5% level ** Indicates significance at 1% level; NS- Not 

significant. Early vig-early vigor; Startflwr-days to start of flowering; Fullflwr-days to full 

flowering; 

Mat sco-maturity score; Mat days-days to maturity. 

 

 

 

 

 

 

 

Table 3.5 Pearson correlation coefficient for phenological traits in the RIL population-2017 

field data 

  Startflwr Fullflwr Height Mat sco Mat days 

Early vig -0.10* -0.16** NS NS 0.13** 

Startflwr   0.84** NS 0.22** 0.12** 

Fullflwr     NS 0.25** 0.09* 

Height       NS NS 

Mat sco         -0.31** 

* Indicates significance at 5% level ** Indicates significance at 1% level; NS- Not 

significant. Early vig-early vigor; Startflwr-days to start of flowering; Fullflwr-days to full 

flowering; 

Mat sco-maturity score; Mat days-days to maturity. 
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Table 3.6 Pearson correlation coefficient for phenological traits in the RIL population-2015 

growth cabinet data 
 

Fullflwr Height Mat sco Mat days 

Startflwr 0.96** 0.83** 0.11* -0.29** 

Fullflwr   0.80** 0.08* -0.27** 

Height     0.20** -0.39** 

Mat sco       -0.19** 

* Indicates significance at 5% level ** Indicates significance at 1% level. Startflwr-days to 

start of flowering; Fullflwr-days to full flowering; Mat sco-maturity score; Mat days-maturity 

days. 

 

3.4.4 Identification of individuals with extreme phenotypes 

The ‘RE2’ x ‘Royal’ RIL population was primarily designed to investigate flowering time 

and assess its heritability after crossing. The distribution of the phenotypic values for days to 

start of flowering from 2016 field season is displayed in Figure 3.5 where, the mean of the 

population was 37 days and the mode was 38 days. On ranking the phenotypic values for start 

of flowering as described earlier, individuals showing extreme values were selected (Figure 

3.6). A total of 26 early flowering and 27 late flowering lines from each tail of the 

distributional extreme were identified among the 288 RIL population. The subset of 13 early 

flowering and 11 late flowering lines (Table 3.7) when grown in the growth cabinet in 2017, 

were found to exhibit their corresponding phenotypes  

 

Figure 3.6 The early- and late flowering bulks grown along with parents ‘Royal’ and ‘RE2’ 

in the growth cabinet under long day conditions with 16 hours of light. 
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Table 3.7 List of early- and late flowering lines chosen to constitute the bulks 

Lines constituting 

early flowering bulk 

Days to 

flowering (2016 

field season) 

Lines constituting 

late flowering bulk 

Days to 

flowering (2016 

field season) 

EF RIL-279-28 31 EF RIL-279-8 40 

EF RIL-279-14 32 EF RIL-280-22 40 

EF RIL-279-2 33 EF RIL-280-29 40 

EF RIL-280-26 33 EF RIL-280-5 43 

EF RIL-279-1 33 EF RIL-281-6 40 

EF RIL-279-16 33 EF RIL-282-14 40 

EF RIL-279-7 31 EF RIL-281-9 40 

EF RIL-281-28 32 EF RIL-281-17 40 

EF RIL-282-20 32 EF RIL-281-15 40 

EF RIL-281-25 32 EF RIL-281-12 40 

EF RIL-281-30 33 EF RIL-281-27 41 

EF RIL-282-10 33   

EF RIL-282-29 31   

Population mean=37±2.34 

3.4.5 Replicated field test of lines chosen for early- and late flowering bulks 

From the analysis results of the RCBD trial data (Table 3.8), a significant difference was 

observed between the early- and late flowering lines for days to- start of flowering 

(P=0.0197), full flowering (P=0.0072) and maturity (P=0.0350). Also, a highly significant 

difference (P < 0.0001) between the extreme bulks was observed for height. The early- and 

late flowering bulks differ significantly for seed yield. 
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Table 3.8 Analysis of phenotypic values from the RCBD trial in 2017 

  Days to 

start of 

flowering 

Days to full 

flowering 

Days to 

maturity 

Height 

(cm) 

Seed Yield 

(g) 

CDC Bethune 42.00 47.67 87.67 54.33 26.88 

CDC Plava 42.50 48.00 88.00 55.00 22.74 

Prairie Thunder 39.67 45.00 83.67 45.67 25.94 

Royal 41.67 47.00 85.00 50.00 32.54 

RE1 45.00 48.00 91.33 44.67 14.07 

RE2 41.00 46.00 84.00 41.00 11.92 

RE3 43.00 47.00 85.33 40.67 13.93 

Check means 42.12 46.95 86.43 47.33 21.14 

            

Early flowering 

bulk 

40.95 45.29 85.16 44.01 20.39 

Late flowering 

bulk 

41.83 46.24 86.61 48.59 32.79 

P value 0.0197 0.0072 0.0350 < 0.0001 < 0.0001 

 

3.4.6 Phenotypic performance of- RILs for flowering time and bulks across 

environments 

The flowering time range observed during the 2015 season was 17 days, with flowering 

starting 47 days after emergence and finishing 64 days after emergence. In 2016, flowering 

lasted for 22 days, commencing 30 days after emergence and went on till 52 days. Similarly, 

in 2017, flowering lasted for 27 days with the earliest flowering observed 25 days after 

emergence and the last day to start of flowering was 52 days after emergence. Maximum 

number of RILs started flowering on 49, 38, 36 days after emergence, in 2015, 2016 and 

2017, respectively. In 2016, the average number of days to start of flowering for the parents 

‘Royal’ and ‘RE2’ was 37.7 and 33.4, respectively. The main plot control ‘CDC Bethune’, 

and subplot control ‘CDC Sorrel’ had the values 42.3 and 42.6, respectively. The position of 

the chosen bulks at the distributional extreme of the segregating population in 2016, is 

depicted in Figure 3.7. The individuals constituting the early flowering bulk had days to start 

of flowering values ranging between 31 and 33 days, while those constituting the late 

flowering bulk had values ranging between 40 to 43 days. The distribution of phenotypic 

values of the early- and the late flowering bulks over different field seasons and in the 

growth-cabinet is given in Figure 3.8. 
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Figure 3.8 Boxplot representing the performance of the bulks in different environments. 

Yellow represents early flowering bulk and blue represents late flowering bulk. 

Figure 3.7 Histogram with kernel density plot for start of flowering 2016 
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3.5 Discussion 

A total of 29 flax cultivars have been registered in Canada since 2000. Among the cultivars, 

‘2126’, a low linoleic acid containing variety is the earliest, taking ~95 days to maturity 

(Dribnenki et al. 2005). However, it has been suggested that a variety with a duration of 90 

days to maturity is considered suitable for the northern prairie region (Duguid 2009). ‘Royal’, 

is an old flax cultivar with medium to late maturity (McGregor 1953). Treatment of ‘Royal’ 

with an epimutagenic chemical 5-Azacytidine resulted in three early flowering mutant lines – 

‘RE1’, ‘RE2’ and ‘RE3’ (Fieldes 1994; Fieldes and Amyot 1999). Among the accessions, 

‘RE2’ was the least photoperiod sensitive. The stable transmission of the early flowering trait 

through meiosis for nine generations, enabled the development of the RIL population, by 

crossing ‘Royal’ and ‘RE2’ (Sun 2015, M.Sc. thesis, University of Saskatchewan). 

Biparental mapping population such as RILs are widely used for linkage mapping and QTL 

analysis besides serving as a breeding population (Morell et al. 2012). Phenotyping and 

genotyping of the mapping population are the basis for QTL analysis. Bulked segregant 

analysis is a resource efficient approach in gene tagging as it involves genotyping only of the 

pooled extremes, constituted based on the phenotypic data capturing the variation across the 

spectrum (Michelmore et al. 1991). The QTL-seq methodology is a modern version of BSA 

in which next generation sequencing is employed instead of markers, and its success depends 

on various factors such as size of mapping population, genetic architecture of the trait and 

accuracy of phenotyping. The precision of phenotyping of individuals with lesser quantity of 

seeds, and thus not amenable for replicated trials can be improved by the analysis of the 

phenotypic data using a modified version of augmented design such as MAD2 (Lin and 

Poushinsky 1985), which involves the replication of control throughout the design. Modified 

augmented design type 2 increases the signal to noise ratio by eliminating the influence of 

potential soil heterogeneity. This phenotyping methodology facilitated the selection of the 

most appropriate individuals for constituting the bulks, for DNA sequencing and genotyping. 

The seeding dates were 12th May, 17th May and 19th May in 2015, 2016 and 2017, 

respectively. However, in 2017 reseeding was carried out on 12th June because of the 

cutworm damage. Hence, the growing environment of field trials were significantly different 

from each other in 2015, 2016 and 2017, because of differences in daylength, growing degree 

days (cumulative heat units) and moisture regimes. Specifically, in 2017, the RILs were 

exposed to shortening day length after planting, as a consequence of delayed seeding. The 

difference in seeding date has been reported to influence several agronomic traits in crop 
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species including seed emergence, yield, pod fertility in chickpea (Cicer arietinum L.; Auld 

et al. 1998; Gan et al. 2002); yield in drypea (Pisum sativum L.; Gan et al. 2002); plant 

density, seed size, vigour and quality of produced seed in canola (Brassica napus L.; Gusta et 

al. 2004); shoot dry weight, yield in soybean (Glycine max L.; Matsuo et al. 2016); and plant 

height, harvest index, flowering time in camelina (Camelina sativa (L.) Crantz; Sintim et al. 

2016). The relatively high mean values for days to start of flowering in 2015, in the RILs and 

the control cultivars can be potentially due to the undesirable or stressful environmental 

conditions, such as, reduced precipitation, prevalent at the initial stages of crop development 

(Dash et al. 2014). 

The estimated genetic parameters provide an insight about the genetic architecture of the 

underlying phenotypic traits. The high CV for early season vigor and maturity score indicates 

the greater phenotypic variability for these traits in the RIL population. Also, the other traits 

show relatively high phenotypic variation, except for days to maturity. However, the low 

GCV for all traits demonstrate reduced level of variability at the genetic level, as expected in 

a cross involving a parent and its derivative line. The broad sense heritability values observed 

for days to- start of flowering, full flowering and height signify the moderate effect of 

environment on the expression of the phenotype. Whereas, for early vigor, days to maturity 

and maturity score, the very low heritability values imply, high G x E interaction and hence, 

most of the phenotypic variation was attributed to the environment. The moderate to low 

heritability values for the studied agronomic traits suggest a potential low selection response 

for these traits within this population. However, this RIL population is suitable for detection 

of QTL governing flowering time since, QTL-seq based study has successfully identified the 

genomic regions governing traits with low heritability such as, fruit weight in tomato (Illa-

Berenguer et al. 2015). 

The correlation values between days to- start of flowering and full flowering reveal the high 

positive association among the traits, as expected. A line chosen for early flowering will also 

complete flowering earlier than rest of the lines. The strong correlation of height with days to 

flowering, observed only in the growth cabinet condition is indicative of significant 

differences in the field condition in comparison with the controlled environment (reviewed in 

Poorter et al. 2016). However, there was also a significant relation between early- and late 

flowering bulks in the replicated field test, with the former being nearly 38% shorter than the 

latter. As expected, significant negative relationship between the maturity score and days to 

maturity was observed since higher maturity score was assigned to the early maturing lines. 
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A large body of evidence suggests flowering time is governed by nearly 300 genes (Bouché 

et al. 2015), and the impact of the organelle genome on the trait is not reported. Hence, when 

the bulks were constituted, the individuals exhibiting, early- and late flowering phenotypes 

were selected only from the 288 RILs derived from the cross involving ‘RE2’ as the male 

parent, the donor of only nuclear genome to the progeny. As described earlier, from the 288 

RIL individuals, a total of 26 early flowering and 27 late flowering lines were chosen, of 

which 13 early flowering and 11 late flowering lines were used for next generation 

sequencing using Illumina platform. Previous studies using QTL-seq analysis for mapping 

different traits such as, flowering time in cucumber (Lu et al. 2014); 100 seed weight in 

chickpea (Das et al. 2015); fruit weight and locule number in tomato (Illa-Berenguer et al. 

2015); and subgynoecy in cucumber (Bu et al. 2016) have used 10 individuals from each 

extreme, and the size of their mapping populations ranged from 191 to 232 individuals. 

Similarly, QTL-seq based mapping of 100 seed weight and root/plant total dry weight ratio in 

chickpea (Singh et al. 2016), flowering time in broccoli x cabbage cross (Shu et al. 2018) 

have used 15 individuals from each tail of the distribution. Though there are reports of other 

studies using higher number of individuals per bulk (reviewed in Zou et al. 2016), the above 

instances support that the choice of 11 individuals per bulk would be adequate for elucidating 

the potential genomic region(s) associated with flowering time. 

The success of BSA is mainly dependent on the distinct nature of the two bulks for the target 

phenotype (Zou et al. 2016). From the results of the RCBD trial in 2017, a statistically 

significant difference (P=0.0197) between the early- and late flowering group of individuals 

for days to start of flowering was observed. The bulks were also distinct for days to full 

flowering (P=0.0072), which is substantiated by the strong correlation between days to- start 

of flowering and full flowering. In addition, significant differences between the bulks were 

observed for days to maturity (P = 0.0350), height (P<0.0001) and yield (P<0.0001). 

3.6 Conclusion 

The field experiments in 2015, 2016 and 2017 were carried out with the objective of 

phenotypic characterization of the RIL mapping population generated by crossing ‘Royal’ 

with RE2. The evaluation was carried out using the MAD2 and the phenotypic variation 

contributed by potential soil heterogeneity was corrected using the MAD2 statistical pipeline. 

Using phenotypic values with improved accuracy, the individuals from the distributional 

extremes were chosen for constituting the early- and late flowering bulks for the QTL-seq 

analysis to identify potential genotype-phenotype association for flowering time. In addition, 
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validation of the bulks in an independent RCBD field trial provided additional evidence on 

their suitability for utilization in sequencing based BSA. 

Understanding of the early flowering phenotype and development of markers would help in 

the breeding of early flowering cultivars of flax and consequent expansion of flax production 

into the northern part of the grain belt of the Canadian prairies. The outcome of this study 

would be helpful beyond flax for the improvement of other prairie crops since, development 

of early maturing cultivar is a universal objective in plant breeding. 
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Chapter 4 QTL-seq for the Identification of the Potential Loci Governing Early 

Flowering Phenotype Observed in the Mutant ‘RE2’ 

 

4.1 Abstract 

The potential genetic basis of the early flowering trait in ‘RE2’, a mutant derived by the 

treatment of cultivar ‘Royal’ with 5-Azacytidine (5-AzaC), was examined using the next 

generation sequencing (NGS) based bulked segregant analysis (BSA). The phenotypic 

characterization of the ‘Royal’ x ‘RE2’ recombinant inbred population was followed by 

identification of distributional extremes for flowering time (early- and late flowering bulks). 

The parents and the individuals constituting the bulks were sequenced with unique adapter 

indices for each line. The DNA sequencing data was analyzed using the QTL-seq pipeline by 

in silico pooling of high and low bulks, reaping the benefits of both NGS and BSA. The 

pipeline generated a secondary reference for ‘Royal’ to which the sequencing reads from the 

early- and late flowering bulks were aligned, and single nucleotide polymorphisms (SNP) 

were identified. Two parameters, namely SNP-index and ΔSNP-index were estimated, and 

their moving window averages were plotted. Significant association between genomic region 

and early flowering phenotype was not observed. However, removal of ambiguous SNP and 

those common between the bulks identified 363 SNP specific to the early flowering bulk, 

with a preponderance of transitions. Functional and the positional annotation of SNP using 

SnpEff suggested that majority of the SNP belonged to the upstream, downstream and 

intergenic region and had modifier effect, implying variation in the non-coding region. A 

SNP was identified in the upstream region of the flax gene (Lus10040921), homologous to 

Arabidopsis LUMINIDEPENDENS (LD), involved in the autonomous flowering pathway. 

Missense variants with SNP-index of one were predominantly associated with flax genes 

whose Arabidopsis homologues encode proteins of unknown function localized to the 

membrane. 

4.2 Introduction 

Breeding short duration cultivars is a universal goal in crop improvement. Identifying 

genotypes that flower early is important because of its association with maturity (Zhang et al. 

2015). Flowering time is under complex genetic control which has been studied in detail in 

Arabidopsis, with recent evidence describing additional epigenetic regulation (Bloomer and 

Dean 2017). Hundreds of genes have been described as playing a role in flowering time 

regulation in Arabidopsis, many have functional orthologues in several crop species and 
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others have diversified to control additional traits (Blümel et al. 2015). For instance, in 

soybean (Glycine max L.), GIGANTEA (GI), a gene involved in photoperiod and circadian 

clock pathways, also has pleiotropic effect on maturity (Watanabe et al. 2011). In addition, 11 

other genes have been identified in soybean, which control both flowering time and maturity 

(Kong et al. 2018). In maize (Zea mays L.), a FLOWERING LOCUS T-LIKE gene ZEA 

CENTRORADIALIS 8 (ZCN8) and the recessive DELAYED FLOWERING 1 (dfl1) gene 

which control flowering time were also found to influence leaf number (Li et al. 2016). 

Hence, studying of genetic basis of flowering time will identify genomic regions underlying 

this important adaptive trait, as well as generate knowledge on other correlated agronomic 

traits. 

Flax exhibits photoperiod sensitivity and is a long-day plant (Nuttonson 1948), and the 

majority of the flax cultivars grown in the Canadian Prairies are not influenced by 

vernalization (Darapuneni et al. 2014). In flax, an early flowering mutant ‘RE2’ was 

identified by treating a traditional cultivar ‘Royal’ with 5-Azacytidine (5-AzaC; Fieldes et al. 

1994). The origin of the underlying variation controlling the early flowering trait in ‘RE2’ is 

unclear with potential for it to be genetic (single nucleotide polymorphisms-SNP, 

translocation or deletion) or epigenetic (chromatin variation induced by an altered DNA 

methylation pattern) or a combination of the two. Despite the uncertainty of its origin, 

association of flowering time variation with allelic polymorphism can locate controlling 

factors using quantitative trait locus (QTL) mapping approaches. However, the presence of 

genetic polymorphism makes interpretation of any epigenetic variation more difficult. 

Bulked Segregant Analysis (BSA) is a strategy of associating polymorphic genomic regions 

(often DNA markers linked to a target genotype) with phenotypic variation in segregating 

populations (Michelmore et al. 1991). With the advent of next generation sequencing (NGS) 

technologies, novel variants of BSA have been proposed. MutMap (Abe et al. 2012) 

identifies SNP underlying the phenotype of interest by combining the principles of both BSA 

and NGS. The SNP associated with the desired phenotype can be easily identified among the 

progeny obtained from mutant x wild-type crosses since the number of segregating loci 

responsible for the phenotype would be minimal because of their near-isogenic nature. In 

other words, the unlinked SNP are in equilibrium and are expected to segregate in a 1:1 ratio 

for mutant and wild type alleles. In contrast, the causal SNP (internal to the gene) or those in 
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linkage disequilibrium with the phenotype will not be segregating in a 1:1 ratio and will be 

preferentially enriched from one of the parents. 

QTL-seq, another variant of MutMap methodology was proposed by Takagi et al. (2013). 

QTL-seq follows the same principle of MutMap using segregants from a mutant x wild-type 

cross. However, the target trait is quantitative in nature whereas MutMap focuses on 

qualitative traits and hence, QTL-seq is more appropriate to examine material derived from 

breeding populations. QTL-seq involves sequencing of pools of segregants formed from 

individuals at the tails of phenotypic distribution allowing the localization of genomic regions 

harbouring potential candidate genes influencing the trait of interest (Takagi et al. 2013). In 

addition, QTL-seq is more efficient than traditional linkage mapping followed by QTL 

analysis because of the direct identification of genomic regions (tagging) associated with the 

trait of interest due to the potential enrichment of alleles from a given parent and reduced cost 

in terms of resources. The NGS based BSA was first used in yeast (Saccharomyces 

cerevisiae) to dissect the sensitivity to 17 chemical substances measured as a quantitative trait 

(Ehrenreich et al. 2010). In crop plants, QTL-seq has been widely deployed for accelerated 

identification of agronomically important genomic regions in rice (Oryza sativa L.; Takagi et 

al. 2013, Kadambari et al. 2018), cucumber (Cucumis sativus L.; Lu et al. 2014), chickpea 

(Cicer arietinum L.; Das et al. 2015, Singh et al. 2016), tomato (Solanum lycopersicum L.; 

Illa-Berenguer et al. 2015), pigeonpea (Cajanus cajan (L.) Millsp.; Singh et al. 2015), 

brassica (Brassica napus L.; Wang et al. 2016), groundnut (Arachis hypogaea L.; Pandey et 

al. 2017) and soybean (Glycine max L.; Zhong et al. 2018). 

The present study dissecting flowering time in flax is a further modification of this NGS-BSA 

approach. Here we use an epiRIL mapping population derived from a ‘Royal’ x ‘RE2’ cross. 

In previous analyses, crosses between different genotypes ensure adequate levels of 

polymorphism segregating in the population. However, the ‘Royal’ x ‘RE2’ derived epiRIL 

mapping population involves a cross between ‘RE2’ and its original progenitor genotype 

Royal, where the level of allelic polymorphism is expected to be extremely low. Despite this, 

QTL can still be located to an interval defined by polymorphic markers. 

