

DIGITAL ASSETS TRANSMISSION BETWEEN ORGANIZATIONS: MUSIC

INDUSTRY USE CASE

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Department of Computer Science

University of Saskatchewan

Saskatoon

By

MARCO ANTONIO MAIGUA TERÁN

© Copyright Marco Antonio Maigua Terán, May, 2019. All rights reserved.

i

PERMISSION TO USE

In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this University may

make it freely available for inspection. I further agree that permission for copying of this

thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted

by the professor or professors who supervised my thesis/dissertation work or, in their absence,

by the Head of the Department or the Dean of the College in which my thesis work was done.

It is understood that any copying or publication or use of this thesis/dissertation or parts thereof

for financial gain shall not be allowed without my written permission. It is also understood that

due recognition shall be given to me and to the University of Saskatchewan in any scholarly

use which may be made of any material in my thesis/dissertation.

Requests for permission to copy or to make other uses of materials in this thesis/dissertation

in whole or part should be addressed to:

 Dean

 College of Graduate and Postdoctoral Studies

 University of Saskatchewan

 116 Thorvaldson Building, 110 Science Place

 Saskatoon, Saskatchewan S7N 5C9 Canada

ii

ABSTRACT

This research addresses the following experiences as a contribution to the topic of Blockchain

applications. First, the modeling of a Music Industry revenue distribution problem. Second, the

Integration of Blockchain platforms and Legacy software. Third, the design of an algorithm that solves

the distribution of Digital Assets across organizations within the Music Industry. Ultimately, the

analysis of the Performance of Blockchain platforms (Ethereum and Hyperledger) in terms of Latency

and Throughput. Additionally, the purpose of the research is to show that the modeling of a Music

Industry payment system is possible using Blockchain Technology. Therefore, the old business model

of the Music Industry, which possessed flaws and inefficiencies, could potentially change into a trustless

environment benefiting all the participants y paying their contributions instantaneously. Moreover, the

necessity of a solution is reinforced by an internship experienced in a MITACS project in conjunction

with a company called Membran to design and implement a Blockchain solution that shortens the gap

between Spotify and the payment to the Labels and Artists.

The system distributes value by automatically calculating payments whenever the Digital

Assets (Music Tracks revenue) are imported. The application defines specific roles and variables to

simulate the Music Industry. For example, Distributors as an entry point and Artists at the end of the

chain. Although, any participant within the network can create agreements and benefit from the

distribution.

The implementation of this research took the Hyperledger Composer framework to use the

Hyperledger Fabric Blockchain as the Private Distributed Ledger, and the public Blockchain Ethereum

with the Ganache Client for development purposes. Extensive research of the strengths and weaknesses

of these technologies included the descriptions of features like the consensus algorithms, modular

architectures, and smart contracts.

Ultimately, the performance of these technologies compared Hyperledger Composer and

Ethereum in terms of Latency and Throughput. The conclusion of this research pointed that Hyperledger

Composer with features like the role-based architecture for applications, Programmable ChainCode

(Smart Contracts), and Business Network Definitions, is better suitable for modeling customized

solutions and outperforms Ethereum in terms of performance when testing the same number of

transactions, the same logic of the chain code and the same machine environment.

iii

ACKNOWLEDGEMENTS

I want to express my most profound appreciation to Dr. Ralph for all his support and his interest in my

career towards a future of great collaboration and giving to the academia and the human knowledge in

general. Thanks to my family’s support with which I could have never been the person I am today and

thanks to the creative expression of music to give me the ideas that I hope, could help to push forward

the human spirituality and achievement for the following generations.

iv

CONTENTS

PERMISSION TO USE………………………………………………………………………i

ABSTRACT…………………………………………………………………………………..ii

ACKNOWLEDGEMENTS…………………………………………………………………iii

TABLE OF CONTENTS …………………………………………………………………...iv

LIST OF TABLES ………………………………………………………………………….vi

LIST OF FIGURES ………………………………………………………………………..vii

LIST OF ABBREVIATIONS …………………………………………………………….viii

CHAPTER 1: INTRODUCTION ..…………………………………………………………1

CHAPTER 2: PROBLEM DEFINITION …………………………………………………4

CHAPTER 3: LITERATURE REVIEW………………………………………………….10

3.1 Definition of Blockchain ………………………………………………………...10

 3.1.1 Transaction Tracking and Digital Asset Transmission………………...11

 3.1.2 Smart Contracts………………………………………………………...11

3.2 Generations and History of Blockchain………………………………………….12

3.3 Bitcoin……………………………………………………………………………13

3.4 Use Cases and Applications of Blockchain Technologies……………………….15

3.4.1 New Decentralized Economies…………………………………...……16

3.4.2 Social Change………………………………………………………….18

3.4.3 Land Registration…………...…………………………….....................19

3.4.4 Blockchains in the Entertainment Industry…………………………….20

3.5 Limitations of Blockchain Technology………...………..……………………….21

3.6 Benefits of Blockchains Technology…………………………………………….22

3.6.1 Audit Systems and Data Transmission Automation……………………23

 3.6.1.1 Data Preservation and Integrity of Data……………………...24

3.6.2 Privacy………………………………………………………………….25

3.6.3 Security…………………………………………………………………26

3.6.4 Business Model Abstractions and Decentralized Autonomous

Organizations (DAO)………………………………………………………...26

3.6.5 Efficiency………………………………………………………………27

3.6.6 DBMS vs. Blockchains……………………………………………...…27

 3.7 Table of the Scope of the Research………………………………………………27

CHAPTER 4: ARCHITECTURE ………………………………………………………..29

4.1 Layers of Abstraction…………………………………………………………….29

4.1.1 Machine Consensus Layer……………………………………………...29

4.1.2 Application Layer………………………………………………………29

4.2 Hyperledger Project………………………………………………………………31

4.2.1 Consensus Algorithms………………………………………………….32

 4.2.1.1 Types of Consensuses………………………………………..32

4.2.1.2 Permission Voting Algorithms……………………………….33

4.2.1.3 General Process Flow of Hyperledger Project Consensus…...34

 4.2.1.4 Which Consensus to Apply?..35

v

4.2.2 Hyperledger Fabric……………………………………………………..35

 4.2.2.1 Hyperledger Fabric Architecture …………………………….36

 4.2.2.2 Hyperledger Fabric Consensus Mechanism………………….36

 4.2.2.3 Docker Containers……………………………………………38

 4.2.2.4 Hyperledger Composer …………………………..…………..38

4.3 Ethereum Blockchain…………………………………………………………….38

4.3.1 Ethereum Philosophy and Concepts…………………………………....39

4.3.2 Process of Ethereum Virtual Machine Mining…………………………42

4.3.3 Ether Mining……………………………………………………………43

CHAPTER 5: IMPLEMENTATION……………………………………………………...45

5.1 Definition of Environment Variables………………………………………….....45

5.2 Workflow of Data………………………………………………………………...46

 5.2.1 Balances of Users………………………………………………………47

5.3 Distribution Algorithm…………………………………………………………...48

5.3.1 First Distribution……………………………………………………….49

5.3.2 Recursive Distribution………………………………………………….52

 5.4 Limitations of the Algorithm……………………………………………………..54

 5.4.1 Scenario 1: Two sources of revenue to one node………………………54

 5.4.2 Scenario 2: Two sources of different revenue lengths…………………55

 5.4.3 Scenario 3: Infinite loop failing to evaluate branches……………...…..56

5.5 Hyperledger Fabric……………………………………………………………….57

 5.5.1 Architecture of HF Software Components……………………………..57

 5.5.2 Hyperledger Fabric Components……………………………………….58

 5.5.3 HF Data Modeling……………………………………………………...60

5.6 Ethereum…………………………………………………………………………62

 5.6.1 Architecture of Software Components…………………………………62

 5.6.2 Ethereum Data Modeling – Solidity……………………………………65

5.7 Web-Application-Front-End………………………….…….................................68

 5.9 Development Tools………………………………………………………………71

CHAPTER 6: EXPERIMENTS AND EVALUATIONS…………………………………73

 6.1 Settings of the Reference Experiment……………………………………………73

 6.2 The approach of this research ……………………………………………………76

6.3 Qualitative Analysis……………………………………………………………...77

6.4 Data Analysis Implementation Architecture……………………………………..78

6.5 Quantitative Analysis…………………………………………………………….81

 6.5.1 Assumptions of the experiment in Hyperledger Fabric………………..83

 6.5.2 Hyperledger Fabric Results…………………………………………….84

 6.5.3 Assumptions for Ethereum Environment………………………………86

 6.5.4 Ethereum Ganache Client Results……………………………………...87

6.6 Limitations of the Performance Analysis………………………………………...89

6.7 Discussions and Conclusions of the Data Analysis……………………………...90

CHAPTER 7: CONCLUSIONS, CONTRIBUTION, AND FUTURE WORK…….…..93

7.1 Summary of the Implementation and the Data Analysis…………………………93

7.2 Where is the current research on blockchain technology?.....................................95

vi

REFERENCES……………………………………………………………………………...99

vii

LIST OF TABLES

Table 3.1 Scope of the Literature Review and Important Papers………………………….…28

Table 4.1 Comparison of Permission Consensus Approaches and Standard PoW…………..33

Table 4.2 Comparison of Consensus Algorithms used in Hyperledger Frameworks………..34

Table 6.1 Table of the number of techniques that combine with Ethereum Ganache Client...81

Table 6.2 Table of the number of methods that connect with Ethereum Ganache Client……82

Table 6.3 Results of JMeter in Hyperledger Fabric………………………………………….84

Table 6.4 Ganache Client Ethereum JMeter Results…………………………………………87

viii

LIST OF FIGURES

Figure 1.1 The old business model of the Music Industry based on the sales contract of

albums and records……………………………………………………………………………2

Figure 1.2 Comparison between the current business model(Streaming Services Hierarchy) of

track revenue distribution and the proposed new workflow using Blockchain……………….2

Figure 1.3 Music Streaming Industry Process…………………………………………………3

Figure 2.1 Blockchain Approaches for the Idle Music Industry………………………………7

Figure 2.2 Proposed distribution workflow……………………………………………………8

Figure 3.1 Block of Transactions Mechanism………………………………………………..10

Figure 3.2 Digital Asset Unspent Transaction Output (UTOX)……………………………..11

Figure 3.4 Emerging Technologies…………………………………………………………..13

Figure 4.1 Proposed distribution workflow…………………………………………………..31

Figure 4.2 Generalized Hyperledger Consensus Process Flow………………………………37

Figure 4.3 Average Time for each transaction on a client with different amount of RAM….40

Figure 4.4 Ether token system………………………………………………………………..40

Figure 4.9 Ethereum Blockchain transaction list and state ………..………………………...42

Figure 4.10 Ethereum GPU Miner………………………………………….………………..44

Figure 5.1 Example of Distribution with agreements ……………………………………….46

Figure 5.2 General Diagram of Data Flow…………………………………………………..47

Figure 5.3 Logic of the Balance Enabled and Balance Disabled in Track Revenues………..48

Figure 5.4 Distribution Algorithm Workflow………………………………………………..50

Figure 5.5 Evaluate Receivers Process……………………………………………………….51

Figure 5.6 Last Node Distribution ……..……………………………………………………53

Figure 5.7 Receipt Evaluation Branch-Evaluation Process…………………………………..54

Figure 5.8 Scenario 1…………………………………………………………………………55

Figure 5.9 Scenario 2…………………………………………………………………………56

Figure 5.10 Scenario 3………………………………………………………………………..57

Figure 5.11 Architecture of Hyperledger Solution…………………………………………...58

Figure 5.12 SOLO Configuration for Hyperledger Composer ………………………………59

Figure 5.13 Software Implementation Architecture of the Back End……………………......60

Figure 5.14 BNA file for the Business Definition……………………………………………61

Figure 5.15 Bash script for installing the BNA file and setup the network.….……………...61

Figure 5.16 Architecture of Ethereum Solution……………………………………………...62

ix

Figure 5.17 Process of deploying contracts in EVM…………………………………………63

Figure 5.18 Process of deployment the application with Web3……………………………....64

Figure 5.19 Process of deployment of our app in NodeJS using Web3 ……………………..64

Figure 5.20 Code Snippet of Web3 Events ………………………………………………….64

Figure 5.21 Software Implementation Architecture of the Back End………………………..65

Figure 5.22 Java Bean Like Solidity Contract Structure……………………………………..66

Figure 5.23 Wrong attempt for importing and calling another contract……………………..67

Figure 5.24 Proper way to import and interact with other contracts…………………………68

Figure 5.25 Login Page Front End…………………………………………………………...69

Figure 5.26 List of Tracks Page ……………………………………………………………..70

Figure 5.27 Creation of Agreement Page ……………………………………………………70

Figure 5.28 List of Transactions (Receipts Page)……………………………………………71

Figure 5.29 MVC Relationship………………………………………………………………72

Figure 6.1 Performance Experiment Settings of the Research Reference …………………..74

Figure 6.2 Comparison of average latency between Ethereum and Hyperledger……………75

Figure 6.3 Comparison of average throughput between Ethereum and Hyperledger………..75

Figure 6.4 Average throughput of Ethereum and Hyperledger with varying number of

transactions of TransferMoney function …………………………………………………….75

Figure 6.5 Average throughput of Ethereum and Hyperledger with varying number of

transactions of TransferMoney function transactions of TransferMoney function………….76

Figure 6.6 Data Analysis of Scenario 1 Source Code………………………………………..78

Figure 6.7 Architecture of the testing environment………………………………………….79

Figure 6.8 Data Flow of the Data Analysis in Hyperledger Fabric …………………………79

Figure 6.9 Data Flow of the Data Analysis in Ethereum-Ganache ………………………….80

Figure 6.10 Total Execution Time for both Scenarios using Hyperledger Fabric…………...85

Figure 6.11 Average Throughput for both Scenarios using Hyperledger Fabric……...……..85

Figure 6.12 Throughput in terms of Distribution per second for both Scenarios using HF.....86

Figure 6.13 Total Execution Time for both Scenarios using Ethereum Ganache……...…….88

Figure 6.14 Throughput in terms of number of Tx for both Scenarios using Ethereum

Ganache………………………………………………………………………………………89

Figure 6.15 Throughput in terms of Distribution per second for both Scenarios using

Ethereum Ganache…………………………………………………………………………...89

Figure 6.16 Total Execution Time of HF vs. Ethereum in both Scenarios………………......90

Figure 6.17 Throughput in terms of distributions of HF vs. Ethereum in both Scenarios…...91

x

Figure 6.18 Throughput in terms of transactions per second of HF vs. Ethereum in both

Scenarios……………………………………………………………………………………..91

Figure 7.1 Publication year of the selected primary papers……………………………….....96

Figure 7.2 Source of the selected primary papers …………………………………………...96

Figure 7.3 Geographic distribution of the selected primary papers …………………………96

Figure 7.4 Publication type ……………………………………………………………….....96

Figure 7.5 Paper types per year ……………………………………………………………...97

Figure 7.6: Summary of the identified challenges and solutions of blockchain ………….....97

xi

LIST OF ABBREVIATIONS

AWS Amazon Web Services

API Application Program Interface

BNA Business Network Definition

BFT Byzantine Fault Tolerance

DBMS Database Management System

DAO Decentralized Autonomous Organizations

DoS Denial of Service

DApps Distributed Applications

DLT Distributed Ledger Technology

EVM Ethereum Virtual Machine

EOA Externally Owned Accounts

GCP Google Cloud Platform

GFE Google Front End

HC Hyperledger Composer

HCA Hyperledger Composer Application

HF Hyperledger Fabric

HTTPS Hypertext Transfer Protocol Secure

IaaS Infrastructure as a Service

ISO International Standard Organization

JSON JavaScript Object Notation

MVC Model View Controller

OASIS Organization for the Advancement of Structured Information

Standards

SDK Software Development Kit

PoW Proof of Work

PoET Proof of Elapsed Time

PKI Public Key Infrastructure

RBFT Redundant Byzantine Fault Tolerance

REST Representational State Transfer

RPC Remote Procedure Call

SHA Secure Hash Algorithm

SBFT Simplified Byzantine Fault Tolerance

URL Uniform Resource Locator

UTXO Unspent Transaction Output

xii

TERMINOLOGY OF THE USE CASE: MUSIC INDUSTRY

The following terminology applies to the Music to guide some of the variables that the application of

the research is using.

Digital Asset. - piece of content that is digitally stored in a system and that has value to a community

of individuals.

Track Revenue. - Royalties of Artistic Content such as music tracks, music collaborations, etc.

Distributors. -Music Streaming Services such as Spotify, Youtube, and other channels.

Label Record Companies. - Companies dedicated to the professional production of music.

Content Creators. - Artists, content creators, songwriters, producers, and any participant that is

involved in the artistic creation of a Record.

Customers. - Listeners of the Track Revenues (Tracks created by the content creators).

Old Business Model of the Music Industry. - model of the music business decades ago, the

participants at the top used to be Bir Record Label Companies

The current Business model of the Music Industry. - model of the music business currently, based

on streaming services (Distributors).

Copyright Contracts. - Contracts signed by the content creators in order to share the royalties of their

creations with the Distributors or the Label Record Companies.

Record. - Considered as all the process that results in a music product which can be used for generating

Track Revenues through the Distributors.

Smart Contracts. - In the context of this research, it's simulating a copyright contract for the

distribution of Track Revenues.

Data Input. - In the context of the Music Industry, is the Track Revenue.

Implementation variables.

These variables apply just in the Implementation, Data Analysis, and Conclusion chapters.

Asset. - represents the Track Revenue on the overall application.

Traders. - these are the participants of the Music Industry application: distributors, record label

companies, content creators, etc.

Agreements. - They represent the smart contracts in the Implementation section.

Emitter/Receiver. - Traders that participate in the distribution of a Track Revenue value. In the context

of the implementation, they change roles depending on the position of distribution.

Label. - Represents the record label company

Artist. - represents the content creator.

User. - represents the participant of the Music Industry that uses the application of this research, it can

be any trader (participant).

1

CHAPTER 1

INTRODUCTION

Private and public organizations have been relying on third parties for decades to secure

digital asset transactions or data reconciliation across borders. Decentralized solutions such as

Blockchain offer new ways to automate processes that depended on trustless third parties for

data reconciliation. For example, features between different trading systems depend upon

concerns of data transmission, the reliability of audit systems, automation of agreements,

scalability, privacy, and security. Our research evaluates the Music Industry. Blockchain could

potentially change the paradigm of the current distribution of Track Revenues (Royalties of

Artistic Content) in Music Streaming Services. Distribution of Track Revenues used to facilitate

the earnings of Distributors and Label Record companies. Thanks to the approach of this

research, it’s possible to benefit all the participants in the Music Industry: Distributors, record

label companies, content creators, and customers. Blockchain can help all these actors by

automating fast micropayments and smart contracts according to agreements between the

participants [1][2][3].

2.1 Old, Current and New Music Industry Business Model

 The old business model used to execute in favor of the Record Label Company. The

content creator, most of the time, used to sign copyright contracts based on results. If an album

or a tour did not achieve the marketing strategy, they had to compensate for the loses with

future unpaid labor, undermining the well-being of the artist. For example, Figure 1.1 shows

an example of what used to be a typical copyright contract with a Record Label Company; the

content creator obtains an advance of 250000 US for the production of a record, with 5 million

in revenue, the content creator then remains with -450000 in debt for the following record.

 This model still exists but slowly is changing with the digital revolution of Streaming

Services (Distributors). Figure 1.2 shows how the current business model of the Music Industry

pays the content creators and what Blockchain offers to improve these procedures. The revenue

generated from streaming first passes through several participants before finally reaches the

content creator.

2

Figure 1.1 The old business model of the Music Industry based copyright contract of records.

Figure 1.2 Comparison between the current business model (Distributors) and the proposed

new workflow using Blockchain-based on Smart Contracts

Nowadays, Distributors are at the top of the hierarchy. Although, the Music Industry

does not possess efficient systems of Track Revenue limiting the participation of the content

creators: the musicians, songwriters, composers, and producers [2]. Most of these content

creators receive late payments or inaccurate amounts of compensation.

