
Supporting Source Code Search with Context-Aware

and Semantics-Driven Query Reformulation

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Ful�llment of the Requirements

for the degree of Doctor of Philosophy

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Mohammad Masudur Rahman

c©Mohammad Masudur Rahman, September/2019. All rights reserved.

Permission to Use

In presenting this thesis in partial ful�lment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for �nancial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should be

addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

Software bugs and failures cost trillions of dollars every year, and could even lead to deadly accidents (e.g.,

Therac-25 accident). During maintenance, software developers �x numerous bugs and implement hundreds

of new features by making necessary changes to the existing software code. Once an issue report (e.g., bug

report, change request) is assigned to a developer, she chooses a few important keywords from the report

as a search query, and then attempts to �nd out the exact locations in the software code that need to be

either repaired or enhanced. As a part of this maintenance, developers also often select ad hoc queries on the

�y, and attempt to locate the reusable code from the Internet that could assist them either in bug �xing or

in feature implementation. Unfortunately, even the experienced developers often fail to construct the right

search queries. Even if the developers come up with a few ad hoc queries, most of them require frequent

modi�cations which cost signi�cant development time and e�orts. Thus, construction of an appropriate query

for localizing the software bugs, programming concepts or even the reusable code is a major challenge. In

this thesis, we overcome this query construction challenge with six studies, and develop a novel, e�ective

code search solution (BugDoctor) that assists the developers in localizing the software code of interest (e.g.,

bugs, concepts and reusable code) during software maintenance. In particular, we reformulate a given search

query (1) by designing novel keyword selection algorithms (e.g., CodeRank) that outperform the traditional

alternatives (e.g., TF-IDF), (2) by leveraging the bug report quality paradigm and source document structures

which were previously overlooked and (3) by exploiting the crowd knowledge and word semantics derived from

Stack Over�ow Q&A site, which were previously untapped. Our experiment using 5000+ search queries (bug

reports, change requests, and ad hoc queries) suggests that our proposed approach can improve the given

queries signi�cantly through automated query reformulations. Comparison with 10+ existing studies on bug

localization, concept location and Internet-scale code search suggests that our approach can outperform the

state-of-the-art approaches with a signi�cant margin.

ii

Acknowledgements

First, I thank the Almighty, the most gracious and the most merciful, who granted me all the abilities

to carry out this work. Then I would like to express my heartiest gratitude to my advisor Dr. Chanchal K.

Roy for his constant guidance, advice, critical insights, positive encouragements and extraordinary patience

during this thesis work. He is de�nitely a great mentor who can bring out the best in a student. This work

would have been impossible without his supports.

I would like to thank Dr. Denys Poshyvanyk, Dr. Andrew Grosvenor, Dr. Ian Stavness, Dr. Natalia

Stakhanova, Dr. Debajyoti Mondal and Dr. Banani Roy for their willingness to take part in the advisement

and evaluation of my thesis work. I would also like to thank them for their valuable time, useful suggestions

and critical insights. Their comments helped improve my thesis signi�cantly.

I would like to convey my greatest love and gratitude to my beloved wife, Shamima Yeasmin, and my

lovely daughter, Anisha. They are the love and inspirations of my life. Shamima always stayed with me in

ease and hardship, inspired me constantly, and helped me with ideas and suggestions in this work. Anisha

helped me see the life in a new light with her heavenly innocence, unforgettable smiles and constant babbling.

I would like to express my deepest love to my mother Morium Begum and my father Md. Sadiqur

Rahman who brought me to this world. Their endless sacri�ce, unconditional love and constant well wishes

have made me reach this stage of my life. I would also like to thank my mother-in-law Mrs. Rezia Khatun

and father-in-law Md. Shamsul Islam for their constant well wishes and inspirations in this thesis work. My

siblings � Asad, Mamun and Sayed, and in-laws � Masum, Mamun, Maruf, Shefa, Rabeya, Farzana, Dipa,

and Sharmin have always inspired me in completing my thesis work, and I thank all of them.

I specially thank all the members of Software Research Lab with whom I have had the opportunity to

grow as a researcher. In particular, I would like to thank Dr. Manishankar Mondal, Dr. Md. Saidur Rahman,

Dr. Muhammad Asaduzzaman, Dr. Je�rey Svajlenko, Dr. Fahim Zibran, Judith, Farouq, Mostaeen, Saikat,

Amit, Na�, Joy, Khaled, Rayhan, Avijit, Nadim, Rodrigo and Hamid. I am grateful to the University

of Saskatchewan and its Department of Computer Science for their generous �nancial supports through

scholarships, awards and bursaries. I am also grateful to NSERC for the prestigious Industry Engage grant.

All these supports helped me concentrate deeply in my thesis work.

I thank all the anonymous reviewers and editors for their valuable comments and suggestions in improving

the research papers produced from this thesis. I would also like to thank my research collaborators � Dr.

David Lo, Dr. Raula G. Kula and Dr. Iman Keivanloo � for their collaborations.

I would like to thank all of my friends and sta� members from the Department of Computer Science who

have helped me reach this stage with time, e�orts and suggestions. In particular, I would like to thank Dr.

Ra�zul Haque, Priyasree Bhowmik, Farhad Maleki, Kimberly Mackay, Varun Gaur, Kiemute Oyibo, Rasam

Bin Hossain, Sowgat Ibne Mahmud, Sami Uddin, Aminul Islam, Nazifa Azam Khan and Gwen Lancaster,

Shakiba Jalal, Sophie Findlay and Heather Webb.

iii

I dedicate this thesis to my mother Mrs. Morium Begum and my father Md. Sadiqur Rahman whose

inspirations help me accomplish every goal of my life.

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables x

List of Figures xii

List of Abbreviations xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Our Contribution . 5

1.3.1 Concept Location . 5
1.3.2 Bug Localization . 5
1.3.3 Internet-scale Code Search . 6

1.4 Related Publications . 9
1.5 Outline of the Thesis . 12

2 Background 14
2.1 Automated Query Reformulation . 14
2.2 Types of Query Reformulation . 14

2.2.1 Query Expansion . 15
2.2.2 Query Reduction . 15
2.2.3 Query Replacement . 15

2.3 Working Contexts of Query Reformulation . 15
2.3.1 Local Code Search . 16
2.3.2 Internet-Scale Code Search . 16

2.4 Steps of Automated Query Reformulation . 17
2.4.1 Query Feedback Collection . 17
2.4.2 Candidate Keyword Selection . 18
2.4.3 Reformulation of a Search Query . 18

2.5 Term Weighting . 18
2.5.1 TF-IDF . 19
2.5.2 TextRank & POSRank . 19

2.6 Implications of Automated Query Reformulation . 20
2.6.1 Bene�ts of Query Reformulation . 20
2.6.2 Costs of Query Reformulation . 20

2.7 Word Embeddings . 21
2.8 Cosine Similarity . 21
2.9 Summary . 22

3 Search Query Reformulation for Concept Location using Graph-Based Term Weighting 23
3.1 Introduction . 23
3.2 Motivating Example . 26

v

3.3 STRICT: Automated Search Query Suggestion from a Change Request for Concept Location 27
3.3.1 Data Collection . 28
3.3.2 Text Preprocessing . 28
3.3.3 Text Graph Development . 28
3.3.4 TextRank (TR) Calculation . 29
3.3.5 POSRank (POSR) Calculation . 30
3.3.6 Weighted K-Core Calculation . 31
3.3.7 Term Ranking and Candidate Query Selection . 31
3.3.8 Best Query Suggestion with Machine Learning . 33
3.3.9 A Working Example . 35

3.4 Experiment . 35
3.4.1 Experimental Dataset . 37
3.4.2 Search Engine . 37
3.4.3 Performance Metrics . 38
3.4.4 Evaluation of STRICT . 39
3.4.5 Comparison with Existing Techniques . 48
3.4.6 Evaluation of Working Prototype . 54

3.5 Threats to Validity . 56
3.6 Related Work . 58

3.6.1 Search Query Suggestion & Reformulation . 58
3.6.2 Code Search Algorithm . 59

3.7 Summary . 60

4 Search Query Reformulation for Concept Location using CodeRank and Source Doc-
ument Structures 61
4.1 Introduction . 61
4.2 ACER: Automated Query Reformulation with CodeRank and Document Structures for Con-

cept Location . 65
4.2.1 Pseudo-relevance Feedback . 65
4.2.2 Source Token Selection for Query Reformulation . 66
4.2.3 Source Code Preprocessing . 67
4.2.4 Source Term Graph Development . 67
4.2.5 CodeRank Calculation . 68
4.2.6 Suggestion of the Best Query Reformulation . 69

4.3 Experiment . 72
4.3.1 Experimental Dataset . 72
4.3.2 Corpus Indexing & Source Code Search . 73
4.3.3 Performance Metrics . 74
4.3.4 Evaluation of ACER and CodeRank . 74
4.3.5 Comparison with Existing Approaches . 81

4.4 Threats to Validity . 82
4.5 Related Work . 83
4.6 Summary . 84

5 Search Query Reformulation for Bug Localization using Report Quality Dynamics &
Graph-Based Term Weighting 85
5.1 Introduction . 85
5.2 BLIZZARD: Automated Query Suggestion using Report Quality Dynamics and Term Weight-

ing for Bug Localization . 88
5.2.1 Bug Report Classi�cation . 88
5.2.2 Query Reformulation . 89
5.2.3 Bug Localization . 94

5.3 Experiment . 95
5.3.1 Experimental Dataset . 95

vi

5.3.2 Performance Metrics . 96
5.3.3 Experimental Results . 97
5.3.4 Comparison with Existing Techniques . 101

5.4 Threats to Validity . 107
5.5 Related Work . 107
5.6 Summary . 108

6 Search Query Reformulation for Bug Localization using Word Semantics & Clustering
Tendency Analysis 110
6.1 Introduction . 110
6.2 Motivating Example . 113
6.3 BLADER: Automated Query Reformulation using Word Semantics & Clustering Tendency

Analysis for Bug Localization . 114
6.3.1 Construction of a Semantic Hyperspace from Stack Over�ow Q&A Threads 114
6.3.2 Automated Search Query Reformulation with Semantic Hyperspace, Clustering Ten-

dency & Machine Learning . 117
6.3.3 Bug Localization . 120

6.4 Experiment . 120
6.4.1 Experimental Dataset . 120
6.4.2 Performance Metrics . 121
6.4.3 Evaluation of BLADER . 122
6.4.4 Comparison with Existing Techniques . 125

6.5 Threats to Validity . 130
6.6 Related Work . 131
6.7 Summary . 132

7 Search Query Reformulation for Internet-scale Code Search using Crowdsourced Knowl-
edge 134
7.1 Introduction . 134
7.2 Exploratory Study . 138

7.2.1 Data Collection . 138
7.2.2 API Class Name Extraction . 140
7.2.3 Answering RQ1: Use of APIs in the accepted answers of Stack Over�ow 141
7.2.4 Answering RQ2: Coverage of API classes in the accepted answers from Stack Over�ow

Q & A site . 142
7.2.5 Answering RQ3: Presence of code search keywords in the title of questions from Stack

Over�ow . 144
7.3 RACK: Automated Query Reformulation for Internet-scale Code Search using Crowdsourced

Knowledge . 148
7.3.1 Construction of NL Token-API Mapping Database . 149
7.3.2 API Relevance Ranking & Reformulation of the NL-Query 150

7.4 Experiment . 156
7.4.1 Experimental Dataset . 156
7.4.2 Performance Metrics . 159
7.4.3 Evaluation Scenarios . 161
7.4.4 Statistical Signi�cance Tests . 161
7.4.5 Matching of Suggested APIs with Goldset APIs . 161
7.4.6 AnsweringRQ4: How does the proposed technique perform in suggesting relevant APIs

for a code search query? . 162
7.4.7 Answering RQ5: How e�ective are the proposed heuristics�KAC, KPAC and KKC� in

capturing the relevant API classes for a query? . 164
7.4.8 Answering RQ6: Does an appropriate subset of the query keywords perform better

than the whole query in retrieving the relevant API classes? 166

vii

7.4.9 Answering RQ7: How do the heuristic weights (i.e., α, β) and threshold settings (i.e.,
γ, δ) in�uence the performance of our technique? . 167

7.4.10 Answering RQ8: Can RACK outperform the state-of-the-art techniques in suggesting
relevant API classes for a given set of queries? . 169

7.4.11 Answering RQ9: Can RACK signi�cantly improve the natural language queries in
terms of relevant code retrieval performance? . 172

7.4.12 Answering RQ10: Can RACK outperform the state-of-the-art techniques in improving
the natural language queries intended for code search? 176

7.4.13 Answering RQ11: How does RACK perform compared to the popular web search
engines and code search engines? . 181

7.5 Threats to Validity . 185
7.5.1 Threats to Internal Validity . 185
7.5.2 Threats to External Validity . 185
7.5.3 Threats to Construct Validity . 186
7.5.4 Threats to Statistical Conclusion Validity . 186

7.6 Related Work . 186
7.6.1 API Recommendation . 186
7.6.2 API Usage Pattern Recommendation . 187
7.6.3 Query Reformulation for Code Search . 187
7.6.4 Crowdsourced Knowledge Mining . 188

7.7 Summary . 189

8 Search Query Reformulation for Internet-scale Code Search using Word Semantics 191
8.1 Introduction . 191
8.2 NLP2API: Automated Query Reformulation using Word Semantics & Crowd Knowledge for

Internet-scale Code Search . 194
8.2.1 Development of Candidate API Lists . 194
8.2.2 Borda Score Calculation . 197
8.2.3 Query-API Semantic Proximity Analysis . 199
8.2.4 API Class Relevance Ranking & Query Reformulation 200

8.3 Experiment . 200
8.3.1 Experimental Dataset . 201
8.3.2 Performance Metrics . 201
8.3.3 Evaluation of NLP2API: Relevant API Class Suggestion 202
8.3.4 Evaluation of NLP2API: Query Reformulation . 205

8.4 Threats to Validity . 209
8.5 Related Work . 210
8.6 Summary . 211

9 Conclusion 213
9.1 Concluding Remarks . 213
9.2 Future Work . 216

9.2.1 Promises of Keyword Selection Algorithms in IR-Based Bug Localization 217
9.2.2 Promises of Genetic Algorithms in IR-Based Bug Localization 217
9.2.3 Improving Term Weighting Algorithms with Useful Term Contexts 218
9.2.4 Query Worsening Minimization . 218
9.2.5 Improving Pseudo-Relevance Feedback (PRF) . 219
9.2.6 Promises of PageRank in Term Weighting/Source Code Retrieval 219
9.2.7 Word Embedding Technology in Query Reformulation/Code Search 219
9.2.8 Promises of Stack Over�ow in Query Reformulation/Code Search 220
9.2.9 Word Embeddings Technology for Bug Understanding/Diagnosis 221
9.2.10 Query Reformulation as a Feasible Choice for Improved Bug Localization 221

A Replication Packages 240
A.1 STRICT . 240

viii

A.2 ACER . 240
A.3 BLIZZARD . 240
A.4 BLADER . 240
A.5 RACK . 240
A.6 NLP2API . 241
A.7 Other PhD Projects . 241

B BugDoctor 242
B.1 Download . 242
B.2 Con�guration Setup . 242
B.3 Enabling BugDoctor in the IDE . 243
B.4 BugDoctor User Interfaces . 243
B.5 Loading an Issue Report (e.g., Change Request, Bug Report) 247
B.6 Concept Location with BugDoctor . 248
B.7 Bug Localization with BugDoctor . 251
B.8 Code Example Search with BugDoctor . 252

ix

List of Tables

1.1 Thesis Contribution Overview . 6

3.1 An Example Change Request (Issue #303705, eclipse.jdt.ui) 26
3.2 A Working Example of Query Suggestion by STRICT . 36
3.3 Experimental Dataset . 37
3.4 Comparison of Query E�ectiveness between STRICT and Baseline Queries 40
3.5 E�ectiveness Details of STRICT Query vs. Baseline Queries, (Title+Description)code 42
3.6 Document Retrieval Performance of STRICT Queries . 43
3.7 Retrieval Performance of TextRank, POSRank and WK-Core 47
3.8 Comparison between Proposed and Traditional Term Weights 47
3.9 Comparison of Baseline Query Improvements between STRICT and Existing Techniques . . . 48
3.10 Comparison of Query E�ectiveness with Existing Query Reformulation Techniques 49
3.11 Comparison with Existing Techniques in Document Retrieval 53

4.1 An Example Change Request (Issue #31110, eclipse.jdt.debug) 64
4.2 A Working Example (Bug #31110, eclipse.jdt.debug) . 72
4.3 Experimental Dataset . 73
4.4 E�ectiveness of ACER Query against Baseline Query . 75
4.5 E�ectiveness of ACER Variants against Baseline Queries . 76
4.6 Comparison of ACER's Retrieval Performance with Baseline Queries 77
4.7 Comparison between CodeRank and Traditional Term Weights 78
4.8 Impact of Stemming on Query E�ectiveness . 79
4.9 Comparison of Query E�ectiveness with Existing Techniques 80

5.1 A Noisy Bug Report (Issue #31637, eclipse.jdt.debug) . 87
5.2 A Poor Bug Report (Issue #187316, eclipse.jdt.ui) . 88
5.3 Working Examples . 94
5.4 Experimental Dataset . 95
5.5 Performance of BLIZZARD in Bug Localization . 97
5.6 Query Improvement by BLIZZARD over Baseline Queries . 99
5.7 Comparison with IR-Based Bug Localization Techniques . 102
5.8 Components behind Existing IR-Based Bug Localization . 103
5.9 Comparison of Query E�ectiveness with Existing Query Reformulation Techniques 104

6.1 An Example of Low Quality Bug Report (Issue #192756, ECF) 112
6.2 Experimental Dataset (Subject Systems & Bug Reports) . 122
6.3 Performance of BLADERBL in Bug Localization . 123
6.4 Comparison of Query E�ectiveness with Baseline Queries . 125
6.5 Comparison with Existing Bug Localization Techniques . 126
6.6 Comparison of Query E�ectiveness with Existing Query Reformulation Techniques 127
6.7 Comparison with Existing Studies using Feature Matrix . 128

7.1 API Packages for Exploratory Study . 138
7.2 Research Questions Answered using Exploratory Study . 139
7.3 Keywords Intended for Code Search . 144
7.4 Code Search Keywords Found in Tutorial Sites . 145
7.5 An Example of Query Reformulation using RACK . 155
7.6 Research Questions Answered using our Experiment . 157
7.7 Performance of RACK . 162
7.8 Role of Proposed Heuristics� KAC, KPAC and KKC . 164

x

7.9 Impact of Di�erent Query Term Selection . 166
7.10 Comparison of API Recommendation Performance with Existing Techniques (for various Top-

K Results) . 170
7.11 Comparison of Source Code Retrieval Performance with Baseline Queries 173
7.12 Improvement of Baseline Queries by RACK . 176
7.13 Comparison of Code Retrieval Performance with Existing Techniques 177
7.14 Comparison of Query Improvements with Existing Techniques 180
7.15 Comparison with Popular Web/Code Search Engines . 182
7.16 Comparison among the Traditional Code Search Engines . 184

8.1 Reformulations of an NL Query for Improved Internet-scale Code Search 193
8.2 Performance of NLP2API in Relevant API Suggestion . 202
8.3 Comparison with the State-of-the-art in API Class Suggestion 205
8.4 Impact of Reformulations on Generic NL Queries . 206
8.5 Comparison of Query E�ectiveness with Existing Query Reformulation Techniques 207
8.6 Comparison with Popular Web/Code Search Engines . 209

xi

List of Figures

1.1 (a) An example of noisy bug report (noisy query) and (b) Reformulated search query suggested
by BugDoctor. The noisy query returns the buggy code at the 53rd position whereas the
reformulated query returns that at the 1st position within the result list. 3

1.2 (a) An example of software change request (query) and (b) Reformulated search query sug-
gested by BugDoctor. The given query returns the code of interest at the 14th position whereas
the reformulated query returns that at the 1st position within the result list. 4

1.3 (a) An example of poor bug report (poor query) and (b) Reformulated search query suggested
by BugDoctor. The poor query returns the buggy code at the 12th position whereas the
reformulated query returns that at the 3rd position within the result list 4

2.1 Automatic query reformulations in local code search . 15
2.2 Automatic query reformulations in the Internet-scale code search 17

3.1 Text graphs of the change request in Table 3.1 � (a) using word co-occurrences, and (b) using
syntactic dependencies . 25

3.2 Schematic diagram of the proposed query reformulation technique�STRICT 27
3.3 Improvement, worsening and preserving of the baseline queries by our proposed technique �

STRICT . 41
3.4 Comparison of the document retrieval performance of STRICT queries against baseline queries

in terms of (a) Hit@10, (b) MAP@10, and (c) MRR@10 . 43
3.5 Comparison of STRICT queries with baseline queries for Top 1 to 100 results in terms of (a)

MAP@K and (b) Hit@K . 45
3.6 Role of three term weighting algorithms in the improvement, worsening and preserving of the

baseline queries . 50
3.7 Impact of the adopted parameters and thresholds � (a,b) suggested query length, (c) use of

data re-sampling, and (d) use of machine learning algorithm 51
3.8 Comparison of baseline query improvements or worsening between our technique, STRICT,

and the existing techniques . 52
3.9 Comparison between queries of STRICT and the queries of existing approaches in terms of

their (a) Hit@10, (b) MAP@10, and (c) MRR@10 . 53
3.10 Comparison between queries of STRICT and queries from the existing approaches in terms of

(a) MAPK and (b) Hit@K . 54
3.11 Stage I - Distribution of the grades for study tasks . 54
3.12 Stage II - User evaluation of the proposed prototype in terms of EI=Ease of Installation,

DQ=Documentation Quality,UF=Usefulness of Features, LF=Likelihood of Features,QSQ=Quality
of Suggested Queries, MER=Manual E�ort Reduction, TSP=Time Saving Potential 55

4.1 An example term graph generated by CodeRank for the source code of Fig. 4.2 63
4.2 Source code used for automated query reformulation . 65
4.3 Schematic diagram of the proposed query reformulation technique�ACER 65
4.4 Comparison of query improvement between CodeRank and traditional term weights for (a)

Top K=1 to 10 and (b) Top K=1 to 30 reformulated query terms 78
4.5 Improved queries by reformulation from method signatures and �eld signatures using (a)

CodeRank (CR) and (b) Term Frequency (TF). (c) ACER vs. TF (all content) 79
4.6 E�ectiveness of ACER queries for (a) Top-10 and (b) Top-30 reformulated terms 81
4.7 Comparison of (a) query e�ectiveness, and (b) retrieval performance 81

5.1 Schematic diagram of the proposed query reformulation technique �BLIZZARD�(A) Bug re-
port classi�cation and (B) Search query suggestion . 88

5.2 Trace graph of stack traces in Table 5.1 . 90

xii

5.3 Comparison of BLIZZARD with baseline technique in terms of (a) MAP@K and (b) MRR@K 98
5.4 Impact of query reformulation length on the MAP@10 of our technique�BLIZZARD 98
5.5 Quality improvement of (a) noisy and (b) poor baseline queries by our technique�BLIZZARD 99
5.6 Comparison of (a) MAP@K and (b) Hit@K with the state-of-the-art IR-based bug localization

techniques . 105
5.7 Comparison of Hit@10 across all subject systems . 105
5.8 Comparison of (a) MRR@10 and (b) MAP@10 with existing techniques across the subject

systems . 106

6.1 Schematic diagram of the proposed query reformulation technique �BLADER� (A) Construc-
tion of a semantic hyperspace and (B) Reformulation of a query for bug localization 113

6.2 Comparison of our approach, BLADERBL, with the baseline approach in bug localization using
(a) MAP and (b) MRR . 122

6.3 Impact of our adopted thresholds, parameters and choices � (a) Multiple reformulation can-
didates, (b) Number of candidate source terms, (c) Machine learning algorithm for the best
query selection, and (d) Corpus for learning word embeddings 124

6.4 Comparison of our approach with the existing techniques in bug localization using (a) MAP,
and (b) MRR for top 1 to 10 results . 128

6.5 (a) Overlap of the successfully localized bugs between BLADERBL and the state-of-the-art, and
(b) Overlap of the improved queries between BLADERQR and the state-of-the-art approaches 129

6.6 Comparison of our approach with the existing techniques in query reformulation using very
low quality queries . 130

7.1 An example of (a) Stack Over�ow question and (b) its accepted answer 136
7.2 Frequency distribution for core API classes � (a) API frequency PMF, (b) API frequency CDF 140
7.3 Frequency distribution for core and non-core API classes over the extended dataset � (a) API

frequency PMF, (b) API frequency CDF . 140
7.4 Frequency distribution of unique API classes from core packages � (a) Distinct API frequency

PMF, (b) Distinct API frequency CDF . 141
7.5 Frequency distribution of unique API classes from core and non-core packages � (a) Distinct

API frequency PMF, (b) Distinct API frequency CDF . 141
7.6 Coverage of API classes from core packages by Stack Over�ow answers 143
7.7 Coverage of API classes from (a) core and (b) non-core packages by Stack Over�ow answers

(extended dataset) . 144
7.8 Use of core API packages in the Stack Over�ow answers . 145
7.9 Use of (a) core and (b) non-core API packages in the Stack Over�ow answers (extended dataset)146
7.10 Coverage of keywords from the collected queries in Stack Over�ow questions 147
7.11 Collected search query keywords in Stack Over�ow� (a) Keyword frequency PMF (b) Keyword

frequency CDF . 147
7.12 Schematic diagram of the proposed query reformulation technique �RACK�(a) Construction

of token-API mapping database, (b) Translation of a code search query into relevant API classes148
7.13 Hit@K, Mean Average Precision@K, and Mean Recall@K of RACK using (a) non-weighted

version (i.e., dashed line) and (b) weighted version (i.e., solid line) 163
7.14 (a) Hit@K of RACK, (b) Mean Average Precision@K (MAP@K) of RACK, and (c) Mean

Recall@K (MR@K) of RACK for three heuristics�KAC, KPAC and KKC 165
7.15 (a) Mean Average Precision@10 (MAP@10), and (b) Mean Recall@10 (MR@10) of RACK for

di�erent values of the heuristic weights�α and β . 168
7.16 Performance of RACK for di�erent δ thresholds with (a) Top-5 results and (b) Top-10 results

considered . 168
7.17 Performance of RACK for di�erent γ thresholds with (a) Top-5 results and (b) Top-10 results

considered . 169
7.18 Comparison of API recommendation performances with the existing techniques-(a) Hit@K,

(b) Mean Reciprocal Rank@K, (c) Mean Average Precision@K, and (d) Mean Recall@K . . . 171
7.19 Comparison of API recommendation with existing techniques using box plots 172

xiii

7.20 Comparison of code retrieval performance with the baseline queries in terms of (a) Hit@K and
(b) MRR@K . 175

7.21 Comparison of QE distribution with baseline queries across (a) 4K-Corpus, (b) 256K-Corpus
and (c) 769K-Corpus . 175

7.22 Comparison of code retrieval performance with existing techniques using (a,b) 4K-Corpus,
(c,d) 256K-Corpus and (e,f) 756K-Corpus . 179

7.23 Comparison of QE distribution with the state-of-the-art using (a) 4K-Corpus, (b) 256K-
Corpus, and (c) 769K-Corpus . 181

7.24 Comparison of RACK with popular web/code search engines 183

8.1 An example code snippet for the programming task� �Convert image to grayscale without
losing transparency" � (taken from [9]) . 193

8.2 Schematic diagram of the proposed query reformulation technique�NLP2API 194
8.3 API co-occurrence graph for code segment in Fig. 8.1 . 196
8.4 Performance of NLP2API in API class suggestion for various Top-K results 202
8.5 Impact of (a) PRF size (M), and (b) Candidate API list size (N) on relevant API class sug-

gestion from Stack Over�ow . 203
8.6 Comparison between Borda count and Query-API proximity in estimating API relevance using

(a) accuracy, (b) reciprocal rank, (c) precision, and (d) recall 204
8.7 Reformulated vs. baseline query using (a) Top-10 accuracy and (b) MRR@10 205
8.8 Comparison between popular web/code search engines and NLP2API in relevant code segment

retrieval using (a) MAP@K and (b) NDCG@K . 209

B.1 Setting up custom con�gurations for BugDoctor . 242
B.2 Enabling BugDoctor with (a) main menu option and (b) context menu option 243
B.3 BugDoctor Dashboard: (a) Query execution panel, (b) Bug report panel, (c) Query reformu-

lation panel, and (d) Code search results panel . 244
B.4 BugDoctor Utility Dashboard: (a) API suggestion & query execution panel, (b) Query expan-

sion panel, and (c) Code viewer . 245
B.5 Code Example Dashboard: (a) Top-K relevant code examples, and (b) Code viewer 246
B.6 Loading of an issue report: (1) Click the button, (2) Choose the report, and (3) View the

report within the IDE . 247
B.7 Concept location with query reduction: (1-2) Open a change request, i.e., given query, (3-4)

Keyword suggestion, (5-6) Reduced query, (7) Code search, and (8) Located concept within
the Top-10 results . 248

B.8 Concept location with baseline query: (1-3) Selection of report title as a baseline query, (4)
Code search, and (5) Concept not located within the Top-10 results 249

B.9 Concept location with query expansion : (1) Selection of report title as a given query, (2-3)
Query expansion, (4-5) Expanded query, (6) Code search, and (7) Concept located within the
Top-10 results . 250

B.10 Bug localization with query reduction: (1-2) Open a bug report, i.e., given query, (3-4) Key-
word suggestion, (5-6) Reduced query, (7) Code search, and (8) Localized buggy class as the
topmost result, and (9) Analysis for bug �xing . 251

B.11 Code example search with query expansion: (1) Given programming task, i.e., given query,
(2-3) Relevant API suggestion, (4-5) Expanded query, (6) Code example search, (7) Retrieved
code example, (8) Original code location on the web, and (9) Click the button for Top-K code
examples . 252

B.12 Relevant code examples: (1) Top-K code examples, and (2) Code example viewer 253

xiv

List of Abbreviations

ACR API Class Rank
API Application Programming Interface
BL Bug Localization
BR Bug Report
CART Classi�cation and Regression Tree
CBOW Continuous Bag of Words
CDF Cumulative Density Function
CT Candidate Token
ECF Eclipse Communication Framework
HS Hopkins Statistic
HTML Hyper Text Markup Language
IDCG Ideal Discounted Cumulative Gain
IDE Integrated Development Environment
IRC Internet Relay Chat
IR Information Retrieval
JDK Java Development Kit
JDT Java Development Tools
KAC Keyword-API Co-occurrence
KKC Keyword-Keyword Coherence
KPAC Keyword Pair-API Co-occurrence
MAP Mean Average Precision
MCAS Maneuvering Characteristics Augmentation System
MRD Mean Rank Di�erence
MRR Mean Reciprocal Rank
MWW Mann-Whitney Wilcoxon
NDCG Normalized Discounted Cumulative Gain
NL Natural Language
PA Polygon Area
PE Program Entity
PMF Probability Mass Function
POSR POSRank
POS Parts of Speech
PRF Pseudo-Relevance Feedback
Q&A Question & Answering
QE Query E�ectiveness
QR Query Reformulation
RC Reformulation Candidate
RF Relevance Feedback
RQ Research Question
RSV Robertson Selection Value
SAN Spreading Activation Network
SCP Spatial Code Proximity
SE Software Engineering
ST Stack Trace
TF-IDF Term Frequency × Inverse Document Frequency
TR TextRank
TW Term Weight
UI User Interface
VSM Vector Space Model
WE Word Embedding
WSR Wilcoxon Signed Rank

xv

Chapter 1

Introduction

1.1 Motivation

Software bugs and failures cost trillions of dollars every year. In 2017 alone, 606 software bugs1 cost around

$1.7 trillion with 3.7 billion people a�ected and 314 companies impacted. During 2009�2018, about half a

million elderly British women missed their mammography tests due to scheduling errors caused by a software

bug2, which might have led to hundreds of premature deaths. Back in 1985-1987, four Canadian patients

also lost their lives and two were heavily injured due to fatal software bugs in Therac-25 radiation therapy

system3. All these unfortunate tragedies demonstrate the serious consequences of software bugs and failures.

There have been active researches for the last �ve decades to prevent software bugs, errors and failures.

However, given their high costs and deadly consequences, further researches are warranted more than ever.

Software developers attempt to solve hundreds of bugs and failures every day. For example, Mozilla

Corporation receives ≈300 software bug reports every day that need urgent �xes [38, 249]. Bug report is a

text document that explains the encountered errors or failures in a software system. For example, Fig. 1.1-(a)

shows an example bug report that explains an error encountered in the Eclipse IDE. While software bugs

and errors are already hard to tackle, developers also receive hundreds if not thousands of software change

requests during maintenance [88]. Change request is a text document that warrants for either new software

features or enhancements to the existing features in a software system. Fig. 1.2-(a) shows an example change

request that warrants for enhancement in the custom search feature of Eclipse IDE. Resolving the software

bugs and addressing the change requests are two major parts of software maintenance. Finding and �xing the

bugs consume about 50% of the development time and e�orts which amount to 20% of the total maintenance

costs [4, 28, 81]. On the other hand, adding new features to the existing software systems claims even up to

60% of the total maintenance costs [88].

The very �rst challenge of any software maintenance is to identify the exact locations in the software

code that need to be repaired or modi�ed. One needs to �nd out the exact locations where the bug should

be �xed or the existing feature that should be enhanced. Unfortunately, given million lines of code and

inherent complexities in the modern software systems, identi�cation of such locations is extremely challenging.

1https://tek.io/2FBNl2i
2https://bit.ly/2E1fYap
3https://bit.ly/2KU9IR2

1

Locating the buggy code against a bug report is called bug localization [276]. On the other hand, locating

the target code against a change request is known as concept location [98, 120]. Thus, both bug localization

and concept location are a special type of code search that is performed within a software codebase. Besides

these specialized searches, developers also search for relevant, reusable code on the web (e.g., GitHub [31]) to

implement various programming tasks as a part of software maintenance. This search is known as Internet-

scale code search in the literature [45, 151].

Every search operation requires a query that re�ects the information needs. During maintenance, software

developers often (1) choose a few important keywords [120] or (2) use the whole texts [220] from an issue

report (i.e., change request or bug report) as a search query. During code search on the web, they also choose

a few keywords as an ad hoc search query [45]. Then the query is executed with a search engine to �nd

out (1) the exact code locations (within a software system) that need to be repaired or enhanced, and (2)

the relevant code examples (from thousands of online projects) that can be reused. Unfortunately, even the

experienced developers often fail to choose the right search queries [83, 120, 125, 142]. Multiple developer

studies [120, 125] report that the search queries chosen by developers could fail up to 88% of the time in

localizing the desired code (e.g., bugs, concepts, reusable code). That is, whether it is bug localization,

concept location or Internet-scale code search, appropriate query construction is a major challenge. Thus,

software developers are badly in need of automated supports for query construction during the code search.

1.2 Problem Statement

Software bugs are pervasive and code changes are inevitable in modern software systems [88]. Whether it is

a bug or a programming concept, they need to be localized correctly using code search. Appropriate query

construction is a major challenge in any type of code search, let it be bug localization, concept location

or even general-purpose, Internet-scale code search. There have been active researches [64, 65, 84, 95, 98,

104, 109, 120, 134, 135, 144, 151, 168, 226, 231, 251, 265, 274] on automated query construction for bug

localization, concept location and general-purpose code search. These studies accept either an issue report

or a set of generic keywords as a query, and then deliver an improved version of the query through query

reformulations. Such reformulations involve removal of noisy keywords, addition of complementary keywords,

and replacement of the poor keywords with more appropriate ones. Although there have been a substantial

body of works, the existing literature on automated query reformulation is far from adequate. According to

our systematic literature review [17], they su�er from four major limitations as follows:

(a) Term dependency overlooked: Determining relative importance of the candidate keywords is a

primary step of automated query reformulations. Existing studies [49, 96, 98, 120, 139, 158, 273] extensively

use TF-IDF [114] in term weighting and then choosing the highly weighted keywords from change requests or

bug reports as queries. Unfortunately, TF-IDF su�ers from a major limitation [53, 153]. It fails to capture the

semantic dependencies between a given word and its surrounding words. The semantics of a word are often

2

Figure 1.1: (a) An example of noisy bug report (noisy query) and (b) Reformulated search query
suggested by BugDoctor. The noisy query returns the buggy code at the 53rd position whereas the
reformulated query returns that at the 1st position within the result list.

determined by its surrounding words within a particular context (e.g., sentence) [157, 272]. For example,

the word �bank" has multiple meanings. It could mean either �the land alongside a river" or �a �nancial

institution", which is determined by its surrounding words. However, TF-IDF overlooks such a crucial aspect

(i.e., term dependency) during determining the term importance. Thus, the existing studies might produce

such queries that fail to localize the buggy code or the code implementing a concept of interest.

(b) Sole reliance on source code vocabulary: Existing studies [84, 96, 98, 251] often reformulate a

poor query with important keywords taken from the source code where TF-IDF is used for keyword selection.

However, TF-IDF was originally targeted for regular texts (e.g., news articles) rather than source code.

Regular texts and source code di�er signi�cantly from each other in their syntax, semantics and structures

[102, 233]. While regular texts are rich in vocabulary, source code is poor in vocabulary but rich in structures

[102]. Unfortunately, TF-IDF fails to leverage such structural aspect of the code and solely relies on the

vocabulary aspect during keyword selection. Thus, existing studies might fail to improve the poor search

queries or even worse, deliver poorer queries due to reformulation with inappropriate keywords.

(c) Overlooking the quality aspects of bug reports: Bug reports often contain a mix of unstructured

regular texts and structured program elements (e.g., class names). These structured elements often provide

useful hints about the location of an encountered bug. However, a signi�cant fraction of the reports (≈ 30%)

3

Figure 1.2: (a) An example of software change request (query) and (b) Reformulated search query
suggested by BugDoctor. The given query returns the code of interest at the 14th position whereas
the reformulated query returns that at the 1st position within the result list.

Figure 1.3: (a) An example of poor bug report (poor query) and (b) Reformulated search query
suggested by BugDoctor. The poor query returns the buggy code at the 12th position whereas the
reformulated query returns that at the 3rd position within the result list

could be poor containing no localization hints. On the contrary, about 15% of the reports are noisy, which

are crowded with too much structured information (e.g., stack traces). Both these bug reports verbatim

do not make good search queries for bug localization [193, 248]. However, majority of the existing studies

[130, 167, 207, 220, 230, 249, 276] use almost verbatim texts from a bug report as a search query for the

bug localization. Thus, their queries could be either noisy due to stack traces or poor due to the lack of

localization hints. As a result, their queries might fail to localize the reported software bugs.

(d) Relevant API selection impaired: As a frequent practice, developers often issue free-form natural

language queries for searching relevant code snippets on the web (e.g., GitHub). Unfortunately, these queries

hardly lead to any relevant results (e.g., only 12%) [45]. Several existing studies [63, 147, 152, 243, 271]

attempt to reformulate a free-form query with relevant API classes. The baseline idea is to reduce the lexical

gap between the query and potentially relevant code snippets. However, they simply rely on the lexical

similarity between a given query and the candidate API classes or corresponding API documentations for

relevant API selection. Thus, the existing approaches might fail to reformulate the query if it is not lexically

4

similar to the relevant APIs and their o�cial documentations. As a result, their queries might not be able

to retrieve the relevant code snippets from the web.

1.3 Our Contribution

Any changes to existing software systems to resolve or prevent these bugs or failures also cost billions of

dollars every year [1, 28]. Thus, identifying the exact locations in the source code that need to be repaired

is extremely important. Post-release changes to the software features also claim up to 60% of the total

maintenance costs. Thus, locating the software code that needs to be either enhanced or reused is also

equally important. For these search tasks, various traditional code search methods � bug localization, concept

location and Internet-scale code search � are used which are frequently impaired by poor or noisy search

queries. In this thesis, we tackle the challenges of poor and noisy queries, and signi�cantly advance the

current state of query reformulation research. In particular, we conduct six di�erent studies (Table 1.1)

where �rst and second studies improve concept location, third and fourth studies improve bug localization,

and �nally �fth and sixth studies improve general-purpose, Internet-scale code search, by incorporating

automatically reformulated search queries into these tasks. Finally, we combine all six approaches above, and

develop a novel tool namely BugDoctor, an Eclipse IDE plug-in (Appendix B). It assists the developers in

concept location, bug localization, and Internet-net scale code search with reformulated queries so that they

can localize their code of interest (e.g., software bugs, programming concepts, reusable code examples) with

less e�ort and less development time spent. We brie�y introduce each of our studies as follows.

1.3.1 Concept Location

Two of our studies support concept location task with automated query reformulations.

(a) STRICT: We design a novel query reformulation approach (Chapter 3) that accepts a change request

as an initial query, identi�es appropriate query keywords from the request texts using multiple graph-based

term weighting algorithms (e.g., TextRank [153], POSRank [53, 153]), and then delivers an improved, refor-

mulated search query for concept location. Fig. 1.2-(a) shows an example change request (query) whereas

Fig. 1.2-(b) shows the corresponding reformulated query delivered by this approach.

(b) ACER: We design another novel query reformulation approach (Chapter 4) that accepts a poor

query, identi�es complementary keywords from the relevant source code using a graph-based term weighting

algorithm (CodeRank [189]), and then delivers an improved query (poor query + complementary keywords)

(e.g., Table 4.1) for concept location.

1.3.2 Bug Localization

Two of our studies support bug localization task with automated query reformulations.

5

Table 1.1: Thesis Contribution Overview

Approach Working Context Input Output Novel Contribution

S1: STRICT concept location change request reformulated query graph-based term weighting on

change request

S2: ACER concept location developer query reformulated query graph-based term weighting on

source code

S3: BLIZZARD bug localization bug report reformulated query report quality dynamics in search

query improvement

S4: BLADER bug localization bug report reformulated query clustering tendency analysis for

search query improvement

S5: RACK Internet-scale code search programming

task description

reformulated query crowd knowledge in query-API

relevance estimation

S6: NLP2API Internet-scale code search programming

task description

reformulated query query-API semantic distance cal-

culation for query reformulation

(c) BLIZZARD: We design a novel query reformulation approach (Chapter 5) that accepts either a

noisy bug report (e.g., Fig. 1.1-(a)) or a poor bug report (e.g., Fig. 1.3-(a)) as a query, identi�es appropriate

keywords by leveraging the structured entities and reporting quality dynamics of the report, and then delivers

an improved, reformulated search query (e.g., 1.1-(b), 1.3-(b)) for the bug localization.

(d) BLADER: We design another novel query reformulation approach (Chapter 6) that accepts a poor

bug report (e.g., Fig. 1.3) as a query, identi�es complementary keywords from the relevant source code by

analysing clustering tendency between the query and the candidate keywords, and then delivers an improved,

reformulated version (poor query + complementary keywords) of the given poor query (e.g., Table 6.1) for

the bug localization.

1.3.3 Internet-scale Code Search

Two of our studies support Internet-scale code search with automated query reformulations.

(e) RACK: We design a novel query reformulation approach (Chapter 7) that accepts a generic natural

language query on a programming task, identi�es relevant API classes for the task by harnessing crowd

generated knowledge at Stack Over�ow, and then delivers an improved, reformulated query (generic query +

relevant API classes) (e.g., Table 7.5) for Internet-scale code search. Query reformulation using the relevant

API classes reduces the lexical gap between the query and the solution code.

(f) NLP2API: We design another novel query reformulation approach (Chapter 8) that accepts a pro-

gramming task description as a query, identi�es relevant API classes by mining Stack Over�ow Q&A threads

and by determining semantic distance between the query and the candidate API classes, and then delivers an

improved, reformulated version (generic query + relevant API classes) of the given query for general-purpose,

Internet-scale code search.

6

Each of these studies has been evaluated extensively using appropriate dataset such as actual bug reports,

change requests and changed source code documents. They are also compared against multiple baselines

including the state-of-the-art to demonstrate their superiority. Experimental �ndings suggest that our ap-

proaches not only improve the given search queries signi�cantly but also outperform the state-of-the-art with

statistically signi�cant margins. Furthermore, they support the developers in concept location, bug localiza-

tion, and Internet-net scale code search so that they can locate their concepts, software bugs and relevant

code examples respectively with less e�orts and time spent. Thus, from a technical point of view, this PhD

dissertation makes �ve major contributions to the existing body of knowledge as follows.

(a) Introducing a novel, e�ective algorithm for search keyword selection in Software Engi-

neering tasks: TF-IDF [114] (1) overlooks the semantic or syntactic dependencies among the words within

a particular context (e.g., sentence), and also (2) fails to leverage the structural aspect of a body of texts

(e.g., bug report, source code document), which are crucial to term importance [53, 153]. Thus, it might not

be su�cient enough for determining term importance and for selecting appropriate search keywords. Our

works [187, 189, 191, 192] (Chapters 3, 4, 5) propose and design a novel algorithm that not only captures the

dependencies among the candidate keywords but also leverages the structural aspect of a document (contain-

ing the keywords) in selecting the appropriate keywords. Furthermore, our algorithm outperforms TF-IDF

in selecting search keywords from bug reports [192], change requests [191], source code documents [189] and

even from the noisy stack traces [192]. Thus, we o�er a better solution for search keyword selection in the

context of Software Engineering.

(b) Incorporation of bug report quality dynamics in query reformulations for improved bug

localization: Earlier studies [220, 250, 255, 276] overlook the quality aspect of bug reports, and use almost

verbatim texts from noisy (e.g., Fig. 1.1-(a)) and poor bug reports (e.g., Fig. 1.3-(a)) as queries for bug

localization. Thus, they potentially use noisy or poor queries which often fail to localize the buggy entities

[248]. My PhD works [192, 193] analyse the quality of a bug report (a.k.a., given query) and apply appropriate

reformulations to the query based on its quality unlike the earlier approaches. In particular, we (1) re�ne the

noisy bug report by discarding the noisy keywords, (2) complement the poor bug report with appropriate

keywords collected from the relevant source code, and (3) then deliver an improved, reformulated query (e.g.,

Fig. 1.1-(b), 1.3-(b)) for bug localization. Such opportunistic reformulations signi�cantly improve the given

queries in bug localization [192].

(c) Exploiting structures from source code documents in search query improvement: Existing

studies [98, 150, 213] overlook the structural aspect of source code documents and treat them as regular text

documents during keyword selection from them. My PhD works [188, 189, 192] (Chapters 4, 5) leverage the

query contexts and structures from the source code documents in reformulating a given query. In particular,

we treat each source code document as a network of various structural constructs (e.g., method signatures,

�eld signatures) rather than a bag of words. We leverage these structures, and prepare multiple reformulation

candidates using graph-based term weighting for a given search query. Then we deliver the best candidate

7

as a reformulated query using machine learning. Such a novel use of structural constructs from source code

documents has signi�cantly improved a given query in concept location [189].

(d) Exploiting crowd generated knowledge in search query improvement: Earlier studies (1)

mine open source projects [109, 265, 266, 274], web search logs [181, 223] or o�cial API documentations

[147, 243, 271] and (2) use English language thesaurus (e.g., WordNet [134, 144]) to reformulate a given

query with synonyms, similar words and API classes. Stack Over�ow has been a popular Q&A site for

programming issues or API usage examples with 14 million questions, 22 million answers and 10 million

registered users [58]. However, its potential for query improvement with API related resources was largely

unexplored. My PhD works [71, 194, 195, 201, 204, 206] (Chapters 6, 7, 8) demonstrate the high potential of

Stack Over�ow for improving search queries intended for bug localization and for Internet-scale code search.

In particular, we complement a generic query on a programming task with relevant API classes where the

relevance between the query and the API classes is learned from the large technical crowd of Stack Over�ow.

The knowledge on API relevance is non-trivial and can only be gained through actual work experience. Thus,

our query reformulation approach that exploits such invaluable crowd knowledge is a novel addition to the

literature. Furthermore, the extension using relevant API classes has also signi�cantly improved the generic

queries in general-purpose, Internet-scale code search [194, 206].

(e) Exploiting word embeddings and clustering tendency in search query improvement:

Several existing studies [71, 194, 268, 274] use word embeddings technology, calculate semantic distance

between a given query and a candidate API class, and then expand the query with semantically close API

classes. While the semantic distance idea might work for Internet-scale code search, it might not be su�cient

enough for the specialized code search such as bug localization. The latter search warrants more precision

since the changes in wrong code locations could be very costly. My PhD work [182] (Chapter 6) goes beyond

semantic distance, and exploits clustering tendency in improving the search queries for bug localization. In

particular, we construct two reformulation candidates for a given poor query, and determine the clustering

tendency between the query and the reformulation candidates using advanced metrics from computational

geometry (e.g., Hopkins statistics [108]) and word embeddings technology [54, 155]. Then, we deliver the

best candidate as a reformulated query using machine learning. Our approach signi�cantly improves the poor

queries in terms of their bug localization performance. Such a solution is a novel addition to the existing

body of knowledge on automated query reformulation targeting any types of code search.

Besides the above thesis works, we have conducted signi�cant researches on code review automation

[190, 200, 202, 203], mining software repositories [160, 161, 186, 196] and source code re-documentation [199]

during my PhD study. My MSc works [183, 184, 185, 197, 198] also develop tools for web/code searches to

assist the developers in solving programming errors and exceptions encountered within their IDE.

8

1.4 Related Publications

Five out of six studies from this thesis are published in di�erent premier conferences and journals. We

provide a list of publications that were produced from this PhD study (2014�2019). Due to strong relevance,

six papers from my MSc study (2012�2014) are also included here. In majority of these papers, I am the

primary author, and the studies were conducted by me under the supervision of Dr. Chanchal K. Roy.

While I conducted the experiments and wrote the papers, the co-authors took part in advising, editing, and

reviewing the papers. I also co-supervised three published works where I am the second/third author. In

these works, I co-supervised the whole life cycle of each project from brainstorming the research ideas to

co-authoring the papers.

(1) M. Masudur Rahman, �Supporting Code Search with Context-Aware, Analytics-Driven, E�ective

Query Reformulation", In Proceeding of The 41st ACM/IEEE International Conference on Software

Engineering (Companion volume, Doctoral Symposium Track) (ICSE 2019), pp. 226�229, Montreal,

Canada, May, 2019 (Acceptance rate: 9/31=29.00%)

(2) S. Mondal,M. Masudur Rahman and C. K. Roy, �Can Issues Reported at Stack Over�ow Questions

be Reproduced? An Exploratory Study", In Proceeding of The 16th International Conference on Mining

Software Repositories (MSR 2019), pp. 479�489, Montreal, Canada, May, 2019 (Acceptance rate:

32/126=25.40%)

(3) Rodrigo F. G. Da Silva, C. K. Roy, M. Masudur Rahman, K. Schneider, K. Paixão and M. Maia,

�Recommending Comprehensive Solutions for Programming Tasks by Mining Crowd Knowledge", In

Proceeding of The 27th IEEE/ACM International Conference on Program Comprehension (ICPC 2019),

pp. 358�368, Montreal, Canada, May, 2019 (Acceptance rate: 28/93=30.10%) (Featured in Stack

Over�ow Blog*)

(4) M. Masudur Rahman, C. K. Roy and David Lo, �Automatic Query Reformulation for Code Search

using Crowdsourced Knowledge", Empirical Software Engineering Journal (EMSE), 56 pp., (Impact

Factor=4.46)

(5) M. Masudur Rahman and C. K. Roy, �Improving IR-Based Bug Localization with Context-Aware

Query Reformulation", In Proceeding of The 26th ACM Joint European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018), pp. 621�632,

Florida, USA, November, 2018 (Acceptance rate: 55/295=19.00%) (ACM Artifact Badges by peer

reviews: Functional* + Available* + Reusable*)

(6) M. Masudur Rahman and C. K. Roy, �E�ective Reformulation of Query for Code Search using

Crowdsourced Knowledge and Extra-Large Data Analytics", In Proceeding of The 34th International

Conference on Software Maintenance and Evolution (ICSME 2018), pp. 516�527, Madrid, Spain,

9

September, 2018 (Acceptance rate: 37/174=21.00%) (TCSE Distinguished Paper Award Nom-

ination*)

(7) M. Masudur Rahman and C. K. Roy, �Poster: Improving Bug Localization with Report Quality

Dynamics and Query Reformulation", In Proceeding of The 40th International Conference on Software

Engineering (ICSE 2018), pp. 348�349, Gothenburg, Sweden, May, 2018

(8) M. Masudur Rahman and C. K. Roy, �NLP2API: Query Reformulation for Code Search using

Crowdsourced Knowledge and Extra-Large Data Analytics", In Proceeding of The 34th International

Conference on Software Maintenance and Evolution (Artifact Track) (ICSME 2018), pp. 714, Madrid,

Spain, September, 2018 (Artifact Veri�ed and Accepted*)

(9) M. Masudur Rahman and C. K. Roy, �Improved Query Reformulation for Concept Location using

CodeRank and Document Structures", In Proceeding of The 32nd IEEE/ACM International Conference

on Automated Software Engineering (ASE 2017), pp. 428-439, Urbana-Champaign, Illinois, USA,

October, 2017 (Acceptance rate: 65/314=21.00%)

(10) M. Masudur Rahman and C. K. Roy and R. G. Kula, �Predicting Usefulness of Code Review Com-

ments using Textual Features and Developer Experience", In Proceeding of The 14th International

Conference on Mining Software Repositories (MSR 2017), pp. 215�226, Buenos Aires, Argentina,

May, 2017 (Acceptance rate: 37/121=30.60%)

(11) M. Masudur Rahman and C. K. Roy and David Lo, �RACK: Code Search in the IDE using Crowd-

sourced Knowledge", In Proceeding of The 39th International Conference on Software Engineering

(Companion Volume) (ICSE 2017), pp. 51�54, Buenos Aires, Argentina, May, 2017 (Acceptance

rate: 18/57=31.58%)

(12) M. Masudur Rahman and C. K. Roy, �STRICT: Information Retrieval Based Search Term Identi-

�cation for Concept Location", In Proceeding of The 24th IEEE International Conference on Software

Analysis, Evolution, and Reengineering (SANER 2017), pp. 79�90, Klagenfurt, Austria, February 2017

(Acceptance rate: 34/140=24.00%)

(13) M. Masudur Rahman and C. K. Roy, �Impact of Continuous Integration on Code Reviews", In

Proceeding of The 14th International Conference on Mining Software Repositories (MSR 2017), pp.

499�502, Buenos Aires, Argentina, May, 2017

(14) M. Masudur Rahman, C. K. Roy, and Jason Collins, �CORRECT: Code Reviewer Recommendation

in GitHub Based on Cross-Project and Technology Experience", In Proceeding of The 38th International

Conference on Software Engineering (Companion Volume) (ICSE 2016), pp. 222�231, Austin Texas,

USA, May 2016 (Acceptance rate: 28/108=26.00%)

10

(15) M. Masudur Rahman and C. K. Roy, �QUICKAR: Automatic Query Reformulation for Concept

Location Using Crowdsourced Knowledge", In Proceeding of The 31st IEEE/ACM International Con-

ference on Automated Software Engineering (ASE 2016) (New Ideas Track), pp. 220�225, Singapore,

September 2016

(16) M. Masudur Rahman, C. K. Roy, Jesse Redl, and Jason Collins, �CORRECT: Code Reviewer

Recommendation at GitHub for Vendasta Technologies", In Proceeding of The 31st IEEE/ACM Inter-

national Conference on Automated Software Engineering (ASE 2016) (Tool Demo Track), pp. 792�797,

Singapore, September 2016

(17) M. Masudur Rahman, C. K. Roy and David Lo, �RACK: Automatic API Recommendation us-

ing Crowdsourced Knowledge", In Proceeding of The 23rd IEEE International Conference on Software

Analysis, Evolution, and Reengineering (SANER 2016), pp. 349�359, Osaka, Japan, March 2016 (Ac-

ceptance rate: 52/140=37.00%)

(18) Amit K. Mondal, M. Masudur Rahman and C. K. Roy, �Embedded Emotion-based Classi�cation

of Stack Over�ow Questions Towards the Question Quality Prediction", In Proceeding of The 28th

International Conference on Software Engineering & Knowledge Engineering (SEKE 2016), pp. 521�

526, San Francisco Bay, California, USA, July 2016

(19) M. Masudur Rahman, C. K. Roy and Iman Keivanloo, �Recommending Insightful Comments for

Source Code using Crowdsourced Knowledge", In Proceeding of The 15th IEEE International Working

Conference on Source Code Analysis and Manipulation (SCAM 2015), pp. 81�90, Bremen, Germany,

September 2015 (Acceptance: 24/68=35.00%)

(20) M. Masudur Rahman and C. K. Roy, �Recommending Relevant Sections from a Webpage about

Programming Errors and Exceptions", In Proceeding of The 25th International Conference on Computer

Science and Software Engineering (CASCON 2015), pp. 181�190, Markham, Canada, November 2015

(Acceptance rate: 21/71=29.57%)

(21) M. Masudur Rahman and C. K. Roy, �An Insight into the Unresolved Questions at Stack Over�ow",

In Proceeding of the 12th Working Conference on Mining Software Repositories (Challenge Track)

(MSR 2015), pp. 426�429, Florence, Italy, May 2015

(22) M. Masudur Rahman and C. K. Roy, �TextRank Based Search Term Identi�cation for Software

Change Tasks", In Proceeding of the 22nd IEEE International Conference on Software Analysis, Evo-

lution, and Reengineering (ERA Track) (SANER 2015), pp. 540�544, Montreal, Canada, March 2015

(23) M. Masudur Rahman, S. Yeasmin and C. K. Roy, �Towards a Context-Aware Meta Search Engine

for IDE-Based Recommendation about Programming Errors and Exceptions", In Proceeding of the

11

IEEE CSMR-18/WCRE-21 (CSMR/WCRE 2014), pp. 194�203, Antwerp, Belgium, February 2014

(Acceptance rate: 27/87=31.00%)

(24) M. Masudur Rahman and C. K. Roy, �On the Use of Context in Recommending Exception Handling

Code Examples", In Proceeding of the 14th IEEE International Working Conference on Source Code

Analysis and Manipulation (SCAM 2014), pp. 285�294, Victoria, Canada, September 2014 (Acceptance

rate: 26/82=31.70%)

(25) M. Masudur Rahman and C. K. Roy, �SurfClipse: Context-Aware Meta Search in the IDE", In

Proceeding of the 30th International Conference on Software Maintenance and Evolution (Demo Track)

(ICSME 2014), pp. 617�620, Victoria, Canada, September 2014

(26) M. Masudur Rahman and C. K. Roy, �An Insight into the Pull Requests of GitHub", In Proceeding

of the 11th Working Conference on Mining Software Repositories (Challenge Track) (MSR 2014), pp.

364�367, Hyderabad, India, May 2014

(27) M. Masudur Rahman, S. Yeasmin and C. K. Roy, �An IDE-Based Context-Aware Meta Search

Engine", In Proceedings of the 20th Working Conference on Reverse Engineering (ERA Track) (WCRE

2013), pp. 467�471, Koblenz, Germany, October 2013

1.5 Outline of the Thesis

The thesis contains nine chapters in total. In order to deal with query reformulation challenges in code search,

we conduct six independent but interrelated studies. Our studies target three maintenance task contexts �

concept location, bug localization and Internet-scale code search. This section outlines di�erent chapters of

the thesis as follows.

• Chapter 2 provides a background overview on automated search query reformulations such as type-

s/steps of reformulation, working contexts and implications of reformulation.

• Chapter 3 discusses the �rst study namely STRICT that accepts a change request as a query and

delivers a reformulated query for concept location.

• Chapter 4 presents the second study namely ACER that reformulates a given query for concept

location with appropriate keywords extracted from the relevant source code.

• Chapter 5 presents the third study namely BLIZZARD that accepts either a noisy or poor bug

report as a query, and delivers a reformulated query for bug localization.

• Chapter 6 discusses the fourth study namely BLADER that reformulates a given query for bug

localization using clustering tendency analysis and word embeddings technology.

12

• Chapter 7 presents RACK that accepts a generic query on a programming task, and reformulates

the query with relevant API classes mined from Stack Over�ow for Internet-scale code search.

• Chapter 8 presents NL2API that reformulates a given query for Internet-scale code search using

crowd generated knowledge from Stack Over�ow and word embeddings technology.

• Chapter 9 concludes the thesis with a list of future research directions inspired by this PhD thesis.

13

Chapter 2

Background

In this chapter, we introduce the terminologies and background concepts that are required to follow the rest

of thesis. Section 2.1 de�nes automated query reformulation, Section 2.2 discusses the types of reformulation

and Section 2.3 describes the working contexts of query reformulation. Section 2.4 focuses on the steps,

Section 2.5 discusses term weighting algorithms, and Section 2.6 explains the implications of automated

query reformulations. Section 2.7 explains word embeddings, Section 2.8 de�nes cosine similarity, and �nally,

Section 2.9 summarizes this chapter.

2.1 Automated Query Reformulation

Software developers search for source code both in a local codebase (e.g., Fig. 2.1) and in the Internet-scale

code repositories (e.g., Fig. 2.2). One primary step of any kind of search operation is the construction of

an appropriate query that re�ects the information need. Unfortunately, developers often fail to choose the

right queries for code search. Existing studies [120, 125] show that they might fail even 88% of the time.

As a result, they need to frequently modify their queries (1) by adding new keywords, (2) by removing poor

keywords or (3) by replacing the existing keywords with more appropriate ones. When these reformulations

are performed using tool supports, they are called automated query reformulations. Although introduced by

the Information Retrieval (IR) community several decades ago, automated query reformulation has been an

active research area within Software Engineering for more than a decade [82, 146, 226].

2.2 Types of Query Reformulation

Constructing an appropriate search query that re�ects one's information need has always been a challenging

task [60]. The task is even more challenging for source code search. Search queries often comprise of natural

language (NL) keywords. On the contrary, source code documents are a mix of programming language

keywords, identi�er names and complex programming constructs [121]. That means, search queries and

source code documents deal with two di�erent vocabularies which have a little overlap and possibly di�erent

semantics [94, 233]. Thus, search queries chosen by the developers often could be either poor or inappropriate

for the source code search. Di�erent types of queries thus require di�erent types of reformulations [98].

Traditionally, query reformulations are classi�ed into three major categories as follows.

14

User

Issue report Developer

Search query

Code search

Local codebase

Query reformulationQuery reformulation

1 2

3

4 5

7

6

S1 S3

S2 S4

Figure 2.1: Automatic query reformulations in local code search

2.2.1 Query Expansion

A given search query is expanded by adding similar (e.g., synonyms) or complementary keywords. This is

the most common reformulation strategy since the initial queries from the developers are often short. Studies

[78, 219] show that an average search query contains 1�3 keywords. According to existing �ndings, 33%�76%

of the queries are incrementally expanded by the developers during code search on the web [45, 219]. Majority

of our proposed solutions in this thesis [182, 189, 194, 206] also perform query expansion.