4.3 Materials and Methods 

4.3.1 Sample collection 

The ‘Royal’ x ‘RE2’ derived RIL population was phenotypically evaluated and the 

distributional extremes constituting the early- and late flowering bulks were identified as 
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described in Chapter 3. Single plants of the parents, ‘Royal’ and ‘RE2’, and that of the 13 

early flowering and 11 late flowering lines were grown in the growth cabinet under 16 hours 

light condition and with a day- and night temperature of 22 oC and 17 oC, respectively. The 

leaf tissues were collected from individual plants 29 days after seeding and were immediately 

frozen in liquid nitrogen before being stored at -80oC.  

4.3.2 DNA extraction and quantification 

The DNA was extracted from the tissues, using the modified Cetyl Trimethyl Ammonium 

Bromide (CTAB) protocol (Porebski et al. 1997; Healey et al. 2014). The details of reagent 

preparation are provided in Appendix A. One-gram of frozen leaf tissue was ground to a fine 

powder using pestle and mortar chilled with liquid nitrogen. The ground tissue was 

transferred to a 50 ml falcon tube to which 10 ml of extraction buffer pre-heated at 65oC was 

added. The sample was incubated in a water bath at 65oC for 1 hour with frequent inversion 

every 15 minutes. The incubation step was followed by centrifugation at 4800 x g for 6 

minutes to remove the debris. The supernatant was transferred to a fresh falcon tube and an 

equal volume of 24:1 chloroform:isoamyl alcohol was added and mixed to form an emulsion. 

The sample was centrifuged at 4800 x g for 6 minutes and the aqueous phase was transferred 

to a new falcon tube. A total of 5 μl of RNAse A (10mg/ml) was added to the solution and 

incubated at 37oC for 15 minutes. This step was followed by another round of 

chloroform:isoamyl alcohol extraction. The DNA present in the aqueous phase was 

precipitated by adding 1/10th volume 3M Sodium acetate (pH 5.2) and two volumes of ice 

cold 95% ethanol. The sample was incubated at -20oC for exactly 1 hour. After incubation, 

the sample was centrifuged at 4800 x g for 11 minutes. The pellet was washed with 3 ml of 

70% ethanol by centrifugation at 4800 x g for 11 minutes. Finally, the DNA pellet was air 

dried and the pellet was dissolved in 200 μl of resuspension buffer (RSB; Illumina Inc., USA) 

and stored at -20oC. 

The extracted DNA was quantified using Qubit 2.0 fluorometer (ThermoFisher Scientific, 

MA, USA) with a broad range (BR) DNA assay kit using the protocol described in Appendix 

B. The DNA concentration in the samples (ng/ml) were noted. Finally, the concentration in 

the DNA stocks (ng/μl) were estimated. 

4.3.3 Shearing of DNA 

The isolated genomic DNA was diluted to a concentration of 4 ng/μl in a volume of 60 μl of 

RSB, and transferred to 0.5 ml Bioruptor microtubes (Diagenode Inc., NJ, USA). Prior to 
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sonication, the samples were vortexed for 10 seconds, centrifuged at 1000 rpm for 10 seconds 

and incubated on ice for 15 minutes. Initial optimization indicated that nine cycles of 

sonication in the Bioruptor, where each cycle pulsed for 30 seconds separated by 90 seconds 

pauses, generated a population where the majority of fragments were ~550 bp in size. Finally, 

all of the DNA samples were subjected to sonication-based shearing. The quality of 

fragmented DNA samples was analyzed using 1.5% agarose gel electrophoresis and 

visualized and documented on Bio-Rad Geldoc XR+ (BioRad, CA, USA). The protocol 

followed is described in Appendix C. 

4.3.4 Sequencing-library preparation 

The sheared DNA was used in the construction of sequencing libraries using TruSeq Nano 

DNA library preparation kit (Illumina Inc., San Diego, USA) following the manufacturer’s 

instructions. The protocol followed is described below. 

4.3.4.1 Cleaning-up of fragmented DNA 

The sheared DNA sample was centrifuged at 280 x g for 5 seconds to collect the sample. 

Fifty micro-litres of sheared DNA was placed in a 1.5 ml Eppendorf tube for library 

preparation. The resuspension buffer (RSB) and sample purification beads (SPB) were 

incubated at room temperature for 30 minutes. Bead-based cleaning-up of the fragmented 

DNA occurred with the SPB being thoroughly mixed using a vortex to disperse the beads 

uniformly in the solution. Each of the samples were incubated with 80 μl of SPB and mixed 

thoroughly by pipetting. The samples were incubated for 5 minutes at room temperature. 

After incubation, they were placed on a magnetic stand for 8 minutes to stabilize. The 

supernatant from each sample tube was removed completely. The settled beads were washed 

with freshly prepared 80% (v/v) ethanol as follows: with tubes still on magnetic stand, 200 μl 

of freshly prepared 80% (v/v) ethanol was added and incubated for 30 seconds. After removal 

of ethanol, the wash was repeated for a second time. Finally, all residual ethanol was 

discarded using a 20 μl pipette. The beads were air dried for 5 minutes, and then after 

removal from magnetic stand, 62.5 μl of RSB was added and mixed well by pipetting. The 

resuspended beads were incubated for 2 minutes at room temperature. The samples were 

placed on the magnetic stand and incubated for 5 minutes for the beads to settle. A volume of 

60 μl of clear supernatant was transferred to 0.2 ml PCR tube. 
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4.3.4.2 End repair and library size selection 

The end repair mix (ERP) was centrifuged at 600 x g for 5 seconds. Each of the sample had 

40 μl ERP added, and the final volume of 100 μl was mixed well by pipetting. The samples 

were then placed on a PCR machine and the program with the following temperatures was 

run: preheat lid option at 100oC; incubation at 30oC for 30 minutes and final hold at 4oC. 

For the removal of large DNA fragments, the following clean-up steps were carried out. A 

volume of 92 μl of SPB was diluted in 92 μl of nuclease free water, per sample, as the desired 

insert size was 550 bp. The diluted SPB was well mixed using a vortex. Each 100 μl of end 

repaired sample was transferred to a 1.5 ml Eppendorf tube, to which 160 μl of diluted SPB 

was added and mixed thoroughly by pipetting. The solution was incubated for 5 minutes at 

room temperature. The sample was then placed on a magnetic stand and the solution was 

allowed to clear with a 5 minutes incubation. After the beads were settled and stabilized using 

a magnet, 250 μl of clear supernatant was transferred to a fresh 1.5 ml Eppendorf tube. 

For the removal of small DNA fragments, the following clean-up was performed. The 

undiluted SPB was mixed using a vortex and 30 μl was added to the 250 μl of collected 

supernatant and thoroughly mixed. The solution was incubated for 5 minutes at room 

temperature and then placed on a magnetic stand for 5 minutes. After the beads were settled, 

all the supernatant was discarded. The beads were washed with freshly prepared 80% (v/v) 

ethanol as follows: 200 μl ethanol was added to every sample and incubated for 30 seconds 

on the magnetic stand and then ethanol was removed. The wash was repeated, and ethanol 

was removed completely using 20 μl pipette. The beads were air dried and suspended in 20 μl 

of RSB. The samples were removed from the magnetic stand and mixed well by pipetting and 

samples were incubated for 2 minutes and then transferred back to magnetic stand and 

incubated for 5 minutes for the beads to settle down. Finally, 17.5 μl of supernatant was 

transferred to a 0.2 ml PCR tube. 

4.3.4.3 Adenylation of 3’ ends 

The thawed A-tailing mix (ATL) was centrifuged at 600 x g for 5 seconds. The end repaired, 

size selected DNA was added with 12.5 μl of ATL and mixed thoroughly by pipetting. The 

sample was centrifuged at 280 x g for a minute. Incubation was carried out in a thermocycler 

with the following program setting: preheat lid option at 100oC; 37oC for 30 minutes; 70oC 

for 5 minutes; 4oC for 5 minutes; the total volume was 30 μl. 
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4.3.4.4 Adapter ligation 

The DNA adapters were thawed at room temperature and then centrifuged at 600 x g for 5 

seconds. The ligation mix - 2 (LIG 2) was removed from the -20oC freezer. Each of the 

samples had 2.5 μl RSB added, followed by 2.5 μl LIG 2 and finally 2.5 μl of the appropriate 

DNA adapters. The samples were mixed thoroughly. The 0.2 ml tubes were placed on the 

thermocycler and incubated with the following setting: preheat lid option set at 100oC; 30oC 

incubation for 10 minutes; final cool down to 4oC. The total volume was 37.5 μl. The stop 

ligation buffer (STL) was thawed at room temperature and then centrifuged at 600 x g for 5 

seconds. To end the ligation process, 5 μl of STL was added to each sample and mixed well 

by pipetting. 

For cleaning-up the adapter ligated DNA fragments, 42.5 μl of vortexed SPB was added to 

each sample and pipetted to mix the samples which were incubated at room temperature for 5 

minutes and then placed on a magnetic stand for another 5 minutes. After the liquid was 

clear, the supernatant was discarded. The beads were washed by adding 200 μl of 80% (v/v) 

ethanol as described earlier. The beads were air dried for five minutes and the samples were 

removed from the magnetic stand, when 52.5 μl RSB was added and mixed well. The 

supernatant (50 μl) was transferred to a fresh 1.5 ml Eppendorf tube. The above-mentioned 

steps for cleaning-up the adapter ligated DNA was repeated using 50 μl of SPB initially, and 

27.5 μl of RSB for suspending the beads. Finally, 25 μl supernatant was transferred to 0.2 ml 

PCR tubes. 

4.3.4.5 Amplification of DNA fragments 

The samples were placed on ice and added with 5 μl of PCR primer cocktail. A volume of 20 

μl of enhanced PCR mix (EPM) was added to each sample and pipetted carefully to mix, and 

the samples were spun down at 280 x g for 1 minute. The following program was run on the 

thermal cycler: preheat lid option at 100oC; incubation at 95oC (3 minutes) followed by 8 

cycles of 98oC for 20 seconds, 60oC for 15 seconds, 72oC for 30 seconds; 72oC for 5 minutes; 

finally maintained at 4oC. The amplified DNA was spun down at 280 x g for 1 minute and 

transferred to 1.5 ml Eppendorf tubes. Each sample was added with 50 μl of uniformly 

suspended SPB and mixed thoroughly by pipetting. After the samples were incubated for 5 

minutes, they were placed on a magnetic stand for another 5 minutes. Once the beads settled, 

the supernatant was discarded, and the beads were washed with 80% (v/v) freshly prepared 

ethanol. A total of 32.5 μl of RSB was added to the air-dried beads, after removal from the 
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magnetic stand and mixed by pipetting. The samples were incubated for 2 minutes at room 

temperature and again placed on the magnetic stand for the liquid to clear (~5 minutes). For 

each sample, 30 μl supernatant containing the sequencing libraries, was transferred to a fresh 

0.2 ml tube and stored at -20oC. 

4.3.5 Quantification of sequencing libraries and quality assessment 

The prepared DNA sequencing libraries were quantified using a Qubit high-sensitivity (HS) 

DNA assay kit on a Qubit 2.0 fluorometer (Thermofisher Scientific, MA, USA). The quality 

of library, based on the insert size, was analyzed using a Bioanalyzer, an automated 

electrophoresis system, with the high sensitivity (HS) DNA assay chip (Agilent technologies, 

Germany). The methodology followed for quality assessment using Agilent Bioanalyzer is 

described in Appendix D. 

4.3.6 Sequencing of DNA libraries 

The prepared libraries were sequenced at the NRC Aquatic and Crop Resources Centre, 

Saskatoon. Briefly, the libraries were quantified using the KAPA library quantification kit for 

the Illumina platforms (Kapa Biosystems, MA, USA). Real time PCR was employed, and the 

concentration of DNA fragments flanked by oligonucleotide sequences P5 and P7, which 

facilitate the attachment of the library to the flow cell, were determined. After estimating the 

concentrations, the libraries were diluted to 2 nM using 10 mM Tris-HCl (pH 8.0) with 0.1 % 

Tween 20. The indexed libraries were pooled by adding equal volumes of each library and 

sequenced on a single lane. A final volume of 10 μl of the pooled libraries were denatured 

and diluted using 0.1 N sodium hydroxide (NaOH) and hybridization buffer, respectively, 

based on the cBot clustering protocol (Illumina). Finally, libraries at a concentration of 20 

pM were sequenced on an Illumina HiSeq 2500 platform (Illumina Inc., San Diego, USA) 

utilizing the HiSeq SBS v4 chemistry with 2 x 125 bp cycles. The binary base call (BCL) 

files generated by the sequencer were converted to standard FASTQ format using the 

software bcl2fastq. 

4.3.7 Analysis of sequencing data using the QTL-seq pipeline 

The QTL-seq pipeline developed at the Iwate Biotechnology centre, Japan, was used for the 

analysis (http://genome-e.ibrc.or.jp/home/bioinformatics-team/mutmap; Takagi et al 2013). 

The pipeline required the following programmes and tools to be installed: Perl (v5.8.8), Perl 

module Math :: Random :: MT :: Auto 6.14, R (version 2.15.0), BWA (version 0.5.9 - r16; Li 

http://genome-e.ibrc.or.jp/home/bioinformatics-team/mutmap
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and Durbin 2009, SAM tools (0.1.8 or before; Li et al. 2009) and FASTX - toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/). The sequencing data generated from 11 early- and 

11 late flowering individuals representing the segregants from the extremes of the RIL 

population distribution were used in the analysis. 

QTL-seq analysis using the pipeline involved six steps. In the first step, the FASTQ files of 

‘Royal’ were loaded into a sub-directory and the sequencing read files were named according 

to the naming convention of the pipeline (*_ (0-9) *_(1or2) _sequence.txt.gz; where, 0-9 

were unique numbers provided and, 1 and 2 were given for forward and reverse reads, 

respectively). The reference sequence of ‘CDC Bethune’ (You et al. 2018) was added to the 

qualify_read directory. The FASTQ files of the individuals constituting the early- and late 

flowering bulks were added to the directories named early and late, respectively. The 

configuration file (config.txt) was edited, to adapt the pipeline for the QTL-seq analysis of 

early flowering time in the ‘Royal’ x ‘RE2’ RIL population. The name of the bulks (early and 

late), parent used to generate the secondary reference (‘Royal’), were assigned in the relevant 

config fields. The score type was set as ‘Sanger’ and the file name of the available genome 

reference was also provided. The option, key3_mode_reference_FASTA was set to zero since, 

the secondary sequence for ‘Royal’ was generated in the pipeline. The number of individuals 

in each bulk was set to 11 and the type of population defined as RIL. Finally, a shell script 

provided with the package was run to create the common.fnc file. 

The second step filters the sequencing reads for quality, and also the quantity of sequence 

data between the bulks is equalized. For a sequencing read to pass this quality filter, 90% of 

each read must have a Phred quality score of 30 or above. This step is carried out by running 

the shell script in the directory named qualify_read as Run_all_Bats.sh <number> where, 

<number> would correspond to 9, 0, 1 for parent used for secondary reference, early-, late 

flowering bulk, respectively. After filtering, the FASTQ files containing paired reads and 

reads with broken pairs during processing were generated and their corresponding statistics 

files were produced for ‘Royal’. Also, the files containing the equalized reads for the bulks 

were generated. 

In the third step, the sequencing reads of ‘Royal’ were aligned to the reference sequence of 

‘CDC Bethune’ using BWA (Li and Durbin 2009). The alignment was processed using Coval 

(Kosugi et al. 2013), a software to filter spurious alignments and to improve the confidence 

of the detected variants. The high confidence SNP were replaced in the reference sequence to 

http://hannonlab.cshl.edu/fastx_toolkit/
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generate the reference-guided assembly of ‘Royal’. The sequence reads of ‘Royal’ were again 

aligned to the secondary reference and the SNP were detected, which were mainly due to 

alignment errors, and were placed in a separate pileup file to remove them in downstream 

analysis in the pipeline. 

The fourth step involved the calculation of SNP-index values across genomic positions for 

both the bulks. The SNP-index was estimated by the analysis pipeline as the ratio of number 

of reads with an alternate base relative to the total number of reads aligning to the position. 

The equalized reads of the early- and late flowering bulk were aligned to the secondary 

reference using BWA. The Coval (Kosugi et al. 2013) software was used for filtering the 

detected SNP, and any spurious SNP identified in third step were removed. Separate text files 

for the early- and late flowering bulks were generated for mismatch filter values 2, 3 and 4, 

defined as the maximum number of mismatched bases tolerated per read. The files contain 

SNP-index values for each position along with additional parameters defining the number of 

reads covering the site and read bases and base quality. 

In the fifth step, the SNP data and the other parameter information of both the bulks was 

merged into a single file with filtering for quality. The SNP positions with depth of coverage 

less than seven and SNP-index values less than 0.3 in both the early- and late flowering bulks 

were excluded. However, if the SNP-index values were less than 0.3 in only one of the bulks, 

the positions were considered to have true SNP. 

The final step involved the estimation of a ∆SNP-index and the generation of graphical 

representation of the data. The ∆SNP-index value is defined as the difference between the 

SNP-index value of the early- and late flowering bulks. The confidence intervals at 90%, 

95% and 99% were estimated by the pipeline using computer simulation. For every read 

depth, a set of alleles in the given data were sampled, and the ∆SNP-index was calculated. 

This process was then repeated 10,000 times using a bootstrapping algorithm to obtain the 

confidence intervals. The ∆SNP-index plots were generated for each chromosome, with 

chromosomal position plotted along the X-axis and ∆SNP-index plotted on the Y-axis. The 

data were smoothed by applying sliding window sizes of 4 Mb and 2 Mb with an increment 

of 50 kb. 
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4.3.8 Annotation of called variants 

The file which contained SNP information for both the early- and late flowering bulks along 

the different positions in the genome was used for further analysis. The SNP in common 

between both the bulked samples, as well as ambiguous SNP were removed since these are 

not expected to be associated with the trait. The remaining polymorphic loci were annotated 

using the SnpEff tool version 4.3 where the functional significance of the detected variation 

is predicted (Cingolani et. al. 2012). Firstly, a database for flax genome was built in SnpEff 

using the reference FASTA file and the GFF file. Secondly, the variants present in the input 

file were annotated using the ‘ann’ command. The resulting annotation was added to the final 

field along the row in the given input file (.vcf), for every position. The effect of each variant 

including, upstream and downstream gene variation, missense variants, synonymous variants 

were predicted. The different effects of observed variations were further categorized as high, 

moderate, low and modifier based on functional impact. The variations detrimental to proper 

functioning of the gene were considered to potentially have high functional effect. The 

variations which change the amino acid sequence are categorized as having a moderate effect. 

The low effect variants were predicted to have no effect on protein structure but might affect 

expression through modifying gene regulation. The variations mostly located in the non-

coding region of the genome and the influence of which were hard to determine were 

considered as having a modifier impact. The homologues of the genes associated with the 

variations were identified using homology search employing the Basic Local Alignment 

Search Tool (BLAST) alignment algorithm (tBLASTx; Altschul et al. 1997). 

4.4 Results 

4.4.1 Re-sequencing of parents and bulks 

In total, ~22 million paired-end reads (125 bp) were generated for the ‘Royal’ genotype. The 

alignment of these sequence reads to the reference genome using BWA (Li and Durbin 2010) 

resulted in an average coverage of 4.48, with ~71% of the reference sequence being covered. 

A total of 293.7 million and 285.6 million paired-end reads were produced for the early- and 

late flowering bulks, respectively. The alignment of the short reads of early- and late 

flowering bulks resulted in ~82% breadth of coverage for both the bulks. In terms of absolute 

genome size, ~230 Mb of the total 317 Mb in the improved flax reference sequence was 

covered. The average depth of coverage was observed to be 44.26 and 46.12 for early- and 

late flowering bulks, respectively (Table 4.1). 
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Table 4.1 Summary of reads generated, percentage of genome covered and average depth of 

coverage for parents and the bulks 

Parent/Bulk Total number of 

reads generated 

Genome coverage 

(%) 

Mean depth of 

coverage 

Royal 22719458 71.29 4.48 

Early 293682557 82.00 44.26 

Late 285573907 82.03 46.12 

 

4.4.2 ΔSNP-index analysis 

After aligning the sequencing reads from the early- and late flowering bulks to the ‘Royal’ 

secondary reference sequence, the SNP-index values across 275,571 polymorphic positions 

throughout the genome were estimated. During this process, the loci with SNP-index values 

less than 0.3 in either of the two bulks were excluded to remove potential artifacts resulting 

from low alignment depth. After filtering the SNP on the basis of quality and minimum read 

coverage, the ΔSNP-index was estimated for the 243,393 (88%) filtered positions. The 

distribution of SNP identified between the bulks and the ‘Royal’ secondary reference, across 

each chromosome, using a window of size 2 Mb is presented in Figure 4.1. The ΔSNP-index 

plots, representing the difference between the bulks, were developed using the average 

ΔSNP-index values using a window size of 2 Mb with an increment of 50 kb (Figure 4.2). 

Based on the ΔSNP-index graphs (Figure 4.2), ΔSNP-index was observed to be zero for most 

of the regions. 



 

58 
 

 

  

Figure 4.1 Distribution of SNP across 15 chromosomes of the flax genome. The X-axis 

represents the chromosome position in Mb and Y-axis represents the SNP count in the 

window size of 2 Mb. 



