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ABSTRACT 

 Alzheimer’s disease (AD) incidence is expected to double by 2038. This coincides with similar 
trends in obesity and chronic inflammation. It is known that insulin resistant and chronic 
inflammatory conditions can increase the risk of AD-like neurodegeneration, likely through 
mechanisms involving induction of brain insulin resistance. Insulin resistant brain states are 
associated with increased activity of glycogen synthase kinase-3β (GSK-3β), whose constitutive 
activity is inhibited, in part, by activity within the insulin pathway. Aberrant GSK-3β signaling 
contributes to increased amyloid-β production (senile plaques) and Tau protein 
hyperphosphorylation (neurofibrillary tangles), hallmarks of AD-like neurodegeneration. In 
addition, nearly two-thirds of AD patients are female, which strongly suggests a role for the post-
menopausal loss of the female sex hormone, estrogen, in the pathogenic events associated with 
AD. Estrogen is known to diminish neurodegenerative processes, such as β-amyloidopathy, 
mitochondrial dysfunction and oxidative stress, in a variety of animal models. A reduction in 
estrogen levels following menopause has also been associated with increased risk of insulin 
resistance and inflammation, thus necessitating exploration of the neurodegenerative potential 
of these conditions in a female animal model. 
 As a first step, by combining a high-sucrose diet (20% of the drinking water) with 
intraperitoneal LPS injections (0.1 mg/kg; once/month for 3 months) over seven months in 
reproductively normal female wild-type mice (C57Bl/6; n=10/group), a protective effect of low-
dose LPS on high-sucrose diet-induced pathology was demonstrated. Results from the high-
sucrose group confirmed that a high-sucrose diet is a suitable model of neurodegeneration, as 
evidenced by exaggerated glucocorticoid expression, spatial learning deficits, irregularities within 
the insulin pathway, and increased β-amyloid production and Tau phosphorylation. Interestingly, 
while LPS had little to no effect in isolation, it exerted a protective influence when added to 
animals sustained on a high-sucrose diet. Corticosterone homeostasis, Aβ and pTau levels, and 
insulin pathway second messenger expression were all rescued following addition of LPS.  
 Given the hypothesized role of increased GSK-3β activity in neurodegeneration, mice 
following the combined treatment regimen were supplemented with  lithium orotate (1 mg/L in 
the drinking water), a potent inhibitor of GSK-3β, to assess its prophylactic potential against 
dietary- and-inflammatory insult-mediated neurodegeneration. As the addition of LPS to animals 
on a high-sucrose diet proved to be protective rather than aggravating, I was unable to assess 
lithium for prophylaxis against neurodegeneration. However, antagonistic interactions between 
LPS and lithium were observed (lithium blocked the effects of LPS). When added to mice following 
the combined regimen, lithium returned corticosterone and Aβ levels to those observed in 
animals sustained on high-sucrose alone, while completely abolishing spatial learning deficits and 
anxiety-like behavior. 
 To sum, the work presented confirms a 1) high-sucrose diet as a model of neurodegeneration, 
2) supports a protective role for transient inflammation against dietary-insult, and 3) suggests an 
antagonistic interaction between lithium and LPS.  
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CHAPTER 1: INTRODUCTION 

1.1 THE RISE OF ALZHEIMER’S DISEASE 

1.1.1 The Alzheimer’s disease problem 

 Neurodegenerative diseases are an escalating concern for our aging population. AD is 

perhaps the most problematic of these conditions, with over 300,000 Canadians estimated to be 

afflicted with the disease. These numbers are expected to more than double by 20501. Given the 

rate of increase, and that fewer than 10% of all AD cases are exclusively genetic in origin, it seems 

unlikely that genetic mutations are to blame for this crisis. While aging is the greatest risk factor 

for development of late-onset AD, it is possible that changing dietary and lifestyle factors such as 

1) increased carbohydrate consumption (obesity, insulin resistance) and 2) chronic inflammatory 

conditions (arthritis, cardiovascular disease) are involved. Some authors have proposed the idea 

of AD as being type-3 diabetes (i.e. diabetes of the brain2), and high-sucrose diets and stress are 

known to promote both systemic and central inflammation3–5. Neuroinflammatory processes are 

believed to be at the root of many neurodegenerative coniditions6–12. Considering the association 

between obesity/insulin resistance/hyperglycemia, chronic inflammation, and 

neurodegeneration, it seems possible that changing lifestyle and dietary patterns are 

contributing to the surge in AD prevalence.  

1.1.2 Clinical characteristics of Alzheimer’s disease 

 Neurocognitive disorder is an umbrella term that encompasses a host of neurodegenerative 

conditions sharing common severe decline in cognitive ability. AD represents the most common 

form of neurocognitive disorder, accounting for nearly two thirds of cases in the 65 and over 

population1. AD is a progressive neurodegenerative disease characterized by impairment of 

comprehension, memory, language (production and processing), attention, and judgment13. As 

noted prior, early onset of AD is unusual (prior to age 65), representing just 10% of all cases. Thus, 

most AD patients demonstrate the sporadic late-onset form of the disease. Early stages of 

sporadic AD are highlighted by disturbances in short-term memory formation and recall with 

relative sparing of long-term memory. As the disease progresses, executive functions such as 

problem solving, judgment, visuospatial skills and organization deteriorate. Mid-to-late stages of 

AD are characterized by psychiatric symptoms (i.e. apathy, disinhibition, psychosis) and a 

progressive decline in motor skills and sleep quality. Incontinence, loss of primitive reflexes and 

complete reliance on caregivers exemplify the closing stages13–16. The neuropathological features 
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of AD are senile plaques, neurofibrillary tangles, and subsequent neuronal loss, with the severity 

of each correlating to the degree of disease progression16. 

1.1.3 Neuropathology of Alzheimer’s disease 

 Senile plaques and neurofibrillary tangles are considered two of the hallmark biomarkers of 

AD. Senile plaques consist primarily of insoluble deposits of amyloid-β (Aβ) peptides. Aβ 

oligomers are fragments of amyloid precursor protein (APP) generated during β-

amyloidogenesis: proteolytic cleavage by the membrane-bound endoproteases β- and γ-

secretase. Alternatively, non-pathogenic amyloid species can be formed when α-secretase acts 

within the Aβ domain of APP17. While multiple fragment lengths of Aβ are known to exist due to 

the imprecise activity of γ-secretase18, Aβ42 and Aβ40 appear to be two of the most abundant and 

influential. Aβ42 is more hydrophobic and fibrillogenic than shorter variants, establishing it as 

particularly neurotoxic19,20. While it is unclear whether senile plaques are a causative factor or 

endpoint of AD, a growing body of data suggests that the presence of the soluble Aβ species is 

chiefly responsible for driving pathogenesis of the disease16–18.  

 Fibrillization of Aβ is preceded by formation of intermediate Aβ species collectively referred 

to as ‘soluble Aβ’. Interestingly, expression of soluble Aβ species has been shown to correlate 

better than plaque formation with severity of disease progression. These soluble Aβ variants have 

been linked to neurotoxicity, reduced synaptic density, aberrant activation of adhesion signaling 

pathways, and cognitive dysfunction in rodent models20–22. Aβ oligomers, particularly of the Aβ1-

42 variety23, are also involved in the hyperphosphorylation of the microtubule-associated Tau 

protein, a key event in the formation of neurofibrillary tangles24,25. This promotion of Tau 

phosphorylation may be the result of increased cyclin-dependent kinase-5 (Cdk5) activity induced 

by Aβ42-mediated alterations in lipid second messenger expression26. 

 Neurofibrillary tangles are characterized by Tau proteins wrapped around one another in a 

helical fashion to form insoluble paired helical filaments (PHF). Hyperphosphorylation of Tau 

proteins is believed to prime Tau for assembly into PHFs. These accumulated PHFs are prone to 

aggregation, thus setting the stage for development of neurofibrillary tangles27,28. In addition to 

insoluble variants, misfolded Tau proteins may aggregate without forming PHFs, leading to 

soluble pathogenic Tau clusters28. Hyperphosphorylated Tau filaments demonstrate ‘prion-like’ 

properties in their ability to induce tangle formation in normal Tau proteins27. Both soluble and 

insoluble hyperphosphorylated Tau proteins have been shown to correlate with severity of 

cognitive decline in AD29,30. 
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1.1.3 Role of sex hormones in Alzheimer’s disease 

 Women will represent nearly two thirds of new AD 

patients over the coming generation, which strongly suggests 

a role for the post-menopausal loss of sex hormones (i.e. 

estrogen) in the etiology and/or pathogenesis of the disease, 

at least in females1. Sex hormone loss with aging in men or 

menopause in women correlates with increased incidence of 

AD31,32. Estrogen and testosterone are considered to be 

neuroprotective against CNS insults involved in the 

pathogenesis of AD33. Estrogen and its receptor regulate 

Alzheimer’s disease pathology through promotion of non-

amyloidogenic APP processing34 and decreased 

hyperphosphorylation of Tau35 (fig. 1.1), while testosterone 

acts through androgen receptor-mediated increases in the endopeptidase neprilysin responsible 

for clearing Aβ levels in the brain36, and inhibition of calpain-mediated tau cleavage known to 

play a role in Aβ-induced toxicity37. Interestingly, estrogen appears to confer greater protection 

against inflammatory insult in women than is observed for their male counterparts. Female 

animal models of lipopolysaccharide (LPS)-induced inflammation display subdued inflammatory 

responses relative to males38. While both male and female sex hormones decrease with age, 

post-menopausal women experience a greater age-related loss of estrogen than is observed for 

testosterone in like-aged men. Thus, although loss of testosterone or estrogen in males and 

females both increase risk for AD, the earlier and more rapid decline in estrogen in females 

associated with menopause likely contributes to the increased incidence of AD in the female 

population1. 

1.2 THE OBESITY EPIDEMIC 

1.2.1 Agriculture and evolutionary discordance 

 According to the theories of natural selection (survival of the fittest) and punctuated 

equilibrium (evolution is driven by dramatic environmental changes), evolution represents a 

constant interaction between the genome of a species and the environment in which it resides. 

Genetic traits are positively or negatively selected in accordance or discordance with constraints 

applied by a given environment. When environmental pressures remain relatively consistent, 

genetic traits come to reflect an optimal pool for survival of the population39,40. When rapid and 

permanent environmental changes occur, individuals within the population experience 
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evolutionary discordance; i.e. failure of the genotype to match the requirements of the 

environment. Evolutionary discordance has been proposed to manifest phenotypically as 

disease40–42.  

 Prior to the advent of agricultural practices, human dietary choices were limited to wild plant- 

and animal-based foods. In contrast, the post-agricultural (particularly post-Industrial 

Revolution) diet is rich in cereals, refined flour products, dairy, alcohol, and added sugars43–45. 

These food sources, which were largely unavailable in pre-agricultural societies, account for the 

majority of the daily energy consumed by most modern humans. It has thus been proposed that 

the current human genetic-makeup is ill-suited to the present environment. In other words, 

modern dietary choices may have placed present day individuals in a state of evolutionary 

discordance that has manifested in obesity, insulin resistance, cardiovascular diseases, and 

neurodegenerative conditions40,41,46–48. 

1.2.2 Recent trends in the Western Diet 

 Following the introduction of high-fructose corn-syrup additives and sucrose-based 

sweeteners to the western diet, average consumption of dietary and added sugar has increased 

with each passing year40,43–45. Furthermore, three-quarters of the North American population 

consumes an amount of fruit and vegetables below the recommended daily quantities. As dietary 

fiber has been suggested as a means to ward of the deleterious effects of excess caloric intake, 

the lack of fiber-rich vegetable consumption is concerning49–51. These dietary trends coincide with 

similar escalations in the prevalence of obesity. At present, nearly 50% of North Americans are 

estimated to be clinically obese and while genetic factors are known to contribute to 

susceptibility to the condition, the majority of cases can be primarily attributed to excess caloric 

intake, poor dietary composition, and lack of physical activity48,52,53. Obesity has been linked to 

insulin resistance (InsRes), inflammation/neuroinflammation, and cardiovascular impairment, all 

of which are known risk factors for AD-associated neurodegeneration6–8,54–57. 

1.2.3 Insulin signaling in the brain 

 Insulin is a key hormone involved in regulating microvascular blood flow, glucose uptake, cell 

survival, neurogenesis and memory. Most insulin within the CNS is produced locally (of central 

origin), as evidenced by the abundance of insulin mRNA found within numerous brain regions 

(hypothalamus and hippocampus, primarily)58–61. However, insulin may also enter the brain from 

the periphery via saturable transport systems. It has been proposed that insulin binds to its 

receptor resident in the BBB, triggering subsequent transcytosis of the hormone through 
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endothelial cells62,63. Regardless of origin, appropriate insulin activity is required for effective 

cognition, memory formation, and maintenance of neuronal integrity.  

 Brain insulin resistance is a condition in which neurons fail to respond to circulating insulin in 

an appropriate manner. Under normal conditions, insulin will bind to the insulin receptor - a 

tyrosine kinase - leading to its dimerization and the autophosphorylation of component tyrosine 

residues. Insulin receptor substrates 1 (IRS1) and 2 (IRS2) will then associate with the receptor, 

leading to phosphorylation of IRS by the receptor kinase. IRS phosphorylation creates a docking 

site for the Src homology 2 (SH2) domain of the p85 regulatory subunit of phosphoinositide 3-

kinase (PI3K). PI3K leads to downstream activation of protein kinase B (PKB/Akt). Activated Akt 

is responsible for the phosphorylation of numerous homeostatic targets involved in glucose 

balance, cytoskeletal remodelling, cell cycle regulation, cell proliferation/survival, autophagy, 

and apoptosis64,65. Akt and its downstream targets, such as mTORC1, and S6K, engage in negative 

feedback via delayed inhibitory phosphorylation of IRS1/2 at a variety of serine residues, 

including serine 302, 307, 522, 612, and/or 63566. 

This inhibitory phosphorylation prevents 

interaction with the insulin receptor (fig. 1.2). 

Dysregulation of Akt activity is associated with 

reduced cell survival, impaired cognition, reduced 

cytoskeletal stability, and accumulation of 

cytotoxic misfolded protein aggregates. Regarding 

neurocognitive disorders, insulin-resistant brain-

states (IRBS) have been observed in post-mortem 

hippocampal tissue collected from AD patients, 

with the degree of insulin dysregulation 

correlating positively with intensity of 

antemortem cognitive dysfunction67. Also of note, 

Willette et al (2015) observed that insulin 

resistance predicts amyloid deposition in late 

middle-aged adults considered at risk for AD68. 

While mal-activity within the IRS-Akt branch has been well characterized for its role in 

neurodegeneration, it should be noted that an alternative route within the insulin pathway exits. 