2.2.2 Query Reduction

A given search query is re�ned by removing the noisy, ambiguous or less discriminative keywords from the

query. One of the widely used heuristics for query reduction is document coverage. That is, keywords that

are found in more than 25% of the documents within a corpus are removed from the query. These keywords

are not speci�c enough and thus might fail to retrieve the documents of interest [98, 188]. Earlier studies

also select the best sub-query as a form of query reduction [127]. A few other studies also retain important

keywords from a given search query by using term weighting methods [120] and POS tagging [271, 273].

2.2.3 Query Replacement

The keywords of a given query are replaced with more appropriate ones [47, 129, 139, 252, 261]. Such a

replacement could be intended for spelling corrections [85], query generalization or for query specialization

[144, 157]. Developers often learn new information from browsing the search results, rede�ne their information

needs, and then replace the initial search query altogether with more appropriate ones [87, 151].

2.3 Working Contexts of Query Reformulation

Working context often plays a key role in automated tool supports. Existing studies report signi�cant bene�ts

of incorporating contextual information in the automation of several Software Engineering tasks such as web

search [70, 198], exception handling [184] and code snippet search [86, 107, 184]. Similarly, automated

15

reformulation of a search query could be guided by its contexts. Based on the developer's working context,

source code searches and their query reformulations can be classi�ed in two broad categories as follows.

2.3.1 Local Code Search

Local code search is a primary step of several software maintenance tasks such as bug localization, concept

location, and feature location. Each of these maintenance tasks is initiated by a software user through his/her

submission of an issue report (a.k.a., bug report, change request, feature request) (i.e., Step 1, Fig. 2.1). A

developer then (1) makes use of the report texts, (2) constructs one or more queries, and (3) then searches for

the source code locations that need to be repaired or enhanced. This search is limited within a local codebase

(i.e., single software system). Query reformulation approaches supporting this code search mostly analyse the

issue report texts and the local codebase (i.e., Steps 1, 3, 6, 7, Fig. 2.1) to deliver the reformulated queries.

Local code searches can be divided into three major categories as follows:

• Bug Localization localizes a hidden software bug or a defect within the source code of a system

[276]. Existing studies [130, 170, 250] adopt several methodologies � spectral analysis, static analysis

and Information Retrieval � for bug localization. In this thesis, we deal with Information Retrieval

(IR)-based bug localization since it has a high potential for low cost debugging [207, 248]. IR-based

localization leverages the textual similarity between a bug report and the source code. Bug reports

verbatim often do not make good search queries. Hence, they need to be reformulated carefully before

using them in the IR-based bug localization [231].

• Feature Location �nds out a software feature that is implemented within the source code of a software

system [69]. Features are the visible components or attributes of a system that the users can interact

with. Feature location deals with feature requests [178].

• Concept Location �nds out an abstract programming concept (e.g., linked list) that is implemented

within the source code of a software system [98]. All concepts implemented in the code might not

result into visible software features. Both bug localization and feature location can be considered as

two special cases of concept location.

2.3.2 Internet-Scale Code Search

Code search on the web is an integral part of problem solving activities of the software developers. It is

initiated by a developer through his/her submission of a free-form natural language (NL) query to a code

search engine (e.g., GitHub code search). Recent studies [205, 219] suggest that developers also frequently

use general-purpose web search engines (e.g., Google) for code search. Unlike local code search (limited to

single code repository), this search is performed over thousands of code repositories across various application

domains (Steps 3, 4, 5, Fig. 2.2). That is, the code corpus is much bigger and noisier. Hence, construction of

an appropriate query is a major challenge for this search. Besides, supporting materials such as issue reports

might not be available in this case. Several studies attempt to discover the intent [110, 201, 274], linguistic

16

Developer

Search query

Code search

Internet-scale
code repositories

Query reformulation

1 2 3

5

4

S5 S6

Figure 2.2: Automatic query reformulations in the Internet-scale code search

or semantic issues [144, 234] of a free-form NL query, and then reformulate the query. The goal is to retrieve

one or more relevant code examples that meet the information need expressed in the query.

2.4 Steps of Automated Query Reformulation

The steps of automated query reformulation might vary based on the type or working context of a search

query. However, most of the existing approaches from the literature [84, 96, 98, 189, 191, 231] share a common

set of steps. These steps can be categorized into three major tasks as follows.

2.4.1 Query Feedback Collection

The �rst step towards improving a given query is to collect feedback on the query from reliable sources (e.g.,

developers). A number of studies from the Information Retrieval domain investigate the notion of relevance

feedback in query reformulation. Rocchio [213] �rst introduced relevance feedback in the context of Vector

Space Model (VSM) back in 1971, which was adopted by dozens of later studies. Lucia et al. [146] �rst apply

relevance feedback in the context of Software Engineering where they deal with traceability link recovery

problem. Then later studies incorporate that into concept/concern location [84, 98, 105] and bug localization

[231]. The underlying idea is to collect meaningful, reliable feedback on a given query and then to leverage

such feedback opportunistically in improving the query. Relevance feedback mechanism supporting query

reformulations can be classi�ed into three major categories as follows.

(a) Explicit Relevance Feedback: Developers are expected to provide explicit feedback on the rele-

vance of the documents retrieved by a given query. They annotate each of these documents as either relevant

or irrelevant to their information need [84, 251]. Although these feedback could be accurate and meaningful,

capturing them regularly from the developers is time-consuming and sometimes even impossible.

(b) Implicit Relevance Feedback: Given the high cost of explicit feedback, several studies focus

on capturing low cost feedback that is implicitly provided by the developers [119]. This type of feedback

comprises of developer's reactions towards the retrieved documents such as eye movements, document exam-

ination patterns, and keyword deletion or retention pattens.

17

(c) Pseudo-Relevance Feedback: Unlike the above two types, this feedback does not warrant for

developer intervention. It is often a part of fully automated query reformulation. That is, the Top-K source

documents retrieved by a given query are naively considered as relevant to the query [98, 104, 222]. It is also

known as blind feedback. Existing studies from the literature [98, 188, 189, 192, 222] have provided signi�cant

evidence that such feedback is indeed useful for reformulating and improving a search query.

2.4.2 Candidate Keyword Selection

Once the feedback on a query is collected, the next step is to identify appropriate candidate keywords for

query reformulation with the help of such feedback. Existing approaches [98, 191, 231] attempt to �nd out

appropriate candidate keywords from various information sources including the relevance feedback documents.

In order to do that, they often make use of various term weighting methods borrowed from the Information

Retrieval (IR) domain. Term weighting methods can be roughly categorized into three major categories

�(1) frequency-based methods, (2) graph-based methods and (3) probabilistic methods. According to our

systematic literature review, TF-IDF [114], a frequency-based method, has been extensively used for keyword

selection and/or query reformulation in the context of code search.

2.4.3 Reformulation of a Search Query

Once candidate keywords are collected, they are ranked based on their estimated weights, and only Top-

K (e.g., K=10) candidates are suggested [62, 191, 213, 231]. These important keywords are then used to

expand or replace the given poor query. Haiduc et al. [98] argue that a single reformulation strategy might

not be appropriate for all queries. That is, di�erent queries might need di�erent types of reformulations

(e.g., expansion, reduction, replacement). Towards this goal, several studies [96, 98, 164, 189] adopt query

di�culty analysis and machine learning to deliver the best reformulated query. In particular, they (1)

construct multiple reformulation candidates for a given query, (2) determine their quality using 21�28 query

di�culty metrics from the Information Retrieval domain [62], and then (3) deliver the best candidate as a

reformulated query using machine learning.

2.5 Term Weighting

Determining the relative importance of a term/word within a body of texts is commonly known as term

weighting [40, 101]. Although the underlying concepts and algorithms were introduced by the Information

Retrieval (IR) community, term weighting has been frequently used by the IR-based solutions targeting

Software Engineering problems (e.g., code search, bug localization). Two term weighting algorithms are

frequently mentioned throughout the rest of this thesis as follows.

18

2.5.1 TF-IDF

Jones [114] proposed TF-IDF to determine the relative importance of a term within a body of texts (e.g.,

news article) back in 1972. TF-IDF stands for Term Frequency (TF) × Inverse Document Frequency (IDF).

While TF counts the occurrences of a term within a document, IDF is based on the multiplicative inverse

of the number of documents in the corpus that contain the target term. TF-IDF can be calculated using

di�erent variants of TF and IDF as follows:

TF-IDF(t,d) = ft,d × log(
|D|
nt

+ 0.01) (2.1)

TF-IDF(t,d) = (1 + logft,d)× log(1 +
|D|
nt

) (2.2)

Here ft,d refers to the frequency of a term t in the document d, nt refers to the number of documents

containing the term t, and D is the set of all documents in the corpus. Thus, if a term is frequent within

a document but not so frequent in other documents across the corpus, then this term is considered to be

important (e.g., search keyword) within the target document.

TF-IDF adopts the notion of term independence. That is, it does not capture the impact of the surrounding

terms upon a given term while determining the importance of the given term. [137]. However, idioms and

phrases clearly depend on each other for their comprehensive meaning. For example, �search engine", a noun

phrase, conveys a di�erent semantic than that of �search" and �engine" in isolation. Besides, important

keywords of a document might always not be the most frequent ones, which is especially observed with the

source code documents [102]. Despite these issues above, many of the existing studies [62, 98, 213] adopt

frequency based term weights (e.g., TF-IDF) in keyword selection (and query reformulation) since they are

light weight, intuitive and easy to use.

2.5.2 TextRank & POSRank

Unlike TF-IDF [114], several existing algorithms capture dependencies among the terms within a body of texts

using term co-occurrences [153] and syntactic dependencies [53]. First, they transform each text document

into a graph where the nodes represent the distinct words and the connecting edges refer to the dependencies

among the words from the document. Second, they adapt Google's PageRank algorithm [57] for natural

language texts, and determine the relative weight of each word using recursive weight computation (e.g.,

Chapter 3). Term weight based on word co-occurrences is called TextRank whereas the weight computed

using syntactic dependencies is called POSRank [53]. Several of our studies [189, 191, 192] leverage these

dependencies among the words for determining their relative importance. Unlike regular texts (e.g., news

articles), source code is often scarce in vocabulary but rich in structures and dependencies [102]. Thus,

graph-based algorithms could be a more suitable choice than TF-IDF for term weighting and for candidate

19

term selection from the source code. Our experiments [189, 192] also support this propositions by providing

positive empirical evidence.

2.6 Implications of Automated Query Reformulation

Developers often fail to choose the appropriate queries from a change request while locating the concepts

within a software system [120]. As a result, they need to reformulate their queries frequently [98]. The

same challenge also exists in the Internet-scale code search, which warrants frequent query reformulations

[205, 219]. In short, constructing an appropriate query is challenging regardless of the working context of

a code search operation. Thus, automated supports are highly warranted in query construction for the low

cost code searches. However, like any other automated tool supports, automated query reformulation comes

with both positive and negative implications as follows.

2.6.1 Bene�ts of Query Reformulation

Traditional web/code search engines encourage short and concise queries [205, 263]. Developers thus often

use short queries (e.g., 1-3 keywords) for code search which might not re�ect their information need properly

[78, 219]. There is also a little chance (i.e., 10%�15%) that a developer might guess the exact same words

used in the source code documents that were authored by other developers [83]. All these circumstances make

the appropriate query construction highly challenging. Fortunately, addition of similar (e.g., synonyms) or

complementary keywords often improves a poorly designed query. Existing studies have reported ≈ 20%

performance improvement as a result of automated query reformulations [145]. Furthermore, automatically

reformulated queries and the documents retrieved by them help the developers (1) rede�ne their information

needs and (2) retrieve the source code documents of interest more quickly.

2.6.2 Costs of Query Reformulation

While query reformulations are useful, they might have a few negative e�ects as well. For example, automated

reformulations might hurt such queries that are already of high quality [61, 98, 189]. Adding extra keywords

to these queries makes them noisy. Hence, they might drift away from their original topics. Existing studies

[172, 228, 233] also argue that inappropriate reformulations of a search query are more harmful than no

reformulation at all. There also exist a few queries in each subject system namely di�cult queries which

could not be improved using the existing approaches from literature [61, 87].

Given these two-fold implications of automated query reformulation above, contemporary approaches

attempt to maximize the bene�ts and minimize the costs of reformulation. For example, several studies

[96, 98, 189] adopt machine learning techniques and query di�culty analysis to improve the poor queries and

to preserve the high quality queries during query reformulation.

20

2.7 Word Embeddings

Traditional code search engines (e.g., Lucene, GitHub code search) often su�er from vocabulary mismatch

issues (e.g., polysemy, synonymy) [95, 142, 265]. One crucial step towards tackling these challenges is to

determine the semantics of a word correctly. There have been several studies [156, 188, 268, 272] that

attempt to determine the semantics of a word using its context which is captured from a large corpus (e.g.,

Stack Over�ow). Mikolov et al. [156] propose word2vec, a feed-forward neural network based text mining tool

that mines a corpus and represents each word as a high dimensional numeric vector. This vector is also called

word embeddings [156, 268]. In order to learn embeddings, word2vec uses two predictive models� continuous

bag of words (CBOW) and skip-gram. CBOW model predicts a word given its contextual words whereas

skip-gram attempts to predict the context of a given word. Embeddings are learned in such a way that similar

words co-occur close to each other within a high dimensional semantic space. Two of our conducted studies

(Chapters 6, 8) make use of word embeddings in reformulating queries for source code search. In this thesis,

we use an updated version of word2vec namely fastText [54] and Stack Over�ow as a corpus for learning our

word embeddings [194].

2.8 Cosine Similarity

It is a measure1 that indicates the orientation between two vector spaces with varying number of dimensions.

Cosine similarity is frequently used in Information Retrieval to determine the lexical similarity between any

two text documents. In particular, each unique term is considered as a dimension and each document is

considered as a vector of such dimensions. Let us consider that A and B are two documents representing

a query and a code segment respectively in our research context. First, A and B are normalized using

standard natural language preprocessing (e.g., stop word removal, punctuation removal, token splitting), and

a combined vector C is constructed using all the unique terms from them. Then the cosine similarity Scos

between A and B can be calculated as follows.

Scos =

∑n
i=1Ai ×Bi√∑n

i=1A
2
i ×

√∑n
i=1B

2
i

(2.3)

Here, Ai represents the weight (e.g., TF, TF-IDF) of ith term from C in vector A, and Bi represents the

similar weight in vector B. This measure values from zero (i.e., complete dissimilarity) to one (i.e., complete

lexical similarity). The measure is widely used, intuitive and easy to calculate.

In this thesis, we use this measure to determine the semantic distance between any two words that are

represented as embedding vectors. We also use Lucene [32], a cosine similarity based code search engine, to

retrieve the relevant source code against original and reformulated search queries.

1https://bit.ly/KTDKUy

21

2.9 Summary

In this chapter, we introduced several important terminologies and background concepts that would help one

to follow the remaining of thesis. We de�ned automated query reformulation, and discussed its three types

and two working contexts� local code search (e.g., concept location, bug localization) and Internet-scale code

search. We discussed the common steps of query reformulation, term weighting algorithms (e.g., TF-IDF,

TextRank) and explained both positive and negative impacts of automated query reformulations. Finally,

we de�ned word embeddings and cosine similarity which are frequently used throughout this thesis. In the

next six chapters, we discuss our six studies supporting concept location (Chapters 3, 4), bug localization

(Chapters 5, 6) and Internet-scale code search (Chapters 7, 8) with automated query reformulations. While

Fig. 2.1 shows the working contexts of the �rst four studies (S1, S2, S3, S4), Fig. 2.2 does the same for the

remaining two studies (S5, S6).

22

Chapter 3

Search Query Reformulation for Concept Location

using Graph-Based Term Weighting

Software maintenance costs about 60% of the total development time and e�orts [88]. Developers receive

thousands of software change requests from the users during maintenance phase. Change requests are often

a mix of unstructured regular texts and domain level concepts. Developers need to �nd the right keywords

from these concepts so that they could identify the relevant code entities (that should be changed) using a

search technique. Unfortunately, according to existing evidence [120], choosing the right search keywords is

highly challenging even for the experienced developers. In this chapter, we attempt to overcome this keyword

selection challenge. Here, we present our �rst study (STRICT) that accepts a change request as a search

query, identi�es the appropriate search keywords from the request texts, and then delivers an improved,

reformulated search query for the concept location task.

The rest of the chapter is organized as follows: Section 3.1 presents a brief overview of our study and

Section 3.2 o�ers a motivating example. Section 3.3 presents our proposed technique for search query con-

struction intended for the concept location. Section 3.4 discusses our experiments, results and validation,

Section 3.5 identi�es the threats to validity, Section 3.6 discusses the related work, and �nally Section 3.7

concludes the chapter with future work.

3.1 Introduction

During software maintenance, developers deal with a number of change requests. They make frequent changes

to the source code of a software system in order to address these requests. Before making a code change, one

needs to identify the exact locations in the code, which is a major challenge, even for a medium sized system

[265]. Such challenge is exacerbated by the unstructured nature of a submitted request. Change requests are

often written by the users of a software system who might be familiar with the application domain (e.g., word

processing) of a software (e.g., Microsoft Word). However, they generally lack the idea of how a particular

software feature is implemented in the software code. Hence, a change request from them generally entails

unstructured natural language texts and one or more �high level" concepts from the application domain.

A developer needs to map these concepts to the relevant code locations of a software system in order to

23

implement the changes requested by the users [121, 149]. Such mapping has been termed as concept location

or concept assignment problem by the research community over the years [84, 98, 142].

The mapping between concepts and source code is possibly trivial for a developer who has substantial

knowledge on a target system. Unfortunately, developers involved in the maintenance might always not

be aware of the low-level architecture of a software system. The design documents required for a code

change might also not be available [72, 171]. Thus, the developers often experience di�culties in identifying

the exact source code locations (e.g., methods) that need to be changed. The conceptual mapping above

generally starts with a search within the project codebase which requires one or more suitable search terms

[98]. Unfortunately, the developers perform poorly in choosing appropriate queries from a change request

regardless of their development experience [83, 120, 142]. Based on a user study, Kevic and Fritz [120] report

that only 12.20% of the search terms chosen by the developers were able to retrieve the code of interest.

Furthermore, the chances that a developer would correctly guess the exact words used in the source code are

slim (i.e., 10% � 15%) [83]. Therefore, search term identi�cation for concept location is a major challenge

for the developers. One way to help them overcome this challenge is to automatically suggest suitable search

terms from the change request texts at hand. Our work in this chapter addresses this particular research

problem�search term suggestion�for concept location.

Relevant existing approaches from the literature apply lightweight heuristics [120], relevance feedback

[84, 93, 95, 98, 188], query di�culty analysis [93, 95, 97, 98], natural language processing [65, 104, 226] and

software repository mining [104, 109, 265]. However, most of these approaches expect a developer to provide

the initial search query which they can improve upon. Unfortunately, preparing such a query is often a non-

trivial task for the developers as shown by the existing evidence [83, 120, 142]. One can think of using the

whole texts (i.e., title + description) of a change request as a search query. However, such texts often produce

verbose and poor queries [64, 120]. Kevic and Fritz propose the only approach for automatically identifying

search terms from a change request. They consider several heuristics concerning frequency, location, part of

speech and notation of the terms from a request text. According to preliminary evaluation, their model is

found promising. However, it su�ers from two major limitations. First, their model is neither trained using

a large dataset nor cross-validated against multiple software systems. They use a small dataset of only 20

change requests from a single subject system. Since the dataset was small and restricted to one system only,

their model might require frequent re-training for other set of bug reports. Thus, their model is yet to be

matured and reliable. Second, TF-IDF is reported as the most important feature of their model. However,

TF-IDF fails to capture the semantic or syntactic dependencies among terms during the estimation of term

importance, which has been reported as its major limitation [53, 153].

In this chapter, we propose and design a novel query suggestion technique�STRICT�that automatically

identi�es and recommends high quality search terms from a change request for concept location. We �rst

determine the importance of each term from the texts of a request by employing three graph-based term

weighting algorithms�TextRank, POSRank and WK-Core, and then suggest the most important terms as a

24

instance

Element

Match

superclasses

search

view

java

ui

plain

�at

hierarchical

reported

Tree

text

class

element

IJavaElement

org

Custom

hierarchically

check

IJava

eclipse

LevelTreeContentProvider

Provider

diagram

Content

Level

IResource

element

IResource

Provider Level

Tree

a

instance

Element

Match

superclasses

search

view

java

ui

plain

�at

hierarchical

reported

Tree

text

class

element

IJavaElement

org

Custom

hierarchically

check

IJava

eclipse

LevelTreeContentProvider

Provider

diagram

Content

Level

IResource

element

IResource

Provider Level

Tree

b

Figure 3.1: Text graphs of the change request in Table 3.1 � (a) using word co-occurrences, and (b)
using syntactic dependencies

search query. Both TextRank and POSRank are the adaptations of PageRank algorithm [57] in the context

of natural language texts. They �rst transform the textual content of a change request into a text graph

(e.g., Fig. 3.1) by using either co-occurrences or syntactic dependencies among the terms. Then they

determine term importance by leveraging the topology of the constructed graphs with PageRank algorithm

[101, 153]. WK-Core extracts a cohesive sub-graph from such a text graph using K-Core decomposition,

and then identi�es the important terms using centrality and cohesion of the nodes in the sub-graph. Unlike

the model of Kevic and Fritz [120] that overlooks term dependencies, our term weighting methods leverage

term dependencies (e.g., semantic & syntactic dependencies) and textual cohesion within a change request

for determining the term importance [53, 153, 217]. Thus, our approach has a higher potential for returning

the good quality search terms from a given change request.

Experiments using 2,885 change requests from eight Java-based subject systems report that our technique�

STRICT�can provide higher quality search terms than 43%�74% of the baseline queries (RQ1) which is

highly promising according to the literature [98, 164]. Our suggested queries can retrieve relevant source

code documents for 46%�78% of the change tasks with 29% precision and a reciprocal rank of 0.29 which are

26%, 25% and 26% higher respectively than the best performing baseline (RQ2). Comparisons with two

state-of-the-art techniques�Kevic and Fritz [120] and Rocchio [213]�report that our technique can improve

19%�23% more of the baseline queries than the state-of-the-art (RQ5). Furthermore, our queries achieve

37% higher accuracy, 31% higher precision and 38% higher reciprocal rank than the state-of-the-art when

Top-10 results are analysed (RQ6). All these �ndings above clearly demonstrate the high potential of our

approach over the state-of-the-art.

Novelty of Contributions: Our work in this chapter is a signi�cantly extended version of our earlier

work on search term identi�cation [191]. The earlier work (1) proposes a basic graph-based term selection

approach, and (2) conducts evaluation using a limited set of 1,939 change requests and four research questions.

25

Table 3.1: An Example Change Request (Issue #303705, eclipse.jdt.ui)

Field Content QE

Title [search] Custom search results not shown hierarchically in the java search

results view

559

Description Consider an instance of org.eclipse.search.ui.text.Match with an el-

ement that is neither an IResource nor an IJavaElement. It might be an

element in a class diagram, for example. When such an element is reported,

it will be shown as a plain, �at element in the otherwise hierarchical java

search results view. This is because the LevelTreeContentProvider and

its superclasses only check for IJavaElement and IResource.

63

An Example of Query Suggestion

Baseline {Title + Description} 14

STRICT {element IResource Provider Level Tree} 01

QE = Rank of the �rst correct result returned by the query

On the other hand, our work in this chapter provides an improved version of the approach using not only

three graph-based algorithms (TextRank [153], POSRank [53], Weighted K-Core [217]) but also two novel

aspects such as query di�culty analysis and machine learning. We also conduct a more extended evaluation

using 2,885 change requests, and answer seven research questions. We perform more in-depth analysis for

the research questions that are taken from our earlier work [191], and contrast between di�cult and easy

queries. Furthermore, we provide a working prototype and detailed replication package [24] which have been

successfully veri�ed by the third parties.

Thus, we make the following contributions in this work:

(a) A novel query reformulation technique �STRICT� that accepts a change request as an input, and

delivers a reformulated query (high quality search terms) for concept location.

(b) Comprehensive evaluation of the technique using ≈3K change requests from eight Java-based subject

systems, four state-of-the-art performance metrics and two di�erent performance dimensions.

(c) Comprehensive validation of the technique using comparisons with two state-of-the-art techniques on

query construction [120, 213].

(d) A veri�ed replication package [24] that includes a working prototype, experimental data and other

associated materials for replication and third party reuses.

3.2 Motivating Example

In order to demonstrate the capability of our approach in the search query suggestion, we provide an example

where our query outperforms three baseline queries. Table 3.1 shows a change request from eclipse.jdt.ui

26

Software change

request (input)

Preprocessing

Text graph

(Term co-occurrence)

Text graph

(POS dependence)

K-Core
decomposition

TextRank

calculation

POSRank

calculation

Machine
learning

Query quality

analysis

Data resampling

Best query

selection

Suggested search

query (output)

1 2

3

4

5

6

7

8b

8c

8a

9 10

Figure 3.2: Schematic diagram of the proposed query reformulation technique�STRICT

system that reports a concern about custom search result display in Eclipse IDE. Our technique�STRICT�

�rst transforms the textual content of the request into two text graphs by capturing (a) co-occurrences among

the terms (i.e., Fig. 3.1-(a)) and (b) syntactic dependencies among the terms (i.e., Fig. 3.1-(b)) respectively.

Then, it identi�es the most important terms by recursively analysing the topological characteristics of both

graphs and by employing term weighting, query quality analysis and machine learning. STRICT returns

the following Top-5 search terms (i.e., highlighted, Fig. 3.1)� `element', `IResource', `Provider', `Level' and

`Tree'�which return the �rst correct result at the topmost position of the result list. On the contrary, the

baseline queries� Title, Description and Title+Description� return the same result at the 559th, 63rd and

14th positions. Thus, our search query (1) can locate a starting point within the source code (for the code

change) more easily, and thus, (2) can potentially reduce the manual e�orts spent on query preparation, code

search and on overall code changes by the developers.

3.3 STRICT: Automated Search Query Suggestion from a Change

Request for Concept Location

Since appropriate search term identi�cation is a major challenge for the developers, we introduce a novel

approach for search term identi�cation and suggestion from a software change request. Figure 3.2 shows the

schematic diagram of our proposed technique� STRICT. Furthermore, Algorithms 1�3 present the pseudo-

code of our approach. We �rst transform a change request into two text graphs (e.g., Fig. 3.1) based on

word co-occurrences and syntactic dependencies among the words, and then identify suitable search terms

using three term weighting algorithms, query di�culty analysis and machine learning as follows:

27

3.3.1 Data Collection

Our technique accepts the user-provided texts from a change request as the input (i.e., Step 1, Fig. 3.2),

and returns a ranked list of search terms as the output (i.e., Step 10, Fig. 3.2). We collect change requests

from two popular bug tracking systems�BugZilla and JIRA. Each change request is submitted as a semi-

structured report written using natural language texts, and it contains several �elds such as Issue ID (e.g.,

303705), Product (e.g., JDT), Component (e.g., UI), Title and Description. We extract the last two �elds

from each report for analysis, as was also done by the literature [98, 120]. Title summarizes a requested

change task whereas Description contains detailed explanation of the task provided by the submitter using

natural language texts.

3.3.2 Text Preprocessing

We analyse Title and Description �elds of a software change request, and perform several preprocessing

operations on them (i.e., Step 2, Fig. 3.2, Lines 3�6, Algorithm 1). We consider sentence as a logical

unit of the request texts, and collect each of the sentences from both �elds. Then we perform standard

natural language preprocessing (i.e., removal of stop words, keywords and punctuation marks, and splitting

of structured terms) on each of these sentences, and extract the candidate search terms. In particular, we

remove stop words or keywords, and turn each structured artifact (e.g., org.eclipse.ui.part) into multiple

technical terms (e.g., org, eclipse, ui and part) using token splitting. We also split each-camel case token

(e.g., createPartControl) into simpler tokens (i.e., create, Part and Control), and keep both simpler and

camel-case tokens for our analysis [75, 98]. It should be noted that we avoid term stemming (i.e., extracting

root form of a given term) since it degrades the performance of our technique, as was also reported by several

earlier studies [106, 120].

3.3.3 Text Graph Development

Using Term Co-occurrence: After the preprocessing step above, we get a list of sentences from each

change request. Each preprocessed sentence comprises of an ordered list of candidate search terms. We use

these sentences to transform the change request into a text graph (i.e., Step 3, Fig. 3.2, Line 8, Algorithm

1). In the text graph, unique terms are represented as nodes and the co-occurrences of terms within each

sentence are denoted as connecting edges (e.g., Fig. 3.1-(a)). The underlying idea is that all the terms that

co-occur in the texts within a �xed window have some level of semantic relatedness or dependencies among

them [53, 153]. For example, if we consider the sentence� �Custom search results not shown hierarchically

in the java search results view"�from the example request texts (i.e., Table 3.1), the preprocessed version

forms an ordered list of terms� �custom search hierarchically java search view." It should be noted that the

transformed sentence contains several phrases such as �custom search" and �search view". The terms in each

of these phrases complement each other semantically, and convey an enriched semantic than their original

28

generic semantics. Thus, these terms are semantically dependent on each other for a comprehensive new

meaning. Term co-occurrence information captures such dependencies in a statistical sense. We thus employ

a sliding window of window size = 2 (as recommended by Mihalcea and Tarau [153]), and derive the following

term co-occurrence relationships:

custom←→search, search←→hierarchically, hierarchically←→java, java←→search and search←→view.

Then these term relationships are represented as connecting edges among the corresponding nodes in the

text graph (i.e., Fig. 3.1-(a)). Given that both terms depend on each other for their semantics, we represent

each of the connections using bi-directional edges (e.g., Fig. 3.1-(a)).

Using Syntactic Dependence: Although term co-occurrence captures semantic dependencies among

the terms through a statistical sense, it might always not be e�ective for term weight estimation. Another

orthogonal approach to capture term importance could be syntactic dependencies among the terms. Jespersen

[113] suggests that words from a sentence can be divided into three major ranks� primary (i.e., nouns),

secondary (i.e., verbs, adjectives), and tertiary (i.e., adverbs), which is often called as Jespersen's Rank

Theory of Three. According to this theory, a word from a higher rank de�nes (i.e., modi�es) another word

from the same or lower ranks within a sentence. Thus, a noun can modify only another noun whereas a

verb can modify another noun, verb or adjective but not an adverb. We leverage this principle for our

term weight estimation, capture the grammatical modi�cations or dependencies among the words, and then

represent such dependencies as directed edges in the text graph (i.e., Step 4, Fig. 3.2, Line 9, Algorithm

1). We �rst annotate each of the sentences from a change request using Stanford POS tagger [244], and

then group them according to their Jespersen ranks. For instance, the example statement��element reported

plain �at element hierarchical java search view"�can be organized into two ranks�primary (�search", �view",

�java", �element"), and secondary (�plain", ��at", �hierarchical", and �reported"). We derive the following

relationships based on their syntactic dependencies.

search←→view, view←→java, java←→element, reported−→search, reported−→view, reported−→java, re-

ported−→element, reported−→plain, reported−→�at, reported−→hierarchical,

Then we encode the above relationships into connecting edges in the text graph (e.g., Fig. 3.1-(b)). It should

be noted that these dependencies could be mutual or uni-directional.

3.3.4 TextRank (TR) Calculation

Once a text graph is developed based on term co-occurrences within the request texts, we treat the graph as

a regular connected network. We apply a popular graph-based ranking algorithm namely TextRank [53, 153]

to estimate the importance of the nodes (i.e., terms) in the graph (Step 5, Fig. 3.2, Lines 10�11, Algorithm

1). TextRank is an adaptation of PageRank algorithm which was proposed by Brin and Page [57] originally

for web link analysis. TextRank analyses the connected neighbours and their weights for each term vi in the

graph recursively, and then calculates the term weight, TR(vi), as follows:

29

TR(vi) = (1− φ) + φ
∑

jεV (vi)

TR(vj)

|V (vj)|
(0 ≤ φ ≤ 1) (3.1)

Here, V (vj) and φ denote node list connected to vi and damping factor respectively. In the text graph

(e.g., Fig. 3.1-(a)), co-occurrences among the terms are represented as bi-directional edges between the

corresponding nodes. In the context of web sur�ng, damping factor, φ, is considered as the probability of

randomly choosing a web page by the surfer, and 1−φ as the probability of jumping o� that page. Mihalcea

and Tarau [153] use a heuristic value of φ = 0.85 for natural language texts in the context of keyword

extraction, and we also use the same value for our TextRank calculation. We initialize each of the terms in

the graph with a default value of 0.25, and run an iterative version of the algorithm [57]. It should be noted

that the initial value of a term does not a�ect its �nal score [153]. The computation iterates until the scores

of all the terms converge below a certain threshold or it reaches the maximum iteration limit (i.e., 100 as

suggested by Blanco and Lioma [53]). As Mihalcea and Tarau [153] suggest, we use a heuristic threshold of

0.0001 for the convergence checking of the scores.

TextRank adopts the underlying mechanism of a recommendation system where a term (e.g., �Custom")

recommends (i.e., votes) another term (e.g., �search") if the second term complements the semantics of the

�rst term in any way (e.g., �custom search") [153]. The algorithm captures votes cast for a term by analysing

its connected edges within the text graph (e.g., Fig. 3.1-(a)). It should be noted that the votes could be cast

by other terms both from a local context (i.e., same sentence) and from the global context (i.e., entire request

texts). Thus, the algorithm determines importance of a term using both its local and global contexts. Once

the computation is over, each of the nodes of the graph is found with a �nal score. Such score is considered

as the relative weight or relative importance of the corresponding term within the whole request texts.

3.3.5 POSRank (POSR) Calculation

While TextRank operates on a text graph based on word co-occurrences (e.g., Fig. 3.1-(a)), POSRank

determines term-weight by analysing syntactic dependencies among the terms (e.g., Fig. 3.1-(b), Step 6, Fig.

3.2). POSRank is another adaptation of PageRank [57] for natural language texts. Similar to TextRank,

it also analyses connectivity of each term in the graph but considers the links according to their directions.

Incoming links and outgoing links of the term are treated di�erently. Incoming links represent votes cast for

the term by other terms whereas the outgoing links represent the opposite. Thus, POSRank POSR(vi) of

each term vi is calculated as follows:

POSR(vi) = (1− φ) + φ
∑

jεIn(vi)

POSR(vj)

|Out(vj)|
(0 ≤ φ ≤ 1) (3.2)

Here In(vi) and Out(vi) denote the node lists to which node vi is connected to through incoming and outgoing

links respectively. Since the underlying mechanism of PageRank-based algorithms is recommendation (i.e.,

30

votes) from other nodes of the graph, POSRank follows the suit of TextRank. That is, it determines the

weight (i.e., importance) of a term by capturing and analysing the weights of the incoming links recursively.

It should be noted that not only frequent votes but also the votes from other high scored nodes of the

graph are essential for a node (i.e., term) to be highly scored (i.e., important). Given the similar topological

properties (i.e., Fig. 3.1-(b)), we apply the same settings as of TextRank (Section 3.3.4). In particular, we

apply the same damping factor (φ), iteration count, initial score, and convergence threshold for the POSRank

calculation of each of the terms.

3.3.6 Weighted K-Core Calculation

Based on a user study, Rousseau and Vazirgiannis [217] report that keywords chosen by human subjects are

generally phrases rather than single words. Although TextRank and POSRank employ topological properties

of a graph constructed from texts, they might return a list of terms that are neither coherent nor comprehen-

sive about the information need [217]. One way to possibly address this challenge is to analyse the K-core of

the graph. K-core refers to a connected sub-graph of a graph where each node has a degree of at least size K.

K-core decomposition has been applied in identifying highly connected groups within a large social network

[50] and in extracting a coherent set of keywords from a body of texts [217]. Similarly, we employ a weighted

version of K-core decomposition for identifying coherent search terms from a change request for concept

location. In particular, we �rst extract K-core from each of the two graphs above by invoking Algorithm 2

(i.e., Step 7, Fig. 3.2, Lines 13�15, Algorithm 1). We iterate through all the nodes of a graph, and delete the

nodes (and their edges) having a degree below K (i.e., Lines 1�6, Algorithm 2). This process continues until

the graph is left with only such nodes that have a weighted degree greater than K. Then we calculate score,

WK-Core(vi), of each node vi based on its degree and weights of the connecting edges (i.e., Lines 16�18,

Algorithm 1) as follows:

WK − Core(vi) =
∑

jεV (vi)

w(vi, vj) (3.3)

Here, w(vi, vj) denotes the weight of a connecting edge between nodes vi and vj , and V (vi) refers to all nodes

directly connected to vi. We perform K-core decomposition on both text graphs constructed above (e.g., Fig.

3.1-a, b). Thus, the weight of an edge is determined based on either co-occurrence frequency or grammatical

modi�cation frequency between the two terms connected.

3.3.7 Term Ranking and Candidate Query Selection

Once the scores are calculated, we rank the candidate search terms based on their TextRank, POSRank and

WK-Core (i.e., Lines 20�22, Algorithm 1). Then we collect top scored X% (e.g., X = 33) candidate terms

from each of the ranked lists, and construct the candidate search queries (i.e., Line 23, Algorithm 1). It

should be noted that we collect a varying number of terms from each change request given that the requests

31

Algorithm 1 Search Keyword Identi�cation with Graph-based Term Weighting

1: procedure STRICT(CR) . CR: change request

2: L← {} . list of search terms

3: . collecting task details from the change request

4: T ← collectTitle(CR)

5: D ← collectDescription(CR)

6: TD ←preprocess(combine(T,D))

7: . developing text graphs from the task details

8: GCOC ← developTGUsingCo-occurrence(TD)

9: GPOS ← developTGUsingPOS-dependence(TD)

10: . calculating TextRank and POSRank

11: TR← calculateTR(GCOC)

12: POSR← calculatePOSR(GPOS)

13: . collecting K-core from the graphs

14: GKCOC ←extractK-Core(GCOC ,K)

15: GKPOS ←extractK-Core(GPOS ,K)

16: . calculating K-core scores

17: KCCOC ←calculateWK-Core(GKCOC)

18: KCPOS ←calculateWK-Core(GKPOS)

19: . getting candidate queries and their di�culties

20: Let CTS ←{TR, POSR, KCCOC , KCPOS}

21: for CandidateQueryKey ckey ∈ CTS.keys do

22: sortedTerms←sortByScore(CTS[ckey])

23: CQ[ckey]←getTopXPercent(sortedTerms) + T

24: QD[ckey]←getQueryDi�culty(CQ[ckey])

25: end for

26: . getting the best search query for change request

27: QD′ ←resampleWithReplacement(QD)

28: QDM ←developQueryDi�cultyModel(QD′)

29: BQ← getBestCandidateQuery(QDM , {CQ ∪ TD})

30: L← getTopKSearchTerms(BQ)

31: return L

32: end procedure

32

Algorithm 2 K-Core Decomposition of a Graph

1: procedure extractK-Core(G,K)

2: Let F ← G

3: . extracting the K-Core

4: while nodeExists(x) and wDegreeF (x)<K do

5: F ←delete(x, F)

6: end while

7: return F

8: end procedure

are of varying lengths. Earlier studies reported better performances for varying sized queries [50, 153, 217].

Our experimental results also suggest that variable size is better in terms of retrieval performance than a

�xed size of the query. We also found that terms from Title �eld of a change request are more salient than

those from the Description �eld. Hence, we append the terms from Title to each of the candidate queries as

well. Existing studies have shown that no single reformulation strategy [98, 99], information source [188, 189]

or retrieval algorithm [164] is su�cient enough for all queries under study. Similarly, we conjecture that no

single term weighting method could be su�cient enough for search term identi�cation from all the change

requests. We thus develop six candidate search queries using the three term weighting methods discussed

above. Table 3.2 shows the candidate queries for the showcase change request (i.e., Table 3.1) based on

TextRank, POSRank and WK-Core score.

3.3.8 Best Query Suggestion with Machine Learning

Once multiple candidate queries are constructed from a software change request, the next challenge is to

identify the best one among them for suggesting to the developer. Query di�culty prediction has been an

active area of research to the Information Retrieval (IR) community [61]. Recently, such idea has also been

adopted successfully in the Software Engineering problems [96, 98]. In the same vein, we also perform query

di�culty analysis and then apply machine learning for identifying and suggesting the best candidate query

(i.e., Steps 8�10, Fig. 3.2) as follows:

Query Di�culty Analysis: Prediction of query di�culty or query quality had been an active avenue of

research for the Information Retrieval community over the last few decades. Haiduc et al. [96] �rst introduce

query di�culty analysis in the context of Software Engineering where they employ 21 pre-retrieval metrics

as query di�culty predictors. Pre-retrieval metrics do not require document retrieval to predict the quality

of a given query. They are lightweight and often computed using the information gathered during corpus

indexing (e.g., Term Frequency, Inverse Document Frequency). We use 20 of their metrics in our problem

context (i.e., Step 8a, Fig. 3.2, Line 24, Algorithm 1), and capture four quality aspects of a given query �

speci�city, coherency, term relatedness among the query terms, and textual similarity between the query and

33

Algorithm 3 Best Candidate Query Selection

1: procedure getBestCandiateQuery(QDM , CQ)

2: P ←{} . query di�culty class predictions

3: C ←{} . instance occurrence counts

4: for QueryDi�Model QDMi ∈ QDM do

5: for CandidateQueryKey ckey ∈ CQ.keys do

6: ptemp←getPredictionForHigh(ckey, QDMi)

7: P [ckey]←P [ckey]+ptemp

8: C[ckey]←C[ckey]+1

9: end for

10: end for

11: for CandidateQueryKey ckey ∈ CQ.keys do

12: P [ckey]←P [ckey]/C[ckey]

13: end for

14: highKey ←sortKeyByPrediction(P)

15: return CQ[highKey]

16: end procedure

the document corpus. We collect query di�culty estimates of six candidate queries and one baseline query

(e.g., Table 3.2) for each of the change requests.

Dataset Labelling: We adopt a supervised machine learning approach for identifying the best query

among the candidates. Once query quality estimates are collected, we annotate each of the candidate queries

based on their quality. In particular, we determine the E�ectiveness of each query, and classify the six

candidates and the baseline query into three classes� �high", �medium" and �low". The candidate query that

returns the �rst correct result at the closest position to the top of a result list is annotated as high and the

vice versa as low. The candidates that return the results between these two extreme positions are annotated

as medium quality queries. Thus, each of the instances in our training dataset has 20 query quality (or query

di�culty) predictors and one assigned class label.

Data Resampling with Bootstrapping: Our goal is to suggest only the high quality candidate query

to a developer for any given change request. Thus, the training dataset constructed above is inherently

skewed for the task. Only one out of each seven instances (i.e., six candidates + one baseline query) in the

dataset could be a true positive. We thus perform bootstrapping [116, 237] on the training dataset with

100% sample size and with sample replacement (i.e., Step 8b, Fig. 3.2, Line 27, Algorithm 1). In particular,

we make use of WEKA1, resample the training data multiple times (e.g., 100) and then develop multiple

1http://www.cs.waikato.ac.nz/ml/weka

34

training datasets. The underlying idea was to introduce limited bias in the training dataset deliberately

through resampling and thus to counteract the data skewness.

Suggestion of the Best Candidate Query: Once training datasets are ready, we apply machine

learning on each of them, and develop a query di�culty model for each (i.e., Line 28, Algorithm 1, Step 8c,

Fig. 3.2). Haiduc et al. [98] �rst employ Classi�cation and Regression Tree (CART) algorithm for learning

such model. However, RandomForest performs higher than CART according to our investigations. We thus

use RandomForest for learning the query di�culty model in our work. Given the inherent data skewness

and the limited strength of individual predictors, single quality model might be not su�cient enough for

the best query prediction. We thus adopt the method of ensemble learning where multiple weak models

are combined to develop a strong prediction model. In particular, we train our models on all the sampled

datasets above, perform 10-fold cross validations, and then collect the predictions for high class returned by

each of the models. Then we average such predictions of each candidate query for a change request, and

identify such candidate that has the highest prediction for high quality (i.e., Lines 29�30, Algorithm 1, Lines

1�15, Algorithm 3, Steps 8-10, Fig. 3.2). Such candidate is then suggested as the search query from the

change request for concept location by our technique.

3.3.9 A Working Example

Table 3.2 shows a working example of our technique�STRICT�for the showcase change request in Table 3.1.

We employ three term weighting methods�TextRank, POSRank and WK-Core�and develop six candidate

queries. It should be noted that each candidate query performs better than the baseline query (i.e., pre-

processed Title from the request) which justi�es our term weighting methods. However, we conduct further

analysis on quality aspect of the queries, employ machine learning, and suggest the best performing candi-

date as the suggested query. For example, the candidate query�CQTR+POSR�that uses both TextRank and

POSRank for term weighting, performs the best. It returns the �rst correct result at the third position of

the result list. Our approach identi�es this candidate using machine learning, and suggests the query to

the developer for code search. On the contrary, the baseline query returns such result at the 559th position

which far below in the result list. Thus, our approach o�ers a major rank improvement over the baseline.

Furthermore, tuned version of our suggested query�{element IResource Provider Level Tree}�returns the

same result at the topmost position of the result list which is highly promising.

3.4 Experiment

Given two evaluation methods�pre-retrieval and post-retrieval�in the literature [93, 95], we choose post-

retrieval method for the evaluation and validation of our search queries. This method evaluates the results

retrieved by a query rather than simply analysing the query properties which makes it more reliable. Besides,

past relevant studies [49, 98, 164] also adopted this method for evaluation and validation. We evaluate our

35

Table 3.2: A Working Example of Query Suggestion by STRICT

Technique Search Query QE

Baseline CQT = {Bug search Custom search hierarchically java search view} 559

TextRank (TR) CQTR = {search element check IJavaElement IJava Element Resource IRe-

source Level Tree}

04

POSRank (POSR) CQPOSR = {Resource element Java IResource superclasses Element

Provider Bug search Custom}

77

TR + POSR CQTR+POSR = {element Resource IResource java IJavaElement IJava El-

ement search Level Tree}

03

WK-CoreCOC CQCOC = {search element IJavaElement IJava Element check java Re-

source IResource IAdaptable}

19

WK-CorePOS CQPOS = {check Resource Element adapt IResource Java propose fail

IJavaElement IJava}

77

WK-CoreCOC +

WK-CorePOS

CQCOC+POS = {check Resource Element IResource IJavaElement IJava

Element element search java}

89

QBEST = getBestCandidateQuery(QDM , CQ)

STRICT ∗QBEST = {element Resource IResource java IJavaElement IJava

Element search Level Tree}

03

∗ = Suggested search query by our technique

technique using 2,885 software change requests with four state-of-the-art performance metrics. Furthermore,

we compare with two state-of-the-art techniques on search query suggestion [120, 213] and conduct a user

study involving �ve participants. Thus, we answer seven research questions as follows:

• RQ1: Can our suggested queries outperform the baseline queries from the change requests?

• RQ2: How do our suggested queries perform in retrieving the relevant source code documents?

• RQ3: How e�ective are the proposed term weighting algorithms �TextRank, POSRank and WK-Core�

in identifying good quality search terms from a change request? How do they perform in comparison

to the traditional term weighting methods (e.g., TF, TF-IDF)?

• RQ4: Are the parameters and thresholds adopted by our proposed technique justi�ed?

• RQ5: Can STRICT outperform the state-of-the-art techniques in identifying good quality search terms

from a change request?

• RQ6: Can STRICT outperform the state-of-the-art techniques in retrieving relevant source code doc-

uments from the corpus?

• RQ7: How does our working prototype perform in terms of usability and usefulness?

36

Table 3.3: Experimental Dataset

System SLOC #MD #CR Description

eclipse.jdt.core-4.7.0 951K 64K 404 Java infrastructure and compiler of Eclipse IDE

eclipse.jdt.debug-4.6.0 233K 16K 229 Debugging support module of Eclipse IDE

eclipse.jdt.ui-4.7.0 625K 57K 695 User Interface module of Eclipse IDE

eclipse.pde.ui-4.7.0 386K 32K 525 User Interface module for Eclipse IDE plug-ins.

ecf-170.170 222K 21K 345 An Eclipse communication framework

log4j-1.2.17 32K 3K 60 Apache logging service

sling-0.1.10 326K 30K 76 Apace framework for RESTful web applications

tomcat-7.0.70 286K 24K 551 Apache web server for Servlet and JSP

Total #CR: 2,885

SLOC: Source Line Of Code, MD: Method De�nitions, CR: Change Requests selected for experiments

3.4.1 Experimental Dataset

Data Collection: We collect a total of 2,885 software change requests from eight Java-based subject systems

(i.e., �ve Eclipse systems + three Apache systems) for our experiments. Table 3.3 shows the details of our

selected systems. We �rst collect the RESOLVED change requests from BugZilla and JIRA bug repositories of

these systems, and then map them to their corresponding bug-�xing commits at GitHub and SVN. We analyse

commit messages from each project, and identify speci�c Issue ID (i.e., identi�er of a change task) in these

messages using appropriate regular expressions [43]. Then, we include any change request in the experimental

dataset only if there exists a corresponding commit pointing to the request. Such data acquisition approach

is regularly adopted by the relevant literature [49, 98, 120, 276], and we also follow the same. In order to

ensure a fair evaluation, we also discard the change requests from our dataset for which no source code �les

(i.e., Java classes) were changed or the relevant code �les were missing from the system.

Ground Truth Construction: We collect the changeset (i.e., list of changed �les) from each of our

selected commits from the version control history, and develop solution set (i.e., ground truth) for the cor-

responding change tasks. Thus, for experiments, we collect not only the actual change requests from the

reputed subject systems but also their solutions which were applied in practice by the developers [97]. We

use several utility commands such as git, clone, rev-list, shortlog and log on GitHub and SVN consoles for

collecting these information.

Replication Package: Our detailed experimental data, supporting materials and the working prototype

are hosted online (https://goo.gl/7Hrgmb) for replication or third-part reuse.

3.4.2 Search Engine

We use a Vector Space Model (VSM) based search engine (e.g., Apache Lucene [95, 98]) to search for the

documents that were changed in order to address the requested changes. Search engines generally index

37

the documents of a corpus prior to search. Lucene is mostly targeted for simple text documents (e.g.,

news article). Since source code documents in our projects contain items beyond regular texts (e.g., code

segments), we apply limited preprocessing on them. In particular, we extract method bodies from each of

the Java classes, and treat each method as an individual document in the corpus (Table 3.3). We remove

all programming keywords, stop words and punctuation characters, and split the complex and camel case

tokens into simpler ones [75]. For token splitting, we employ a state-of-the-art token splitting tool�Samurai

[79]. Please note that we avoid stemming of the tokens for aforementioned reasons as described in Section

3.3.2 [120]. Once a search is initiated using a query, the search engine collects relevant documents from the

corpus. It �rst uses a Boolean Search Model for short listing the documents, and then employs a TF-IDF

based scoring technique (e.g., BM25 [227]) to return a ranked list of relevant documents. As existing studies

suggest [120, 125], we consider the Top-10 results from the search engine for calculating the performance of

our suggested queries.

One can argue about our choice of Lucene over the others (e.g., Indri [220]) as the back end code search

engine. However, a recent third-party investigation2 suggests that Apache Lucene and its variants (e.g.,

Apache Solr, ElasticSearch) have ≈77% market share in the enterprise search. Thus, Lucene is widely used

for search operation not only in academia [98, 163, 164, 175, 176] but also in the industry level applications.

Despite this strong supporting evidence, we also conduct an experiment to compare between Lucene and a

potential contender � Indri. Our experiment suggests that Lucene can deliver 12% higher accuracy (Hit@10)

than that of Indri for the same set of queries. More detailed supporting evidence could be found in Section

5.3.3, RQ1-(b) and Table 5.5. Thus, our choice of using Lucene is likely to be justi�ed.

3.4.3 Performance Metrics

We choose four state-of-the-art performance metrics for evaluation and validation of our suggested queries.

These metrics are frequently used by the relevant studies from the literature [98, 163, 164, 220], and thus are

highly appropriate for our experiments as well.

Query E�ectiveness (QE): It approximates a developer's e�ort in locating the concept of interest in

the source code [98, 163]. In practice, the metric returns the rank of the �rst correct result that matches

with the ground truth, in the ranked list. The underlying idea is to provide an accurate starting point to the

developer that deals with the concepts discussed in the change request. The lower the e�ectiveness value is,

the better a query is since the developer can locate the correct result more quickly and with less e�orts.

Mean Reciprocal Rank (MRR@K): Reciprocal rank@K refers to the multiplicative inverse of the

rank of the �rst correctly returned result (i.e., matches with the ground truth) within the Top-K results

[220, 276]. Mean Reciprocal Rank@K (MRR@K) averages such measures for all search queries (Q) in the

dataset. It can be de�ned as follows:

2https://www.datanyze.com/market-share/enterprise-search

38

MRR(Q) =
1

|Q|
∑
q∈Q

1

firstRank(q)

Here, firstRank(q) provides the rank of the �rst correctly returned result. MRR can take a maximum value

of 1.00. The bigger the MRR value is, the better the search query is.

Mean Average Precision@K (MAP@K): Precision@K refers to the precision calculated at the oc-

currence of every single relevant result in the ranked list [220, 276]. Average Precision@K (AP@K) averages

the precision@K for all the relevant results in the list for a search query. Thus, Mean Average Precision@K

is calculated from the mean of average precision@K for all the queries Q) as follows:

AP@K =

∑D
k=1 Pk × rel(k)

|S|
, MAP@K =

∑
qεQAP@K(q)

|Q|

Here, rel(k) denotes the relevance function of kth result in the ranked list that returns either 0 or 1, Pk

denotes the precision calculated at the kth result, and D refers to the number of total results. S is the true

positive retrieved by a query, and Q is the set of all queries (i.e., change requests).

Top-K Accuracy / Hit@K: It refers to the percentage of the search queries (i.e., change requests) for

each of which at least one result �le is correctly returned (i.e., matches with the ground truth) within the

Top-K result list [239, 250, 276].

3.4.4 Evaluation of STRICT

We conduct experiments using 2,885 change requests from eight subject systems (Table 3.3) where the above

four metrics (Section 3.4.3) are applied to performance evaluation. We run each of our suggested queries

with Lucene search engine (Section 3.4.2), check their results against the ground truth (Section 3.4.1), and

then compare with the baseline queries from those requests. In this section, we discuss our evaluation details

and answer RQ1�RQ4 as follows.

Baseline Query Selection: Developers often copy and paste the texts from a software change request

on an ad-hoc basis, and search for the source code that needs to be changed. Hence, request texts can

be considered as the baseline queries for our evaluation or validation [49, 98, 120]. We consider four types

of baseline queries from each request using its �elds and structures. In particular, we capture Title and

Description �elds from each change request, conduct standard natural language preprocessing (i.e., removal

of stop words and punctuation marks, splitting of complex or camel case tokens) on them, and then prepare

three baseline queries� Title, Description, Title + Description. It should be noted that the same set of

preprocessing steps were also applied in our approach in Section 3.3.2. Structured tokens (e.g., camel-case

structures) are reported as better keywords than unstructured natural language terms by several earlier

studies [49, 120, 191]. We thus extract the structured tokens from each request using appropriate regular

expressions. Then we split these tokens using a state-of-the-art token splitting tool�Samurai [79], and then

prepare another baseline query, (Title+Description)code, for our experiments.

39

T
a
b
le
3
.4
:
C
o
m
p
a
ri
so
n
o
f
Q
u
er
y
E
�
ec
ti
ve
n
es
s
b
et
w
ee
n
S
T
R
IC
T
a
n
d
B
a
se
li
n
e
Q
u
er
ie
s

Q
u
e
ry

P
a
ir
s

#
Q
u
e
ri
e
s

Im
p
ro
v
e
d
/
(M

R
D
)

W
o
rs
e
n
e
d
/
(M

R
D
)

p
-v
a
lu
e
/

∆
P
re
se
rv
e
d

N
e
t
M
R
D

S
T
R
IC
T
v
s.

T
it
le

2
,8
8
5

5
6
.4
1
%
/
(-
1
9
8
)

2
5
.0
6
%
/
(+

1
7
5
)

*
0
.0
2
/
1
.0
0
(l
a
rg
e)

1
8
.5
3
%

-2
3

S
T
R
IC
T
v
s.

D
es
cr
ip
ti
o
n

2
,8
8
5

5
9
.9
1
%
/
(-
4
0
6
)

2
4
.9
4
%
/
(+

2
0
0
)

*
0
.0
0
8
/
1
.0
0
(l
a
rg
e)

1
5
.1
6
%

-2
0
6

S
T
R
IC
T
v
s.
T
it
le
+
D
e-

sc
ri
p
ti
o
n

2
,8
8
5

4
3
.4
1
%
/
(-
2
5
8
)

1
8
.5
9
%
/
(+

2
0
6
)

*
0
.0
0
8
/
0
.9
7
(l
a
rg
e)

3
8
.0
1
%

-5
2

S
T
R
IC
T
v
s.
(T
it
le
+

D
e
sc
ri
p
ti
o
n
) c
o
d
e

2
,8
8
5

5
4
.7
1
%
/
(-
4
0
2
)

2
8
.2
6
%
/
(+

1
9
9
)

*
0
.0
0
8
/
1
.0
0
(l
a
rg
e
)

1
7
.0
3
%

-2
0
3

C
o
m
p
a
ri
so
n
w
it
h
D
i�
c
u
lt
B
a
se
li
n
e
Q
u
e
ri
e
s

S
T
R
IC
T
v
s.

T
it
le

1
,8
9
8

6
9
.0
6
%
/
(-
2
4
8
)

2
2
.4
3
%

(+
2
6
2
)

*
0
.0
0
8
/
1
.0
0
(l
a
rg
e)

8
.5
2
%

+
1
4

S
T
R
IC
T
v
s.

D
es
cr
ip
ti
o
n

2
,0
3
5

7
4
.3
4
%
/
(-
4
7
4
)

1
9
.9
0
%
/
(+

3
1
2
)

*
0
.0
0
8
/
1
.0
0
(l
a
rg
e)

5
.7
6
%

-1
6
2

S
T
R
IC
T
v
s.
T
it
le
+
D
e-

sc
ri
p
ti
o
n

1
,9
5
8

5
6
.1
0
%
/
(-
3
0
5
)

1
6
.8
4
%
/
(+

2
9
5
)

*
0
.0
0
8
/
1
.0
0
(l
a
rg
e)

2
7
.0
6
%

-1
0

S
T
R
IC
T
v
s.
(T
it
le
+

D
e
sc
ri
p
ti
o
n
) c
o
d
e

1
,8
5
8

7
1
.5
1
%
/
(-
4
8
6
)

2
1
.9
3
%
/
(+

3
6
0
)

*
0
.0
0
8
/
1
.0
0
(l
a
rg
e
)

6
.5
7
%

-1
2
6

*
=
S
ig
n
i�
ca
n
t
d
i�
er
en
ce

b
et
w
ee
n
im
p
ro
v
em

en
t
a
n
d
w
o
rs
en
in
g
,
M
R
D

=
M
ea
n
R
a
n
k
D
i�
er
en
ce

b
et
w
ee
n
S
T
R
IC
T
a
n
d
b
a
se
li
n
e
q
u
er
ie
s,

∆
=

C
li
�
's
D
el
ta
,
e�
ec
t
si
ze

o
f
si
g
n
i�
ca
n
ce

40

Figure 3.3: Improvement, worsening and preserving of the baseline queries by our proposed technique
� STRICT

Query Improvement, Worsening and Preserving: We use these terminologies frequently throughout

the rest of the discussions on experiments, and they are de�ned as follows. If a suggested query provides a

better rank than its corresponding baseline query for the �rst correct result, then we call it query improvement

and vice versa as query worsening. On the contrary, if both queries provide the same rank, then we call it

query preserving by the suggested query. Thus, a technique that improves more baseline queries than it

worsens is a better technique than the baseline approaches.

Answering RQ1�Comparison with Baseline Queries: We execute each of the baseline queries with

our search engine�Lucene, and collect the ranks of their �rst correct results in the list. We also collect similar

ranks returned by our queries suggested from each of the change requests, and compare with that of the

baseline queries. Tables 3.4, 3.5 and Fig. 3.3 summarize our comparative analysis. From Table 3.4 (upper

half), we see that our queries provide higher ranks than 43%�60% of the baseline queries. Such statistic is

promising according to the relevant literature that reported a maximum of 55% improvement on a di�erent

dataset [98, 164]. Our queries also provide relatively lower ranks than 19%-28% of the baseline queries on

average. Given these mixed �ndings, we compare the query improvement ratios of our technique against

the worsening ratios across eight subject systems using statistical tests (e.g., Wilcoxon Signed Rank, Cli�'s

Delta). As shown in Table 3.4, the query improvements by our technique are signi�cantly higher (i.e., p-

value<0.05) than the worsening ratios with large e�ect sizes (i.e., 0.97≤ ∆ ≤1.00). Mean Rank Di�erence

(MRD) calculates the rank di�erence between baseline and suggested queries where a negative value refers to

rank improvement and vice versa as rank worsening. According to MRD analysis, our queries push the �rst

correct results towards the top of the list by 23 to 206 positions which is a major rank improvement over the

baseline counterpart.

We also consider E�ectiveness of the baseline queries and divide them into two categories�easy and

di�cult. If a baseline query returns its �rst correct result within the Top-10 positions of the list, we call

it easy query and vice versa as di�cult query [96, 98]. We found that the di�cult baseline queries are

41

T
a
b
le
3
.5
:
E
�
ec
ti
ve
n
es
s
D
et
a
il
s
of

S
T
R
IC
T
Q
u
er
y
v
s.

B
a
se
li
n
e
Q
u
er
ie
s,
(T
it
le
+
D
es
cr
ip
ti
o
n
) c
o
d
e

Im
p
ro
v
e
m
e
n
t

W
o
rs
e
n
in
g

P
re
se
rv
in
g

S
y
st
e
m

#
Q

#
Im

p
ro
ve
d

M
ea
n

Q
1

Q
2

Q
3

M
in
.

M
a
x
.

#
W
o
rs
en
ed

M
ea
n

Q
1

Q
2

Q
3

M
in
.

M
a
x
.

