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Abstract

Remote sensing or monitoring through the deployment of wireless sensor networks (WSNs) is considered

an economical and convenient manner in which to collect information without cumbersome human interven-

tion. Unfortunately, due to challenging deployment conditions, such as large geographic area, and lack of

electricity and network infrastructure, designing such wireless sensor networks for large-scale farms or forests

is difficult and expensive. Many WSN-appropriate wireless technologies, such as Wi-Fi, Bluetooth, Zigbee

and 6LoWPAN, have been widely adopted in remote sensing. The performance of these technologies, however,

is not sufficient for use across large areas. Generally, as the geographical scope expands, more devices need

to be employed to expand network coverage, so the number and cost of devices in wireless sensor networks

will increase dramatically. Besides, this type of deployment usually not only has a high probability of failure

and high transmission costs, but also imposes additional overhead on system management and maintenance.

LoRa is an emerging physical layer standard for long range wireless communication. By utilizing chirp

spread spectrum modulation, LoRa features a long communication range and broad signal coverage. At the

same time, LoRa also has low power consumption. Thus, LoRa outperforms similar technologies in terms

of hardware cost, power consumption and radio coverage. It is also considered to be one of the promising

solutions for the future of the Internet of Things (IoT). As the research and development of LoRa are still

in its early stages, it lacks sufficient support for multi-packet transport and complex deployment topologies.

Therefore, LoRa is not able to further expand its network coverage and efficiently support big data transfers

like other conventional technologies. Besides, due to the smaller payload and data rate in LoRa physical

design, it is more challenging to implement these features in LoRa. These shortcomings limit the potential

for LoRa to be used in more productive application scenarios.

This thesis addresses the problem of multi-packet and multi-hop transmission using LoRa by proposing

two novel protocols, namely Multi-Packet LoRa (MPLR) and Multi-Hop LoRa (MHLR). LoRa’s ability

to transmit large messages is first evaluated in this thesis, and then the protocols are well designed and

implemented to enrich LoRa’s possibilities in image transmission applications and multi-hop topologies.

MPLR introduces a reliable transport mechanism for multi-packet sensory data, making its network not

limited to the transmission of small sensor data only. In collaboration with a data channel reservation

technique, MPLR is able to greatly mitigate data collisions caused by the increased transmission time in

laboratory experiments. MHLR realizes efficient routing in LoRa multi-hop transmission by utilizing the

power of machine learning. The results of both indoor and outdoor experiments show that the machine

learning based routing is effective in wireless sensor networks.
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Chapter 1

Introduction

In the past decade, with the rapid development of battery and wireless communication technology, the

concept of the Internet of Things has been widely popularized and realized. Internet of Things, or IoT, is

the interconnection of various small computing units and sensor/actuator devices to the Internet [72], thus

enabling a wide range of the communicable network to achieve common purposes, such as data acquisition

and system automation. IoT systems, at the time of writing, have already been applied in a variety of

different scenarios. Some well-known applications are, for instance, smart home automation system [81],

precision agriculture [20], and water quality monitoring and controlling [72]. The emergence of these IoT-

based applications has made our daily lives and work easier and more convenient, and is affecting the way

we communicate with things.

1.1 Agricultural IoT Systems

IoT systems are highly sought after in remote sensing and have been explored as an effective technology

for improving agricultural production management and maintenance [43] [73]. As shown in Figure 1.1,

by deploying small battery-powered devices with sensors in agricultural fields, data such as temperature,

moisture, and soil nutrient levels can be periodically and remotely collected. Each sensed data item can then

be either sent back to a gateway device or obtained by field users and eventually uploaded to a server for

remote users to access. Such systems have also greatly lowered the cost of agricultural management and

reduced human intervention [22]. Similar systems can also be applied to livestock farming [52] and wildlife

conservation [7], etc. The IoT systems are successful because of their convenience and flexibility. Before the

emergence of IoT systems, collecting this type of data was done manually. This was considered cumbersome

and tedious, and often required massive human and material resources. After entering the era of Big Data,

it is expected that a larger amount of data will be collected and stored to help people better understand the

environmental conditions and other state changes in remote areas. Nonetheless, this also comes with more

frequent and broader data collection. Due to the low efficiency and flexibility of manual acquisition, the

manual data acquisition method can no longer meet the varying requirements of the massive data collection

task. As an alternative option, the use of IoT systems can reduce human intervention by deploying small

devices for collecting data. Commonly, an IoT system only needs to be deployed and configured once during
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the construction, and it then can operate for a long time. Even though each IoT device is powered by a battery,

the lifetime of a typical IoT system is usually around a few years, depending on the power consumption of

IoT devices [48].

Figure 1.1: Context View: Precision Agriculture1

The data in IoT systems also is time related. Even in a delay-tolerant acquisition project, data collection

within reasonable delivery latency and accurate data reporting is essential and determines the success of

the entire project. For those projects that require real-time performance, such as environmental monitoring

and status reporting, if the data is received after its expiration date, the data loses its value. Manual data

collection often cannot achieve a good timeliness. In order to reduce the travel cost and maximize the harvest

of a single acquisition, technicians/scientists often drive kilometres to multiple locations for collection and

bring all the data back at once after all the collection points have been visited. It is time-consuming and

even the first collected data must wait until the collection task is over before it can be returned. Thus,

the timeliness cannot be guaranteed. Conversely, there is no such trouble in using IoT systems, since both

the data collection and transmission are proactive. Combining with a variety of other features, IoT systems

for data acquisition in precision agriculture and environmental sensing are extremely popular now and are

considered to be a highly promising solution.

1Recreated From Bajceta et al. [8].
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1.2 Wireless Sensor Network based IoT systems

The use of wired networks on remote agricultural land is typically not feasible, due to the lack of reliable

network and electricity infrastructure. Wireless sensor network (WSN) technology is considered to be an

effective and economical solution for agricultural IoT systems [16]. A WSN is comprised of spatially dis-

tributed autonomous sensor-equipped devices to monitor physical or environmental conditions and transmit

the sensor data back to the data warehouse via wireless media, so that the data can be stored for further

analysis [5]. Most IoT systems for remote sensing rely on WSN-based data acquisition systems. The basic

components of an IoT remote sensing system are shown in Figure 1.2. Wireless networks are responsible

for transmitting data collected from each sensor node to the gateway device. Unlike conventional wireless

networks, devices in WSNs are typically powered by batteries. Without rechargeable capacity, the total elec-

tricity of each device in the WSN is fixed and the lifetime is limited. Therefore, in the design of low-budget

WSNs, power consumption and device lifetime are often considered as key factors. A low-power WSN can

operate for months to years without recharging or battery replacement. Alternatively, small solar panels

can be equipped on the sensing device to provide charging capability. This approach increases the cost of

hardware and is geographically constrained.

Figure 1.2: Procedures of IoT-Based Remote Sensing

WSNs have been extensively researched over the past two decades, while various related physical layer

standards and protocols have been proposed. Among them, there are many well known physical layer stan-

dards, for example, Wi-Fi and Bluetooth [80]. Also, IEEE 802.15.4-based low-power-consumption wireless

standards have also been prevalent in recent years, such as Zigbee [15, 43, 64] and 6LoWPAN [73]. Each

of these standards is associated with one or more unique network protocols to ensure the reliability and
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correctness of data transmission.

WSNs are often used with a mesh topology. In a mesh topology, each device can operate not only as a

node but also as a relay; packets are forwarded to and from an Internet-connected gateway in a multi-hop

fashion [36]. Such networks have the ability of self-arranging and self-configuration, with mesh connectivity

established among nodes in the network automatically. Compared with the way that all nodes in a star

topology directly connect to the gateway [45], the use of a mesh topology provides a better flexibility and

convenience, and enables the network expansion regardless of the signal limits. Mesh topologies also involve

some other protocols, such as routing and transport protocols. All in all, these various protocols and features

enrich the application scenarios of WSN-based IoT systems. When designing a WSN, different wireless

technologies and protocols can be adopted in different scenarios according to actual needs and environmental

factors, in order to maximize the overall performance.

1.3 Difficulty and Challenge

While practical WSN applications are becoming more versatile, there are still challenges in using WSN

for sensing/monitoring across large geographic areas. The main reason is that conventional low-cost wireless

technologies are only suitable for use across small geographic areas, and their advantages are no longer evident

when facing a large area. The wireless transmission standards mentioned above, such as Wi-Fi, Bluetooth,

Zigbee [43] [64] [15], and 6LoWPAN [73], are frequently used in buildings, parking lots and other small areas,

because their average signal range is only about 10-100 metres [9, 29, 41, 74]. Unfortunately, in applications

such as sensing/monitoring for large farms, such limited signal coverage is clearly not wide enough.

Using a mesh network may improve the network coverage to a certain extent; increasing the size of the

mesh network, also increases, however, the equipment cost and network overhead at the same time. In

Saskatchewan, for instance, the average farm area is 1449 acres in 2016 [55]. In order to entirely cover an

average size farm in Saskatchewan by a WSN using a radio technology with a range of about 100 metres

(assuming continuous land location), approximately a total number of 187 devices must be used, and the

maximum number of communication hops is about 28. Networks with a large number of devices not only have

excessive equipment and maintenance costs, but also have higher network overhead and error probability.

Note also that farmlands are often divided by roads and rivers and not in one piece and the actual areas

that a WSN needs to cover will be correspondingly larger. Therefore, the previously mentioned wireless

technologies cannot adequately address the requirements of sensing/monitoring for Saskatchewan farms.

1.4 The Feasibility of Cellular Networks

Cellular networks are considered to be one of the alternatives for data acquisition systems. However, the

coverage of cellular networks is usually restricted and unstable in rural areas. Figure 1.3 provides some
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interesting data from OpenSignal Inc.2 regarding the cellular network converge in Saskatchewan, Canada,

in 2018. The map shows that the cellular network mainly serves the cities and major highways. However,

outside these areas, coverage is either non-existent, or poor quality as indicated by the large number of bad

signal points (red dots). Because of the spotty signal coverage, the cellular network cannot be considered as

a guaranteed solution to remote sensing in western Canada. Furthermore, since the cellular network operates

on licensed bands, charges are required for network connection, and the price is usually proportional to the

number of devices and the amount of data [61]. Therefore, the cellular network is not preferred in this case.

Figure 1.3: Cellular Converge Map in Saskatchewan From OpenSignal IOS App.3

1.5 LPWAN and LoRa

The emergence of LoRa fullfills the need for long-range communication in WSNs. LoRa is one of the standards

for Low-Power Wide-Area Network (LPWAN). Chipsets implementing LoRa are developed and manufactured

by Semtech.4 The advantage of LoRa is the use of chirp spread spectrum (CSS) modulation, which allows a

2https://opensignal.com/networks
3from OpenSignal IOS app. Screenshot by author. Link: https://itunes.apple.com/app/opensignal/id598298030
4https://www.semtech.com/lora

5



LoRa signal to be transmitted long distances with relatively low device cost. Centenaro et al. describe the

coverage range of LoRa as being 10-15 km in rural deployments and 3-5 km in urban deployments [11]. Such

a long transmission distance makes LoRa a practical solution for long-distance IoT. At the same time, the

power consumption of LoRa is also very low. Figure 1.4 provides some interesting information regarding the

comparison between LoRa and other wireless technologies. From the figure, it is clear that LoRa has a longer

signal range than any of the considered non-LoRa technologies, while still offering a relatively low power

consumption. Because of its long-range and low-power nature, LoRa technology has been applied to many

different fields. LoRa based applications are widely deployed now, for example in smart irrigation [83], soil

moisture monitoring [53], rice field management [25], and provision of intelligent agricultural services [47].

Figure 1.4: Power Consumption Versus Coverage for Different Wireless Technologies5

Using a LoRa-based WSN can significantly reduce the number of devices and bring additional benefits.

For example, the costs of construction and maintenance are often proportional to the number of devices. If

the number of devices drops, the construction and maintenance costs are reduced as well. Second, a multi-hop

network with a small number of devices will also result in a lower maximum or average hop number. As the

number of hops decreases, so does the power consumption, because fewer devices are involved on each path.

The reduction in power consumption not only extends the life of the network, but also reduces the human

and material resources for battery replacement. The error rate and inter-flow interference in the network will

be diminished as the number of devices decreases.

5Recreated From Shirvanimoghaddam et al. [71].
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1.6 Thesis Motivation

Application of IoT systems to the monitoring of crop growth has the potential to increase the efficiency of

both crop breeding and production. However, this requires improved capabilities for collection of image data.

For example in the P2IRC project,6 researchers are developing crop monitoring and data analysis tools to

assist crop breeders. A current focus in this project concerns collection/analysis of images from field test

plots. This has motivated the investigation of the possible use of a multi-hop LoRa network for diagnostic

image collection.

Unfortunately, LoRaWAN, the current standard protocol for LoRa, supports only single-packet-at-a-time

and single-hop transmission [1]. LoRaWAN is a media access control protocol and does not provide any

special support for transmission of large messages. With the LoRaWAN architecture a star network topology

is used. A star topology is simple and easy to manage, however, it limits the scalability of a LoRa wireless

network. Although multiple gateways can be deployed to form multiple star topologies and extend the

physical network range, a gateway in a LoRa network requires an Internet connection, and has substantially

higher cost and power consumption requirements than an end device. Thus, use of multiple gateways may

be undesirable or infeasible in an agricultural IoT system.

Multi-hop image transmission using LoRa is challenging. First, the performance of LoRa has rarely been

studied in a wide range of applications, especially large message transmission. Without actual measurements,

the feasibility of LoRa being used for large message transmission cannot be confirmed. Second, due to the

small maximum transmission unit (MTU) of LoRa, a large message, such as an image, must be transmitted

using many packets. Such continuous traffic increases not only the network utilization, but also increases

the chance of packet collisions. Third, LoRa’s low physical layer data rate makes it difficult to broadcast

additional data frequently enough to maintain the network topology while performing image transmission

tasks, which may lead to serious network congestion or even paralysis. Furthermore, in some jurisdictions,

such as in Europe, there are frequency band duty cycle limits that must be considered [14]. (In other

jurisdictions, such as in Canada and the US, other restrictions apply to the frequency band used for LoRa

but these do not prevent long-duration or frequent transmissions [14] [32].) Finally, any protocol design needs

to be as lean and lightweight as possible.

Pham proposed a carrier sense medium access (CSMA) protocol adapted to LoRa networks to avoid packet

collisions for image data and transmitted small images through LoRa [56] [57]. Jebril et al. demonstrated

the concept of point-to-point image transmission using LoRa at a variety of locations and showed that image

transmission can be done with delivery times varying between 1 and 14 minutes depending on the spreading

factor [33]. Both studies examine LoRa’s possibilities in single-hop image transmission and the former reduces

the packet collisions by applying CSMA. However, neither study investigated transport layer techniques for

improving image transmission performance. As a result, the former can only transfer images less than 1

6https://p2irc.usask.ca/
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KB, while the latter requires a fairly long transmission time. The first motivation, therefore, is to reduce

point-to-point transmission time in LoRa networks from a transport layer perspective.

Liao et al. proposed a multi-hop LoRa wireless network using concurrent transmission to flood identical

or different packets in parallel [44]. Sartori et al. described an approach using RPL, an IPv6 based rout-

ing protocol for low-power and lossy networks, to achieve deterministic multi-hop routing using the device

addresses in LoRa networks [65]. The above methods are applicable to LoRa networks that transmit sensor

data. However, when it comes to transmitting large messages, the flooding method will lead to serious net-

work congestion or paralysis, while use of an IPv6 based protocol will require more packets to complete the

transmission because the packet header is too large relative to the entire packet length, which will undoubt-

edly increase the overhead. Therefore, the second motivation is to design a lightweight multi-hop transport

protocol for LoRa to achieve explicit packet routing on multiple hops while minimizing the overhead and

network utilization.

An effective design needs to consider the specific physical characteristics of LoRa and minimize network

overhead. Although, LoRa is designed initially to transmit single-packet data only, LoRa’s data rate can still

support transmission of larger messages, like small images. Such data transmission in LoRa can be achieved

by designing a LoRa-specific transport protocol. If LoRa wireless networks can transmit larger messages,

such networks can be applied to more scenarios. To the best of my knowledge, there are no prior studies that

have addressed the multi-hop transmission for multi-packet data in LoRa.

1.7 Thesis Statement

This thesis intends to determine and prove the feasibility of LoRa in multi-packet transmission applications

and multi-hop topologies. Two novel and lightweight protocols are proposed in this thesis, namely Multi-

Packet LoRa (MPLR) and Multi-Hop LoRa (MHLR). MPLR introduces a reliable and fast multi-packet

data transmission mechanism for LoRa, and MHLR utilizes the power of machine learning algorithms to

achieve effective routing in LoRa multi-hop transmission. By minimizing the transmission time and reducing

inter-flow interference, the proposed protocols can efficiently transmit multi-packet data, such as images,

from the node to the gateway in a multi-hop manner. Both protocols are implemented in Micro-Python,

and a set of performance experiments are carried out using a LoRa testbed network in laboratory, indoor

and outdoor environments, measuring throughput, transmission time, packet collisions, inter-node fairness,

prediction accuracy, and connection establishment delay.

1.8 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 discusses background and related works. Chapters

3 and 4 discuss the design of proposed solutions. Chapter 5 describes the experimental environment for the

proposed work. Chapter 6 introduces the test components and tools used in this study and the results of the
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performance evaluation experiments. Chapter 7 contains the conclusions and provides directions for future

work.
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Chapter 2

Background and Literature Review

2.1 LoRa Hardware and LoRaWAN Protocols

LoRa is one of the physical layer standards for LPWAN and was first developed and manufactured by

Semtech.1 It modulates signals in a sub-GHz ISM band using a chirp spread spectrum (CSS) technique

and spreads a narrow band input signal over a wider channel bandwidth, in order to makes it resilient to

radio frequency interference caused by other radio frequency devices and environmental noise [62]. LoRa

can operate on several different frequency bands, due to the different regulatory requirements from region to

region. For example, 868 Mhz and 915 Mhz frequency bands are used for LoRa communication in the EU and

US/CA respectively [2]. Depending on the selected spreading factor and channel bandwidth, LoRa’s physical

layer data rate is from 300 bps to 37.5 kbps, while its signal range is from 10 km to 15 km line-of-sight in

rural areas and 3 km to 5 km line-of-sight in urban areas [11]. For example, Seye et al. [68] evaluated LoRa’s

signal coverage in the Dakar peninsula and they observed good signal coverage and strength with a maximum

communication range of 10 km. Although LoRa has such extensive signal coverage, its power consumption

stays low. According to the measurement work done by Cheong et al. [12], the power consumption of a LoRa

module is 117 mA in transmission (TX) mode and is 1.8 µA in sleep mode. In addition, a battery lifetime

prediction shows that a battery with a capacity of 2000 mAh ensures a 10-year operational life of a typical

LoRa device [12]. Due to this low power consumption characteristic and long signal range, LoRa has gained

a lot of commercial and academic attention in recent years.

