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Abstract 

 

Discrete wavelet transform (DWT) is a powerful tool for analyzing real-time signals, 

including aperiodic, irregular, noisy, and transient data, because of its capability to explore 

signals in both the frequency- and time-domain in different resolutions. For this reason, they are 

used extensively in a wide number of applications in image and signal processing. Despite the 

wide usage, the implementation of the wavelet transform is usually lossy or computationally 

complex, and it requires expensive hardware. However, in many applications, such as medical 

diagnosis, reversible data-hiding, and critical satellite data, lossless implementation of the 

wavelet transform is desirable. It is also important to have more hardware-friendly 

implementations due to its recent inclusion in signal processing modules in system-on-chips 

(SoCs).  

 To address the need, this research work provides a generalized implementation of a 

wavelet transform using an integer-based lifting method to produce lossless and low-cost 

architecture while maintaining the performance close to the original wavelets. In order to achieve 

a general implementation method for all orthogonal and biorthogonal wavelets, the Daubechies 

wavelet family has been utilized at first since it is one of the most widely used wavelets and 

based on a systematic method of construction of compact support orthogonal wavelets. Though 

the first two phases of this work are for Daubechies wavelets, they can be generalized in order to 

apply to other wavelets as well. Subsequently, some techniques used in the primary works have 

been adopted and the critical issues for achieving general lossless implementation have solved to 

propose a general lossless method.   

The research work presented here can be divided into several phases.  In the first phase,  

low-cost architectures of the Daubechies-4 (D4) and Daubechies-6 (D6) wavelets have been 

derived by applying the integer-polynomial mapping. A lifting architecture has been used which 

reduces the cost by a half compared to the conventional convolution-based approach. The 

application of integer-polynomial mapping (IPM) of the polynomial filter coefficient with a 

floating-point value further decreases the complexity and reduces the loss in signal 



iii 

 

 

 

reconstruction. Also, the “resource sharing” between lifting steps results in a further reduction in 

implementation costs and near-lossless data reconstruction.  

In the second phase, a completely lossless or error-free architecture has been proposed for 

the Daubechies-8 (D8) wavelet. Several lifting variants have been derived for the same wavelet, 

the integer mapping has been applied, and the best variant is determined in terms of 

performance, using entropy and transform coding gain. Then a theory has been derived regarding 

the impact of scaling steps on the transform coding gain (GT). The approach results in the lowest 

cost lossless architecture of the D8 in the literature, to the best of our knowledge. The proposed 

approach may be applied to other orthogonal wavelets, including biorthogonal ones to achieve 

higher performance.  

In the final phase, a general algorithm has been proposed to implement the original filter 

coefficients expressed by a polyphase matrix into a more efficient lifting structure. This is done 

by using modified factorization, so that the factorized polyphase matrix does not include the 

lossy scaling step like the conventional lifting method. This general technique has been applied 

on some widely used orthogonal and biorthogonal wavelets and its advantages have been 

discussed. 

Since the discrete wavelet transform is used in a vast number of applications, the proposed 

algorithms can be utilized in those cases to achieve lossless, low-cost, and hardware-friendly 

architectures.  
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Chapter 1 

Introduction 

 

 

 

1.1 Introduction  

Digital multimedia system is an inseparable part of daily life in the present world. From the 

advent of the telegraph, telephone, radio, internet-connected computer to the current 

smartphones, ubiquitous access to information signals has gradually become an important 

necessity of modern life [1]. In engineering terminology, a signal is a function that conveys 

information about the attributes of some phenomenon [2] or observable change in a measurable 

entity [3]. Some examples of types of signals are audio, video, speech, image, geophysical, 

sonar, radar, medical, and musical [4]. In order to make signals useful in different applications, 

they need to be processed by analyzing, coding, compressing and filtering. In signal processing, 

transforms like the Fast Fourier transform (FFT), windowed Fourier transform (WFT) or short-

term Fourier transform (STFT), discrete cosine transforms (DCT), and, recently, discrete wavelet 

transform (DWT) are playing vital roles.  

In day-to-day applications, most of the signals and related data used are aperiodic, 

irregular, noisy, and transient. When it comes to analyzing such signals and data in real time, the 

wavelet transform is particularly useful compared to its counterparts. This is because it has the 

capability of exploring signals concurrently in both the frequency and time domain [5] and 

analyzing the different frequency and time components in different resolutions which is called 

multiresolution analysis (MRA).  

Due to its powerful characteristics of a concurrent time-frequency domain and 

multiresolution analysis, the wavelet transform has experienced rapid development in the last 35 

years in both research and applications [6]. Initially, in the mid-1970, the wavelet transform was 
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proposed by Jean Morlet as an engineering solution to solve problems in analyzing geophysical 

data. These problems were not satisfactorily solvable by the classical tools, such as the Fourier 

transform and its derivatives like STFT. Later, wavelets were established based on powerful 

mathematical theories [6] which widely extended their application in many different fields. Due 

to their strong mathematical foundation in concurrent time-frequency domain analysis and multi-

resolution analysis, they are extensively used in a wide number of fields in science, geophysics, 

astrophysics, biology, mathematics, computer science, medicine, finance, and engineering [5], 

[7], [8] and have already been adopted in the JPEG2000 image compression standard [9]. 

Because of the heavy usage of the wavelet transform, especially the DWT due to the 

necessity to analyze the abundant discrete time signals, its implementation is an important topic. 

While many implementation methods are explored for different purposes, they can be classified 

broadly into two categories: convolution based and lifting based. Lifting-based schemes are 

comparatively better in terms of cost. Integer-based lifting structures are more hardware-

implementation friendly and allow lossless transform for a few select wavelets.  

This research aims to propose a general low-cost and lossless architecture, and starts with 

an examination of lifting architectures. Existing implementations have some flaws which prevent 

losslessness for general wavelets. This research offers a solution to those flaws.  

1.2 Motivation 

The wavelet transform solves the incompatibility of the Fourier transform with the many 

practical signals which are non-stationary, and provides a means for MRA of time-frequency 

components of a signal. This capability makes the wavelet transform useful for many different 

applications. Despite its usefulness, the current implementation has a few issues. The usefulness 

of the wavelet transforms and appeal of better implementation by fixing the existing issues, as 

detailed in the following subsections, motivate this research. 

1.2.1 Usefulness 

The wavelet transform is able to harness a signal or data sequence and find its frequency 

and time information simultaneously enabling it to be used in a variety of applications.  This 
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makes the wavelet transform very attractive for implementation. Besides, it is a powerful 

statistical tool which also makes it useful for a wide range of applications.  Some of its uses are 

discussed below.  

Compression 

In the present world, the compression of image and video is of great interest due to the 

increasing number of high-definition images and videos, the limitation of the transmission 

bandwidth and the need to store more data in the cloud. Though the discrete cosine transform 

(DCT) is common for image compression, such as JPEG compression, the discrete wavelet 

transform is getting more attention in this area due to some limitations of the DCT, such as block 

artifacts. JPEG2000 has been implemented with the DWT and there have been a number of 

attempts in the literature to compress different types of signals using DWT. Wavelet-based 

compressions have been applied to single-dimensional (1D) signals or data including 

electroencephalograms (EEGs) [10], electrocardiograms (ECGs) [11], speech signals [12], two-

spatial dimensional signals such as general images [13]–[18] and finger-prints by the FBI [19], 

three-dimensional signals or data like videos [16], remote-sensing data [20], multispectral 

images [21] or hyperspectral images [22]. The wavelet transform also has applications for 

lossless images or data compression [23], [24] which is vital for a few applications such as 

medical images, where traditional DCT based JPEG cannot be used due to its lossy nature.  

General signal processing 

Apart from compression, the wavelet transform is also used for a variety of other signal 

processing applications [25], [26]. Since it is able to decompose the signal into low-frequency 

approximations and high-frequency details, it can be used to denoise or reduce the trend [8]. 

There have been a significant number of works to denoise signals in general [27] and ECG 

signals in particular [28]. It has been used in feature extraction [29], texture analysis [30], and 

video watermarking[31].  In addition, it has been applied in audio and speech processing [32], 

speech recognition [33], pitch detection [34], segmentation [35], enhancement [36], pattern 

recognition [37], and detection of gear failure via acoustic signals [38].  
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Image processing is one of the classic applications [39]. The wavelet transform has been 

useful in image resolution enhancement [40], digital watermarking [31], and multisensor image 

fusion [41].  

Top areas of application 

The wavelet transform can be used effectively in the most, if not all, applications with non-

stationary signals because of its ability to find both time and scale (an alternative to frequency) 

information with diverse resolution, and because it is not limited to only a single wavelet. As a 

result, there are many areas of applications where the wavelet transform is being heavily used. 

Some of the top areas are as follows.  

(a) Medical application 

Medical images play a vital role in clinical diagnosis and therapy[42]. The wavelet 

transform can be for speckle noise reduction [43], enhancement [44], and multimodal image 

fusion [45].  Other imaging areas where the wavelet transform can play a role are detection of 

brain tumors [46], detection of microcalcification in mammography [47],  analysis of magnetic 

resonance imaging (MRI) [48] and X-rays [49], localization of patterns of activity in the brain 

using functional images such as positron emission tomography (PET) and functional MRI [50]. 

As discussed before, the wavelet transform has been applied in ECG compression and 

noise reduction. In addition, it is used to extract useful information from ECG signals. ECG is a 

measure of the electrical activity of the heart [51]. It is the standard method for the investigation 

of irregularities in heartbeats [5]. The duration of the electrical wave determines whether the 

heartbeat is normal, slow, or irregular, and the amount of electrical activity shows whether parts 

of the hearts are too large or overworked [52].  

Wavelet analysis also has been applied to detect the characteristic features of ECG signals 

[29], to facilitate the automated diagnosis of cardiac health issues [53] or abnormalities [54], 

such as coronary artery diseases [55], sudden cardiac death [56] and myocardial ischemia [57].  

Wavelet transforms also have been used for ECG signals for the enhancement of late potentials 

[58], ECG-beat classification [37], [59], and arrhythmia classification [60]. 
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(b)  Remote sensing information and satellite image processing 

Satellite images and remotely sensed data are useful in numerous areas, including 

astronomy, geoscience studies, geographical information systems, land surveying, and most earth 

science disciplines [61]. Wavelet transforms have been utilized to enhance resolution [40] and 

contrast [62] of satellite images, and remote sensing image fusion [63].  

(c)  Geophysical applications 

The wavelet transform originated because of the need for analysis of seismic signals and 

has been used in the analysis of many other geophysical processes [8], such as atmospheric 

turbulence [64], large-scale atmospheric circulation [65], ocean waves [66], seafloor bathymetry 

[67], earthquakes [68] and climate change [69].   

(d)  Power systems  

Wavelet transforms have been utilized for the analysis of harmonic distortion in power 

systems as reviewed in [70]. Wavelet analysis is used to extract disturbances in power systems  

[71], to determine reference compensation current of shunt active power filters [72], and to 

control the DC-link voltage of a shunt active power filter [73]  using the application of 

Daubechies 4-tap wavelets with 24 decomposition levels to a DC voltage error signal.  

1.2.2 Appeal of lossless implementation  

While in some applications, lossy implementation of the wavelet transform can be used, 

there are many applications, where lossless implementation is crucial. Such applications are 

discussed in the following sections.  

Medical image/signal compression 

Clinical picture archiving and communication systems (PACS) and telemedicine or 

teleradiology networks are used for the storage, retrieval, transmission, distribution, and 

visualization of large collections of medical image data, and compression of them is necessary 

[74].  Since the amount of three-dimensional images is increasing due to the increased usage of 

diagnostic techniques such as computed tomography (CT), magnetic resonance (MR), and 

positron emission tomography (PET), the efficient compression of these data is crucial.  
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Though lossy compression of medical images is usable in some cases, medical 

professionals prefer to use lossless methods [75]. This is because many physicians have concerns 

that lossy compression may result in errors in diagnosis. In addition, there are some legal and 

regulatory concerns which recommend lossless compression [76] and lossy compressions are not 

accepted for some cases like coronary angiogram [77]. 

In addition to medical images, for medical signals such as ECG or EEG signals, lossless 

compression is desirable for legal considerations and serious diagnoses [78].  

Reversible data hiding and digital watermarking 

Data hiding is used for covert communications and storage where the data is hidden in a 

cover media file such as image[79]. It has an additional advantage over cryptography because it 

hides the existence of secret information [79]. Digital watermarking is a similar process where a 

sequence of digital bits are embedded into a media file for copyright protection [80].  

Many data hiding and watermarking techniques distort the cover media file in order to add 

the hidden data or watermark. However, in some applications, such as medical imaging and the 

legal enforcement field, irreversibility is not desirable due to legal considerations and sensitivity 

of the data [81]. In these applications, lossless or reversible data hiding, and watermarking are 

necessary.  

For lossless data hiding and watermarking, the lossless wavelet transform is one of the 

most commonly used methods [79]. Some recent significant works on this subject are [81], [82] 

by Xuan et al. and [83]–[85] by other researchers.  

Compression of satellite data 

Satellite data are often collected and processed later to get information regarding 

deforestation or vegetation. If lossy compression is used for storage, the enhancement of the 

reconstructed data may result in enhancement of the errors, and important details can be missing. 

Therefore, it is preferable to use lossless compression for satellite images in storage [86] since it 

may be costly or not possible to get the same data again [87].  
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Text or document compression  

Lossless compression is vital for text compression. In much text compression, very small 

losses or changes of information can change the whole purpose. A single-digit change in banking 

information or a small change in other important files can have a detrimental impact. In texting, 

it is unacceptable that a sentence like “Do not send money” to change into “Do now send 

money” because of using a lossy compression [87]. Similarly, scanned images of old handwritten 

manuscripts also demand lossless compression [86] to avoid loss of information.  

Areas to be explored 

There are many areas described in section 1.2.1 where lossy or the continuous/analog 

wavelet transform is used. Those areas can be explored for better quality processing since the 

disk-space capability and demand for quality processing are increasing. Such examples are an 

analog wavelet transform for a pacemaker application where a lossless digital wavelet transform 

needs to be studied.  

1.2.3 Appeal of integer-based implementation  

         Integer-based implementations are preferred in many cases where discrete wavelet 

transforms need to be implemented in hardware. Floating-point calculations are expensive to 

implement in hardware and slow for software implementation. Many applications demand the 

algorithm be implemented in a field-programmable-gate-array (FPGA) in order to have the 

ability to update the algorithm when there may be a need to modify it. FPGA hardwires usually 

do not support floating-point calculations. For this reason, the wavelet algorithm needed for 

implementation in FPGA is should be integer-based. Moreover, since integer-based 

implementations are comparatively low-cost, they are preferable in many applications.  

1.2.4 Issues in the existing implementation  

There are two major techniques for implementing discrete wavelet transforms: the ladder-

structured lifting scheme and convolution or matrix-based techniques (see Chapter 2 for details). 

The lifting scheme is preferred for hardware implementation for several reasons. It reduces the 
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cost by half, speeds up the transform, and allows for in-place implementation (i.e. it does not 

require any auxiliary memory). In addition, it can be used to build an integer-based wavelet 

transform that maps integer-to-integer. The integer-based lifting transform is hardware-

implementation friendly and paves the way for lossless implementation.  

Though the integer-based lifting wavelet transform allows lossless implementation for few 

wavelets, such as orthogonal Haar and biorthogonal CDF 5/3 wavelets, the implementation of 

most orthogonal and biorthogonal wavelets using the same technique cannot be lossless. They 

remain lossy even though most of the lifting steps become lossless in integer-based methods. 

This is because the last step known as the scaling step remains irreversible due to a 

division/multiplication operation by the scaling coefficient k (see chapter 2). This is a known 

issue and can be fixed by conversion of the scaling step into additional lifting steps, but it 

increases hardware cost and introduces more delay in the processing of the transform; that is one 

of the reasons why this solution is not used much in the literature. To best of the knowledge, to 

date, there are no other options.   

Most researchers who need to implement lossless wavelets for different applications rely 

on only a few selective wavelets which inherently support lossless integer-based lifting wavelet 

transforms because the value of the scaling coefficient k is 1 for those wavelets. Therefore, a 

general approach is needed that can be utilized for any orthogonal or biorthogonal wavelets using 

low-cost lifting scheme in order to take advantage of diverse energy compactness of different 

wavelets and implement them in a lossless and low-cost manner.  

1.2.5 Motivation summary  

The wavelet transform is a mathematical or statistical toolbox, which can be used for a vast 

variety of applications as described in subsection 1.2.1. In many applications, lossless 

implementation of the discrete wavelet is necessary or desired, as outlined in subsection 1.2.2. 

But, as discussed in section 1.2.3, the status quo suggests that the scope of lossless 

implementation is very limited; only a few wavelets support purely lossless implementations. 

However, different wavelets have different levels of energy compactness; some work better in 

some applications than others. For this reason, it is important to take advantage of the diverse 

properties of all different orthogonal and biorthogonal wavelets in different applications. But the 
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implementation in a lossless manner with low-cost lifting scheme is not an easy option for most 

of them, and so, this research aims to overcome the obstacle and sets objectives as described in 

section 1.3.  

1.3 Research Objectives 

Based on the discussion in section 1.2 regarding the issues in existing conventional 

implementation and recent developments, this study proposes a general approach for an integer-

based lossless lifting wavelet transform. The research objectives are as follows:  

• The implementation should be lossless and reversible. To be able to generalize, the 

technique should be based on a mathematical foundation which would be 

experimentally examined. To facilitate this, in an integer-based implementation (i.e. a 

wavelet transform technique that maps integer-to-integer), the loss-causing scaling 

steps should be altered, based on a mathematical foundation, and the change should 

not affect performance.  

• The implementation techniques or algorithms should result in a low-cost 

implementation of a DWT when compared with similar wavelets in the literature and 

with a similar capability, if it exists. Lower cost can be achieved with a combination 

of low-cost-proven lifting schemes that map integer-to-integer, the integer-

polynomial mapping (i.e., integer conversion of the expensive floating-points 

polynomial coefficients of the filter), and low-cost management of the scaling steps.  

• The proposed algorithm should be generalized and will be examined by an 

application to popular wavelets, such as the orthogonal Daubechies-4,-6,-8,-10 and 

biorthogonal wavelets such as the CDF-9/7 and CDF4.2. The effort will result in 

various efficient architectures, and some examples can be proposed.   

1.4 Thesis Organization  

This thesis is organized in a manuscript-based style. Published or submitted manuscripts 

are included in this thesis as chapters. In each chapter, a brief introduction precedes each 
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manuscript to connect it to the main context of the thesis. The organization of different chapters 

is as follows.  

Chapter 2 presents some basic background knowledge regarding wavelet transform and 

how, why and from what it evolved. The chapter starts with the early development of the 

analysis of signals in the frequency domain and how they are useful for analyzing different types, 

such as stationary and non-stationary signals. The Fourier transform and its issues with analyzing 

non-stationary signals are discussed briefly as well as the short-term solution called the 

windowed or short-term Fourier transform (STFT). Next, the need of multiresolution analysis 

(MRA) and why STFT was not able to meet the need of MRA is discussed, and how this 

problem led to the idea of the Wavelet transform in the mid-1970s. Then a description of the 

wavelet transforms, both continuous and discrete is given as well as a discussion of the usage of 

subband coding in the discrete wavelet transform. Finally, the implementation techniques of 

wavelet transform and issues with existing implementations, which have motivated a proposal 

for a general low-cost lossless implementation method for orthogonal and biorthogonal wavelets 

in this study, are presented.  

Following the background study, the first step in this research is to explore low-cost 

implementation methods. Daubechies-4 and 6 wavelets were used for this purpose. Chapter 3 

describes this work and present the manuscript [88] titled “Low-cost Architecture of Modified 

Daubechies Lifting Wavelets Using Integer Polynomial Mapping.”  In this work, a low-cost 

lifting scheme was used as the preferred implementation technique. Integer-polynomial mapping 

with resource sharing or coefficient elimination was applied to ensure even lower cost 

implementation.  

Chapter 4 investigates the reasons for the loss in the lossy integer-based implementation 

and proposes a solution which suggests elimination of the scaling steps and the careful selection 

of factorizations of polyphase matrices. This solution has been applied to Daubechies-8 wavelet. 

This chapter also elaborates the non-unique process of factorization which would enable the 

reader or future researcher to follow the steps and find other options. In this chapter, pure 

losslessness is achieved.  

Chapter 5 provides a more generalized solution. Though the technique used in chapter 4 

can be utilized for other wavelets, it requires much manual work. In chapter 5, a change is made 
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to the method of factorization of the polyphase matrix in a lifting-based wavelet transform. 

Conventionally, it uses the Euclidian algorithm for Laurent polynomials. This chapter proposes a 

new factorization technique which does not produce any lossy scaling steps ensuring lossless 

integer-based implementations and incorporates the impact of those steps in the previous lifting 

steps. This also provides some formula for converting the existing factorization into the proposed 

factorization. This general technique is applied and tested on a number of orthogonal and 

biorthogonal wavelets.  

Finally, chapter 6 summarizes the whole thesis, suggests research problems for future 

works and draws some conclusions.  
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Chapter 2 

Background 

 

 

2.1 Introduction  

 This chapter discusses the background of the theory of wavelet transforms starting with 

the early development of the Fourier series to find the harmonic content in a mathematical 

function or a signal. This discussion begins with the early concepts and follows through the 

elaborate steps to the modern developments of the continuous and discrete wavelet transform. 

The discussion also covers implementations of the discrete wavelet transform, including efficient 

integer-based implementations and their unsolved issues.  

2.2 The Fourier Series and Transform  

2.2.1 The Fourier series 

The Fourier series is named after Jean-Baptiste Joseph Fourier (1768–1830). He introduced 

the series mainly to solve the heat equation that describes the distribution of heat in a metallic 

plate. In his 1822 book Théorie Analytique de la Chaleur (Analytical theory of heat) [1], [2], 

Fourier showed that the initial distribution of temperature can be expressed as a sum of many 

sine and cosine terms. This trigonometric series with its many developments has extended to 

many other fields and is commonly known as the Fourier series.  