#
P
re
se
rv
ed

ec
f

3
4
5

1
8
4

9
5

2
1
0

3
9

1
3
,1
8
2

1
0
6

2
2
3

1
2

4
5

1
4
6

2
2
,3
4
5

5
5

B
a
se

R
a
n
k
→

2
2
7

1
0

4
8

2
0
8

2
3
,9
5
6

B
a
se

R
a
n
k
→

9
1

2
9

5
5

1
1
,6
7
2

-

co
re

4
0
4

2
4
8

1
5
7

1
5

4
4

1
6
,4
2
2

7
7

2
6
0

1
5

6
0

1
7
2

2
5
,1
7
1

7
9

B
a
se

R
a
n
k
→

6
1
3

1
1

6
4

3
8
4

2
9
,5
2
3

B
a
se

R
a
n
k
→

3
6

2
1
3

5
0

1
4
5
4

-

d
eb
u
g

2
2
9

1
4
6

1
4
9

9
2
9

7
9

1
3
,8
8
8

6
8

3
4
6

3
1

7
5

3
9
5

4
2
,5
9
8

1
5

B
a
se

R
a
n
k
→

3
8
2

4
2

1
0
7

3
2
3

2
5
,0
5
1

B
a
se

R
a
n
k
→

1
8
7

5
2
4

1
7
6

1
2
,9
5
3

-

jd
t.
u
i

6
9
5

4
5
8

1
7
4

2
1
2

5
9

1
9
,8
7
2

1
6
9

4
9
6

1
2

5
5

3
1
1

2
9
,5
6
9

6
8

B
a
se

R
a
n
k
→

7
4
6

2
7

1
3
9

6
9
7

2
9
,3
7
3

B
a
se

R
a
n
k
→

2
3
7

3
1
2

9
4

1
4
,8
0
1

-

p
d
e.
u
i

5
2
5

3
1
0

1
9
0

5
1
8

9
1

1
4
,6
9
7

1
5
7

5
1
5

1
9

6
8

3
9
3

2
9
,7
0
1

5
8

B
a
se

R
a
n
k
→

5
4
2

3
5

1
5
0

5
4
4

2
8
,9
1
9

B
a
se

R
a
n
k
→

2
1
6

4
1
6

8
5

1
4
,2
9
2

-

lo
g
4
j

6
0

2
3

5
7

3
5

4
4

1
7
8
6

1
6

4
6

7
1
3

5
3

2
2
2
4

2
1

B
a
se

R
a
n
k
→

6
3

1
2

4
2

8
0

2
3
7
0

B
a
se

R
a
n
k
→

2
6

2
4

2
0

1
1
8
5

-

sl
in
g

7
6

3
8

1
1
9

1
5

2
0

1
2
,4
8
3

2
5

2
4
9

1
0

3
9

2
2
5

2
1
,5
4
7

1
3

B
a
se

R
a
n
k
→

6
0
2

1
2

1
0
2

4
9
6

2
3
,8
3
0

B
a
se

R
a
n
k
→

7
1

1
6

4
5

1
8
9
6

-

to
m
ca
t7
0

5
5
1

2
5
3

5
5

2
7

3
8

1
1
,1
4
7

1
8
1

1
3
2

6
2
1

9
9

2
2
,4
0
6

1
1
7

B
a
se

R
a
n
k
→

2
0
1

9
4
1

1
8
2

2
4
,1
3
5

B
a
se

R
a
n
k
→

4
5

1
6

2
3

1
9
9
2

-

T
o
ta
l:

2
,8
8
5

1
,6
6
0

7
9
9

4
2
6

c
o
re

=
e
c
l
i
p
s
e
.
j
d
t
.
c
o
r
e
,
d
e
b
u
g
=

e
c
l
i
p
s
e
.
j
d
t
.
d
e
b
u
g
,
jd
t.
u
i
=

e
c
l
i
p
s
e
.
j
d
t
.
u
i
,
p
d
e
.u
i
=

e
c
l
i
p
s
e
.
p
d
e
.
u
i
,
M
e
a
n
=
M
ea
n
ra
n
k
o
f
�
rs
t
re
le
va
n
t

d
o
cu
m
en
t
in

th
e
se
a
rc
h
re
su
lt
,
Q
i=

R
a
n
k
va
lu
e
fo
r
it
h
q
u
a
rt
il
e
o
f
a
ll
re
su
lt
ra
n
k
s

42

Table 3.6: Document Retrieval Performance of STRICT Queries

Query #Keywords Hit@1 Hit@5 Hit@10 MAP@10 MRR@10

Title 08 13.24% 26.76% 35.23% 19.78% 0.19

Description 72 13.03% 25.52% 31.70% 18.91% 0.18

Title+Description 100 17.32% 29.36% 35.21% 22.70% 0.22

(Title+Description)code 34 16.89% 30.59% 36.88% 23.21% 0.23

STRICTT10 10 13.18% 26.60% 32.33% 18.95% 0.19

STRICTT20 20 17.84% 33.18% 40.65% 24.82% 0.24

STRICTT30 30 19.31% 35.69% 43.90% 26.91% 0.26

STRICT 37 *21.95% *38.07% *46.43% *28.99% *0.29

Emboldened = Comparatively higher, * = Statistically signi�cant di�erence between suggested and the

baseline queries

Figure 3.4: Comparison of the document retrieval performance of STRICT queries against baseline
queries in terms of (a) Hit@10, (b) MAP@10, and (c) MRR@10

signi�cantly improved by our approach. From Table 3.4 (lower half), we see that our approach improve

56%�74% of the di�cult baseline queries while worsening only 17%�22%. Thus, our query improvements are

three to four times higher than the query worsening ratios which is highly promising. We also found that the

easy queries cannot be further improved by our approach rather their quality level remain unchanged. Such

�nding is also consistent with the earlier �ndings from the literature [98, 189].

Earlier studies report signi�cant bene�t in including source code tokens in the search query for bug

localization [163] and feature location [49]. We thus compare with another baseline, (Title+Description)code

that comprises of only structured or code-like tokens (e.g., camel-case tokens, HashSet) and their split

versions extracted from the change request. Although these queries perform highly compared to other three

baselines, our suggested queries perform even higher. From Table 3.4 (upper part and lower part), we see

that STRICT can improve 55%�72% of the (Title+Description)code queries in two di�erent circumstances

which demonstrates the high potential of our approach for the query suggestion.

We also further investigate the ranks of �rst correct results returned by our approach, and compare them

with the ranks of (Title+Description)code, one of the high performing baselines. In particular, we compare

43

the rank distribution of STRICT with that of the baseline queries using descriptive statistics. From Table

3.5, we see that the rank improvements by our technique are generally higher than the corresponding rank

worsening. For example, the mean baseline rank of 248 queries from eclipse.jdt.core system is 613. Our

technique improves that rank to 157, and returns correct results for at least 50% of these queries within the

Top-5 positions of the result list (i.e., Q2 = 5) which are promising. Our technique also worsens the mean

rank of 77 baseline queries of the same subject system from 36 to 260. We compare such rank improvement

or worsening of STRICT against the baseline across eight subject systems, and found statistical signi�cance

(i.e., p-value=0.02<0.05) with a medium e�ect size (i.e., ∆ = 0.38). In fact, our mean rank improvement

(i.e., -402) is two times higher than the mean rank worsening (i.e., +199). According to our quantile analysis,

STRICT turns 50% of the di�cult baseline queries into easy ones (i.e., rank within Top-10 positions) from

�ve systems � ecf, eclipse.jdt.core, log4j, sling and tomcat70. Fig. 3.3 further demonstrates the box

plots of improvement and worsening of the baseline queries by our technique across eight subject systems.

We see that the medians of query improvement ratios of our technique are much higher than that of the

corresponding worsening ratios. In fact, STRICT improves 50%�66% of the queries for six out of eight

systems which is promising.

We also manually investigate the baseline queries that are worsened by our approach, and found two

important observations. First, the extent of our rank worsening is relatively smaller than that of rank

improvement. Second, most of these worsened queries contain structured entities (e.g., stack traces). STRICT

could have performed even higher if such structures were properly incorporated in the text graphs. Such

an issue has actually been resolved by our later study called BLIZZARD (Chapter 5). We also manually

investigate the source code tokens in the baseline queries. We found that such items can always not be

guaranteed in the request texts. According to an earlier study [248], up to 55% of the change requests of a

system might contain only unstructured plain texts. Thus, the performance of the code-only baseline queries,

(Title+Description)code, could be limited. On the contrary, we suggest relatively higher quality queries from

the careful analysis of any available textual information in the change request. All these empirical evidences

presented above demonstrate the high potential of our approach.

Summary of RQ1: STRICT improves 43%-74% of the baseline queries. Furthermore, the extent of our

result rank improvement is two to three times higher than that of the rank worsening.

Answering RQ2 � Document Retrieval Performance: Although our approach improves majority

of the baseline queries in RQ1, we further evaluate the approach in terms of document retrieval performance.

While RQ1 considers only �rst relevant document of the result list, we consider all the relevant documents

retrieved by a query in RQ2. We execute each of our queries, analyse the Top-10 results (as many existing

studies do [98, 120, 239]), and calculate Hit@K, mean average precision@K and mean reciprocal rank@K of

our technique. Table 3.6, Figures 3.4 and 3.5 summarize our performance details. From Table 3.6, we see that

our queries return correct results for 46% of 2,885 change requests with 29% mean average precision@10 and

a mean reciprocal rank@10 of 0.29 which are 26%, 25% and 26% higher respectively than the best baseline

44

Figure 3.5: Comparison of STRICT queries with baseline queries for Top 1 to 100 results in terms
of (a) MAP@K and (b) Hit@K

measures (i.e., (Title+Description)code). Such performances are also comparable to other earlier �ndings

that use di�erent datasets [37, 49, 59], which signals the external validity of our results. Our queries also

have more potential for practical use than the baseline queries. We achieve relatively higher performance

using a limited number of the search terms. For example, two of the baseline approaches�Description and

Title+Description� achieve 32%�35% Hit@10 with 72�100 keywords in each of their queries on average. Such

long queries are noisy, and di�cult to tweak manually. On the other hand, we o�er 38% Hit@10 using only

top 10 of our suggested keywords. (Title+Description)code performs the best among the baseline approaches,

and it has a query length comparable to ours (e.g., 34). We thus consider it as an appropriate baseline

opponent and compare with it more extensively using statistical tests. Our tests report that the performance

of our query is signi�cantly higher (i.e., p-value<0.05) with a medium e�ect size (i.e., ∆=0.34) in terms of

Hit@K, MAP@10 and MRR@10.

Fig. 3.4 further contrasts our queries against the baseline in terms of (a) MAP@10, (b) MRR@10 and

(c) Hit@10 using box plots over all the subject systems. We see that our technique, STRICT, has a higher

median (i.e., 50% percentile) for each of the three performance measures. That is, top 50% of our measures

are comparatively higher than the top 50% of any baseline measures. In other words, our suggested queries

can retrieve the relevant source code documents more e�ciently than the baseline ones.

Although our queries show high performance for Top-10 results, we further investigate how they perform

when more results (e.g., 100) are considered. Fig. 3.5 shows (a) MAP@K and (b) Hit@K for Top-1 to Top-

100 results. We see that STRICT achieves a Top-50 accuracy of 69% and Top-100 accuracy of 78% which

are 24% and 20% higher respectively than the equivalent baseline measures, (Title+Description)code. More

importantly, our accuracy measures remained signi�cantly higher (i.e., p-value<0.05) than the corresponding

baseline measures with small to large e�ect sizes (i.e., 0.24≤∆≤0.64) for various Top-K results. Our queries

also remained signi�cantly more precise than the baseline queries (i.e., p-value<0.05, 0.42≤∆≤0.96) across

all Top-K results which demonstrates the relative strength of our proposed approach over the baseline.

45

Summary of RQ2: Our queries achieve 26% higher accuracy, 25% higher precision and 26% higher recip-

rocal rank than the best performing baseline when Top-10 results are analysed. Furthermore, STRICT is

found more accurate and more precise than the baseline when Top-100 results are analysed.

Answering RQ3 � (a) Role of our Term Weighting Algorithms: We investigate how three term-

weighting algorithms � TextRank, POSRank and Weighted K-Core � perform in identifying good quality

search terms from a software change request. Table 3.7 and Fig. 3.6 summarize our investigation details.

From Table 3.7, we see that both TextRank and POSRank perform almost equally in terms of Hit@K,

MAP@10 and MRR@10. Their combination marginally improves upon the individual performances. On the

contrary, WK-Core is a relatively better approach for term weighting. It achieves 41% Hit@10 as opposed

to 39% of TextRank and POSRank. Our technique, STRICT, combines all three term-weighting algorithms

using machine learning, and achieves 46% Hit@10 which is ≈16% higher. Similar �ndings are also observed

in the case of precision and reciprocal rank. Fig. 3.6 further demonstrates the improvement, worsening

and preserving ratios of the baseline queries by each of the term weighting approaches. We see that the

combination of all three approaches bene�ts the baseline queries on average. For example, TextRank improves

48% and worsens 39% of the baseline queries. On the contrary, our technique that combines all three term

weighting approaches improves 55% and worsens 28% of the queries which are 14% higher and 27% lower

respectively. Thus, our choice of combining di�erent term weighting algorithms is justi�ed.

(b) Comparison with Traditional Term Weighting Algorithms: TF-IDF has been a popular

term weighting approach for over the last �ve decades [114]. It stands for term frequency (TF) times the

inverse document frequency (IDF), i.e., TF-IDF = TF×IDF. While TF counts the occurrences of a term

within a document, IDF is computed using the number of documents from corpus containing that term.

Thus, TF-IDF captures both local and global contributions of a term, and determines its importance. We

compare our term weighting approaches with this traditional approach, and demonstrate the potential of

our approaches. From Table 3.8, we see that IDF performs the best among three traditional approaches -

TF, IDF and TF-IDF. It improves 1,467 baseline queries and retains the rank of 281 queries. Thus, the

traditional approaches improve or at least preserve 1,748 (60.59%) of 2,885 baseline queries. On the contrary,

our combined term weight, {TextRank+POSRank+WK-Core}, improves or preserves 1,784 (61.84%) baseline

queries which is comparatively higher. Furthermore, when our term weighting approaches are combined with

machine learning, they improve or preserve 70% of the baseline queries which is 16% higher than that of

traditional approaches.

Summary of RQ3: Each of the term weighting algorithms has its own strengths and weaknesses. Our

approach achieves 16% higher Hit@10, improves 15% more of the baseline queries, and worsens 24% less of

the queries when all three algorithms are combined using machine learning. Furthermore, our term weighting

algorithms are more promising than the traditional counterparts.

46

Table 3.7: Retrieval Performance of TextRank, POSRank and WK-Core

Term weight Hit@1 Hit@5 Hit@10 MAP MRR

TextRank 14.75% 30.30% 39.47% 22.20% 0.22

POSRank 14.68% 29.67% 38.97% 22.29% 0.21

{TextRank + POSRank} 16.55% 31.29% 39.94% 23.51% 0.23

WK-CoreCOC 16.57% 30.73% 40.58% 23.14% 0.23

WK-CorePOS 15.80% 30.49% 40.80% 23.63% 0.23

{WK-CoreCOC + WK-CorePOS} 16.74% 31.67% 41.03% 24.19% 0.23

STRICT *21.95% *38.07% *46.43% *28.99% *0.29

Table 3.8: Comparison between Proposed and Traditional Term Weights

Term weight #Queries Improved Worsened Preserved

TF 2,885 1,439 (49.88%) 1,112 (38.54%) 247 (8.56%)

IDF 2,885 1,467 (50.85%) 1,031 (35.74%) 281 (9.74%)

TF-IDF 2,885 1,439 (49.88%) 1,082 (37.50%) 267 (9.25%)

TextRank 2,885 1,470 (50.95%) 1,077 (37.33%) 256 (8.87%)

POSRank 2,885 1,397 (48.42%) 1,124 (38.96%) 274 (9.50%)

{TextRank + POSRank} 2,885 1,445 (50.09%) 1,056 (36.60%) 304 (10.54%)

{TextRank + POSRank +
2,885 1,476 (51.16%) 1,021 (35.39%) 308 (10.68%)

WK-Core}

STRICT 2,885 1,660 (57.54%) 792 (27.45%) 366 (12.69%)

Answering RQ4 � Impact of the Adopted Parameters and Thresholds: We conduct experiments

to justify our choice on the suggested query length, the use of data re-sampling, and the use of machine

learning algorithm. Figure 3.7 demonstrates the impacts of various parameters and thresholds upon the

performance of our approach. From Fig. 3.7-(a), we see that our approach improves more baseline queries

than it actually worsens when only Top-10 terms from each of our queries are used for code search. This

performance gradually improves up to a query length of ≈35 which makes it a potential threshold. Similar

�ndings can also be observed in Fig. 3.7-(b). However, earlier studies [50, 153, 217] report signi�cant bene�ts

of a dynamic threshold over a �xed threshold. Furthermore, about 50% of our change requests have a query

length of ≈ 40. Thus, almost all terms from these change requests are likely to return as search terms with

a �xed threshold of 35 which makes the automated query suggestion irrelevant. Hence, we use a dynamic

threshold for our query length rather than a �xed threshold. In particular, we choose the top 33% of the highly

weighted terms from each change request as our query. Earlier studies [50, 153, 217] based on graph-based

term weighting use such threshold for keyword selection. Such threshold also helps us achieve the optimal

performance (i.e., dashed and dotted lines) both in query improvement and in the retrieval of relevant source

documents. More interestingly, such threshold ensures an average length of 37 for our suggested queries

which is also close to 35.

47

Table 3.9: Comparison of Baseline Query Improvements between STRICT and Existing Techniques

Query Pairs #Queries Improved/(MRD) Worsened/(MRD) Preserved Net Gain Net MRD

Kevic and Fritz [120]-I 2,885 38.52%/(-505) 49.82%/(+288) 11.67% -11.30% -

Kevic and Fritz [120]-II 2,885 47.28%/(-455) 40.16%/(+228) 12.55% +7.12% -227

Rocchio [213]-I 2,885 43.53%/(-479) 47.96%/(+395) 8.51% -4.43% -

Rocchio [213]-II 2,885 45.41%/(-436) 41.73%/(+302) 12.86% +3.68% -134

Rahman and Roy [191] 2,885 47.59%/(-424) 37.16%/(+200) 15.25% +10.43% -224

STRICT 2,885 54.71%/(-402) 28.26%/(+199) 17.03% +26.45% -203

Comparison using Di�cult Baseline Queries

Kevic and Fritz [120]-I 1,858 53.02%/(-578) 38.89%/(+406) 8.09% +14.13% -172

Kevic and Fritz [120]-II 1,858 63.33%/(-532) 30.10%/(+387) 6.57% +33.23% -145

Rocchio [213]-I 1,858 59.76%/(-553) 35.04%/(+602) 5.20% +24.72% +49

Rocchio [213]-II 1,858 60.74%/(-520) 33.58%/(+494) 5.68% +27.16% -26

Rahman and Roy [191] 1,858 64.36%/(-497) 28.43%/(+361) 7.22% +35.93% -136

STRICT 1,858 71.51%/(-486) 21.93%/(+360) 6.57% +49.58% -126

We also investigate whether the re-sampling of training data has any impact upon our performance or

not. In particular, we compare performance between two variants of our approach where one variant uses

data re-sampling and the other does not. Our statistical tests report that re-sampling based variant achieves

signi�cantly higher accuracy (Hit@K) and signi�cantly higher precision (MAP@K) with small to large e�ect

sizes (i.e., all p-values≤0.05, 0.26≤∆≤0.68).

We also investigate whether the use of any particular machine learning algorithm in our approach makes

a di�erence or not. In particular, we compare performance between two variants of our approach where

on variant use RandomForest and the other uses Classi�cation and Regression Tree (CART) as the learning

algorithm. Our statistical tests report that RandomForest-based variant achieves signi�cantly higher accuracy

(Hit@K) and signi�cantly higher precision (MAP@K) than the CART-based variant with small to medium

e�ect sizes (i.e., all p-values≤0.05, 0.17≤∆≤0.46).

Summary of RQ4: We use a dynamic threshold for our query length, apply re-sampling to our training

data to cater for data skewness, and employ RandomForest as our learning algorithm for search query

suggestion. All these choices of ours are justi�ed by the appropriate empirical evidences above.

3.4.5 Comparison with Existing Techniques

Although our suggested queries outperform the baseline queries with a large margin, we further compare our

approach with the state-of-the-art. Our approach, STRICT, could be considered as a technique both for (1)

search term identi�cation and for (2) query reformulation. That is, STRICT not only identi�es high quality

search terms from a change request but also, in essence, reformulates the baseline query by removing the low

quality search terms. We thus compare our approach with the state-of-the-art studies [120, 213] from these

48

T
a
b
le
3
.1
0
:
C
o
m
p
a
ri
so
n
o
f
Q
u
er
y
E
�
ec
ti
ve
n
es
s
w
it
h
E
x
is
ti
n
g
Q
u
er
y
R
ef
o
rm

u
la
ti
o
n
T
ec
h
n
iq
u
es

T
e
ch
n
iq
u
e

Im
p
ro
v
e
m
e
n
t

W
o
rs
e
n
in
g

P
re
se
rv
in
g

#
IQ

M
e
a
n

Q
1

Q
2

Q
3

M
in
.

M
a
x
.

#
W
Q

M
e
a
n

Q
1

Q
2

Q
3

M
in
.

M
a
x
.

#
P
Q

K
ev
ic
a
n
d
F
ri
tz
-I

1
,1
7
9

1
3
5

4
2
1

8
5

1
8
,4
0
6

1
,2
1
8

3
6
1

2
0

7
8

3
1
0

2
6
,5
4
5

1
9
2

K
ev
ic
a
n
d
F
ri
tz
-I
I

1
,4
3
6

1
1
4

3
1
5

6
1

1
7
,6
0
9

1
,1
1
2

3
4
1

1
4

6
1

2
6
2

2
8
,2
8
0

2
3
6

R
o
cc
h
io
-I

1
,3
0
3

2
1
9

3
2
2

1
1
7

1
9
,3
3
5

1
3
7
0

4
9
3

2
2

9
3

4
1
1

2
9
,2
6
0

1
4
5

R
o
cc
h
io
-I
I

1
,3
4
1

2
3
4

4
2
4

1
1
1

1
7
,7
5
8

1
,2
3
0

4
2
9

1
9

7
1

3
1
5

2
9
,5
4
7

2
6
4

R
a
h
m
a
n
a
n
d
R
oy

1
,4
4
5

1
5
9

3
1
7

7
7

1
7
,3
7
1

1
,0
5
6

3
1
8

1
1

4
9

2
3
1

2
9
,5
6
9

3
0
4

B
a
se
li
n
e

-
5
0
5

1
8

8
8

3
9
3

2
9
,5
2
3

-
1
3
7

2
1
0

5
6

1
4
,8
0
1

-

S
T
R
IC
T

1
,6
6
0

1
4
2

2
1
2

5
8

1
9
,8
7
2

7
9
2

3
2
9

1
2

4
7

2
1
4

2
9
,7
0
1

3
6
6

IQ
=
Im

p
ro
ve
d
B
a
se
li
n
e
Q
u
er
ie
s,
W
Q
=
W

o
rs
en
ed

B
a
se
li
n
e
Q
u
er
ie
s,
P
Q
=
P
re
se
rv
ed

B
a
se
li
n
e
Q
u
er
ie
s

49

Figure 3.6: Role of three term weighting algorithms in the improvement, worsening and preserving
of the baseline queries

two domains above. Kevic and Fritz [120] use a regression model to identify search terms from a change

request. They employ several heuristics concerning frequency, location, part of speech, and notation of the

terms from the request texts. To the best of our knowledge, Kevic and Fritz [120] is the only available study

in the literature for search term identi�cation from a change request which makes it the state-of-the-art.

Rocchio [213] collects top K (e.g., K = 5) documents from the corpus returned by a given query, identi�es

appropriate candidate terms from these documents using term weighting (e.g., TF-IDF [114]), and then

expands the query. Such expansion strategy has been adopted by a number of studies on query reformulation

[84, 98, 168, 189, 251] which makes it a suitable candidate for our comparison. We implement both of these

approaches using the authors' provided settings and parameters (e.g., metric weights), and collect the search

queries returned by them for our dataset. In particular, we develop two variants of each approach where

partial and the whole texts of a request are used as their inputs. We also select our earlier work, Rahman and

Roy [191], for comparison which is essentially the current state-of-the-art on search term identi�cation. We

compare our queries with the queries from these �ve existing techniques using two performance dimensions

� (1) query rank improvement, and (2) relevant source document retrieval, and answer RQ5 and RQ6 as

follows:

Answering RQ5�Comparison with the State-of-the-Art using Query Rank Improvement:

Table 3.9 compares our approach with the existing approaches in terms of baseline query improvement,

worsening and preserving ratios. We see that Kevic and Fritz-II performs the best among the existing

approaches, and improves 47% of the baseline queries while worsening 40%. On the contrary, our approach

improves 55% of the baseline queries and worsens only 28% of the queries which are 16% higher and 30% lower

respectively. That is, while the existing works improve the baseline queries, they also degrade a signi�cant

amount of queries which makes the net gain (i.e., improvement ratio � worsening ratio) insigni�cant. For

example, none of the existing approaches achieves a net gain over 10%. On the contrary, our approach

50

Figure 3.7: Impact of the adopted parameters and thresholds � (a,b) suggested query length, (c) use
of data re-sampling, and (d) use of machine learning algorithm

achieves a net gain improvement of 27% which is highly promising. According to mean rank di�erence

(MRD) analysis, our approach improves the result ranks up to 203 positions. This work also achieves 15%

more improvement than our earlier work Rahman and Roy, and thus advances the state-of-the-art.

We also compare our approach against the existing approaches using the di�cult baseline queries that

return their results beyond 10th position of the result list. From Table 3.9 (lower part), we see that Kevic and

Fritz-II improves 63% of the queries and worsens 30% of the queries. On the contrary, our approach improves

72% and worsens 22% which are 13% higher and 27% lower respectively. Thus, our approach outperforms

the �ve existing techniques above in two di�erent circumstances which clearly demonstrates its high potential

for query suggestion.

We also analyse the distribution of result ranks, and compare our approach with the existing approaches

using such analysis. From Table 3.10, we see that Kevic and Fritz-II and our earlier work are strong competitor

of each other. They improve a maximum of 1,445 queries with 25% quantile at 3 and 50% quantile at 15.

On the contrary, our approach improves a total of 1,660 baseline queries with 25% quantile at 2 and 50%

quantile at 12 which are 15%, 33% and 20% higher respectively. While each of the existing approaches provide

relatively better ranks than the baseline, our ranks are even more promising. Furthermore, our approach

51

Figure 3.8: Comparison of baseline query improvements or worsening between our technique,
STRICT, and the existing techniques

worsens the least amount (i.e., 792) of baseline queries while ensuring the maximum improvement (i.e., 1,660)

at the same time.

We also further analyse the query improvement and worsening ratios of eight subject systems, and compare

our approach with the existing ones using box plots. From Fig. 3.8, we see that the median of improvement

and worsening ratios of Kevic and Fritz-II are 48% and 41%. On the contrary, our approach achieves 56%

improvement and 30% worsening which are 17% higher and 27% lower respectively. All these evidences above

clearly demonstrate the superiority of our approach over the state-of-the-art.

Summary of RQ5: Our approach clearly outperforms the existing approaches including the state-of-the-art

in improving the baseline queries. It improves 16% more and worsens 30% less of the baseline queries.

Furthermore, it delivers two to three times higher net gain in the result ranks than that of the state-of-the-

art approaches.

Answering RQ6�Comparison with the State-of-the-Art using Relevant Document Retrieval:

While our approach outperforms the existing approaches on query improvement, we further compare using

relevant document retrieval performance. From Table 3.11, we see that Kevic and Fritz-II achieves 37%

Hit@10 with 21% precision and a reciprocal rank of 0.21 when only Top-10 results are analysed. On the

other hand, our approach achieves 46.43% Hit@10, 29% MAP and 0.29 reciprocal rank which are 25%, 37%

and 38% higher respectively. Our performance measures are also 16%, 23% and 26% higher respectively than

that of our earlier work [191] which demonstrate the potential of STRICT over the state-of-the-art. When

52

Table 3.11: Comparison with Existing Techniques in Document Retrieval

Technique Hit@1 Hit@5 Hit@10 MAP MRR

Kevic and Fritz-I 11.87% 22.42% 28.55% 16.56% 0.16

Kevic and Fritz-II 15.11% 28.28% 37.17% 21.13% 0.21

Rocchio-I 12.54% 22.97% 31.10% 18.46% 0.17

Rocchio-II 15.92% 28.33% 33.90% 22.21% 0.21

Rahman and Roy 16.55% 31.29% 39.94% 23.51% 0.23

STRICT *21.95% *38.07% *46.43% *28.99% *0.29

* = Signi�cant di�erence between proposed and existing techniques

Figure 3.9: Comparison between queries of STRICT and the queries of existing approaches in terms
of their (a) Hit@10, (b) MAP@10, and (c) MRR@10

Top-1 or Top-5 results are considered, our accuracy measures are also 32% and 22% higher respectively than

the state-of-the-art measures. Fig. 3.9 further contrasts the Top-10 performance between our approach and

the existing approaches using box plots. We see that our median accuracy, precision and reciprocal rank

are clearly higher than that of the competing approaches (e.g., Kevic and Fritz-II). Our statistical tests

also report signi�cance with medium to large e�ect sizes (i.e., all p-values ≤0.05, 0.38≤∆≤0.53) over the

state-of-the-art.

While the above analysis is based on Top-10 retrieved documents only, we further compare our approach

against the existing approaches using Top-100 results. In particular, we collect accuracy and precision of

each technique for top 1 to 100 documents, and compare our measures with the state-of-the-art measures.

From Fig. 3.10, we see that our precision and accuracy are clearly the highest. Kevic and Fritz-II achieves

a maximum precision of 21% and a maximum accuracy of 72%. On the contrary, our approach delivers

29% precision and 78% accuracy which are 38% and 8% higher respectively. Our statistical tests also report

signi�cant di�erence (i.e., all p-values ≤0.05, 0.32≤∆≤0.97) between our precision or accuracy and those

from the state-of-the-art approaches. All these evidences clearly demonstrate the superiority of our approach

over the existing approaches including the state-of-the-art.

53

Figure 3.10: Comparison between queries of STRICT and queries from the existing approaches in
terms of (a) MAPK and (b) Hit@K

Figure 3.11: Stage I - Distribution of the grades for study tasks

Summary of RQ6: Our approach clearly outperforms the existing approaches including the state-of-the-art

in the retrieval of relevant source code documents (ground truth). STRICT achieves 25% higher accuracy,

37% higher precision and 38% higher reciprocal rank than that of the state-of-the-art.

3.4.6 Evaluation of Working Prototype

Empirical evaluations using 2,885 bug reports and two evaluation dimensions clearly demonstrate the superi-

ority of our approach over the state-of-the-art. Despite such strong evidences, we further evaluate our working

prototype with a user study involving 25 participants (7 graduate students + 18 fourth year undergraduate

students, from the Department of Computer Science, University of Saskatchewan).

User Study Design: We design a user study where participants use the proposed prototype for problem

solving. Our study was conducted in two stages. In the �rst stage, participants were instructed to perform

four di�erent tasks3 targeting concept location. The goal was to �nd out the best search queries possible from

the change requests for concept location using partial and complete supports from the prototype. Each of the

3https://goo.gl/uBpYe8

54

Figure 3.12: Stage II - User evaluation of the proposed prototype in terms of EI=Ease of Installation,
DQ=Documentation Quality,UF=Usefulness of Features, LF=Likelihood of Features, QSQ=Quality
of Suggested Queries, MER=Manual E�ort Reduction, TSP=Time Saving Potential

participants completed the tasks using our prototype and then submitted their results. In the second stage,

the participants completed a questionnaire4 based on their work experience. They were asked 11 questions

about the installation, usability, perceived usefulness and bene�ts of the proposed prototype.

Participant Selection: In the �rst stage, 18 undergraduate students from the Department of Computer

Science, University of Saskatchewan took part in our study. In the second stage, six graduate and under-

graduate students chose to �ll in the questionnaire. Each of these students were enrolled in CMPT 470/816:

Advanced Software Engineering, a graduate level course o�ered at the University of Saskatchewan. Thus,

they received basic training on concept location and software change life cycle, which made them suitable

candidates for our study.

Study Tasks and Ground Truth: We choose 10 change requests from ecf system for our study. Each

request contains only regular texts and was already marked as RESOLVED. We instruct the participants to

perform four tasks with each of these requests � T1: execute the available tool commands, T2: get the best

query from STRICT, T3: determine the result rank improvement over the baseline, and T4: construct the

optimal query with STRICT using manual keyword tweaking. We also perform each of these tasks ourselves,

consult with the change requests and their corresponding changed source documents, and then construct the

ground truth.

User Study Results (Stage-I): Once the �rst stage of our study was over, we evaluated the task results

(submitted by the participants) against our ground truth. Each of these submissions was graded between

0 to 100. Fig. 3.11 shows the distribution of grades for each of the tasks scored by 18 participants. We

see that almost each participant was able to successfully execute the available commands and produce the

expected results (i.e., T1). This suggests that our prototype is functional. Participants scored a median

grade of 75%�85% for T2 and T3. This suggests that they were able to spot the di�erences in query quality

between baseline and STRICT, and also found the prototype's documentation helpful. In the fourth task, the

participants used STRICT queries as a starting point, and then attempted to identify the best possible queries

4https://goo.gl/ztoLp7

55

using manual keyword tweaking. Their median grade (≈ 70%) suggests that our prototype signi�cantly helped

them in such attempts (i.e., also check TSP in Fig. 3.12). Finally, the mean grade of ≈70% and a median

grade of 74% indicate that on average, each participant did pretty well and 50% of them did very well in

performing all four given tasks. It should be noted that three students performed poorly, and scored less

than 25%. Based on follow-up communications with them, we discovered that they either misunderstood

the tasks or possibly were not sincere enough. Alternatively, our provided tasks could be too di�cult for

them technically. However, majority of the participants were successful in performing the given tasks. Such

�ndings indicate that, on average, the participants found our prototype working and useful for their tasks.

User Study Results (Stage-II): Although the results above clearly demonstrate the bene�ts of our

prototype, we additionally conduct another round of investigation by inviting the participants. We asked

them 11 questions on the ease of tool installation (EI), documentation quality (DQ), overall usefulness (UF),

liking for the tool features (LF), quality of our suggested queries (QSQ) and the tool's potential for manual

e�ort reduction (MER) or saving time (TSP) in the concept location process. Figure 3.12 summarizes our

�ndings from the survey using box plots. The participants provided responses on a scale between 1 and 5

where 1 represents the most negative, 3 represents neutral and 5 refers to the most positive response about

the tool. We see that the median response from the participants is positive (high) for each of the seven

dimensions. Thus, according to the participants, installation of our prototype is very easy (i.e., EI), our

provided features are likeable (i.e., UF, LF) and the suggested queries are of high quality (i.e., DQ). Besides,

our tool has the potential for reducing manual e�orts (i.e., MER) and spent time (i.e., TSP) during concept

location. Furthermore, 66% of the participants preferred our suggested queries over the baseline ones in

their task. A few students did not put much time and e�orts in the �rst stage, and misunderstood the task

requirements, which was also re�ected in their survey responses. However, majority of the participants used

our tool successfully for a problem solving such as concept location. In short, all the positive responses above

indicate a high potential of our approach for its possible applications in practice.

Summary of RQ7: Participants found our prototype useful in locating concepts within the source code,

and most of them scored high grades in their tasks. Our prototype is easy to install, our queries are of high

quality than baseline, and they have the potential for reducing human e�orts and spent time during

concept location.

3.5 Threats to Validity

We identify a few threats to the validity of our �ndings in this work. We not only discuss these threats but

also outline the means that were adopted to mitigate them as follows:

Threats to internal validity relate to experimental errors and biases [272]. Re-implementation of the

existing approaches is a possible source of such threat. Due to the lack of reliable or directly applicable

prototypes, both existing techniques�Kevic and Fritz [120] and Rocchio [213]�were re-implemented. These

56

techniques are based on two di�erent equations with clearly stated independent and dependent variables.

We implement them carefully using authors' provided parameters, and develop multiple variants using var-

ious settings. Furthermore, we ran them in our experiments multiple times, and compared with their best

performance. Thus, such threat might be mitigated.

Our suggested queries have an average length of 37 keywords which is a bit lengthy compared to the

queries used for traditional web or code search (e.g., 2-3 keywords) [45, 205]. However, unlike web or code

search, a change request deals with multiple domain level concepts which might not be expressed properly

using only a few keywords [87]. Our queries are thus longer than title but shorter than the description of

a change request. Future works might attempt to reduce the query length using more sophisticated term

weighting approaches.

The POS tagging (Section 3.3.3) might contain a few false positives given that preprocessed sentences are

used instead of original sentences. However, its impact might be low since stemming was not performed that

a�ects the individual words. Furthermore, the preprocessing step mostly removes the stop words, punctuation

marks and digits which convey only little semantics.

The data-resampling step of our query di�culty model (Section 3.3.8) plays an important role in delivering

the best candidate queries. However, our query di�culty model might be slightly biased towards the high-

class candidates. The challenges of data imbalance might not have been handled rigorously. Future work

should employ more rigorous methods for dealing with imbalanced data. In other words, while our work in

this chapter produces multiple high quality candidate queries from a change request, the future work should

focus on delivering the best candidate query from them more accurately but in a non-biased fashion.

Threats to external validity relate to the generalizability of an approach [201, 272]. So far, we

experimented with eight Java-based systems. However, given our generic approaches for term weighting

and the simplicity in the corpus creation (Section 3.4.2), our approach can be easily replicated for subject

systems using other programming languages. It also should be noted that our approach is not constrained

by programming language speci�c features.

Threats to construct validity relate to the suitability of metrics or measures adopted for the evaluation.

We use post-retrieval metrics such as Hit@K, MAP and MRR which are widely adopted by the relevant

literature on search query suggestion [53, 120, 153] and query reformulation [98, 189]. Thus, such threats are

possibly mitigated.

Threats to conclusion validity stem from the relationship between treatment and outcome [140].

We evaluate our term weighting approaches and query suggestion performance using six research questions,

and claim superiority of STRICT over the baseline and the state-of-the-art. However, these claims are

substantiated with appropriate experiments, and several statistical tests such as Wilcoxon Signed Rank and

Cli�'s Delta are performed. We also report details (e.g., p-values, ∆) of the conducted tests before making

any claims. Thus, such threats might also be mitigated.

57

3.6 Related Work

3.6.1 Search Query Suggestion & Reformulation

A number of studies in the literature attempt to support software developers in concept/feature/concern

location tasks using search query suggestion. They apply di�erent lightweight heuristics [120], structural

analyses [49, 163] and query reformulation strategies [65, 84, 98, 99, 188, 189, 191, 226]. They also perform

di�erent query quality analyses [95, 96, 97, 192] and data mining activities [109, 109, 121, 139, 265]. However,

most of these approaches (1) expect a developer to provide the initial search query which they can improve

upon, and (2) their main focus is improving a given query from the change request. Unfortunately, as existing

studies [83, 120, 142] suggest, preparing an initial search query is equally challenging, and those approaches do

not provide much support in this regard. In this study, we propose a novel technique�STRICT�that suggests

a list of suitable terms as an initial search query from a change request. Kevic and Fritz [120] consider a list

of heuristics such as frequency, location, part of speech and notation of the terms in the task description, and

employ a logistic regression model for identifying search terms from a change request. Our work is closely

related to theirs, and we compare with it directly in our experiments (Section 3.4.5).

In essence, our work is also aligned with query reformulation domain since it reformulates a baseline

query (i.e., change request) by discarding the low quality search terms from the query. Rocchio [213] collects

top documents from the corpus returned by a given query, identi�es appropriate candidate terms from these

documents using term weighting (e.g., TF-IDF [114]), and then reformulates the query. Such expansion

strategy serves as a popular baseline for a number of recent studies on query reformulation [84, 98, 168,

189, 192, 251]. We thus consider Rocchio's method as a suitable candidate for our comparison as well

(Section 3.4.5). Our work in this article is also signi�cantly di�erent from our earlier work [191] in terms

of methodology and experiments. Previously, we proposed a basic graph-based term selection approach,

and conducted evaluation using a limited set and variety of change requests and research questions. This

work provides an improved version of that approach using not only three graph-based algorithms (TextRank

[153], POSRank [53], Weighted K-Core [217]) but also two novel dimensions such as query di�culty analysis

and machine learning. We also conduct a more extended evaluation using ≈1000 more change requests and

three more research questions. Furthermore, we perform more in-depth analysis on our previous research

questions, and also provide a veri�ed working prototype for replication and reuse. We directly compare with

three state-of-the-art approaches � Kevic and Fritz, Rocchio and our earlier work (Rahman and Roy), and

the detailed comparison can be found in Section 3.4.5.

Haiduc et al. and colleagues conduct several studies on how to reformulate a given search query where

they apply query quality analyses [95, 97] and machine learning [98]. Although their studies are closely

related to ours from a technical perspective, they are also signi�cantly di�erent in several aspects. First of

all, they make use of source code for query preparation, whereas we use change request texts. Second, they

58

require an initial query from the developers which is already challenging for them to prepare [120, 142]. Since

our approach suggests a search query from the change request using light-weight analysis, our work has the

potential to complement the existing works on query reformulation including Haiduc et al. A few studies

[109, 265] suggest semantically similar query for a given query by mining comment-code mapping from a

source code repository. They could also possibly perform better if the initial query is prepared carefully

which our technique does, rather than the query is chosen randomly. Bassett and Kraft [49] apply structural

term weighting to feature location by emphasizing on source code tokens during query formulation. However,

as our �nding suggests (RQ1, Section 3.4.4), source code tokens might always not be available, and thus

queries based on them could be limited in performance. Chaparro et al. [65] recently analyse bug report

texts, identify expected behaviour (EB), observed behaviour (OB) and steps to reproduce (S2R), and return

OB as a search query from the report. Their work is also related to ours. However, their study is empirical in

nature which involves signi�cant manual analysis, and do not provide any reusable prototype. We thus could

not directly compare with their work. Several other studies apply ontology [257], query-based con�gurations

[49, 163, 164] and phrasal concepts [105, 226] in concept location. Several other studies [58, 131, 144, 151, 274]

on automated query suggestion and reformulation target general-purpose or internet-scale code search, and

thus, they are not closely related to ours.

3.6.2 Code Search Algorithm

There also exist a number of studies [37, 142, 150, 178, 210, 225] that apply various underlying algorithms

to actually locate the concepts, features, concerns or bugs in the source code. They adopt static analysis,

dynamic analysis or perform both analyses on the source code to identify the items of interest such as

methods to be changed. Revelle et al. [210] combine information from three di�erent processes�textual

analysis, dynamic analysis and web mining�and apply PageRank algorithm [57] like ours. However, they

apply the algorithm in a di�erent context � ranking methods within the project source. On the contrary, we

use PageRank algorithm for the search term identi�cation from a change request. Antoniol et al. [37] �rst use

Vector Space Model (VSM) for traceability analysis which was later improved by Zhou et al. [276] as rVSM

for bug localization. Since then several approaches adopt VSM-based search engine for bug localization

[163, 164, 192, 258] and concept location [98, 104, 189, 201]. We also similarly use a VSM-based engine

namely Lucene5 for concept location. However, as demonstrated and claimed in earlier sections, our main

contribution is the suggestion of appropriate search queries from the change requests.

Thus, from a technical perspective, we (1) adapt three graph-based term weighting algorithms (TextRank,

POSRank and WK-Core) in the context of concept location which are borrowed from Information Retrieval

domain, and (2) then identify a list of suitable terms from each change request. We exploit not only the co-

occurrences but also the syntactic dependencies and cohesion among the words for search term identi�cation.

Furthermore, we employ query quality analysis and machine learning for identifying the best search query

5http://lucene.apache.org/core

59

from a change request. Such idea was considered by no relevant existing studies, and the experimental

�ndings also con�rm the high potential of our idea.

3.7 Summary

Software maintenance is costly in terms of time, money and development e�orts [88]. Developers deal with

thousands of change requests during the maintenance phase. Studies suggest that choosing an appropriate

search query from a change request is a major challenge for the developers [120, 142, 150]. We propose

a novel technique �STRICT� that accepts a change request as a search query, automatically identi�es the

suitable keywords from the request texts, and then delivers a reformulated query for concept location. In

particular, our approach constructs multiple reformulation candidates from the request texts by employing

three graph-based term-weighting algorithms (TextRank, POSRank and WK-Core), and then delivers the

best reformulated query using query di�culty analysis and machine learning. Experiments using 2,885 change

requests from eight subject systems show that our approach improves 43%�74% of the baseline queries,

and achieves 26% higher accuracy, 25% higher precision and 26% higher reciprocal rank than the baseline.

Comparison with three existing studies including the state-of-the-art also shows that our approach improves

16% more baseline queries, and achieves 25% higher accuracy, 37% higher precision and 38% higher reciprocal

rank than the those of state-of-the-art. Our developed tool was also successfully veri�ed by third parties,

and it received an overall positive response.

Despite these inspiring instances, we notice that our approach could be limited by the content of the

change requests. That is, if a change request does not contain the right search keywords in the �rst place,

our approach cannot deliver them. Our second study in the next chapter (ACER, Chapter 4) overcomes this

challenge, and reformulates a given query with complementary keywords carefully collected from the relevant

source code in order to improve the concept location task.

60

Chapter 4

Search Query Reformulation for Concept Location

using CodeRank and Source Document Structures

Software developers address thousands of change requests during maintenance phase, which cost a sig-

ni�cant amount of development time and e�orts [88]. Our previous study (STRICT, Chapter 3) accepts a

change request as a search query, identi�es suitable keywords from the request texts, and then suggests a

reformulated search query for concept location. Extensive empirical evaluation, validation and user study

demonstrate the high potential of the approach (Section 3.4). However, STRICT could be limited due to its

sole reliance on the change requests. That is, the approach might not be able to deliver appropriate search

keywords if they are missing from the change requests in the �rst place. We overcome such a challenge

with another study in this chapter. Here, we present ACER that accepts a poor search query, identi�es

complementary search keywords from the relevant source code (retrieved by the query), and then delivers an

improved, reformulated version of the given query for the concept location task.

The rest of the chapter is organized as follows � Section 4.1 presents an overview of our study, and Section

4.2 provides our proposed technique for query reformulation for concept location. Section 4.3 discusses our

conducted experiments, �ndings and validations, Section 4.4 identi�es the threats to the validity, Section 4.5

discusses the related work, and �nally Section 4.6 concludes the chapter with future work.

4.1 Introduction

Studies show that 40%�80% of the total development e�ort is spent in software maintenance [88, 175].

Developers deal with thousands of software issues during the maintenance [170, 220, 247]. Software issue

reports (e.g., change requests, bug reports) discuss either unexpected (or erroneous) features such as software

bugs or expected but non-existent features such as new software functionalities. Whether it is a bug resolution

or a new feature implementation, a developer is always required to map the concept discussed in the issue

report to appropriate code locations within a software project. Such a mapping task is widely known as

concept location in the literature [121, 150, 188]. Developers generally choose one or more important keywords

from the report texts, and then use a search method (e.g., regular expression) to locate the source code entities

(e.g., classes, methods) that need to be changed. Unfortunately, as the existing studies [120, 142] report,

developers regardless of their development experience perform poorly in choosing the right search queries for

61

concept location. According to a user study of Kevic and Fritz [120], only 12.20% of the search keywords

chosen by the developers were able to locate the relevant source code during concept location. Furnas et al.

[83] also suggest that there is a little chance (i.e., 10%�15%) that the developers would guess the exact words

used in the source code. Thus, appropriate search query construction for concept location task is a major

challenge. One way to assist the developers in this regard is to automatically reformulate their chosen queries

with complementary keywords.

Existing studies employ relevance feedback from developers [84], pseudo-relevance feedback from Infor-

mation Retrieval methods [98], and machine learning [98, 164] for the query reformulation tasks. They also

make use of the context of query keywords from source code [104, 109, 188, 231, 265], text retrieval con�gura-

tions [98, 164], and quality of queries [96, 97] in suggesting the reformulated queries. Gay et al. [84] capture

explicit feedback on document relevance from the developers, and then suggest reformulated queries using

Rocchio's expansion [213]. Haiduc et al. and colleagues [95, 96, 97, 98, 99] take quality of a given query (i.e.,

query di�culty) into consideration, and suggest the best reformulation strategy for the query using machine

learning. While all these above techniques are reported to be novel or e�ective, most of them also share sev-

eral limitations. First, source code documents contain both structured items (e.g., method signatures, �eld

signatures) and unstructured items (e.g., code comments). Unfortunately, many of the above reformulation

approaches [84, 98, 231] treat the source code documents as simple plain text documents, and ignore most of

their structural aspects except the structured tokens. Since they rely on source code for constructing their

reformulated queries, such an inappropriate treatment of the code might lead them to suboptimal or poor

queries. In fact, Hill et al. [104] �rst consider source document structures, and suggest natural language

phrases from method signatures and �eld signatures for concern location. However, since they apply only

simple textual matching between given queries and the signatures, their suggested phrases are subject to the

quality of not only the given queries and but also of the identi�er names from the signatures. Second, many of

the above approaches often directly apply traditional metrics of term importance (e.g., TF-IDF [98, 213]) to

source code, which were originally targeted for unstructured regular texts such as news articles [114]. Thus,

they might fail to identify the appropriate search terms from the structured source code documents, which

could badly hurt their reformulated search queries.

In this chapter, we propose and design a novel query reformulation technique � ACER� that automat-

ically reformulates a poor search query for concept location task. We �rst introduce a novel graph-based

term weighting algorithm �CodeRank� for identifying important terms from source code. CodeRank deter-

mines importance of a term not only by capturing its occurrences within the structured tokens (e.g., camel

case tokens) but also by exploiting its co-occurrences with other terms across various salient entities (e.g.,

method signatures) within the code. Our technique �ACER� accepts a given search query as an input,

employs CodeRank algorithm on the source code documents returned by the query, and develops multiple

reformulation candidates using two important structural contexts from the code � method signatures and

62

java
project compute runtime

path

classpath

property container

launch
entry

variable resolve

output
locations con�guration

provider

classpath

resolvelaunch

Figure 4.1: An example term graph generated by CodeRank for the source code of Fig. 4.2

�eld signatures. Then it performs query di�culty analysis and machine learning [96, 98], and delivers the

best candidate as a reformulated query for the given poor query.

Table 4.1 shows an example change request [6] submitted for eclipse.jdt.debug system, and it refers

to �debugger source lookup" issue of Eclipse IDE. Let us assume that the developer chooses a few important

keywords from the title of the change request, and formulates a generic search query��debugger source

lookup." Unfortunately, the query does not perform well, and returns the �rst correct result at the 79th

position of the result list. Further extension��debugger source lookup work variables"�also does not help,

and returns the result at the 77th position. The existing technique � RSV [62]� extends the query as

follows��debugger source lookup work variables launch con�guration jdt java debug"�where the new terms

are collected from the project source code using TF-IDF based term weight. This query returns the correct

result at the 30th position which is also far from ideal unfortunately. The query of Sisman and Kak [231]�

�debugger source lookup work variables test exception suite core code"�also returns the correct result at the

51st position. On the other hand, our suggested query��debugger source lookup work variables launch debug

problem resolve required classpath"�returns the correct result at the 2nd position which is highly promising.

We �rst collect structured tokens (e.g., resolveRuntimeClasspathEntry) from method signatures and �eld

signatures of the source code (e.g., Fig. 4.2), and split them into simpler terms (e.g., resolve, Runtime,

Classpath and Entry). The underlying idea is that such signatures often encode high level intents and

important domain concepts whereas the rest of the code focuses on more granular level implementation

details, and thus possibly contains more noise [104, 226]. We develop individual term graph (e.g., Fig.

4.1) based on term co-occurrences from each signature type, apply CodeRank term weighting, and extract

multiple candidate reformulations with the highly weighted terms (e.g., gray coloured, Fig. 4.1). Then we

analyze the quality of the candidates using their quality measures [96], apply machine learning, and suggest

the best reformulation to the given query. Thus, our technique (1) �rst captures salient terms from the

source code documents by leveraging their structural aspect with an appropriate term weighting algorithm

(CodeRank), (2) generates multiple reformulation candidates from the two signatures (method signatures

and �eld signatures), and (3) then delivers the best reformulated query using query di�culty analysis and

machine learning [96].

63

Table 4.1: An Example Change Request (Issue #31110, eclipse.jdt.debug)

Field Content

Title Debbugger Source Lookup does not work with variables

Description In the Debugger Source Lookup dialog I can also select variables for source lookup. (Ad-

vanced... > Add Variables). I selected the variable which points

to the archive containing the source �le for the type, but the debugger still claims that he

cannot �nd the source.

An Example of Query Reformulation

Technique Reformulated Query QE

Baseline {debugger source lookup work variables} 77

RSV [212] {debugger source lookup work variables} +

{launch configuration jdt java debug} 30

Sisman and Kak [231] {debugger source lookup work variables} +

{test exception suite core code} 51

ACER {debugger source lookup work variables} +

(Proposed) {launch debug resolve required classpath} 02

QE = Rank of the �rst correct result returned by the query

Experiments using 1,675 baseline queries from eight open source subject systems show that our technique

can improve 71% (and preserve 26%) of the baseline queries which are highly promising according to the

relevant literature [62, 98, 164]. Our suggested queries return correct results for 64% of the queries in the

Top-100 results. Our �ndings report that CodeRank is a more e�ective term weighting method than the

traditional alternatives (e.g., TF, TF-IDF) for search query reformulation in the context of source code.

Our �ndings also suggest that structure of a source code document is an important paradigm both for term

weighting and for search query reformulation. Comparison with �ve closely related existing approaches

[62, 98, 104, 213, 231] not only validates our empirical �ndings but also demonstrates the superiority of our

technique. Thus, our work makes the following contributions:

(a) A novel term weighting method for source code �CodeRank� that identi�es the important keywords

from a list of given source code entities (e.g., classes, methods).

(b) A novel query reformulation technique �ACER� that accepts a poor search query, identi�es comple-

mentary keywords from the source code using CodeRank, source document structures, query quality

analysis and machine learning, and then delivers an improved, reformulated query for concept location.

(c) Comprehensive evaluation of the proposed technique using 1,675 baseline queries from eight open source

subject systems.

(d) Comparison with �ve closely related existing approaches from the literature.

64

Figure 4.2: Source code used for automated query reformulation

Software change
request

Initial query

(input) Preprocessing Code search

Pseudo-relevance
feedback

Source token
selection & preprocessing

Source term graphs for
method and �eld signatures

CodeRank
calculation

Search term
ranking

Candidate
reformulations

Quality metric
data resampling

Select best
reformulation

Query
expansion

Reformulated query
(output)

1 2 3 4

5

6
7

891011

Figure 4.3: Schematic diagram of the proposed query reformulation technique�ACER

4.2 ACER: Automated Query Reformulation with CodeRank and

Document Structures for Concept Location

Fig. 4.3 shows the schematic diagram of our proposed technique�ACER�for automatic query reformulation.

We use a novel graph-based metric of term importance�CodeRank� for source code, and apply source doc-

ument structures, query quality analysis and machine learning for query reformulation for concept location.

We de�ne CodeRank and discuss di�erent steps of ACER in the following sections.

4.2.1 Pseudo-relevance Feedback

In order to suggest meaningful reformulations to an initial query, feedback on the query is required. Gay

et al. [84] �rst reformulate queries based on explicit feedback from the developers. Although such feedback

could be useful, gathering them is often time-consuming and sometimes infeasible. Hence, a number of recent

65

studies [62, 98, 188, 191] apply pseudo-relevance feedback as a feasible alternative. The top ranked results

returned by the code search tool for an initial query are considered as the pseudo-relevance feedback for the

query. We �rst re�ne an initial query by removing the punctuation marks, numbers, special symbols and

stop words (Step 1, Fig. 4.3). Then we collect the Top-K (i.e., K = 10, best performing heuristic according

to our experiments) search results returned by the query, and use them as the source for our candidate terms

for query reformulation (Steps 2, 3, Fig. 4.3).

4.2.2 Source Token Selection for Query Reformulation

Global Query Contexts: Pseudo-relevance feedback on an initial query provides a list of relevant source

documents where one or more terms from the query generally occur. Sisman and Kak [231] choose such

terms for query reformulation that frequently co-occur with the initial query terms within a �xed window

size in the feedback documents. Hill et al. [104] consider presence of the query terms in method signatures

or �eld signatures as an indicator of their relevance, and suggest natural language phrases from them as

reformulated queries. Both reformulation approaches are highly subject to the quality of the initial query

due to their imposed constraints� co-occurrences with query terms [231] and textual similarity with query

terms [104]. Rocchio [213] determines importance (i.e., TF-IDF) of a candidate term across all the feedback

documents, and suggests the top-ranked terms for query reformulation. Carmel et al. [61] suggest that a

single natural language query might focus on multiple topics, and di�erent parts of the returned results

might cover di�erent topics. That is, the same candidate term is not supposed to be important across all the

feedback documents. In other words, accumulating term weight across all the documents might not always

return the most appropriate terms for query reformulation. Such sort of calculation might add unnecessary

noise to the term weight from the unrelated topics. Hence, we consider all the feedback documents as a

single body of structured texts which acts as a �global context� for the query terms. Thus, with the help of

an appropriate term weighting method, the terms representing the most dominant topic across the feedback

documents (i.e., also in the initial query) could simply stand out, and could be chosen for reformulation.

Candidate Token Mining: Developers often express their intent behind the code and encode domain

related concepts in the identi�er names and comments [94]. However, code comments are often inadequate

or outdated [246]. All identi�er types also do not have the same level of importance. For example, while

the signature of a method encodes the high level intent for the method, its body focuses on granular level

implementation details and thus possibly contains more noisy terms [104]. In fact, Hill et al. [104] �rst analyze

method signatures and �eld signatures to suggest natural language phrases as queries for code search. In

the same vein, we thus also consider method signatures (msig) and �eld signatures (fsig) as the source

for our candidate reformulation terms. We extract structured identi�er names from these signatures using

appropriate regular expressions [211] (Step 4, Fig. 4.3). Since di�erent contexts of a source document might

convey di�erent types or levels of semantics (i.e., developers' intent), we develop a separate candidate token

66

set (CTsig) for each of the two signature types (sig ∈ {msig, fsig}) from the feedback documents (∀d ∈ DRF)

(i.e., relevant source documents) as follows:

CTsig =
⋃

∀d∈DRF

{∃t ∈ Tsig} | structured(t) ∧ Tsig = sig(d) (4.1)

Here sig(d) extracts all tokens from method signatures or �eld signatures, and structured(t) determines

whether the token t ∈ Tsig is structured or not. Although we deal with Java source code in this research

where the developers generally use camel case tokens (e.g., MessageType) or occasionally might use same

case tokens (e.g., DECIMALTYPE), our approach can also be easily replicated for snake case tokens (e.g.,

reverse_traversal).

4.2.3 Source Code Preprocessing

Token Splitting: Structured tokens often consist of multiple terms where the terms co-occur (i.e., are

concatenated) due to their semantic or temporal relationships [226]. We �rst split each of the complex tokens

based on punctuation marks (e.g., dot, braces) which returns the individual tokens (Step 4, Fig. 4.3). Then

each of these tokens is splitted using a state-of-the-art token splitting tool�Samurai [79]�given that regular

expression based splitting might not be always su�cient enough. Samurai mines software repositories to

identify the most frequent terms, and then suggests the splits for a given token. We implement Samurai in

our working environment where our subject systems (Section 4.3.1) are used for mining the frequent terms,

and the author's provided pre�x and su�x lists [19] are applied to the splitting task.

Stop word and Keyword Removal: Since our structured tokens comprise of natural language terms,

we discard stop words from them as a common practice (Step 4, Fig. 4.3). We use a standard list [25] hosted

by Google for stop word removal. Programming keywords can often be considered as the equivalence of stop

words in the source code which are also discarded from our analysis. Since we deal with Java source code, the

keywords of Java are considered for this step. As suggested by earlier study [98], we also discard insigni�cant

source terms (i.e., having word length< 3) from our analysis.

Stemming: It extracts the root (e.g., �send") out of a word (e.g., �sending"). Although existing stud-

ies suggest contradictory [120, 220] or con�icting [106] evidences for stemming with the source code, we

investigate the impact of stemming with RQ4 where Snowball stemmer [106, 176] is used for stemming.

4.2.4 Source Term Graph Development

Once candidate tokens are extracted from method signatures and �eld signatures, and are splitted into

candidate terms, we develop source term graphs (e.g., Fig. 4.1) from them (Step 5, Fig. 4.3). Developers often

encode their intent behind the code and domain vocabulary into the carefully crafted identi�er names where

multiple terms are concatenated. For example, the method name�getChatRoomBots�looks like a natural

67

language phrase��get chat room bots��when splitted properly. Please note that each of these three terms�

�chat�, �room� and �bots�� co-occur with each other to convey an important concept� a robotic technology,

and thus, they are semantically connected. On the other hand, the remaining term��get�� co-occurs with

them due to a temporal relationship (i.e., develops a verbal phrase). Similar phrasal representations (re�ned

with lexical matching) were directly returned by Hill et al. for query reformulation. However, their approach

could be limited due to the added constraint (e.g., warrants query terms in signatures). We thus perform

further analysis on such phrases, and exploit the co-occurrences among the terms for our graph based term

weighting. In particular, we encode the term co-occurrences into connecting edges (E) in the term graph

(G(V,E)) where the individual terms (Vi) are denoted as vertices (V).

V =
⋃

∀t∈CTsig

{Vi ∈ splitted(t) | validterm(Vi)} (4.2)

E =
⋃

∃Vi,Vj∈V

{(Vi, Vj) | Vi, Vj ∈ t ∧ | i− j |= 1} (4.3)

Here splitted(t) returns individual terms from the token t ∈ CTsig, and validterm(Vi) determines whether

the term is valid (i.e., not an insigni�cant or a stop word) or not. We consider a window size of two within

each phrase for capturing co-occurrences among the terms. Such window size for co-occurrence was reported

to perform well by the earlier studies [53, 153, 191]. Thus, the above method name can be represented as the

following edges� get←→chat, chat←→room, and room←→bots � in the term graph. That is, if a set of terms

are frequently shared across multiple tokens from two signature types, such occurrences are represented as

the high connectivity in the term graph (e.g., �Classpath" in Fig. 4.1).

4.2.5 CodeRank Calculation

CodeRank: PageRank [57] is one of the most popular algorithms for web link analysis which was later

adapted by Mihalcea and Tarau [153] for text documents as TextRank. In this research, we adapt our term

weighting method from TextRank [53, 153, 191] for source code, and we call it CodeRank. To date, only

traditional term weights (e.g., TF, TF-IDF [98, 213, 231]) are applied to source code which were originally

proposed for regular texts [114] and are mostly based on isolated frequencies. On the contrary, CodeRank

not only analyzes the connectivity (i.e., incoming links and outgoing links) of each source term, but also the

relative weight of the connected terms from the graph recursively, and calculates the term weight, S(Vi), as

follows (Step 6, Fig. 4.3):

S(Vi) = (1− ψ) + ψ
∑

jεIn(Vi)

S(Vj)

|Out(Vj)|
(0 ≤ ψ ≤ 1) (4.4)

68

Here, In(Vi), Out(Vj), and ψ denote the vertices to which Vi is connected through incoming links, the vertices

to which Vj is connected through outgoing links, and the damping factor respectively. As shown earlier using

the example�getChatRoomBots, co-occurred terms complement each other with their semantics which are

represented as bi-directional edges in the term graph. Thus, each (Vi) of the vertices from the graph has

equal number of incoming links and outgoing links, i.e., in-degree(Vi)=out-degree(Vi).