2.1.1 LoRa Physical Layer

Chipset

According to the product list2 on the Semtech official website, there are two major types of chipsets designed

for LoRa communications. One is a gateway dedicated chip, the main representatives being the SX1301 and

SX1308, for outdoor and indoor communications, respectively. Both of them support up to 8 programmable

parallel demodulation paths and dual digital Tx & Rx radio front-end interfaces. The only difference between

1https://www.semtech.com/lora
2https://www.semtech.com/products/wireless-rf
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them is the sensitivity, which is the minimum magnitude of input signal required to produce a specified output

signal having a specified signal-to-noise ratio [49]. The other chipset type is designed for node devices. On

the product list, only the SX1272/73 and SX1276/78 are designed for US unlicensed frequency bands. These

chips can only receive or transmit on one channel at a time, and so for most applications that do not require

an acknowledgement would not be suitable for use for a gateway.

Spreading Factor and Bandwidth

LoRa supports a range of spreading factors (SF) to decide the trade-off between range and data rate [62].

From SF 7 to SF 12, a higher spreading factor can significantly extend the communication range, but also

lowers the data rate and can cause more severe data collision at the receiver due to the longer on-air time [19].

Figure 2.1 demonstrates the change in length of a chirp symbol with a bandwidth of 250 kHz at SF 7, SF 8,

SF 9, SF 10, SF 11, and SF 12 settings, respectively. As seen in the figure, an increase in SF by 1 doubles the

transmission time of a symbol. The number of bits encoded by each symbol equals SF and so an increase in

SF by 1 increases the number of bits transmitted per symbol by 1, but the data rate in bits per second still

decreases because of the increased symbol transmission time. In Figure 2.1, linear “up-chirps” are shown.

SF bits can be encoded per symbol by choosing one of 2SF possible cyclical shifts of each chirp. LoRa also

operates on three different bandwidths (BW), 125 kHz, 250 kHz, and 500 kHz respectively [19]. A wider

bandwidth enables a higher data rate, but is less resilient to noise.

Figure 2.1: Comparison of LoRa Spreading Factors: SF 7 to SF 123

SF and BW are two important factors in LoRa and different combinations of SF and BW lead to a variety

3Modified from http://www.sghoslya.com/p/lora-is-chirp-spread-spectrum.html
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of data rates. The physical layer data rate of LoRa is given by the following expression [6]:

(2.1)SF × BW

2SF
× CR,

where SF is the spreading factor, BW is the bandwidth, and CR forward error correction (FEC) code rate.

With FEC, redundancy is added to the data stream to facilitate correction in case some bits are received

incorrectly due to noise on the transmission channel. The code rate is defined as the proportion of the data

stream that is non-redundant. Using this equation, the physical layer data rate of LoRa can be calculated

for given values of SF, BW, and CR. Table 2.1 lists the physical layer data rate of LoRa under all possible

combinations of spreading factor and bandwidth when the code rate is 4/5.

Table 2.1: LoRa Physical Layer Data Rate (in kbps, CR=4/5)

500 kHz 250 kHz 125 kHz

SF 7 21.88 10.94 5.47

SF 8 12.5 6.25 3.12

SF 9 7.03 3.52 1.76

SF 10 3.91 1.95 0.98

SF 11 2.15 1.07 0.54

SF 12 1.17 0.59 0.29

The selection of SF and BW is mainly based on the received signal strength indicator (RSSI) value of the

transport request packet. The RSSI is a measure of the power of the received signal relative to a reference

value, in decibels. The minimum RSSI values required for different SF and BW combinations can be found

on the applicable Semtech data sheet.

RSSI vs. Spreading Factor and Bandwidth

Due to different communication distances and obstacles between devices, RSSI values depend on the actual

deployment. In LoRa, RSSI values determine the availability of the spreading factor and bandwidth. In other

words, the RSSI value received by the receiver determines the SF and BW values that can feasibly be used

for transmission. Semtech has given the sensitivity for each SF and BW combination in SX1276 datasheet,

as shown in Table 2.2. This table records the minimum RSSI value required for each spreading factor and

bandwidth. This table allows one to quickly and dynamically select the available and appropriate spreading

factor and bandwidth.

Packet Structure

The packet structure of LoRa is presented in Figure 2.2. As shown in the packet structure diagram, the section

between Preamble and Payload is encoded at a fixed code rate of 4/8, while the code rate of the Payload
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Table 2.2: SX1276 LoRa Modulation Receiver Sensitivity (in dBm) [66]

500 kHz 250 kHz 125 kHz

SF 7 -118 -122 -125

SF 8 -121 -125 -128

SF 9 -124 -128 -131

SF 10 -127 -131 -134

SF 11 -129 -133 -136

SF 12 -130 -134 -137

Figure 2.2: LoRa Packet Structure4

and the Payload CRC (cyclic redundancy check, an error detecting code) is optional within a certain range

(details are described below). Therefore, the length of the encoded Payload and Payload CRC is variable

and depends on the selected code rate.

Preamble

At the beginning of each packet, 12 up-chirp preamble symbols are added by default. It is used to synchronize

the receiver with the incoming data flow. The size of the preamble can be reduced to minimize the duty-cycle

at the receiver, but 8 bytes is the minimum preamble length.

Header

The header provides 3 major pieces of information about the current packet, the payload length in bytes, the

payload FEC code rate, and whether or not an optional 16-bit CRC for the payload is used. The payload

FEC code rate can be one of four possible values, namely 4/5, 4/6, 4/7, or 4/8. Smaller code rates have

better error detection and correction capabilities, but incur more overhead. The header also has its own CRC

for the receiver to validate. The header is explicit by default. However, in case the payload length, code rate,

and CRC presence are fixed or known in advance, implicit header mode can be enabled, which removes the

header from the packet and reduces the bytes that need to be transmitted.

4Recreated From the SX1276 Datasheet.
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Data Payload

The data payload is a variable-length field that contains the actual application data. Depending on the

selected spreading factor, the maximum length of the data payload in one LoRa packet is between 51 bytes

and 255 bytes [1]. Compared to other wireless standards, LoRa’s data payload is relatively small. This makes

it more difficult to utilize complex protocol stacks with LoRa and to transfer large data units.

Payload CRC

The payload CRC is a 16 bit cyclic redundancy check value placed at the end of the packet, computed over

the payload bits. It is optional, but allows the receiver to discard packets with invalid payload.

On-Air-Time Calculation

The On-Air-Time calculation is necessary and useful to predict the system duty cycle and channel occupancy.

For LoRa, the estimated on-air-time can be computed by using the formulas offered in the Semtech datasheet

[66]. Based on the choice of SF and BW, the symbol rate, Rsym, can be computed as

(2.2)Rsym = BW

2SF
.

Once the symbol rate is computed, on-air time can then be computed, based on the symbol rate and packet

length. The preamble duration can be expressed as

(2.3)Tpreamble = (npreamble + 4.25) × 1
Rsym

,

where npreamble is the programmed preamble length. The following formula gives the number of payload

symbols:

(2.4)npayload = 8 + max(ceil(8PL − 4SF + 28 + 16 − 20H

4(SF − 2DE) )(CR + 4), 0),

where PL is the number of payload bytes, H is 1 if an explicit header is used and is 0 otherwise, DE is 1 if a

Semtech “low data rate” optimization is configured at both the sender and receiver and is 0 otherwise, and

CR is the code rate. The payload duration can then be calculated as

(2.5)Tpayload = npayload × 1
Rsym

.

The total on-air-time of the entire packet becomes

(2.6)Tpacket = Tpreamble + Tpayload.
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2.1.2 LoRaWAN Protocol

LoRaWAN is a well-known LPWAN media access control protocol that is designed for networks using LoRa

or frequency-shift keying communication specifically. LoRaWAN networks use star topologies, where each

node device only connects to one or many gateways through a single-hop communication [11]. A gateway is

defined as a sink point in a LoRaWAN network where messages are forwarded from the LoRaWAN network

to a central server through a TCP/IP connection. Roughly, up to 10,000 end devices can connect to a single

gateway simultaneously [77]. Even so, due to the limited number of available channels, the overall throughput

will decrease as the number of connected node devices increases [1]. According to LoRaWAN Specification

v1.1,5 node devices in LoRaWAN are classified into the following classes based on the different requirements

of applications:

• Class A. Only node devices can initiate communication, and each communication is asynchronous. Each

uplink transmission can be sent at any time, based on an ALOHA type of protocol. Each communication

is followed by two short downlink windows for downlink transmission from the gateway. Such devices

are considered the most power-efficient and can often run for years without replacing a battery.

• Class B. Based on class A, class B devices also utilize periodic beacons to synchronize with the net-

work and open downlink at scheduled times. This allows the gateway to proactively initiate downlink

communication at a scheduled time. Devices in class B consume more power than devices in class A

due to the scheduled opening of the reception window. In the protocols proposed in this thesis, all

non-gateway devices fall into this class.

• Class C. Unlike class A and class B devices, all node devices in class C always keep the downlink window

open. In other words, the gateway can initiate downlink transmission at any time. Devices in this class

are considered the most power-hungry, and typically only gateway devices fall into this class.

Limitations in LoRa/LoRaWAN

As LoRa and LoRaWAN are still in an early stage of development, their application scenarios have not been

explored very much. Therefore, the LoRaWAN protocol also has the following shortcomings:

• Limited MTU and No Transport Protocol. According to the Semtech data sheet [66], the max-

imum payload size of a LoRa packet is between 51 bytes and 255 bytes, depending on the SF setting.

Such payload size is only sufficient for small sensor data values, such as temperature and humidity,

motion detection, and ambient light level, etc. For large data units, many packets have to be used for

transmission. However, there is currently no transport protocol designed for LoRa wireless networks

that efficiently supports transmission of messages requiring many packets.

5https://lora-alliance.org/resource-hub/lorawantm-specification-v11
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• Random Channel Access. In LoRaWAN, pure ALOHA is utilized for media access control [1].

Pure ALOHA works very simply: it transmits whenever there is data to send, without sensing whether

another transmission occurs on the same channel and time [76]. When a collision happens, the packets

will not be received correctly and retransmissions will be required. Typically, as the number of end

devices grows, the maximum throughput decreases as the chance of packet collisions increases. Thus,

the random nature of pure ALOHA is not efficient and optimal in IoT systems [1]. In random channel

access, each node device can send a data packet without sensing the status of the channel. In other

words, there is no busy period detection before transmitting, and this can lead to a high probability of

message collision during the busy period. When a collision occurs, a packet that is being transmitted

has to be discarded and needs to be retransmitted again later. As a result, electricity is wasted. Also,

the throughput cannot be guaranteed and latency is unbounded when random channel access is used,

as node devices may need a very long time to send data successfully when the network is busy.

• Single Hop Communication. In reality, the actual maximum transmission distance is usually less

than the theoretical distance. This is often due to the uneven terrain and obstacles, which weaken

the signal. In such cases, single hop communication is no longer sufficient, no matter what the theo-

retical signal range is, and multi-hop communication is needed for bypassing the obstacles. Multi-hop

communication is also helpful for extending the network to an even broader range. In other wireless

communication protocols, such as Bluetooth, ZigBee, and Wi-Fi, multi-hop communication is feasible

and helpful in many aspects. In contrast, LoRa lacks support for it.

2.2 LoRa Applications and Research Studies

Several studies have investigated the applicability and capacity of LoRa to facilitate agricultural management

tasks. Zhao et al. proposed a smart irrigation system based on LoRa that connects to the Internet at the

gateway [83]. Their system provides a convenient method for remote users to send commands to irrigation

nodes and receive status information from irrigation nodes. With the aid of LoRa, their system has lower

power consumption than a system using GPRS and allows a communication distance between the irrigation

node and gateway of up to 8 km.

Payero et al. developed and tested a LoRa-based WSN to monitor soil moisture [53]. They constructed

several sensor nodes using RFM95 LoRa radio and Decagon EC-5 sensors to collect soil moisture and send

data to the coordinating gateway for further aggregation through the Internet. Their system was evaluated

in a wheat field and accurately read the value of soil moisture from remote locations.

Ma and Chen used a LoRa-based wireless sensor network to develop a service platform for intelligent

agriculture [47]. A multi-sensor component was built and deployed to sense the carbon dioxide concentration,

temperature, air humidity, light intensity, soil temperature, soil moisture, wind direction and wind speed from

the environment. Collected data was transmitted to a base station through LoRa communication.
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Seye et al. performed extensive experiments to evaluate the signal coverage and strength of LoRa in

Senegal [68] [67]. When using a spreading factor of 12, they observed good signal coverage and strength

with a maximum communication range of 10 km in urban areas (Dakar, Senegal) and 15 km in rural areas

(Namarel, Senegal). Based on these measurements, a proof-of-concept architecture called the COWShED was

deployed to enable LoRa communication between livestock herders following seasonal patterns of migration

in the Ferlo region, many areas of which lack cellular coverage [67].

2.2.1 Image Transmission Through LoRa

Due to the advantages of LoRa in communication range and power consumption, more possible use cases

of LoRa are being explored, including image transmission. Pham realizes small image transmission in LoRa

network through a series of methods and improvements [56] [57]. In that scenario, each LoRa device in

the network sends a black-and-white image of 900 to 1,200 bytes per hour to the LoRa gateway. To do

that, each image is split into 4 or 5 separate packets and transmitted one by one. This is done to break

the LoRa load limit of 222 bytes. Pham also proposes a CSMA mechanism for LoRa networks to mitigate

the collision of packets in the network. The proposed CSMA mechanism is inspired by the IEEE 802.11

CSMA mechanism, in which a node can transmit only after the channel has been sensed idle for a minimum

time period. The performance evaluation results show that the proposed CSMA mechanism can effectively

reduce packet collisions in LoRa networks for both short and long messages. Moreover, the proposed CSMA

mechanism is more energy efficient than the CSMA mechanism from IEEE 802.11.

Jebril et al. used LoRa as the main infrastructure for mangrove monitoring through image transmission

and conducted a comprehensive outdoor experiment in Sabak Bernam, Malaysia [33]. Similar to what Pham

did, Jebril’s approach is to split each image into separate packets and send each packet in turn. The difference

is that a transmission command packet is sent before the data transmission and the sender needs to wait

for the receiver to reply with the acknowledgement packet. The transmission task will not start until the

sender successfully receives the acknowledgement packet, otherwise the task will be delayed. The benefit of

it is to prevent unplanned data transmission before the receiver is ready to receive, thereby avoiding packet

dropping and power wasting. They used the self-built LoRa devices to evaluate the proposed mechanism

with point-to-point transmission from 1 kilometre to 7 kilometres at various locations in Sabak Bernam,

Malaysia. The results show that the image transmission of 300 packets through LoRa is feasible at a distance

of 1 kilometres to 7 kilometres. The transmission time varies from 1 minute to 14 minutes, depending on

the value of the spreading factor used. When the distance is less than 5 kilometres, there is no significant

difference in the packet loss rate among different spreading factors. However, when the transmission distance

is greater than 5 kilometres, the packet loss rate of SF 7, SF 8 and SF 9 increases significantly, while the use

of other spreading factors has seen only a modest increase.

Ji et al. implemented image transmission in a LoRa-based visual monitoring scheme for agriculture IoT

system by segmenting the collected image and sending only the changed image area [35]. It is difficult
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for LoRa to transmit full images frequently, since LoRa’s data rate is very small. They noticed that in

their agricultural scenario, the image changes very little over the course of the day. Therefore, instead

of transferring the full image, only the changed image area needs to be transmitted. In order to reduce

the computational complexity and energy consumption, their method is to divide the image into 256 grid

patches. By comparing the corresponding grid patches in the two images, the change areas are calculated

and sent. The experimental results show that only 24% of the 2820 experimental cycles actually performed

transmission. During these transmission cycles, an average of 14.47 patches were sent per cycle, with an

average transmission time of 5.22 seconds and a throughput of about 2.212 kbps.

2.3 Reliable Transport Mechanism

When multiple packets need to be sent continuously, there is no guarantee of the successful arrival of data,

the order of arrival and the correctness of packets. Therefore, reliable transport protocols are needed to

solve these problems. This section describes the reliable transport methods and protocols commonly used in

Internet. Although they cannot be directly applied to WSNs, they bring useful insights into the proposed

protocols.

2.3.1 Automatic Repeat Request

A protocol where the sender waits for confirmation before moving on to the next data item is often called

automatic repeat request (ARQ) [76]. In other words, ARQ is used as an error-control technique for data

transmission by using acknowledgements. The simplest ARQ scheme is the stop-and-wait algorithm, which

waits for an acknowledgement for every packet (window size = 1) [76].

2.3.2 Block Acknowledgement

Block acknowledgement was first invented and applied in IEEE 802.11 wireless LANs (WLANs) to im-

prove network communication quality by reducing the amount of overhead caused by acknowledgement

packet [31] [59]. In simple terms, the block acknowledgement mechanism aggregates multiple acknowledge-

ments into a single packet and therefore acknowledges a block of data packets by one single acknowledge-

ment [31]. Such a mechanism reduces the network utilization and waiting time for acknowledgements, and

improves channel efficiency. Based on network conditions, the block acknowledgement mechanism is also

divided into two categories, namely immediate acknowledgement and delayed acknowledgement. The differ-

ence between the two is that the former sends the block acknowledgement packet immediately after the data

transmission. In the latter case, after the end of data transmission, the receiver needs to confirm the comple-

tion of data reception with the sender before sending the block acknowledgement packet. In a network with

high bandwidth and low latency, immediate block acknowledgement is more suitable. In moderate latency

applications, the delay block acknowledgement is preferred [10] [31].
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2.4 Network Topologies in WSNs

A network topology is a mapping of a communications network that defines how network devices are arranged

and how information flows through the network [21]. The medium of wireless sensor networks sends data

in the form of broadcast, thus devices in WSNs are connected via a software-level topology. This section

introduces and analyzes five common network topologies in WSNs.

2.4.1 Bus Topology

In a bus topology, all nodes are connected to one single frequency channel and considered as peers. During

communication, packets are broadcast over the network and are visible to other nodes in the same network,

while only the intended receiver accepts and processes packets [21] [69]. Thus, the bus topology is realized

by pure wireless broadcasting. Each node in the bus network can reach any node in the same network by

specifying the receiver’s unique address in the packet. Figure 2.3 shows an example of a bus topology that

communicates on channel #1. Note that the dotted links between nodes are wireless links.