 Presently the Fourier series is known as an expansion of a period function in terms of an 

infinite sum of sines and cosines. The Fourier series [3], [4] of a periodic function f(t) of period T 

is represented as 

 0

1

2 2
( ) ( cos sin )

2
k k

k

a kt kt
f t a b

T T

 

=

= + + ,                                                                   (2.1) 
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where 
0

2 2
( )cos

T

k

kt
a f t dt

T T


=  , 

0

2 2
( )sin

T

k

kt
b f t dt

T T


=  .  

 This is how the function f(t) can be decomposed into a sine and cosine wave of 
k

T

frequencies where k=1,2, to  , and ka  or kb   determine the amplitudes of the waves. 

2.2.2 The Fourier transform (FT) 

While the Fourier series can analyze only periodic functions, the Fourier transform is the 

extension or application of the Fourier series which is able to analyze non-periodic functions or 

signals. The Fourier transform is the process of converting time-domain into frequency-domain 

signals. In other words, it decomposes a signal into its component frequencies and provides 

frequency-amplitude representation from time-amplitude representation. This transform is also 

called the frequency domain representation of a signal.  

In mathematical term, the Fourier transform decomposes a signal f(t) to complex 

exponentials of different frequencies. The Fourier transform F(f) of the time-domain signal f(t) 

can be found using the following equation where f and t represent frequency and time.  

2( ) ( ) j ftF f f t e dt



−

−

=  .                                                                                                  (2.2) 

On the other hand, the inverse transform, which reproduces the original time domain signal 

f(t), is as follows:  

2( ) ( ) j ftf t F f e df



−

=  .                                                                                                   (2.3) 

2.2.3 The Fourier transform’s issue with non-stationary signals 

 If the frequency contents of a signal do not change over time, the signal is known as a 

stationary signal.  In contrast, if it has varying frequencies, it is called a non-stationary signal. 

Examples of stationary signals are white noise, which is defined as a random signal with equal 

intensity at different frequencies [5], the sound generated by the smooth operation of a motor, 

and the noise voltage signals on the resistance of electronic equipment during stable operation. 
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On the other hand, many practical signals are non-stationary; two examples are the sound of a 

fireworks display, and a hammer blow[6].  

 As evident from the equation (2.2), a specific frequency fs component of a signal is the 

integral of the signal multiplied by a cosine and sine wave of that frequency fs over the entire 

duration. This requires the presence of fs over the entire duration in order to have the correct 

amplitude for fs. Moreover, since the FT determines whether a certain frequency exists or not and 

does not say when that specific frequency appears [7], it is impossible to reproduce the original 

time-domain non-stationary signals.  

 This issue is explained in Fig. 2.1 with a stationary signal ( 2cos2 50 cos2 80t t + ) and 

in Fig. 2.2 with a non-stationary signal (
2cos 2 50 when 0.25

cos 2 80 when 0.25

t t

t t








) of the same frequency 

contents. Both signals have two frequencies, 50 Hz and 80 Hz. The Fourier transform is obtained 

by computation of the single-sided spectrum after the Fast Fourier transform (FFT) of the 

signals. Note that both spectrums peak at 50 and 80 Hz and the frequency content can be found 

in both cases, though the non-stationary spectrum at Fig. 2.2(b) has many small peaks. The small 

peaks represent some frequency contents which are not intended but they do exist in the input 

time-domain signal in Fig. 2.2 (a) and are due to the sudden changes between frequencies. If the 

minor frequencies are filtered out in the non-stationary spectrum in Fig. 2.2(b), the spectrum has 

the expected frequency contents. Therefore, the frequency information is apparent from the 

Fourier spectrum even for non-stationary signals, but there is no information regarding the time 

when the frequency changes. In other words, in the Fourier transform spectrum, there is no time 

information for each frequency component of the signal. Because of this, the input non-

stationary signals cannot be reproduced exactly. Therefore, Fourier transform is not suitable for 

the analysis of non-stationary signals if time information is required and many of the practical 

signals are non-stationary. When the time localization of different frequencies is required for a 

non-stationary signal, a transform which has better time-frequency localization is needed. A 

possible potential answer to this issue, which is discussed in the next section, is the short-term 

Fourier transform.  
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(a) (b) 

 

Fig. 2.1 (a) A stationary signal and (b) Fourier transform of the stationary signal. 

       

  

(a) (b) 

 

Fig. 2.2 (a) A non-stationary signal with same frequency contents as Fig. 2.1 and (b) 

Fourier transform of the non-stationary signals (a). 
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2.2.4 The Windowed Fourier transform (WFT) or Short-term Fourier 

transform (STFT)  

 The previous subsection discussed the reasons the Fourier transform is not suitable for 

non-stationary signals if time information is needed. However, a part of the non-stationary signal 

may be considered as stationary or close to stationary. In the windowed or short-term Fourier 

transform, the signal is divided into many small parts where each part is narrow enough to be 

considered as stationary. A window function w(t) is used to divide the signal into parts. In 1946, 

D. Gabor [8] presented this windowed transform to analyze “frequency variations” of a sound 

[9].  

 

(a)                                            (b)                                                (c) 

Fig. 2.3 (a) Input signal (jet airplane sound), (b) window function, w(t) and (c) short-term 

Fourier transform of the input sound signal. The time-axis values represent the midpoints of the 

parts of the signals selected by the window function; it does not show every timepoint available 

in the input signals. 

 

(a)                                        (b) 

Fig. 2.4 Short-term Fourier transform of the same input signal as in Fig. 2.3, but with a 

larger window function. (a) Window function, (b) STFT spectrum. 
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Mathematically, the short-term Fourier transform of a signal f(t) is given by 

2( , ) ( ) ( ) j ftF f f t w t e dt 


−

−

= − .                                                                                  (2.4) 

Fig 2.3 shows the short-term Fourier transform (discrete) spectrum of the input sound 

signal of a jet airplane sound collected from  [10] with the shown window function, w(t). The 

window function is traversed along the time axis to get different parts of the signal and Fourier 

transform is applied to get frequency and magnitude of that frequency for each small time-

window. The results in the STFT spectrum is shown in Fig. 2.3. Thus, the short-term Fourier 

transform solves the issue of the time-locations of practical non-stationary signals and provides a 

time-frequency representation of the signals.  

2.2.4 Issues of the short-term Fourier transform (STFT)  

 Fig. 2.3 shows the STFT spectrum with a narrow window. With a larger window as 

shown in Fig. 2.4(a), the spectrum in Fig. 2.4(b) shows a higher frequency resolution compared 

to Fig. 2.3(c) and very low time resolution. Therefore, while Fig. 2.3 spectrum has more time 

information and less frequency information, Fig. 2.4 one has more frequency information and 

less time information. 

 This issue is similar to the Heisenberg Uncertainty Principle[11] which deals with the 

momentum and location of moving particles. For the time-frequency information of a signal, as 

with the Heisenberg Uncertainty Principle, both time and frequency information cannot be 

determined perfectly; which exact spectral component exists at which exact instance of time 

cannot be known. However, the time interval in which a certain band of frequencies exists[7] can 

be determined. So, if the time resolution is higher (i.e. narrower window function) like Fig. 2.3, 

the frequency resolution is lower and vice versa. A fixed narrow or wide window function 

provides two different types of results, not the complete picture. Therefore, the issue is choosing 

a specific window size and using it for the entire analysis.  

 In the mid-1970s, Jean Morlet faced this issue while working at an oil company 

analyzing acoustic echo signals which had very high frequencies with short durations and low-

frequency components with long durations [12], [13]. STFT could be used to analyze only high 

frequencies with a narrow window or only low frequencies with a wide window, but not both. As 
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a solution, he experimented with the idea of varying the width of the window, i.e., scaling of the 

window function [14]. This work led to the concept of the wavelet transform, which will be 

discussed in the next section.  

2.3 The Continuous Wavelet Transform (CWT) 

2.3.1 Concept of multiresolution analysis (MRA) 

 Section 2.2 presented how in a short-term Fourier transform, if a better time resolution 

with a narrower window function is obtained, the frequency resolution will be worse, and vice 

versa. It is not possible to get both time and frequency resolution exactly or precisely; one of 

them needs to be sacrificed if the other is expected to be better. This issue exists regardless of the 

transform used [7].  

In the short-term Fourier transform, a specific window function is selected which provides 

a fixed single time and frequency resolution for the entire signal. It can be any of the time-

frequency resolution combinations, such as better time with worse frequency, worse time with 

better frequency, or mediocre time and frequency resolutions for the entire signal.  

Instead of analyzing the entire signal with a fixed single time-frequency resolution set, as 

done in the STFT), the concept of multiresolution analysis suggests analyzing different 

frequency components or parts in different sets of time-frequency resolutions. Usually, high-

frequency components are analyzed with a narrower window, i.e., a higher time resolution and 

lower frequency resolution while low-frequency components are analyzed with a wider window 

or lower time resolution, that is better frequency resolution. This approach is useful to extract 

more information from the signal especially since many practical signals [7], such as images 

have higher frequency components for short durations or instances and lower frequency 

components for long durations or instances. 

In summary, in multiresolution analysis, unlike in a fixed single resolution in the STFT, 

different frequency components are analyzed in different time-frequency resolution sets, which 

makes it more useful for extracting necessary information from the signals. 
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MRA was employed by Cosserat [15] in the early 1900s, whose work incorporated couple 

stresses and local rotation of points [16]. In 1986, Mallat first introduced the concept of 

multiresolution analysis for the wavelet transform [12].  

2.3.2 The continuous wavelet transform 

The fixed resolution issue of the short-term Fourier transform (STFT) was the main reason 

for developing the wavelet transform [12]. Unlike the STFT where the window size is fixed, the 

wavelet transform enables variable window sizes (i.e., changes in the width of the window) for 

analyzing different frequency components in a signal [9] and provides varying time-frequency 

resolutions for analyzing a signal.  

The window of varying width is called a “wavelet” because that the function of the wavelet 

is a short-duration finite energy function [17] and is oscillatory. All varying wavelets, 

represented by window functions, are generated by the translation and scaling of a fixed window 

function called the mother wavelet.  

In the continuous wavelet transform (CWT), a mother wavelet function ( )t  has two 

properties or conditions: it is a function with a zero mean and it is normalized [9] i.e., it has unit 

energy [17].  It is expressed mathematically as  

( ) 0t dt
+

−

=   and 
2| ( ) | 1t dt

+

−

= .                                                                               (2.5) 

The mother wavelet function  ( )t can be of various types depending on the type of 

wavelet transform. For example, Fig. 2.5 shows the mother wavelet for a Mexican hat wavelet 

where 
22 /2( ) (1 ) xt x e −= − .    

Varying window functions (i.e., wavelets) are realized by scaling, namely dilation and 

contraction, of the mother wavelet ( )t  by s  and shifting or translating it across the time axis by 

 . So, the wavelets can be described as 

 
,

1
( ) ( )s

t
t

ss



 

−
= .                                                                                                    (2.6)     

As introduced in [18], the continuous wavelet transform of a signal f(t) can be expressed as  
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* *

,

1
( , ) ( ) ( ) ( ) ( )s

t
W s f t t dt f t dt

ss



  

+ +

− −

−
= =  ,                                                     (2.7) 

where  is the shifting or translation parameter and corresponds to the time, and s is the 

scaling parameter and corresponds to the inverse of the frequency (i.e., a higher frequency means 

a lower scale, and vice versa).  

 

Fig. 2.5 Mexican hat wavelet [9] 

 

The wavelet transform can also be expressed as the inner product of the input signal f(t) 

and mother wavelet function ( )t [9]. Since L2, f  L2, where L2 space is the space of the 

square-integrable functions, i.e., ,x x   < ∞ if xL2. According to the properties of the 

square-integrable function, the inner product of ( )f t   and ( )t is given by 

 
*

, ,, ( ) ( ) ( , )s sf f t t dt W s   
+

−

 = = .                                                                          

The wavelet transform can also be rephrased as a convolution product: 

If *1
( ) ( )s

t
t

ss
 

−
= , then *1

( ) ( )s

t
t

ss


  

−
− = . 

From the definition of convolution, 

*1
( * )( ) ( ) ( ) ( ) ( )s s

t
f f t t dt f t dt

ss


    

+ +

− −

−
= − =  .                                                (2.8) 

Using the equation (2.7) in (2.8), 

 ( , ) ( * )( )sW s f  = .                                                                                                     (2.9) 

Therefore, the convolution of the input f(t) with ( )s t  can provide the transformed outputs.  
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2.3.3 The discretization of the continuous wavelet transform 

In discretization of the CWT, the scaling and translation parameters (s, ) are sampled 

[19]–[25]. This is done by using 2 js =  and 2 jk =  in (2.6) and (2.7) while keeping time 

continuous. The wavelet function, as defined in [19], becomes  

/2

, ( ) 2 (2 )j j

j k t t k − −= −   , ,j k Z .                                                                           (2.10) 

The sampled CWT coefficients, also known as wavelet series coefficients [19], are as 

follows [7]: 

*

, ,( )j k j kW f t dt
+

−

=  .                                                                                                   (2.11) 

2.4 The Discrete Wavelet Transform (DWT) 

Discrete wavelet transforms are based on the concept of the continuous wavelet transform. 

In many cases, DWT coefficients can be sampled from CWT counterpart, as shown in equation 

(2.10), although it is not the only option [7]. The DWT can be studied independently of its 

continuous counterpart [17]. Unlike the wavelet series or sampled/discretized CWT, time and 

parameters, both scaling and translation, are discrete [19].  The DWT also was considered as a 

natural wavelet transform for discrete-time signals by several early authors [19], [26], [27]. The 

additional advantage with the DWT compared to the CWT is the significant reduction of 

redundancy and computation time.  

In the CWT, the filter coefficients are calculated using the equation (2.11) or (2.7) which 

varies the size of the window by time-shifting and scaling to provide variable time-frequency 

resolution, i.e., multiresolution. However, with the DWT, multiresolution is achieved using a 

distinct approach called subband coding which requires a low-pass and high-pass filter.  

 2.4.1 Scaling function 

Before examining subband coding, some discussion of the concept of scaling function 

introduced by Mallat [24] is required. In equation (2.10), the wavelets can not be shifted and 

scaled continuously, they can be shifted and scaled only in discrete steps. Every time the wavelet 

is stretched in the time domain by a factor of 2, according to Fourier theory, its bandwidth in the 
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frequency domain is halved [28] (Fig. 2.6). Therefore, an infinite number of scaling and shifting 

is required to cover the whole transform. However, instead of an infinite number of wavelets, the 

lower part of the spectrum can be covered by a low-pass filter known as a scaling function.  

 

Fig. 2.6 Usage of scaling function instead of an infinite number of wavelets. 

The scaling function can be formed by using the weighted version of the wavelet function 

in (2.10) in such a way that its spectrum fits the lower part of the spectrum in Fig. 2.6 which is 

left open by the wavelets.  This can be expressed  [28] by the following equation:  

,

,

( ) ( , ) ( )j k

j k

t j k t  = ,                                                                                                (2.12)                     

where  ( , )j k is the necessary weight to cover the lower part of the spectrum.                                                                  

2.4.2 Subband coding of the discrete-time signal 

Subband coding is any type of transform that decomposes a discrete-time signal into 

different frequency bands. One of the common methods of subband coding that is adopted in the 

wavelet transform is to split the signal spectrum into two equal parts, a low-frequency and high-

frequency part, through a low-pass and a high-pass filter [28] as shown in Fig. 2.7.  Following 

this, the two types of processing are done.  

a) The frequency band of each part is now half of the input signal. According to the 

Nyquist rule [29], the minimum sampling rate needed for each part is half of the 

sampling rate of the input signal. Thus, every other sample can be dropped. In other 

words, it can be subsampled by 2 as shown in Fig. 2.7.  

b) The high-frequency part contains the smallest details, while the low-frequency part 

contains the average approximation of the signal with some small details. The low-
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frequency part is passed through a high-pass and low-pass filter again after 

subsampling by 2.  

These two steps complete the first level of decomposition. These steps are done iteratively 

until a target level is reached as shown in Fig. 2.7. It should be noted that subsampling in each 

step changes the scale resolution since removing samples decreases the resolution in time, which 

in turn means better resolution in frequency. As a result, with each level of decomposition, the 

lower frequency bands are filtered, and better frequency resolution is achieved by subband 

coding. In this way, MRA is realized in the discrete wavelet transform.  

 

 

(a) 

 

(b) 

Fig. 2.7 Subband coding technique used in the DWT: (a) forward transform, (b) backward 

or inverse transform 

2.4.3 The discrete wavelet transform 

The discrete wavelet transform uses the subband coding technique shown in Fig. 2.7. The 

high-pass filter (HPF) is implemented by the wavelet function of the wavelet transform, while 

the low-pass one (LPF) is done by the scaling function.  The HPF (i.e., wavelet filter) and LPH 
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(i.e., scaling filter) are denoted by g  and h , respectively, while the reconstruction HPF and LPH 

are denoted by g  and h , respectively. The forward transform filters g  and h are also known as 

analysis filters while inverse transform (reconstruction) filters g  and h  are known as synthesis 

filters.  Fig. 2.8 shows the structure of the DWT including both forward and inverse transform 

with a single level of decomposition and reconstruction.   

 

 

Fig. 2.8 Basic structure of the discrete wavelet transforms (single level of decomposition 

and reconstruction): forward transform uses the analysis filters g  and h , while the inverse 

transform uses the synthesis filter 

 

Similar to the CWT in the equation (2.9), where the wavelet transform can be expressed as 

the convolution of the input and a function of the mother wavelet function, in the DWT, the 

output sequence can be expressed as the convolution of input and filters. The output sequence 

after the decomposition of the input sequence x(n) is expressed as follows[7], [12]:  

( ) ( ) (2 ) * (2 )

( ) ( ) (2 ) * (2 )

H

k

L

k

X n x k g n k x g n

X n x k h n k x h n

= − =

= − =




                                                                          (2.13) 

where  

( 1 ) ( 1) ( )nh N k g k− − = −  for the orthogonal wavelets.                                                                                                

Here, x(n) is the input sequence, N is the filter length, and XH(n) and XL(n) are the high-

pass and low-pass filter output sequences, respectively, after subsampling by 2; sometimes they 
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also are denoted by d and s, respectively, which refer to detail and approximations or the average 

component of the signal.  

2.4.4 Constructing wavelets filters 

To show how scaling and wavelet filters are derived, as an example, Daubechies 

orthogonal wavelets will be constructed.  

For orthogonal wavelets, the relations among the filters g(k) and h(k) with the scaling and 

wavelet function are expressed as [17] 

1 1

0 0

( ) ( ) 2 (2 ) (2 )
N N

k

k k

t h k t k c t k  
− −

= =

= − = −  ,                                                                  (2.14) 

1 1

0 0

( ) ( ) 2 (2 ) ' (2 )
N N

k

k k

t g k t k c t k  
− −

= =

= − = −  .                                                                (2.15) 

Here, h(k) and g(k) are normalized coefficients, and ( ) 2kc h k= and ' ( ) 2kc g k= are the 

un-normalized coefficients.  

There are certain conditions required for the orthogonal wavelets to satisfy originality and 

other desirable properties for different kinds of applications. A summary of these conditions are 

(see [17] for details): 

1. The scaling function should be normalized. This implies that the unit area under the 

scaling function must be 1. Therefore, 

( ) 1t dt = .                                                                                                          (2.16) 

From (2.14) and (2.16), we obtain  

      
1

0

2
N

k

k

c
−

=

= .                                                                                          (2.17) 

For the Daubechies-8, N=8 and the value of k ranges from 0 to 7. 

2. The integer translates of scaling function must be orthonormal. This implies that 

0,( ) ( ) kt t k dt  − = ,                                                                                             (2.18) 

where 0,

1 0

0 0
k

if k

if k


=
= 


. 

From (2.14) and (2.18), we obtain  
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2

0

2
N

l

l

c
−

=

= for  0k = ,                                                                                             (2.19)                                                      

1

2

0

0
N

l l k

k

c c
−

−

=

= for 0k  .                                                                                         (2.20) 

3. An approximation of a signal using the scaling function is required in many 

applications. If the degree of smoothness is p, the smoothness or approximation 

conditions are expressed as   

1

0

( 1) 0
N

k

k

k

c
−

=

− = for  p=0,                                                                                        (2.21) 

1

0

( 1) 0
N

k p

k

k

k c
−

=

− = for p>0                                                                                      (2.22) 

Usage of different values of p (0, 1, 2 …) ensures we have enough number equations 

to solve the values of ck . For example, for Daubechies-8 wavelet, N=8 and we need 8 

unique equations to solve 8 ck values. The condition 1, 2 and 3 with different values 

of p and k are able to provide a necessary number of equations.  

4. The scaling and wavelet function are orthogonal. This implies that 

( ) ( ) 0t t dt  = .                                                                                                   (2.23) 

With the use of (2.14) and (2.15) in (2.21), it can be found that  

1' ( 1)k

k N kc c − −= − .                                                                                                 (2.24) 

This equation provides the relation between and 'k kc c . This relation along with 

( ) / 2kh k c=  and ( ) ' / 2kg k c= are sufficient to deduce the h(k) and g(k) filters 

from the values of kc . 

Solving the equations in the first three conditions provides the value of filter coefficients 

kc and the corresponding scaling filter ( ) / 2kh k c= . As an example, to find the filter of the 

Daubechies 8-tap wavelet transform, N=8 should be used in these relations. So, for Daubechies-

8, using the equations (2.17), (2.19), (2.20), (2.21) and (2.22), we get the following equations. 
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                                                             (2.25) 

There are enough equations in the equation set (2.25) to solve 8 unknowns and find the 

value of the filter coefficients. After these equations are solved, the values of the coefficients of 

ck and then the values of hk can be determined by using the following relation:  

( ) / 2kh k c= .                                                                                                               

The derived values of hk with a high degree of precision are shown in table 2.1.  