Parameters and Con�gurations: Brin and Page [57] consider damping factor, ψ, as the probability

of randomly choosing a web page in the context of web sur�ng by a random web surfer. That is, 1 − ψ

is the probability of jumping o� that page by the surfer. They use a well-tested value of 0.85 for ψ which

was later adopted by Mihalcea and Tarau [153] for text documents. Similarly, we also use the same value

of ψ for CodeRank calculation. Each of the vertices is assigned to a default value (i.e., base term weight)

of 0.25 (as suggested by earlier studies [57, 153]) with which CodeRank is calculated. It should be noted

that the base weight of a vertex does not determine its �nal weight when PageRank based algorithms are

applied [153]. CodeRank adopts the underlying mechanism of recommendation or votes [153, 191] for term

weighting. That is, each vertex feeds o� from the scores of surrounding connected vertices from the graph in

terms of recommendation (i.e., incoming edges). PageRank generally has two modes of computation�iterative

version and random walk version. We use the iterative version for CodeRank, and the computation iterates

until the weights of the terms converge below a certain threshold or they reach the maximum iteration limit

(i.e., 100 as suggested by Blanco and Lioma [53]). As applied by earlier studies [53, 153], we also apply a

heuristic threshold of 0.0001 for the convergence checking. The algorithm captures importance of a source

term not only by estimating its local impact but also by considering its global in�uence over other terms. For

example, the term, �Classpath�, Fig. 4.1, occurs in multiple structured tokens (Fig. 4.2), complements the

semantics of �ve other terms, and thus is highly important within the term graph (i.e., Fig. 4.1). Once the

iterative computation is over, each of the terms from the graph is found with a numeric score. We consider

these scores as the relative weight or importance of the corresponding terms from the source code.

4.2.6 Suggestion of the Best Query Reformulation

Candidate Reformulation Selection: Algorithms 4 and 5 show the pseudo-code of our query reformu-

lation technique�ACER�for concept location. We �rst collect pseudo-relevance feedback for the initially

provided query (Q) where Top-K source documents are returned (Lines 3�5, Algorithm 4). Then we collect

method signatures and �eld signatures from each of the documents (∀d ∈ DRF), and extract structured

tokens from them. We prepare three token sets�CTmsig, CTfsig and CTcomb from these signatures (Lines

6�12, Algorithm 4, Step 4, Fig. 4.3) where CTcomb combines tokens from both signatures. Then we perform

limited natural language preprocessing on each token set where Samurai algorithm [79] is used for token

splitting. We develop separate term graph for each of these token sets where individual terms are represented

as vertices, and term co-occurrences are encoded as connecting edges (Lines 3�7, Algorithm 5, Step 5, Fig.

4.3). We apply CodeRank term weighting to each of the graphs which provides a ranked list of terms based

69

on their relative importance. Then we select Top-K (e.g., K = 10) important terms from each of the three

graphs, and prepare three reformulation candidates (Lines 8�12, Algorithm 5, Steps 6, 7, 8, Fig. 4.3).

Algorithm 4 ACER: Proposed Query Reformulation

1: procedure ACER(Q) . Q: initial search query

2: L← {} . list of best reformulation query terms

3: . collecting pseudo-relevance feedback for Q

4: Qpp ← preprocess(Q)

5: DRF ← getRelevanceFeedback(Qpp)

6: . collecting candidate source tokens from signatures

7: for SourceDocument d ∈ DRF do

8: CTmsig ← CTmsig ∪ getMethodSigTokens(d)

9: CTfsig ← CTfsig ∪ getFieldSigTokens(d)

10: end for

11: CTcomb ← CTmsig ∪ CTfsig
12: CTall ← {CTmsig, CTfsig, CTcomb}

13: for TokenList CTsig ∈ CTall do

14: QR[sig]← getQRCandidate(CTsig)

15: end for

16: . suggesting the best reformulated query for Q

17: QD ← resample(getQueryQualityMetrics(QR))

18: QRbest ← getBestCandidateUsingML(QR,Qpp, QD)

19: L← combine(Qpp, QRbest)

20: return L

21: end procedure

Selection of the Best Reformulation: Haiduc et al. [98] argue that the same type of reformulation

(i.e., addition, deletion or replacement of query terms) might not be appropriate for all given queries. In the

same vein, we argue that query reformulations from di�erent contexts of the source document (e.g., method

signature, �eld signature) might have di�erent level of e�ectiveness given that they embody di�erent level

of semantics and noise. That means, one or more of the reformulation candidates could improve the initial

query, but the best one should be chosen carefully for useful recommendation.

Haiduc et al. [96] suggest that quality of a query with respect to the corpus could be determined using

four of its statistical properties� speci�city, coherency, similarity and term relatedness�that comprise of 21

metrics [60]. They apply machine learning on these properties, and separate high quality queries from low

quality ones. We thus also similarly apply machine learning on our reformulation candidates (and their

70

metrics), and develop classi�er model(s) where Classi�cation And Regression Tree (CART) is used as the

learning algorithm [96]. Since only the best of the four reformulation candidates (i.e., including baseline)

is of our interest, the training data was inherently skewed. We thus perform bootstrapping (i.e., random

resampling) [116, 237] on the data multiple times (e.g., 50) with 100% sample size and replacement (Step 9,

Fig. 4.3), train multiple models using the sampled data, and then record their output predictions. Then, we

average all the predictions for each test instance from all models, and determine their average probability of

being the best candidate reformulation. Thus, we identify the best of the four candidates using our models,

and suggest the best reformulation to the initial query (Lines 16�20, Algorithm 4, Steps 10, 11, Fig. 4.3).

Bassett and Kraft [49] suggest that repetition of certain query terms might improve retrieval performance of

the query. If none of the candidates is likely to improve the initial query according to the quality model (i.e.,

baseline itself is the best), we repeat all the terms from the initial query as the reformulation.

Algorithm 5 getQRCandidate: Get a candidate reformulation

1: procedure getQRCandidate(CTsig) . CTsig: extracted candidate tokens from the signatures sig

2: QRsig ← {} . candidate query reformulation

3: . extracting terms and their co-occurrences

4: STsig ← preprocess(Samurai(CTsig))

5: COsig ← getTermCo-occurrences(STsig, CTsig)

6: . developing term graph from token set

7: Gsig ← developTermGraph(STsig, COsig)

8: . calculating CodeRank using the graph

9: CRsig ← normalize(calculateCodeRank(Gsig))

10: . getting candidate reformulated query

11: QRsig ← getTopKTerms(sortByValue(CRsig))

12: return QRsig

13: end procedure

Working Example: Let us consider the query�{debugger source lookup work variables}�from our run-

ning example in Table 4.2. Our term weighting method�CodeRank�extracts three candidate reformulations

from method signatures and �eld signatures. We see that di�erent candidates have di�erent level of e�ec-

tiveness (i.e., rank 02 to rank 16), and in this case, the candidate from the method signatures (QRmsig) is

the most e�ective. Our technique�ACER� not only prepares such candidate queries from various contexts

(using a novel term weighting method) but also suggests the best candidate (QRbest) for query reformulation.

The reformulated query�{debugger source lookup work variables launch debug resolve required classpath} �

returns the �rst correct result at the top position (i.e., rank 02) of the result list which is highly promising.

Such e�ective reformulations are likely to reduce a developer's e�ort during software change implementation.

71

Table 4.2: A Working Example (Bug #31110, eclipse.jdt.debug)

Source Query Terms QE

Bug Title Debbugger Source Lookup does not work with variables 72

Initial
{debugger source lookup work variables}

77

Query (Q)

Q′msig Qpp ∪ (QRmsig={launch debug resolve required classpath}) 02

Q′fsig Qpp ∪ (QRfsig={label classpath system resolution launch}) 06

Q′comb Qpp ∪ (QRcomb={java type launch classpath label}) 16

QRbest = getBestCandidateUsingML(QRmsig, QRfsig, QRcomb, Qpp, QD)

Q′ACER Qpp ∪ QRbest 02

QE = Query E�ectiveness, rank of the �rst correct result returned by the query

4.3 Experiment

Although pre-retrieval methods (e.g., coherency, speci�city [96]) are lightweight and reported to be e�ective

for query quality analysis, post-retrieval methods are more accurate and more reliable [98]. Existing studies

[98, 164, 191, 220] also adopt these methods widely for evaluation and validation. We evaluate our term

weighting method and query reformulation technique using 1,675 baseline queries and three performance

metrics. We also compare our technique with �ve closely related existing techniques [62, 98, 104, 213, 231].

We thus answer �ve research questions using our experiments as follows:

• RQ1: Does query reformulation of ACER improve the baseline queries signi�cantly in terms of query

e�ectiveness and retrieval performance?

• RQ2: Does CodeRank perform better than traditional term weighting methods (e.g., TF, TF-IDF) in

identifying e�ective search terms from the source code?

• RQ3: Does employment of document structure improve ACER's suggestion on good quality search

terms from the source code?

• RQ4: How stemming, query length, and relevance feedback size a�ect the performance of our technique?

• RQ5: Can ACER outperform the existing query reformulation techniques from the literature in terms

of e�ectiveness and retrieval performance of the queries?

4.3.1 Experimental Dataset

Data Collection: We collect a total of 1,675 change requests from eight open source subject systems (i.e.,

�ve Eclipse systems and three Apache systems) for our experiments. Table 4.3 shows the experimental

72

Table 4.3: Experimental Dataset

System #Classes #CR System #Classes #CR

eclipse.jdt.core�4.7.0 5,908 198 ecf�279.279 2,827 154

eclipse.jdt.debug�4.6.0 1,519 154 log4j�1.2.18 309 28

eclipse.jdt.ui�4.7.0 10,927 309 sling�9.0 4,328 76

eclipse.pde.ui�4.6.0 5,303 302 tomcat70�7.0.73 1,841 454

CR= Change requests

dataset. We �rst extract resolved change requests (i.e., marked as RESOLVED) from BugZilla and JIRA

repositories, and then collect corresponding bug-�xing commits from GitHub version control histories of these

eight systems. Such an approach was regularly adopted by the relevant literature [49, 98, 191, 231], and we

also follow the same. In order to ensure a fair evaluation or validation, we discard the change requests from

our dataset for which no source code �les (e.g., Java classes) were changed or no relevant source �les exist in

the system snapshot collected for our study. We also discard such change requests that contain stack traces

using appropriate regular expressions [163]. They do not represent a typical change request (i.e., mostly

containing natural language texts) from the regular software users.

Baseline Query Selection: We select the title of a change request as the baseline query for our

experiments, as was also selected by earlier studies [98, 120, 231]. However, we discard such baseline queries

that already return their �rst correct results within the Top-10 positions. They possibly do not need any

query reformulation [98]. Finally, we ended up with a collection of 1,675 baseline queries. We perform the

same preprocessing steps as were done on the source documents (Section 4.2.3), on the queries before using

them for code search in our experiments.

Goldset Development: Developers often mention a Bug ID in the title of a commit when they �x the

corresponding reported bug [43]. We collect the changeset (i.e., list of changed �les) from each of our selected

bug-�xing commits, and develop individual solution set (i.e., goldset) for each of the corresponding change

requests. Such solution sets are then used for the evaluation and validation of our suggested queries.

Replication: All experimental data, intermediate results, and relevant materials are hosted online [2]

for replication or third party reuse.

4.3.2 Corpus Indexing & Source Code Search

Since we locate concept within project source, each of the source �les is considered as an individual document

of the corpus [220]. We apply the same preprocessing steps on the corpus documents as were done for

query reformulation (i.e., details in Section 4.2.3). We remove punctuation marks and stop words from each

document. Then, we split the structured tokens, and keep both the original and the splitted tokens in the

preprocessed documents. We then apply Apache Lucene, a Vector Space Model (VSM) based popular search

73

engine, to index all the documents and to search for relevant documents from the corpus for any given query.

Such approaches and tools were widely adopted by earlier studies [98, 120, 191, 224].

4.3.3 Performance Metrics

Query E�ectiveness (QE): It approximates the e�ort required to �nd out the �rst correct result for a

query. In other words, query e�ectiveness is de�ned as the rank of the �rst correct result returned by the

query [98, 163]. The lower the e�ectiveness score, the better the query is.

Mean Reciprocal Rank (MRR): Reciprocal rank is de�ned as the multiplicative inverse of query

e�ectiveness measure [220, 276]. Mean Reciprocal Rank averages such measures for all the queries. The

higher the MRR value, the better the query is.

Top-K Accuracy: It refers to the percentage of queries by which at least one correct result is returned

within the Top-K results [239, 250, 276]. The higher the metric value is, the better the queries are.

4.3.4 Evaluation of ACER and CodeRank

We evaluate our technique using 1,675 baseline queries from eight subject systems and three performance

metrics discussed above. We determine e�ectiveness and retrieval performance of our suggested reformulated

queries, and then compare them with their baseline counterparts. We also contrast our term weight with

traditional term weights, and calibrate our technique using various con�gurations.

Answering RQ1�E�ectiveness of ACER Queries: Table 4.4 and 4.5 show the e�ectiveness of ACER

queries. If our query returns the �rst correct result closer to the top position than the baseline query, then

we consider that as query improvement, and the vice versa as query worsening. If both queries return their

�rst correct results at the same position, we cosider that as query preserving. From Table 4.4, we see that

ACER can improve or preserve 97% of the baseline queries (i.e., about 71% improvement and about 26%

preserving) while worsening the quality of only about 3% of the queries. All these statistics are highly

promising according to the relevant literature [98, 164, 191], i.e., maximum 52% improvement reported [98],

and they demonstrate the potential of our technique. When individual systems are considered, our technique

provides 63%�82% improvement across eight systems. According to the quantile analysis in Table 4.4, 25%

of our queries return their �rst correct results within the Top-10 positions for all the systems except two

(i.e., Top-12 position for log4j and Top-21 position for tomcat70). Please note that only 6% of the baseline

queries return their correct results within the Top-10 positions (Table 4.6). On the contrary, 25% of our

queries do so for six out of eight systems, which demonstrates the potential of our technique. While query

improvement ratios are signi�cantly higher than the worsening ratios (i.e., 28 times higher), it should be

noted that our technique does not worsen any of the queries for two of the systems�log4j and sling.

Table 4.5 reports further e�ectiveness and the extent of actual rank improvements by our suggested

queries. We see that reformulations from the method signatures improve the baseline queries signi�cantly.

For example, they improve 59% of the baseline queries while worsening 38% of them. Reformulations from

74

T
a
b
le
4
.4
:
E
�
ec
ti
ve
n
es
s
o
f
A
C
E
R
Q
u
er
y
ag
a
in
st

B
a
se
li
n
e
Q
u
er
y

S
y
st
e
m

#
Q
u
e
ri
e
s

Im
p
ro
v
e
m
e
n
t

W
o
rs
e
n
in
g

P
re
se
rv
in
g

#
Im

p
ro
ve
d

M
ea
n

Q
1

Q
2

Q
3

M
in
.

M
a
x
.

#
W
o
rs
en
ed

M
ea
n

Q
1

Q
2

Q
3

M
in
.

M
a
x
.

#
P
re
se
rv
ed

e
c
f

1
5
4

1
0
0
(6
4
.9
4
%
)

7
1

8
2
0

5
8

1
6
5
4

5
(3
.2
5
%
)

1
2
5

4
8

8
8

2
2
0

4
3

3
2
9

4
9
(3
1
.8
2
%
)

jd
t.
c
o
re

1
9
8

1
2
5
(6
3
.1
3
%
)

8
9

8
2
0

5
1

1
1
,4
8
5

7
(3
.5
4
%
)

7
2

1
6

3
8

1
3
2

1
3

1
9
5

6
6
(3
3
.3
3
%
)

jd
t.
d
e
b
u
g

1
5
4

1
1
0
(7
1
.4
3
%
)

7
2

1
0

2
3

7
3

1
1
,2
3
4

3
(1
.9
5
%
)

1
3
8

4
8

1
0
2

2
6
5

4
8

2
6
5

4
1
(2
6
.6
2
%
)

jd
t.
u
i

3
0
9

2
1
6
(6
9
.9
0
%
)

1
6
9

1
0

2
7

9
2

1
3
,1
6
2

1
3
(4
.2
1
%
)

2
5
4

3
9

9
1

3
6
8

1
9

1
,3
6
9

8
0
(2
5
.8
9
%
)

p
d
e
.u
i

3
0
2

1
9
1
(6
3
.2
5
%
)

1
4
3

8
3
3

1
0
2

1
2
,3
0
4

7
(2
.3
2
%
)

5
0
7

7
0

4
7
7

1
,0
6
0

4
0

1
,1
7
2

1
0
4
(3
4
.4
4
%
)

lo
g
4
j

2
8

2
3
(8
2
.1
4
%
)

3
5

1
2

1
7

5
8

3
1
3
6

0
(0
.0
0
%
)

-
-

-
-

-
-

5
(1
7
.8
6
%
)

sl
in
g

7
6

5
9
(7
7
.6
3
%
)

1
6
5

9
1
8

1
2
0

2
1
,9
4
0

0
(0
.0
0
%
)

-
-

-
-

-
-

1
7
(2
2
.3
7
%
)

to
m
c
a
t7
0

4
5
4

3
4
5
(7
5
.9
9
%
)

2
3
6

2
1

9
2

2
9
1

1
1
,6
7
5

2
2
(4
.8
4
%
)

2
9
2

9
7

2
6
1

4
2
9

3
4

9
3
8

8
7
(1
9
.1
6
%
)

T
o
ta
l
=
1
,6
7
5

A
v
g
=
7
1
.0
5
%

A
v
g
=
2
.5
1
%

A
v
g
=
2
6
.4
4
%

jd
t.
c
o
re

=
e
c
l
i
p
s
e
.
j
d
t
.
c
o
r
e
,
jd
t.
d
e
b
u
g
=

e
c
l
i
p
s
e
.
j
d
t
.
d
e
b
u
g
,
jd
t.
u
i
=

e
c
l
i
p
s
e
.
j
d
t
.
u
i
,
p
d
e
.u
i
=

e
c
l
i
p
s
e
.
p
d
e
.
u
i
,
M
e
a
n
=
M
ea
n
ra
n
k
o
f
�
rs
t
co
rr
ec
t
re
su
lt
s

re
tu
rn
ed

b
y
th
e
q
u
er
ie
s,
Q
i=

it
h
q
u
a
rt
il
e
o
f
a
ll
ra
n
k
s
co
n
si
d
er
ed

75

Table 4.5: E�ectiveness of ACER Variants against Baseline Queries

Query Pairs Improved (MRD) Worsened (MRD) p-value Preserved

ACERmsig vs. Baseline 58.93% (-61) 37.99% (+131) *0.007 3.08%

ACERfsig vs. Baseline 52.51% (-51) 44.57% (+151) 0.063 2.91%

ACERcomb vs. Baseline 58.62% (-51) 38.19% (+136) *0.018 3.20%

ACER vs. Baseline 71.05% (-81) 2.51% (+104) *<0.001 26.44%

* = Statistically signi�cant di�erence between improvement and worsening, MRD = Mean

Rank Di�erence between ACER and baseline queries

the �eld signatures are found relatively less e�ective. However, ACER reduces the worsening ratio to as low

as 2.51%, and increases the improvement ratio up to 71%, which are highly promising. More importantly,

the mean rank di�erences (MRD) suggest that ACER elevates �rst correct results in the ranked list by 81

positions on average for at least 71% of the queries while dropping them for only 3% of the queries by 104

positions. Such rank improvements are likely to reduce human e�orts signi�cantly during concept location.

Retrieval Performance of ACER Queries: Table 4.6 reports the comparison of retrieval performance

between our queries and baseline queries. Given that most of our selected queries are di�cult (i.e., no correct

results within the Top-10 positions [98]), the baseline queries retrieve at least one correct result within the

Top-100 positions for 56% of the cases. However, our reformulations improve this ratio to about 64%, and the

improvement is statistically signi�cant (i.e., paired t-test, p-value=0.010<0.05, Cohen's D=0.68 (moderate)).

Similar scenarios are observed with mean reciprocal rank as well.

Summary of RQ1: The reformulation o�ered by our approach, ACER, improves the baseline queries

signi�cantly both in terms of query e�ectiveness and retrieval performance. ACER improves 71% of the

baseline queries with 64% Top-100 retrieval accuracy.

Answering RQ2�CodeRank vs. Traditional Term Weighting Methods: Table 4.7 shows the

comparative analysis between CodeRank and two traditional term weights�TF and TF-IDF� which are

widely used in the text retrieval contexts [62, 120, 213]. While TF estimates the importance of a term based

on its occurrences within a document, TF-IDF additionally captures the global occurrences of the term

across all the documents of the corpus [114]. On the contrary, CodeRank employs a graph-based scoring

mechanism that determines the importance of a term based on its co-occurrences with other important terms

within a certain context. From Table 4.7, we see that CodeRank performs signi�cantly better than both TF

(i.e., paired t-test, p-value=0.005<0.05) and TF-IDF (i.e., p-value<0.001) in identifying important search

terms from source code, especially from the method signatures. Considering the whole source code rather

than signatures improves the performance of both TF (i.e., 56% query improvement) and TF-IDF (i.e., 52%

query improvement). However, our term weight�CodeRank�is still better alone (i.e., 59%), and improves

signi�cantly higher (i.e., p-value=1.717e-06) fraction (i.e., 71%) of the baseline queries when employed with

our proposed reformulation algorithm�ACER.

76

Table 4.6: Comparison of ACER's Retrieval Performance with Baseline Queries

Query Metric Top-10 Top-20 Top-50 Top-100

Baseline
Top-K Accuracy 5.78% 18.91% 41.09% 56.30%

MRR@K 0.01 0.02 0.03 0.03

ACERmsig
Top-K Accuracy 10.45% 21.48% 38.12% 51.31%

MRR@K 0.02 0.03 0.04 0.04

ACERfsig
Top-K Accuracy 7.77% 17.40% 36.25% 47.23%

MRR@K 0.02 0.03 0.03 0.03

ACERcomb
Top-K Accuracy 8.68% 20.78% 36.87% 51.75%

MRR@K 0.02 0.03 0.03 0.04

ACER
Top-K Accuracy *14.72% *31.22% *49.89% *63.89%

MRR@K 0.04 0.05 0.06 0.06

* = Statistically signi�cant di�erence between ACER and baseline

Fig. 4.4 shows how CodeRank and traditional term weights perform in reformulating the baseline queries

with their (a) Top-10 and (b) Top-30 terms. We see that TF reaches its peak performance pretty quickly

(i.e., K = 3), and then shows a stationary or irregular behaviour. That means, TF identi�es frequent

terms for query reformulation, and few of them (e.g., Top-3) could be highly e�ective. On the contrary,

our method�CodeRank� demonstrates a gradual improvement in the performance up to Top-12 terms (i.e.,

K=12, Fig. 4.4-(b)), and crosses the performance peak of TF with a large margin (i.e., paired t-test, p-

value=0.004<0.05, Cohen's D=3.77>1.00 (large)), for K=10 to K=15). CodeRank emphasizes on the votes

from other important terms (i.e., by leveraging co-occurrences) for determining weight of a term, and as

demonstrated in Fig. 4.4, this weight is found to be more reliable than TF. TF-IDF is found relatively less

e�ective according to our investigation.

Summary of RQ2: CodeRank performs signi�cantly better than traditional methods in identifying e�ective

terms for query reformulation from the source code.

Answering RQ3�Do Document Structures Matter? While most of the earlier reformulation tech-

niques miss or ignore the structural aspect of a source document, we consider such aspect as an important

paradigm of our technique. We consider a source document as a collection of structured entities (e.g., signa-

tures, methods, �elds) [184] rather than a regular text document. Thus, we make use of method signatures

and �eld signatures rather than the whole source code for query reformulation given that they are likely to

contain more salient terms and less noise [104]. Fig. 4.5 demonstrates how incorporation of document struc-

tures into a technique could be useful for query reformulations. We see that reformulations using method

signatures and �eld signatures improve two di�erent sets of baseline queries, and this happens with both term

weighting methods�(a) CodeRank and (b) TF. While these sets share about half of the queries (49%�57%),

reformulations based on each signature type also improve a signi�cant amount (i.e., 19% (73+136+24) � 25%

77

Table 4.7: Comparison between CodeRank and Traditional Term Weights

Query Pairs Improved Worsened Preserved

ACERmsig vs. TFmsig *58.93% / 53.40% *37.99% / 44.60% 3.08% / 2.00%

ACERfsig vs. TFfsig 52.51% / 51.57% 44.57% / 46.85% 2.91% / 1.57%

ACERcomb vs. TFcomb *58.62% / 54.34% *38.19% / 44.11% 3.20% / 1.54%

ACER vs. TFall *71.05% / 56.01% *2.51% / 41.44% *26.44% / 2.55%

ACERmsig vs. TF-IDFmsig *58.93% / 45.55% *37.99% / 49.88% 3.08% / 4.57%

ACERfsig vs. TF-IDFfsig 52.51% / 51.06% 44.57% / 46.77% 2.91% / 2.17%

ACERcomb vs. TF-IDFcomb *58.62% / 50.35% *38.19% / 47.25% 3.20% / 2.40%

ACER vs. TF-IDFall *71.05% / 52.17% *2.51% / 45.13% *26.44% / 2.70%

* = Statistically signi�cant di�erence between ACER measures and their counterparts

Figure 4.4: Comparison of query improvement between CodeRank and traditional term weights for
(a) Top K=1 to 10 and (b) Top K=1 to 30 reformulated query terms

(105+152+46)) of unique baseline queries. In Fig. 4.5-(c), when these signatures (i.e., along with ACER)

are contrasted with the whole source code (i.e., along with TF), we even found that the signature-based

reformulations outperform the whole code-based reformulations by a large margin (i.e., (25.2%�8.39%) ≈

17% more query improvement). That is, the use of the whole source code introduces additional noise, and

diminishes the strength or salience of the individual structures (i.e., signatures). Most of the existing methods

[84, 98, 188] su�er from this limitation. On the contrary, our technique ACER exploits document structures

(i.e., signatures), and carefully chooses the best among all the candidate reformulations derived from such

structures using query quality analysis and machine learning.

Summary of RQ3: Document structures (e.g., method signatures, �eld signatures) improve the suggestion

of query reformulation terms from the source code.

Answering RQ4� Impact of Stemming, Query Length, and Relevance Feedback: From Table

4.8, we see that stemming generally degrades the e�ectiveness of our reformulated queries. Similar �ndings

were also reported by earlier studies [120, 220]. Fig. 4.6 shows how (a) Top-10 and (b) Top-30 reformulation

78

Figure 4.5: Improved queries by reformulation from method signatures and �eld signatures using (a)
CodeRank (CR) and (b) Term Frequency (TF). (c) ACER vs. TF (all content)

Table 4.8: Impact of Stemming on Query E�ectiveness

Source Query Improved (MRD) Worsened (MRD) Preserved

Method ACERmsig,stem 52.66% (-58) 44.73% (+127) 2.61%

signature ACERmsig *58.93% (-61) *37.99% (+131) 3.08%

Field ACERfsig,stem 48.14% (-53) 47.47% (+151) 4.39%

signature ACERfsig 52.51% (-51) 44.57% (+151) 2.91%

Both ACERcomb,stem 52.68% (-57) 44.38% (+128) 2.94%

signatures ACERcomb *58.62% (-51) *38.19% (+136) 3.20%

Both ACERstem 68.11% (-78) 5.37% (+67) 26.51%

signatures ACER 71.05% (-81) *2.51% (+104) 26.44%

* = Statistically signi�cant di�erence between two measures from the same signature,

MRD = Mean Rank Di�erence between ACER and baseline queries

terms improve the baseline queries. We see that our reformulations perform the best (i.e., about 60% query

improvement) with Top-10 to 15 search terms collected from each signature type. However, when query

quality analysis [96] is employed, our technique�ACER�can improve 71% of the baseline queries with only

Top-10 reformulation terms. We also repeat the same investigation with Top-30 terms, and achieved the same

top performance (i.e., Fig. 4.6-(b)). Thus, our choice of returning Top-10 reformulation terms is justi�ed.

We also investigate how the size of pseudo-relevance feedback in�uences our performance, and experimented

with Top-30 documents. We found that reformulations for ACER reach the performance peak when Top-10

to 15 feedback source documents (i.e., returned by the baseline queries) are analyzed for candidate terms.

This possibly justi�es our choice of Top-10 documents as the pseudo-relevance feedback.

Summary of RQ4: Token stemming degrades the query e�ectiveness of ACER. Reformulation size and

relevance feedback size gradually improve the performance of ACER's queries as long as they are below a

certain threshold (i.e., K = 15).

79

T
a
b
le
4
.9
:
C
o
m
p
a
ri
so
n
o
f
Q
u
er
y
E
�
ec
ti
ve
n
es
s
w
it
h
E
x
is
ti
n
g
T
ec
h
n
iq
u
es

T
e
ch
n
iq
u
e

#
Q
u
e
ri
e
s

Im
p
ro
v
e
m
e
n
t

W
o
rs
e
n
in
g

P
re
se
rv
in
g

#
Im

p
ro
ve
d

M
ea
n

Q
1

Q
2

Q
3

M
in
.

M
a
x
.

#
W
o
rs
en
ed

M
ea
n

Q
1

Q
2

Q
3

M
in
.

M
a
x
.

#
P
re
se
rv
ed

H
il
l
et

a
l.
[1
0
4
]

1
,6
7
5

6
3
1
(3
7
.6
7
%
)

1
5
7

1
8

4
8

1
6
1

1
2
,2
6
4

7
6
0
(4
5
.3
7
%
)

2
6
1

5
4

1
1
9

3
0
0

4
4
,8
1
9

2
8
4
(1
6
.9
6
%
)

R
o
cc
h
io
[2
1
3
]

1
,6
7
5

8
9
5
(5
3
.4
3
%
)

2
1
9

1
5

4
9

1
8
8

1
4
,6
0
9

7
3
9
(4
4
.1
1
%
)

3
3
3

6
5

1
7
0

4
2
9

3
3
,4
8
9

4
1
(2
.4
5
%
)

R
S
V
[6
2
]

1
,6
7
5

9
1
4
(5
4
.5
7
%
)

2
1
6

1
5

5
2

1
9
5

1
4
,6
1
1

7
2
3
(4
3
.1
6
%
)

3
0
7

6
3

1
6
0

4
1
5

7
3
,3
8
7

3
8
(2
.2
7
%
)

S
is
m
a
n
a
n
d
K
a
k
[2
3
1
]

1
,6
7
5

7
5
9
(4
5
.3
1
%
)

2
0
7

1
7

6
1

2
1
3

1
3
,7
0
7

6
4
2
(3
8
.3
3
%
)

2
7
3

5
9

1
4
7

3
4
5

8
2
,5
4
5

2
7
4
(1
6
.3
6
%
)

R
e
fo
q
u
s
[9
8
]

1
,6
7
5

8
9
5
(5
3
.4
3
%
)

2
1
7

1
5

5
1

1
8
8

1
4
,6
0
9

7
3
7
(4
4
.0
0
%
)

3
3
2

6
5

1
7
0

4
2
9

3
3
,4
8
9

4
3
(2
.5
7
%
)

R
e
fo
q
u
s s
a
m
p
le
d
[9
8
]

1
,6
7
5

1
,1
5
4
(6
8
.9
0
%
)

1
5
6

1
1

3
3

1
4
1

1
4
,6
0
9

4
8
7
(2
9
.0
7
%
)

3
2
5

6
3

1
6
6

4
0
6

6
3
,4
8
9

3
4
(2
.0
3
%
)

A
C
E
R
m
s
ig

1
,6
7
5

9
6
9
(5
7
.8
5
%
)

2
0
8

1
4

4
9

1
9
2

1
3
,6
4
9

6
6
2
(3
9
.5
2
%
)

2
7
2

5
2

1
3
9

3
4
1

2
4
,8
2
5

4
4
(2
.6
3
%
)

A
C
E
R
c
o
m
b

1
,6
7
5

9
5
8
(5
7
.1
9
%
)

2
1
6

1
5

4
9

1
9
4

1
4
,1
1
7

6
7
4
(4
0
.2
4
%
)

2
7
5

5
2

1
3
9

3
3
6

4
3
,3
6
0

4
3
(2
.5
7
%
)

A
C
E
R

1
,6
7
5

*
1
,1
6
9
(6
9
.7
9
%
)

1
5
6

1
1

3
5

1
3
0

1
3
,1
6
2

*
5
7
(3
.4
0
%
)

2
6
0

5
3

1
4
0

3
7
5

1
3

1
,3
6
9

*
4
4
9
(2
6
.8
1
%
)

B
a
se
li
n
e

1
,6
7
5

-
2
2
7

3
2

8
8

2
5
8

3
4
,7
8
7

-
1
1
3

2
4

4
9

1
6
2

1
7
1
8

-

A
C
E
R
e
x
t

1
,7
5
5

*
1
,1
9
2
(6
7
.9
2
%
)

1
4
9

1
0

3
4

1
2
4

1
3
,1
6
2

*
4
8
(2
.7
4
%
)

3
0
1

5
0

1
4
5

3
2
7

1
3

1
,7
8
2

*
5
1
5
(2
9
.3
4
%
)

M
e
a
n
=
M
ea
n
ra
n
k
o
f
�
rs
t
co
rr
ec
t
re
su
lt
s
re
tu
rn
ed

b
y
th
e
q
u
er
ie
s,
Q
i=

it
h
q
u
a
rt
il
e
o
f
a
ll
ra
n
k
s
co
n
si
d
er
ed
,
*
=
S
ta
ti
st
ic
a
ll
y
si
g
n
i�
ca
n
t
d
i�
er
en
ce

b
et
w
ee
n
A
C
E
R
m
ea
su
re
s
a
n
d
th
ei
r

co
u
n
te
rp
a
rt
s

80

Figure 4.6: E�ectiveness of ACER queries for (a) Top-10 and (b) Top-30 reformulated terms

Figure 4.7: Comparison of (a) query e�ectiveness, and (b) retrieval performance

4.3.5 Comparison with Existing Approaches

Answering RQ5: While the empirical evaluation in terms of performance metrics above clearly demonstrates

the promising aspects of our query reformulation technique, we still compare with �ve closely-related existing

approaches [62, 98, 104, 213, 231]. Hill et al. [104] suggest relevant phrases from method signatures and �eld

signatures as query reformulations. While Sisman and Kak [231] focus on term co-occurrences with query

keywords, Rocchio [213] and RSV [62] apply TF-IDF based term weights for choosing query reformulation

terms. Refoqus [98] is closely related to ours and is reported to perform better than RSV and other earlier

approaches, which probably makes it the state-of-the-art for our research problem. We replicate each of Hill

et al., Rocchio, RSV, Sisman and Kak, and Refoqus in our working environment by carefully following their

algorithms, equations and methodologies given that their implementations are not publicly available. In the

case of Refoqus, we implement 27 metrics (20 pre-retrieval [96] and 7 post-retrieval [98]) that estimate query

di�culty. We develop a machine learning model using CART algorithm (i.e., as used by them) and 10-fold

cross validation. Then, we use the model to return the best reformulation out of four candidates of Refoqus�

query reduction, Dice expansion, Rocchio's expansion and RSV expansion�for each baseline query. Table 4.9

and Fig. 4.7 summarize our comparative analyses.

From Table 4.9, we see that RSV and Refoqus perform better than the other existing approaches. They

improve about 55% and about 53% of the baseline queries respectively. Such ratios are also pretty close to

81

the originally reported performances by Haiduc et al. on a di�erent dataset, which possibly validates the

correctness of our implementation. While 55% query improvement is the maximum performance provided by

any of the existing approaches, our technique�ACER�improves about 70% of the baseline queries (i.e., 1%

di�erence between Table 4.5 and Table 4.9 due to rounding error) which is signi�cantly higher, i.e., paired t-

test, p-value=6.663e-06<0.05, Cohen's D=2.43>1.00 (large). Refoqus adopts a similar methodology like ours.

Unfortunately, the approach is limited due to possibly the low performance of its candidate reformulations.

One might argue about the data resampling step (i.e., Step 9, Fig. 4.3) of ACER for the high performance.

However, we also apply data resampling to Refoqus using the same settings as ours for further investigation.

We see that Refoqussampled has a similar improvement ratio like ours, but it still worsens a signi�cant amount

of queries, 29%, compared to our query worsening ratio of 3.40%. Thus, our technique still performs better

than Refoqus in the equal settings. Our quantile measures and mean ranks are more promising than those

from the baseline or competing methods as reported in Table 4.9. Table 4.5 and RQ1 also suggest that our

queries have high potential for reducing human e�orts. We also experiment with an extended dataset (i.e.,

1,755=1,675 + 8x10) containing 80 very good queries. As reported in Table 4.9, ACERext mostly preserves

the good quality queries rather than worsening, which also demonstrates its high potential.

Fig. 4.7-(a) shows the box plots of query improvement and query worsening ratios by all the techniques

under study. We see that ACER outperforms the existing techniques including the state-of-the-art [98] by

a large margin. Our median improvement ratio is about 75%, which is higher than even the maximum

improvement ratios of the counterparts, which demonstrates the promising aspect of ACER. Fig. 4.7-(b)

shows the Top-K accuracy of the query reformulation techniques. We see that our accuracy is relatively

higher than that of each of the existing approaches across various Top-K (i.e., 10�100) values. The best

performing existing method is RSV. However, our performance is signi�cantly higher than that of RSV for

various K values according to statistical signi�cance tests (i.e., paired t-test, p-value<0.05, Cohen's D=0.34).

Summary of RQ5: Our technique, ACER, outperforms the state-of-the-art techniques in terms of refor-

mulation query e�ectiveness, and performs signi�cantly better than each of the existing techniques in terms

of document retrieval accuracy.

4.4 Threats to Validity

Threats to internal validity relate to experimental errors and biases [272]. Although CodeRank and document

structures play a major role, the data resampling step (Section 4.2.6, Step 9, Fig. 4.3) has a signi�cant role

behind the high performance of our technique. Unfortunately, to the best of our knowledge, Refoqus [98] does

not have such a step. Thus, the performance comparison might look like a bit unfair. Besides, models based

on data resampling are sometimes criticized for their intrinsic biases [22]. However, we apply the same data

resampling step to Refoqus as well (i.e., Refoqussampled), and demonstrate that our technique still performs

82

better in terms of query worsening ratio. Despite all these inspiring instances, our query di�culty models

might still be slightly biased due to data imbalance problem. Future work should employ more rigorous

methods for dealing with the imbalanced data.

Threats to external validity relate to the generalization of the obtained results [98]. All of our subject

systems are Java-based. So, there might be di�erent results with systems from other programming languages.

However, we experimented with eight di�erent systems with promising performance, and the comparison with

the state-of-the-art techniques demonstrates the superiority of our approach.

4.5 Related Work

There exist a number of studies in the literature that reformulate a given query for concept location in the

context of software change tasks. Existing studies apply relevance feedback from developers [84], pseudo-

relevance feedback from IR tools [98], partial phrasal matching [104, 215], and machine learning [98, 164] to

query reformulation. They also make use of context of query terms from source code [109, 188, 231, 265],

text retrieval con�guration [98, 164], and quality of queries [96, 97] in suggesting the reformulated queries.

Hill et al. [104] consider the presence of query terms in the method or �eld signatures as an indicator of

their relevance, and suggest natural language phrases from them as reformulated queries. Sisman and Kak

[231] choose such terms for query reformulation that frequently co-occur with query terms within a �xed size

of window in the code. Rocchio [213] and RSV [62] determine importance of a term using TF-IDF based

metrics. Haiduc et al. [98] identify the best of four reformulation candidates for any given query using a

machine learning model with 28 metrics. All these �ve studies are highly relevant to ours, and we directly

compare with them using experiments. Readers are referred to Section 4.3.5 for comparison details.

Other related studies [187, 191, 267] explore graph-based methods for term weighting. Rahman and Roy

[187, 191] simply use TextRank on change request texts for suggesting initial queries for concept location. Yao

et al. [267] build a term augmented tuple graph and use a random walk approach to reformulate queries for

structured bibliographic DBLP Data (i.e., non-source code). Ours is signi�cantly di�erent from these studies

in the sense that we reformulate the initial queries not only by employing our term weighting method�

CodeRank for source code, but also by applying source code document structures, query quality analysis and

machine learning. Besides, their reported best performance (i.e., 58%�62% query improvement over baseline

[191]) is quite lower than our performance (i.e., 71%, even with di�cult queries). Given that reformulation

is often performed on the initial queries, our technique can potentially complement theirs. Howard et al.

[109] map method signatures to associated comments for query reformulation, and thus, might not work

well with source code without comments. Our earlier work [188] exploits crowd sourced knowledge for query

reformulation, and that method is also subject to the availability of a third party information source. Thus,

while earlier studies adopt various methodologies or information sources, our technique not only employs

83

a novel and promising term weight �CodeRank, but also exploits structures of the source documents for

identifying the best reformulation to a given query for improved concept location.

4.6 Summary

Software developers deal with thousands of change requests during maintenance phase. Locating a concept

within the source code using the request texts is a major challenge. About 88% of the time, software

developers fail to choose the right search queries from the change requests [120]. Their queries thus need to

be carefully reformulated before using them for concept location. In this chapter, we propose a novel technique

�ACER� that reformulates the search queries from the developers and supports the concept location task. In

particular, ACER accepts a given query as input, and constructs multiple reformulation candidates from the

relevant source code documents using a novel term weighting method namely CodeRank. Then it suggests the

best reformulated query using query di�culty analysis and machine learning. Experiments with 1,675 search

queries from eight systems report that our technique can improve 71% of the given queries and preserve 26%

of them, which are highly promising. Comparison with �ve closely related existing approaches including the

state-of-the-art approach not only validates our empirical �ndings but also demonstrates the high potential

of our technique.

Our study in this chapter (ACER) and our previous study (STRICT, Chapter 3) extract important

keywords from source code documents and change requests respectively, and help the developers locate the

concepts of interest (e.g., program entities) within a software system. Although they are found promising for

concept location, they might not be directly applicable to bug localization. Bug reports often contain highly

structured entities (e.g., stack traces, test cases) as opposed to the unstructured texts in the change requests.

Thus, STRICT or ACER might not be suitable for extracting appropriate keywords from these structured

entities. In the next chapter, our third study (BLIZZARD, Chapter 5) overcomes this challenge. BLIZZARD

accepts a bug report as a search query, employs context-aware query reformulations, and then delivers an

improved, reformulated search query for bug localization even from the noisy and poor quality bug reports.

84

Chapter 5

Search Query Reformulation for Bug Localization

using Report Quality Dynamics & Graph-Based Term

Weighting

Software bugs and failures cost trillions of dollars every year [1]. One crucial step towards resolving the

bugs is �nding the locations of the bugs within a software system [220, 248, 276]. Our previous studies

(STRICT, Chapters 3, ACER, 4) accept a change request as a search query, and then deliver a reformulated

query for concept location. Although they are found promising for concept location, they might not be directly

applicable to bug localization task. Bug reports often contain highly structured entities (e.g., stack traces) as

opposed to the regular texts in the change requests. Thus, our previous studies that are designed for change

requests might deliver sub-optimal queries from the bug reports, which hurt the bug localization performance.

In this chapter, we present another study (BLIZZARD) that overcomes this challenge. BLIZZARD accepts

a bug report as a search query, employs appropriate methodologies or algorithms based on the quality of the

report (e.g., noisy, poor), and then delivers an improved, reformulated search query for the bug localization.

The rest of the chapter is organized as follows� Section 5.1 presents an overview of our study, and Section

5.2 describes our proposed approach for search query reformulation and bug localization. Section 5.3 discusses

our evaluation, validation and answers four research questions. Section 5.4 identi�es the threats to validity,

Section 5.5 discusses the related work, and �nally Section 5.6 concludes the chapter with future work.

5.1 Introduction

Despite numerous attempts for automation [41, 68, 91, 165, 278], software debugging is still largely a manual

process which costs a signi�cant amount of development time and e�orts [39, 170, 262]. One of the three

steps of debugging is the identi�cation of the location of a bug in the source code, i.e., bug localization

[170, 248]. Recent bug localization techniques can be classi�ed into two broad families�spectra based and

Information Retrieval (IR) based [130]. While spectra-based techniques rely on execution traces of a software

system, IR-based techniques analyse shared vocabulary between a bug report (i.e., query) and the project

source for bug localization [163, 276]. Performances of IR-based techniques are reported to be as good as that

of spectra-based techniques, and such performances are achieved using a low cost text analysis [207, 248].

85

Unfortunately, recent qualitative and empirical studies [193, 248] have reported two major limitations. First,

IR-based techniques cannot perform well without the presence of rich structured information (e.g., program

entity names pointing to defects) in the bug reports. Second, they also might not perform well with a

bug report that contains excessive structured information (e.g., stack traces, Table 5.1) [248]. One possible

explanation of these limitations could be that most of the contemporary IR-based techniques [130, 167, 207,

220, 230, 249, 276] use almost verbatim texts from a bug report as a query for bug localization. That is, they

do not perform any meaningful modi�cation to the query except a limited natural language pre-processing

(e.g., stop word removal, token splitting, stemming). As a result, their query could be either noisy due to

excessive structured information (e.g., stack traces) or poor due to the lack of relevant structured information

(e.g., Table 5.2). One way to overcome the above challenges is to (a) re�ne the noisy query (e.g., Table 5.1)

using appropriate �lters and (b) complement the poor query (e.g., Table 5.2) with relevant search terms.

Existing studies [128, 249, 250, 268] that attempt to complement basic IR-based localization with costly data

mining or machine learning alternatives can also equally bene�t from such query reformulations.

In this chapter, we propose and design a novel technique �BLIZZARD� that locates software bugs from

source code by employing context-aware query reformulation and information retrieval. Our technique (1)

�rst determines the quality (i.e., prevalence of structured entities or lack thereof) of a bug report (i.e., query)

and classi�es it as either noisy, rich or poor, (2) then applies appropriate reformulation to the query, and (3)

�nally uses the improved query for the bug localization with information retrieval. Unlike earlier approaches

[220, 221, 249, 276], it either re�nes a noisy query or complements a poor query for e�ective information

retrieval. Thus, BLIZZARD has a high potential for improving IR-based bug localization.

To illustrate the capability of our technique in improving bug localization, we provide two examples in

which it outperforms the baseline. The baseline technique that uses all terms except punctuation marks,

stop words and digits from a bug report, returns its �rst correct result for the noisy query containing stack

traces in Table 5.1 at the 53rd position. On the contrary, our technique re�nes the same noisy query, and

returns the �rst correct result at the �rst position of the ranked list which is a signi�cant improvement over

the baseline. Similarly, when we use a poor query containing no structured entities such as in Table 5.2, the

baseline technique returns the correct result at the 30th position. On the other hand, our technique improves

the same poor query, and returns the result again at the �rst position. BugLocator [276], one of the well

cited IR-based techniques, returns such results at the 19th and 26th positions respectively for the noisy and

poor queries which are far from ideal.

We evaluate our technique in several di�erent dimensions using four widely used performance metrics

and 5,139 bug reports (i.e., queries) from six Java-based subject systems. First, we evaluate in terms of

the performance metrics, contrast with the baseline, and BLIZZARD localizes bugs with 7%�56% higher

accuracy (i.e., Hit@10), 6%�62% higher precision (i.e., MAP@10) and and 6%�62% higher result ranks (i.e.,

MRR@10) than the baseline (Section 5.3.3). Second, we compare our technique with three bug localization

techniques [220, 250, 276], and our technique can improve 19% in MAP@10 and 20% in MRR@10 over the

86

Table 5.1: A Noisy Bug Report (Issue #31637, eclipse.jdt.debug)

Field Content

Title should be able to cast �null"

Description When trying to debug an application the variables tab is empty. Also when I try to inspect or

display a variable, I get following error logged in the eclipse log �le:

java.lang.NullPointerException

at org.eclipse.jdt.internal.debug.core. model.JDIValue.toString(JDIValue.java:362)

at org.eclipse.jdt.internal.debug.eval.ast.instructions.Cast.execute(Cast.java:88)

at org.eclipse.jdt.internal.debug.eval.ast.engine.

Interpreter.execute(Interpreter.java:44)

at org.eclipse.jdt.internal.debug.eval.ast.engine.

EvaluationThread1EvaluationRunnable

at org.eclipse.jdt.internal.debug.core.model.JDIThread.runEvaluation

(JDIThread.java:600)

..(more).......................................

An Example of Noise Filtration

Technique Suggested Query QE

Baseline {Title + Description } 53

BLIZZARD NullPointerException + �Bug should be able to cast null" + {JDIValue toString execute

EvaluationThread run}

01

state-of-the-art [250] (Section 5.3.4). Third, we also compare our approach with four state-of-the-art query

reformulations techniques, and BLIZZARD improves the result ranks of 59% of the noisy queries and 39% of

the poor queries which are 22% and 28% higher respectively than that of the state-of-the-art [191] (Section

5.3.4). By incorporating report quality aspect and query reformulation into IR-based bug localization, we

resolve an important issue which was either not addressed properly or otherwise overlooked by earlier studies,

which makes our work novel. Thus, our work makes the following contributions:

(a) A novel query reformulation technique �BLIZZARD� that �lters noise from and adds complementary

information to the bug report, and suggests improved, reformulated search queries for bug localization.

(b) A novel bug localization technique that locates bugs from the project source by employing quality

paradigm of bug reports, query reformulation, and information retrieval.

(c) Comprehensive evaluation of the technique using 5,139 bug reports from six open source systems and

validation against seven techniques including the state-of-the-art.

(d) A working prototype [27] with detailed experimental data for replication and third party reuses.

87

Table 5.2: A Poor Bug Report (Issue #187316, eclipse.jdt.ui)

Field Content

Title [preferences] Mark Occurences Pref Page

Description There should be a link to the pref page on which you can change the color. Namely: General/Edi-

tors/Text Editors/Annotations. It's a pain in the a** to �nd the pref if you do not know Eclipse's

preference structure well.

An Example of Query Expansion

Technique Expanded Query QE

Baseline {Title + Description} 30

BLIZZARD {Title + Description} + {compliance create preference add configuration field

dialog annotation}

01

Bug report Bug report
classi�cation

BRST

BRPE

BRNL

Exception & traces Trace graph

Text preprocessing Text graph

Pseudo-relevance
feedback

Source token
graph

Graph-based
term weighting

Term ranking

Suggested
query

A B

1

2a

2b

2c

3a

3b

3c

4a

4b

4c

5
6

7

Figure 5.1: Schematic diagram of the proposed query reformulation technique �BLIZZARD�(A) Bug
report classi�cation and (B) Search query suggestion

5.2 BLIZZARD: Automated Query Suggestion using Report Qual-

ity Dynamics and Term Weighting for Bug Localization

Fig. 5.1 shows the schematic diagram of our proposed technique for automated query suggestion�BLIZZARD.

Furthermore, Algorithm 6 shows the pseudo-code for BLIZZARD. We construct appropriate search queries

from the bug reports by making use of the report quality dimension and graph-based term weighting, and

then employ them for localizing the bugs in source code with information retrieval as follows.

5.2.1 Bug Report Classi�cation

Since our primary objective with this work is to overcome the challenges posed by the di�erent kinds of

information bug reports may contain, we categorize the reports prior to bug localization. In addition to

having natural language texts, a bug report typically may contain di�erent structured elements: (1) stack

traces (reported active stack frames during the occurrence of a bug, e.g., Table 5.1), and (2) program elements

such as method invocations, package names, and source �le names. Having consulted with the relevant

88

literature [51, 52, 248], we classify the bug reports into three board categories (Steps 1, 2a, 2b and 2c, Fig.

5.1) as follows:

BRST: ST stands for stack traces. If a bug report contains one or more stack traces besides the

regular texts or program elements, it is classi�ed into BRST . Since trace entries contain too much structured

information, query generated from such a report is generally considered noisy. We apply the following regular

expression [163] to locate the trace entries from the report content.

(.*)?(.+)\.(.+)(\((.+)\.java:\d+\)|\(Unknown Source\)|\(Native Method\))

BRPE: PE stands for program elements. If a bug report contains one or more program elements (e.g.,

method invocations, package names, source �le name) but no stack traces in the texts, then it is classi�ed

into BRPE . Queries generated from such report are considered rich. We use appropriate regular expressions

[211] to identify the program elements from the texts. For example, we use the following one to identify API

method invocations within the bug report texts.

((\w+)?\.[\s\n\r]*[\w]+)[\s\n\r]*(?=\(.*\))|([A-Z][a-z0-9]+){2,}

BRNL: NL stands for natural language. If a bug report contains neither any program elements nor any

stack traces, it is classi�ed into BRNL. That is, it contains only unstructured natural language description

of the bug. Queries generated from such reports are generally considered poor in this work.

We adopt a semi-automated approach in classifying the bug reports (i.e., the queries). Once a bug report

is provided, we employ each of our regular expressions to determine its class. If the automated step fails due

to ill-de�ned structures of the report, the class is determined based on manual analysis. Given the explicit

nature of the structured entities, human developers can identify the class easily. The contents of each bug

report are considered as the initial queries which are reformulated in the next few steps.

5.2.2 Query Reformulation

Once bug reports (i.e., queries) are classi�ed into three classes above based on their structured elements

or lack thereof, we apply appropriate reformulations to them. In particular, we analyse either bug report

contents or the results retrieved by them, employ graph-based term weighting, and then identify important

keywords from them for query reformulation as follows:

Trace Graph Development from BRST: According to existing �ndings [193, 248], bug reports con-

taining stack traces are potentially noisy, and performances of the bug localization using such reports (i.e.,

the queries) are below the average. Hence, important search keywords should be extracted from the noisy

queries for e�ective bug localization. In this work, we transform the stack traces into a trace graph (e.g.,

Fig. 5.2) (Steps 3a, 4a, Fig. 5.1, Lines 8�10, Algorithm 6), and identify the important keywords using a

graph-based term weighting algorithm namely PageRank [53, 153].

To the best of our knowledge, to date, graph-based term weighting has been employed only on unstructured

natural language texts [191] and semi-structured source code [189]. On the contrary, we deal with stack traces

89

Cast access

InterpreterJDIValue

toString run

runEvaluation
doEvaluation

EvaluationThread

execute

JDIThread

Thread

EvaluationThread

toString

JDIValue

run

execute

Figure 5.2: Trace graph of stack traces in Table 5.1

which are structured and should be analysed carefully. Stack traces generally comprise of an error message

containing the encountered exception(s), and an ordered list of method invocation entries. Each invocation

entry can be considered as a tuple t{P,C,M} that contains a package name P , a class name C, and a method

name M . While these entities are statically connected within a tuple, they are often hierarchically connected

(e.g., caller-callee relationships) to other tuples from the traces as well. Hill et al. [104] consider method

signatures and �eld signatures as salient entities from the source code, and suggest keywords from them for

code search. Similarly, we consider class name and method name from each of the N tuples as the salient

items, and represent them as the nodes and their dependencies as the connecting edges in the graph. In stack

traces, the topmost entry (i.e., i = 1) has the highest degree of interest [70] which gradually decreases for the

entries at the lower positions in the list. That is, if ti{Pi, Ci,Mi} is a tuple under analysis, and tj{Pj , Cj ,Mj}

is a neighbouring tuple with greater degree of interest, then the nodes Vi and edges Ei are added to the trace

graph GST as follows:

Vi = {Ci,Mi}, Ei = {Ci ↔Mi} ∪ {Ci → Cj ,Mi →Mj} | j = i− 1

V =

N⋃
i=1

{Vi}, E =

N⋃
i=1

{Ei}, GST = (V,E)
(5.1)

For the example stack traces in Table 5.1, the following connecting edges: JDIValue↔toString, Cast↔

execute, Cast→JDIValue, execute→toString, Interpreter↔execute, and Interpreter→Cast are added

to the example trace graph in Fig. 5.2.

Text Graph Development from BRPE: Bug reports containing relevant program entities (e.g.,

method names) are found e�ective as queries for IR-based bug localization [193, 220, 248]. However, we

believe that appropriate keyword selection from such reports can further boost up the localization perfor-

mance. Existing studies employ TextRank and POSRank on natural language texts, and identify search

keywords for concept location [191] and information retrieval [53, 153]. Although bug reports (i.e., from

BRPE) might contain certain structures such as program entity names (e.g., class name, method name) and

code snippets besides natural language texts, the existing techniques could still be applied to them given

that these structures are treated appropriately. We thus remove stop words [25] and programming keywords

90

[26] from a bug report, split the structured tokens using Samurai (i.e., a state-of-the-art token splitting tool

[79]), and then transform the preprocessed report (Rpp) into a set of sentences (S ∈ Rpp). We adopt Rah-

man and Roy [191] that exploits co-occurrences and syntactic dependencies among the terms for identifying

important terms from a textual body (e.g., change request). We thus develop two text graphs (Steps 3b, 4b,

Fig. 5.1, Lines 10�11, Algorithm 6) using co-occurrences and syntactic dependencies among the words from

each report as follows:

(1) Text Graph using Word Co-occurrences: In natural language texts, the semantics (i.e., senses) of

a given word are often determined by its contexts (i.e., surrounding words) [154, 156, 268]. That is, co-

occurring words complement the semantics of each other. We thus consider a sliding window of size K (e.g.,

K = 2) [153], capture co-occurring words, and then encode the word co-occurrences within each window into

connecting edges E of a text graph [191]. The individual words (∀wi ∈ V) are denoted as nodes in the graph.

Thus, for a word wi, the following node Vi and two edges Ei will be added to the text graph GPE as follows:

Vi = {wi}, Ei = {wi ↔ wi−1, wi ↔ wi+1} | S = [w1..wi..wN]

V =
⋃

∀S∈Rpp

⋃
wi∈S
{Vi}, E =

⋃
∀S∈Rpp

⋃
wi∈S
{Ei}, GPE = (V,E)

(5.2)

Thus, the example phrase��source code directory"�yields two edges, �source"↔�code" and �code"↔�directory"

while extending the text graph with three distinct nodes� �source", �code" and �directory".

(2) Text Graph using POS Dependencies: According to Jespersen's Rank theory [53, 113, 191], parts of

speech (POS) from a sentence can be divided into three ranks� primary (i.e., noun), secondary (i.e., verb,

adjective) and tertiary (i.e., adverb)� where words from a higher rank generally de�ne (i.e., modify) the words

from the same or lower ranks. That is, a noun modi�es only another noun whereas a verb modi�es another

noun, verb or an adjective. We determine POS tags using Stanford POS tagger [244], and encode such syntac-

tic dependencies among words into connecting edges and individual words as nodes in a text graph. For exam-

ple, the sentence annotated using Penn Treebank tags [244]��OpenV B theDT sourceNN codeNN directoryNN”�

has the following syntactic dependencies: �source"↔�code", �code"↔�directory", �source"↔�directory",

�open"←�source", �open"←�code" and �open"←�directory", and thus adds six edges to the text graph.

Source Term Graph Development for BRNL: Bug reports containing only natural language texts

and no structured entities are found not e�ective for IR-based bug localization [193, 248]. We believe that

such bug reports possibly miss the right keywords for bug localization. Hence, they need to be complemented

with appropriate keywords before using. A recent study [189] provides improved reformulations to a poor

natural language query for concept location by �rst collecting pseudo-relevance feedback and then employing

graph-based term weighting. In pseudo-relevance feedback, Top-K result documents, returned by a given

query, are naively considered as relevant and hence, are selected for query reformulation [62, 98]. Since bug

reports from BRNL class contain only natural language texts, the above study might directly be applicable

to them. We thus adopt their approach for our query reformulation, collect Top-K (e.g., K = 10) source code

91

documents retrieved by a BRNL-based query, and develop a source term graph (Steps 3c, 4c, Fig. 5.1, Lines

13�15, Algorithm 6).

Hill et al. [104] consider method signatures and �elds signatures from source code as the salient items,

and suggest keywords for code search from them. In the same vein, we also collect these signatures from

each of the K feedback documents for query reformulation. In particular, we extract structured tokens

from each signature, split them using Samurai, and then generate a natural language phrase from each

token [104]. For example, the method signature�getContextClassLoader()�can be represented as a verbal

phrase� �get Context Class Loader". We then analyse such phrases across all the feedback documents, capture

co-occurrences of terms within a �xed window (i.e., K = 2) from each phrase, and develop a source term

graph. Thus, the above phrase adds four distinct nodes and three connecting edges � �get"↔�context",

�context"↔�class" and �class"↔�loader" � to the source term graph.

Term Weighting using PageRank: Once each body of texts (e.g., stack traces, regular texts, source

document) is transformed into a graph, we apply PageRank [57, 153, 189, 191] to the graph for identifying

important keywords. PageRank was originally designed for web link analysis, and it determines the reputation

of a web page based on the votes or recommendations (i.e., hyperlinks) from other reputed pages on the web

[57]. Similarly, in the context of our developed graphs, the algorithm determines importance of a node

(i.e., term) based on incoming links from other important nodes of the graph. In particular, it analyses the

connectivity (i.e., connected neighbours and their weights) of each term Vi in the graph recursively, and then

calculates the node's weight TW (Vi):

TW (Vi) = (1− φ) + φ
∑

jεIn(Vi)

TW (Vj)

|Out(Vj)|
(0 ≤ φ ≤ 1) (5.3)

Here, In(Vi) refers to nodes providing incoming links to Vi, Out(Vj) refers to nodes that Vj is connected

to through outgoing links, and φ is the damping factor. Brin and Page [57] consider φ as the probability

of randomly clicking a linked web page and 1 − φ as the probability of jumping o� the page by a random

web surfer. They use φ = 0.85 which was adopted by later studies [53, 153, 191], and we also do the same.

We initialize each node in the graph with a value of 0.25 [153], and recursively calculate their weights unless

they converge below a certain threshold (i.e., 0.0001) or the iteration count reaches the maximum (i.e., 100)

[153]. Once the calculation is over, we end up with an accumulated weight for each node (Step 5, Fig. 5.1,

Lines 16�20, Algorithm 6). Such weight of a node is considered as an estimation of relative importance of

corresponding term among all the terms (i.e., nodes) from the bug report (i.e., graph).