Figure 2.3: An Example of Bus Topology6

The bus topology is relatively easy to deploy because of the broadcast nature of the wireless spectrum.

However, in the case of a large number of nodes or high communication duty, the bus network could experience

serious network congestion. Therefore, with fewer nodes, the bus network has less congestion and each node

can experience good performance [69]. Due to the single-hop communication between nodes in the bus

network, the physical scope of the network is limited by the physical layer wireless media and cannot be

further extended by software. Therefore, the bus topology is not suitable for wide area networks. Also, in

6Recreated From Sharma et al. [69].
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the scenario of this thesis, the bus topology is not an appropriate method due to the deterministic data flow

and high duty-cycle brought by image transmission.

2.4.2 Star Topology

The star topology is the standard topology used by the LoRaWAN protocol [11]. In a star topology, each

node is connected to a central point called a gateway or sink point, and all packets are aggregated directly

from each node to the gateway without any coordination between the nodes [21] [69]. Figure 2.4 shows an

example of a star topology.

Figure 2.4: An Example of Star Topology7

Like a bus network, nodes and gateways must be on the same frequency channel to communicate. In a

star topology, however the gateway can control the time and duration of node access through the appropriate

MAC protocol. A gateway with multi-channel functionality, such as the LoRa-based SX1301 chip, can listen

on 8 different channels at the same time, and each node in the network will be assigned a random frequency

channel to communicate with the gateway, so as to alleviate traffic congestion.

Although star topologies can alleviate traffic congestion by using appropriate MAC protocols, star topolo-

gies are still limited by single-hop communication and cannot further extend the network range. Therefore,

the star topology does not directly apply to the scenario in this thesis.

2.4.3 Chain Topology

The chain topology, also known as the line topology, is used to transmit packets from one end to the other

through a series of nodes. The nodes in the chain topology communicate in a multi-hop fashion. Nodes in

7Recreated From Sharma et al. [69].
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the chain topology are connected to two adjacent nodes, except for the first and last one [13]. Figure 2.5

shows an example of a chain network. As shown in the figure, a node on one side of the network needs to

relay through three other nodes to send the packet to the gateway. Communication channels between any

two nodes can be fixed or dynamically assigned. Under normal circumstances, different channels will be used

as much as possible to reduce interference between flows.

Figure 2.5: An Example of Chain Topology

The primary use of the chain topology is to extend the coverage of networks and to compensate for the

limited signal range of individual physical medium. For example, when a wireless physical medium with

a signal range of only about 100 metres is needed to send a packet to a receiving point 500 metres apart,

four additional devices can be placed every 100 metres between these two devices to implement the chain

topology and relay the packet. However, relaying itself brings additional overhead, resulting in decreased

network throughput.

2.4.4 Mesh Topology

The mesh topology is another common method to solve the single-hop communication problem mentioned in

bus and star topology. In a star topology, similarly, a central hub is selected as the data aggregation point of

the network, with each node directly or indirectly connected to other nodes [21] [69]. Packets are transmitted

directly between nodes that have direct contact with the gateway, while for nodes that have indirect contact

with the gateway, packets are transmitted through relay devices and eventually routed to their destination.

As shown in Figure 2.6, packets have multiple paths to choose from to send a packet from source to

destination. According to the stability and congestion of each route at run-time, the packet is sent to the

destination through the optimal path by routing protocol. This approach provides robust network connections

and allows topology changes. Especially in the WSN where the nodes frequently leave and rejoin the network,
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the use of mesh topology can dynamically solve the optimal routing problem from the node to the gateway.

Mesh topology is suitable for self-managed networks with frequent topology changes. In particular,

dynamic routing queries can cause additional latency and power consumption. The scenario in this thesis is

a relatively stable hybrid network topology, which in most cases does not change except when the battery

is depleted and the nodes are disconnected. Therefore, an appropriate network topology should provide

multi-hop transport just like a mesh topology, but without the need for dynamic routing queries.

Figure 2.6: An Example of Mesh Topology8

2.4.5 Tree/Star-to-star Topology

A tree topology is a subset routing structure of a mesh topology and is a combination of bus and star

networks [51] [69], as shown in Figure 2.7. This is because a tree topology supports both the use of multiple

hops to transmit data across the network and the ability for multiple nodes to connect to a parent node.

At the same time, a tree topology does not need to connect all adjacent nodes as a mesh topology does. A

tree topology can also be viewed as a collection of star networks arranged in a hierarchy [79]. Therefore, it

is also known as star-to-star (expanded star) topology. The construction of the tree topology occurs during

the configuration step and the topology is adjusted periodically.

In a tree topology, periodic topology adjustment is typically used instead of proactive routing query, so

that the nodes in the network can save electricity as much as possible to extend the lifetime of the whole

network. There is only one sink point in the tree topology, which is the root node. All other nodes eventually

need to send collected data to the root node. Combined with the above concepts and advantages, the tree

topology is very consistent with the scenarios in this thesis.

8Recreated From Sharma et al. [69].
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Figure 2.7: An Example of Tree Topology9

2.5 Multi-hop Routing

The routing protocol is the core of multi-hop communication, which defines how each packet in the network

can be sent from source to destination in an efficient way. The main consideration is the next hop to which

the packet should be forwarded on the path towards the destination. A well-designed routing protocol should

not only consider the transmission rate of packets, but also consider the power consumption and network

congestion. Thus, routing protocol plays an important role in the network with multi-hop communication.

The following sections describe several routing protocols for WSNs and LoRa.

2.5.1 Routing Protocols for WSNs

There are three types of routing protocols in WSNs, namely proactive routing, reactive routing, and hybrid

routing [40]. According to the requirements and goals of wireless sensor networks, various routing protocols

are explicitly used. It is worth mentioning that there is no routing protocol that can fulfill all the requirements

of all WSNs, since each routing protocol is optimized for specific requirements. The important characteristics

of each routing protocol type are described below.

Proactive Routing Protocols

Table-driven routing takes the proactive approach. These routing protocols maintain a list of up-to-date

routing information, and periodically distribute the routing information throughout the network [40]. Any

packet relay is done immediately without delay, unless there is no route to the destination in the maintained

9Recreated From Sharma et al. [69].
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table. However, the most significant disadvantages of table-driven routing are considerable storage for routes

and slow reaction to topology/network changes [38]. Therefore, this approach is not recommended when the

storage of nodes is limited or the network size is relatively large.

Reactive Routing Protocols

Reactive routing, on the other hand, finds routing information on demand by broadcasting and flooding

route request packets [40]. In other words, there are no routes in a node’s storage and the most up-to-

date route/next hop is determined before the packet is sent. Because routing requests are real-time, reactive

routing cannot avoid the high latency on route finding and request flooding can also cause network congestion.

Hybrid Routing Protocols

Hybrid routing combines the advantages of both proactive and reactive routing. It typically initiates the

network with a proactive strategy and then reactively serves newly activated nodes [40]. The advantage of

this is that the network construction of proactive strategy can form the network topology faster, and then

the reactive topology adjustment can respond to the change of topology on the premise of saving electricity

as much as possible. However, the performance of this routing protocol is affected by the number of newly

activated nodes and the traffic volume.

2.5.2 Routing Protocol for LoRa

Several routing protocols for LoRa have been proposed in previous research work. Liao et al. proposed a

multi-hop LoRa wireless network using concurrent transmission [44]. Concurrent transmission is a flooding

based routing protocol, that allows multiple nodes to transmit the same packet simultaneously and considers

synchronized packet collisions when multiple relays perform retransmissions at the same time, in order to

enable simple and fast back-to-back packet relaying. Such quick flooding is sufficient for transmitting a small

amount data efficiently. However, when the size of packet and duty-cycle is increased, its advantages are less

obvious, and the extra overhead of flooding would often congest the network. In fact, flooding-based routing

protocol is not suitable in the scenarios in the thesis.

Sartori et al. suggested RPL, a IPv6 based routing protocol for low-power and lossy networks [65].

Due to its IPv6-based connectivity, RPL has a remarkable performance of bi-directional communication and

compatibility with existing IP based protocols. Regarding LoRa’s limited packet payload length, adding the

IP header will take 40 bytes from packet payload length (a 17.16% reduction in payload). Even if packet

segmentation is employed, more packets need to be transmitted in each reception window. In order to send

relatively large data objects via LoRa, the protocol design must allocate as much payload as possible to

reduce the number of packet segments and thus the overhead of transmission.

Lundell et al. proposed a new routing protocol based on hybrid wireless mesh protocol and ad-hoc on-

demand distance vector (AODV) routing [46]. Similar to AODV, a Route Request packet will be broadcast
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every time when a device has a data packet to send, and the device will receive a reply packet that contains an

explicit route. Such run-time route inquiry is protected against topology changes in ad-hoc mobile network.

On the contrary, dynamic route inquiry creates a lot of overhead when the network topology is constant

in most cases. In stationary sensor networks, routes from each source device to the respective destinations

need to be calculated during network initialization. These routes are often optimal and do not need to be

re-calculated if no devices enter or leave the network. When a device enters or leaves the network, routes can

be re-calculated on demand. Such passive routing update is acceptable for a wireless sensor network where

slight delay is tolerable. Thus, proactive routing protocols are not preferred in this scenario.

Moreover, the operational spreading factor and the bandwidth in all these proposed approaches are either

pre-scheduled, or randomly matched during the run-time. From the literature search conducted, there is no

such study of routing protocol for LoRa wireless network that has utilized spectrum opportunities to enhance

the routing. This makes it difficult for the routing protocol to estimate the transmission time and cost of the

route accurately by detecting the quality of the link, and give appropriate transmission settings and route

selection.

Efficient Tree-Based Self-Organizing Protocol for IoT

Qiu et al. propose an efficient tree-based self-organizing protocol for sensor networks in IoT systems [60].

Such a protocol can construct a reliable tree-based network quickly by broadcasting packets to allow newly

added nodes to join the network selectively. Each newly added node chooses how to join the tree topology

by measuring the number of child nodes, hop, communication distance, and residual energy. The simulation

results show that the proposed protocol has a shorter construction time, and the performance of success rate

of the packet is much higher than both AODV and destination-sequenced distance-vector (DSDV) routing,

and the network lifetime is much longer than the network using DSDV routing.

2.6 Machine Learning for Routing Selection

Routing selection is critical in routing protocols. The optimal path to deliver packets is selected by analyzing

and judging each feasible path. In the past, through the analysis and comparison of the routes, complex

metrics are developed to allow each node to calculate either a faster or more stable path to a destination.

However, such an approach not only requires much effort to analyze and compare each possible routing

situation, but also needs to examine the impact coefficient of each selected factor. With the rapid development

of machine learning in recent years, similar problems can be effectively solved by machine learning algorithms.

2.6.1 Types of Machine Learning Systems

Machine learning consists of several different types of systems for different methods of learning. Depending

on the type, size, and integrity of the data set, various machine learning systems can be used independently or
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collaboratively. Described below are four common learning systems typically used for classification problems,

in which the problem is to determine which category a new instance belongs to based on training data for a

set of instances that contain known category members.

Supervised Learning

In supervised learning, desired solutions are included in the training data that one provided to the algorithm

[23]. In other words, both features and solutions are learned in supervised learning to predict the new data

instance. Classification is a typical supervised learning task which learning the features from a known instance

and its category and predict the classes to which the unknown data instance belongs [23].

Unsupervised Learning

Unlike supervised learning, solutions are not provided to the algorithm via the training data, and so the

system needs to learn without a teacher [23]. Unsupervised learning is commonly used in clustering task

which clusters the instance based on their features without known solutions.

Batch Learning

In batch learning, all training is done with the entire training data set before inference, and without the ability

of incremental learning [23]. Such training is usually done before deployment of the system to infer category

membership since it will take a fairly long time and use a large amount computing resources. Sometimes

days are needed to complete training on cluster of computers [70]. The trained system has to be re-trained

using all training data when introducing new training data to the system.

Online Learning

Online learning is a general way to support incremental learning, where the model is updated by learning

mini-batches of data sequentially [23]. In many cases, after the training data is learned, the machine learning

model needs to be updated incrementally based on the real-time data. At this point, online learning is needed

to quickly or autonomously adapt to changes in the system.

2.6.2 Common Supervised Learning Methods for Classification

Learning methods and algorithms for supervised classification have been widely studied in recent years. Here

are five classification learning methods and algorithms that will be considered in this thesis. All of these

methods and algorithms support incremental learning and are implemented in the library used.

• Multi-Layer Perceptron (MLP) is a feed-forward artificial neural network model which maps the input

data set to the appropriate output data set [4]. It consists of a number of units organised into multiple

layers. It consists of many cells organized into multiple layers. The first is the data input layer, the last
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is the data output layer, and the remaining are the hidden layer(s). Three different algorithms can be

used to implement the MLP model, namely the back propagation, the delta rule, and the perceptron [4].

The MLP model adopted in this thesis is implemented by the method of back propagation.

• Stochastic Gradient Descent (SGD) is an iterative method for optimizing objective functions with

appropriate smoothness [50]. This method uses stochastic selection of samples to evaluate the gradient,

so it can be regarded as a stochastic approximation of gradient descent optimization. This method can

be used to train classifier based on linear support vector machine. Therefore, the SGD method used in

this thesis adopts linear support vector machine by default.

• Decision Tree is one of the most popular approaches for classification and prediction [63] [75]. It

classifies data in a tree structure, where each node is either a leaf (result) node or a decision node.

The former is a class of instances, while the latter is some test performed on a single value, with a

branch and sub-tree for each possible result of the test. Decision tree structures typically work from

the top down, best separating a set of projects by selecting a criterion at each step [63]. The criteria

used in this thesis is Gini, which is an impurity-based criteria that measured the divergence between

the probability distributions of the target attribute’s values [63]. In other words, it is the probability of

incorrectly classifying a randomly chosen element in the data set if it was randomly labeled according

to the distribution of labels in the subset [84].

• Random forest is an ensemble learning method of classification, which constructs a large number of

decision trees during training, and the output class is determined by the mode of the output class of

individual trees [26] [27]. It combines the bootstrap aggregating meta-algorithm to improve the stability

and accuracy, and avoided over-fitting by reducing the variance of results. Since it is based on a set of

decision trees, the criteria for random forest used in this thesis is also Gini.

• Ada Boost, short for Adaptive Boosting, is also an ensemble learning method of classification. Unlike

in a random forest, where each decision tree has only one vote for the final result, Ada Boost combines

the output of a series of weak learners (decision tree, for instance) into a weighted sum to represent

the final output of the enhanced classifier [17]. It is adaptive because subsequent weak learners are

adjusted to support instances that have been misclassified by previous classifiers.

2.6.3 Relevant Studies and Applications

Several studies that have been conducted to use machine learning algorithms to solve routing problems. Zhao

et al. used support vector machine, a supervised learning model that used for classification, to process the

vehicle data and generate routing metrics to enhance the effect of the features and the performance of the

greedy perimeter stateless routing (GPSR) algorithm in vehicular ad-hoc networks [82]. Through the training

of a large number of classified data and the simulation tests, it is proved that the proposed method has less

packet loss and network delay compared to GPSR.
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Hooda et al. developed a multi-criteria decision analysis method based ensemble framework using a

hybridization of machine learning classifiers for the prediction of an optimal routing protocol for wireless

sensor networks [28]. The performance of the proposed framework was validated with six different data sets

from the machine learning data repository provided by University of California Irvine. The experimental

results prove that the accuracy of the proposed ensemble classifier is better than other selected classifiers in

all test data sets.

Hu and Fei proposed an adaptive and energy-efficient routing protocol for underwater delay tolerant

networks (DTNs) using a reinforcement learning technique, called Q-learning [30]. By considering communi-

cation distance, neighbour density, and residual energy, they constructed a new reward function to evaluate

the gain or cost of the system for the machine learning model to learn. The simulation results show that the

proposed protocol has significant advantages compared to other existing routing protocols in terms of energy

efficiency, end-to-end delay, delivery rate, and storage overhead.

Khan et al. presented an efficient and energy-aware clustering protocol using support vector machine [39].

Compared to the LEACH protocol [24], their proposed protocol has a more extended network lifetime in NS2

simulation, and is more power efficient in large-scale WSNs.

Vinutha et al. designed a non-uniform sampling and reliable routing for efficient energy saving and high-

speed data communication using back propagation neural network [78]. Such routing can significantly reduce

the control signal overhead charges and enhances the reliability in packet transmission by predicting energy

robust and near-by nodes. The simulation results show that battery energy consumption is improved without

the trade-off of the speed of data communication.

2.6.4 Result Scoring

After the machine learning model training is completed, the learning/training results should also be evaluated

to see if the training is successful and effective. There are three standard evaluation methods to quickly

understand the results of learning. Here are brief descriptions of the three approaches:

• Classification Accuracy measures the quality of the predictions given a test set and the corresponding

labels in the case of supervised learning algorithms [23]. To be precise, this score is the mean accuracy

that the model predicts for a given set of tests and labels.

• Cross-Validation splits the training set into complementary subsets and each model is trained against a

different combination of these subsets and validated against the remaining parts [23]. This verification

method is helpful to understand the accuracy of prediction of unknown data instances after learning

the known data instances.

• Classification Report displays the precision, recall, f1, and support scores for the model. Precision is

the ability of a classifier not to label an instance positive that is actually negative, while recall is the

ability of a classifier to find all positive instance. F1 score is a weighted harmonic mean of precision
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and recall, such that 1.0 is the best and 0.0 is the worst. Support is the number of actual occurrences

of the class in the specified data set. The detailed calculation of precision, recall, and f1 will be given

in Chapter 5.

• Receiver operating characteristic curve is a common tool used with binary classifiers, which plots the

true positive rate against the false positive rate [23]. Through the analysis of two rates, we can further

understand the correct prediction rate in samples with positive prediction and in samples with positive

labels, respectively.

• Learning Curve is an important visualization tool to show the relationship of the training score vs. the

cross validated test score [54]. It can show how much the model benefits from more data, and if the

model is more sensitive to error due to variance or bias.

2.7 Summary

This chapter discusses some of the basics of LoRa, and some of the relative protocols and work involved.

Firstly, the feasibility of the image transmission in LoRa network is preliminarily proved. Secondly, some

common network topologies and multi-hop network protocols in WSNs are introduced, along with some

relative studies on applying machine learning in routing problem. At last, five kinds of most commonly used

classification learning methods and algorithms is explained, as well as the methods of judging and evaluating

learning results are discussed.
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Chapter 3

Multi-Packet LoRa Reliable Protocol (MPLR)

A new reliable and efficient LoRa transmission protocol, named MPLR, is designed and developed to

enrich the image data transmission in LoRa network. This chapter discusses the details of the design.