 

59 
 

 

 

  

Figure 4.2 ΔSNP-index plot – the blue dots represent the ΔSNP-index along various 

positions on the chromosome. The red line indicates the moving window average of ΔSNP-

index. The orange and green lines represent the level of significance at P<0.01 and P<0.05. 
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4.4.3 Characterization of SNP 

The total of 275,571 SNP positions were identified using the QTL-seq pipeline. These 

polymorphisms are detected from comparisons to the ‘Royal’ reference sequence. These data 

were further filtered to remove SNP loci with common and ambiguous SNP between the 

bulks. The common SNP were defined as possessing the same allele in both the early- and 

late flowering alignment i.e. they were only polymorphic to the reference sequence, whereas 

the ambiguous loci were defined as those where multiple alleles were identified within one of 

the bulked samples. These loci can not be responsible for the trait variation. The number of 

SNP loci surviving stringent filtering was 724. Among the SNP loci, 281 and 361 positions 

were polymorphic in only one of the early- or late flowering bulks, respectively. The 

remaining 82 loci exhibited polymorphism to the reference allele in both of the bulks. Further 

examination revealed that 61 of the polymorphic loci identified in the early-flowering bulk 

possessed a SNP-index of one and zero in the late flowering bulk, indicting that these loci 

were polymorphic and every individual within each bulk had identical alleles. The 724 single 

nucleotide positions were distributed all through the genome (Figure 4.3), at a density of 1 

SNP/1.0 Mb in early-flowering bulk, and 1 SNP/0.8 Mb in the late flowering bulk. As 

anticipated due to structural similarities of bases, functional annotation of the SNP loci 

revealed that the total number of transition mutations (purine to purine (or) pyrimidine to 

pyrimidine) outnumbered the transversion mutations (purine to pyrimidine (or) pyrimidine to 

purine) detected (Figure 4.4). The most frequently observed mutation was the, Cytosine to 

Thymine transitions (126 in total) whereas, the most frequent transversion class observed was 

the Thymine to Adenine (73 in total). 

4.4.4 Annotation of SNP 

Functional annotation of the 724 SNP loci was predicted using the SnpEff variant annotation 

tool (Figure 4.5; Cingolani et al. 2012). In the early-flowering bulk, the effect of the mutation 

was defined as, moderate, low and modifier in 11, 17, 335 cases respectively. No SNP were 

predicted to result in a truncated protein resulting from the introduction of a stop codon (high 

impact). The majority of the SNP were detected in non-coding potential regulatory regions 

(upstream gene - 156 SNP), whereas SNP in intron sequences were identified at a similar rate 

as coding sequences (15 SNP). Additionally, a small number (14) of synonymous SNP 

predicted to have low mutagenic effect were identified. The SNP loci with the greatest level 

of mutagenic potential were the mis-sense class (moderate impact) where a total of 11 were 

detected. 
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Figure 4.4 Nucleotide variations categorized based on the positional and functional impact. 

Blue represents the early flowering bulk and cyan represents the late flowering bulk. 

Figure 4.3 Distribution of SNP across the chromosomes in the early- and late flowering 

bulks. Green represents the early flowering bulk, red represents the late flowering bulk and 

the blue line represents the average (~27 SNP). 
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Similar functional analysis was performed on the late flowering bulk. A total of 22 moderate, 

31 low and 390 modifier variants were detected. Similar to the early flowering bulk, upstream 

nucleotide variants (modifier effect) were the most common variation detected (178 SNP in 

total). In addition, 29 synonymous coding variants were identified. Single nucleotide 

polymorphisms at only two positions were found to be non-synonymous substitutions. 

The flax genes were assigned Arabidopsis functional annotations based on sequence 

homology that allowed the identification of gene potentially involved in the transition to 

flowering. Among the 363 SNP specific to the early flowering bulk, 113 genes (including the 

flanking genes for variations found in intergenic regions) had Arabidopsis homologues based 

on the homology parameters used in the BLAST alignment. Two of the eleven missense 

variants in the early flowering bulk were associated with flax gene identifiers Lus10018444 

and Lus10011571, which had Arabidopsis homologues. In the tBLASTx based homology 

search results, gene Lus10018444 was the homologue of the Arabidopsis genes AT1G61260 

(percent identity=59%; E-value=1e-51), AT4G04990 (percent identity=61%; E-value=1e-15) 

and AT5G54300 (percent identity=58%; E-value=8e-37) and gene Lus10011571 was 

homologous to AT2G22795 (percent identity=14%; E-value=5e-43) and AT3G28770 (percent 

identity=14%; E-value=5e-14). The SNP present in the upstream region of gene Lus10040921 

on chromosome 15, a homologue of the Arabidopsis LUMINIDEPENDENS (LD) gene 

AT4G02560 and the annotation suggests that in Arabidopsis, recessive mutants are late 

flowering.  

4.5 Discussion 

QTL mapping is a method for dissecting traits with complex inheritance. It allows the 

position of genomic regions underlying quantitative trait variation to be identified and 

commenced with analysis of traits including fruit weight, total soluble solids and fruit pH in 

tomato by Paterson et al. in 1988. QTL mapping has been applied to other systems where, 

several QTLs have been mapped in crop plants including rice (Oryza sativa L.), wheat 

(Triticum aestivum L.), maize (Zea mays L.) and soybean (Glycine max L.; Price 2006). The 

first plant QTL was cloned only in 2000 in tomato (Solanum lycopersicum L.; Frary et al. 

2000). The QTL underlying flowering time, an important adaptive trait, has been studied in 

several crop plants. In self-pollinating plants including rice and Arabidopsis, flowering time 

is largely governed by a few QTL with large effects in contrast to cross-pollinated species 

like maize where, several minor QTL with additive effect control the trait (Zea mays L.; 

Buckler et al. 2009). Similarly, in soybean (Glycine max L.), four QTLs were mapped to 
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different linkage groups, of which one major QTL explained 69.7% of the observed 

phenotypic variance (Yamanaka et al. 2001). The effect of polyploidy further complicates 

quantitative traits exemplified by the control of flowering time in canola (Brassica napus L.) 

where QTL were mapped to 10 of the 19 chromosomes in a doubled haploid mapping 

population (Raman et al. 2013). Further, map-based cloning of positional QTLs identified 

SNP that were found to be associated with loss of seed shattering during domestication 

(Konishi et al. 2006), cold tolerance (Ma et al. 2015) and blast resistance (Li et al. 2017a) in 

rice. 

The detection of QTLs controlling a trait of interest by conventional QTL mapping requires 

identification of markers distributed in the genome, polymorphic between the parents 

differing for the trait of interest (Simon et al. 2008). Also, classical QTL mapping 

methodology is resource intensive since, all individuals in a mapping population must be 

genotyped. Bulked segregant analysis (BSA) is a technically less intensive and rapid 

methodology developed to identify genomic regions conditioning the phenotype segregating 

in a mapping population (Michelmore et al. 1991). Bulked segregant analysis is less sensitive 

to the possible random errors in phenotyping (Schneeberger et al. 2009) in contrast to 

classical QTL mapping. The rapid development of genomics resources has led to the 

generation of reference genome sequences for a range of species as next generation 

sequencing (NGS) technologies have become more accessible (Goodwin et al. 2016). The 

combination of BSA and NGS offers new advantages that can be exploited by the QTL-seq 

strategy. The QTL-seq methodology combines the power of recombination and positioning of 

QTL to a single step called ‘gene-tagging’. Several qualitative traits such as disease 

resistance are effectively mapped using BSA (reviewed in Zou et al. 2016). In addition, 

quantitative traits including flowering time have been identified by employing BSA. In 

cucumber (Cucumis sativus L.), a QTL with a major effect which was homologous to the 

FLOWERING LOCUS T (FT) gene of Arabidopsis was detected by employing QTL-seq (Lu 

et al. 2014). Using a mapping population developed from broccoli x cabbage, a QTL 

harbouring a homologue (BolGRF6) of an Arabidopsis flowering time control gene was 

identified using the same strategy (Shu et al. 2018). 

The availability of a high-quality flax reference sequence (You et al. 2018) is a foundation for 

future genomics analyses in flax. The cost efficiencies associated with NGS technology 

enable QTL-seq analysis examining flowering time to be performed. A strategy was 

developed using two bulks (early- and late flowering) identified from a recombinant inbred 
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line (RIL) mapping population derived from a ‘Royal’ x ‘RE2’ cross. The RIL population 

was evaluated in three field seasons and once in the growth cabinet to define the early- and 

late- flowering bulks (Chapter 3). Individual lines belonging to the two bulks along with their 

parents were sequenced on an Illumina Hi-seq 2500 platform to generate a wealth of 

sequence data. The analysis pipeline developed a ‘Royal’ reference sequence by aligning to 

the reference sequence of ‘CDC Bethune’ (You et al. 2018), and the sequencing reads of 

early- and late flowering bulks were aligned to the secondary reference to identify the 

sequence polymorphism. The breadth of coverage observed on aligning the sequencing reads 

from ‘Royal’ to the ‘CDC Bethune’ reference (~71%) and the early- and late flowering bulk 

reads to the ‘Royal’ secondary reference (~82%) potentially implies ~20% of the genome 

cannot be covered, which might be due to the absence of these regions in ‘Royal’ in 

comparison to ‘CDC Bethune’ or the improper alignment of sequencing-reads in the 

repetitive region. However, this observation could partially be due to variations at the levels 

of sequencing library preparation, batch effect of DNA sequencing and read alignment (Sims 

et al. 2014). In chickpea (Cicer arietinum L.), candidate genes underlying seed weight have 

been identified using genome-wide coverage as low as ~3x for the bulks (Singh et al. 2016). 

Hence, in the present study, the relatively high depth of coverage observed for the bulks 

(~44x for early flowering bulk, ~46x for late flowering bulk) was sufficient to dissect 

potential genomic region(s) associated with the early flowering phenotype. We implemented 

an improved strategy of in silico pooling in contrast to the bulking of individuals at the DNA 

level followed in the chickpea study, which may be responsible for the comparatively higher 

depth of coverage. 

According to the principle of BSA, the genomic region controlling the trait of interest will be 

uniform in the individuals within the bulks and different between the two bulks and hence 

will exhibit unequal representation of the parental genomes, while the other regions being 

equally contributed due to recombination and random chromosome assortment. The moving-

window average of ΔSNP-index when plotted with the chromosomal position along the X-

axis, would help to visualize these region(s) polymorphic between the parents. However, no 

genomic interval was found to underlie the phenotypic difference between the bulks for 

flowering time. The output of the pipeline in the form of ΔSNP-index plot (Figure 4.2) is 

generated by analysis of the genomic region as bins (2 Mb) and hence, did not have sufficient 

resolution to examine the effect of individual SNP on the phenotype. 
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Whole genome resequencing of mutant lines is a proven approach to detect potential 

mutations in genes resulting in modified phenotypes (Shirasawa et al. 2016). The SNP 

detected by the pipeline were found to be distributed across the genome without bias. The 

chromosome 1 is the largest in size by assembly (29.4 Mb) and has the maximum number of 

single nucleotide variations in both the early- and late flowering bulks. Higher number of 

transitions when compared to transversions was as expected (Lyons and Lauring 2017) and 

similar to that observed in Lotus japonicus L. (Mohd-Yusoff et al. 2015) and Solanum 

lycopersicum L. (Shirasawa et al. 2016) on treating with chemical mutagens. 

SnpEff (Cingolani et al. 2012) is a tool used to infer the positional and functional impact of 

SNP in resequencing studies. Out of the total 363 SNP specific to the early flowering bulk, 

104 SNP were present in the intergenic region, 156 and 60 SNP were in the upstream and 

downstream regions, respectively (an interval of 5,000 bp from the gene was demarcated as 

upstream and downstream region by the SnpEff annotation tool). Based on the functional 

impact, the majority of the SNP were classified as modifier type by SnpEff, suggesting their 

presence in the non-coding region of the DNA. The role of regulatory-element mutations in 

domestication and their potential to generate alleles favoured in crop breeding is well 

established (Swinnen et al. 2016). The changes in the regulatory regions in the genome is 

preferred over the variation in the exonic region because the former results in comparatively 

less deleterious effects. In maize (Zea mays L.), the insertion of a transposable element in the 

promoter region of a gene controlling photoperiod response has been shown to repress the 

gene expression (Yang et al. 2013a). This reduced the photoperiod responsiveness of the crop 

and facilitated its adaptation to different geographical regions. Similarly, in soybean (Glycine 

max L.), a SNP in the promoter modified the motif of a cis-element resulting in determinate 

growth habit (Liu et al. 2010). In another study, the flowering time differences among maize 

accessions were found to be controlled by genetic polymorphisms in a distant regulatory 

region ~70 kb upstream of AP2-like gene (Salvi et al. 2007). Also, the compact panicle 

phenotype of modern rice (Oryza sativa L.) cultivars is the effect of a single SNP present ~11 

kb upstream of a ligule development controlling gene (Zhu et al. 2013). Hence, it is evident 

that modification in even distant regulatory region, by possible association with 

transcriptional regulators, transcription factor binding sites and other means, can 

consequently influence gene expression resulting in modified phenotype. 

A SNP was observed upstream of the flax gene Lus10040921, and LUMINIDIPENDENS 

(LD) was its Arabidopsis homologue. LD is involved in the autonomous pathway and likely 
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controls the timing of transition into the floral meristem in Arabidopsis by regulating the 

expression of LEAFY (LFY). It is a transcriptional regulator confined to the nucleus and its 

expressed only in the shoot apical meristem and primordial leaves (Lee et al. 1994; 

Aukerman et al. 1999). The QTLs harbouring candidate genes for flowering time in flax have 

not been reported in literature. In our study, SNP were found in the non-coding region of the 

genome as discussed earlier. Hence, further investigation is required to determine the 

molecular function of the identified SNP upstream to LD in the present study using state-of-

the-art technology such as clustered regularly interspaced short palindromic repeats 

(CRISPR)/Cas9 system. 

Missense variants have been observed to make remarkable changes in the phenotype as in 

loss of resistance to powdery mildew in Arabidopsis (Wawrzynska et al. 2008) and 

development of seedless grapes (Royo et al. 2018). In this study, among the genes associated 

with missense variation, two had homologues in Arabidopsis. The flax gene Lus10018444, 

based on homology search using BLAST (tBLASTx), was homologous to AT1G61260 

(percent identity=59%; E-value=1e-51), AT4G04990 (percent identity=61%; E-value=1e-15) 

and AT5G54300 (percent identity=58%; E-value=8e-37). While AT1G61260 encodes a protein 

similar to cotton fiber protein localized in the chloroplast, AT5G54300 encodes a variant of 

cotton fiber-like protein present in the chloroplast and membrane. AT4G04990 is a 

serine/arginine repetitive matrix like protein also present in the membrane. The gene 

Lus10011571 had two Arabidopsis homologues, AT2G22795 (percent identity=14%; E-

value=5e-43) and AT3G28770 (percent identity=14%; E-value=5e-14). AT2G22795 is a 

hypothetical protein present in the golgi apparatus and AT3G28770 is a putative 

transmembrane protein confined to membrane and nucleus. The specific molecular function 

of these genes and their involvement in different pathways related to flowering time is 

unknown. 

Beyond the absence of any variation at the nucleotide level between the bulks, there are other 

conceivable reasons for any genetic basis being undetected by the pipeline. Firstly, the 

annotation of flax genes was carried out training AUGUSTUS (Stanke and Morgenstern 

2005) pipeline using Arabidopsis gene models. However, there may be genes specific to flax 

involved in flowering time since, both the species diverged nearly 106 million years ago 

(http://www.timetree.org/; Hedges et al. 2006). Secondly, upon whole genome resequencing 

using the NGS technology, not all regions of the genome have uniform depth of coverage. 

Low sequencing depth in certain portion of the genome may result in non-identification of 

http://www.timetree.org/
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SNP in flanking region. These intervals can be subjected for targeted sequencing at higher 

depth to analyse their contribution to the early flowering phenotype. Breeding populations 

have been already developed using ‘RE2’ as a parent in different genetic backgrounds (Dr. 

Helen Booker personal communication). These populations can be harnessed to further study 

the potential genetic basis of the variation for flowering time between ‘Royal’ and ‘RE2’ 

since, different genetic backgrounds are found to modify the gene expression (Chandler et al. 

2013). 

4.6 Conclusion 

Early flowering is an important trait for flax improvement for its adaptation to short growing 

season in the northern region of the prairies. QTL-seq, a proven methodology for mapping of 

quantitative traits was employed to identify the potential genetic basis of the early flowering 

phenotype segregating in the ‘Royal’ x ‘RE2’ recombinant inbred population. Since no 

specific genomic region was found to be associated with the flowering time trait using the 

pipeline, the SNP specific to the early-flowering bulk was characterized in silico. Recently, a 

statistical package in R, namely QTLseqr for NGS based BSA analysis was proposed 

(Mansfeld and Grumet 2018). Making use of this improved tool, analysis was carried out to 

validate the results presented in this chapter.  
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Chapter 5 Whole Genome Resequencing Based BSA Analysis Using QTLseqr Package 

 

5.1 Abstract 

The DNA sequencing data from the segregants representing extreme phenotypic values for 

flowering time in the mapping population (‘Royal’ x ‘RE2’) were reanalysed using QTLseqr 

package to validate the result from the older QTL-seq pipeline. The sequencing-reads from 

the recombinant inbred lines were aligned to the ‘CDC Bethune’ reference assembly 

employing Bowtie2, and best hits were extracted with custom PERL scripts. Using the 

alignment files from the early- and late flowering bulks, variants were called using Genome 

Analysis Tool Kit (GATK) HaplotypeCaller. Filtering of variants using the parameters such 

as read depth and reference allele frequency, and statistical analysis identified two genomic 

regions on chromosomes 9 and 12 associated with early flowering phenotype with significant 

ΔSNP-index. The flax genes harbouring in the region delimited by significant variants were 

homologous to LATE EMBRYOGENESIS ABUNDANT (LEA) HYDROXYPROLINE-

RICH GLYCOPROTEIN FAMILY, MAINTENANCE OF MERISTEMS-LIKE (MAIL), 

CYTOCHROME P 450 87A3 and PHLOEM PROTEIN 2-A12 encoding genes. QTLseqr 

algorithm functions by taking a weighted average of ΔSNP-index to account for linkage 

disequilibrium, and hence, genes in the flanking region up to the closest variant with a ΔSNP-

index of one were also analysed, and most of the genes involved in abiotic stress response 

with indirect association with flowering time were identified. In addition, a few genes with no 

homologues were also identified, suggesting the potential role of these flax specific genes in 

flowering time control. 

5.2 Introduction 

Quantitative trait locus (QTL) mapping, as stated by Prof. Trudy F. C. Mackay (2001) is 

based on the principle that 

 “if a QTL is linked to a marker locus, there will be a difference in mean values of the 

quantitative trait among individuals with different genotypes at the marker locus”.  

Conventional QTL mapping involves the following steps: crossing two parents with 

contrasting phenotypes to generate a mapping population, extensive genotyping of the 

segregating population with markers and the statistical analysis for detecting the QTL. Once 

the QTL interval has been identified, further fine-mapping of the region with additional 

markers using a much larger mapping population to increase recombination in the interval 
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will identify the candidate gene underlying the phenotypic variation. The limitation of this 

approach is the need for polymorphic DNA markers distributed across the genome. However, 

the advent of next generation sequencing (NGS) and the availability of reference genomes for 

several plant species led to the identification of huge number of markers across the genome 

and the development of the mapping-by-sequencing strategy, which not only identifies the 

genomic region but also unravels the sequence variation associated with the altered 

phenotype (Schneeberger and Weigel 2011; Doitsidou et al. 2016). Use of isogenic mapping 

populations derived from mutants and their progenitors for mapping complex traits is being 

achieved with the prevalence of NGS platforms (Schneeberger 2014). 

ShoreMap, initially developed in Arabidopsis, was the first strategy for applying mapping-

by-sequencing, based on the principle of allele frequency differences between mutant and its 

wild type (Schneeberger et al. 2009). Later, Abe et al. (2012) developed a modified mapping-

by-sequencing methodology called MutMap and used a novel statistic named the SNP-index, 

defined as the number of reads that harbour a variant allele relative to the total number of 

reads aligning at that locus. Since, MutMap is more suitable for qualitative traits, Takagi et 

al. (2013) developed the QTL-seq strategy in rice, for mapping quantitative traits combining 

the principles of bulked segregant analysis (BSA) and NGS. The QTL-seq strategy can be 

adapted using biparental breeding population for mapping polygenic traits. The individuals 

exhibiting extreme phenotypes were chosen from a segregating population which were 

pooled and sequenced. During sequencing, if the lines constituting the bulks are sequenced 

separately with individual indices, recombination events across the genome can also be 

investigated in future studies (Candela et al. 2014). In QTL-seq, in addition to SNP-index, 

another statistic namely the ΔSNP-index representing the difference between the SNP-index 

of the high- and low bulks was used. Additionally, RNA sequencing data has been used in the 

mapping of expressed regions in maize (Liu et al. 2012) and wheat (Trick et al. 2012) to 

complement DNA sequence reads approaches. 

The QTL-seq (Takagi et al. 2013) pipeline provides the complete bioinformatic workflow for 

identifying the genomic region controlling the quantitative trait of interest. Briefly, the 

sequencing reads for one of the parents used to develop the biparental mapping population is 

aligned to the reference genome to generate a secondary reference. This is achieved by 

replacing high confidence single nucleotide polymorphisms (SNP) into a FASTA sequence 

retaining the space and thus the structure of any associated annotation. The sequencing reads 

of the bulks, constituted by lines with extreme phenotypic values will be aligned to the 
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secondary reference and SNP loci can be detected. The SNP-index and ΔSNP-index are 

estimated for high confidence SNP loci, and the genomic region potentially underlying the 

trait of interest will be visualized with a moving window average. 