Adaptor molecules such as growth factor receptor-bound protein 2 (Grb2) contain SH2 domains 

that allow for interaction with the activated insulin receptor and associated phosphorylated IRS 

proteins. Activated Grb2 interacts with proteins such as Grb2-associated binding protein 1 and 

son-of-sevenless (SOS) through resident Src homology 3 domains. SOS catalyzes the transition of 



6 

 

Ras from a GDP-bound (inactive) to GTP-bound (active) state. GTP-bound Ras leads to 

downstream activation of extracellular signal-regulated kinase-1 and -2, which are involved in 

control of cell proliferation and differentiation69. Aberrant Erk signalling has been shown to 

induce hyperphosphorylation of microtubule-associated Tau proteins70, a process linked to many 

of the pathologies characteristic of AD. 

 The role of obesity in predisposition to AD - noted above - may be mediated by InsRes. An 

extensive body of literature suggests insulin dysregulation as a prominent risk factor for 

development of the disease2,56,71–76, with some authors proposing that IRBS may precede 

peripheral establishment of insulin insensitivity67. Evidence from animal models further supports 

the link between diet-induced InsRes and AD, as insulin dysregulation precipitated through a 

high-sucrose diet (caloric excess) has been shown to promote behavioral and physiological 

pathologies (increased Tau phosphorylation and β-amyloidogenesis) consistent with AD-like 

neurodegeneration77,78. 

1.2.4 Glucocorticoids, ceramides, and brain insulin dysregulation 

 Glucocorticoids, named for their actions on glucose metabolism, are stress hormones that 

function in the maintenance of homeostasis. Glucocorticoid expression is increased via two 

primary pathways, 1) stress-induced release from the adrenal cortex following activation of the 

hypothalamic-pituitary-adrenal (HPA) axis79,80, and 2) tissue specific (i.e. adipose tissue, liver) 

conversion of glucocorticoids from an inactive to active state by 11-β hydroxysteroid 

dehydrogenase-181,82. The effects of glucocorticoid signaling are widespread and multifaceted, 

including regulation of immune function, glucose metabolism, cognition, behavior, cell 

proliferation and cell survival83. The integrity of the stress response demands efficient induction 

of the HPA axis paired with subsequent downregulation of activity via hippocampal 

glucocorticoid receptor-mediated negative feedback. Once a threshold of interaction between 

glucocorticoids and their receptors in the hippocampus has been reached, activation of the HPA 

will be suppressed, allowing for robust yet transient glucocorticoid activity in response to stress84. 

Consequently, any disturbance in ordinary glucocorticoid function and/or HPA axis-feedback will 

have profound impact on several organs, the brain included. 

 Excess sucrose intake - an increasingly common occurrence, as noted prior - is associated with 

increased glucocorticoid levels and exaggerated glucocorticoid-mediated responses to other 

stressors85. Chronic elevations in glucocorticoid activity demonstrate several damaging effects 

on the brain, including quenched antioxidant capacity (increased oxidative damage)86, 

potentiation of neuorinflammation87, and induction of IRBS88,89. In animal models, corticosterone 

(analogue of the cortisol found in humans) has been shown to inhibit activation of the insulin 
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receptor while simultaneously reducing expression of the protien88,90. Furthermore, 

glucocorticoids oppose insulin on a functional level; i.e. catabolism versus anabolism91. 

Glucocorticoids also slow the movement of insulin into the CNS from the periphery through 

inhibition of insulin receptors within the BBB62. Corticosterone/cortisol may thus antagonize the 

action of insulin on both functional and molecular levels while simultaneously quenching its 

availability in the brain. 

 Peripherally, exaggerated glucocorticoid activity can 

lead to steatosis (fat accumulation) and inflammation of 

the liver, both of which are implicated in the 

development of the insulin resistance- and 

neurodegeneration-associated condition of non-alcoholic 

steatohepatitis (NASH). Glucocorticoids and 

steatohepatitis/liver damage are known to promote 

production of neurotoxic ceramides through induction of 

the stress-sensitive salvage pathway74,92–94 (fig. 1.3). 

Ceramides share the general form of a sphingosine bound 

to a fatty acid, with the length of the fatty acid chain 

expressing a degree of variability95. They are produced 

through two primary mechanisms: the de novo synthesis 

pathway, involving the condensation of palmitate and 

serine, and the salvage pathway, involving the re-acylation of sphingosine96. Over-expression of 

ceramides can disrupt insulin signaling97,98 and promote pro-apoptotic pathways99,100. The 

evidence supporting ceramide-induced insulin resistance is compelling. Chitturi et al (2002) 

demonstrated that NASH is comorbid with insulin resistance in approximately 98% of patients101. 

These findings are further supported by the work of others, such as Straczkowski et al (2007), 

who noted a significant correlation between muscle ceramide expression and decreased insulin 

sensitivity in obese and overweight individuals102. In vitro, ceramides have been found to 

decrease insulin signaling via inhibition of Akt signaling. Ceramides promote phosphatase 2A-

mediated dephosphorylation of Akt, dampening the activity of the kinase92,103–108. As previously 

discussed, Akt is a central mediator of insulin activity, so any disruption of this system will 

invariably lead to dysregulation of the insulin pathway. Interestingly, some studies have even 

shown that ceramide levels are increased in the CNS of AD patients109–113.  

  As glucocorticoids and ceramides are BBB permeable, it is reasonable to propose that they 

may act as mediators of diet-induced dysregulation of the brain insulin pathway (fig. 1.3). 

Irregular brain insulin signaling, irrespective of cause, results in extensive tissue injury through 
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formation of reactive oxygen species (ROS), reactive nitrogen species (RNS), dysfunction of 

mitochondria (promotes apoptosis), and induction of proinflammatory cytokine release2,92,114–

116. Furthermore, diet-mediated dysregulation of brain insulin signaling has been linked to β-

amyloidogenesis and Tau protein hyperphosphorylation, the hallmark processes of AD77,92,114,117. 

1.2.5 The Glycogen Synthase Kinase-βeta hypothesis of Alzheimer’s disease 

 Glycogen synthase kinase-β (GSK-3β), a serine/threonine kinase, is an integral component of 

the insulin pathway that is negatively regulated by Akt. While two primary isoforms of GSK-3 exist 

– alpha (α) and beta (β), the β variant demonstrates increased expression in the CNS, implicating 

it as the isoform of interest when discussing brain insulin activity118. When active, GSK-3β is 

involved in such essential processes as cell cycle regulation, glucose homeostasis, glycogen 

synthesis, and cell proliferation. However, GSK-3β also plays a role in the phosphorylation of Tau, 

induction of inflammation, and regulation of β-secretase activity (increased processing of APP to 

amyloid-β)118,119. Over-activation of GSK-3β has thus been associated with AD-related 

neurodegenerative processes and phenotypes such as memory impairment, 

hyperphosphorylation of Tau120, increased β-amyloidogenesis121, and increased microglial-

mediated inflammatory responses122. 

 Given the role of Akt in regulating GSK-3β activity, it is of no surprise that brain insulin 

resistance/dysregulation leads to hyperactivation of GSK-3β; less Akt activity results in 

disinhibition of the GSK-3β enzyme. Considering the impact of GSK-3β on neurodegeneration-, 

abnormal signaling activity may represent a mechanism linking obesity and InsRes to AD 

pathogenesis. This notion has led to the ‘GSK-3 hypothesis of AD’122 which suggests that the  

amyloid-β and Tau hypotheses are the consequences of an overactive GSK-3β signaling pathway. 

As the insulin-signaling pathway is heavily involved in suppressing constitutive GSK-3β activity123, 

even a modest irregularity in the insulin pathway may induce GSK-3β-dependent pathology. 

 In addition to accelerating the formation of Aβ oligomers and neurofibrillary tangles 

(misfolded aggregate Tau proteins), GSK-3β hyperactivity slows the removal of aggregate 

proteins via suppression of the autophagy-lysosomal pathway124–126. Interestingly, inhibition of 

GSK-3β has been shown to restore lysosomal function in murine models of AD, with subsequent 

amelioration of Aβpathology127,128. While other factors are almost certainly involved, GSK-3β 

dysregulation seems to represent a possible mechanistic explanation for the diet-induced 

neurodegeneration observed in animal models of AD78,122. 



9 

 

1.3 INFLAMMATION AND NEURODEGENERATION 

1.3.1 Peripheral lipopolysaccharide as a model of neuroinflammation 

 Neuroinflammation is a shared feature of neurodegenerative diseases. It is widely accepted 

that microglia, the resident sentinel cells of the CNS, are principal effectors of the inflammatory 

response in the brain. When in the presence of appropriate triggers, such as proinflammatory 

cytokines, free fatty acids, ROS, or endotoxins, microglia undergo a process deemed M1 

polarization. Polarization refers to the transition between classical proinflammatory (M1) and 

alternative anti-inflammatory (M2) activation states in response to environmental stimuli, 

though microglia are known to frequently demonstrate characteristics of one state while 

occupying the other (i.e. polarization is rarely complete)129. M1 activation is characterized by a 

retraction of microglial processes and swelling of cell bodies accompanied by subsequent release 

of proinflammatory mediators, including interleukin-6 (IL-6), interleukin-5 (IL-5), interleukin-1β 

(IL-1β), and tumor necrosis factor-α (TNFα)12,129,130. Conversely, M2 polarization is associated 

with increased expression of anti-inflammatory mediators such as interleukin-10 (IL-10) and 

transforming growth factor-β (TGF-β), and enhanced phagocytosis of foreign pathogens, 

misfolded proteins, and aggregate proteins131. 

 LPS is a structural component of the outer membrane of gram-negative bacteria. LPS binds 

to toll-like receptors (TLRs) in numerous cell types, microglia (central) and macrophages 

(peripheral) included. The interaction of LPS with microglia/macrophage resident TLR4 induces 

secretion of proinflammatory cytokines via the nuclear factor-κβ (NFκβ) pathway while increasing 

expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS)132. While 

microglial activation is necessary for defense of the host, hyperactivation can lead to release of 

cytotoxic factors such as superoxide133 (a potent ROS) and nitric oxide134 (via increased iNOS 

activity). In addition, proinflammatory cytokines themselves can become neurotoxic. Excess 

cytokine signaling is associated with exacerbation of inflammation, induction of neuronal insulin 

resistance135–137, formation of cytotoxic kynurenine, and promotion of excitotoxicity138–140. 

 Peripherally administered LPS has been shown to induce central inflammation141. While LPS 

may interact directly with microglial TLR4 in the brain, peripherally induced inflammatory 

mediators (of macrophage origin) are also capable of propagating into the CNS. Three immune-

to-brain communication pathways (among others) that monitor peripheral immune responses 

have been proposed. First, proinflammatory cytokines engage in neuronal communication with 

the CNS through activation of afferent vagal nerves forming synapses in the nucleus tractus 

solitarius. Afferent vagal stimulation is associated with elevated levels of glucocorticoids in the 

brain, the exaggerated activity of which may suppress antioxidant capacity, increase local 
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proinflammatory cytokine production, and heighten sensitivity to stress. Second, peripheral 

cytokines interact with TLRs on macrophage-like cells within the circumventricular organs and 

choroid plexus of the brain. Resultant pro-inflammatory cytokines then enter the brain through 

volume diffusion. Third, select cytokines such as TNF-α and IL-6 express saturable transport 

systems resident in the BBB, allowing for direct passage into the CNS141. Further, TNF-α has been 

shown to disrupt BBB permeability, thereby accelerating immune cell infiltration into the brain. 

1.3.2 Caloric excess and sensitization of the CNS to inflammatory insult 

 Western dietary choices may prime the brain for 

establishment of chronic inflammation through 

elevated glucocorticoid activity, induction of IRBS, 

and compromised integrity of the BBB. As previously 

discussed, excess sucrose consumption is positively 

correlated with exaggerated glucocorticoid 

expression/activity and glucocorticoid-mediated 

responses to stressors85. While ordinarily anti-

inflammatory during transient stress 

responses142,143, chronic glucocorticoid signaling can 

exacerbate inflammatory cascades via several 

mechanisms (fig. 1.4). First, glucocorticoids quench 

the antioxidant capacity of the brain, which 

augments the oxidative damage resultant of 

neuroinflammation86. Second, chronic 

glucocorticoids may contribute to activity-mediated 

‘burn-out’ of noradrenergic locus coeruleus (LC) 

neurons by increasing their basal firing rate via interaction with glucocorticoid receptors located 

on the cell body144. As noradrenaline suppresses microglial activation (anti-inflammatory)145,146, 

loss of LC neurons would reduce the anti-inflammatory capacity of the brain. Of note, loss of LC 

neurons is a shared characteristic of neurodegenerative conditions147–149. Third, a western diet 

can increase BBB permeability in the hippocampus after 90 days150. Taken together, caloric 

excess-induced impairments of antioxidant-, anti-inflammatory-, and BBB-mediated defense 

mechanisms may sensitize the brain to damages resultant of neuroinflammation while 

simultaneously enhancing propagation of inflammatory mediators into the CNS.  

 Alternatively, the anti-inflammatory activity of glucocorticoids142,143 establishes the 

possibility that events involving induction of robust glucocorticoid responses could attenuate 
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neuorinflammation. Thus, whether high-sucrose diets and inflammatory events prove to be 

synergistic in their promotion of neurodegenerative processes may depend on the strength of 

the event in question (i.e. potent inflammatory events promote acute glucocorticoid release)151. 

1.3.3 The inflammatory cascade and neurodegeneration 

    Neuroinflammatory processes are believed to be at the root of neurodegenerative 

diseases6–12. As discussed previously, inflammation is typically short-lived and beneficial: the 

stressor - be it pathogen, foreign protein, cellular debris, or toxic metabolite - is eliminated and 

the immune response is terminated. In moderation, inflammation can even serve to attenuate 

AD pathology, as identified in a study by DiCarlo et al (2001) who found that intracranial LPS-

injections in aged APP/PS1 transgenic mice lowered amyloid-β (Aβ) deposition within 7 days152. 

However, inflammatory immune responses are dysregulated in cases of neurodegeneration, 

resulting in collateral damage and loss of neuronal function. Perhaps the best example of this 

occurs in the hippocampus, where chronic inflammation has been shown to lead to reduced 

neuronal plasticity and neurogenesis153, and increased apoptosis11. Disruption of regular 

inflammatory cascades occurs during all stages of disease progression, spanning from the 

prodromal mild cognitive impairment (MCI) stage through the early and late stages of AD154–156. 

Interestingly, the ratio of proinflammatory to anti-inflammatory gene expression has been 

observed to dampen as the disease progresses, suggesting inflammation as an early event in AD 

as opposed to a late consequence of the disease154,155. In support of this notion, Tarkowski et al 

(2003) observed that patients with mCI exhibited increased cerebrospinal fluid (CSF) levels of 

TNFα – an inflammatory cytokine known to propagate inflammation into the CNS12 – before later 

progressing to full AD156.  