3.1 Design of MPLR

Even a highly compressed image is too big to fit in a single LoRa packet, given its maximum transmission

unit (MTU) of 255 bytes. Therefore, an image must be transmitted using multiple packets. A 9 KB image,

for example, needs to be encoded and segmented into at least 48 MTU packets before being transmitted

through LoRa. If the stop-and-wait method is used in transmission, as shown in Figure 3.1a, the sender

waits for an acknowledgement per packet to ensure that the data arrives correctly and thus the packet

delivery rate is severely limited. Also, this increases the power consumption of both sender and receiver, and

the acknowledgement traffic increases the network load and the required transmission rate of the receiver.

The Internet transport protocols, transmission control protocol (TCP) and user datagram protocol (UDP),

have been widely used in all kinds of networks, includingWSN. UDP does not provide reliable transmission; its

performance in terms of reliability is dependent on the network infrastructure or application. However, due to

the unstable connectivity in WSN, a reliable transport protocol is required to ensure successful transmissions.

Thus, UDP alone is not suitable in this scenario. TCP is the transport protocol which provides guaranteed

reliability [58] [42]. TCP is also frequently used in IP-based WSNs, such as Zigbee and 6LoWPAN network.

However, TCP is too heavyweight for a LoRa wireless network to use. First, the TCP packet header occupies

at least 20 bytes. Due to the small payload of LoRa, the 20-byte reduction will have a noticeable impact on

LoRa wireless network throughput. Second, TCP relies on the IP protocol. In other words, the use of the

TCP also requires the IP protocol to be enabled. As a result, the available payload will be further reduced.

Therefore, TCP is also not suitable for LoRa wireless network.

One objective in designing a new reliable delivery protocol is to reduce the number of acknowledgements

that need to be sent and the cumulative time spent waiting for them. For this purpose, a new protocol based

on batched packet transmissions and bit vector acknowledgements is designed and proposed. As shown in

Figure 3.1b, according to the size of the transport window, the sender sends a batch of data packets to the

receiver consecutively. The correctness of each packet is verified through the forward error correction in the
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(a) Stop-and-Wait (b) MPLR

Figure 3.1: Comparison of Packet Transmission Protocols

LoRa physical layer and the checksum in the protocol header. The status of each packet delivery is returned

to the source via a bit vector acknowledgement packet (BVACK) that contains a bit for every packet in the

batch, which is inspired by the block acknowledgement from IEEE 802.11 [31]. If the bit in a particular index

position is 0, the corresponding packet was received, and 1 if not received. Based on this, the sender can

determine which data packets are lost/corrupted. Note that since LoRa employs half-duplex communication,

ACKs or NACKs cannot be returned concurrently with data packet transmissions by the sender.

Due to the limited packet payload size in LoRa, the implementation of MPLR uses a lightweight packet

format. The packet format is shown in Figure 3.2. The packet format consists of the header and data

payload. The header has a total of 16 bytes, namely Destination EUI (4 bytes), Source EUI (4 bytes),

Service number (1 byte), Sequence number (2 bytes), Flag (1 byte), Payload Size (1 byte), Batch Size (1

byte), and Checksum (2 bytes). Destination EUI and Source EUI are the unique identifiers of destination

and source device, respectively. The Service number identifies the service to which the data packet belongs.

The Sequence number is used to order the packets. The Flag field indicates the packet type. The possible

values are SYN, SYN-ACK, DATA, BVACK, FIN, and ACK. Payload Size and Batch Size describe the length

of the data payload and the size of the current batch, respectively. Finally, Checksum is used to check the

correctness of the header. The data payload portion still has a space of up to 239 bytes. This header covers

the functionalities of both data link and transport layers. The overhead of this 16-byte header is only 6.3%.

Figure 3.3 illustrates the MPLR protocol for single-hop data transmissions. Similar to many other reliable
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Figure 3.2: MPLR Message Format

communication protocols, a connection is first established between the sender and receiver. Then, the sender

sends all the packets in the first batch, and waits for a BVACK from the receiver. By default, the batch

size is 40, which is enough to send a 9 KB image in one batch if we use a payload of 239 bytes, and can be

increased or decreased as needed. The sender then transmits the next batch of packets, including, if necessary,

retransmissions of packets not correctly received from the previous batch. When all data packets have been

sent, the nodes will perform a 4-way handshake connection termination through the FIN and ACK packets to

ensure that they have dropped the connection and complete the current transmission task. This connection

termination mechanism is inspired by the connection release mechanism in TCP, and is considered to be

effective in preventing inconsistency of coordination [76]. The receiver will then return to LISTEN mode and

wait for the next connection request. The proposed connection and termination method is similar to that

used in TCP, but establishment is simplified as the image data is up-link only.

3.1.1 Data Channel Reservation

Although using MPLR can efficiently reduce the image transmission time, it still takes about 9.6 seconds to

transmit a 12 KB image (with SF 7/BW 250), according to LoRa’s physical layer data rate in Table 2.1.

Compared to sensor data transmission of only a few bytes per message, LoRa-based image transmission has

a higher duty cycle and potential for congestion when there are multiple nodes using the same gateway.

When sending data packets using the stop-and-wait protocol, collisions due to congestion from data

packets from other devices will affect the goodput of the transmission (rate of correctly received packets).

With MPLR, only request packets from other nodes could possibly interfere with the data transmission of a

node that has established a connection with the gateway, assuming that the gateway does not accept multiple

concurrent connections on the same channel. It is possible, however, to eliminate even these collisions by

using a data (event) channel distinct from the control channel.

Therefore, it is beneficial to design and implement a data channel reservation protocol. The current

32



Figure 3.3: Connection Management: Sender/Receiver
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gateway only supports listening on a single channel at once, and so the protocol need not support multiple

active data channels. However, the approach is easily generalized for scenarios in which the gateway hardware

supports concurrent use of multiple channels. Such a generalization is potential future work. As shown in

Figure 3.4, an idle gateway continuously listens for request packets on the control channel. When the gateway

receives a request packet, it pseudo-randomly selects a channel to use as the data channel and informs the

requesting node of its choice.1 Then both the gateway and the node will switch from the control channel to the

target data channel and perform the transmission described in the previous section. When the transmission

is complete, the gateway will return to the control channel and wait for a new request. Note that any new

requests that are made on the control channel while the gateway is listening to the data channel will not

be received because the control channel and the data channel are on two different frequencies and do not

interfere with each other. Other devices will not send any packets on any channel other than the control

channel until the gateway answers their request.

Figure 3.4: Data Channel Reservation Timing

The data channel selection is not made in an entirely random fashion, since the gateway will avoid choosing

channels on which a high loss rate has been experienced. When a particular channel is in use as the data

channel, the gateway monitors the packet loss rate on that channel. Such an approach can avoid the use of

channels that may be used by other devices in the receiver range or have other reliability issues.

Figure 3.5 shows an example of data channel reservation between the LoRa node and the gateway. The

node first sends a SYN packet to request connection establishment with the gateway on the control channel.

If the request packet is not received by the gateway, the node will sleep for a random time before its next

connection attempt. When the gateway receives the request packet, it assigns a data channel and indicates

it in the acknowledgement packet. After the gateway replies, it will immediately switch to the assigned data

channel and wait for the confirmation from the node. The node will also switch to the assigned data channel

1In scenarios where frequency hopping is employed, the "data channel" in our description here would actually correspond to
a sequence of channels.
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after receiving the SYN-ACK correctly and send an ACK as well.

Figure 3.5: Data Channel Reservation: Node and Gateway

To ensure that the node does not begin transmission before the gateway is ready to begin receiving on

the data channel, the gateway will send a READY packet to indicate that it is prepared to start receiving

data. After the node receives the READY packet, it can begin the data transmission. The whole process is

a 4-way handshake connection, but using two different channels.

3.1.2 Frequency Plan

In order to be compatible with sensor data transmission and image data transmission in the network and to

avoid packet interference, channels in the frequency band should be planned in advance according to different

bandwidths. All frequencies are divided into three categories in the proposed protocol: 125 KHz, 250 KHz,

and 500 KHz bandwidth. Each category contains two groups of 16 available channels. The advantage of this

is that when large amounts of data, such as images, are being transferred, the large bandwidth channels can

be used. At the same time, it does not affect the transmission of small data over the same network, because

small data items will be transmitted using channels with smaller bandwidth.

The specific frequency planning method is as follows: the reserved frequency of the control channel is 902

MHz to 903.5 MHz. These control channels will be used to respond to requests for three different bandwidth

data transfer tasks. After 903.5 MHz, the guard band of 400 KHz is added to avoid interference of signals

on data transmission channels. The frequency range from 903.9 MHz to 906.9 MHz is then divided into 16
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channels with a width of 125 KHz, with a 75 KHz guard band between two channels. Similarly, frequencies

from 910.3 MHZ to 916.3 MHZ and from 918.5 MHZ to 927.5 MHZ will also be divided into 16 channels with

a width of 250 KHZ and 16 channels with a width of 500 KHZ, respectively. The 250 KHZ and 500 KHZ

channels have 150 KHz and 100 KHz guard bands respectively. The specific plan of the channel is shown in

Table 3.1.

Table 3.1: Frequency Plan in MPLR

BW 125 BW 250 BW 500

903.9 905.5 910.3 913.5 918.5 923.3

904.1 905.7 910.7 913.9 919.1 923.9

904.3 905.9 911.1 914.3 919.7 924.5

904.5 906.1 911.5 914.7 920.3 925.1

904.7 906.3 911.9 915.1 920.9 925.7

904.9 906.5 912.3 915.5 921.5 926.3

905.1 906.7 912.7 915.9 922.1 926.9

905.3 906.9 913.1 916.3 922.7 927.5

3.2 Design of Pipeline Transmission For Chain Network

There is more than one way to transfer multiple packets from a source node to a destination node. One

possibility is to send all packets to the first relay before any retransmission. When all packets reach the

first relay, it begins to retransmit. Another possibility is to retransmit each batch as soon as it reaches each

relay point. The latter transmission mechanism can realize pipelining transmission in the network, so it is

theoretically faster than the former one. The comparison between the two transport methods is shown in

Figure 3.6.

It can be clearly seen from Figure 3.6(a) that the third relay can receive all the batches at the earliest

at the 15th time position and forward the first batch at the 16th time position without using pipelining

transmission. In Figure 3.6(b), a third relay can receive all the batches at the 11th time position and forward

the last batch at the 12th time position when the pipelining transmission is used.

Figure 3.7 presents the workflow model for data transmission from a node to a gateway, through the

relay. It is very similar to the model in Figure 3.3, although the relay was added to the transmission. The

only difference is that when the relay establishes a connection with the node, the relay will reply with an

ACK&WAIT packet to the node. An ACK&WAIT packet tells the node that it is communicating with a

relay, instead of a gateway.

After the node receives an ACK&WAIT, it will enter sleep mode for a while and wait for the next

instruction from the relay. At the same time, the relay will establish a connection with the next relay or
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(a) Non-Pipe

(b) Half-Duplex Pipe

Figure 3.6: Comparison Between Transport With and Without Using Pipeline
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Figure 3.7: A Workflow Model for Data Transmission from Node to Gateway
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gateway. The reason for this is to prepare for the pipeline transmission which invokes all available devices

on the route to perform pipelining. After the relay established a connection with the next relay or gateway,

it will send a READY packet to the node and starts the transmission. When the first transmission window

is complete, the relay will put the node to wait again and forward all the received packets to the next relay

or gateway first. All devices repeat the above steps until the end of the transmission.

This design is flexible because it can be used in a variety of different situations: single-hop transmission

between node and gateway, multi-hop transmission through a relay, and multi-hop transmission through

multiple relays. Figure 3.8 illustrates this principle when multiple relay devices are deployed between the

node and the gateway; this design can still satisfy the multi-hop transmission task among multiple relay

devices.

Figure 3.8: A Workflow Model for Data Transmission Between Relays
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3.2.1 Storage Requirement for Pipeline Transmission

When using the pipelining-based MPLR protocol in chain network, the relay devices need extra storage

space to buffer all packets in one window until all packets in the window have been successfully received and

forwarded to the next node. Devices in IoT systems are often restricted and don’t have much storage space.

Adding extra storage to relay devices not only will increase the build cost, but also will shorten the battery

life. This is a shortcoming of the proposed protocol.

3.3 Implementation of MPLR

The implementation of MPLR consists of three classes: Packet, State Machine and MPLR logical set. The

Packet class is mainly responsible for constructing and parsing the packets in the proposed LoRa network in

Figure 3.2. It converts each field into relative bytes and appends to the packet. It is worth mentioning that

the order of bytes used in the proposed LoRa network is big-endian. The actual implementation is shown in

listing 3.1.

1 de f bin ( s e l f ) :

2 ’ ’ ’ encode a l l f i e l d to bytes

3 Return : byte s t r i n g o f a l l f i e l d s

4 ’ ’ ’

5 r s t = unsigned8 ( s e l f . pVersion ) . to_bytes (1 , ’ b ig ’ ) # 8 b i t s

6 r s t += unsigned32 ( s e l f . destEUI ) . to_bytes (4 , ’ b ig ’ ) # 32 b i t s

7 r s t += unsigned32 ( s e l f . sourceEUI ) . to_bytes (4 , ’ b ig ’ ) # 32 b i t s

8 r s t += unsigned8 ( s e l f . s e r v i c e ) . to_bytes (1 , ’ b ig ’ ) # 8 b i t s

9 r s t += unsigned16 ( s e l f . Seq ) . to_bytes (2 , ’ b ig ’ ) # 16 b i t s

10 r s t += unsigned8 ( s e l f . Flag ) . to_bytes (1 , ’ b ig ’ ) # 8 b i t s

11 r s t += unsigned8 ( s e l f . pay loadSize ) . to_bytes (1 , ’ b ig ’ ) # 8 b i t s

12 r s t += unsigned8 ( s e l f . batchS ize ) . to_bytes (1 , ’ b ig ’ ) # 8 b i t s

13 r s t += unsigned16 ( s e l f . checksum ) . to_bytes (2 , ’ b ig ’ ) # 16 b i t s

14 r s t += s e l f . BodyBytes

15

16 r e turn r s t

Listing 3.1: MPLR Packet Formation

The implementation of MPLR protocol adopts the mode of state design pattern [18]. A simple State

Machine class is implemented in the protocol package to manage all states and execute corresponding actions.

As shown in listing 3.2, the implementation of this State Machine class is simple and meets the most basic

requirements of a state machine. It first records a) the current state, b) all the actions/handlers that need

to be performed corresponding to that state, and c) the parameters required by the handler function. It

provides functions to receive one or more new states and operations, allowing classes to execute based on

added states and handlers. Finally, the run() function executes only the handler corresponding to the current
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state and updates its state and the parameters needed for the next function based on the execution result.

1 c l a s s StateMachine ( ob j e c t ) :

2 " " " A c l a s s conta in s ba s i c ops f o r s t a t e pattern

3 " " "

4 de f __init__( s e l f ) :

5 " " " I n i t a t t r i b u t e s

6 " " "

7 s e l f . s t a t e = None

8 s e l f . hand le r s = d i c t ( )

9 s e l f . handlerParam = None

10

11 de f addEvent ( s e l f , s ta te , handler ) :

12 " " " add s t a t e event to c l a s s

13 " " "

14 i f l en ( s e l f . hand le r s . keys ( ) ) == 0 :

15 s e l f . s t a t e = s t a t e

16 s e l f . hand le r s [ s t a t e ] = handler

17

18 de f bulkEventAdd ( s e l f , evenDict ) :

19 " " " add events from a d i c t i ona ry

20 " " "

21 f o r k , v in evenDict . i tems ( ) :

22 s e l f . add_event (k , v )

23

24 de f run ( s e l f , event ) :

25 " " " run a event and update i t s s t a t e

26 " " "

27 s e l f . s ta te , s e l f . handlerParam = s e l f . hand le r s [ event ] ( s e l f . handlerParam )

Listing 3.2: Simple State Machine

The MPLR class contains all the required states and corresponding handlers. First, all states are defined

in the MPLRState class for better reference. Each handler function is then implemented in turn in the MPLR

class, and each function returns a tuple value containing the new state and the parameters required for the

corresponding handler function. If no arguments are required, the second value in the tuple will be None.

Finally, the relationship between state and handler is mapped in the dictionary in the MPLR constructor.

Listing 3.3 shows an abstraction of this MPLR class.

1 c l a s s MPLRState :

2 GW_CMU = 0x01

3 Node_CMU = 0x02

4 SendWin = 0x03

5 ListenWin = 0x04

6 WinACK = 0x05

7 SendReSend = 0x06

8 Fin = 0x07
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9 Fin i shed = 0x08

10

11 c l a s s MPLR( ob j e c t ) :

12 " " " Re l i ab l e Transport c l a s s

13 " " "

14 de f __init__( s e l f , _freq=None , _lora=None ) :

15 s e l f . nodeRegist = {

16 MPLRState .Node_CMU: s e l f . Node_CMUInit ,

17 MPLRState . SendWin : s e l f . Node_SendWin ,

18 MPLRState .WinACK: s e l f .Node_WinACK,

19 MPLRState . Fin : s e l f . Node_Fin ,

20 MPLRState . F in i shed : s e l f . Node_Finished

21 }

22

23 s e l f . gatewayRegist = {

24 MPLRState .GW_CMU: s e l f .GW_CMUInit,

25 MPLRState . ListenWin : s e l f . GW_ListenWin ,

26 MPLRState . SendReSend : s e l f .GW_SendReSend ,

27 MPLRState . Fin : s e l f .GW_Fin,

28 MPLRState . F in i shed : s e l f . GW_Finished

29 }

30 . . .

31 de f Node_start ( s e l f , _serv ice , _path ) :

32 . . .

33 de f GW_start ( s e l f , _serv i ce ) :

34 . . .

35 de f Node_CMUInit ( s e l f , _) :

36 . . .

37 de f GW_CMUInit( s e l f , _) :

38 . . .

39 de f Node_SendWin( s e l f , obj ) :

40 . . .

41 de f Node_WinACK( s e l f , obj ) :

42 . . .

43 de f Node_Fin ( s e l f , _) :

44 . . .

45 de f Node_Finished ( s e l f , s t a t e ) :

46 . . .

47 de f GW_ListenWin( s e l f , cache ) :

48 . . .

49 de f GW_SendReSend( s e l f , obj ) :

50 . . .

51 de f GW_Fin( s e l f , _) :

52 . . .