Distributors (streaming services) have become one of the most significant sources of

revenue for the Music Industry (i.e., Services like Spotify, Youtube, or Pandora). Spotify is

currently the current biggest distributor, and its impact on the Music Industry is positive in

terms of sales, market fragmentation, and copyright royalty’s distribution. Datta, H., Knox, G.,

3

and Bronnenberg, B. J. [5] suggest that the fragmentation of the market due to distributors like

Spotify is relatively favorable for content creators and record label companies. Customers

(listeners) tend to follow fewer superstars and expand their attention to a broader set of content

creators, which could potentially increase the Track Revenues in complementary goods and

live performances. Although, one of the tradeoffs of this new Current Music Industry model

trend is the increase in efforts of content creators to stay on top by satisfying the demand. On

the other hand, Marshall, L. [6] suggests that distributors could harm even more the Current

Music Industry despite the market fragmentation. Distributors could consolidate long-

established power structures.

Additionally, the current process of royalty’s distribution is slow and inefficient. The

revenue generated by the distributor’s services passes over a network of aggregators and other

third parties. Figure 1.3 shows a diagram of how the streaming services pay royalties to the

content creators, bypassing several participants in between. The process needs repetitive

intermediaries who execute mainly the reconciliation of the databases. This process could take

1 to 2 months to pay all the participants for their contribution. It takes time since the

involvement of audit systems with different architectures, producing duplication of data in

some instances. Richardson, J. H. [7] argues that the changes in rates of royalties and copyrights

emissions are slow by nature and diminish new distributor’s innovation efforts. For example,

the copyright issuers and license negotiations take considerable large amounts of time to

classify the source of the copyright, either as a “musical work” or “sound recording” rights. All

changes in distributor’s services must pass over paperwork processes, different databases, and

various licenses emissions before it's authorized to stream. After that, the payment process time

doubles for the artists to get paid [6]. Further, Spotify reported having lost 69$ million in 2011

due to copyright procedure inefficiency [7]. Ultimately, royalty’s rates and distribution of

copyrights depend upon legislation which constitutes at the same time a government-based

monopoly.

Figure 1.3. Music Streaming Industry Process. (Rethink Music Initiative, 2015) [45]

4

In effect, the participants on the bottom of the chain (content creators) don't have access

to their data, or they lack the authority to do so, disabling them the possibility to make a profit

out of this data. The intermediaries gather most of the revenues by creating paper-based

agreements between participants to deal with conflicts of interest [1]. Consequently, to satisfy

the demand, content creators require more computational tools for data analysis, copyright

royalty’s immediate distribution, and distributed solutions to plan new strategies. Blockchain

technology could potentially simulate the copyright contracts with smart contracts between

participants automating the third-party intervention (legal actors) and securing the integrity of

the data to avoid fees usually charged audit systems. This research tries to address the following

question: An environment, where all the participants are paid instantaneously for their

contribution to the network, can be designed and implemented with blockchain technologies

and their integration with legacy software?

The following sections present our proposal for the design of this new Music Industry

model with specific third-party legacy software and current frameworks of blockchain

technologies. Therefore, the research organizes as follows:

● Chapter 2 introduces the problem statement, its context, its requirements, its brief

architecture explanation, and a brief overview of the data analysis.

● Chapter 3 shows the Literature review, the previous background knowledge on the

theory of decentralized systems and blockchain technologies, the underlying

architecture of the techniques, and the last academic attempts to compare the

technologies’ features and performance. Additionally, in this chapter, we present

some insights into the opinions of other sectors over Blockchain technologies, some

of the history and evolutions of these topics, and the future predictions of the

implications among some other sectors.

● Chapter 4 presents the Architecture of the system. This section describes the

underlying theoretical machine functioning of both platforms. Additionally, this

chapter links the problem statement with the design of the application.

● Chapter 5 shows the Implementation of the proposal. It describes the details of the

algorithms, logic, technologies, and frameworks used to address the problem

statement. It also describes the reasons for the chosen technologies and the

challenges and problems using those technologies in the development cycle.

● Chapter 6 shows the Data Analysis. This chapter discusses the data charts that the

experiments threw. Additionally, the payload comparison between the two

platforms gives insights over the strengths and weaknesses of both platforms

5

(Hyperledger and Ethereum). Lastly, this chapter exposes the problems of the

implementation that were not conceived and are inherently part of the new

frameworks´ development, as these technologies are in their early stages of

exposure.

● Chapter 7 discusses the Conclusions and Future Work. Additionally, this section

compares the requirements of the problem statement and the outcomes of this

research revealed, to determine the success of the study in solving most of the

planned goals or the reasons why it failed, and what can be improved in the future.

6

CHAPTER 2

PROBLEM DEFINITION

Distributors like Spotify represent a possible centralized power structure since the high

number of aggregators that must be passed to reach the participants at the beginning of the

creative process (Figure 1.2) creates complexity, latency, and low performance. This research

addresses the challenge of creating a nonhierarchical fast distribution of digital assets that

integrates Legacy software in two well-known blockchain platforms (Ethereum and

Hyperledger), one public, and the other private.

A digital asset is a piece of content that is digitally stored in a system and that has value

to a community of individuals. Over the years, this concept has been changing and nowadays

includes photos, videos, documents, etc. In the Current Music Industry, a digital asset could

mean an audio file, copyright, an artwork, an artist profile. Although, this research defines a

digital asset as the TRACK REVENUE (contemplated in token currencies or monetary value)

generated by the songs and artistic work of the content creators.

Figure 2.1 shows the Current Music Industry based on streaming services. On the left, the

streaming-based approached is hierarchical. In each step, there must be a data reconciliation

between different participants. Therefore, the Current Music Industry is inefficient and

unreliable. After that, there is an idle scenario where Blockchain serves as a public ledger where

the user pays the content creator immediately. This system is ideal since the bridge between the

customers, and the content creator is almost nonexistent, and the intermediaries receive their

contributions but are not an authority anymore. Although, the Industry is behind the ideal model

for different factors, mainly adoption and education. Consequently, there must be an

improvement in between the Current Business Model and the Idle Business Model. The proposal

then is to achieve a system where the data flow has the same structure, but the data reconciliation

is almost instantaneous, paying the content creators immediately what he/she deserves and

lowering the fees of intermediaries.

7

Figure 2.1 Blockchain Approaches for the Idle Music Industry

Figure 2.2 shows the details of the project to solve the inefficient hierarchical data

reconciliation system (Distributors based) (Figure 1.2). This picture presents the distribution of

the Track Revenue, which represent the digital asset, through a system that passes the borders of

participants in the Music Industry. The process is straight forward, but the difference is that is

powered by Smart Contracts (more information in chapter 3), and Legacy systems that interact

with an underlying blockchain environment.

8

Figure 2.2 Proposed distribution workflow. All participants can be part of the distribution chain

if they have Smart Contracts.

Figure 2.2 also represents the possibilities of the flow of compensation payment in a

Distributed Ledger. Each branch (like the branches of a tree in Figure 2.2) represents a different

Track Revenue distribution, and each branch can be shaped by any number of participants with

any combination possible as long they have Smart Contracts.

In this design, the digital assets (Track Revenue), the Smart Contracts, and the

information of the participants can interact with different parties securely and trustfully thanks to

a Blockchain environment. Additionally, using a Blockchain as a common ledger of smart

contracts, audit processes are met, and with Smart Contracts, the system automates operations to

avoid third party involvements that could delay the efficiency of the data flow. Consequently, in

this environment, the Track Revenue royalties are automatically transferred to the participants

when the data input is imported, so all the participants receive their compensation

instantaneously thanks to the Smart Contracts. The participants can feel trustful over the network

because the underlying technologies use cryptography and consensus protocols so they can

dedicate their roles more efficiently.

The implementation of the solution included a Distribution Algorithm as the core of the

solution for agreement-based systems. The research proposes a workflow with different

9

Scenarios or cases possible according to the data input. These Scenarios are the guidelines the

Smart Contracts must follow. Therefore, each platform uses the same algorithm independently of

their programming languages, frameworks, and conditions. The Implementation Section presents

two basic Scenarios that model most of the probable behaviors of the data workflow.

The solution to this research involves two of the most well-known blockchain platforms.

The first is Hyperledger Project powered by the Linux Foundation and the second is the open-

source, public Blockchain Ethereum. Both platforms have strengths and weaknesses according to

the requirements of the implementation. Additionally, the system should possess the capacity of

integration with Legacy Systems.

The Data Analysis tests the Performance of the system for obtaining conclusions of

Scalability in terms of Latency and Throughput. The Qualitative Argument states that

Hyperledger should have a lower Latency and Higher Throughput than Ethereum since

Hyperledger is more centralized and private. Therefore, Hyperledger overcomes Ethereum in

performance for being a private blockchain.

Therefore, after analyzing the problem statement, it's crucial to mention that this

research contributes to the literacy of solutions that accelerate the payment of music track

revenues to all the participants in the Current Music Industry based on Streaming Services

(Distributors) and that the main goals to achieve this contribution can be summarized with the

following points:

• Develop a Distribution Algorithm that solves the possible Data Flow Scenarios.

• Integrate blockchain platforms (Ethereum and Hyperledger) with Legacy Systems

(Servers, middleware technologies, and front-end technologies).

• Execute experiments of Performance for Scalability conclusions in terms of Latency and

Throughput.

• The development of Blockchain platforms (Ethereum and Hyperledger) as a common

ledger for the computation of Smart Contracts to solve data reconciliation between

different databases. Although, the metadata and media files will not be stored in the

blockchain platforms.

10

CHAPTER 3

LITERATURE REVIEW

This section presents the academic background of previous research made on

Blockchain technologies. Some topics that will be covered are the history and definition of

Blockchain, a necessary detail of the algorithm that public Blockchains use, the interpretation

of smart contracts, the implications of this technology on the economy and the social

organizations, the advantages and disadvantages of the technology, the disruption in the

music industry and previous attempts to analyze the performance these technologies

Blockchains.

3.1 Definition of Blockchain

Blockchain is a distributed structure that contains the information of all transactions

ever occurred in the past, securely encrypted, double spending problem-free. These

transactions interact in a set of nodes connected via peer to peer networks [35]. This structure

doesn’t need third parties and therefore achieves levels of security in trustless scenarios.

Figure 3.1. Blocks of Transactions. Each block carries a list of transactions and the hash of

the previous block [29]

Figure 3.1 shows the process of block production in Blockchain. Each block

references the hash of the last block [29]. Therefore, there is a link between blocks, and this

link enables all blocks with the permissions to read the world state data.

A blockchain network has a set of nodes (clients) that interact with the blockchain

with a private and a public key. Usually, the private key is for signing their transactions and

the public key for their identification. These keys work with asymmetric cryptography to be

able to be validated. Once that a transaction is approved, it broadcasts to the other peers. The

other peers verify the successful transactions, and invalid transactions are discarded.

Eventually, the transactions spread all through the network. The validated transactions are

11

collected and ordered during a time interval and packaged into a timestamped candidate

block. Under the design of the first Blockchain Bitcoin (Proof of Work consensus), this

process is called Mining (Implementation Section). When the block is completed is

broadcasted to the network. The other peers must validate it and then it is referenced by hash

with the previous correct block. If everything is completed correctly, the block is added to the

chain and apply its transactions to the World View or World State. If it's not the case, the

candidate block is discarded. Then the process starts again.

3.1.1 Transaction Tracking and Digital Asset Transmission.

Digital Assets can be transferred from one account to another in Blockchain. Under

the principles of the first Blockchain, each account is just a hash value, a unique address. The

mechanism that enables the transfer of digital assets is called Unspent Transaction Output

(UTXO). Figure 3.2 shows the mechanism of a digital asset transaction.

Figure 3.2. Digital Asset Unspent Transaction Output (UTOX). The transaction n spends the

second UTXO that transaction b (not pictured) created (b#2), and generates two new outputs

(n#1, and n #2), which again are spent by transactions n+3 and n+9 respectively [29].

The ledger adds new rows that represent new values in new accounts and deletes

previous transactions that represented former states. Not yet removed rows are called UTXO

inputs. The new rows are called UTXO outputs [29].

3.1.2 Smart Contracts

Nick Szabo first introduced the concept of smart contracts as a protocol that executes

the terms of a social settlement. It means that hardware could run the contractual clauses of a

human agreement under certain conditions. Therefore, because the hardware or any

12

technological platform is self-executed, the system doesn't need the intervention of an

intermediary [28]. Although, Ethereum blockchain was the first attempt to improve the

blockchain capabilities from the first Bitcoin version.

A smart contract is like a real contract, a set of rules and agreements on which a

transaction or an activity will be executed. Ethereum offered an entire programming language

allowing complex scripts to set the rules on which the blockchain will work [9].

Additionally, smart contracts have a unique address, such as the wallets (accounts) in

Bitcoin. The nodes constitute a Virtual Machine that runs on every computer. Usually, an

intelligent contract should show all the possible outcomes of its execution and should be

deterministic. Therefore, the same input will always produce the same output. On the other

hand, non-deterministic smart contracts (different random results with the same data) cannot

secure consensus, so the security levels increase thanks to the smart contracts [9].

3.2 Generations and History of Blockchain

Blockchain has evolved to become a trend in computer science research. Although,

through the last decade, essential improvements over all the tendencies of technology have

shaped the way the technology is evolving. The following section presents a small analysis of

the evolution of blockchain.

Generation 1 introduced Bitcoin and the concept of Cryptocurrency. With the rise of

the popularity of Bitcoin, Internet cash became a feasible idea. The advantages of low

transaction fee cost, anonymity, and transparency became attractive to the first adopters.

Meanwhile, the problems of latency and scalability started to become apparent. In the 2nd

Generation of Blockchains, Ehtereum and Smart Contracts expanded the application range

of Bitcoin by providing an environment of customized programmed sets of instructions

powered by the same principles of Bitcoin but subjected to a broader range of solutions.

Generation 3.0 started to present DApps or decentralized applications with a growing

number of Legacy software integrations in blockchain networks. Some of the featured

combinations are data storage, communication networks, smart contract’s communications,

and open standard platforms. In the 3rd Generation, Delegated Proof of Stake (DPoS) took

traction in the developer’s community, and open-source libraries started offering ways to

interact with old and new blockchain frameworks [46]. Lastly, the 4th Generation is the

seamless integration of Blockchain with the Industry. Nowadays, there is a current switch of

13

the old business models for decentralized solutions. Additionally, enterprises are building

private platforms for privacy prevention in blockchain environments. Industries are licensing

ambitious projects that might have decentralized features but wouldn’t ultimately be

identified as blockchains. For example, SKYNET is the world’s first IoT chip that could

replace the modern CPU with a chip optimized for the Internet of Things and Blockchain.

As a side note, Blockchain reached peaks of academic and non-academic attention in

2017. New businesses have started using this technology in different use cases, especially in

the FinTech sector [1]. The demand for legacy software in the development of blockchain

increases. Since its first application (Bitcoin) appeared in 2009, Blockchain research has

evolved integrating new machine communication protocols, consensus algorithms, encryption

protocols, and architectures, to become one of the trends of technology nowadays. According

to Singh & Singh [2], Blockchain Technology was explored at an unprecedented speed in

2017. Additionally, Figure 3.4 shows the trends of 2016 in technological innovation

according to the Gartner Hype Cycle.

Figure 3.4 Emerging Technologies, 2016, by Gartner Hype [2]

3.3 Bitcoin

Around 2008, the financial services suffered a big crash. The stock market plummeted

affecting thousands of people and affected the global economy. Meanwhile, several

cryptographers were working on new future solutions for current financial services. Some of

those solutions involved cryptography, decentralized consensus, and new protocols of

14

communications. A group of cryptographers and hackers called by themselves the

“Cyberpunks,” tried several approaches like “BitGold.” Some of those attempts were

implemented but didn't reach enough attention from the current market.

After the financial services went down because of economic bubbles, a paper written

by an anonymous individual or group of individuals called Satoshi Nakamoto was released on

forums of cryptographers. This paper was presenting an alternative method of payment that

united the strengths of the math, the computer power, algorithms of consensus and an entirely

new decentralized architecture that combined all the attempts that the “Cyberpunks” tried and

didn’t succeed. One of the main goals of its author or authors was written in the abstract at

the beginning of the paper:

“A purely peer-to-peer version of electronic cash would allow online payments to be

sent directly from one party to another without going through a financial institution” [8] ⁠.

Bitcoin pretended to replace protocols of transactions in digital currencies instead of

human third parties. It means that with this digital currency technology, no government could

determine the interest rate of the operation based on arbitrary factors such as politics (causing

inflation), but the transactions would be determined by an algorithm [9].

Bitcoin, as a cryptocurrency, offered no inflation because it’s finite (There is 21

million in total). Although some people started arguing Bitcoin could lead to deflation, it can

be divided into around two quadrillion units, and this characteristic raised the comparison

between Bitcoin and Gold. The fact that Bitcoin is not controlled by banks or governments

and is public or incorruptible attracted people’s attention to the tech space, economists,

researchers, private entities, hackers, and criminals. Although several organizations remained

opposed to its use due to its anonymous and illegal use, people were still using it until its

highest peak of attention and value in December 2017.

Additionally, tax regulators were afraid that cryptocurrencies could lead to tax

evasion. Therefore, several governmental institutions started conversations over the financial

regulation of Bitcoin [10].

Crime regulators have argued that Bitcoin can lead to money laundry and fraud. For

example, the anonymous website “Silk Road,” an online market organized around illicit

goods, was shut down by the FBI in 2013. The creator of Silk Road William Ulbricht was

15

judged in New York, the heart of the financial services to warn the use of bitcoin as an illegal

medium of exchange.

According to Baravalle, Lopez, & Lee [11], drug-related items constitute around 80%

of the size of the total market of illicit online markets. According to N. Christin [12],

approximately 4.5% -9% of the Bitcoin Economy moved through this Silk Road. Moreover,

research on Agora, another anonymous online market, showed that 170691.12 bitcoins (about

27 million US Dollars) of merchandise were on sale on the period under examination. Over

30000 products were on sale, and 1233 sellers participated in the market in 29 countries [11].

Ultimately, it is estimated that Deep Web hosts 500 times more content than the Web [13].

Bitcoin start-ups and legitimate Bitcoin businesses have suffered several attacks and

hacks. Mt Gox (Tokyo), a Bitcoin exchange company went bankrupt because of an attack on

the system in 2014 [13]. Ethereum blockchain also was hacked due to some flaws in the

funding of the organization, leading to a split in two versions, leaving behind the system that

was compromised [9].

According to Baravalle and Lopez [11], users of bitcoin are driven by anonymity and

by political views. Most of its users identify themselves as libertarians. Some of them could

support ideas like: “Taking away the power of the money supply from centralist states….”

(The Netherlands, 27 years old) [11].

Ultimately, the community analysis shows the mindset or the incentives of the people

that use anonymous blockchains such as Bitcoin. Current research trends suggest that

blockchain can have a run impact on areas of global development other than FinTech.

3.4 Use Cases and Applications of Blockchain Technologies

Blockchain is a subcase of Distributed Systems or Non-Centralized Networks or

better called Distributed Ledger Technology (DLT). DLTs represents a stack of technologies

that let organizations utilize the security, reliability, and smart contracts under an entire

programmable platform. Even though Distributed Systems have been developing since

decades ago, the first encrypted consensus “Proof of Work” of Bitcoin revolutionized the

possible applications this technology could leverage among several industries. Among some

of its potential applications already identified are land registration systems to prevent

corruption of governments, future integration with the Internet of Things, the track of goods

in Supply Chain Industries, Distributed Autonomous Organizations (DAO), cryptocurrencies,

16

and everything that needs a third trusted party to complete a process. Blockchain can remove

it from the equation [2]. This section shows the possible solutions that Blockchain offers to

several spaces.

3.4.1 New Decentralized Economies

Bitcoin reached a price value of almost 20000$ per bitcoin in 2017. It has caused

unprecedented debate among the most well-known investors, economists, and scientists.