    Inflammation exacerbates accumulation of Aβ-plaques through modulation of amyloid 

precursor protein (APP) processing and iNOS expression. A study conducted by Semmler et al 

(2005) involving male Wistar rats injected with LPS found a marked increase in the activation of 

microglia and the expression and immunoreactivity of iNOS11. Elevated iNOS expression leads to 

increased nitric oxide (NO) production and nitrosative activity, both of which are known to 

regulate β-secretase157 and γ-secretase158 in such a manner as to potentiate formation of Aβ 

peptides. Dysregulation of APP processing invariably leads to AD; Down syndrome patients with 

trisomy of chromosome 21, the location of APP, develop AD with regularity159. Inflammation thus 

appears to be a potent factor in the progression of AD pathology, as it not only induces Aβ 

deposition, but appears to shift APP processing to favorably express the splice variants that result 

in Aβ production17,160. 
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 Aβ accumulation leads to sustained inflammatory activation of microglia161, a phenomenon 

known to promote neurodegeneration132,161–163. Aβ binds to several microglial immune 

receptors, including TLR2, TLR4, TLR6 and CD14132,161,163, which results in elevated production of 

inflammatory factors. The production of these mediators appears to be self-perpetuating: 

inflammation results in increased APP production, APP cleavage and Aβ aggregation17,160, and 

elevated Aβ deposition results in increased inflammation131,164. This cycle has thus been coined 

the ‘inflammatory cascade hypothesis’ of AD164. 

1.4 A NEW ROLE FOR LITHIUM 

1.4.1 Lithium is a potent inhibitor of GSK-3β 

Lithium salts have a well-established role in the treatment of affective disorders, most 

notably mania. Intriguingly, lithium may also have use in the prevention of neurodegeneration. 

At present, lithium administration has demonstrated little to no capacity as a primary treatment 

for AD. Trials administering lithium carbonate165 and lithium sulfate166 have failed to generate 

either significant reductions in AD biomarkers or notable benefits to cognitive performance. 

However, lithium may slow the development of AD when administered during prodromal stages. 

A study by Forlenza et al (2011) found that long-term lithium treatment in 45 individuals with 

amnestic mild cognitive impairment (MCI), a state often prodromal to AD onset, yielded a 

significant decrease in CSF concentrations of phospho-Tau and a marked increase in cognitive 

performance relative to placebo groups167. Furthermore, a comparison by Nunes et al (2007) of 

the prevalence of AD in elderly bipolar disorder patients found that AD was diagnosed in just 5% 

of patients undergoing lithium therapy, in contrast to a diagnosis rate of 33% in those not on the 

medication168. 

  It has been suggested that lithium owes its potential as a prophylactic agent against 

neurodegeneration to its ability to attenuate GSK-3β activity. Lithium and the GSK-3β cofactor 

magnesium share similar ionic radii, allowing lithium to act as a competitive inhibitor for the 

binding of Mg2+ at the catalytic core of the enzyme169. It is through this mechanism that lithium 

appears to maintain signaling through of the canonical Wingless/int (Wnt)/β-catenin pathway, 

itself a regulator of GSK-3β activity. The Wnt/β-catenin pathway is essential for hippocampal 

health. Expression of Wnt3 is associated with increased adult hippocampal neurogenesis, while 

blockade nearly abolishes it170. Reduced hippocampal neurogenesis is symptomatic of numerous 

conditions, such as depression, often prodromal to AD. Therefore, protection and/or rescue of 

hippocampal neurogenesis may attenuate progression of AD-like neurodegeneration171–175. Wnts 

are glycoproteins responsible for activating developmental and pro-proliferative signaling 
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pathways through interaction with several distinct receptors, including the anti-GSK-3β Frizzled 

(Fzd)-mediated cascade. When Wnt binds to Fzd, the protein Dishevelled (Dvl) is recruited. 

Activation of Dvl leads to downstream inhibition of GSK-3β, preventing the phosphorylation of 

the GSK-3β substrate β-catenin, thereby sparing β-catenin from degradation via the proteasomal 

pathway176–178. Increased endogenous β-catenin expands the population of dividing adult 

hippocampal progenitor cells, enhancing neurogenesis179,180. Lithium may thus potentiate the 

pro-neurogenesis activity of the canonical Wnt signalling pathway by increasing the pool of active 

β-catenin through inhibition of GSK-3β179. In support of this notion, a study by Gould et al (2007) 

found that transgenic mice overexpressing a constitutively active form of β-catenin in the brain 

exhibited behaviours similar to those observed in mice following lithium treatment180. 

1.4.2 Modern dietary choices and lithium deficiency 

Given the integral role played by GSK-3β in the pathogenesis of AD and the inhibitory effects 

of lithium on its action, it is reasonable to question whether the growing AD concern can be 

partially accounted for by a lack of dietary lithium. Considering that lithium is a trace mineral 

found in both drinking water and plant matter, it is fair to assume that mammalian species 

evolved with lithium in the environment and thus developed some use for it in complex signaling 

pathways. Should factors arise that limit the availability of lithium or disrupt our 

handling/retention of it, it is possible that the resultant loss of the neuroprotective benefits181 of 

the element would leave us susceptible to neurodegeneration. 

As lithium is primarily removed from the body via renal clearance, it is sensible to presume 

that factors which increase the renal clearance of lithium (CLi) are capable of contributing to a 

state of lithium deficiency. Lithium is an alkali metal and monovalent cation that directly 

competes with sodium for transport across epithelial membranes on account of similar ionic 

radii182,183. As a consequence, lithium and sodium share an intriguing inverse relationship: as the 

degree of sodium intake increases, so too does the renal clearance of lithium. When sodium 

concentrations become excessive, transport systems resident within the epithelium become 

saturated and lithium resorption decreases184. It is thus of note that fast food, processed food 

and home flavorings rich in sodium have taken on a progressively larger role in the western 

diet185. In addition to salt, consumption of caffeinated beverages also contributes to lithium 

excretion, as indirectly demonstrated in a study by Shirley et al (2002) who found that males 

given a 400 mg daily oral dose of caffeine showed a marked increase in renal Li clearance relative 

to placebo control groups186. The dose of caffeine administered is the rough equivalent of 4 cups 

of coffee. 



14 

 

Intriguing observational evidence concerning the deleterious effects of insufficient lithium 

can be found within western populations. In normal and criminal populations, the concentrations 

of lithium found in the drinking water demonstrates a negative correlation with suicidal and 

aggressive behaviors187,188. In Texas, mental hospital admission and readmission rates in 27 

communities were inversely proportional to the lithium content of residential drinking water189. 

Scalp hair analyses yield similar results. Both children with autism and their mothers demonstrate 

markedly reduced hair lithium concentrations relative to the general population190, while a study 

of American and German adults found that roughly 20% of all individuals have low scalp hair 

lithium levels, with the lowest concentrations occurring in individuals with learning impairments, 

cardiovascular disease, and violent criminal behavior191. While these associations are intriguing, 

they do not necessarily suggest a connection between a lack of dietary lithium and AD; however, 

they do provide evidence of widespread lithium deficiency. 

1.4.3 A case for lithium orotate 

 Given the reported capacity of lithium to attenuate the progressive cognitive decline seen in 

AD, the lack of scientific research surrounding the element as a prophylactic agent is truly 

perplexing. Much of the hesitation surrounding the use of lithium salts stems from the narrow 

therapeutic index for lithium carbonate, a common treatment option in bipolar disorder. While 

these concerns are certainly valid, they operate under the incorrect assumption that all lithium 

salt compounds exert equivalent effects in the human body. In the late 1970’s, Kling et al (1978) 

noted that lithium orotate injections resulted in greater serum and brain concentrations of 

elemental lithium than did equivalent lithium carbonate dosages192, perhaps as a result of 

reduced kidney filtration rate193 and/or enhance delivery of lithium across cell membranes as a 

neutral non-dissociated lithium orotate complex194,195. As such, lithium orotate can theoretically 

achieve therapeutic brain lithium concentrations at markedly reduced dosages relative to 

traditional lithium compounds. Why then hasn’t this compound been more heavily studied? 

Perhaps the reticence to explore lithium orotate as a treatment option can be traced back to a 

study conducted by Smith et al (1979), who compared the resultant renal concentrations of 

lithium following administration of various salt compounds. Compared to lithium carbonate, 

lithium orotate treatment resulted in reduced glomerular filtration rate and urine flow, and 

increased renal toxicity; however, the study used identical amounts of carbonate and orotate, 

thus negating the original reason for using lithium orotate over alternative salt compounds in the 

first place193. While others have seemingly confirmed the toxic nature of lithium orotate, they 

failed to demonstrate severe adverse effects despite the dose used being 18 times greater than 

what is recommended196. Considering the potential reduced dose requirements of lithium 
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orotate - an over the counter supplement - in comparison to lithium carbonate, it is clear that 

the compound warrants further study as a potentially safe treatment for a host of neurological 

illnesses, AD included. 

1.5 AIMS AND HYPOTHESES 

Aim 1 evaluated the ability of a high-sucrose diet combined with repeated bouts of systemic 

inflammation to generate AD-like pathology in female wild-type mice. Three-month old female 

C57/BL6 mice were randomized into four groups of ten in a two-by-two design. Controls, hS (20% 

in the drinking water), LPS (0.1 mg/kg IP), and hSL (concurrent hS and LPS treatment) constituted 

the four study groups. Mice were tested behaviorally after 6 months, and their brains and livers 

were harvested for biochemical/histological analysis at the end of the 7th month.  

 

 Chronic stress, fast food 

(high in carbohydrates) and 

sedentary lifestyles are fast 

becoming the norm in 

Canadian society. At great 

cost to our medical 

establishment, AD and 

neurocognitive disorder 

incidence is estimated to 

more than double over the 

coming generation. Women 

are expected to account for 

nearly two-thirds of these 

new patients1. As the rise in AD prevalence coincides with similar trends in insulin resistant and 

inflammatory conditions, known risk factors for AD2,8,12,75,197, the goal of the work presented in 

this thesis was to combine dietary and inflammatory factors to accelerate AD-like 

neurodegenerative processes in female wild-type mice. These factors are a high-sucrose diet-

induced insulin resistant brain state and intermittent mild systemic inflammatory events. Both a 

high-sucrose diet (10-20% of the drinking water)197 and LPS can induce mild neurodegenerative 

phenotypes in isolation within 7-10 months12. Inflammation is known to contribute to 

neurodegeneration and brain-insulin resistance135–137, while high-sucrose diets may exacerbate 

inflammation while sensitizing the brain to inflammatory insult through glucocorticoid- and 

ceramide-mediated mechanisms85,86,144,147–150. Thus, the addition of intermittent LPS injections 
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to animals sustained on a high-sucrose diet may prove synergistic in the pathogenesis of AD-like 

neurodegeneration, as outlined in figure 1.5. 

 

 I hypothesize that the combination of a high-sucrose diet and repeated bouts of systemic 

inflammation will aggravate and accelerate AD-related pathological processes in female wild-

type mice. 

 

Aim 2 evaluated the ability of lithium orotate to act in prophylaxis against neurodegenerative 

insults induced by the combination of a high-sucrose diet and repeated bouts of mild systemic 

inflammation. Three-month old female C57/BL6 mice were randomized into four groups of ten 

in a two-by-two design. Controls, hSL (20% in the drinking water; three 0.1 mg/kg IP LPS 

injections, delivered once per month), Li (1 mg/L elemental lithium in the drinking water) and 

hSLLi (Li added to hSL treatment). 

 

 The GSK-3β hypothesis of AD proposes a central role for aberrant GSK-3β activity in 

neurodegeneration122. Constitutive GSK-3β is inhibited by activity of the insulin pathway, namely 

Akt118. As GSK-3β has been shown to increase Aβ production and Tau protein 

hyperphosphorylation, hallmarks of AD-like neurodegeneration118,120,122,123,  it is no surprise that 

dysfunction of the insulin pathway has been implicated 

in the pathogenesis of AD67,68. High-sucrose diets are 

known to contribute to dysregulation of brain insulin 

signaling85,88,197. Thus, it is possible that inhibitors of GSK-

3β, such as lithium169,198,199, could attenuate or even 

prevent neurodegenerative pathologies associated with 

a high-sucrose diet. Lithium is also a potent inhibitor of 

LPS-induced inflammation200, which itself promotes 

insulin resistance and CNS damage12,135–137. Lithium may 

thus exert two-fold antagonism against insults resultant 

of the combination of a high-sucrose diet and 

intermittent systemic LPS injections, as outlined in figure 

1.6. 

 

 I hypothesize that the addition of lithium orotate to mice sustained on a high-sucrose diet 

and intermittent injections with LPS will prevent development of a neurodegenerative 

phenotype in female wild-type mice.  
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CHAPTER 2: GENERAL METHODS 

2.1 BEHAVIOR 

 After six months, mice were subjected to behavioral testing that included the open-field test 

(OFT) for general locomotion and thigmotaxis (wall-seeking behavior) and the Barnes maze (BM) 

for spatial memory acquisition and retrieval. Animals were consistently habituated to the testing 

room for a period of 30 minutes prior to each trial/testing. All testing was video recorded and 

analyzed offline using Ethovision XT 11.0 software (Leesberg, VA).  

2.1.1 Open Field test 

 Mice were placed in an opaque white box (35 x 35 x 30 cm) under bright white light and 

allowed to explore for 10 minutes (min). Animals were scored for total distance travelled and 

time spent within the center of the field defined as nose body and tail-base >10 cm away from 

all walls.  

2.1.2 Barnes maze 

 The Barnes maze featured a 

white escape box (placed 

beneath the escape hole of the 

stationary platform), white 100 

cm (diameter) rotating platform 

with twenty 5.5 cm (diameter) 

escape holes evenly distributed 

about the perimeter, and a 

white 100 cm (diameter) stationary base with one escape location. The rotating platform was 

placed on top of the stationary base (itself 12 inches above the ground) (fig. 2). Habituation: mice 

were habituated to the maze on the first day of testing via placement in the center of the testing 

field (within a translucent container) for 30 seconds. Animals were then gently nudged toward 

the escape location over a period of 30 seconds. Upon entry, animals were habituated to the 

escape box for two minutes. Escape location was rotated every third mouse; assigned holes were 

held constant throughout the acquisition protocol. Acquisition: mice were placed in the center 

of the maze under a translucent container. After ten seconds, the container was lifted, and an 

aversive buzzer was triggered. Animals were allowed 3 minutes to locate the escape hole under 

duress of the buzzer. If successful, the buzzer was silenced, and mice were held in the escape box 
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for two minutes prior to return to their home cages. If unsuccessful, mice were guided to the 

escape location, followed by cessation of the buzzer and two-minute reinforcement in the escape 

box. This procedure was repeated once daily for seven consecutive days. Animals were scored 

for latency to escape (entry of the nose into the escape location or holes immediately adjacent) 

and number of errors (exploration of incorrect holes), which were used to create an acquisition 

index (time to escape x # of errors averaged over 7 days). High acquisition index suggests 

impaired spatial learning. Probe: mice were probed for long-term recall of the escape location 48 

hours after the final acquisition trial. Animals were allowed 3 minutes to explore the platform 

with the escape location closed. Animals were scored for latency to escape and number of errors, 

which were used to create a probe index (time to escape x # of errors). High probe index suggests 

impaired long-term spatial recall. 