The results obtained from the QTL-seq pipeline (Chapter 4) was validated by analysis of the 

data using the recently developed alternate algorithm named QTLseqr (Mansfeld and Grumet 

2018) and are presented in this chapter. Further, this investigation was carried out for 

increasing the robustness of the analysis. The sequencing reads were aligned to the flax 

reference genome using Bowtie2 (Langmead and Salzberg 2012) instead of Burrows Wheeler 

Aligner (BWA; Li and Durbin 2009) used in the previous pipeline. The alignment files 

belonging to the respective bulks were merged and variants were called using Genome 

Analysis Tool Kit (GATK) HaplotypeCaller (De Pristo et al. 2011). These genotypic variants 

were investigated for their impact on phenotypic variation using the highly user-configurable 

QTLseqr package, employing an improved statistic called tricube weighted moving average 

of ΔSNP-index. 

5.3 Materials and methods 

5.3.1 Alignment of sequence reads to the reference genome 

The raw DNA sequence reads of the early-flowering and late flowering lines (Chapter 4 -

methodology) were processed using Trimmomatic (Bolger et al. 2014) for the removal of 

low-quality sequence reads and Illumina adapter indices used for multiplexing and 

sequencing. Processed paired-end sequence reads resulted in four output files, among which 

two files contained the forward and reverse reads as paired output. The other two files 

comprised reads, with broken pairs that were removed from further analysis. The paired-reads 

were aligned to the flax reference genome using the Bowtie 2 algorithm (Langmead and 

Salzberg 2012). The mixed and discordant alignment options were disabled, and local 

alignments were performed. With parameter –K set to 50, Bowtie 2 looked for 50 discrete 

and valid alignments for every read. The output in sequence alignment map (SAM) format 

from the Bowtie 2 was parsed with a custom PERL script, developed at Agriculture and Agri-

Food Canada, Saskatoon Research and Development Centre to extract unique alignments or 

in the case of multiple alignments only the best hit. The SAM file was converted to its binary 

version (BAM format), sorted and indexed using SAMtools (Li et al. 2009).  
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5.3.2 Variant calling 

The sorted-BAM files of 11 early-flowering lines and ‘RE2’ were combined using the 

SAMtools merge function, to a single BAM file. Similarly, 11 late flowering lines and 

‘Royal’ were merged into a single BAM file and both files were again sorted and indexed. 

The metadata associated with the library including sequencing platform unit and sample 

name were added to the header of each BAM file using the AddOrReplaceReadGroups 

function of Picard tools (http://broadinstitute.github.io/picard/) to make them compatible for 

variant calling utilizing the GATK HaplotypeCaller (De Pristo et al. 2011). The output format 

was set as genomic Variant Call Format (gVCF), which contains comprehensive information 

for all sites irrespective of presence or absence of variation to facilitate the downstream 

analysis combining samples. The ploidy level for the analysis was set at four to enable the 

variant caller algorithm to detect all possible alternate alleles at a single locus within the 

bulked sample. Quality control of the sequence read is performed automatically by 

HaplotypeCaller and reads were removed where Phred scores were less than 20. 

The combineGVCF tool of GATK was employed to merge the gVCF files of the early- and 

late flowering bulked samples into a single file (combined GVCF), from which the 

genotypeGVCF tool generated appropriate genotype likelihoods after traversing across the 

samples and each locus. This VCF file was passed through the VariantToTable tool of 

GATK, and the relevant fields required for analysis by the QTLseqr pipeline were extracted 

into a table. The relevant fields include: chromosome ID, nucleotide position, reference 

allele, alternate allele(s), genotyping quality, allele depth and depth of coverage. 

5.3.3 Analysis using QTLseqr package 

The QTLseqr (Mansfeld and Grumet 2018; https://github.com/bmansfeld/QTLseqr) analysis 

was carried out using the early- and late flowering phenotypes as the high and low bulked 

samples, respectively. The GATK output table containing the SNP information of the bulks 

was imported using the importFromGATK function. In addition to importing the data, this 

function estimates the reference allele frequency, SNP-index and ΔSNP-index for all the 

detected polymorphic nucleotide positions. Reference allele frequency was determined as the 

ratio between reference allele count and the total read depth in combined bulks. SNP-index 

was estimated as the ratio of number of reads with alternate alleles at the particular position 

to the total number of reads aligned at the position and ranges from zero to one. ΔSNP-index 

http://broadinstitute.github.io/picard/
https://github.com/bmansfeld/QTLseqr
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is the difference between the SNP-index of the high and low bulks and can vary between -1 

and +1. 

The distribution of read depth and reference allele frequencies in the raw data was graphically 

represented as a histogram to examine alignment coverage of the genome. Variants were 

filtered based on sample- and total- read depth and the reference allele frequency was used to 

remove low confidence data such as SNP at positions with very low coverage as well as SNP 

with dense coverage representing multiple alignment artefacts to repeat regions. The 

parameters used for analysis were as follows: 

refAlleleFreq = 0.20 (filters for SNP with reference allele frequency > 0.2 and less than 0.8) 

minTotalDepth = 14 (minimum total coverage) 

maxTotalDepth = 400 (maximum total coverage) 

minSampleDepth = 7 (minimum coverage in individual bulks) 

The population structure (popStruc) was set as “RIL” and the bulk size was set to 12 

Using the runQTLseqAnalysis function of the pipeline, the weighted average of ΔSNP-index 

across the chosen window size of 1 Mb was estimated. Within each window, higher weights 

were allocated to SNP closer to the variation in focus, and confidence intervals were 

generated using bootstrap computer simulations using 10,000 iterations. The average read 

depth across each window was combined with the 95th and 99th quantile of the simulated Δ-

SNP index values to determine the confidence intervals across the genome.  

Finally, the Δ-SNP index values across the genome was plotted along with confidence 

intervals at 95% and 99% to identify the location of potential QTL. The getQTLTable 

function exported the regions considered significant, at the specified confidence interval. 

5.3.4 Variant annotation 

The nucleotide variants were annotated using the SnpEff algorithm (Cingolani et al. 2012) to 

identify the potential positional and functional impact of SNP on genes closely linked to the 

variation. The genes localized in the interval between the variants with a tricube ΔSNP-index 

above the 95% confidence interval threshold and the SNP with a ΔSNP-index value of one, 

adjacent to the significant region identified by the algorithm were further investigated. The 

coordinates of the genes in the region were extracted from the General Feature Format (GFF) 

file and the corresponding DNA sequence information was extracted from the flax reference 

assembly using the getfasta utility of the BEDTools suite (Quinlan and Hall 2010). 



 

73 
 

Homology searches of the extracted genes against the National Center for Biotechnology 

Information (NCBI) non-redundant protein database were carried out using BLASTx 

(Altschul et al. 1997) to assign a putative gene function with an E-value threshold of E< e-10. 

5.4 Results 

5.4.1 Sequencing data 

Whole genome sequencing of the parents and the lines constituting the bulks, generated on an 

average ~26 million paired-end reads for each line (Table 5.1). While aligning the reads to 

the ‘CDC Bethune’ draft reference, the coverage for ‘Royal’ and ‘RE2’ was 81.97% and 

82.60%, respectively. The mean breadth of coverage for the RILs was 82.27 %. The average 

depth of coverage was estimated to be the lowest for the early flowering line Plant 6-E1 (~8x) 

and the highest for the Plant 6-E3 at ~18x (Table 5.1). The maximum depth of coverage 

observed for combined dataset was ~8,023.  

5.4.2 Filtering of input SNP data 

The input variant table consisted of information for 608,426 polymorphic loci. A histogram 

depicting the read depths observed for these data is presented in Figure 5.1. The read depth in 

the raw data ranged between ‘zero’ and ‘987’ in the high bulk, and ‘zero’ and ‘873’ in the 

low bulk. The total read depth varied from 1 to 1,657. The distribution of reference allele 

frequency in the input data (Figure 5.2), indicate that maximum number of SNP had a 

reference allele frequency of zero.  
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Figure 5.1 The distribution of total read depths at different polymorphic positions in the 

input data. The X-axis represents the sum of read depth of the high and low bulks, and the Y-

axis represents the number of variants 

Figure 5.2 Distribution of reference allele frequency (REF_FRQ) in the input variant data for 

the QTLseqr algorithm. The X-axis represents the reference allele frequency which is the 

ratio of number of reads with reference alleles to the total number of reads align 
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Table 5.1 Number of reads generated for parents and the lines of the early- and late flowering 

bulks 

Sl. No Sample 

Name 

Parent/line 

constituting 

the Bulk 

(early or late) 

Number of 

forward reads 

Genome 

coverage (%) 

Average 

depth of 

coverage 

1 Royal Parent  22,719,458 81.97 10.94 

2 RE2 Parent  50,396,258 82.60 21.99 

3 Plant 6-E1 Early 15,285,185 80.98 07.59 

4 Plant 6-E2 Early 32,140,103 82.36 15.09 

5 Plant 6-E3 Early 38,409,712 82.46 17.76 

6 Plant 6-E4 Early 27,769,151 82.23 13.24 

7 Plant 6-E5 Early 22,332,380 81.93 10.40 

8 Plant 6-E6 Early 22,654,934 81.99 10.88 

9 Plant 6-E7 Early 25,377,600 82.30 12.80 

10 Plant 7-E1 Early 24,725,460 82.35 12.40 

11 Plant 7-E2 Early 19,309,978 81.89 09.79 

12 Plant 7-E3 Early 33,858,977 82.53 16.68 

13 Plant 7-E4 Early 34,816,234 82.57 17.05 

14 Plant 7-E5 Early 33,392,771 82.48 16.62 

15 Plant 7-E6 Early 26,195,457 82.38 13.10 

16 Plant 6-1L Late 22,887,089 82.21 11.44 

17 Plant 6-2L Late 20,323,812 82.02 10.14 

18 Plant 6-3L Late 29,735,797 82.42 14.93 

19 Plant 6-4L Late 31,356,835 82.53 16.15 

20 Plant 7-1L Late 27,514,137 82.46 14.36 

21 Plant 7-2L Late 26,607,022 82.44 14.00 

22 Plant 7-3L Late 25,045,358 82.38 13.18 

23 Plant 7-4L Late 26,119,848 82.43 13.74 

24 Plant 7-5L Late 24,001,370 82.35 12.46 

25 Plant 7-6L Late 25,551,569 82.40 13.51 

26 Plant 7-7L Late 26,431,070 82.40 13.98 
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The informative SNP are those that are able to differentiate the ‘Royal’ from the ‘RE2’ 

genotype and thus the polymorphisms between ‘Royal’ and ‘CDC Bethune’ are 

uninformative in this analysis. The ‘Royal’-‘CDC Bethune’ polymorphisms were filtered 

from the data using the reference allele frequency of 0.2 (0.2 < reference allele frequency < 

0.8). As anticipated, the majority of the detected SNP distinguish ‘Royal’ and ‘CDC Bethune’ 

genotypes and filtering removed 575,046 (95%) loci from the total detected (Figure 5.3). 

Further filtering for retaining high confidence SNP loci using minimum coverage depth 

removed an additional 8,261 SNP. The total read depth in the filtered dataset ranged between 

16 and 400 (Figure 5.4). Finally, after passing through the minimum genotyping quality filter, 

11,385 SNP remained for QTL-seqR analysis at an average of ~750 per chromosome. 

  

 

 

 

 

 

 

Figure 5.3 Distribution of reference allele frequency (REF_FRQ) in the filtered variant data 

for the QTLseqr algorithm. The X-axis represents the reference allele frequency which is the 

ratio of number of reads with reference alleles to the total number of reads aligning to that 

position, and Y-axis represents the number of variants. 
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5.4.3 Detection of candidate genomic region 

After the estimation of the weighted average of ΔSNP-index values for the filtered SNP as 

described in the methodology, and confidence intervals in the QTL analysis, the ΔSNP-index 

plot was generated for regions across the 15 chromosomes of flax (Figure 5.5). 

QTL analysis using QTLseqr identified five major peaks throughout the genome indicating 

the polygenic nature of flowering time in flax. Two of these five QTL satisfied statistical 

rigour at the 95% confidence level with three loci falling slightly under this threshold. 

Interestingly, the SNP at co-ordinate 7,455,755 on the chromosome 9, and the region between 

the variation at 9,793,543 and 9,798,720 on the chromosome 12 (spanning 5,177 bp), with a 

tricube smoothed ΔSNP-index value above the 95% confidence interval threshold were found 

to have significant association with the phenotype. 

Functional annotation of the SNP variants using the SnpEff algorithm suggested that the SNP 

on chromosome 9 was present in the intergenic region between the flax genes Lus10024495 

and Lus100024494. The homologue of Lus10024495 in Arabidopsis belongs to Cytochrome 

P450 gene family, whereas that of Lus100024494 is annotated as a phloem protein. Similarly, 

with reference to the nucleotide variation identified on the chromosome 12, the positions 

Figure 5.4 Distribution of total read depth in the filtered data in which regions with 

sparse and highly dense coverage were removed 

Figure 5.4 Distribution of total read depth in the filtered data in which regions with sparse 

and highly dense coverage were removed. The X-axis represents the sum of read depth in the 

high and low bulks, and the Y-axis represents the number of variants. 
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9,793,543 and 9,798,720 were localized to upstream and downstream, of the flax gene 

Lus10024264, respectively. The corresponding Arabidopsis homologue of Lus10024264 is 

annotated as LATE EMBRYOGENESIS ABUNDANT HYDROXYPROLINE-RICH 

GLYCOPROTEIN family. 

 

 

In addition, the interval spanning the SNP with a ΔSNP-index value of one and the 

significant region (peak) identified by the QTLseqr algorithm was also characterized. 

Between the coordinates 7,455,755 and 7,956,993 on chromosome 9, a total of 29 genes were 

present. In the chromosome 12, the interval between the loci 9,305,376 and 9,798,720 

encompassed 41 genes. The results of homology search employing BLASTx for all 70 genes 

are listed in the Table 5.2. Among the 70 genes, 60 had homologues of which 20 genes were 

homologous to uncharacterized or hypothetical proteins. Several abiotic stress response 

related proteins including DEHYDRATION RESPONSIVE ELEMENT-BINDING 

PROTEIN, MAINTENANCE OF MERISTEMS-LIKE, ETHYLENE-RESPONSIVE 

TRANSCRIPTION FACTOR-LIKE and HEAT STRESS TRANSCRIPTION FACTORS 

were encoded by genes in the region. Majority of the genes exhibited homology to those in 

Populus trichocarpa (Torr. & Gray), Ricinus communis L. and Jatropha curcas L.

Figure 5.5 The ΔSNP-index plot generated with a moving bin window of 1 Mb. The red line 

depicts the confidence interval at 95%. The genomic position in Mb is depicted by the X-

axis, and Lu1 to Lu15 represent the linkage groups. The Y-axis represets the ΔSNP-index 

values. 
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Table 5.2 Homology of 70 genes present in the regions of interest on flax chromosomes 9 and 12 

Gene Start 

position 

End 

position 

Length 

(bp) 

Strand Identity 

(%) 

Homologous gene E value 

Genes on Lu9 

Lus10024495 7447896

  

7450216 2321 - 85 Cytochrome P450 87A3 in Populus trichocarpa 3e-99 

Lus10024485 7598742 7602363 3622 - 87 Predicted: homeobox protein knotted-1 like 7 of 

Cucumis melo 

5e-71 

Lus10024486 7591538 7593043 1506 + 57 UDP-glycosyltransferase 1 of Linum usitatissimum 0 

Lus10024487 7551935 7556451 4517 + 74 Hypothetical protein CISIN 1g0081631mg in 

Citrus sinensis 

5e-90 

Lus10024488 7547478 7550243 2766 + 36 Uncharacterized protein LOC105645885 in 

Jatropha curcas 

9e-21 

Lus10024489 7535253 7536890 1638 - NA NA NA 

Lus10024490 7523972 7524339 368 + NA NA NA 
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Lus10024491 7518840 7519514 675 - 56 Dehydration-responsive element-binding protein 

1A in Jatropha curcas 

2e-71 

Lus10024492 7497993 7498670 678 + 51 Predicted: ethylene-responsive transcription factor 

ERF-027-like in Gossypium hirsutum 

2e-55 

Lus10024493 7482933 7485112 2180 - 35 Predicted: ribosomal RNA processing protein 36 

homolog isoform X2 in Glycine max 

3e-19 

Lus10024494 7480914 7482110 1197 + 52 Phloem protein 2-A12 in Arabidopsis thaliana 3e-118 

Lus10001191 7660633 7661616 984 + 53 Uncharacterized protein LOC110631412 in 

Manihot esculenta 

4e-97 

Lus10001192 7666667 7669970 3304 + 64 FIZZY-RELATED 2-like protein in Manihot 

esculenta 

3e-90 

Lus10001193 7674851 7675581 731 + 35 PKS-NRPS hybrid synthetase CHGG 01239-like in 

Chenopodium quinoa 

2e-54 

Lus10001194 7678782 7679993 1212 - 82 Predicted: protein STAY-GREEN, chloroplastic-

like isoform X1 in Glycine max 

4e-68 

Lus10001195 7688921 7689492 572 + 72 Homeobox protein HD1 of Vigna radiata var 

radiata 

3e-43 
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Lus10002989 7864564 7866433 1870 - 75 Conserved hypothetical protein of Ricinus 

communis 

2e-121 

Lus10002990 7859330 7863009 3680 + 53 Pentatricopeptide repeat-containing protein 

AT1G10270 of Manihot esculenta 

0 

Lus10002991 7855373 7858047 2675 + 49 Uncharacterized protein LOC110624913 isoform 

X3 of Manihot esculenta 

4e-75 

Lus10002992 7853002 7853739 738 + 73 Triphosphate tunel metalloenzyme 3 Jatropha 

curcas 

4e-104 

Lus10002993 7814575 7816536 1962 + 72 Protein kinase and PP2C-like domain-containing 

protein isoform X1 Manihot esculenta 

0 

Lus10002994 7798482 7799380 899 - 65 Putative methyltransferase DDB G0268948 in 

Populus trichocarpa 

2e-101 

Lus10002995 7793794 7796149 2356 - 67 Subtilisin-like protease SBT1.2 of Jatropha curcas 0 

Lus10002996 7784972 7788671 3700 - 71 Calcium permeable stress-gated cation channel 1-

like in Manihot esculenta 

5e-123 

Lus10002997 7778495 7779223 729 - 76 Expansin-A7 of Jatropha curcas 4e-116 
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Lus10002998 7772561 7773583 1023 - 51 Hypothetical protein CUMW 074040 in Citrus 

unshiu 

5e-86 

Lus10002999 7756204 7756766 563 + NA NA NA 

Lus10007433 7926180 7929557 3378 + 73 Predicted: chloride channel protein CLC-c in 

Lupinus angustifolius 

0 

Lus10007434 7937900 7945160 7261 + 77 Hypothetical protein GOBAR DD20035 of 

Gossypium barbadense 

3e-67 

Lus10007435 7951900 7964803 12904 + 32 Predicted: protein FAR-RED ELONGATED 

HYPOCOTYL 3-like of Beta vulgaris subsp. 

vulgaris 

4e-38 

Genes on Lu12 

Lus10034901 9720433 9720711 279 + 57 Predicted: uncharacterized protein LOC107260870 

in Ricinus communis 

1e-17 

Lus10034902 9714256 9715008 753 + 45 Dehydration-responsive element-binding protein 

2C-like in Manihot esculenta 

9e-75 

Lus10034903 9712026 9713286 1261 - 53 Hypothetical protein GLYMA 08G038900 in 

Glycine max 

2e-45 
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Lus10034904 9703666 9704622 957 + 47 Uncharacterized protein LOC110610983 in 

Manihot esculenta 

6e-56 

Lus10034905 9699655 9702907 3253 + 46 Hypothetical protein POPTR 018G079500v3 in 

Populus trichocarpa 

2e-77 

Lus10034906 9693141 9696510 3370 + NA NA NA 

Lus10034907 9684716 9685728 1013 - 43 Heat stress transcription factor C-1 in Populus 

trichocarpa 

3e-72 

Lus10034908 9650449 9652354 1906 - 65 Predicted: indole-3-pyruvate monooxygenase 

YUCCA6-like in Gossypium hirsutum 

1e-34 

Lus10034909 9635746 9637186 1441 - 91 40s ribosomal protein s7-1-like in Trifolium 

pratense 

5e-38 

Lus10034910 9634226 9634768 543 + 42 Uncharacterized protein LOC111461329 in 

Cucurbita moschata 

4e-135 

Lus10034911 9600632 9601177 546 + 30 Uncharacterized protein LOC110713760 in 

Chenopidium quinoa 

1e-11 

Lus10034912 9596366 9600031 3666 + 65 Uncharacterized protein LOC110611313 in 

Manihot esculenta 

6e-167 
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Lus10034913 9591695 9594503 2809 + 74 Uncharacterized protein LOC105637720 isoform 

X2 in Jatropha curcas 

1e-125 

Lus10034914 9589782 9590210 429 - NA NA NA 

Lus10034915 9581960 9583512 1553 + 51 Predicted: phosphatidylinositol 4-kinase alpha 1 in 