Several countries are taking serious attention to the implications of Bitcoin in current

currency policies and economic analysis. For example, Vietnam Central Bank is seriously

studying the possibility of using Bitcoin. European German Central Bank and Bank of

England are investigating the option to issue their cryptocurrency [14]. Sweden Central Bank

might use a digital cryptocurrency within the next couple of years to prevent inflation and

achieve stability [14].

Additionally, cryptocurrencies lead to think less about physical cash systems as

technology evolves, targeting future cashless societies. Some northern countries, such as the

Netherlands are studying this future possibility. Tom Lee, an analyst from Bloomberg, says

that “Once the market capital of cryptocurrencies reaches about 100 billion dollars, central

banks will start buying cryptocurrencies by themselves” [14]. Currently, the market

capitalization of the cryptocurrency market is around 278 billion (all cryptocurrencies). It

reached 795 billion (all cryptocurrencies) in September 2017 [15].

Although the media, academic literature, and public interest of Bitcoin have only

started to emerge since 2009 [16] [17], the debate has created a new wave of interest in

Econophysics, defined as the use of paradigms and tools to several theories and statistics to

determine economic models [18]. On the other hand, research conducted by Fry John and

Cheah Eng-Tuck [19] concluded that Bitcoin has several characteristics of a negative

economic bubble (raising concerns about its long-term sustainability). Econophysics of

cryptocurrencies is related directly to the external factors, such as hacks and government

intervention. Therefore, these researches open an entirely new field of study in future

economics for predicting stock markets in real-time. Consequently, Blockchain is opening the

possibility to do academic research on global scale economic behaviors.

Negative bubbles are not the only concerns of cryptocurrencies such as Bitcoin.

Unprecedented attempts of frauds and hacks are rising within this new industry. For example,

17

new ICOs (Initial Coin Offerings) are starting to offer promises of entirely new business

models, including Blockchain technologies. Investors have now the option to buy and sell

value over these start-ups and ICOs directly without the middleman. For example, companies

like Binance or CuadrigaCX, are platforms where investors, from a wide range of capital

sizes (from professional investors to average internet users), now can trade stocks of ICOs in

a live trading platform. These new coming industries are as open and transparent as they can,

but there have been already several attempts of frauds or hacks worth millions. The average

bank loss of hacking attacks is 1.5$ million. Although, ICOs and crypto exchanges start-ups

suffer an average of 2$ billion in damages. The “fishing technique” (social engineering

hacking over emails or websites of any contact with the employee of the company) is the

most common form of funds theft [9]. Therefore, regulators have started to intervene in the

newly forming crypto industry to prevent fraud. The regulation actions move from ignoring

ICOs to ban them altogether, depending on the nature of the token and the country.

According to Eyal, I., [9], from September to November in 2017, countries like China and

Estonia altogether banned ICOs, and countries like Canada, Singapore, Hong Kong, are

discussing the regulations to let them operate.

New start-ups bring the possibilities of innovations in data analysis. For example,

Binance offers a public API to access in real-time to the cryptocurrency market as a service.

Open-source innovations open a new whole of possibilities for businesses and academic

research. Moreover, APIs like Binance Analysis open new fields of software development for

real-time market analysis and crypto investments. Additionally, developers and entrepreneurs

are creating secure platforms to exchange assets digitally. For example, Coinbase and GDAX

are part of the same company that operates in California USA and currently is the most know

application to buy and sell bitcoin and other cryptocurrencies in the USA.

Despite these attempts for bringing Blockchain to the current business, academic, and

non-profit solutions, most people in developing and developed countries don't yet understand

the intrinsic value that digital asset representation hold. The main problem resides in

understanding the underlying technology and trust in a technology that has been used by

hackers and anonymous traders of illicit goods.

Understanding Bitcoin needs an understanding of the mechanisms of money. The

mechanism of money distribution has always relied upon trusted third parties that manage its

functionality. Money evolved from thousands of years since the use of shells, jewelry, gold

and lastly cash and credit cards. Money is an asset that people give value to, as long as it has

18

some intrinsic functionality, and it's scarce. Although, cash has been subjected in recent years

to inflation due to different economic and political environments in different countries.

Government and banks are failing in addressing trust in the exchange of national currencies,

causing current currency prices to inflate and hyperinflate, such as the case of Venezuela or

Zimbabwe. Organizations and individuals depend on a trustful third party to execute any

process. Blockchain can achieve a new age of innovation in this area of human interaction.

3.4.2 Social Change

In March 2018, Sierra Leone Presidential elections were supported by Agora, a

Swedish blockchain-based foundation that developed a system for transparent voting in one

of the poorest countries in the World. Ebola, corrupted elections and GDP losses of $1.4

million since 2014 have affected Sierra Leone development deeply. Blockchain made it

possible to offer locals digital tools for transparency. Agora’s CEO Leonardo Grammar

clarified that the Sierra Leone voters were opened to the experiment and that the company is

pointing to repeat the operation in other countries [20].

Digital money is not the only representation of a digital asset; blockchain can also

design a digital image of anything that has value, such as land titles, intellectual property,

private data, copyrights, etc. Blockchain has unprecedented implications not just over the

economy, but also the social and political structures of societies. Don and Alex Tapscott

(2016) mention several implications of blockchain technologies in social structures. For

example, remittances from developing countries are the highest flows of money in quantity,

more elevated than foreign investment and aids [21]. Distributed ledger technology could add

billions of individuals to the global economies using exchanges of value from peer to peer

since current financial systems exclude them. Existing financial systems think they would not

be profitable or be risky in any business transaction. Blockchain can reduce the fees

significantly, improve the efficiency of this process, including people in the global economy,

and create new opportunities for independent entrepreneurs.

Equally important, corruption over the global financial aids of world organizations is

a big issue in countries like Haiti. In 2010 it suffered one of the deadliest natural disasters in

history. Foreign governments sent financial aids to help rebuild Haiti from the earthquake,

but investigations led to conclude that part of the 500$ millions of Red Cross funds was

missed or stolen. Blockchain can improve the delivery of these aids eliminating the

19

bureaucracy from the equation [21]. Blockchain someday could reduce the corruption of

authoritarian governments and unfair public institutions.

3.4.3 Land Registration

Fernando De Soto, a Peruvian economist, suggests that many as five billion people in

the world cannot participate in the economy because they don't have strong legal rights over

their properties such as land. Blockchain can improve the land registry by giving final proof

of immutable records [21].

Land registration is one main component of economic and social growth, although the

registration systems are broken in some counties. Fernando De Soto argues that because of

the involvement of a third party, the tracking of ownership of properties on the poorest

countries, suffers time-wasting, inefficiency, and the corruption of public institutions. Since

the users involved in this process of asset exchange cannot rely on the system, millions of

people in countries such as Honduras cannot get the benefits of the global economy [21].

Additionally, Lemieux [22] argues that untrusted civil registration could be an obstacle for

accessing social protection benefits and could open the door to fraud undermining the

developing country’s immigration policies and national security and the same for its

relationships with other countries [22].

Public notary institutions are an essential part of the legalization of any transaction

with property or assets in developing countries. These institutions are responsible for civil

registries of births, deaths, marriages, land registration, and repositories of financial

transactions. Some states or cities do not have enough resources on providing the legal

liabilities to be able to give its citizens options to invest, exchange, sell, or any economic

activity. Other related activities of land registration or the real estate industry include claims

to citizenship, land, and social protection. Registries are everywhere. As Daniel Novy from

Consensys (Ethereum) explains, some of the essential goods such as titles or properties are

controlled by governments which because of its authority, can provide authenticity to those

records. Although, the problem arises when there are two copies of the same asset. The only

way to know which document is authentic is by asking the owner. In Brazil, the amount of

the number of real estate registries in Sao Paulo city ascends to 18, and all those registry

offices are not unified. Public blockchains such as Ethereum could solve this problem. First,

thanks to the immutability, the published record cannot be removed once that is submitted on

20

the network. Second, the system could be designed as a mobile, user-friendly, and digital

stamped (digital signatures) so that way registration and related asset actions could be as easy

as sending an email. Third, there is no central point of failure since the architecture is

decentralized. Fourth and last, the cryptographic security and the Proof of Work algorithm for

consensus prevent cheaters. Ethereum and other public blockchains can transform the real

estate industry and social impact for transparency [21].

Ultimately, attempts of implementation of digital records on real estate goods started

to be implemented already. Honduras has more than two-thirds of the population living in

poverty, and five of ten citizens suffering extreme poverty. In November 2015, the

government approached Factom to discuss the implementation of recordkeeping problems

associated with its land registration system. Factom is a blockchain-based solution using the

Bitcoin blockchain [23].

3.4.4 Blockchains in the Entertainment Industry - Problem Statement

Overview

The content creators can benefit significantly from blockchain technologies since the

previous business models of the industry undermined them. For example, Napster was a

game-changer in the music industry by giving access to the listeners (customers) freely the

music of their favorite artists. By violating the copyrights, Napster reached a broader volume

of listeners changing the previous business model based on contracts with labels for the

distribution. Consequently, online distributors like Apple and Spotify left the content creators

at the lowest level of the chain of profit, although reaching the new generation of listeners in

smartphones and other devices [24].

Currently, new industries such as music publishing and recording services have

emerged as the new intermediaries to bring the music to the ears of the final user. Although,

with each intermediary added in the chain, late fees maintain the business model giving the

least royalties to the creators of content. Some of those identified intermediaries are labels,

publishers, distributors, performance rights organizations, organizations to monitor

performance royalties (i.e., American Society of Composers, Authors, and Publishers),

producers, venues, concert organizers, promoters, wholesalers, agents, and accounting

systems [4]. Moreover, most distributors such as Spotify or Youtube give the creators an even

smaller percentage of the revenues (i.e., Spotify fives 0.006$ per stream to the authors). Most

21

content creators sign contracts of full copyright ownership to the big record label companies

to take their music to the public, giving all or most of their profits to the intermediary.

Ultimately, the intermediary holds a contract that usually gives them more revenue from

using the tracks in other ecosystems, giving little or nothing to the original author.

Nowadays several start-ups such as SingularDTV are creating a new fair industry for

content creators, and independent musicians such as Imogen Heap are creating their

ecosystems of economies by tokenizing their artworks, all of it thanks to Blockchain

technologies. Additionally, Imogen Heap and other content creators and entrepreneurs are

analyzing other content creators-based business models never seen previously. For example,

she is trying to bring all the metadata of the tracks of her songs to manage her image to her

fans. She could use all the metadata to control her contracts with other systems, could be sure

that her music will be delivered directly to her fans, and could be confident that her fans

could be in contact with her directly. The data the content creators carry could be monetized

to manage their resources more efficiently [21].

Blockchain can solve both the efficient payment systems for participants in a music

industry ecosystem and create the conditions necessary to develop agreements justly between

the participants. Smart contracts could replace significant amounts of investments in paper-

based copyright contracts by executing Smart Contracts (agreements) that are triggered by

inputs between the customers of a Blockchain application. Ultimately, according to those

smart contracts, all the participants could receive their compensation from their services

according to the rules that everybody agreed to follow in an instant. New business models

and new forms to do creative artworks could become a reality on the internet of value.

3.5 Limitations of Blockchains

Before analyzing the public and private blockchain protocols and architectures, its

worth mentioning the limitations and benefits of Blockchains and the reasons why

Blockchain is better than other current technologies. Similarly, like any other technology,

Blockchain has advantages and disadvantages that academics and developers discover and

are worth mentioning. For example, research conducted by Eyal [9] expresses several

limitations of Bitcoin based on the classical structure of Nakamoto:

Fairness. - Fairness on blockchain technology is one of the vital incentives users have

because they trust that any third party can control it. Although incentives do not always

22

ensure fairness. Moreover, as miners give more processing power, they receive more

significant compensation from the system. Therefore, if a miner has enough resources to

achieve the 25% of the mining power, other miners can join these “selfish miners”

compromising decentralization fairness. For example, they can form blocks of the highest

transaction’s value dynamically, so they get more compensation from it. Consequently,

Bitcoin has not yet achieved fairness entirely since the miner's incentives are the rewards [9].

Proof of work overload. -Since each transaction made by the users is encrypted and

cannot overlap, the miners require to solve complex cryptographic puzzles. The

computational power for these tasks consumes large amounts of physical resources in terms

of processing power. Therefore, the costs of power consumption are unacceptable for early

adopters [9]. Cost consumption is one of the reasons why the FinTech sector and developers

have put effort into trying to solve the efficiency problem with new protocols and

architectures. Proof of Work protocol will be analyzed later in this research.

Scalability Challenges and Time of Transaction execution. - When new branches of

blocks are created, the rest of the blocks must agree to keep adding new ones, so each block

needs the approval of the rest of the miners. The block formation time interval should be

longer than the rate of block addition in the network to secure the reliability of the block and

prevent forks or blocks that succeed in forming different branches. Initial Nakamoto’s

Bitcoin design restricts the time of the propagation of blocks to 10 min, but current high

volumes of transactions reach more than one hour sometimes due to the size of the network

[9]. Therefore, 10 minutes is unacceptable for early adopters.

Lack of confidentiality and privacy of transactions. - The initial design of Nakamoto’s

paper was considered as a general and public ledger log to ensure security and fairness.

Although, FinTech industries need private transactions to give users the confidentiality of

their financial movement. Therefore, the sensitive history of transaction information should

be just available to shareholders, investors of employees [9].

3.6 Benefits of Blockchain Technology

As mentioned previously, early public blockchains presented several features that

current system solutions cannot tolerate. Therefore, the private sector has invested efforts to

explore the blockchain technologies to address such limitations. FinTech Industries are

mostly interested in a technology stack called Distributed Ledger Technology (DLT). The

23

layers constituting the stack are the following: The system client (balance sheets each account

has), a virtual machine (accept transactions and translate them into states), a consensus

protocol and network layers to determine how the nodes interact with each other. The layers

not necessarily target public networks but rather Private Blockchains.

This section will explore all the possible positive outcomes of using this private

blockchain in terms of automation, privacy and security, features of decentralized systems,

features that attract business and entrepreneurs. Overall, why use Private Blockchains instead

of other current IT solutions?

3.6.1 Audit Systems and Data Transmission Automation

Business model applications rely on the efficiency and trust of the data transmission

between different accountability systems. Moreover, not just enterprises rely on these

communications between systems, but also public organizations and non-profits. From the

most profitable business models such as those implemented by companies like IBM or

Microsoft to non-profit organizations and entertainment, rely upon systems that secure the

data integrity to transact assets, services, and resources among peers and networks with no

points of failure.

Additionally, the development and management of audit systems become more and

more complicated due to different protocols of communication, security, and frameworks

among different systems complicating the data integrity. Blockchain Technology is a

breakthrough solution in this field because it promises automation in all levels of abstraction

in one single platform securing integrity. Therefore, audit systems are no longer needed

because one single ledger is evaluating the inputs and outputs as each transaction it's being

submitted. Moreover, this innovation promises a higher abstraction of audit systems speeding

up the end goals of an organization. For example, Hyperledger offers a broader range of

possibilities of customization of the system over different layers of the DLT. According to

the official goals of Hyperledger Organization, a ledger could operate continuously for 100

years or so with the same features of discoverability, identity resolution, and other vital

functions [25] ⁠.

Ultimately, its decentralized nature based on smart contracts increases efficiency

avoiding bureaucracy and intermediaries. It allows translating the environment where these

24

transactions are made into a platform of audit completely secure by cryptography, consensus,

and legacy protocols.

3.6.1.1 Data Preservation and Integrity of Data

Blockchain can solve an audibility problem that most systems lack when dealing with

storage of digital assets, the standards of preservation of information worldwide. This

subsection mentions basic concepts of digital preservation to push forward the overall digital

music industry with the explored technologies for long-term maintenance and reliability of its

logic.

Standards of Data preservation

Some research conducted by Lemieux suggests that it is possible to implement

blockchain technologies to store assets that have value to a specific community of individuals

by following standards of preservation of digital records. Specifically, measures such as ISO

(International Standard Organization) 15,489, ARMA’s Generally Accepted Record-Keeping

Principles, ISO 14,721, and ISO 16,363. Overall, Lemieux [22] advocates the use of the

documentary truth defined as the trustworthiness of a record as a record or the quality of the

document concerning what it purports to be, is one of the concepts theorists use for achieving

reliability [26]. By these standards, reliability, authenticity, and long-term digital preservation

should be obtained to create a legally strong digital asset. Those principles are described as

follows:

Reliability

Lemieux [22] thinks that if relying on definitions of reliability on the standards

mentioned above, those definitions can be used in the case of conflict. For example, ISO

15,489 states that:

“A reliable record is one whose contents can be trusted as a full and accurate representation

of the transactions, activities or facts to which they attest and can be depended upon in the

course of subsequent transactions or activities. [22] (7.2.3 Reliability)”

25

Authenticity

The same standards suggest that authenticity must be achieved by preserving the

identity and integrity of an asset since the beginning of its recording. On the implementation

of such requirements to achieve authenticity, registration processes must be carefully planned

to ensure unique identifiers of data.

Long term digital preservation

Records should have long term usability for the users. To achieve this feature of data

preservation, standard ISO, 2012a suggests a concept for long term preservation verification:

“Long enough to be concerned with the impacts of changing technologies, including support

for new media and data formats, or with a changing user community. Long term may extend

indefinitely” [22] (ISO, 2012a, p18)

Although, there are some limitations to the implementation of such concepts using

any technology. ISO,2012a [22] prevents that the ability to understand the significance of bits

or any representation of computer language is attached to the ability to put that information in

a context that has meaning to a specific community. Moreover, the Organization for the

Advancement of Structured Information Standards (OASIS) gives a framework for the

achievement of the liability of information preservation. This framework states that a record

must identify Provenance (or source of information), Context (How the information relates

with other external data), Reference (Providing identifiers), Fixity (Providing protective

shields of the data) and Access Rights (Providing terms of access to the users).

3.6.2 Privacy

Organizations need privacy over sensitive data. First blockchain protocols and

architectures such as Bitcoin offered public access to the transactions in the network. Since

then, enterprises and private organizations have invested efforts to develop permission

blockchains to solve their business model requirements and prevent sensitive data to be

26

public. For example, some organizations won't be willing to share their business strategies

with an open market. Instead, they would like to share just the necessary information to

complete their transactions efficiently. Additionally, non-profits and public or government

institutions need privacy over public data to secure the integrity of its users when required.

3.6.3 Security

According to Singh & Singh [1], cybercrime costs quadrupled from 2013 to 2015 and

a large portion of cybercrime is still undetected. Moreover, the Gartner report suggests that

the cost of cybercrime is expected to reach 2$ trillion by 2019. Security is a big issue in

current systems. Consensus protocols such as Proof of Work (PoW, Bitcoin), execute

complex puzzle-solving tasks and in each one of the nodes. The system is backed using

Public Key Infrastructure (PKI) which is "asymmetric" cryptography, where one key is for

encryption and another for decryption. The standard encryption that PoW uses is SHA-256,

published by the U.S. National Institute of Technology of Standards and Technology [21].

The difficulty to find a block solution is correlated with the amount of computational power

of the participants. It is a network secured by all the computational power of every single

node in the system. To hack it, the attacker would require more than the double of the sum of

the participant's computational power. To achieve the same levels of security previously

mentioned in current centralized systems, the company must invest in several servers

dedicated to run those tasks. In contrast, in a decentralized system, anyone can contribute to

the network with their own devices, collaborating, and sharing efforts to achieve the highest

levels of security. Consequently, the low costs of decentralized systems would be more

attractive to businesses.

3.6.4 Business Model Abstractions and Decentralized Autonomous Organizations

(DAO)

Features like role-based, permission-based, and business logic smart contracts help to

design autonomous organizations where participants behave according to specific rules of the

network. These network’s behaviors are denominated Decentralized Autonomous

Organizations (DAO). Moreover, the consensus protocols of blockchains let the business

model decisions being achieved by votes or consensus. Consensuses build a trustworthy

platform to improve the outcomes of decisions that might impact the future and direction of

27

an organization. Consensuses let individual or groups of developers, setup the laws over

which all the participants within a network interact with each other, providing trust, security,

immutability and reputation overall activities executed and overall the history of the

organization.