2.2 BIOCHEMISTRY 

 After seven months, mice were weighed and sacrificed for harvesting of liver and brain tissue. 

One-half of the brain was flash frozen in isopentane and ground into powder for long-term 

storage at -80° C. 

2.2.1 Acetylcholinesterase activity assay 

 Mouse brain tissue was homogenized in cold 0.1 M phosphate buffered saline (PBS; pH 8.0; 

10 μl/mg) and protein content was measured by the Pierce™ Bicinchoninic Acid protein assay 

(BCA; Thermofisher Scientific). 5 μl (4 μg protein/μl) of the sample was added to the reaction 

mixture that included 300 μl of 0.1 M PBS (pH 8), 2 μl of 0.075M acetylthiocholine, and 10 μl of 

0.01 M DTNB (5,5-dithiobis (2-nitro benzoic acid)) solution for a total volume of 317 μl/well. 96-

well plates were measured on a spectrophotometer (SpectraMax M5, Molecular Devices) at 415 

nm (25 °C) in 5 min intervals for 40 min. The maximum slopes over a 10 min period were 

normalized to the average control activity for final comparisons. 

2.2.2 Nitrate/nitrite colorimetric assay 

 Mouse brain tissue was homogenized in cold Tris lysis buffer (TLB; 0.01M, pH 7.4, 3x 

protease/phosphatase inhibitors) and protein content was measured using the BCA assay. 55 μL 

of samples (4 μg protein/μL) and standards (Item No. 780014) were incubated with 10 μL each 

of nitrate reductase cofactors (Item No. 780012; Cayman Chemicals) and enzymes (Item No. 

780010; Cayman Chemicals) for 3 hours at room temperature, followed by deproteinization with 

1:1 acetonitrile.  Samples/standards were vortexed for 1 minute prior to centrifugation (4° C) for 

10 minutes at 10,000 rcf. Supernatants (80 μL) were placed into a 96 well plate. 50 μL of Greiss 
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reagent 1 (Item No. 780018; Cayman Chemicals) and Greiss reagent 2 (Item No. 780020; Cayman 

Chemicals) were added, followed by 10-minute color development. End Point absorbance was 

measured on a spectrophotometer (SpectraMax M5, Molecular Devices) at 550 nm (25 °C). Total 

nitrates are indicative of general NO activity. 

2.2.3 Corticosterone ELISA 

 Fecal pellets were collected from the colon during sacrifice and immediately stored on dry 

ice for subsequent ethanol extraction (100 μL ethanol/10 mg fecal powder) and equal volume 

measurement of corticosterone metabolites using an ELISA-based Assay Kit (Arbor Assays). Fecal 

samples were chosen over serum as they better represent a long-term average less influenced 

by rapid stress-induced changes in corticosterone expression. 

 

2.2.4 GSK-3β/pGSK-3β, Akt/pAkt, Amyloid-β40/Amyloid-β42, and Total Tau/pTau 

electrochemiluminescence 

 Mouse brain tissue was homogenized in cold TLB (0.01M, pH 7.4, 3x protease/phosphatase 

inhibitors) and protein content was measured using the BCA assay (diluted to 4 μg protein/μL). 

20 μg of protein was assessed for total and phospho GSK-3β and Akt protein concentrations, 100 

μg of protein for Aβ40 and Aβ42 expression, and 10 μg of protein for total and phosphorylated 

Tau, as per individual Assay Kit instructions (Meso Scale Discovery). Plates were read on the 

MESO QuickPlex SQ 120 instrument and analyzed using the associated Workbench Discovery 

software (Meso Scale Discovery). Phosphorylation at serine-9, serine-473, and threonine-231 

residues was assessed for GSK-3β, Akt and Tau, respectively.  

2.2.5 IRS1/pIRS1, mTOR/pmTOR and IRS2 ELISA 

 Mouse brain tissue was homogenized in cold TLB (0.01M, pH 7.4, 3x protease/phosphatase 

inhibitors) and protein content was measured using the BCA assay (diluted to 4 μg protein/μL). 

Tissue homogenates were further diluted to 2 μg protein/μL using TLB without 

protease/phosphatase inhibitors before being packaged and shipped to EVE technologies 

(Calgary, Canada) for ELISA-based Assay (EVE Tech). Total and phosphorylated (human pSer636, 

correlates to mouse pSer632) IRS1 and mTOR (pSer2448) were quantified. Total levels of IRS2 were 

assayed in-house using an ELISA-based assay kit (Aviva Assays). 200 μg/well of the 4 μg/μL 

samples were used for analysis of IRS2.  
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2.2.6 Neutral sphingomyelinase 

 Mouse liver tissue was homogenized in cold TLB (0.01M, pH 7.4, 3x protease/phosphatase 

inhibitors) and protein content was measured using the BCA assay (diluted to 4 μg protein/μL). 

200 μg of sample were used for analysis of sphingomyelinase activity via ELISA-based assay 

(Cayman chemicals). Kinetic and Endpoint absorbance were measured on a spectrophotometer 

(SpectraMax M5, Molecular Devices). 

2.3 HISTOLOGY 

 Mouse livers were fixed in neutral buffered formalin (Thermo Fisher Scientific) prior to long-

term storage in PBS (0.01M, pH 7.4). Fixed liver tissues were sectioned on a vibratome (40 μm, 

Leica VT1200) and stained with hematoxylin and eosin for assessment of fatty liver (ballooning 

hepatocytes and lipid droplets. 

2.4 STATISTICAL ANALYSIS 

 Two-way ANOVA (P<0.05) was performed to assess potential interactions between a high-

sucrose diet and repeated lipopolysaccharide challenge (aim 1), and between the combined 

treatment (hS + LPS) and lithium supplementation (aim 2). Cohen’s D values were determined 

relative to control for all groups to emphasize the size of the difference between means in an 

effort to avoid confounding strength of effect with sample size201. As both the small sample size 

used (n=10) and the lengthy duration of the study (7 months) likely contributed to increased 

variation within groups, I decided that a focus on treatment significance (two-way ANOVA with 

a sample size of 20) along with magnitude of effect (Cohen’s D) would provide more reflective 

data than one-way ANOVA and associated post-hoc tests (which are heavily influenced by sample 

size). Level of significance does not reflect effect size, and p-values greater than 0.05 are not 

inherently worthless202. In fact, if the effect size is not exactly zero, large enough samples will 

yield significance for differences that are essentially meaningless201–203. For this reason, medium-

to-large effects are worthy of consideration even in the face of increased risk of type I error for 

the potential they may represent when larger samples sizes are used. In this thesis, Cohen’s D 

effects were classified as medium (D>0.5) or large (D>0.8) 201. Small effects were excluded as they 

did not correlate well with reasonably low p-values.  
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CHAPTER 3: DIET, INFLAMMATION AND 

NEURODEGENERATION 

3.1 INTRODUCTION 

The rise in AD incidence corresponds with similar trends in insulin resistant and inflammatory 

conditions, both of which are known risk factors for neurodegeneration. While aging remains the 

largest factor in AD pathogenesis, it is possible that dietary and lifestyle choices associated with 

insulin resistance and inflammation are at play.  AD is twice as prevalent in diabetic (insulin 

resistant) patients, leading some authors to propose AD as type-3 diabetes; i.e. diabetes of the 

brain2. A substantial body of evidence also suggest inflammation as causative. In fact, 

neuroinflammation is considered by many to be at the root of neurodegenerative conditions6–12. 

With two-thirds of new AD patients are expected to be female, the post-menopausal loss of 

estrogen in women represents an additional underexplored risk factor, especially when 

considering the neuroprotective capabilities of estrogen31,33,204,205. The majority of AD research 

in animal models relies on humanized genetic mutations that account for less than 10% of all 

cases, necessitating examination of the role of non-genetic risk factors, such as obesity, insulin 

resistance and inflammation, in the pathogenesis of neurocognitive disorder in both male and 

female wild-type animal models. 

Excess sucrose (20% sucrose in the drinking water) has been shown to induce metabolic, 

behavioral and pathological changes consistent with AD-related neurodegeneration in male wild-

type mice75,77,197. While only a mild phenotype is present after numerous months, it should be 

noted that multiple pathways involved in the pathogenesis of AD are altered. As such, it has been 

proposed that while insulin resistance alone is insufficient to generate a full AD phenotype, it 

may serve as a cofactor in the etiology and progression of the disease2. Considering the 

consistent increase in average sucrose consumption over time43–45, a high-sucrose diet could 

represent a model of neurodegeneration that reflects human dietary patterns. High sugar intake 

is associated with elevated glucocorticoid levels and exaggerated glucocorticoid-mediated 

responses to other stressors85. Chronic glucocorticoid activity has been demonstrated to quench 

CNS antioxidant capacity (increased oxidative damage)86, potentiate neuorinflammation87, and 

induce brain insulin resistance88. Caloric excess and chronic glucocorticoid activity can also lead 

to steatosis of the liver206–208. Steatosis, and associated pathology, is linked to increased stress-

sensitive production of neurotoxic ceramides74,92–94. Over-expression of ceramides and 

glucocorticoids has been shown to contribute to disruption of insulin signaling85,97,98,209 and 

induction of pro-apoptotic pathways99,100. Dysregulation of the brain insulin pathway has been 
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linked to increased β-amyloidogenesis and hyperphosphorylation of the microtubule-associated 

Tau protein, hallmarks of AD-like neurodegeneration78,197,210. This increased phosphorylation of 

Tau and production of β-amyloids may be the result of aberrant GSK-3β signaling122,211. GSK-3β 

is inhibited via phosphorylation by Akt. As Akt is a central mediator of the insulin pathway, any 

disruption in normal insulin signaling can lead to dysfunction of Akt, and thus GSK-3β mal-

activity122,123,211. 

Chronic inflammation may also contribute to the accumulation of amyloid-β (Aβ) plaques 

through modulation of amyloid precursor protein (APP) and inducible nitric oxide synthase (iNOS) 

expression. Increased iNOS activity leads to enhanced production of nitric oxide (NO) and 

associated nitrosative activity known to potentiate β-secretase157- and γ-secretase158-mediated 

formation of Aβ peptides. Given this link to β-amyloidogenesis, it is clear that ordinarily beneficial 

acute inflammatory responses can become neurotoxic when active for exaggerated periods of 

time. Interestingly, high sugar diets may instigate process that allow for the transition from acute 

inflammation to chronic. First, caloric excess contributes to inflammation directly, highlighting 

potential synergy between insulin resistant conditions and inflammatory events212–214. Second, 

caloric excess may be able to enhance the propagation of inflammatory mediators into the brain 

through disruption of the blood-brain-barrier (BBB)215,216 and glucocorticoid-mediated alteration 

of anti-inflammatory and antioxidant capacities86,87.  

To test the hypothesis that mild inflammatory events will accelerate AD-associated 

pathological processes in an established high-sucrose model of neurodegeneration, I combined 

a high-sucrose diet (20% of the drinking water) with repeated systemic injections of 

lipopolysaccharide (LPS; 0.1 mg/kg) in reproductively normal female wild-type mice. While the 

dose of LPS chosen is likely insufficient to induce significant neuroinflammation on its own, I 

propose that a high sucrose diet will enable establishment of a chronic inflammatory state.  
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3.2 EXPERIMENTAL MICE AND STUDY GROUPS 

 Three-month-old female C57/Bl6 (Charles River, 

Canada) mice were randomized into four groups of ten 

animals constituting a 2x2 design. The control group was 

provided normal drinking water and given three 

intraperitoneal (IP) saline injections delivered once per 

month for three months beginning after the 4th week of 

treatment. A lipopolysaccharide (LPS; Sigma, 0.1 mg/kg 

IP) group was administered LPS in place of saline. A high-

sucrose group was provided 20% sucrose in drinking 

water with three IP saline injections. A high-sucrose-LPS (hSL) combined treatment group 

followed the regimens of hS and LPS treated mice. See figure 3.1 for a summary of experimental 

groups and treatments. Mice were housed in pairs and kept on a 12-hr light/dark cycle. 

Behavioral testing began after six months of treatment with animals being sacrificed for tissues 

after seven months. Mice aged 3 months and 10 months can be roughly equated to humans aged 

20 years and 40 years. Thus, the animals in this study approximate the period between human 

maturity and middle age217,218. All experiments were approved by the University of Saskatchewan 

Animal Research Ethics Board and done according to the Canadian Council on Animal Care.  
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3.3 A HIGH-SUCROSE DIET AS A MODEL OF CHRONIC STRESS 

AND LIVER STEATOSIS 

 Animals maintained 

on 20% sucrose in their 

drinking water (hS) 

demonstrated significant 

weight gain (sucrose 

effect P<0.001, two-way 

ANOVA) at the time of 

sacrifice (7 months) 

concomitant with an 

increasing effect on fecal 

corticosterone 

expression, as reflected 

by Cohen’s D measure of 

effect size201 and two-

way ANOVA analysis of 

treatment effect 

(D=0.739 for hS) (sucrose 

effect P=0.023, two-way 

ANOVA)(Fig. 3.2a,b). Interestingly, co-administration of LPS prevented/reset the observed hS-

induced increase in glucocorticoids. Increased liver neutral sphingomyelinase activity (sucrose 

effect P=0.024, two-way ANOVA) (Fig. 3.2c) and hepatic steatosis (Fig. 3.2d) were similarly 

observed in high sucrose fed animals. Given that corticosterone injections are known to affect 

ceramide production and steatosis219, it is interesting to find that LPS did not show any 

antagonistic effects on sphingomyelinase activity or steatosis in the combined group, despite 

normalizing fecal corticosterone levels, supporting the notion that a high sucrose diet will 

increase sphingomyelinase activity independent of baseline corticosterone levels 
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3.4 SEVEN MONTHS ON A HIGH-SUCROSE DIET ALTERS 

INSULIN-RELATED SIGNALING 

 Total insulin-receptor substrate 1 (IRS1) protein levels were increased after seven months on 

a 20% sucrose diet (sucrose effect P = 0.003, two-way ANOVA) (Fig. 3.3a, left), while 

phosphorylated levels remained consistent. Although the ratio of phosphorylated to total IRS1 

protein did not change significantly (sucrose effect P=0.107, two-way ANOVA), it demonstrated 

a decreasing effect (reduced expression) in hS-treated groups (D = 0.554) (Fig. 3.3a, right). 