 The scaling filter (h-filter) in the Z-domain is:  

        
1 2 3 4 5 6 7( ) (0) (1) (2) (3) (4) (5) (6) (7)h z h h z h z h z h z h z h z h z− − − − − − −= + + + + + + + .        (2.26) 

Since ( ) ( 1) ( 1)kg k h N k= − − − , the wavelet filter would be 

6 5 4 3 2 1 1( ) (7) (6) (5) (4) (3) (2) (1) (0)g z h z h z h z h z h z h z h h z−= − + − + − + − + .               (2.27)  

2.4.5 Common wavelets 

There are many wavelet families such as Daubechies, Haar, Biorthogonal, Reverse 

Biorthogonal, Symlets, and Coiflets. The Daubechies and Biorthogonal wavelet families are the 

two most widely used.  

Fig. 2.9 shows the scaling and wavelet function of Daubechies 8-tap wavelets [30] as an 

example, since the derivation of the h-filter of this wavelet has already been shown.  

Daubechies wavelets are perfectly orthogonal and so the inverse wavelet transform is the 

adjoint of the forward transform. This family is based on Ingrid Daubechies’s work on a 

systematic method to construct a compact support orthogonal wavelet [31]. It includes members 

ranging from the highly localized (D2, D4) to the highly smooth (D20) [32].  A higher tap or 

order wavelet filter offers comparatively better frequency localization and increased energy 
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compaction [33] along with increased implementation costs and more errors. As a result, the 

implementation of low-order filters, such as the Daubechies-4 (D4), D6, and D8, are more 

common in the literature [32], [34]–[39] while the implementation of higher order filters, like the 

D18 and D20, is very rare. For the Daubechies-N, the low-pass filter (h) and high-pass filter (g) 

are as follows: 

1 ( 1)

0 1 1( ) ... N

Nh z h h z h z− − −

−= + + + , 

( 2) 1

1 1 0( ) ...N

Ng z h z h h z− −

−= − + − + . 

On the other hand, a biorthogonal wavelet is one where the transform may not be 

orthogonal but perfectly invertible. The two most popular biorthogonal wavelets are the Cohen-

Daubechies-Feauveau wavelet 5/3 (CDF 5/3) and CDF 9/7, the latter of which has been adopted 

in the JPEG2000 compression standard. Table 2.2 shows the analysis filter coefficients of both 

the CDF 5/3 and CDF 9/7.  

 

 

 

 

Scaling function  Wavelet function 

 

 

 

h-filter coefficients (low-pass 

reconstruction) 

 g-filter coefficients (high-pass 

reconstruction) 

 

Fig. 2.9 Daubechies 8-tap scaling function, wavelet function, and digital filters [30] 
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Table 2.1 Daubechies Wavelets filter coefficients 

Daubechies-4 Daubechies-6 Daubechies-8 

h0 (1 3) / (4 2)+  h0 0.332670552950.. h0 0.2303778133088960.. 

h1 (3 3) / (4 2)+  h1 0.806891509313... h1 0.7148465705529090.. 

h2 (3 3) / (4 2)−  h2 0.459877502119... h2 0.6308807679298580… 

h3 (1 3) / (4 2)−  h3 -0.135011020010... h3 0.0279837694168599… 

  h4 -0.085441273882... h4 -0.1870348117190930… 

  h5 0.035226291882... h5 0.0308413818355607… 

    h6 0.0328830116668851.. 

    h7 -0.0105974017850690… 

 

Table 2.2 CDF-5/3 and 9/7 Analysis Filter Coefficients 

 CDF 5/3 CDF 9/7 

K Low-pass filter (hk) High-pass filter (gk) kh  kg  

0 6/8 1 0.852698679008893 0.788485616405582 

1 2/8 ½ 0.377402855612830 -0.4180922732216172 

2 -1/8  -0.110624404418437 -0.0406894176091640 

3    -0.023849465019556 0.06453888262869705 

4   
 

0.0378284555072640 - 

 

2.5 Implementation of the Discrete Wavelet Transform 

(DWT) 

The decomposition and reconstruction of a wavelet filter can usually be implemented in 

two ways, by a filter bank or convolution or by the lifting method. Fig. 2.10 shows these 

methods and their differences in an image or two-dimensional signal processing application.  

2.5.1 Standard filter bank vs Lifting steps-based implementations 

The filter-bank- or convolution-based methods are the standard implementations which are 

the direct or indirect implementations of the convolution operation of the filters. For 2D signals, 

the methods are usually the 2D block-based technique (generally, 4x4, 8x8, or 16x16 blocks) 
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which usually implements matrix multiplication techniques or their variants. These methods 

usually require additional buffer memory, and hence, the hardware cost is often high.  Moreover, 

the processing needed in the buffer memory affects the real-time processing of image sensor data 

adversely. Different variants of filter-bank-based implementations are proposed or explored in 

[40]–[46]. 

Image 

sensor

Memory

Buffer

(2D 

matrix)

h

g d

  s2

2

Filters
Sub-

sampling

2D matrix input
 

(a) 

Image 

sensor
Split Predict Update

Serial 

input of 

pixels

Scaling

s

d

Predict

-

k

1/k

 

(b) 

Fig. 2.10 Implementation of discrete wavelet transform (shown with image input source). 

(a) General filter-bank- or convolution-based approach and (b) lifting-based approach. 

 

The lifting-based technique implements the same thing but without direct or indirect 

convolution or matrix multiplications. Instead, it is a ladder-like structure derived from the filters 

(see discussion in 2.5.2).  As shown in Fig. 2.10, the lifting-based technique is progressive in 

nature using raster scanning and allows in-place implementation. Lifting schemes bring several 

benefits compared to the standard filter-bank implementation[47]: 

a) The computational complexity decreases by about a half. 

b) The speed of the transform increases. 

c) It allows for an in-place implementation of the wavelet transform, and therefore, 
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does not require any auxiliary memory (as shown in Fig. 2.10).  

d) It allows the building non-linear wavelet transform, such as wavelet transforms 

that maps integers-to-integers [48]. The integer-based transform is hardware-

implementation friendly and allows lossless implementation of most steps in the lifting 

schemes.  

The purpose of this research is to propose a lossless and low-cost hardware implementation 

of discrete wavelet transforms. To accomplish this goal and because of its advantages, a lifting-

based technique will be used.  

 

2.5.2 Conversion of filter-bank into lifting steps 

Daubechies and Sweldon [47], [49] showed that a new structure of wavelet transform can 

be created from any orthogonal and biorthogonal filters. This new scheme is named the lifting 

scheme.  

This new scheme begins with a well-known set of filters (h, g), and the filters are split into 

even and odd parts forming a polyphase matrix which can be expressed as 

            (z)
e e

o o

h g
P

h g

 
=  
 

.                                                                                                         (2.28) 

This polyphase matrix is then factorized using the successive division approach i.e., 

Euclidean algorithm of the greatest common divisor (GCD) and choosing the appropriate 

Laurent polynomials. The aim of the factorization is to represent the polyphase matrix as a set of 

upper and lower triangular matrices [35].  

At first, the first column of the polyphase matrix is factorized which results in the 

following matrix decomposition: 

1

( ) ( ) 1

( ) 1 0 0

n
e i

io

h z q z k

h z =

     
=     

    
  

Here, k is the greatest common divisors and ( )iq z is the quotient in the thi − step of the 

successive division approach of finding the greatest common-divisors.  
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 A complementary polyphase filter g0 can be found where another polyphase matrix ˆ ( )P z  

is as follows:  

1

ˆ(z) ( ) ( ) 1 0
ˆ( )

ˆ(z) ( ) 1 0 0 1/

n
e e i

io o

h g z q z k
P z

h g z k=

     
= =     

    
                                                        

We can find a polynomial S(z) such that  
1 ( )

ˆ( ) ( )
0 1

S z
P z P z

 
=  

 
                                                        

So, the final factorization matrix is given as:  

( )
/2

2 1

1 2

1

)

( ) 0

1

1 0)

0

1 (

( 10 1 0 1/

n
i

i i

z
P

k
z

q k

q s

z

z−

=

    
=     

    

 
 
 

                                           

where
2( ) ( )s z k S z= .  

The above factorized polyphase matrix can be written in the following format: 

( )
1

1 01 ( ) 1

( ) 10 1 1 1/

m
i

i i

s z
P

t z k

k
z

=

    
=     

    
 .                                                                 (2.29) 

where k is a non-zero constant and the Laurent polynomials, (z)is  and ( )it z  are the primal 

and dual lifting stages, respectively.  

For example, for the Daubechies 4-tap wavelet transform (D4), shown in Table 2.1, using a 

successive division approach, the polyphase matrix for D4 wavelets is found to be 

1

1 1 0 1 0
( )

0 1 1 0 1 0 1/

a z k
P z

b cz k−

       
=        

+       
,                                                            (2.30) 

where 3a = − , 3 / 4b = , ( 3 2) / 4c = − , ( 3 1) / 2k = +  , and 1/ ( 3 1) / 2k = − .  

For orthogonal wavelets, the dual polyphase matrix is the same as P(z). 

        ( ) ( )P z P z=                                                                                                                 (2.31) 

The analysis polyphase matrix should be  

        ( )
1

1

1

11 1 ( )
1/

( ) 11 1

0

1/ 0

m
T i

i i

t z

k
P z

s z

k −

−

=

    
=     

    
 .                                                     (2.32)             

The analysis polyphase matrix gives the direct implementation of the forward transform of 

the lifting scheme. This reduces the computational complexity when compared to the traditional 
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wavelet implementation.  

If the input sequence to the transform is x, and the even and odd components are xe and xo, 

respectively, the outputs (low-pass component xL and high-pass component xH) are given by 

(1/ )
eL T

oH

xX
P z

xX

  
=   

   
.                                                                                                   (2.33)    

This corresponds to the following steps.  

     

1

1 1 0

1

1 1 .1

1

2 2 1 01

1

2 1 2 2

( ) ,

( ) ,

( ) ,

( ) ,

...

...

,

/ .

o e

e e o

o e

e e o

L em

H om

x s z x x

x x t z x

x s z x x

x x t z x

X s kx

X d x k

−

−

−

−

= +

= +

= +

= +

= =

= =

                                                                                                     (2.34) 

The equation-set (2.34) can be used to deduce the structure of the lifting implementation of 

a forward wavelet transform which is shown in Fig. 2.11. The last step with the multiplier-pair 

(k,1/k) is known as the scaling step.  
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Fig. 2.11 Structure of lifting implementation of the forward part of the wavelet transform 

 

The inverse transform can be found by the back-calculation of the equation set (2.34), 

shown in the equation set (2.35) and illustrated in Fig. 2.12.  
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Fig. 2.12 Structure of lifting implementation of the inverse wavelet transform 

 

This thesis aims to propose the efficient and lossless implementation of the lifting wavelet 

transform. Chapters 3, 4, and 5 discuss specific details of lifting implementation, conventional 

factorization techniques, related issues, and the proposed solution.   

2.6 Existing Lifting-based Implementations 

 Daubechies and Sweldens introduced the lifting-step-based implementations in [47], [49]. 

These works show how the factorization of the polyphase matrix shown in (2.28) is performed to 

reach to (2.29). Many other lifting implementations such as [50]–[54] are based on this work 

while some other works such as [55]–[61] propose variant architectures of implementations. 
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2.6.1 The integer-based lifting wavelet transform and issues 

 Lifting-based implementations of  [47], [49] can provide an excellent opportunity for 

lossless and lower cost hardware implementations as described in section 2.5. This opportunity is 

pursued in [48], [62], where Calderbank and Daubechies proposed another set of wavelet 

transforms based on lifting wavelets which map integer-to-integer.  

In that work, the lifting step 1

1 1 0( )o ex s z x x−= +  is approximated by 

1

1 1 0( ) 1/ 2o ex s z x x− = + +   to reach an integer value in each lifting step. This method can 

provide accurate reconstructions of the lifting step by using 1

0 1 1( ) 1/ 2o ex x s z x− = − +  . 

However, an issue remains with the scaling-steps sine if 1/ 2L emX s kx= = +    is applied. emx  

cannot be perfectly recovered with / 1/ 2em Lx X k= +   . Therefore, the approach shown in  [48] 

is not lossless when the scaling steps are present in a wavelet transform, and this is true for most 

orthogonal and many biorthogonal wavelet transforms.  

The implementation algorithm based on this approach has the following problems: 

(a) As explained above, the scaling steps are not reversible. The conventional lifting-based 

algorithm of most wavelets has scaling steps, which makes the transform irreversible. 

Therefore, the main wavelet-transform engine of many systems become lossy, and the 

data or signal cannot be reconstructed properly.  

(b) Hardware implementation is costly since the values of the lifting-step filter coefficient si 

and ti are irrational in many cases. For example, the polyphase matrix of the D4 contains 

irrational values like 3−  , 3 / 4  (see equation (2.30)). Since here the irrational 

coefficients are multiplied, the cost is high. If these coefficients are truncated to a certain 

precision, the cost depends on the precision. But truncation leads to outputs which are 

different from the standard outputs. These changed outputs are often of higher entropy 

which indicates lower performance of the transform. Coefficients truncation should be 

based on the optimization of both performance and cost.  



44 

 

 

 

(c) Floating point operations in each step make the system expensive. Filter coefficients are 

not mapped into an integer in [48], [51], [62].  Though the truncated coefficients can be 

mapped the integers, adding 1
2

can be the additional burden.  

Most of the previous work regarding integer-based lifting wavelet uses the same or a 

variant of the algorithm proposed in [48], [62]. Some of these works  are  [63], [64], [65] , [66]. 

The work [63] constructed the integer-to-integer versions of several wavelets using the technique 

of [48] and showed that integer-to-integer and classic version often yield comparable quality at 

low bit rates. The research [64] also utilized the integer-based wavelet transform of [48] to 

present its usefulness in the distortionless data hiding. In [65], various integer wavelet transforms 

were presented based on [48] and they were utilized with zero-tree coding for thee-dimensional 

compression. Another work [66] also used the integer-based wavelet transform based on 

[48],[62] in steganography to utilize the perfect reconstruction ability in some wavelets.  

2.6.2 Existing solution of the scaling-step issue 

 Regarding the scaling problems, one of the suggested solutions is converting the scaling 

steps into four additional lifting steps using either of the following formulas [47]:  

          

20 1 0 1 1 1 01

0 1/ 1/ 1 0 1 1 10 1

k kk k

k k

− −       
=         

−        
                               (2.36)    

 

20 1 0 1 1 1/ 1 0 1 1/ 1/

0 1/ 1 1 0 1 1 0 1

k k k k

k k

−  −       
=         

−         
                                        (2.37)    

There are some problems with this approach. First, the additional scaling steps need more 

hardware. Second, since the coefficients need to be truncated if they are mapped to integers in 

order to achieve low-cost implementation, truncation in each step incurs more errors. Therefore, 

this approach generally is not used.  

2.6.3 Other integer-based lifting wavelet transform 

 In [67], the authors also used the conventional algorithm found in [48], [62] (see 

discussion 2.6.1), skipping the addition of 1
2

in each lifting steps. Ding et al. [68] proposed an 

adaptive directional lifting for image coding which still maintains the scaling steps.  Andra et al. 
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[51] proposed an integer-based lifting architecture, but it does not solve the scaling issues, and 

hence shows a lossy algorithm when the scaling is present. This algorithm converts filter 

coefficients into an integer by multiplication by 256, followed by rounding.  

Recent work in the same area is [69], where Balster et al. proposed an integer-based lifting 

algorithm for CDF 9/7 wavelets. Mentioning the issues with the scaling steps, this work removes 

the scaling steps from the wavelet transform and include these steps in quantization; thus, the 

algorithm still remains lossy. In addition to the conventional algorithm in [48], [62], this 

algorithm converts the floating point coefficients into integers by multiplication by the power of 

two followed by a division and a floor operation.  

To best of our knowledge, one of the previous works presents an efficient solution to 

reconstruction errors occurring in integer-based lifting architectures for most wavelets where 

scaling steps are present.  

2.7 Conclusion  

This chapter summarizes the background necessary to understand the objective of this 

research. A brief overview of the Fourier transform provides the basics of converting a time-

domain signal to its frequency domain counterpart. Like many inventions, the Fourier transform 

has its limitation, such as incompatibility with non-stationary signals, which paved the way to 

further developments such as windowed or short-term Fourier transform. The windowed Fourier 

transform provides both frequency and time information but is limited by a fixed single 

resolution with a fixed window size. The need for multiresolution analysis was the driving force 

to find an alternative transform. The wavelet transform with a variable window-size was the 

solution.  

Lifting-based method of the wavelet transform is an efficient alternative to the traditional 

filter-bank- or convolution-based implementation, decreasing the cost by almost half and 

creating an opportunity for efficient integer-based hardware implementation. However, there are 

a few issues, including non-invertible scaling steps, with an integer-based implementation which 

are discussed in this chapter.  
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 Chapter 3 

Low-cost Transform using Integer Polynomial 

Mapping 

(case-study with Daubechies-4 and -6 wavelets) 

 

Published as: 

Md. Mehedi Hasan and K. A. Wahid, “Low-Cost Architecture of Modified Daubechies 

Lifting Wavelets Using Integer Polynomial Mapping,” IEEE Trans. Circuits Syst. II Express 

Briefs, vol. 64, no. 5, pp. 585–589, 2017. 

Implementation of discrete wavelet transforms in a low-cost and lossless/reversible manner 

is the primary objective of this thesis. As the first step of full-filling our objective, the options of 

low-cost implementations techniques were investigated. We explored how the discrete wavelet 

transform can be implemented in a hardware-friendly manner and applied the techniques on two 

popular wavelets, the Daubechies-4 (D4) and -6 (D6). Since achieving losslessness is another 

objective, though it is not achieved in this work, with careful selection of architecture, the 

proposed method achieves near-losslessness.  

The previous chapter discussed the reasons that the lifting scheme is preferred over the 

traditional convolution- or matrix-based technique, namely, that cuts the cost by half and allows 

for making wavelets that map integer-to-integer which are hardware friendly and part of the 

lifting steps becomes lossless. For these reasons, in this chapter, the lifting based technique is 

selected for implementation. Then, integer-polynomial mappings for the filter polynomials, 

which result in a lower cost than usual floating-point based lifting transform, are applied. A low-

cost and near-lossless algorithm with experiments on the D4 and D6 is achieved and described in 

this chapter. Based on the advantages of integer-based techniques learned in this chapter and 

related issues, chapter 4 presents the improvements to make the wavelet completely lossless.  
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Abstract 

 The paper proposes a modified version of the popular lifting algorithm of Daubechies-4 

(D4) and Daubechies-6 (D6) wavelets and their efficient implementation using integer 

polynomial mapping (IPM). At first, an improved polyphase matrix for D4 is presented that 

eliminates one filter coefficient completely without losing any accuracy. Then IPM is applied to 

encode the remaining irrational coefficients. As a result, computation error due to irrational 

numbers in the conventional method is significantly reduced, resulting in better image 

reconstruction. For D6, a 2-level optimization scheme combined with resource sharing of 

coefficients is applied that results in simplified hardware architecture with much fewer resources. 

 

Index Terms 

Daubechies wavelet transform, lifting scheme, image compression, integer mapping. 
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3.1 Introduction  

Image compression with high ratio is vital in the digital image and video transmission and 

storages. Among many image compression techniques in literature, Discrete Wavelet Transform 

(DWT) has been proven to be powerful due to its time-frequency characteristics [1][2]. 

Biorthogonal wavelets such as 5/3 and 9/7 are quite popular since they have been employed in 

JPEG 2000 compression standard [4]. Another wavelet family, called Daubechies wavelets, are 

also widely used because of its orthogonal nature [6]. Daubechies family includes members 

ranging from highly localized to highly smooth. Among all members of the family, Daubechies-

4 (D4) and Daubechies-6 (D6) are the two most commonly found members in medical image 

compression and texture analysis due to their ability to achieve better compression with lesser 

complexity [4][5]. 

 There are two ways a wavelet transform basis can be implemented: conventional matrix-

based and lifting-based. The former is a block-based technique (generally, 4x4, 8x8 or 16x16 

blocks) that requires additional buffer memory, and hence hardware cost is often high. Moreover, 

the need of buffer memory affects real-time processing of image sensor data adversely. The 

lifting based technique, on the other hand, is progressive in nature (i.e., raster scan) and, 

therefore, has half of computational complexity compared with the other [6]. While 

implementing lifting based Daubechies wavelets, truncation error accumulation inside the 

encoder takes place due to the lossy implementation of the irrational filter coefficients. The 

situation is worse at higher order decomposition level that affects the reconstruction quality of 

the image adversely.  

This work addresses the issue in two steps. At first, we propose an improved version of the 

conventional lifting matrix that eliminates completely one irrational filter coefficient. Secondly, 

we apply a near-lossless mapping of the remaining coefficients using integer polynomial 

mapping (IPM). As a result, the hardware resource is greatly reduced. It also results in improved 

image reconstitution quality.  
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3.2 Conventional Lifting-Based Wavelets 

The DWT is based on small wavelets with limited duration to analyze both frequency and 

time component of a signal. The conventional or classic method of implementing wavelets uses a 

well-known set of filters: h and g, where h is a low-pass and g is a high-pass filter. These filters 

are split into even and odd sequences. The polyphase matrix is assembled as: 

(z) ( )
(z)

(z) ( )

e e

o o

h g z
P

h g z

 
=  
 

                                                                                                    (3.1) 

The matrix is factorized by using successive division approach and choosing appropriate 

Laurent polynomials. It can be expressed as shown below: 

( )
1

1 01 ( ) 1

( ) 10 1 1 1/

m
i

i i

s z K
P z

t z K=

    
=     

    
                                                                   (3.2) 

where, K is a non-zero constant and the Laurent polynomials, (z)is and ( )it z , make up the 

primal and dual lifting stages respectively. This polyphase matrix, being the product of 

elementary matrices, can be implemented using lifting steps which are shown in the following 

sections.  

Using a successive division approach, the polyphase matrix for D4 wavelets is found to be: 

1

1 1 0 1 0
'( )

0 1 1 0 1 0

a z d
P z

b cz e−
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                                                                 (3.3) 

Where, 3a = − , 3 / 4b = , ( 3 2) / 4c = − , ( 3 1) / 2d = +  , and ( 3 1) / 2e = − .  