3.6.5 Efficiency

Bitcoin uses Proof of Work protocol, which requires large amounts of processing

power. The Bitcoin network power consumption is increasing at an unreasonable rate to

ensure security. As the network grows, that amount of waste is unacceptable for FinTech.

There are several approaches to broader adoption in FinTech to reduce the amount of

computational power by diminishing the participation of all machines as processors and

instead of using better consensus algorithms [9] ⁠. For example, permission blockchains could

be executed in a fraction of the time Bitcoin requires, which is 10 minutes to solve the puzzle

between the miners to secure the transaction [27] ⁠. Hyperledger and Ethereum reduce that

timeframe significantly.

 3.6.6 DBMS vs. Blockchains

Why not use DBMS instead of Blockchain? This is a consistent argument on early

adopters. In regards to the Financial Sector, one of the main goals of the financial data centers

is to reconcile the records among several institutions. Therefore, with Blockchain outsider

institutions could be allowed to read data from the distributed ledger and have guaranteed that

those transactions are valid against the data held by others. Moreover, Blockchain hashing

can be used to create an immutable audit trail, and eliminate the need for most external audits

since each asset version has a traceable hash of previous versions.

3.7 Table of the Scope of the Research

Total References used 46

Use of the Paper for the Chapters Authors

Problem Statement – Music Industry [4] Passman, D. S. (2015). “All you need to know about the music

business.” Simon and Schuster.

Problem Statement – Music Industry Inefficiency [45] Rethink Music Initiative. (2015). Fair Music: Transparency and

Payment Flows in the Music Industry. Boston: Berklee Institute of

Creative Entrepreneurship.

Literature Review – Intro to Blockchain [21] Tapscott, D., & Tapscott, A. (2016). “Blockchain Revolution:

28

how the technology behind bitcoin is changing money, business, and

the world.” Penguin.

Literature Review – Intro to Smart Contracts [29] Christidis, K., & Devetsikiotis, M. (2016). “Blockchains and

smart contracts for the internet of things.” IEEE Access, 4, 2292-

2303.

Literature Review – Overview of Ethereum Clients [35] Rouhani, S., & Deters, R. “Performance Analysis of Ethereum

Transactions in Private BlockChain.” University of Saskatchewan,

Saskatoon.

Architecture of Ethereum [34] Wood, G. (2014). “Ethereum: A secure decentralized

generalized transaction ledger. Ethereum project yellow paper,”,

151, 1-32.

Performance and Workload Setup [27] Pongnumkul, S., Siripanpornchana, C., & Thajchayapong, S.

(2017, July). Performance analysis of private blockchain platforms

in varying workloads. In the 2017 26th International Conference on

Computer Communication and Networks (ICCCN) (pp. 1-6). IEEE.

Table 3.1 Scope of the Literature Review and Relevant Papers

29

CHAPTER 4

ARCHITECTURE

In this section, the overall architecture of the system is presented. Its main

functionalities and some of the features of the two leading Blockchains implemented,

Hyperledger and Ethereum. Additionally, this section explains the consensus and frameworks

that fit the necessities of the use case.

First, the levels of abstraction of the system are exposed. Then, this chapter focuses on

extensive research on both platforms Hyperledger Fabric and Ethereum. Although, the source

code in Ethereum will use the default consensus with a local testing network.

4.1 Layers of Abstraction

This section analyzes each of the layers that intervene in the design, from the underlying

Machine Consensus Layer to the top Business Application Layer.

4.1.1 Machine Consensus Layer

This layer describes different setups of the consensus of peers and algorithms for the

validation of the world state. Although, the consensuses and underlying architecture of both

Hyperledger and Ethereum blockchains will be explained individually in the sections of each

Platform. Despite the research over the Machine Communication Layer, the default consensus

protocols of each platform were used since the application doesn’t need complicated settings

on the Machine Communication Layer, but the research shows the possibilities they can offer.

4.1.2 Application Layer

This layer introduces digital asset distribution according to agreements. This project

doesn’t consider the details of the data input business strategy as a priority. Usually, the data

input comes from Distributors to the Labels by Copyright Companies. The application

considers data imports from the participants with the tag “Distributors” with random data.

Therefore, the project will not focus on how certain tracks revenues (digital asset) have more

income than others since nowadays these values are determined by algorithms of streaming

services and copyright organizations that intervene in the publishing process.

30

This project assumes that the input of the tracks is successfully carrying the real value

of the revenues of each track either by uploading files or creating an instance of a song on the

user interface. The input data is the point of departure for information processing. From this

point, the revenues of the tracks flow through several participants by order of smart contracts.

It means that if there is more than one smart contract established by two participants. The

revenue distributes the value through the first person that proposed the agreement, the network

pays the shares of the participants, and then the system takes the following smart contract to

execute the next distribution.

In Figure 4.1, the data input is the track revenues. Then, the branch to the left distributes

the payment of the Track Revenue between Distributor A1 and Record Label Company A2

according to an agreement between the two of them. This process generates a Track Revenue

value A version2. The new version of the Track Revenue represents an update on the Ledger

regarding the exchange of the Track Revenue. Finally, the system updates the account balances

between the two participants in the Ledger. This process repeats itself as more smart contracts

exist, creating different branches as many participants as required.

The number of digital assets (track revenue), smart contracts, and transaction

computations within the network increase the expansion of the number of Docker containers

automatically in the case of Hyperledger Fabric and the number of virtual machines in the case

of Ethereum. The granted access participants can see all the transactions, digital entities, and

chaincode versions in a public log in both platforms. In the case of Hyperledger Composer,

anybody can see the docker container logs, and in the case of Ethereum, anybody can see the

public network transactions.

31

Figure 4.1 Proposed distribution workflow as described in the Problem Statement (Chapter 2)

4.2 Hyperledger Project

In December 2015 Linux Foundation created Hyperledger as a platform for scale

enterprise blockchain solutions quickly and with all the support of Linux Community.

According to the Hyperledger Project Organization, peer to peer distributed systems promise

solutions such as data-sharing networks, cryptocurrencies, storage of value efficiency,

decentralized digital communities, financial liquidity with low latency transaction processes,

higher levels of data flow in Health Services, improvements on supply chain applications

quality, and internet of Things [30]. Overall, Hyperledger is designed to achieve legacy

software and modularity by the community. Ultimately, Hyperledger Project has developed

several architectural frameworks to work with to address specific solutions. The currently

active projects are:

● Hyperledger Sawtooth. -To manage distributed ledgers with Proof of Elapsed Time to

improve efficiency.

● Hyperledger Iroha. - A secure framework for businesses to plug to blockchains.

● Hyperledger Burrow. -It interprets smart contracts of Ethereum virtual machines.

● Hyperledger Indy. - It provides libraries or APIs to interact with other blockchains or

ledgers.

32

● Hyperledger Fabric. - A platform foundation to develop applications in a modular

architecture.

To understand the selection of the components according to the requirements of a

specific use case is necessary to analyze the consensus mechanisms that Private Blockchains

such as Hyperledger offer.

4.2.1 Consensus Algorithms

Consensus builds a trustworthy platform to improve the outcomes of decisions that

might impact the reliability, security, and direction of a participant in the network. The primary

function of the consensus is to guarantee the order of the transactions and validate new blocks

according to certain rules. It is responsible for plugging specific customized smart contracts

and verify the data input that interacts with them. Although, it is essential must understand the

nature of public and private consensuses first.

4.2.1.1 Types of Consensuses

There are two main groups of consensus algorithms. The permission lottery-based

algorithms include algorithms such as Proof of Elapsed Time (PoET) or Proof of Work (PoW,

Bitcoin).

Lottery-based algorithms are advantageous because they can scale to a more significant

number of nodes and achieve more fairness. Since the winner or winners of the lottery propose

a block and transmit it to the rest of the network, there is an equal and fair opportunity of

participation (For example in the case of Bitcoin). Although, if two nodes propose a block at

the same time, this system creates a fork and just the one winner that has more computational

power is validated.

On the other side, permission voting-based algorithms include Redundant Byzantine

Fault Tolerance (RBFT) or Paxos. These algorithms offer low latency finality (timeframe to

validate a new block) due to the nature of voting consensus. When a majority or several specific

nodes validate a transaction or block, consensus exists, and finality occurs. Although because

these voters must exchange messages, the time of reaching an agreement also increases. That's

why there is a tradeoff between scalability and speed in private blockchains [31].

33

These algorithms are used according to the necessities of the use case. For example,

blockchains applications such as cryptocurrencies are environments where there is no trust. In

these scenarios, a lottery-based algorithm such as the PoW could achieve fairness of

participation. Instead, in other ecosystems such as businesses need some degree of trust and

privacy. In these cases, the voting algorithms could be better suitable.

It is crucial to compare particular parameters such as the speed of creation of new

blocks, finality latency, and scalability or level of decentralization to understand the use case

of such consensus. Among them, the finality latency timeframe is one of the most important.

Finality Latency is the timeframe that takes to validate the first most extended fork of

the chain as the new valid block. In PoW, as the solving puzzle difficulty increases, the

centralization of miners is needed (mining pool). Therefore, if some mining pool can obtain

enough processing power to generate new blocks at a rate faster than the longest chain, it can

produce a new longest chain so changing the history of the transactions. Consequently, lottery-

based algorithms are not suitable for low Finality Latency. Additionally, lottery-based

algorithms such as PoW consume large amounts of computational problems that are not

acceptable for business models.

Given the previously discussed parameters, it’s possible to compare the advantages and

disadvantages of using any of the permission consensus algorithms (private blockchains).

Table 4.1 shows the comparison of permission consensus approaches and standard PoW.

Table 4.1 Comparison of Permission Consensus Approaches and Standard PoW [31]

4.2.1.2 Permission Voting Algorithms

Permission voting algorithms have some limitations. Since these are designed for non-

fault tolerance, there are some tradeoffs. For example, Byzantine Fault Tolerance (BFT) works

if the number of malicious nodes is below the safety threshold of ⅓. Also, the processing time

34

of messaging to achieve consensus. While there are more nodes in the network, more messages

must be sent to reach consensus (voting), and higher reliability is successful. Therefore, even

if there are some tradeoffs regarding points of failure, it achieves efficiency. Now, the process

of consensus within the Hyperledger Components Environment is detailed.

4.2.1.3 General Process Flow of Hyperledger Project Consensus

In Hyperledger, the consensus is achieved by interacting with different active

components within a Hyperledger Instance: the client, the consensus, the smart contracts. The

first step in the process is to receive the transactions from the client. Then several ordering

services interact with each other. They can vary from more centralized or more distributed.

These services are responsible for the encryption, policy, and deterministic ordering of the

transactions gathering the transactions in blocks.

The validation occurs when connecting the Consensus Layer with the Smart Contracts

Layer. The Smart Contract Layer validates each transaction since it has the business logic. For

example, validation of transactions that could result in a double spend, duplication of digital

asset, or version control failure. Additionally, the Consensus Layer works with the Machine

Communication Layer to communicate to the client and other peers.

Consensus

Algorithm

Consensus Pros Cons

Kafka in Hyperledger Fabric

Ordering Service

Permissioned voting-based It provides crash default

tolerance. Completion happens

in a matter of seconds

Kafka is not Bizantine fault-

tolerant, preventing the system

from reaching agreement in the

case of malicious nodes

RBFT in Hyperledger Indy Election strategy set to a

permissioned, voting-based

strategy by default.

Provides Byzantine fault

tolerance. Finality happens in a

matter of seconds

The more nodes that exist on

the network, the more time it

takes to reach consensus. The

nodes in the network are

known and must be totally

connected.

Sumeragi in Hyperledger

Iroha

Permissioned server reputation

system.

Provides Byzantine fault

tolerance. Finality happens in a

matter of seconds. It can scale

to petabytes of data distributed

among different clusters

The more nodes that exist on

the network, the more time it

takes to reach consensus. The

nodes in the network are

known and must be totally

connected.

35

PoET in Hyperledger

Sawtooth

Election strategy set to a

permissioned, lottery-based

strategy by default

Provides scalability and

Byzantine fault tolerance

Finality can be delayed due to

forks that must be resolved.

Table 4.2 Comparison of Consensus Algorithms used in Hyperledger Frameworks

[31]

Table 4.2 shows a comparison between all the consensus available on Hyperledger.

Apache Kafka for Hyperledger Fabric, RBFT for Hyperledger Indy, Sumeragi for Hyperledger

Iroha, and Proof of Elapsed Time for Hyperledger Sawtooth.

4.2.1.4 Which Consensus to Apply?

Now it’s imperative to find the most suitable solution for the application. At the time

of this research, some frameworks already have some support from the community, and others

still were in development. For example, Hyperledger Iroha that uses Sumeragi looks promising

since it achieves BFT and it can scale up to petabytes of data. Although it’s still on

development. Hyperledger Sawtooth that uses PoET can result in high latency in finality due

to its BFT. The Sawtooth community just released v1 in late 2017 and still needs some

exploration throughout the tools. Hyperledger Indy with BFT also is still on development.

Although, Hyperledger Fabric (HF) is fault-tolerant and still achieves higher speeds [27]

Additionally, the HF community released version 1 before Sawtooth. Therefore, the

community is more prominent. Moreover, HF has developed several development tools to

facilitate the development of specific use cases. Ultimately, HF can plug-in components that

accept BFT out of the box consensus due to its modularity, to solve customized requirements.

For example, users could plug in BTF protocols such as Practical Byzantine Fault Tolerance,

Tendermint, Byzantine Fault Tolerance Smart or Honey Badger [32].

Since the application transacts with a small number of nodes, Kafka of Hyperledger

Fabric is enough for achieving efficiency.

4.2.2 Hyperledger Fabric

Hyperledger Fabric is an enterprise permission distributed ledger that offers modularity

and versatility ledger platform for a broad set of industry cases. The architecture accommodates

36

the diversity of solutions with plug and plays components such as consensus, privacy, and

membership services. HF enables the concept of a network of networks. Members of the same

network collaborate, but their data remains private to other networks in one single big ledger.

HF has features including the use of Docker Containers, client-oriented integration (Node.js),

and additional SDKs for other languages such as Java, Javascript, due Go programming

language is at its core.

4.2.2.1 Hyperledger Fabric Architecture

According to the Hyperledger Architecture Working Group, a cross-project forum for

architects and technologists from the Hyperledger community, there are several abstract

components to follow a modular philosophy. These components can be modified and plugged

with other external parts of other blockchains as required. Some of the possible components

are described as follows:

• Consensus Layer to generate agreements for generating the next block

• Smart Contract Layer. It is a layer for developing the custom logic of the transactions.

• Communication Layer.- It is a layer for developing communication protocols between

peers.

• Data Store Abstraction Layer.- It is a layer that integrates with other storage modules.

• Crypto Abstraction Layer.- It is a layer to develop the algorithms for cryptography.

• Identity Services Layer.- This layer manages the initial settings such as registration

of identities, specific permissions for user, and identity security.

• Policy Services Layer.- This layer establishes policies for specific decisions.

• APIs Layer.- It integrates Hyperledger with other applications.

• Interoperation Layer.- It communicates between different blockchain instances.

4.2.2.2 Hyperledger Fabric Consensus Mechanism

Hyperledger Fabric consensus breaks into 3 phases according to the Hyperledger

Architecture Group [31]. The endorsement phase which is driven by policy, the ordering phase

that accepts an incoming order transaction to be committed to the ledger afterward, and the

validation phase which takes a block of requested transactions and checks the correctness of

the results. Figure 4.2 shows the transaction flow according to these phases Project [31].

37

Figure 4.2 Transaction Flow in Hyperledger Fabric [31].

The consensus is achieved as follows. (1) When a client creates a transaction, a message

request invokes a chain code function. (2) The transactions are executed by the endorsing peers

simulating against the real current world state, and no updates are made to the ledger at this

point yet. These procedures established by the endorsing peers are called endorsement

signatures. (3) Then the client verifies those signatures by matching sets according to

endorsement policies. (4) If these conditions are met, the client creates a sealed envelope and

broadcast it to the ordering service. Although the ordering service only gathers data shells but

not read the contents. (5) Then, it creates signed chain blocks and delivers it to the rest of the

peers. Back to the peers, the endorsement policies validate the blocks and read a set of

versioned keys at the time of simulating a transaction. (6) If all the conditions are met, the

transaction proposal on the envelopes is marked as valid or invalid otherwise. Finally, an event

is triggered to notify the client that the transaction has been appended to the blockchain, making

it immutable [33].

Additionally, the ordering service API allows incorporating other algorithms such as

the BFT agreement. Currently, several algorithms are supported to be plugged in on the

ordering services. Among some of them, BFT smart, Simplified Byzantine Fault Tolerance

(SBFT), Honey Badger of BFT, etc. As mentioned before, Hyperledger Fabric V1 doesn't come

with an external pluggable algorithm by default. It currently includes two of the following

options as default:

1.- A centralized non-replicated ordering service that does not execute any specific

protocol and it's used mostly for testing (The choice for the application).

38

2.- An ordering service using Apache Kafka cluster to prevent crash faults. It uses a

few hardware resources, but it is vulnerable to a single point of failure (cheats of peers) [31].

4.2.2.3 Docker Containers

Hyperledger Fabric uses docker technology, which is container-based virtualization,

which doesn't require each guest (node on the blockchain) to run the entire operative system.

The containers are more efficient than VMs because additional resources are for each OS are

not needed. Indeed, the instances of these containers are smaller, faster to create, migrate, and

more than one case can be deployed on the same hardware. Additionally, Docker Containers

are written in go programming language.

There are several benefits to using docker. For example, putting all the application

dependencies in an instance of a container. Also, it is fast and lightweight in comparison with

Virtual Machines. Moreover, it let us use all the resources appropriately limiting the memory,

CPU, network, and disk according to the requirements. Container architecture is also better

suitable for microservices, which are applications with a single function. Ultimately, Open

Container Project is supported by companies like VMWare, Amazon Web Services, HP, IBM,

Microsoft, Google, EMC, Red Hat [2] ⁠⁠.

4.2.2.4 Hyperledger Composer

Due to the necessities of more natural and faster development, Linux Foundation

created Hyperledger Composer (HC) for developers. It offers a wide variety of features for the

quick development of blockchain solutions. These features include easy Hyperledger Fabric

network instance installation, web services (REST API) easy integration, query frameworks,

chain code development.

4.3 Ethereum Blockchain

Ethereum is the second most known blockchain and cryptocurrency. According to

coinmarketcap.com, Ethereum capitalization is around 59B US$, and the price of ether is

593$[15]. Vitalik Buterin proposed the kernel of Ethereum in 2013. Since its foundation,

Ethereum has aimed to respect the social contract, using the internet as a decentralized value

transfer, shared across the world, and virtually free to use to everybody. Also, the network

39

would aim for providing the end developer an integrated end-to-end system to build software

in a trustful object messaging framework [34].

4.3.1 Ethereum Philosophy and Concepts

Despite the necessary adjustments in public policy for real use case scenarios, Ethereum

core developers have guided the technology to follow consensus programming language ends.

According to Gavin Wood, one of the founders of Ethereum and Ethcore, “The incorruptibility

of judgment could be achieved by a disinterested algorithmic interpreter.” Moreover, he warns

transparency or the capacity to ensure that rules and protocols (that are followed in human

interaction) never happen in human-based systems because the information is often lacking,

and everyday old prejudices are present [34]. Additionally, Wood exposes the fundamentals of

the Ethereum Network Architecture [34]:

World State. - Ethereum is a transaction-based state machine. A genesis state is

incrementally being executed until it reaches a final state. The state might include information

such as account balances, reputations, trust arrangements, data about details of the physical

world. The World State is a point in time of the network, which is the accepted and validated

version of itself. It is a mapping between addresses and account states encrypted in 256-bit

hashes. It allows the previous states to compare with current or prior versions to validate some

events. The World State prevents invalid states where, for example, a decrease in balance is

executed without the correspondent increase in other.