Neither protein expression nor phosphorylation state of Akt were altered in hS mice. Conversely, 

activation of the downstream mediator Akt was increased following LPS treatment, regardless of 

the presence/absence of a high sucrose diet (LPS effect P=0.011, two-way ANOVA)(Fig. 3.3b, 

middle). This increase in pAkt coincided with an enhanced degree of mTOR phosphorylation 

(D=0.585), which is regulated in part by Akt activity (Fig. 3.4b, bottom). Total and phosphorylated 

protein levels for GSK-3β and p70S6K (Fig. 3.4a,c), downstream effectors of the insulin pathway, 

were unaffected by hS or LPS treatment. This lack of second messenger activity downstream of 

IRS1 despite increased availability of the protein may suggest an impairment or dysregulation 

induced by hS within the brain insulin pathway (Fig. 3.3). Decreased phosphorylation of mTOR 

(phosphorylation implies activation) further supports this notion (hS effect P=0.006, two-way 

ANOVA) (Fig. 3.4b, middle).  
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3.5 HIGH-SUCROSE TREATMENT CONTRIBUTES TO 

NEURODEGENERATIVE PROCESSES 

 Considering the well-established 

role of neuroinflammation in the 

etiology and progression of 

neurodegenerative conditions, I 

examined nitric oxide activity and 

cytokine expression to assess any 

potential inflammatory phenotype. 

Further, given the importance of 

acetylcholine in memory and 

cognition, and the loss of this system 

in neurodegenerative conditions, I 

evaluated acetylcholinesterase activity. Nitrate levels, indicative of NO activity, were elevated in 

all groups receiving high-sucrose in the drinking water (high-sucrose effect P=0.002, two-way 

ANOVA) (Fig. 3.5a). No changes in acetylcholinesterase activity were observed in any group (Fig. 

3.5b).  

 Interestingly, only hSL groups demonstrated a decreasing effect (reduced expression) on 

levels of the proinflammatory cytokines IL-5 (D=0.987), IL-1β (D=0.952) and IL-6 (D=0.768) (Table 

3.1). In contrast to its effects on nitrate/nitrite expression, the high sugar diet appeared to be the 

primary mediator of this observed attenuation of pro-inflammatory mediator release/production 

(high-sucrose effect P=0.017 for IL-5, P=0.091 for IL-1β). 

 As hypo-activation of the insulin pathway is known to contribute to hyperphosphorylation of 

the microtubule associated protein Tau and increased genesis of the amyloid-β42 

protein77,92,114,117 (hallmarks of AD-associated neurodegeneration), I assessed treatment effects 

on hemibrain Tau and Aβ42 levels. Only hS treated mice displayed an increase in effect for Aβ42 

production (D = 0.619) (Fig. 3.6a, top). No changes in Aβ40 levels were observed (Fig. 3.6a, 

middle). Interestingly, while both hS and LPS groups demonstrated increased effect on the ratio 
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of Aβ42 to Aβ40 (Cohen’s 

D=0.570 and D=0.580, 

respectively), this was lost in 

combination, suggesting 

antagonistic interaction 

(P=0.017, two-way ANOVA 

interaction) (Fig. 3.6a, 

bottom). No differences 

between groups were 

observed for total Tau 

expression, while 

phosphorylated Tau (Thr231) 

demonstrated increased 

effect in hS mice (D = 0.517) 

that was blocked with 

concurrent addition of LPS 

(Fig. 3.6b, top and middle). Of 

note, treatment with LPS 

suppressed Tau 

phosphorylation regardless of 

the presence or absence of 

high sucrose (LPS effect 

P=0.036, two-way ANOVA) 

(Fig. 3.6b), though this was lost when normalized to total Tau protein (total and phosphorylated 

protein levels were similarly reduced). The modest effects of hS treatment on Tau 

phosphorylation and β-amyloidogenesis could have been due to the use of hemi-brain 

homogenates (may have diluted region-specific differences) and early time point of assessment. 

It is also possible that increased phosphorylation of Tau occurred on sites other than Thr231. 

Nonetheless, when paired with corticosterone, sphingomyelinase, and NO data, the results 

obtained in a non-transgenic wild-type model at this early time-point support a high-sucrose diet-

mediated upregulation of neurodegenerative processes antagonized by acute inflammatory 

events. 
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3.6 A HIGH SUGAR DIET ALTERS BEHAVIOR DIFFERENTLY IN 

THE PRESENCE/ABSENCE OF LIPOPOLYSACCHARIDE 

 Behavioral studies performed 

during the 6th month of treatment 

demonstrated differing high-

sucrose-associated behavioral 

phenotypes in the presence and 

absence of lipopolysaccharide. 

Animals sustained on hS alone 

displayed worsened spatial 

learning performance in the 

Barnes maze (D=0.933), 

characterized by increased latency 

to escape and frequency of errors. 

This impairment aligned with 

elevated fecal corticosterone 

expression (Fig. 3.7a, left; Fig. 

3.2a, middle). Such results are 

consistent with the effects of 

chronic corticosterone on spatial 

learning observed 

elsewhere77,220,221, suggesting a 

glucocorticoid-mediated 

impairment in our hS mice. In 

contradiction to this notion, hSL mice demonstrated an impairment in spatial learning (D=0.761) 

that did not coincide with increased fecal corticosterone levels. No effects on long-term spatial 

recall were observed for any group (Fig. 3.7a, right). 

 During the Open Field test, only the combination of LPS- and hS-treatment precipitated a 

potentially anxiogenic phenotype, characterized by increased thigmotaxis (D=1.080) (Fig. 3.7b, 

left). Avoidance of the center of the field is often associated with anxiety-like behavior222–224, 

suggesting that some anxiogenic interaction (P=0.076, two-way ANOVA interaction) between a 

high-sucrose diet and LPS exists that is absent following the individual treatments. Furthermore, 

hS alone induced increased entry into the center (D=0.784), highlighting a significant difference 

in the phenotypes observed in the presence/absence of concurrent LPS treatment. Weight gain 
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resulting from the hS diet is unlikely to account for these differences in thigmotaxis, as overall 

locomotion in hSL mice did not differ from control (Fig. 3.7b, right). 

 

3.7 DISCUSSION 

3.7.1 Summary 

 Given that trends in AD incidence coincide with similar trends in obesity, insulin resistant 

conditions, and chronic inflammation - all known risk factors for AD12,75,225 – the present study 

combined a high-sucrose drinking water regimen with repeated monthly intraperitoneal 

lipopolysaccharide injections to accelerate AD-related pathology in reproductively normal-

female wild-type mice in a manner that better captures sporadic late-onset neurodegeneration. 

Female mice were used as the bulk of AD literature concerns male animal models despite nearly 

two-thirds of all AD patients being women. I demonstrated that high sugar consumption 

promotes mild upregulation of AD-related processes after just 6-7 months, as evidenced by 

elevated fecal corticosterone (Fig. 3.2), increased liver sphingomyelinase activity (Fig. 3.2), brain 

insulin pathway dysregulation (Fig. 3.3; Fig. 3.4), increased β-amyloidogenesis (Fig. 3.6) and Tau 

protein phosphorylation (Fig. 3.6), an altered brain inflammation state (Fig 3.5), and worsened 

spatial learning in the Barnes maze (Fig.3.7). Interestingly, the addition of LPS blocked many of 

these effects, as fecal corticosterone (Fig. 3.2), insulin pathway activity (Fig. 3.3), β-

amyloidogenesis (Fig. 3.6) and Tau phosphorylation (Fig. 3.6) were rescued. 

3.7.2 A high-sucrose diet as a model of mild neurodegeneration 

 Previous studies have shown that caloric excess promotes lipogenesis and triglyceride storage 

in both the liver and adipose tissue226. In cases of chronic excess, exacerbated intake leads to 

liver insulin resistance and steatohepatitis (inflammation of fatty liver)2,206,207. This inflammatory 

state promotes lipolysis and degeneration of the liver, culminating in mitochondrial- and/or 

apoptotic-mediated cell-death and ceramide synthesis104,105. The resultant free fatty acids, 

proinflammatory cytokines, and ceramides can induced both systemic and central dysregulation 

of the insulin pathway, leading to eventual neurotoxicity92,207. In this study, animals sustained on 

20% sucrose in their drinking water displayed weight gain, hepatic steatosis, and elevated fecal 

corticosterone expression and neutral sphingomyelinase activity (ceramides) after 7 months. As 

noted prior, these conditions have been linked with insulin resistance, neurodegeneration and 

cognitive impairment74,207,219,227. A recent study by Chen et al (2017) demonstrated that liver 

ceramide synthesis is upregulated by glucocorticoid signaling219, thus opening the possibility that 
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glucocorticoids are partly responsible for the high-sucrose-induced liver pathologies in this study. 

While I did not assess systemic insulin sensitivity directly, observed increases in corticosterone, 

sphingomyelinase activity and liver steatosis suggest that our high-sucrose animals were likely 

insulin resistant. Furthermore, ceramides have been shown to inhibit brain insulin 

signaling92,219,227 and promote both neuroinflammation228 and oxidative stress in the CNS74,207,227. 

Given that glucocorticoids are known to induce brain insulin resistance88, it seems possible that 

high-sucrose diet-induced effects on brain insulin signaling are mediated through chronic 

corticosterone- and ceramide-associated activity. 

 A high-sucrose diet induced irregular alterations in the brain insulin pathway. Total IRS1 

protein expression was found to be increased in whole hemi-brain homogenates without 

concomitant activation of downstream mediators such as Akt and p70S6K, suggesting a possible 

compensatory increase in IRS1 proteins in response to reduced insulin signaling. Phosphorylated 

mTOR, a target of Akt, was also decreased. Elevations in total IRS1 proteins without concurrent 

increase in Akt phosphorylation are consistent with results observed following injection with 

ceramides, as demonstrated by de la Monte, et al227, suggesting that a high sugar diet influences 

the insulin pathway through pathways similar to those implicating ceramide expression. 

Dysregulation of brain insulin signaling has been proposed to set the stage for β-amyloidogenesis 

and Tau protein hyperphosphorylation, the hallmark processes of AD pathogenesis92,114,117. In 

fact, I previously demonstrated that a 20% sucrose diet induces irregularities in the insulin 

pathway and increases Tau phosphorylation after just 4-months in male mice77. Both total Aβ42 

and the ratio of Aβ42 to Aβ40 were mildly increased by the high sugar diet, while the proportion 

of phosphorylated Tau proteins was similarly elevated. Furthermore, high-sucrose animals 

displayed increased nitrate/nitrite expression, suggesting enhanced NO production (perhaps 

through upregulated iNOS). Exaggerated NO has been linked to neuroinflammation and 

nitrosative activity, both of which are known to enhance the processing of APP to Aβ157,158. 

Surprisingly, cytokine levels were - in apparent contradiction to NO expression - decreased in 

animals on a high sugar diet. Clearly, the role of microglia in neurodegeneration remains 

controversial. Regardless, increased β-amyloidogenesis, Tau phosphorylation and nitrate 



32 

 

expression were associated with worsened spatial learning performance, highlighting a potential 

decline in cognition. Given the data presented, it 

seems possible that a high-sugar diet upregulated 

neurodegenerative processes (i.e. β-

amyloidogenesis, nitrosative activity, etc.) through 

glucocorticoid88- and hepatic ceramide-mediated 

mechanisms74,74,207 to influence spatial memory. It 

should be noted that the mild phenotype observed 

may have been due to the sex of the animals and 

could represent an early AD-related phenotype (fig. 

3.8). Estrogen has been shown to exert 

neuroprotection in a variety of models (cell culture 

as well as animal) and can diminish any pathological 

processes associated with AD, such as β-

amyloidopathy, glucocorticoid over-expression, 

mitochondrial dysfunction, and oxidative 

stress33,205. 

 In contrast to the high sugar diet, individual treatment with LPS did almost nothing. No effects 

on ceramides, sphingomyelinase, steatosis, brain insulin dysregulation or behavior were noted. 

However, LPS did appear to have two notable effects: elevated phosphorylation of Akt (increased 

activity) and enhanced production of Amyloid-β42 relative to Amyloid-β40. Given the lack of 

associated pathology or behavioral abnormalities, it is possible that the observed increase in β-

amyloidogenesis may have been the result of an evolutionarily conserved antimicrobial defense 

mechanism229,230. Separate studies by Miklossy and Ishida have shown that rat and mouse 

neurons exposed to LPS (via bacterial infection) upregulate APP231 and Amyloid-β42
232 expression. 

Clearly, a relationship between LPS and β-amyloidogenesis exists. Interestingly, this association 

may be beneficial. Soscia and colleagues (2010) demonstrated that Aβ displayed antimicrobial 

activity against eight common human pathogens, many of which were gram-negative (thus 

containing LPS)229. For seven of these pathogens, Aβ displayed an antimicrobial potency equal to 

that of a known antimicrobial peptide, LL-37229. It should be noted that LPS has difficulty reaching 

the CNS, which casts doubt on the mechanism proposed above233. Alternatively, is also possible 

that the increased activity of Akt played a role, as hyperactivity of Akt has been linked to 

increased β-amyloidogenesis; however, this seems unlikely given the lack of a behavioral 

phenotype displayed by our LPS animals (Akt hyperactivation is associated with cognitive 

decline234). 



33 

 

 The modest effects of LPS in isolation may have been related to the administered dose. LPS 

interacts with toll-like receptor 4 (TLR4) to initiate the inflammatory response235. High 

concentrations of LPS (greater than 1 mg/kg) are known to initiate endotoxemia and associated 

septic shock-like events linked to increased mortality and neuorinflammation236. Conversely, 

lower doses of LPS have been shown to reduce inflammation and mortality in response to 

subsequent exposure to LPS and other TLR4 ligands233,237. Considering the lack of increased 

nitrate/nitrite and cytokine expression, it is likely that the low dose used in this study (0.1 mg/kg) 

failed to initiate a chronic inflammatory response. In addition, the sex of the animals may have 

also contributed to the lack of phenotype. Everhardt and associates (2016) demonstrated that 

female mice injected with LPS displayed subdued proinflammatory responses relative to their 

male counterparts38. This attenuated inflammatory response may be due to the protective 

influence of estrogen. In a 2001 study, Merkel demonstrated that gonadectomy increased LPS-

associated mortality in female rats and that estrogen replacement therapy protected against this 

LPS-induced endotoxic shock238. 

3.7.3 Acute inflammatory events protect against high sugar diet-induced pathology 

 Counter to our expectations that a high sugar diet would exacerbate the effects of LPS, its 

addition to a high sugar diet failed to accelerate development of a neurodegenerative phenotype. 

Instead, the combination appeared to be protective, as antagonistic interactions were noted at 

several levels. First, and perhaps most notably, animals on the combined high-sucrose and LPS 

regimen did not display an elevation in fecal corticosterone. Given the proposed central nature 

of glucocorticoids to high-sucrose diet-mediated pathology88, attenuation of chronic 

corticosterone expression may have proved to be quite beneficial. In fact, LPS was found to both 

suppress Tau phosphorylation (with or without sucrose) and rescue Aβ42 levels in animals 

sustained on a high sugar diet. 