For D6 wavelets, similar division approach is used to find the factorized polyphase matrix:  

11 0 1 0 1 01 '
'( )

1 ' 1 0 1 0 /0 1

z
P z

z

  

   
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                                      (3.4) 

where, , , ', , ', , and        are 0.4122865950,− 1.5651362796,−  0.3523876576,  

0.0284590896, 0.4921518449, 0.3896203900− , and 1.9182029462  respectively. 

 

(

3) 
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Fig. 3.1 Conventional lifting implementation of (a) D4 and (b) D6 wavelets 

 

The conventional lifting schemes of D4 and D6 wavelets are shown in Fig. 3.1. Here, X is 

the serial input pixel which is subsampled by 2. It produces even component X2l and odd 

component X2l+1. Different factors of '( )P z matrix are applied to compute the low-frequency 

component sl and high-frequency component dl. Now, it is seen that the entire coefficient set 

used in (3.3) and (3.4) are irrational in nature which not only requires a significant amount of 

hardware resources, but also introduces computation error during reconstruction. The aim of this 

work is to reduce the error and find efficient hardware architecture. 
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3.3 Proposed IPM-Based Lifting Algorithm 

In this section, we present the IPM-based lifting algorithm of D4 wavelets followed by its 

extension to D6 wavelets.   

3.3.1 IPM-based modified D4 wavelet 

The proposed scheme is applied to D4 wavelets in two stages. At first, we carefully 

analyze the coefficients b and c along with the datapath structure. By using matrix 

decomposition and rearranging the datapath, a new polyphase matrix is constructed that 

eliminates one filter coefficient completely (i.e., c in Fig. 3.1(a)). The new matrix is below: 

1 1

1 0
1 1 0

'( ) 1
0 1 0 1 0(1 ) 1

2

a z d
P z

eb z z− −

 
      =       + −     

 

                                                     (3.5) 

The simplified diagram of the new filter structure is shown in Fig. 3.2. The elimination of 

one filter coefficient helps deal with one less multiplier that contributes heavily to accuracy 

improvement as well as complexity reduction.  
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Fig. 3.2 Proposed lifting implementation of D4 (after stage 1) 

 

In the second stage, we carefully apply a scaling function to both inputs and irrational 

coefficients. This scaling enables us to apply integer polynomial mapping (IPM) to encode the 

remaining coefficients; as a result, the irrational numbers are now mapped near-losslessly to 

integers which will effectively become the new filter basis.  
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Fig. 3.3 Proposed lifting implementation of D4 (after stage 2) 

Let the scaling parameters for the input and the filter coefficients be 2  and 2  

respectively. The value of α determines the minimum word length for the best representation of 

the input samples for optimum Peak Signal-to-Noise Ratio (PSNR) and β determines the best 

integer parameters of the irrational coefficients. Thus, the final polyphase matrix of D4 wavelets 

can be expressed as: 

1 1

1 0
11 / 2 / 2 0

'( ) 2 21
0 1(1 ) / 2 10 1 0 / 2

2

zA D
P z

B z z E


 

 

−

− −

 
     =      + −     

 

   

where, the new coefficients A, B, D and E are integers close to 2 3− , 2 3 / 4 , 

2 ( 3 1) / 2 + , and 2 ( 3 1) / 2 −  respectively. The filter structure after step 2 is given in Fig. 

3.3. 

The new parameters A, B, D and E are keys to efficient data reconstruction, and therefore 

computed after a careful observation and an exhaustive search of the scaling parameters α and β. 

In order to select the best values of these parameters, we simulated the entire algorithm using 

three benchmark images. The output image is evaluated using the PSNR index for different 

values of α and β for five scenarios with the compression ratio (CR) of 50%, 75%, 87.5%, 

93.75% and 96.88%. The average PSNR indices are plotted in Fig. 3.4. It is noted that smaller 

values in  and β will ensure fewer hardware resources in implementation, and therefore will be 

desired.  
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As seen from Fig. 3.4, in all three images, the PSNR indices first increase as α and β 

increase; after a threshold, the indices hit the maximum and do not show any significant change. 

In order to limit the word length and hardware requirement, we consider the first maximum 

points as our desired point for implementation. Interestingly the first maximum point for all three 

benchmark images is the same, though the maximum PSNR indices vary for different images. 

From our analysis, the values chosen are:   = 3 and   = 8.  

 
  

(a) Lena (b) Barbara (c) Mandrill 

Fig. 3.4 Average PSNR indices at different bit rates are plotted against   and   values 

for three benchmark images 

 

Table 3.1  New filter coefficients for D4 using IPM 

Original 

Coeff. 

Values Integer coeff. 

after IPM 

After applying 

CSD 

Filter coefficients after simplification 

Final values Scaling 

a 3−  A = -444 9 6 22 2 2− + +  7 4 02 2 2− + +  6( )2−  

b 3 / 4  B = 111 7 4 02 2 2− −  7 4 02 2 2− −  ( )82−  

c ( 3 2) / 4−  Eliminated 

d ( 3 1) / 2+  D = 495 29-24 -20 29-24 -20 8( 2 )−  

e ( 3 1) / 2−  E = 132 27+22 5 02 2+  6( )2−  
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Fig. 3.5 Final IPM implementation of D4 wavelets 

 

Table 3.1 shows the development of integer filter coefficients from the original irrational 

coefficients using the chosen β. It is seen that the use of IPM helps replace irrational numbers 

with integers which enables an error-reduced inverse operation. To improve the efficiency of 

hardware implementation, we further apply canonical signed digit (CSD) representation to 

eliminate all multipliers. Fig. 3.5 shows the final hardware architecture of D4 lifting wavelets.  

3.3.2 IPM-based D6 wavelet 

After successfully applying IPM to D4 wavelets, we extend it to D6 wavelets. This is also 

a 2-stage process. In the first stage, we directly apply IPM to encode the coefficients with 

optimum PSNR followed by CSD representation to eliminate multiplier. In stage 2, we analyze 

the bit pattern of the representation carefully and combine two coefficients to further save 

hardware cost. To do it, let the scaling parameters for input and filter coefficients be 2  and 2  

respectively. Then the new polyphase matrix can be expressed as: 

11 0 1 01 ( ') / 2 1 / 2 / 2 0
'( ) 2 2

/ 2 1 ( ' ) / 2 10 1 0 1 0 2 / e

bz b d e
P z

a c c z

  
 

  

−

−
     +   

=         
+        

 (3.6) 

Here, the new coefficients are given as: 
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The polyphase matrix can now be implemented as shown in Fig. 3.6. The optimal values of 

parameters φ and η are chosen following similar exhaustive analysis (as described before for 

D4), i.e. maximization of PSNR index with minimization of  and   values. The chosen values 

are   = 0 and = 6.  

 

+

a

 ↓2

 ↓2

z-1 bz-1+b′ c+c′z d

+

+

+

s'l

d'l

X
X'2l

2-η

2-η

2-η

2-η

2φ
e

1/e dl

2-η-φ sl

X'2l+1

sl 
(1)

dl 
(1)

2η-φ

 

Fig. 3.6 Proposed lifting implementation of D6 (after stage 1) 

 

Table 3.2 shows how integer coefficients are developed for D6 using the combination of 

IPM and CSD representation. The new coefficients are found to be: a = -26, b = -100, 'b  = 24, c 

= 2, 'c  = 31, d= -25, and e = 123. It is followed by a division by 26. Therefore, like D4, the 

application of integer mapping helps replace irrational coefficients with integers enabling an 

error-reduced forward and reverse operation.  

In the 2nd stage, we analyze the bit pattern of each coefficient and then perform coefficient 

sharing as much as possible. For example, from Table 3.2, 
2 2(2 ' 2 )b b= − + . So, the multiplier (

1 'bz b− + ) in Fig. 3.6 can now be expressed as 
4 3 2 1 2 1(2 2 )(2 1) 2z z− −− + − −  which requires three 

adders to implement instead of four (if no sharing): 
6 5 2 1 4 3(2 2 2 ) (2 2 )z−− + + + + . Finally, the 

new filter structure of D6 is formed and shown in Fig. 3.7.  
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Table 3.2 Development of new coefficients for D6 wavelets using IPM and CSD 

Representation 

Original 

filter 

coefficients 

Coefficient 

values 

Integer 

coefficients 

after IPM 

Integer 

values

( )2 −  

Integer values 

in CSD 

representation 

( )2 −  

Filter coefficients after 

simplification 

Final values Scaling 

α 0.4122865950−  a -26 4 3 1(2 2 2 )− + +  3 2 0(2 2 2 )− + +  5( 2 )−  

β 1.5651362796−  b -100 6 5 2(2 2 2 )− + +  4 3 0(2 2 2 )− + +  4( 2 )−  

β’ 0.3523876576  b’ 24 4 32 2+  4 32 2+  6( 2 )−  

γ 0.0284590896  c 2 21 21 6( 2 )−  

γ’ 0.4921518449  c’ 31 5 02 2−  5 02 2−  6( 2 )−  

δ 0.3896203900−  d -25 4 3 0(2 2 2 )− + +  4 3 0(2 2 2 )− + +  6( 2 )−  

ζ 1.9182029462  e 123 7 2 02 2 2− −  7 2 02 2 2− −  6( 2 )−  
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+

+
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Fig. 3.7 Final IPM implementation of D6 wavelets 

 

Overall, the new filter costs 12 adders and 11 shift registers for D4, and 16 adders and 18 

shift registers for D6. No multipliers are required. Thus, the integer mapping of the irrational 

coefficients combined with coefficient sharing result in a decrease in hardware resources. 
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Fig. 3.8 Spectrum response of D4 and D6 (precision: 8-bits in proposed; 64-bits in 

original) 

In our implementation, both D4 and D6 filters have been designed for 8-bit precision. To 

show the impact of precision loss on filter operation, we present the spectrum response of both 

approximation and detailed outputs in Fig. 3.8 and compare with 64-bit original filters. It is seen 

that, even with only 8-bit precision, the proposed filters follow the original filters very closely, 

and thus the influence of precision loss is minimal.  

The proposed IPM technique is general enough to be applied to biorthogonal wavelets such 

as, 5/3 and 9/7 wavelets that have lifting steps. In that case, one needs to follow the 

decomposition steps as described above (similar to Figs 3.2 and 3.3), find optimal parameters 

(similar to Fig. 3.4), and then apply resource sharing or coefficient elimination depending on the 

newly found lifting coefficients (similar to Fig. 3.5). 

3.4 Hardware Validation and Cost Assessment  

For performance evaluation, we have coded our algorithm in Verilog HDL and 

implemented the filters physically into Cyclone II field-programmable gate array (FPGA) using a 

technique called FPGA-in-the-loop; this provides more accurate results than simulation-based 

implementation. Here, Simulink was used to send the input image pixels to the FPGA module. 
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Three standard images were taken as input and then compressed using the proposed schemes. 

The compressed output from the module is then read in Matlab and reconstructed back. Our 

design is later synthesized using 65nm CMOS technology using Synopsys Design Compiler.  

Table 3.3 shows the summary of our implementation and compares it with other integer 

mapping architectures in the literature. Since, the works reported here used Xilinx FPGA, we too 

showed our results for Xilinx (Virtex-6 family) for a fair comparison. It is interesting to see that 

the application of hardware sharing in 2-D D6 actually results in a lower cost than that of 2-D 

D4. It is because of the proposed IPM technique that makes the sharing possible for D6. It is also 

seen from the table that the present work offers a significant advantage in hardware 

implementation compared with others (both matrix and lifting based schemes). 

In [9], Wahid et al. presented a matrix based D4 and D6 hardware where the cost of logic 

cells is 248 for D4 and 680 for D6. In [10], a lifting-based 9/7 design was proposed that employs 

shared datapath but costs higher number of multipliers. In [12], Madishetty et al. presented a 2-D 

implementation of D4 and D6. Though the frequency of operation is high, hardware cost is high 

too for both wavelets. The authors later improved their work in [13] by applying approximation 

techniques to reduce the cost.  

In [8], Balakrishnan et al. presented a lifting-based implementation of both D4 and D6 (1-

D only) which showed considerable improvement over matrix based works. However, the 

proposed IPM scheme has lesser hardware cost and higher image quality than [8] since it 

eliminates one coefficient and also employs hardware sharing. As a result, the current design 

decreases the logic cells by 21.33% for 1-D D4 and 13.68% for 1-D D6. 

In Table 3.3, we also report the image reconstruction quality in terms of PSNR. Here, we 

make best efforts to keep the settings (i.e., the number of decomposition level, type of coding, 

etc.) similar. Therefore, from the table, when the image quality is compared with other methods, 

along with the cost of implementation, the IPM scheme is found to be an efficient alternative in 

image coding application.  
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Table 3.3 Performance Comparisons with existing Integer based Daub Architectures 

 Wahid 

[9] 

Hongyu 

[10] 

Gustafsson 

[11] 

Madishetty 

[12] 

Madishetty 

[13] 

Balakrishnan 

[8] 

IPM 

D4 

IPM 

D6 

Wavelet D4 / 

D6 

9/7 D6 D4 / D6 D6 D4 / D6 D4 D6 

Architecture 1-D 1-D /    

2-D 

1-D 2-D 1-D / 2-D 1-D 1-D / 

2-D 

1-D / 2-

D 

Matrix/ 

Lifting 

Matrix Lifting Matrix Matrix Matrix Lifting 

(regular) 

Lifting 

(modif

ied) 

Lifting 

(shared 

arch) 

HW sharing No Yes No No No No Yes Yes 

Multiplier 0 6 / 12 0 0 0 2 / 4 0 0 

Adders 10 / 18 - 18 10 / 21 17 / 18 4 / 6 12 16 

Logic cells 

(FPGA) 

248 / 

680 

818 / 

1758 

- 426 / 1040 248 / 867 211 / 190 166 / 

432 

164 / 

403 

Cell 

count(VLSI) 

3934 / 

1005 

- - - - / 1040 - 384 / 

907 

327 / 

795 

Register bits 200 / 

494 

- - 258 / 765 177 / 593 - 105 / 

250 

79 / 

203 

Frequency 

(MHz) 

148 / 

119 

50 / 50 - 282 / 146 - - 144 / 

143 

143 / 

142 

PSNR (dB) 38 / 39 74.85** - 54.64/ 

57.12 

71.54* 32.55 / 33.19 50.83 64.77 

*PSNR for 1-level 2-D approximation block only **Using 16-bit multiplier 

 

Table 3.4 shows the resource consumption for different bit lengths in Xilinx Virtex-6 

FPGA and CMOS 65nm technology. The 2-D results do not consider reuse of any logic cells of 

the 1-D filter. It is seen from Figs. 3.5 and 3.7 that 16 and 5 additional intermediate bits are 

required, due to the operations performed in the lifting stages, to retain the full precision for D4 
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and D6 respectively. As such, the memory requirement for 2-D transpose operation is (bi+16)N 

bits for D4 and (bi+5)N bits for D6, where bi is the input word length and N is the size of the 

image or array to be transformed.  

 

Table 3.4 Resource Consumption for IPM based Daub Architecture 

Scheme and 

Technology 

 

Resources 

Input word lengths 

8 bits 12 bits 16 bits 

1-D 2-D 1-D 2-D 1-D 2-D 

 

D4 

 

FPGA 

LUTs 166 432 214 488 262 575 

Freq (MHz) 144.3 143.7 143.3 143.8 143.3 143.3 

Mem (bits) - 24N - 28N - 32N 

VLSI Cells 384 907 496 1131 608 1357 

Power (μW) 14.46 34.72 19.10 43.99 23.74 53.29 

D6  

FPGA 

LUTs 164 403 224 523 284 643 

Freq (MHz) 143.7 142.3 142.2 140.3 140.7 138.9 

Mem (bits) - 13N - 17N - 21N 

VLSI Cells 327 797 443 1029 559 1261 

Power (μW) 11.65 29.72 16.81 40.99 21.97 50.38 

 

In order to show the performance for image reconstruction, the algorithms have been 

verified using several benchmark images. Here, we calculate the PSNR after 3-levels of 2-D 

decomposition followed by image reconstruction. No quantization was performed. As a result, 

the error produced on the output image is only caused by the truncation error during 

computation. Table 3.5 shows the results and compares them with that of the classical lifting 

algorithm with 8-b and 16-b fixed point coefficients. We also compare the results with that of 

Daubechies integer D4 scheme (shown as Int D4 [3]) for 8-b precision [3]. It is seen that, for all 
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three benchmark images, the proposed technique produces much higher PSNR index (or in other 

words, much lower reconstruction error) compared with classical floating point (FP) and Int D4 

techniques.  

In Table 3.6, we present the compression performance for two images at different 

compression ratio (CR). In this experiment, we applied 4-level decomposition followed by set 

partitioning in hierarchical trees (SPIHT) encoding [7] for all cases. The results show that the 

IPM scheme (using 8-bit) has comparable PSNR index with the classical D4 and D6 schemes 

(using 64-bit). In addition, the IPM schemes perform much better compared with other integer 

based lifting wavelets at different CRs, except for 5/3 wavelet that works better than IPM D6 and 

classical D6 at lower CR. The cost of our scheme in terms of adders is also lesser than Int D4 

and (9,7) wavelets. Therefore, it is seen from Tables 3.5 and 3.6 that the proposed methods work 

well for both cases of ‘compression’ and ‘without compression’. 

 

Table 3.5 Assessment of Image Quality at Different Precision (PSNR in Decibels) 

Schemes (precision) Lena Barbara Mandrill Average 

IPM D4 (8 bits) 50.83 50.93 50.96 50.91 

Classical D4 (8 bits) 40.51 41.23 40.55 40.76 

Classical D4 (16 bits) 47.09 47.31 47.61 47.34 

Int D4 (8 bits) [3] 36.39 36.14 36.13 36.32 

IPM D6 (8 bits) 64.77 64.25 65.30 64.77 

Classical D6 (8 bits) 48.61 48.76 48.77 48.71 

Classical D6 (16 bits) 52.45 52.59 52.64 52.56 

3.5 Conclusion  

The paper presents a simplified decomposition algorithm of D4 and D6 wavelets and its 

efficient implementation. The use of integer polynomial mapping helps eliminate one core filter 



68 

 

 

 

coefficient in D4 and enable coefficient sharing in D6 that results in significant reduction in error 

accumulation during the computation process. The cost of implementation is also reduced, 

making it suitable candidate in image coding. 

 

Table 3.6 Assessment of image quality at different CRs 

Schemes PSNR in dB at different CRs Cost* 

(adders) 
Lena Barbara 

8:1 4:1 2:1 8:1 4:1 2:1 

IPM D4 37.9 42.1 47.0 34.0 40.5 45.9 12 

IPM D6 32.4 34.2 35.0 27.0 32.2 32.9 15 

Classical D4 37.9 42.2 47.5 34.1 40.6 47.1 -- 

Classical D6 32.4 34.4 35.2 28.7 32.2 33.0 -- 

Int D4 [3] 22.6 30.5 36.2 21.2 28.2 35.3 22 

5/3 [4] 26.0 35.0 43.7 23.3 33.4 42.3 5 

9/7  [3] 24.7 35.4 40.2 23.0 32.3 38.9 31 

*considering 8 bit coefficient 
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Chapter 4 

Lossless Low-cost Implementation by Scaling 

Elimination 

(case-study with Daubechies-8 wavelet) 

 

 

Published as: 

M. M. Hasan and K. A. Wahid, “Low-Cost Lifting Architecture and Lossless 

Implementation of Daubechies-8 Wavelets,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 65, 

no. 8, pp. 2515–2523, 2018. 

Implementation of discrete wavelets transform in a low-cost and lossless/reversible manner 

is the primary objective of this thesis. As the first step to full-fill our objectives, in chapter 3, a 

low-cost and near-lossless wavelet implementation technique was proposed. In this chapter, a 

lossless and low-cost implementation is developed and applied on Daubechies-8 wavelet.  

After outlining the primary reasons, for this approach, a proposed solution backed by a 

mathematical proof outlined in section 4.3.3 is presented. Application on usually costly 

Daubechies-8 wavelets transform results in lossless and low-cost implementation. Though in this 

chapter, only D8 is used, the technique can be utilized in other wavelets as well.  

 

 

 

 

 



71 

 

 

 

 

Abstract 

This paper presents three lifting structures of Daubechies-8 (known as D8) wavelet 

transform based on the efficient factorizations of the polyphase matrix. All coefficients of the 

newly formed filters are mapped with integers that enable efficient hardware implementation. 

We first derive efficient polyphase matrices using the factorization algorithm, which form 

several lifting structures of D8. A theory is derived and experimentally proven to eliminate the 

scaling stage that incurs computation error in all integer-based wavelets. Because of the 

elimination of the scaling stage, the architectures become lossless and due to the optimum 

integer mapping, our results show that an 8-bit implementation of the proposed schemes perform 

very closely with the classical D8 filters with double-precision. Finally, we compare our schemes 

with classic D8 and other existing methods to demonstrate the advantage of our schemes in terms 

of lower cost, losslessness and higher performance. 

Index Terms 

Wavelet transform, Daubechies wavelets, lifting algorithm, lossless implementation. 
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4.1 Introduction  

When it comes to analyzing real-time signals and data which are aperiodic, irregular, noisy 

and transient, Discrete Wavelet Transform (DWT) is particularly useful because of its capability 

to explore signals concurrently in both frequency and time domain. Due to these powerful 

characteristics, DWT is used widely in science, mathematics, computer science, medicine, 

finance and engineering applications [1][2]. It is also adopted in JPEG2000 image compression 

standard[3]. A popular wavelet family is Daubechies wavelets which are based on a systematical 

architecture to construct the compact support orthogonal wavelet[4]. Orthogonal Daubechies 

wavelets are also computationally superior to biorthogonal wavelets such as, CDF 9/7 [5] [6]. 