Ethereum Virtual Machine. - The environment, on which miners execute transactions

and smart contracts, is called the Ethereum Virtual Machine (EVM). It behaves like a single

processor computer where every node is part of the network and contributes its processing

power. This global virtual machine executes on a single transaction in a moment. Therefore, it

still has the same problems as concurrent systems. The smart contract could be written well-

formed and safe, but an untrusted external call could lead to unexpected results caused by

foreign transactions. Additionally, the Blockchain interaction enables the possibility of Cross-

function Race Condition, which is an attack that uses two different functions or contracts to

share the same state [35].

Ethereum Clients. - To become an Ethereum participant or a node, the participant

(Ethereum client) must download the history of transactions of the blockchain. There is plenty

of clients written in different programming languages, each with advantages and disadvantages.

Rouhani et al., [35] researched to determine the speed of two of the most popular Ethereum

40

Clients, Parity, and Geth. The study concluded that Parity 89.8 percent faster than Geth in terms

of transaction processing. Figure 4.3 shows a diagram of the comparison between the two

clients. Although, this application used Ganache for the implementation in the Ethereum

Platform (See more details in the Implementation Section Chapter 5).

Figure 4.3 Average Time for each transaction on a client with a different amount of

RAM [35].

Value over the network (Ether). – Wood [34] mentions that Ethereum was built to

incentivize computation. Therefore, a method for transmitting value was developed, the Ether

cryptocurrency. The cryptocurrency can divide itself into several parts. Figure 4.4 shows all

the sub-denominations the Ether can be grouped:

Figure 4.4. Ether token system [34].

Additionally, Ether is an incentive for the miners but also to develop quality code since

an inefficient code will cost more Ether. Remix solidity testing environment was used for the

https://remix.ethereum.org/#optimize=false&version=soljson-v0.5.1+commit.c8a2cb62.js

41

first contract deployments. Ultimately, Ether was issued at a rate of 5 Eth per block on a block

completion time of 12 seconds [36].

Transactions. -There are two types of transactions; some that result in a message and

some others that occur in the creation of new accounts. An account state represents wallets,

smart contracts, and any other data representation. When a transaction is submitted, a fee is

charged to the senders of account states to avoid network abuse or the Turin Completeness Test

for security purposes.

Gas. -. The gas is the fee for Ethereum blockchain transactions. The gas is taken from

the sender and remains invalid until the transaction is verified and accepted. The cost of the

transaction in the gas limit is predefined by how much the system executes code. Otherwise,

the network would reply to an ‘Out of Gas’ statement.

The gas limit is the maximum number of units of gas measured in Wei (1 Ether = 10^18

wei) willing to spend in the transaction. It’s a threshold set up by the user account. The gas

limit for standard transactions is, on average, 21000 Wei.

The gas price is the cost per unit of gas that the transaction needs for mandatory for

being executed. The value of it varies according to the performance of the miners. For example,

in low traffic times, it can go down to 2 Wei, and in Token Creation Periods, it can go up to 50

Wei. If the transaction is unsuccessful, the difference between the gas limit minus the gas price

is sent back to the sender.

Accounts. - Accounts are required to submit transactions. In Ethereum there are two

types of accounts: The Externally Owned Accounts (EOA), which are used by the users to send

transactions, and the Contract Accounts, to store the information about a specific contract. Each

account within Ethereum has a 20-byte address with the following main four attributes:

• Nonce: Counter to verify that an account is created once and only once.

• Ether balance: Accounts Ether value

• Contract code: a container for logic (Solidity)

• Storage: Empty by default, but is for holding data of the logic or memory

EOA and Contract Accounts are indexed by the address. Although, the main difference is

that EOAs have no Ether balance, no logic, and use private keys. Meanwhile, Contract accounts

42

have Ether but are executed by logic. Solidity can write and read to the internal storage and

send additional messages or create other contracts (In Solidity, a Smart Contract is such as a

Bean in Java). It’s crucial to mention that if the system just has EOAs, the system becomes

such as another altcoin of Bitcoin, losing the value of the programmable logic [36].

Blocks and Receipts. -In Bitcoin's Proof of Work, the transactions are saved in blocks

in the chain since the creation of the genesis. On the other hand, in Ethereum, the blocks collect

relevant pieces of information such as the Hash, the Beneficiary Miners, the Number of

Previous Blocks, the Gast limit used, the Gas Price, the Timestamp, and other properties. When

a transaction is executed, a Transaction Receipt is also generated, containing execution

information concerns.

Decentralized Applications DApps. - Distributed Applications (DApps) are

applications (typically a web application that runs in the browser for Ethereum) that interact

directly with Smart Contracts on the blockchain. A traditional web application would have a

web client that makes API requests to a backend server and persists. Data would be stored on

a database wholly owned by the application or in the cloud. On the other hand, in a DApp, the

web application reads data directly from the blockchain and writes data via transactions back

to the blockchain. More information about the implementation of the DApp in Implementation

Chapter 5.

4.3.2 Process of Ethereum Virtual Machine Mining

Figure 4.5 shows the process of block completion in the Ethereum Virtual Machine

[36]. The main difference is the way how the blocks. The method of mining Ethereum is as

follows:

Figure 4.5: Ethereum Blockchain transaction list and state [36]

1. The system checks and validates the following:

• Prior Block reference exists and it's valid.

43

• The timestamp of the current block is later than a prior block and 15 minutes later

• The block number, difficulty, transaction root, uncle root, and Gas Limit are valid.

2. Now the system set the previous block index in S[0](S=World State)

3. The system executes the transaction list over the appropriate state. If a call returns an

error or the gas consumed exceeds the Gas Limit, the state returns an error.

4. S_Final (Final and current world state) becomes S[n] when the reward is paid to the

miner.

5. The system verifies the hash tree of S_FINAL is equal to the final state root provided

by the block header.

4.3.3 Ether Mining

As an educational practice, a miner to contribute to the network with computational

power and get rewards in Ether was set up, so Ether could be available to deploy the contracts.

Mining cryptocurrencies is an activity that involves both electronic and computer

science to integrate decentralized servers and allocation and transportation of value expressed

in cryptographic wallets. Mining cryptocurrencies, especially bitcoin, has become a full-time

job for some independent people and companies. Companies like Bitmain or Genesis Mining

have some of the biggest bitcoin mining farms in all the world. Due to the PoW protocol,

bitcoin miners consume significant amounts of energy.

These computers use powerful mainframes of computer power to solve cryptographic

puzzles. Companies like Bitmain have developed their hardware to reach the maximum

capacity of mining. Being a miner is not that simple as it seems. If a person wants to mine with

mainstream hardware, their probabilities of puzzle-solving reward share are very low.

Although, nowadays, several companies have joined computational power to offer shares to

individual miners in exchange for some fee of reward share. These subnetworks are called

mining pools, which let the average user join their network and work together to achieve better

computational power. Usually, these mining pools also allow the user, add several “workers”

(individual processors, GPUs, or any other device that has computational power) to get the

share to a specific cryptocurrency wallet. The user of a mining pool can choose to assign the

rewards directly to a cryptocurrency wallet or to hold it in a point of access to be withdrawn

afterward. Usually, most of these pools offer a dashboard to watch the performance of the

worker, the estimated rewards made to be paid, and other characteristics of the pool.

44

The hash rate is the measure over a probability of solving the puzzle. For example, a

GPU Nvidia 8GB has an average of 27Mh/s. When the rounds of problem-solving are

complete, all the individuals connected to the mining pool get a fair share of the reward.

The software was written commonly in C++ to interact with the GPU to set up an

Ethereum miner. This software usually consists of bash commands that run either Linux, Mac

or Windows. A crypto wallet, the URL of the pool, and the number of threads executed by the

machine must be typed to initiate the task of the miner. Once the job starts, the user must take

care of the maintenance of the devices, add more or so. As more time the miner works, its

components get warmer, so a cooling system and a power supply protection is recommended.

Figure 4.6 Ethereum GPU Miner

45

CHAPTER 5

IMPLEMENTATION

This section describes the implementation of the proposal in the Problem Statement

Section Chapter 2 and the Architecture Section Chapter 4. This section also explains all the

tools for development that were taken into consideration for the completion of the proposal.

5.1 Definition of the Environment Variables

This section will define some variables that are applicable just to the design of the

architecture of the solution and graphics of the workflow (more information in the Terminology

section). The application’s proposal distributes an Asset that has a numeric value among

participants. The Asset represents a Track Revenue value, a tokenized song revenue, or any

representation of content that has value on the network. The participants are called Traders.

They represent distributors such as Spotify, a record label company such as Sonya content

creator, or a customer. Third, the Traders can create Agreements (smart contracts) of the shares

of an Asset for their services. An Agreement represents a copyright contract which is currently

issued by content publishers, for example, the Digital Millennium Copyright Act (DMCA) or

the Digital Performance Right in Sound Recordings Act (DPRA) [3]. The application defines

an Agreement when a Receiver, an Emitter, and the Percentage of the Receiver, are specified.

Receiver and Emitter are just names assigned to a Trader when participating in the creation of

an Agreement.

The distribution of Asset’s values starts when a Trader imports an Asset with a numeric

value. The network evaluates possible Scenarios based on conditions and distributes the Asset

among the Trader’s balances. To illustrate the behavior of the system, Figure 5.1 shows the

example of a basic Scenario of distribution with 4 Traders.

Trader 1: Distributor,

Trader 2: Label,

Trader 3: Artist A,

Trader 4: Artist B.

In this example, these Traders have created the following agreements:

Agreement 1: Distributor->Label (80% to receiver),

46

Agreement 2: Label->Artist A (40%),

Agreement 3: Label->Artist B (40%).

The process starts when the trader ‘Distributor’ imports Asset. For example, let's take

$100. The Distributor obtains the entire Asset value. Then, according to Agreement 1,

Distributor gives 80% of its import ($80) to Label. The Distributor remains with 20% ($20).

After that, according to Agreement 2 and Agreement 3, Artist A and Artist B obtain 40% off

Label import ($32). The Label remains with 20% ($16).

Figure 5.1 Example of distribution with agreements

5.2 Workflow of Data

 Some steps of the workflow are achieved by interacting with the front end. Although,

its crucial to understand the data workflow from the source to acknowledge the expected t input

and output. Figure 5.2 shows the General Diagram of the application’s workflow of the Asset

import down to the withdrawal. The Asset imports affect the balance of the users

instantaneously. Then the user can remove the asset values and ultimately request real

payments.

47

Figure 5.2 General Diagram of Data Flow

5.2.1 Balances of Users

In the application, there is a disabled balance and an enable balance. Figure 5.3 shows

the logic of disabled balance and enabled balance. The yellow hexagons represent a

cryptographic value of the Asset, and the green boxes represent a Receipt transaction of those

values.

The disabled balance is earned when a user with the Distributor imports an Asset, and

the system finds that this Asset doesn't have any Agreements associated with other Traders.

Therefore, the system gives the user the entire amount of the import of the Asset with the tag

disabled balance. This disabled balance can be distributed later when an Agreement is created

with other Traders. In Figure 5.3, Trader A imports $5 as revenue into the system, but there

are not any agreements between Trader A and any other. After that, the system adds the

quantity to the disabled balance (or “On Hold Balance”-More information in the following

section) of Trader A.

The enabled balance is the value earned by a normal distribution where an Asset that

has one or more agreements in the chain of payments. Each participant receives a share of the

payments according to the Agreement. In Figure 5.3, Trader A imports 5$ as revenue into the

system but the system finds an agreement between Trader A and Trader B. Consequently,

48

according to the Agreement Trader A must give 80% of the revenue ($5) to Trader B ($4), and

Trader A will remain with the 20% ($1).

Figure 5.3 Logic of the Balance Enabled and Balance Disabled in Track Revenues

5.3 Distribution Algorithm

As mentioned in the previous section, the system uses two kinds of balances, the

Enabled Balance and the Disabled Balance. Both constitute the world state. Figure 5.4 shows

the Distribution Algorithm Workflow. It's assumed that the user (the Uploader Trader) selected

one or more tracks and has imported a new Asset value.

There are two main sub-processes within the Distribution Algorithm: The First

Distribution (Light Blue big box in Figure 5.4), and the Recursive Distribution (Light Pink big

box in Figure 2). The input for the First Distribution process is the Trader Id (Uploader Id)

that imported that Asset, the Asset information, the datetime.

49

5.3.1 First Distribution Process

Figure 5.4 shows an overview of the Distribution Algorithm. This first subprocess has

the following procedure:

1. The system obtains the information of the Asset from the Ledger. Information such

as the Emitter Id (Uploader Id), the Previous Receiver Id (At the beginning is ‘None’ since

there aren't previous receivers), Previous Agreement Id (At the beginning is ‘None’ since there

aren't prior Agreements evaluated), and the Amount (At the beginning is the total Asset value).

2.- The system sends the last information to the process Evaluate Receivers process.

Figure 5.5 shows the Evaluate Receivers process. In this process, the system executes a query

to find possible agreements between the Emitter Id and any other Trader.

Case 1: If there are not Agreements, then the network returns an empty Receiver List.

Case 2: If there were one or more Agreements, then for each Agreement, some relevant

information is stored in the Receiver List:

-The Percentage of Receiver’s share

-The Emitter Id (Uploader Id first iteration and then according to new inputs)

-The Receiver Id

-The Agreement Id

-The Amount computed destined for the Receiver [(Amount Input) * (Individual Receiver

Percentage)].

-The datetime

50

Figure 5.4: Distribution Algorithm Workflow

51

Figure 5.5: Evaluate Receivers Process

As the final step of this first iteration, a computation for the Emitter payment (Uploader

at the beginning) is executed by multiplying what is left of the percentage of the share of the

Asset with the current iterative amount. Finally, a Receipt is created to acknowledge the

network of a change in the Balance of the Emitter account.

3. The system evaluates the length of the Receiver List as a result of the Evaluate

Receivers process in case 2.

52

Case 1: If the Receiver List is empty (length 0), the process On Hold Distribution starts.

In this process, there are not Agreements associated with the Uploader (Unique case).

Consequently, the Uploader that updated the Asset value automatically gets the entire amount

but with a hold flag (an amount that can be distributed later when Agreements are recognized).

Ultimately, a Receipt is created to acknowledge the change of the balance of the Trader

(Uploader Id) with a flag “on hold.”

Case 2: If the Receiver List length is 1 or more significant, the First Distribution process

finishes, and the Recursive Distribution process starts.

5.3.2 Recursive Distribution Process

The pink container in Figure 5.6 shows the workflow of the Recursive Distribution

process. The Receiver List is the data input with some extra information:

-Emitter Id (Current Emitter in the loop)

-Previous Emitter Id (At the beginning is the Uploader but later depends on the recursive input)

-Previous Agreement Id (Of the prior process Evaluate Receivers)

-Amount (From the last receiver in first Evaluate Receivers call)

-datetime (to discriminate other inputs or threads).

After that, once the system had these parameters, there are three possible outcomes with

the length of the Receiver List:

Case 1: If the Receiver List is empty, the process enters the Last Node Distribution

Process (Figure 5.6). In this process, the Last Receiver(node) doesn't have any Receivers left

to distribute. Additionally, the network makes the last query to ensure the prediction that the

node is the last one on the branch of distribution. Consequently, the system should find an

Agreement between the Current Emitter and the hypothetical Last Receiver. Finally, the

Percentage of a share of the Agreement is taken and multiplied with the Amount input of the

iteration, adding this value to the Balance of that Last Receiver. Finally, a Receipt for the Last

Receiver is created, and the system passes to the next iteration of the Receiver List.

Case 2: If the Receiver List’s length is “equal” to 1, a validation process called Evaluate

Receipt process (Figure 5.7) is executed. Evaluate Receipt process is control of duplication for

the distribution between two nodes. Additionally, it uses the datetime to discriminate the

distribution flows.

53

Figure 5.6: Last Node Distribution

Figure 5.7 shows the procedure to Evaluate Receipt process. Each node represents a

trader in the network. The problem resides when the Current Receiver is getting an Amount

from more than one Emitter. Duplications were avoided by analyzing the relationships between

Traders with metadata such as previous Receipts with the same Emitter, datetime, and Asset

Id. Therefore, the branches between the Previous Emitter (node A in Figure 5.7), the Current

Emitter (node B or C in Figure 5.7), and the Final Receiver (node D in Figure 5.7) are

evaluated. The procedure consists in a Previous Receipt Evaluation (Emitter(A) -> Receiver

(B or C) in Figure 5.7) and a Next Receipt Evaluation (Emitter (B or C) -> Receiver(D) in

Figure 5.7). Both branches are the same but with different paths. After the procedure, there are

two possibilities:

(1) If there were previous Receipts, it means that somehow the network already paid that branch

part (A-B-D or A-C-D in Figure 5.7) and the current process of Recursive Distribution

“finishes==break.”

(2) If there are not Receipts, the Recursive Distribution function executes again.

54

Case 3: If the Receiver List’s length is more significant than 1, then for each item in the

Receiver List, the Recursive Distribution is self-called with the following change of input

parameters:

-Emitter Id (Current Receiver becomes the following Emitter in the loop)

-Previous Emitter Id (Is the current Emitter. Is a parameter needed in the following Evaluate

Receipts process)

-Previous Agreement Id (current Agreement Id resulted from Evaluate Receivers process)

-Amount (current Share Amount from Evaluate Receivers call)

-The same datetime (For the following Evaluate Receipts processes)

Figure 5.7: Receipt Evaluation-Branch Evaluation Process

5.4. Limitations of the Algorithm

This section shows that the algorithm has some limitations in specific possible

scenarios. There are two Scenarios suitable to be successful in the distribution and one Scenario

that enters in an infinite loop and will need further research to improve it.

5.4.1 Scenario 1: Two sources of revenue for one node. Equal length branches of

distribution.

Figure 5.8 shows the Scenario 1with the following configuration:

Agreement 1: Trader 1 -> Trader 2 25%

Agreement 2: Trader 1 -> Trader 3 25%

Agreement 3: Trader 2 -> Trader 4 50%

Agreement 4: Trader 3 -> Trader 4 50%

55

Agreement 5: Trader 4 -> Trader 5 50%

The challenge in this scenario is to make sure that the distribution from (Trader 2 or

Trader 3) -> Trader 4, executes correctly. It means that the system must ensure that 25% of

Trader 1 is destined to Trader 2 and 25% to Trader 3 by avoiding duplication from other

sources. This problem solves by using the Evaluate Receipt Process explained previously. The

mechanism validates the existence of previous receipts in the upper node relationships

(Previous Receipt Evaluation process) between (Trader 2->Trader 4) or (Trader 3->Trader 4)

and the lower node relationships (Next Receipt Evaluation process). Consequently, Scenario 1

successfully distribute the Asset value among the Traders.

Figure 5.8: Scenario 1

5.4.2 Scenario 2: Two sources of revenue for one node. Different lengths of branches

of distribution.

Figure 7 shows Scenario 2 with the following agreements between 5 Traders:

Agreement 1: Trader 1 -> Trader 2 25%

Agreement 2: Trader 1 -> Trader 3 25%

Agreement 3: Trader 2 -> Trader 4 50%

56

Agreement 4: Trader 3 -> Trader 5 50%

Agreement 5: Trader 4 -> Trader 6 50%

In this Scenario, the algorithm should automatically look for possible distributions

when the last nodes receive the distribution. For example, the left branch in figure 5.9: (Trader

1>Trader 2->Trader 4->Trader 6) is longer than the right branch (Trader 1>Trader 3->Trader

5). The system secures that both branches (left and right), are being distributed as different

branches. Additionally, the implementation mechanism uses one single thread for each branch

saving information in memory information for the next branches. Therefore, Scenario 2 does

not have any issue in succeeding.

Figure 5.9: Scenario 2

5.4.3 Scenario 3: Infinite loop. Failing to evaluate previous and following branches in

a node.

