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Abstract

With the development of novel calibration techniques for multimedia projectors and curved projection

surfaces, volumetric 3D displays are becoming easier and more affordable to build. The basic requirements

include a display shape that defines the volume (e.g. a sphere, cylinder, or cuboid) and a tracking system

to provide each user’s location for the perspective corrected rendering. When coupled with modern graphics

cards, these displays are capable of high resolution, low latency, high frame rate, and even stereoscopic

rendering; however, like many previous studies have shown, every component must be precisely calibrated

for a compelling 3D effect. While human perceptual requirements have been extensively studied for head-

tracked displays, most studies featured seated users in front of a flat display. It remains unclear if results

from these flat display studies are applicable to newer, walk-around displays with enclosed or curved shapes.

To investigate these issues, we developed a virtual testbed for volumetric head-tracked displays that can

measure calibration accuracy of the entire system in real-time. We used this testbed to investigate visual

distortions of prototype curved displays, improve existing calibration techniques, study the importance of

stereo to performance and perception, and validate perceptual calibration with novice users. Our experiments

show that stereo is important for task performance, but requires more accurate calibration, and that novice

users can make effective use of perceptual calibration tools. We also propose a novel, real-time calibration

method that can be used to fine-tune an existing calibration using perceptual feedback. The findings from

this work can be used to build better head-tracked volumetric displays with an unprecedented amount of 3D

realism and intuitive calibration tools for novice users.
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1 Introduction

Perspective-corrected displays – interactive displays that use images corrected to a user’s perspective –

create a 3D experience by coupling head movements to the perspective of a rendered scene. This technique

has been used effectively with head-mounted displays in augmented reality and virtual reality to depict a

fixed virtual environment to the user. In the early 1990s, this technique was used with desktop CRT monitors

as an alternative to head-mounted displays and was called “Fish Tank Virtual Reality” (FTVR) by Ware

et. al [106]. It offered higher pixel resolution and more natural viewing over head-mounted displays at

the time [24, 68, 42, 91, 27] and it was suggested that stereopsis (stereo) may add only marginally to the

perception of 3D objects. Given the additional equipment and technical requirements of including stereo in

3D displays, many subsequent FTVR displays omitted stereo and relied primarily on motion parallax for

the 3D experience. FTVR displays provide motion parallax by rendering many stationary objects inside the

display and updating the perspective for a moving observer.

Room and headset-based VR displays situate and surround the user within the virtual environment which

offers an immersive virtual experience at the cost of deemphasizing the physical environment. Head-mounted

AR displays are able to overlay virtual content onto the physical environment thereby reducing the virtual-

physical gap, however, the virtual content remains intangible. FTVR displays are able to embed and situate

a portion of the virtual environment in a physical space while offering tangible interactions through touch

or reorientation of the display. They can be used effectively as an addition or enhancement to workspaces

by supporting easy transitions and interactions between real-world information, traditional 2D displays, and

virtual information.

1.1 General Problem

Recent (post-2010) technology has made the inclusion of stereo an affordable option for FTVR displays and

has enabled new convex form factors (e.g. spherical, cubic, and cylindrical shapes) that allow viewing from

all sides (see Figure 1.1). With such a high field of view, they are usually designed to encapsulate and create

a contained virtual environment to give the illusion that a virtual object is contained within the volumetric

display.
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Figure 1.1: New FTVR displays have made use of multiple screens and curved projection surfaces

to produce cubic (A, Cubee [104]) and spherical (B, CoGlobe [117]) form factors.

These newer displays are different from the older (pre-1997), CRT-based FTVR displays which made

significant use of rendering objects with front-depth to give the illusion that a virtual object was floating in

space in front of the display. Given the technology and design gap between these types of FTVR displays, it is

unclear if experimental and user research generalizes to both. FTVR is a promising technology, however, it has

not been as widely adopted as other VR technologies. This is likely due to the technical challenges that come

with designing and calibrating FTVR displays. They are often built from a set of smaller subsystems such

as projectors, display screens, and tracking systems. The challenges lie in bringing these distinct subsystems

into efficient cooperation regarding latency, accuracy, and ease of use.

1.2 Specific Problem 1: Viewpoint Calibration

For displays to achieve a compelling and physically situated virtual environment using perspective-corrected

images, the position of each pixel must be known relative to a viewpoint with a high degree of accuracy and be

updated with minimal latency with respect to head movements. Many recent VR headsets have accomplished

this by 1) tracking the headset using high-update inertial measurement units (IMUs) and slower-updating

external tracking devices to correct for drift errors from the IMUs; and 2) assuming the viewpoints are a

fixed distance in front of the screens or measuring the viewpoints directly using eye-tracking. For FTVR

displays, the user and display are physically separated and an external tracking system must be used to

register the display and user in a consistent coordinate space. A range of tracking systems including infrared,

ultrasonic, electromagnetic, optical, and computer vision have been used with FTVR displays; however, they
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all have relatively high latency compared to IMUs and introduce a noticeable amount of visual distortion.

In addition to this, the displacement between what is being tracked (usually a sensor of some type) and the

user’s viewpoint has been more difficult to define than with VR headsets. The conventional approach to

measuring this displacement has been to either manually calibrate it for each user and assume it remains

fixed or to place the sensor close to the viewpoint, usually somewhere on the head, and use the sensor as

the viewpoint. Introducing stereo requires an additional displacement, one for each eye, and depends on

interpupillary distance, which can be different for each user. Also, it is known that human eyes do not have

a rigid center of projection relative to the head [31], but move with respect to the viewer’s gaze. A recent,

interactive approach to viewpoint and tracking calibration proposed by Wagemakers et al. [104] calibrated a

viewpoint to within ≈ 2◦ (5 cm) using 2D patterns on a non-stereo desktop monitor and a DSLR camera on

a box-shaped volumetric display; however, this method remains untested with stereo and novice users.

1.3 Specific Problem 2: Design Decisions

Video recordings of recent spherical FTVR displays have been very effective in portraying the display as a

realistic “crystal ball” or a palant́ır from J.R.R. Tolkien’s fictional universe – a ball that contains another

environment of which you can observe freely [100, 102, 101]. However, unlike the original single-screen

FTVR, these systems often omit stereo rendering (a perspective-corrected image for each eye) and instead

rely heavily on motion parallax to provide a 3D effect to the user as they walk around the display. The

omission of stereo rendering goes unnoticed in monocular video recordings which may misrepresent the

quality of the 3D effect when perceived in-person using our naturally binocular vision. Studies on single-

screen FTVR have shown the inclusion of stereo depth cues to be beneficial; however, it is currently unclear

how detrimental the omission of these cues is for spherical (multi-screen) FTVR which can utilize depth

cues from motion parallax much more effectively due to their convex shape and large viewing angles. To

continue the design and development of this new display technology efficiently, it would be helpful to be able

to reason about the importance of features based on their use cases, performance impact, and cost. Guided

by the original FTVR studies [106, 107, 1, 108] and limitations/future work of more recent volumetric FTVR

displays [98, 119, 104, 38, 39, 120, 118, 117], we posed a similar set of questions regarding design, calibration,

and user interaction, but in the context of volumetric FTVR displays.

1.4 Solution 1: Improved Visual Calibration

The calibration method from Wagemakers, Fafard, and Stavness [104] was shown to be very effective at

calibrating an entire FTVR display system and viewpoints from scratch when performed by experts. They

also showed that novice users could interpret and minimize visual distortion of a 2D pattern caused by

perspective mismatch on a desktop monitor. To improve this calibration method even further, we propose

a set of extensions that expand its use cases and accuracy: a stereo calibration procedure using a two
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viewpoint model; a realtime, perceptual adjustment procedure of viewpoint or handheld object calibrations;

the incorporation of gaze information for a more accurate viewpoint model; and using a new optimizer for

faster and more accurate calibrations. We also run novice users through a mock calibration procedure to

investigate whether they will be able to minimize visual distortion of the 2D calibration pattern on a spherical

FTVR display.

1.5 Solution 2: VR Testbed for FTVR Displays

To investigate the impact of visual errors in volumetric FTVR displays, we required a display with mini-

mal tracking latency and viewpoint registration error as well as ground truth measurements for objective

assessment of accuracy. However, even our best physical FTVR display showed noticeable tracking latency

with fast head movements and noticeable viewpoint registration error when close to the display. These visual

artifacts were not accounted for with the physical display and ground-truth viewpoint measurements were not

possible. An initial investigation into the visual distortions showed that they may be caused by perspective-

mismatch from non-stereo rendering with binocular viewing (i.e. seeing the same image from both eyes) or a

perceived rotation of the virtual content due to viewpoint registration error with stereo rendering [69, 110].

This investigation was supported by a pilot study with a virtual “crystal ball”, viewed in VR, that featured

the toggling of stereo and the control of tracking latency or calibration error. This initial VR demo proved

to be a useful tool for investigating the perception of volumetric FTVR displays, so we continued its devel-

opment and design a completely virtual volumetric FTVR system that can model the same parameters as a

counterpart in the real world. This offers several advantages over using a physical display when running an

experiment or user study: 1) the display and tracking system would be co-located in the virtual environment,

so ground truth display and viewpoint calibrations could be computed; 2) the IMU-enabled tracking system

in VR headsets could be used to provide low latency and accuracy for volumetric FTVR; and 3) the pixel

warping techniques that are used to situate the virtual environment for VR headsets would also be applied

to the virtual display.

Head-mounted VR has been previously used as a testbed for evaluating new interaction techniques [19],

the effectiveness of surgical [87, 46] or industrial [45] training, and the performance of simulated Augmented

Reality (AR) experiences [62]. VR has also been used for effectively scaling-up research studies by performing

out-of-lab experiments with participants’ consumer level VR systems [73]. The benefits of using a virtual

system and VR headset for a user study outweigh the disadvantages that come with using a relatively poorly

calibrated physical display and tracking system. In addition, the results obtained from studies using a virtual

system should still be applicable to the physical display that it was modeled after, since both displays are

parameterized in the same fashion and use the same rendering code.
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1.6 Solution 3: Evaluation of FTVR Viewing Conditions

With a reliable simulation system available, we design three experiments to compare subjective and objective

measurements under different presentation methods (e.g. stereo or non-stereo) of the virtual display. In

this study, we investigate the perceptual and performance effects of stereo on a multi-screen FTVR display

and challenge the assumption that when a user can freely move about the display, depth cues from motion

parallax are so compelling that they overwhelm the need for stereo. To provide ground truth comparisons

and to control for as many confounds as possible, we use a VR testbed system that can faithfully simulate

FTVR displays inside an immersive virtual environment. This allows us to measure viewpoint(s) precisely,

render pixels on the display with virtually no error, minimize overall system latency, and provide the same

worn equipment between all conditions. We use a spherical display shape because it has been the most widely

adopted shape for volumetric FTVR displays.

1.7 Research Questions

The main research questions regarding the design of volumetric FTVR displays, addressed in this thesis, are

as follows:

• How important is the inclusion of stereo for performing 3D tasks with a volumetric FTVR display?

• How accurate does viewpoint registration need to be for visual calibration errors to be imperceptible

to users?

• Where exactly is the viewpoint when rendering without stereo?

• Do users notice when stereo is present or absent in a volumetric FTVR display?

1.8 Research Objectives

The research questions described above focus on depth perception of motion parallax and stereo within

volumetric FTVR. We incorporate a mix of simulated/synthetic experiments for tool validation and use

research methodologies from Human Computer Interaction (HCI) to design user studies that measure the

impact or importance of these depth cues. Whenever possible, we use perceptual feedback from users to guide

the design and implementation of our solutions. The research objectives of this thesis can be summarized as

follows:

1. Extend interactive viewpoint calibration (with and without stereo) to incorporate tracking orientation

for a viewer’s gaze, provide viewpoint displacement correction for more accurate viewpoint registration,

and design a real-time perceptual calibration to fine tune viewpoint registration.
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2. Create a simulated, volumetric FTVR display system that models displays in the real world and use it

to investigate the source of visual distortions that have been observed in the lab.

3. Perform a user study using simulated FTVR with perceptual and performance tasks to verify the

extensions to interactive visual calibration and also challenge previous assumptions about the relative

importance of motion parallax and stereoscopic depth cues.

1.9 Organization of Thesis

Chapter 2 covers the background, development, implementation, and calibration of FTVR displays; compares

FTVR displays to other types of VR displays; and highlights the novelty of our VR testbed. Chapter 3

describes many improvements to current calibration methods within multi-screen FTVR and proposes a

novel, real-time perceptual calibration technique. Chapter 4 describes the implementation and features of

our VR tested. Chapter 5 presents three experiments that investigate monocular and binocular depth cues

while users complete tasks designed for 3D viewing and interaction. Finally, Chapter 6 concludes with

limitations and possible directions for future work, and reiterates important findings and contributions of

this work.

6



2 Related Work

Fish tank virtual reality was developed as an alternative to early head-mounted displays and was shown

to be an affordable and effective technology for exploring 3D content and tasks [106, 107, 108]. Its tech-

nological underpinnings are similar to that of other VR and AR displays; for example, they may use the

same perspective-corrected rendering pipeline or realtime head or eye tracking. FTVR displays situate and

constrain a portion of a virtual environment inside a physical one; thus, they can be considered a type of

volumetric display. However, FTVR is different in how the perspective is delivered and how the subsystems

are calibrated together. The following sections describe other display technologies that share similarities with

FTVR displays and goes on to explain the novelty of our simulated FTVR testbed.

2.1 FTVR

Early FTVR displays and experiments used a single flat display to compare combinations of head-coupled

rendering, stereoscopic rendering (stereo), and monocular/binocular viewing [1]. They found that both

head-coupled rendering and stereo increased a user’s performance in a 3D path tracing task, with head-

coupled rendering having a larger effect, and that users preferred head-coupled rendering (both monocular

and binocular) without stereo. It was speculated that the apparent distaste for stereo may have been a

result of the slight ghosting (inter-ocular crosstalk) caused by the slow phosphor decay of the stereoscopic

display. Further studies examined the effect that head-coupled motion and structure motion (i.e. constant

rotation about an axis) had on a user’s understanding of a 3D graph [107]. The findings suggested that either

approach offered benefits over static rendering, that the type of motion did not matter that much, and that

head-coupled rendering without stereo was significantly worse than all stereo-containing motion conditions.

Another experiment studied the difference in task performance in FTVR versus the real world and found that

different participants had different responses to the virtual task [99]. Participants in this study noted that “a

virtual cube appeared to move along with their head movement,” which we will refer to as a floating effect

— the perception that objects inside the display seem to float in space rather than remaining stationary like

real objects would. Possible causes of this floating effect include non-stereo rendering, viewpoint registration

errors, and system latency. A re-evaluation of stereo and kinetic depth effect was undertaken with a much

higher resolution display (3840x2400 per eye), but without head-tracking. The kinetic depth effect was

implemented by rotating the object of interest back and forth at a constant rate. They found that the

object’s motion was a stronger depth cue for experienced users and that both stereo and motion increased a
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Table 2.1: Design and capabilities of FTVR displays.