Reformulation of the Initial Query: Once term weights are calculated, we rank the terms based on

their weights, and select the Top-K (8≤ K ≤30, Fig. 5.4) terms for query reformulations. Since bug reports

(i.e., initial queries) from three classes have di�erent degrees of structured information (or lack thereof),

we carefully apply our reformulations to them (Steps 6, 7, Fig. 5.1, Lines 21�30, Algorithm 6). In case of

BRST (i.e., noisy query), we replace trace entries with the reformulation terms, extract the error message(s)

92

Algorithm 6 Bug Localization with Query Reformulation and IR

1: procedure BLIZZARD(R) . R: a given bug report

2: Q′ ← {} . reformulated query terms

3: . Classifying and preprocessing the bug report R

4: CR ← getBugReportClass(R)

5: Rpp ← preprocess (R)

6: . Representing the bug report as a graph

7: switch CR do

8: case BRST

9: ST ← getStackTraces (R)

10: GST ← getTraceGraph (ST)

11: case BRPE

12: GPE ← getTextGraphs (Rpp)

13: case BRNL

14: RF ← getPseudoRelevanceFeedback (Rpp)

15: GNL ← getSourceTermGraph (RF)

16: . Getting term weights and search keywords

17: if ClassKey CK ∈ {ST, PE,NL} then

18: PRCK ← getPageRank (GCK)

19: Q[CR]← getTopKTerm(sortByWeight(PRCK))

20: end if

21: . Constructing the reformulated query Q′

22: switch CR do

23: case BRST

24: NE ← getExceptionName(R)

25: ME ← getErrorMessage(R)

26: Q′ ← {NE ∪ME ∪Q[CR]}

27: case BRPE

28: Q′ ← Q[CR]

29: case BRNL

30: Q′ ← {Rpp ∪Q[CR]}

31: . Bug localization with Q′ from codebase corpus

32: return Lucene(corpus, Q′)

33: end procedure

93

Table 5.3: Working Examples

Technique Group Query Terms QE

Baseline
BRST

127 terms from Table 5.1 after preprocessing, Bug ID# 31637, eclipse.jdt.debug 53

BLIZZARD NullPointerException + �Bug should be able to cast null" + {JDIValue toString

execute EvaluationThread run}

01

Baseline
BRPE

195 terms (after preprocessing) from Bug ID# 15036, eclipse.jdt.core 27

BLIZZARD {astvisitor post postvisit previsit pre �le post pre astnode visitor} 01

Baseline
BRNL

32 terms from Table 5.2 after preprocessing, Bug ID# 187316, eclipse.jdt.ui 30

BLIZZARD Preprocessed report texts + {compliance create preference add configuration

field dialog annotation}

01

QE = Query E�ectiveness, rank of the �rst returned correct result

containing exception name(s), and combine them as the reformulated query. For BRNL (i.e., poor query),

we combine preprocessed report texts with the highly weighted source code terms as the reformulated query.

In the case of BRPE category, only Top-K weighted terms from the bug report are used as a reformulated

query for bug localization.

5.2.3 Bug Localization

Code Search: Once a reformulated query is constructed, we submit the query to Lucene [98, 164]. Lucene

is a widely adopted search engine for document search that combines Boolean search and VSM-based search

methodologies (e.g., TF-IDF [114]). In particular, we employ the Okapi BM25 similarity from the engine, use

the reformulated query for the code search, and then collect the results (Lines 31�32, Algorithm 6). These

resultant and potentially buggy source code documents are then presented as a ranked list to the developer

for manual analysis.

Working Examples: Table 5.3 shows our reformulated queries for the showcase bug reports in Table

5.1 (i.e., BRST), Table 5.2 (i.e., BRNL), and another example report from BRPE class. Baseline queries from

these reports return their �rst correct results at the 53rd (for BRST), 27
th (for BRPE) and 30th (for BRNL)

positions of their corresponding ranked lists. On the contrary, BLIZZARD re�nes the noisy query from BRST

report, selects important keywords from BRPE report, and enriches the poor query from BRNL report by

adding complementary terms from relevant source code. As a result, all three reformulated queries return

their �rst correct results (i.e., buggy source �les) at the topmost (i.e., �rst) positions, which demonstrate the

potential of our technique for bug localization.

94

Table 5.4: Experimental Dataset

System Time Period BRST BRPE BRNL BRAll

ecf Oct, 2001�Jan, 2017 71 319 163 553

eclipse.jdt.core Oct, 2001�Sep, 2016 159 698 132 989

eclipse.jdt.debug Oct, 2001�Jan, 2017 126 202 229 557

eclipse.jdt.ui Oct, 2001�Jun, 2016 130 578 407 1,115

eclipse.pde.ui Oct, 2001�Jun, 2016 123 239 510 872

tomcat70 Sep, 2001�Aug, 2016 217 731 105 1,053

Total - 826 (16.06%) 2,767 (53.81%) 1,546 (30.08%) 5,139

BRST=Bug reports with stack traces, BRPE=Bug reports with program entities but no stack traces,

BRNL=Bug reports with only natural language texts

5.3 Experiment

We evaluate our proposed technique in several di�erent dimensions using four widely used performance

metrics and more than 5K bug reports (the queries) from six di�erent subject systems. First, we evaluate in

terms of the performance metrics and contrast with the baseline for di�erent classes of bug reports/queries

(Section 5.3.3). Second, we compare our approach with three state-of-the-art bug localization techniques

(Section 5.3.4). Third, and possibly the most importantly, we also compare our approach with four state-

of-the-art query reformulations techniques (Section 5.3.4). In particular, we answer four research questions

using our experiments as follows:

• RQ1: (a) How does the proposed approach �BLIZZARD� perform in bug localization, and (b) how do

various parameters a�ect its performance?

• RQ2: Do our reformulated queries perform better than the baseline search queries from the bug reports?

• RQ3: Can the proposed approach �BLIZZARD� outperform the existing bug localization techniques

including the state-of-the-art?

• RQ4: Can the proposed approach �BLIZZARD� outperform the existing query reformulation tech-

niques targeting concept/feature location and bug localization?

5.3.1 Experimental Dataset

Dataset Collection: We collect a total of 5,139 bug reports from six open source subject systems for our

experiments. The dataset was taken from an earlier empirical study [193]. Table 5.4 shows our dataset. First,

all the resolved (i.e., marked as RESOLVED) bug reports of each subject system were collected from the

BugZilla and JIRA repositories given that they were submitted within a speci�c time interval (Table 5.4).

Then the version control history of each system at GitHub was consulted to identify the bug-�xing commits

[43]. Such approach was regularly adopted by the relevant literature [49, 163, 276], and we also follow the

95

same. In order to ensure a fair evaluation, we also discard such bug reports from our dataset for which no

source code �les (e.g., Java classes) were changed or no relevant source �les exist in the collected system

snapshot.

Goldset Development: We collect changeset (i.e., list of changed �les) from each of our selected bug-

�xing commits, and develop a goldset. Multiple changesets for the same bug were merged together.

Replication Package: Our working prototype and experimental data are publicly available [27] for

replication and reuse.

5.3.2 Performance Metrics

We use four performance metrics for the evaluation and comparison of our technique. Since these metrics

were frequently used by the relevant literature [163, 191, 220, 249, 268, 276], they are also highly appropriate

for our experiments in this work.

Hit@K: It is de�ned as the percentage of queries for which at least one buggy �le (i.e., from the goldset)

is correctly returned within the Top-K results [250]. It is also called Recall@Top-K [220] and Top-K Accuracy

[239] in the literature.

Mean Average Precision@K (MAP@K): Unlike regular precision, this metric considers the ranks of

correct results within a ranked list. Precision@K calculates precision at the occurrence of each buggy �le in

the list. Average Precision@K (AP@K) is de�ned as the average of Precision@K for all the buggy �les in a

ranked list for a given query [220, 276]. Thus, Mean Average Precision@K is de�ned as the mean of Average

Precision@K (AP@K) of all queries as follows:

AP@K =

∑D
k=1 Pk × buggy(k)

|S|
, MAP@K =

∑
qεQAP@K(q)

|Q|

Here, function buggy(k) determines whether kth �le (or result) is faulty/buggy (i.e., returns 1) or not (i.e.,

returns 0), and Pk provides the precision at kth result. D refers to the number of total results, S is the true

positive result set of a query, and Q is the set of all queries. The bigger the MAP@K value is, the better a

technique is.

Mean Reciprocal Rank@K (MRR@K): Reciprocal Rank@K is de�ned as the multiplicative inverse

of the rank of �rst correctly returned buggy �le (i.e., from gold set) within the Top-K results [220, 276].

Thus, Mean Reciprocal Rank@K (MRR@K) averages such measures for all queries in the dataset as follows:

MRR@K(Q) =
1

|Q|
∑
q∈Q

1

firstRank(q)

Here, firstRank(q) provides the rank of �rst buggy �le within a ranked list. MRR@K can take a maximum

value of 1 and a minimum value of 0. The bigger the MRR@K value is, the better a bug localization technique

is.

E�ectiveness (E): It approximates a developer's e�ort in locating the �rst buggy �le in the result list

[98, 163]. That is, the measure returns the rank of �rst buggy �le in the result list. The lower the e�ectiveness

96

Table 5.5: Performance of BLIZZARD in Bug Localization

Dataset Technique Hit@1 Hit@5 Hit@10 MAP@10 MRR@10

BRST

Baseline 21.67% 40.03% 48.25% 28.09% 0.29

BaselinePunct 13.52% 28.25% 37.27% 19.74% 0.20

BLIZZARD *34.42% *66.28% *75.21% *45.50% *0.47

BRPE

Baseline 39.85% 64.29% 72.09% 47.28% 0.50

BaselinePunct 25.46% 45.57% 55.39% 32.34% 0.34

BLIZZARD 44.31% *69.48% *77.84% *52.08% *0.55

BRNL

Baseline 28.24% 50.96% 61.23% 35.48% 0.38

BaselinePunct 21.59% 43.03% 53.17% 28.67% 0.31

BLIZZARD 29.16% 53.78% 65.21% *37.62% 0.40

All

Baseline 34.32% 57.83% 66.47% 41.66% 0.44

BaselinePunct 22.56% 42.51% 52.46% 29.55% 0.31

BaselineIndri 32.24% 52.43% 59.51% 39.09% 0.32

BLIZZARD *38.58% *65.08% *74.52% *47.13% *0.50

*=Signi�cantly higher than baseline, Emboldened= Comparatively higher

value is, the better a given query is, i.e., the developer needs to check less amount of results from the top

before reaching the actual buggy �le in the list.

5.3.3 Experimental Results

We �rst show the performance of our technique in terms of appropriate metrics (RQ1-(a)), then discuss the

impacts of di�erent adopted parameters upon the performance (RQ1-(b)), and �nally show our comparison

with the baseline queries (RQ2) as follows:

Selection of Baseline Queries, and Establishment of Baseline Technique and Baseline Per-

formance: Existing studies suggest that text retrieval performances could be a�ected by query quality [98],

underlying retrieval engine [164] or even text preprocessing steps [106, 120]. Hence, we choose the baseline

queries and baseline technique pragmatically for our experiments. We conduct a detailed study where three

independent variables� bug report �eld (e.g., title, whole texts), retrieval engine (e.g., Lucene [98], Indri

[220]) and text preprocessing step (i.e., stemming, no stemming)�are alternated, and then we choose the best

performing con�guration as the baseline approach. In particular, we chose the preprocessed version (i.e.,

performed stop word and punctuation removal, split complex tokens but avoided stemming) of the whole

texts (i.e., title + description) from a bug report as a baseline query. Lucene was selected as the baseline

technique since it outperformed Indri on our dataset. The performance of Lucene with the baseline queries

was selected as the baseline performance (i.e., Table 5.5) for IR-based bug localization in this study. In short,

our baseline is: (preprocessed whole texts + splitting of complex tokens + Lucene search engine).

97

Figure 5.3: Comparison of BLIZZARD with baseline technique in terms of (a) MAP@K and (b)
MRR@K

Figure 5.4: Impact of query reformulation length on the MAP@10 of our technique�BLIZZARD

Answering RQ1(a) � Performance of BLIZZARD:As shown in Table 5.5, on average, our technique�

BLIZZARD�localizes 74.52% of the bugs from a dataset of 5,139 bug reports with 47% mean average preci-

sion@10 and a mean reciprocal rank@10 of 0.50 which are 12%, 13% and 14% higher respectively than the

baseline performance measures. That is, on average, our technique can return the �rst buggy �le at the second

position of the ranked list, almost half of returned �les are buggy (i.e., true positive) and it succeeds three

out of four times in localizing the bugs. Furthermore, while the baseline technique is badly a�ected by the

noisy (i.e., BRST) and poor queries (i.e., BRNL), our technique overcomes such challenges with appropriate

query reformulations, and provides signi�cantly higher performances. For example, the baseline technique

can localize 48% of the bugs from BRST dataset (i.e., noisy queries) with only 28% precision when Top-10

results are considered. On the contrary, our technique localizes 75% of the bugs with 46% precision in the

same context which are 56% and 62% higher respectively than the corresponding baseline measures. Such

improvements are about 7% for BRNL, i.e., poor queries. In the cases where bug reports contain program

entities, i.e., BRPE , and the baseline performance measures are already pretty high, our technique further

re�nes the query and provides even higher performances. For example, BLIZZARD improves both baseline

MRR@10 and baseline MAP@10 for BRPE dataset by 10% which is promising.

Fig. 5.3 further demonstrates the comparative analyses between BLIZZARD and the baseline technique for

various Top-K results in terms of (a) precision and (b) reciprocal rank in the bug localization. From Fig. 5.3-

(a), we see that precision reaches to the maximum pretty quickly (i.e., at K ≈ 4) for both techniques. While

98

Table 5.6: Query Improvement by BLIZZARD over Baseline Queries

Dataset Query Pair Improved/MRD Worsened/MRD Preserved

BRST
BLIZZARD vs. BLT 484 (58.60%)/-82 206 (24.94%)/+34 136 (16.46%)

BLIZZARD vs. BL 485 (58.72%)/-122 174 (21.07%)/+72 167 (20.22%)

BRPE
BLIZZARD vs. BLT 1,397 (50.49%)/-60 600 (21.68%)/+38 770 (27.83%)

BLIZZARD vs. BL 865 (31.26%)/-34 616 (22.26%)/+24 1,286 (46.48%)

BRNL
BLIZZARD vs. BLT 869 (56.21%)/-27 355 (22.96%)/+29 322 (20.83%)

BLIZZARD vs. BL 597 (38.62%)/-16 455 (29.43%)/+31 494 (31.95%)

All
BLIZZARD vs. BLT 2,750 (53.51%) /-55 1,161 (22.59%)/+32 1,228 (23.90%)

BLIZZARD vs. BL 1,947 (37.89%)/-50 1,245 (24.22%)/+30 1,947 (37.89)%

Preserved=Query quality unchanged, MRD = Mean Rank Di�erence between BLIZZARD and

baseline queries, BLT = title, BL = title + description

Figure 5.5: Quality improvement of (a) noisy and (b) poor baseline queries by our technique�
BLIZZARD

the baseline technique su�ers from noisy (i.e., from BRST) and poor (i.e., from BRNL) queries, BLIZZARD

achieves signi�cantly higher precision than the baseline. Our non-parametric statistical tests�Mann-Whitney

Wilcoxon and Cli�'s Delta�reported p-values< 0.05 with a large e�ect size (i.e., 0.77 ≤ ∆ ≤ 1.00). Although

the baseline precision for BRPE is higher, BLIZZARD o�ers even higher precision. From Fig. 5.3-(b), we see

that mean reciprocal ranks of BLIZZARD have a logarithmic shape and whereas the baseline counterparts

look comparatively �at. That is, as more results from the top of the ranked list are considered, more true

positives are identi�ed by our technique than the baseline technique does. Statistical tests also reported

strong signi�cance (i.e., p-values<0.001) and a large e�ect size (i.e., 0.62≤∆≤1.00) of our measures over the

baseline counterparts. That is, BLIZZARD performs a good job in reformulating the noisy and poor queries,

and such reformulations contribute to a signi�cant improvement in the bug localization performances.

Answering RQ1(b) �Impact of Parameters and Settings: We investigate the impacts of di�erent

adopted parameters -query reformulation length, word stemming, and retrieval engine - upon our technique,

and justify our choices. BLIZZARD reformulates a given query (i.e., bug report) for bug localization, and

hence, size of the reformulated query is an important parameter. Fig. 5.4 demonstrates how various refor-

99

mulation lengths can a�ect the MAP@10 of our technique. We see that precision reaches the maximum for

three report classes at di�erent query reformulation lengths (i.e., RL). For BRST , we achieve the maximum

precision at RL=11, and for BRNL, such maximum is detected with RL ranging between 8 and 12. On

the contrary, precision increases in a logarithmic manner for BRPE bug reports. We investigated up to 30

reformulation terms and found the maximum precision. Given the above empirical �ndings, we chose RL=11

for BRST , RL=30 for BRPE and RL=8 for RNL as the adopted query reformulation lengths and our choices

are likely to be justi�ed.

We also investigate the impact of stemming and text retrieval engine on our technique. We found that

stemming did not improve the performance of BLIZZARD, i.e., reduced localization accuracy. Similar �nding

was reported by earlier studies as well [106, 120]. We also found that Lucene performs better than Indri on

our dataset. From Table 5.5, we see that Lucene (i.e., Baseline) achieves 12% higher Hit@10, 7% higher

MAP@10 and 38% higher MRR@10 than those of Indri (i.e., BaselineIndri). Besides, Lucene has been widely

used by the relevant literature [98, 163, 164, 176]. Furthermore, according to a recent third-party study [16],

Apache Lucene and its variants (e.g., Solr, ElasticSearch) have ≈77% market share in the enterprise search,

which suggests the mass adoption of Lucene in the industrial applications. Given the above �ndings and

earlier suggestions, our choices on stemming and code retrieval engine are also justi�ed.

One might also argue for the inclusion of punctuation marks into the search queries for bug localization.

The underlying assumption is that the punctuation marks could provide additional contexts to the search

keywords and thus could enrich their semantics which might improve their bug localization performance.

However, punctuation marks themselves convey very little semantics compared to the keywords (e.g., natural

language terms, identi�er names). Thus, the existing literature [120, 220, 250] generally considers them as

noise and discard them from the analysis. Despite this widely used practice, we investigate the impact of

including punctuation marks into the query. In particular, for each subject system, we (1) construct a corpus

where source documents are indexed with their terms and punctuation marks, and (2) collect a set of search

queries (from the bug reports) that contain both search keywords and punctuation marks. Then we compare

between queries with punctuation marks (BaselinePunct) and the same queries without the punctuation

marks (Baseline). From Table 5.5, we see that the queries with punctuation marks (BaselinePunct) perform

poorly compared to their counterpart (Baseline) in all measures and in all cases. That is, punctuation marks

possibly bring more noise than semantics in the search query. Thus, our choice of discarding punctuation

marks from the search query is likely to be justi�ed.

Summary of RQ1: BLIZZARD outperforms baseline in accuracy, precision and reciprocal rank by 7%�56%,

6%�62% and 6%�62% respectively across three report groups, and our adopted parameters are also justi�ed.

Answering RQ2-Comparison with Baseline Queries: While Table 5.5 contrasts BLIZZARD with

the baseline approach for top 1 to 10 results, we further investigate how BLIZZARD performs compared to

the baseline when all results of a query are considered. We compare our queries with two baseline queries

100

�title (i.e., BLT), title+description (i.e., BL) � from each of the bug reports. When our query returns the �rst

correct result at a higher position in the result list than that of corresponding baseline query, we call it query

improvement and vice versa query worsening. When result ranks of the reformulated query and the baseline

query are the same, then we call it query preserving. From Table 5.6, we see that our applied reformulations

improve 59% of the noisy queries (i.e., BRST) and 39%�56% of the poor (i.e., BRNL) queries both with

≈ 25% worsening ratios. That is, the improvements are more than two times the worsening ratios. Fig.

5.5 further demonstrates the potential of our reformulations where improvement, worsening and preserving

ratios are plotted for each of the six subject systems. We see that noisy queries get bene�ted greatly from our

reformulations, and on average, their query e�ectiveness improve up to 122 positions (i.e., MRD of BRST ,

Table 5.6) in the result list. Such improvement of ranks can de�nitely help the developers in locating the

buggy �les in the result list more easily. The poor queries also improve due to our reformulations signi�cantly

(i.e., p-value=0.004<0.05, Cli�'s ∆=0.94 (large)), and the correct results can be found 16 positions earlier

(than the baseline) in the result list starting from the top. Quantile analysis in Table 5.9 also con�rms that

noisy and poor queries are signi�cantly improved by our provided reformulations. Besides, the bene�ts of

query reformulations are also demonstrated by our �ndings in Table 5.5 and Fig. 5.3.

Summary of RQ2: Our applied reformulations to the bug localization queries improve 59% of the noisy

queries and 39%�56% of the poor queries, and return the buggy �les closer to the top of result list. Such

improvements can reduce a developer's e�ort in locating bugs.

5.3.4 Comparison with Existing Techniques

Answering RQ3 �Comparison with Existing IR-Based Bug Localization Techniques: Our eval-

uation of BLIZZARD with four widely used performance metrics shows promising results. The comparison

with the best performing baseline shows that our approach outperforms the baselines. However, in order to

further gain con�dence and to place our work in the literature, we also compared our approach with three

IR-based bug localization techniques [220, 250, 276] including the state-of-the-art [250]. Zhou et al. [276]

�rst employ improved Vector Space Model (i.e., rVSM) and bug report similarity for locating buggy source

�les for a new bug report. Saha et al. [220] employ structured information retrieval where (1) a bug report

is divided into two �elds�title, description and a source document is divided into four �elds�class, method,

variable and comments, and then (2) eight similarity measures between these two groups are accumulated to

rank the source document. We collect authors' implementations of both techniques for our experiments.

While the above studies use bug report contents only, the later approaches combine them [221] and add

more internal [258] or external information sources such as version control history [249] and author information

[250]. In the same vein, Wang and Lo [250] recently combine �ve internal and external information sources

- similar bug report, structured IR, stack traces, version control history and bug reporter's history � for

ranking a source document, and outperform �ve earlier approaches which makes it the state-of-the-art in

101

IR-based bug localization. Given that authors' implementation is not publicly available, we implement this

technique ourselves by consulting with the original authors. Since BLIZZARD does not incorporate any

external information sources, to ensure a fair comparison, we also implement a variant of the state-of-the-art

namely AmaLgam+BRO where BRO stands for Bug Report Only. It combines bug report texts, structured

IR and stack traces (i.e., Table 5.8) for source document ranking.

Table 5.7: Comparison with IR-Based Bug Localization Techniques

RG Technique Hit@1 Hit@5 Hit@10 MAP@10 MRR@10

BRST

BugLocator 28.79% 55.08% 67.00% 38.49% 0.40

BLUiR 23.38% 44.34% 54.06% 30.96% 0.32

AmaLgam+BRO 45.33% 66.97% 73.29% 52.88% 0.55

BLIZZARD 34.42% 66.28% 75.21% 45.50% 0.47

BLIZZARDBRO 47.42% 73.74% 78.77% 56.22% 0.59

AmaLgam+ 50.51% 66.47% 71.66% 55.97% 0.58

BLIZZARD+ 53.39% *76.12% *80.03% 60.65% 0.63

BRPE

BugLocator 36.25% 61.37% 70.96% 44.24% 0.47

BLUiR 35.54% 62.93% 72.17% 43.67% 0.47

AmaLgamBRO 33.90% 60.48% 69.09% 42.00% 0.45

BLIZZARD *44.31% *69.48% 77.84% *52.08% *0.55

BLIZZARDBRO 47.16% 71.26% 78.25% 53.69% 0.57

Amalgam+ 52.00% 68.54% 72.93% 55.80% 0.59

BLIZZARD+ 56.84% 74.70% 80.09% 60.78% 0.65

BRNL

BugLocator 25.11% 48.52% 59.04% 32.19% 0.35

BLUiR 29.87% 56.63% 66.10% 38.07% 0.41

AmaLgam+BRO 29.40% 56.07% 65.01% 37.74% 0.40

BLIZZARD 29.16% 53.78% 65.21% 37.62% 0.40

BLIZZARDBRO 35.45% 58.75% 69.17% 42.26% 0.46

AmaLgam+ 49.72% 65.42% 71.49% 52.74% 0.57

BLIZZARD+ 47.97% 66.24% 74.49% 52.12% 0.56

All

BugLocator 31.85% 57.37% 67.87% 40.17% 0.43

BLUiR 32.45% 59.18% 68.65% 40.82% 0.44

Amalgam+BRO 35.03% 61.32% 69.89% 43.36% 0.46

BLIZZARD 38.58% 65.08% 74.52% 47.13% *0.50

BLIZZARDBRO 44.26% 69.15% 76.61% 51.41% *0.55

AmaLgam+ 52.29% 68.53% 73.58% 56.03% 0.59

BLIZZARD+ 54.78% 73.76% 79.66% 59.32% 0.63

RG=Report Group, BRO=Bug Report Only, *=Signi�cantly higher

102

Table 5.8: Components behind Existing IR-Based Bug Localization

Technique
Bug Report Only External Resources

MRR
BRT BRS ST QR BRH VCH AH

Baseline l 0.44

BugLocator l l 0.43

BLUiR l l 0.44

AmaLgam+BRO l l l 0.46

BLIZZARD l l *0.50

BLIZZARDBRO l l l l *0.55

AmaLgam+ l l l l l l 0.59

BLIZZARD+ l l l l l l l 0.63

BRT=Bug Report Texts, BRS=Bug Report Structures, ST=Stack Traces,

QR=Query Reformulation, BRH=Bug Report History, VCH=Version Control

History, AH=Authoring History, BRO=Bug Report Only, l=Feature used

From Table 5.7, we see that AmaLgam+ performs better than the other existing techniques under our

study � BugLocator and BLUiR. However, its performance comes at a high cost of mining six information

contents (i.e., Table 5.8). Besides, for optimal performance, AmaLgam+ needs past bug reports, version

control history and author history which might always not be available. Thus, to ensure a fair comparison,

we develop two variants of our technique�BLIZZARDBRO and BLIZZARD+. BLIZZARDBRO combines

query reformulation with bug report only features whereas BLIZZARD+ combines query reformulation with

all ranking components of AmaLgam+ (i.e., details in Table 5.8). We then compare both BLIZZARD and

BLIZZARDBRO with AmaLgam+BRO, and BLIZZARD+ with AmaLgam+ respectively.

As shown in Table 5.7, BLIZZARD outperforms AmaLgam+BRO in terms of all three metrics especially

for BRPE reports while performing moderately high with other report groups. For example, BLIZZARD

provides 22% higher MRR@10 and 24% higher MAP@10 than AmaLgam+BRO for BRPE . When all report

only features are complemented with appropriate query reformulations, our technique, BLIZZARDBRO out-

performs AmaLgam+BRO in terms of all three metrics�Hit@K, MAP@10 and MRR@10� with each report

groups. Such �ndings suggest that BLIZZARDBRO can better exploit the available resources (i.e., bug report

contents) than the state-of-the-art variant, and returns the buggy �les at relatively higher positions in the

ranked list. Furthermore, BLIZZARD+ outperforms the state-of-the-art, AmaLgam+, by introducing query

reformulation paradigm. For example, BLIZZARD+ improves Hit@5 and Hit@10 over AmaLgam+ for each

of the three query types, e.g., 15% and 12% respectively for noisy queries (BRST). It also should be noted

that none of the existing techniques is robust to all three report groups simultaneously. We overcome such

issue with appropriate query reformulations, and deliver ≈75%�80% Hit@10 irrespective of the bug report

quality. From Table 5.8, we see that BLIZZARDBRO provides 20% higher MRR@10 than AmaLgam+BRO

103

T
a
b
le
5
.9
:
C
o
m
p
a
ri
so
n
o
f
Q
u
er
y
E
�
ec
ti
ve
n
es
s
w
it
h
E
x
is
ti
n
g
Q
u
er
y
R
ef
o
rm

u
la
ti
o
n
T
ec
h
n
iq
u
es

T
e
ch
n
iq
u
e

R
G

Im
p
ro
v
e
m
e
n
t

W
o
rs
e
n
in
g

P
re
se
rv
in
g

#
Im

p
ro
ve
d

M
ea
n

Q
1

Q
2

Q
3

M
in
.

M
a
x
.

#
W
o
rs
en
ed

M
ea
n

Q
1

Q
2

Q
3

M
in
.

M
a
x
.

#
P
re
se
rv
ed

R
o
cc
h
io
[2
1
3
]

3
3
7
(4
0
.8
0
%
)

6
8

4
1
2

6
0

1
1
,2
4
5

2
6
4
(3
1
.9
6
%
)

1
1
8

6
2
1

9
7

2
2
,8
2
4

2
2
5
(2
7
.2
4
%
)

R
S
V
[2
1
2
]

2
1
8
(2
6
.3
9
%
)

1
6
3

1
0

4
3

1
5
8

1
2
,1
0
3

2
3
6
(2
8
.5
7
%
)

1
9
8

1
7

7
1

2
4
5

2
2
,4
8
7

3
7
2
(4
5
.0
4
%
)

S
is
m
a
n
a
n
d
K
a
k
[2
3
1
]

B
R
S
T

3
3
9
(4
1
.0
4
%
)

6
6

4
1
2

5
3

1
1
,2
4
5

2
6
5
(3
2
.0
8
%
)

1
2
1

7
2
3

1
0
0

2
2
,8
4
6

2
2
2
(2
6
.8
8
%
)

S
T
R
IC
T
[1
9
1
]

(8
2
6
)

3
9
9
(4
8
.3
0
%
)

3
5

1
4

1
7

1
1
,5
3
8

3
1
8
(3
8
.5
0
%
)

1
3
9

6
2
5

1
1
0

2
3
,0
6
6

1
0
9
(1
3
.2
0
%
)

B
a
se
li
n
e

1
5
3

7
3
5

1
4
9

2
2
,2
2
1

7
0

1
5

3
0

1
2
,4
6
9

B
L
IZ
Z
A
R
D

4
8
5
(5
8
.7
2
%
)

2
2

1
3

9
1

9
3
2

1
7
4
(2
1
.0
7
%
)

1
1
2

4
1
5

6
0

2
3
,2
5
8

1
6
7
(2
0
.2
2
%
)

R
o
cc
h
io
[2
1
3
]

3
2
(2
.0
7
%
)

3
3

4
8

1
9

1
3
6
5

2
4
(1
.5
5
%
)

1
4
0

4
1
2

1
4
6

2
8
5
0

1
,4
9
0
(9
6
.3
8
%
)

R
S
V
[2
1
2
]

3
4
5
(2
2
.2
7
%
)

1
1
2

3
9

3
8

1
6
,5
6
4

7
5
1
(4
8
.5
7
%
)

1
0
5

7
2
3

8
1

2
2
,1
4
0

4
5
0
(2
9
.1
1
%
)

S
is
m
a
n
a
n
d
K
a
k
[2
3
1
]

B
R
N
L

4
9
9
(3
2
.2
8
%
)

5
9

2
6

2
6

1
2
,0
1
9

5
7
5
(3
7
.1
9
%
)

9
8

5
1
5

6
4

2
2
,2
0
4

4
7
2
(3
0
.4
7
%
)

S
T
R
IC
T
[1
9
1
]

(1
,5
4
6
)

4
6
7
(3
0
.2
1
%
)

5
7

2
6

3
0

1
1
,2
1
3

6
5
4
(4
2
.3
0
%
)

1
1
2

5
1
8

6
3

2
4
,9
3
3

4
2
5
(2
7
.4
4
%
)

B
a
se
li
n
e

9
1

5
1
5

5
7

2
2
,4
3
4

6
1

2
8

3
0

1
1
,8
9
4

B
L
IZ
Z
A
R
D

5
9
7
(3
8
.6
2
%
)

7
5

2
8

3
2

1
3
,0
6
3

4
5
5
(2
9
.4
3
%
)

9
2

5
1
5

5
4

2
2
,0
2
4

4
9
4
(3
1
.9
5
%
)

104

Figure 5.6: Comparison of (a) MAP@K and (b) Hit@K with the state-of-the-art IR-based bug
localization techniques

Figure 5.7: Comparison of Hit@10 across all subject systems

by consuming equal amount of resources, i.e., bug report only. All these �ndings above suggest two important

points. First, earlier studies might have failed to exploit the report contents and structures properly for bug

localization. Second, query reformulation has a high potential for improving the IR-based bug localization.

Fig. 5.6 demonstrates a comparison of BLIZZARD with the existing techniques in terms of (a) MAP@K

and (b) Hit@K for various Top-K results. Our statistical tests report that BLIZZARD, BLIZZARDBRO and

BLIZZARD+ outperform AmaLgam+BRO and AmaLgam+ respectively in MAP@K by a signi�cant margin

(i.e., p-values≤0.001) and large e�ect size (i.e., 0.82≤∆≤1.00). Similar �ndings were also achieved for Hit@K.

Fig. 5.7 and Fig. 5.8 focus on subject system speci�c performances. From Fig. 5.7, we see that

BLIZZARD outperforms AmaLgam+BRO with four systems in Hit@10, and falls short with two systems.

However, BLIZZARDBRO and BLIZZARD+ outperform AmaLgam+BRO and AmaLgam+ respectively for

all six systems. As shown in the box plots of Fig. 5.8, BLIZZARD has a higher median in MRR@10 and

MAP@10 than AmaLgam+BRO across all subject systems. AmaLgam+ improves both measures especially

MAP@10. However, BLIZZARD+ provides even higher MRR@10 and MAP@10 than any of the existing

techniques including the state-of-the-art.

105

Figure 5.8: Comparison of (a) MRR@10 and (b) MAP@10 with existing techniques across the subject
systems

Summary of RQ3: Our technique outperforms the state-of-the-art from IR-based bug localization in various

dimensions. It o�ers 20% higher precision and reciprocal rank than that of state-of-the-art variant (i.e.,

AmaLgam+BRO) by using only query reformulation rather than costly alternatives, e.g., mining of version

control history

Answering RQ4 �Comparison with Existing Query Reformulation Techniques: While we have

already showed that our approach outperforms the baselines and the state-of-the-art IR-based bug localization

approaches, we also wanted to further evaluate our approach in the context of query reformulation. We thus

compared BLIZZARD with four query reformulation techniques [98, 191, 213, 231] including the state-of-

the-art [191] that were mostly used for concept/feature location. We use authors' implementation of the

state-of-the-art, STRICT, and re-implement the remaining three techniques. We collect Query E�ectiveness

(i.e., rank of the �rst correct result) of each of the reformulated queries provided by each technique, and

compare with ours using quantile analysis. From Table 5.9, we see that 48% of the noisy (i.e., BRST) queries

are improved by STRICT, and 32% of the poor (i.e., BRNL) queries are improved by Sisman and Kak

[231]. Neither of these techniques considers bug report quality (i.e., prevalence of structured information or

lack thereof) and each technique applies the same reformulation strategy to all reports. On the contrary,

BLIZZARD chooses appropriate reformulation based on the class of a bug report, and improves 59% of the

noisy queries and 39% of the poor queries which are 22% and 20% higher respectively. When compared using

quantile analysis, we see that our quantiles are highly promising compared to the baseline. Our reformulations

clearly improve the noisy queries, and 75% of the improved queries return their �rst correct results within

Top-9 (i.e., Q3=9) positions whereas STRICT needs Top-17 positions for the same. In the case of poor

queries, quantiles of BLIZZARD are comparable to that of Sisman and Kak. However, BLIZZARD worsens

less and preserves higher amount of the baseline queries which demonstrate its high potential.

Summary of RQ4: Our approach, BLIZZARD, outperforms the state-of-the-art in query reformulation

using context-aware (i.e., responsive to report quality) query reformulation. Whatever improvements are

106

o�ered to noisy and poor queries by the state-of-the-art, our technique improves 22% more of noisy queries

and 20% more of the poor queries.

5.4 Threats to Validity

Threats to internal validity relate to experimental errors and biases [272]. Replication of existing studies

and misclassi�cation of the bug reports are possible sources of such threats. We use authors' implementation

of three techniques [191, 220, 276] and re-implement the remaining four. While we cannot rule out the

possibility of any implementation errors, we re-implemented them by consulting with the original authors

[250] and their reported settings and parameters [98, 213, 231]. While our technique employs appropriate

regular expressions for bug report classi�cation, they are limited in certain contexts (e.g., ill-structured

stack traces) which require limited manual analysis currently. More sophisticated classi�cation approaches

[173, 241, 277] could be applied in the future work.

Threats to external validity relate to generalizability of a technique [272]. We conduct experiments using

Java systems. However, since we deal with mostly structured items (e.g., stack traces, program entities) from

a bug report, our technique can be adapted to other OOP-based systems that have such structured items.

5.5 Related Work

Bug Localization: Automated bug localization has been an active research area for over two decades [220].

Existing studies from the literature can be roughly categorized into two broad families�spectra based and

information retrieval (IR) based [130, 248]. We deal with IR-based bug localization in this work. Given that

spectra based techniques are costly and lack scalability [163, 248], several studies adopt IR-based methods

such as Latent Semantic Indexing (LSI) [179], Latent Dirichlet Allocation (LDA) [167, 207] and Vector Space

Model (VSM) [122, 163, 220, 230, 258, 276] for bug localization. They leverage the shared vocabulary between

bug reports and source code entities for bug localization. Unfortunately, as existing evidences [193, 248]

suggest, they are inherently subject to the quality of bug reports. A number of recent studies complement

traditional IR-based localization with spectra based analysis [130], machine learning [128, 269] and mining of

various repositories� bug report history [221], version control history [230, 249], code change history [255, 270]

and bug reporter history [250]. Recently, Wang and Lo [250] combine bug report contents and three external

repositories, and outperform �ve earlier IR-based bug localization techniques [220, 221, 230, 249, 258, 276]

which makes it the state-of-the-art. In short, the contemporary studies advocate for combining (1) multiple

localization approaches (e.g., dynamic trace analysis [130], Deep learning [128], learning to rank [268, 269])

and (2) multiple external information sources with classic IR-based localization, and thus, improve the

localization performances. However, such solutions could be costly (i.e., multiple repository mining) and

less scalable (i.e., dependency on external information sources), and hence, could be infeasible to use in

107

practice. In this work, we approach the problem di�erently, and focus on better leveraging the potential of

the resources at hand (i.e., bug report and source code) which might have been underestimated by the earlier

studies. In particular, we re�ne the noisy queries (i.e., containing stack traces) and complement the poor

queries (i.e., lacks structured items), and o�er an e�ective information retrieval unlike the earlier studies.

Thus, issues raised by low quality bug reports [248] have been signi�cantly addressed by our technique, and

our experimental �ndings support such conjecture. We compare with three existing studies including the

state-of-the-art [250], and the detailed comparison can be found in Section 5.3.4 (i.e., RQ3).

A few studies [163, 258] analyse stack traces from a bug report for bug localization. However, they apply

the trace entries to boost up source document ranking, and super�uous trace entries were not discarded

from their stack traces. Learning-to-rank [268, 269] and Deep learning [128] based approaches might also

su�er from noisy and poor queries since they adopt classic IR without query reformulation in their document

ranking. Recent studies [245, 268] employ distributional semantics of words to address limitations of VSM.

Since noisy terms in the report could be an issue, our approach can complement these approaches through

query reformulation.

Query Reformulation: There exist several studies [64, 84, 96, 98, 104, 120, 188, 191, 208, 268] that sup-

port concept/feature/concern location tasks using query reformulation. However, these approaches mostly

deal with unstructured natural language texts. Thus, they might not perform well with bug reports con-

taining excessive structured information (e.g., stack traces), and our experimental �ndings also support this

conjecture (Table 5.9). Sisman and Kak [231] �rst introduce query reformulation in the context of IR-based

bug localization. However, their approach cannot remove noise from a query. Recently, Chaparro et al. [65]

identify observed behaviour (OB), expected behaviour (EB) and steps to reproduce (S2R) from a bug report,

and then use OB texts as a reformulated query for bug localization. However, they only analyse unstructured

texts whereas we deal with both structured and unstructured contents. Since we apply query reformulation,

we compare with four recent query reformulation techniques employed for concept location�Rocchio [213],

RSV [212], STRICT [191] [189] and bug localization� SCP [231]. The detailed comparison can be found in

Section 5.3.4 (i.e., RQ4).

In short, existing IR-based techniques su�er from quality issues of bug reports whereas traditional query

reformulation techniques are not well-adapted for the bug reports containing excessive structured information

(e.g., stack traces). Our work �lls this gap of the literature by incorporating context-aware (i.e., report quality

aware) query reformulation into the IR-based bug localization. Our technique better exploits resources at

hand and delivers equal or higher performance than the state-of-the-art at a relatively lower cost. To the

best of our knowledge, such comprehensive solution was not provided by any of the existing studies.

5.6 Summary

Developers spend about 50% of their development time in dealing with software bugs and failures, which

cost billions of dollars every year [1]. Finding the locations of bugs within the source code is a crucial step

108

of the bug resolution process. Traditional solutions for bug localization are limited. They do not perform

well when the bug reports are noisy or poor in quality [248]. In this chapter, we propose a novel technique

�BLIZZARD� that accepts a bug report as a search query, employs appropriate query reformulations based

on its reporting quality (e.g., noisy, poor), and then delivers an improved, reformulated search query for

the bug localization. Experiments using 5,139 bug reports from six open source subject systems report that

BLIZZARD can o�er up to 62% higher precision than the best baseline and 20% higher precision than the

state-of-the-art measure. Our technique also improves 22% more of noisy queries and 20% more of the poor

queries than that of the state-of-the-art.

Although our approach suggests appropriate search queries from the noisy and poor quality bug reports,

they might require further reformulations to achieve the optimal performance during bug localization. In

particular, we notice that BLIZZARD might achieve only marginal improvement over the baseline when

the bug reports are really poor. In the next chapter, our fourth study (BLADER, Chapter 6) attempts to

overcome this challenge. BLADER accepts a poor bug report as a search query, and reformulates the query

using word embedding technology and clustering tendency analysis for the bug localization.

109

Chapter 6

Search Query Reformulation for Bug Localization

using Word Semantics & Clustering Tendency

Analysis

Software bugs and failures are pervasive in modern software systems [1]. Changes to the existing software

systems are also frequent and inevitable during the maintenance. Thus, �nding bugs in the software code

(a.k.a., bug localization) and identifying concepts of interest in the software code (a.k.a., concept location)

are two major challenges of the software maintenance. Our previous studies (Chapters 3, 4, 5) deliver

search queries for concept location and bug localization by analysing change requests, bug reports and

relevant source code documents. They determine keyword importance using statistical properties (e.g., term

co-occurrences, Section 3.3.3) and dependency relationships among the keywords (e.g., syntactic, static or

hierarchical dependencies, Section 5.2.2). While these dimensions were found promising, the underlying

semantics of the keywords were overlooked, which could have been another important dimension. In this

chapter, we overcome this issue with another study. Here, we present BLADER that accepts a poor quality

bug report as a query, analyses clustering tendency between the query and the candidate keywords in terms of

their underlying semantics, and then delivers an improved, reformulated search query for the bug localization.

The rest of the chapter is organized as follows � Section 6.1 presents an overview of our study, and

Section 6.2 o�ers a motivating example. Section 6.3 describes our proposed technique for search query

reformulation for bug localization, and Section 6.4 discusses our experiments, evaluation and validation.

Section 6.5 identi�es the threats to the validity of our �ndings, Section 6.6 discusses related work, and �nally

Section 6.7 concludes the chapter with future work.

6.1 Introduction

Software bugs and failures cost trillions of dollars every year and consume almost half of the development

time and e�orts [1, 28]. Bug localization is one of the most challenging steps of software debugging. It

involves �nding out the bugs or faults within the source code of a software system [130, 170]. Over the last

two decades, Information Retrieval (hereby IR) had been widely adopted in the localization of software bugs

[98, 163, 164, 220, 249, 276]. IR-based localization leverages textual similarity between a bug report (query)

110

and the source code in localizing the bug [276]. Such a localization is reported as light-weight, cost-e�ective

and even as accurate as spectra-based techniques which localize a bug by analysing the execution traces

[207, 248]. Unfortunately, recent �ndings [192, 193, 248] suggest that IR-based approaches su�er heavily

when the quality of a bug report is low (i.e., poor query). They cannot perform well without the presence

of relevant program entity names (e.g., class names, method names) in the report texts. Such entities could

essentially help �nd the locations of the encountered bugs or failures within the source code. According to

existing investigations [193, 248], up to 55% of bug reports of a software system could be of low quality (i.e.,

lack program entities). Thus, such automated supports are highly warranted that could localize the bugs in

the software even with these low quality bug reports (i.e., poor queries).

Software developers often use a few important keywords from a bug report as a search query for bug

localization [120, 231]. Unfortunately, choosing such keywords from the bug report is often challenging, and

even the experienced developers cannot do this job well [83, 120, 142]. Furthermore, they might not even

�nd any useful keywords from the low quality bug reports. An ad hoc alternative to this issue could be the

use of the whole texts (i.e., title + description) of a bug report as a search query. Unfortunately, such texts

might also produce verbose and poor queries [64]. Thus, appropriate query selection for bug localization is a

major challenge, and the developers are badly in need of automated tool supports. Our work in this chapter

addresses this particular research problem� query reformulation for the IR-based bug localization.

Several existing studies o�er automated supports for query reformulations in the context of concept/fea-

ture location [84, 98, 104, 164, 191] and bug localization [65, 163, 192, 231]. Unfortunately, they might fail

with low quality bug reports (poor queries) due to their high reliance on the report contents. Most of them

use pseudo-relevance feedback (PRF) [222] and term selection methods (e.g., TF-IDF [114]). PRF-based

techniques accept a search query, retrieve a few apparently relevant source documents, and then expand the

query with important keywords extracted from these documents [222]. However, if the given query is already

poor, the retrieved documents could be either noisy or even completely irrelevant which can negatively a�ect

the reformulated query. Low quality bug reports (i.e., poor queries) generally do not contain any relevant

program entity names (e.g., class names) [193, 248]. Thus, term selection based approaches [120, 191] might

also not be su�cient enough for selecting appropriate queries from the low quality bug reports.

In this chapter, we propose and design a novel technique�BLADER� that reformulates a poor search

query by analysing and complementing its underlying semantics, and then localizes the bugs in the software

code using the reformulated query. First, we construct a high dimensional semantic space (a.k.a., semantic

hyperspace) and a large vocabulary of ≈660K words by employing a widely used text mining tool, FastText

[54], on 1.40 million Q&A threads of Stack Over�ow. FastText represents each word of the vocabulary as

a point within the semantic hyperspace so that similar or relevant words cluster together within the space.

Second, we collect multiple reformulation candidates from the relevant source code against a given query,

and determine their appropriateness based on their clustering tendency towards the given query within the

hyperspace (i.e., use of word semantics). Third, we choose the best candidate using machine learning as our

111

Table 6.1: An Example of Low Quality Bug Report (Issue #192756, ECF)

Field Content

Title [IRC] On channel join, get rid of `entered' spam in

Description If you join a big channel, you get a ton of �xxx entered". I think on channel entry, we

don't show these messages. We should show these messages in maybe the `server tab', ie.,

irc.freenode.net, similar to how other IRC clients do it.

An Example of Query Reformulation

Technique Reformulated Query QE

BaselineT {title} 30

BaselineD {description} 10

Baseline {title + description} 12

Rocchio [213] {title + description} + {remoteserviceadminevent admin service feed remote synd

mask writer event export}

10

BLADER {title + description} + 03

(Proposed) {connect invitation handle message room chat user send}

QE = Rank of the �rst buggy document retrieved by the query

reformulated query (i.e., poor query + complementary keywords), and then employ this query in the bug

localization with information retrieval. While many earlier approaches [220, 276] simply use the poor queries

(i.e., low quality bug reports) verbatim, our approach complements such queries with relevant keywords

from the source code using word semantics, clustering tendency analysis and machine learning. Thus, our

approach, BLADER, has a greater chance of overcoming the challenges posed by low quality bug reports

(poor queries). To the best of our knowledge, this is the �rst attempt to apply clustering tendency analysis

and word semantics (derived from Stack Over�ow Q&A threads) in the query reformulation intended for bug

localization, which makes our work novel.

We evaluate our technique using four widely used performance metrics, two di�erent dimensions (bug

localization and query reformulation), and a dataset of 1,546 bug reports from six subject systems. First, we

evaluate in terms of bug localization performance (RQ1). In contrast with a baseline approach, our technique

localizes software bugs with 9% higher Hit@10, 17% higher MAP and 21% higher MRR. Second, we compare

with �ve well known existing studies on bug localization [192, 220, 250, 268, 276] (RQ3), where BLADER

achieves 11% higher MAP and 15% higher MRR than the state-of-the-art [192]. Third, we compare with

six well known existing approaches on query reformulation [188, 191, 192, 212, 213, 231] (RQ4). BLADER

improves 48%-72% of the poor queries which is 23% higher than that of the state-of-the-art [192]. Such

an improvement can help the practitioners �nd out the buggy documents with less manual or cognitive

e�orts. Our work also demonstrates the novel and e�ective application of clustering tendency analysis and

word semantics derived from Stack Over�ow in addressing a complex Software Engineering challenge such

as query reformulation for IR-based bug localization. Thus, our work makes the following contributions.

112

(A) (B)

Q & A threads
Stack Over�ow

Preprocessing FastText
(Word2Vec)

Initial query
(bug report)

Query�candidate
clustering

tendency analysis

Semantic
hyperspace

Candidate source
term selection

RCHS

RCbase

RCPA

Reformulation
candidates

Data
resampling

Best candidate
selection

Reformulated

query

1

2
3a

3b

4a

4b

5

6a

6c

6b

7

8

9

Figure 6.1: Schematic diagram of the proposed query reformulation technique �BLADER� (A)
Construction of a semantic hyperspace and (B) Reformulation of a query for bug localization

(a) A novel query reformulation technique, BLADERQR, that improves a poor search query with appro-

priate keywords from the source code of a software system by employing word semantics, clustering

tendency analysis, machine learning and pseudo-relevance feedback.

(b) A novel bug localization technique, BLADERBL, that employs query reformulation, Information Re-

trieval, and word semantics for the bug localization.

(c) Comprehensive evaluation of the proposed approach using 1,546 bug reports and comparison with

eleven existing techniques in two di�erent dimensions.

(d) A replication package [29] that includes a working prototype, experimental dataset and other associated

materials for third party reuse and replication.

6.2 Motivating Example

In order to demonstrate the capability of our technique in improving search queries and thereby in bug local-

ization, we provide an example where BLADER outperforms three baseline approaches and one frequently

cited existing approach�Rocchio [213]. The upper part of Table 6.1 shows a low quality bug report. The

report explains a bug on IRC chat using only regular texts. It does not contain any program entities (e.g.,

class names) which might have assisted in the bug localization process. In the lower part of Table 6.1, we

compare our approach with others. We see that three baseline approaches � BaselineT (title only), BaselineD

(description only) and Baseline (title+description) do not perform well, and they return the �rst buggy

document at the 30th, 10th and 12th positions respectively in their result lists. On the contrary, BLADER

complements this low quality bug report (poor query) with appropriate search keywords from the

source code, and then returns the same result at the third position which is a 70% rank improvement over

the baseline. Despite the expansion, Rocchio's method fails to improve over baseline due to its high reliance

on the poor query. Please note that our keywords are more appropriate and more relevant.

113

6.3 BLADER: Automated Query Reformulation using Word Se-

mantics & Clustering Tendency Analysis for Bug Localization

Fig. 6.1 shows the schematic diagram of our proposed technique for query reformulation targeting bug lo-

calization. Furthermore, Algorithm 7 shows the pseudo code of our approach. We �rst construct a semantic

hyperspace (i.e., multi-dimensional semantic space) from 1.40 million Q&A threads of Stack Over�ow us-

ing FastText. Then we reformulate a poor query using two clustering tendency metrics derived from this

hyperspace and perform bug localization with the reformulated query as follows:

6.3.1 Construction of a Semantic Hyperspace from Stack Over�ow Q&A Threads

Several earlier studies [144, 226] make use of natural language thesauri (e.g., WordNet) to expand a search

query with synonyms and semantically similar words. However, Sridhara et al. [233] later suggest that words

used in Software Engineering literature have di�erent semantics than what they have in the regular texts

(e.g., news article). That is, natural language thesaurus such as WordNet might not be su�cient enough

for keyword suggestion in the context of Software Engineering (SE) tasks (e.g., bug localization). We thus

construct a dictionary-like mechanism (e.g., semantic hyperspace) using the contents relevant to Software

Engineering (e.g., programming Q & A threads) for our query reformulation.

Data Collection: We use Stack Over�ow, the most popular programming Q & A site on the web, for our

semantic hyperspace construction (i.e., Step 1, Fig. 6.1). Stack Over�ow is a large body of knowledge with

14 million questions and 22 million answers across various programming languages, algorithms, API libraries,

and state-of-the-art software development practices [58]. These contents are spontaneously produced by

millions of software engineers, programming hobbyists, and researchers from all over the world. They are also

systematically curated by this large technical crowd with a voting based system. Thus, Stack Over�ow o�ers

a massive body of relevant, reusable, and useful resources. Furthermore, such resources could be leveraged

in exploring the underlying semantics of the keywords from queries related to Software Engineering tasks.

Several earlier studies [58, 201, 205, 272] also demonstrate the high potential of Stack Over�ow for SE tasks.

We collect a total of 1.40 million questions and answers related to Java from Stack Over�ow for our

corpus preparation. We make use of the o�cial data dump [35] released on March, 2018 by Stack Over�ow.

Since we deal with Java-based subject systems, we were interested in the Java related questions, answers and

discussions posted on Stack Over�ow. We identify them using <java> tag of the questions. We also make

sure that each of the questions has at least one answer in order to avoid the low quality questions.

Text Preprocessing: As a widely used practice [272], we perform standard natural language prepro-

cessing on each of the questions and answers (i.e., Step 2, Fig. 6.1). In particular, we �rst remove stop

words, programming keywords, punctuation marks, and digits, and then split the complex or structured

tokens (e.g., camel case, GoogleTalk) into simpler ones (e.g., Google, Talk). Stop words (e.g., `a', `an', `the')

114

and keywords (e.g., for, while) are frequently used words in the texts and source code respectively which

convey very little semantics. We use a standard list of stop words [25] and an o�cial list of Java language

keywords [12] for the stop word removal and keyword removal respectively. It should be noted that we avoid

stemming in our analysis due to the controversial evidence of stemming in the software text retrieval [106].

Learning of Word Embeddings: Semantics of a word are often determined by its contexts (i.e.,

surrounding words) within the texts. The same word can express di�erent meanings in di�erent contexts.

For example, the word `bank' could mean a �nancial institution in one context, and could also mean an

edge of the river in another context. Thus, determining the exact meaning of a word is a major challenge.

Since bug reports are written by mostly layman users, search queries constructed from these reports could

be ambiguous as well. There have been several attempts [109, 154, 188, 233, 265, 272] for understanding

software word semantics during the last decade. Recently, Mikolov et al. [156] propose a neural network based

approach called Word2Vec that learns the semantics of a word in terms of a numeric vector. Such a vector

is also called word embeddings. Word2Vec has been found surprisingly e�ective for various traditional text

classi�cation tasks (e.g., sentiment analysis [115, 238]). We use a recent version of their approach namely

FastText [54] for learning the word embeddings in our work.

We use a three-layer neural network (i.e., input layer + hidden layer + output layer) with Skip-gram

algorithm to learn word embeddings (Step 3a, Fig. 6.1). The training of this network (1) starts with a set of

random weights and an activation function (e.g., linear function) in the hidden layer, and (2) �nishes with a

set of �ne-tuned weights in the hidden layer neurons.

Then the hidden layer weights learned by the network for each of the words are considered as their

corresponding word embeddings [36, 156]. We implement FastText using gensim library in Python platform,

and use the default set of parameters like earlier studies [194, 274]. In particular, we use a window size of 5,

a minimum frequency of 5, and a hidden layer of 100 neurons. Thus, our trained model returns a numeric

vector of 100 weights as the word embeddings for each of the ≈660K words from the corpus.

Modelling of a Semantic Hyperspace with Word Embeddings: Although word embeddings are

learned from a simple, shallow neural network, they have useful properties that could be leveraged for

various text processing tasks (e.g., semantic similarity estimation [268, 274]). For example, the embeddings

are learned in such a fashion that similar or relevant words are found close to one another when their word

embeddings are visualized. We make use of this interesting property, and map the embedding vector of

each word to a unique point within the semantic hyperspace. Hyperspace refers to a space having more than

three dimensions. Thus, each point (or word) could be considered as an intersection of multiple dimensions

pointing towards multiple semantics. Our corpus from Stack Over�ow contains a total of ≈660K unique

words, and their word embeddings thus construct a large-scale, multi-dimensional semantic space (a.k.a.,

semantic hyperspace) (Step 3b, Fig. 6.1).

115

Algorithm 7 Bug Localization with QR using Word Semantics & Clustering Tendency Analysis

1: procedure BLADER(Q, WE)

2: . Q: a poor bug report, a.k.a., search query

3: . WE: word embeddings learned from Stack Over�ow

4: . stopword/keyword/punctuation removal, and token splitting

5: Qpp ←preprocess(Q)

6: . collect candidate terms for reformulation

7: C ←getCandidateTermsFromProjectSource(Qpp)

8: X ← {C ∪Qpp}

9: . get reformulation candidates using clustering tendency

10: S ← {∀x : x ∈ X}, S′ ← {∀x : x ∈ X} . set initialization

11: . get the candidate using Hopkins statistic

12: Y ← {y : y ∈ X ∧ Y ⊆ X} . uniformly distributed set

13: for CandidateTerm t ∈ X do

14: rc← {∀x : x ∈ S ∧ x 6= t}

15: HS[rc]←calculateHopkinsStatistic(rc, X, Y , WE)

16: if HS[rc] ≥ HSmax then

17: RCHS ← rc . candidate with maximum HS

18: S ← {S \ t}

19: end if

20: end for

21: . get the candidate using polygon area

22: for CandidateTerm t ∈ X do

23: rc← {∀x : x ∈ S′ ∧ x 6= t}

24: PA[rc]←calculatePolygonArea(rc, WE)

25: if PA[rc] ≤ PAmin then

26: RCPA ← rc . candidate with minimum PA

27: S′ ← {S′ \ t}

28: end if

29: end for

30: . get the best reformulation using machine learning

31: RCbest ←getBestQR(RCHS , RCPA, RCbase)

32: QR ← {Qpp ∪RCbest}

33: . bug localization on codebase with reformulated query QR

34: R←Lucene(corpus, QR)

35: return R

36: end procedure

116

6.3.2 Automated Search Query Reformulation with Semantic Hyperspace, Clus-

tering Tendency & Machine Learning

We use the semantic hyperspace constructed above (Section 6.3.1), identify the best reformulation candidate

using two clustering tendency metrics and machine learning, and then expand a poor query intended for

IR-based bug localization as follows:

Selection of Candidate Source Terms: First step of automatic query reformulation is to collect

suitable candidate terms for the reformulation. Existing approaches from the literature often make use of

relevance feedback [84, 146] or pseudo-relevance feedback [62, 98, 213, 222] for candidate selection. Rahman

and Roy [189] recently make use of �eld and method signatures from the source code of a software system,

and suggest suitable terms for query reformulation using pseudo-relevance feedback and an advanced term

weighting method (e.g., PageRank [57]). Their approach also outperforms contemporary PRF-based ap-

proaches which makes it an ideal choice for our candidate term selection. We use authors' implementation of

the tool, and extract the Top-25 terms (i.e., threshold justi�ed in RQ1) from the source code as the candidate

terms (i.e., Step 4, Fig. 6.1, Lines 4�8, Algorithm 7). Given that low quality bug reports often lack relevant

program entities, such terms from the relevant source code could complement them for bug localization.

Clustering Tendency Analysis: Once candidate terms are selected, we attempt to identify the most

appropriate ones from them to reformulate a given query (i.e., bug report). Several earlier studies [194,

268, 274] simply rely on semantic distance between query keywords and candidate terms for choosing the

appropriate terms for query reformulation. However, their idea might fail with poor search queries (i.e., low

quality bug reports). While a term from the source code could be semantically close to one of the query

keywords, (1) it might not be relevant to the whole query or (2) the keyword itself might not be a salient one.

We thus leverage the clustering tendency of the candidate terms towards the query keywords rather than

simply relying on their semantic distance. In particular, we locate the query keywords and the candidate terms

within our semantic hyperspace using their embedding vectors (i.e., coordinates), determine their clustering

tendency with each other using two metrics below, and then develop two reformulation candidates as follows

(Steps 5�6, Fig. 6.1, Lines 9�29, Algorithm 7):

(a) Hopkins Statistic is a statistical hypothesis test that determines the clustering tendency of a given

dataset [48, 108]. It assumes a null hypothesis that the data points in the dataset have a uniform random

distribution, and thus do not form any cluster. We use this statistic to identify a subset of the candidate

terms that have the highest clustering tendency with a given query.

We �rst combine query keywords and candidate source terms, and develop a sample set X of size n. For

the sake of brevity, we assume that X contains n items. Now, we construct a subset S ⊆ X of size m << n

by iteratively discarding the individual items. We also draw a uniform random sample Y ⊆ X of size l << n

where Y contains only l distinct items (i.e., uniformly distributed). That is, S is the real dataset and Y is

the uniformly sampled set. We then determine the distance between each item and its nearest neighbour

117

from X. Lets assume that ui is the distance between xi ∈ S and its nearest neighbour in X whereas vi is the

distance between yi ∈ Y and its the nearest neighbour in X. Now, we calculate the Hopkins statistic HS for

S using the distance measures as follows:

HS =
1
l

∑l
i=1 v

d
i

1
m

∑m
i=1 u

d
i + 1

l

∑l
i=1 v

d
i

(6.1)

Here, d refers to the dimension of each data point. Since we represent each item xi ∈ X using correspond-

ing embedding vector with a size of d, the distance measures above are calculated using cosine similarity

[90]. Let us assume that two items (i.e., terms) r ∈ S and t ∈ X have two embedding vectors R and T

respectively which are derived from our semantic hyperspace (i.e., Section 6.3.1). Now, the semantic distance

udi between r and t is calculated as follows:

udi = 1−
∑d
k=1 Sk × Tk√∑d

k=1 S
2
k

√∑d
k=1 T

2
k

(6.2)

Hopkins statistic takes a value between 0 and 1. A value close to 1 indicates that the sample set S is

highly clustered whereas 0.5 indicates that S is randomly sampled, and does not contain any meaningful

clusters. We construct a number of subsets S ⊆ X, and choose the one with the highest HS value as our

reformulation candidate RCHS (i.e., Step 6a, Fig. 6.1, Lines 11�20, Algorithm 7).