Ricinus communis 

1e-34 

Lus10034916 9574515 9575112 598 - NA NA NA 

Lus10034917 9568151 9569825 1675 - 62 Predicted: Chlorophyll (ide) b reductase NYC1, 

chloroplastic Cicer arietinum 

7e-117 

Lus10034918 9552111 9554512 2402 + 79 Subtilisin-like protease SBT6.1 isoform X2 in 

Jatropha curcas 

0 

Lus10034919 9544318 9546693 2376 + 53 Subtilisin-like protease SBT6.1 in Manihot 

esculenta 

2e-46 

Lus10034920 9541889 9542708 820 - 42 Protein MAINTENANCE OF MERISTEMS-like in 

Chenopodium quinoa 

3e-18 

Lus10034921 9523384 9526752 3369 - 47 Predicted: uncharacterized protein LOC8268361 

isoform X1 in Ricinus communis 

1e-173 
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Lus10034922 9521400 9522993 1594 + 78 Hypothetical protein Mpv17 in Manihot esculenta 4e-71 

Lus10034923 9515666 9516208 543 + NA NA NA 

Lus10034924 9502697 9504544 1848 - 59 Pentatricopeptide repeat-containing protein 

AT5G21222 in Jatropha curcas 

0 

Lus10034925 9499966 9501632 1667 - 42 Peptidase S26A, signal peptidase I in Corchorus 

capsularis 

6e-46 

Lus10034926 9498165 9499826 1662 + 54 Hypothetical protein L484 001883 in Morus 

notabilis 

5e-60 

Lus10034927 9481012 9483443 2432 - 76 Rop guanine nucleotide exchange factor 12 in 

Solanum tuberosum 

7e-116 

Lus10034928 9459570 9468716 9147 + 47 Retrovirus related Pol polyprotein from transposon 

TNT 1-94 in Morus notabilis 

0 

Lus10034929 9449509 9449841 333 + 41 Uncharacterized protein LOC9305531 isoform X2 

in Arabidopsis lyrate subsp. lyrata 

2e-10 

Lus10034930 9436937 9440846 3910 - 44 Predicted: probable plastidic glucose transporter 3 

isoform X2 in Vitis vinifera 

2e-30 
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Lus10034931 9434794 9436104 1311 + 55 Cyclin-dependent kinase F-1 in Populus 

trichocharpa 

5e-110 

Lus10034932 9428737 9430103 1367 + 100 Rac-like GTP-binding protein ARAC7 in Jatropha 

curcas 

3e-44 

Lus10034933 9427240 9428159 920 - 51 Vacuolar protein-8 like in Manihot esculenta 6e-35 

Lus10034934 9386833 9390209 3377 + NA NA NA 

Lus10034935 9365290 9365601 312 - 62 Predicted: IRK-interacting protein in Lupinus 

angustifolius 

4e-16 

Lus10034936 9363389 9364160 772 + 63 Hypothetical protein POPTR 012G087500v3 in 

Populus trichocarpa 

6e-61 

Lus10034937 9345218 9352134 6917 + 66 Putative E3 ubiquitin-protein ligase LIN isoform 

X1 in Jatropha curcas 

0 

Lus10034938 9321624 9322265 642 + NA NA NA 

Lus10024264 9796674 9797375 702 + 69 Uncharacterized protein LOC105637702 in 

Jatropha curcas 

6e-81 
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Lus10024265 9791500 9792324 825 + 42 Protein MAINTENANCE OF MERISTEMS-like in 

Spinacia oleracea 

1e-23 

Lus10024266 9776048 9776717 670 - NA NA NA 

NA - Not Available (No significant similarity found)
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5.5 Discussion 

The original QTL-seq pipeline was developed by Takagi et al. (2013) for the identification of 

genomic region underlying the polygenic traits segregating in a mapping population. The 

pipeline takes sequencing-reads from bulks representing distributional phenotypic extremes in 

the population and that of one of the parents as the initial input and carries out the following 

steps: sequencing-read alignment, variant calling and statistical analysis to identify genotype-

phenotype association. However, the pipeline possesses a few limitations such as the low ease of 

configuration at the variant calling step. Additionally, the pipeline employs legacy versions of 

the different tools for the analysis and hence has limited adaptability for the integration of 

upgraded tools and software. Whereas, the recent QTLseqr package (Mansfeld and Grumet 

2018), developed based on the open source statistical computing platform-R (R core team 2018) 

with several biostatistics and computational biology packages, is more convenient for the next 

generation sequencing (NGS) based bulked segregant analysis (BSA), with provisions for user 

defined alignment and variant calling steps. 

Burrows-Wheeler Aligner (BWA; Li and Durbin 2009) is the alignment tool used in the original 

QTL-seq pipeline (Takagi et al. 2013). However, plant genomes known for their complexity due 

to the presence of evolutionary genome duplication events, repetitive sequences, pseudogenes, 

paralogous genomic region, insertions and deletions-InDels (Schatz et al. 2012), are handled by 

Bowtie 2 with better efficiency (Langmead and Salzberg 2012; Scheben et al. 2017) and hence, 

was employed as an aligner in the analysis using QTLseqr. For filtering misaligned reads based 

on number of mismatches, and variant calling, the QTL-seq pipeline utilizes Coval (Kosugi et al. 

2013). However, for the QTLseqr analysis, custom PERL scripts were used to pick the best hits 

from the alignment files based on alignment scores, thus reducing the level of heterozygosity 

across many loci. Further, the improved algorithm Genome Analysis Tool Kit (GATK) 

HaplotypeCaller (De Pristo et al. 2011), capable of handling pooled samples, was used to 

generate the Variant Call File (vcf ) file containing the SNP information for downstream analysis 

using QTLseqr (Mansfeld and Grumet 2018). Moreover, GATK HaplotypeCaller identifies the 

genomic region with variants and carries out local realignment improving the accuracy of variant 

identification. 
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In the QTL-seq pipeline, the minimum and maximum read depth for the samples is modifiable 

for filtering. However, filtering in QTLseqr employs additional parameters of minimum- and 

maximum total depth of coverage from both samples at each locus. Unlike pre-set parameters 

used for SNP calling in the QTL-seq pipeline, in QTLseqr, filtering is carried out on called 

variants making it more efficient. 

The minimum required sequence depth in sample was set as seven to differentiate the true 

variants from false positives in the original QTL-seq study in rice (Oryza sativa L.; Takagi et al. 

2013), chickpea (Cicer arietinum L.; Singh et al. 2016) and groundnut (Arachis hypogaea L.; 

Pandey et al. 2017). However, in QTLseqr, an additional parameter namely reference allele 

frequency (RAF) was used for removal of alleles which are minimally represented in a given 

locus and might arise as sequence or alignment errors. Reference allele frequency is defined as 

the number of reads containing the reference allele at the given position to the total number of 

reads aligning to that position from both the bulks. Hence, removing the variants with RAF < 0.2 

filtered those variants represented mostly by the alternate allele in the consensus. In this study, 

since the alignments were made to the reference of ‘CDC Bethune’ and not to a secondary 

reference generated from one of the parents (‘Royal’ or ‘RE2’), these filtered variants (RAF < 

0.2) are potentially representing the difference between ‘CDC Bethune’ and ‘Royal’ as they are 

common among all the sequenced individuals. As discussed earlier, by removing variants with a 

RAF > 0.8, poorly represented alleles were excluded from further analysis. Removal of low 

quality and uninformative loci aids in downstream data analysis along with improving statistical 

robustness.  

SNP-index is calculated as the ratio of sequence depth of allelic variant (alternate allele) 

compared to the total read depth at a given position (Abe et al. 2012). ΔSNP-index is estimated 

as the difference between the SNP-indices of high and low bulks. However, in QTLseqr, instead 

of a simple ΔSNP-index, a modified statistic called tricube smoothed ΔSNP-index was 

estimated, wherein weightage was assigned for closeness of a SNP in linkage disequilibrium 

(LD) to the focal SNP within the sliding window. In other words, QTLseqr gives weightage for 

SNP in LD, since genomic recombination is a non-random event controlled by distribution of 

specific sites called hotspots (de Massy 2013; Choi and Henderson 2015). Setting up of 

statistical thresholds for parameters has impact on discovering genotype-phenotype associations. 
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In QTLseqr, association of specific genomic region with the phenotype is considered significant 

if the tricube ΔSNP-index is higher than the threshold which is determined by tens of thousands 

of bootstrapped simulations for read depths varying from one to 50. In order to avoid spurious 

associations, higher threshold values were assigned to the following parameters: minimum 

sample depth=7; minimum total depth=14; maximum total depth=400; RAF=0.2. However, 

under these stringent filtering criteria, certain real associations would have been missed. 

QTLseqr identified two significant regions associated with flowering time on the chromosomes 

12 and 9. Homology search (BLASTx - Altschul et al. 1997) was carried out for the genes 

present in this region. On chromosome 12, the significant region was delimited by two variants 

that spanned 5,177 bp (coordinates: 9793543 – 9798720), in addition, the region extending to the 

closest variant with a ΔSNP-index of 1 (coordinate: 9305376), encompassed 41 genes (Table 

5.2). Based on the annotation using SnpEff, the two variants delimiting the significant region 

were located downstream of Lus10024264 and Lus10024265. The flax gene Lus10024264 was 

homologous to a gene encoding an uncharacterized Jatropha curcas L. protein (percent 

identity=69; E-value=6e-81; the best hit) was homologous to AT4G13270 in Arabidopsis (percent 

identity=52; E-value=4e-68) which belongs to LATE EMBRYOGENESIS ABUNDANT (LEA) 

HYDROXYPROLINE-RICH GLYCOPROTEIN family and plays an important role in drought 

tolerance (Magwanga et al. 2018). The flax gene Lus10024265 was homologous to 

MAINTENANCE OF MERISTEMS-LIKE (MAIL) in Spinacia oleracea L. (percent identity=42; 

E-value=1e-23). Based on studies in Arabidopsis, MAINTENANCE OF MERISTEMS (MAIN) is 

involved in sustaining the meristem stability and retention of genome integrity (Wenig et al. 

2013). The Arabidopsis gene MAIL1 also has similar function, besides its involvement in cell 

differentiation (Ühlken et al. 2014). 

On chromosome 9, the region flanked by the significant variant (coordinate: 7,455,755) and the 

site having a ΔSNP-index one (coordinate: 7,956,993), was found to harbour 29 genes (Table 

5.2). SnpEff annotation indicated the presence of variation with significant association with 

flowering time in the intergenic region between Lus10024495 and Lus10024494, which are 

homologous to CYTOCHROME P450 87A3 in Populus trichocarpa (Torr. & Gray) (percent 

identity=85; E-value=3e-99) and PHLOEM PROTEIN 2-A12 in Arabidopsis (percent identity=52; 

E-value=3e-118), respectively. The CYTOCHROME P450 (CYP) superfamily of proteins is a 
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large group involved in diverse growth and developmental activities in plants, especially in 

synthesis of secondary metabolites. The CYP 87 belongs to the CYP 85 clan contributing to 

brassinosteroid and gibberelic acid biosynthesis (Nelson et al. 2004; Jun et al. 2015). Phloem 

protein 2, an abundant group of proteins distributed across plant species, suggested to have 

diversified function associated with different domains acquired over evolutionary time (Dinant et 

al. 2003). Specifically, Phloem protein 2-A12 belongs to Nicotiana tabacum L. agglutinin 

(Nictaba) family and contains F-box domain majorly associated with mechanisms related to 

abiotic stress response (Eggermont et al. 2017). 

The additional 41 and 29 genes on both chromosomes 12 and 9 were functionally annotated 

using sequence alignment BLASTx (Altschul et al. 1997). One gene each on chromosome 9 

(Lus10024491) and chromosome 12 (Lus10034902) were found to be homologous to 

DEHYDRATION-RESPONSIVE ELEMENT BINDING (DREB) protein family. 

DEHYDRATION-RESPONSIVE ELEMENT BINDING transcription factors belong to the 

APETALA2/ETHYLENE RESPONSIVE TRANSCRIPTION FACTOR (AP2/ERF) family and are 

involved in abiotic stress response in plants (Lata and Prasad 2011). Interestingly, mutant of 

DWARF AND DELAYED FLOWERING 1, related to DREB type of AP2/ERF family 

transcription factors is found to influence flowering time and reveal phenotype as in mutants 

lacking gibberellic acid, in Arabidopsis (Magome et al. 2004). Additionally, CYCLING DOF 

FACTOR 3 (CDF3), a key gene of the photoperiodic flowering pathway is found to play a role as 

the master regulator of transcription factors including DREB2A in Arabidopsis, and consequently 

involved in tolerance to drought, salinity and temperature extremities (Corrales et al. 2017). The 

flax gene Lus10024492 on chromosome 9 was homologous to ETHYLENE-RESPONSIVE 

TRANSCRIPTION FACTOR (ERF)-027-LIKE in Gossypium hirsutum L., belonging to the AP2 

superfamily of transcription factors. The latter involved in both biotic and abiotic stress response 

has been reported in barley (Hordeum vulgare L.; Guo et al. 2016), cotton (Gossypium hirsutum 

L.; Jin et al. 2010), cauliflower (Brassica oleracea L. var. botrytis; Li et al. 2017b) and 

sunflower (Helianthus annuus L.; Najafi et al. 2018). In addition, varied expression levels of 

different ERFs like ERF96 (Wang et al. 2015) and ERF019 (Scarpeci et al. 2016) are also 

suggested to alter flowering time in the model plant Arabidopsis. The other analysed flax genes 

exhibit higher degree of homology to poplar (Populus trichocarpa (Torr. & Gray)) and castor 

(Ricinus communis L.) because of the lesser evolutionary divergence than the model organisms 
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as reported earlier (Venglat et al. 2011). Nearly 20 genes among the total 70 genes were 

homologous to uncharacterized or hypothetical proteins and hence, their function could not be 

determined. A total of ten flax genes (Lus10024489, Lus10024490, Lus10002999, Lus10034906, 

Lus10034914, Lus10034916, Lus10034923, Lus10034934, Lus10034938, Lus10024266) present 

in this region did not have orthologues identified, and these unique flax specific genes might be 

involved in flowering time regulation and need further investigation. 

In addition, the QTLseqr analysis detected three other peaks on chromosomes 5, 11 and 15, 

although below the significant threshold. It could be possible that if more individuals were added 

to bulks then these peaks would be detected with greater significance. The peak observed on 

chromosome 15 did not overlap with Lus10040921, a homologue of Arabidopsis 

LUMINIDEPENDENS (LD), identified in the QTL-seq pipeline (Chapter 4). However, among 

the total 178 genes underlying these three peaks, Lus10024163 on chromosome 5 was the 

homologue of Arabidopsis SENSITIVITY TO RED LIGHT REDUCED 1 (SRR1), which is 

involved in the circadian clock pathway and regulates multiple FT repressors and plays a role in 

photoperiod- dependent and independent flowering (Johansson and Staiger 2014). 

5.6 Conclusion 

In order to identify the genomic region associated with early flowering phenotype, a segregating 

RIL population from ‘Royal’ x ‘RE2’ was used (Chapter 3). The heritability of the early 

flowering trait through at least 9 generations suggested that this trait was under genetic control. 

Sequencing of distributional extremes for the flowering time phenotype and analysis using QTL-

seq pipeline followed by characterization of SNP identified a polymorphism upstream to a gene 

involved in flowering (LD), based on homology analysis (Chapter 4). However, investigation 

using an improved QTL analysis pipeline (QTLseqr: Mansfeld and Grumet 2018) detected two 

significant regions associated with the early flowering phenotype, one on chromosome 12 and 

another on chromosome 9. Additional minor QTL might also be present on chromosomes 5, 11 

and 15 suggesting that this trait is controlled by five QTL. These data are in agreement with the 

original estimate made by Fieldes and Amyot (1999). In total, nearly 70 genes were investigated 

and majority of them were annotated to be associated with biotic and abiotic stress responses in 

other plants and an additional few uncharacterized genes that appear to be unique to flax. It is 

perhaps plausible that increased expression of stress related genes might promote early 
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flowering. Expression data need to be generated to confirm if indeed these genes are in fact 

dysregulated. However, considering that the method of generation of the original mutant ‘RE2’ 

was exposure to 5-Azacytidine, and the inability to detect a strong mutation in genes associated 

with flowering time, the question as to the contribution of methylation variation remains open. 

DNA methylation variation might also contribute to dysregulation of gene expression. While the 

association of these genomic regions with the early flowering trait defines the causative regions, 

the molecular mechanisms controlling the early flowering trait in ‘RE2’ are more complex than 

originally anticipated. 
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Chapter 6 Identification of Differentially Methylated Regions Using Whole Genome 

Bisulfite Sequencing Variation in DNA Methylation Associated with the Early Flowering 

Phenotype 

 

6.1 Abstract 

The early flowering mutant ‘RE2’ was obtained by treatment of cultivar ‘Royal’ with the 

hypomethylating chemical 5-Azacytidine (5-AzaC). The method of generation suggests the 

potential epigenetic basis of the trait. Hence, a subset of early- and late flowering bulks, derived 

from the segregants of the ‘Royal’ x ‘RE2’ recombinant inbred population, in addition to the 

parents, were subjected to whole genome bisulfite sequencing for inferring methylation patterns. 

Visualization of DNA methylation in all three sequence contexts (CG, CHG and CHH) at a 

global level suggested no genome-wide significant differences. However, investigation of 

specific chromosome bins identified significant Differentially Methylated Regions (DMRs). A 

total of 494,263 cytosines exhibited differential methylation patterns between the bulks, and 127 

significant differentially methylated regions were distributed in the genic, upstream and 

intergenic regions. Homology search of the genes overlapping with DMRs as well as those 

located downstream to DMRs identified three genes homologous to Arabidopsis FASCILIN-

LIKE ARABINOGALACTAN group, involved in biomechanics of stem development. A cluster 

of significant DMRs were localized on chromosome 12, the same linkage group on which 

candidate regions were identified using QTLseqr. Two significant DMRs were present upstream 

to flax genes Lus10036234 and Lus10015319 encoding proteins homologous to SUPPRESSOR 

OF FRI4 and FRIGIDA ESSENTIAL 1 of Arabidopsis, respectively, with a role in vernalization 

pathway. 

6.2 Introduction 

Flowering time is an important trait in crop breeding because of its association with adaptation 

(Sasaki et al. 2017) and early maturity (Kong et al. 2018). Several studies exploring the 

association between nucleotide variation and prime agronomic traits including flowering time are 

prevalent, and they have been adapted in crop improvement through the use of polymorphic 

DNA markers, linkage mapping and quantitative trait locus (QTL) analysis that together allow 

the application of marker aided breeding strategies (Bevan et al. 2017). Characterization of 

phenotypic variation controlled by underlying epigenetic differences is less well established. 
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Epigenetic information including DNA methylation changes, histone modification and non-

coding RNA (siRNA) is emerging as topic of great interest where, DNA methylation has been 

studied in the greatest detail in plants (Seymour and Becker 2017). However, the utility of 

epigenetic variation as a source of useful phenotypic variability for crop breeding remains an 

open question with suggestion that it has not been exploited to its fullest potential (King et al. 

2010). 

The generation of reference quality genome sequences has opened the door to post-genome 

analyses that examine epigenetic variation. These assays measure the structure of chromatin and 

examine the potential of chromatin variation to influence gene expression, DNA replication and 

its effects on chromosome pairing and segregation. There are numerous reports describing the 

prevalence and extent of DNA methylation in plant genomes where positional information is 

obtained through alignment of bisulfite converted sequencing reads. Often common patterns are 

observed among these genomes (Takuno et al. 2016). In plants, DNA methylation occurs in three 

sequence contexts CG, CHG and CHH (where H refers to any nucleotide other than guanine). In 

all cases, the highest level of methylation occurs at CG positions with CHG sites being the next 

most abundant and a low level of methylation observed at CHH positions. The context of the 

cytosine residue indicates the underlying biochemistry responsible for transferring the 

information. Largely, at the symmetrical positions (CG and CHG) methylation status is either 

maintained through replication by enzymes encoded by the METHYLTRANSFERASE 1 (MET1; 

Finnegan et al.1996) and CHROMOMETHYLASE 3 (CMT3; Lindroth et al.2001) gene families. 

Methylation at the non-symmetrical positions (CHH) occurs through the action of the DOMAINS 

REARRANGED METHLYLASE 2 (DRM2) gene family that is guided to the correct location by 

non-coding RNA molecules as part of the RNA dependent DNA methylation pathway (reviewed 

in Zhang and Zhu 2011). 

The function of DNA methylation is unclear, but DNA methylation is highly abundant at 

repetitive regions of the genome, likely protecting genome integrity by acting to silence the 

movement of transposable elements (Feng and Jacobsen 2011). However, DNA methylation is 

also present, albeit at a lower level throughout gene body sequences whose function remains to 

be demonstrated (Bewick and Schmitz 2017). It is now accepted that DNA methylation patterns 

are faithfully transmitted through meiosis (Niederhuth and Schmitz 2014), a necessary process if 
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it functions in transposon silencing. However, there is some variation with populations 

suggesting that the level of methylation over a short range is important rather than its exact 

location at a base-pair resolution. Variation at the level of DNA methylation has been observed 

in natural plant population perhaps as a source of geographical adaptation, opening the 

possibility for the generation of epialleles (Schmitz et al. 2013; Kawakatsu et al. 2016a). A 

number of differentially methylated regions (DMRs) between accessions are capable of 

modifying the phenotype even though the individual DMRs do not have a significant impact 

suggesting potential interaction among DMRs (Springer and Schmitz 2017). While DNA 

methylation variation is widely detected, the definition of an epiallele is stringent. However, 

several have been reported where they are the cause of observed phenotypes, some having 

agronomic value (Weigel and Colot 2012). For instance, the epigenetic modification through the 

methylation of specific cytosines in the upstream region of SQUAMOSA PROMOTER BINDING 

PROTEIN-LIKE gene was associated with delayed fruit ripening in tomato (Solanum 

lycopersicum L.; Manning et al. 2006). In oil palm (Elaeis guineensis Jacq.) trees regenerated 

from tissue culture, the hypomethylation of Karma, a Long Interspersed Nuclear Element (LINE) 

retrotransposon, in the intronic region of DEFECIENS, resulted in modified transcript due to 

abnormal splicing and consequent production of mantled fruits (Ong-Abdullah et al. 2015). 