Year Display Stereo Multi Planar Viewpoint Tracking
Screen Screen Calibration

2019 Virtual FTVR [37] Yes Yes No Fixed Infrared + IMU
2018 CoGlobe [117] Yes Yes No Perceptual Infrared
2017 HandheldBall [12] Yes No No Fixed Infrared
2017 OrbeVR [7] Yes* Yes No Fixed Infrared
2017 3DPS [120, 118] No Yes No Kinematic Computer Vision
2017 Calibration [104, 38] No Yes Yes Perceptual Multiple
2014 Dynamic Stereo [28] Yes No Yes Head Infrared
2014 Spheree [98, 40, 25] No Yes No Head Infrared
2012 Telehuman [60] Yes No No Kinematic Computer Vision
2012 Holodesk [52] Yes* No Yes Fixed Computer Vision
2012 MirageTable [10] Yes No No Fixed Computer Vision
2011 Snowglobe [17] Yes No No Fixed Infrared
2010 pCubee [88, 92] No Yes Yes Realtime tune Electromagnetic
2009 Polyhedral [49] Yes Yes Yes Head Computer Vision
2008 FaceTrack [90] No No Yes Midpoint Computer Vision
2008 Pseudo-3D [51] No No Yes Fixed Computer Vision
2007 E-conic [74, 26] No Yes Yes Head Ultrasonic
2006 Cubee [89] No Yes Yes Head Electromagnetic
2005 Virtual Showcase [13] Yes Yes Yes Head Electromagnetic
2001 BNAVE [56, 55] Yes Yes Yes Head Electromagnetic
1997 Media3 [58] No Yes Yes Head Electromagnetic
1997 Cubby [35] No Yes Yes Head Infrared
1996 ECP 3000 [22] Yes* No Yes Head Electromechanical
1995 Tele-window [16, 15] Yes No Yes Head**** Electromagnetic
1995 Image Warping [71] Yes* No Yes Fixed Electromagnetic
1995 Vison [82] No No Yes Midpoint *** Computer Vision
1993 FTVR [1, 106, 107] Yes* No Yes Fixed Electromechanical
1993 CAVE [29] Yes Yes Yes Fixed Electromagnetic
1993 Kinect3D [65] No No Yes Fixed Electromagnetic
1993 Virtual Portal [32] Yes* Yes Yes Fixed Ultrasonic
1992 High Resolution VR [31] Yes No Yes** Fixed Ultrasonic
1992 Interactive Viewpoint [70] No No Yes Fixed Electromagnetic
1983 Interactive Stereo [86] Yes* No Yes Fixed Electromagnetic
1982 Viewpoint Dependent [41] Yes No Yes Fixed Electromagnetic
1982 One-eyed Guys [34] No Yes Yes Head Optical
1973 Stereomatrix [109] Yes No Yes Fixed Infrared

* Stereo rendering with low refresh rate (¡30 Hz per eye)
** Curvature of CRT monitor was taken into account
*** Distance from display was fixed
**** Strictly horizontally parallel motions
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user’s ability to read short paths in high density graphs [108].

To generalize Fitts’ law to 3D, selection tasks using a stylus and mouse have been studied with FTVR

displays. When targets were rendered in front of the display, their distance from the screen had a significant

effect on throughput [93, 94, 95]. The farther targets were from the screen, the harder they were to select

and the worse they fit a Fitts’ model. The effects of stereo and head-tracking were also studied; head-

tracking resulted in worse performance when targets were far from the screen, stereo had a larger effect than

head-tracking, and stereo negatively affected mouse performance [6].

HoloDesk [52] used a half silvered mirror and perspective-corrected images to enable hand-based interac-

tion with virtual objects. The authors hypothesized that monocular depth cues (e.g. motion parallax) would

result in similar task performance as stereo rendering and shutter glasses, but they found that stereo was

significantly faster than their monocular condition. However, this finding was only consistent with objects

being rendered in front of their display; they found no significant difference between their monocular and

stereo conditions when objects were placed behind the display. They also noted that motion parallax was

underutilized during the experiment, but they gave no explicit instruction about motion parallax to the

participants.

In these studies, the user was seated in front of a single, flat display with a limited range of viewing

angles. The introduction of walkaround multi-screen FTVR displays resulted in significantly more viewing

angles for non-seated users. It is unclear if results from these studies also apply to walkaround displays and

how additional viewing angles affect performance in 3D selection tasks or more generalized 3D tasks.

2.2 Multi-screen FTVR

A recent resurgence in FTVR features volumetric displays that use multiple-screens and a walkaround design

to enhance motion parallax cues for compelling 3D [89, 60, 18, 40]. To physically contain the virtual content

inside these volumetric displays, a convex display shape, like a box, cylinder, or sphere, is used. Stereo

was often excluded from these displays due to technical limitations and the emphasis on motion parallax in

single-screen FTVR displays (see Table 2.1). While numerous new designs for multi-screen FTVR systems

have been recently proposed, few studies have evaluated how well these different designs provide perceptually

correct 3D information and effective 3D interaction. Hagemann et al. reported on a study of eye contact that

had users looking at a 3D avatar on a spherical screen while trying to determine if the avatar was making

eye contact. Users correctly identified eye contact much more accurately on the FTVR display compared

to a static spherical screen [47]. Qian et al. compared depth perception between spherical and flat FTVR

displays and reported significantly better performance on the spherical display in both depth-ranking and

size-matching tasks [116]. Similar to the single-screen FTVR studies, users remained seated in both of these

experiments. This has left motion parallax, and its relative importance to stereo, an understudied depth cue

when users are free to move around a volumetric, FTVR display.

9



2.3 Handheld FTVR

Handheld versions of volumetric FTVR displays have also been explored. A handheld FTVR display without

stereo was shown to be faster and more accurate in a 3D tree-tracing task than a conventional 2D monitor [88].

An externally projected spherical display, well-liked by the participants, permitted stereo and head-tracking,

but was shown to have lower performance than a planar perspective-corrected display in an object examination

task [12]. The conflicting results from these two studies suggest that aspects of the physical display design,

system latency, and/or calibration accuracy may be confounding variables.

2.4 Room-based VR and AR

CAVE Automatic Virtual Environment (CAVE) was used to compare presentation technologies, such as

stereo and field of view, and found that head-tracked stereo significantly reduced task time over head-tracked

non-stereo, but did not affect error [79, 63]. Another surround VR system, RoomAlive, is able to render

view-dependent content onto dynamic projected surfaces, creating the possibility for new display shapes and

configurations [57, 113, 111, 112]. The authors noted that head-tracking calibration and accurate screen-to-

screen mappings are crucial for seamless and accurate presentations of multi-screen projected displays.

2.5 Calibration in FTVR Systems

Many multi-screen FTVR displays use multiple projectors to illuminate a seamless display surface. However,

a careful screen calibration is required, so that overlapping projector geometry can render without visual

artifacts, such as ghosting or disparity in brightness. Multi-projector calibration procedures for planar [114]

and curved [84, 119, 118] display surfaces have been reported that use a camera to automatically compute

accurate transformations and blending between projection regions. Box displays have used LCD screens for

a compact design, but have the downside of relatively thick seams between screens [88, 49, 104]. Seams

themselves can enhance the 3D effect by providing occlusion cues, but thick seams can be obtrusive and

potentially disruptive to viewing. Multiple display panels also require screen calibration, but the accuracy

requirements are lower, as the screens do not overlap like projected screens. Camera-based calibrations for

box displays using checkerboard patterns [104] and AR Toolkit [2] markers [49] have been shown to be quick,

accurate, and accessible.

A study of eye angular error of pixels on a spherical multi-screen FTVR display showed that errors in

head-tracking had a larger effect than screen calibration and that they distort the perspective-corrected image

in different ways [119]. Head-tracking error can cause virtual content to look like it is floating in space or

appear visually distorted, whereas screen calibration error can cause double images or ghosting on the surface

of the display. Head-tracking error is an important source of error to minimize, not only because of its larger
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impact on overall error, but also because convex-shaped FTVR displays have a large field of view which

increases the use of head-tracking as viewers move around more.

Cosmo et al. proposed a quantitative method of assessing the accuracy of any view-dependent display by

using a camera and a fiducial marker placed at the image plane [28]. However, this approach is inapplicable

to volumetric displays because the image plane is not always accessible or coincident with the surface.

Wagemakers et al. proposed a method that uses image processing on visual distortions of a regular pattern

to quantitatively measure calibration accuracy on a cubic, volumetric display [104]; however, this is only

applicable to displays with planar surfaces.

Benko et al. used projection-based AR to superimpose perspective-corrected images on top of occluding

geometry [10]. By using the depth map and colour camera from a Kinect [115] sensor (Microsoft, Redmond,

WA), they were able to create a tangible virtual world that allowed seamless interaction between virtual and

real objects. A single Kinect was used for display surface registration, head tracking, and user interaction,

which reduced the complexity of realtime calibration. More elaborate calibration methods must be used

when a single sensor system cannot be used for all calibration phases of a volumetric display.

Madritsch et al. proposed a detailed model of a user’s eyepoints [66] for stereo-enabled FTVR based on

Deering’s recommendations for high quality FTVR [31]. It consisted of a geometric model of the relationship

between a user’s eyes and two beacons on a pair of glasses. It was assumed that the user would be looking

straight at the display (i.e. no turning of the head left/right), so that correcting the eye position based on eye

gaze would be unnecessary. The two beacons on the glasses were only tracked with positional data relative to

a main sensor on the glasses, so an additional assumption was made: the user’s head would be in an upright

position (i.e. no nodding of the head up/down). This assumption allowed the rotation of the beacons to be

computed and the eyepoints to be found using a fixed offset per beacon. Since it is practically impossible for

a user to adhere to these assumptions, a system that could provide position and rotation (6DoF) data for

the beacons would result in much more accurate eyepoints.

Perceptual calibration methods that generate a geometric viewpoint model have been shown to be more

effective than manual measurements or tuning [78, 104]. Ponto et al. proposed a technique that had users

align a physical object with known location with a virtual object in a CAVE display. They found that

perceptually calibrated viewpoints were wider and deeper than standard approaches assumed, which could

significantly improve depth acuity, distance estimation, and the perception of shape [78]. Wagemakers et al.

proposed a novel perceptual calibration technique that could generate a viewpoint model at the same time

as calibrating the display-to-tracking system transformation without the use of physical calibration tools or

alignment objects. They used static 2D patterns that would appear aligned from a known position and had

the user align the pattern in key locations around the display [104]. The approach was verified quantitatively

on a box-shaped FTVR display and through a user study on a traditional 2D display. They used simulated

FTVR displays in the shape of a box with seams, a cube without seams, and a sphere. It was found that

participants were able to align a pattern of circles and lines on a spherical display to less than 1.5◦ by orbiting
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a virtual camera at a fixed distance and the approach was able to calibrate the box-shaped display much

more accurately than conventional methods.

Despite these improved calibration approaches, an analysis of visual cues may still be confounded by prac-

tical issues, such as ghosting, viewpoint errors, and tracking latency, with even the best available volumetric

FTVR display.

2.6 Static and Swept Volume Displays

Approaches to building volumetric displays without headtracking exist, however, they employ different mech-

anisms than FTVR – like a volume medium or fast moving display components – to generate the display

volume. They usually fix the viewing angles at regular intervals around the horizontal and vertical axes,

which can remove the dependency on headtracking. Compared to FTVR, they generally have higher techni-

cal requirements, limited viewing angles, lower refresh rate, and/or lower resolution. For an in-depth review

of volumetric displays that do not use headtracking, see Blundell and Schwarz’s classification [14].

2.7 Head-mounted Displays

A study on eye-head coordination in head-mounted VR showed that users exhibited more head movement

(in the form of head rotation) in VR than in physical reality during simple visual attention tasks [77]. Our

user study assumed that this effect would be minimal since the simulated FTVR display would be in the

user’s field of view, thereby limiting unnecessary head rotation.

3D task performance has also been evaluated in AR with see-through, head-mounted displays and mobile

phones. A recent study reported a comprehensive comparison of different viewing and interaction conditions

for exploring and manipulating 3D point cloud visualizations as compared to a traditional 2D desktop [5].

It was found that the performance benefits of AR depended on the presentation method and the level of

interaction and perception in the task; using a tablet for AR resulted in performance drops in almost all

tasks, whereas using head-mounted AR resulted in better performance for high interaction and perception

tasks. We adopt the same point cloud visualizations to assess task performance in a spherical FTVR display

for our user study.

2.8 View Independent Rendering

In view-independent rendering, there is no perspective-correction, so virtual content cannot be rendered

inside the volume of the display and must be rendered entirely on its surface. At the cost of reduced virtual

space, this approach allows any practical number of viewers, which makes it very effective in co-located,

collaborative workspaces. Benko et al. developed a calibration approach for infrared (IR) touch-sensing

along with multi-touch input techniques that proved to be very useful and intuitive on a view-independent
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spherical display [11]. To offer more flexibility in our rendering system, we included a view-independent

rendering mode that was could also be used as a fallback mode when head-tracking was unavailable.

2.9 Rendering Systems

Single-pass rendering approaches for multiple perspectives and projectors on planar display surfaces have

been implemented using homography prewarping [80, 4] and barycentric coordinate interpolation with back-

projected ray casting [53]. Additionally, a fully parallel single-pass rendering approach for multi-planar

FTVR displays was presented by Harish and Narayanan [50]. A parallel scene-sorting algorithm assigned

triangles to facets, or split them up if they bordered facets, and per facet homographies were computed for a

perspective-corrected view. Multiple facet geometries were rendered onto a high-resolution rectangular quilt

in a single rasterization pass, followed by a per-fragment depth correction shader. This is a highly scalable

approach to rendering high quality FTVR displays that was shown to be more efficient and higher-quality

than conventional off-axis projections on multiple types of multi-planar polygonal displays. This framework

was also shown to work with curved display surfaces by approximating them as polygons with many triangles.

Single-pass rendering algorithms avoid many of the artifacts that may come from the sampling stage in

a two-pass rendering approach; however, they are difficult to generalize to non-planar surfaces due to the

non-linear transformation between projector pixels and display surface pixels. For our rendering system,

we implemented a simple two-pass approach, so that it could easily be incorporated into a fully featured

rendering pipeline.

2.10 Novelty of Simulation System

We have observed that latency is more noticeable in stereo rendering and also results in pronounced floating of

the virtual content. The Oculus Rift system provided extremely accurate and low latency viewpoint tracking

using built-in inertial measurement units (IMUs) and kinematically constrained prediction models [64, 33].