(b) Polygon Area calculation, a well known concept from Coordinate Geometry, has found numerous

applications in the real world problems (e.g., architectural planning, computer 3D modelling) [34]. These

problems often involve the maximization or minimization of the area of an irregular polygon. In order to

reformulate a poor query, we deal with a set of points within the semantic hyperspace which also essentially

form an irregular polygon. Carmel et al. [61] suggest that poor queries often discuss multiple topics which

make them ambiguous, and good quality queries are mostly precise. Similarly, we argue that terms of a good

quality search query are closely related in their semantics. Hence, the area of polygon created by them within

our semantic hyperspace is likely to be small. Conversely, a large polygon area indicates broad or ambiguous

query topics. Thus, the polygon area could be another proxy to clustering tendency between the candidate

reformulation terms and the query keywords (e.g., bug report).

We develop a sample set X by combining candidate terms and query keywords. For the sake of brevity, let

us assume that X contains n points where each point is an embedding vector of size d for corresponding term

or keyword from X. Since we deal with a d-dimensional space (a.k.a., hyperspace), we adapt the traditional

2-dimensional polygon area calculation [33] with d-dimensions. In particular, we choose dC2 dimension pairs,

calculate the polygon area for each pair, and then sum them up to obtain the �nal area PA. Let us assume

118

that R and T contain rth and tth coordinates from n points above. Now we calculate their polygon area

using the following equation.

PART =
1

2

n∑
i=1

(Rj +Ri)× (Tj − Ti) where j = i− 1 (6.3)

Here, j takes a value of n when i = 1, otherwise it always takes the previous value of i, i.e., j = i− 1. We

construct a number of subsets S ⊆ X, extract their embedding vectors, and calculate the polygon area for

each subset. Then, we choose the one with the smallest polygon area as the reformulation candidate RCPA

(i.e., Step 6b, Fig. 6.1, Lines 21�29, Algorithm 7).

Selection of the Best Reformulation Candidate: The clustering tendency metrics above provide

two reformulation candidates (RCHS, RCPA) using the candidate terms from the source code of a software

system. An earlier study [193] suggests that baseline queries might also perform well in some cases. We thus

use the preprocessed version of a given bug report as the third reformulation candidate RCbase (Step 6c,

Fig. 6.1). Existing evidence [98, 189] shows that combination of multiple reformulation strategies performs

consistently higher than any single strategy. We thus consider all three reformulation candidates, and choose

the best one among them using machine learning (Lines 30�32, Algorithm 7) as follows:

(a) Data Resampling: Query di�culty metrics [62] have been used by several existing studies [96, 98,

189] to identify the best reformulation candidate. However, they might not be e�ective for poor queries (our

problem context) since they mostly rely on the linguistic aspect of the queries. We thus attempt to predict

the best reformulation candidate using the above two data analytics based metrics � Hopkins Statistic, and

Polygon Area� of each candidate. We also determine Query E�ectiveness of each of the three reformulation

candidates, and annotate them with one of these three labels �`high', `medium', and `low ' � based on their

performances. Since only `high' labelled candidates are of our interest, the training dataset is inherently

skewed. We thus perform bootstrapping (i.e., random resampling [116]) on the training dataset with 100%

sample size and with replacement option. Bootstrapping is often used to mitigate data skewness [116]. In

particular, we draw 50 random samples (i.e., suggested by an earlier study [189]) from this dataset, and

prepare multiple datasets for our model training (Step 7, Fig. 6.1).

(b) Machine Learning: Given multiple training datasets, we develop multiple machine learning models,

and then identify the best reformulation candidate by combining the predictions from each of these models.

Such an approach of combining multiple models is known as ensemble learning [174, 214]. It is often used when

individual models might be weak. As shown by earlier studies [56, 203], RandomForest algorithm has the

potential to avoid model over�tting which makes it a suitable choice for our machine learning task. Besides,

our investigation in RQ1, Section 6.4.3 shows that RandomForest is the best choice for our dataset. We thus

train RandomForest model with 10-fold cross validations on each of the training datasets, combine predictions

119

from all the models for a given test instance, and then suggest the best candidate as the reformulated query

(i.e., Steps 7�9, Fig. 6.1).

6.3.3 Bug Localization

Once BLADER returns a reformulated query against a poor search query (i.e., low quality bug report), we

submit the reformulated query to a widely used code search engine namely Lucene [32]. Lucene employs

Boolean Search Model and Vector Space Model [114] for the search, and it is widely adopted both by the

industry (e.g., ElasticSearch) and by the existing literature [98, 164, 189]. We use Okapi BM25 similarity [227]

between a query and the source code documents, and retrieve a ranked list of buggy source documents for

each query using Lucene (i.e., Lines 33�35, Algorithm 7). These ranked buggy documents are then presented

to the developer for manual analysis. As shown in Table 6.1, our suggested query returns the �rst buggy

document at the third position as opposed to the 12th position by the given query.

6.4 Experiment

We evaluate our proposed technique �BLADER� with four widely used performance metrics and 1,546

bug reports from six subject systems. We further consider two di�erent dimensions � (1) bug localization

and (2) query reformulation� for our evaluation. We �rst determine our bug localization performance (i.e.,

BLADERBL), and compare with one baseline approach and �ve existing approaches on bug localization [192,

220, 250, 268, 276] including the state-of-the-art [192]. In addition to that, we contrast our query reformulation

performance (i.e., BLADERQR) with that of another six existing approaches on query reformulation [188,

191, 192, 212, 213, 231] including the state-of-the-art [192]. Thus, we answer four research questions using

our experiments as follows:

• RQ1: Can BLADERBL outperform the baseline approach in bug localization? Are the adopted thresh-

olds, parameters and choices justi�ed?

• RQ2: Can BLADERQR outperform the baseline approach in query reformulation intended for bug

localization?

• RQ3: Can BLADERBL outperform the state-of-the-art in the IR-based bug localization?

• RQ4: Can BLADERQR outperform the state-of-the-art in query reformulation intended for bug/con-

cept location?

6.4.1 Experimental Dataset

Dataset Collection: We use a total of 1,546 bug reports from six open source, Java-based systems for the

evaluation and validation of our technique. We collect these bug reports from a publicly available benchmark

dataset [30, 192, 193]. Table 6.2 shows the details of our dataset. First, all the resolved bug reports (i.e.,

120

marked as RESOLVED) are collected from either BugZilla or JIRA repository of each system. Second, bug-

�xing commits (i.e., commits solving the bugs) are extracted from the version control history of each system

at GitHub using a set of appropriate regular expressions [43]. Such bug reports are then selected that have the

corresponding bug-�xing commits. Third, we retain such bug reports that contain only unstructured regular

texts, and do not contain any structured entities (e.g., class names, stack traces), i.e., BRNL category, poor

bug reports [192, 248]. Fourth, we also discard such bug reports for which (1) no source code documents (e.g.,

Java classes) are changed, and (2) the changed source code documents do not exist any more in the current

snapshot of the subject system.

Construction of Ground Truth: We extract the changeset (i.e., list of changed �les) from each of

the bug-�xing commits, and use them as the ground truth for corresponding bug reports. When multiple

commits are found for the same bug report, their changesets are merged together to form the ground truth.

Recent studies [103, 260] report concerns about tangled commits that often contain changes irrelevant to

the �xed bug. In order to mitigate such threat, we also discard the large commits that contain more than

�ve changed documents from the dataset. It should be noted that evaluations are performed both with and

without tangled commits.

Replication Package: Our dataset, experimental results and working prototype are publicly available

(https://goo.gl/tcVKup) for the replication or third party reuse.

6.4.2 Performance Metrics

We use four state-of-the-art performance metrics that are frequently adopted for evaluation by the existing

approaches on IR-based bug localization [163, 220, 250] and on query reformulation [98, 164, 189]. They are

de�ned as follows:

Hit@K / Top-K Accuracy determines the fraction of all queries by each of which at least one buggy

source document is retrieved within the Top-K positions of result list [191, 220, 250]. The higher the measure

is, the better the approach (or its query) is.

Mean Average Precision@K (MAP) considers the rank of the results unlike the traditional precision

measure [164, 220, 276]. Precision@K calculates the precision of an approach at the occurrence of kth result.

Average Precision@K (AP@K) averages the Precision@K from all the true positive results (i.e., buggy source

documents) within a result list. Mean Average Precision@K (MAP) averages AP@K over all the queries in

the dataset (Q) as follows:

AP@K =

∑K
k=1 Pk × buggy(k)

|S|
, MAP(Q) =

∑Q
q AP@K(q)

|Q|
Here, Pk refers to Precision@K, K is the number of top results under analysis, and S is the set of true positive

results retrieved by each query. The function buggy(k) returns a value of 1 when kth result from the list is

true positive (i.e., actually buggy) and 0 for the opposite. The higher the MAP measure is, the better the

approach (or its query) is. We calculate MAP for top 1 to 15 results only.

121

Table 6.2: Experimental Dataset (Subject Systems & Bug Reports)

System Duration #BR System Duration #BR

ecf 2001�2017 163 eclipse.jdt.ui 2001�2016 407

eclipse.jdt.core 2001�2016 132 eclipse.pde.ui 2001�2016 510

eclipse.jdt.debug 2001�2017 229 tomcat70 2001�2016 105

Total: 1,546

Figure 6.2: Comparison of our approach, BLADERBL, with the baseline approach in bug localization
using (a) MAP and (b) MRR

Mean Reciprocal Rank (MRR) is de�ned as the mean of Reciprocal Rank of all queries (Q). Recip-

rocal Rank is the multiplicative inverse of the rank of the �rst buggy document within the results retrieved

by each query [163, 220, 276]. For the sake of practicality, we only consider top 1 to 15 results retrieved by

the query for our analysis. Thus, MRR can be calculated as follows:

MRR(Q) =
1

|Q|
∑
q∈Q

1

firstRank(q)

Here, firstRank(q) returns the rank of the �rst buggy document retrieved by a query q. The bigger the

measure is, the better the approach (or its query) is.

Query E�ectiveness (QE) is de�ned as the rank of the �rst buggy source document retrieved by a

query [98, 163, 164]. It should be noted that all retrieved results are analysed in this case rather than Top-K

only. The measure approximates a developer's e�ort in locating the �rst buggy document in the result list.

The higher the rank is, the quicker a developer locates the �rst buggy source document. Thus, a small QE

value indicates high quality of a query.

6.4.3 Evaluation of BLADER

We �rst show the bug localization performance of our technique using the metrics above (Section 6.4.2), and

then compare with a baseline approach and two of its variants. Like several earlier studies [98, 164, 192, 220],

our baseline uses a pre-processed version of the bug report as a query, and employs Lucene [32] as the

document retrieval engine. Thus, our Baseline = (pre-processed bug report texts + Lucene). We answer

RQ1 and RQ2 as follows:

122

Table 6.3: Performance of BLADERBL in Bug Localization

Technique Hit@1 Hit@5 Hit@10 MAP MRR

BaselineT 22.73% 45.22% 56.35% 30.30% 0.32

BaselineD 22.65% 44.55% 53.60% 29.49% 0.32

Baseline 28.89% 52.10% 62.54% 36.23% 0.39

BLADERBL *36.64% *59.39% *68.29% *42.46% *0.47

Performance of BLADERBL without Tangled Commits

BaselineT 19.27% 42.69% 53.59% 27.87% 0.29

BaselineD 19.66% 41.44% 49.76% 27.66% 0.29

Baseline 25.90% 49.12% 60.32% 34.73% 0.36

BLADERBL *32.97% *55.95% *65.56% *41.11% *0.43

* = Signi�cantly higher than Baseline, Baseline uses whole texts (title +

description), BaselineT uses only title, and BaselineD uses only

description from a bug report

Answering RQ1�(a) Performance of BLADERBL in Bug Localization: Table 6.3 (upper part)

shows Top-1, Top-5 and Top-10 performances of our technique. While the baseline achieves a maximum

Hit@1 of 29%, our approach returns the correct results (i.e., buggy source documents) at the Top-1 position

for 37% of the queries (i.e., 37% Hit@1) which is 27% higher than the baseline measure. However, the main

strengths of our approach, BLADERBL, are in precision and reciprocal rank. Baseline approach achieves

a precision of 36% and a reciprocal rank of 0.39 when Top-10 results are analysed. On the contrary, our

approach achieves a precision of 42% and a reciprocal rank of 0.47 in the same case which are 17% and 21%

higher respectively. Statistical tests such as Wilcoxon Signed Rank and Cli�'s Delta tests (across six subject

systems) also report strong signi�cance with p-values<0.05 and a large e�ect size (i.e., δ=0.78). Fig. 6.2

also clearly demonstrates that BLADERBL achieves higher precision and higher reciprocal rank than those

of the baseline and its two variants for top 1 to 15 results.

Several earlier studies [103, 260] voice concerns about tangled commits that �x bugs but contain changes

unrelated to the bugs. We discard such commits, and repeat our experiments. From Table 6.3 (lower part),

we see that our approach performs signi�cantly higher than the baseline even with this re�ned dataset.

For example, BLADERBL achieves 18% higher precision and 19% higher reciprocal rank than those of the

baseline. All these empirical �ndings above suggest that BLADERBL has higher potential than the baseline

approach and its two variants for the IR-based bug localization.

Answering RQ1�(b) Impact of Adopted Thresholds, Parameters and Choices: We conduct

several experiments to justify our adopted thresholds, parameters and choices � (a) use of multiple reformu-

lation candidates, (b) number of candidate terms, (c) use of machine learning algorithm, and (d) use of Stack

Over�ow for learning word embeddings. From Fig. 6.3-(a), we see that reformulation candidates based on

123

Figure 6.3: Impact of our adopted thresholds, parameters and choices � (a) Multiple reformulation
candidates, (b) Number of candidate source terms, (c) Machine learning algorithm for the best query
selection, and (d) Corpus for learning word embeddings

Hopkins Statistic (i.e., BLADERHS) and Polygon Area (i.e., BLADERPA) perform similarly. However, our

approach, BLADERBL, leverages both these candidates, delivers the best candidate using machine learning

(Steps 6�9, Fig. 6.1), and thus achieves comparatively higher Hit@K performance. Such �nding justi�es the

use of multiple reformulation candidates. Similar evidence was found in the earlier studies [98, 189] as well.

Fig. 6.3-(b) shows that our approach performs optimally when Top-25 terms are collected from the project

source code as the candidate terms (Step 4b, Fig. 6.1). We also conduct experiments using three machine

learning algorithms � CART [98], J48 [180] and RandomForest [56]� for identifying the best reformulation

candidate (Section 6.3.2, Step 8, Fig. 6.1). As shown in Fig. 6.3-(c), RandomForest based approach (i.e.,

BLADERRF) performs better than BLADERJ48 and marginally better than BLADERCART . RandomFor-

est is also more robust to model over �tting problem [56]. Thus, our choice of using RandomForest as the

machine learning algorithm is possibly justi�ed. We also investigate whether the use of corpus in learning

the word embeddings matters or not (Section 6.3.1, Steps 1�3, Fig. 6.1). We conduct experiments using two

open source corpora - Stack Over�ow [194] and GitHub [90]. As shown in Fig. 6.3-(d), Stack Over�ow based

versions, (i.e., BLADERHS+SO), perform marginally higher than the GitHub based versions. Such �nding

also justi�es our choice of using Stack Over�ow for learning the word embeddings.

Summary of RQ1: Our technique, BLADERBL, achieves 27% higher accuracy, 17% higher precision

and 21% higher reciprocal rank than those of the baseline approach. Furthermore, our adopted thresholds,

parameters and choices are justi�ed.

124

Table 6.4: Comparison of Query E�ectiveness with Baseline Queries

Query Pairs Improved Worsened Preserved

Comparison with All Queries (1,546)

BLADERQR vs. BQ 735 (47.54%) 182 (11.77%) 629 (40.69%)

Comparison with Low Quality Baseline Queries (569)

BLADERQR vs. BQ 410 (72.06%) 85 (14.94%) 74 (13.01%)

Comparison without Tangled Commits (1,074)

BLADERQR vs. BQ 537 (50.00%) 134 (12.48%) 403 (37.52%)

BQ = Baseline Queries

Answering RQ2�Comparison with the Baseline Queries: Although RQ1 shows high potential of

our approach, we further compare with the baseline queries. In particular, we compare the rank of the �rst

correct result (i.e., buggy source document) returned by a baseline query with such rank of the corresponding

reformulated query from BLADERQR. If the rank of BLADERQR is higher than that of the baseline, we call

it query improvement, and the opposite as query worsening. On the contrary, if both ranks are equal, we call

it query preserving. From Table 6.4, we see that BLADERQR improves 48% of the baseline queries, keeps

the quality of 41% queries unchanged, and worsens only 12% of the queries. That is, on average, nine out of

ten baseline queries (i.e., 90%≈48%+41%) either get improved or get preserved through the reformulations

o�ered by BLADERQR, which are highly promising according to relevant literature [98, 191, 231]. Result

rank distributions shown in Table 6.6 also suggest that the ranks achieved by BLADERQR are closer to the

top of the list than those of the baseline. We also repeat our experiments using very low quality baseline

queries which return their �rst correct results below the 10th position of the list (i.e., QE>10). As shown

in Table 6.4, BLADERQR improves 72% of these low quality queries. Similar �ndings are also observed for

the queries without tangled commits (e.g., 50% improvement). All these empirical �ndings above clearly

demonstrate the high potential of our reformulated queries over the baseline queries.

Summary of RQ2: About 48%�72% of the queries provided by our technique perform better than the

corresponding baseline queries (taken from bug reports). Nine out of ten baseline queries either get improved

or get preserved due to the reformulations of BLADERQR.

6.4.4 Comparison with Existing Techniques

Although our approach demonstrates high potential over the baseline approach both in RQ1 and RQ2, we

further compare with the state-of-the-art in order to place our work in the literature. In particular, we

extensively compare with �ve existing studies on IR-based bug localization [192, 220, 250, 268, 276] including

the state-of-the-art [192] and six existing studies on query reformulation [188, 191, 192, 212, 213, 231]. We

answer RQ3 and RQ4 as follows:

125

Table 6.5: Comparison with Existing Bug Localization Techniques

Technique Hit@1 Hit@5 Hit@10 MAP MRR

Basic and Structured Information Retrieval

BugLocator 25.04% 48.51% 58.90% 32.11% 0.35

BLIZZARD 29.16% 53.78% 65.21% 37.62% 0.40

BLUiR 29.91% 56.59% 66.10% 38.11% 0.41

BLADERBL *36.64% 59.39% 68.29% *42.46% *0.47

Information Retrieval + Multiple Ranking Algorithms

AmaLgam+BRO 29.40% 56.07% 65.01% 37.74% 0.40

BLIZZARDBRO 35.45% 58.75% 69.17% 42.26% 0.46

BLADERBRO+BL 35.44% 61.27% 70.63% 42.97% 0.47

Information Retrieval + Multiple Ranking + External Resources

AmaLgam+ 49.72% 65.42% 71.49% 52.74% 0.57

BLIZZARD+ 47.97% 66.24% 74.49% 52.12% 0.56

BLADER+BL 48.39% 67.60% 75.70% 52.62% 0.57

Information Retrieval + Word Embeddings

Ye et al. 21.74% 43.36% 55.33% 29.24% 0.31

BLADERBL *36.64% *59.39% *68.29% *42.46% *0.47

*=Signi�cantly higher than baseline, Emboldened=Comparatively higher

Answering RQ3 � Comparison with IR-Based Bug Localization Techniques: Zhou et al. [276]

�rst use an improved version of Vector Space Model (a.k.a., rVSM), and localize software bugs with Infor-

mation Retrieval (IR). Saha et al. [220] introduce structured Information Retrieval where they leverage the

structures of both bug reports and source code documents for the bug localization. Later studies [249, 258]

combine both rVSM and structures. In the same vein, Wang and Lo [250] combine �ve items from the

literature � similar bug reports, structured IR, stack traces, version control history and author history, and

outperform earlier approaches. However, recently, our another work [192] introduces novel aspects such as

report quality dynamics and query reformulation, and outperforms earlier approaches in the IR-based bug

localization which makes it state-of-the-art. Ye et al. [268] recently combine semantic similarity and tex-

tual similarity for IR-based bug localization. These �ve works above namely BugLocator [276], BLUiR [220],

AmaLgam+ [250], BLIZZARD [192] and Ye et al. [268] are highly relevant to ours, and we compare with them

experimentally. We collect the authors' implementations of three techniques [192, 220, 276], and carefully

re-implement the remaining two [250, 268] by consulting with their original authors for the comparison.

From Table 6.5 (upper part), we see that two of the existing approaches �BLUiR and BLIZZARD� that

rely on structured Information Retrieval stand out from the rest. BLUiR achieves a maximum precision

of 38% and a maximum reciprocal rank of 0.41 when Top-10 results are analysed. On the contrary, our

approach, BLADERBL, achieves 11% higher precision and 15% higher reciprocal rank than BLUiR in the

same context. Fig. 6.4 further contrasts the precision and reciprocal rank of BLADERBL with that of the

126

T
a
b
le
6
.6
:
C
o
m
p
a
ri
so
n
o
f
Q
u
er
y
E
�
ec
ti
ve
n
es
s
w
it
h
E
x
is
ti
n
g
Q
u
er
y
R
ef
o
rm

u
la
ti
o
n
T
ec
h
n
iq
u
es

T
e
ch
n
iq
u
e

Im
p
ro
v
e
m
e
n
t

W
o
rs
e
n
in
g

P
re
se
rv
in
g

#
Im

p
ro
ve
d

M
ea
n

Q
1

Q
2

Q
3

M
in
.

M
a
x
.

#
W
o
rs
en
ed

M
ea
n

Q
1

Q
2

Q
3

M
in
.

M
a
x
.

#
P
re
se
rv
ed

R
o
cc
h
io
[2
1
3
]

3
2
(2
.0
7
%
)

3
3

4
8

1
9

1
3
6
5

2
4
(1
.5
5
%
)

1
4
0

4
1
2

1
4
6

2
8
5
0

1
,4
9
0
(9
6
.3
8
%
)

R
S
V
[2
1
2
]

3
4
5
(2
2
.2
7
%
)

1
1
2

3
9

3
8

1
6
,5
6
4

7
5
1
(4
8
.5
7
%
)

1
0
5

7
2
3

8
1

2
2
,1
4
0

4
5
0
(2
9
.1
1
%
)

Q
U
IC
K
A
R
[1
8
8
]

3
9
5
(2
5
.5
5
%
)

6
5

2
7

3
1

1
2
,7
7
3

8
3
5
(5
4
.0
1
%
)

1
2
5

6
2
4

1
0
1

2
2
,7
6
1

3
1
3
(2
0
.2
5
%
)

S
is
m
a
n
a
n
d
K
ak

[2
3
1
]

4
9
9
(3
2
.2
8
%
)

5
9

2
6

2
5

1
2
,0
1
9

5
7
5
(3
7
.1
9
%
)

9
8

5
1
6

6
4

2
2
,2
0
4

4
7
2
(3
0
.5
3
%
)

S
T
R
IC
T
[1
9
1
]

4
6
7
(3
0
.2
1
%
)

5
7

2
6

3
0

1
1
,2
1
3

6
5
4
(4
2
.3
0
%
)

1
1
2

5
1
8

6
3

2
4
,9
3
3

4
2
5
(2
7
.4
9
%
)

B
L
IZ
Z
A
R
D
[1
9
2
]

5
9
7
(3
8
.6
2
%
)

7
5

2
8

3
2

1
3
,0
6
3

4
5
5
(2
9
.4
3
%
)

9
2

5
1
5

5
4

2
2
,0
2
4

4
9
4
(3
1
.9
5
%
)

B
a
se
li
n
e

-
8
4

5
1
3

4
9

2
2
,4
3
4

-
7
9

2
9

4
7

1
1
,8
9
4

-

B
L
A
D
E
R
Q
R

7
3
5
(4
7
.5
4
%
)

5
6

2
7

2
4

1
2
,5
0
9

1
8
2
(1
1
.7
7
%
)

1
2
5

5
1
6

8
2

2
2
,4
4
4

6
2
9
(4
0
.6
9
%
)

M
e
a
n
=
M
ea
n
ra
n
k
o
f
�
rs
t
co
rr
ec
t
re
su
lt
s
re
tu
rn
ed

b
y
th
e
q
u
er
ie
s,
Q
i=

it
h
q
u
a
rt
il
e
o
f
a
ll
ra
n
k
s
co
n
si
d
er
ed

127

Table 6.7: Comparison with Existing Studies using Feature Matrix

Technique
Report Content

QR
Data Analytics

SVA MRR
RT RS SS CTA

Baseline l 0.39

BugLocator l 0.35

BLUiR l l 0.41

BLIZZARD l l 0.40

Ye et al. l l 0.31

BLADERBL l l l 0.47

AmaLgam+ l l l 0.57

BLIZZARD+ l l l l 0.56

BLADER+BL l l l l l 0.57

RT=Report Texts, RS=Report Structure, QR=Query Reformulation,

SS=Semantic Similarity, CTA=Clustering Tendency Analysis, SVA=Similar

reports, Version control history, and Author history, l=Feature used

Figure 6.4: Comparison of our approach with the existing techniques in bug localization using (a)
MAP, and (b) MRR for top 1 to 10 results

state-of-the-art approaches for top 1 to 10 results. We see that BLADERBL outperforms four (m = 4)

existing approaches including the state-of-the-art with statistical signi�cance. We perform Wilcoxon Signed

Rank and Cli�'s delta tests with Bonferroni Correction, and report each p-value≤0.0125 (α/m) and a large

e�ect size with 0.84≤ δ ≤1.00. Fig. 6.5-(a) shows the overlap of successfully localized bugs by BLADERBL

and by the state-of-the-art approaches [192, 220]. We see that our approach localizes about 92% of the bugs

that were identi�ed by BLUiR and BLIZZARD, and then it localizes an additional 34 unique bugs when only

Top-10 results are analysed. All these �ndings above suggest the high potential of our approach over the

state-of-the-art especially in terms of precision and reciprocal rank.

From Table 6.5 (middle part), we also see that AmaLgam+, BLIZZARD+ and their variants achieve

higher performances than that of BLADERBL by combining multiple ranking algorithms and by employing

additional resources (e.g., past bug reports, version control history, author history). Although such perfor-

128

Figure 6.5: (a) Overlap of the successfully localized bugs between BLADERBL and the state-of-the-
art, and (b) Overlap of the improved queries between BLADERQR and the state-of-the-art approaches

mance improvements are highly desirable, we argue that these approaches [249, 250] are not only less scalable

but also limited in their usability. Majority of their performances come from third party items which could

be unavailable. On the contrary, our goal is to improve the basic IR-based localization using the primary

resources available at hand (e.g., bug reports and source code documents). Our localization is cheap, easy-

to-use, and scalable. Nonetheless, when these third party items are considered, one of the variants of our

approach, BLADER+BL, performs equally or higher than the competing approaches [192, 250] (Table 6.5).

We also compare with Ye et al. [268] that combines textual similarity and semantic similarity between a bug

report and the source code document. Our investigation in Table 6.5 (lower part) demonstrates that simple

semantic similarity might not be su�cient enough if the poor queries are not improved at the �rst place.

Our approach BLADERBL employs word semantics and clustering tendency analysis, complements the poor

queries with appropriate keywords from the source code, and thus, outperforms Ye et al. in bug localization.

Table 6.7 shows a matrix of eight di�erent features that are used by the contemporary approaches. We add

clustering tendency analysis (CTA) as a novel dimension there, overcome the challenges with poor search

queries and outperform the state-of-the-art approaches [192, 220].

Summary of RQ3: Our approach outperforms �ve existing approaches on IR-based bug localization by a

signi�cant margin. BLADERBL achieves 11% higher precision and 15% higher reciprocal rank than that of

the state-of-the-art.

Answering RQ4 � Comparison with Query Reformulation Techniques: Although our approach

outperforms the state-of-the-art on bug localization, we further compare with six existing studies on query

reformulation [188, 191, 192, 212, 213, 231]. Rocchio [213] and RSV [212] are two widely used query refor-

mulation techniques in source code search [98, 251, 274]. STRICT [191] and QUICKAR [188] reformulate

search queries for concept location by employing term weighting methods (e.g., TextRank) and crowdsourced

knowledge from Stack Over�ow respectively. Sisman and Kak [231] and BLIZZARD [192] reformulate queries

for bug localization where they leverage spatial code proximity and context-awareness respectively. We use

the authors' implementation for QUICKAR, STRICT and BLIZZARD, carefully re-implement the remaining

three [212, 213, 231] (i.e., unavailable prototypes), and then compare with their best performances on our

dataset. We determine the rank of the �rst buggy document retrieved by each of the queries from each of

129

Figure 6.6: Comparison of our approach with the existing techniques in query reformulation using
very low quality queries

these techniques, and then compare with corresponding baseline rank. If the rank of the reformulated query is

higher than the baseline rank, we call it query improvement and the opposite as query worsening. From Table

6.6, we see that BLIZZARD, the state-of-the-art, improves 39% and worsens 29% of 1,546 baseline queries.

On the contrary, our approach improves 48% and worsens 12% of the queries which are 23% higher and 60%

lower respectively. Quartile analysis of the result ranks also demonstrates that our ranks are more promis-

ing (i.e., closer to the top) than the state-of-the-art ranks. Fig. 6.5-(b) shows the overlap of our improved

queries with that of BLIZZARD and Sisman and Kak [231]. We see that our approach improves 78%�87%

of the queries that were also improved by these two approaches. However, additional 107 unique queries are

improved by BLADERQR where the earlier approaches totally fail. We further conduct experiments using

569 very poor queries which return their buggy source documents below the 10th position. As shown in Fig.

6.6, our approach improves the maximum amount of these poor queries (e.g., 72%) among all the approaches.

Such ratios are 61% and 45% for BLIZZARD and Sisman and Kak respectively. Furthermore, BLADERQR

worsens fewer queries (e.g., 12%�15%) than the existing approaches.

Summary RQ4: Our approach outperforms six existing approaches on query reformulation intended for

concept/bug localization. BLADERQR improves 23% more of the poor queries (i.e., low quality bug reports)

than that of the state-of-the-art.

6.5 Threats to Validity

Threats to internal validity relate to experimental errors and biases [272]. Re-implementation of the existing

approaches is a possible source of such threats. We re-implement �ve approaches [212, 213, 231, 250, 268] and

reuse authors' implementation of the remaining �ve approaches [188, 191, 192, 220, 276]. While we cannot

rule out the possibility of human errors, we also partially validate our implementations against the previously

published results [192, 250].

130

Threats to external validity relate to the generalizability of an approach [272]. Although we deal with Java-

based systems and Java related Q & A threads from Stack Over�ow, our approach can be easily replicated

for other platforms. Our approach is not restricted by any programming language-speci�c features let it be

semantic hyperspace construction or bug localization.

The use of data re-sampling during machine learning (Step 7, Fig. 6.1) might pose a threat to the

reproducibility of our results. However, we employ random seeds to address this, repeat our experiments at

least 50 times, and then use the average results. Thus, such a threat about reproducibility might also be

mitigated. Furthermore, we have made our replication package publicly available [29]. Our query di�culty

model might also be slightly biased towards the high-class candidates. Future work should adopt more

rigorous methods for dealing with imbalanced data and focus on accurately predicting the best one from the

list of reformulation candidates produced by our approach.

6.6 Related Work

Bug Localization: Automated bug localization has been one of the major challenges in Software Engineering

over the last few decades [220, 248]. There have been a number of studies on bug localization which can be

classi�ed into two broad categories � spectra based and Information Retrieval (IR) based [248]. While spectra

based approaches analyse execution traces, IR-based approaches leverage the textual similarity between bug

report texts and source code documents for the bug localization. In this work, we deal with IR-based bug

localization only. It is cheap, easy to use, and still provides good results [207, 248]. To date, existing studies

make use of several Information Retrieval methods such as Latent Semantic Analysis (LSA) [150, 179], Latent

Dirichlet Allocation (LDA) [167, 207] and Vector Space Model (VSM) [163, 192, 249, 250, 258, 276].

Zhou et al. [276] �rst introduce an improved version of Vector Space Model (VSM) namely rVSM, and

localize software bugs using Information Retrieval (IR). Saha et al. [220] employ structured IR where they

leverage the structures of both bug reports and source code documents for the localization task. Later studies

[221, 249, 258] combine both rVSM and structured IR, and report improved performances. Wen et al. [255]

also combine code level changes with basic IR for improved localization. Other studies combine spectral

analysis [130, 142] and deep learning [128] with the basic IR. In the same vein, Wang and Lo [250] combine

�ve items � similar bug reports [276], structured IR [220], stack traces [258], version control history [249], and

author history, and outperform �ve earlier IR-based approaches. Rahman and Roy [192] recently integrate

report quality dynamics and query reformulation, and their approach outperforms seven earlier approaches

which makes it the state-of-the-art on IR-based bug localization. While most of these approaches combine

additional ranking methods or external resources (e.g., version control history) with basic IR, we focus on

improving the basic IR approach by reformulating the search query. From this point of view, Rahman and

Roy [192] shares a similar goal like us. Unfortunately, their approach falls short in dealing with the poor

queries as demonstrated by our and their experiments. We compare with �ve of the earlier studies on IR-based

131

bug localization [192, 220, 250, 268, 276] including the state-of-the-art [192], and the detailed comparison

results can be found in Tables 6.5, 6.7, Fig. 6.4, and Section 6.4.4.

Query Reformulation: Existing studies on query reformulation employ term weighting [189, 191, 213],

heuristics [64, 65, 104, 120, 231], pseudo-relevance feedback [213, 231], and machine learning [98, 189]. Rocchio

[213] and RSV [212] are frequently used for query reformulation in Software Engineering contexts [98, 274].

STRICT [191] employs graph-based term weighting methods (e.g., TextRank, POSRank) to select appropri-

ate search keywords from a bug report for concept location. QUICKAR [188] makes use of crowdsourced

knowledge from Stack Over�ow in the query reformulation task. Sisman and Kak [231] �rst introduce query

reformulation in IR-based bug localization where they employ spatial code proximity (SCP) analysis. Re-

cently, Rahman and Roy [192] integrate report quality dynamics into query reformulation, and their approach

outperforms four earlier approaches which makes it the state-of-the-art. We compare with six of these existing

approaches [188, 191, 192, 212, 213, 231] including the state-of-the-art [192], and the detailed comparison

can be found in Table 6.6, Fig. 6.6, and Section 6.4.4. While the keyword selection method of Rahman and

Roy works well with rich bug reports containing structured entities (e.g., stack traces), it generally fails with

poor queries (i.e., low quality bug reports). On the contrary, our approach overcomes such challenge using

word semantics, clustering tendency analysis and machine learning.

Word Semantics: Recent studies use word embeddings [54] in bug localization [128] and in code search

[90, 194, 274] where they learn the embeddings from one or more large corpora (e.g., GitHub). However, all

these studies simply rely on semantic similarity between a search query and the source code which might

not be su�cient enough for dealing with the poor queries. According to our investigation (Table 6.5), poor

queries need to be improved �rst before employing them for bug localization. Our approach exactly does that

using appropriate keywords from the relevant source code, which are carefully chosen with word semantics

(from Stack Over�ow) and machine learning.

In short, while the existing approaches including the state-of-the-art fail to deal with poor queries (low

quality bug reports), we overcome this crucial issue using word semantics, clustering tendency analysis,

query reformulation and Information Retrieval. Such a comprehensive solution was not provided by any of

the earlier studies from the literature.

6.7 Summary

Software bugs and failures cost billions of dollars every year [1]. Thus, resolution of the bugs or errors is a

major part of software maintenance. Bug localization is a crucial step of the whole bug resolution process.

Traditional solutions for bug localization do not perform well with poor quality bug reports (queries) since

they do not contain any localization hints (e.g., program entities). We propose BLADER that overcomes

this issue, and reformulates a given search query for bug localization using the underlying semantics of the

keywords. In particular, our approach accepts a poor bug report as a search query, analyses the clustering

132

tendency between the query and the reformulation candidates in terms of their underlying semantics, and

then delivers an improved, reformulated search query for the bug localization. We evaluate our technique

using four performance metrics, two evaluation dimensions and 1,546 low quality bug reports (queries) from

six subject systems. Our approach outperforms the state-of-the-art approach on IR-based bug localization

by 11% higher precision and 15% higher reciprocal rank. Furthermore, our approach outperforms six existing

approaches on query reformulation, and improves 23% more queries than the state-of-the-art.

During bug localization and concept location, software developers generally perform code search within a

single software system. However, developers also frequently search for relevant code on the web, and reuse the

retrieved code in various software maintenance tasks (e.g., new feature implementation). Thus, in essence,

they perform code search within thousands of online software systems during the code search on the web

(a.k.a., Internet-scale code search). Since each of our proposed approaches including this one (Chapters 3,

4, 5, 6) targets either concept location or bug localization, they might not be su�cient enough for query

construction intended for Internet-scale code search. Online code repositories (e.g., GitHub, SourceForge)

are much larger and noisier, and thus pose new challenges. In the next chapter, our �fth study (RACK,

Chapter 7) overcomes these challenges, and reformulates a generic query for Internet-scale code search using

the crowd generated knowledge from Stack Over�ow Q&A site.

133

Chapter 7

Search Query Reformulation for Internet-scale Code

Search using Crowdsourced Knowledge

Software maintenance costs about 60% of the total development time and e�orts [88]. Bug localization and

concept location are two major challenges of the maintenance phase. During bug localization and concept

location, developers generally search for code within a single software system. However, developers also

frequently search for relevant code on the web (a.k.a., Internet-scale code search) [55], and reuse the retrieved

code in various software maintenance tasks (e.g., new feature addition). In this case, they search for relevant

code within thousands of online software systems. Since each of our previous approaches (Chapters 3, 4, 5,

6) targets either concept location or bug localization (i.e., designed for single software system), they might

not be su�cient enough for query construction intended for Internet-scale code search. Internet-scale code

repositories (e.g., GitHub, SourceForge) are much larger and noisier, and thus pose new challenges in query

construction and code search. In this chapter, we overcome this issue with another study. Here, we present

RACK that accepts a programming task description as a query, reformulates the query with relevant API

classes from Stack Over�ow, and then delivers an improved, reformulated query for Internet-scale code search.

The rest of the chapter is organized as follows: Section 7.1 presents an overview of our study, Section 7.2

discusses the design and �ndings of our exploratory study, and Section 7.3 describes our proposed technique

for search query reformulation. Section 7.4 discusses our evaluation and validation, and Section 7.5 identi�es

the threats to the validity of our �ndings. Section 7.6 discusses related work from the literature, and �nally

Section 7.7 concludes the chapter with future work.

7.1 Introduction

Studies show that software developers on average spend about 19% of their development time in web search

[55]. On the web, they frequently look for relevant code snippets for their tasks [55, 263]. Online code search

engines (e.g., Open Hub, Koders, GitHub) index thousands of large open source projects, and these projects

are a potential source for such code snippets [44, 152]. However, these traditional, Internet-scale code search

engines mostly employ keyword matching. Hence, they often do not perform well with unstructured natural

language (NL) queries due to vocabulary mismatch between NL query and source code [45]. They retrieve

code snippets based on lexical similarity between a search query and the project source code. That means,

134

these engines require the queries to be carefully designed by the users and to contain solution code-like

information (e.g., relevant API classes). Unfortunately, preparing an e�ective search query that contains

information on relevant APIs is not only challenging but also time-consuming for the developers [55, 120].

Previous studies [120, 125] also suggested that on average, developers regardless of their experience levels

performed poorly in coming up with good queries for the code search. Thus, an automated technique that

complements a natural language query with a list of relevant API classes or methods (i.e., search-engine

friendly query) can greatly assist the developers in performing the code search. Our work addresses this

particular research problem�query reformulation with relevant API classes�by exploiting the crowdsourced

knowledge stored at Stack Over�ow programming Q & A site.

Existing studies on API recommendation accept one or more natural language queries, and return relevant

API classes and methods by mining feature request history and API documentations [243], large code reposi-

tories [274], API invocation graphs [63], library usage patterns [242], code sur�ng behaviour of the developers

and API invocation chains [152]. McMillan et al. [152] �rst propose Portfolio that recommends relevant API

methods for a given code search query and demonstrates their usage from a large codebase. Chan et al. [63]

improve upon Portfolio by employing further sophisticated graph-mining and textual similarity techniques.

Thung et al. [243] recommend relevant API methods to assist the implementation of an incoming feature re-

quest. Although all these techniques perform well in di�erent working contexts, they share a set of limitations

and thus fail to address the research problem of our interest. First, each of these techniques [63, 152, 243]

exploits lexical similarity measure (e.g., Dice's coe�cients [63]) for candidate API selection. This warrants

that the search query should be carefully prepared, and it should contain keywords similar to the API names.

In other words, the developer should or must possess a certain level of experience with the target APIs to

actually use these techniques [45]. Second, API names and search queries are generally provided by di�erent

developers who may use di�erent vocabularies to convey the same concept [121]. Furnas et al. [83] named this

the vocabulary mismatch problem. Lexical similarity based techniques often su�er from this problem. Hence,

the performance of these techniques is not only limited but also subject to the identi�er naming practices

adopted in the codebase under study. We thus need a technique that overcomes the above limitations, and

recommends relevant or appropriate APIs for natural language queries from a wider vocabulary.

One possible way to tackle the above challenges is to leverage the knowledge or experience of a large

technical crowd on the usage of particular API classes and methods. Let us consider a natural language

query��Generating MD5 hash of a Java string." Now, hundreds of Q&A threads from Stack Over�ow discuss

potential solutions and relevant APIs for this task which could be leveraged for our research. For instance,

the Q&A example in Fig. 7.1 discusses on how to generate an MD5 hash (Fig. 7.1-(a)), and the accepted

answer (Fig. 7.1-(b)) suggests that MessageDigest API should be used for the task. Such a usage of the

API has also been recommended by at least 305 technical users from Stack Over�ow, which validates the

appropriateness of the usage. We leverage this crowd generated knowledge in relevant API suggestion. Our

approach is thus generic, language independent, project insensitive, and at the same time, it overcomes the

135

Figure 7.1: An example of (a) Stack Over�ow question and (b) its accepted answer

vocabulary mismatch problem su�ered by the past studies. One can argue in favour of Google which is

often used by the developers for searching code on the web. Unfortunately, recent study [205] shows that

developers need to spend more e�orts (i.e., two times) in code search than in web search while using Google

search engine. In particular, they need to reformulate their queries more frequently and more extensively

for the code search. Such �nding suggests that the general-purpose web search engines (e.g., Google) might

be calibrated for the web pages only, and they perform sub-optimally with the source code, especially due

to vocabulary mismatch issues [95, 102]. Thus, automatic tool supports in the query formulation for code

search is still an open research problem that warrants further investigation.

In this chapter, we propose a novel query reformulation technique�RACK�that exploits the associations

between query keywords and di�erent API classes used in Stack Over�ow and translates a natural language

query intended for Internet-scale code search into a set of relevant API classes. First, we motivate our

idea of using crowdsourced knowledge for API recommendation with an exploratory study where we analyse

172,043 questions and their accepted answers from Stack Over�ow. Second, we construct a keyword-API

mapping database using these questions and answers where the keywords (i.e., programming requirements)

are extracted from questions and the APIs (i.e., programming solutions) are collected from the corresponding

accepted answers. Third, we propose an API recommendation technique that employs three heuristics on

keyword-API associations and recommends a ranked list of API classes for a given query for its reformulation.

136

The baseline idea is to capture and learn the responses from millions of technical users (e.g., developers,

researchers, programming hobbyists) for di�erent programming problems, and then exploit them for relevant

API suggestion. Our technique (1) does not rely on the lexical similarity between a query and the API classes

(or their documentations) for API selection, and (2) addresses the vocabulary mismatch problems by using

a large vocabulary (i.e., 20K) produced by millions of users of Stack Over�ow. Thus, it has a great potential

for overcoming the challenges faced with the past studies.

An exploratory study with 172,043 Java related Q & A threads (i.e., question + accepted answer) from

Stack Over�ow shows that (1) each answer uses at least two di�erent API classes on average (RQ1), and

(2) about 65% of the classes from each of the 11 core Java API packages are used in these answers (RQ2).

Such �ndings clearly suggest the potential of using Stack Over�ow for relevant API suggestion. Experiments

using 175 code search queries randomly chosen from three Java tutorial sites�KodeJava, Java2s and Javadb�

show that our technique can recommend relevant API classes with an accuracy of 83%, a mean average

precision@10 of 46% and a recall@10 of 54%, which are 66%, 79% and 87% higher respectively than that of

the state-of-the-art [243] (RQ4, RQ8). Query reformulations using our suggested API classes improve 46%�

64% of the baseline queries (i.e., contain natural language only), and their overall code retrieval accuracy

improves by 19% (RQ9). Comparisons with the state-of-the-art techniques on query reformulation [168, 274]

also demonstrate that RACK o�ers 48% net improvement in the baseline query quality as opposed to 26%

by the state-of-the-art, which is 87% higher (RQ10). Our investigations with Google, Stack Over�ow native

search, and GitHub native code search also report that our reformulated queries can improve their results by

22%�26% in precision and 12%�28% in reciprocal rank in the context of code example search (RQ11).

Novelty in Contribution: This work is a signi�cantly extended version of our earlier work [201] which

employed two heuristics (KAC and KKC, Section III-B), experimented with 150 queries, and answered seven

research questions. This work extends the earlier work in various aspects. First, we improve the earlier

heuristics by recalibrating their weights and thresholds (i.e., RQ7). Second, we introduce a novel heuristic�

Keyword Pair API Co-occurrence (KPAC, Section III-B)�that leverages word co-occurrences for candidate

API selection more e�ectively. In fact, this one performs better than the earlier two. Third, we conduct

experiments with a larger dataset containing 175 distinct queries, and further evaluate them in terms of their

code retrieval performance (i.e., missing in the earlier work). Fourth, we extend our earlier analysis and

answer 11 research questions (i.e., as opposed to seven questions answered by the earlier work). Fifth, we

investigate the potential application of our approach in the context of code search using popular web search

engines (e.g., Google) and Internet-scale code search engines (e.g., GitHub).

Thus, our work in this chapter makes the following contributions:

(a) An exploratory study that suggests the potential of using Stack Over�ow for relevant API suggestion

against an NL query intended for Internet-scale code search.

(b) A keyword-API mapping database that maps 655K natural language question keywords to 551K API

classes from Stack Over�ow Q&A site.

137

Table 7.1: API Packages for Exploratory Study

Package #Class Package #Class

Core Packages

java.lang 255 java.net 84

java.util 470 java.security 148

java.io 105 java.awt 423

java.math 09 java.sql 29

java.nio 189 javax.swing 1,195

java.applet 05

Non-Core Packages

java.beans 62 java.rmi 67

javax.xml 327 javax.annotation 17

java.text 44 javax.print 123

javax.sound 56 javax.management 201

Total API Classes: 3,809

(c) A novel query reformulation technique�RACK�that exploits query keyword-API associations stored in

the crowdsourced knowledge of Stack Over�ow, and reformulates a natural language query with a set

of relevant API classes for Internet-scale code search.

(d) Comprehensive evaluation of the proposed technique with six performance metrics, and comparison

with the state-of-the-art techniques and contemporary web search engines (e.g., Google, Stack Over�ow

native search) and Internet-scale code search engines (e.g., GitHub native code search).

7.2 Exploratory Study

Our technique relies on the mapping between natural language keywords from the questions of Stack Over�ow

and API classes from corresponding accepted answers for translating a code search query into relevant API

classes. Thus, an investigation is warranted whether such answers contain any API related information and

the questions contain any search query keywords. We perform an exploratory study using 172,043 Q & A

threads from Stack Over�ow, and analyse the usage and coverage of standard Java API classes in them. We

also explore if the question titles are a potential source of suitable keywords for code search. We particularly

answer three research questions as shown in Table 7.2.

7.2.1 Data Collection

We collect 172,043 questions and their accepted answers from Stack Over�ow using StackExchange data

explorer [23] for our investigation. Since we are interested in Java APIs, we only collect such questions that

138

Table 7.2: Research Questions Answered using Exploratory Study

Research Questions Targeting API Coverage

RQ1: To what extent do the accepted answers from Stack Over�ow refer to standard Java

API classes?

RQ2: To what extent are the API classes from each of the core Java packages covered (i.e.,

mentioned) in the accepted answers from Stack Over�ow?

Research Question on Search Keyword Matching

RQ3: Do the titles from Stack Over�ow questions contain potential query keywords (i.e.,

technical terms) for code snippet search?

are annotated with java tag. In addition, we apply several other constraints�(1) each of the questions should

have at least three answers (i.e., average answer count) with one answer being accepted as the solution, in

order to ensure that the questions are answered substantially and successfully [148], and (2) the accepted

answers should contain code like elements such as code snippets or code tokens so that API information can

be extracted from them. We identify the code elements with the help of <code> tags in the HTML source of

the answers (details in Section 7.2.2), and use Jsoup1, a popular Java library, for HTML parsing and content

extraction.

We repeat the above steps, and construct another dataset by collecting 440K Q & A threads from one of

our recent works [194]. This dataset is a superset of the above collection, and it contains more recent threads

from Stack Over�ow. We call it the extended dataset in the remaining sections of the exploratory study.

We collect a total of 3,809 Java API classes for our study from 19 packages of standard Java edition 7.

While 2,912 classes are taken from 11 core Java packages2, the remaining classes have come from 8 non-core

Java packages. The goal is to �nd out if these classes are referred to in Stack Over�ow posts, and if yes, to

what extent they are referred to. We �rst use Java Re�ections [21], a runtime meta data analysis library,

to collect the API classes from JDK 7, and then apply regular expressions on their fully quali�ed names for

extracting the class name tokens. Table 7.1 shows class statistics of the 19 API packages selected for our

investigation.

We also collect a set of 18,662 real life search queries from the Google search history of the �rst author

over the last eight years, which are analysed to answer the third research question. Although the queries come

from a single user, they contain a large vocabulary of 9,029 distinct natural language search keywords, and

the vocabulary is built over a long period of time. Thus, a study using these queries can produce signi�cant

intuitions and help answer the third research question.

1https://jsoup.org/
2https://goo.gl/A6gEqA

139

Figure 7.2: Frequency distribution for core API classes � (a) API frequency PMF, (b) API frequency
CDF

Figure 7.3: Frequency distribution for core and non-core API classes over the extended dataset � (a)
API frequency PMF, (b) API frequency CDF

7.2.2 API Class Name Extraction

Several existing studies [42, 73, 211] extract code elements such as API packages, classes and methods from

unstructured natural language texts (e.g., forum posts, mailing lists) using information retrieval (e.g., TF-

IDF) and island parsing techniques. In the case of island parsing, they apply a set of regular expressions

describing Java language speci�cations [89], and isolate the land (i.e., code elements) from water (i.e., free-

form texts). We borrow their parsing technique [211], and apply it to the extraction of API elements from

Stack Over�ow posts. Since we are interested in the API classes only, we adopt a selective approach for

identifying them in the post contents. We �rst isolate the code like sections from HTML source of each

of the answers from Stack Over�ow using <code> tags. Then we split the sections based on white spaces

and punctuation marks, and collect the tokens having the camel-case notation of Java class (e.g., HashSet).

According to the existing studies [73, 211], such parsing of code elements sometimes introduces false positives.

Thus, we restrict our exploratory analysis to a closed set of 3,809 API classes from 19 Java packages (details

in Table 7.1) to avoid false positives (e.g., camel-case tokens but not valid API classes).

140

Figure 7.4: Frequency distribution of unique API classes from core packages � (a) Distinct API
frequency PMF, (b) Distinct API frequency CDF

Figure 7.5: Frequency distribution of unique API classes from core and non-core packages � (a)
Distinct API frequency PMF, (b) Distinct API frequency CDF

7.2.3 Answering RQ1: Use of APIs in the accepted answers of Stack Over�ow

Since our API suggestion technique exploits keyword-API associations from Stack Over�ow, we investigate

whether the accepted answers actually use certain API classes of interest in the �rst place. According to

our investigation, out of 172,043 accepted answers, 136,796 (79.51%) answers refer to one or more Java API

class-like tokens. About 61.02% of the answers actually use API classes from 11 core Java packages whereas

9.94% of them use the classes from 8 non-core packages as a part of their solution. We analyse the HTML

contents from Stack Over�ow answers with tool supports and then detect the occurrences of 3,809 standard

API classes (Table 7.1) in each of the accepted answers using a closed-world assumption [211]. We then

examine the statistical properties or distribution of such API occurrence frequencies (i.e., total appearances,

unique appearances) and attempt to answer our �rst research question.

Fig. 7.2 shows (a) probability mass function (PMF) and (b) cumulative density function (CDF) for the

total occurrences of API classes per SO answer where the API classes belong to the core Java API packages.

Both density curves suggest that the frequency observations derive from a heavy-tailed distribution, and

majority of the densities accumulate over a short frequency range. That is, most of the time only a limited

number of API classes co-occur in each answer from Stack Over�ow. The empirical CDF curve also closely

matches with the theoretical CDF [5] (i.e., red dots in Fig. 7.2-(b)) of a Poisson distribution. Thus, we believe

141

that the observations are probably taken from a Poisson distribution. We get a 95% con�dence interval over

[5.27, 5.37] for mean frequency, λ = 5.32, which suggests that the API classes from the core packages are

referred to at least �ve times on average in each of the answers from Stack Over�ow. We also get 10th

quantile at frequency=2 and 97.5th quantile at frequency=10 which suggest that only 10% of the frequencies

are below 3 and only 2.5% of the frequencies are above 10. When our investigation is repeated for non-core

classes, we get a mean frequency, λ = 0.36, with 95% con�dence interval over [0.35, 0.37]. When 11 core

and 8 non-core packages are combined and employed against the extended dataset, we get a 95% con�dence

interval over [23.62, 23.87] for the mean frequency, λ=23.75 with a similar distribution (i.e., Fig. 7.3). Fig.

7.4 shows density curves of the core API class occurrences per answer where only unique API classes are

considered. These observations are also drawn from a heavy-tailed distribution. We get a 95% con�dence

interval over [2.35, 2.38] for the mean frequency, λ = 2.37, which suggests that at least two distinct classes are

used on average in each answer. 30th quantile at frequency = 1 and 80th quantile at frequency = 4 suggest

that 30% of the Stack Over�ow answers refer to at least one API class whereas 20% of the answers refer to at

least four distinct API classes from the core Java packages under our study. In the case of non-core classes,

we get 90th quantile at frequency = 1, which suggests that their frequencies are negligible. When the same

investigation is repeated with 19 (11 core + 8 non-core) packages against the extended dataset, we get a 95%

con�dence interval over [3.44, 3.46] for λ=3.45 with a similar heavy tailed distribution (i.e., Fig. 7.5).

Summary of RQ1: At least two di�erent API classes from the core Java packages are referred to in each

of the 61% accepted answers that are collected from Stack Over�ow. These classes are mentioned at least

�ve times on average in each answer. API classes from non-core packages are discussed in ≈10% of the

answers. Furthermore, our observations derived from 172K answers are similar to that derived from an

extended dataset of 440K answers from Stack Over�ow.

7.2.4 Answering RQ2: Coverage of API classes in the accepted answers from

Stack Over�ow Q & A site

Since our technique exploits inherent mapping between API classes in Stack Over�ow answers and keywords

from corresponding questions for API suggestion, we need to investigate if such answers actually use a

signi�cant portion of the API classes from the standard packages as a part of the solution. We thus identify

the occurrences of the API classes from core and non-core packages (Table 7.1) in Stack Over�ow answers,

and determine the API coverage for these packages.

Fig. 7.6 shows the fraction of the API classes that are used in Stack Over�ow answers for each of the 11

core packages under study. We note that at least 60% of the classes are used in Stack Over�ow for nine out

of 11 packages. The remaining two packages�java.math and javax.swing have 55.56% and 37.41% class

coverage respectively. Among these nine packages, three large packages� java.lang, java.util and java.io

have a class coverage over 70%. Thus, on average, 65% of the classes are mentioned at least once in Stack

142

Figure 7.6: Coverage of API classes from core packages by Stack Over�ow answers

Over�ow. In Fig. 7.7, when our investigations are repeated using 19 (11 core + 8 non-core) packages and

an extended dataset, we get a 95% con�dence interval over [56.11, 73.01] for mean coverage, µ=64.56% with

a normal distribution. We note that at least 40% of the classes from seven non-core packages are used in

Stack Over�ow. The remaining package, javax.management, has a class coverage of ≈ 20%. Fig. 7.8 shows

the fraction of Stack Over�ow answers (under study) that use API classes from each of the core 11 packages.

We see that classes from java.lang package are used in over 50% of the answers, which can be explained

since the package contains a number of frequently used and basic classes such as String, Integer, Method,

Exception and so on. Two packages� java.util and java.awt that focus on utility functions (e.g., unzip,

pattern matching) and user interface controls (e.g., radio button, check box) respectively have a post coverage

over 20%. We also note that classes from java.io and javax.swing packages are used in over 10% of the

Stack Over�ow answers, whereas the same statistic for the remaining six packages is less than 10%. When

our investigations are repeated using 19 (11 core + 8 non-core) packages with the extended dataset, most of

the above �ndings on core packages are reproduced, as shown in Fig. 7.9-(a). However, as in Fig. 7.9-(b)),

we see that API classes from all eight non-core packages except javax.xml are used in less than 5% of the

Stack Over�ow answers under study. Thus, although a signi�cant amount (e.g., 40%) of the classes from

non-core packages are mentioned in Stack Over�ow at least for once (i.e., Fig. 7.7-(b)), as a whole, they

are less frequently discussed compared to the core classes. Such �nding can also be explained by the highly

speci�c functionalities (e.g., RMI, print) of the classes from non-core packages under study.

Summary of RQ2: On average, 65% of the API classes from each of the 19 (core + non-core) Java packages

are used in Stack Over�ow accepted answers. Each of these packages is referred to (using their classes) by

143

Figure 7.7: Coverage of API classes from (a) core and (b) non-core packages by Stack Over�ow
answers (extended dataset)

Table 7.3: Keywords Intended for Code Search

java code example

sql server �le

string mvc web

add type lucene

android table programmatically

at least 10% of the answers under our study. Such �ndings clearly suggest a signi�cant presence of standard

API classes in Stack Over�ow posts, and thus, signal their high potential.

7.2.5 Answering RQ3: Presence of code search keywords in the title of questions

from Stack Over�ow

Our technique relies on the mapping between natural language terms from Stack Over�ow questions and API

classes from corresponding accepted answers for augmenting a code search query with relevant API classes.

Thus, an investigation is warranted on whether keywords used for code search are present in the SO question

texts or not. We are particularly interested in the title of a Stack Over�ow question since it summarizes the

technical requirement precisely using a few important words, and also resembles a search query. We analyse

the titles of 172,043 Stack Over�ow questions and 18,662 real life queries used for Google search (Section

7.2.1). Since we are interested in code related queries, we only select such queries that were intended for

144

Figure 7.8: Use of core API packages in the Stack Over�ow answers

Table 7.4: Code Search Keywords Found in Tutorial Sites

Website #Pages #Terms Source Matched

Javatpoint 1,291
784 Title 20.54%

10,099 Title+Body 60.12%

Tutorialspoint 2,219
1,292 Title 20.14%

14,930 Title+Body 63.62%

Stack Over�ow 172,043 20,391 Title 69.22%

Matched=Overlap between extracted terms and code search keywords

code search. Rahman et al. [205] recently used popular tags from Stack Over�ow questions to separate code

related queries from non-code queries that were submitted to a general-purpose search engine, Google. We

use a subset of their selected tags (shown in Table 7.3) for identifying the code related queries. We discover

3,073 such queries from our query collection (Section 7.2.1) where the queries contain a total of 2,001 unique

search keywords.

According to our analysis, 172,043 question titles contain 20,391 unique terms after performing natural

language preprocessing (i.e., stop word removal, splitting and stemming). These terms match 69.22% of the

keywords collected from our code search queries. Fig. 7.10 shows the fraction of the search keywords that

match with the terms from Stack Over�ow questions for the past eight years starting from 2008. On average,

62.69% of the code search keywords from each year match with Stack Over�ow vocabulary derived from its

question titles.

145

Figure 7.9: Use of (a) core and (b) non-core API packages in the Stack Over�ow answers (extended
dataset)

Fig. 7.11 shows (a) probability mass function, and (b) cumulative density function of keyword frequency

in the question titles. We see that the density curve shows the central tendency like a normal curve (i.e.,

bell shaped curve), and the empirical CDF closely matches with the theoretical CDF (i.e., red curve) of a

normal distribution with mean, µ = 3.22 and standard deviation, σ = 1.60. We also draw 172,043 random

samples from a normal distribution with equal mean and standard deviation, and compare with the keyword

frequencies. Our Kolmogorov-Smirnov test reported a p-value of 2.2e-16<0.05 which suggests that both

sample sets belong to the same distribution. Thus, we believe that the keyword frequency observations come

from a normal distribution. We get a mean frequency, µ = 3.22 with 95% con�dence interval over [3.21,

3.23], which suggests that each of the question titles from Stack Over�ow contains at least three code search

keywords on average. Furthermore, a recent query classi�cation model that leverages Stack Over�ow tags

for separating code queries from non-code queries achieves a promising accuracy of 87% precision and 86%

recall [205]. Such �ndings further suggest the potential of Stack Over�ow vocabulary for improving the code

search.

We also collect all the Q & A threads from two other popular tutorial sites�Javatpoint3 and Tutori-

alspoint4, construct two baseline vocabularies from them, and then contrast with the vocabulary of Stack

Over�ow. Table 7.4 shows the statistics on downloaded pages and unique terms extracted from them. For

example, Tutorialspoint has a total of 2,219 web pages, and they form a vocabulary of 14,930 unique terms

when both title and body of the pages are considered. It encompasses various programming domains in-

3https://www.javatpoint.com
4https://www.tutorialspoint.com

146

Figure 7.10: Coverage of keywords from the collected queries in Stack Over�ow questions

Figure 7.11: Collected search query keywords in Stack Over�ow� (a) Keyword frequency PMF (b)
Keyword frequency CDF

cluding Java, C/C++, and C#. On the contrary, when titles from only Java related questions of Stack

Over�ow are considered, they form a vocabulary of 20K. We also note that terms from Tutorialspoint page

titles match only ≈20% of the code search keywords. On the contrary, such matching ratio is 69% for Stack

Over�ow which is 237% higher. Surprisingly, when analysed from a granular perspective, Stack Over�ow

might not be better than these two sites. For example, titles from Javatpoint and Tutorialspoint provide

15.91% and 9.08% of search keywords as opposed to <1.00% by Stack Over�ow when 1000 random pages are

analysed. However, Stack Over�ow o�ers (1) a nice combination of query terms (in the questions) and API

classes (in the code snippets), and (2) a much larger collection of Q & A threads compared to Javatpoint

and Tutorialspoint across various domains. Thus, it has a higher potential for assisting the developers in

traditional code search.