 Interestingly, the only pathology that arose due to the combination was observed in the open 

field behavioral test, where the addition of LPS to high-sucrose animals elevated thigmotaxis. 

Avoidance of the center has been linked to anxiety-like behavior, suggesting the combination 

treatment to be anxiogenic. This anxiety-like phenotype was coincident with reduced expression 

of IL-5, IL-6 and IL-1β. Aberrant IL-6 and IL-1β activity have been linked to anxiety-like behavior 

in both humans239 and animal models240, though expression of the cytokines are typically found 

to be increased in such conditions239–242. IL-5 is associated with neuroinflammation, though I am 

not aware of any role in anxiety-related behavior. Highlighting the complicated relationship 

between cytokine expression and behavior, contrasting studies have shown either no change243, 

an increase244, or a decrease in the levels of proinflammatory cytokines in patients with anxiety 
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disorders245. Furthermore, the expression of anti-inflammatory cytokines has been found to be 

either increased244 or decreased in anxiety-related conditions246. Given that much work remains 

to be done to untangle the role of cytokines in anxiety-like behavior, it remains possible that 

reduced proinflammatory cytokine levels could be related to mal-adaptive behavioral 

phenotypes. The increased NO activity coupled with decreased proinflammatory cytokines 

observed in our hSL mice represents a 3rd inflammatory phenotype distinct from those observed 

in the LPS (no change relative to control) and hS (increased NO and with no change in 

proinflammatory cytokine expression) groups. As only our hSL mice demonstrated increased 

thigmotaxis in the open field, it is possible that increased NO expression concurrent with 

suppressed proinflammatory cytokine levels may promote anxiety-like behavior. 

 The protective effects of LPS may have been due to the acute nature of the inflammation 

induced. Glucocorticoids engage in a form of negative feedback through a hippocampal-HPA axis 

circuit. Once a temporal and spatial threshold of interaction between glucocorticoids and their 

receptors in the hippocampus is reached, activation of the HPA is suppressed. This process allows 

for robust yet transient corticosterone/cortisol responses to stressful stimuli84. Acute 

inflammation has been shown to promote a robust increase in circulating glucocorticoids151 

capable of triggering negative feedback. Thus, it is possible that this spike in corticosterone 

activity may have ‘reset’ the high-sucrose diet-induced chronic low-level elevation in 

glucocorticoids through activation of the aforementioned feedback loop. Also of note, the 

addition of low-dose LPS suppressed proinflammatory cytokine expression (IL-5, IL-6 and IL-1β), 

as noted previously. Proinflammatory cytokines are heavily implicated in the progression of 

neurodegeneration. 

 If acute inflammation did exert its protective influence through ‘re-setting’ the corticosterone 

response, it reinforces both the notion that high sugar diet-induced pathology is mediated by 

glucocorticoids, and that transient acute inflammatory events are beneficial in the long-term 

management of chronic stress.  

3.7.4 Conclusions 

 In conclusion, the present work reinforces the idea that high sugar diets contribute to the 

pathologic processes involved in neurodegeneration. While the impairment of spatial learning 

and increases in Aβ42 and pTau expression are mild, they appear to suggest an early 

neurodegenerative phenotype (fig. 3.8). As some have proposed that brain insulin resistance is a 

late event in transgenic animal models247, the presence of any phenotype at seven months in 

wild-type mice is thus significant. These studies also demonstrate that acute inflammatory events 

may antagonize the neurodegenerative processes associated with these diets, at least in 
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reproductively normal females. While it is still possible that modern lifestyle changes (i.e. high 

sugar diets) and medical complications (i.e. inflammation, infections, stress) can intersect to 

accelerate development of an AD phenotype, it remains clear that much work is to be done to 

untangle the relationships between diet, stress and neurodegeneration. Furthermore, this study 

may highlight a potential reason as to why AD occurrence is so variable among individuals. If 

acute stress/inflammation is protective, then perhaps differences in lifestyle, diet, exercise and 

work/home environments contribute to long-term cognitive health; i.e. some stress is needed to 

‘re-set’ cortisol homeostasis, at least in females. It also remains likely that males and females 

respond differently to inflammatory events due to differences in sex hormones, thus raising the 

possibility that the combination of a high sugar diet and LPS injection would be neurotoxic in 

males and post-menopausal females. Studies comparing the effects of high sugar and/or LPS in 

reproductively normal male and female mice to ovariectomized female mice would thus be useful 

for further characterizing the role of sex hormones in neurodegeneration.  



36 

 

CHAPTER 4: INTERACTIONS BETWEEN LITHIUM AND 

DIETARY/INFLAMMATORY STRESS 

4.1 INTRODUCTION 

AD is characterized by the presence of senile plaques and neurofibrillary tangles composed 

of insoluble β-amyloid fibrils and aggregates of paired helical filaments of hyperphosphorylated 

Tau proteins, respectively. Exaggerated Tau phosphorylation and β-amyloidogenesis are known 

to have many origins. One such origin is proposed in the ‘GSK-3 hypothesis of AD’ which presents 

GSK-3β mal-activity as a central mediator of AD-associated neurodegeneration118–122,211. GSK-3β 

is inhibited via phosphorylation by Akt, a central downstream effector kinase of the insulin 

pathway.  Disruptions in normal insulin signaling, such as those observed in animals sustained on 

a high-sucrose diet75,77,197, can lead to dysfunction of Akt and aberrant GSK-3β signaling122,123,211. 

GSK-3β has been linked directly to Tau phosphorylation and upregulation of β-secretase activity, 

leading to increased concentrations of paired helical filament and enhanced production of 

Aβ118,120,122. Inhibitors of GSK-3β have thus garnered considerable interest for their putative role 

in delaying pathogenesis of neurodegeneration248,249. 

Interestingly, a means for counteracting the deleterious effects of aberrant GSK-3β may 

already exist in the form of a common treatment for bipolar disorder - lithium. Although lithium 

has demonstrated little efficacy as a primary treatment for AD165,166, it may have promise as a 

prophylactic treatment against processes involved in disease pathogenesis through mechanisms 

involving GSK-3β inhibition. Owing to its similar ionic radii to magnesium, lithium attenuates GSK-

3β activity via competition with magnesium for binding at its catalytic core169. As GSK-3β has 

been proposed as central to neurodegenerative processes associated with brain insulin 

resistance (i.e. the ‘GSK-3β hypothesis’ of AD122), lithium may prevent the AD-like phenotype 

observed in mice sustained on a high-sucrose diet. In addition, lithium may counteract the 

neurodegenerative effects of inflammatory insult through a reported ability to attenuate 

microglial-mediated inflammatory responses200,250,251. As inflammation is known to contribute to 

insulin resistance, GSK-3β inhibition may represent a means by which lithium can exert two-front 

antagonism against the effects of chronic inflammation: 1) direct blockade of the inflammatory 

response via attenuation of microglial-activation, and 2) suppression of inflammation-induced 

insulin pathway dysregulation via prevention of GSK-3β over-activity169. 

To assess the prophylactic potential of lithium against dietary- and inflammatory-mediated 

neurodegenerative insult, lithium orotate was added to the drinking water of female wild-type 

mice sustained on a high sugar diet and concurrent intraperitoneal LPS injections. 
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4.2 STUDY-SPECIFIC METHODS 

4.2.1 Experimental mice and study groups 

 Three-month-old female C57/Bl6 (Charles River, 

Canada) mice were randomized into four groups of ten 

animals constituting a 2x2 design. The control group was 

provided normal drinking water and given three 

intraperitoneal (IP) saline injections delivered once per 

month for three months beginning after 1 month. A high-

sucrose-LPS (hSL) group was provided high-sucrose (20% 

of the drinking water) and IP LPS injections (0.1 mg/kg, 

once per month for three months). A high-sucrose-LPS-

lithium group was provided with lithium (1 mg/L in the 

drinking water) in addition to the hSL treatment. See figure 4.1 for a summary of experimental 

groups and treatments. Mice were housed in pairs and kept on a 12-hr light/dark cycle. 

Behavioral testing began after six months of treatment with animals being sacrificed for tissues 

after seven months. Mice aged 3 months and 10 months can be roughly equated to humans aged 

20 and 40 years217,218. All experiments were approved by the University of Saskatchewan Animal 

Research Ethics Board and done according to the Canadian Council on Animal Care. 

4.2.2 Lithium solution preparation 

 A 14.4 mM (100x) lithium orotate solution was prepared using lithium hydroxide and orotic 

acid. This solution was diluted 100-fold prior to use. To make 1 L of 100x solution, 0.345 g of 

lithium hydroxide were combined with 2.509 g orotic acid in double distilled water (ddH2O). 16 

mL of this stock were diluted with ddH2O to a final volume of 1.6 L (1 mg Li+/L water). Average 

daily water consumption was between 10-11 for mice receiving high-sucrose water and 4-5 for 

mice without. Average daily lithium intake was thus 0.0105 mg for hSLLi mice and 0.005 mg for 

Li mice. The recommended human dosage of lithium carbonate is 900-1200 mg/day252, which 

translates to roughly 224 mg elemental lithium (in a 1200 mg dose). The average female bipolar 

disorder patient will thus consume roughly 2.89 mg elemental Li+/kg  of body weight (based on 

77.4 kg being the rough average weight of a 20 year old American woman253). In contrast, our 

mice received 0.214 mg/kg (hSLLi) or 0.158 mg/kg (Li). The doses administered can thus be 

classified as trace, as they represent just 7.4% (hSLLi) and 5.5% (Li) of a therapeutic dose (1200 

mg). 
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4.3 LITHIUM AFFECTS TOTAL AND PHOSPHORYLATED 

PROTEIN EXPRESSION OF BRAIN INSULIN PATHWAY SECOND 

MESSENGERS 

 Supplementation with lithium orotate (1 mg elemental lithium/L of drinking water) increased 

total protein expression for Akt (lithium effect P=0.052, two-way ANOVA) (Fig. 4.2a), GSK-3β 

(lithium effect P=0.040, two-way ANOVA) (Fig. 4.2b) and p70S6K (lithium effect P=0.038, two-

way ANOVA) (Fig. 4.2c). While phosphorylated protein levels for GSK-3β (Fig. 4.2b) and p70S6K 
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(Fig 4.2c) were unaffected by lithium treatment, phosphoprotein expression was increased for 

Akt (lithium effect P=0.053, two-way ANOVA), which may indicate elevated activity. (Fig. 4.2a). 

However, given that the degree of phosphorylation (ratio of total to phosphorylated proteins) 

was unaffected for GSK-3β and reduced for p70S6K (D=0.802 for Li and D=0.612 for hSLLi), both 

downstream targets of Akt, it seems unlikely that lithium promoted Akt activity despite increased 

expression of pAkt. Lithium had no notable effects on IRS1 or IRS2 expression (Fig. 4.2e), as the 

increase in total IRS1 was the result of hSL treatment (hSL effect P=0.049, two-way ANOVA) (Fig. 

4.2e). In contrast to second messengers discussed thus far, total mTOR expression was decreased 

(D=0.747 for Li and D=0.798 for hSLLi) in mice provided with lithium in the drinking water. 

Interestingly, lithium exerted a mild suppression of pmTOR levels (D=0.639) while reversing an 

hSL-induced decrease (D= 1.04) in hSLLi mice (Fig. 4.2d), supporting an antagonistic interaction 

between treatments (P=0.017, two-way ANOVA interaction). 

4.4 LITHIUM ALTERS BEHAVIORAL DIFFERENTLY IN THE 

PRESENCE/ABSENCE OF HSL 

 Behavioral studies performed 

during the 6th month of treatment 

revealed differing behavioral 

phenotypes in hSL mice in the 

presence/absence of concurrent 

lithium supplementation. Mice 

following the hSL regimen displayed 

impaired spatial learning during the 

acquisition phase of the Barnes maze 

(D=0.761) that was completely 

abolished by the addition of lithium, 

suggesting a potential protective 

effect (Fig. 4.3a, top). Interestingly, 

lithium worsened spatial learning 

performance when administered 

alone (D=0.924) (Fig. 4.3a, top). No 

effect on long-term recall of the 

escape location was observed for 

any treatment (Fig. 4.3a, bottom). Mice in the hSL group demonstrated anxiety-like behavior in 

the Open Field characterized by increased thigmotaxis (D=1.080). This phenotype was blocked 
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following addition of lithium, suggesting an anxiolytic effect (Fig. 4.3b, top). As locomotion was 

unaffected in hSL mice, weight is unlikely to have contributed to differences in thigmotaxis (Fig. 

4.3b, bottom).  

4.5 LITHIUM ALTERS GLUCOCORTICOID HOMEOSTASIS IN 

RESPONSE TO HSL TREATMENT 

 While hSL alone did 

not affect fecal 

corticosterone levels, 

the addition of lithium to 

hSL mice increased 

expression (D=0.827) 

(Fig. 4.4b), suggesting an 

interaction between the 

treatments (P=0.040, 

two-way ANOVA 

interaction). Mice in the 

hSL group displayed 

increased weight gain 

(D=2.638 for hSL and 

D=1.177 for hSLLi) and 

sphingomyelinase 

activity (D=1.002 for hSL 

and D=0.970 for hSLLi), 

regardless of the presence/absence of lithium (Fig. 4.4a,c). Lithium had no notable individual 

effect on weight gain or sphingomyelinase activity at the time of sacrifice (Fig. 4.4a,c). Steatosis 

was observed in all mice following the hSL regimen, with or without concurrent addition of 

lithium. Lithium alone had no effect. (Fig. 4.4d). 
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4.6 LITHIUM AFFECTS INFLAMMATORY AND 

NEURODEGENERATIVE PHENOTYPES IN HSL MICE 

 As neuroinflammation is 

known to play a central role in 

the etiology and progression 

of neurodegeneration, I 

examined several markers of 

inflammation, including 

expression of nitric oxide and 

various pro- and anti-

inflammatory cytokines. I also 

assessed acetylcholinesterase 

activity for its importance to 

cognition and its frequently altered state in neurodegenerative conditions. Mice following the 

hSL regimen demonstrated reduced IL-5 (D=0.987), IL-1β (D=0.952), and IL-6 (D=0.768) 

expression. Lithium blocked this effect for IL-5 and IL-1β, but not IL-6 (D=0.595 for hSLLi) (Table 

4.1). Similar changes to NO levels (represented by nitrate/nitrite metabolites) were not observed, 

with lithium (D= 1.016) and hSL groups (D=1.742 for hSL and D=1.822 for hSLLi) displaying an 

increase in effect (Fig. 4.5a). No changes in acetylcholinesterase activity were noted (Fig. 4.5b). 

