Determining soil nitrogen (N) processes using enzymology in response to varying N treatments across four diverse Brassica napus (canola) lines

SHANAY WILLIAMS¹, SALLY VAIL², ISABEL PARKIN, AND MELISSA ARCAND¹

¹DEPARTMENT OF SOIL SCIENCE, UNIVERSITY OF SASKATCHEWAN

²SASKATOON RESEARCH CENTRE, AGRICULTURE AND AGRI-FOOD CANADA

Introduction

- Canada is the highest canola producer
- 20 million metric tonnes in 2018 produced
- Canola requires high N inputs
- Nitrogen use efficiency (NUE)
- Assist plant breeders through improved understanding of belowground interactions to improve NUE

Objective

To evaluate the interaction between canola lines,

N fertilizer rates, and phenotypic stage on soil N

and microbial function and how this affects canola

N uptake.

Methods

- Dark Brown Chernozem in Saskatoon (Llewellyn farm)
- 2 parent lines, and 2 hybrids lines
- Nitrogen fertilizer rates: 0, 50, 100,
 150 kg N ha⁻¹
- ► Collection times (5-6 leaf stage and at flowering)
- Soil and root samples taken to 10 cm depth, aboveground plant sampled

Nitrogen rates (p = 0.0093) and phenotypic stage (p = 0.0002) significantly affected ammonium oxidation. Canola lines (p = 0.8359) did not significantly affect ammonium oxidation.

Phenotypic stage (p = 0.0005) significantly affected urease activity. Canola lines (p = 0.5557) did not significantly affect ureolytic enzyme.

Significant 2-way interaction between canola lines and phenotypic stage (p = 0.0012) on soil NO₃-N

- Significant 2-way interaction between canola lines and phenotypic stage (p = 0.0786) on soil NH₄+-N.
- Significant 2-way interaction between N rates and phenotypic stage (p = 0.0065) on soil NH₄+-N.

Preliminary Result and Discussion

- Significant 2-way interaction between canola lines and phenotypic stage (p = 0.0149) on percent plant N.
- Significant 2-way interaction between N rates and phenotypic stage (p = 0.0010) on percent plant N.

Preliminary Result and Discussion

Nitrogen rates significantly affected percent seed N (p < 0.0001).

Conclusion

- ► Phenotypic stage significantly affected microbial enzymes, soil NO_3 -N and NH_4 +-N, and plant percent N.
- ► Canola genotypes significantly affected soil NO_3^- -N and NH_4^+ -N, and percent plant N.
- Nitrogen rates significantly affected ammonium oxidase, soil NO_3^- -N and NH_4^+ -N, plant and seed percent N.

Acknowledgements

- Dr. Melissa Arcand's summer students and technician
- ▶ Dr. Vail's research technicians
- Dr. Renato de Freitas and Dr. Derek Peak for lab facilities

Agriculture and Agri-Food Canada