Minimizing head-tracking error was crucial because it is a significant contributor to eye angular error of pixels

on a spherical FTVR display [119]. In addition to low latency tracking, VR headsets apply pixel warping

techniques to interpolate frames using motion tracking data that provides even more accurate pixel positions.

The Oculus API provided the position and orientation of the viewpoints for every image our simulated FTVR

display generated. We were able to use these reported viewpoints as ground truth for Experiment 1.

Running a user study with our simulated FTVR allowed more control of the experiment between conditions

than a traditional user study with a physical FTVR display. Participants always wore the same equipment

and the visual fidelity of the VR headset was always the same. The system also provided a perfectly calibrated

FTVR experience. Since the tracking system and display system were colocated in the virtual environment,

ground truth viewpoint and tracking-space calibrations could be computed, and pixel-perfect projection of
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perspective-corrected images on the display surface was possible. This ensured that any noticeable visual

distortions would be caused solely by the participants’ perception of the display content.

We implemented projector image prewarping using two-pass, per-pixel rendering. Because this approach

only requires access to programmable vertex/fragment shaders and the ability to render to a texture, it

offers more flexibility when integrating it with an already existing graphics pipeline. It features dynamic

projection matrices that maintain pixel density to overcome sampling artifacts, requires no ray-tracing, and

easily outputs to either real or virtual projectors and planar screens. This allowed us to integrate real and

virtual FTVR rendering with Unity software (Unity Technologies, San Francisco, CA) and leverage its fully

featured graphics pipeline for more advanced rendering and post-processing.

In addition to implementing virtual projectors, display surfaces, and planar screens, we modeled the

parameters of an FTVR display so that synthetic error could be introduced to the system. We were able

to control the viewpoint model, projector lens model, and tracking system calibration/latency. This feature

was used to investigate and replicate unknown sources of error observed in real FTVR displays.
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3 Extensions to Interactive Visual Calibration

The interactive visual calibration approach proposed by Wagemakers, Fafard, and Stavness [104] relies

solely on visual cues from the display to guide a viewer into known locations while still allowing natural

and unimpeded movement around the display. It renders patterns on the display such that they will appear

without distortion if viewed from a known calibration position (V in Figure 3.1). The patterns are designed

so that when they appear distorted, the user can easily determine the location at which it would look correct.

This process aligns a user’s viewpoint to known locations relative to the display, but only the head position

is recorded. This is repeated through a set of predetermined calibration positions that define a path that

minimizes backtracking and maximizes workspace coverage. All the pairs of head positions and calibration

locations are used to create the viewpoint-to-head and tracker-to-display transformations. This method only

requires positional information (orientation is not needed), so it works well with many types of trackers.

Only relying on positional data (3DoF) increases the accessibility of the calibration because it can be used

with a broad range of tracking systems; however, without orientation data (6DoF), the viewpoint model may

become inaccurate post-calibration. During the calibration phase, a user’s gaze is assumed and instructed to

be coincident along the calibration rays; however, after the calibration phase, it is difficult to enforce the same

gaze assumptions without strict adherence to the assumptions. This 3DoF viewpoint model assumes that the

user looks directly at the origin of the display without any side-to-side or up/down head tilt; violating these

gaze assumptions would put the user’s eyepoint into an unexpected location, potentially causing noticeable

visual distortion on the display. We propose the following set of extensions designed to increase the accuracy

of a calibration in a variety of new use cases within volumetric FTVR. We derived 3DoF and 6DoF post-

calibration transformations for accurate eyepoint placement; relaxed the gaze assumptions after calibration

with compatible 6DoF tracking systems; introduced a stereo viewpoint model that can skip the measurement

of user PD; improved the accuracy and execution time of the original optimization program; and designed

a realtime, perceptual calibration tool that can adjust and improve user-dependent parameters of existing

calibrations. The result is an easy to use, fully featured, perceptual calibration toolbox within volumetric

FTVR displays that does not require any error-prone, manual measurements.
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RTD rotation portion of XTD

dTD translation portion of XTD

RV H rotation from V to H

Table 3.1: XTD was split into its constituent parts for clarity and RV H was added to define gaze
and relax some of the viewpoint model assumptions.

XTD

XDC

D

T
H

C

XHT

dVH

dVDdVC V

Figure 3.1: Coordinate frames in our calibration problem, including the display (D), tracking system

(T), head (H), and calibration point (C) frames, and viewpoint position (V). X and d denote rigid

transformations and translations, respectively.

Source: Wagemakers et al [104]

In addition to the variables defined in Figure 3.1, Table 3.1 summarizes the additional variables that are

used to formalize the extensions.

3.1 Adding Orientation

When the tracking system provides only positional (3DoF) data, the orientation (rotation) of the eyepoint(s)

must be reconstructed from a set of assumptions. We assumed, similar to previous research with perceptual

calibrations [78], that the viewer looks directly at the origin (center) of the display with their head upright

(no tilt). The reconstruction recovers the coordinate frame using a view matrix – a transformation most

commonly used to represent the position and orientation of a pinhole camera in computer graphics (also

known as a camera matrix). The rotation is composed of three basis vectors named the forward, right, and

up axes. The forward-axis is the displacement of the viewpoint position normalized to unit length (i.e. the

direction from the eyepoint to the display), the right-axis is the cross product of the forward-axis with the

normal of the ground plane (i.e. what “up” is in the physical room), and the up-axis is the cross product
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of the right-axis and forward-axis. It is common to level the display with the ground so that “up” from the

display’s point of view is the same as the room’s “up” direction. This makes the display calibration much

easier since there will be no need to measure, and correct for, a transformation between the physical room

and the display (i.e. they share the same ground plane).

With the addition of rotational (6DoF) tracking, the head frame of reference (RHiT ) can be measured

directly; however, a fixed rotation (RHV ) between the viewpoint and the head remains unknown. We ap-

proximate this unknown rotation by recording the orientation of the head at each calibration ray and use the

following relationship:

RDCi = RHV RTHiRDT (3.1)

Isolating RHV yields,

RHV = RDCiRTDRHiT (3.2)

and with n points,

RHV = f


RDC1RTDRH1T

RDC2RTDRH2T

...

RDCnRTDRHnT

 (3.3)

where f(x) is a function that produces an average rotation given a vector of similar rotations. We used

unit quaternion representation for rotations in 3-space and equation 17 from Markley [67] to average the

measurements. Because of the assumption that the user’s viewpoint is aligned to the calibration rays, the

coordinate frame change between the viewpoint and calibration ray, RV C , would be the identity (i.e. no

rotation) and has thus been omitted from Equations (3.1) to (3.3).

3.2 Adding Stereoscopic Support

Wagemakers, Fafard, and Stavness evaluated several 2D calibration patterns on spherical and cubic display

shapes [104]. We attempted to add stereoscopic support to this calibration approach by designing patterns in

3D with additional depth cues (see one example in Figure 3.2). We tested many iterations of 3D calibration

shapes using headset VR; however, several issues arose that kept them from being as intuitive and effective

as the 2D patterns. Headtracked stereoscopic rendering naturally requires two viewpoints, but, due to

the variance of human pupillary distance (PD), no general viewpoint model could be assumed at the start

of calibration that would work well for all users. An initial measurement step for PD could have been
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introduced, but this would have been counter-productive to the design of a quick, easy, and perceptually-

based calibration. In addition to this, visual distortions caused by incorrect perspective are more difficult

to interpret in stereo. When a 2D pattern is perceived in mono, straight lines bend and shapes squish

and stretch. Using a 3D pattern in stereo, an incorrect perspective can be perceived as a rotation of the

virtual content [69, 110] in addition to the distortions present in mono. Early testing suggested that the

perceived rotations made the calibration pattern ineffective at guiding a user to the intended perspective and

that viewing stereo from incorrect perspectives caused significant eye discomfort. To circumvent these issues

with non-headtracked stereo during the calibration phase, we presented the original 2D pattern in mono

and performed two calibrations at once by interleaving the left and right eye measurements. This produces

optimized calibrations for each eye and skips the PD measurement step.

Figure 3.2: A 3D shape consisting of textured cylinders with cubes attached to the end is shown

from the correct perspective (right) and an incorrect perspective (left). The distortion from incorrect

perspective in this 3D pattern is manifested as bent lines and stretched/squished cubes.

3.3 Improving Optimization

The viewpoint calibration optimization proposed by Wagemakers et al. was written in MATLAB and compiled

to a standalone executable for Windows [104]. This offered some portability and interoperability, however,

the executable depended on a bulky (800+ MB) MATLAB runtime and required data conversion between

processes. Since all of our development with FTVR displays used C#.NET 3.5+ in Unity software, we

reimplemented the optimizer in C# using the ALGLIB optimization library to increase portability and

interoperability with our codebase.

The MATLAB optimizer used the sequential quadratic programming (sqp) non-linear algorithm described

in Chapter 18 of Nocedal and Wright [75], which does not require a Jacobian matrix to be specified. However,

the ALGLIB optimizer used the Levenberg-Marquardt algorithm [72], which does require a Jacobian matrix.
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In total, the new optimizer required a vector of parameters x, lower and upper bounds for each parameter,

an objective function O(x), a Jacobian matrix JO, and an initial guess for each parameter. The parameters

remained the same as in the original formulation: XTD and dV H . The rotation of the transformation was

parameterized as a unit quaternion (q) and the depth (forward) component of the offset was not included

due to the depth invariance of the calibration method. This meant there were nine parameters in total. The

bounds of x were defined in a human readable configuration file for easy access.

x =< qwTD,qxTD,qyTD,qzTD,dxTD,dyTD,dzTD,dxV H ,dyV H > (3.4)

The objective function was implemented using an n-dimensional formulation of the distance between

point and a line in vector notation [48]. In this formulation, the points (p) are the measured head points

transformed into display space with offset correction (i.e. the estimate of the viewpoint) and the lines are the

corresponding calibration rays. Because the calibration rays originate from the display, only their direction

(n) is needed. This objective function satisfies the depth-invariance requirement because the calibration rays

are naturally coincident with the forward/looking direction, thus the point-line distance is unaffected by the

distance (depth) the point is measured at.

ni = dCiD/ ‖dCiD‖ (3.5)

pi = XTDdHiT + RCiDdV H (3.6)

O(x) =
∑
‖−pi − (−pi · ni) ∗ ni‖ (3.7)

We were not able to find a closed-form representation of JO, so the first row was generated using the

Symbolic Toolbox and jacobian function from MATLAB and saved as C# code. A dynamic loop was used

to generate the remaining rows based on the number of calibration point correspondences. The toolbox

expanded the vectors into component-based operations and just the first row was over 221,000 characters.

For the interested reader, the full Jacobian matrix be found in the Optimization.cs source file.

To achieve an accurate optimization that reduces the chance of finding local minima, the parameters must

be initialized close to the ground truth. The initial guess for qTD was computed using a least-squares fitting

of two 3D point sets [3]. The first set was the calibration points in D, and the second set was the measured

points in T, minus their geometric mean. The initial guess for dTD was computed using a least-squares

fitting of the measured points to the calibration rays. The derivation and explanation of this method can be

found in Section 5.3 and Appendix B of Wagemakers’ Master’s thesis [103]. The initial guess of dV H was

computed using the mean displacement between measured points and calibration rays.

3.3.1 Comparison

A synthetic test was designed to compare execution time and error between the MATLAB and ALGLIB

optimizers. Time was measured in milliseconds (ms) and included the time it took for each optimizer to
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terminate with a result. Both optimizers were set to the same maximum number of iterations (1500).

MATLAB had a disadvantage with respect to time because it had to be called as an external process that

uses file I/O to transfer data, whereas, ALGLIB could be called from our C# environment. Errors were

measured as the distance (cm) between ground truth and estimated displacements or as the angle (◦) between

ground truth and estimated rotations. Optimizers were tested with 100 randomized, simulated calibrations

that added uniform noise – ±0.5 cm up/right and ±5 cm forward in the viewer’s frame of reference – to

each calibration correspondence. The plots in Figure 3.3 indicate that the ALGLIB optimizer is consistently

faster, more accurate, and produces fewer outliers.
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Figure 3.3: Violin plots with inset box plots of optimizer performance vs. optimizer type.

3.4 Viewpoint Model Transformations

After a perceptual calibration is completed, the estimated parameters must be used to transform the stream

of headtracking data, so that the viewpoint corresponds with the viewer’s eyepoint rather than the tracked

point. The following subsections describe how to apply this transformation depending on the capabilities of
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the headtracking system and calibration.

3.4.1 Position Only

When an interactive visual calibration is performed using a 3DoF tracking system, such as the Microsoft

Kinect, orientation is not provided, so the user’s gaze must be assumed. During calibration, patterns guide

the user to look down a known calibration ray which gives a good approximation of their gaze. However,

after calibration, this approximation is no longer possible because the user may direct their gaze anywhere

they wish. This makes determining the eyepoint difficult because the coordinate frame in which the offset is

defined – the user’s gaze – is unknown. Even if we assume that a user would always be looking at the center

of the display with their head upright, we would still be unable to compute the gaze because the eyepoint

location is unknown. This creates a cyclic dependency between eyepoint and gaze.

We formulated a geometric solution to this problem by using the constituent components of the offset

(dHV : < ox,oy,oz >) by observing that each component had a distinct effect on the relationship between

the eyepoint and head point in spherical coordinates.

Observation 1: ox affects θ and r. The azimuthal angle (γ) between the head point and eyepoint can be

isolated by projecting the components of the head point onto the XZ-plane of D. With the XZ-distance (a)

and ox known, γ can be solved.

a = ‖(hx,hz)‖ (3.8)

γ = sin−1 (ox/a) (3.9)

θ = tan−1 (hz/hx)− γ (3.10)

Observation 2: oy affects φ and r. The polar angle (ψ) between the head point and eyepoint can be

isolated by projecting the components of the head point onto the YZ-plane of V. However, since the eyepoint

is unknown at this time, the location of this plane was computed by rotating the YZ-plane of H around the

y-axis of D by γ. With the YZ-distance (b) and oy known, ψ can be solved.

b = ‖(hx cos γ,hy,hz cos γ‖ (3.11)

ψ = sin−1(oy/b) (3.12)

φ = cos−1(hy/b)− ψ (3.13)

Observation 3: oz affects only r. The effect that each component has on r is accounted for here by

rotating b by ψ towards V and rescaling using oz.

r =b cosψ + oz (3.14)
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Finally, the Cartesian coordinates of dV D can be computed by converting from spherical coordinates.

dV D =


r cos θ sinφ

r cosφ

r sin θ sinφ

 (3.15)

D

V h

a

ox

γ
θ

oz

b

oy

ψ

φ

Figure 3.4: A geometric representation in (D) of the unknown viewpoint (V) coordinate frame, the

measured head point (h), the components (< ox,oy,oz >) of the offset (dHV ), and the spherical

coordinates being computed (θ, φ, r). Here, γ and ψ represent the azimuthal and polar effects of the

offset, respectively. Highlighted in green are the right-angled triangles that exist when the viewing

assumptions are met.