53 de f GW_Finished( s e l f , s t a t e ) :
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54 . . .

Listing 3.3: MPLR Logic Set

3.4 Summary

This chapter introduces the design principle and implementation process of MPLR protocol. Firstly, a method

to reduce the waiting time of acknowledgements is proposed, which improves the transmission efficiency

through the methods of batched packet transmission and bit vector acknowledgement. Second, the channel

reservation mechanism is used in the MPLR protocol to avoid inter-flow interference caused by the use of

MPLR in star-topology by separating the control channel from the data channel. In addition, the MPLR

protocol in the chain network is optimized, and pipeline transmission is adopted to greatly shorten the time

of packet reaching its final destination.

43



Chapter 4

Multi-Hop LoRa Protocol (MHLR)

Single-hop image transmission is limited by maximum transmission range as well as by uneven terrain and

unexpected obstacles that weaken or block the signal. In order to facilitate the application of LoRa-based

image transmission technology in practical deployments, the limitations of single-hop transmission must be

considered. Multi-hop communication is introduced in the protocol stack, which solves the problem of signal

blocking/loss and further expands the network range of the system. This chapter contains the design of the

Multi-Hop LoRa (MHLR) protocol, which is a multi-hop communication protocol based on LoRa.

4.1 Topology and Routing Type

As an example scenario, consider an agricultural image acquisition application in which one LoRa node is

used as the gateway (destination) for all packets and placed at the edge of the field. All other sensor devices

are randomly deployed and communicate with the gateway in single or multiple hops. A tree topology is used

to connect all the devices on the field. As shown in Figure 4.1, the gateway acts as the root node of the whole

network, and all other devices act as the relays or leaf/end nodes of the whole tree network. In addition to

transmitting its own sensed data, the relay is responsible for relaying data from its children. However, an

end node simply sends its sensed data to its parent node. Each new sensor device trying to join the network

must select a node as its parent to forward the packet to the gateway. If the new node is close enough to the

gateway, it can simply choose the gateway as its parent. The method of parent node selection is discussed in

routing.

The topological structure of an agricultural image acquisition system tends to be stable without drastic

changes. Occasionally, small changes may occur due to transient blocking, equipment running out of power,

or the addition of new nodes. For rare topology changes, a proactive routing protocol is redundant and can

quickly run out of power. Also, the reactive routing protocol is not suitable because the flooding of routing

requests will lead to network clogging. On the contrary, a hybrid routing protocol is more suitable for the

design scenario.
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Figure 4.1: An Example of Tree Topology in the Scenario1

4.2 System Semantic Model

Similarly as described for the MPLR protocol, all devices fall into three categories: gateways, nodes, and

relays. This section details the workflow model for each device. It is worth noting that the clock synchroniza-

tion problem is beyond the scope of this study, and many robust solutions can be implemented by hardware

or software methods.

As shown in Figure 4.2, since the power of the gateway device is unlimited, when the device is turned

on, it will be in the listening state until a packet arrives. When the gateway receives a packet, it first looks

for its protocol identifier. If the gateway receives an MPLR request packet and it matches the address in

the packet, it then starts using the methods in Chapter 3 to receive the data. When data is received, the

gateway returns to listening, and another process forwards the received data over wired connection to the

final data center. If the packet received is a routing inquiry or heartbeat packet, the gateway replies with

the corresponding inquiry result or heartbeat echo, and then returns to listening mode.

As described in previous chapters, node devices are usually battery-powered, and they cannot be in

listening or operating mode for long periods of time. Therefore, in this design, the node devices are asleep

most of the time and only wake up at planned times. If a node does not have any parent nodes, or if a

1Background image modified from https://www.pinterest.ca/TPUDC/.
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Figure 4.2: A Workflow Model of Gateway

connection to the parent node needs to be tested, the routing inquiry or heartbeat packets need to be sent on

wake-up and routing selection is made, if necessary. If the node is already in the tree topology network and

needs to send the collected data, the MPLR protocol is used to send the data to the parent node. When all

tasks are completed, the node returns to sleep until the next wake up. The details are shown in Figure 4.3.

Relay devices are similar, except that relay devices are also responsible for routing inquiries, heartbeat

tests, and data relay of their children. The specific working model of relay devices is shown in Figure 4.4.

When a relay device receives a routing inquiry or heartbeat test of the child node, it needs to make a

corresponding response. If the child node needs to send the collected data, the relay needs to first receive the

data through the MPLR protocol, and then send the data to its parent node through the MPLR protocol as

well.

4.3 Packet Formation

In the workflow models of MHLR protocol, different routing inquiry and heartbeat packets need to be sent

between parent nodes and child nodes in order to realize network construction and maintenance. This section

discusses the format of these messages in detail.

All packets in the MHLR protocol are much shorter than those in the MPLR protocol, since the routing

control messages have no payload and no additional fields to control continuous traffic. The format of routing
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Figure 4.3: A Workflow Model of Node

Figure 4.4: A Workflow Model of Relay
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inquiry packet, shown in Figure 4.5, contains only three fields, for a total of 8 bytes. The ProtoVersion

identifies the type of packet separated from the MPLR protocol. Here, the value of the ProtoVersion is a

unique identifier number used to identify the MHLR protocol. Note that the MPLR protocol also needs to add

this field to help distinguish it from the MHLR packets. There are two types of routing control messages:

inquiry/heartbeat and reply. The Inquiry Type field is used to distinguish between these routing control

messages to avoid confusion. The last field is Source Equipment Unique Identifier (EUI), which represents

the unique identity of the sender. Since the sender does not know who the recipient is when sending the

routing query message, destination EUI and other information are not required. This packet format can also

be used for heartbeat packets to test connection to existing parent node.

Figure 4.5: Routing Inquiry/Heartbeat Message Format

In the reply packets for routing inquiry and heartbeat, in addition to the EUI used to confirm the sender

and receiver, there are five fields that help the device choose a route. As shown in Figure 4.6, the reply

packet contains five additional fields, namely, Hop Number, Child Number, Relay Time, SF, and BW. The

following sections explain how these fields are collected and used.

Figure 4.6: Route/Heartbeat Reply Message Format

4.4 Network Formation and Maintenance

During network construction or when a newly added node wants to join an existing network, the joining

node needs to broadcast routing inquiry packets to find nearby nodes. After sending, the joining node keeps

its receive window open for α seconds to receive all replies. The value of α is a programmable time in the

proposed protocol, and the default is 3 seconds. All nodes that receive the inquiry and have joined the
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network will reply to the inquiry with the information requested. The receiver will select the best SF and

BW according to the RSSI value of the inquiry packet and Table 2.2 (provided by Semtech), and send it

back with the reply packet. The joining node then stores these responses sequentially and performs routing

selection. The next section describes the details of routing selection.

With periodic heartbeat packets sent, a node that has joined the network can test whether its connection

to the parent node has been maintained. If the topology changes and the original parent node can no longer

be connected, the node needs to select a new parent node based on the reply packets of other nodes. If the

node finds a better relay than the existing parent node, it will also select a new parent. The original parent

removes the child from the list if it does not detect it at the next task sending point.

4.5 Supervised Learning for Routing Selection

The introduction of LoRa in Section 2.1.1 shows that several configuration parameters such as spreading

factor and bandwidth will directly affect the transmission time and rate. In general, the use of smaller

spreading factors and greater bandwidth results in higher physical layer data rates. Other factors need to

be considered when choosing a path in a multi-hop network, such as the distance from the gateway and the

number of children of the parent node. Several studies have embedded machine learning algorithms into

wireless sensor networks to optimize device clustering and data aggregation [3] [37]. This section discusses

how the proposed protocol selects features of routing information and uses this data to train the machine

learning model and build a software-defined network topology with the shortest transmission time.

4.5.1 Feature Selection

Table 4.1: Features Selected for Machine Learning Method

Spreading Factor the spreading factor that will be used

Bandwidth the bandwidth that will be used

Parent Hop Number number of hops from parent node to the gateway

Family Size number of nodes participating in parent’s network

Parent Relay Time number of calculated seconds it takes an image to reach the gateway from the

candidate parent node

Five different features are selected for machine learning methods, which are summarized in Table 4.1.

These are features similar to those often used in conventional routing protocols and are an appropriate

number for machine learning models. As mentioned above, spreading factor and bandwidth are the two basic

characteristics that affect the data rate of LoRa physical layer, so that the spreading factor and bandwidth

used by the parent node are the characteristics that need to be used in machine learning. The parent hop

number is the known optimal distance from the parent node to the gateway. The number of times a packet
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needs to relayed. Hop count is a common feature often used in routing protocols because it provides an

abstract distance vector for routing computation. Therefore, the parent hop number is also selected as one

of the properties. The family size is the number of nodes connected to the parent node. Since LoRa can

communicate with only one node at a time, the number of children affects the average wait time for each

child. If the parent node has only one child, the child node can send data to the parent node without waiting.

If the parent node has five children, the last child must wait for all the other four children to complete the

transmission before it can transmit. Therefore, the parent child size is also one of the key parameters affecting

the transmission time. Finally, although the number of hops has been considered, this is not sufficient in

the LoRa context because each relay can use a different spreading factor and bandwidth, depending on the

environment. The spreading factor and bandwidth here only record the values used by the node and its

parent, but it is not possible to know the spreading factor and bandwidth used by the parent and above.

Therefore, the parent relay time needs to be considered as one of the characteristics. The value of parent

relay time is calculated locally at each candidate parent node, and is the sum of the time it takes for the

node to transmit an image to its parent node and the parent relay time of its parent node.

When the network is newly established and the relay device has not transmitted any image data, the parent

relay time is unknown. At this point, an initial value of -1 can be assigned to indicate the uncertainty, and the

request initiator then assigns an average relay time to the node whose relay time is unknown. Although this

may skew the selection at first, it can be corrected later through connection check and adjustment. Because

of this, it is recommended to use a more frequent connection check during the topology construction and

reduce this frequency when the topology is stable.

4.5.2 Vector Formation

By replying to the routing inquiry, the routing inquiry initiator is aware of these five features. When multiple

replies are received, the requester selects the optimal routing route, the parent node, through the machine

learning model. Before using the machine learning model, it is necessary to use the appropriate feature

combination structure so that they can be correctly learned by the model. Therefore, the known features

need to be converted into vectors before they can be fetched into the machine learning model.

Consider the five features contained in each response as a vector, denoted as

V ectori = [SFi, BWi, Hop#i, FamilySizei, ParentRelayT imei]. (4.1)

The idea is that by giving two vectors, the machine learning method can select a vector with a shorter

expected transmission time. Based on this goal, the classification algorithm is the most suitable one in this

scenario. Of course, regression algorithms can also be used to predict the transmission time and then compare

the two predicted transmission times. However, predicting the actual numerical transmission time values is

a harder problem than just predicting which of two routings will give a lower transmission time. As a result,

classification makes routing decisions easier and more accurate.
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When classification is used, two vectors need to be converted into one for the machine learning method

to classify. Here, the subtraction method is used to combine two vectors, as follows:

Resulti−j = [SFi − SFj , BWi −BWj , Hop#i −Hop#j , FamilySizei − FamilySizej ,

ParentRelayT imei − ParentRelayT imej ].
(4.2)

By subtracting each value in the second vector from the corresponding value in the first vector, a new

vector containing the vector difference between the two vectors is obtained. In each position of the new

vector, a positive value means that the value of the element in the first vector is higher, a negative value

means that the value of the corresponding element in the second vector is higher, and 0 means the same.

There are only two labels of Resulti−j , namely, 1 and 0. If the label is 1, then the path to the gateway

corresponding to vector i has a shorter transmission delay than that corresponding to vector j. If the label

is 0, then the path to the gateway corresponding to vector i has a longer transmission delay than that

corresponding to vector j. If the transmission times for the two paths are the same, the label is set according

to which vector was received first. It is worth noting that in the training data set, the label of Resulti−j

is known by comparing actual transmission times. In practice, the label of Resulti−j is predicted by the

machine learning model based on the input vector.

4.5.3 Learning System

The training of classification models requires a lot of computing resources. Thus, training machine learning

models on restricted devices can reduce the lifetime of the whole WSN system and is not recommended.

Alternatively, model training can be performed on a PC or cluster and then the trained model can be

deployed on each of the restricted devices. This thesis adopts a learning system combining both online

training and real-time classification.

Training machine learning models requires a lot of data, computation and time; therefore, the training

can be performed on high-performance devices, and the model can be saved and applied to each node after

the training. In this way, each node can directly use the model after training without wasting extra energy

on training. As shown in Figure 4.7, the whole learning model is divided into offline training and real-time

classification. Details are given in the following paragraphs.

Incremental Learning

Features are selected from training data, and feature vectors are extracted by using the above methods for

machine learning model training. This happens on a desktop or server cluster, not on the deployed IoT

device. When the machine learning model is trained, it can be saved and distributed to each deployed IoT

device. The size of the trained classification models varies from a few kilobytes to tens of kilobytes, so the

distribution and storage of the models does not result in excessive overhead.
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Figure 4.7: Overview of the Learning System

It is called incremental learning because each time the gateway receives an image task, it uploads the path

information to the trainer for real-time learning. This is because the unpredictability of the actual deployment

environment reduces the accuracy of model judgments. To understand the impact of the environment on

routing, real-time training can improve accuracy by collecting real routing data to update the model. The

gateway can know the time and route details of each transmission task by obtaining sub-tree formation

information and adding creation time to the MPLR protocol header. The obtained routing information is

then uploaded to the training machine from the gateway and used for incremental learning. The updated

model can be distributed to each node periodically through the MPLR protocol. In this scenario, for example,

because the deployment environment is relatively stable, the distribution of the updated model is not very

frequent and can generally be done once a day. Incremental learning is a good tool for making machine

learning models adaptive to the environment, but since it is beyond the scope of this thesis, it will not be

evaluated in Chapter 6.

Real-time Classification

As soon as the deployed node receives the new model, it is immediately applied. The deployed node will

extract each available path and generate an input vector. The new model determines the routing options

provided and predicts the fastest path to send data. This is effective because the model has been trained

and the expected steps do not require much time and effort. It is worth noting that when a large number

of node devices join the network at the same time, the proposed protocol cannot avoid routing oscillation,

that is, a large number of nodes rushing to one optimal parent node and switching to another optimal parent
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node. Since there will not be a large number of nodes joining at the same time in the designed scenario, the

proposed protocol does not handle the problem of routing oscillation. This is left for future work.

4.5.4 Implementation of MHLR

In the implementation of MHLR, three different routing control packets are implemented by one class.

As Listing 4.1 shows, the packet generator dynamically generates the corresponding packets based on the

indicated message type.

1 de f bin ( s e l f ) :

2 " " " form inqu i ry message :

3 cINQUIRY : 8 Bytes

4 cHEARTBEAT: 8 Bytes

5 cACK: 18 Bytes

6 " " "

7 r s t = unsigned8 ( s e l f . PVersion ) . to_bytes (1 , ’ b ig ’ ) # 16 b i t s

8 r s t += unsigned8 ( s e l f . MessageType ) . to_bytes (1 , ’ b ig ’ ) # 16 b i t s

9 r s t += unsigned48 ( s e l f . Source ) . to_bytes (4 , ’ b ig ’ ) # 32 b i t s

10 i f s e l f .mType == MessageType .cACK

11 r s t += unsigned8 ( s e l f . Hop) . to_bytes (1 , ’ b ig ’ ) # 8 b i t s

12 r s t += unsigned8 ( s e l f . Chi ld ) . to_bytes (1 , ’ b ig ’ ) # 8 b i t s

13 r s t += unsigned8 ( s e l f . relayTime ) . to_bytes (2 , ’ b ig ’ ) # 16 b i t s

14 r s t += unsigned8 ( s e l f . SF) . to_bytes (1 , ’ b ig ’ ) # 8 b i t s

15 r s t += unsigned8 ( s e l f .BW) . to_bytes (1 , ’ b ig ’ ) # 8 b i t s

16

17 r e turn r s t

Listing 4.1: Message Packing

Similar to the MPLR class, as shown in listing 4.2, MHLR also has a proprietary class that contains all

the required states and corresponding handlers. All states are also defined in the MHLRState class, followed

by each handler function in turn in the MHLR class. Each of handler returns a tuple value containing the

new state and parameters required for the corresponding handler function. If no argument is required, the

second value in the tuple will be None. Finally, mapping of all the states and corresponding handlers to the

dictionary is performed in the MHLR constructor.

1 c l a s s MHLRState :

2 INQUIRY = 0x01

3 WAITING = 0x02

4 ACK = 0x03

5 LISTEN = 0x04

6 EDGING = 0x05

7 Data = 0x06

8

9 c l a s s MHLR( ob j e c t ) :
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10 de f __init__( s e l f , r o l e ) :

11 . . .

12

13 # Reg i s t ry Table

14 s e l f . Reg i s t = OrderedDict ( )

15 i f r o l e == NetRole . Gateway :

16 s e l f . Reg i s t [ State . LISTEN ] = s e l f . GW_Listen

17 s e l f . Reg i s t [ State .ACK] = s e l f .GW_ACK

18 s e l f . Reg i s t [ State . Data ] = s e l f .GW_MPLR

19 e l s e :

20 s e l f . Reg i s t [ State . INQUIRY] = s e l f . Node_Inquiry

21 s e l f . Reg i s t [ State .WAITING] = s e l f . Node_Waiting

22 s e l f . Reg i s t [ State .EDGING] = s e l f . Node_Edging

23 s e l f . Reg i s t [ State . Data ] = s e l f .Node_MPLR

24

25 de f GW_Listen( s e l f , _) :

26 . . .

27 de f GW_ACK( s e l f , obj ) :

28 . . .

29 de f GW_MPLR( s e l f , obj ) :

30 . . .

31 de f Node_Inquiry ( s e l f , _) :

32 . . .

33 de f Node_Waiting ( s e l f , _) :

34 . . .

35 de f Node_Edging ( s e l f , _) :

36 . . .

37 de f Node_MPLR( s e l f , _) :

38 . . .

Listing 4.2: MHLR Model

The code in Listing 4.3 is used to train the machine learning model on the PC side. This code will train

five different machine learning methods and store the results of the trained model.