Daubechies wavelet family includes members ranging from highly localized (e.g., 4-tap, 6-tap) 

to highly smooth (e.g., 20-tap) [7].  A higher tap or order wavelet filter offers comparatively 

better frequency localization and increased energy compaction, wavelet regularity, and transform 

coding gain (GT) compared to low order ones[8]; this increment is important in many 

applications such as image compression since this results in better compression. 

However, the advantage of orthogonal Daubechies wavelets comes with increased 

complexity, which increases the implementation cost and incurs more error in computation. This 

is why implementation of low-order filters (such as, Daubechies 4-tap or D4 and Daubechies 6-

tap or D6 are more common in the literature [5], [7], [9]–[11], while the higher-order filters 

(such as, Daubechies 8-tap or D8 and higher) are very rare.  It is accepted that D8 filters will 

have advantages over D4 and D6 in terms of computational performance and reconstruction 

accuracy; therefore its implementation was attempted in several works which are costly [12][13] 

simply because the higher order filter coefficients  are highly complex in nature and less friendly 

for implementation.; they often suffer from low time localization and crucial edge 

information[8].  

A survey in [14] shows that D8 gives the best performance in image compression among 

different wavelets in terms of statistical measures. D8 also provides the most correct results 

among Daubechies wavelets for classification in mammography [15][16]. Another study in [17] 

shows that D8 provides the best noise removal from the raw EEG signal of healthy patients. 
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Moreover, in multicarrier multipath wireless transmission, D8 decreases more inter-symbol 

interference power compared to D4 and D6 [18]. Also, D8 filter based steganographic algorithm 

achieves the best security compared to other filters[19]. Other use of D8 includes noise denoising 

in multivariate statistical modeling[20], data smoothing[21], image indexing and searching[22],  

analysis of engineering surface texture[23], fault detection[24], classification [25] and high-

speed distance protection[26] in power systems, fingerprint recognition[27], shorting 

spike/action potentials in neurophysiology[28],  compression of radar image [29], block 

compressed sensing of natural images[30]. Due to the inherent advantages and wide ranges of 

application, we aim to develop an efficient implementation of D8 which is free from the 

shortcomings of a higher order filter and consume comparable resources like D6, but yet is 

completely lossless in nature.  
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Fig. 4.1 Implementation of Daubechies wavelet transform. (a) General matrix based 

approach [2, 9, 10, 31] with memory buffer [7] and (b) lifting based approach [31, 32] that shows 

the advantages over matrix based approach in real-time image processing applications 
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There are two ways that a wavelet transform basis can be implemented: (a) conventional 

filter bank or matrix based and (b) lifting based as shown in Fig. 4.1. The former is a 2D block-

based technique (generally, 4x4, 8x8 or 16x16 blocks are used) that requires additional buffer 

memory, and hence hardware cost is often high. Moreover, the need of buffer memory affects 

real-time processing of image sensor data adversely. The lifting based technique, on the other 

hand, is progressive scan in nature. It also has half of computational complexity than the other 

[31] which motivates us to use lifting-based structure.  

The conventional methods of implementing a wavelet transform uses a well-known set of 

wavelet filters for that wavelet: h and g, where h is a low-pass filter and g is a high-pass filter; 

these filters are used to find the approximation coefficients (s) and detailed coefficients (d) 

respectively as shown in Fig. 4.1(a). In conventional way of implementing lifting-based wavelet 

[31] as shown in Fig. 4.1(b), this h and g filter is converted into lifting steps such as predict and 

update steps. In lifting method, the h and g filters are split into even and odd sequences which are 

subscripted by e and o respectively. Then the polyphase matrix is formed as:  

(z) ( )
(z) ( )

(z) ( )

e e

o o

h g z
P P z

h g z

 
= =  

 
                                                                                        (4.1) 

Here he(z) and ho(z) are Laurent polynomials. Now we need to find the greatest common 

divisor (GCD) of he(z) and ho(z). Using the Euclidean algorithm for Laurent polynomials, 

successive division approach is employed that results in the following matrix decomposition 

(where k is the GCD):  

1

( ) ( ) 1

( ) 1 0 0

n
e i

io

h z q z k

h z =

     
=     

    
                                                                                            (4.2) 

Now, let another polyphase matrix ˆ( )P z  be  

1

ˆ(z) ( ) ( ) 1 0
ˆ( )

ˆ(z) ( ) 1 0 0 1/

n
e e i

io o

h g z q z k
P z

h g z k=

     
= =     

    
                                                          (4.3) 

A polynomial S(z) can be found such that  

1 ( )
ˆ( ) ( )

0 1

S z
P z P z

 
=  

 
                                                                                                    (4.4) 

The final factorization matrix is given as:  
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    
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 
 
 

                                              (4.5) 

where 2( ) ( )s z k S z= . 

The lifting steps in this factorized polyphase matrix is used to implement the transform. 

Using this technique, the work in [31] derives the lifting steps for the Daubechies orthogonal 

wavelets such as D4 and D6.  

Since most of the coefficients in the factorized polyphase matrix are irrational, the 

hardware implementation is expensive. The work in [32] proposes a technique to construct 

integer version of the lifting wavelet transform which makes many lifting wavelets (where the 

value of k is 1) lossless; this method proposes rounding of the multiplication operation in each 

lifting steps. However, the integer version of the orthogonal Daubechies wavelets, where the 

value of k ≠1, does not become completely lossless, except for Haar wavelet. Because of the 

final scaling step (
/

0

0 1

k

k

 
 
 

), the integer implementation of those wavelet schemes (with 

scaling) remain lossy [31]. Although they can be considered near-lossless in low-precision 

lower-order filters like D4 or double precision higher-order filters like D8, for the applications 

where completely lossless reconstruction is not essential; however, it is still a concern in low-

cost low-precision implementation of higher-order filters like D8. Other works on the lifting 

based wavelet transform include [33]-[37], [7]; they use integer architecture based on the 

approaches proposed in [32] which results in lossy or near-lossless reconstructions for D4 and 

D6. The work in [7] proposes an integer mapping of the coefficients to generate a low-cost 

architecture of D4/D6 where the output still remains partly lossy in nature.  

Although higher order filters like D8 have additional advantages in performance, as stated 

in our previous discussion, the hardware implementation of these filters is rare due to higher cost 

of implementation. Also in lifting implementation with finite precision, due to more lifting steps, 

the transform outputs deviate from the ideal output for the same precision (which can affect the 

quality of transform) compared to lower-order filter. Besides, in the integer version of a lifting 

implementation, the scaling steps incur additional computation error in reconstruction, since k≠ 1 
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in conventional lifting techniques of D8. To the best of our knowledge, none of the previous 

work attempted to implement lifting steps of D8 using integer mapping.  

Therefore, the objectives of this work are to solve those issues of higher order filters and 

propose an implementation for a higher order yet useful filter (D8) which is lossless in 

reconstruction and maintains the quality of transform. Thus, we propose and prove that removal 

of scaling steps, which ensures lossless reconstruction and does not affect transform coding gain 

at all. Another important quality metric, entropy can be made close to the performance of the 

classic double-precision implementation by careful deduction of polyphase matrices. Therefore, 

in this work we attempt to: (a) find several polyphase matrices and corresponding lifting steps 

for D8 wavelets and identify the best basis matrix for high quality reconstruction; (b) make it 

lossless and reduce the cost by completely eliminating the scaling steps; this elimination is 

justified by both theoretical analysis and extensive experiments; (c) lastly, apply integer mapping 

on the basis coefficients to further reduce the hardware cost. 

4.2 Daubechies 8-tap Filter (D8) 

Let us first discuss the classic filter for Daubechies 8-tap wavelet (D8) and the 

implementation filters.   

For Daubechies wavelets, the scaling function φ(t) and wavelet function ψ(t) are related by 

the following equations:  

1 1

0 0

( ) ( ) 2 (2 ) (2 )
N N

k

k k

t h k t k c t k  
− −

= =

= − = −                                                                      (4.6)            

1 1

0 0

( ) ( ) 2 (2 ) ' (2 )
N N

k

k k

t g k t k c t k  
− −

= =

= − = −                                                                   (4.7)                      

Here, h(k) and g(k) are normalized coefficients; ( ) 2kc h k=  are the un-normalized 

coefficients. If we satisfy the conditions of the Daubechies wavelet such as normalization of the 

scaling function, orthogonality of both scaling function, wavelet function and integer translate of 

scaling and smoothness function, we get the coefficients h(k) of the filter. For D8, the low-pass 

filter (h) and high-pass filter (g) are as follows: 
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1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

6 5 4 3 2 1 1

7 6 5 4 3 2 1 0

( )

( )

h z h h z h z h z h z h z h z h z

g z h z h z h z h z h z h z h h z

− − − − − − −

−

= + + + + + + +

= − + − + − + − +
                                          (4.8) 

The coefficients are h0 = 0.2303778133088960…, h1 = 0.7148465705529090…, h2 = 

0.6308807679298580…, h3 = -0.0279837694168599…, h4 = -0.1870348117190930…, h5 = 

0.0308413818355607…, h6 = 0.0328830116668851… and h7 = -0.0105974017850690…. 

 The above filter coefficients are irrational in nature, and usually implemented by taking a 

double precision (64 bits) floating point (FP) in MATLAB for lossless computation. However, 

implementing them in hardware will cost significantly large resources. 

4.3 Proposed D8 Schemes 

As seen in the previous section, the GCD of Laurent polynomials is not unique; lifting 

implementation is therefore not unique. Careful selection of quotient at the time of successive 

division results in different efficient lifting scheme. Now, we will employ this approach and 

present three new variants of Daubechies 8-tap wavelets that are low-cost and enables lossless 

hardware implementation.  

4.3.1 Lifting schemes for D8 

Using the steps described in Section 4.1, let us first convert the conventional D8 filter set 

(h, g), as given by eqn (4.1) into lifting steps. The polyphase matrix is assembled as: 

1 2 3 3 2 1

0 2 4 6 7 5 3 1

1 2 3 3 2 1

1 3 5 7 6 4 2 0

(z) .
h h z h z h z h z h z h z h

P
h h z h z h z h z h z h z h

− − −

− − −

 + + + − − − −
=  

+ + + + + + 

                                          (4.9) 

So, the even and odd components of the h(z) filter are:  

1 2 3

0 2 4 6( )eh z h h z h z h z− − −= + + + and 
1 2 3

1 3 5 7( )oh z h h z h z h z− − −= + + + . 

Now we will find the greatest common divisor (GCD) of two Laurent polynomials he(z) 

and ho(z). Since, the GCD of the Laurent polynomials is not unique, we carefully derive several 

lifting steps as presented below: 

Let 0 ( ) ( )ex z h z=  and  0 ( ) ( )oy z h z= . 
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According to the Euclidean algorithm, to compute GCDs of 
0 ( )x z  and 

0 ( )y z  when 

0 ( ) 0y z  and the degrees of the polynomials 0 0( ) ( )x z y z , we need to iterate the following 

equation set in (4.10) from i=0: 

1

1 1

( ) ( )

( ) ( )% ( ) ( ) ( ) ( )

i i

i i i i i i

x z y z

y z x z y z x z y z q z

+

+ +

=

= = −
                                                                   (4.10)  

Here, 
1( ) ( ) / ( )i i iq z x z y z+ =  is the quotient with the degree 

1( ) ( ) ( )i i iq z x z y z+ = − . We need 

to choose a quotient with appropriate degree with the condition: 1( ) ( )i iy z y z+  . 

When 
1( )ny z−

 will be zero for the minimum value of n, ( )nx z  will be the GCD of 0 ( )x z   

and 
0( )y z . So we get,  

0

1 0

0 1 ( )( )

1 ( ) ( )0

n
n

i i

x zx z

q z y z=

    
=      −     
  

0

10

( ) ( ) 1 ( )

( ) 1 0 0

n
i n

i

x z q z x z

y z =

     
 =     

    
                                                                           (4.11) 

So the first step using the equation set (4.10) will be  

1 2 3

1 0 1 3 5 7( ) ( )x z y z h h z h z h z− − −= = + + + and 

1 0 0 0 0 1( ) ( )% ( ) ( ) ( ) ( )y z x z y z x z y z q z= = − . 

Here, the degree of 1( )q z  should be 0 0( ) ( ) 3 3 0x z y z− = − = where 1 0( ) ( )y z y z . Then,  

1 2 3 1 2 3 6
1 0 2 4 6 1 3 5 7

7

1 26 6 6
0 1 2 3 4 5

7 7 7

( ) ( )( )

( ) ( ) ( )

h
y z h h z h z h z h h z h z h z

h

h h h
h h h h z h h z

h h h

− − − − − −

− −

= + + + − + + +

= − + − + −

  

As we can see, 6
1

7

( ) 0
h

q z
h

= = and 1 0( ) 2 ( )y z y z=  . However, the selection of ( )iq z  is also 

not unique. For example, q1(z) can be h0/h1 as well while meeting the condition of degree 

requirement of q1(z) and y1(z). In convention, ( )nx z k=   is a constant. In our conversions, we do 

not impose this requirement, which provides us more flexibility to achieve different options of 

lifting steps for the same wavelet, but does not have any problem in implementation if the degree 
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is zero.  So, k can be a function of z or a Laurent polynomial with the degree of zero (as shown 

later in Scheme 3 in Table 4.1).  

From eqn (4.11), we find the following factorization:  

4
0

10

( ) ( ) ( ) 1

( ) ( ) 1 0 0

e i

io

h z x z q z k

h z y z =

       
= =       

      
  

where,  

1

1 2

1

3

1

4

4

( ) -3.10293149, ( ) 0.11602641z  + 0.35344919,

( ) 0.18109028z  - 1.1327374,

( ) - 0.22141421z  - 0.066100553, 

( ) 2.2779381.

q z q z

q z

q z

k x z

−

−

−

= =

=

=

= =

 

As shown in eqn (4.3), the matrix ˆ ( )P z  would be: 

1

2
2 1

1 2

ˆ(z) ( ) ( ) 1 0
ˆ( )

ˆ(z) ( ) 1 0 0 1/

1 01 ( ) 0

( ) 10 1 0 1/

n
e e i

io o

i

i i

h g z q z k
P z

h g z k

q z k

q z k

=

−

=

     
= =     

    

    
=     

    





 

We have chosen 
0

0 1/

k

k

 
 
 

to ensure the determinant of ˆ ( )P z  is 1. P(z) can now be 

recovered from ˆ ( )P z , i.e. g(z) from ˆ( )g z ,  using the following relation: 

2
2 1

1 2

1 ( )
ˆ( ) ( )

0 1

1 01 ( ) 1 ( ) 0

( ) 10 1 0 1 0 1/

i

i i

R z
P z P z

q z r z k

q z k

−

=

 
=  

 

      
=       

      


                                              (4.12) 

where, r(z) = R(z)k2. Combining eqns (4.9) and (4.12), we find: 

3 2 4 *   ( ) 0.23869460 1.34 *832352 4 *.516 2196  z z zr z + − +=  

In another way, factorization of P(z) can be expressed as:   
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1
1 21 22

1

11 12

3 2

31 32 33

1

21 22

1 01 1  s
( ) ( ) ...

z  10 1 0 1

1 0 01 z + z z
...

z  1 0 1/0 1

s s z
P z P z

t t

ks s s

t t k

−

−

−

 +  
= =     +     

 +   
    +     

                                  (4.13) 

Where,  

1 11 12

21 22 21

22 31 32

33

-3.10293149, 0.35344919, 0.11602641, 

s -1.13273740, s 0.18109028, -0.06610055, 

-0.22141421, 0.23869460, -1.34832352,  

4.51642196, 2.27793811.

s t t

t

t s s

s k

= = =

= = =

= = =

= =

 

So, the analysis polyphase matrix should be  

1 2 3

33 32 31

22 21 12 11

22 21 1

1 00
(1/ ) ...

z z z 10 1/

1 0 1 01 z 1 z
...

z + s 1 10 1  0 1

T
k

P z
s s sk

t t t t

s s

− − −

  
=    + +   

+ +      
      

      

                             (4.14) 

If we split the input sequence x into even (xe) and odd (xo) components, the decomposed 

output will be: (1/ )
eT

o

xs
P z

xd

  
=   

   
 

Finally, it brings the lifting steps of one of our three schemes (known as scheme 1) as 

given in (4.15): 

1 1

1 11 12 1

2 21 22 1 1

2 1 21 22 2

3 2 1

3 31 32 33 2 2

2

3

( z)

(  + s z)

( z)

( z z z )

/

o e o

e e o

o e o

e e o

o e o

e

o

x s x x

x x t t x

x s x x

x x t t x

x s s s x x

s kx

d x k

− − −

= +

= + +

= +

= + +

= + + +

=

=

                                                                          (4.15)   

Using the similar techniques, we present two more variants of the orthogonal lifting 

schemes as summarized in Table 4.1. It should be noted here that, using the proposed technique, 

many other variants could be formed. One should choose the best one from these based on 

factors like image reconstruction quality such as, entropy, coding gain, and performance metrics 
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like Peak Signal to Noise Ratio (PSNR) and Structural Similarity index (SSIM) [44] and 

implementation cost (such as, cell count).  

 

Table 4.1 Orthogonal lifting schemes for D8 – three variants 

Lifting 

scheme 

Polyphase matrix Value of coefficients 

1 

2 1 2 3

33 32 31

22 21 12 11

22 21 1

1 00
(1/ ) ...

z z z 10 1/

1 0 1 01 z 1 z
...

s 1 10 1 0 1

T
k

P z
s s sk

t t t t

z s s

− − −

  
=    + +   

+ +      
      +      

 

1 11

12 21

22 21

22 31

32 33

-3.10293149, 0.35344919, 

0.11602641, s -1.13273740, 

s 0.18109028, -0.06610055, 

-0.22141421, 0.23869460,

-1.34832352,  4.51642196,

2.27793811.

s t

t

t

t s

s s

k

= =

= =

= =

= =

= =

=

 

2 3 2

22 21

4 3

3

12 11

1 2

22 21 1

1 00 1 z
(1/ ) ...

z 10 1/ 0 1

1 0 1 01 z
...

s z z 1 10 1

T
k t t z

P z
sk

t t

s s

−

− −

   + 
=    
     

+    
    +     

 

1 11

12 21

22 21

22 3

-3.10293149, 0.29195313, 

-0.07630009, s -1.66252835,

s 5.19949157, 0.03789275,

-0.00672237, 0.31410649, 

2.61311837

s t

t

t

t s

k

= =

= =

= =

= =

=
 

3 
22 21

1 1

3

12 11

1

22 21 1

1 00 1 z
(1/ ) ...

z 10 1/ 0 1

1 0 1 01 z
...

 + s z 1 1 0 1

T
k t t

P z
sk

t t

s s

−

−

+    
=     
    

+    
    

    

 

1 11

12 21

22 21

22 3

-3.10293149, 0.29195313, 

0.11602641, s 5.1994916, 

s 16.261204, - 0.05762195, 

- 0.00068729, 3.072278281, 

8.172424199

s t

t

t

t s

k

= =

= = −

= =

= =

=
 

 

4.3.2 Integer mapping of the formed D8 filters 

After lifting conversion, we have irrational coefficients for each scheme, such as s1, t1, s2, 

t2, and so on. Implementation of these coefficients using floating-point (FP) or fixed-point 

hardware will take a large amount of resources. Also, the quantization or rounding step adds 
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more error into the reconstruction. To mitigate the problem, we now use the integer mapping 

[32] that enables low-cost implementation [7]. We first take different precisions of the 

coefficients by multiplying them by 2b where b is the precision in the number of bits. The new 

coefficient for old coefficient s1 is 1 12bS s=  where *  denotes the symbol for rounding. The 

new lifting steps, 
1 1o e ox s x x= +  and 

1 11 12 1( z)e e ox x t t x= + +  would be  1 1( ) / 2b

o e ox S x x= +  and  

1 11 1 12 1( z) / 2b

e e o ox x T x T x= + + respectively while [7] utilizes the floor ( *   ) instead of * .  

4.3.3 Elimination of scaling stage 

Now we have three variants of integer based D8 lifting filters, they still suffer from 

quantization error due to a scaling operation which is the last step of the lifting process (i.e., 

0

0 1/

k

k

 
 
 

). It should be noted that this scaling stage is common in all lifting wavelet transforms. 

Although, in integer lifting transform, all other lifting steps are perfectly invertible without any 

error, it is the scaling operation that incurs error, and thereby makes the entire process lossy 

[31][32]. It is also noted that the scaling stage can be factorized into lifting steps, as presented in 

[31] and shown below in eqn (4.16), which can make the implementation theoretically lossless. 

20 1 0 1 1 1 01

0 1/ 1/ 1 0 1 1 10 1

k kk k

k k

− −       
=         

−        

                                    (4.16) 

However, in practice, these extra lifting steps in eqn (4.16) will not only increase the 

hardware resources, but also incur additional computational error due to the approximation of the 

coefficients in the integer based implementation. As a result, this approach (also known as “lifted 

scaling”) is not popular in literature [45]. For example, JPEG-2000 lossy algorithm uses CDF 9/7 

wavelet transform with scaling without factorizing the scaling step to the lifting steps [3].  

Therefore, our aim in this work is to eliminate the scaling stage to make the entire process 

lossless. In this section, we first determine both theoretically and experimentally if that is a 

choice. In Section 4.4 later, we also present comparative analysis between our “no/without 

scaling” method with the “lifted scaling” method. 
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 Transform coding gain is a metric that determine the quality of a transform (while entropy 

is another metric). For the input sequence x of an orthogonal transform, that is transformed into 

y0, y1, … , yN-1, the coding gain (GT) is given by [38]: 

1
2

2

0

1 11 1
2 2

0 0

1

( ) ( )

n

n n

N

y

n x
T N N

N N
y y

n n

N
G




 

−

=

− −

= =

= =


 

                                                                                  (4.17) 

where 2

x  and 
2

ny represents the variance of the input sequence x and the output sequence 

yn. For Daubechies wavelet, there are only two outputs. So from (4.17),  

0 1

2

1

2 2 2( )

x
T

y y

G


 

=                                                                                                           (4.18) 

For a lifting-based transform, as shown in Fig. 4.2, 0 0 py ky=  and 1 1 /py y k= . 