In these equations, θ is the angle measured from the z-axis (forward) of D, φ is the polar angle from the

y-axis (up) of D, r is the distance from the origin D, and < hx,hy,hz > are the components of dHD. Refer

to Figure 3.4 for an illustration of the problem and relevant variables.

3.4.2 Position and Orientation

When an interactive visual calibration is performed using a 6DoF tracking system, such as an OptiTrack

or Polhemus Fastrak system, the calibration provides all the necessary parameters needed to represent the

eyepoint and gaze relative to the display. Eyepoint position and rotation can be computed using the following

transformations.
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RV D = RTDRHTRV H (3.16)

dV D = XTDdHT + RV DdV H (3.17)

3.5 Realtime Refinement of Calibrations

Interactive visual calibration provides faster and more accurate calibrations than manual; however, even

with the extensions described above, this method is not suitable for several common FTVR use cases. If a

new user attempts to use a previous individual’s calibration, the display-to-tracking transformation will be

correct, but the head-to-viewpoint transformation(s) may be inaccurate due to differences in PD between

the users or how the tracker is affixed. Instead of recalibrating the entire system from scratch with this new

user, it would be convenient to use a calibration method that only updates the parameters that changed: the

user-dependent parameters. Another use case can occur when a calibration is very accurate, but still contains

noticeable distortion. It would again be convenient to perform small adjustments to the calibration where

visual imperfections are noticed, instead of recalibrating from scratch. Given these common situations, we

propose a realtime, perceptual calibration technique that uses an already existing calibration to apply small

corrections anywhere the user notices imperfections.

In addition to head-tracking for viewpoint rendering, FTVR displays often track handheld objects to

control virtual pointer into the 3D scene or act as manipulation tools for 3D content [93, 94, 95]. Similar to

the previous discussion of viewpoint models, tracked objects require a calibration to correct for any differences

in position or rotation between the tracking sensor and object origin. Interactive viewpoint calibration is not

compatible with handheld objects; the perceptual patterns require a viewpoint, which handheld objects do

not have. The same realtime correction approach for viewpoints can be performed to visually align a physical

object/pointer to the virtual object/pointer rendered in the scene.

3.5.1 Viewpoints

For realtime viewpoint corrections, the user would be provided with the following instructions.

1. Walk around the display to look for visual imperfections. The manifestations of the imperfections

depend on the display shape. For example, on a spherical display, distortions are most evident near the

edges of the display, while on a box display, distortions are most evident across the seams of screens.

2. When a visual imperfection is found, stand comfortably and freeze the virtual content in place. (See

Figure 3.5 (b).)

3. Make small movements with your head to alter your perspective until the virtual content has the least

distortion. (See Figure 3.5 (c).)
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4. Repeat steps 1-3 as many times as needed.

(a) Exact calibration is per-

ceived as consistent lines, an-

gles, or shapes from all per-

spectives.

(b) Miscalibration is perceived

as the distortion of lines, an-

gles, or shapes.

(c) The virtual content is

frozen and the user moves their

perspective to minimize distor-

tion.

Figure 3.5: The shapes, lines, and angles of the virtual content are affected by a user’s calibration.

The calibration can be exact (a) or miscalibrated (b). The calibration from (b) can be corrected to

(a) by using the change in a user’s position and rotation between (b) and (c).

3.5.2 Handheld Objects

For realtime handheld object corrections, the user would be provided with the following instructions.

1. Manipulate the handheld object and observe the relationship between it and its virtual counterpart.

2. When there is a perceptual mismatch between them, stand comfortably and freeze the virtual content

in place. (See Figure 3.6 (b).) When using a tracked pointing device, the user may perceive a mismatch

of the targeting direction between the handheld and virtual pointers; it may seem like the handheld

pointing device is pointed accurately while the virtual pointer is not (or vice versa).

3. While remaining at the same perspective, move the handheld object into perceptual alignment with its

virtual counterpart and unfreeze the virtual content. (See Figure 3.6 (c).)

4. Repeat steps 1-3 as many times as needed.
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(a) Exact calibration is per-

ceived as perfect alignment be-

tween the real and virtual ob-

jects.

(b) Miscalibration is perceived

as misalignment of the real and

virtual objects.

(c) The virtual content is

frozen and the handheld object

is moved into alignment.

Figure 3.6: A real object (purple) and virtual object (blue) are connected through a calibration. The

calibration from (b) can be corrected to (a) by using the change in the handheld object’s position and

rotation between (b) and (c).

3.5.3 Updating the Calibration

Performing this calibration adjustment with a viewpoint or handheld object produces a difference in rotation

and position between the start and end of a sample. An arbitrary number of samples (n) may be taken

and the calibration can be updated using the mean sample values. We assume, and present some results

in Chapter 5, that perceptual misalignment from errors in user-dependent parameters will guide the user

towards the correct perspective in a consistent (in their frame of reference) direction. This produces samples

that are numerically close to each other. For example, if a viewpoint calibration caused the perspective to

render 5 cm to the right of the eyepoint, then this calibration procedure should guide the user 5 cm to the

right, regardless of where a sample is taken.

We define the ith sample as the rotation (RGFi) and translation (dGFi) of the realtime coordinate frame

(G) in the frozen coordinate frame (F ).

RGFi = RDFRGD (3.18)

dGFi = XDFdGD (3.19)

We use the functions f and g to compute weighted means of the rotations and translations, respectively.
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The user-dependent parameters are then updated by adding the mean sample values to the current values.

R̂V H = f


RGF1

RGF2

...

RGFn

RV H (3.20)

d̂V H = g


dGF1

dGF2

...

dGFn

 + dV H (3.21)

We used uniform weights; however, as future work, it could be useful to weight each sample based on a

user rating of perceptual misalignment.
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4 Virtualization of FTVR

This chapter describes the multi-screen FTVR rendering system from Fafard et al. [39] and focuses on

the steps taken to implement a virtual FTVR display within a virtual reality environment. The objectives

of the virtual output were to provide a convenient output for desktop or headset VR when a physical FTVR

display was unavailable, to offer a preview inside the development environment for easier content design and

testing, and to provide a perfectly calibrated FTVR experience for perceptual and performance studies. To

implement accurate virtual simulations of physical FTVR displays, each component of the physical display

– projectors, screens, surfaces, and coordinate frames – was modeled and colocated alongside the virtual

content. In addition to this, we reused as much of the physical rendering pipeline as possible to reduce code

management and to increase the accuracy of the simulation.

Figure 4.1: Projectors mounted underneath a physical FTVR display (A, left) render content onto a

spherical surface. The same process can be replicated in a virtual environment (B, right) with virtual

projectors (not visible) and a spherical mesh.
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4.1 Rendering Overview

A flexible rendering system was designed to support stereoscopic rendering, multiple viewing modes depending

on the number of viewers, and physical or virtual outputs (see both outputs in Figure 4.1). The rendering

system was capable of responding to changes in stereo and viewers in realtime and changes in display output

through a configuration file loaded at startup. The rendering overview of an image is shown in Figure 4.2.

This rendering system features a two-pass approach for rendering perspective-corrected images: 1) render

the image(s) from a viewer’s perspective(s), and 2) render the pixels on the output display.

During the first pass, perspective images for each viewpoint are rendered into a RenderTexture using a

CoRoutine — a repeating function — that executes immediately after the physics, input, and game logic

updates every frame. The system supports one fully stereoscopic viewer using two eye passes or two mono-

scopic viewers using a single eye pass each. If there are no tracked viewers, then a cubemap camera rig is

used to render the virtual content into a cubemap RenderTexture.

Frame starts

Physics, Input, and Game Logic Update

Viewers (n)

OnPreEyePass()

RenderEyeTexture

RenderFlatTexture

Output

OnRenderImage() OnPreRender()

RenderDisplayEye

Render Frame

n = 1

n = 2
n = 0

VirtualPhysical

Figure 4.2: The OnPreEyePass() event occurs just before an eye texture is rendered and is used

for near-surface clipping. The OnRenderImage() event occurs when the physical display renders. The

OnPreRender() event occurs just before the display (desktop monitor or VR headset) renders. In

stereoscopic rendering, a frame is rendered for each eye following the diagram.

The second pass is slightly different between physical and virtual outputs. For a physical output, projectors

or screens are joined together as a single display – a mosaic – and an OnRenderImage() event occurs during

the rendering CoRoutine; this event triggers the rendering system to sample the appropriate RenderTexture

and build the mosaic image using a 2D texture pass. For a virtual output, an OnPreRender() event occurs

when the display output (either a desktop monitor or VR headset) begin to render a frame; this event triggers

the rendering system to sample the appropriate RenderTexture and project the pixels onto the virtual display
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surface. The ordering of these events ensured that the virtual display was updated prior to the display for

proper frame syncing (see Figure 4.2).

4.2 Planar Display Screens

FTVR rendering pipelines that output to flat screens, such as used in cubic FTVR displays [88], often use

an off-axis projection to render a perspective-correct image. This approach also has the ability to clip the

virtual content at the screen boundary by placing the near clip plane coincident with the screen.

The following off-axis projection matrix was used as defined in Unity documentation [97]. Let l, r, t, b be

the left, right, top, and bottom offsets and n, f be the near and far plane distances that define the projection

frustum.

P =


2n/(r − l) 0 (r + l)/(r − l) 0

0 2n/(t− b) (t+ b)/(t− b) 0

0 0 −(f + n)/(f − n) −2fn/(f − n)

0 0 −1 0

 (4.1)

This projection was used for both planar display surfaces and mobile display screens since they both acted

as “windows” into the virtual world. A function was implemented that could compute the necessary frustum

parameters given the screen size (sw, sh is width and height respectively), position (s), and orientation in the

virtual environment. Since the camera must be orthogonal to the screen, the camera’s (c) axes (cf , cr, cu is

forward, right, and up respectively) were used. The far plane distance (f) was assumed to be known. The

equations follow.

n = ‖s− c‖ · cf (4.2)

r = ‖s− c‖ · cr + sw/2 (4.3)

l = ‖s− c‖ · cr − sw/2 (4.4)

t = ‖s− c‖ · cu + sh/2 (4.5)

b = ‖s− c‖ · cu − sh/2 (4.6)

It is also possible to use the more general, two-pass approach described in the next section with flat

screens.

4.3 Projected Surfaces

Following the camera calibration and 3d reconstruction model from OpenCV [23, 76], a projector with intrinsic

and distortion parameters was implemented using vertex and fragment shader programs. The projector was

30



modeled as the inverse of the OpenCV camera model and was injected into the rendering pipelines by using

the Unity Projector component. This component has programmable vertex and fragment shaders that run

during a transparent pass late in the pipeline. The extrinsic properties of the projector were modeled by the

position and orientation of the component in the scene, which make up the view matrix (V ). The intrinsic

parameters – focal lengths (fx, fy), principle point (cx, cy), and skew (α) – were modeled by the projection

matrix (P ) of the component using the following equation.

P =


2fx/w 2fy tanα 2cx/w − 1 0

0 2fy/h 2cy/h− 1 0

0 0 −(f + n)/(f − n) 2fn/(n− f)

0 0 −1 0

 (4.7)

Where w and h are the width and height of the projector image in pixels, respectively, and f and n are the

far and near plane distances, respectively.

The distortion equations of the camera model are used to generate distorted pixel positions (û) from

projector pixel positions (u). The distorted pixel positions (û) are computed as follows.

dr = u(1 + k1r
2 + k2r

4 + k3r
6) (4.8)

dt =

2p1uxuy + p2(r2 + 2u2x)

2p2uxuy + p1(r2 + 2u2y)

 (4.9)

û = dr + dt (4.10)

Where radial distortion coefficients (k1, k2, k3) form the radial component (dr) and tangential distortion

coefficients (p1, p2) form the tangential component (dt) and r is the magnitude of u.

Luminosity of a projector was simulated by computing the apparent brightness for each projected pixel

using a radiometric model. This model assumes that the projector is a point light source that emits light

equally in all directions. The apparent brightness (B) was computed as follows.

B =
L

4πd2
(4.11)

Where L is the luminosity of the projector and d is the distance to the fragment.

Occlusion of projection surfaces was implemented using a two-pass rendering approach for the projectors

that is similar to two-pass shadow mapping, but the difference being that both passes occur from the projec-

tor’s point of view. On the first pass, the depth of the closest fragment is written to a texture. On the second

pass, the texture is sampled using standard shadow map sampling. A fragment is rejected if the depth is

larger (i.e. the fragment was occluded) than the value in the texture.
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Figure 4.3: A mapping between 2D projector pixels to 3D surface positions on a non-planar sur-

face (Sphere) using extrinsic, intrinsic, distortion, and luminosity equations is accomplished using

programmable vertex and fragment shader programs.

To determine the final colour and position of projected pixels, the intrinsic parameters get applied in the

vertex shader using the view (V ) and projection (P ) matrices and the distortion coefficients, luminosity, and

occlusion rejection in the fragment shader.

The image source of the virtual projector can be specified as either a 2D texture for static image projection

(e.g. Figure 4.3) or a RenderTexture – a texture coupled to a render source – for dynamic image projection.

Stereoscopic output is also supported by syncing the projection render pass with the appropriate left/right

stereoscopic output pass using a callback triggered by a rendering event. Virtualizing projectors in this

manner meant that we could reuse the code that generates prewarped, perspective-corrected images for real

projectors on a physical spherical display.

A step-by-step overview of projector prewarping is illustrated in Figure 4.4. In the first step, an image of

the virtual content – as seen from the viewer’s perspective – is stored in a RenderTexture by rendering from

a camera placed at the tracked eyepoint. There would be a separate RenderTexture and camera for each

viewpoint in the case of multi-viewer or left/right stereo rendering. In the second step, the prewarped image

source is created by sampling the RenderTexture in a shader program using a projector-to-surface mapping

that maps 2D projector image pixels to 3D display surface positions. These per-projector mappings are

generated from a calibration phase during the configuration and setup of the display. For physical displays,

the mappings are created using the automatic multi-projector calibration approach from Zhou et al. [118]. For

virtual display, a much simpler approach was possible because the position and orientation of the projectors
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and display are known a priori due to the fact that they are colocated in the virtual environment. Using this

information, plus the projector intrinsics, we implemented a virtual calibration that was capable of outputting

in the same format as the physical calibration (see Appendix A for details).