1 " " " on PC or c l u s t e r " " "

2 mlDic = {

3 ’ MLPClass i f i e r ’ : MLPClass i f i er ( a c t i v a t i o n=’ r e l u ’ , s o l v e r=’ l b f g s ’ , alpha=1e 5 ,

h idden_layer_s izes =(11 ,) , random_state=45) ,

4 ’SGD’ : SGDClass i f i e r ( l o s s=" log " , max_iter=2000 , t o l=1e 4 , n_jobs=4) ,

5 ’ D e c i s i o nT r e eC l a s s i f i e r ’ : D e c i s i o nT r e eC l a s s i f i e r (max_depth=5) ,

6 ’ RandomForestClass i f i e r ’ : RandomForestClass i f i e r (max_depth=5, n_est imators=10,

max_features=1) ,

7 ’ AdaBoos tC la s s i f i e r ’ : AdaBoos tC la s s i f i e r ( ) ,

8 }

9

10 f o r name , model in mlDic . i tems ( ) :
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11 # pa r t i c a l data t r a i n i n g

12 model . p a r t i a l _ f i t (X, Y)

13 # save the r e s u l t

14 dump(model , name+’ . j o b l i b ’ )

Listing 4.3: Machine Learning Prediction

The trained machine learning model is applied as soon as it is received by the deployed node. When

inquiry responses are received, the model is used to determine the best parent node. The implementation

process is shown in Listing 4.4.

1 " " " Node s i d e " " "

2 mlModel = load ( ’ MLPClass i f i er . j o b l i b ’ )

3 . . .

4 # re c e i v e inqu i ry r ep ly

5 parent = reqPool [ 0 ]

6 i f l en ( reqPool ) == 1 :

7 r e turn parent

8

9 f o r idx in range (1 , l en ( reqPool ) ) :

10 r s t = mlModel . p r ed i c t ( [ parent , reqPool [ idx ] ] )

11 i f r s t == 0 :

12 parent = reqPool [ idx ]

13 r e turn parent

Listing 4.4: Machine Learning Prediction

All the vectors in the response packets are sorted in the order they were received and compared using

machine learning model in turn. After each comparison, the better vector is saved and compare it with the

rest. Such comparisons can be made in a linear order of n times.

4.6 Summary

MHLR is a hybrid routing protocol applying machine learning to choose a routing path. Devices using the

MHLR protocol will form a tree network topology after network construction, and periodically evaluate the

connection of the network and the adaptation to network topology changes through heartbeat packets. The

MHLR protocol can not only realize the multi-hop transmission of sensory data, but also can be used together

with the MPLR protocol for the transmission of large messages. In the aspect of machine learning, 5 features

are extracted by capturing the information of routing and used in the machine learning model. The trained

models will be distributed to each node for application.
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Chapter 5

Experimental Methodology

Experimental methods for both MPLR and MHLR are discussed in this chapter in detail. This chapter

also describes the image compression method, hardware equipment and equipment settings used in each

experiment. Besides, the specific experimental scheme and topology of each test are also introduced.

5.1 Experimental Image and Compression

Images can provide specific information for breeders and producers, such as flowering time and flower density.

They can also provide the physical status of the remote IoT system, such as camera/sensor positioning, or

physical impediments that affect image capture, like weather conditions or wildlife interference. This can

be useful for directing system operation. For example, a rainstorm may change the desired data collection

parameters for a period of minutes/hours; a human operator or automated adaptation system could change

the frequency of image capture or soil moisture reading.

In many such use cases, images can be greatly compressed without impacting their usefulness. In our

experiments we use images from a field-deployed camera that generates a 3280x2464 full-resolution image of

5.8 MB. The Pillow1 Python imaging library was used to resize the image to 480x320 pixels, as might be

sufficient for a monitoring application, and to apply JPEG compression. An image quality parameter can be

passed to the compression algorithm to indicate the degree of compression, which is on a scale from 1 (most

compression) to 95 (least compression). This parameter can be tuned depending on application requirements.

To illustrate the impact of different settings for the image quality parameter, Figure 5.1 shows results from

applying compression to a resized 480x320 pixel image from a canola field. The caption for each subfigure

gives the corresponding value for the image quality parameter as well as the resulting size of the image in

kilobytes. With quality 50 and 25, there is little loss in quality, and the size is reduced to 28 KB and 18 KB,

respectively. Significant image distortion is noticeable when the image quality is 10 and 7, but this quality

may be acceptable in some applications. Thus, by using JPEG compression [34], a 480x320 resized image

compressed to 113 KB (highest quality) can be converted into an image of only 28 KB, 18 KB, 12 KB, 9 KB

or 7 KB, with quality parameter settings of 50, 25, 15, 10 and 7, respectively, with only small to moderate

loss of quality.

1https://pillow.readthedocs.io/en/stable/
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(a) Quality: 95, Size: 113 KB (b) Quality: 50, Size: 28 KB

(c) Quality: 25, Size: 18 KB (d) Quality: 15, Size: 12 KB

(e) Quality: 10, Size: 9 KB (f) Quality: 7, Size: 7 KB

Figure 5.1: Image Quality and Size Comparison

57



(a) Dragino LoRa Hat (b) RPi 2 model B

Figure 5.2: Experimental Device

5.2 Experimental Device

In all experiments, Raspberry Pi (RPi), a single-board computer, was used as the host device in conjunction

with LoRa modules2 manufactured by Dragino. The LoRa module is a SX12763 chip-based transceiver that

communicates data through a serial peripheral interface, and this transceiver can only listen on one channel

at a time. In this scenario, the only difference between the gateway and the node is that the gateway

has an Ethernet connection. Generic drivers for each physical component are easily found on the Internet.

Depending on the specifications of the different modules, however, the pin settings need to be modified in

the driver.

Figure 5.2 (a) shows the Dragino LoRa hat used in this study. This hat contains an SX1276 LoRa chip

and a GPS module. Since the GPS module was not used in this design, only the LoRa chip is equipped with

an omni-directional antenna. The upper two rows of pins are used to connect the host device. Figure 5.2 (b)

shows an RPi 2 model B machine. This single-board computer provides rich physical connection interfaces,

such as USB and Ethernet ports, which is convenient for quick development and debugging during outdoor

experiments. Two rows of pins at the bottom of RPi are used to connect with LoRa hat and to communicate

through serial peripheral interface. The specific wiring of all experimental devices are listed in Table 5.1.

5.2.1 LoRa Configuration

The LoRa parameter settings used in all experiments are listed in Table 5.2. The output power is set to 15

dBm in all our experiments and the performance through a range of power levels will be examined in future

studies.

2http://www.dragino.com/products/lora/item/106-lora-gps-hat.html
3https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1276
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Table 5.1: Wiring Between RPi and LoRa

LoRa/GPS Hat RPi 2/3 Pin# RPi 2/3 GPIO#

DIO0 4 N/A (5V power pin)

RESET 11 17

MOSI 19 10

MISO 21 9

SCK 23 11

NSS 24 8

Table 5.2: LoRa Configuration

Name Value

Spreading Factor 7, 8, 9, 10, 11, 12

Bandwidth (kHz) 500, 250, 125

Coding Rate 4/5

Implicit Header Mode false

Preamble 8

Output Power (dBm) 15

5.2.2 Deployment and Experimental Parameters

Seven experiments evaluated LoRa’s ability in image transmission and the performance of the proposed

protocols. These experiments include full payload transmission, point-to-point experiment with just a single

sender and receiver, experiment using a star topology, experiment using a chain topology, indoor routing

experiment and outdoor routing test. In all experiments, except the first experiment, the maximum MPLR

batch size was selected as 40 packets and the maximum MTU size was selected as 160 bytes.

Full Payload Transmission

When testing the transmission performance of LoRa, different packet loss rates were experienced with different

spreading factor and bandwidth. The reason is that the larger the spreading factor and the bandwidth, the

longer the chirp symbol will be and the more influenced by the environmental noise. To understand the

influence of packet loss rate in LoRa transmission when different settings are used to transmit packets of

different sizes, full payload transmission experiment is designed. The purpose of this experiment is to measure

the stable delivery rate of two LoRa node under different transmission settings and data sizes. The experiment

was carried out in a laboratory environment with two LoRa devices 5 metres apart, one for a transmitter and

the other for a receiver. The experiment used all possible combinations of spreading factor and bandwidth

to send plain text payload of 10 bytes, 50 bytes, 100 bytes, 150 bytes, and 189 bytes, which are encoded into
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packet sizes of 17 bytes, 69 bytes, 137 bytes, 201 bytes, and 255 bytes, respectively. To avoid random errors,

each packet was sent 100 times to calculate a stable average packet loss rate. Both devices recorded the time

and success of sending and receiving packets, and the packet loss rate can then be calculated through simple

calculation.

Point-to-point Transmission

In order to verify whether the proposed MPLR protocol is more advantageous than the state-of-the-art

protocol in the transmission time of large messages, point-to-point transmission experiments are designed

and carried out in the laboratory to evaluate the transmission performance of the MPLR protocol. Similarly,

two LoRa devices were placed 5 metres apart. Using different spreading factor and bandwidth combinations,

MPLR protocol and Stop-and-wait protocol are used to evaluate the image transmission of different sizes

respectively, and their performances are thus compared. Packet loss was not introduced in the first set of

tests, to understand the advantages of the MPLR protocol under ideal conditions. In the second set of

experiments, 2%, 5%, and 10% artificial packet loss rates were introduced. Since noise from the environment

and from other devices using the same frequency range are common in IoT systems, the introduction of a 2%

to 10% artificial packet loss rate can test the proposed protocol’s ability to resist noise. In each transmission,

both devices record the spreading factor, bandwidth, file size, transmission time, and artificial packet loss

rate has been introduced. Similarly, to avoid random errors, each transmission was repeated 5 times to get

a more stable average transmission time. Any transmission that experienced non-artificial packet loss was

discarded and redone.

Transmission in Chain Network

Section 3.2 introduced an optimization of the MPLR protocol in chain network that utilizes the pipelining

transmission to reduce the time required for multi-hop transmission across a line. To verify this optimization,

a chain network test experiment is designed in the laboratory environment. In this experiment, a 3-hop chain

network consisting of 4 LoRa devices was constructed. The transmitter and receiver are at both ends of

the chain network, and the two other LoRa devices in the middle are the relays. Both pipelining and non-

pipelining MPLR protocols are used to transmit images at a size of 27 KB under SF 7 and BW 500 settings

respectively. The experiment was carried out five times to calculate the average time and avoid random

errors. Each device records the timestamps of packets arriving and sending to analyze protocol performance.

Transmission in a Star Network

In order to prevent packet collisions caused by inter-flow interference in star topology network, channel

reservation is introduced in Section 3.1.1 to separate control channel and data channel. The purpose of

this experiment is to verify that the MPLR+Channel reservation mechanism has more advantages than the

state-of-the-art stop-and-wait+ALOHA mechanism. Both protocols are tested in the outdoor star topology

60



network. Four configurations of nodes are used in this experiment with a star topological network of 5, 10,

15, and 20 devices respectively. Each group of experiments used MPLR+Channel reservation mechanism and

stop-and-wait+ALOHA mechanism to conduct 125-minute image transmission experiment respectively. The

test area is a 200x300 metre park, where a LoRa gateway is placed at the corner of the test area to receive

all images, and the rest of the devices are randomly placed in the test area as sender nodes. All devices used

a spreading factor of 8 and a bandwidth of 250 kHz. In each 125-minute experiment, each node generated

a 9 KB image for transmission every 5 minutes. If an image transmission had not completed before a new

task at that node was generated, the new task was queued. The reception of packets at the gateway was

stopped after 125 minutes, even if there were image transmission tasks queued at nodes. All experiments did

not introduce any artificial packet loss, nor packet loss caused by random errors, so it is based on the actual

deployment environment. All devices record data related to image transmission in the log for later analysis.

Training Data Collection and Learning

Machine learning models require a large amount of data for training. Therefore, the purpose of this experiment

is to generate training data for machine learning models by deploying tree topology-based networks of different

sizes. Also, the collected training data can be used to provide initial evidence that the model based on selected

features can accurately select routes in LoRa multi-hop networks by analyzing the learning results of training

data. Since the MPLR protocol and tree topology based LoRa multi-hop network is first proposed in this

thesis, there are no existing deployments to refer to. As a result, this experiment constructs a rich number

of tree topologies to generate and obtain routing data for training, and all topologies used are listed in

Figure 5.3. These topologies varied from 1 hop to 3 hops, with each layer of the network having a number

of child nodes ranging from 1 to 3. In each topology, the root node is the gateway, the leaf node is the

transmitting node, and the non-leaf node is the relay. Each topology was tested individually and used all

possible combinations of SF and BW to transmit 9 KB images. Each image transmission was repeated three

times to obtain a stable average transmission time and to avoid random errors. During the experiment, all

the devices recorded the number of child nodes, the time of image arrival and transmission, and the relay

waiting time. By analyzing the logs, the total transmission time of each image and the parent relay time can

be calculated. During the process of data collection and reduction, since it is not known which parent node

the child node will choose to connect to in practical application, each possible combination of child node and

parent node forms a routing record to enrich the data set. After obtaining this information, they can be

combined in pairs to form the subtraction vector shown in Formula 4.2 for machine learning models to learn.

Indoor Routing Test

After training the machine learning model with training data, the prediction ability of these trained models

must be further verified to see if they can correctly predict the optimal path in the real indoor environment.

To this end, indoor routing tests were conducted in a medium-sized computer lab to further evaluate the
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Figure 5.3: Topologies used in Training Data Collection Experiments
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learning result. The MHLR protocol is not used in this experiment to automatically form network topologies.

Instead, multiple hard-coded tree topologies were built to generate more routes in a real indoor environment.

Using hard-coded tree topologies can increase the diversity of indoor routing data without changing the

location of devices, and can record the total transmission time under various routing options. These data

were used to evaluate the accuracy of classification of five machine learning models trained by the training

data. These topologies used up to 10 LoRa devices, which contain both optimal and bad network routes.

Each topology has at least one hop and at most three hops; each network layer has at least one child node

and up to 3 child nodes. Similarly, all possible combinations of spreading factor and bandwidth are used to

transmit 9 KB images one by one. During the experiment, each device recorded the parent node selected by

the device and the number of child nodes, as well as the timestamp of image arrival and sending. The total

time used for image transmission and the relay time of the parent node can be calculated by log analysis. In

this experiment, packet loss caused by random errors is not ignored. In other words, the impact of packet

loss is retained in the collected data set. All routing data will be obtained by parsing device logs, and each

pair of routing information constituted into a subtraction vector for machine learning model to predict.

Outdoor Routing Test

In order to study the performance of MPLR and MHLR protocols in outdoor environment, an outdoor

routing experiment was conducted in a low-density residential area. The purpose of this experiment is to

verify the feasibility of MPLR and MHLP protocols in building LoRa networks in outdoor environments.

Ten LoRa devices were deployed in the region, including one gateway, four relays, and five nodes. The

experiment adopted a spreading factor of 10 and a bandwidth of 250 kHz to transmit an image of 9 KB

every 5 minutes. In this experiment, since the parent relay time is unknown at the beginning, the first two

connectivity checks were performed every 30 seconds and then every 5 minutes. The machine learning model

used in the experiment is an MLP model trained by the training data mentioned earlier, and the trained

model is distributed to each relay and node device prior to the start of the experiment, which is used for

intelligently route selection and automatically network topology construction. During the experiment, each

device recorded its parent node, the number of the child nodes, as well as the start and end time of each

image transmission. The resulting topology, as well as the transmission time and route of each image data,

can be obtained through log analysis. Similarly, since this is a field deployment, the experiment did not

introduce any artificial packet loss, and there is no avoidance of any packet loss due to random errors.

5.2.3 Performance Metrics

The full payload transmission experiment considers the maximum payload that is stable under different

combinations of bandwidth and bandwidth. By sending packets that grow in size, until find the largest and

most stable transmission payload under each combination of settings.

The performance metric considered in the point-to-point experiment is the average image transmission
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time with or without packet loss respectively. Compared to the stop-and-wait protocol, MPLR protocol shorts

the waiting time for acknowledgment packets during the transmission process by using the patch transmis-

sion. Therefore, comparing the average transmission time required by the two protocols can illustrates the

advantages of the proposed MPLR protocol. The performance metric of the transmission experiment in

the chain network is the arrival time of each packet batch in each relay and gateway. Since the pipelining

transmission is used to optimize the MPLR protocol for chain network, each packet batch can be delivered

in a different way and at a different time from the normal MPLR protocol. Therefore, the way of relaying

and performance of each protocol in the chain network can be analyzed by examining the arrival time of

each packet batch in each relay and gateway. For the tests using a star topology, the distribution of the

image transmission time, the number of packet collisions, the number of successfully transmitted images, and

inter-node fairness were examined. These performance metrics can clearly show if the proposed protocol with

channel reservation mechanism can greatly reduce inter-flow interference in image transmission tasks, and

have a higher success rate. It is also necessary to know whether the mechanism has certain fairness in the

network, so that all nodes can fairly complete image transmission within a certain time and transfer almost

the same number of images.

The purpose of training data collection and learning is to generate sufficient training data for the machine

learning models to learn, and to evaluate whether the selected features are good enough for the machine

learning models to infer the route with the shortest transmission time. For the latter, its performance metric

is the classification accuracy, precision, recall, f1, and the learning curve of machine learning models after

learning the training data set. Classification accuracy is defined as the ratio of number of correct predictions

to the total number of input samples. A good classification accuracy is that the trained model can identify

the route with the shortest transmission time in most of the route pairs. Precision is the ratio of the number

of label 1 in the correct prediction results to the number of all label 1 in the prediction results. It is given

by the following expression:

(5.1)precision = # of true label 1
# of true label 1 + # of false label 1 .

Recall is the ratio of the number of label 1 in the correct prediction results to the number of label 1 in all

data instances. It can be computed as

(5.2)recall = # of true label 1
# of true label 1 + # of false label 0 .

F1 is calculated as
(5.3)F1 = 2 ∗ precision ∗ recall

precision + recall .

Learning curve, as an effective visual tool, is used to represent the relationship between training scores and

cross-validation scores with a varying number of training data.
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For the indoor routing experiments, the performance metrics are also the accuracy, precision, recall

and f1 of routing prediction. This experiment investigates whether the machine learning model trained by

training data can accurately identify the route with shortest transmission time among all possible routes

in indoor environment. Finally, the performance metrics of outdoor routing experiments are the success

of automatic network topology construction, topology construction time, image transmission time, network

throughput and number of the retransmissions. This experiment examines the ability of the whole protocol

to construct the network topology in the outdoor environment by using the machine learning model trained

with indoor training data, and analyzes the correctness of the resulting topology with respect to the objective

of minimizing transmission times. Besides, the performance of the multi-hop transmission of images is also

investigated.