These examples build on initial demonstration of epigenetic mechanisms controlling flowering 

time variation in Arabidopsis although both monocots and dicots use epigenetic mechanism for 

the regulation of flowering time (Dennis and Peacock 2007). An early study in Arabidopsis 

reported the atypical expression of the FLOWERING WAGENINGEN (FWA) gene caused by 

hypomethylation resulting in late flowering (Soppe et al. 2000). Although the gene silencing of 

the FWA locus occurs by DNA methylation of its promoter, the allele mechanism is mediated by 

non-coding RNA generated by the duplication of a repeat sequence in the FWA allele (Lippman 

et al. 2004; Chan et al. 2004). This provides an example of the complex interaction altering 

chromatin, using both epigenetic and genetic control. Perhaps the best characterized 

phenomenon under epigenetic regulation is vernalization, a key pathway regulating flowering 

time. Vernalization uses histone modification to regulate gene expression in a process that is 

heritable through mitosis but is reset during meiosis. Gene silencing is established by the binding 

of Polycomb repressive complex 2 (PRC2) which mediates trimethylation of nucleosomes at the 

Histone 3 Lysine 27 (H3K27me3) mark. Critically, PRC2 binding leads to the repression of 
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FLOWERING LOCUS C (FLC) acting to repress FLOWERING LOCUS T (FT) expression 

(Berry and Dean 2015; Hepworth and Dean 2015; Bouché et al. 2017). Silencing of the floral 

repressor FLC relives the FT inhibition, subsequently promoting floral meristem identity change. 

To re-establish floral repression in the following generation, preventing flowering from 

occurring during the winter, the H3K27me3 marks are removed during embryogenesis (reviewed 

in He and Li 2018). This occurs when LEAFY COTYLEDON 1 (LEC1) encodes a transcription 

factor in the seed, which increases the H3K36me3 at the FLC locus and subsequently reducing 

the level of H3K27me3 (Tao et al. 2017). In monocot plants like rice, some of the pivotal genes 

underlying heading time such as EARLY HEADING DATE 1 are controlled through epigenetic 

regulation of its repressors including FUSCA 3-LIKE 1 (Jeong et al. 2015). 

In the model plant Arabidopsis, a systematic search to identify epialleles was conducted from a 

population derived from two lines that were uniform at the nucleotide level with the exception of 

a mutation in the DECREASE IN DNA METHYLATION 1 (DDM1) gene that maintains CG 

methylation. Repetitive inbreeding led to the generation of an epigenetic recombinant inbred line 

(epiRIL) population varying only at their DNA methylation patterns throughout the genome 

(Johannes et al 2009). Phenotypic characterization of the population revealed a number of traits 

including flowering time and plant height that segregated in this epiRIL population. Based on a 

genetic map developed using recombination between chromosomes, methylation polymorphisms 

(DMR) co-segregating in the epiRIL population was observed (Colomé-Tataché et al. 2012). 

This has led to the identification of epigenetic QTLs (epiQTLs) underlying quantitative triats 

such as flowering time and root length (Cortijo et al. 2014). In Brassica napus, an allotetraploid, 

using methylation-sensitive amplified fragment length polymorphism (AFLP) markers, the 

epiQTLs underlying seven agronomic traits namely plant height, seed oil content, erucic acid 

content, protein content, seed development time, flowering time and maturity duration have been 

identified (Long et al. 2011). Hence, both naturally occurring as well as induced variation in 

methylomes can be associated with phenotypic variation (Schmitz 2014). 

DNA methylation inhibitors including 5-Azacytidine (5-AzaC) and Zebularine are used to 

generate heritable hypomethylation associated variation which can be exploited in crop 

improvement (Boyko and Kovalchuk 2013). Interestingly, 5-AzaC has been reported to cause 

reduced DNA methylation levels across the genome without sequence-context specificity 
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(Griffin et al. 2016), as compared to the effects of mutation in genes underlying DNA 

methylation which are sequence-context specific (reviewed in Zhang et al. 2018). 

The utility of this approach of using pharmacological drugs for generating variation in DNA 

methylation was demonstrated in flax where three early flowering lines named ‘RE1’, ‘RE2’ and 

‘RE3’ were selected from a population of the variety ‘Royal’ after mutagenesis using 5-AzaC 

(Fieldes 1994; Fieldes and Amyot 1999). The early flowering trait identified after 5-AzaC 

treatment was found to be heritable and was observed to be stably transmitted through meiosis 

for at least nine generations (Sun 2015, MSc thesis). The heritability of this trait enabled the 

generation of three recombinant inbred line (RIL) populations developed by crossing each of the 

three early flowering derivatives to their progenitor genotype ‘Royal’. The crosses were made 

and RIL populations were developed at the Crop Development Centre, University of 

Saskatchewan. These RIL populations offered a unique genetic resource to elucidate the 

underlying genetic and epigenetic factors controlling the variation in these early flowering lines. 

After studying the possible genetic basis of the observed early flowering trait using the QTL-seq 

strategy as described in the previous chapters, the investigation into the methylation differences 

between the early- and late flowering bulks and their potential influence on flowering time are 

described in this chapter. 

6.3 Materials and methods 

6.3.1 Bisulfite conversion of DNA 

The DNA samples of the parents ‘Royal’, ‘RE2’ and five constituent lines each of early- and late 

flowering bulks, were subjected to bisulfite conversion using the EZ DNA Methylation - Gold 

Kit (Zymo Research Corp., CA, USA). The CT conversion reagent was prepared by adding, 900 

µl of nuclease free water, 50 µl of M-dissolving buffer and 300 µl of M-dilution buffer. The 

reagent was mixed thoroughly for 10 minutes by vortexing. DNA sample (100 ng of DNA in 20 

µl), spiked-in with 0.27 ng of λ DNA, was added with 130 µl of CT conversion reagent and were 

mixed by pipetting up and down. The DNA was denatured at 98oC for 10 minutes followed by 

the conversion step at 64oC for 2.5 hours and the samples were cooled down to 4oC. A volume of 

600 µl of M-binding buffer was added to a Zymo-Spin IC column placed on a collection tube, 

later to which the samples were loaded. The columns were inverted to mix the sample and the 

buffer. The spin column was centrifuged at a speed of 11,000 x g for 30 seconds. The solution 
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passing through the filter was discarded. Each spin column was added with 100 µl of M-wash 

buffer and centrifuged at 11,000 x g for 30 seconds. M-desulphonation buffer was added at the 

rate of 200 µl per column and incubated at room temperature for 20 minutes. Later, spin columns 

were centrifuged at 11,000 x g for 30 seconds and the filters were washed with 200 µl of M- 

wash buffer twice by centrifugation at 11,000 x g. Finally, 10 µl of M-elution buffer was added 

to the matrix and the DNA was eluted into a 1.5 ml Eppendorf tube by centrifugation at 11,000 x 

g for 30 seconds. The bisulfite converted DNA was quantified on a NanoDrop 2000 

spectrophotometer (ThermoFisher Scientific, MA, USA) in the RNA setting, and the samples 

were stored at -20oC. 

6.3.2 Preparation of DNA methylation libraries 

The methylation libraries using the bisulfite-treated DNA were constructed using the TruSeq 

DNA Methylation Kit (Illumina Inc., USA). The protocol followed is described below. 

6.3.2.1 Synthesis-primer annealing 

DNA sample containing ~50 ng of bisulfite converted DNA (in 9 µl volume) was added with 2 

µl of synthesis-primer. The samples were placed in a thermal cycler at 95oC for 5 minutes and 

immediately after removal, were placed on an ice water bath. 

6.3.2.2 Synthesis of DNA 

During this step, DNA fragments were added with random hexamer tags and amplified. A master 

mix containing 4 µl TruSeq DNA Methyl PreMix per sample, 0.5 µl each of 100mM 

Dithiothreitol (DTT) and TruSeq DNA Methyl Polymerase per sample was prepared. Sample 

tubes placed on the ice water bath were added with 5 µl of Master mix and homogenized by 

pipetting. With a final volume of 16 µl, the following program was run on a thermal cycler with 

preheated lid: 25oC for 5 minutes, 42oC for 30 minutes, 37oC for 2 minutes and final cooling 

down to 4oC. The sample tubes were removed one by one from the thermal cycler and added 

with 1 µl of Exonuclease I, mixed thoroughly, and placed again on the thermal cycler maintained 

at 4oC. Then the following program with preheated lid option was run: 37oC for 10 minutes, 

95oC for 3 minutes, 25oC for 2 minutes and cool down to 4oC. 



 

100 
 

6.3.2.3 Tagging DNA 

In this step, the 3’ end of the fragments were added with a complementary sequence, thus 

resulting in a di-tagged DNA. A master mix was prepared by mixing 7.5 µl of TruSeq DNA 

Methyl Term Tag Premix per sample and 0.5 µl DNA polymerase per sample. Each of the 

synthesized DNA sample was removed one after another from the thermal cycler held at 4oC and 

added with 8 µl of master mix and pipetted up and down to mix and returned to the thermal 

cycler. With the total volume of 25 µl the following program was run: 25oC for 5 minutes, 95oC 

for 3 minutes and finally maintained at 4oC. 

6.3.2.4 Clean-up of di-tagged DNA 

The di-tagged DNA samples were cleaned with AMPure XP beads (Beckman Coulter, CA, 

USA). A volume of 40 µl of AMPure XP beads was added to each sample and mixed well. The 

entire content was then transferred to a 1.5 ml tube and incubated for 5 minutes. The 

microcentrifuge tubes containing the samples were then placed on a magnetic stand for 5 minutes 

for the beads to settle down and, the supernatant was discarded. The beads were added with 200 

µl of ethanol (80% v/v) allowed to stand for 30 seconds and then removed completely, and the 

ethanol wash was repeated. The samples were centrifuged at 1000 rpm for 10 seconds and placed 

on a magnetic stand. Residual ethanol was removed using 10 µl pipette after one-minute of 

incubation. The beads were air dried on the magnetic stand for 3 minutes. A volume of 24.5 µl of 

nuclease free water was added and the sample tubes were removed from the stand. The samples 

were mixed well by pipetting up and down ten times and then incubated for 2 minutes. The beads 

were allowed to settle down by placing the samples on a magnetic stand for 5 minutes. Later, 

22.5 µl of supernatant was transferred to a fresh PCR tube. 

6.3.2.5 Library amplification 

Each of the di-tagged DNA sample as template was added with 25 µl of Failsafe PCR PreMix, 1 

µl of corresponding adapter-index specific for a given sample and 0.5 µl of Failsafe PCR enzyme 

mix were added, and the total volume was 50 µl. The following PCR program was executed with 

preheated lid: 95oC for 1 minute; 10 cycles of 95oC for 30 seconds, 55oC for 30 seconds, 68oC 

for 3 minutes; 7 minutes at 68oC and final cooling at 4oC. The amplified libraries were cleaned-

up as described earlier using AMPure XP beads at the ratio of 1:1 of beads to DNA sample. The 
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beads were resuspended in a volume of 20 µl of nuclease-free water and finally 20 µl of each 

library was collected in a fresh tube. 

6.3.2.6 Library quantification and sequencing 

The DNA libraries were quantified using Qubit high sensitivity (HS) DNA assay (Thermofisher 

Scientific, MA, USA). The quality was assessed using BioAnalyzer HS DNA kit (Agilent 

technologies, Germany). The quantity and quality assessment procedure were like that for DNA 

sequencing libraries. The libraries were sequenced at NRC Aquatic and Crop Resource Centre, 

Saskatoon. The protocol for library quantification and sequencing was similar to that of genomic 

DNA libraries. Briefly, the indexed-libraries were quantified using qPCR (Kapa Biosystems, 

MA, USA), diluted and pooled. A final concentration of 20 pM of the libraries were spiked-in 

with 5% Phix library as control and sequenced on the Illumina HiSeq2500 platform using HiSeq 

SBS v4 chemistry with 2 x 125 bp cycles.  

6.3.3 Generation of secondary reference for ‘RE2’ 

Whole genome bisulfite sequencing (WGBS) uses SNP to infer the methylation status and any 

SNP between ‘RE2’ and ‘CDC Bethune’ would confound the interpretation. Hence, secondary 

‘RE2’ reference was generated using custom PERL scripts. The sequencing reads of ‘RE2’ from 

genomic DNA sequencing were aligned to the reference genome of ‘CDC Bethune’ using 

Bowtie 2. Each position of the genome was scanned. A minimum coverage of eight reads per 

locus was set as the threshold. The major allele present in the consensus (‘RE2’) was used to 

replace the allele in the reference sequence (‘CDC Bethune’). If a single allele could not be 

distinguished as the major allele, an ambiguous base was inserted (as per IUPAC nomenclature). 

The regions with low or no coverage were annotated as they can be excluded from further 

analysis. 

6.3.4 Analysis of bisulfite sequencing data 

The FASTQ files containing the processed paired-reads were aligned to the secondary reference 

of ‘RE2’ using BSMAP 2.89 (Xi and Li 2009). The adapter sequences, and low-quality 

sequences (Phred score < 30) at the 3’end were trimmed. A minimum base quality filter was set 

at the default value of 33. A python script (methratio) available in BSMAP was used to extract 

the methylation ratios only from the reads that were uniquely aligned. Methylation ratio was 
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estimated as the ratio of number Cytosines (C) to the total number of Cs and Thymines (T) at a 

given position of read alignment. Similarly, the bisulfite reads were also aligned to the λ DNA 

sequence using BSMAP, and the methylation ratio was determined. The λ DNA from a 

bacteriophage has only unmethylated Cs and therefore all the Cs are expected to be converted to 

Ts during bisulfite conversion. Based on the methylation ratio of Cs in the spiked-in lambda 

DNA, the rate of bisulfite conversion for each library was estimated.  

The output files of the early flowering lines obtained from methratio were merged into a single 

file, and similarly, the output files were combined for late flowering lines as well. Methylation 

status of each of the C residue at single base pair resolution in the context of CG, CHG and CHH 

were called and statistical assessment was carried out assuming binomial distribution so as to 

determine whether methylation of a given locus occurred only by chance. Circos plots 

(Krzywinski et al. 2009) depicting the methylation status across the genome in ‘Royal’ and 

‘RE2’ were developed by dividing the chromosomes into bins of 250,000 bp length and counting 

the number of methylated cytosines (5mC) in all three sequence contexts. The global differences 

in DNA methylation between the accessions (‘Royal’ vs ‘RE2’) were visualized from Circos 

plots. 

The identification of differentially methylated regions (DMRs) between the bulks using custom 

R scripts included the following steps: firstly, the chromosomes were split into bins of size 1000 

bp. A score of zero and one was given to the unmethylated and methylated sites, respectively. 

The number of Cs and 5mCs in each of the bins were counted. Fisher’s exact test was performed 

to infer significant differences in the proportion of methylated and unmethylated cytosines in 

each of the bins of the bulks. 

The genes partially (or) fully overlapping the significant DMRs and those with the DMRs in the 

upstream region (upstream interval considered as 5kb) were identified by parsing the GFF 

annotation file. The homology search for the genes was carried out using protein basic local 

alignment search tool (BLASTP; Altschul et al. 1997). For protein homology identification, a 

30% identity is the thumb rule, and an E-value less than 0.001 is dependable (Pearson 2013). 
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6.4 Results 

6.4.1 DNA methylation analysis in the early- and late flowering bulks 

From the Circos plots of ‘Royal’ and ‘RE2’, the methylation patterns were observed to be 

similar, globally (Figure 6.1). However, differential methylation patterns were observed at 

494,263 positions among the total 57,192,166 Cs sequenced in both the bulks. Among the 

differentially methylated positions between the early flowering and the late flowering bulks, a 

total of 260,193 were transformed from methylated state in the late flowering bulk to the 

unmethylated state in the early flowering bulk. 

Based on the distribution of DNA methylation ratio depicted in Figure 6.2, most Cs in the 

genome were unmethylated. A major fraction of the 5mCs in the bulks were present in the CG 

context. In the early flowering group, the total number of 5mCs with a methylation ratio of one, 

was 1,212,558 of which, a total of 1,082,602 were present in the CG context. The number of 

5mCs in the CHG and CHH context were 125,464 and 4,492, respectively. A similar pattern was 

observed in the late flowering bulk in which, of the 1,376,082 positions with a methylation ratio 

of one, a total of 1,222,543 were in the CG context. The methylated sites in the CHG and CHH 

contexts were 149,610 and 3,929, respectively (Figure 6.3). 

 

Figure 6.1 The global methylation pattern of the cultivar ‘Royal’ and its epimutant ‘RE2’. The 

methylation in the CG context is depicted in red whereas, those in the CHG and CHH contexts 

are depicted in green and blue, respectively. 
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Figure 6.2 Distribution of DNA methylation ratio in the early- (Panel A) and late (Panel B) 

flowering bulks. Distribution of DNA methylation ratio in the CG context in the early- (Panel C) 

and late (Panel D) flowering bulks. The number Cytosines to the total number of both Cytosines 

and Thymines in the consensus, at a given position is defined as methylation ratio. 
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6.4.2 Differentially methylated regions between the bulks 

Genome-wide distribution of DMRs between the bulks is depicted in the Figure 6.4. 

Interestingly, there was a cluster of highly significant DMRs on the chromosome 12. The 

potential association of DMRs with any of the genes was deciphered by parsing the GFF 

annotation file, specifically for extracting the coordinates of genes that encompasses these bins. 

A total of 127 DMRs were found to be significant (P<0.01). Among the significant DMRs, 59 

overlapped with the flax genes, 35 DMRs were identified in the upstream region (5 kb interval) 

and the remaining were intergenic. The results from the homology search using BLASTP of the 

genes with overlapping DMRs and DMRs in the upstream region are listed in Table 6.1 and 

Table 6.2, respectively.

Figure 6.3 The frequency of methylation in the CG, CHG and CHH contexts between the early- 

and late flowering bulks. 
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Figure 6.4 The distribution of differentially methylated regions (DMRs) between the early- and late flowering bulks, across the 15 

chromosomes (Lu 1-15) of flax. The X-axis represents the bin position, and along the Y-axis the frequency of DMRs can be observed.  

 

Figure 6.5 The distribution of differentially methylated regions (DMRs) between the early- and late flowering bulks, across the 15 

chromosomes (Lu 1-15) of flax. The X-axis represents the bin position, and along the Y-axis the frequency of DMRs can be observed.  

 

Figure 6.6 The distribution of differentially methylated regions (DMRs) between the early- and late flowering bulks, across the 15 

chromosomes (Lu 1-15) of flax. The X-axis represents the bin position, and along the Y-axis the frequency of DMRs can be observed.  