Summary of RQ3: Each question title from Stack Over�ow contains three potential keywords for code

search on average. Term extracted from these titles match 69% of the code search keywords produced in

real life over the last eight years. Furthermore, vocabulary developed from Stack Over�ow posts is much

larger than that of any other available tutorial sites on the web.

147

Figure 7.12: Schematic diagram of the proposed query reformulation technique �RACK�(a) Con-
struction of token-API mapping database, (b) Translation of a code search query into relevant API
classes

7.3 RACK: Automated Query Reformulation for Internet-scale Code

Search using Crowdsourced Knowledge

According to the exploratory study (Section 7.2), at least two API classes are used in each of the accepted

answers of Stack Over�ow, and about 65% of the API classes from the core packages are used in these

answers. Besides, the titles from Stack Over�ow questions are a major source of query keywords for code

search. Such �ndings suggest that Stack Over�ow might be a potential source not only for code search

keywords but also for API classes relevant to them. Since we are interested in exploiting this keyword-API

association from Stack Over�ow questions and answers for API suggestion (i.e., for query reformulation), we

need a technique that stores such associations, mines them automatically, and then recommends the most

relevant APIs. Thus, our proposed technique has two major steps � (a) Construction of token-API mapping

database, and (b) Recommendation of relevant API classes for a code search query which is written in natural

language (a.k.a., NL query). Fig. 7.12 shows the schematic diagram of our proposed technique�RACK� for

automated query reformulation with relevant API classes for Internet-scale code search.

148

7.3.1 Construction of NL Token-API Mapping Database

Since our technique relies on keyword-API associations from Stack Over�ow, we need to extract and store

such associations for quick access. In Stack Over�ow, each question describes a technical requirement such

as �how to send an email in Java?� The corresponding answer o�ers a solution containing code example(s)

that refer(s) to one or more API classes (e.g., MimeMessage, Transport). We capture both the requirement

and API classes carefully, and exploit their semantic association for the development of token-API mapping

database. Since the title summarizes a question using a few but important words, we only use the titles from

the questions. Acceptance of an answer by the person who posted the question indicates that the answer

actually meets the requirement in the question. Thus, we consider only the accepted answers from the answer

collection for our analysis. The construction of the mapping database has several steps as follows:

Token Extraction from Titles: We collect title(s) from each of the questions, and apply standard

natural language pre-processing steps such as stop word removal, splitting and stemming on them (Step 1,

Fig. 7.12-(a)). Stop words are the frequently used words (e.g., the, and, some) that carry very little meaning

for a sentence. We use a stop word list [25] hosted by Google for the stop word removal step. The splitting

step splits each word containing any punctuation mark (e.g., .,?,!,;), and transforms it into a list of words.

Finally, the stemming step extracts the root of each of the words (e.g., �send" from �sending") from the

list, where Snowball stemmer [176, 246] is used. Thus, we extract a set of unique and stemmed words that

collectively convey the meaning of the question title, and we consider them as the �tokens" from the title of

a question from Stack Over�ow. Finally, our database ended up with a total of 19,783 unique NL terms.

API Class Extraction: We collect the accepted answer for each of our selected questions, and parse

their HTML source using Jsoup parser [14] for code segments (Step 2, 3, Fig. 7.12-(a)). We extract all <code>

and <pre> tags from the source content as they generally contain code segments [198]. It should be noted

that code segments may sometimes be demarcated by other tags or no tag at all. However, identi�cation

of such code segments is challenging and often prone to false-positives. Thus, we restrict our analysis to

contents inside <code> tags and <pre> for code segment collection from Stack Over�ow. We split each

of the segments based on punctuation marks and white spaces, and discard the programming keywords.

Existing studies [42, 211] apply island parsing for API method or class extraction where they use a set of

regular expressions. Similarly, we use a regular expression for Java class [89], and extract the API class

tokens having a camel case notation. Thus, we collect a set of unique API classes from each of the accepted

answers. The API classes (e.g., String, Integer, Double) from java.lang package are mostly generic and

frequently used in the code, which is also supported by our RQ2. Hence, we also avoid all the API classes

from this package during our API extraction from Stack Over�ow answers.

Token-API Linking: Natural language tokens from a question title hint about the technical requirement

described in the question, and API names from the accepted answer represent the relevant APIs that can meet

such requirement. Thus, the programming Q & A site�Stack Over�ow� inherently provides an important

semantic association between a list of tokens and a list of APIs. For instance, our technique generates a list

149

of natural language tokens�{generat, md5, hash}� and an API token� MessageDigest� from the showcase

example on MD5 hash (Fig. 7.1). We capture such associations from 126,567 Stack Over�ow question and

accepted answer pairs, and store them in a relational database (Step 4, 5, Fig. 7.12-(a)) for relevant API

recommendation for any code search query.

7.3.2 API Relevance Ranking & Reformulation of the NL-Query

In the token-API mapping database, each NL token (or term) associates with di�erent APIs, and each

API class associates with a number of NL tokens. Thus, we need a technique that carefully analyses such

associations, identi�es the candidate APIs, and then recommends the most relevant ones from them for

a given query. It should be noted that we do not apply the traditional association rule mining [264]. Our

investigations using the constructed database (Section 7.3.1) report that frequencies of co-occurrence between

NL terms and API classes in Stack Over�ow posts are not su�cient enough to form association rules for

all queries. The API class ranking and recommendation targeting our query reformulation for code search

involve several steps as follows:

Identi�cation of Keyword Context

In natural language processing, the context of a word refers to the list of other words that co-occur with that

word in the same phrase, same sentence or even the same paragraph [100]. Co-occurring words complement

the semantics of one another [153]. Yuan et al. [272] analyse programming posts and tags from Stack Over�ow

Q & A site, and use word context for determining semantic similarity between any two software-speci�c words.

In this research, we identify the words that co-occur with each query keyword in the thousands of question

titles from Stack Over�ow. For each keyword, we refer to these co-occurring words as its context. We then

opportunistically use these contextual words for estimating semantic relevance between any two keywords.

Candidate API Selection

In order to collect candidate APIs for a NL query, we employ three di�erent heuristics. These heuristics

consider not only the association between query keywords and APIs but also the coherence among the APIs

themselves. Thus, the key idea is to identify such programming APIs as candidates that are not only likely

for the query keywords but also functionally consistent to one another.

Keyword-API Co-occurrence (KAC): Stack Over�ow discusses thousands of programming problems,

and these discussions contain both natural language texts (i.e., keywords) and reference to a number of APIs.

According to our observation, several keywords might co-occur with a particular API and a particular keyword

might co-occur with several APIs across di�erent programming solutions. This co-occurrence generally takes

place either by chance or due to semantic relevance. Thus, if carefully analysed, such co-occurrences could be

a potential source for semantic association between keywords and APIs. We capture these co-occurrences (i.e.,

associations) between keywords from question titles and APIs from accepted answers, discard the random

150

associations using a heuristic threshold (δ), and then collect the top API classes (LKAC [Ki]) for each keyword

(Ki) that co-occurred most frequently with the keyword at Stack Over�ow.

LKAC [Ki] = {Aj | AjεA ∧ rankfreq(Ki → Aj) ≤ δ} (7.1)

Here, Ki → Aj denotes the association between a keyword Ki and an API class Aj , rankfreq returns rank

of the association from the ranked list based on association frequency, and δ is a heuristic rank threshold.

In our research, we consider top ten (i.e., δ = 10) APIs as candidates for each keyword, which is carefully

chosen based on iterative experiments on our dataset (see RQ7 for details).

Keyword Pair�API Co-occurrence (KPAC): While frequent co-occurrences of APIs with a query

keyword are a good indication of their relevance to the query, they might also fall short due to the fact that

the query might contain more than one keyword. That is, API classes relevant to (i.e., frequently co-occurred

with) one keyword might not be relevant to other keywords from the query. Thus, API classes that are

simultaneously relevant to multiple keywords should be selected as candidates. We consider nC2 keyword

pairs from n keywords of a query using combination theory, and identify such APIs that frequently co-occur

with both keywords from each pair in the same context (e.g., same Q & A thread). Suppose, Ki and Kj are

two keywords, and they form one of the nC2 keyword pairs from the query. Now, the candidate API classes

(LKPAC [Ki,Kj]) are relevant if they occur in an accepted answer of Stack Over�ow whereas both keywords

appear in the corresponding question title. We select such relevant candidates as follows:

LKPAC [Ki,Kj] = {Am | AmεA ∧ rankfreq((Ki,Kj)→ Am) ≤ δ} (7.2)

Here (Ki,Kj) → Am denotes the association between keyword pair (Ki,Kj) from a question title and

API class Am from the corresponding accepted answer of Stack Over�ow. We capture top ten (i.e., δ = 10)

such co-occurrences for KPAC heuristic, and the detailed justi�cation for this choice can be found in RQ7.

We determine the association based on their co-occurrences in the same set of documents. In this case, each

question-answer thread from Stack Over�ow is considered as a document. While co-occurrences of keyword

triples with APIs could also be considered for API candidacy, existing IR-based studies report that phrases

of two words are more e�ective as a semantic unit (e.g., �chat room") rather than the triples (e.g., ��nd chat

room") [153, 191].

Keyword�Keyword Coherence (KKC): The two heuristics above determine relevant API candidacy

based on the co-occurrence between query keywords and APIs in the same document. That is, multiple

keywords from the query are also warranted to co-occur in the same document. However, such co-occurrences

might not always happen, and yet the keywords could be semantically related to one another (i.e., co-occurred

in the query). More importantly, the candidate APIs should be relevant to multiple keywords that do not

co-occur. Yuan et al. [272] determine semantic similarity between any two software speci�c words by using

their contexts from Stack Over�ow questions and answers. We adapt their technique for identifying coherent

keyword pairs which might not co-occur. The goal is to collect candidate APIs relevant to these pairs based on

151

their coherence. We (1) develop a context (Ci) for each of the n query keywords by collecting its co-occurring

words from thousands of question titles from Stack Over�ow, (2) determine semantic similarity for each of

the nC2 keyword pairs based on their context derived from Stack Over�ow, and (3) use these measures to

identify the coherent pairs and then to collect the functionally coherent APIs for them. At the end of this

step, we have a set of candidate APIs for each of the coherent keyword pairs.

Suppose, two query keywordsKi andKj have context word list Ci and Cj respectively. Now, the candidate

APIs (LKKC) that are relevant to both query keywords and functionally consistent with one another can be

selected as follows:

LKKC [Ki,Kj] = {L[Ki] ∩ L[Kj] | cos(Ci, Cj) > γ} (7.3)

Here, cos(Ci, Cj) denotes the cosine similarity [198] between two context lists� Ci and Cj , and γ is the

similarity threshold. We consider γ = 0 in this work based on iterative experiments on our dataset (see RQ7

for the detailed justi�cation). L[Ki] and L[Kj] are top frequent APIs for the two keywords� Ki and Kj

where Ki and Kj might not co-occur in the same question title. Thus, LKKC [Ki,Kj] contains such APIs

that are relevant to both keywords (i.e., co-occurred with them in Stack Over�ow answers) and functionally

consistent with one another. Since the candidate APIs co-occur with the keywords from each coherent pair

(i.e., semantically similar, γ > 0) in di�erent contexts, they are also likely to be coherent for the programming

task at hand. Such coherence often could be explained in terms of the dependencies among the API classes.

API Relevance Ranking Algorithm

Fig. 7.12-(b) shows the schematic diagram, and Algorithm 8 shows the pseudo code of our API relevance

ranking algorithm�RACK. Once a search query is submitted, we (1) perform Part-of-Speech (POS) tagging

on the query for extracting the meaningful words such as nouns and verbs [59, 259], and (2) apply standard

natural language preprocessing (i.e., stop word removal, splitting, and stemming) on them to extract the

stemmed words (Lines 3�4, Algorithm 8). For example, the query��html parser in Java" turns into three

keywords�`html', `parser' and `java' at the end of the above step. We then apply our three heuristics�KAC,

KPAC and KKC� on the stemmed keywords, and collect candidate APIs from the token-API linking database

(Step 2, Fig. 7.12-(b), Lines 5�8, Algorithm 8). The candidate APIs are selected based on not only their co-

occurrence with the query keywords but also the coherence (i.e., functional consistency) among themselves.

We then use the following metrics (i.e., derived from the above heuristics) to estimate the relevance of the

candidate API classes for the query.

API Co-occurrence Likelihood estimates the probability of co-occurrence of a candidate API (Aj)

with one (Ki) or more (Ki,Kj) keywords from the search query. It considers the rank of the API in the

ranked list based on keyword-API co-occurrence frequency (i.e., KAC and KPAC) and the size of the list,

and then provides a normalized score (on the scale from 0 to 1) as follows:

152

Algorithm 8 API Relevance Ranking using the Proposed Heuristics

1: procedure RACK(Q) . Q: natural language query for code search

2: R← {} . list of API classes relevant to Q

3: . collecting keywords using POS tagging and NL preprocessing

4: K ← preprocess(collectNounVerbs(Q))

5: . collecting candidate API classes

6: LKAC ← getKACList(K)

7: LKPAC ← getKPACList(K)

8: LKKC ← getKKCList(K)

9: . estimating relevance of the candidate APIs

10: for Keyword Ki ∈ K do

11: for APIClass Aj ∈ LKAC [Ki] do

12: . relevance of an API with single keyword

13: SKAC ← getKACScore(Aj , LKAC [Ki])

14: RKAC [Aj].score← RKAC [Aj].score+ SKAC

15: end for

16: end for

17: for Keyword Ki,Kj ∈ K do

18: . relevance of an API with multiple keywords

19: for APIClass Aj ∈ LKPAC [Ki,Kj] do

20: SKPAC ← getKPACScore(Aj , LKPAC [Ki,Kj])

21: RKPAC [Aj].score← RKPAC [Aj].score+ SKPAC

22: end for

23: . coherence of an API with other candidate APIs

24: Ci ← getContextList(Ki)

25: Cj ← getContextList(Kj)

26: SKKC ← getKKCScore(Ci, Cj)

27: for APIClass Aj ∈ LKKC [Ki,Kj] do

28: RKKC [Aj].score← RKKC [Aj].score+ SKKC

29: end for

30: end for

31: . ranking of the API classes using their normalized scores and relative weights

32: for APIClass Aj ∈ {RKAC , RKPAC , RKKC} do

33: R[Aj]← max(α×RKAC [Aj], β ×RKPAC [Aj], (1− α− β)×RKKC [Aj])

34: end for

35: return sortByScore(R)

36: end procedure

153

SKAC(Aj ,Ki) = 1− rank(Aj , sortByFreq(L[Ki]))

|LKAC [Ki]|
(7.4)

SKPAC(Aj ,Ki,Kj) = 1− rank(Aj , sortByFreq(LKPAC [Ki,Kj]))

|LKPAC [Ki,Kj]|
(7.5)

Here, SKAC and SKPAC denote the API co-occurrence likelihood estimates, and they range from 0 (i.e.,

not likely at all for the keywords) to 1 (i.e., very much likely for the keywords). The more likely an API

is for the keywords, the more relevant it is for the query. This approach might also encourage the common

API classes (e.g., List, String) that are often used with most programming tasks. Such APIs might not

be helpful for relevant code snippet search. We thus apply appropriate �lters and thresholds to avoid such

noisy items.

API Coherence estimates the coherence of an API (Aj) with other candidate APIs for a query. Since

the query targets a particular programming task (e.g., �parsing the HTML source"), the suggested APIs

should be logically consistent with one another. One way to heuristically determine such coherence is to

exploit the semantic relevance among the corresponding keywords that co-occurred with that API (Aj).

The underlying idea is that if two keywords are semantically similar, their co-occurred API sets could also

be logically consistent with each other. We thus determine semantic similarity between any two keywords

(Ki,Kj) from the query using their context lists (Ci, Cj) [272], and then propagate that measure to each of

their candidate API classes (Aj) that co-occurred with both of the keywords (i.e., KKC) as follows:

SKKC(Aj ,Ki,Kj) = cos(Ci, Cj) | (Ki → Aj) ∧ (Kj → Aj) (7.6)

Here, SKKC denotes the API Coherence estimate, and it ranges from 0 (i.e., not relevant at all with

multiple keywords) to 1 (i.e., highly relevant). It should be noted that each candidate, Aj , comes from L[Ki]

or L[Kj], i.e., the API is already relevant to each of Ki and Kj in their corresponding contexts. SKKC

investigates how similar those contexts are, and thus heuristically estimates the coherence between the APIs

from these contexts.

We �rst estimate API Co-occurrence Likelihood of each of the candidate APIs that suggests the likeliness

of the API for one or more keywords from the given query (Lines 9�22, Algorithm 8). Then we determine API

Coherence for each candidate API that suggests coherence of the API with other candidate APIs for the query

(Lines 23�30). Once all metrics of each candidate are calculated (Step 3, Fig. 7.12-(b)), only the maximum

score is taken into consideration where appropriate weights�α, β and (1− α − β)�are applied (Lines 31�34,

Algorithm 8). These weights control how two of our above dimensions� co-occurrence and coherence�a�ect

the �nal relevance ranking of the candidates. We consider a heuristic value of 0.325 for α and a value of 0.575

for β, and the detailed weight selection method is discussed in Section 7.4.9. The candidates are then ranked

based on their �nal scores, and Top-K API classes from the ranked list are returned as API recommendation

(Line 35, Algorithm 8, Step 4, 5, Fig. 7.12-(b)). Such API classes are then used for NL-query reformulation.

154

Table 7.5: An Example of Query Reformulation using RACK

html SKAC parser SKAC java SKAC

KAC

Document 1.00 Document 1.00 Object 1.00

Jsoup 0.80 Element 0.80 ArrayList 0.80

Element 0.60 File 0.60 File 0.60

Elements 0.40 IOException 0.40 Class 0.40

IOException 0.20 Node 0.20 IOException 0.20

(html, parser) SKPAC (html, java) SKPAC (parser, java) SKPAC

KPAC

Document 1.00 Document 1.00 Document 1.00

Jsoup 0.80 Jsoup 0.80 Element 0.80

Element 0.60 Element 0.60 File 0.60

Elements 0.40 IOException 0.40 DocumentBuilder 0.40

Parser 0.20 Elements 0.20 DocumentBuilderFactory 0.20

(html, parser) SKKC (html, java) SKKC (parser, java) SKKC

KKC

Document 0.42 IOException 0.28 File 0.20

Element 0.42 File 0.28 IOException 0.20

IOException 0.42

File 0.42

ArrayList 0.42

Initial Query Reformulated Query Suggested API Score

RACK

Document 0.79

Q′={Document, Element, Element 0.69

Q=�HTML parser in Java" File, IOException, File 0.69

Jsoup} + Q IOException 0.52

Jsoup 0.50

155

Working Example: Table 7.5 shows a working example of how our proposed query reformulation

technique �RACK� works. Here we reformulate our natural language query��HTML parser in Java"�into

relevant API classes. We �rst apply KAC heuristic, and collect the Top-5 (i.e., δ = 5) candidate APIs for each

of the three keywords�`html',`parser' and `java'� based on co-occurrence frequencies of the candidates with

the keywords. We also repeat the same step for each of the three (i.e., 3C2) keyword pairs�(html, parser),

(html, java) and (parser, java) by applying our KPAC heuristic. Then we estimate co-occurrence likelihood

(with the keywords and keyword pairs) of each of the candidate APIs. For example, Document has a maximum

likelihood of 1.00 among the candidates not only for the single search keyword but also for the keyword pairs.

We then determine coherence of each candidate API (with other candidates) based on semantic relevance

among the above three keyword pairs. For example, `html' and `parser' have a semantic relevance of 0.42

between them (on the scale from 0 to 1) based on their contexts from Stack Over�ow questions and answers,

and they have several common candidates such as Document, Element and File. Since the two keywords are

semantically relevant, their relevance score (i.e., 0.42, SKKC) is propagated to their shared candidate APIs

as a proxy to the coherence among the candidates. We then gather all scores for each candidate, choose the

best score, and �nally get a ranked list. From the recommended list, we see that Document, Element and

Jsoup are highly relevant APIs from Jsoup library for the given NL-query. Our technique returns such a list

of relevant API classes as the reformulation to an original NL query.

7.4 Experiment

One of the most e�ective ways to evaluate a technique that suggests relevant API classes or methods for a

query is to check their conformance with the gold set APIs of the query. Since the suggested APIs could

be used to reformulate the initial query (i.e., using natural language), the quality of the automatically

reformulated query could be another performance indicator for the technique. We evaluate our technique

using 175 code search queries, their goldset APIs and their relevant code segments (i.e., implementing the

tasks in the query) collected from three programming tutorial sites. We determine the performance of our

technique using six appropriate metrics from the literature. Then we compare with two variants of the

state-of-the-art technique on API recommendation [243] and a popular code search engine�Lucene [98]�for

validating our performance. We answer eight research questions with our experiments as shown in Table 7.6.

7.4.1 Experimental Dataset

Data Collection: We collect 175 code search queries for our experiment from three Java tutorial sites�

KodeJava [15], JavaDB [13] and Java2s [11]. These sites discuss hundreds of programming tasks that involve

the usage of di�erent API classes from the standard Java API libraries. Each of these task descriptions

generally has three parts�(1) a title (i.e., question) for the task, (2) one or more code snippets (i.e., answer),

and (3) an associated prose explaining the code. The title summarizes a programming task (e.g., �How do I

156

Table 7.6: Research Questions Answered using our Experiment

Research Questions on API Suggestion

RQ4: How does the proposed technique �RACK� perform in recommending relevant APIs for a code

search query?

RQ5: How e�ective are the proposed heuristics�KAC, KPAC and KKC�in capturing the relevant APIs

for a query?

RQ6: Does an appropriate subset of the query keywords perform better than the whole query in

retrieving the relevant APIs?

RQ7: How do the heuristic weights (i.e., α, β) and threshold settings (i.e., γ, δ) in�uence the perfor-

mance of our technique?

RQ8: Can RACK outperform the state-of-the-art techniques in recommending relevant APIs for a

given set of natural language queries?

Research Questions on Query Reformulation

RQ9: Can RACK signi�cantly improve the natural language queries in terms of relevant code retrieval

performance?

RQ10: Can RACK outperform the state-of-the-art technique in improving the natural language queries

for code search?

RQ11: How does RACK perform compared to the popular web search engines (e.g., Google) and code

search engines (e.g., GitHub code search)?

157

decompress a GZip �le in Java?") using natural language texts. It generally uses a few pertinent keywords

(e.g., �decompress", �GZip"), and also often resembles a query for code search (Section 7.2.5). We thus

consider such titles from the tutorial sites as the code search queries, and use them for our experiment in

this research.

Gold Set Development: The prose explaining the code often refers to one or more APIs (e.g.,

GZipOutputStream, FileOutputStream) from the code snippet(s) that are found to be essential for the

task. In other words, such APIs can be considered as the most relevant ones (i.e., vital) for the target

programming task. We collect such APIs from the prose against each of the task titles (i.e., code search

queries) from our dataset, and develop a gold set�API-goldset�for the experiment. Since relevance of the

APIs is determined based on working code examples and their associated prose from the publicly available

and popular tutorial sites, the subjectivity associated with the relevance of the collected APIs is minimized

[63]. We also collect the code segments verbatim that implement each of the selected tasks (i.e., our queries)

from these tutorial sites, and develop another gold set�Code-goldset�for our experiments. Our goals are to

(1) compare our queries containing the suggested API classes with the baseline queries containing only NL

keywords and (2) compare our queries with the reformulated queries by the state-of-the-art techniques on

API recommendation [168, 243, 274].

Corpus Preparation: We evaluate not only the API recommendation performance of RACK but also

the retrieval performance of its reformulated queries. We collect relevant code snippets (i.e., ground truth)

for each of our 175 search queries from the above tutorial sites, and develop a corpus. It should be noted

that each query-code snippet pair comes from the same Q & A thread from the tutorial sites. However,

this approach leaves us with a corpus of 175 documents which do not represent a real world corpus. We

thus extend our code corpus by adding more code snippets from one of our earlier works [184], and this

provided a corpus containing 4,170 (175+3,995) code snippets. It should be noted that the additional 3,995

code snippets were carefully collected from hundreds of open source projects hosted at GitHub (see [184] for

details). This corpus is referred to as 4K-Corpus throughout the later sections in the chapter.

We also develop two other corpora containing 256,754 (175+256,399) and 769,244 (175+769,069) docu-

ments respectively. They are referred to as 256K-Corpus and 769K-Corpus in the rest of the sections. These

corpus documents are Java classes extracted from an internet-scale and well-established dataset� IJaDataset

[118, 143, 236]. The dataset was constructed using 24,666 real world Java projects across various domains,

and they were collected from SourceForge5 and Google Code6 repositories. We analyse 1,500,000 Java source

�les from the dataset, and discard the ones with a size greater than 3KB. 95% of our ground truth code

segments have a size less than 3KB. The goal was to avoid the large and potentially noisy code snippets in

the corpus. Given the large size (i.e., 769K documents) and cross-domain nature of the collected projects,

our corpora are thus likely to represent a real world code search scenario.

5https://sourceforge.net/
6https://code.google.com/

158

We consider each of these code snippets from all three corpora as an individual document, apply standard

natural language preprocessing (i.e., token splitting, stop word removal, programming keyword removal) to

them, and then index the corpus documents using Apache Lucene7, a search engine widely used by the

relevant literature [98, 120, 163]. The indexed corpus is then used to determine the retrieval performance of

the initial and reformulated queries for code search.

Replication: All the experimental data, associated tools and implementations are hosted online [201]

for replication or third party reuse.

7.4.2 Performance Metrics

We choose six performance metrics for the evaluation and validation of our technique that are widely adopted

by relevant literature [63, 152, 243]. Two of them are related to recommendation systems whereas the other

four metrics are widely popular in the information retrieval domain.

Top-K Accuracy/Hit@K: It refers to the percentage of the search queries for each of which at least

one item (e.g., API class, code segment) is correctly returned within the Top-K results by a recommendation

technique. It is also called Hit@K [239, 250]. Top-K Accuracy of a technique can be de�ned as follows:

Top˘KAccuracy(Q) =

∑
q∈Q isCorrect(q,K)

|Q|
%

Here, isCorrect(q,K) returns a value 1 if there exists at least one correct API class (i.e., from the API-

goldset) or one correct code segment (i.e., implements the task in query) in the Top-K returned results, and

returns 0 otherwise. Q denotes the set of all search queries used in the experiment. Although Top-K Accuracy

and Hit@K are used interchangeably in the literature [239, 249], we use Hit@K to denote recommendation

accuracy in the remaining sections for the sake of consistency.

Mean Reciprocal Rank@K (MRR@K): Reciprocal rank@K refers to the multiplicative inverse of the

rank (i.e., 1/rank(q,K), q ∈ Q) of the �rst relevant API class or code segment in the Top-K results returned

by a technique [220, 276]. Mean Reciprocal Rank@K (MRR@K) averages such measures for all search queries

(∀q ∈ Q) in the dataset. It can be de�ned as follows:

MRR@K(Q) =
1

|Q|
∑
q∈Q

1

rank(q,K)

Here, rank(q,K) returns the rank of the �rst correct API or the correct code segment from a ranked list of

size K. If no correct API class or code segment is found within the Top-K positions, then rank(q,K) returns

∞. On the contrary, it returns 1 for the correct result at the topmost position of a ranked list. Thus, MRR

can take a maximum value of 1 and a minimum value of 0. The bigger the MRR value is, the better the

technique is.

Mean Average Precision@K (MAP@K): Precision@K calculates the precision at the occurrence of

every single relevant item (e.g., API class, code segment) in the ranked list. Average Precision@K (AP@K)

7http://lucene.apache.org/

159

averages the precision@K for all relevant items within Top-K results for a code search query [220, 276]. Mean

Average Precision@K is the mean of Average Precision@K for all queries (Q) from the dataset. MAP@K of

a technique can be de�ned as follows:

AP@K =

∑K
k=1 Pk × relk
|RR|

MAP@K =

∑
qεQAP@K(q)

|Q|

Here, relk denotes the relevance function of k
th result in the ranked list that returns either 1 (i.e., relevant) or

0 (i.e., non-relevant), Pk denotes the precision at k
th result, and K refers to number of top results considered.

RR is the set of relevant results for a query, and Q is the set of all queries.

Mean Recall@K (MR@K): Recall@K refers to the percentage of gold set items (e.g., API, code

segment) that are correctly recommended for a code search query in the Top-K results by a technique [249].

Mean Recall@K (MR@K) averages such measures for all queries (Q) in the dataset. It can be de�ned as

follows:

MR@K(Q) =
1

|Q|
∑
q∈Q

|result(q,K) ∩ gold(q)|
|gold(q)|

Here, result(q,K) refers to Top-K recommended APIs by a technique, and gold(q) refers to goldset APIs for

each query q ∈ Q. The bigger the MR@K value is, the better the recommendation technique is.

Query E�ectiveness (QE): It refers to the rank of �rst relevant document in the results list retrieved

by a query. The metric approximates a developer's e�ort in locating the �rst item of interest. Thus, the lower

the e�ectiveness measure is, the more e�ective the query is [98, 164, 191]. We use this measure to determine

whether a given query is improved or not after its reformulation.

Normalized Discounted Cumulative Gain (NDCG): It determines the quality of ranking provided

by a technique. With a graded relevance scale for results, the metric accumulates overall gain or usefulness

from the top to the bottom of the list [112, 253]. It assumes that (1) highly relevant results are more useful

when they appear earlier in the ranked list, and (2) highly relevant results are more useful than marginally

relevant results. Thus, Discounted Cumulative Gain (DCG) of a ranked list returned by a query q can be

calculated as follows:

DCG(q) =

K∑
k=1

grelk
log2(k + 1)

where grelk = 1− goldRank(k, gold(q))

|gold(q)|
(7.7)

Here, grelk refers to the graded relevance of the result at position k. goldRank(.) returns the rank of the kth

result within the goldset items gold(q). If kth result is not found in the goldset, grelk simply returns 0 as a

special case. Thus, grelk provides a graded relevance scale between 0 and 1 for each relevant result. Once

DCG(q) is calculated, the normalized DCG can be calculated as follows:

NDCG(q) =
DCG(q)

IDCG(q)
, NDGC(Q) =

1

|Q|
∑
q∈Q

NCDG(q) (7.8)

160

Here IDCG(q) is the Ideal Discounted Cumulative Gain which is derived from the ranking of goldset items.

Thus, NDCG(q) is the metric for one single query q, whereas NDCG(Q) averages the metric over all queries

(∀q ∈ Q). We use NDCG in order to determine the quality of code search ranking from the traditional

web/code search engines (Section 7.4.13).

7.4.3 Evaluation Scenarios

Our work in this article has two di�erent aspects� (a) relevant API suggestion and (b) automatic query refor-

mulation. We thus employ two di�erent setups for evaluating our approach. In the �rst case, we investigate

API suggestion performance of RACK, calibrate our adopted parameters, and compare with the state-of-

the-art approaches on API suggestion [243, 274] (RQ4�RQ8). In the second case, we reformulate the initial

NL queries from the dataset using our suggested API classes. Then we compare our reformulated queries

not only with the baseline queries but also with the queries generated by the state-of-the-art approaches on

query reformulation [168, 274] (RQ9�RQ10). We also investigate the potential of our queries in the context

of contemporary web and code search practices (RQ11).

7.4.4 Statistical Signi�cance Tests

In our comparison studies, we perform two statistical tests before claiming signi�cance of one set of items over

the other. In particular, we employ Mann-Whitney Wilcoxon (MWW) and Wilcoxon Signed Rank (WSR) for

signi�cance tests. We refer to them as MWW and WSR respectively in the remaining sections. MWW is a

non-parametric test that (1) does not assume normality of the data and (2) is appropriate for small dataset

[98]. We use this test for comparing any two arbitrary lists of items. WSR test is another non-parametric

test that performs pair-wise comparison between two lists. In our experiment, WSR was used for signi�cance

test between performance measures (e.g., Hit@K) of RACK in API/code suggestion and that of an existing

approach for the same K positions (i.e., 1≤K≤10) (RQ8, RQ9, RQ10). We report p-value of each statistical

test, and use 0.05 as the signi�cance threshold. In addition to these signi�cance tests, we also perform e�ect

size test using Cli�'s delta to demonstrate the level of signi�cance. For this work, we use three signi�cance

levels � short (0.147≤∆≤0.33), medium (0.33≤∆≤0.474) and large (∆≥0.474) [216]. We use two R packages

� stats, effsize � for conducting these statistical tests.

7.4.5 Matching of Suggested APIs with Goldset APIs

In order to determine performance of a technique, we apply strict matching between gold set APIs and the

recommended APIs. That is, we consider two API classes matched if (1) they are categorically the same,

and (2) they are superclass or subclass of each other. For example, if OutputStream is a gold set API and

FileOutputStream is a recommended API, we consider them and their inverse as matched. If a base class is

relevant for a programming task, the derived class is also likely to be relevant and thus, the recommendation

161

Table 7.7: Performance of RACK

Metric
Non-weighted Version Weighted Version

Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Hit@K 30.29% 55.43% 68.57% 83.43% 38.29% 61.14% 72.00% 83.43%

MRR@K 0.30 0.41 0.44 0.46 0.38 0.48 0.48 0.52

MAP@K 30.29% 40.19% 42.00% 39.66% 38.29% 48.14% 48.39% 45.74%

MR@K 9.24% 22.67% 33.53% 52.78% 12.12% 26.41% 37.94% 54.07%

is considered to be accurate. In the case of relevant code segment retrieval, we also apply exact matching

between gold set segment and returned segment by a query. Since the tutorial sites clearly indicate which of

the code segments implements which of our selected tasks (i.e., queries), such matching is warranted for this

case. It should be noted that items (e.g., API class, code segment) outside the goldset could be also relevant

to our queries. However, we stick to our gold sets for the sake of simplicity and clarity of our experiments.

Our gold sets are also publicly available [201] for third-party replication or reuse.

7.4.6 Answering RQ4: How does the proposed technique perform in suggesting

relevant APIs for a code search query?

Each of our selected queries summarizes a programming task that requires the use of one or more API classes

from various Java libraries. Our technique recommends Top-K (e.g., K = 10) relevant API classes for each

query. We compare the recommended items with the API-goldset and evaluate them using above four metrics.

In this section, we answer RQ4 using Table 7.7 and Fig. 7.13.

Table 7.7 shows the performance details of our technique for Top-1, Top-3, Top-5 and Top-10 API rec-

ommendations. We see that our technique recommends at least one API correctly for 83%+ of the queries

with both its (a) non-weighted and (b) weighted versions. The weighted version applies a �ne tuned weight

to each of our three heuristics�KAC, KPAC and KKC�whereas the non-weighted version treats each of the

heuristics equally. Such accuracy is highly promising according to the relevant literature [63, 152]. Mean

average precision and mean recall of RACK are 40%�46% and 53%�54% respectively for Top-10 results which

are also promising. It also should be noted that RACK provides 55%�61% accuracy and 40%�48% precision

for only Top-3 results which are good. That means, one out of the two suggested API classes is found to

be relevant for the task, which could be really helpful for e�ective code search. Our mean reciprocal ranks

are 0.46 and 0.52 for non-weighted and weighted version respectively. That is, the �rst correct suggestion is

generally found between �rst to second position of our ranked list, which demonstrates the potential of our

technique. Fig. 7.13 shows how di�erent performance metrics � accuracy, precision and recall� change over

di�erent values of Top-K. We see that our technique reaches a high precision (i.e., 48.14%) quite early (i.e.,

K = 3) and the highest (i.e., 48.39%) at K = 5, and then stays comparable for the rest of the K values.

However, the improvement of recall measure is comparatively slow. It is ≈ 10% for K = 1, and then increases

162

Figure 7.13: Hit@K, Mean Average Precision@K, and Mean Recall@K of RACK using (a) non-
weighted version (i.e., dashed line) and (b) weighted version (i.e., solid line)

somewhat linearly up to 54% for the last value of K = 10. On the contrary, the accuracy of RACK improves

in a log-linear fashion, and becomes somewhat stationary for K = 10 with 83%. While our accuracy and

recall could further improve for increased K-values, the precision is likely to drop. Thus, we conduct our

experiments using only Top-10 suggestions from a technique. Developers generally do not check items beyond

the Top-10 items from the ranked list, and relevant literature [191, 239] also widely apply such cut-o� value.

Thus, our choice of K = 1 to 10 is also justi�ed.

We also analyse the distribution of API classes from 19 (11 core + 8 non-core) Java packages (i.e., Table

7.1) in our ground truth, and investigate how they correlate with corresponding distributions from Stack

Over�ow. We found that on average, 10% of the standard Java API classes from each package overlap with

our ground truth classes. On the contrary, 65% of the API classes from each package are discussed in Stack

Over�ow Q & A threads according to RQ2. Thus, Stack Over�ow discusses more API classes than the ground

truth warrants for. In short, Stack Over�ow is highly likely to deliver the relevant classes from standard API

packages, and our approach harnesses that power. We also found that 51% of the ground truth classes come

from the core packages whereas 10% of them come from the non-core packages. Since Stack Over�ow has a

good coverage (e.g., ≈ 65%) for both core and non-core packages (Fig. 7.7), RACK is also likely to perform

well for such queries that require the API classes from non-core packages only.

We also determine correlation between four performance measures (e.g., Hit@10, reciprocal rank, average

precision, recall) of our API suggestions (against NL queries) and the coverage of their corresponding ground

truth in the constructed API database (Section 7.3.1). We employed two correlation methods � Pearson

and Spearman, and found either very weak or negligible correlations (i.e., 0.04≤ ρ ≤0.12) between those two

entities. That is, the API suggestion performance of RACK is not biased by the coverage of the ground truth

API classes in our API database. Such �nding strengthens the external validity of our results.

Summary of RQ4: RACK suggests relevant API classes for about 83% of the generic NL queries with a

mean average precision@10 of 40%�46%, a mean reciprocal rank@10 of 0.46�0.52, and a mean recall@10

of 53%�54%, which are highly promising.

163

Table 7.8: Role of Proposed Heuristics� KAC, KPAC and KKC

Heuristics Metric Top-1 Top-3 Top-5 Top-10

Hit@K 19.43% 42.29% 58.86% 76.00%

{Keyword-API MRR@K 0.19 0.29 0.33 0.36

Co-occurrence (KAC)} MAP@K 19.43% 29.05% 31.94% 32.57%

MR@K 5.97% 15.35% 25.71% 46.42%

Hit@K 36.57% 58.86% 69.14% 79.43%

{Keyword Pair-API MRR@K 0.37 0.46 0.49 0.50

Co-occurrence (KPAC)} MAP@K 36.57% 46.19% 46.13% 43.65%

MR@K 11.08%% 24.88% 36.20% 52.21%

Hit@K 13.71% 32.57% 41.14% 55.43%

{Keyword-Keyword MRR@K 0.14 .22 0.24 0.26

Coherence (KKC)} MAP@K 13.71% 21.52% 23.05% 24.26%

MR@K 4.46% 12.32% 18.07% 28.29%

Hit@K 17.71% 40.00% 58.29% 77.71%

{KAC + KKC} [201]
MRR@K 0.18 0.28 0.32 0.34

MAP@K 17.71% 27.57% 30.24% 30.84%

MR@K 5.65% 14.66% 25.56% 46.15%

Hit@K 38.29% 61.14% 72.00% 83.43%

RACK [206]
MRR@K 0.38 0.48 0.48 0.52

MAP@K 38.29% 48.14% 48.39% 45.74%

MR@K 12.12% 26.41% 37.94% 54.07%

7.4.7 Answering RQ5: How e�ective are the proposed heuristics�KAC, KPAC

and KKC� in capturing the relevant API classes for a query?

We investigate the e�ectiveness of our adopted heuristics� KAC, KPAC and KKC, and justify their com-

bination in the API ranking algorithm (i.e., Algorithm 8). Table 7.8 and Fig. 7.14 demonstrate how each

heuristic performs in capturing the relevant APIs for a given set of code search query as follows:

From Table 7.8, we see that our technique suggests correct API classes for 78.00% and 79% of the queries

when KAC and KPAC heuristics are employed respectively. Both heuristics leverage co-occurrences between

query keywords (in the question titles) and API classes (in the accepted answers) from Stack Over�ow for

such recommendation. On the contrary, KKC considers coherence among the candidate API classes, and is

found less e�ective than the former two heuristics. In fact, KPAC performs the best among all three heuristics

with up to 46% precision and 52% recall. However, the weighted combination of our heuristics provides the

maximum performance in terms of four metrics. It provides 83% Hit@10 with a mean reciprocal rank@10 of

0.52, a mean average precision@10 of 46% and a mean recall@10 of 54%. That is, our combination harnesses

164

Figure 7.14: (a) Hit@K of RACK, (b) Mean Average Precision@K (MAP@K) of RACK, and (c)
Mean Recall@K (MR@K) of RACK for three heuristics�KAC, KPAC and KKC

the strength from all the heuristics, and also overcomes their weaknesses simultaneously using appropriate

weights. All these statistics are also highly promising according to the relevant literature [152, 243]. Thus, our

combination of these three heuristics is also justi�ed. Our earlier work combines KAC and KKC, and provides

79% Hit@10 with 35% precision and 45% recall from the experiments with 150 queries. Replication with our

current extended dataset (i.e., 175 queries) reports similar performance (e.g., 78% Hit@10), which supports

our earlier �ndings [201] as well. In this work, we introduce the new heuristic�KPAC�which improved

our performance in terms of all four metrics� Hit@10 (i.e., 7% improvement), reciprocal rank (i.e., 53%

improvement), precision (i.e., 48% improvement) and recall (i.e., 17% improvement). Thus, the addition

of KPAC heuristic to our ranking algorithm is justi�ed. Furthermore, we apply appropriate weights to

these heuristics for controlling their in�uence in the API relevance ranking. Fig. 7.14 further demonstrates

how the performance of our heuristics changes over various Top-K results. We see that KPAC is the most

dominant one among the heuristics (as observed above) and achieves the maximum performance. However,

the addition of the other two heuristics also improves our performance marginally (i.e., 2% � 4%) in terms

of all four metrics.

Summary of RQ5: KPAC and KAC are found more e�ective than KKC in capturing the relevant API

classes from Stack Over�ow Q & A threads. However, combination of all three heuristics using appropriate

relative weights delivers the maximum performance. Thus, their combination for API ranking is justi�ed.

165

Table 7.9: Impact of Di�erent Query Term Selection

Query Terms Metric Top-1 Top-3 Top-5 Top-10

Hit@K 37.14% 60.57% 71.43% 82.86%

All terms MRR@K 0.37 0.48 0.50 0.52

from query MAP@K 37.14% 47.29% 47.81% 45.29%

MR@K 11.69% 26.93% 38.85% 54.80%

Noun terms only

Hit@K 33.71% 58.86% 70.29% 82.29%

MRR@K 0.34 0.45 0.48 0.49

MAP@K 33.71% 44.95% 45.71% 42.62%

MR@K 10.56% 25.47% 36.67% 55.21%

Verb terms only

Hit@K 7.43% 17.71% 24.00% 35.43%

MRR@K 0.07 0.11 0.13 0.14

MAP@K 7.43% 11.52% 12.68% 14.02%

MR@K 2.14% 6.69% 10.46% 17.38%

Hit@K 38.29% 61.14% 72.00% 83.43%

{Noun terms + MRR@K 0.38 0.48 0.48 0.52

Verb terms} MAP@K 38.29% 48.14% 48.39% 45.74%

MR@K 12.12% 26.41% 37.94% 54.07%

Hit@K 37.14% 60.57% 72.00% 83.43%

{Noun terms + MRR@K 0.37 0.47 0.47 0.52

Verb terms}-�java" MAP@K 37.14% 46.90% 47.35% 45.19%

MR@K 11.84% 26.18% 38.09% 54.08%

7.4.8 Answering RQ6: Does an appropriate subset of the query keywords per-

form better than the whole query in retrieving the relevant API classes?

Since the proposed technique identi�es relevant API classes based on their co-occurrences with the keywords

from a query, the keywords should be chosen carefully. Selection of random keywords might not return

appropriate API classes. Several earlier studies choose nouns and verbs from a sentence, and report their

salience in automated comment generation [259] and corpus indexing [59]. We thus also extract noun and

verb terms from each query as the search keywords using Stanford POS tagger [244], and then use them for

our experiments. In particular, we investigate whether our selection of keywords for code search is e�ective

or not.

From Table 7.9, we see that our technique performs better with noun-based keywords than with verb-

based keywords. The verb-based keywords provide a maximum of 35% Hit@10. On the contrary, RACK

returns correct API classes for 82% of queries with 43% precision, 55% recall and a reciprocal rank of 0.49

when only noun-based keywords are chosen for search. However, none of the performance metrics reaches the

166

baseline performance except recall. That is, they are lower than the performance of RACK with all query

terms minus the stop words. Interestingly, when both nouns and verbs are employed as search keywords, the

performance reaches the maximum especially in terms of accuracy, precision and reciprocal rank. For example,

RACK achieves 83% Hit@10 with 46% precision, 54% recall and a reciprocal rank of 0.52. Although the

improvement over the baseline performance (i.e., with all keywords of a query) is marginal, such performances

were delivered using a fewer number of search keywords. That is, our subset of keywords not only avoids

the noise but also ensures a comparatively higher performance than the baseline with relatively lower costs

(i.e., fewer keywords). Thus, selection of a subset of keywords from the NL query intended for code search is

justi�ed, and our subset is also found e�ective.

We also investigate the impact of generic search keywords such as �java" in our query. According to our

analysis, 11.43% of our queries in the dataset contain this keyword. From Table 7.9, we see that removal

of this keyword marginally degrades most of the performance measures of our technique. Only marginal

improvements can be observed in the recall measure for Top-5 and Top-10 results. Thus, our choice of

retaining the generic keywords is also justi�ed.

Summary of RQ6: Important keywords from a natural language query mainly consist of its noun and verb

terms. Our keyword selection approach of leveraging noun and verbs from a query is found quite e�ective in

the relevant API suggestion.

7.4.9 Answering RQ7: How do the heuristic weights (i.e., α, β) and threshold

settings (i.e., γ, δ) in�uence the performance of our technique?

Our relevance ranking algorithm applies two relative weights�α and β�to our proposed heuristics, and the

heuristics are also constrained with two thresholds�γ and δ. While the thresholds help the heuristics collect

appropriate candidate API classes, the weights control the in�uence of the heuristics in the API relevance

ranking. In this section, we justify our chosen weights and thresholds, and investigate how they a�ect the

performance of our technique.

We adopt a greedy search-based technique [272] (i.e., controlled iterative approach) for determining the

relative weights for our heuristics. That is, we start our searches with our best initial guesses for α (i.e., 0.25)

and β (i.e., 0.30), re�ne our weight estimates in every iteration with a step size of 0.025, and then stop when

the �tness function [272] (i.e., performance) reaches the global maximum. We use mean average precision@10

and mean recall@10 as the �tness functions in the search for α and β. Fig. 7.15 shows how di�erent values of

α and β can in�uence the performance of RACK. Please note that when one weight is calibrated, the other

one is kept constant during performance computation. We see that precision and recall of RACK reach the

maximum when α ∈ [0.300, 0.325] and β=0.575. The target weights are identi�ed using dashed vertical lines

above. While α and β are considered as the relative importance of the co-occurrence based heuristics, KAC

and KPAC respectively, (1 − α − β) goes to the remaining heuristic�KKC. Since KKC is found relatively

167

Figure 7.15: (a) Mean Average Precision@10 (MAP@10), and (b) Mean Recall@10 (MR@10) of
RACK for di�erent values of the heuristic weights�α and β

Figure 7.16: Performance of RACK for di�erent δ thresholds with (a) Top-5 results and (b) Top-10
results considered

weak according to our earlier investigation, we emphasize more on α and β, and chose the following heuristic

weights: 0.325, 0.575 and 0.10�for KAC, KPAC and KKC respectively. Thus, all the weights sum to 1, and

such weighting mechanism was also used by an earlier study [163]. The performance of RACK is signi�cantly

higher than its non-weighted version especially in terms of MRR@K (i.e., WSR, p-value= 0.002, ∆ = 1.00

(large)) and MAP@K (i.e., WSR, p-value< 0.001, ∆ = 0.84 (large)) for Top-1 to Top-10 results. Thus, the

application of relative weights to our adopted heuristics is also justi�ed.

Both KAC and KPAC apply δ threshold for collecting candidate API classes from the token-API linking

database. Fig. 7.16 shows how di�erent values of δ can a�ect our performance. We use Hit@K, MAP@K and

MR@K as the �tness functions, and determine our �tness for Top-5 and Top-10 returned results. We see that

each of these performance measures reach their maximum when δ = 10 for both settings. That is, collecting

168

Figure 7.17: Performance of RACK for di�erent γ thresholds with (a) Top-5 results and (b) Top-10
results considered

10 candidate API classes for each keyword or keyword pair from the query is the most appropriate choice.

Less or more than that provides comparable performance but not the best one. Thus, we chose δ = 10 in our

algorithm, and our choice is justi�ed.

KKC applies another threshold, γ, for candidate API selection that refers to the degree of contextual

similarity between any two keywords from the query. Fig. 7.17 reports our investigation on this threshold.

We see that di�erent values of γ starting from 0 to 0.5 do not change our �tness (i.e., performance) at all.

Since the heuristic itself, KKC, is not strong, the variance of γ also does not have much in�uence on the

performance of our technique. Thus, our choice of γ = 0 is also justi�ed. That is, we consider two API

classes coherent to each other when their contexts share at least one search keyword.

Summary of RQ7: The performance of RACK reaches the maximum for certain weights and thresholds,

α=0.325, β=0.575, γ=0, and δ=10. They were chosen carefully based on controlled iterative experiments,

as were also done by the earlier studies [163, 272] from relevant literature.

7.4.10 Answering RQ8: Can RACK outperform the state-of-the-art techniques

in suggesting relevant API classes for a given set of queries?

Thung et al. [243] accept a feature request as an input and return a list of relevant API methods. Their API

suggestions are based not only on the mining of feature request history but also on the textual similarity

between the request texts and the corresponding API documentations. Zhang et al. [274] determine semantic

distance between an NL query and a candidate API using a neural network model (CBOW) and a large code

repository, and then suggest a list of relevant API classes for the query. To the best of our knowledge, these

are the latest and the closest studies to ours in the context of API suggestion, and thus, we select them for

comparison.

Since feature request history is not available in our experimental settings, we implement Description-

Based Recommender module from Thung et al. We collect API documentations of 3,300 classes from the

169

Table 7.10: Comparison of API Recommendation Performance with Existing Techniques (for various
Top-K Results)

Technique Metric Top-1 Top-3 Top-5 Top-10

Thung et al. [243]-I

Hit@K 20.57% 30.85% 38.29% 44.00%

MRR@K 0.21 0.25 0.26 0.27

MAP@K 20.57% 24.57% 25.47% 24.84%

MR@K 6.37% 11.74% 15.79% 22.19%

Thung et al. [243]-II

Hit@K 20.00% 32.57% 39.43% 50.29%

MRR@K 0.20 0.26 0.27 0.29

MAP@K 20.00% 25.14% 25.85% 25.59%

MR@K 6.19% 13.02% 18.47% 28.95%

Zhang et al. [274]

Hit@K 19.43% 32.00% 36.00% 39.43%

MRR@K 0.19 0.25 0.26 0.26

MAP@K 19.43% 24.86% 25.44% 24.81%

MR@K 6.00% 15.86% 21.54% 29.87%

Hit@K 38.29% 61.14% 72.00% 83.43%

RACK [206] MRR@K 0.38 0.48 0.48 0.52

(Proposed technique) MAP@K 38.29% 48.14% 48.39% 45.74%

MR@K 12.12% 26.41% 37.94%% 54.07%

*Emboldened items are the highest statistics for the existing and proposed

techniques

Java standard libraries (i.e., JDK 6), and develop Vector Space Model (VSM) for each of the API classes. In

fact, we develop two models for each API class using (1) class header comments only, and (2) class header

comments + method header comments, and implement two variants� Thung et al.-I and Thung et al.-II for

our experiments. We use Apache Lucene [32] for VSM development, corpus indexing and for textual similarity

matching between the API documentations and each of the queries from our dataset. In the case of Zhang

et al., we (1) make use of IJaDataset [117] as a training corpus (as was done by the original authors), and

(2) learn the word embeddings for both keywords and API classes using fastText [54], an improved version

of word2vec implementation. We then use these vectors to determine semantic distance between a query

and the candidate API classes using cosine similarity [198]. We also determine API popularity within the

training corpus, and then combine with semantic distance metric to identify a set of relevant API classes for

the NL query.

Table 7.10 summarizes the comparative analysis between our technique�RACK� and three existing tech-

niques. Here, emboldened items refer to maximum measures provided by the existing techniques and our

technique. We see that the variants of Thung et al. can provide a maximum of about 50% accuracy with

about 26% precision and 29% recall for Top-10 results. On the other hand, RACK achieves a maximum

170

Figure 7.18: Comparison of API recommendation performances with the existing techniques-(a)
Hit@K, (b) Mean Reciprocal Rank@K, (c) Mean Average Precision@K, and (d) Mean Recall@K

accuracy of 83% with 46% precision and 54% recall which are 66%, 79% and 87% higher respectively. We

investigate how the four performance measures change for di�erent Top-K results for each of these three

techniques. From Fig. 7.18, we see that Hit@K of RACK increases gradually up to 83% whereas such perfor-

mance measures for the textual similarity based techniques stop at 50%. The MRR@K of RACK improves

from 0.38 to 0.52 whereas such measures for the counterparts are as low as 0.20�0.29. It should be noted

that RACK reaches its maximum precision, i.e., 48%, quite early at K = 3, and then its recall gradually

improves up to 54% (at K = 10). On the contrary, such measures for the counterparts are at best 25%

and 30% respectively. These demonstrate the superiority of our technique. From the box plots in Fig. 7.19,

we see that RACK performs signi�cantly higher than both variants in terms of all three metrics� accuracy,

precision and recall. Our median accuracy is above 70% whereas such measures for those variants are close

to 40%. The same goes for precision and recall measures. We perform signi�cance and e�ect size tests,

and compare our performance measures with the measures of the state-of-the-art for various Top-K results

(1≤K≤10). We found that the performance of our approach is signi�cantly higher than that of the existing

techniques in terms of Hit@K (i.e., WSR, p-value=0.002<0.05, ∆=0.79 (large)), MRR@K (i.e., WSR, p-

value=0.002<0.05, ∆=0.90 (large)), MAP@K (i.e., WSR, p-value=0.002<0.05, ∆=0.90 (large)) and MR@K

(i.e., WSR, p-value=0.002<0.05, ∆=0.70 (large)). All these �ndings above suggest that (1) textual similarity

between query and API signature or documentations might not be always e�ective for API recommendation,

171

Figure 7.19: Comparison of API recommendation with existing techniques using box plots

and (2) semantic distance between keyword and API classes should be calculated using appropriate training

corpus. Our technique overcomes that issue by applying three heuristics �KAC, KPAC and KKC� which

leverage the API usage knowledge of a large developer crowd stored in Stack Over�ow. Performance reported

for Thung et al. is project-speci�c, and the technique is restricted to feature requests [243]. On the contrary,

our technique is generic and adaptable for any type of code search. It is also independent of any subject

systems. Although Zhang et al. employ a large training corpus, they learn word embeddings for NL keywords

from the source code which might not be always helpful. Source code inherently has a smaller vocabulary

than regular texts [102]. On the contrary, we leverage the contexts of NL keywords and API classes more

carefully from Stack Over�ow Q & A site to determine their relevance. Furthermore, we harnesses the ex-

pertise of a large crowd of technical users e�ectively for relevant API suggestion which was not considered

by the past studies from literature. Thus, our technique possibly has a greater potential.

Summary of RQ8: Our approach, RACK, outperforms multiple existing studies on relevant API suggestion

for NL queries, and achieves 66% higher accuracy, 79% higher precision and 87% higher recall than those

of the state-of-the-art.

7.4.11 Answering RQ9: Can RACK signi�cantly improve the natural language

queries in terms of relevant code retrieval performance?

Our earlier research questions (RQ4�RQ8) evaluate the performance of RACK in suggesting relevant API

classes for a natural language query intended for code search. Although they clearly demonstrate the potential

of our technique, another way of evaluation could be the retrieval performance of our suggested queries. In

this section, we investigate whether our reformulations to the baseline queries improve them or not in terms

of their relevant code retrieval performances. We employ three corpora � 4K-Corpus, 256K-Corpus, and

769K-Corpus� each of which includes 175 ground truth code segments (see Section 7.4.1 for details). We

apply limited natural language preprocessing (i.e., removal of stop words and keywords, splitting of complex

172

Table 7.11: Comparison of Source Code Retrieval Performance with Baseline Queries

Query Metric Top-1 Top-3 Top-5 Top-10

Retrieval Performance with Small Dataset (4K-Corpus)

Baseline Hit@K 39.43% 54.86% 62.29% 68.57%

(NL Keywords) MRR@K 0.39 0.46 0.48 0.49

Goldset API
Hit@K 65.71% 85.71% 89.14% 91.43%

MRR@K 0.66 0.75 0.76 0.76

Baseline + Hit@K 70.29% 88.00% 96.00% 97.14%

Goldset API MRR@K 0.70 0.78 0.80 0.80

RACKA
Hit@K 29.71% 50.29% 56.00% 68.57%

MRR@K 0.30 0.39 0.40 0.42

RACKA+Q

Hit@K 50.86% 73.14% 77.71% 84.00%

MRR@K 0.51 0.61 0.62 0.63

Retrieval Performance with Large Dataset (256K-Corpus)

Baseline Hit@K 22.29% 30.86% 37.71% 44.00%

(NL Keywords) MRR@K 0.22 0.26 0.27 0.28

Goldset API
Hit@K 60.00% 78.29% 84.57% 90.29%

MRR@K 0.60 0.69 0.70 0.71

Baseline + Hit@K 76.00% 89.14% 90.86% 94.86%

Goldset API MRR@K 0.76 0.82 0.82 0.83

RACKA
Hit@K 14.29% 26.29% 30.86% 36.57%

MRR@K 0.14 0.19 0.20 0.21

RACKA+Q

Hit@K 40.00% 52.57% 59.43% 66.29%

MRR@K 0.40 0.46 0.47 0.48

Retrieval Performance with Extra-Large Dataset (769K-Corpus)

Baseline Hit@K 17.14% 24.57% 0.28.57% 34.29%

(NL Keywords) MRR@K 0.17 0.20 0.21 0.22

Goldset API
Hit@K 50.86% 69.14% 75.43% 81.14%

MRR@K 0.51 0.59 0.61 0.62

Baseline + Hit@K 64.00% 80.00% 86.86% 90.29%

Goldset API MRR@K 0.64 0.71 0.73 0.73

RACKA
Hit@K 10.86% 18.29% 22.29% 26.86%

MRR@K 0.11 0.14 0.15 0.16

RACKA+Q

Hit@K 26.86% 42.29% 49.14% 56.57%

MRR@K 0.27 0.33 0.35 0.36

A=Suggested API classes only, A+Q=Reformulated query combining both

suggested API classes and baseline query keywords.

173

tokens) to each corpus document, and then index them for retrieval. We employ Apache Lucene8, a popular

code search engine that has been used by several earlier studies from the literature [98, 163, 176], for document

indexing and for source code retrieval.

Table 7.11 and Fig. 7.20 summarize our �ndings on comparing our reformulated queries with the baseline

queries. We consider two versions of our reformulated queries� RACKA and RACKA+Q�for our experiments.

While RACKA comprises of suggested API classes only, RACKA+Q combines both the suggested API classes

and the NL keywords from baseline queries. From Table 7.11, we see that the baseline queries (i.e., comprise

of NL keywords) perform poorly especially with the large corpora. In the case of 256K-Corpus, they return

relevant code segments at the Top-1 position and within the Top-5 positions for only 22% and 38% of the

queries respectively (i.e., Hit@K). On the contrary, our reformulated queries, RACKA+Q, can return relevant

code segments for 40% and 59% of the queries within Top-1 and Top-5 positions respectively, which are more

promising. We see a notable increase in the query performance with the smaller corpus (i.e., 4K-Corpus) and

a notable decrease with the bigger corpus (i.e., 769K-Corpus). Such observations can be explained by the

reduced and added noise in the corpus respectively. However, our reformulated queries perform consistently

higher than the baseline across all three corpora. For example, while the baseline Hit@10 reduces to 34%

for 769K-Corpus, our reformulated queries deliver a Hit@10 of 57% which is 65% higher. Thus, our query

reformulations o�er 23%-80% improvement in Hit@K over the baseline performance across the three corpora.

It should be noted that Hit@1 and Hit@5 could reach up to 60% and 85% respectively when the goldset

API classes are used as the search queries. Combination of NL queries and goldset API classes performs

even better. Such �ndings also strengthen our idea of suggesting and using relevant API classes for code

search. However, we also see that reformulated queries containing both NL keywords and API classes (e.g.,

RACKA+Q) are always better than those containing only the suggested API classes (e.g., RACKA).

Our MRR@K measures in Table 7.11 are also found more promising. They suggest that on average, the

relevant code segments are returned by our queries within the top three positions of the result list across all

three corpora, which is promising from the perspective of practical use. Furthermore, our MRR@K measures

are 29%�81% higher than the baseline counterparts across all three corpora which demonstrate the potential

of our reformulated queries for code search.

Fig. 7.20 further demonstrates the performance of baseline queries and our reformulated queries for various

Top-K results. We see that Hit@K and MRR@K of our queries are higher than those of the baseline queries

by a large margin across all three corpora �4K-Corpus, 256K-Corpus, and 769K-Corpus. Non-parametric

tests such as Wilcoxon Singed Rank, Mann-Whitney Wilcoxon and Cli�'s delta tests also report statistical

signi�cance of our performance improvements for both Hit@K (i.e., all p-values<0.05, 0.82≤∆≤0.94 (large))

and MRR@K (i.e., all p-values<0.05, ∆=1.00 (large)). For the sake of simplicity, only one code segment (i.e.,

collected from the tutorial sites, Section 7.4.1) was chosen as the ground truth of each query. Thus, Hit@K

8https://lucene.apache.org/

174

Figure 7.20: Comparison of code retrieval performance with the baseline queries in terms of (a)
Hit@K and (b) MRR@K

Figure 7.21: Comparison of QE distribution with baseline queries across (a) 4K-Corpus, (b) 256K-
Corpus and (c) 769K-Corpus

and MRR@K are the most appropriate performance metrics for this case, and consequently, precision and

recall were not chosen for this evaluation.