5.3 Summary

This chapter first described the compression technique that used to reduce the size of experimental image

data. The LoRa devices and device configuration that used in all experiments are presented. Seven different

experiments are designed, the design scheme and experimental environment of each experiment are introduced

precisely. Finally, the performance metrics of each experiment are discussed in detail.
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Chapter 6

Evaluation

The results of experiments designed to test the performance of MPLR and MHLR protocols are discussed

and analyzed in this chapter. These protocols are compared with the state-of-the-art methods to determine

the quantitative performance improvement.

6.1 Full Payload Transmission

Theoretically, as the packet size increases, its signal wave will also become longer and more susceptible to

interference. This can lead to the loss of the signal strength or even packet corruption during the transmission.

The full payload transmission experiment was conducted in the laboratory to see how the packet loss rate

for LoRa wireless transmission varies with packet size and transmission settings. Each experiment last 5

minutes and the transmitting node sent a packet every 5 seconds. Table 6.1 shows the average delivery rates

of packets of different sizes and settings obtained through experiments, with a standard deviation of 0.26.

It is worth mentioning that packet corruption and the loss of the signal strength is inevitable in wireless

communication, even for the most reliable connections. Therefore, although the delivery rates under many

transmission settings in the experiment were as high as 100%, there is still a possibility of packet corruption

in the actual deployment. Since the maximum buffer size of the SX1276 chip is 255 bytes, any packets larger

than this size will be cropped, regardless of the transmission settings used, and resulting in a delivery rate of

0%. As can be seen from the table, from SF 7 to SF 11, except for the use of SF 11 and BW 125, any packet

size that smaller than or equal to the buffer size has a high delivery rate in the laboratory environment.

When using combination of SF 11 and BW 125, or SF 12, packet delivery rates decrease with the increase

of data size, even in low-interference laboratory environments. This is especially noticeable when using SF

12 and BW 125 to transmit packets of 200 bytes, the packet delivery rate drops below 50%. Such a delivery

rate is considered a volatile or unstable transmission.

Through the observation and analysis of Table 6.1, the maximum packet length is computed for different

combinations of transmission settings under stable transmission. All maximum packet lengths are listed in

Table 6.2. All settings can be used to send packets of up to 255 bytes except for SF 11-BW 125, SF 12-BW

250, and SF 12-BW 125, which can only send packets of up to 149 bytes, 137 bytes, and 41 bytes, respectively.

These three settings should be avoided in image transmission, not only because their maximum packet size
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Table 6.1: Packet Delivery Rates for Different SF, BW, and Data Size

Bytes 17 69 137 201 255

SF BW

7 500 100% 100% 100% 100% 100%

250 100% 100% 100% 100% 100%

125 100% 100% 100% 100% 100%

8 500 100% 100% 100% 100% 100%

250 100% 100% 100% 100% 100%

125 100% 100% 100% 100% 100%

9 500 100% 100% 100% 100% 100%

250 100% 100% 100% 100% 100%

125 100% 100% 100% 100% 100%

10 500 100% 100% 100% 100% 100%

250 100% 100% 100% 100% 100%

125 100% 100% 100% 100% 100%

11 500 100% 100% 100% 100% 100%

250 100% 100% 100% 100% 99%

125 99% 94% 92% 85% 78%

12 500 99% 99% 99% 97% 92%

250 99% 91% 91% 87% 81%

125 98% 75% 61% 46% 27%
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is limited, but also because the data rate resulted by these three settings is very small.

In summary, when using LoRa to transmit image data, stable settings at full payload should be used.

The unstable settings should be avoided and can only be used to transmit sensor data.

Table 6.2: Maximum Data Size(in bytes) for Stable Transmission under Different SF and BW

SF/BW 500 250 125

7 255 255 255

8 255 255 255

9 255 255 255

10 255 255 255

11 255 255 149

12 255 137 41

6.2 MPLR

This section discusses the results of three experiments for evaluating the performance of MPLR protocol,

namely, point-to-point transmission, chain network transmission, and star network transmission.

6.2.1 Point-to-point Transmission

The point-to-point experiments were performed with no introduced packet loss first, using all combinations

of spreading factor and bandwidth, except for the three lowest data rate combinations. Each measurement

was repeated 5 times and the average transmission time is provided in Table 6.3. Due to the stable test

environment and short communication distance, the standard deviation of multiple experiments is around

0.006. To allow easier visual comparison of these results in Table 6.3, table entries with average transmission

times between 40 and 60 seconds are shown with light grey shading, and those with times exceeding 60

seconds are shown with dark grey shading.

From the table, the average image transmission times are substantially lower with MPLR than with stop-

and-wait. The average reduction in transmission time when using MPLR, over all settings and image sizes,

was 24%, with a maximum of 56% and minimum of 8.8%. This reduction in transmission time allows for

more spreading factor and bandwidth options when using MPLR, while maintaining an economical operation

time and power consumption. Unfortunately, due to LoRa’s small physical layer data rate, the use of most

transmission combinations will take more than 40 seconds when transmitting 28 KB or more of image data,

whether using MPLR or stop-and-wait.

When packet loss is introduced, both protocols degrade, but in different manners. The point-to-point

transmission experiments were repeated by adding different artificial packet loss rates to evaluate the change

in the transmission time of the 9 KB image for both protocols. Experiments were run with packet loss rates
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Table 6.3: Transmit Times (secs) with No Packet Loss

(a) MPLR: 9 KB

BW 500 BW 250 BW 125

SF 7 4.92 9.65 19.11

SF 8 8.54 16.90 33.62

SF 9 15.19 30.20 60.22

SF 10 27.25 54.32

SF 11 49.42

(b) Stop-and-wait: 9 KB

BW 500 BW 250 BW 125

SF 7 7.85 13.14 23.72

SF 8 11.99 21.28 39.64

SF 9 19.43 36.45 73.47

SF 10 33.03 63.53

SF 11 58.60

(c) MPLR: 12 KB

BW 500 BW 250 BW 125

SF 7 6.83 13.45 26.66

SF 8 11.90 22.07 46.91

SF 9 21.18 42.13 84.03

SF 10 38.80 75.79

SF 11 68.95

(d) Stop-and-wait: 12 KB

BW 500 BW 250 BW 125

SF 7 11.03 18.34 33.15

SF 8 17.08 29.64 74.11

SF 9 48.34 60.51 97.81

SF 10 62.07 88.61

SF 11 81.90

(e) MPLR: 18 KB

BW 500 BW 250 BW 125

SF 7 10.02 21.98 44.06

SF 8 19.97 36.95 68.54

SF 9 30.97 64.41 128.35

SF 10 55.54 110.69

SF 11 100.72

(f) Stop-and-wait: 18 KB

BW 500 BW 250 BW 125

SF 7 19.33 26.77 48.29

SF 8 24.34 43.18 81.05

SF 9 59.45 73.11 152.93

SF 10 67.06 129.16

SF 11 130.54

(g) MPLR: 28 KB

BW 500 BW 250 BW 125

SF 7 15.77 31.00 64.57

SF 8 29.01 56.35 109.13

SF 9 49.29 102.72 195.41

SF 10 88.42 181.72

SF 11 164.32

(h) Stop-and-wait: 28 KB

BW 500 BW 250 BW 125

SF 7 25.37 42.30 90.77

SF 8 53.57 68.44 128.37

SF 9 88.51 146.40 226.21

SF 10 106.17 215.53

SF 11 207.87
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of 2%, 5%, and 10%. Table 6.4 gives the transmission times averaged over 5 measurements for each protocol

and parameter setting, with a standard deviation of 0.048. Using MPLR, transmission time increases by a

percentage only a little greater than the packet loss percentage, since packet losses indicated in each BVACK

do not require a timeout for detection, and since packet loss rarely increases the number of batches used to

transmit an image (just the size of the last batch). However, a significant increment in transmission time is

observed when using stop-and-wait, as each packet loss leads to a timeout and retransmission. The reductions

in transmission time when using MPLR, averaged over all bandwidth and spreading factor settings, were 30%,

42%, and 49%, for packet loss rates of 2%, 5%, and 10%, respectively.

Table 6.4: Transmit Times (secs) with Packet Loss (9 KB image)

(a) MPLR: 2% Loss

BW 500 BW 250 BW 125

SF 7 5.09 9.95 19.66

SF 8 8.82 17.39 34.53

SF 9 16.09 31.04 61.84

SF 10 28.01 55.78

SF 11 50.78

(b) Stop-and-wait: 2% loss

BW 500 BW 250 BW 125

SF 7 11.00 16.35 28.13

SF 8 16.14 24.49 44.50

SF 9 23.85 39.98 79.73

SF 10 36.55 67.56

SF 11 63.54

(c) MPLR: 5% loss

BW 500 BW 250 BW 125

SF 7 5.30 10.36 20.47

SF 8 9.18 18.11 35.97

SF 9 16.28 32.32 64.39

SF 10 29.18 58.10

SF 11 52.88

(d) Stop-wait: 5% loss

BW 500 BW 250 BW 125

SF 7 19.18 22.72 35.89

SF 8 23.15 33.26 56.67

SF 9 30.92 48.25 83.75

SF 10 43.70 76.89

SF 11 73.71

(e) MPLR: 10% loss

BW 500 BW 250 BW 125

SF 7 5.51 10.77 21.28

SF 8 9.54 18.83 37.40

SF 9 16.93 33.61 66.96

SF 10 30.33 60.40

SF 11 54.98

(f) Stop-and-wait: 10% loss

BW 500 BW 250 BW 125

SF 7 25.45 25.45 45.25

SF 8 29.23 39.97 60.33

SF 9 35.74 56.52 93.68

SF 10 51.90 86.12

SF 11 81.78

The results of experiments with and without artificial packet loss show that the proposed MPLR protocol

has an obvious advantage over the stop-and-wait protocol in transmission time, and the higher the packet

loss rate, the more obvious the advantage is. The proposed protocol has significant advantages over Jebril’s

mechanism, which requires at least 1 minutes and 7 seconds to transmit an image of about 26 KB.
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6.2.2 Transmission in Chain Network

In this experiment, four LoRa devices are placed on a straight line and 5 metres apart from each other to

form a chain network topology. The two ends of the topology are the transmitter and receiver nodes, while

the remaining two devices in the middle are the relays. The experimental plan was to relay a image of 27 KB

from one end of the chain network to the other, using both the MPLR and the optimized MPLR protocol.

The experiment was repeated three times to get an average. The average results of the experiments are

depicted in Figure 6.1, with a standard deviation of 1.41. The dotted lines are the result of using the MPLR

protocol, while the dash lines are the result of using the optimized (pipelineing) MPLR protocol.

Figure 6.1: MPLR v.s. Pipelineing MPLR in 3-Hop Transmission [data size: 27 KB]

Although the first relay that in the pipelining transmission sent out every transmission window later than

in the non-pipelining transmission, all the devices after the first relay benefit from the pipelining transmission.

By using pipelining, all transmission windows arrived at second and third relays were earlier, and the entire

transmission task was terminated earlier as well. When using pipelining transmission, the closer the device

is to the gateway, the sooner the transmission task will be completed. Therefore, in this case, the use of

the pipelining transmission can be used to transmit data windows in parallel in the network and accelerate

the entire transmission process. By comparing the time added for each new hop, the total transmission time

of the network using pipelining transmission only increased the transmission time of a single data window,
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while the non-pipelining network increases the transmission time of an whole image transmission. These

experimental results show that the use of pipelining transmission can effectively improve the transmission

efficiency in the chain network in the MPLR protocol.

6.2.3 Transmission in Star Network

In this experiment, the main performance measurement is the transmission time for each node sending a

single image to the gateway in a network with different numbers of LoRa nodes. Due to the length of the

test, only a single replication was conducted, but the transmission of 25 images per node was considered

sufficient to ensure measurement reliability. Figure 6.2 shows the distribution of the transmission times for

each 9 KB image (using a spreading factor of 8 and bandwidth of 250 kHz) with 5, 10, 15, and 20 nodes

using MPLR in conjunction with the data channel reservation protocol, and stop-and-wait in conjunction

with ALOHA. The box plots only include successful transmissions, as Section 5.2.2 indicates the effect of

backlog on sending.

Figure 6.2: Image Transmission Time Distribution

When using MPLR+channel reservation, the average image transmission time (time from when an image

transmission task is generated at a node until the transmission is successfully completed) was 55.6, 104.5,

177.8, and 304.8 seconds, with 5, 10, 15, and 20 nodes, respectively. The image from the first node to

successfully reserve the data channel is always delivered after about 17 seconds, with transmissions from
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other competing nodes then being delayed. When using stop-and-wait+ALOHA, the average transmission

time increases greatly when the number of nodes in the network grows, due to collisions among data packets.

Even if only 5 nodes are in the network, using stop-and-wait+ALOHA requires an average of 132 seconds to

send an image, about 2 times longer than MPLR+channel reservation. The arrival time of the first image in

each scenario is also longer with stop-and-wait+ALOHA, particularly as the number of nodes grows (17.2 to

114 seconds with 10 nodes), but dependent on the actual pattern of collisions. For 15 nodes, the stop-and-

wait+ALOHA protocol has more variation than for 10 nodes, but only a 35% increase in median transmission

time for a 50% increase in the number of nodes.

In the case of 5 nodes, the transmission time for the last image to be successfully received at the gateway

was about 133 seconds when using MPLR+channel reservation, but was about 250 seconds with stop-and-

wait+ALOHA. Scaling up to the 20 node scenario, the last image to be successfully received when using

MPLR+channel reservation, within the 125 minute experiment duration, had a transmission time of about

35 minutes (since in this scenario there is substantial queuing of the transmission tasks), while the last image

to be successfully received when using stop-and-wait+ALOHA had a transmission time of about 74 minutes.

With 10 nodes, stop-and-wait+ALOHA was almost over 7 times slower than MPLR+channel reservation

(250 vs. 1850 seconds).

Figure 6.3 shows a comparison of the average number of packet collisions during a single image transmis-

sion. As the number of nodes in the network increases, the number of packet collisions increases with both

methods. However, MPLR+channel reservation produced fewer packet collisions under the same number of

LoRa nodes.

Figure 6.4 depicts the number of images received by the LoRa gateway for each network size. Since an

image transmission task is generated at each node every 5 minutes in these experiments, the gateway should

receive in total 125, 250, 375 and 500 images, respectively. When there are only 5 nodes in the network, the

gateway always receives 125 images. When the number of LoRa nodes in the network is increased to 10, only

114 images are successfully received using stop-and-wait+ALOHA, prior to the experiment termination after

125 minutes, due to congestion and corresponding packet loss; the gateway receives all images in the network

using MPLR+channel reservation.

Similarly, when the number of nodes in the network is increased to 15 and 20, when using MPLR+channel

reservation the gateway receives 334 and 353 images, respectively, while with stop-and-wait+ALOHA the

number of delivered images remains at approximately 120. With MPLR+channel reservation, the network

reaches a plateau more gradually than with stop-and-wait+ALOHA. Although this transmission frequency

is much higher than the anticipated frequency of demand in actual projects, it allows us to determine the

capacity when using MPLR+channel reservation.

The image delivery fairness performance difference between MPLR+channel reservation and stop-and-

wait+ALOHA is presented in Figure 6.5. As the number of nodes increases beyond 5, they are differentially

affected by the added traffic and potential congestion. With stop-and-wait+ALOHA and 20 nodes, one node
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Figure 6.3: Packet Collisions

Figure 6.4: Successful Image Transmissions
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is limited to one successful image transmission. This is 25% of the median for this configuration, indicating

there are other factors that influence which nodes suffer most from collision.

Under MPLR+channel reservation, the distribution of the number of images successfully delivered for

each node is considerably more condensed. 50% of the nodes are no more than 2 images off from the median

with 20 nodes and the range is even tighter for 15 nodes. The most extreme outlier for the 20-node scenario

can still deliver 13 images (72% of the median).

Figure 6.5: Inter-Node Fairness

6.3 MHLR

Three experiments were conducted to provide training and testing data for MHLR protocol and to evaluate

the performance of MHLR protocol. In this section, the experimental results are discussed and analyzed in

detail to verify the possibility of using machine learning to form network topology and select route.

6.3.1 Training Data Collection and Learning

Through extensive laboratory experiments, a large number of routing information in different topologies was

collected. This information can not only be used to train the machine learning model, but also as preliminary

verification of the feasibility of using machine learning to select routes and the correctness of the selected
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features.

Firstly, each routing information is paired with all other routing information one by one to form the

subtraction vectors by using Equation 4.2, and the resulted vectors are fed into five different machine learning

models for learning. It is worth mentioning that in the actual routing, when the transmission time difference

between two routes is very close, then either route can be selected for transmission. Therefore, when using

the machine learning model for prediction, 4 thresholds were used, namely 0%, 5%, 10% and 15%. When

the transmission time difference is less than the threshold value, the both routes are considered to be the

same and excluded from the data set. This is called fuzzy classification, which can be used to test whether

learning efficiency can be improved when different degrees of similar data are ignored. Table 6.5 summarizes

the accuracy of machine learning methods for the collected routing information.

Table 6.5: Training Data Learning Score

Algorithm Accuracy (>= 0%) Accuracy (>= 5%) Accuracy (>= 10%) Accuracy (>= 15%)

MLP 90.2% 92.2% 93.9% 95.3%

SGD 90.1% 91.9% 93.6% 95.2%

Decision Tree 85.2% 86.8% 88.9% 90.7%

Random Forest 86.6% 89.0% 90.5% 91.2%

Ada Boost 89.9% 91.8% 93.4% 95.0%

As can be seen from the table, even without fuzzy classification, the accuracy of all machine learning

methods is more than 85%, among which MLP has the highest accuracy of 90.18%. When the degree of

fuzzy classification increases by 5%, the accuracy increases by 1% to 2%. Therefore, it can be proved that

the routing information represented by the selected features can be learned by machine learning methods

and has a high accuracy.

Figure 6.6 shows a classification report of training data set in five models. In the figure, 1st Route

represents the training data labeled 1 and 2nd Route represents the training data labeled 0. Almost all

classifiers have higher precision and recall when predicting label 1 than predicting label 0, which means more

label 1 data is correctly predicated. Random forest, however, has a higher precision when predicting label

0. This is also evident in the f1 results. The reason for this is that in the training data set, the occurrence

(support) of label 1 is almost 2.5 times higher than label 0, which makes the models learn more and better

about label 1. Thus, a lower precision and recall are presented when predicting label 0 due to insufficient

training data set. In any case, the accuracy of precision and recall of most models for both classes exceeds

85%, which is considered to be a high accuracy rate.

The evaluation of accuracy on the training data set shows the ability to grasp the known data, but cannot

test the ability to predict the unknown data. In order to understand the predictive power of those machine

learning models, the method of cross-validation should be used to verify it. During cross-validation, the

training data set is divided into five equal parts, one part as testing data set and the other part as training
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Figure 6.6: Classification Report For Training Data Set (Fuzzy Classification = 0%)
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data set. The results are shown in Table 6.6.