 

Scaling
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y0p

y1p

x
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  2

  2

Update
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Predict
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+
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m

-

k
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Fig. 4.2 A general lifting scheme with scaling steps shown. The scaling step results from 

the first factor of the polyphase matrix (
0

0 1/

k

k

 
 
 

). 

The variance of the y0 sequence is: 

0 0

2 2

0

1

1
( )

i

m

y y

i

y
m

 
=

= − .                                                                                                  (4.19) 

Here, the mean of y0 is: 

0 00 0 0

1 1
i i iy p p y p

k
y ky y k

m m m
 = = = =   .                                                         (4.20) 

From (4.19), we find: 
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0 0 0 0

2
2 2 2 2 2

0 0

1 1

1
( ) ( )

i p i p

m m

y p y p y y p

i i

k
ky k y k

m m
   

= =

= − = − =   

Thus we find that 2 2 2

0 opy yk = , when 0 0 py ky= . Similarly, 
1

2 2 2

1 /
py y k = as well since

1 1 /py y k= . Using this relation, we find a new expression of transform coding gain:  

0 1

2

1

2 2 2( )
p p

x
T

y y

G


 

= .                                                                                                      (4.21) 

It is seen from eqn (4.21) that the coding gain is independent of scaling parameters and so 

the scaling stage can be eliminated without affecting the gain adversely. We will present 

experimental results later in Section 4.4 to support our claim.  

4.4 Experimental Results and Analysis 

In this section, we will conduct several experiments to assess the performance of the 

proposed D8 schemes and also make effort to find the optimum scheme (out of three presented in 

Table 4.1) that is suitable for efficient implementation.  

 

Table 4.2 Effect of Discarding Scaling stage using Lena image 

  

Classic D81 Proposed lifting schemes 
   

1 2 3 

 

Lifting 

with 

scaling 

GT 20.08 20.89 20.89 20.89 

Entropy (bpp) 5.95 5.94 5.94 5.99 

RMSE (x10-14) 2.2 5.0 4.6 4.0 

 

Lifting 

without 

scaling 

GT - 20.89 20.89 20.89 

Entropy (bpp) - 5.94 5.91 6.11 

RMSE (x10-14) - 4.7 4.3 4.0 

1by taking MATLAB double-precision (64-bits) 
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In our first experiment, we demonstrate the impact of eliminating scaling stage (as 

discussed in Section 4.3.3) in floating-point (FP) implementation and compare the results with 

the classical D8 in Table 4.2. The metrics chosen are transform coding gain (GT), entropy (in 

bpp), and error of reconstruction (in root mean square error – RMSE), which are essential in 

observing codec’s performance [45]. The classical D8 implementation in MATLAB (using 

double precision) guarantees the highest accuracy of the lifting schemes.  

 

(a)                                                    (b) 

 

(c)                                                    (d) 

 

Fig. 4.3 Entropy for different precisions of coefficients without scaling: (a) scheme-1, (b) 

scheme-2, (c) scheme-3 and (d) comparison among proposed schemes (in each case, PSNR is 

infinite) 
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As we see in Table 4.2, GT remains same for all schemes with and without the scaling 

process (as we expect in eqn (4.21)). The reconstruction errors (RMSE) are very small (in the 

range of 10-14) for all schemes. Entropy remains same for all schemes when scaling is used, but 

varies when discarded. Therefore, we see that discarding the scaling stage does not affect the 

output of the wavelet filters. 

 

  
(a) (b) 

  

  
(c) (d) 

 

 

Fig. 4.4 Reconstruction quality (in PSNR in dB and in SSIM) for different precisions with 

scaling for (a) and (c) 1-level decomposition; (b) and (d) 6-level decomposition 
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Now we apply our schemes (without scaling) taking different bit precisions of the 

coefficients on several benchmark images. The results are shown in Fig 4.3. For each case, the 

entropy decreases with increasing bit-width, as expected, until we reach a threshold of 8-bits, 

after which the entropy does not change significantly. Fig. 4.3(d) compares the three schemes 

using average entropy values which indicates that scheme-1 and 2 perform the best. Note that, 

the integer mapped algorithms (without scaling) are completely reversible and the entire 

transform process is lossless. As a result, the PSNR of the reconstructed image is infinite. 

In order to strength our approach of eliminating the scaling stage, we conduct more 

experiments where we compare the performance of the proposed schemes with scaling for 

multiple level decompositions as shown in Fig. 4.4. As indicated by the results, the transform 

process is not lossless due to the inclusion of scaling; the reconstruction quality also degrades 

when higher level of decomposition used.  

Along the previous lines, we have conducted another experiment with our schemes 

combined with a lifted scaling (as given in eqn (4.16)), and present the results in Fig. 4.5. The 

average entropy values decrease for all cases of ‘no scaling’ showing slightly better energy 

compactness while decreasing the cost. In addition to five benchmark images, we also used 44 

different images (16 colors and 28 monochromes) from SIPI Misc database [39] on the lifting 

schemes without scaling and found similar results as shown in Fig. 4.6. 

 

Fig. 4.5 Comparison of entropy for different precisions for all schemes using “lifted scaling 

[31]” and “no scaling (ours)” using five benchmark images 
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                            (a)                                         (b) 

Fig. 4.6 Proposed schemes without scaling using SIPI Misc database [39]: (a) Average 

entropy and (b) standard deviation 

 

At this point, we would like to study what effect our schemes have on the wavelet 

regularity, which prevents the energy of an image from “spilling into” higher energy zone, which 

is known as DC leakage [46].  Low DC leakage is desirable. In the next experiment, we applied 

1-level decomposition of our schemes on five benchmark images, and then reconstructed them 

taking only the approximation or low frequency components (like, s in Fig. 4.1(b)). The average 

PSNR and SSIM values of these images are shown in Fig. 4.7. It can be seen that, like before, 

both indices become stable and yet acceptable (PSNR over 32dB and SSIM over 0.75) after 8-

bits precision. It indicates that, our proposed schemes perform well in preventing DC leakage 

and thereby preserving energy components within the lower frequency band – a desired feature 

of an image transform tool. 

In Table 4.2, we only presented the results for ‘Lena’ image; now we extend the 

experiment for three schemes using the images from the SIPI Misc database and present the 

results in Table 4.3. The results are consistent with that of Table 4.2, which indicates that scheme 

1 without scaling performs very similar to the classic D8 approach (that has the highest 

accuracy). In addition, these experimental results show that the elimination of scaling step does 

not affect the coding gain of the transform, which is also consistent with the theoretical 
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experiment presented earlier in Section 4.3. Considering the above performance analysis, we 

move forward with schemes 1 and 2 (without scaling) for the rest of the study. 

In Table 4.4, we compare the entropy of the processed image by our schemes (using 8-bits) 

with biorthogonal wavelets like 9/7 and 5/3 (using 64-bits) used in JPEG-2000 for five 

benchmark images. The results show that, even with lower bit-precision, our schemes produce 

similar performance as high-precision wavelets. 

 

 

(a)       (b) 

Fig. 4.7 Reconstruction results using only approximation coefficients for five benchmark 

images: (a) average PSNR in dB, (b) average SSIM 

 

Table 4.3 Effect of Discarding Scaling stage using image Database 

  
Classic D81 Proposed lifting schemes    

1 2 3 

  μ5 σ6 μ σ Μ σ Μ σ 

 

wS3 

GT 16.1 40.58 14.88 27.31 14.88 27.31 14.88 27.31 

Entropy 5.82 0.97 5.79 1.01 5.79 1.01 5.79 1.01 

RMSE2 2.34 0.76 5.25 1.69 4.93 1.48 4.18 1.25 

 

 woS4  

GT - - 14.88 27.31 14.88 27.31 14.88 27.31 

Entropy - - 5.73 0.98 5.73 0.98 5.99 1.13 

RMSE2 - - 4.94 1.53 4.55 1.26 4.11 1.10 
 1 Using MATLAB double-precision (64-bits), 2root mean square error in 10-14, 3wS = lifting with 

scaling, 4woS = lifting without scaling, 5μ = mean, 6σ = standard deviation  
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Table 4.4 Comparison of Entropy with other wavelet transforms 

 Lena Barbara Camera Pepper Mandrill Average 

9/71 6.07 6.55 4.99 6.22 6.02 5.97 

5/31 6.33 6.87 5.54 6.43 6.75 6.38 

Scheme-12 6.04 6.38 5.25 6.23 6.17 6.01 

Scheme-22 6.00 6.38 5.15 6.21 6.17 5.98 
1Standard CDF 9/7 and 5/3 with 64-bit double precision using MATLAB built-in function;    

2Proposed scheme-1 and 2 with 8-bit precision and without scaling 

 

4.5 Hardware Implementation 

Fig. 4.8 shows the hardware implementation of our low-cost lossless D8 filter structure. 

The filters are implemented in both software (MATLAB) and hardware (Verilog HDL). The 

integer-mapped coefficients are shown in Table 4.5. All multiplication operations are eliminated 

by shift and add operations. The number of adders is also minimized using Canonical Signed 

Digit (CSD) representation. Another alternative method of multiplication is described in [40] 

which can also be used to reduce the number of adders.  

 

Table 4.5  Integer polynomial mapping of the D8 coefficients 

 Scheme-1 coefficients Scheme-2 coefficients 

 Actual value Integer mapping Actual 

value 

Integer mapping 

S1 -397 -(28+27+23+22+20 ) -397 -(28+27+23+22+20 ) 

T11 90 26+24+23+21 74 26+23+21 

T12 29 25-21-20 -19 -24-22+20 

S21 -289 -(28+25+20) -425 -(28+27+25+23+20) 

S22 46 25+24-21 1331 210+28+25+24+21+20 

T21 -2 -21 9 23+20 

T22 -7 -23+20 -1 -20 

S3 - - 5 22+20 

S31 61 26-22+20 - - 

S32 -345 -28-27+25+23-20 - - 

S33 1156 210+27+22 - - 
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Table 4.6 Cost of implementation 

Schemes Implementation 

LUTs Regiter-bits Frequency (MHz) 

Scheme-1 Without scaling 470 133 63 

With scaling 478 133 53.2 

With lifted scaling 487 133 60 

Scheme-2 Without scaling 389 110 112 

With scaling 391 110 112 

With lifted scaling 400 110 112 

Classic D8 (double precision) 15,321* - - 

*implemented using HDL coder in MATLAB with fixed-point and 16 inputs 
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Fig. 4.8 Hardware implementation of (a) scheme-1, (b) scheme-2 
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The cost of implementation in Xilinx Virtex6 FPGA (model: XC6VLX75T) is shown in 

Table 4.6. Our proposed schemes provide overall best results (bolded) in terms of resource cost 

and performance. Table 4.7 compares our schemes with other methods in literature. There is a 

large collection of works in literature concerning smaller wavelets (D2, D4, etc.) to bi-orthogonal 

wavelets, but for the sake of fair comparison, we limit our study to only D6 and D8 family. As 

seen from the table that our schemes (that has no scaling stage) decrease the cost significantly 

when compared to other D8 and many D6 architectures while offering a completely lossless 

implementation and closely maintaining the performance of the classical D8 wavelet. 

4.6 Conclusion 

This work proposes a low-cost algorithm and lossless implementation of Daubechies 8-tap 

wavelets (D8) filter. Three variants of lifting D8 structures have been presented and their 

performance is analyzed. The architecture eliminates the scaling stage and maintains a 

performance close to classical D8 implementation. The cost of hardware resources is also 

significantly reduced making D8 very suitable for fast and real-time image processing 

applications. 

 

Table 4.7 Performance Comparisons with existing Integer based Daubechies Wavelet 

Architectures 

 Wahid 

[10] 

Madishetty 

[9] 

Pranav 

[5] 

Class-

ic D8 

[13] 

Al-

Haj 

[13] 

Al-

Haj 

[41] 

Wahid  

[12] 

Lon-

ga 

[42] 

Hua-

ng 

[43] 

Propos-

ed D8  

(Sche-

me 1) 

Propos-

ed D8  

(Sche-

me 2) 

Wavelet  D6 D6 D6 D8 D8 D8 D8 D8 D8 D8 D8 

Architecture Matrix Matrix Lifting 

(regular) 

Matrix DA2 DA Matrix DA DA Lifting 

(Integer) 

Lifting 

(Integer) 

Logic cells 

(FPGA) 

680 248  190 1120 748 23343 

 

687 614 2619 470 389 

Register bits 494 177 - - - - 179 - 99071 133 110 

PSNR (dB) 39 57.12 71.54 - - - 90 41.3 -     

RMSE 2.86 0.36 0.07 - - - 0.01 2.20 - 0 0 

Device Virtex-

E 

Virtex-6 Virtex-6 Virtex Virtex Virtex  Cyclone Stratix 

II 

Stratix  Virtex-6 Virtex-6 

1Register cost is in Cyclone 2C35 FPGA; 2DA = Distributed arithmetic; 31167 slices 
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Chapter 5 

Lossless and Low-cost Implementation by Modified 

Factorization 

(General) 

 

Submitted:  

Md. Mehedi Hasan and K. A. Wahid, “Factoring Wavelet Transform into Reversible 

Lifting Steps for Lossless Integer-to-Integer Mapped Implementation,” submitted in a prestigious 

journal.  

 

The objective of this thesis research is to propose a wavelet implementation technique 

which is lossless, low-cost, scaling-step free, integer-based, irrational coefficient-less, friendly to 

in-place implementation, and which can be generalized. Though chapter 4 achieves these 

objectives, that approach would require much manual work to find several non-unique 

factorizations of the polyphase matrix in order to apply that to the other wavelets.  

This chapter presents a different strategy to solve the issue. The usual way of factorization 

of the polyphase matrix in a lifting-based wavelet transform is to factorize the polyphase matrix 

using Euclidian algorithm for Laurent polynomials which that generates lossy scaling steps. This 

work proposes a new factorization technique which does not generate lossy scaling steps, but 

instead incorporates the impact of the scaling steps in the previous lifting steps, and hence, 

becomes lossless in an integer-based implementation. Some formulas which can convert existing 

lifting factorization into the proposed factorization are also provided. 

This technique is a general approach and is applied and tested on a number of orthogonal 

wavelets, such as D4, D6, D8, and D10, and biorthogonal wavelets, such as CDF-9/7, CDF 4.2, 

and CDF 5.1.  
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Abstract 

Implementation of wavelet transform in the lifting method is attractive due to various 

reasons. That requires the standard wavelet filters to be expressed in a polyphase matrix and 

factorization of the matrix into lifting steps. This factorization is a well-known procedure that 

utilizes the Euclidean algorithm for the determination of greatest-common-divisor k of Laurent 

Polynomials. The issue in the conventional factorization is the last factor which is not a ladder 

like a lifting step, but that is a scaling step with k. In most case, the value of k is not 1, which 

makes integer-to-integer implementation lossy. This paper solves that issue by proposing a novel 

way of factorization. Moreover, the proposed factorization does not increase the number of 

factors but replace the last few factors with a lossless ladder like lifting steps. This provides a 

way to make integer-based implementation purely lossless without increasing the number of non-

one factors.   

Index Terms 

Wavelet transform, Lifting steps, integer-to-integer mapping, factorization, Laurent 

polynomial.  

 

  

5.1 Introduction  

Discrete wavelet transform (DWT) is a powerful tool to analyze real-time signals or 

aperiodic, irregular, noisy and transient data because of its capability to explore signals in both 

Factoring Wavelet Transforms into Reversible Lifting 

Steps for Lossless Integer-to-Integer Mapped 

Implementation 
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frequency and time domain [1]–[3]. Due to those powerful characteristics, it is extensively used 

in a wide number of fields in science, mathematics, computer science, medicine, finance, and 

engineering[3]–[7] and has already been adopted in JPEG2000 image compression standard[8].  

The decomposition and reconstruction of a wavelet filter can usually be implemented in 

two ways: (a) standard convolution and (b) lifting method. There are few advantages of lifting 

method over the convolution-based method [9]–[11]: (a) in-place implementation of the wavelet 

transform where the transform can be calculated without allocating additional memory [see Fig. 

5.1], (b)  the cost of implementation decreases to half. In addition to that, the lifting method 

paves a way to build the wavelet transform that can map integer-to-integers [12] which is 

important for easier hardware implementation and sometimes helpful for lossless 

implementation. Moreover, the integer conversion of the lifting filter coefficients with limited 

precision [10] leads to lower cost implementation. So, the lifting implementation with overall 

integer mapping (integer-to-integer mapping and integer conversion of the coefficients) is a good 

choice for implementation low-cost and sometimes lossless implementation.  

 But the open issue with integer mapping is scaling steps with coefficient k. If the value of 

this coefficient is not 1, which is the case for many lifting wavelets including Daubechies 

orthogonal wavelets (except Haar wavelet), biorthogonal wavelet CDF-9/7 wavelets, the integer 

mapped wavelet remains lossy[9], [10], [12] because the rounder results of a multiplication by 

non-one value cannot be recovered by division by the same number. Mathematically, if the 

number is x and xk s= , /s k x when 1k  ; therefore, the number x is not likely to be 

recovered.  

 There are few solutions proposed so far to overcome this issue. Firstly, Daubechies[9] 

proposed that scaling can be replaced with four lifting steps.  The issue in this lifted scaling 

method is that the extra lifting steps increase the implementation cost and each extra lifting step 

adds few extra errors when the limited precision of the coefficient is used or integer-to-integer 

mapping is used. The second proposal was to remove the scaling step [10] since there is no effect 

of having scaling on the coding gain of the transform, one of the performance metrics. This 

method is less costly compared to the first one and performs better since it avoids adding error in 

the additional steps. The issue is the removal of scaling steps has an effect on the entropy of the 
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transform, another important performance metric for any transform. When the scaling step is 

removed, the entropy may remain the same or may increase depending on how the lifting steps 

are manually factorized. Since the non-unique factorization is manual work, this method is worth 

for higher order costly filter like Daubehies-8[10]. Since the removal of the scaling step does not 

automatically guarantee an equivalent transform and needs manual work to try different 

factorizations, we need to have a common solution which works for all orthogonal and 

biorthogonal wavelets.  

 

Image 

sensor

Memory

Buffer

(2D 

matrix)

h

g d=XH

  s=XL2

2

Filters
Sub-

sampling

2D matrix input

X

 

(a) 

Image 

sensor
Split Predict Update

Serial 

input of 

pixels

Scaling step

s=xL

d=xH

Predict

-

k

1/k

x

xe

xo

xe1

xo1

+

Lifting steps
 

(b) 

Fig. 5.1 Implementation of wavelet transform for image processing [10]: (a) standard 

convolution or matrix based method, (b) lifting base method. Standard method requires 

additional buffer memory. 

 

This research provides a common or general solution for the issues. This paper shows a 

factorization technique which leads to lifting wavelet transform where k = 1 is all cases without 
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increasing the number of lifting steps. Hence, we do not need to add three additional lifting steps 

or we do not need to do manual factorization to try different option to find where we can remove 

the lifting steps. 

Since the last scaling step is not being used anymore, this method provides a completely 

lossless reconstruction for the integer-mapped wavelet transform which is already low-cost.   

The rest of the paper is organized as follows. Section 5.2 provides a brief description of the 

conventional way of factorization and integer mapping so that we can compare and show a way 

to convert the traditional factorization into the proposed one. Section 5.3 describes the theory of 

the proposed factorization and shows how we can convert a polyphase matrix into lifting steps 

factors without having any scaling step. Section 5.4 applies the theory to generate factorization 

of some popular orthogonal and biorthogonal wavelet and shows both traditional and proposed 

factorization in a table. Section 5.5 provides some results which satisfy the theory. Finally, 

section 5.6 concludes the work. 

5.2 Lifting Wavelet Transform 

The discrete wavelet transforms (DWT) is based on small wavelets with limited duration to 

analyze both the frequency and time component of a signal. For the computation of the DWT, in 

addition to the traditional convolution or matrix based implementation [as shown in Fig. 5.1 (a)], 

Daubechies[9] and Sweldons[13] showed that an alternative structure of wavelet transform can 

be built from any orthogonal and biorthogonal filters by employing factorization of a polyphase 

matrix which is constructed from the traditional high and low-pass filter of the transform. This 

new method of implementation is known as the lifting scheme. As shown in Fig. 5.1. (b), the 

lifting scheme contains many predict and update lifting steps and at last scaling steps. As 

discussed in Section 5.1, our aim of this research is to build a new factorization so that we can 

have a scaling step where k=1. 

5.2.1 The conventional way of factorization 

However, here is the summary of how the factorization is done in the traditional way. It 

starts with a well-known set of filters (h,g) of any orthogonal or biorthogonal wavelets where h is 
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low-pass and g is a high-pass filter. These filters are split into even and odd sequences which are 

subscripted by e and o respectively. Then the polyphase matrix is assembled as: 

(z) ( )
(z) ( )

(z) ( )

e e

o o

h g z
P P z

h g z

 
= =  

 
                                                                                        (5.1) 

Here he(z) and ho(z) are Laurent polynomials.  

 

 

 

Fig. 5.2 Polyphase representation of wavelet transforms[9]. 

 

Conventionally, we start factorizing the first column of the polyphase matrix. Since both 

he(z) and ho(z) are Laurent polynomials, we employ a successive division approach using the 

Euclidean algorithm for Laurent polynomials. This results in the following matrix decomposition 

(where k is the greatest common divisor-GCD):  

1

( ) ( ) 1

( ) 1 0 0

n
e i

io

h z q z k

h z =

     
=     

    
                                                                                            (5.2) 

The value of n is assumed even. Details of the factorization can be found in  [9].  

Now, we can find a complementary polyphase filter g0 where another polyphase matrix 

ˆ( )P z  is as follows:  

1

ˆ(z) ( ) ( ) 1 0
ˆ( )

ˆ(z) ( ) 1 0 0 1/

n
e e i

io o

h g z q z k
P z

h g z k=

     
= =     

    
                                                            

A polynomial S(z) can be found such that  

1 ( )
ˆ( ) ( )

0 1

S z
P z P z

 
=  

 
                                                        

The final factorization matrix is given as:  
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( )
/2

2 1

1 2

1

)

( ) 0

1

1 0)

0

1 (

( 10 1 0 1/

n
i

i i

z
P

k
z

q k

q s

z

z−

=

    
=     

    

 
 
 

                                               (5.3)    

where 2( ) ( )s z k S z= . 