Figure 5.10 shows Scenario 3 with the following agreements between 4 Traders:

Agreement 1: Trader 1 -> Trader 2 50%

Agreement 2: Trader 2 -> Trader 3 50%

Agreement 3: Trader 3 -> Trader 4 25%

Agreement 4: Trader 3 -> Trader 1 25%

57

The problem that arises when the network tries to solve the second distribution between

Trader 3 and Trader 4 and Trader1, it ends in an infinite loop. The first distribution in the first

branch (Trader 1>Trader 2->Trader 3->Trader 4) is executed without problems, although the

second branch (Trader 1->Trader 2->Trader 3->Trader1) causes a problem. Since in Trader 3

there is more than 1 Receiver (case 3 in Recursive Distribution Process), the system doesn't

stop the distribution and continues if Trader 1 doesn't have to execute the Last Node

Distribution. Therefore, the distribution enters an infinite loop.

Figure 5.10: Scenario 3

The following section describes all the software development processes of the

application: all the software components, third-party software, APIs, and technologies used

overall in the system described in previous sections.

5.5 Hyperledger Fabric

The following HF frameworks accelerated development. Additionally, the architecture

designed for performance experiments of the HF platform in the application was created to

separate modules in case of the necessity of reusing them on future research. For example, the

HF Network is separated from the client (HC), and both are separated from the testing server.

5.5.1 Architecture of HF Software Components

In a real case scenario, the application would work with the following set of

components. The front end uses the Ionic Framework, and an API for communicating with the

back-end which holds the HF network, the Client (HC), and the middleware backend server

written in NodeJs.

58

Figure 5.11 shows the architecture for components of HF. The front end has a

middleware component that communicates with the backend through HTTP requests. The

backend (cloud-based) accepts the requests of the front-end managing the endpoints with a

NodeJs express server package. The endpoint methods use the data input and process it to the

blockchain network with HC.

Figure 5.11 Architecture of Hyperledger Fabric Solution

It is important to mention that the front-end (Ionic framework) in Hypereldger was

written with the same endpoint methods developed in Ethereum. Therefore, there no

duplication of the front-end component in Ethereum.

5.5.2 Hyperledger Fabric Components

This section mentions the Client (HC) configurations and the NodeJs Server interaction.

The front-end implementation will be detailed in later sections since the front end is the same

for both platforms.

Hyperledger Composer (HC). - The HC Framework was used to achieve the definition

of the network digital entities without worrying about specific settings of the Machine

Communication Layer. SOLO configuration was chosen since the application is focused on the

design of the algorithm of distribution.

59

In HC, the docker-composer.ylm file in fabric version hlfv12 shows the possible

configurations allowed in HC. This file could be modified to add several peers. The default

configuration of HC SOLO is described in Figure 5.12. Additionally, the SOLO configuration

plus the application data model have the following considerations:

Figure 5.12 SOLO Configuration for Hyperledger Composer

• 1 Single organization (Hyperledger Composer Application) and one single client connection

configuration (channel).

• 1 unique ordering service with SOLO configuration. It means that Kafka the system doesn’t use

BFT.

• 1 peer with endorsing and committing roles. This single peer holds the chaincode, interacts with

the ordering service, and finally validates the transaction. Further, the peer is configured to

use CouchDB as the state database. It means that the docker that represents the peer

uses CouchDB.

• 1 single Certificate Authority. This file extends the capabilities of the permissions.acl file which

gives access to the data to other HF networks (more information in the HF Data Modeling).

NodeJs Server. - NodeJs is a backend library of Javascript. It is designed to build

scalable applications and does asynchronous processing on a single thread to provide more

performance and scalability for applications that handle millions of concurrent requests [39].

The server component developed in NodeJs is responsible for accepting the Http

requests from the front end and passing the information to the Node Js SDK of the HC

framework to interact directly with the HF (runtime in docker containers that do hash

validation). Moreover, the component handles the route of URLs for the endpoint computations

60

and the response parsing for the front end. Figure 5.13 shows more in detail the back-end

component.

Figure 5.13 Software Implementation Architecture of the Back End

Ultimately, a very similar component was developed for Ethereum, with the same

endpoints, the same NodeJS package, and the same separation of files. The difference is that

Instead of the Hyperledger Composer SDK, web3 was used for interacting with the Solidity

contracts, and instead the NodeJs Execution time, it has an ABI (Application Binary Interface)

for communicating with the opcodes of the Ethereum Virtual Machine.

5.5.3 HF Data Modeling

HC possesses a .cto file that represents the Business Network Definition (BNA) which

defined all the digital entities of the application. For example, objects like Track, Trader,

Agreement, and the properties of each can be specified in this file. The file has a syntax like

JSON objects. This file is essential since it is needed if other Hyperledger Composer

Applications (HCAs) want to connect with the business network. The very first line of the file

needs the name and Id of the Business Network Definition. For example, if other HCA wants

to access a Track, it will look for org.organization.project.Track#TrackId. Additionally, this Id

is useful in queries over the Ledger. There are .qry files that read queries to dictate individual

access permissions to other HCAs. Although, queries were developed within the NodeJs calling

functions assuming the network is open to other HCAs. Figure 5.14 shows an example of how

the digital application entities look in the .cto file (BNA):

61

Figure 5.14 BNA .cto File for the definition of the objects of the network.

Additionally, in HC Linux bash scripts run several processing instructions to initiate

the network. These bash scripts contain all the instructions of the HC initial setup to save the

time of development. Since each time the BNA .cto file was changed or updated, HF needed a

reset. Each update created different versions of the hash that contains a new version of the

chaincode. Consequently, the process of populating data on the network was tedious and time-

consuming so bash scripts were necessary for setting up HF and fill data instantly. Figure 5.15

shows the bash script used to install each version of the chaincode each time there was an

update.

Figure 5.15 Bash script for installing the BNA file and setup the network.

62

5.6 Ethereum

5.6.1 Architecture of Software Components

This architecture is very similar to HF. Figure 5.16 shows the architecture for Ethereum.

Like HC, the front-end middleware sends HTTP requests to a NodeJs express server package.

After that, the endpoints are handled by the Web3(green box) library for interacting with the

EVM or any testing network. Web3 finds the solidity contracts that should be deployed by this

point and computes what is necessary. Truffle framework holds the NodeJs Server, the Solidity

contracts, and the configurations for the connections with any Ethereum network.

Figure 5.16 Architecture of Ethereum Solution

Now some third-party software and APIs used before obtaining the data for the analysis

are going to be described. These tools helped to accelerate the development and to design the

Ethereum implementation:

Truffle. -It is a development environment, a testing framework, and an Asset pipeline

for using Ethereum virtual machine to help developers automate contract testing, migrate

contracts, and interact with the clients by commands or scripts. Additionally, Truffle

commands were used to test APIs quickly. For example, Truffle commands can help to compile

and deploying solidity contracts in selected testing networks such as Ganache or in real

networks such as Ropstein in the case to have enough gas resources.

Ganache Network Client. – It is a tool for testing Smart Contracts in a blockchain

application before its deployment a real network to avoid unnecessary expenditure of gas

resources. Ganache behaves very similarly to an actual client since it requests Gas values.

63

Although Ganache initialization gives Ethereum testing accounts with simulated Ether, and

public logs to see the live transactions.

INFURA. - INFURA is a scalable, standards-based, globally distributed cluster and API

endpoint for Ethereum, IPFS (Interplanetary File System), and other blockchain projects [36].

It's focused on Transport Layer Security to obtain access to a remote Ethereum node with a

generated Key. Since downloading any node of ETV such as Geth is costly in terms of space

and processing for the experiments, INFURA was used to not worry about the impact over the

performance of the machine in the data analysis. Ultimately, the contracts of the application

were deployed in Ropsten Ethereum network for testing the production stage of the research.

Although, for the data analysis, the Ganache network was used for obtaining the results since

Hyperledger Fabric simulates a local machine for running their nodes. Therefore, Ganache and

Hyperledger Fabric instance run locally in the same machine with the same characteristics. More

information in the Data Analysis section.

Web3.- It is a collection of APIs that let the developer interact with Ethereum nodes

using HTTP, WebSockets, or IPC connections. As mentioned previously, INFURA permits the

link to a remote node in Ethereum Virtual Machine. Usually, the application talks to the EVM

node with JSON RPC calls [36].

The steps required for the deployment of contracts pass through the compilation of the

solidity code into an ABI (Application Binary Interface) usually written in JSON. After that, the

ABI could communicate with the EVM by translating the methods specified in the JSON

interface to bytecodes that the EVM understands. Finally, the bytecodes are stored in some

addresses within the EVM. Figure 5.17 shows the step by step process of deploying contracts in

the EVM [36].

Figure 5.17 Process of using Smart Contracts in the EVM (BlockGeeks.com)

The following procedure for deploying smart contracts and interacting with the EVM

was followed. Figure 5.18 shows the unique approach to implement Smart Contracts in the EVM

64

using Web3. Truffle-contract NodeJs package transforms the solidity contract to a JSON

representation. Then, the Smart Contract is deployed with truffle compile, and then truffle

migrates commands. Consequently, the artifact (JSON representation of the contract) was

selected, and an instance of the contract ABI (Application Binary Interface) was created.

Ultimately, an instance of the contract deployed in the network is created, and finally, it’s

possible to interact with the methods of the contract. Figure 5.19 shows the procedure in the

NodeJs environment.

Figure 5.18 Process of deployment the application with Web3

5.19 Process of deployment of the application in NodeJs using Web3

Additionally, Web3 offers some features that are useful for the development of DApps.

For example, events let applications know that certain conditions were met, and some actions

must be taken. For example, if an agreement in a transaction needs the signature of two users,

and if one user proposed the agreement, then the other user must sign. Figure 5.20 shows how

a listener is applied to a specific event declared in the contract.

Figure 5.20 Code Snippet of Web3 Events

65

NodeJs Server. – This component behaves similarly to the Node Js server in HF by

accepting Http requests from the front-end. Although, it interacts with the Ethereum network

client. As mentioned previously, Web3 and Truffle deploy the contracts through JSON RPC

calls to INFURA, and finally, they arrive at the EVM. Figure 5.21 shows the architecture of

the back-end in the platform of Ethereum.

Figure 5.21 Software Implementation Architecture of the Back End

5.6.2 Ethereum Data Modeling – Solidity

This section explains further how the Solidity Smart Contracts were written and how

this project dealt with the limitation that solidity showed since the data modeling depended on

the solidity structure to approach the HF implementation for the Data Analysis.

Solidity files (contracts) are responsible for dictating the classes that represent each

entity and its methods. The Smart Contracts are later deployed in any Ethereum network. The

developers are responsible for connecting the DApp with the address of the contract and access

the methods to interact with it. The following are some considerations that had to be addressed

in the development of a successful flow.

Ethereum Accounts Properties. - Each account within Ethereum has 20 bytes of

address’s hash, which is a digital object with four main attributes:

Nonce: This is a counter that is used to ensure that each transaction is processed once

and once only.

Ether Balance: The amount of Ether

Contract Code: Container for the Logic (Solidity-Optional).

Storage: It’s a space for storing data on the account (empty by default).

External Owned Accounts (EOA) and Contract Accounts. - Both accounts are

indexed by the address. Although, the main difference is that EOAs have no Ether balance, no

logic, and are managed by private keys. Meanwhile, Contract Accounts have Ether but are

66

controlled by Solidity logic. It can write and read to the internal storage and send additional

messages or create other contracts. Something important to remember is that if the system has

EOAs, the system becomes an altcoin of Bitcoin, losing the value of the programmable logic

since the account is only for storing math computations of value.

Ether incentives, Gas Price, and Gas Limit. - Ether is an incentive for the miners but

also to develop quality code since the inefficient code will cost more Ether. The cost of the

execution of the contracts is determined by the multiplication between the Gas Limit

(approximate calculation of costs-computational resources costs is called opcodes/instructions),

and the Gas Price (In Ether). Usually, it is recommended that developers should analyze the

boundaries and the current price of transactions when developing contracts. Additionally, the

Gas Limit helps the user know how much willing to spend in the transaction cost. The system

sets up a limit that can take from the user, preventing Denial of Service (DoS) attacks.

Contract Best Practices. - Solidity contracts have some similarities with Object-

Oriented Programming Languages such as Java. Moreover, in Solidity, a contract is very similar

to a Bean in Java. Figure 5.22 shows a common way to write a Java Bean like Solidity Contract.

5.22 Java Bean Like Solidity Contract structure

Figure 5.22 shows how getters and setters are written as in any Java Bean. There are

different types of variables where new values can be set up. For example, mapping a struct is

67

the way to create Lists. Any item of the list of Structs can be called by defining the id of the

item. Additionally, there are event logs that can be used for listening to specific actions in the

blockchain or just as in my case to follow the code debugging. Ultimately, since EVM tries to

save processing is common to find the STACK TOO BIG ERROR. This error means that the

number of declared variables in a function was exceeded.

Interaction with other Contracts. - In Ethereum, the contracts are stored in different

Contract Account Addresses. Therefore, there are some considerations when calling functions

or variables from other Smart Contracts. The following won't work (Figure 5.23).

Figure 5.23 Wrong attempt for importing and calling another Smart Contract.

When a new instance of the Contract in another file is created just by importing it, it is

only a reference to a piece of code but nothing else. It’s possible to create a temporary instance

that can be called, for setting and getting values. Although, it’s not possible to obtain any

persisted data from that contract since the address of the Smart Contract that is called to must

be specified. The following code reflects the best way to find a Smart Contract and interact with

its methods (Figure 5.24).

68

Figure 5.24 Proper way to import and interact with other contracts.

In Figure 5.24, a procedure called ‘delegated calls’ creates proxies between the addresses

by targeting the contract address. It’s feasible to interact with different contracts in different

addresses without any problem.

Immutability of Deployed Contracts. – Once a contract is deployed, there is no way

to update it in the same EOA account. If the Smart Contract needs modification, the only way

to do it is to deploy a contract in another account with the new updates or call a proxy contract

with new methods.

5.7 Web Application-Front End

A GUI that serves the blockchain solution was necessary. Therefore, it’s possible to

understand which the necessities of the final user are. Ionic Framework can compile in all

platforms: IOs, Android, and web applications. This framework was developed over

Angular2.js, which uses Javascript programming language mask typescript. Typescript is

useful for developers because it gives them tools to work in an object-oriented environment.

Additionally, it offers material design components such as templates, scrollable lists,

animations, a cycle of pages, and the use of essential features such as a camera or geolocation,

among others.

69

The application was created based on the design of a product that is destined to be in

production in the future. Some of these functionalities were developed for fulfilling the user

experience of the final user. The functionalities and features the application have are:

Login, Signing, Updates, and Lists of Users. - A login page where the user can either

create a new account or log in as an existing user was necessary. The user, when creating a new

profile, can choose the type of Trader it is, as mentioned previously, it can be Distributor, Label

or Artist. When the user enters the application, it can choose the functionalities the application

offers, such as creating agreements accepting other Traders, analyzing the lists of Tracks

available, the records of other Traders, the public log of Transactions that had a relationship

with agreement-based distributions, the profile of the user (where the user can update the

information), etc. Although, these Traders were created randomly for the Data Analysis

Section.

Figure 5.25 Login Page

Creation, Updates, Imports, and Lists of Tracks (Digital Asset) – The Track

Revenue is the digital Asset. The Ledger has the lists of all the tracks, which properties of each

should be visible to all the participants in the network. Although in the simulated Music

Industry Model, just the Traders with the tag ‘Distributor’ should have permission to import

the new Track Revenue (Asset) to the network (track revenue value usually determined by the

number of streams the distributors have. After that, the cycle of the Distribution Algorithm

explained previously begins.

70

Figure 5.26 List of Tracks Page

Creation, Updates, and Lists of Agreement Creation - The application offers a page

to create an individual agreement between two participants. Then, the user types the service

fee that the Receiver obtains from the Emitter (User). This feature can be applied once for a

single Asset or several Assets. The user can create an Agreement once for all these selected

tracks with any of the Traders in the Ledger. Additionally, the application can show all the

Agreements that exist in an Asset in particular.

Figure 5.27 Creation of Agreement Page.

List of Transactions (Payment Receipts) - A Transaction gives a Payment Receipt

from the Asset (Track Revenue) Distribution. The application offers a page where all the

Traders(users) can see all the previous Transactions with other Traders. Each Transaction has

relevant information of the transaction such as the Emitter name or the Receiver name, the

DateTime of the Receipt, the Amount, and some extra information as explained previously.

71

 Figures 5.28 List of Transactions (Receipts) Page

5.9 Development Tools

To achieve the state of the art of the development and from previous development

experience, the following concepts help to organize the source code organized, and ready for

being used by other developers in future endeavors. Some of these tools of software

development are widely accepted in the corporate world and academic research. Such tools

include MVC architecture, SCRUM agile project management tools, and UML graphics.

Material Design. - The design of the front end was made minimalistic. The only

consideration over the interface for the final user was that it used combined colors according

to the rules of Material Design, which are widely used in the industry for Mobile Development

in the corporate world.

MVC. - The architecture is divided into three components: a model that expresses the

domain knowledge, the view that presents the user interface, and control that manages the

updates to views. Overall, the paradigm solves the following challenges:

• The same information should be shown in different formats in different views

• The changes in a view should be reflected in the remaining ones

• The changes in the user interface should be easy to make

• The central functionality should be independent of the interface to allow multiple

interfaces to coexist.

Figure 5.29 picture can illustrate the relationship between the parts of an MVC architecture

[40].

72

Figure 5.29 MVC Relationship [40]

UML Diagrams. - It stands up for Unified Modeling Language. These diagrams are

diagrammatic representations of software components, activities, and functionalities processes

(called workflows as well). These diagrams are used to represent a software product before the

implementation of the source code to represent the final solution and give feedback to other

developers. These diagrams help in understanding the data workflows in the Distribution

Algorithm section.

SCRUM. -Agile management has recently been widely adopted by the IT sector and

software development industry due to the challenges of demand for complexity and uncertainty

of the continuous increasing features of a project. It's a series of values, principles, methods

mainly the capacity to remain flexible within an environment of dynamic and adaptable change.

It's a lightweight process for using iterative and incremental practices [41]. Ultimately,

SCRUM was used for tracking the features and bugs and handle continuous changes due to the

requirements of the proposal.

This Section accomplished two of the goals proposed in the Problem Statement section,

the development of a Distribution Algorithm that solves the possible Data Flow Scenarios, and

the Integration of blockchain platforms (Ethereum and Hyperledger) with Legacy Systems

(Servers, middleware technologies, and front end technologies).

73

CHAPTER 6

EXPERIMENTS AND EVALUATIONS

In this section, the Data Analysis model the experiments of Pongnumkul et al. in the

research paper “Performance Analysis of Private Blockchain Platforms in Varying Workloads”

[27] to expose the performance of the payload of the two platforms Ethereum and Hyperledger for

later comparisons.

According to Pongnumkul et al., [27], Latency and Throughput are the main problems and

limitations regarding the Tech Industry requirements. The parameters Execution Time is defined

as the total amount of time to execute a task (specifically in blockchain, the time it took to validate

the transaction), Average Latency is defined as the difference between the deployment time and

the completion time, and the Throughput is defined as the number of transactions successfully

executed per second. A comparison between the two blockchains with several operations up to

10000 was set up to withdraw conclusions about its performance [27] ⁠.

6.1 Settings of the Reference Experiment

The experiment of Pongnumkul et al. [27] used most of the underlying features of each

blockchain, but the consensus protocols were avoided to not interfere with the performance

directly. For example, Ethereum uses virtual machines to execute Smart Contracts, and it offers an

open-source software to configure the network. On the other hand, Hyperledger fabric uses the

Docker container technology to enable smart contracts or mostly known as “chaincode.” Both

platforms had to be implemented differently.

The infrastructure used for comparing the works of Pongnumkul et al.[27], was built on an

Amazon AWS EC2 with the Intel E5-1650 8 core CPU, 15GB RAM, 128GB SSD hard drive and

running Ubuntu 16.04. Hyperledger Fabric network was used as the Hyperledger Framework, and

the Geth Ethereum network was used as the Ethereum framework. Additionally, they did not use

any consensus protocol besides the default fabric setting in the case of Hyperledger [27].