Table 6.6: Training Data Set Cross-Validation Accuracy

Algorithm Accuracy (>= 0%) Accuracy (>= 5%) Accuracy (>= 10%) Accuracy (>= 15%)

MLP 88.9% (+/- 3%) 90.6% (+/- 3%) 92.6% (+/- 3%) 94.1% (+/- 3%)

SGD 89.4% (+/- 3%) 90.6% (+/- 3%) 92.6% (+/- 3%) 94.3% (+/- 2%)

Decision Tree 84.0% (+/- 3%) 86.2% (+/- 3%) 87.6% (+/- 2%) 89.6% (+/- 2%)

Random Forest 85.1% (+/- 3%) 87.3% (+/- 3%) 89.5% (+/- 3%) 90.6% (+/- 4%)

Ada Boost 88.6% (+/- 2%) 90.5% (+/- 2%) 92.5% (+/- 2%) 94.2% (+/- 2%)

Although the accuracy on cross-validation is not as high as on the training data set, the accuracy still

reaches more than 85% without using fuzzy classification, except decision tree. Similarly, when the degree of

fuzzy classification is increased by 5%, the prediction accuracy is improved by 1-2%. The standard margin

of error for most forecasts is around 3%. In general, most machine learning methods are good predictors of

routing performance.

Figure 6.7 shows the classification report of the cross-validation results. Several phenomena presented in

Figure 6.6 are also reflected in this result. Although in this case it was to predict unknown data instances,

the precision and recall results of cross-validation were not significantly degraded. This also indicates that

the model has good generics.

In order to better understand the learning ability of each machine learning model, a receiver operating

characteristic curve is drawn to facilitate us to know the true positive rate and false positive rate of the

trained model. Figure 6.8 shows the ROC curves of five machine learning models. The blue dotted line is

the neutral (reference) line for random guesses with an accuracy rate of 50%. The left side of the neutral

line predicts better results, and the right side predicts worse results. All machine learning models are on

the left side of the neutral line, near the top left vertex, indicating that all these methods conclude good

prediction results. Ada Boost, MLP and SGD were the best, while Random Forest and Decision Tree were

slightly worse.

Figure 6.9 shows the training curves of the five models for the training data set. Among them, SGD,

Decision Tree, and AdaBoost classifiers achieved good convergence after learning the training data set. MLP

and Random Forest classifiers have the accuracy gaps of 4-5% between training data and validation data. This

indicates that MLP and Random Forest classifiers fit the known data well, but the ability of the generalization

is not at its best. The solution to this problem is to provide more training data so that the model can learn

better. In addition, the cross-validation scores of Decision Tree and Random Forest classifiers increased with

the increase of the number of training instances, while all other classifiers were in a relatively flat learning

trend. This indicates that the cross-validation scores of both Decision Tree and Random Forest classifiers may

improve when more training instances are added. On the contrary, these additional training instances will

not help the cross-validation scores of other classifiers. As the accuracy rate has been higher than expected
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Figure 6.7: Classification Report For Cross-Validation (Fuzzy Classification = 0%)
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Figure 6.8: The ROC for Training Data Set (Fuzzy Classification = 0%)

(85%), there were no plans to collect more training data. That could be part of future work.

The sizes of the models after training are varied, and the size of each model after learning the training

data set is listed in Table 6.7. The size of SGD classifier is the smallest, only 1 KB, and the size of MLP

and Decision Tree classifier are 5 KB each. Due to their small size, these three classification models will not

cause too much overhead when distributed to each node device. However, the sizes of Random Forest and

AdaBoost classifiers are 44 KB and 31 KB, respectively. Passing such a large size through the LoRa network

incurs additional overhead and affects the throughput of the network. Therefore, these two classifiers are not

recommended in actual deployment if the classification model needs to be updated.

Table 6.7: The File Size of the Trained Models

Name Size (KB)

MLP 5

SGD 1

Decision Tree 5

Random Forest 44

AdaBoost 31
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Figure 6.9: Learning Curve of Training Data (Fuzzy Classification = 0%)
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6.3.2 Indoor Testing

The indoor experiments show that the machine learning model trained with laboratory training data set

can accurately predict the better route for the deployed LoRa multi-hop network in indoor environment.

Similarly, the multi-hop transmission data of different topologies in indoor environment was collected, and

Formula 4.2 was used to convert it into the input subtraction vector for machine learning methods to predict.

These machine learning models have been trained with laboratory training data set prior to prediction. The

prediction results are shown in Table 6.8.

Table 6.8: Indoor Routing Prediction

Algorithm Accuracy (>= 0%) Accuracy (>= 5%) Accuracy (>= 10%) Accuracy (>= 15%)

MLP 91.1% 92.6% 93.8% 95.7%

SGD 90.8% 93.3% 94.3% 95.8%

Decision Tree 86.2% 87.0% 90.1% 91.9%

Random Forest 87.9% 88.5% 90.1% 91.6%

Ada Boost 91.0% 92.7% 93.4% 95.1%

All machine learning models trained with laboratory data can accurately predict better routes in indoor

environment. Even without fuzzy classification, the lowest performing model, Decision Tree, was 86.2%

accurate, while the best-performing model, MLP, was 91.1% accurate. Similarly, as the degree of fuzzy

classification increases, the accuracy of all algorithms also improves. It is noteworthy that the average

accuracy in Table 6.8 was slightly higher than that in Table 6.6. One reason is that in this indoor deployment,

some of the actual topologies formed are not as complex as those designed in the laboratory, so predictions

are easier and results more accurate. The experimental results show that the machine learning model trained

with laboratory data can predict the path in indoor environment accurately.

Figure 6.10 shows a classified report of indoor routing data. Although the data volume of label 1 and

label 0 has been increased, the precision and recall of label 1 are still higher because the data volume of

label 1 is twice as large. From the performance of all models, although the deployment changes in indoor

environment have an impact on the prediction results of models, the precision and recall of most models

remain above 80%. This score can be further increased if incremental learning is used to dynamically learn

changes in routing conditions.

Figure 6.11 shows an ROC curve for prediction of indoor deployment data by five machine learning models.

The results are not surprising and all the models have higher prediction accuracy, so all the curves fall to the

left of the neutral line, very close to the top left. This further illustrates the high learning rate and selected

features of the machine learning methods.
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Figure 6.10: Classification Report For Indoor Routing (Fuzzy Classification = 0%)
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Figure 6.11: The ROC for Indoor Routing (Fuzzy Classification = 0%)

6.3.3 Outdoor Testing

So far, all experimental results show that the proposed protocol can accurately choose the routing in an indoor

environment. Next, its performance in topology formation and routing selection in outdoor environment is

analyzed. In the outdoor experiment, 10 devices were deployed in a low-density residential area to transmit

images to the LoRa gateway through multi-hop transmission. Figure 6.12 shows the location of the device

deployment and the results of network topology are automatically formed by the trained MPL model.

In Figure 6.12, the red dot is the LoRa gateway, the yellow dot is a relay device, and the green dot is

a node device. Other gray dots are nodes that attempt and fail to connect to relay devices/gateways due

to obstacles or power lines. Through the prediction of the MPL model trained by training data set, the

whole network establishes a tree network topology with gateway as the root node. In this network, each node

chooses to connect directly to the gateway or chooses a node near the gateway for retransmission. Nodes

do not choose nodes that are further away from the gateway for propagation. For example, node 3 does not

choose node 2 which is far away from the gateway for relaying, but chooses node 4. This is also because

node 4 is only one hop away from the gateway and node 2 is two hops away from the gateway. Alternatively,

nodes can achieve the fastest transmission by reducing the number of relays. For example, node 9 chooses

node 7 over node 8 for relaying because node 8 requires one more relay than node 7, increasing the time it

takes for data to reach the gateway. Finally, in the case of three hops, node 1 transmits the image back to

the gateway through two relays of node 2 and node 4. The outdoor experiment proves that LoRa multi-hop
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Figure 6.12: Outdoor Experiment Topology
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network can transmit image information in an outdoor environment.

In this experiment, the transmission time, throughput, average retransmission times, and establishment

delay are also recorded in the log file. Through the analysis of log files, it is found that each node in this

experiment sends 3-5 images on average. Data is averaged and summarized in Table 6.9.

Table 6.9: Transmission Time, Throughput, Re-transmission, Establishment Delay Between Nodes

Path Trans. Time (second) Throughput (bps) Avg. Re-trans. Establishment Delay (second)

1 − > 2 60.69 151.85 3 4.17

2 − > 4 62.34 147.83 2 4.17

3 − > 4 59.25 155.54 1 4.17

4 − > 6 54.35 169.57 0 4.17

7 − > 6 54.50 169.10 0 4.17

9 − > 7 54.34 169.60 1 44.90

10 − > 6 54.34 169.60 0 4.17

Except for the connections with retransmission and long-distance, the outdoor transmission performance

is very close to the optimal transmission time in the laboratory environment given in Table 6.3. This indicates

that LoRa multi-hop network is feasible for image transmission under optimistic outdoor environment and

experimental verification in the laboratory. Due to the longer transmission distance, the transmission signal

becomes unstable and packet loss occurs. Thus, the transmission time of nodes 3 and 4, 2 and 4, as well as

node 2 and 1 has been extended to varying degrees, and the throughput on the connection has been reduced.

However, with the help of the MPLR protocol, the time required for retransmissions is reduced and does not

increase as significantly as with the stop-and-wait. Moreover, most nodes only have a establishment delay of

about 4.17 seconds when joining the network, except when node 9 wants to join the network through node

7, the delay increases to 44.9 seconds. After analyzing the device log, it was found that the reason for such a

long establishment delay was that node 9 first established a connection with node 8, since the request packet

from node 9 was not received by node 7. When node 9 sends heartbeat packets to adjust the network, it

finds that node 7 is the more suitable parent node. Therefore, the whole process took 44.9 seconds.

By analyzing the results of the outdoor experiment, it was shown that it is feasible to realize automatic

topology construction and routing selection in LoRa network by using machine learning. In addition, the

image transmission in outdoor environment is roughly the same as that in indoor environment, except that

there is more environmental noise in outdoor environment, which leads to packet loss and thus retransmission.

Through the analysis of establishment delay, it can be found that the parent node selection based on machine

learning can be completed in a short time, while any non-optimal routing can be automatically adjusted

after a fixed amount of time. Unfortunately, comparisons with conventional methods of topology and route

construction are not planned for this thesis, but is part of future work. However, experimental results from

a number of relevant studies indicate that the use of machine learning performs better than the conventional
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methods in terms of network topology and route construction [28] [82] [39].

6.4 Summary

The results of seven different experiments are discussed and analyzed in detail in this chapter. The maximum

payload size under different combinations of spreading factor and bandwidth was first examined and found

that the payload size of 255 bytes is fairly stable in most settings, except for SF 12-BW 250, SF 12-BW 125,

and SF 11-BW 125. These exceptions require smaller payload sizes to maintain transmission reliability. The

performance of the MPLR is then evaluated against the transmission time. The results show that the MPLR

protocol has an obvious advantage in transmission time regardless of packet loss, which is 24% less than

the transmission time of stop-and-wait protocol on average. Besides, the MPLR protocol has been shown

to be able to optimize the use of chain networks. By cooperating with the channel reservation protocol,

the proposed LoRa network is superior to the state-of-the-art LoRa network in terms of transmission time

distribution, packet collision, delivery rate and fairness. The MHLR protocol is then tested in three different

experiments to demonstrate the possibility of using machine learning to construct network topologies and

select routes. By using appropriate machine learning method and degree of fuzzy classification, the learning

results of training data set and indoor experiment data set reach more than 90% accuracy. In the outdoor

low-density environment, the results show that MHLR can effectively establish a high-quality tree topology

and accurately select better route with the help of machine learning.

87



Chapter 7

Conclusions

7.1 Thesis Summary

This thesis proposes two novel and lightweight protocols to prove the LoRa’s possibilities in image transmis-

sion applications and multi-hop topologies. By reducing the transmission time, the proposed protocols can

transmit image data from the node to the gateway in a multi-hop manner faster and more efficient. The two

proposed protocols, namely Multi-Packet LoRa (MPLR) and Multi-Hop LoRa (MHLR), provide assistance

in improving transport performance and precise routing paths, respectively.

A lightweight reliable delivery protocol called MPLR was first designed and implemented for image trans-

mission in LoRa to enable remote image monitoring in our agricultural IoT system. MPLR batches data

packet transmissions and uses bit-vector acknowledgements so as to greatly reduce the number of required

acknowledgement packets and the time spent waiting for them. To avoid packet collision caused by con-

gestion, data channel reservation is used so that the request packet and data packet can be transmitted on

different channels to ensure the sustained successful data transmission rate. MHLR realizes efficient rout-

ing in LoRa multi-hop transmission by utilizing the power of machine learning algorithms, and proves that

machine learning is sufficient for routing selection in wireless sensor networks. Compared with conventional

routing algorithms, routing protocols using machine learning algorithms can accurately predict the disparity

of two routes by learning historical routing data by themselves, without too much manual calculation and

thinking.

Several laboratory tests were performed first to understand LoRa’s ability to transmit large messages. It

is found that the maximum reliable transmission payload size varies when using different spreading factor

and bandwidth. Most SF and BW settings can transmit data up to 255 bytes in a single packet, while

when using SF 11-BW 125, SF 12-BW 250, and SF 12-BW 125, only up to 149 bytes, 137 bytes, and 41

bytes can be transmitted stably, respectively. Both protocols are implemented and evaluated using a LoRa

testbed network in both laboratory and outdoor environment. The results show that using MPLR for image

transmission in point-to-point communication can reduce the time by an average of 24%. When packet loss

was introduced, the average transmission time is at least 30% improved over stop-and-wait and as much as

49% improvement is experienced (for 10% packet loss). In the star network experiments, a shorter average

transmission time was experienced with MPLR+channel reservation, and there is no increase in delivery
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time of the first image with increased network density. Compared with stop-and-wait+ALOHA method,

MPLR+channel reservation achieves a higher fairness among the participating nodes.

Results from both training data learning and indoor test show that the selected features can represent the

key information of the routing paths well and provide valuable insights for the machine learning algorithms.

Through the learning of this information, most of the machine learning algorithms can achieve more than

85% accuracy, whether using learning score or cross-validation verification. The best algorithm can achieve

more than 90% accuracy. In the outdoor experiment, the tree topology established by the trained multi-layer

perceptron model is evidenced, and each node chooses the best parent node to build the network, without

additional hops. Even in the outdoor experiment, the throughput of the network remained similar to the

results of laboratory tests. In addition, the average connection establishment delay remained at 4.17 seconds,

and non-optimal connection can be automatically adjusted within one minute when the frequency of the

heartbeat packet is 30 seconds.

7.2 Contribution

The study described in this thesis is an attempt to use LoRa for long-range image transmission and utilize

machine learning for LoRa network construction. It has the following contributions to the community:

• Design and implement a transport protocol for image transmission in LoRa. This study is the

first to improve the performance of LoRa in multi-packet transmission by designing and implementing

a transport protocol. The proposed protocol effectively reduces the time required for multi-packet

transmission over LoRa networks. This not only reduces the power consumption of the devices, extends

the network lifetime, but also offers LoRa much more possibilities in application.

• Provide channel reservation mechanism to avoid inter-flow interference in LoRa network.

The proposed protocol introduces channel reservation into the LoRa network to solve the data packet

collision problem caused by the use of pure-ALOHA protocol. Such method can significantly reduce

the data packet collision rate in LoRa network, make the transmission of multi-packet message more

stable, and avoid wasteful transmission.

• Prove the possibility of automatic LoRa multi-hop network construction and routing

through machine learning. This study also attempts to automatically construct LoRa-based multi-

hop network and select optimal routing path by learning routing characteristics using machine learning

models. The results of both indoor and outdoor experiments show that the proposed mechanism is

feasible and acquires a high degree of accuracy in routing.
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7.3 Future Work

The proposed work can be improved in several different aspects. Several key future works are illustrated in

the following sections.

7.3.1 Power Consumption

Due to equipment limitations, the LoRa device used in the experiment was unable to record power consump-

tion. As a result, the power consumption of devices cannot be referred to in routing. However, in many

routing protocols, power consumption is considered as one of the important factors that determine the per-

formance of wireless sensor networks, and is also considered as one of the important routing characteristics.

If a routing protocol does not take into account power consumption and the estimated residual electricity of

the device, devices on a popular route may be used so frequently that the battery will be exhausted early.

On the contrary, if the power consumption and residual electricity of the device are considered and observed

during the routing selection, the routing protocol can choose the node with low historical power consumption

for relay, so as to avoid frequent use of the device with low residual electricity and extend the network life.

Therefore, in order to maintain the nature of the low power consumption of LoRa, it needs to be further

studied.

7.3.2 Extensive Deployment

In Chapter 6, several experiments were conducted in laboratory, Spinks Lab, and small outdoor areas, respec-

tively. The results of the experiments, while proving that the proposed work was effective, are insufficient

compared to real deployment environments, such as large farms. Therefore, it is necessary to further verify

the reliability and scalability of the proposed work by deploying it to a real and large-scale farm environment.

7.3.3 Advanced Compression

In addition to JPEG, there are many other suitable image compression algorithms that can further reduce

the amount of bits needs to be transmitted and improve the transmission efficiency. For example, JPEG

2000, the next generation of JPEG, has a better compression performance with improved image quality.

Moreover, in addition to image compression algorithm, video compression algorithm can also be applied in

proposed scenario. In fact, video is composed of multiple consecutive images. When the consecutive images

do not change, there is no image data to be transmitted. When changes occur, it only need to transfer the

locally changed new image data to the gateway, rather than sending the entire new image. This is better

than sending the whole picture every time.
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7.3.4 Security

In the proposed work, security is not taken into account, although this is very important in actual deployment.

A wireless sensor network without security mechanism will be vulnerable to malicious attacks, data leakage,

data tampering, and other threats. Therefore, appropriate security measures, such as information encryption

and access restrictions, need to be incorporated into the protocol to ensure that the WSN is safe from threats

and attacks.

7.3.5 Multi-Channel Gateway

In the proposed work, the LoRa gateway is assumed to only send or listen on one channel at a time. Most

of the LoRa gateways on the market are based on SX1301 chips and can send or listen to eight different

channels at the same time. The next step could be to adjust the proposed protocol appropriately and apply

it to a multi-channel gateway. At the same time, check whether the proposed protocol will also improve the

transmission efficiency with the improvement of gateway capacity.
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