 The total number of factors is n+2. The factorization matrix can be written as in the 

following format:  

( )
/2 1

1

1 01 ( )

( ) 10 1 1

0

/0

n
i

i i

kp z
P z

u z k

+

=

    
=     

    
                               

Here 2 1( ) ( )i ip z q z−= and 2( ) ( )i iu z q z=  when 
2

n
i    

/2 1( ) ( )np z s z+ =  and /2 1( ) 0nu z+ =   

So, the forward transform matrix is  

1/2 1

1

1

1

11 ( )

( ) 11/ 1

00
( )

0 0

i

i

T
n

i

u z

p zk

k
P z

−+

−

=

−
    
    

   
=

 
                                                          (5.4) 

If the input sequence to the transform is x, and even and odd components are xe= xe.0 and 

xo= xo.0 respectively,  

.0

.0

(1/ ) (1/ )
e eL T T

o oH

x xx
P z P z

x xx

    
= =    

     
                                                                            (5.5) 

Following forward transform can be found from (5.4) and (5.5): 

1

. .( 1) .( 1)( ) for 1 2 1o i i e i o ix p z x x i n−

− −= +   +                                                                    (5.6) 

1

. .( 1) .( ) for 1 2 1e i e i i o ix x u z x i n−

−= +   +                                                                         (5.7) 

.( 2 1)L e nx s kx += =                                                                                                              (5.8) 

.( 2 1)

1
H o nx d x

k
+= =                                                                                                             (5.9)  

The steps that are shown in the first two equations (5.6) and (5.7) are known as the lifting 

steps while the last multiplication steps, which are shown in (5.8) and (5.9), are known as scaling 

steps. If we implement this equation, that will result in a diagram like Fig. 5.1 (b) where predict 

step =
1( )ip z−

 and update step = 
1( )iu z−

. The reverse transform can be found by the same 

equation if we calculate backward. 
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5.2.2 Integer mapping  

When integer-to-integer mapping is performed on the lifting wavelets, the lifting steps 

presented at (5.6)-(5.9) become  

1

. .( 1) .( 1)

1
( )

2
o i i e i o ix p z x x−

− −

 
= + + 
 

or 1

. .( 1) .( 1)( )o i i e i o ix p z x x−

− −= +                                    (5.10) 

1

. .( 1) .( )e i e i i o ix x u z x−

−= +                                                                                               (5.11) 

.( 2 1)L e nx s kx += =                                                                                                        (5.12) 

.( 2 1)

1
H o nx d x

k
+= =                                                                                                      (5.13) 

Here, *    and * denotes the symbol for floor and rounding-to-integer operation 

respectfully; though * 1/ 2+   and *  are similar, we prefer *  since * 1/ 2+    (used in [12]) 

requires an additional addition with a non-integer number and *  allows to explore different 

techniques of rounding; that is why this author used *  in the previously published work[10] . 

The first two lifting steps using integer-to-integer are completely lossless and the values are 

recoverable with back-calculation while the last two steps, i.e. the scaling steps are not 

recoverable as explained in Section 5.1.  

Now, integer conversion of the lifting filter coefficients with limited precision is performed 

by 2bA a= where a is one of the coefficients in the Laurent polynomial. For example, if

1 1( )ip z az b− −= +  where a, b, c are non-integer irrational numbers, the new Laurent polynomial 

with integer coefficients with binary b-bit precisions, 
1 1( )iP z Az B− −= +  where 2bA a=  and 

2bB b= . So, when overall integer mapping for the forward transform is as follows:  

1

. .( 1) .( 1)( ( ) ) / 2b

o i i e i o ix P z x x−

− −= +                                                                                (5.14) 

1

. .( 1) .( ( ) ) / 2b

e i e i i o ix x U z x−

−= +                                                                                     (5.15) 

.( 2 1)( ) / 2b

L e nx s Kx += =                                                                                               (5.16) 

.( 2 1)( ) / 2b

H o nx d K x +
= =  where 2 /bK k =                                                                (5.17) 
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 The advantage of integer conversion of the lifting coefficients is of two-folds: (a) 

multiplication with integer coefficient is easier and low-cost with Booth algorithm[14], [15] and 

(b) we found in the extensive experiments (shown in [10]) that it is possible to find a limited 

value of b for which the  performance of a transform ( entropy and transform coding gain ) 

remain similar to the double-precision value. Limited value of b results in smaller coefficients 

and low-cost calculation.   

 However, the disadvantage of the above integer-to-integer mapping remains. As 

explained in Section 5.1, the scaling step remains lossy.  

5.3 Proposed Factorization Theory 

This section will be a tutorial in nature. This section describes how we can convert a 

standard discrete wavelet filter into the lifting so that there is no effective scaling step anymore, 

i.e. the value of k is 1 and integer-to-integer mapping or overall integer-mapping become 

completely lossless. We tried to use similar notation as much as possible as used in [9] so that 

the experienced reader can relate and may find it relevant.  

5.3.1 Factorization of the first column of the polyphase matrix  

Like the conventional factorization, it starts with the polyphase matrix P(z) shown in (5.1). 

At the first step, we will find the factorization of the first column of the polyphase matrix  

( )

( )

e

o

h z

h z

 
 
 

.  To achieve that, the conventional way finds the greatest common divisor (GCD) of 

(z)eh  and (z)oh  using the Euclidean algorithm for Laurent polynomials. We will modify the 

steps in the algorithm to make sure that the GCD is always 1.  

Euclidean algorithm for polynomial[9], [16] states that if there are two polynomials a(z) 

and b(z) with ( ) ( )a z b z , let 0 ( ) ( )a z a z=  and 0 ( ) ( )b z b z=  and repeat the following recursive 

steps for i=0,1,2,..,n. 

1( ) ( )i ia z b z+ =                                                                                                                 (5.18) 
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1 1

( )
( ) remainder of ( ) ( ) ( )

( )

i
i i i i

i

a z
b z a z b z q z

b z
+ += = −                                                        (5.19) 

In matrix form: 1

1

( ) 0 1 ( )

( ) 1 ( ) ( )

i i

i i i

a z a z

b z q z b z

+

+

     
=     

−     
                                                          (5.20) 

Here, the quotient, 
1

( )

( )

i
i

i

a z
q

b z
+

 
=  
 

 

There will be a step i=n-1 for which 
1( ) ( ) 0i nb z b z+ = =  when 1( ) ( )i ib z b z+   in each step. 

In that case, 1( ) ( )i na z a z+ = is the greatest common divisor (GCD) of a(z) and b(z). Let this GCD 

be k. So using (5.18), we get 

1( ) ( )n na z b z k−= =                                                                                                        (5.21) 

From the above matrix shown in (5.20), 

 
1 0 1 ( )

1 ( ) ( )0

o

i n i o

a zk

q z b z=

    
=      −     
                                          

Or, 0

10

( ) ( ) 1

( ) 1 0 0

n
i

i

a z q z k

b z =

     
=     

    
                                                                                    (5.22) 

Since, in the step i=n-1, 

1 1( ) ( ) ( ) ( ) 0n n n nb z a z b z q z− −= − =                                                 

1

1

( )
( )

( )

n
n

n

a z
q z

b z

−

−

=                                                                                                             (5.23) 

If we use the above algorithm to find GCD of (z)eh  and (z)oh  i.e. if 0 ( ) (z)ea z h=  and 

0( ) (z)ob z h= , (5.22) can be rewritten as 

1

( ) ( ) 1

( ) 1 0 0

n
e i

io

h z q z k

h z =

     
=     

    
                                                                                          (5.24) 

This is in details how the factorization of the first column of the polyphase matrix is done 

in the conventional factorization. However, the GCD, k is not necessarily 1 and the factorization 

is not unique.   
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In our proposed factorization, in step i=n-1=m, we make sure ( ) 1nb z = instead of  ( ) 0nb z =

. From equation (5.19),  

1 1( ) ( ) ( ) ( ) 1n n n nb z a z b z q z− −= − =                                                                                   (5.25) 

1

1 1

( ) 1
( )

( ) ( )

n
n

n n

a z
q z

b z b z

−

− −

= = −             

Since 
1( ) ( )n nb z a z k− = =   as shown in (5.21), from the above equation (5.25), we get the 

new value of the n-th quotient as 

1

1

( ) 1
( )

( )

n
n

n

a z
q z

b z k

−

−

= −                                                                                                        (5.26) 

Comparing the conventional value of ( )nq z   in (5.23) and proposed value in (5.26), 

Proposed ( )nq z  = conventional ( )nq z
1

k
−                         

In short, the new n-th quotient,  

.

1
( )   ( )n pro nq z q z

k
= −                                                                                                        (5.27) 

We should also mention that the value of 
1 2 1( ), ( ), ..., ( )nq z q z q z−

 will remain the same as 

the conventional factorization.  

In the next step, where i=n, we will make sure that 
1 1( ) ( ) 0i nb z b z+ += = .  

Using the equations (5.18) and (5.19),  

1( ) ( ) 1n na z b z+ = =                [ as per (5.25)]                                                             

1 1 1( ) ( ) ( ) ( ) ( ) 1 ( )n n n n n nb z a z b z q z a z q z+ + += − = −                                        

 Since 1( ) 0nb z+ = , 
1( ) ( )n nq z a z k+ = = . 

 So, proposed ( 1). ( )n proq z k+ =                                                                                        (5.28) 

 Now we are intentionally making the remainder zero in the step i=n where, in the 

conventional Euclidian way, the remainder becomes zero in the step i=n-1 in Euclidian algorithm 

equations (5.18) and (5.19). So, now the greatest common divisor (GCD) would be 

2 1( ) ( )i na z a z+ +=   which is clearly 1.  



109 

 

 

 

That is why, from this alternative way, common divisor would be 

1( ) 1pro nk a z+= =                                                                                                             (5.29) 

This is not the greatest common divisor, but common divisor of any two real numbers or 

Laurent polynomials.   

Therefore, with the matrix form of the Euclidian algorithm (5.20), using the new quotient 

values from (5.27), (5.28) and (5.29), we can write, 

1
1 0

( 1). . 11 0

0 1 0 1( ) 0 1 ( )

1 ( ) 1 ( )( ) 1 ( ) ( )

n

n pro n pro i nn i

a z a z

q z q zb z q z b z

+

+ = −+

        
=         − − −        

  

1
0

1 0

0 1
0 1 ( )1 0 1

1
1 ( ) ( )0 1 1 ( ) i n in

a z

q z b zk q z
k

= −

 
         =          −− − +       

 

  

Reorganizing this equation,  

1
0

10

1
( ) ( ) ( ) 1 1 1( ) 1

( )
( ) ( ) 1 0 1 0 0

1 0

n
e i n

io

h z a z q z kq z
k

h z b z

−

=

 
−          = =                  

 

                                   (5.30) 

The equation (5.30) is our factorization of the first column of the polyphase matrix while 

(5.24) is the conventional factorization of the same. 

5.3.2 Factorization of full polyphase matrix  

We have factorized h filter in the equation (5.30). The next step would be factorizing the 

polyphase matrix P(z) shown in (5.1).    

The determinant of a polyphase matrix should be 1 if the associated filter pair must be 

complementary. When we have a filter h as expressed in the form of
( )

( )

e

o

h z

h z

 
 
 

, if we have to find a 

complementary filter ĝ  expressed in the form of 
ˆ ( )

ˆ ( )

e

o

g z

g z

 
 
 

, we have to make sure that the 

determinant of the associated polyphase matrix ˆ ( )P z  is 1. Therefore,  

ˆ(z) ( )
ˆ( )

ˆ(z) ( )

e e

o o

h g z
P z

h g z

 
=  
 
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1

1

1
( ) 1 1 1 0( ) 1

( )
1 0 1 0 0 1

1 0

n
i n

i

q z kq z
k

−

=

 
−      =        −     

 

                                                        (5.31) 

Since like the conventional factorization, n is assumed to be even, we added 
0

1

 
 
− 

in the last 

matrix of (5.30) to make the determinant 1. If n is odd, we can use 
0

1

 
 
 

instead.  From (5.31), we 

can find,  

( 2)/2
2 1

1 2

1

1 01 ( )
ˆ( ) ( )

( ) 10 1

1 0
1 ( ) 1 0 1

1
0 1 0 1 1 0( ) 1

n
i

i i

n

n

q z
P z

q z

q z k

q z
k

−
−

=

−

  
=   

   

 
−      

      −     
 



                                                              (5.32) 

We can recover the filter g from ĝ  with one lifting stage as practiced in [9]:  

     
1 ( )

ˆ( ) ( )
0 1

s z
P z P z

 
=  

 
                                                                                             (5.33) 

From the equation (5.33), it is possible to calculate the value of s(z), since we already know 

the value of P(z) from the equation (5.1) and P(z) from (5.32).  

Calculation using the equation (5.32) and (5.33) provides us 

 

( 2)/2
2 1 1

1 2

1 01 ( ) 1 ( )
( ) ( )

( ) 10 1 0 1

1 0
1 1 0 0 1

1
0 1 ( ) 1 1 0( ) 1

n
i n

i i

n

q z q z
P z

q z

k

s zq z
k

−
− −

=

    
=     

    

 
−      

       −−      
 



                                                 (5.34) 

Equation (5.34) shows the proposed final factorization of the polyphase matrix. It should 

be mentioned that the value of 1 2 3, , .... nq q q q  and k can be kept similar to what we have in the 

conventional factorization. This makes the conversion of existing factorization to the proposed 

one easier.  
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Moreover, as we can see, the number of factors is effectively the same (n+2) as the 

conventional transform; since the last factor 
0 1

1 0

− 
 
 

does not cost any computation except a 

negation operation. 

5.3.3 Implementation with integer mapping  

Now, the factorization matrix can be written as in the following format:   

( )
/2 1

1

0

(

1

1 0

1 01 ( )

) 10 1

n
i

i i

p z
P z

u z

+

=

    
=     

    

−
                                                                   (5.35)    

1/2 1

1

1

1

11 ) 00

1

1
( )

1

(

(0 )10

n
i

i i

T z
P z

u

p z

−+

−

−

=

    
    

    

−
=                                                        (5.36) 

As discussed in section 5.2, if an input sequence x is split into even and odd components, 

the proposed forward transform would be  

1

. .( 1) .( 1)( ) for 1 2 1o i i e i o ix p z x x i n−

− −= +   +                      

1

. .( 1) .( ) for 1 2 1e i e i i o ix x u z x i n−

−= +   +       

.( 2 1)L o nx s x += = −                      

.( 2 1)H e nx d x += =                                                                 

The reverse transform can be formed by the calculation in reverse direction: 

.( 2 1)e n Hx x+ =  

.( 2 1)o n Lx x+ = −    

1

.( 1) .( ) from i = 2 1to 1e i ei i o ix x u z x n−

− = − +          

1

.( 1) .( 1)( ) from 2 1to1o i oi i e ix x p z x i n−

− −= − = +                  

With the overall integer mapping, as shown in (5.14)-(5.17) for the conventional mapping, 

the forward transform is as follows: 

1

. .( 1) .( 1)( ( ) ) / 2b

o i i e i o ix P z x x−

− −= +                                       

1

. .( 1) .( ( ) ) / 2b

e i e i i o ix x U z x−

−= +            
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.( 2 1)L o nx s x += = −                                                          

.( 2 1)H e nx d x += =       

  The reverse transform can also be found in a similar way shown above.               

5.4 Application of Proposed Theory of Factorization 

The previous section provides the theory of how a factorization of the wavelet can be 

achieved so that the lossless reconstruction is possible. This section will present a number of 

factorizations performed using the proposed theory.  

Using the proposed theory, we can take an existing factorization and convert them into the 

proposed factorization.    To do that, we can compare the factorization with the conventional 

method shown in (5.4) and the proposed factorization in (5.34).  We can observe that first (n-1) 

factors are the same where n is the number of 2×2 matrix factors in the equation (5.2). The rest 

factors can be found from (5.34). Details are as follows:  

a) For 
1 0

( ) 1/ 1nq z k

 
 

− 
 and 

1

0 1

k 
 
 

, ( )nq z and k can be found from conventional n-th 

factor and last factor.   

b) For 
1 0

( ) 1s z

 
 
− 

, s(z) can be found using (5.33).  

Table 5.1 lists several conversions as examples. As theory shows, the interested reader 

should be able to convert the conventional factorization of other wavelets using the above 

technique or factorize the wavelets from scratch using the method shown in Section 5.3. It 

should be mentioned that the integer implementation can be performed by the method shown in 

Section 5.3.3. 
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Table 5.1 Example Conversion from Conventional to Proposed Factorization 

Wavelet 

name 
Conventional ( )or ( )P z P z  Proposed ( )or ( )P z P z   

D4 
1 3

2

1 01 1

/

0

10 1 0 1 0 1

c c k

c k

      
      

      
 

1 1.7320508076c = −  

1

2 0.43301270189 0.066987298108c z−= −  

3 1c = , 1.9318516526k =  

1 3

2 4

1 0 1 01 1

1 1

1

0 1

0

10 1 0

c c

c c

        
        

       

−


 

1 1.7320508076c = −  

1

2 0.084625388313 0.066987298108c z−= − −  

3 1.9318516526c = ,
4 0.26794919243 0.51763809021c z −= −  

D6 
2 4

31

1 01 0 1 1 0

1 0 1/1 0 1 0 1

c c k

cc k

        
        

        
 

1 2.4254972439c =

2  0.079339456159 0.35238765768c z −=  

21

3 0.56141492.8953474 04 9154 9zc z− −= − +  

2

4 0.019750529237c z= − , 0.43187999149k =  

2 4

31 4

1 01 0 01 1

11 0 1 0

1 0 1

1 11 0

c c

cc c

         
         

        

−


 

1 2.4254972439c =  

2  0.079339456159 0.35238765768c z −=  

-2

3

-12.895347 045442.3154580432 0.5614149 919c zz +−= −  

4 0.43187999149c = , 
2

5 0.10588941994 2.3154580433c z= −  

D8 
1 3 5

2 4

1 0 1 01

10 0 1

1 1 0

1 10 1 1 /0

c c c k

c c k

          
          

          
 

1

1

2

3.1029314859

0.291953126 0.076300086572

c

c z−

= −

= −
 

2

3 1.6625283534 5.199491573zc = − +  

2 3

4

3

5

0.037892748126 0.0067223726328

0.31410649341 , 2.6131183698

c z z

c z k

− −= −

= =
 

1 3 5

62 4

1 01 0 1 01 1 1

11 1

1

0 1 0 1 0 1

0

1 0

c c c

cc c

           
           

         

−

  
 

1

1

2

3.1029314859

0.291953126 0.076300086572

c

c z−

= −

= −
 

2

3 1.6625283534 5.199491573zc = − +  

2 3

4

3

5 6

0.38268453949 0.037892748126 0.0067223726328

2.6131183698, 0.046000097113 0.38268453949

c z z

c c z

− −= − + −

= = − −
 

D10 
2 4 6

3 51

1 0 1 01 0 1 1 1 0

1 11 0 1 0 1 0 1 0 1/

c c c k

c cc k

            
            

            

1 2

1 2

3

3 2

4

3 4

5

4

6

3.7715192117, 0.069884292321- 0.24772929136

7.5975797362 3.0336897918

0.015799323692 0.050396352639

1.1031463286 0.17257255569

0.0025143438267 , 0.34738904011

c c z

c z z

c z z

c z z

c z k

− −

− −

= =

= − +

= −

= − +

= − =
 

2 4 6

3 5 71

1 0 1 0 1 01 0 1 1 1

1 1 11 0 1 0 11

1

0

0

1 0

c c c

c c cc

              
              

          

−

   
 

1 2

1 2

3

3 2

4

3 4

5

6 7

3.7715192117, 0.069884292321- 0.24772929136

7.5975797362 3.0336897918

0.015799323692 0.050396352639

2.8786170101 1.1031463286 0.17257255569

0.34738904011, 0.0208349489

c c z

c z z

c z z

c z z

c c

− −

− −

= =

= − +

= −

= − − +

= = 428 2.8786170115z −

 

9/7 filter 

(bior4.4) 
1 3

2 4

1 0 1 01 1 0

1 10 1 0 1 0 1/

c c k

c c k

        
        

        
 

1

3

4

1

1

2 0.052980118573(1 )

0.88291107553

0.44350685204z 0.44350685204

1.1496043989

1.5861343421(1 ),

(1 )

c c z

c

c

z

z

k

−

−

− += = − +

=

=

+

+

= 

1 3 5

62 4

1 01 0 1 01 1 1 0 1

11 10 1 0 1 0 1 1 0

c c c

cc c

 
 

−         
         

          
 

2

1

4

1

1

3

5 6

0.052980118573(1 )

0.88291107553

0.44350685204z 0.42635759958

1.1496043989,c -0.86986445

1.5861343421(1 )

2

,

(1 )

16

c c z

c

c

z

z

c

−

−

= = − +

=

= −

=

− +

+

=

 

CDF4.2 
2 4

31

1 01 0 1 1 0

1 0 1/1 0 1 0 1

c c k

cc k

        
        

        
 

1 2

1

3

4

0.25 1.25, 0.23076923077 1

3.5208333333+0.8125

0.28402366864, -0.65271395186

c z c z

c z

c k

−

= − − = − +

= −

= =

 

2 4

3 51

1 0 1 01 0 1 1

11 11 0 1 0 1

0 1

0

c c

c cc

          
          

        

−

 
 

1 2

1

3

4 5

0.25 1.25, 0.23076923077 1

-1.9887686408+0.8125

-0.65271395186, 0.8653980259

c z c z

c z

c c

−

= − − = − +

=

= =

 

CDF5.1 
2 4

31

1 01 0 1 1 0

1 0 1/1 0 1 0 1

c c k

cc k

        
        

        
 

1 5c = − , 
2 0.025 0.20833333333c z= +  

1

3 37.5+22.5c z−= −
 

4 0.013333333333, 0.28284271247c k= = −  

2 4

3 51

1 0 1 01 0 1 1

11 11 0 1 0 1

0 1

0

c c

c cc

          
          

        

−

 
 

1 5c = − , 
2 0.025 0.20833333333c z= +  

1

3 33.964466094+22.5c z−= −  

4 50.28284271247, 3.3688672393c c= − =  
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5.5 Performance Assessment  

Now we know how to convert the existing factorizations in our proposed format or 

factorize from scratch. The benefits are already mentioned partly in Section 5.1 and 5.3.2. The 

overall advantages of the proposed factorizations are:  

1) This factorization does not require any scaling steps. As already discussed, the 

scaling step is the main cause of the reconstruction error in the integer-to-integer mapping of 

the most wavelet transforms.  So, the proposed factorization is completely lossless if 

implemented with either integer-to-integer mapping or overall integer-mapping.   