The experiment developed a cash transfer application with essential functions of

evaluation, such as issue money, transfer money, and creation of the account. The time of

74

execution was measured with several sets of numbers of the transaction, for example, 10, 100, 100,

and 10000. The function snippets of the transactions defer in each platform, but the interactions

between the client and the blockchain were the same. Ultimately, they used HTTP requests with a

Node.js application (Server) [27] ⁠. Table 6.1 shows some of the differences in the settings of the

experiment.

Blockchain Ethereum Hyperledger Fabric

Peer to peer protocol Ethereum Virtual Machines Docker Containers

Transaction Denomination Smart Transactions Go based ChainCode

Client and Communication Node.js application with HTTP requests

Queries Web3.js - JSON RPC APIs Restful APIs

Measurements Latency and Throughput

Up to 10000 trx with no consensus protocols.

Figure 6.1 Performance Experiment Settings of the Research Reference [27]

The result of Pongnumkul et al. [27] showed that Hyperledger had lower latency and higher

throughput than Ethereum. Latency plays a crucial role in money transfer applications and broader

adoption of the market. Figures 6.2-6.5 show that the latency of Hyperledger is lower and the

throughput higher by a considerable amount. The calculations tested methods like create_account,

receive, and issue money. In latency, for example, with 10000 Tx, it takes almost 500 seconds to

complete 10000 Tx in Ethereum (unacceptable for early adopters), whereas in Hyperledger takes

just around 34 seconds. In the case of throughput, 20.6Tx/sec can be executed when 10000 Tx are

sent, but Hyperledger can handle 159Tx/sec. Therefore, the researchers concluded the preference

over Hyperledger [27].

75

Fig 6.2 Comparison of average latency between Ethereum and Hyperledger [27]

Fig 6.3 Comparison of average throughput between Ethereum and Hyperledger [27]

Fig 6.4 Average throughput of Ethereum and Hyperledger with varying number of transactions

of TransferMoney function [27]

76

Fig 6.5 Average Throughput of Ethereum and Hyperledger with varying number of transactions

of TransferMoney function [27]

 Although, Pongnumkul et al. [27] mention the limitations of their settings in the

experiment. Especially, the importance of the difference in consensus protocols which affect the

performance directly. For example, the nature of the Proof of Work is much slower than the

mechanism in Hyperledger Fabric Byzantine Fault Tolerance. It means that the experiment is

limited to the Smart Contract Infrastructure layer. Consensus Protocols performance was analyzed

in other ways [27].

6.2 The approach of this research

Ethereum and Hyperledger are the platforms chosen to address the problem of audit and

data transmissions, as well as the issue of privacy and security. Each platform has its limitations

and strengths. Each technology can be adjusted to the requirements. Although, a performance

experiment was necessary to analyze the capabilities and constraints over the use case. The

hypothesis of the research states that Hyperledger can adjust a better modular architecture than

Ethereum and can handle a more significant number of successful transactions in a shorter period

based on the conclusions of Pongnumkul et al. [27].

The methodology of this research for the evaluation of platform performance follows a

Qualitative Analysis and Quantitative Analysis [42].

77

For the Qualitative Analysis, some assumptions are detailed. These subjective hypotheses

are assumed based on the literature review, previous attempts of experimentation, and intuition of

the promise of Blockchain technologies. Such assumptions could be the expectancy of the

advantages and disadvantages of both platforms and components due its architecture, the features

expected to be experienced from the theory in both platforms, or the expectation of the testing

environment dependency (machinery to the be used for the experiment, either a physical machine

or virtual machine in the cloud).

On the other hand, for the Quantitative Analysis, the data from the experiments are

interpreted in graphs and tables. JMeter Software was used for the extraction of the data simulation.

6.3 Qualitative Analysis

The hypotheses of this research were inspired by the experiments of Pongnumkul et al.

[27]. Nevertheless, in the Architecture Section, the Distribution Algorithm was presented as the

main subject of this research. Although the analysis expects a similar hypothesis as Pongnumkul

et al. [27] (higher performance in Hyperledger Fabric), the implications give a broader scope of

conclusions, especially real-life simulation simulations. Consequently, these are some of the

hypotheses of this research:

● Hyperledger Fabric can achieve higher Throughput and lower Latency compared with

Ethereum when workloads are varied up to 500 blockchain transactions in Hyperledger

Fabric and up to 160 in Ethereum. It's assumed that the nature of the implementation

directly impacts the performance since the design of the application differs significantly in

both platforms. The research tried to model both platforms as similar as possible, but the

nature of the technologies forced to change some patterns of design.

● Differences between these two platforms in execution time and average latency become

more significant as the number of transactions grows.

● Hyperledger Fabric would handle more concurrent transactions with fewer glitches of

errors than Hyperledger Fabric, such as in Pongnumkul et al. [27].

78

6.4 Data Analysis Implementation Architecture

The architecture of the experiment includes specific components designed to test cases of

the Distribution Algorithm. For both platforms, a new component Testing Endpoint for incoming

testing requests was developed.

This component was responsible for sending random requests to populate the network with

the relevant data needed for the experiments. Additionally, the objects had random identifiers, but

the creation of Traders, Assets, and Agreements emulates the Scenarios described in the previous

Implementation Chapter. Moreover, routines that adjusted to the Scenarios explained previously

in the Distribution Algorithm were written. For example, Figure 6.6 shows the bash scripts of

Scenario 1 using Hyperledger Fabric for the Data Analysis.

Figure 6.6 Data Analysis of Scenario 1 Source Code.

This component (for each platform Ethereum and Hyperledger) listens to HTTP requests

from JMeter software with different sets. This component accepts the HTTP requests to trigger the

execution of random simulations for the examples of the Distribution Algorithm (more information

79

in the next section). Figure 6.7 shows how the JMeter Request activates the routine with the Testing

Endpoint component.

Figure 6.7 Architecture of the testing environment

Despite the use of this component in both platforms, the flow of data is slightly different.

Subcomponents of abstraction that facilitated the debugging phase were developed since they

could be tested separately. It’s necessary mentioning that more layers could have added latency to

some degree, but it was essential for the tracking of errors and design patterns. Figure 6.8 shows

the data flow of Hyperledger Fabric that starts in the JMeter request and finishes in the response

back to JMeter. Figure 6.9 shows the data flow of Ethereum using Ganache Client.

Figure 6.8 Data Flow of the Data Analysis in Hyperledger Fabric

To understand the data flow of the testing routines in more detail is recommendable to look

at Figure 5.11 (Architecture of Hyperledger Fabric Solution), Figure 5.13 (SOLO configuration

for Hyperledger Composer), Figure 5.14 (Software Implementation Architecture of the Back End).

80

Figure 6.9 Data Flow of the Data Analysis in Ethereum- Ganache testing network.

Additionally, Figure 5.17 (Architecture of Ethereum Solution), Figure 5.19 (JSON RPC

calls), and Figure 5.21 (Process of deploying the application with Web3) can be taken as a

reference of the data flow and how some components chance in this section.

Nevertheless, it is worth mentioning the necessity of using a testing network such as

Ganache instead of a testing network such as Ropstein. Ropstein testing network is not centralized

and has other users using the network. Therefore, there is an excess accumulation of computation

that would not be convenient for the comparison. Therefore, Ganache in Ethereum is what mostly

assimilates to Hyperledger Fabric. Both have peers that produce hashes for executing transactions

in decentralized code, but both are in one single computer.

Ultimately, since NodeJs SDKs for Hyperledger composer is one single thread

programming language, a package called child_process to assign the HTTP incoming request to

different ‘processes’ (NodeJs threads) in the Server was necessary since there were problems of

concurrent incoming HTTP requests giving write/read maximum listeners in Hyperledger Fabric

and JSON RPC connection hang-ups.

81

6.5 Quantitative Analysis

This section compares the works of Pongnumkul et al. [27] and takes the JMeter results to

interpret them in each platform. Pongnumkul et al. [27] set several transactions to evaluate the

Latency and Throughput of both platforms. For example, they took the following sets of

transactions to plot the Latency and Throughput: 1,10,100,1000,10000 (ref). In contrast, the

network sends several transactions per client or HTTP request in JMeter. For example, in Scenario

1 of the Distribution Algorithm using Hyperledger Fabric platform, the number of transactions per

client is 109 (1 Distribution of asset using Scenario 1 = 1 HTTP request). Therefore, in this

example, the sets change to 109, 218, 327, 436, 545. Consequently, the sets change according to

the number of transactions in each Scenario of the Distribution Algorithm and in each platform.

Nevertheless, similarly to Pongnumkul et al. [27] experiments, the experiments tried to load more

transactions. The network, in theory, can handle or tolerate without errors. The machine used for

these experiments was an 8 CPUs and RAM 32Gb running Ubuntu 18.04, trying to imitate the

equipment used in the analyses of Pongnumkul et al. [27], which were an 8 CPUs machine with

15GB RAM running Ubuntu 16.04.

Additionally, the experiments are simulating real case traffic. The tests emulate real users

that could create entities and interact with each other creating several transactions. Among those

methods being followed, the Distribution Algorithm consumes the highest number of transactions.

The transactions developed in both platforms include methods like “calling to the registry”,

“making ping connections with the ledger”, “updating entities,” “creating entities.” Ultimately, the

Distribution Scenarios discussed in the Implementation Section, belong to the same Examples 1,2

and 3 of the Data Analysis. Table 6.1 shows the methods and number of transactions included in

the experiment using Hyperledger Fabric, and Table 6.2 shows the number of transactions involved

in the development using the Ethereum Ganache Client.

Hyperledger Composer create_asset() create_trader() create_agreement() distribution() Total Transactions

Example 1 (Scenario 1) 3 15 45 41 109

Example 2 (Scenario 2) 3 18 45 41 107

Example 3 (Scenario 3) 3 12 36 41 92

Table 6.1: Table of the number of methods that connect with Hyperledger Fabric core.

82

Hyperledger Composer create_asset() create_trader() create_agreement() distribution() Total Transactions

Example 1 (Scenario 1) 1 5 5 10 21

Example 2 (Scenario 2) 1 6 5 10 22

Example 3 (Scenario 3) 1 4 4 10 19

Table 6.2 Table of the number of methods that connect with Ethereum Ganache Client

As discussed in the Problem Statement section, the main parameters of Evaluation are

mainly the Execution Time and Latency. For the analysis, the following parameters are necessary

to understand the results in Table 6.4 and Table 6.5:

Number of Requests per Thread. - JMeter was configured to have seven thread groups

that represent the samples (thread group = sample). Each number thread represents a distribution.

Therefore, for example, the 5th sample has five distributions.

Number of Transactions per Thread. - Table 6.2 and Table 6.3 shows the number of

transactions per distribution in each example (different simulations of distributions). In each

thread group, there is an increasing number of HTTP requests (Each HTTP request represents one

single distribution completed). For example, in the sample 5th, there are 5 x (Number of

Transactions per distribution). Therefore, in Scenario 1, using Hyperledger Fabric, in the 5th

sample, there are 5 x (109 Tx/thread or Tx/distribution).

Execution Time. - It is defined as the amount of time that the blockchain takes to complete

a request and confirm the transactions of the ledger. JMeter calculates the execution time of one

Http request by making the deployment time(t1), the time when the HTTP was requested, the

completion time(t2), as the time when a response is detected in JMeter and differentiating (t2-t1)

to obtain the execution time of each HTTP within a thread group. For example, Scenario 1 using

Hyperledger Fabric (Table 6.2) has 109 transactions to be completed and considered a successful

distribution. Therefore, the execution time is the time the system takes to achieve those 109

transactions and get the response back.

Additionally, to obtain the total execution time from the 2nd sample and above, the

execution times of each HTTP request are summarized within each thread group to calculate the

whole execution time in each sample.

83

Throughput. - In the experiments, it is defined as successful HTTP requests per second.

The average throughput is the calculated throughput over the execution time. This process is given

by JMeter. Although to obtain the average throughput in terms of Number of Transactions

(connections to the blockchain either Hyperledger Fabric or Ethereum Ganache Client), the

information of the analysis must be processed. For example, taking again Scenario 1 using

Hyperledger Fabric, 109 Tx/distribution has a throughput of 0.38 (Distribution/seconds).

Therefore, the following calculation is considered:

109𝑇𝑥

1 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 𝑥

0.38 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
= 109

𝑇𝑥

𝑠𝑒𝑐𝑜𝑛𝑑𝑠

The same multiplication to obtain the Throughput in terms of the number of transactions

in each sample is applied.

Percentage of Error. - JMeter detects when a response in a thread group has thrown an

error. Therefore, each HTTP request that is not successful counts as a part of the percentage of

error at the end of all the experiments. For example, is in the sample 7th (7 HTTP requests), there

were two responses with errors, then the percentage of failure is 2/7 ~ 0.28 or 28%.

6.5.1 Assumptions of the experiment in Hyperledger Fabric

There are some assumptions to simulate correctly real traffic and do not have crushes in

the system due to test plan errors:

• The default configuration of Hyperledger Fabric is the SOLO configuration (Architecture

Section). It means that there is not high processing in the consensus algorithm.

• A successful simulation is defined as the creation of an asset, some traders, some

agreements between traders, one distribution

• There are random inputs for the following methods: create_trader(), and create_asset() with

random asset values. The method create_agreement() chooses any of the random traders

and assets created previously. Random traders and tracks were simulated due to the security

protection of each platform to prevent cheating. For example, in Hyperledger Composer,

when several JMeter clients try to change the value of an asset with the Distribution

84

Algorithm, the network considered it as a threat to the system, throws an error, and close

the connection to prevent an attack. Hyperledger Composer throws an MVCC error, which

is a protection to prevent duplication by watching the read and write method’s behavior

within the Hyperledger Fabric environment.

• Each example of the Distribution Algorithm has a different number of transactions per

request. Therefore, the scale on the figures in the axis x for Latency and Throughput varies

depending on the example.

• Several thread groups in JMeter were configured to calculate the average transactions per

second.

6.5.2 Hyperledger Fabric Results

Table 6.3 shows the results that JMeter throws from the testing planning. This section

discusses some of the insights of such data outputs. Overall HF did not show error percentages in

the simulations of request. Therefore, it can be assumed that all the transactions had a successful

response, and the distributions were executed correctly among all the participants.

Table 6.3 Results of JMeter in Hyperledger Fabric

85

Analysis Execution Time. -Figure 6.10 shows the total execution time in Scenario 1 and

Scenario 2 (blue and red lines) using HF with HC. Figure 6.10 shows an increase in the total

execution time as the number of transactions per sample increases. Each Scenario has very similar

steps in the axis x(samples) since they have approximately the same number of transactions per

sample (Table 6.2). Therefore, the same behavior is expected in both curves. The same incremental

response is shown in the works of Pongnumkul et al. [27].

When the highest number of transactions, 763 Txs in Scenario 1, or 5 distributions (thread

group) in Scenario 1, the average percentage CPU consumption during the experiments was more

than 90%, with a response time of 840 seconds or 14 minutes (very similar for Scenario 2). The

response time of 840 seconds was the limit of experimentation in both scenarios for Hyperledger

Fabric. After this threshold, the machine cannot handle more processing.

Analysis of Average Throughput. - Figure 6.11 shows the average throughput for both

Scenarios using HF with HC. Like the total execution time, the average throughput increases as

the number of incoming transactions increase. Although, in contrast with the works of Pongnumkul

et al. [27], the point of inflection where the average throughput slowly decreases after a specific

number of transactions cannot be found. The problem is that the environment reaches its top

capacity after 763 Txs in scenario 1. The system cannot handle more concurrent transactions, but

until this point, the bottleneck opens linearly.

Fig 6.10 Total Execution Time for both Scenarios using Hyperledger Fabric

86

Fig 6.11 Average Throughput for both Scenarios using Hyperledger Fabric

Fig 6.12 Throughput in terms of Distribution per second for both Scenarios using Hyperledger

Fabric

Additionally, Figure 6.12 shows the average throughput of both scenarios in terms of

distribution per second using HF with HC. For example, when 109 Txs in Scenario 1 are being

executed, 0.38 distributions per second are possible in the bottleneck. On the other hand, when

763 Txs are executed in Scenario 1, the bottleneck decreases to 0.27 distribution per second as

concurrent transactions are being performed in the blockchain. In comparison with Pongnumkul

et al. [27], this is a similar behavior because the bottleneck becomes shorter as concurrent

transactions in each time are executed.

6.5.3 Assumptions for Ethereum Environment

Since the algorithm implementation was first executed in Hyperledger Fabric, the

implementation in the Smart Contracts of Ethereum had to be adjusted to the technologies that this

platform uses. Therefore, the entire code had to be partially rewritten. These changes were relevant

in the comparison of both platforms. For example, in Table 6.3, the number of connections with

the blockchain that each method has in Ethereum is considerably lower than the number of

connections in Hyperledger Fabric. The difference is a consequence of the Hyperledger Composer

Framework usage that adds layers of necessary steps to execute transactions in Fabric. Since Web3

connects directly with the Solidity Smart Contracts, there are fewer steps to complete the

transactions.

 Although the downside of the shorter path of communication in the Ethereum scenario is

the complexity with which the system had to deal in the development cycle. The best example is

the modification of the smart contracts that could serve the purposes of the completion of the

87

distribution algorithm. The identification of objects with hashes as addresses of each object had to

be changed within the Contract (More information in the Implementation Section). Therefore, a

way to send different unique addresses as input parameters from JMeter or (in the case this

research) needed to be found, target random addresses from the Ganache Client autogenerated

blockchain. Additionally, some validations within the contracts required to be eliminated to avoid

blockchain blockers.

6.5.4 Ethereum Ganache Client Results

The Execution time and Throughput in Ethereum differ in range significantly in

comparison with HF, especially the Throughput (Table 6.4). The time of response, therefore, the

latency is higher despite the decrease in the number of connections the Scenario has in comparison

with HF. Consequently, the throughput is lower too. Additionally, there are some instances of

HTTP requests that suffered errors in the response, meaning that the distributions were not

completed correctly. Moreover, a standard error called “Error of RPC connection timeout - Invalid

JSON RPC” appeared regularly. Whenever this problem arose, the Ganache Client stopped and

could accept any incoming requests anymore. Therefore, some of the HTTP requests are not valid

as to be considered in the analysis.

88

Table 6.4 Ganache Client Ethereum JMeter Results

Analysis Execution Time. -Figure 6.13 shows the total execution time in Scenario 1 and

Scenario 2(blue and red lines) using the Ethereum Ganache client. Figure 6.13 shows an increase

in the total execution time as the number of transactions per sample increases. Each Scenario has

very similar steps in the axis x(samples) since they have approximately the same number of

transactions per sample (Table 6.3). Therefore, the same behavior in both curves was expected.

The same incremental response is shown in the works of Pongnumkul et al. [27]. Although, the

difference in error percentage in comparison with HF was clear. Table 6.5 shows clearly that

Scenario 1 starts having response errors in samples 6th and sample 7th. Additionally, Scenario 2

starts having response errors that rise to 100% in samples 4th-7th. Therefore, some samples

ultimately cannot be considered for the comparison since the system crushed.

On the other hand, when the highest number of transactions, 154 Txs in Scenario 1, the

average percentage CPU consumption during the experiments was stable and without glitches,

with a response time of 741 seconds or around 12 minutes (very similar for Scenario 2). In

comparison with HF, Ganache doesn’t crush the machine since the number of transactions is

significantly lower than HF.

Analysis of Average Throughput. - Figure 6.14 shows the average throughput for both

Scenarios using Ethereum Ganache client. Like the total execution time, the average throughput

increases as the number of incoming transactions increase. Although, in contrast with the works

of Pongnumkul et al. [27], the point of inflection where the average throughput slowly decreases

after a specific number of transactions could not be found. The problem in contrast with the case

HF is that the information after the 4th sample is not reliable since the system starts having issues

with RPC connections, as explained previously.