 Given the importance of β-amyloidogenesis, and Tau hyperphosphorylation to AD-like 

neurodegeneration, I assessed treatment effects on hemibrain Tau and Aβ42 levels. While hSL 

mice did not demonstrate a significant change in Aβ42 production, concurrent treatment with 

lithium resulted in an increase in effect on expression of Aβ42 (D=0.540) (Fig. 4.6a, left). No effects 

on Aβ40 (Fig. 4.6a, middle) or the Aβ42/Aβ40 ratio were observed (Fig. 4.6a, right). Expression of 

pTau was reduced in all mice treated with hSL, with or without lithium (hSL effect P = 0.024, two-

way ANOVA) (Fig. 4.6b, middle). Lithium alone had no effect on pTau (Fig. 6b, middle). A reduced 

effect on total Tau was noted in hSL mice (D=0.532) (Fig. 4.6b, left), while no changes in the 

pTau/Tau ratio were observed for any group (fig. 4.6b, right).  
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4.7 DISCUSSION 

4.7.1 Summary 

 Modern society is rife with stressors and dietary patterns that contribute to obesity, insulin 

resistance, and chronic inflammation - all known risk factors for AD12,75,225. Given that lithium is 

a potent inhibitor of GSK-3β, which is believed to be central to both insulin resistant- and 

inflammatory condition-mediated neurodegeneration, the presented work added lithium 

orotate to the drinking water of female mice to assess its prophylactic potential against 

neurodegenerative insults resultant of combined dietary and inflammatory stressors. Female 

mice were used in response to the lack of literature surrounding AD pathogenesis in female 

models. Lithium increased insulin pathway second messenger protein expression (Fig. 4.2) and 

impaired spatial learning performance in the Barnes maze when administered individually. 

Counter to these effects in isolation, lithium completely abolished hSL-induced spatial learning 

deficits (Fig. 4.3), suggesting a beneficial role for the element in preserving cognition in the 

presence of insult. Elevations in protein expression were observed regardless of the 

presence/absence of combined hSL treatment (Fig. 4.2). When added to mice following the hSL 

regimen, lithium increased levels of proinflammatory cytokines (Table 4.1), fecal corticosterone 

(Fig. 4.4) and Aβ42 peptides (Fig. 4.5), supporting a significant interaction between the 

treatments. Finally, lithium demonstrated anxiolytic potential in the Open Field. The addition of 
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lithium to hSL mice blocked the increase in thigmotaxis observed as a result of the combined 

treatment alone (Fig. 4.3). 

4.7.2 Lithium supplementation demonstrates significant interaction with the hsl 

treatment 

 Lithium is known to attenuate LPS-induced inflammation through suppression of 

macrophagic and microglial activation in response to LPS exposure200,250. LPS, among other 

mechanisms, interacts with TLR4 to induce activation of macrophagic and microglial cells in the 

periphery and brain, respectively. One of the downstream effects of TLR4 signaling is induction 

of the NFκβ pathway, which has been associated with release of proinflammatory mediators, 

production of NO, and formation of ROS. Given that neuroinflammation, nitrosative activity, and 

oxidative damage have been linked to several processes implicated in neurodegeneration, it is of 

no surprise that LPS can contribute to neurodegenerative pathologies in murine models12.  

In contrast to potent concentrations of LPS236, low doses have been shown to attenuate 

macrophagic233,237,254 and microglial255 responses to future inflammatory events. In the present 

work, I confirmed a seemingly anti-inflammatory phenotype resultant of treatment with low-

dose LPS. Supplementation with lithium blocked this effect, as evidenced by a return of 

proinflammatory cytokine expression to control. As noted above, low doses of LPS have been 

shown to decrease the magnitude of macrophagic237,254- and microglial-mediated255 

inflammation in response to future inflammatory challenge. If lithium blocked the effects of LPS, 

it could explain why proinflammatory cytokine levels were returned to control in hSLLi mice. 

Alternatively, LPS is known to induce an acute inflammatory response associated with a 

robust increase in circulating glucocorticoids151 that, in contrast to their chronic effects87,256, act 

to resolve inflammation257–259. It is therefore possible that an LPS-induced acute glucocorticoid 

response could have resulted in the suppression of inflammatory cytokine production displayed 

by members of the hSL group. Furthermore, this acute glucocorticoid response may have also 

‘re-set’ the chronic elevations in corticosterone associated with a high-sucrose diet77,85. Sufficient 

interaction between glucocorticoids and their receptors in the hippocampus triggers a 

hippocampal-HPA axis-mediated negative feedback loop that quenches glucocorticoid release 

from the adrenal cortex84, as discussed previously. By antagonizing LPS-mediated signaling200,250, 

lithium may have thus 1) prevented an acute LPS-induced anti-inflammatory glucocorticoid 

response, and 2) allowed for high-sucrose diet-induced chronic elevations in glucocorticoid 

expression (proinflammatory256) to progress unchecked (due to lack of HPA-dependent negative 

feedback84). 
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 Intriguingly, lithium increased NO production in isolation (indicative of inflammation) but did 

not promote an additive increase in NO expression when introduced to hSL mice. These 

seemingly inconsistent effects may be due to an interesting duality in the relationship between 

lithium and the NO-NOS pathway. In the absence of additional treatment, lithium has repeatedly 

demonstrated an ability to increase NO expression in the brain260,261. However, lithium was found 

to attenuate microglial-mediated production of NO in response to LPS251. It is thus possible that 

the high levels of NO observed in our hSLLi group were the result of lithium increasing NO 

expression while simultaneously inhibiting hS- or LPS-induced NO production; i.e. hSLLi NO levels 

do not differ from those observed for lithium or hSL treatment alone. 

 Finally, lithium increased Aβ42 levels relative to control when added to mice following the hSL 

regimen, despite having no effect in isolation. This effect may have been due to elevated 

proinflammatory cytokines and/or glucocorticoids observed in hSLLi mice relative to those in the 

hSL group, as proinflammatory cytokines and glucocorticoids are associated with β-

amyloidogenic processing of APP11,17,157,158,160. Although lithium appeared to ‘un-mask’ hS-

induced Aβ production in hSL mice, it may have prevented toxicity resultant of increased Aβ 

levels. Alvarez et al demonstrated that pre-treatment of cultured neurons with lithium prevented 

Aβ-induced hyperphosphorylation of Tau proteins262,263. The lack of elevated Tau 

phosphorylation displayed in the hSLLi group may thus support the notion of a lithium-mediated 

protective effect against Aβ42-associated toxicity. Taking into summation the antagonistic 

interactions between LPS and lithium reported elsewhere200,250, and the observed interactions 

between hSL and lithium on levels of fecal corticosterone, proinflammatory cytokines, NO and 

Aβ42 demonstrated here, it seems reasonable to propose that lithium interfered with the activity 

of LPS. 

4.7.3 Lithium as an anxiolytic agent  

 Lithium is an efficacious adjunctive treatment in the management of mood disorders264–266 

that has shown promise as an anti-depressant in both humans267 and animal models268,269. A role 

for lithium in the management of anxiety-related conditions is far less characterized. I found that 

supplementation with a sub-therapeutic dose of lithium completely rescued elevations in 

thigmotaxis observed in hSL-treated mice. Given that avoidance of the center during the Open 

Field test is believed to be characteristic of anxiety-like behavior in rodents222–224, attenuation of 

thigmotaxis may suggest anxiolytic properties of lithium. In fact, work by Yu et al supports this 

notion, as lithium was found to attenuate anxiety-like behavior in the Open Field in male mice 

following traumatic brain injury270.  
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 Interestingly, only a reduction in IL-5 and IL-1β coincided with the anxiogenic effect of the hSL 

treatment. The addition of lithium to hSL mice restored IL-5 and IL-1β levels to control while 

abolishing anxiety-like behavior in the Open Field, suggesting a possible role for IL-5 and IL-1β in 

anxiety-associated behaviors. As repeated injection with low-dose LPS has been shown to skew 

activated microglia toward an anti-inflammatory M2 phenotype255, the inhibitory effect of 

lithium on LPS-induced inflammation may have prevented such a shift200, resulting in increased 

levels of IL-5 and IL-1β in hSLLi mice. In addition, lithium may have attenuated the acute 

glucocorticoid response induced by LPS administration151. Acute glucocorticoid responses are 

associated with anti-inflammatory macrophage/microglia271 phenotypes. Conversely, persistent 

glucocorticoid receptor agonism leads to reduced expression of M2 microglial polarization272 and 

exacerbated pro-inflammatory responses87,273; hSLLi mice displayed chronic glucocorticoid 

activity. Clearly, numerous avenues exist by which lithium could have attenuated LPS-induced 

suppression of proinflammatory cytokines.  

 Regardless of mechanism, hSL mice demonstrated increased anxiety-like behavior in the 

Open Field that was abolished by concurrent treatment with lithium, supporting the notion of an 

antagonistic interaction between lithium and LPS proposed earlier. Whether or not mechanisms 

involving IL-5 and IL-1β were involved can be neither deduced nor inferred at this time. 

4.7.4 A role for lithium in the preservation of spatial memory 

 AD-like neurodegeneration is characterized by a progressive decline in memory and 

cognition13–16. Behavioral tests on animal models of AD have been widely performed in an 

attempt to create behavioral analogues of the human condition. To this end, the Barnes maze is 

believed to capture certain elements of spatial cognition that in part represent the cognitive 

decline associated with neurodegeneration. Impaired spatial learning and spatial memory during 

the Barnes maze paradigm is often used as an indicator of disrupted memory formation/recall. 

Mice sustained on a high sugar diet with concurrent injections of LPS demonstrate worsened 

spatial learning performance in the Barnes maze relative to control animals. 

 Elevated GSK-3β activity has been linked to impaired memory consolidation274. As lithium 

inhibits GSK-3β function198,199,275, it is possible that spatial learning deficits in hSL mice could have 

been the result of GSK-3β mal-signaling. GSK-3β promotes long-term depression (LTD) over long-

term potentiation (LTP), and is associated with increased hippocampal LTD276 and impaired 

spatial learning276,277. These spatial learning deficits are rescued through use of GSK-3β 

inhibitors276. While hSL mice demonstrated an apparent lack of aberrant GSK-3β activity, our 

method of homogenate preparation could have been to blame. As abnormal GSK-3β 

phosphorylation states are most commonly reported in the hippocampus, our use of full hemi-
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brain homogenates may have diluted our samples and washed out region-specific differences in 

GSK-3β and pGSK-3β expression. Furthermore, as lithium primarily exerts its inhibition of GSK-3β 

through competition with magnesium for binding at the enzyme’s catalytic core198,199, the effects 

of the element on GSK-3β activity cannot be fully captured through analysis of total and 

phosphorylated protein levels. Thus, it remains possible that lithium could have preserved spatial 

learning via inhibition of hyperactive GSK-3β.  

 Interestingly, suppression of GSK-3β in the absence of aberrant activity may impair spatial 

memory. Due to its central role in the balance of LTD and LTP, GSK-3β signaling is required for 

proper regulation of spatial memory consolidation278. Results from our lithium group support this 

notion, as spatial learning performance was worsened in the absence of hSL. Alternatively, a 

reduced sensitivity of mice treated with lithium to aversive stimuli used to increase escape 

motivation could be responsible. A series of studies conducted by Hines et al found that rodents 

treated with lithium chloride display attenuated responses to low-intensity aversive stimuli279–

281. Thus, worsened spatial learning performance observed in our lithium treated mice may have 

been the result of reduced escape motivation in response to the aversive sound-based stimulus 

employed. 

 Future work exploring treatment effects on hippocampal BDNF, neurogenesis and GSK-3β 

phosphorylation would shed light on the underlying mechanism for hSL-induced spatial learning 

impairment and lithium-mediated rescue.  

4.7.5 Conclusions 

 The present work reinforces the notion of an antagonistic interaction between lithium and 

LPS200,282, perhaps through attenuation of LPS-induced acute glucocorticoid responses. As the 

low dose of LPS chosen proved to be protective in the face of challenges introduced by a high 

sugar diet observed in Chapter 3, this antagonism may not have been beneficial. However, it 

should be noted that lithium-induced attenuation of LPS activity has demonstrated to be 

overwhelmingly neuroprotective when more potent doses of LPS are administered200,250,282. 

Lithium-induced sparing of spatial learning and a stabilizing effect on anxiety-like behavior were 

also supported270, though the mechanisms responsible remain unclear. In conclusion, while 

lithium reversed many the protective effects of low-dose LPS against hS-induced pathology, it 

appeared to do so through a similar mechanism as is observed in the attenuation of endotoxemia 

at higher doses of LPS200,282. Thus, lithium may still have use as a prophylactic agent against 

neurodegeneration. Higher concentrations of LPS in future studies would address this question.  
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CHAPTER 5: GENERAL DISCUSSION 

5.1 HIGH SUGAR DIETS MAY BE A FACTOR IN THE AD CRISIS  

 Brain insulin resistance is believed to be involved, in part, in the pathogenesis of AD68,76. While 

this insulin resistant state can arise from a number of conditions, glucocorticoid- and ceramide-

mediated mechanisms have proven to be particularly robust90,207,219,227. High-sugar diets, as 

demonstrated both within this work (chapter 3) and eslewhere77,78,197, are capable of inducing 

brain insulin resistance and increasing ceramide and glucocorticoid expression. Given the 

relationship between high-sucrose diets and neurodegeneration, the observation that trends in 

average sucrose consumption44,45 coincide with increased incidence of AD1 suggests that excess 

sucrose consumption is contributing to the burgeoning AD crisis. Irregular insulin pathway 

activity, increased glucocorticoid, ceramide, Aβ42 and pTau expression, and spatial learning 

deficits displayed in our mice sustained on a high-sucrose diet support this possibility. 

 It has been proposed that an insulin resistant brain state precipitates exaggerated activity of 

GSK-3β, which has been demonstrated to contribute directly to the hallmark pathological 

processes associated with AD77,118,120,122,211. While our high-sucrose mice did not demonstrate an 

increase in GSK-3β signaling, spatial learning deficits and increased Aβ and pTau expression - 

pathologies associated with aberrant GSK-3β activity118,120,122,211,283 - were noted. It is thus 

possible that our lack of an observed effect on GSK-3β was due to the use of whole hemi-brain 

homogenates. Use of reproductively normal females and unaccounted for interactions of 

estrogen with the pathways explored could also have contributed. As AD-related changes in GSK-

3β expression/phosphorylation are typically observed in the hippocampus284–286, I may have 

‘washed-out’ region-specific alterations in enzyme activity by diluting our samples with the rest 

of the hemi-brain. Thus, it is possible that our high-sucrose mice demonstrated a 

neurodegenerative phenotype associated with brain insulin dysregulation despite lack of an 

observed increase in GSK-3β activity. 