2) The factorization does not usually require any additional number of lifting steps 

as well; the total number of scaling steps or stages is the same as the conventional 

factorization. Generally, integer-to-integer mapping of each lifting stage adds some errors, 

and the result deviates from the result obtained without any mapping. Each additional stage 

adds new errors. So, in the proposed factorization, while the scaling steps are not used, the 

effect of the scaling steps is incorporated in the previous stages and the overall number of 

scaling stages remains the same.  

This is unlike the previous solution where the scaling step is suggested to replace with the 

additional four lifting steps[9] or removal of scaling steps completely[10] which requires 

manual work to try many factorization options to select the best one.   

3) Another objective of this factorization is to have low-cost implementation as well 

in addition to being lossless. Integer conversion of the coefficients with limited precision 

allows implementing with lower cost. We need to ensure whether the limited precision of 

coefficients in the proposed factorization does not harm much performance of the transform.   

Table 5.2 shows the reconstruction error in different wavelets shown in Table 5.1 when 

implemented with integer-to-integer mapping shown in the equation (5.11)-(5.14); a benchmark 

‘Lena’ image is used as the input and this same image will be used for all other results. The table 

also shows results with the integer-conversion of the coefficients as shown in the equation 
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(5.15)-(5.18). As we can see, the wavelet transform algorithm found using the proposed 

factorization technique is completely lossless.  

Now we would like to compare our approach with the approach where scaling steps is 

replaced with the following four lifting steps[9]: 

2

1

2

0 1 0 1 1 1 01
( )

0 1/ 1/ 1 0 1 1 10 1

0 1 1 1 0 1 1/ 1 0
( )

0 1/ 0 1 1 1 0 1 1

T

k kk k
P z

k k

k k
P z

k k k k

−

− −       
= =         

−        

−         
= =         

− −         

                              (5.37) 

Table 5.3 shows that comparison. This table lists the entropy of the transformed results 

after single-level decomposition of the image ‘Lena’ for the wavelets found from the proposed 

factorization and conventional replacement of the scaling steps. We can see that while the quality 

of the transform (i.e. entropy) with integer-mapping remains similar, the no of lifting stages is 

comparatively lower in the proposed approach. This translates into the decrease of the cost and 

lower number of flip-flops (in most case, the number of required flops decreases by 3) which are 

needed in each stage; which in turn decrease the latency by the same number of clock cycles. 

Fig. 5.3 shows the entropy with different precisions (b) of the coefficients for the different 

wavelets with the proposed factorization. As we see, while the entropies decrease with higher 

precisions initially, it does not decrease anymore after 7 or 8-bit precision and remains almost 

similar.  This information verifies that lifting wavelets found from the proposed factorization 

allows the usage of limited precisions of the coefficients and exhibits similar performance with a 

certain limited precision. This is important for low-cost implementation because the usage of the 

coefficients with double precision would make the implementation quite expensive. 

An important metric to determine the quality of any transform is the transform coding gain. 

If the input sequence of the transform is x and the transformed output sequences are y0, y1, … yN, 

the transform coding gain is given by[17], [18]: 

0 1

2 2

1 11
2 22 2

0

( )( )
n

x x
T N

N
y yy

n

G
 

 
−

=

= =


 

where 2

x and 2

ny represent the variance of the input sequence x and the output sequence yn. 
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Table 5.2 Wavelet reconstruction error with integer-to-integer mapping 

Wavelet RMSE in the conventional factorization RMSE with proposed ones 

Integer conversion of 

coefficients 

Without with (8 bits 

precision) 

Without/with (any 

precisions) 

D4 0.9908 0.9837 0 

D6 1.2166 1.2200 0 

D8 1.5483 1.5533 0 

D10 1.8458 1.8443 0 

CDF9/7 1.1616 1.1561 0 

CDF4.2 1.9930 1.9728 0 

CDF5.1 3.3337 3.5445 0 

 

Table 5.3 Comparison with existing lossless factorization 

Wavelet Scaling step replacement with eqn. (5.37) 

[9] 

This approach 

 Entropy* No of lifting stages Entropy* No of lifting stages 

D4 6.0687 7 6.0624 4 

D6 6.0678 8 6.0744 5 

D8 6.0456 9 6.0210 6 

D10 6.1285 10 6.3218 7 

CDF9/7 5.9843 8 6.0030 6 

CDF4.2 5.9960 8 5.9114 5 

CDF5.1 6.8863 8 6.4000 5 

*Entropy with integer-to-integer mapping and 8-bit precision in the integer conversion of 

the coefficients 

 

Fig. 5.3 Entropy for the wavelets found from the proposed factorization for the different 

precisions of the coefficients in integer conversion 
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Table 5.4 presents the transform coding gain of the different wavelet transform with ‘Lena’ 

image, after the single level of decomposition. It shows both traditional as well as the proposed 

implementation which ensures that the proposed implementation does not harm the quality of the 

transform. We should mention that, for Table 5.4, we do not use any integer-to-integer mapping 

and we use the double precision values of the coefficients for the computation of the wavelet 

transforms of the image.  

 

Table 5.4 Transform Coding Gain 

Wavelet Transform coding gain 

Standard convolution 

based* 

Lifting based methods 

Conventional Proposed 

D4 16.27 18.79 18.79 

D6 14.13 20.13 20.13 

D8 20.07 20.89 20.89 

D10 20.03 21.84 21.84 

CDF9/7 19.68 24.28 24.28 

CDF4.2 33.20 34.84 34.84 

CDF5.1 26.79 27.39 27.39 

*Using MATLAB dwt2 function   

 

In addition to the theoretical analysis and experimental results of the performance metrics, 

it is important to apply in an application and compare it. Among many applications achievable 

using wavelet transform, the most common one is image compression. We would like to 

compare the lossless compression rate of the wavelet transform achieved through our proposed 

algorithm with the costly alternative (shown in Table 5.3[9]) which is scaling step replacement 

with the equation (5.37). As we already indicated in Table 5.3 that the proposed technique 

maintains the performance of the transforms with the advantage of using a lower number of 

stages, Table 5.5 and 5.6 show the similar trends for the lossless image compression rate. In 

order to make a fair comparison, for both cases, we applied integer-to-integer mapping and used 

8-binary bit precision in the integer conversion of the coefficients.  To compute the lossless 

compression rate, we used Huffman lossless encoding for every case. We included the 

compression rate with a single level of decomposition and three levels of decompositions; both 
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of them show similar trends. Table 5.5 shows the compression rate of the benchmark ‘Lena’ 

image only; since the results obtained from the only single image may not be enough for a 

conclusion, we have also applied all the transforms on each of 44 images in SIPI Miscellaneous 

database [19] and presented the average value. The compression rates with both techniques are 

similar for SIPI Miscellaneous images as it was for ‘Lena’ image though the technique where we 

replace scaling steps with the equation (5.37) needs additional 3 lifting steps in most cases, 

additional flip-flops, and latency in hardware implementations.  

So, in the lossless image compression application, our proposed technique provides similar 

performance in compression rate but uses less number lifting stages which are lower-cost in 

implementation. Therefore, the proposed mechanism provides a complete and general technique 

for the lossless wavelet implementation for both orthogonal and biorthogonal wavelets and that 

provides lower-cost implementation option while maintaining the performance.   

 

 

 

 

Table 5.5  Lossless compression percentage with ‘Lena’ image 

Wavelet Lossless compression percentage (%) 

 Single level of decomposition 3 levels of decomposition 

 Replace the scaling step with 

eqn. (5.37) 

This work Replace the 

scaling step with 

(5.37) 

This work 

D4 23.74 23.75 38.84 38.86 

D6 23.60 23.55 38.69 38.23 

D8 23.93 24.29 39.02 39.35 

D10 23.02 20.54 37.66 33.83 

CDF9/7 25.57 25.61 41.31 41.37 

CDF4.2 24.66 25.81 31.75 32.83 

CDF5.1 13.57 19.51 13.74 19.40 

 

*All results are with integer-to-integer mapping and 8-bit precision in the integer 

conversion of the coefficients 
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Table 5.6  Lossless compression percentage with SIPI images 

Wavelet Lossless compression percentage (%) 

 Single level of decomposition 3 levels of decomposition 

 Replace the scaling 

step with eqn. (5.37) 

This work Replace the 

scaling step with 

(5.37) 

This work 

D4 25.40 25.60 36.62 36.57 

D6 24.58 24.37 35.72 36.57 

D8 24.38 24.91 35.69 36.20 

D10 23.16 21.08 34.16 30.72 

CDF9/7 26.93 26.85 38.85 38.78 

CDF4.2 25.34 27.47 29.33 31.63 

CDF5.1 15.15 20.91 13.02 19.17 

 

5.6 Conclusion 

In this paper, we have shown an alternative general way of factorization of the polyphase 

matrix for wavelet transforms so that implementation with integer-to-integer mapping becomes 

purely lossless. The contributing factor for lossy integer-based implementation is the scaling step 

in the polyphase matrix. This paper shows the way to factorize polyphase matrix in a manner 

which does not return any scaling step; it incorporates the effect of the scaling step into the prior 

lossless lifting steps; everything is done in this factorization while making sure that it does not 

increase the number of lifting step factors. This paper provides a novel way of implementing 

purely lossless wavelet transform.   
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Chapter 6 

Summary and Conclusion 

 

 

  

6.1 Summary  

The wavelet transform has become a new tool for information processing in many different 

fields, such as science, geophysics, astrophysics, biology, mathematics, computer science, 

medicine, finance, and engineering. Some of the key applications and usefulness are discussed 

briefly in chapter 1. Lossless implementation of the wavelet transform has been crucial in many 

applications. However, due to a few issues, the conventional integer-based implementations are 

not lossless in most wavelets. This thesis opts to solve this issue.  

The discrete wavelet transform is based on a strong and complex mathematical foundation. 

Therefore, it is necessary to give an overview of the context of this new transform developed in 

the past few decades. Starting from the Fourier series/transform, chapter 2 discusses the issues of 

each transform and proceeds to the wavelet transform for an appropriate solution. The issues of 

existing architectures or implementations also are identified.  

As the first step in this research, in chapter 3, a low-cost technique for DWT was proposed 

and applied to the widely used Daubechies-4 and -6 wavelets. The proposed architecture uses 

integer polynomial mapping (IPM) as well as the resource sharing/filter-coefficient elimination 

technique. IPM converts the irrational coefficients into integers and reduces the computational 

errors due to the truncation of coefficients. The proposed technique ensures an efficient low-cost 

and near-lossless implementation. 

In chapter 4, a purely lossless technique with the elimination of lifting steps was proposed. 

The technique is based on a mathematical theory which was described along with its related 
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experimental proof. The technique was applied to another well-performing but costly wavelet, 

called the Daubechies-8, to provide a low-cost and lossless implementation. Along with lifting-

step elimination to ensure losslessness, integer-mapping or integer-polynomial mapping, shown 

in chapter 3, was used on low-cost lifting schemes for lower cost architecture. Since lifting 

conversion of wavelet filters are non-unique, several lifting schemes were derived to choose the 

best ones.  This ensures well-performing wavelets as determined by the entropy or capability to 

compress information.  

In chapter 5, instead of the removal of the scaling step, the effect of scaling steps was 

incorporated in the previous lifting steps. The theory was constructed with a mathematical 

derivation and the performance predicted by the theory was accessed. Since this is a general 

theory, it was tested on a number of orthogonal and biorthogonal wavelets and the results were 

presented.   

In all three chapters (chapters 3, 4 and 5), the integer-based techniques are employed. The 

integer-to-integer wavelet building technique are utilized where the lifting step 

1

1 1 0( )o ex s z x x−= +  is approximated by 1

1 1 0( ) 1/ 2o ex s z x x− = + +   and the non-integer filter 

polynomials ( )is z  are also mapped into an integer ( )iS z by multiplying by 2b (where b is the 

precision of the coefficients) followed by a rounding or floor operation. It is true that after 

integer-mapping, the transformed output is not exactly the same as we get in the classical 

wavelets and there is difference between the transformed outputs of the classical wavelet and that 

integer-based wavelet. Due to the difference, there is impact on the performance when precisions 

are lower. As observed in this research work, the impact has been minimal with higher bit 

precisions.  Usually at 8 bit-precision, the performance (measured in terms of entropy) becomes 

saturated and does not improve much after that (i.e. at higher precisions). So, the impact at a 

reasonable precision is slim while the advantage is huge in terms of implementation cost since it 

is very expensive to implement double-precision floating-point calculation. Another advantage 

of building wavelet which maps integer-to-integer is that the lifting steps become reversible.  

The evidence of the minimal impact of the integer-based wavelets compared to classical 

wavelets are shown for all three algorithms. In chapter 3, Fig. 3.8 compares the spectrum 

response of the proposed integer-based algorithms and original classical algorithm in double 
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precision and shows that they are quite close for both D4 and D6. Table 3.6 shows that the 

proposed integer based D4/D6 maintains a similar PSNR compared to classical D4/D6 (in double 

precision) and provides a low-cost implementation. In chapter 4, Fig. 4.3 shows that 8-bit 

precision of scheme-1 and 2 maintains the similar entropy in processing ‘Lena’ image as the 

entropy found in classic D8 shown in Table 4.2. The advantage of integer-implementation is 

evident in Table 4.6 which shows a drastic decrease in cost. In chapter 5, Table 5.2 shows almost 

similar root-mean-square-error (RMSE) with or without 8-bit precision (without precision 

implies that no integer-mapping) for different wavelets. Therefore, integer-mapping of the non-

integer or irrational coefficients maintains the transform performance (measured by the entropy 

and PSNR) compared to the classical wavelets in double precision while decreasing the cost 

significantly.   

 

Table 6.1 The proposed schemes (single level decomposition) with ‘Lena’ image 

 Chapter 3 Chapter 4 Chapter 5 

 Lossy or near-

lossless algorithm 

Lossless algorithm Generalized Lossless 

algorithm 

 D4 D6 D8 

scheme 1 

D8 

scheme 2 

D4 D6 D8 

PSNR 50.80 65.18 ∞ ∞ ∞ ∞ ∞ 

RMSE 0.74 0.14 0 0 0 0 0 

Entropy 5.63 5.86 6.04 6.00 6.06 5.98 6.02 

Adders 12 16 32 28 18 24 38 

Multipliers 0 0 0 0 0 0 0 

LUTs 166 164 470 389 - - - 

 

Finally, all the proposed algorithms in chapter 3, 4, and 5 are summarized and shown in 

Table 6.1 which presents the performance with ‘Lena’ image. PSNRs, RMSEs, and entropies are 

calculated after a single level of 2D decomposition and reconstruction without any encoding 

such as SPIHT or Huffman encoding. The costs shown in adders or multipliers are for a single 

level of single-dimension decomposition with 8-bit precisions of the filter coefficients. Since the 

conventional polyphase matrix for D6 in Table 5.1 in chapter 5 and chapter 3 are different 

(which is usual because polyphase conversion is not unique), in order to have fair comparison in 
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the same table, the method of chapter 5 is applied on the conventional polyphase shown in the 

chapter 3 and following factorization is achieved which has been used for the data in Table 6.1.  

4
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As shown in Table 6.1, chapter 3 provides the lowest cost algorithm while chapter 4 and 5 

proves purely lossless implementations. Though chapter 3 is lossy, PSNR is high enough to 

consider it near-lossless in many practical applications. Therefore, this thesis provides three 

different approaches of implementation: lowest cost near-lossless algorithm, lossless and 

generalized lossless algorithms. 

6.2 Achievement of Research Objectives 

As explained in the above summary, this thesis proposes a number of algorithms which 

will ensure low-cost and lossless implementations and achieves the objectives of this research as 

outlined below. 

1. The goal of completely lossless and reversible implementation of wavelet transforms has 

been achieved (see chapters 4 and 5). The scaling steps which are responsible for 

becoming lossy have been analyzed both mathematically and experimentally.  

2. The method of conversion of the polyphase matrix into the lifting steps has been 

modified in order to find a new method so that the algorithms become free of the scaling 

steps without any change to the main algorithm or performance.  This has been achieved 

in chapter 5 with the new polyphase matrix factorization technique.  This has also been 

achieved in chapter 4 with the theory of the removal of scaling steps. 

3. In each part of the research work, the cost has been compared with recent similar 

implementations (if they exist) and it has been found that the proposed algorithms are of 

comparatively lower cost. To make them low-cost, several efficient techniques have been 

combined. Firstly, lifting-based techniques have been used which decreases the cost by a 
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half. Secondly, for conversion scaling steps into lifting steps, a lower cost alternative has 

been used by avoiding the comparatively costly conversion shown in equation (2.36).    

4. In all parts of the research work, the proposed wavelets are integer-based, and a lifting-

wavelets technique is utilized that maps integer-to-integer. In this technique, the 

processed result in each lifting step becomes an integer which makes the lifting step 

reversible, and everything except the scaling steps become lossless. As mentioned earlier, 

in the last two parts of the work, usually lossy scaling steps become lossless.  

5. In all parts of the research work, the irrational coefficients of filter polynomials have 

been mapped into integers. Since the floating-point calculation is inherently costly, any 

floating-point calculation has been avoided. 

6. All parts of the work have used lifting based algorithms which allow a series of data from 

a source like a camera to be processed in place, making them easy to utilize in such 

applications.  

7. The proposed techniques have been applied and tested on the popular orthogonal and 

biorthogonal wavelets. They have been applied on the Daubechies-4 and -6 in chapter 3, 

the Daubechies-8 in chapter 4, and a number of wavelets including the CDF-9/7 in 

chapter 5.  

8. The goal of the work was to develop a generalized solution, which is achieved in chapter 

5. A general algorithm has been proposed for a lossless integer-based lifting wavelet 

transform implementation. The proposed general algorithm has been applied and tested 

on a number of orthogonal and biorthogonal wavelets. In addition, other algorithms can 

also be generalized to apply to the other widely used wavelets.  

6.3 Suggestion for Further Studies  

The research done in this thesis may constitute a significant milestone towards lossless and 

low-cost wavelet transform implementation. It can be used for many applications and the 

development of newer algorithms or techniques. Following are several suggestions for further 

studies based on this research. 
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1. Since the proposed techniques are low-cost and hardware-friendly, they can be utilized to 

make close-to-real-time systems for many applications. While the algorithm in chapter 3 

can be used for applications where near-lossless or lossy compression or processing are 

acceptable and lower cost is desirable, the algorithms in chapter 4 and 5 can be used for 

lossless implementation.  

2. Though the proposed algorithms and techniques have been tested on image compression 

applications, there are many other applications, as outlined in chapter 1, where the 

proposed algorithm can be applied to get lossless and well-performing transforms at the 

hardware or software level. Some such areas are compression of the data from 

electrocardiograms (ECGs) or electroencephalograms (EEGs), computed tomography 

(CT), magnetic resonance (MR), and positron emission tomography (PET).    

3. The proposed algorithms can be used for reversible data hiding and digital watermarking, 

compression of satellite or remote-sensing data and text compression. 

4. The techniques in chapter 3 and 4 were applied only on the Daubechies-4, -6, and -8 

wavelets. They can be used on other wavelets, as well. Techniques in chapter 3 can be 

applicable for near-lossless or lossy but low-cost implementation, while those in chapter 

4 and 5 are more suitable for lossless and low-cost applications.  

5. Proposed algorithms can be utilized for analysis and classification of time series, also in 

the fields of machine-learning, deep-learning, and data science. They can also be used in 

the area of finance to predict the stock market, especially for high-frequency trading. 

6. The proposed techniques can be used to denoise or process any time-series signals from 

wearable devices and can be utilized for in-place implementations. Two examples are 

heart-rate monitoring and blood-oxygen monitoring signals.  

6.4 Conclusion 

Discrete wavelet transforms have significant potential for signal and data processing as a 

new statistical tool. Algorithm development and efficient implementation of wavelet transforms 

have been an active subject of research in the last few decades in many areas, such as 

mathematics, physical science, bioscience, and engineering. From an engineering point of view, 
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it is vital to contribute to efficient hardware and software implementation in order to unleash the 

mathematical potential for real-world applications.   

Having been motivated by that purpose, the existing basic techniques have been explored. 

This work stands on the shoulder of the giants, like Jean Morlet, the geophysicist who pioneered 

wavelet analysis; Ingrid Daubechies, the physicist and mathematician significantly contributed to 

the formulation of orthogonal wavelets and lifting scheme, Stéphane Mallat known for 

developing multiresolution analysis construction for wavelets which made the wavelet 

implementation practical for engineering applications. Using the work of those earlier 

researchers, this work develops a modified version of lifting schemes developed by Daubechies. 

This present scheme allows for the efficient building of lossless wavelets that map integer-to-

integers, addressing the limitation of the Daubechies’s lifting scheme, as she herself explained, in 

building integer-to-integer wavelet transforms, the scaling step becomes non-invertible.  

In addition, this work also focuses on low-cost, hardware-friendly implementation using 

overall integer-mapping, both the integer-polynomial mapping and the technique of building 

wavelets that map integer-to-integer. All the techniques were tested on one or more wavelets.  

To conclude, the work presented in this thesis should prove to be very useful for many 

different applications in the fields of medical imaging, satellites, remote-sensing and even 

standard data processing.  
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