 

Figure 6.7 The distribution of differentially methylated regions (DMRs) between the early- and late flowering bulks, across the 15 

chromosomes (Lu 1-15) of flax. The X-axis represents the bin position, and along the Y-axis the frequency of DMRs can be observed.  
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Table 6.1 Homology of flax genes overlapping significant DMRs 

Flax gene Start 

position 

End 

position 

Length 

(bp) 

Strand Identity 

(%) 

Homolog E-value Database 

for 

homology 

search 

Chromosome 1 

Lus10036114 386243 387058 815 - 56 FLA11 FASCICLIN-like 

arabinogalactan-protein 11 in 

Arabidopsis thaliana 

2e-59 Swiss-Prot 

Chromosome 2 

Lus10008664 2554109 2556618 2509 + 50 Probable protein arginine N-

methyltransferase 3 in 

Arabidopsis thaliana 

0.0 Swiss-Prot 

Lus10014341 3049938 3054477 4539 - 47 Conserved hypothetical protein 

in Ricinus communis 

5e-141 Non-

redundant 

Lus10038680 6857815 6865629 7814 + 43 Protein RNA-directed DNA 

methylation 3 in Arabidopsis 

thaliana 

0.0 Swiss-Prot 

Lus10004633 24954252 24957818 3566 - 50 Cytochrome P450 in Panax 

ginseng 

0.0 Swiss-Prot 

Chromosome 3 

Lus10033491 17120019 17122613 2594 - 68 E3 ubiquitin-protein ligase 

RGLG3 in Arabidopsis thaliana 

8e-97 Swiss-Prot 
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Lus10033845 18851473 18858041 6568 - 66 Protein HASTY 1 in 

Arabidopsis thaliana 

0.0 Swiss-Prot 

Lus10017072 24370784 24373820 3036 - 71 Galactokinase in Arabidopsis 

thaliana 

0.0 Swiss-Prot 

Chromosome 4 

Lus10001594 8619737 8621386 1649 + 48 Protein C2-DOMAIN ABA-

RELATED 4 in Arabidopsis 

thaliana 

8e-60 Swiss-Prot 

Chromosome 5 

Lus10032374 3348243 3350749 2506 - 48 Probable polygalacturonase in 

Vitis vinifera 

2e-138 Swiss-Prot 

Lus10011759 8723553 8725664 2111 - 31 Hypothetical protein 

A4A49_54874 Nicotiana 

attenuate 

2e-05 Non-

redundant 

Chromosome 6 

Lus10006391 12820091 12822797 2706 + 61 Fasciclin-like arabinogalactan in 

Arabidopsis thaliana 

6e-152 Swiss-Prot 

Lus10013674 6472963 6474142 1179 + 77 Vignain in Phaseolus vulgaris 0.0 Swiss-Prot 

Chromosome 7 

Lus10025435 14152109 14156328 4219 - 83 28 kDa heat- and acid-stable 

phosphoprotein in Jatropha 

curcas 

5e-82 Non-

redundant 
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Lus10023183 17420460 17421101 641 - 39 Fasciclin-like arabinogalactan 

protein 19 in Arabidopsis 

thaliana 

4e-12 Swiss-Prot 

Lus10025427 14125327 14126710 1383 + 29 Glutamate receptor 2.9 in 

Arabidopsis thaliana 

3e-15 Swiss-Prot 

Chromosome 8 

Lus10014109 4205773 4206875 1102 + 63 Glucan endo-1,3-beta-

glucosidase, basic isoform in 

Prunus persica 

8e-144 Swiss-Prot 

Lus10023837 5310160 5311134 974 + 39 Putative clathrin assembly 

protein in Arabidopsis thaliana 

2e-57 Swiss-Prot 

Lus10012659 12052165 12052629 464 + 56 Putative receptor protein kinase 

ZmPK1 in Zea mays 

4e-49 Swiss-Prot 

Chromosome 9 

Lus10001664 493942 495527 1585 - 52 NAC domain-containing protein 

12 in Arabidopsis thaliana 

2e-115 Swiss-Prot 

Lus10008459 12593249 12596019 2770 + 63 Protein Brevis radix-like 2 in 

Arabidopsis thaliana 

2e-154 Swiss-Prot 

Chromosome 10 

Lus10009605 180320 183210 2890 + 43 Polygalacturonase in Gossypium 

hirsutum 

7e-108 Swiss-Prot 

Chromosome 11 



 

 
 

1
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Lus10036501 7555296 7556977 1681 + 66 Ecotropic viral integration site 5 

protein homolog Hevea 

brasiliensis 

8e-54 Non-

redundant 

Lus10001121 9824517 9834015 9498 + 61 Uncharacterized protein 

LOC110650594 isoform X3 

Hevea brasiliensis 

0.0 Swiss-Prot 

Chromosome 12 

Lus10005864 3846506 3849179 2673 + 39 Transcription factor MYB119 in 

Arabidopsis thaliana 

5e-62 Swiss-Prot 

Lus10023272 2131061 2135409 4348 - 29 Disease resistance protein TAO1 

in Arabidopsis thaliana 

5e-95 Swiss-Prot 

Lus10023269 2156358 2159141 2783 + 68 Nucleotide exchange factor SIL1 

Hevea brasiliensis 

1e-179 Swiss-Prot 

Lus10036222 1205275 1208332 3057 + 53 Probable potassium transporter 

11 in Oryza sativa 

0.0 Swiss-Prot 

Lus10015270 3172159 3173214 1055 - 37 Pathogenesis-related protein PR-

4B in Nicotiana tabacum 

8e-07 Swiss-Prot 

Lus10036228 1253756 1254400 644 + 74 Uncharacterized protein 

LOC110610418 in Manihot 

esculenta 

9e-102 Non-

redundant 

Lus10015309 2991501 2994690 3189 - 67 Protein trichome birefringence-

like 37 in Arabidopsis thaliana 

1e-76 Swiss-Prot 

Lus10006732 890903 894258 3355 + 31 Putative disease resistance 

protein in Arabidopsis thaliana 

1e-98 Swiss-Prot 
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Lus10023270 2141942 2153365 11423 - 52 187-kDa microtubule-associated 

protein AIR9 in Arabidopsis 

thaliana 

0.0 Swiss-Prot 

Lus10006972 2687278 2691032 3754 - 69 NADPH--cytochrome P450 

reductase 2 in Arabidopsis 

thaliana 

0.0 Swiss-Prot 

Lus10006971 2697545 2701065 3520 + 60 Polyol transporter 5 in 

Arabidopsis thaliana 

0.0 Swiss-Prot 

Lus10015268 3179644 3185302 5658 - 38 Cation/H (+) antiporter 15 in 

Arabidopsis thaliana 

8e-166 Swiss-Prot 

Lus10006964 2735694 2737801 2107 + 31 PREDICTED: cysteine-rich 

receptor-like protein kinase 10 

Gossypium hirsutum 

4e-06 Non-

redundant 

Lus10015302 3025921 3027927 2006 + 83 Magnesium-chelatase subunit 

ChlI, chloroplastic in Glycine 

max 

0.0 Swiss-Prot 

Lus10023214 2368195 2370477 2282 - 29 BAHD acyltransferase in 

Arabidopsis thaliana 

2e-45 Swiss-Prot 

Lus10015256 3252003 3254033 2030 - 61 Pentatricopeptide repeat-

containing protein in 

Arabidopsis thaliana 

0.0 Swiss-Prot 

Lus10001631 3717722 3722742 5020 - 89 Plasma membrane ATPase in 

Oryza sativa japonica 

0.0 Swiss-Prot 

Lus10005865 3850636 3852542 1906 - 69 GDP-mannose transporter 

GONST2 in Arabidopsis 

thaliana 

0.0 Swiss-Prot 
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Lus10015323 2920117 2925889 5772 - 65 Mediator of RNA polymerase II 

transcription subunit 15a in 

Arabidopsis thaliana 

0.0 Swiss-Prot 

Lus10033083 14498445 14501938 3493 - 60 tRNA (guanine(37)-N1)-

methyltransferase 1 in 

Arabidopsis thaliana 

0.0 Swiss-Prot 

Lus10015257 3243228 3248023 4795 + 49 uncharacterized protein 

LOC110604770 isoform X2 in 

Manihot esculenta 

0.0 Non-

redundant 

Lus10015303 3022724 3024682 1958 + 30 Spermidine sinapoyl-CoA 

acyltransferase in Arabidopsis 

thaliana 

2e-47 Swiss-Prot 

Chromosome 13 

Lus10001038 2911140 2912021 881 - 28 Disease resistance protein TAO1 

in Arabidopsis thaliana 

3e-19 Swiss-Prot 

Lus10001039 2912176 2914466 2290 - 27 Disease resistance protein TAO1 

in Arabidopsis thaliana 

3e-42 Swiss-Prot 

Lus10013521 7748666 7791579 42913 - 83 ATP-dependent zinc 

metalloprotease FTSH 4 in 

Arabidopsis thaliana 

0.0 Swiss-Prot 

Lus10010827 12642960 12643325 365 +  NA   

Lus10032079 16147622 16153687 6065 - 85 Glucose-6-phosphate 1-

dehydrogenase in Solanum 

tuberosum 

0.0 Swiss-Prot 

Chromosome 14 



 

 
 

1
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Lus10014214 5038380 5040113 1733 + 60 PREDICTED: uncharacterized 

protein LOC105110757 in 

Populus euphratica 

5e-169 Non-

redundant 

Lus10025499 1965383 1968674 3291 + 66 PREDICTED: putative CCA 

tRNA nucleotidyltransferase 2 in 

Populus euphratica 

0.0 Non-

redundant 

Lus10014992 18815618 18816421 803 - 52 Protein phosphatase inhibitor 2 

in Arabidopsis thaliana 

9e-34 Swiss-Prot 

Lus10006918 7610879 7612459 1580 +  NA   

Chromosome 15 

Lus10012685 3937136 3938389 1253 + 73 Putative elongation of fatty acids 

protein DDB_G0272012 in 

Hevea brasiliensis 

5e-108 Non-

redundant 

Lus10041102 9326319 9330425 4106 - 76 Uncharacterized WD repeat-

containing protein C2A9.03 

isoform X1 in Jatropha curcas 

0.0 Non-

redundant 

Lus10012714 3788512 3788962 450 - 74 60S acidic ribosomal protein P3-

2 in Arabidopsis thaliana 

5e-28 Swiss-Prot 

Lus10007635 152797 159648 6851 - 39 Cysteine-rich receptor-like 

protein kinase 29 in Arabidopsis 

thaliana 

6e-121 Swiss-Prot 

*Swiss-Prot is the primary database for homology search for queries. Non-redundant database was used when the query had no hits 

in the manually curated Swiss-Prot. 
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Table 6.2 Homology of flax genes containing significant DMRs in their upstream region 

Flax gene Start 

position 

End 

position 

Length 

(bp) 

Strand Identity 

(%) 

Homolog E-value Database 

for 

homology 

search 

Chromosome 1 

Lus10020478 21453813 21455174 1362 - 46 Basic helix-loop-helix (bHLH) 

DNA-binding superfamily 

protein in Arabidopsis thaliana 

2e-86 Swiss-Prot 

Chromosome 2 

Lus10009220 6440923 6446522 5600 + 74 Adenosine kinase 2 in 

Arabidopsis thaliana 

6e-175 Swiss-Prot 

Chromosome 3 

Lus10037689 24903671 24905223 1553 + 61 Uncharacterized protein 

LOC7475680 in Populus 

trichocarpa 

2e-101 Non-

redundant 

Lus10017172 23808599 23812123 3525 - 89 MOB kinase activator-like 1A in 

Arabidopsis thaliana 

7e-141 Swiss-Prot 

Lus10033551 17035798 17039559 3762 - 43 Endonuclease or glycosyl 

hydrolase, putative isoform 1 in 

Theobroma cacao 

0.0 Non-

redundant 

Lus10029226 8160367 8160723 357 + 50 Non-specific lipid-transfer 

protein in Gossypium hirsutum 

3e-32 Swiss-Prot 

Chromosome 6 
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Lus10043394 2452401 2454874 2474 + 86 Vesicle-associated membrane 

protein 714 in Arabidopsis 

thaliana 

6e-143 Swiss-Prot 

Chromosome 7 

Lus10007408 12976817 12978130 1314 -  NA   

Lus10025391 13889242 13890968 1727 + 52 High mobility group B protein 

14 in Arabidopsis thaliana 

8e-41 Swiss-Prot 

Lus10028791 1682626 1683381 756 + 53 B-box zinc finger protein 21 in 

Arabidopsis thaliana 

1e-64 Swiss-Prot 

Lus10011634 12732518 12739509 6992 + 52 E3 SUMO-protein ligase SIZ1 

in Arabidopsis thaliana 

0.0 Swiss-Prot 

Chromosome 8 

Lus10021856 7630107 7632239 2133 - 55 Serine carboxypeptidase-like 45 

in Arabidopsis thaliana 

0.0 Swiss-Prot 

Lus10014090 4133426 4134103 678 + 38 Uncharacterized protein 

LOC110428252 isoform X2 in 

Herrania umbratica 

3e-13 Non-

redundant 

Chromosome 9 

Lus10031062 6408336 6411234 2899 + 78 Ubiquitin carboxyl-terminal 

hydrolase 2 in Arabidopsis 

thaliana 

7e-180 Swiss-Prot 

Lus10007668 11532626 11532946 321 - 51 PREDICTED: uncharacterized 

protein LOC105122337 in 

Populus euphratica 

1e-19 Non-

redundant 
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Lus10024894 19387836 19391088 3253 + 65 Protein EARLY-RESPONSIVE 

TO DEHYDRATION STRESS 

4 in Arabidopsis thaliana 

0.0 Swiss-Prot 

Chromosome 10 

Lus10022998 6877076 6877348 273 - 53 Metallothionein-like protein 4A 

in Arabidopsis thaliana 

7e-17 Swiss-Prot 

Lus10039990 9199789 9203106 3318 + 35 Uncharacterized protein 

LOC111890747 in Lactuca 

sativa 

3e-07 Non-

redundant 

Chromosome 11 

Lus10012668 11569436 11570482 1047 - 41 Mitogen-activated protein kinase 

kinase kinase 17 in Arabidopsis 

thaliana 

1e-60  

Chromosome 12 

Lus10023307 1979199 1979432 234 + 55 Outer envelope membrane 

protein 7 in Arabidopsis 

thaliana 

7e-09 Swiss-Prot 

Lus10023215 2367039 2367584 546 + 32 Cell wall / vacuolar inhibitor of 

fructosidase 2 in Arabidopsis 

thaliana 

8e-06 Swiss-Prot 

Lus10019967 266946 268130 1185 + 86 UDP-glucuronate 4-epimerase 1 

in Arabidopsis thaliana 

0.0 Swiss-Prot 

Lus10015284 3104572 3107592 3021 - 57 Protochlorophyllide-dependent 

translocon component 52, 

chloroplastic in Arabidopsis 

thaliana 

0.0 Swiss-Prot 
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Lus10015239 3312038 3317370 5333 - 61 Probable LRR receptor-like 

serine/threonine-protein kinase 

in Arabidopsis thaliana 

0.0 Swiss-Prot 

Lus10023323 1893942 1898077 4136 + 50 LRR receptor-like 

serine/threonine-protein kinase 

FLS2 in Arabidopsis thaliana 

0.0 Swiss-Prot 

Lus10036234 1287415 1290657 3243 + 62 Protein SUPPRESSOR OF FRI 

4 in Arabidopsis thaliana 

1e-149 Swiss-Prot 

Lus10015319 2944696 2947594 2899 + 33 Protein FRIGIDA-ESSENTIAL 

1 in Arabidopsis thaliana 

5e-29 Swiss-Prot 

Lus10024240 10093696 10097647 3952 + 57 RINT1-like protein MAG2 in 

Arabidopsis thaliana 

0.0 Swiss-Prot 

Lus10018322 5271096 5272091 996 + 72 Uncharacterized protein 

LOC105641058 in Jatropha 

curcas 

7e-162 Non-

redundant 

Lus10004942 3447012 3448943 1932 + 90 60S ribosomal protein L23a-2 in 

Arabidopsis thaliana 

8e-69 Swiss-Prot 

Chromosome 14 

Lus10003753 10413002 10413400 399 +  NA   

Lus10018087 16292336 16294771 2436 + 56 BTB/POZ and TAZ domain-

containing protein 2 in 

Arabidopsis thaliana 

1e-133 Swiss-Prot 

Chromosome 15 
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Lus10041344 10397686 10400952 3267 - 38 Cation/H (+) antiporter 3 in 

Arabidopsis thaliana 

3e-169 Swiss-Prot 

Luss1002254

5 

12283535 12286539 3005 - 63 Farnesyl pyrophosphate 

synthase 2 in Lupinus albus 

3e-163 Swiss-Prot 

*Swiss-Prot is the primary database for homology search for queries. Non-redundant database was used when the query had no hits 

in the manually curated Swiss-Prot. 
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6.5 Discussion 

The current study for methylation analysis is first of its kind in flax, employing whole 

genome bisulfite sequencing methodology. A higher proportion of methylated cytosines were 

observed in the CG context and the methylation was minimum in the CHH context which 

could be observed as a shift in the distribution (Figure 6.2), although most of the cytosines in 

the genome were present in the CHH sequence-context. This trend of higher CG methylation 

compared to CHH is similar to that observed in Arabidopsis (Lister et al. 2008), soybean 

(Glycine max (L.) Merr.; Schmitz et al. 2013) and rice (Oryza sativa L. ssp. japonica; Li et al. 

2012) and is contrary to that observed in mungbean (Vigna radiata (L.) Wilczek; Kang et al. 

2017), common bean (Phaseolus vulgaris L.; Kim et al. 2015) and cassava (Manihot 

esculenta Crantz; Wang et al. 2015). The Circos plot (Figure 6.1) depicting the distribution of 

whole genome DNA methylation pattern of ‘Royal’ (late flowering) and ‘RE2’ (early 

flowering) were found to be similar. This might be because the Circos plot was developed by 

binning the genome with a size of 250,000 nucleotides which might not have sufficient 

resolution to distinguish small but significant locus-specific methylation differences between 

‘Royal’ and ‘RE2’. 

In the early- and late flowering bulks, at the single nucleotide level, there were 494,263 

cytosines differentially methylated, which were distributed across the genome. This implied 

the lack of any bias in the influence of 5-AzaC all through the genome (Griffin et al. 2016). 

Among the total differentially methylated cytosines, 260,193 were in an unmethylated state in 

the early flowering bulk in contrast to the late flowering bulk. This is potentially due to the 

incorporation of 5-AzaC, a hypomethylating chemical in place of cytosine (as an analogue) 

during DNA-replication making it impossible for the transfer of methyl group to the fifth 

carbon, from the metabolite pool, and in addition, 5-AzaC forms a permanent covalent bond 

with DNA methyltransferase, diminishing the availability of this enzyme also leading to 

reduced methylation level across the genome (Pecinka and Liu 2014). 

In plants, DNA methylation differences at specific loci, called epialleles, are found to be 

inherited without changes across generations (Johannes et al. 2009; Hofmeister et al. 2017). 

Hence, the epigenetic basis of phenotypic diversity can be exploited as a source of variation 

in crop improvement. In the transition of cotton from the photoperiod sensitive state observed 

in wild accession to current day photoperiod insensitive cultivars of Gossypium hirsutum L. 

and Gossypium barbadense L., the basis has been identified to be the hypomethylation of 

CONSTANS-LIKE 2D (COL2D; Song et al. 2017), a key player in promoting flowering. An 
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epiallele of rice ADENYLATE KINASE (OsAK1) generated by the presence of 

hypermethylation in the promoter, altered the photosynthetic efficiency by differentially 

regulating OsAK1 and other photosynthesis related genes such as 

PHOTOCHLOROPHYLLIDE OXIDOREDUCTASE and β-CAROTENE HYDROXYLASE 

DSM2 (Wei et al. 2017). 

Out of the total 127 significant DMRs detected in this study, 59 were found to be overlapping 

with genes. A total of 35 DMRs were within the upstream region (5kb interval) of genes and 

the remaining 33 DMRs were present in the intergenic region. Gene body methylation 

influences gene expression both quantitatively and qualitatively by controlling level of 

transcription (Zilberman et al. 2007) and nature of transcripts through modifying the splice 

acceptor sites as observed in oil palm (Ong-Abdullah et al. 2015), respectively. Homology 

searches (BLASTP) of proteins encoded by genes overlapping DMRs identified three flax 

genes, Lus10036114 (on linkage group 1), Lus10006391 (on linkage group 6) and 

Lus10023183 (on linkage group 7) to be homologues of FASCICLIN-LIKE 

ARABINOGALACTAN (FLA) group of proteins in Arabidopsis. In flax, FLA proteins have 

been reported to control fibre development (Roach & Deyholes 2007). These FLA group of 

proteins were found to contribute to secondary cell wall synthesis and hence, influencing the 

biomechanics of the plant shoot development (MacMillan et al. 2010). Interestingly, plant 

height was also observed to be segregating in the ‘RC’ x ‘RE2’ RIL population, evaluated 

over three years. In textile hemp, the promoter region of FASCICLIN-LIKE 

ARABINOGALACTAN encoding gene are found to harbour motif associated with 

photoperiod recognition and regulation of flowering time (Guerriero et al. 2017). Also, the 

over expression of ARABINOGALACTAN encoding gene in cucumber (CsAGP1) has been 

documented to result in stem elongation and earlier flowering phenotypes (Park et al. 2003).  

Apart from gene body methylation, DNA methylation in the upstream region plays a 

significant role in the regulation of gene expression. In tomato (Solanum lycopersicum L.), 

non-ripening phenotype has been reported to be due to hypermethylation of a region 2000 bp 

upstream to the colourless non-ripening (CNR) locus (Manning et al. 2006). In rice (Oryza 

sativa L.), the hypermethylation state of the promoter of DWARF1 and its consequent 

silencing led to a highly stable dwarf phenotype maintained for more than 90 years (Miura et 

al. 2009). The methylation level in the promoter region of floral development controlling 

gene (MeGI) in hexaploid persimmon (Diospyros kaki Thunb.) is associated with sex 

determination (Akagi et al. 2016). 



 

121 
 

In flax, significant DMRs were observed to be present in the upstream region of flax genes on 

chromosome 12, whose Arabidopsis orthologues were involved in flowering. Interestingly, in 

our QTLseqr analysis also, genomic region on the same linkage group (12) was found to have 

significant association with flowering time. The protein encoded by Lus10036234 was 

homologous to SUPPRESSOR OF FRI 4 (SUF4; percent identity=62; E-value=1e-149) and 

that of Lus10015319 was homologous to FRIGIDA-ESSENTIAL 1 (FES1; percent 

identity=33; E-value=5e-29). SUF4 is a zinc finger transcription factor which delays flowering 

through FRIGIDA (FRI) by up regulating FLOWERING LOCUS C (FLC; Kim and Michaels 

2006). Also, it has been reported that SUF4 is bound by LUMINIDEPENDENS (LD) of the 

autonomous pathway, in the absence of FRI, leading to its suppression (Kim et al. 2006). In 

the present study, QTL-seq analysis using the pipeline developed by Takagi et al. (2013), 

identified a SNP upstream of LD. FES1 also produces a zinc finger protein which aids in the 

transcriptional activation of FLC, in the presence of FRI, leading to delayed flowering 

(Schmitz et al. 2005). Since, both FES1 and SUF4 are constituents of the FRIGIDA-

COMPLEX, playing a key role in transcriptional activation of FLC (Choi et al. 2011) 

subsequently resulting in delayed flowering, further functional characterization of these genes 

using current tools such as clustered regularly interspaced short palindromic repeats 

(CRISPR)/Cas9 system will give better insights into the mechanics of flowering time in flax. 