5.2 INFLAMMATORY EVENTS MAY PROTECT AGAINST DIET-

INDUCED NEURODEGENERATION THROUGH MECHANISMS 

INVOLVING GLUCOCORTICOID HOMEOSTASIS 

 Neuroinflammation has been proposed as a central player in the development and 

progression of neurodegenerative conditions, including AD6–12. It is thus of great interest that the 

introduction of LPS - a known inducer of neuroinflammation12 - to mice sustained on a high-

sucrose diet attenuated hS-induced neurodegenerative processes. As discussed in chapter 3, LPS 
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could have ‘re-set’ glucocorticoid levels by triggering 

hippocampal-HPA axis-mediated feedback (Fig. 5). 

Glucocorticoids interact with their receptors in the 

hippocampus as part of a negative feedback loop 

with the HPA that regulates cortisol/corticosterone 

activity. Once a spatial and temporal threshold is 

reached, HPA-mediated release of glucocorticoids 

from the adrenal cortex is suppressed84. LPS 

produces a robust and transient increase in 

corticosterone expression151 that could possibly 

trigger this response. LPS may also have exerted its 

protective effects either through quenching overall 

inflammation in the CNS, as others have 

demonstrated following introduction of low-dose 

LPS254, or instigating151 acute glucocorticoid-

mediated immune suppression257–259. I 

demonstrated that systemic LPS reduced expression 

of the proinflammatory mediators IL-1β, IL-6 and IL-5 in the brain when added to mice sustained 

on a high-sucrose diet. As IL-1β and IL-5 are associated with activated M1 microglia, which have 

been linked to neurodegeneration131,287, repeated low-dose LPS injections may have increased 

M2 microglial polarization over the long-term255. M2 microglial polarization is believed to be 

protective in most circumstances131. Future immunohistochemical work (i.e. Iba-1 and/or 

arginase-1) examining the activation state of microglia in hS, LPS and hSL mice would shed light 

on this proposed mechanism.  

5.3 LITHIUM MAY HAVE ‘UNMASKED’ HIGH-SUCROSE 

EFFECTS ON GLUCOCORTICOID HOMEOSTASIS IN HSL MICE 

THROUGH ANTAGONISM OF LPS ACTIVITY 

 Lithium appeared to block the protective effects of low-dose LPS in mice sustained on a high-

sucrose diet. In chapter 3, I demonstrated that the addition of LPS to mice sustained on high-

sucrose diet attenuated fecal corticosterone. Concurrent supplementation with lithium 

increased corticosterone levels relative to control, as shown in chapter 4. In fact, corticosterone 

expression in hSLLi mice was similar to those observed in animals receiving a high-sucrose diet 

alone. Given the known effects of high-sucrose on glucocorticoid expression77,85, it is thus 

reasonable to propose that lithium antagonized the actions of LPS to ‘unmask’ the high-sucrose 
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diet-dependent glucocorticoid phenotype reported both here in chapter 3 and elswehere77,85. As 

lithium is known to be anti-inflammatory in nature200,250,288,289, it is possible that lithium 

prevented induction of the hippocampal-HPA negative feedback loop by attenuating the initial 

LPS-mediated systemic inflammatory response; no inflammation -> no robust glucocorticoid 

response -> no feedback inhibition. Supporting this idea, some studies have suggested that LPS-

induced activation of macrophage/microglia is dependent on signaling through GSK-3β, as 

evidenced by attenuation of macrophage290 and microglial251 responses to inflammatory stimuli 

following administration of GSK-3β inhibitors. As lithium exerts potent inhibition of GSK-3β, it 

may suppress LPS-induced signaling in both the brain and periphery by blocking activity of this 

required downstream mediator. Regardless of mechanism, it appears clear that lithium partially 

unmasked the hS-phenotype when added to hSL mice, supporting the idea that an interaction 

between lithium and LPS took place. Future work directly comparing LPS and lithium and a high-

sucrose diet and lithium would assist in understanding the nature of the interaction between 

these three treatments.  
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CHAPTER 6: LIMITATIONS AND FUTURE DIRECTIONS 

6.1 MAJOR THESIS FINDINGS 

1. A high-sucrose diet precipitated behavioral and biochemical phenotypes characteristic of AD-

related neurodegeneration as evidenced by impaired spatial learning, elevated glucocorticoids, 

insulin pathway irregularities, and increased NO, Aβ42, and pTau expression. 

 

2. The addition of LPS to mice sustained on a high-sucrose diet diminished development of a 

neurodegenerative phenotype. Spatial learning performance was improved (though was not 

rescued), glucocorticoid levels were reset, irregularities in insulin pathway second messenger 

expression and phosphorylation were abolished, and Aβ42 and pTau levels were returned to those 

observed in control mice. 

 

3. Supplementation with lithium antagonized phenotypes resultant of the combined hSL 

treatment. Barnes maze-related spatial learning deficits and Open Field anxiety-like behavior 

were abolished. Glucocorticoid and Aβ42 levels, though not NO or pTau, were returned to those 

observed in mice sustained on a high-sucrose diet alone.  

 

6.2 LIMITATIONS 

6.2.1 Use of hemi-brain homogenates and choice of phosphoprotein analytes 

 Pathological changes in Tau phosphorylation or insulin pathway second messenger 

expression and phosphorylation are most frequently observed in the hippocampus and temporal 

cortex284–286. As such, our use of hemi-brain homogenates for biochemical tests may have diluted 

our samples, resulting in reduced protein expression relative to what would be observed in 

hippocampal isolations. Also, it is possible that Tau proteins were phosphorylated at sites other 

than the Threonine 231 assessed. 

6.2.2 Timing of the LPS injections 

 The relatively early time of injection (1st, 2nd and 3rd months) may have ‘re-set’ hS-induced 

elevations in corticosterone by triggering negative feedback within the hippocampal-HPA 

pathway. Given the proposed central role of chronic glucocorticoid activity in sensitizing the CNS 

to inflammation, it is possible that not enough time was allowed for the necessary glucocorticoid-
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mediated processes to exert an effect. Delaying the introduction of the first LPS injection to the 

2nd or 3rd month may allow for development of a state more conducive to LPS-induced instigation 

of neuroinflammation. 

6.3 FUTURE DIRECTIONS 

 There are several future directions which could expand upon the work presented, including 

elucidating the relationship between hSL and lithium and the role of sex hormones in diet- and 

inflammation-induced neurodegeneration 

6.3.1 Treatment effects in male wild-type mice 

 While an identical male cohort was run, the data obtained could not be used on account of a 

compromised control group. Male control animals displayed similar weight gain, liver steatosis, 

and biochemical phenotypes to high sucrose fed mice. These findings were in complete 

contradiction to results demonstrated elsewhere75,77,197. Prior to assessing behavior, male mice 

were transferred to a new room for housing during the 6th month of the study (for ease of access 

during behavioral testing). This room change may have acted as a chronic stressor (the room 

change was maintained for a full month). In addition, frequent building construction and the 

scent of other animals (mice were moved from the mouse suit to the multi-species suite) may 

have contributed to this stress. This does, however, support the idea that chronic stress is the 

major contributing factor to behavioral effects as a result of caloric excess. 

 As female mice demonstrate increased LPS tolerance relative to their male counterparts38, it 

is likely that the combination of a high-sucrose diet and LPS would have netted a more aggressive 

neurodegenerative phenotype in male mice. Running the male cohort a second time, free from 

room changes or construction issues, would allow for direct comparison of the effects of high-

sucrose and/or LPS in males and females. Furthermore, should the hSL-phenotype prove to be 

stronger in males, more robust data regarding the prophylactic potential of lithium against 

neurodegeneration would become available. 

6.3.2 The role of sex hormones in diet-induced neurodegeneration 

 Post-menopausal women represent nearly two-thirds of all current and expected AD 

patients, strongly implicating the age-related loss of estrogen in the pathogenesis of AD in 

females1. Estrogen has been shown to antagonize several processes involved in AD33, such as β-

amyloidogenesis34, Tau hyperphosphorylation35, and inflammation38. In addition, estrogen 

counteracts glucocorticoid activity, a central mediator of high-sucrose diet-associated 
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neurodegeneration. Post-menopausal females may therefore demonstrate a heightened 

sensitivity to dietary stressors. 

 To explore the role of estrogen in diet-induced neurodegeneration, ovariectomized female 

mice would be compared to reproductively normal males and females. Ovariectomized females 

would serve as a post-menopausal model to examine the expression of neurodegenerative 

processes relative to normal female mice when challenged with a high-sucrose diet. 

Reproductively normal males would serve to elucidate potential differences between 

predominant expression of testosterone or estrogen in the pathogenesis of diet-induced 

neurodegeneration. Such a study could utilize the following two-by-two structure. Three cohorts 

of male, female, and ovariectomized females, with each cohort containing two groups, control 

and high-sucrose (20% sucrose in the drinking water). Lithium prophylaxis could also be examined 

by running four groups per cohort instead of two: control, high-sucrose, lithium, and lithium plus 

high-sucrose. 

6.3.3 The interaction between hSL and lithium 

 Whether lithium primarily antagonized LPS- or hS-induced processes when added to mice 

following the hSL combined regimen is difficult to deduce in the absence of groups comparing hS 

and lithium and LPS and lithium directly. Furthermore, the prophylactic potential of lithium 

against neurodegeneration could not be assessed in the work presented due to the absence of a 

prominent neurodegenerative phenotype in hSL mice. An additional group comparing hS and 

lithum (hSLi) would address this concern. 

 To sum, groups comparing hS and lithium (hSLi) and LPS and lithium (LPSLi) are needed to 

characterize the nature of the interaction between the hSL treatment and lithium, and to assess 

the prophylactic potential of lithium against hS-induced neurodegeneration. 

6.3.4 Differing effects of low-dose vs moderate-to-high-dose LPS (Dose versus 

timing of LPS) 

 Clear differences in effect between high and low doses of LPS have been reported. Acute 

concentrations contribute to neuroinflammation and neurodegeneration12, while low doses 

appear to confer beneficial effects254. I proposed that a high-sucrose diet would sensitize the 

brain to inflammatory insult, allowing low concentrations of LPS to instigate central 

inflammation. This hypothesis proved incorrect, as not only did the low-dose of LPS not aggravate 

neurodegeneration, it countered the pathological effects of the high-sucrose diet. However, it is 

possible that a higher dose of LPS would result in accelerated neurodegeneration when paired 

with high-sucrose. A comparison of the effects of low vs high concentrations of LPS in conjunction 
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with a high-sucrose diet would shed light on the nature of the interaction between the two 

treatments (i.e is LPS always protective against hS-induced pathology, or is the interaction dose-

dependent? Would an increased concentration of LPS aggravate hS-induced 

neurodegeneration?). Using LPS concentrations of 0.1, 1 and 5 mg/kg would allow for comparison 

of a protective low dose (as demonstrated in this thesis), a moderate-to-high dose, and a dose 

capable of mimicking a septic shock-like event. 

6.3.5 Use of APOE4 Knock-in transgenic animal models 

 The apolipoprotein ε-4 (APO ε4) allele exhibits an estimated frequency of 40% in AD 

patients291. As apolipoprotein E4 (resultant of APO ε4) is known to impair clearance of Aβ 

peptides292, carriers of the APO ε4 allele may demonstrate increased susceptibility to β-

amyloidopathy in the face of β-amyloidogenic challenge. Given that high-sucrose diets promote 

Aβ production, contrasting the effects of high-sucrose consumption in normal and APO ε4 knock-

in transgenic mice (i.e. B6(SJL)-APOE4 KI from Jackson labs) would provide insight into whether 

APO ε4 carriers are more susceptible to diet-induced neurodegeneration. 

6.3.6 Immunohistochemical analysis of samples 

6.3.6.1 Effects of high-sucrose diet-associated pathology on neurogenesis 

 Hippocampal neurogenesis is characterized by the proliferation and differentiation of 

multipotent stem cells in the subgranular zone of the dentate gyrus293,294. This process of 

generating new dentate gyrus granule neurons is believed to play a key role in learning and 

memory295–298, highlighting its importance to cognitive function. An early disruption of 

hippocampal neurogenesis has been proposed as a precursor to gross neurodegenerative 

alterations in AD, with several animal models of the disease demonstrating a reduction in 

neurogenesis as pTau and Aβ42 levels increase299–302. Given that a high-sucrose diet can increase 

expression of Aβ42 and pTau, as demonstrated both within this thesis and elsewhere75,77,197, it is 

reasonable to propose that mice sustained on a high-sucrose diet may display reduced 

hippocampal neurogenesis. Furthermore, the addition of a sub-therapeutic dose of lithium to 

mice following the hSL regimen completely rescued spatial learning performance in Barnes maze 

acquisition trials, as demonstrated in chapter 4. Through inhibition of GSK-3β, lithium is known 

to upregulate expression of several neurotrophic factors involved in memory, cognition, and 

neurogenesis, such as brain-derived neurotrophic factor (BDNF) and β-catenin181,198,303–305. 

Supporting this GSK-3β-inhibition-mediated mechanism of lithium, GSK-3β antagonists are able 

to increase hippocampal neurogenesis283. As loss of β-catenin, increased apoptosis, and reduced 
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neurogenesis are associated with cognitive decline, it is possible that lithium may have rescued 

spatial learning through increased neurotrophic factor production and restoration of 

neurogenesis289,306. Neurogenesis in response to a high-sucrose diet and/or inflammation could 

be assessed via simple doublecortin staining for immature neurons within the dentate gyrus. 

Although not included in this thesis, brains are currently being processed for this purpose. 

6.3.6.2 Analysis of microglial morphology 

 Microglia are known to mount an immune response when exposed to harmful stimuli such 

as misfolded proteins (i.e. Aβ) and foreign pathogens (i.e. LPS). While ordinarily beneficial, failure 

to resolve this response leads to chronic over-activation of microglia and a diversion of their 

typical physiological functions. Activated microglia have been found to associate with Aβ deposits 

in the brain of both human AD patients307 and animal models308,309. As previously discussed, 

inflammation contributes to β-amyloidogenesis11,157,158,287, while Aβ leads to continued 

inflammatory activation of microglia161,287. Thus, the Aβ-microglia interaction may represent a 

means by which central inflammation becomes self-perpetuating287. Assessment of the 

activation state of microglia would thus assist in the characterization of the phenotypes 

presented in this thesis. 

 Ionized calcium-binding adaptor protein-1 (Iba-1) is an actin-binding protein ubiquitously 

expressed in microglia310. Iba-1 is involved in the membrane ruffling of microglia during the 

morphological changes associated with activation311. As its expression is increased during 

microglial activation, Iba-1 is an effective marker of activated microglia in immunohistochemical 

analysis310. Iba-1 staining of 40 µm thick brain sections obtained during completion of this thesis 

would allow for initial characterization of microglial activation in our mice. Given the increase in 

Aβ observed, increased microglial activation in hS mice, particularly within the hippocampus, 

would strengthen the neurodegenerative phenotype displayed by those animals.  
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