Figure 4.4: Overview of our rendering pipeline. We generate a view frustum for the user’s viewpoint

of the scene (A) and render to an off-screen texture (B). The mapping from projector-space to sphere-

space is used to non-uniformly sample the rendered texture to generate the prewarped image for each

projector (C, two projectors shown). For illustration, the prewarped image (C) is coloured to show

different projector regions, including: magenta regions that are not visible on the spherical surface

(because they do not pass through the bottom hole of the sphere), yellow regions that are visible

on the spherical surface, but not from the user’s current viewpoint, and black regions that are alpha

blended for a seamless transition in the overlap between projectors.

Source: Fafard et al. [39]

To maximize sampling quality from the RenderTexture in the first stage, a custom camera frustum was

used that tightly fit to a specified bounding region – the volume of the display. This ensured that pixel

density remained high regardless of viewing angle or distance. An illustration of the frustum can be seen in

Figure 4.4 (top left (A)). Depending on the particular setup of the system one of two frustums were used.

When rendering in non-stereo or using 3DoF tracking data, a symmetric frustum is constructed using the
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assumption that the camera is facing the display with no roll. The field of view (f), far plane distance (a),

and near plane distance (b) can be computed using the following equations.

f = 2 sin−1 r/d (4.12)

a = d+ r (4.13)

b = d− r (4.14)

Where r is radius of the display and d is the distance from the display. Using these parameters, the final

projection matrix is generated using the Matrix4x4.Perspective function from the Unity API. We called

this approach the LookAt frustum because it requires that the viewpoint be looking at the origin of the

display (see Figure 4.5).

When rendering in stereo, special care must be taken when deciding on what kind of frustum to use. The

differences in stereo image pairs affect the perceived depth of objects and depending on the approach may

hinder the 3D effect. For an in-depth explanation of stereo image pairs and how to generate them correctly,

we recommend these excellent resources from Bourke [20, 21]. If we were to use the above frustum for

stereoscopic rendering, then we would be using the toe-in approach for stereo image pairs which introduces

vertical parallax which will cause increased eye discomfort. An off-axis frustum that fit the spherical display

was implemented so that no vertical parallax would be introduced. This offered the most comfortable viewing

experience for stereoscopic rendering while still maintaining pixel density of the RenderTexture. Figure 4.6

shows the camera position (dV D) and orientation (l) relative to the display all projected onto the horizontal

plane; circle-circle intersection was used to compute tangential points on the display to compute tightly fitting

left/right (l/r) frustum offsets. The same approach was used to find the top/bottom (t/b) plane offsets. The

near plane offset (n) is the magnitude of the displacement vector between the camera and the display along

the forward direction of the camera and far plane offset (f) is the near plane plus the diameter (2r) of the

display. These offsets were used with the same off-axis projection matrix defined in Equation (4.1).
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θ θ

Figure 4.5: An illustration of the toe-in, on-

axis frustum is outlined in red. The field of view

of the projection matrix (2θ) is computed using

one of the right-angled triangles made from the

radius (r) of the display and the distance (h)

from the display.
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r

h
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β

Figure 4.6: An illustration of the off-axis frus-

tum is outlined in red. When a user looks away

from the display at an angle (β), the near and

far planes of the frustum remain perpendicular

to the viewing direction (l). The midpoint circle

(m) is used to compute the tangential intersec-

tion points (green marks) which are used to de-

fine the offsets for an off-axis projection matrix.

One problem that we encountered when using these display-constrained frustums is that the image on the

display would become pixelated when the user was very close to the display. This was due to the fact that

the frustum was always fitting the display even though the user could only see a small portion of the display.

This problem was alleviated by clamping the horizontal and vertical field of views to reasonable maximums.

Based on human retinal field of views 150 and 110 for horizontal and vertical respectively [85], we defined

the clamping limits to be slightly larger than these values. They were chosen to be larger to account for

untracked eye movements and to prevent the user from seeing portions of the display that get clipped (i.e.

shouldn’t be visible to the user) that may still be visible due to calibration error. We called this the Off-axis

frustum since it uses an off-axis projection matrix.

We also included a default, or fallback, frustum for degenerate cases. If there was ever an error when

computing one of the above frustums, a fixed 75◦ field of view frustum was used. We called this frustum the

Fixed frustum. A visual comparison of frustums is demonstrated in Figure 4.7.
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Figure 4.7: A comparison of three frustums when rendering a perspective-corrected image to a

texture. This is an exaggerated case of when the viewpoint is extremely close to the display to

illustrate the difference between display coverage and resolution of the render texture. Blue and black

areas represent clipped regions on the display surface and ideally would not be visible to the user. The

View row shows what the image would look like to the viewer. The RenderTexture row shows the

stored image. The Display row shows the reprojected image on the display surface from a different

perspective. Fixed offers the highest resolution by using a fixed 75◦ field of view, LookAt offers the

most coverage at the cost of the lowest resolution by fitting the frustum around the entire display, and

Off-axis offers a balance of resolution and coverage by clamping the horizontal and vertical field of

views to 150◦ and 110◦ respectively.

The two-pass rendering approach that we used is simple to implement and offers the flexibility to render

any practical shape of volumetric FTVR display. Common FTVR display shapes (e.g. boxes, spheres,

and cylinders) are easy to implement using quads and screens for flat displays or high polygon objects and

projectors for curved displays. If sophisticated enough calibration methods are used, then any realistic shape

could be used as a display, like the bunny-in-bunny display in Figure 4.8.
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(a) When looking from the correct

perspective, a bunny can be seen in-

side a bunny-shaped display.

(b) When looking from an incor-

rect perspective, you can see that the

perspective-corrected image is pasted

onto the surface of a bunny-shaped dis-

play.

Figure 4.8: An example of a more complex, volumetric FTVR display in the shape of a bunny is

rendered using the same shaders as any other projected FTVR shape. This virtual bunny display is

composed of 2,710 faces and renders in realtime (120+ fps).

4.4 Near-surface Clipping

The projection frustum defines six distinct planes (top, bottom, left, right, near, and far) that are used

to clip the geometry in the scene so that only the objects that are within the frustum are processed and

rendered. Standard depth testing will process fragments (potential pixels) and choose only the closest one to

the camera to render. The surface of an FTVR display may not match the near-plane in shape or position.

For example, when using curved display surfaces and having virtual content that is not contained within the

display, then the content may be rendered with front-depth — due to the space between the surface and

near-plane — and be clipped at an unnatural angle; this example is illustrated in Figure 4.9. Front-depth

is not necessarily a bad thing though, often, it is intended to provide an effect that the object is in front

of (or coming out of) the display. However, special care must be taken when rendering with front-depth to

ensure that edges or seams of the display do not interfere with the placement of the virtual content otherwise

the effect will be broken by frame cancellation — “near-edge cut-off for objects with front depth” [81] (see

Figure 4.9 B for an example). With a headtracked non-planar display and unlimited viewing angles, it is

impossible to place virtual content with intended front-depth without causing frame-cancellation from some

viewing angles. Harish and Narayanan’s multi-facet rendering approach [49] could perform per-facet culling

of geometry, however, using this approach with a perfectly curved display surface could introduce noticeable
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clipping discontinuities depending on the level of polygonization of the display surface.

Figure 4.9: An illustration of a virtual object that exceeds the display volume and extends outside

of the display surface (A). Renderings from the user’s perspective are shown with no clipping (B),

standard near-plane clipping with a display-constrained frustum (C), and near-surface clipping (D).

The green highlights in (D) show the intersection of the object with the display surface. The different

lighting in (D) is a result of the shader replacement procedure. The left edge of the display in (B)

disrupts the 3D effect and causes frame cancellation.

To expand the range of possible content for non-planar FTVR displays, we implemented a near-surface

clipping approach that would clip the virtual content right at the display surface, turn on backface rendering,

and highlight intersections to provide a more realistic crystal ball effect (see Figure 4.9 D). For per-fragment

surface-clipping, we needed the eye camera(s) depth of the display surface to perform an additional near-depth

rejection test. We added a render pass using the eye camera(s) on the OnPreEyePass event that rendered

the depth of the display surface — represented as a predefined mesh — to a depth only RenderTexture. To

add the rejection test to all rendered geometry, we used a technique referred to as shader replacement in

Unity documentation [96]. This technique replaces the shader programs of objects in the scene with a user

specified one.

While shader replacement technically worked for our purposes, it came with several disadvantages with

respect to content design. It was not possible to write a single shader that could replace all types of shaders.

For example, objects with custom shaders (common on the Unity Asset Store) could not be replaced accurately

since they deviate from the standard built-in shader. It was also not possible to clip particle effects at the

fragment level because they are typically billboarded objects that are rendered on a special pass. Thus,
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content with near-surface clipping had to be designed without particles and custom shaders to properly

render as intended.

4.5 Virtual FTVR Model

One advantage of a virtual FTVR setup is that one can precisely and deliberately control the visual cali-

bration. This control could be used to provide a perfectly calibrated FTVR display experience or to inject

specific visual errors into the display to evaluate how noticeable or problematic they are for user perception

or performance. Our VR testbed modeled each of the parameters from interactive visual calibration (see

Figure 3.1 from Chapter 3). Each parameter could take on one of three values depending on the particular

use case as follows:

• GroundTruth – The true, exact value of the parameter. Used to present a perfect calibration or as a

ground truth value for comparisons to estimated, computed, or recorded measurements.

• ErrorParameter – A user-defined specific error to add to the exact value of the parameter. Used to

inject synthetic or specific error into the system. Usually used to replicate an observed visual distortion

from a physical FTVR display.

• Approximation – An approximated value for the parameter. Used when testing or validating calibration

tools. The outputs of the calibration tools would get stored here and compared to GroundTruth

Figure 4.10: An illustration of ErrorParameter being used to simulate visual distortion of a 2D

pattern (top row) and a 3D object (bottom row) on a cubic display (left), a box display with seams

(middle) and a spherical display (right). The error added to the parameters is exaggerated for illus-

tration purposes.
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In addition to these three values, each parameter had an error measurement associated with it that

represented the difference between Approximation and GroundTruth. The way in which this error was

calculated depended on the type of the parameter; for positions, it was the norm of the displacement between

the vectors, and for rotations, it was the minimum geodesic distance between them as described by equation

φ3 from Huynh [54].

We used these model parameters to investigate shear distortion — “perspective distortion with viewpoint

changing” [81] — and classify the emergent visual distortions specific to display shape. We found with

planar screens, visual distortion was most noticeable around the seams of the display (see left two columns in

Figure 4.10) and with curved surfaces, the same error resulted in perceptually less visual distortion and was

most noticeable along the edges of the display (see right column in Figure 4.10). We used these observations

to design better perceptual calibration tools, such as the realtime refinement of calibrations as discussed in

Chapter 3.
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5 Virtual FTVR User Study of Viewing Condition

Video portrayals of spherical fish tank virtual reality (FTVR) displays convincingly depict a magical

“crystal ball” experience that can show virtual 3D objects and scenes inside. However, unlike the original

single-screen FTVR, these systems often omit stereo and instead rely primarily on motion parallax to provide

the 3D effect as the viewer moves around the spherical display. Since motion parallax is a monocular depth

cue, the FTVR display need only render a single perspective for the user as they move around. Rendering

with stereo (a perspective for each eye) requires special optics to keep the left eye from seeing the perspective

image intended for the right eye and vice versa. Implementing stereo also doubles the rendering cost, which

may impact the overall frame rate. The lack of stereo does not affect video footage of these displays, since

the view of a video camera is naturally monoscopic, but it is not clear how much the omission of stereo

degrades the in-person experience. The evaluation of 3D perception and interaction performance among

different viewing conditions is critical to guide future designs of spherical and similarly volumetric FTVR

displays.

FTVR displays can be constructed from inexpensive commodity components, while maintaining high

visual fidelity (bright, high resolution, etc.), making the technology practical and poised for widespread

adoption. Unlike room or headset VR, FTVR creates a 3D illusion that is situated within the real world.

This allows a user to easily transition between real-world information, traditional 2D displays, and virtual

information on the FTVR display. Mobile phone and headset augmented reality (AR) can also create the

illusion of virtual information on a tabletop, but because virtual imagery is overlaid on one’s view, the

experience is not physically tangible, whereas FTVR displays can be touched and held [88, 12]. The original

single-screen FTVR user studies showed that although the combination of head-tracking and stereo resulted

in the best user performance, head-tracking alone outperformed stereo alone for a range of 3D tasks, such as

path tracing and shape assessment [106, 1]. The result that parallax was a more effective 3D cue than stereo

was surprising, given that “3D” was (and still is) often considered synonymous with stereo viewing. This

early result in FTVR research has led many follow-on displays to de-emphasize the need for binocular depth

cues and omit stereo from their designs. Dropping stereo makes FTVR displays cheaper and easier to build:

stereo glasses or auto-stereoscopic lens overlays are not needed and inexpensive 60Ḣz screens or projectors

can be used. However, the design trade-off between ease of construction and perceptual fidelity has not been

evaluated.

In this study, we challenge the assumption of recent spherical FTVR systems: that stereo is less important

now that users can walk around the display and benefit from increased motion parallax. We simulate a
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spherical FTVR display within a VR environment, which allows us to carefully measure 3D performance

differences among viewing conditions, while controlling for all other factors, including calibration errors,

head-gear, and latency. Our simulated FTVR platform allows us to evaluate any display shape and form

factor. We focus on the spherical form factor in this study because it has been most widely adopted for

volumetric FTVR displays.

This study makes the following four research contributions: 1) We evaluated 3D performance on distance

estimation and 3D selection/manipulation with a spherical FTVR display for stereo vs. non-stereo viewing

conditions. Our results show that stereo provided significantly faster and more accurate performance across

a range of 3D tasks. 2) We evaluated noticeability and user preference of different viewing conditions for a

spherical FTVR display and found no strong user preference for the stereo-viewing condition. 3) We evaluated

a visual pattern-alignment scheme for viewpoint calibration with a spherical FTVR display under different

viewing conditions and found that stereo-viewing resulted in the most accurate viewpoint alignment and

that binocular-viewing was aligned, on average, to the mid-point between the two eyes rather than to the

dominant eye. Together, our results show that, contrary to the prevailing design of spherical FTVR displays,

stereo should not be neglected if 3D perception and task performance are a priority.

5.1 Experiment Design

We used our simulated FTVR display to evaluate the effect of viewing conditions on a range of 3D tasks,

including: visual pattern alignment [104], forced-choice viewing preference [1], and a series of point cloud

visualization tasks previously used for AR evaluation [5]. To reduce the likelihood of accidental user input

(e.g. a double-click), buttons were disabled immediately following a click and during the transition between

conditions.