Further investigation into the expression data from RNA-sequencing of ‘Royal’ and ‘RE2’ 

would give more insights about the genes differentially expressed between the lines, the 

influence of their methylation state and their association with flowering time. The observed 

early-flowering phenotype was found to be inherited over multiple generations, indicating the 

stable transmission of the underlying genomic variation. However, differences in DNA 

methylation states between the various cell-types in plants have been reported (Widman et al. 

2013; Kawakatsu et al. 2016b). Hence, the analysis of differences in methylation status 

between the shoot apical meristem and the leaf tissues can unearth the presence of additional 

mechanism operating at a tissue-specific manner in the early flowering trait. 

6.6 Conclusion 

Generating heritable variability for agronomically desirable trait is a continuous process in 

crop improvement. When the reservoir of variability in the germplasm did not harbour the 

desired allele, plant breeders induce variation through hybridization and mutagenesis. In flax, 

‘2126’ was the earliest maturing cultivar with a duration of ~95 days (Dribnenki et al. 2005). 

However, to expand the cultivable area to the northern prairies, early flowering and 
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consequently early maturing cultivars (duration of ~90 days) are needed. Characterization of 

early flowering mutant ‘RE2’ derived from 5-AzaC treated ‘Royal’ and its epiRIL derivatives 

were used in this study employing classical bulked segregant analysis methodology. Bisulfite 

sequencing of few of the lines constituting the bulks (five lines each) and novel statistical 

analysis identified the DMRs potentially underlying the early flowering phenotype on the 

linkage group 12. Further validation can be carried out with functional genomic analysis to 

identify the associated candidate genes. 
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Chapter 7 General Discussion and Conclusion 

 

Gregor Johann Mendel presented his pioneering work on the principles of inheritance in 

garden pea (Pisum sativum L.) in the year 1865 (Mendel 1866). The Mendelian principles, 

after their rediscovery in 1900s, have remained as the foundation for genetic studies (Smýkal 

et al. 2016). Linkage is one of the exceptions to Mendelian genetics, and was proposed by 

Bateson et al. (1909), when studying flower colour and pollen shape in garden pea. However, 

the phenomenon of linkage was first empirically demonstrated by Thomas Hunt Morgan with 

the sex-linked inheritance of eye colour in Drosophila (Morgan 1910). Association of a 

qualitative trait (pigmentation of seed-coat in Phaseolus vulgaris L.) as a marker for the 

selection of a quantitative trait (seed weight) was proposed by Karl Sax (1923). John Marion 

Thoday (1961) suggested the use of the genetic markers to position polygenic traits on 

chromosomes. 

The limited availability of multi-marker lines with morphological markers used in these 

formative linkage-mapping studies, were overcome with the advent of the era of DNA 

markers (Tanksley 1993). In their classic study to develop a human linkage map, Botstein et 

al. (1980) used the variation between the genomes for the location of restriction sites to 

develop the first-generation DNA marker named Restriction Fragment Length Polymorphism 

(RFLP). Generation of RFLP-based linkage map and positioning of Quantitative Trait Loci 

(QTLs) underlying the polygenic traits including fruit weight was carried out in tomato, a 

first of its kind study in plants (Paterson et al. 1988). Exploitation of polymorphism for 

primer binding sites led to the development of novel class of markers called Random 

Amplified Polymorphic DNA (RAPD), and combining both the variations (restriction sites 

and primer binding sites) yielded Amplified Fragment Length Polymorphism (AFLP). Using 

these marker types several QTLs have been mapped, including a QTL underlying fruit size, 

an important domestication trait in tomato, was fine mapped and the candidate gene was 

identified (Frary et al. 2000). First-generation sequencing (Sanger) based identification of 

Single Nucleotide Polymorphisms (SNP) resulted in development of SNP-based linkage 

maps and positioning of genes controlling quantitative traits (Rafalski 2002). To date, several 

genes underlying QTLs have been cloned across crop species using map-based gene cloning 

methodology (Kumar et al. 2017a). 

The advent of next generation sequencing (NGS) technology unearthed the power of a large 

number of SNP present in different accessions of a crop species in studies of genetic diversity 
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and mapping (Barabaschi et al. 2016). Illumina is most commonly used among the next-

generation sequencing platforms and is capable of generating a huge volume of data in a 

shorter time for a lower cost in comparison to Sanger sequencing (Shendure et al. 2017). 

These advancements in the sequencing technologies led to the rediscovery of power of 

Bulked Segregant Analysis (BSA; Michelmore et al. 1991) with thousands of more SNP 

markers increasing precision, with the mapping-by-sequencing strategies like QTL-seq 

(Takagi et al. 2013). 

An early flowering mutant ‘RE2’ was derived from the treatment of ‘Royal’ using the 5-

Azacytidine (5-AzaC; Fieldes et al. 1994). The modified phenotype was observed to be stable 

across nine generations (Sun 2015, M. Sc., Thesis, University of Saskatchewan) and hence, a 

recombinant inbred line population (RIL) from ‘Royal’ x ‘RE2’ was developed. The RIL 

population was characterized phenotypically in three field seasons (2015, 2016 and 2017) at 

the Kernen crop research farm at the University of Saskatchewan, Saskatoon. Additionally, 

the data generated in the growth cabinet complemented the field data. The RILs were ranked 

based on the days to start of flowering in 2015-, 2016 field season and the growth cabinet 

data, using which the stable distributional extremes were identified. The estimation of genetic 

parameters is also described in Chapter 3. The bulking of sequencing data generated from 

individuals sharing a common phenotype, increases the signal intensity for detecting genomic 

regions associated with the quantitative traits (Pires and Grossniklaus 2018). Nature and 

number of individuals constituting the bulks determine the potential to detect both QTLs with 

major- and minor effects. A total of eleven individuals each in early- and late flowering bulks 

were used in the present analysis. Phenotypic evaluation with more replicates under 

controlled environments (Zou et al. 2016) and increasing the number of individuals 

constituting the bulks (Sun et al. 2010) would positively influence the power of BSA. 

However, a different expression pattern of key genes like FLOWERING LOCUS T (FT) in 

controlled and natural environmental conditions have been demonstrated in Arabidopsis 

(Song et al. 2018), suggesting the need for field-based phenotyping under natural 

environments. The initial analysis of the DNA sequencing data from the bulks using the 

QTL-seq pipeline (Takagi et al. 2013), followed by characterization of impact of nucleotide 

polymorphisms using SnpEff (Cingolani et al. 2012), identified a SNP upstream of a flax 

gene homologous to Arabidopsis LUMINIDIPENDENS (LD; Chapter 4). Early flowering 

phenotype observed among mutants derived from a population of 5-AzaC-treated ‘Royal’, 

was suggested to be controlled by minimum three independent loci (Fieldes and Amyot 
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1999). Hence, to explore the possibility of multiple loci governing the complex flowering 

time trait, the DNA sequencing data was further analysed using the recently published 

package-QTLseqr (Mansfeld and Grumet 2018). The reanalysis identified significant regions 

on chromosomes 9 and 12, conditioning the phenotype (Chapter 5). The genomic variants in 

these regions were found to be associated with genes encoding LATE EMBRYOGENESIS 

ABUNDANT (LEA) HYDROXYPROLINE-RICH GLYCOPROTEIN FAMILY, 

MAINTENANCE OF MERISTEMS-LIKE, CYTOCHROME P450 87A3 and PHLOEM 

PROTEIN 2-A12, based on homology analysis. These genes, though not directly involved in 

flowering time in Arabidopsis, might have evolved to acquire new functions (neo-

functionalization; Flagel and Wendel 2009) to be associated with flowering time in flax. In 

addition, these detected polymorphisms are markers and might be in linkage disequilibrium 

with the gene(s) in the flanking region responsible for the modified phenotype, which can be 

localized in the region adjacent to the significant peak. Increasing the number of individuals 

constituting the bulks and generating more data might further enable this analysis to identify 

the candidate genes on the chromosomes 9 and 12 and elsewhere. 

FLOWERING LOCUS T (FT) is a prime gene responsible for transition to floral meristem 

which in turn is regulated by multiple pathways responding to varied environmental stimuli 

(Andrés and Coupland 2012). The flax gene homologous to Arabidopsis FT is localized on 

chromosome 13, however, no significant associations were observed in this study. The 

possible reason could be the presence of a different regulatory gene substituting the function 

of FT because of the long evolutionary divergence between Arabidopsis and flax (106 million 

years ago - http://www.timetree.org/; Hedges et al. 2006). 

As ‘RE2’ accession was derived from the treatment of ‘Royal’ using the hypomethylating 

chemical 5-AzaC, Whole Genome Bisulfite Sequencing (WGBS) data was generated to 

identify variation in methylation patterns and its potential association with early flowering 

phenotype in ‘RE2’ was examined. The WGBS data of five lines from each of early 

flowering and late flowering distributional extremes were pooled into two bulks and the 

methylation status of the cytosines in the two bulks were identified. The significant 

differentially methylated regions were unraveled using a Fisher’s exact test. A total of 127 

significant DMRs distributed across the genome were identified, and interestingly, 35 DMRs 

were present on chromosome 12 (Chapter 6). The DNA methylation differences between 

accessions can have significant impact on gene expression. Variation in methylation levels in 

the regulatory regions of the genome modify gene expression qualitatively while the impact 

http://www.timetree.org/
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of gene body methylation is still being explored (reviewed in Niederhuth and Schmitz 2017). 

Though the significant genomic regions as identified by QTLseqr, and the cluster of DMRs 

detected by the novel methylation analysis do not overlap, the co-localization of potential 

controlling regions on same chromosome suggesting the possible interaction of these two 

non-overlapping regions at the chromatin level by three-dimensional looping. The distal 

transcriptional regulators have been reported to be brought into contact with the genes by 

chromatin looping, influencing the expression (Liu and Weigel 2015; Grob and Grossniklaus 

2017). 

The conclusions from the study were: 

i. The phenotypic evaluation of the 656 ‘Royal’ x ‘RE2’ recombinant inbred lines 

indicated that days to- start of flowering and full flowering were traits with moderate 

heritability. 

ii. In the literature, there are no reports of point mutations induced by 5-AzaC. However, 

we cannot rule out the potential of 5-AzaC to cause point mutations without extensive 

investigation. The SNP observed could have arisen either from action of 5-AzaC or 

natural background mutations accumulated over generations. The presence of 

majority of SNP specific to the early flowering bulk in the upstream, downstream and 

intergenic region suggested the need for further detailed investigation on effect of 

variants in regulatory region. 

iii. The genes in the significant region identified by NGS based BSA analysis with 

QTLseqr on chromosomes 9 and 12 were not directly associated with flowering time 

genes, based on homology studies. Hence, flax specific annotation of these genes, and 

that in the adjacent region and their validation will give further insights. 

iv. Differentially methylated regions observed between early- and late flowering bulks 

owing to 5-AzaC treatment signify that there can be a possible epigenetic variation 

underlying the trait and hence, the role of epialleles in governing the early flowering 

phenotype needs to be further explored.  

Hence, this study has laid the foundation for mining the epiallelic variation in ‘Royal’ x 

‘RE2’ epiRIL population, with potential application in genomics-assisted breeding of flax. 

The null hypothesis of genetic variation conditioning the early flowering phenotype in ‘RE2’ 

could not be rejected because of the lack of evidence. However, between genomic regions on 

chromosomes 9 and 12 having significant association with flowering time, the latter is found 
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to co-localize with epigenetic variation, suggesting the potential link between genetic and 

epigenetic variants, which need further investigation, still leaving the basis of the early 

flowering trait unclear. 

Further analysis to understand the mechanism and gene regulatory network (GRN; Gupta and 

Tsiantis 2018) underlying the early flowering phenotype would involve RNA sequencing 

(RNAseq) of the bulks in addition to the parents ‘Royal’ and ‘RE2’. The differential 

expression of the potential candidate genes in varied tissue-samples collected from RILs 

across time points will uncover the over- or under- expression of the genes which result in 

earlier transition to the reproductive phase. Intricate modification to a gene in its coding- or 

regulatory region, might alter both the qualitative- (splice variants) and quantitative 

(transcript abundance) aspects of gene expression, and can provide greater opportunities for 

generating variability in polygenic traits including flowering time (Rodríguez-Leal et al. 

2017; Scheben and Edwards 2018). Once the major candidate genes underlying the polygenic 

traits were identified, precise editing can be made using the clustered regularly interspaced 

short palindromic repeats (CRISPR)/Cas9 technology (reviewed in Knott and Doudna 2018) 

and hence, can be deployed for validating gene function (Fernandez i Marti and Dodd 2018). 

Multiple levels of gene regulatory mechanisms have been studied in plants, and one among 

which is the orientation of the gene in the three-dimensional domain in the nucleus and the 

resulting interactions (Sotelo-Silveria et al. 2018). For instance, FLOWERING LOCUS C 

(FLC), a repressor of the key flowering time gene FLOWERING LOCUS T (FT), is under 

epigenetic regulation, in which, the three-dimensional looping in FLC is lost during 

vernalization leading to its silencing and subsequent upregulation of FT (Whittaker and Dean 

2017). The chromatin loop formation as the mechanistic basis of repression of the WUSCHEL 

(WUS) gene, responsible for the determinate habit in Arabidopsis, through the interaction of 

AGAMOUS (AG) transcription factor with TERMINAL FLOWER 2 (TFL2) was reported 

recently (Guo et al. 2018). In future experiments, it would be worthwhile to investigate the 

three-dimensional interactions of the genomic regions underlying the early flowering trait by 

using novel methodologies including chromatin conformation capture (3C; Dekker et al. 

2002) and Hi-C (Lieberman-Aiden et al. 2009; reviewed in Doğan and Liu 2018), perhaps 

associating the variation in methylation (DMRs) with cis-regulated gene showing expression 

differences. 
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In several instances, the phenotypic changes induced by epigenetic variation is the result of 

modified methylation state of the genome and consequent activation of transposable elements 

which are silenced by hypermethylation, leading to new insertion sites (Seymour and Becker 

2017). The contribution of cis-regulatory elements from the transposon fragments were found 

to cause varied expression of neighbouring genes (Hirsch and Springer 2017; Dubin et al. 

2018). Interestingly, a retroelement insertion in the promoter region of winter wheat 

VERNALIZATION3 (VRN3) lead to early flowering (Yan et al. 2006), and the insertion of a 

retrotransposon ~600 bp upstream of the photoperiod sensitive HEADING DATE 1 (Hd1) 

caused delayed flowering in rice (Hori et al. 2016). Suggesting that further detailed 

assessment is required for presence/absence variation of insertions and deletions (InDels) 

applying strategies like Indel-seq (Singh et al.2017) on the RIL population. 

The epigenetic marks including DNA methylation and histone modifications, mainly 

involved in maintaining genome stability (Ito and Kakutani 2014; Underwood and 

Martienssen 2015), can be inherited meiotically and mitotically in plant genomes (Niederhuth 

and Schmitz 2014). The alteration in methylation patterns and the resulting changes in gene 

expression often exhibit transgenerational inheritance (Quadrana and Colot 2016; Hosaka and 

Kakutani 2018) and hence, generation of epialleles controlling novel traits and epiRIL 

population became a reality (Johannes et al.2009; Brocklehurst et al. 2018). Beyond DNA 

nucleotide polymorphism-based SNP markers, DMR-dependent markers have been already 

developed in both mammalian- (Kim et al.2018) and plant (Ong-Abdullah et al. 2015) 

systems, which can also be developed in flax to tag the epigenetic differences underlying 

phenotypic variation. Flax is a good model organism to explore these variations because of 

the small genome size (~373 Mb - You et al. 2018) and the currently available genomic 

resources. Furthermore, inferences from this study can be tested in the other early flowering 

lines (‘RE1’ and ‘RE3’) of ‘Royal’ flax. 
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Appendix A Protocol followed for CTAB buffer preparation 

CTAB buffer of volume 1 l was prepared using the following components 

1M Tris-HCL (pH 8.0) – 100 ml, for a final concentration of 100 mM Tris-HCl 

0.5M EDTA – 50 ml, for a final concentration of 25 mM EDTA 

NaCl – 87.66 g, for a final concentration of 1.5 M NaCl 

CTAB – 20.00 g, for a final concentration of 2% 

The final volume was made-up to 1 l with distilled water, and the buffer was autoclaved and 

stored at room temperature. β–mercaptoethanol - 0.3%, was added to the required volume of 

buffer freshly before use, every time. 
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Appendix B Quantitation of DNA using Qubit assay 

The working solution was prepared by adding 1 μl Qubit dsDNA BR reagent to 199 μl of 

Qubit dsDNA buffer, per sample. For the two standards provided, 190 μl of working solution 

was added to two tubes, followed by addition of 10 μl of each standard to the respective tube. 

For the samples, 198 μl of working solution was taken in each tube and the added with 2 μl of 

sample to the appropriate tube based on the label. The solution was vortexed for 2 – 3 

seconds and incubated at room temperature for two minutes. In the Qubit 2.0 fluorometer, 

first the standards were read for calibration, followed by the samples. 
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Appendix C Analysis of fragmented DNA using agarose gel electrophoresis 

A volume of 150 ml of 1x TAE buffer was taken in conical flask and added with 2.25 g of 

agar and heated for two minutes and 30 seconds in the microwave oven. The 1.5% agar 

solution was placed on a magnetic stirrer and allowed to cool to 60oC. The agar solution was 

added with 7 μl of Envirosafe dye (An ethidium bromide equivalent; Helixtec.com) and 

stirred. The gel was then cast in to a casting tray set with a comb (15 wells). The time taken 

for solidification was half an hour. The samples were prepared for loading by mixing 3 μl of 

sheared DNA, 1 μl of the loading dye xylene cyanol and nuclease-free water to make-up to a 

final volume of 10 μl. 

The solidified gel was placed in Bio-Rad wide mini-sub cell GT (Bio-Rad, CA, USA). filled 

with 600 ml of 1x TAE buffer and the comb was carefully removed. The samples were 

loaded in individual wells. For the ladder lane, 10 μl of 1kb+ ladder from a stock of 100ng/μl 

was added to the lanes at both the ends of the gel. The electrodes were connected to the 

corresponding points on Bio-Rad Power Pac 200 (Bio-Rad, CA, USA). The setting was 80 

volts for 80 minutes. After the run was complete, the gel was documented on Bio-Rad Geldoc 

XR+ (Bio-Rad, CA, USA). 
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Appendix D Protocol followed for analysis of sequencing-libraries using Agilent 

Bioanalyzer HS DNA assay 

Briefly, a gel-dye mix was prepared by adding the HS DNA dye concentrate (15 μl) to the HS 

DNA gel matrix. Then the gel-dye mix was vortexed for 10 seconds and spun down a spin 

filter at 2240 x g for 10 minutes. The gel-dye mix (9 μl) was loaded to the third well from 

top, marked ‘G’ on the right end of the chip, placed on the priming station. With the plunger 

at 1ml position, the priming station was locked, and the plunger was pushed down to be held 

by the clip. After 60 seconds the plunger was released and brought back to its original 

position. The three other wells marked ‘G’ were added with 9 μl of gel-dye mix, each. The 

marker provided with the kit was added to 11 sample wells and the one ladder well, at the 

rate of 5 μl per well. To the ladder well, 1 μl of ladder was added. The sample wells were 

loaded with 1 μl of sample. The chip was vortexed on IKA vortexer at 2200 rpm for one 

minute. The chip was placed into the Agilent bioanalyzer beneath the electrode cartridge 

appropriately, and the assay was run using the HS DNA assay option. 
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Appendix E Seed inventory 

• The seeds from the 735 hills in the 2015 field season are available in three boxes 

(Agriculture building room number 3C13). 

• The seeds from 288 RILs derived from the cross in which ‘RE2’ was the pollen donor 

are present in a single box (Agriculture building room number 3C13). 

• The seeds from the 735 hills grown in 2016 field season are available in two boxes 

(Kernen Crop Research Farm). 

• The seeds from the RCBD trial of the lines chosen as the distributional extremes for 

flowering time, from ‘Royal’ x ‘RE2’ derived RILs are available in three boxes (180 

hills total; each box contains seeds from one replication) (Agriculture building room 

number 3C13). 
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Appendix F List of DNA sequencing libraries prepared 

Library 

number 

Sample name Parent/Early/ 

Late 

1 Royal Parent 

2 RE2 Parent 

5 Plant 6-E1 Early 

6 Plant 6-E2 Early 

7 Plant 6-E3 Early 

8 Plant 6-E4 Early 

9 Plant 6-E5 Early 

10 Plant 6-E6 Early 

11 Plant 6-E7 Early 

12 Plant 7-E1 Early 

13 Plant 7-E2 Early 

14 Plant 7-E3 Early 

15 Plant 7-E4 Early 

16 Plant 7-E5 Early 

17 Plant 7-E6 Early 

18 Plant 6-1L Late 

19 Plant 6-2L Late 

20 Plant 6-3L Late 

21 Plant 6-4L Late 

22 Plant 7-1L Late 

23 Plant 7-2L Late 

24 Plant 7-3L Late 

25 Plant 7-4L Late 

26 Plant 7-5L Late 

27 Plant 7-6L Late 

28 Plant 7-7L Late 

Early – early flowering bulk 

Late – late flowering bulk 


