Soils and Crops 2019

Phosphorus and Seed RateTrial in Canola

Introduction

Two issues

- Producers want to increase phosphorus application rates
- Producers want to decrease canola seed rates to decrease costs

\$70-80/acre

Сгор	Actual P ₂ 0 ₅ (lb/ac.)
Cereals	50
Canola	25
Canaryseed, Pinto bean	30
Flax, pea, forages (alfalfa, bromegrass)	15
Faba bean	40
Lentil, mustard, chickpea	20

Ainistry of Agriculture

Trial Design – Land

- 500' x 25'
- Randomized Complete Block 3 replications

Trial Design – Land

Trial Design – Land

Soil Type

- Waitville-Whitewood
- Dark Gray wooded soil formed on loamy glacial till; loam surface texture
- Nearly level topography but contains moderate amount of stones

Nutrient levels (tested spring 2018)

Ν	27 lbs (0-24")
P_2O_5	16 lbs (0-6")
K	160 lbs
S	10 lbs (0-24")
O.M.	3.0%
рН	6.9

Trial Design – Equipment

Trial Design – Equipment

Harvest

- Use of modern equipment
- Every trial weighed and sampled
- Yields equalized to 10% moisture and 0% dockage

Plant Count

- Independent consultant
- 6 locations/trial averaged

Trial Design – Treatments

Total Fertility 130-50-0-25

Treatments

Seed Rate

25P SR; 25P Band; 50P SR; 25P SR; 25P Band; 50P SR;

5lb seed 5lb seed 2.5lb seed 2.5lb seed Drill 3320; DK 3320; DK 3320; DK 3320; DK

P: lbs P_2O_5

P: Ibs P_2O_5

P: lbs P_2O_5

Supporting Research

Western Applied Research Corporation (WARC) - 2015

- Applied 0, 18, 35, and 70lbs P_2O_5 /acre
- Placed in the seed row

Plant Count

Phosphorus Rate (PR)	<.0001
$0 \text{ kg } P_2O_5$	58 ^A
20 kg P ₂ O ₅	53 ^A
40 kg P ₂ O ₅	45 ^B
80 kg P ₂ O ₅	37 ^c
	p value
SR* PR	0.0986

Yield

Figure 3. The effect of P rate (kg/ha) on canola yield and thousand kernel weight at Scott SK, 2015.

Independent Research

Indian Head Agriculture Research Foundation (IHARF) - 2015

- Applied 18, 35, 53, 70, and 88 lbs P_2O_5 /acre
- Placed in the seed row or in the side-band

Plant Count

Yield

Conclusion

- Did not find a correlation of plant stand to yield
- Decreasing seed rate influenced plant stand the most
- Increasing seed placed phosphorus also decreased plant count, but not as much as seeding rate
- The combination of low seeding rate and high seed placed phosphorus decreased plant stand the greatest
- Row spacing and proximity of nitrogen to the seed row reduced plant stand, but can not determine between the two

Recommendations

- If a producer is looking to decrease seeding rate, they must take into consideration other controllable factors at the time of seeding including:
 - seed placed phosphorus
 - row spacing
 - nitrogen placement
- Lower plant counts lead to longer maturity which increases end of season frost risk

2018 - Canola - Demonstration

ADJ Yield - 3320

– Plant/ft2 - 3320

P: lbs P₂O₅ SR: Seed Row MRB: Mid-Row Bander

References

 Ukraintez H. 1977. Effect of Phosphate Placement on Yields of Different Crops in West-Central Saskatchewan. Presented at Soils and Crops 1977.