5.1.1 Viewing Conditions

The primary independent variable used in all experiments is Viewing Condition with three levels (as illus-

trated in Figure 5.1). In Stereo, the FTVR display and headset render distinct images for each eye. In

NonStereo, the FTVR display renders one image the midpoint of the eyes and the headset renders to both

eyes. In Monocular , the FTVR display and headset render one image to one eye.
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Figure 5.1: An example, with exaggerated stereo disparity, of what the left and right eyes would

see in the Stereo (top), NonStereo (middle), and Monocular (bottom) viewing conditions. Note that

non-stereo rendering creates a perspective mismatch between the background 3D world and the display.

Source: Fafard et al. [37]

5.1.2 Participants and Procedure

We used a within-participant design so that all participants performed all three experiments. Experiments

were analyzed separately, so the order of experiments was the same for all participants, whereas the viewing

conditions and choice order were counter-balanced within each experiment.

Twenty four participants were recruited from a local university. Before starting the experiments, they re-

sponded to a questionnaire, performed an eye dominance test, chose which hand and corresponding controller

they would use, and underwent a stereo acuity test [44] in VR. A Virtual Reality Sickness Questionnaire [59]

(VRSQ) and general task questionnaire were interleaved between experiments to give participants a break

from VR and to monitor any ill effects. Three participants were excluded based on their results from the

stereo acuity test and VRSQ responses, leaving a total of 21. Of these participants, 13 had used VR before,

19 were right eye dominant, 21 used the right-handed controller, and 20 used VR less than once per week.
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5.1.3 Data Analysis

We investigated outliers — measurements with high variability within or across participants — to determine

if any should be excluded from our analysis, but we found no measurements that could be reliably explained

by system malfunctions or measurement errors. Significance values are reported in brackets for p < .05(∗),

p < .01(∗∗), and p < .001(∗∗∗) respectively. Numbers in brackets indicate mean (x̄), median (x̃), and standard

deviation (σ) of their respective measurement. P-values were adjusted using the expected proportion of false

discoveries amongst the rejected hypotheses [8, 9].

5.2 Experiment 1: Viewpoint Pattern Alignment

Figure 5.2: Pattern alignment task: the pattern starts distorted (left) and then the participant moves

their head left, right, up, or down to align their viewpoint so that the pattern appears to have straight

lines and circular rings (right).

Source: Fafard et al. [37]

FTVR requires rendering to the user’s viewpoint in real-time to provide the correct perspective as they

move around the display. Accurately calibrating the viewpoint to the display is important, otherwise the

3D scene appears distorted. Recently, a visual calibration method was proposed where a user aligns a 2D

pattern on the display by moving their head to minimize the visual distortion in the pattern [104]. However,

this method was evaluated for monoscopic viewing on a cubic display. It is not clear how well it works

for binocular viewing conditions, where the viewpoint should be defined in binocular non-stereo, and how

accurate viewpoint calibration needs to be in order to render convincing 3D scenes. We recreated the pattern-

alignment task within our simulated FTVR environment, which allows us to measure viewpoint error across

viewing conditions relative to the ground-truth eye locations provided by the VR headset.

Participants performed three trials with two dependent measures, Time and Error, for each ViewingCon-

dition. The order of conditions in this experiment was randomized for each participant.
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Our main hypothesis regarding viewpoint alignment were that:

• H1-1 Monocular level will be faster to align because, with only one eye receiving images, there is less

information to process;

• H1-2 NonStereo will have more variability because the pattern will never look perfect from both eyes;

• H1-3 NonStereo will have a mean measured viewpoint that is near the geometric mean of the eyes. This

hypothesis is motivated by assumptions made in previous work. The midpoint of the eyes (rather than

a single eye) has been assumed to be the most appropriate viewpoint for binocular NonStereo viewing

with FTVR [82, 90, 1, 88].

H1-1 and H1-2 followed from Wagemakers et al. [104] and observations made in our lab. H1-3 is based

on a common viewpoint model adopted by previous research [117, 104, 89, 88, 98, 90, 38].

5.2.1 Analysis & Results

The resulting times and errors for pattern alignment are shown in Figure 5.4.

Stereo Monocular NonStereo

Assumed Position(s) Mean Position(s) Starting Distance

Figure 5.3: The geometric mean (red) of measurements (blue/orange) is shown relative to the ground

truth (green). Calibrations were perturbed by 5 cm (black circles) at the start of each trial. Plots are

scaled to 6.3 cm pupillary distance.

Source: Fafard et al. [37]

An RM-ANOVA was performed followed by Tukey’s pairwise significance test. There was a significant (∗∗∗)

difference in means across levels for Error ( F (2, 40) = 13.8, p < .001 ), but not Time ( F (2, 40) = 0.71, p =

.497 ). The mean Error for Stereo ( x̄ = 3.3cm, σ = 2.2cm ) and Monocular ( x̄ = 4.1cm, σ = 3.4cm ) was

lower (∗ ∗ ∗) than NonStereo ( x̄ = 6.6cm, σ = 3.1cm ). Therefore, we reject H1-1 (Monocular is faster)

and accept H1-2 (NonStereo is more variable). A One-sample Wilcoxon signed-rank test was performed
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on the lateral (from the left eye towards the right eye) displacement of measurements (normalized to a 65

mm pupillary distance) to the midpoint of the eyes under the NonStereo condition. The displacement was

significantly (∗∗∗) closer to the midpoint than the left eye (V (µ < −16.25 mm) = 1687, p < .001 ) and right

eye ( V (µ > 16.25 mm) = 369, p < .001 ) with a 99% confidence interval of (−7.14 mm to 6.42 mm). The

geometric mean for NonStereo is closer to the center of the eyes than either eye (see Figure 5.3), therefore

we accept H1-3 (NonStereo is aligned to mid-point of the eyes).
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Figure 5.4: Mean Time and Error vs. Viewing Condition for the Pattern Alignment task. Error

bars represent the standard error of the mean, highlighted bars indicate significant best results, and

dashed lines indicate a significant difference.

In a follow-up questionnaire, 86% of participants agreed that the distortion in the pattern helped them

align the image and most participants stated that their strategy to align the pattern was to move their upper

body left/right or up/down until the lines were straight.
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5.3 Experiment 2: Subjective Preference

Figure 5.5: Subjective preference task: the participant was forced to move left and right to induce a

minimum amount of head motion before selecting their preference between a pair of viewing conditions.

Source: Fafard et al. [37]

Some use cases for FTVR displays do not involve an explicit 3D task, but rather attempt to convey a

compelling 3D impression or experience. For example, an FTVR display could be used to exhibit high fidelity

3D scans of an artifact, which would bypass the need to travel to or exhibit the original artifact. Because

of this use case, we were interested in assessing the general spatial impression and subjective preference of

different viewing conditions on a spherical display using methodologies from flat screen FTVR studies [1, 107,

108]. In addition to the levels already described, we added the following variants where the viewpoint was

rendered to the dominant (D) or non-dominant (ND) eyes: NonStereoDominant , NonStereoNonDominant ,

and MonocularNonDominant . In this experiment, participants were instructed to pay close attention to how

3D the scene appeared and to notice any perceived movement of the scene coupled to head movements. They

were instructed to choose the condition that appeared most 3D and perceived with the least head-coupled

movement. We also enforced head movement for each pair by requiring participants to cross two virtual

bars in order to proceed (see Figure 5.5). Once a participant had crossed the bars on the second condition,

buttons appeared that allowed them to record their preference. Early pilots of this experiment showed that

repeated toggling between viewing conditions was disorienting; to minimize this disorientation, participants
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Monocular NonStereo Stereo All

Monocular - 50% 32.1% 41.0%

NonStereo 50% - 52.4% 51.2%

Stereo 67.9% 47.6% - 57.7%

Table 5.1: View condition preferences: the row label was preferred X% of the time over the column
label, e.g., Stereo was preferred 67.9% of the time over Monocular .

Source: Fafard et al. [37]

were given one pair (AB) of conditions to inspect at a time and switched viewing conditions only once per

pair. There were 15 pairs of conditions (AB) and 30 when the inter-pair order were reversed (AB to BA).

To counterbalance inter-pair ordering, we split participants into AB and BA groups. The order of pairs was

randomized and inter-pair order followed the AB or BA sequence with respect to the participant’s group.

Our main hypothesis regarding user preferences were that:

• H2-1 Stereo will be preferred over all other levels. This condition provides the most depth cues, thus

the best visual fidelity, so it should be the most preferred;

• H2-2 Binocular levels (Stereo, NonStereo) will be preferred over Monocular because closing or blocking

one eye will be uncomfortable. There are not many examples of monocular viewing in FTVR research,

and we found it uncomfortable during preliminary testing.

5.3.1 Analysis & Results

A recording error resulted in the loss of seven of the participant’s preferences; however, we maintained group

counterbalancing with the remaining participants. There were inconsistent judgments within and across

participant responses for the variants related to eye dominance; therefore, these variants were summed with

their corresponding parent level, as reported in Table 5.1. Data did not meet the minimum number of agreeing

judgments necessary to establish significance using a two-tailed Paired preference test [83]. Therefore, we

reject H2-1 and H2-2.

In a follow-up questionnaire, 90% of participants agreed that, in at least one condition, the statue looked

3D and 86% agreed that the statue seemed to remain physically fixed (i.e. no evidence of floating). Between

conditions, 71% of participants agreed or strongly agreed that the change in 3D appearance was noticeable

and 62% agreed or strongly agreed that there was noticeable floating.

5.4 Experiment 3: Point Cloud Performance

To assess 3D perception and interaction performance, we followed a recently proposed set of tasks for explo-

ration of 3D visualizations in AR [5]. The tasks featured structured point clouds because they are commonly
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used to represent 3D data (e.g. data produced by 3D scanners). The authors described parameters to gen-

erate the point clouds so that the overall density, number of clusters, and size of the points were appropriate

for each of the tasks. We adopted these same parameters, but adjusted the size of the points because we used

a much larger display. We chose three tasks relevant in a FTVR setting: perceptual distance estimation,

target selection with occlusion, and 3D object manipulation. The tasks differed mainly in the amount of

interaction with the virtual content, from a minimum in the Distance task to a maximum in the Manip-

ulation task. In the Distance task, participants were asked to judge which pair of points (red or yellow)

had the smallest distance between them; in the Selection task, they were asked to select four target points

that were highlighted red; and in the Manipulation task, they were asked to align a semi-transparent cutting

plane to intersect three coplanar clusters of red points (which turn blue when intersected). Participants were

instructed to prioritize speed over accuracy for all tasks. They performed 3 training trials followed by 10

recorded trials for each viewing condition and task. The order of tasks remained fixed so that participants

could practice and build up their expertise with the interaction tool. Participants were told that they could

move around the front 180◦ of the display as much as they would like, especially if they found that their

view was occluded by irrelevant points. We included a reflective surface on the virtual display to ensure that

there was a clear separation between the VR and virtual FTVR environments.

Participants performed 10 trials with two dependent measures, Time and Error, for each ViewingCondi-

tion. Within each task, the point clouds were generated from the same parameters using a pseudo-random

generator to distribute the points. Primarily due to the occlusion of important points, some point clouds were

more difficult than other. To control for the variation in measurements due to relative difficulty, PointCloud

was used as a blocking variable. The order of tasks was the same for each participant, but the viewing

condition order in each task was counterbalanced by splitting participants into three groups (ABC, BCA,

CAB).
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Figure 5.6: Distance task (left): judge which pair of points (red or yellow) had the smallest distance

between them. Selection task (middle): select all four red cubes. Manipulation task (right): move and

rotate the semi-transparent cutting plane so that it intersects the three coplanar clusters of red points

(which turn blue when intersected).

Source: Fafard et al. [37]

Our main hypothesis regarding user performance were that:

• H3-1a Stereo will have the lowest completion time because of its additional depth cues;

• H3-1b Stereo will have the lowest error because of its additional depth cues;

• H3-2 Monocular will have lower mean error than NonStereo because a single accurate view into the

scene is better than two inaccurate views;

• H3-3a More head movement will be observed in non-stereo levels (Monocular , NonStereo) because

motion parallax is needed for depth cues;

• H3-3b More head movement will result in better task performance in non-stereo levels (Monocular ,

NonStereo) because of the additional motion parallax.

These hypotheses were based on the combination of previous research in flat FTVR [106, 107, 108], more

recent research with volumetric FTVR [98, 104, 117, 38], and observations made using the simulation system

and various display shapes.

5.4.1 Analysis & Results

Data did not meet the normality and homoscedastic assumptions for using ANOVA. A Friedman ranked sum

test was performed followed by an Eisinga, Heskes, Pelzer & Te Grotenhuis all-pairs test [36] for

pairwise significance testing. The distributions of values for each group had a similar shape and spread for

both Time and Error for all tasks. Mean completion times and task errors are shown in Figure 5.7.

Distance: There was a significant (∗ ∗ ∗) difference in median values across groups for Time ( χ2(2) =

16.8, p < .001 ) and a borderline significant difference (∗) in Error ( χ2(2) = 6, p = .05 ). The median Time
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for Stereo ( x̄ = 3.7s, σ = 0.5s ) was lower (∗ ∗ ∗) than NonStereo ( x̄ = 5.2s, σ = 1.0s ) and lower (∗) than

Monocular ( x̄ = 4.7s, σ = 0.6s ).

Selection: There was a significant (∗ ∗ ∗) difference in median values across groups for Time ( χ2(2) =

18.2, p < .001 ) and (∗) Error ( χ2(2) = 8.6, p < .05 ). The median Time for Stereo ( x̄ = 6.0s, σ = 0.8s )

was lower (∗∗∗) than NonStereo ( x̄ = 11.5s, σ = 1.4s ) and lower (∗) than Monocular ( x̄ = 9.7s, σ = 1.7s ).

The median Error for Stereo ( x̄ = 1.8, σ = 0.8 ) was lower (∗) than Monocular ( x̄ = 3.8, σ = 1.3 ).

Manipulation: There was a significant (∗∗∗) difference in median values across groups for Time (χ2(2) =

14.6, p < .001 ), but not Error (χ2(2) = 5.6, p = .061 ). The median Time for Stereo ( x̄ = 11.7s, σ = 4.0s )

was lower (∗∗∗) than NonStereo ( x̄ = 15.3s, σ = 4.7s) and lower (∗) than Monocular ( x̄ = 14.4s, σ = 4.0s).

Given the results from all tasks, we accept H3-1a (Stereo is fastest), partly accept H3-1b (Stereo is most

accurate), and reject H3-2 (Monocular is more accurate than NonStereo).
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Figure 5.7: Mean Time, Error and Head Speed vs. Viewing Condition grouped by Task. Error bars

represent the standard error of the mean, highlighted bars indicate significant best results, and dashed

lines indicate a significant difference.

Source: Fafard et al. [37]

Head Movement Magnitude: A two-way ANOVA was performed to find any main effects or interactions

between Viewing Condition and Task using Head Speed. There was a significant (∗ ∗ ∗) main effect for Task
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( F (2, 180) = 44.3, p < .001 ), but not Viewing Condition ( F (2, 180) = 0.48, p = .62 ). There were no

significant interactions between Task and Viewing Condition. Therefore, we reject H3-3a (NonStereo has

more head movement).