Fig 6.13 Total Execution Time for both Scenarios using Ethereum Ganache

89

Fig 6.14 Throughput in terms of number of Tx for both Scenarios using Ethereum Ganache

Fig 6.15 Throughput in terms of Distribution per second for both Scenarios using Ethereum

Ganache

Additionally, Figure 6.15 shows the average throughput of both scenarios in terms of

distribution per second using the Ethereum Ganache Client. For example, when 21 Txs in Scenario

1 are being executed, 0.49 distributions per second are possible in the bottleneck. On the other

hand, when 105 Txs are completed in Scenario 1, the bottleneck increases to 6.23 distribution per

second as concurrent transactions are being executed in the blockchain. This behavior differs from

HF since there is an increase in the performance of Ganache Client for a period, and then the

system crashes after 105 Txs sent at the same time.

6.6 Limitations of the Performance Analysis

Since Pongnumkul et al. [27] experiment included Golang Hyperledger Fabric Chaincode

instead of the NodeJs SDK of Hyperledger Composer, there was an increase in the execution time.

For example, when executing 100 transactions, Pongnumkul et al. [27] obtained 2.59 seconds to

complete the request. In Scenario 1, it lasted around 80 seconds. Although, the Chaincode varies

and could possess a more complex logic, it is possible that HC NodeJs increases the average

execution time and the total execution time since it adds additional layers of abstractions to the

90

network. Therefore, Golang programming is more suitable if better performance is desired, even

if it doesn't offer other features of abstraction as HC. Moreover, using Golang could increase the

accuracy of the comparison between HF and Ethereum.

Additionally, one of the advantages that HC offers is the Multiversion Concurrency Control

Model (MVCC). This feature adds a security layer on top of the application since these features

do not let an entity’s property to be modified unless it is within a specified period, preventing

suspicious incoming transaction requests. If two transactions are requested to be validated in a

period that is shorter than the world state update, one of those transactions’ claims will fail and

will throw an MVCC_READ_CONFLICT. The error can be avoided by changing the default

settings. Although, by abstracting HF, the focus can be shifted towards the development of the

application with friendly classes for faster progress in exchange for downsides in the performance.

Consequently, it is essential to notice that the Ethereum attempts to adjust better to the

works of Pongnumkul et al. [27] than the attempts in HF. Despite the lack of features in Solidity

Contracts, the performance behavior modified to the practices of Pongnumkul et al. [27] in terms

of the accuracy of the Smart Contracts. Although, Ethereum Ganache client shows low reliance on

the research model since after the 4th sample, there are problems within the system. It's assumed

that this behavior could be since Ganache is operating as a single node or that the way the requests

are being queued is not correct for the modeling of a real case scenario.

 6.7 Discussions and Conclusions of the Data Analysis

Figure 6.16, 6.17, 6,18 show the three parameters compared previously between HF and

Ethereum in both Scenarios. The range of results differs, especially in the Throughput figures.

91

Figure 6.16 Total Execution Time of HF vs. Ethereum in both Scenarios

Figure 6.17 Throughput in terms of distributions of HF vs. Ethereum in both Scenarios.

Figure 6.18 Throughput in terms of transactions per second of HF vs. Ethereum in both

Scenarios

Scenario 3 represents a case in the distribution algorithm that enters an infinite processing

loop as explained in the Implementation section. This behavior limits the application scope of the

algorithm. Therefore, Scenario 3 was not part of the analysis, and the algorithm must find

improvement in future work for Scenario 3.

Since Scenario 1 and Scenario 2 have a similar number of transactions a linear curve in

both scenarios was expected. Although, the way those transactions are executed in the NodeJs

SDK for HF and Ethereum Ganache Client varies and therefore the comparison suffered some lack

of information.

92

Additionally, the average throughput in terms of distributions per second in Scenario 1 or

Scenario 2 decreases as the number of incoming transactions are executed in HF and increases

slightly in Ethereum.

Ultimately, the expectations of the results exposed in Section 6.1 turned to be accurate

since Hyperledger Fabric achieved higher Throughput and lower Latency, the increment of several

transactions differentiated the range of outcomes in which both platforms operated, and

Hyperledger Fabric using Hyperledger Composer handled concurrent transactions without glitches

and error percentages. Therefore, this research accomplished one of the main goals of the Problem

Statement section, which is to execute the experiments for Performance in terms of Latency and

Throughput.

93

CHAPTER 7

CONCLUSIONS, CONTRIBUTION, AND FUTURE WORK

This section mentions the conclusions of the current research in reconciliation with the

Literature Review and where the ongoing study of blockchain technology is.

7.1 Summary of the Implementation and the Data Analysis Conclusions and

Future Work

The implications over non-hierarchical decentralized incoming Music Industry are

positive. This research contributes to the literacy of solutions that accelerate the payment of

music track revenues to all the participants in the Current Music Industry based on

Streaming Services (Distributors). More detailed conclusions and future work can include:

Conclusions:

• The performance experiment leads to a positive overview of a single machine

computational capacity of around 800Tx/s in Hyperledger Fabric and 6 Txs/second in

Ethereum Ganache Client.

• The conclusions of the experiments of this research contribute to the results of the

performance of both blockchains in the specific case of the application scalability

(Music Industry Streaming Services – based participant payment improvement). This

contribution differs from the works of Pongnumkul et al. [27] since their smart contracts

were basic smart contract-based currency transactions.

• It’s important to acknowledge that since just one local machine runs each platform,

these quantities are subjected to be higher in bigger networks. Moreover, when more

dedicated servers in a decentralized network add computational resources, the

efficiency is foreseen to increase considerably. These extra resources are needed for

developing in production, especially since streaming services such as the Spotify stream

around 750000 streams/minute [1].

• Ionic Framework showed issues in the dependencies and is slowly losing track of

adoption. Therefore, is not recommended for projects like this one. React is

recommended.

94

• Blockchain platforms (Ethereum and Hyperledger) as a common ledger for the

computation of Smart Contracts solve the necessity of data reconciliation between

different databases. Although, the metadata and media files are not stored in the

blockchain platforms. The platforms just store basic information of the variables such

as the id of the Assets and the Participant ids.

Future Work Goals:

• It's planned to add the extra Latency analysis by building a component that reads the

transaction confirmation within the NodeJS SDK Chaincode since the Latency

computed by JMeter adds a layer of the other timeframe in the analysis

• The works of Pongnumkul et al. [27], mention that the consensus protocols would

significantly affect the results. Therefore more robust consensus protocols will be added

to test the distribution algorithm in the future.

• The deployment of Smart Contracts in the Ropstein network was brief experimentation

of the impact this application has on a real Ethereum network. It was not possible to

compare this pre-production cycle with Hyperledger Fabric since it has not yet any pre-

production environments or frameworks, were other people interact with, such as in

Ropstein of Ethereum.

• Development of a UI that uses newer frameworks such as React.

• Add Audit process to focus on the security of Smart Contracts and Middleware

integration. The system of this research still needs improvement in the security aspect.

• The data regarding the economical advantages and challenges of the implementation of

these solutions in the Current Business model was difficult to acquire at the time of this

research. There are some assumptions that are taking place. For example, new

companies that develop these blockchain solutions will offer these services to the

current participants of the Music Industry, and the decision of these participants will

determine if these solutions create decentralized networks.

Overall, the project tried to emulate the efficiency of a blockchain solution in a specific

industry. But how far can this research go? What other applications mentioned in the

Literature Review can be model with the algorithms and components? Some of the

examples are:

95

-The Real State Industry due to the standards of preservation discussed previously in

the Literature Review Section[43].

-The Financial Sector due to the distribution algorithm that record receipts for Audit

Systems

-Proof of ownership in the Entertainment Industry in general since the copyrights can

be validated and manipulated by Smart Contracts.

7.2 Where is current research on blockchain technology?

At the beginning of this research in 2017, Bitcoin’s price rise seemed to be unstoppable,

and the media was paying attention to this phenomenon until it crashed at the end of the year.

Since then, the price has slowly decreased, and the focus started to fade away. Therefore, it is

important to acknowledge where the blockchain research is to imagine the scope of the

importance of the study. As mentioned in the Literature Review, Blockchain is one of the

fastest fields of study in future years to come. Moreover, some trends show where Blockchain

research is heading. A study conducted by Yli-Huumo et al.[44] (2016), showed the current

research on Blockchain to help researchers to identify the gaps and challenges. The research

mentions that 80% of the papers blockchain-related are Bitcoin-based and 20% in other

networks and blockchain applications. Additionally, this study reveals that the current main

technical challenges are Throughput, Latency, size and bandwidth, security, wasted

resources, usability, versioning and forks, privacy. This research is similar in the sense that the

project covers the Throughput and Latency challenges of two big players of the scene:

Hyperledger and Ethereum.

[44] examined 41 filtrated original papers from 121 initially from scientific databases.

These papers went through a systematic mapping represented by specific categorizations. The

conclusions over the source, the geography, publication type, and publication year, are shown

in Figures 7.1 - 7.5.

96

 Figure 7.1 Publication year of the selected primary papers [44]

Figure 7.2 Source of the selected primary papers [44]

Figure 7.3 Geographic distribution of the selected primary papers [44]

Figure 7.4 Publication type [44]

97

Figure 7.5 Paper types per year [44]

Additionally, Figure 7.5 shows the classification of these papers by types: report,

improvement, or application. The current project could be classified as a report of efficiency

and application. Also, [44] concluded the categorization of research diagram in Figure 7.6. One

of the insights of this diagram shows that there were not enough papers on the topics of the

technical challenges on Latency, size and bandwidth, Throughput, versioning, hard forks, and

multiple chains until 2016. The current project hopefully could be added for future references

on the considerations of throughput and latency performance on the platforms studied.

Figure 7.6: Summary of the identified challenges and solutions of blockchain [44]

Ultimately, the research of [44] mentions that smart contracts are still a challenge with

the current blockchain research field. From the time of the publication of the paper, works like

the one of [44], started to present other blockchain implementations on use cases previously

unknown. This works showed a solution to the blockchain-based digital content distribution

system. The idea is meant to be given to creators, content owners, and digital content

98

stakeholders and is aiming to provide tools to improve this field so it can be shared with those

participants.

Personal Overview

Regarding the personal experience expansion, the mindset of decentralized systems is

mind switching. The idea of source code decentralization was challenging at the beginning of

the research. The first challenge was to use higher abstraction frameworks that used blockchain

as underlying networks such as Hyperledger Fabric with presets that configured the system

automatically. After that, the change to the developing Smart Contracts in Ethereum cleared

the gaps of knowledge at the beginning of the research since the way the Smart Contracts

written in Solidity are entirely different from the paradigm of Object-Oriented Programming

Languages such as Java or Javascript. The fact that the objects must be modeled as data located

in different hashes and have restrictions due to the capabilities of the Ethereum Virtual Machine

opens the possibility to understand the nature of decentralized networks. Networks where not

only the databases and business logic are located but the code itself is located in different

anonymous places, forming a giant machine that works with anyone connected to it securing

privacy and security. These features open the door for the future. A future where the data is not

controlled by single points of failure, but a future where the information is safe and private by

the collaboration of all the participants in a global network. It might be the rise of a new way

of structuration the Internet.

99

REFERENCES

[1] De Filippi, P. (2015). Blockchain-based Crowdfunding: what impact on artistic

production and art consumption? Observatório Itaú Cultural, (19).

[2] Singh, S., & Singh, N. (2016). “Blockchain: Future of financial and cybersecurity.” In

Proceedings of the 2016 2nd International Conference on Contemporary Computing

and Informatics, IC3I 2016.

[3] LeRoy Carr III, Anthony Newtson, James Joshi, "Towards Modernizing the Future of

American Voting," Collaboration and Internet Computing (CIC) 2018 IEEE 4th

International Conference on, pp. 130-135, 2018.

[4] Passman, D. S. (2015). “All you need to know about the music business.” Simon and

Schuster.

[5] Datta, H., Knox, G., & Bronnenberg, B. J. (2017). Changing their tune: How

consumers’ adoption of online streaming affects music consumption and discovery.

Marketing Science, 37(1), 5-21.

[6] Marshall, L. (2015). ‘Let's keep music special. F—Spotify’: on-demand streaming and

the controversy over artist royalties. Creative Industries Journal, 8(2), 177-189.

[7] Richardson, J. H. (2014). The Spotify paradox: How the creation of a compulsory

license scheme for streaming on-demand music platforms can save the music industry.

UCLA Entertainment Law Review, 22(1).

[8] Nakamoto, S. (n.d.). “Bitcoin: A Peer-to-Peer Electronic Cash System.”

[9] Eyal, I. (2017). Blockchain technology: Transforming libertarian cryptocurrency

dreams to finance and banking realities. Computer, 50(9), 38-49.

[10] NG, D. C. M., & GRIFFIN, P. R. (2018). The wider impact of a national

cryptocurrency. Global Policy, 1.

[11] Baravalle, A., Lopez, M. S., & Lee, S. W. (2016, December). Mining the dark web:

drugs and fake IDs. In 2016 IEEE 16th International Conference on Data Mining

Workshops (ICDMW)(pp. 350-356). IEEE.

[12] Christin, N. (2013, May). Traveling the Silk Road: A measurement analysis of a large

anonymous online marketplace. In Proceedings of the 22nd international conference

on World Wide Web (pp. 213-224). ACM.

[13] Bohr, J., & Bashir, M. (2014, July). Who uses bitcoin? An exploration of the bitcoin

community. In 2014 Twelfth Annual International Conference on Privacy, Security,

and Trust (pp. 94-101). IEEE.

100

[14] Gnan, E., & Masciandaro, D. (2018). Do we need a central bank digital currency?

Economics, technology, and institutions. Vienna: SUERF-The European Money and

Finance Forum.

[15] Cryptocurrency Market. Retrieved from www.coinmarketcap.com.

[16] Frisby, D.” Bitcoin: The future of money?”. London: Unbound, 2014.

[17] Vigna, P & Casey, M. “The age of cryptocurrency: How Bitcoin and digital currency

are changing the global economic order.” New York: St. Martin’s Press, 2015.

[18] Matenga, R.N, & Stanley. H. E.” An introduction to econophysics”. New York:

Cambridge University Press, 1999.

[19] Fry, J., & Cheah, E.T. (2016). Negative bubbles and shocks in cryptocurrency markets.

International Review of Financial Analysis, 47, 343-352.

[20] Kazeem Yomi. “The World’s First Blockchain Supported Elections Just Happened in

Sierra Leone.” Quartz Africa, March 13, 2018.

[21] Tapscott, D., & Tapscott, A. (2016). “Blockchain Revolution: how the technology

behind bitcoin is changing money, business, and the world.” Penguin.

[22] Lemieux, V. L. (2016). Trusting records: is Blockchain technology the answer?.

Records Management Journal, 26(2), 110-139.

[23] Wild, J., Arnold, M., & Stafford, P. (2015). Technology: Banks seek the key to the

blockchain. Financial Times, 1, 2015.

[24] Sutherland, M. (2018). “Stream If You Want to Go Faster.” Music Week, 22–24.

Retrieved from

http://cyber.usask.ca/login?url=http://search.ebscohost.com/login.aspx?direct=true&d

b=mah&AN=133383040&site=ehost-live

[25] Hyperledger Project. (2016). “Overview of Hyperledger Introduction to the Linux

Foundation’s Hyperledger Project, (June).” Retrieved from

http://www.redwoodmednet.org/projects/events/20160718/docs/rwmn_20160718_beh

lendorf.pdf

[26] Duranti, L., & Rogers, C. (2012). Trust in digital records: An increasingly cloudy

legal area. Computer Law & Security Review, 28(5), 522-531.

[27] Pongnumkul, S., Siripanpornchana, C., & Thajchayapong, S. (2017, July). Performance

analysis of private blockchain platforms in varying workloads. In 2017 26th

International Conference on Computer Communication and Networks (ICCCN) (pp. 1-

6). IEEE.

http://www.coinmarketcap.com/
http://cyber.usask.ca/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=mah&AN=133383040&site=ehost-live
http://cyber.usask.ca/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=mah&AN=133383040&site=ehost-live
http://www.redwoodmednet.org/projects/events/20160718/docs/rwmn_20160718_behlendorf.pdf
http://www.redwoodmednet.org/projects/events/20160718/docs/rwmn_20160718_behlendorf.pdf

101

[28] Szabo, N. (1997). The idea of smart contracts. Available:

http://szabo.best.vwh.net/smart.contracts.html

[29] Christidis, K., & Devetsikiotis, M. (2016). “Blockchains and smart contracts for the

internet of things.” IEEE Access, 4, 2292-2303.

[30] Hyperledger Organization. (n.d.). “About Hyperledger.” Retrieved October 17, 2017,

from http://hyperledger.org/about

[31] Hyperledger Architecture Working Group. “Hyperledger Architecture Volume 1:

Introduction to Hyperledger Business Blockchain Design Philosophy and Consensus”.

Hyperledger Org, 2017.

[32] Friebe Tjark. “Trust your Competitor? How you can do that with Hyperledger Fabric

Blockchain”. Medium, 2017.

[33] Sousa, J., Bessani, A., & Vukolić, M. (2017). “A Byzantine fault-tolerant ordering

service for the hyper ledger fabric blockchain platform.” arXiv preprint

arXiv:1709.06921.

[34] Wood, G. (2014). “Ethereum: A secure decentralized generalized transaction ledger.

Ethereum project yellow paper,”, 151, 1-32.

[35] Rouhani, S., & Deters, R. “Performance Analysis of Ethereum Transactions in Private

BlockChain.” University of Saskatchewan, Saskatoon.

[36] Allen, Paul R, Bambara, Joseph J. “Blockchain: a Practical Guide to Developing

Business, Law, and Technology Solutions.” Mc Graw Hill, 2018

[37] Kaufmann, Aviv, Dolan, Kerry. “Price Comparison: Google Cloud Platform vs.

Amazon Web Services.” ESG Lab Analytics. June 2015

[38] Google Cloud 2017 Review. “Google Infrastructure Security Design Overview.”

Retrieved from

https://cloud.google.com/security/infrastructure/design/resources/google_infrastructur

e_whitepaper_fa.pdf

[39] Satheesh Mithun, D’mello Bruno, Krol Jason. “Web development with MongoDB and

NodeJs.” PACKT publishing. Second Edition, 2015.

[40] Selfa, D. M., Carrillo, M., & Boone, M. D. R. (2006, February). A database and web

application based on MVC architecture. In Electronics, Communications, and

Computers, 2006. CONIELECOMP 2006. 16th International Conference on (pp. 48-

48). IEEE.

http://hyperledger.org/about
https://cloud.google.com/security/infrastructure/design/resources/google_infrastructure_whitepaper_fa.pdf
https://cloud.google.com/security/infrastructure/design/resources/google_infrastructure_whitepaper_fa.pdf

102

[41] Hu, Z. G., Yuan, Q., & Zhang, X. (2009, July). Research on agile project management

with scrum method. In Services Science, Management and Engineering, 2009.

SSME'09. IITA International Conference on (pp. 26-29). IEEE.

[42] Schutt, Russell K. “Investigating the Social World: The Process and Practice of

Research.” Ninth Edition. University of Massachusetts, Boston, USA. SAGE

Publications, Inc, 2019.

[43] Spielman, A. (2016). Blockchain: digitally rebuilding the real estate industry

(Doctoral dissertation, Massachusetts Institute of Technology).

[44] Yli-Huumo, J., Ko, D., Choi, S., Park, S., & Smolander, K. (2016). “Where is current

research on blockchain technology?” —A systematic review. PloS one, 11(10),

e0163477.

[45] Rethink Music Initiative. (2015). Fair Music: Transparency and Payment Flows in the

Music Industry. Boston: Berklee Institute of Creative Entrepreneurship.

[46] Abhishek S, Promaya B, Arumendra S. “A systematic review on Evolution of

Blockchain Generations.” ITEE journal. December 2018. ISSN: - 2306-708x

https://us.sagepub.com/en-us/nam/author/russell-k-schutt