Head Movement and Performance: Mean speed (m/s) of the VR headset was used to quantify

head movement per Viewing Condition. An analysis of covariance (ANCOVA) using type II sum of errors was

performed to examine interactions between Head Movement and Time/Error within the Viewing Conditions.

A significant (∗∗) difference was noted in the intercepts among levels for Time (F (2, 59) = 7.7, p < .01) in the

Selection task and the maximal R-squared value across all tasks and measures was r2 = 0.3482. Therefore,

we reject H3-3b (Head movement improves accuracy).

5.5 Discussion

Overall, our evaluation of viewing conditions for spherical FTVR suggests that users did not have a strong

subjective preference for stereo viewing, but it did improve either their speed or accuracy for all tasks

performed.

5.5.1 Virtual Reality Sickness Questionnaire

The majority of participants (14+) noted no effects on the VRSQ through all experiments, except for the

last: roughly half of the participants noted slight or moderate effects (Eyestrain, Fatigue, or General Discom-

fort). Three participants noted severe effects (Blurred Vision or Difficulty Focusing) in the first and second

experiments, however, these effects were reported as less than severe by the last experiment.

5.5.2 Effectiveness of Viewpoint Calibration with Spherical Displays

Previous work [104] suggested that the visual distortions of the pattern, when viewed from the wrong per-

spective, were more noticeable for a cubic display than for a curved display surface. With a cubic display,

pattern distortions appear as sharp kinks or discontinuities across the screens of different faces of the dis-

play; with a curved display surface, the distortions manifest as curved distortion of straight lines. They

performed a desktop study using a mouse and standard 3D projection rendering without stereo or motion

parallax. We improved upon this by faithfully recreating the visual alignment cues on a spherical display,

while also having ground-truth information about the viewpoint(s). This way, we quantitatively evaluated

how accurately participants were able to perform the visual alignment task. We used their most effective

visual pattern (bullseye with horizontal and vertical lines) and found that alignment error on a spherical

display was consistent with their results: Stereo (x̄ = 1.3◦), Monocular (x̄ = 1.7◦), and NonStereo (x̄ = 2.8◦)

versus Desktop 2D (x̄ = 1.1◦).

We also informally investigated an important assumption that viewpoint calibration makes: the perceptual

distortion created when viewing a 2D pattern from an incorrect perspective will consistently guide the user
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towards the correct perspective. Using the data from Experiment #1 (pattern alignment), we measured the

angle between the true direction of correction and the direction the participant actually went. We split the

measurements by level (NonStereo, Monocular , and Stereo) and found that, for all levels, the pattern guided

the participants towards the correct perspective far more often than away from it (see Figure 5.8). We also

found that Stereo and Monocular offered much more consistent guidance than NonStereo.
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Figure 5.8: These polar histograms illustrate the angular deviation of measurements by Viewing-

Condition. Angular deviation is measured as the angle between the guiding direction of the perceptual

pattern and the measured direction of correction.

5.5.3 Subjective Perception of Viewing Conditions

Data from Experiment 2 show that two-thirds of users preferred Stereo over Monocular , but the remaining

preferences were not in agreement. These findings are different from a similar subjective preference task [106],

however, this is not surprising given the differences in how the 3D content was presented. There was im-

provement in the quality of stereoscopic rendering and 3D real-time graphics, the accuracy and latency of

head-tracking, and the calibration of the FTVR display. In addition to these technological differences, our
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participants walked around a spherical display instead of being seated in front of a “flat” CRT monitor. We

also changed the protocol to minimize eye strain and general discomfort of the user by limiting the number

of times Viewing Condition was switched; this meant that we relied more on a user’s first impression than

a rigorous comparison. Overall, we found that it was difficult for inexperienced users to perceive the subtle

differences in Viewing Conditions on a spherical FTVR display with a static scene. Although no strong

preference was found for stereoscopic rendering, task performance measures were significantly improved with

stereo.

5.5.4 Task Related Performance

We chose three of the tasks from [5] that balanced the benefit of stereo and motion/interaction: Distance

could be accomplished from binocular depth cues or by finding a perpendicular vantage point to the paired-

points, Selection required avoiding occlusion and potential ambiguity in the direction of the selection ray,

and Manipulation required depth cues for the visual feedback needed to align the plane to points in 3D. On

these tasks, our results showed a significant reduction in task time across all tasks and significant reduction

in error across some tasks when using Stereo. This is consistent with previous studies that have shown

faster performance (in surround VR studies [79, 63]) and more accurate performance (in single-screen FTVR

studies [107, 60]) when stereo is included.

We observed that the benefit that Stereo offered over NonStereo varied a lot between point clouds: mean

error across point cloud #4 in the Distance task decreased from 76% to 19% when switching from NonStereo

to Stereo, but for point cloud #7, it went from 5% to 0%. The only task where Stereo did not improve accuracy

was the Manipulation task, which had similar errors across Viewing Conditions. This result matches that of

the original AR study using this task [5]. This may be due to the high difficulty of the task, particularly for

novice VR users.

5.5.5 Head Movement

In the non-stereo conditions, the distance task in Experiment 3 should be nearly impossible without using

the depth cues from motion parallax. We expected participants to adopt a strategy featuring more head

movements under non-stereo Viewing Conditions, but, similar to previous research [52], motion parallax

remained an underutilized depth cue. We informed the participants that it may be helpful to move their

head to different viewpoints around the display, but we did not provide them explicit instructions on the

potential benefits of motion parallax in non-stereo conditions. For non-stereo, spherical FTVR displays, it

may be useful to give explicit training on head movement strategies for new users if task performance is

important at all.

We also noticed that most participants were more comfortable standing upright and avoided crouching

if at all possible. The variance of head position was roughly eight times larger along the ground plane than

vertical (≈ 8 cm vs. ≈ 0.9 cm, respectively). It is possible that this behaviour was responsible for the
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unequal variance in pattern alignment (most notable in Stereo) visible in Figure 5.3: participants were more

accurate side-to-side than up-and-down, which could mean that they would rather stand comfortably than

get a more accurate calibration. This finding could be used to improve the pattern-alignment calibration

technique by generating the calibration positions at a comfortable height for each user. Additionally, none

of the participants walked into, or put their face inside of, the display at any time during the study which

really shows how compelling VR can be.

5.5.6 Novelty of Simulated FTVR

We have observed that latency is more noticeable with stereoscopic FTVR rendering than monoscopic ren-

dering and also results in pronounced floating of the virtual content. The Oculus Rift system provided

extremely accurate and low latency viewpoint tracking using built in inertial measurement units (IMUs) and

kinematically constrained prediction models [64]. Minimizing head-tracking error was crucial because it is a

significant contributor to eye angular error of pixels on a spherical FTVR display [119]. In addition to low

latency tracking, VR headsets apply pixel warping techniques to interpolate frames using the motion tracking

data to provide even more accurate pixel positions. The Oculus API in Unity provided us the position and

orientation of the user’s eyes for every image our simulated FTVR display generated. We were able to use

these reported viewpoints as ground truth for Experiment 1.

By using a VR headset, we were able to minimize confounding variables between Viewing Conditions.

Participants always wore the same equipment and the visual fidelity of the VR headset was always the same.

We also provided a perfectly calibrated FTVR experience. Since the tracking system and display system

were colocated in the virtual environment, ground truth viewpoint and tracking-space calibrations could be

computed, and pixel-perfect projection of perspective-corrected images on the display surface was possible.

This ensured that any noticeable visual distortions (e.g. floating content) would be caused solely by a user’s

perception under the respective Viewing Condition.

5.5.7 FTVR Design Recommendations

Our study provides empirical evidence for a number of design recommendations for FTVR displays. The

visual alignment error we measured in Experiment 1 gives a sense of the precision that is required for accurate

viewpoint calibration. Presumably, the users were only able to align the pattern as precisely as they could

notice the visual distortion in the pattern, so calibrating the viewpoints any more accurately than that could

go unnoticed. It may be sufficient to provide viewpoint calibration techniques for spherical FTVR displays

that are accurate to within ≈ 3 cm, depending on its stereo capabilities. We also found that, while the visual

alignments in the NonStereo condition were quite variable, they were centered around the mid-point between

the eyes. Therefore, for binocular non-stereo rendering on an FTVR display, it is best to render between the

user’s eyes rather than to their dominant eye.

In the Selection task, participants had significantly increased accuracy with Stereo, and during the training
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in NonStereo or Monocular conditions, several participants reported that they had a very difficult time

selecting the targets. Without stereo, there may be an ambiguity between the start and end points of the

selection ray inside the display and, therefore, a simple visual indicator of the endpoints may be helpful in

such use cases.

We did not find evidence that Stereo was preferred over NonStereo nor that Stereo was even particularly

noticeable for our participants. Therefore, our recommendation is that NonStereo spherical FTVR displays

would be reasonable for use cases that simply provide a 3D effect or impression to a participant, such as when

used as an attention-drawing showcase display or a casual entertainment device. However, the results for 3D

performance with a spherical FTVR display are conclusive: if stereo is omitted to make the system easier to

build or glasses-free, then the in-person experience will be degraded and users will have trouble perceiving

and interacting with 3D scenes within the display.
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6 Conclusions

This thesis evaluates 3D calibration, perception, and performance of spherical FTVR displays within

a virtual reality testbed. By recreating interactive visual calibration in our virtual system, we found that

participants could notice viewpoint error when it was more than ≈ 3 cm without stereo, and a little less

with stereo. Visual alignment was also more consistent with stereo, and the viewpoint without stereo was

measured to be near the midpoint of the eyes. Empirical measurements of performance tasks showed that

user performance was degraded when stereo was disabled. However, in a subjective perceptual task, users

were unable to determine whether stereo was present. These findings can be used to guide the design and

development of volumetric FTVR displays. For example, if task performance is important, then include

stereo. Also, if stereo is not included, then render the perspective to the midpoint of the eyes. These

guidelines could be used to improve viewpoint registration, not only for non-stereo capable displays, but also

displays that split stereo rendering into two distinct monocular views (see CoGlobe [117]) for co-located,

multi-user experiences.

6.1 Limitations and Future Work

The viewpoint model that we used for our extensions and new calibration method makes the assumption

that the eyepoint(s) and tracked point are rigidly connected to each other. For viewpoints, this implies that

the eyes never move and look straight ahead. It is known that users easily deviate from this assumption

when they look around freely [31]. This introduces a small amount of error to the position and orientation

of the eyepoint(s). The results from our pattern alignment experiment show that this would be a noticeable

amount of error for some users, however, it seems unreasonable to simply ask them to not move their eyes.

If additional accuracy is required, it would be possible to extend these calibration methods with a non-rigid

viewpoint model by incorporating gaze tracking.

For handheld tool calibration, this viewpoint model works well because the tools that we used were in

fact rigid bodies with no moving parts. However, other limitations to this type of calibration still exist. The

familiarity that a user has with the handheld tool would have a direct impact on calibration accuracy. The

realtime calibration relies on aligning both the rotation and position of the tool. It follows that the better

a user knows the tool, the better they would be able to calibrate it. For instance, for proper alignment, the

user must know which way is “up”, “forward”, or “side” for the tool. This mapping may be unnatural for

tools that either have an ambiguous frame (e.g. a cube, sphere, or symmetric object) or have multiple ways
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that they can be held (e.g. a cylinder/stick/wand). Thus, this calibration approach is limited by the user’s

familiarity and the specific design, modality, and use case of the tool being calibrated.

For the simulation system, many optical properties of real projectors were not modeled by the virtual

projectors. For example, distinct spectral radiance of colour channels and non-linear brightness response

were omitted for simplicity. We chose to focus more on the spatial mapping between projector image pixels

to projected pixel locations instead of colour and luminosity. Having the virtual and real projectors match

in luminosity and colour was not an important part in ensuring calibration accuracy for our system and,

thus, was omitted. If the projector-to-display surface calibration was being investigated or studied using our

testbed, this would be a natural place to improve.

Our study was performed in a simulated environment, rather than with a physical display. This was done

to control for various perceptual factors; however, as future work, we plan to perform a similar evaluation with

real spherical [117] and cubic [104] displays that we have built. Our software and experimental methodologies

can be used to evaluate any display shape, either simulated in our VR platform or with a physical AR display.

We chose to study a spherical shape because it is the most common form-factor for volumetric FTVR

displays. We expect that our findings would extend to cubic and cylindrical shaped displays because, like

a sphere, their shape is convex. These display shapes offer wide viewing angles (sometimes 360◦ around),

which can increase the 3D effect when motion parallax is taken advantage of. We also expect that our finding

regarding the importance of stereo for task performance would be even more pronounced for a planar FTVR

screen. This is because there are fewer opportunities for motion parallax, due to smaller viewing angles as

compared to a spherical display.

One of the known limitations of headset VR is the mismatch in vergence and accommodation cues: the user

focuses on a screen very close to their eyes, while their eyes converge toward virtual objects located distances

far from the screens [105, 30, 61]. Volumetric FTVR screens largely avoid this problem by maintaining a

metaphor of virtual objects contained within the bounds of the volumetric display. While it is possible to

render virtual objects to appear to float in front of the globe, or exist far in the distance when looking

through the globe, the primary usage is making objects appear within the globe. This metaphor helps the

virtual content to appear more naturally situated within the real world, as if it were real objects within a

glass globe or display case. Within such a metaphor, a viewer focuses their eyes on the front surface of the

globe and can, at most, change the vergence of their eyes to objects virtually located at the back side of the

globe. Therefore, the accommodation-vergence conflict is limited. We expect this is part of the reason why

we did not have any reported VR sickness from participants. In general, since the vergence-accommodation

conflict is further reduced when using a real FTVR display, we expect that our results will transfer well to

the physical display and are likely to be stronger in the real-world use of a spherical FTVR.
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6.2 Contributions

The work in this thesis has been shown to meet the research objectives outlined in Chapter 1, and has

opened up new avenues of research within FTVR as described in Limitations and Future Work. The primary

contributions correspond to the activities and solutions described in Chapter 3, Chapter 4, and Chapter 5.

These contributions include:

1. The improvements and extensions from Chapter 3 were effective at increasing the accuracy and reducing

the runtime of viewpoint calibration, and added a novel calibration technique to improve viewpoint and

handheld object calibrations in realtime using perceptual feedback.

2. The FTVR testbed from Chapter 4 was an effective tool to investigate known defects of physical FTVR

displays, explore calibration techniques, and study the perceptual effects of stereo.

3. The user study from Chapter 5 investigated the research questions outlined in Chapter 1. We showed

that the improved calibration technique was effective at guiding novice users towards a more accurate

calibration, that users could not reliably discern the presence of stereo, and that stereo increased task

efficiency (time or error) for all performance tasks.

These solutions were built in parallel, and feedback from each was incorporated throughout the design and

implementation phases. With a better simulation system came a better testbed; with a better testbed came

better user feedback; with better user feedback came better calibration methods; and with better calibration

came a better 3D experience in the simulation system.

6.3 Concluding Remarks

Fish tank virtual reality has been popularized by recent systems that eschew stereo rendering for a “glasses-

free” 3D experience using head-tracked rendering alone. While these monoscopic spherical FTVR displays

look perfect when shown in video, the in-person experience with and without stereo rendering has not been

previously interrogated. In Chapter 3, we improved upon the best available viewpoint calibration methods,

but showed that it may still be possible for some users to notice errors in these rigid viewpoint models.

In Chapter 4, we developed a virtual testbed for investigating, testing, and studying a wide variety of

FTVR display systems. In Chapter 5, we showed that, while users do not have a strong preference for stereo

rendering on spherical displays, their performance in pattern alignment, distance estimation, 3D selection, and

3D manipulation is consistently better when stereo cues are included. Therefore, future designs of spherical

and volumetric FTVR displays should include stereo in use cases for which performance is a priority.
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Glossary

Fitts’ law A predictive model of the amount of time it will take a human to move a cursor to a target

area. The time it takes is dependent on the distance to the target, the size of the target, and two

input-specific parameters [43].

Motion parallax A depth cue that requires only one of our eyes (monocular). Objects that are closer to an

observer appear to move faster than objects farther away. This cue arises from relative motion between

objects and an observer.

Stereo A depth cue that requires both of our eyes (binocular). An observer can use two different views

of an object from binocular vision to perceive its depth and 3D structure. This cue can be simulated

by presenting two different images separately to each eye; this is called stereoscopy (or stereoscopic

rendering in the context of computer graphics).

Two-pass shadow mapping A common approach to rendering shadows in computer graphics. Shadow

mapping determines which areas of a rendered scene should be considered unlit and then darkens them.

The first pass looks at the scene from a light source’s point of view and saves the depth (distance) of

every surface in a texture called the shadow map. The second pass looks at the scene from a camera’s

point of view and darkens surfaces that are farther from the light than the depths stored in the shadow

map.

60



References

[1] Kevin W. Arthur, Kellogg S. Booth, and Colin Ware. Evaluating 3d task performance for fish tank
virtual worlds. ACM Transactions on Information Systems, 11(3):239–265, 1993.

[2] ARToolKit. Artoolkit home page. http://www.hitl.washington.edu/artoolkit/.

[3] K. Somani Arun, Thomas S. Huang, and Steven D. Blostein. Least-squares fitting of two 3-D point
sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 698–700, 1987.

[4] Mark Ashdown, Matthew Flagg, Rahul Sukthankar, and James M. Rehg. A flexible projector-camera
system for multi-planar displays. In Computer Vision and Pattern Recognition, volume 2. IEEE, 2004.

[5] Benjamin Bach, Ronell Sicat, Johanna Beyer, Maxime Cordeil, and Hanspeter Pfister. The hologram in
my hand: How effective is interactive exploration of 3D visualizations in immersive tangible augmented
reality? IEEE Transactions on Visualization and Computer Graphics, 24(1):457–467, 2018.

[6] Bartosz Bajer, Robert J. Teather, and Wolfgang Sturzlinger. Effects of stereo and head tracking in 3d
selection tasks. In Proceedings of the 1st symposium on Spatial user interaction, pages 77–77. ACM,
2013.

[7] O. R. Belloc, M. R. Nagamura, D. Fonseca, André Rodrigues, D. A. R. Souza, Celso Setsuo Kurashima,
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[13] Oliver Bimber, Bernd Fröhlich, Dieter Schmalstieg, and L. Miguel Encarnação. The virtual showcase.
In ACM SIGGRAPH 2005 Courses, page 3. ACM, 2005.

[14] Barry G. Blundell and Adam J. Schwarz. The classification of volumetric display systems: charac-
teristics and predictability of the image space. IEEE Transactions on Visualization and Computer
Graphics, 8(1):66–75, 2002.

61

http://www.hitl.washington.edu/artoolkit/
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Appendix A

Shaders

Shader "Biglab/GeometryTexture/Position" {

SubShader {

Tags {

"Queue"="Geometry"

"RenderType"="Opaque"

"IgnoreProjector"="True"

}

LOD 100

Pass {

CGPROGRAM

#pragma vertex vert

#pragma fragment frag

#include "UnityCG.cginc"

struct appdata {

float4 vertex : POSITION;

};

struct v2f {

float4 position : SV_POSITION;

float4 vPosition : TEXCOORD0;

};

uniform float4x4 _WorldToVolume;

v2f vert(appdata v) {

float4 w_position = mul(unity_ObjectToWorld, v.vertex);

v2f o;

o.position = UnityObjectToClipPos(v.vertex);

o.vPosition = mul(_WorldToVolume, w_position);

return o;

}

float4 frag(v2f i) : SV_Target {

return i.vPosition / i.vPosition.w;

}

ENDCG

}

}

}
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Shader "Biglab/GeometryTexture/Normal" {

SubShader {

Tags {

"Queue"="Geometry"

"RenderType"="Opaque"

"IgnoreProjector"="True"

}

LOD 100

Pass {

CGPROGRAM

#pragma vertex vert

#pragma fragment frag

#include "UnityCG.cginc"

struct appdata {

float4 vertex : POSITION;

float3 normal : NORMAL;

};

struct v2f {

float4 position : SV_POSITION;

float3 vNormal : TEXCOORD0;

};

uniform float4x4 _WorldToVolumeNormal;

v2f vert(appdata v) {

float3 w_normal = UnityObjectToWorldNormal(v.normal);

v2f o;

o.position = UnityObjectToClipPos(v.vertex);

o.vNormal = mul(_WorldToVolumeNormal, float4(w_normal, 0));

return o;

}

float4 frag(v2f i) : SV_Target {

float3 vNormal = normalize(i.vNormal);

return float4(vNormal, 1.0f);

}

ENDCG

}

}

}
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INFORMED CONSENT FORM 
 
Research Project:   Investigating presentation modes for Fish Tank 

Virtual Reality (FTVR) in Virtual Reality (VR) 
 

Investigators:  Dr. Ian Stavness, Department of Computer Science (ian.stavness@usask.ca) 
    Dylan Brodie Fafard, Department of Computer Science (dylan.fafard@usask.ca) 

Christopher Chamberlain, Department of Computer Science (chris.chamberlain@usask.ca) 
Martin Dechant, Department of Computer Science (Martin.Dechant@usask.ca) 
  

This consent form, a copy of which has been given to you, is only part of the process of informed consent. It should give you the basic idea of 
what the research is about and what your participation will involve. If you would like more detail about something mentioned here, or 
information not included here, please ask. Please take the time to read this form carefully and to understand any accompanying information.  

This study is concerned with FTVR 3D displays and aims to measure the location your viewpoint(s) and any noticeable differences in 
presentation modes (whether or not headtracking is used and either one or both eyes are used). The goal of the research is to examine FTVR 
displays in a consistent, high fidelity environment to guide the research and development of real FTVR displays.  

The session will require 60 minutes, during which you will be asked to perform the following tasks under each FTVR presentation mode: guided 
viewpoint calibration, 3D spatial impression comparison, and point cloud selection/estimation/cutting in the Biomedical & Interactive Graphics 
Lab at the University of Saskatchewan. You will be asked questions before/during/after these tasks. 

Feel free to answer only the questions that you are comfortable with answering. At the end of the session, you will be given more information 
about the purpose and goals of the study, and there will be time for you to ask questions about the research. As a way of thanking you for your 
participation and to help compensate you for your time and any travel costs you may have incurred, you will receive a $10 honorarium at the 
end of the session. The data collected from this study will be used in articles for publication in journals and conference proceedings. As one way 
of thanking you for your time, we will be pleased to make available to you a summary of the results of this study once they have been compiled. 
This summary will outline the research and discuss our findings and recommendations. This summary will be available on the BIGLAB lab’s 
website: http://www.biglab.ca 

All personal and identifying data will be kept confidential. Confidentiality will be preserved by using pseudonyms in any presentation of textual 
data in journals or at conferences. The informed consent form and all research data will be kept in a secure location under confidentiality in 
accordance with University policy for 5 years post publication. Do you have any questions about this aspect of the study? 

You are free to withdraw from the study at any time without penalty and without losing any advertised benefits. Withdrawal from the study 
will not affect your academic status or your access to services at the university. If you withdraw, your data will be deleted from the study and 
destroyed. Your right to withdraw data from the study will apply until results have been disseminated, data has been pooled, etc. After this, it 
is possible that some form of research dissemination will have already occurred, and it may not be possible to withdraw your data.  

Your continued participation should be as informed as your initial consent, so you should feel free to ask for clarification or new information 
throughout your participation. If you have further questions concerning matters related to this research, please contact: 

Dr. Ian Stavness, Professor, Dept. of Computer Science, (306) 966-7995, ian.stavness@usask.ca 

Your signature on this form indicates that you have understood to your satisfaction the information regarding participation in the research 
project and agree to participate as a participant. In no way does this waive your legal rights nor release the investigators, sponsors, or involved 
institutions from their legal and professional responsibilities. If you have further questions about your rights as a participant, please contact:  

Research Ethics Office, University of Saskatchewan, (306) 966-2975 or toll free at 888-966-2975. 

 

Participant’s signature: ________________________________ Investigator’s signature: ____________________________________ 

 

Date:_____________________    Date:_____________________ 

 

A copy of this consent form has been given to you to keep for your records and reference. This research has the ethical approval of the Research 
Ethics Office at the University of Saskatchewan. 

B.1 Consent Form
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1Print USAEyes.org Dominant Eye Test 
Card on your computer printer.

2Cut across dotted line to make smaller 
rectangle. Cut out center square.

3Hold USAEyes.org Dominant Eye Test 
Card with both hands at arm’s length 

and centered in front of  you.

4With both eyes open, focus on any still 
object viewed through the center hole.

5 While continuing to keep focus on the 
object, keeping the object centered in 

the hole, and with both eyes open, slowly 
bring the USAEyes.org Dominant Eye Test 
Card toward you until you touch your face.

6  The eye over which you have the 
USAEyes.org Dominant Eye Test Card 

centered is your dominant eye.

7Repeat test to verify.

Dominant Eye Test Card

The dominant eye is the eye that looks 
directly at an object. The non-dominant 
eye looks at the same object at a slight 
angle. This small difference provides depth 
perception.

Being right or left handed will not necessarily 
determine if you are right or left eye 
dominant. Eye dominance is an important 
consideration for monovision correction 
to reduce the need for reading glasses or 
bifocals.

cut along dotted line

cut along dotted lines
remove center box

B.2 Dominant Eye Test Card
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1 
 

Investigating presentation modes for Fish Tank Virtual 
Reality (FTVR) in Virtual Reality (VR) 
 

ID of the Questionnaire  

 

Virtual Reality Familiarity 
Have you used a Virtual Reality headset before? 
Please circle one answer 

O Yes 
  

O No 
 

Which Virtual Reality headset(s) have you used before? 
Please circle any that apply 

O Google Cardboard 
  

O Samsung Gear VR 
  

O Sony PlayStation VR 
  

O HTC Vive  
  

O Oculus Rift 
  

O Google Daydream View 
  

O Other (Please Specify): _____________________ 
 

How often do you use Virtual Reality headsets? 
Please circle one answer 

O Less than once per week 
  

O Between 1-3 times per week 
  

O More than 3 times per week 

B.3 Questionnaires
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2 
 

Investigating presentation modes for Fish Tank Virtual 
Reality (FTVR) in Virtual Reality (VR) 
 

ID of the Questionnaire  

 

Viewport Calibration 
Consider how the pattern changed as you moved your head for the following questions. Did 
the pattern move in a way that helped you align it to the target image? 
Please circle one answer 

 

What strategy(s) did you use to align the pattern? 
Please write down your thoughts 

 

 

  

B.4 Questionnaires
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3 
 

Investigating presentation modes for Fish Tank Virtual 
Reality (FTVR) in Virtual Reality (VR) 
 

ID of the Questionnaire  

 

3D Spatial Impression  
 

In any of the conditions, did the scene inside the display appear three dimensional (3D)? 
Please circle one answer 

O Yes 
  

O No 
 

In any of the conditions, did the scene inside the display seem to stay still as you moved 
around? 
Please circle one answer 

O Yes 
  

O No 
 

If you answered No to both of the questions above, please skip the following section and continue with Page 4. 
For the following questions please consider the comparison of conditions on the scene inside the display.  
 

The change in 3D appearance was noticeable.  
Please circle one answer 
 

O Strongly 
Disagree 

O Disagree O Undecided O Agree O Strongly 
Agree 

 

There was a noticeable change in it staying still. 
Please circle one answer 
 

O 
Strongly 
Disagree O Disagree O Undecided O Agree O 

Strongly 
Agree 

 

B.5 Questionnaires
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4 
 

Investigating presentation modes for Fish Tank Virtual 
Reality (FTVR) in Virtual Reality (VR) 
 

ID of the Questionnaire  

 

General Impression and Comments 
 

Please leave any comments, suggestions, or feedback you have about the study.  
Please write down your thoughts 
 

 

 

Thank you very much for participating! 😊 
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Investigating presentation modes for Fish Tank Virtual 
Reality (FTVR) in Virtual Reality (VR) 
 

ID of Questionnaire  

Task ID  

 

Virtual Reality Sickness Questionnaire 
Hyun K. Kim, Jaehyun Park,  Yeongcheol Choi,  Mungyeong Choe [ 1 ] 

  

Circle how much each symptom below is affecting you right now. 
Please circle one answer 

General discomfort O None O Slight O Moderate O Severe 

Fatigue O None O Slight O Moderate O Severe 

Eyestrain O None O Slight O Moderate O Severe 

Difficulty focusing O None O Slight O Moderate O Severe 

Headache O None O Slight O Moderate O Severe 

Fullness of head O None O Slight O Moderate O Severe 

Blurred vision O None O Slight O Moderate O Severe 

Dizzy (eyes closed) O None O Slight O Moderate O Severe 

Vertigo O None O Slight O Moderate O Severe 
 
*Vertigo is experienced as a loss of orientation with respect to vertical upright. 

 
[ 1 ]  K im,  H.  K . ,  Park ,  J . ,  Cho i ,  Y . ,  &  Choe,  M.  (2018) .  V i r tua l  rea l i ty  s i ckness  ques t ionna i re  (VRSQ) :  Mot ion s ic kness  measurement 
index in  a  v i r tua l  rea l i ty  env i ronment .  App l i ed  E rgonomics ,  69 ,  66-73.  
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