We also investigate query performance by relaxing the Top-K constraint and by analysing all the results

returned by each query. Table 7.12 and Fig. 7.21 report our �ndings on query e�ectiveness [163, 164]. That

is, if the �rst relevant code segment by a reformulated query is returned closer to the top of the result list

than that of the baseline query, we consider it as query quality improvement, and vice versa as query quality

worsening. If there is no change in the result ranks between baseline and reformulated queries, we call it

query quality preserving. From Table 7.12, we see that 46%�64% of the baseline queries can be improved

by our technique, RACKA+Q, across all three corpora. It worsens only 11%�16% of the queries, and thus,

o�ers a net gain of 35%�49% query improvement. While 60% net gain is possible in the best case scenario

using gold set APIs directly, our technique delivers ≈ 50%, which is promising according to relevant literature

[98, 191]. Fig. 7.21 further contrast between baseline and our reformulated queries. We see that the result

175

Table 7.12: Improvement of Baseline Queries by RACK

Query Pairs Improved Worsened Net Gain Preserved

Query Improvement with Small Dataset (4K-Corpus)

Goldset API vs. Baseline 54.29% 13.71% +40.58% 32.00%

RACKA vs. Baseline 42.29% 39.43% +2.86% 18.29%

RACKA+Q vs. Baseline 46.29% 10.86% +35.43% 42.86%

Query Improvement with Large Dataset (256K-Corpus)

Goldset API vs. Baseline 70.86% 14.29% +56.00% 14.86%

RACKA 43.43% 48.00% -4.57% 8.57%

RACKA+Q 61.71% 13.14% +48.57% 25.14%

Query Improvement with Extra-Large Dataset (769K-Corpus)

Goldset API vs. Baseline 74.86% 14.86% +60.00% 10.29%

RACKA 44.00% 48.00% -4.00% 8.00%

RACKA+Q 64.00% 16.00% +48.00% 20.00%

Net Gain = Gained improvement of result ranks through query reformulations

ranks provided by RACK are closer to zero (i.e., top of the list) across all three corpora. Such �nding provides

more evidence on the high potential of our suggested queries.

Summary of RQ9: Reformulated queries by RACK retrieve relevant code segments with 23%�80% higher

accuracy and 29%-81% higher reciprocal rank than those of the baseline queries. Furthermore, RACK

improves 46%�64% of the baseline queries, and they return the results closer to the top of the list.

7.4.12 Answering RQ10: Can RACK outperform the state-of-the-art techniques

in improving the natural language queries intended for code search?

Although our reformulations improve the baseline queries signi�cantly, we further validate them against the

queries generated by existing techniques including the state-of-the-art. The study of Zhang et al. [274] is

a closely related work to ours. They suggest relevant API classes for natural language queries intended for

code search by analysing semantic distance between query keywords and API classes. Thung et al. [243]

is another related study in the context of relevant API suggestion which was originally targeted for feature

location (i.e., project-speci�c code search). Recently, Nie et al. [168] reformulate a query for code search by

collecting pseudo-relevance feedback from Stack Over�ow, and then by applying Rocchio's expansion [213]

to the query. Their tool QECK suggests software-speci�c terms from programming questions and answers as

query expansions. To the best of our knowledge, these are the most recent and the most closely related work

to ours in the context of query reformulation for code search which make them the state-of-the-art. We thus

compare our technique with these three existing techniques [168, 243, 274] in terms of Hit@K, MRR@K and

Query E�ectiveness (QE).

176

Table 7.13: Comparison of Code Retrieval Performance with Existing Techniques

Technique Metric Top-1 Top-3 Top-5 Top-10

Retrieval Performance with Small Dataset (4K-Corpus)

Thung et al. [243]-I
Hit@K 41.14% 58.29% 69.14% 74.29%

MRR@K 0.41 0.49 0.51 0.52

Thung et al. [243]-II
Hit@K 44.00% 62.29% 71.43% 77.71%

MRR@K 0.44 0.52 0.55 0.55

Nie et al. [168]
Hit@K 48.57% 69.14% 74.86% 81.14%

MRR@K 0.49 0.58 0.59 0.60

Zhang et al. [274]
Hit@K 43.43% 64.00% 69.14% 77.71%

MRR@K 0.43 0.53 0.54 0.55

RACK [206]
Hit@K 50.86% 73.14% 77.71% 84.00%

MRR@K 0.51 0.61 0.62 0.63

Retrieval Performance with Large Dataset (256K-Corpus)

Thung et al. [243]-I
Hit@K 27.43% 40.57% 48.00% 54.86%

MRR@K 0.27 0.33 0.35 0.36

Thung et al. [243]-II
Hit@K 33.71% 44.57% 50.29% 59.43%

MRR@K 0.34 0.39 0.40 0.41

Nie et al. [168]
Hit@K 29.71% 44.00% 52.57% 60.00%

MRR@K 0.30 0.36 0.38 0.39

Zhang et al. [274]
Hit@K 24.00% 34.29% 41.71% 52.57%

MRR@K 0.24 0.29 0.30 0.32

RACK [206]
Hit@K 40.00% 52.57% 59.43% 66.29%

MRR@K 0.40 0.46 0.47 0.48

Retrieval Performance with Extra-Large Dataset (769K-Corpus)

Thung et al. [243]-I
Hit@K 20.57% 29.71% 36.57% 42.86%

MRR@K 0.21 0.24 0.26 0.27

Thung et al. [243]-II
Hit@K 25.71% 35.43% 41.14% 46.86%

MRR@K 0.26 0.30 0.31 0.32

Nie et al. [168]
Hit@K 25.14% 36.57% 41.14% 48.00%

MRR@K 0.25 0.30 0.31 0.32

Zhang et al. [274]
Hit@K 20.00% 28.57% 33.14% 38.29%

MRR@K 0.20 0.24 0.25 0.26

RACK [206]
Hit@K 26.86% 42.29% 49.14% 56.57%

MRR@K 0.27 0.33 0.35 0.36

177

From Table 7.13, we see that the retrieval performance of RACK is consistently higher than that of

the state-of-the-art techniques or their variants across all three corpora. Nie et al. [168], performs the best

among the existing techniques. Their approach achieves 41%�75% Hit@5 with a MRR@5 between 0.31 to

0.59 on our dataset. However, our technique, RACK, achieves 49%�78% Hit@5 with 0.35�0.62 MRR@5 which

are 4%�19% and 5%�13% higher respectively. RACK also achieves a Hit@10 of 57% with the extra-large

corpus (i.e., 769K-Corpus) which is 18% higher than the state-of-the-art measure, i.e., 48% Hit@10 by Nie

et al. While the performance measures of each technique degrade as the corpus size grows from 4K to 769K

documents, our performance measures remain consistently higher than the state-of-the-art. Thus, RACK is

more robust to varying sizes of corpora than any of the existing techniques under our study.

Fig. 7.22 further demonstrates how RACK outperforms the state-of-the-art techniques for various Top-K

results in terms of Hit@K and MRR@K. We compare RACK with QECK by Nie et al. [168] for Top-1 to

Top-10 performance measures using non-parametric tests. Nie et al. is clearly the state-of-the-art according

to the above analysis. Our Mann-Whitney Wilcoxon and Cli�'s delta tests reported statistical signi�cance

of RACK over Nie et al. with large e�ect sizes for both Hit@K (i.e., p-values<0.05, 0.33≤∆≤0.52 (large))

and MRR@K (i.e., p-values<0.05, 0.68≤∆≤0.90 (large)) across all three corpora. Thus, the �ndings above

clearly demonstrate the superiority of our technique over the existing studies on query reformulation.

We also compare our technique with the existing techniques in terms of Query E�ectiveness (QE). From

Table 7.14, we see that Nie et al. performs the best with 4K-Corpus whereas Thung et al.-II performs the best

with the remaining two corpora� 256K-Corpus and 769K-Corpus. Nie et al. improves 32% of the baseline

queries whereas Thung et al.-II improves 43%�49% of the queries. On the contrary, RACK improves 46%

and 62%�64% of the baseline queries in the same contexts. In particular, our technique o�ers 48% net gain as

opposed to 26% provided by Thung et al.-II which is 87% higher. Thus, RACK clearly has a high potential

for query reformulation than the state-of-the-art. It also should be noted that RACK degrades only 11%�16%

of the queries across all three corpora which suggests the reliability and robustness of the technique. Fig.

7.23 further contrasts the result ranks of RACK with that of the state-of-the-art approaches using box plots.

We see that on average, RACK provides higher ranks, and returns results closer to the top of list than the

competing approaches. For example, Thung et al.-II returns 50% of its �rst correct results within the Top-8

positions and 75% of them within the Top-96 positions when dealing with extra-large corpus (i.e., 769K-

Corpus). On the contrary, RACK returns such results within Top-5 and Top-42 positions which are 38% and

57% higher respectively. Similar �ndings can be observed with the remaining two corpora. All these �ndings

above clearly demonstrate of superiority of our technique in query reformulation over the state-of-the-art.

Summary of RQ10: Reformulated queries of RACK retrieve relevant code segments with 19% higher

accuracy and 13% higher reciprocal rank than the state-of-the-art. Furthermore, RACK o�ers 48% net

improvement in the quality of baseline queries, which is 87% higher than the state-of-the-art counterpart.

178

Figure 7.22: Comparison of code retrieval performance with existing techniques using (a,b) 4K-
Corpus, (c,d) 256K-Corpus and (e,f) 756K-Corpus

179

Table 7.14: Comparison of Query Improvements with Existing Techniques

Query Pairs Improved Worsened Net Gain Preserved

Query Improvement with Small Dataset (4K-Corpus)

Thung et al. [243]-I vs. Baseline 24.00% 11.43% +12.57% 64.57%

Thung et al. [243]-II vs. Baseline 31.43% 10.86% +20.57% 57.71%

Nie et al. [168] vs. Baseline 32.00% 8.00% +24.00% 60.00%

Zhang et al. [274] vs. Baseline 28.00% 10.29% +17.71% 61.71%

RACK vs. Baseline 46.29% 10.86% +35.43% 42.86%

Query Improvement with Large Dataset (256K-Corpus)

Thung et al. [243]-I vs. Baseline 37.71% 22.29% +15.42% 40.00%

Thung et al. [243]-II vs. Baseline 42.86% 21.14% +21.72% 36.00%

Nie et al. [168] vs. Baseline 41.71% 24.57% +17.14% 33.71%

Zhang et al. [274] vs. Baseline 36.00% 26.86% +9.14% 37.14%

RACK vs. Baseline 61.71% 13.14% +48.57% 25.14%

Query Improvement with Extra-Large Dataset (769K-Corpus)

Thung et al. [243]-I vs. Baseline 41.14% 25.71% +15.43% 33.14%

Thung et al. [243]-II vs. Baseline 48.57% 22.86% +25.71% 28.57%

Nie et al. [168] vs. Baseline 45.71% 24.57% +21.14% 29.71%

Zhang et al. [274] vs. Baseline 41.14% 28.57% 12.57% 30.29%

RACK vs. Baseline 64.00% 16.00% +48.00% 20.00%

Net Gain = Gained improvement of result ranks through query reformulations

180

Figure 7.23: Comparison of QE distribution with the state-of-the-art using (a) 4K-Corpus, (b)
256K-Corpus, and (c) 769K-Corpus

7.4.13 Answering RQ11: How does RACK perform compared to the popular

web search engines and code search engines?

Existing studies [166, 205, 219, 263] report that software developers frequently use general-purpose web search

engines (e.g., Google) for code search. Hence, these search engines are natural candidates for comparison

with our technique. We thus compare our approach with three popular web and code search engines� Google,

Stack Over�ow native search and GitHub code search. Unfortunately, we faced several challenges during our

comparison with these commercial search engines. First, results from these search engines frequently change

due to their dynamic indexing. This makes it hard to develop a reliable or stable oracle from their results.

In fact, we found that Top-30 Google results collected for the same query in two di�erent dates (i.e., two

weeks apart) matched only 55%. Second, Google search API [8] was used for our experiments given that GUI

based Google search is not a practical idea for 175 x 2 = 350 queries. However, this paid search API imposes

certain restrictions on the number of API calls to be made. That is, results for 175 baseline queries and their

reformulated queries could not be collected all at the same time. Given the changing nature of the underlying

corpus, comparison between the results of baseline and reformulated queries could thus not be fair. Third,

these commercial search engines are mostly designed for natural language queries. They also impose certain

restrictions on the query length and query type. Hence, they might either produce poor results or totally fail

to produce any results for our reformulated queries which mostly contain structured keywords (e.g., multiple

API classes). Thus, we found a head-to-head comparison with these commercial search engines infeasible.

Despite the above challenges, we still compare with these engines, and investigate whether our reformulated

queries can improve their search results signi�cantly or not through a post-processing step of their results.

181

Table 7.15: Comparison with Popular Web/Code Search Engines

Technique Hit@10 MAP@10 MRR@10 NDCG@10

Google 100.00% 68.56% 0.82 0.46

RACKGoogle 100.00% 83.71% 0.92 0.67

Stack Over�ow 91.43% 59.54% 0.67 0.43

RACKSO 91.43% 75.27% 0.82 0.62

GitHub 89.71% 55.27% 0.58 0.47

RACKGitHub 90.29% 68.59% 0.74 0.59

Emboldened= Comparatively higher than counterpart

Collection of Search Results and Construction of Oracle: We collect Top-30 results for each query

from each search engine for oracle construction. We make use of Custom Search API 9 by Google and native

API endpoints by Stack Over�ow10 and GitHub11, and collect the search results. Given the large volume

of search results (i.e., 175 x 30 = 5,250), it is impractical to manually analyze them all. Hence, we used

a semi-automated approach in constructing the oracle for these web/code search engines. In particular, we

extract the code segments from each of the result pages using appropriate tools (e.g., Jsoup12). In the case

of GitHub search results, we use JavaParser13 to extract the method bodies as code segments. Then we

determine their similarity against the original ground truth code that was extracted from tutorial sites in

Section 7.4.1. For this, we use four code similarity algorithms � Cosine similarity [198], Dice similarity [98],

Jaccard similarity [235] and Longest Common Subsequence (LCS) [218]. These algorithms are frequently

used as the baseline for various code clone detection techniques [218, 235]. We collect four normalized code

similarity scores from each result, average them, and then extract the Top-10 results containing the most

relevant code segments. We then manually analyse a few of these results (and their code segments), and

attempt to tweak them with various similarity score thresholds. Unfortunately, score thresholds were not

su�cient enough to construct oracle for all the queries. We thus use these Top-10 results as the oracle for

our web/code search engines.

Comparison between Initial Search Results and Re-ranked Results using the Reformulated

Queries: Once a search engine returns results for natural language (NL) queries, we re-rank them with the

corresponding reformulated queries provided by RACK. We �rst detect the presence of code segments in

their contents, and then collect Top-10 documents based on their relevance to our reformulated queries (i.e.,

NL keywords + relevant API classes). We compare both the initial and re-ranked results with the oracle

constructed above.

From Table 7.15, we see that our re-ranking approach improves upon the initial results returned by

each of the web and code search engines. The improvements are observed especially in terms of precision,

9https://developers.google.com/custom-search
10https://api.stackexchange.com
11https://developer.github.com/v3
12https://jsoup.org/
13https://github.com/javaparser

182

Figure 7.24: Comparison of RACK with popular web/code search engines

reciprocal rank and NDCG. For example, Google achieves 69% precision with a reciprocal rank of 0.82 and

an NDCG of 0.46. However, our approach, RACKGoogle achieves 84% precision with a reciprocal rank of

0.92 and an NCCG of 0.67, which are 22%, 12% and 46% higher respectively. That is, although Google

performs high as a general-purpose web search engine, it might not be always precise for code search. Similar

observation is shared by a recent survey [205] that reports that developers need more query reformulations

during code search using the web search engines. GitHub native search achieves 55% precision, a reciprocal

rank of 0.58 and an NDCG of 0.47. On the contrary, our approach, RACKGitHub, delivers 69% precision

with a reciprocal rank of 0.74 and an NDCG of 0.62, which are 24%, 28% and 26% higher respectively.

Such �ndings demonstrate the potential of our reformulated queries. Fig. 7.24 further contrasts between

our approach and the contemporary web/code search engines for Top-1 to Top-10 results. While Google is

the best performer among the three search engines, our re-ranking using RACK outperforms Google with

a signi�cant margin in terms of precision (i.e., WSR, p-value<0.05, ∆=0.90 (large)), reciprocal rank (i.e.,

WSR, p-value<0.05, ∆=0.90 (large)) and NDCG (i.e., WSR, p-value<0.05, ∆=1.00 (large)). Thus, all the

�ndings above suggest the high potential of our reformulated queries for improving the code search performed

either with web or code search engines. The status quo of Internet-scale code search is far from ideal [205],

and our reformulated queries could bene�t the traditional practices.

183

Table 7.16: Comparison among the Traditional Code Search Engines

Serial Question Kruglea SearchCodeb GitHubc Codased Snipplre

Q1 How to send email in Java? N/A 1/5 1/5 N/A 0

Q2 How to calculate MD5 hash for a string? N/A 4/5 5/5 N/A 0

Q3 How to parse HTML in Java? N/A 0/5 1/5 N/A 1/5

Q4 How to parse XML in Java? N/A 5/5 3/5 N/A 1/5

Q5 How to download a �le in Java? N/A 1/5 1/5 N/A 1/5
ahttps://www.krugle.com, bhttps://searchcode.com, chttps://github.com/search, dhttp://www.codase.com, ehttps://snipplr.com/search.php

One might also argue about our choice of GitHub code search over the other available code search en-

gines (e.g., SearchCode, Krugle) for the comparison above. However, GitHub14 has been the largest online

codebase with 100 million repositories and 37 million users including the professional developers from the

large companies (e.g., Microsoft, Google). Thus, GitHub is likely to contain a large collection of high quality

code examples that implement numerous programming tasks, which could be leveraged by our approach.

Despite this strong motivation, we conduct an experiment using �ve sample queries and �ve traditional code

search engines (Table 7.16). In particular, we select the Top-5 code search engines according to a third-party

survey15, execute the sample queries against them, and then report our �ndings. From Table 7.16, we see

that Krugle and Codase accept the queries but fail to return any code segments. They might not be well

calibrated for the free-form search queries. SearchCode was able to retrieve at least one somewhat relevant

code example within the Top-5 results for 4 out of 5 queries. Interestingly, GitHub was able to retrieve

at least one relevant code example for all �ve queries. Further analysis suggests that GitHub has its own

codebase whereas SearchCode is dependent on GitHub for the results. GitHub also has a well managed API

service which was crucial to our extensive experiment with 250 queries. We needed to make hundreds of API

calls to collect the results against the search queries. In short, GitHub has the largest codebase online, a

native search engine with public API service, and it performs better than the other traditional code search

engines. Thus, our choice of using GitHub for the comparison study above is likely to be justi�ed.

Summary of RQ11: Developers face di�culties in the code search while using contemporary web or code

search engines (e.g., Google). Our technique can signi�cantly improve their result ranks with the help of our

reformulated queries that contain relevant API classes. In particular, RACK can improve upon the precision

of Google in the code search by 22%, which is promising. Our choice about web/code search engines for the

comparison using experiments is also likely to be justi�ed.

14https://en.wikipedia.org/wiki/GitHub
15https://wparena.com/top-source-code-search-engines/

184

7.5 Threats to Validity

We identify a few threats to the validity of our �ndings. While we attempt to mitigate most of them using

appropriate measures, the remaining ones should be addressed in future work. Our identi�ed threats and

their mitigation details are discussed as follows:

7.5.1 Threats to Internal Validity

They relate to experimental errors and biases [272]. We develop a gold set for each query by analysing the

code examples and the discussions from tutorial sites which might involve some subjectivity. However, each

of the examples is a working solution to the corresponding task (i.e., NL-query), and they are frequently

consulted. Thus, the gold set development using sample code from the tutorial sites is probably a more

objective evaluation approach than human judgements of API relevance or code relevance that introduce

more subjective bias [63]. According to the exploratory �ndings (Section 7.2.4), our technique might be

e�ective only for the recommendation of popular and frequently used API classes. Since fully quali�ed names

are mostly missing in Stack Over�ow texts, third-party APIs similar to Java API classes could also have been

mistakenly considered despite the fact that questions and answers selected for the study were tagged with

<java> tag.

We use a dataset of 175 queries and a popular code search engine�Apache Lucene [98]�for determining their

retrieval performance across three corpora of varying sizes. For the sake of simplicity, only one code segment

was considered as relevant for each query. However, in practice, there could be multiple code segments in

the corpus that are relevant to a given query. In this work, we trade such perfection with transparency and

objectivity in our evaluation and validation.

During code or web search, developers generally choose the most appropriate keywords when a list of

auto-generated suggestions are provided. We re-enact such behaviour of the developers by choosing only

goldset API classes from within the suggested list, and use them for query reformulation. Such choice might

have favoured the code retrieval performance of our queries. However, the same approach was carefully

followed for all the existing techniques under study [168, 243, 274]. Thus, they received the same treatment

in the performance evaluation as ours. Furthermore, the validation results (i.e., RQ10) clearly report the

superiority of our suggested queries over their counterparts from the existing techniques. Our investigation

using the three contemporary web/code search engines also has drawn a similar conclusion for RACK (i.e.,

RQ11).

7.5.2 Threats to External Validity

They relate to the generalizablity of a technique. So far, we experimented using API classes from only

standard Java libraries. However, since our technique mainly exploits co-occurrence between keywords and

APIs, the technique can be easily adapted for API recommendation in other programming domains. Since

185

popularity of a programming language or change proneness of an API [140] has a signi�cant role in triggering

discussions at Stack Over�ow which are mined by us, RACK could be e�ective for popular languages (e.g.,

Java, C#) but comparatively less e�ective for non-popular or less used languages (e.g., Erlang).

7.5.3 Threats to Construct Validity

Construct validity relates to suitability of evaluation metrics. Our work is aligned to both recommendation

system and information retrieval domains. We use Hit@K and Reciprocal Rank which are widely used for

evaluating recommendation systems [239, 243]. The remaining two metrics are well known in information

retrieval, and are also frequently used by studies [63, 152, 243] relevant to our work. This con�rms no or

little threat to construct validity.

7.5.4 Threats to Statistical Conclusion Validity

Conclusion validity concerns the relationship between treatment and outcome [140]. We answer 11 research

questions in this work, and collect our data from publicly available, popular programming Q & A and tutorial

sites. In order to answer these questions, we use non-parametric tests for statistical signi�cance (e.g., Mann-

Whitney Wilcoxon, Wilcoxon Signed Rank), e�ect size analysis (e.g., Cli�'s delta) and con�dence interval

analysis. We apply these tests to our experiments opportunistically and report the detailed test results (e.g.,

p-values, Cli�'s delta). Thus, threats to the statistical conclusion validity might be mitigated.

7.6 Related Work

Our work is aligned with three research topics�(1) API/API usage recommendation, (2) query reformulation

for code search, and (3) crowdsourced knowledge mining. In this section, we discuss existing studies from

the literature of each of these research topics, and compare or contrast our work with them.

7.6.1 API Recommendation

Existing studies on API recommendation accept one or more natural language queries, and recommend

relevant API classes and methods by analysing code sur�ng behaviour of the developers and API invocation

chains [152], API dependency graphs [63], feature request history or API documentations [243], and library

usage patterns [242]. McMillan et al. [152] �rst propose Portfolio that recommends relevant API methods for

a code search query by employing natural language processing, indexing and graph-based algorithms (e.g.,

PageRank [57]). Chan et al. [63] improve upon Portfolio, and return a connected sub-graph containing the

most relevant APIs by employing further sophisticated graph-mining and textual similarity techniques. Gvero

and Kuncak [92] accept a free-form NL-query, and return a list of relevant method signatures by employing

natural language processing and statistical language modelling on the source code. A few studies o�er NL

interfaces for searching relevant program elements from the project source [124] or relevant artefacts from

186

the project management repository [138]. Thung et al. [243] recommend relevant API methods to assist the

implementation of an incoming feature request by analysing request history and textual similarity between

API details and the request texts. In short, each of these relevant studies above analyse lexical similarity

between a query and the signature or documentation of the API for �nding out candidate APIs. Such

approaches might not be always e�ective and might face vocabulary mismatch issues given that choice of

query keywords could be highly subjective [83]. On the other hand, we exploit three co-occurrence heuristics

that are derived from crowdsourced knowledge, and they are found to be more e�ective in the selection

of candidate API classes. Co-occurrence heuristics overcome the vocabulary mismatch issues [83, 95], and

provide a generic, both language and project independent solution. Besides, we exploit the expertise of a

large crowd of technical users stored in Stack Over�ow for API recommendation which none of the earlier

relevant studies did. Zhang et al. [274] determine semantic distance between NL keywords and API classes

using a neural network model (CBOW), and suggest relevant API classes for a generic NL query intended

for code search. They collect their API classes from the OSS projects whereas ours are collected from Stack

Over�ow, the largest programming Q & A site on the web. Their work is closely related to ours. We compare

with two variants of Thung et al. and Zhang et al., and readers are referred to Sections 7.4.10, 7.4.12 for the

detailed comparison. Since Thung et al. outperform Chan et al. as reported [243], we compared with Thung

et al. for our validation.

7.6.2 API Usage Pattern Recommendation

Thummalapenta and Xie [240] propose ParseWeb that takes in a source object type and a destination object

type, and returns a sequence of method invocations that serve as a solution that yields the destination object

from the source object. Xie and Pei [264] take a query that describes the method or class of an API, and

recommends a frequent sequence of method invocations for the API by analysing hundreds of open source

projects. Warr and Robillard [254] recommend a set of API methods that are relevant to a target method

by analysing the structural dependencies between the two sets. Each of these techniques is relevant to our

work since they recommend API methods. However, they operate on structured queries rather than natural

language queries, and thus comparing ours with theirs is not feasible. Of course, we introduced three heuristics

and exploited crowd knowledge for API recommendation, which were not considered by any of these existing

techniques. This makes our contribution signi�cantly di�erent from all of them.

7.6.3 Query Reformulation for Code Search

There have been a number of studies on query reformulation that target either project-speci�c code search

(e.g., concept/feature location [84, 95, 98, 104, 109, 121, 188, 191, 265], bug localization [65, 231]) or general-

purpose code search [92, 136, 168]. Gay et al. [84] �rst propose �relevance feedback" based model for query

reformulation in the context of concept location. Once the initial query retrieves search results, a developer

is expected to mark them as either relevant or irrelevant. Then their model analyses these marked source

187

documents, and expands the initial query using Rocchio expansion [213]. Although developer feedbacks

on document relevance are e�ective, collecting them is time consuming and sometimes infeasible as well.

Therefore, latter studies came up with a less e�cient but feasible alternative�pseudo relevance feedback� for

query reformulation where they consider only Top-K search results (retrieved by the initial query) as the

relevant ones. Then they apply term weighting [120, 191, 213], term context analysis [104, 109, 231, 265],

query quality analysis [95, 98], and machine learning [98] to reformulate a given query for concept/feature

location. Our work falls into the category of general purpose code search. Relevance feedback models were

also adopted in this case for query reformulation. Wang et al. [251] incorporate developer feedback in the

code search, and improve result ranking. Nie et al. [168] employ Stack Over�ow as the provider of relevance

feedback on the initial query, and then reformulate it using Rocchio expansion. Although we do not apply

relevance feedback for query reformulation, the work of Nie et al. is not only closely related to ours but also

relatively more recent. Another closely related recent work by Zhang et al. [274] leverages semantic distance

between NL keywords and API classes, and then expands the NL queries using semantically relevant API

classes for code search. We thus compare our technique with three techniques above [168, 243, 274], and

the detailed comparison can be found in RQ10. Li et al. [136] develop a lexical database by using software-

speci�c tags from Stack Over�ow questions, and reformulate a given query using synonymy substitution.

However, their approach searches for relevant software projects rather than source code segments. Campbell

and Treude [58] mine titles from Stack Over�ow questions, and suggest automatic expansion to the initial

query in the form of auto-completion. However, this approach also relies on textual similarity between initial

query and the expanded query, and thus, is subject to the vocabulary mismatch issues. On the contrary,

we overcome such issues using three co-occurrence based heuristics. Besides, their approach is constrained

by a �xed set of prede�ned queries from Stack Over�ow questions, and thus, might not help much in the

formulation of custom queries. RACK does not impose such restrictions on query formulation.

7.6.4 Crowdsourced Knowledge Mining

Existing studies [136, 168, 176, 188, 229, 272] leverage crowd generated knowledge to support several search

related activities performed by the developers. Yuan et al. [272] �rst used programming questions and

answers from Stack Over�ow to identify semantically similar software speci�c word pairs. They �rst construct

context of each word by collecting co-occurred words from Stack Over�ow questions, answers and tags. Then

they determine the semantic similarity between a pair of NL words based on the overlap between their

corresponding contexts. Such word pairs might help in addressing the vocabulary mismatch issues with web

search. However, they might not help much with code search given that source code and regular texts often

hold di�erent semantics for the same word [45, 265]. Wong et al. [259] mine developer's descriptions of the

code snippets from Stack Over�ow answers, and suggest them as comments for similar code segments. Rigby

and Robillard [211] mine posts from Stack Over�ow, and extract salient program elements using regular

expressions and machine learning. Along the same line with the earlier studies, we mine Stack Over�ow

188

questions and answers to reformulate a given natural language query for code search. While our work is related

to earlier studies [136, 168], it is also signi�cantly di�erent in many ways. First, we suggest relevant API

classes for a NL-query by considering keyword-API co-occurrences whereas Nie et al. suggest mostly natural

language terms as query expansions by employing pseudo-relevance feedback. Li et al. [136] reformulate

queries using crowd wisdom from Stack Over�ow for searching open source projects whereas our queries are

targeted for more granular software artefacts, e.g., source code snippets. Furthermore, we suggest relevant

API classes in contrast with synonymous NL tags by Li et al., which are more appropriate and e�ective for

code search [45]. Another contemporary work [229] uses all program artifacts indiscriminately from Stack

Over�ow posts for expanding code search queries which could be noisy. On the contrary, we leverage co-

occurrences between NL keywords (in the question title) and API classes (in the accepted answer) as a proxy

to their relevance, and choose appropriate API classes only for our query reformulation.

Our work in this article also signi�cantly extends our earlier work [201] in various aspects. We improve

earlier heuristics by extensively calibrating their weights and thresholds, and introduce a novel heuristic�

Keyword Pair API Co-occurrence� that performs better than the earlier ones. We conduct experiments with

a relatively larger dataset containing 175 distinct queries, and further evaluate them in terms of relevant code

retrieval performance which was missing in the earlier work. We not only compare with several state-of-the-

art studies but also demonstrate RACK's potential for application in the context of traditional web/code

search practices. Furthermore, we extend our earlier analysis and answer 11 research questions as opposed

to seven questions answered by the earlier work.

7.7 Summary

Software developers often search for relevant code examples on the web [55], and reuse them in various

software maintenance tasks (e.g., new feature addition). As in the local code searches (e.g., bug localization,

concept location), appropriate query construction is also a major challenge in the Internet-scale code search

[45]. We propose a novel query reformulation technique �RACK� that accepts a generic query, expands

the query with relevant API classes carefully mined from Stack Over�ow, and then delivers an improved,

reformulated query for Internet-scale code search. Experiments using 175 queries from three tutorial sites

show that our reformulated queries (using relevant API classes) can signi�cantly improve upon the given

queries in terms of code retrieval performance. Comparison with the state-of-the-art approaches shows

that our approach outperforms them in the query reformulation by a signi�cant margin. Furthermore, our

technique is generic, project independent, and it exploits invaluable crowd generated knowledge from Stack

Over�ow for automated query reformulation.

Despite these positive instances above, RACK bears the risk of hurting a given search query with noisy

or false-positive API classes. The implicit association between the query keywords and the API classes is

an e�ective proxy to their relevance. However, such a proxy overlooks the underlying semantics of both

the keywords and the API classes, which could be a crucial factor. In the next chapter, our sixth study

189

(NLP2API, Chapter 8) overcomes this issue. NLP2API accepts a programming task description as a query,

reformulates the query with relevant API classes that are determined based on the underlying semantics

of both the query keywords and the API classes, and then delivers an improved, reformulated query for

Internet-scale code search.

190

Chapter 8

Search Query Reformulation for Internet-scale Code

Search using Word Semantics

Software maintenance costs a major part of the development time and e�orts [88]. Software developers

often search for relevant code examples on the web [55], and reuse them in various maintenance tasks (e.g.,

new feature addition). As in the local code searches (e.g., bug localization, concept location), appropriate

query construction is also a major challenge in the Internet-scale code search. Our previous study (RACK,

Chapter 7) leverages the implicit association between query keywords and API classes within Stack Over�ow

Q&A threads as a proxy to their relevance. Although such an association was found reliable as a proxy to

relevance (Section 7.4), the underlying semantics of both the keywords and the candidate API classes were

overlooked, which could be a crucial factor. In this chapter, we address this issue with another study. Here,

we present NLP2API that accepts a programming task description as a query, reformulates the query with

relevant API classes by leveraging query�API semantic distance and by mining crowd knowledge from Stack

Over�ow, and then delivers an improved, reformulated search for Internet-scale code search.

The rest of the chapter is organized as follows� Section 8.1 presents an overview of our study, and Section

8.2 discusses our proposed technique for automatic query reformulation for Internet-scale code search. Section

8.3 discusses our evaluation and validation details, Section 8.4 focuses on the threats to validity, Section 8.5

discusses the related work, and �nally Section 8.6 concludes the chapter with future work.

8.1 Introduction

Software developers spend about 19% of their development time in searching for relevant code snippets (e.g.,

API usage examples) on the web [55, 263]. Although open source software repositories (e.g., GitHub, Source-

Forge) are a great source of such code snippets, retrieving them is a major challenge [44]. Developers often

use traditional code search engines (e.g., GitHub native search) to collect code snippets from such reposi-

tories using generic natural language queries [45]. Unfortunately, such queries hardly lead to any relevant

results (i.e., only 12% [45]) due to vocabulary mismatch issues [83, 142]. Hence, the developers frequently

reformulate their queries by removing irrelevant keywords and by adding more appropriate keywords. Studies

[45, 120, 219] have shown that 33%�73% of all the queries are incrementally reformulated by the developers.

These manual reformulations involve numerous trials and errors, and often cost signi�cant development time

191

and e�orts [120]. One way to help the developers overcome this challenge is to automatically reformulate

their generic queries (which are often poorly designed [120, 142]) with meaningful query keywords such as rel-

evant API classes. Our work in the chapter addresses this particular research problem � query reformulation

targeting Internet-scale code search.

Several existing studies o�er automatic query reformulation supports for Internet-scale code search using

either actual or pseudo relevance feedback on the query [168, 251] and by mining crowd generated knowledge

stored in Stack Over�ow programming Q & A site [136, 168, 201]. Nie et al. [168] collect pseudo-relevance

feedback (PRF) on a given query by employing Stack Over�ow as a feedback provider, and then suggest

query expansion by analysing the feedback documents, i.e., relevant programming questions and answers.

However, they treat the Q & A threads as regular texts, and suggest natural language (i.e., software-speci�c)

terms as query expansion. Existing evidence suggests that queries containing only natural language terms

perform poorly in code search [45]. Rahman et al. [201] mine co-occurrences between query keywords (found

in the question titles) and API classes (found in the answers) of Stack Over�ow, apply two heuristics, and

then suggest a set of relevant API classes for a given query. Unfortunately, their heuristics heavily rely on

the association between the query keywords and the candidate API classes for relevance estimation, which

might always not be su�cient enough. In particular, such heuristics bear the risk of returning the generic,

frequent but less-relevant API classes (e.g., String, ArrayList, List) if appropriate �lters are not used.

In this chapter, we propose a novel technique�NLP2API�that automatically identi�es relevant API classes

for a programming task written as a natural language query, and then reformulates the query using these

API classes for Internet-scale code search. We �rst (1) collect candidate API classes for a query from

relevant questions and answers of Stack Over�ow (i.e., crowdsourced knowledge) (Section 8.2.1), and then (2)

identify appropriate classes from the candidates using Borda count (Section 8.2.2) and query-API semantic

proximity (i.e., word semantics) (Section 8.2.3). In particular, we determine semantics of either a keyword

or an API class based on their positions within a high dimensional semantic space developed by fastText

[54] using 1.40 million questions and answers of Stack Over�ow. Then we estimate the relevance of the

candidate API class to the search query using their semantic proximity measure. Earlier approaches only

perform either local context analysis [168, 251] or global context analysis [134, 144, 201]. On the contrary,

our technique analyses both local (e.g., PageRank [57]) and global (e.g., semantic proximity) contexts of the

query keywords for relevant API class identi�cation and query reformulation. Thus, NLP2API has a higher

potential for query reformulation. Besides, opportunistic blending of pseudo-relevance feedback [62, 222],

term weighting methods [57, 114], Borda count [275] and word semantics [54] also makes our work novel.

Table 1 and Fig. 8.1 present a use-case scenario of our technique where a developer is looking for a

working code snippet that can convert a colour image to grayscale without losing transparency. First, the

developer issues a generic query��Convert image to grayscale without losing transparency". Then she submits

it to Lucene, a search engine that is widely used both by contemporary code search solutions such as GitHub

native search [10] or ElasticSearch and by academic studies [98, 164, 191]. Unfortunately, the generic natural

192

Figure 8.1: An example code snippet for the programming task� �Convert image to grayscale without
losing transparency" � (taken from [9])

Table 8.1: Reformulations of an NL Query for Improved Internet-scale Code Search

Technique Reformulated Query QE

Baseline Convert image to grayscale without losing transparency 115

QECK [168] {Convert image grayscale losing transparency} + {hsb pixelsByte png iArray

img correctly HSB mountainMap enhancedImagePixels �le}

11

Google Convert image to grayscale without losing transparency 02

Proposed {Convert image grayscale losing transparency} + {BufferedImage

Grayscale ImageEdit ColorConvertOp File Transparency ColorSpace

BufferedImageOp Graphics ImageEffects}

02

QE = Rank of the �rst correct result returned by the query

language query does not perform well due to vocabulary mismatch between its keywords and the source

code, and returns the relevant code snippet (e.g., Fig. 8.1) at the 115th position. On the contrary, (1) our

proposed technique complements this query with not only relevant, but also highly speci�c API classes (e.g.,

BufferedImage, ColorConvertOp, ColorSpace), and (2) our improved query returns the target code snippet

at the second position of the ranked list which is a major rank improvement over the baseline. The most

recent and closely related technique�QECK [168] returns the same code snippet at the 11th position which is

not ideal. Google, the most popular web search engine, returns a similar code at the second position as well.

However, in the case of web search, relevant code snippets are sporadic and often buried into a large bulk of

unstructured, noisy and redundant natural language texts across multiple web pages which might overwhelm

the developer with information overload [151].

Experiments using 310 code search queries randomly collected from four Java tutorial sites�KodeJava,

Java2s, CodeJava and JavaDB�report that our technique can suggest relevant API classes with 82% Top-10

Accuracy, 48% precision, 58% recall and a reciprocal rank of 0.55 which are 6%, 32%, 48% and 41% higher

respectively than those of the state-of-the-art [201]. Comparisons with three state-of-the-art studies and

three popular code (or web) search engines � Google, Stack Over�ow native search and GitHub native search

� reported that our technique (1) can outperform the existing studies [168, 201, 229] in query e�ectiveness

193

Questions &
answers

PRF

PageRank

Preprocessing

Q & A thread
corpus

Lucene

?

Preprocessed
query

?

Initial natural
language query

TF-IDF

Word2Vec
Skipgram
model

Candidate API
classes

Borda score
calculator

Query-API

proximity

Borda score

Score
accumulator

API relevance rankingRelevant API classes

+?
Reformulated

query

1a 1b 1c

1d

2
3

4

6

5
7 8

9 10

1112

13

Figure 8.2: Schematic diagram of the proposed query reformulation technique�NLP2API

and (2) can improve upon the precision of these search engines by 17%, 34% and 33% respectively using our

reformulated queries. Thus, our work makes the following contributions:

(a) A novel query reformulation technique �NLP2API� that reformulates generic natural language queries

for Internet-scale code search using word semantics and crowd knowledge derived from Stack Over�ow.

(b) Comprehensive evaluation of the proposed technique using 310 queries and validation against the state-

of-the-art techniques and widely used web/code search engines.

(c) A replication package that includes our working prototype and the detailed experimental dataset [18].

8.2 NLP2API: Automated Query Reformulation using Word Se-

mantics & Crowd Knowledge for Internet-scale Code Search

Fig. 8.2 shows the schematic diagram of our proposed technique for the reformulation of a generic query

targeting Internet-scale code search. Furthermore, Algorithm 9 shows the pseudo-code of our technique. We

make use of pseudo-relevance feedback (PRF), crowd generated knowledge stored at Stack Over�ow, two

term weighting algorithms, and word semantics for our query reformulation as follows:

8.2.1 Development of Candidate API Lists

We collect candidate API classes from Stack Over�ow Q & A site to reformulate a generic query (i.e., Fig.

8.2, Steps 1a, 1b, 2�7). Stack Over�ow is a large body of crowd knowledge with 14 million questions and 22

million answers across multiple programming languages and domains [58]. Hence, it might contain at least

a few questions and answers related to any programming task at hand. Earlier studies from the literature

[58, 136, 168] also strongly support this conjecture. Given that relevant program elements are a better choice

than generic natural language terms for code search [45], we collect API classes as candidates for query

reformulation by mining the programming Q & A threads of Stack Over�ow.

194

Corpus Preparation: We collect a total of 656,538 Q & A threads related to Java (i.e., using <java>

tag) from Stack Over�ow for corpus preparation (Fig. 8.2, Steps 1a, 1b, Algorithm 9, Line 3). We use the

public data dump [35] released on March 2018 for data collection. Since we are mostly interested in the API

classes discussed in the Q & A texts, we adopt certain restrictions. First, we make sure that each question or

answer contains a bit of code, i.e., the thread is about coding. For this, we check the existence of <code> tags

in their texts like the earlier studies [76, 80, 177, 198]. Second, to ensure high quality content, we chose only

such Q & A threads where the answer was accepted as solution by the person who submitted the question

[168, 201]. Once the Q & A threads are collected, we perform standard natural language preprocessing (i.e.,

removal of stop words, punctuation marks and programming keywords, token splitting) on each thread, and

normalize their contents. Given the controversial evidence on the impact of stemming on source code [106],

we avoid stemming on these threads given that they contain code segments. Our corpus is then indexed using

Lucene, a widely used search engine by the literature [98, 164, 191], and later used for collecting feedbacks

on a generic natural language query.

Pseudo-Relevance Feedback (PRF) on the NL Query: Nie et al. [168] �rst employ Stack Over�ow

in collecting pseudo-relevance feedback on a given query. Their idea was to extract software-speci�c words

relevant to a given query, and then to use them for query reformulation. Similarly, we also collect pseudo-

relevance feedback on the query using Stack Over�ow. We �rst normalize a natural language query using

standard natural language preprocessing (i.e., stopword removal, token splitting), and then use it to retrieve

Top-M (e.g., M = 35, check RQ1 for detailed justi�cation) Q & A threads from the above corpus with

Lucene search engine (i.e., Fig. 8.2, Steps 2�4, Algorithm 9, Lines 4�8). The baseline idea is to extract

appropriate API classes from them using appropriate selection methods [139], and then, to use them for

query reformulation. We thus extract the program elements (e.g., code segments, API classes) from each of

the threads by analysing their HTML contents. We use Jsoup [14], a Java library for the HTML scraping.

We also develop two separate sets of code segments from the questions and answers of the feedback threads.

Then we use two widely used term-weighting methods �TF-IDF and PageRank� for collecting candidate API

classes from them.

API Class Weight Estimation with TF-IDF: Existing studies [84, 98, 168] often apply Rocchio's

method [213] for query reformulation where they use TF-IDF to select appropriate expansion terms. Similarly,

we adopt TF-IDF for selecting potential reformulation candidates from the code segments that were collected

above. In particular, we extract all API classes from each code segment (i.e., feedback document) with the

help of island parsing (i.e., uses regular expressions) [211], and then determine their relative weight (i.e., Fig.

8.2, Step 5, Algorithm 9, Lines 11�12) as follows:

TF − IDF (Ai) = (1 + log(TFAi
))× log(1 +

N

DFAi

) (8.1)

195

ColorConvertOp

ColorSpace

File
ImageIO

Bu�eredImage

URL

Figure 8.3: API co-occurrence graph for code segment in Fig. 8.1

Here TFAi
refers to total occurrence frequency of an API class Ai in the collected code segments, N refers

to total Q & A threads in the corpus, and DFAi is the number of threads that mentioned API class Ai in

their texts or code segments.

API Class Weight Estimation with PageRank: Semantics of a term are often determined by its

contexts, i.e., surrounding terms [268, 272]. Hence, inter-dependence of terms is an important factor in the

estimation of term weight. However, TF-IDF assumes term independence (i.e., ignores term contexts) in the

weight estimation. Hence, it might fail to identify highly important but not so frequent terms from a body of

texts [153, 189]. We thus employ another term weighting method that considers dependencies among terms

in the weight estimation. In particular, we apply PageRank algorithm [57, 153] to the relevance feedback

documents, i.e., relevant code segments, and identify the important API classes as follows:

Construction of API Co-occurrence Graph: Since PageRank algorithm operates on a graph-based struc-

ture, we transform pseudo-relevance feedback documents into a graph of API classes (i.e., Fig. 8.2, Step 6,

Algorithm 9, Line 13). In particular, we extract all API classes from each code segment using island parsing

[211], and then develop an ordered list by preserving their initialization order in the code. For example,

the code snippet in Fig. 8.1 is converted into a list of six API classes. Co-occurrences of items in a certain

context has long been considered as an indication of relatedness among the items [153, 272]. We thus capture

the immediate co-occurrences of API classes in the above list, consider such co-occurrences as connecting

edges, and then develop an API co-occurrence graph (e.g., Fig. 8.3). We repeat the same step for each of

the code segments, and update the connectivities in the graph. We develop one graph for the code segments

from questions and another graph for the code segments from answers which were returned as a part of the

pseudo-relevance feedback.

API Class Rank Calculation: PageRank has been widely used for web link analysis [57] and term weighting

in Information Retrieval domain [153]. It applies the underlying mechanism of recommendation or voting

for determining importance of an item (e.g., web page, term) [191]. That is, PageRank considers a node

as important only if it is recommended (i.e., connected to) by other important nodes in the graph. The

same idea has been widely used for separating legitimate pages from spam pages [169]. Similarly, in our

problem context, if an API class co-occurs with other important API classes across multiple code segments

that are relevant to a programming task, then this API class is also considered to be important for the task.

We apply PageRank algorithm on each of the two graphs (i.e., Fig. 8.2, Step 6, Algorithm 9, Line 14),

196

and determine the importance ACR(vi) (i.e., API Class Rank) of each node vi by recursively applying the

following equation:

ACR(vi) = (1− φ) + φ
∑

jεIn(vi)

ACR(vj)

|Out(vj)|
(0 ≤ φ ≤ 1) (8.2)

Here, In(vi) refers to nodes providing inbound links (i.e., votes) to node vi whereas Out(vi) refers to nodes

that vi is connected to through outbound links, and φ is the damping factor. In the context of world wide

web, Brin and Page [57] considered φ as the probability of visiting a web page and 1− φ as the probability

of jumping o� the page by a random surfer. We use a value φ = 0.85 for our work like the previous studies

[57, 153, 189]. We initialize each node with a score of 0.25, and run an iterative version of PageRank on the

graph. The algorithm pulls out weights from the surrounding nodes recursively, and updates the weight of a

target node. This recursive process continues until the scores of the nodes converge below a certain threshold

(e.g., 0.0001 [153]) or total iteration count reaches the maximum (e.g., 100 [153]). Once the computation is

over, each node (i.e., API class) is left with a score which is considered as a numerical proxy to its relative

importance among all nodes.

Selection of Candidate API Classes: Once two weights �TF-IDF and PageRank� of each of the

potential candidates are calculated, we rank the candidates according to their weights. Then we select Top-N

(e.g., N = 16, check RQ1 for justi�cation) API classes from each of the four lists (i.e., two lists for each term

weight, Fig. 8.2, Step 7, Algorithm 9, Lines 9�16). In Stack Over�ow Q & A site, a question often describes

a programming problem (or a task) whereas the answer o�ers a solution. Thus, API classes involved with

the problem and API classes forming the solution should be treated di�erently for identifying the relevant

and speci�c API classes for the task. We leverage this inherent di�erences of context and semantics between

questions and answers, and treat their code segments separately unlike the earlier study of Nie et al. [168]

that overlooks such di�erences.

8.2.2 Borda Score Calculation

Borda count is a widely used election method where the voters sort their political candidates on a scale of

preference [3, 275]. In the context of Software Engineering, Holmes and Murphy [107] �rst apply Borda count

to recommend relevant code examples for the code under development in the IDE. They apply this method to

six ranked list of code examples collected using six structural heuristics, and then suggest the most frequent

examples across these lists as the most relevant ones. Similarly, we apply this method to our four candidate

API lists (i.e., Fig. 8.2, Step 8, Algorithm 9, Lines 22�23) where each of the API classes are ranked based

on their importance estimates (e.g., TF-IDF, API Class Rank). We calculate Borda score SB for each of the

API classes (∀Ai ∈ A) from the these ranked candidate lists�WRC = {WCQ,WCA, RCQ, RCA}�as follows:

197

Algorithm 9 Automated Query Reformulation using Relevant API Classes

1: procedure NLP2API(Q) . Q: natural language query

2: R← {} . R: Relevant API classes

3: C ←developQ&ACorpus(SODump) . C: SO corpus

4: Qpp ←preprocess(Q)

5: . collecting pseudo-relevance feedback

6: PRF ←getPRF(Qpp, C)

7: PRFQ ← getQuestionCodeSegments(PRF)

8: PRFA ← getAnswerCodeSegments(PRF)

9: . collecting candidate API list

10: for PRF prf ∈ {PRFQ, PRFA} do

11: TW ←calculateTFIDF(prf, C)

12: WC[prf]←getTopKWeightedClasses(TW)

13: G←developAPICo-occurrenceGraph(prf)

14: ACR←calculateAPIClassRank(G)

15: RC[prf]←getTopKRankedClasses(ACR)

16: end for

17: . training the fastText model

18: Mft ←getFastTextModel(preprocess(SODump))

19: . API relevance estimation

20: A←getAllCandidateAPIClasses(RC ∪WC)

21: for CandidateAPIClass Ai ∈ A do

22: . calculate Borda score

23: SB [Ai]← getBordaScore(Ai, RC,WC)

24: . semantic relevance between API class and query

25: SP [Ai]← getQuery-APIProximity(Ai, Qpp,Mft)

26: R[Ai].score← SB [Ai] + SP [Ai]

27: end for

28: . ranking of the API classes

29: rankedClasses← sortByFinalScore(R)

30: . reformulation of the initial query

31: return Qpp + rankedClasses

32: end procedure

198

SB(Ai ∈ A) =
∑

RLj∈WRC

1− rank(Ai, RLj)

|RLj |
(8.3)

Here, A refers to the set of all API classes extracted from the ranked candidate lists �WRC, |RLj | denotes

each list size, and rank(Ai, RLj) returns the rank of class Ai in the ranked list. Thus, an API class that

occurs at the top positions in multiple candidate lists is likely to be more important for a target programming

task than the ones that either occurs at the lower positions or does not occur in multiple lists.

8.2.3 Query-API Semantic Proximity Analysis

Pseudo-relevance feedback, PageRank (Section 8.2.1) and Borda count (Section 8.2.2) analyse local contexts

of the query keywords within a set of tentatively relevant documents (i.e., Q & A threads) and then extract

candidate API classes for query reformulation. Although local context analysis is useful, existing studies

report that such analysis alone might cause topic drift from the original query [62, 136]. We thus further

analyse global contexts of the query keywords, and determine the semantic proximity between the given

natural language query and the candidate API classes as follows:

Word2Vec Model Development: Mikolov et al. [156] and colleagues propose a neural network based

tool�word2vec�for learning word embeddings from an ultra-large body of texts where they employ continuous

bag of words (CBOW) and skip-gram models. While other studies attempt to de�ne context of a word using

co-occurrence frequencies or TF-IDF [150, 201, 272], they o�er a probabilistic representation of the context.

In particular, they learn word embeddings (Section 2.7) for each of the words from the corpus, and map each

word to a point in the semantic space so that semantically similar words appear in the close proximity. We

leverage this notion of semantic proximity, and determine the relevance of a candidate API class to the given

query. It should be noted that such proximity measure could be an e�ective tool to overcome the vocabulary

mismatch issues [83]. We thus develop a word2vec model where 1.3 million programming questions and

answers (i.e., 656,538 Q & A pairs, collected in Section 8.2.1) are employed as the corpus. We normalize

each question and answer using standard natural language preprocessing, and learn the word embeddings

(Fig. 8.2, Step 1b, 1c, 1d, Algorithm 9, Lines 17�18) using skip-gram model. For our learning, we use

fastText [54], an improved version of word2vec that incorporates sub-word information into the model. We

performed the learning o�ine and it took about one hour. It should be noted that our model is learned using

default parameters (e.g., output vector size = 100, context window size = 5, minimum word occurrences =

5) provided by the tool.

Semantic Relevance Estimation: While a given query contains multiple keywords, a candidate API

class might not be semantically close to all of them. We thus capture the maximum proximity estimate

between an API class and any of the query keywords as the relevance estimate of the class. In particular, we

collect word embeddings (i.e., a vector of 100 real valued estimates of the contexts) of each candidate API

199

class Ai ∈ A and each keyword q ∈ Q, and determine their semantic proximity SP using cosine similarity

(i.e., Fig. 8.2, Step 9, Algorithm 9, Lines 24�25) as follows:

SP (Ai ∈ A) = {f(Ai, q) | f(Ai, q) > f(Ai, q0)∀q0 ∈ Q} (8.4)

f(Ai, q) = cosine(fastText(Ai), fastText(q)) (8.5)

Here fastText(.) returns the learned word embeddings of either a query keyword or an API class, and

f(Ai, q) returns the cosine similarity between their word embeddings. We use print-word-vectors option

of fastText, and collect the word embeddings from our learned model on Stack Over�ow.

8.2.4 API Class Relevance Ranking & Query Reformulation

Once Borda score SB and semantic proximity score SP are calculated, we normalize both scores between 0 and

1, and then sum them up using a linear combination (i.e., Line 26, Algorithm 9) for each of the candidate API

classes. While �ne tuned relative weight estimation for these two scores could have been a better approach,

we keep that as a part of future work. Besides, equal weights also reported pretty good results (e.g., 82%

Top-10 accuracy) according to our investigation. The API classes are then ranked according to their �nal

scores, and Top-K (e.g., K = 10) classes are suggested as the relevant classes for the programming task

stated as a generic query (i.e., Fig. 8.2, Steps 10�12, Algorithm 9, Lines 19�29). These API classes are then

appended to the given query as reformulations [98] (i.e., Fig. 8.2, Steps 13, Algorithm 9, Lines 30�31). Table

8.1 shows our reformulated query for the showcase natural language query using the relevant API classes

suggested by NLP2API.

8.3 Experiment

We conduct experiments with 310 code search queries randomly collected from four popular programming

tutorial sites, and evaluate our query reformulation technique. We choose �ve appropriate performance

metrics from the literature, and evaluate two aspects of our provided supports-(1) relevant API class sugges-

tion and (2) query reformulation. Our technique is also validated against three state-of-the-art techniques

[168, 201, 229] and three popular code/web search engines including Google. We thus answer �ve research

question using our experiments as follows:

• RQ1: How does NLP2API perform in recommending relevant API classes for a given query? How do

di�erent parameters and thresholds in�uence the performance?

• RQ2: Can NLP2API outperform the state-of-the-art technique on relevant API class suggestion for a

query?

• RQ3: Can the reformulated queries of NLP2API outperform the baseline natural language queries?

200

• RQ4: Can NLP2API outperform the state-of-the-art technique on query reformulation that uses crowd-

sourced knowledge from Stack Over�ow?

• RQ5: Can our approach, NLP2API, signi�cantly improve the results provided by state-of-the-art code

or web search engines?

8.3.1 Experimental Dataset

Dataset Collection: We collect 310 code search queries from four popular programming tutorial sites�

KodeJava [15], Java2s [11], CodeJava [7] and JavaDB [13]�for our experiments. While 150 of these queries

were taken from a publicly available dataset [201], we attempted to extend the dataset by adding 200 more

queries. However, after removing the duplicates and near duplicates, we ended up with 160 queries. Thus,

our dataset contains a total of 310 (i.e., 150 old + 160 new) search queries. Each of these sites above discusses

hundreds of programming tasks as Q & A threads where each thread generally contains (1) a question title,

(2) a solution (i.e., code), and (3) a prose explaining the code succinctly. The question title (e.g., �How do I

decompress a GZip �le in Java?" [20]) generally comprises of a few important keywords and often resembles

a real life search query. We thus use these titles from tutorial sites as code search queries in our experiments,

as were also used by the earlier studies [63, 201].

Ground Truth Preparation: The prose that explains code in the tutorial sites above often includes one

or more API classes from the code (e.g., GZipInputStream, FileOutputStream). Since these API classes are

chosen to explain the code that implements a programming task, they are generally relevant and speci�c to

the task. We thus consider these relevant and speci�c API classes as the ground truth for the corresponding

question title (i.e., our search query) [201]. We develop a ground truth API set to evaluate the performance

of our technique in the API class suggestion. We also collect the code segments from each of the 310 Q & A

threads from the tutorial sites above as the ground truth code segments, and use them to evaluate the query

reformulation performance (i.e., in terms of code retrieval) of our technique. Given that these API classes

and code segments are publicly available online and were consulted by thousands of technical users over the

years, subjectivity associated with their relevance to the corresponding tasks (i.e., our selected queries) is

minimized [63]. Our dataset preparation step took ≈ 25 man hours.

Replication Package: Our dataset, working prototype and other materials are accepted for publication

[195]. They are publicly available [18] for replication and third party reuse.

8.3.2 Performance Metrics

We choose �ve performance metrics that were widely adopted by relevant literature [63, 152, 168, 191, 201,

243], for the evaluation and validation of our technique as follows:

Top-K Accuracy / Hit@K: It is the percentage of search queries for each of which at least one item

(e.g., API class) from the ground truth is returned within the Top-K results [239, 243, 250].

201

Figure 8.4: Performance of NLP2API in API class suggestion for various Top-K results

Table 8.2: Performance of NLP2API in Relevant API Suggestion

Performance Metric Top-1 Top-3 Top-5 Top-10

Top-K Accuracy 41.94% 64.19% 72.90% 81.61%

Mean Reciprocal Rank@K 0.42 0.52 0.54 0.55

Mean Average Precision@K 41.94% 50.62% 50.56% 47.85%

Mean Recall@K 12.53% 30.17% 40.28% 57.87%

Top-K = Performance measures for Top-K suggestions

Mean Reciprocal Rank@K (MRR@K): Reciprocal Rank@K is de�ned as the multiplicative inverse

of the rank of �rst relevant item (e.g., API class from ground truth) in the Top-K results returned by a

technique [220, 276]. Mean Reciprocal Rank@K (MRR@K) averages such measures for all queries.

Mean Average Precision@K (MAP@K): Precision@K is the precision calculated at the occurrence

of Kth item in the ranked list. Average Precision@K (AP@K) averages the precision@K for all relevant items

(e.g., API class from ground truth) within the Top-K results for a search query [220, 276]. Mean Average

Precision@K is the mean of Average Precision@K for all queries from the dataset.

Mean Recall@K (MR@K): Recall@K is de�ned as the percentage of ground truth items (e.g., API

classes) that are correctly recommended for a query in the Top-K results by a technique [63, 249]. Mean

Recall@K (MR@K) averages such measures for all queries from the dataset.

Query E�ectiveness (QE): It is de�ned as the rank of �rst correct item (i.e., ground truth code

segment) in the result list returned by a query. The measure is an approximation of the developer's e�ort

in locating the �rst code segment relevant to a given query. Thus, the lower the e�ectiveness measure is,

the more e�ective the query is [98, 164, 191]. We use this measure to evaluate the improvement of a query

through reformulations o�ered by a technique.

8.3.3 Evaluation of NLP2API: Relevant API Class Suggestion

We �rst evaluate the performance of our technique in the relevant API class suggestion for a generic code

search query. We make use of 310 code search queries (Section 8.3.1) and four performance metrics (Section

8.3.2) for this experiment. We collect Top-K (e.g., K=10) API classes suggested for each query, compare

202

Figure 8.5: Impact of (a) PRF size (M), and (b) Candidate API list size (N) on relevant API class
suggestion from Stack Over�ow

them with the ground truth API classes, and then determine our API suggestion performance. In this section,

we also answer RQ1 and RQ2 as follows:

Answering RQ1�Relevant API Class Suggestion: From Table 8.2, we see that our technique returns

relevant API classes for 73% of the queries with 51% mean average precision and 40% recall when only Top-5

results are considered. That is, half of the suggested classes come from the ground truth, and our approach

succeeds for seven out of 10 queries. More importantly, it achieves a mean reciprocal rank of 0.54. That

means, on average, the �rst relevant API class can be found at the second position of the result list. Such

classes can also be found at the �rst position for 42% of the queries. All these statistics are highly promising

according to relevant literature [201, 243]. Fig. 8.4 further demonstrates our performance measures for Top-1

to Top-10 results. We see that accuracy, recall and reciprocal rank measures increase monotonically which

are expected. Interestingly, the precision measure shows an almost steady behaviour. That means, as more

results were collected, our technique was able to �lter out the false positives which demonstrates its high

potential for API suggestion.

Impact of Pseudo-Relevance Feedback Size (M) and Candidate API List Size (N): We inves-

tigate how di�erent sizes of pseudo-relevance feedback (i.e., number of Q & A threads retrieved from Stack

Over�ow by the given query) and candidate API list (i.e., detailed in Section 8.2.1) a�ect the performance of

our technique. We conduct experiments using 10�45 feedback Q & A threads and 5�30 candidate API classes.

We found that these parameters improved accuracy and recall measures monotonically (i.e., as expected) but

a�ected precision measures in an irregular fashion (i.e., not monotonic). However, we found an interesting

pattern with mean reciprocal rank. From Fig. 8.5, we see that mean reciprocal rank@10 of our technique

reaches the maximum when (a) pseudo-relevance feedback size, M is 35 and (b) candidate API list size, N

is 16. We thus adopt these thresholds, i.e., M = 35 and N = 16, in our technique for the experiments.

Borda Count vs. Query-API Class Proximity as API Relevance Estimate: Once candidate

API classes are selected (Section 8.2.1), we employ two proxies (Sections 8.2.2, 8.2.3) for estimating the

relevance of an API class to the NL query. We compare the appropriateness of these proxies� Borda Count

and Query-API Proximity� in capturing the API class relevance, and report our �ndings in Fig. 8.6. We

see that Borda Count is more e�ective than Query-API Proximity in capturing the relevance of an API

203

Figure 8.6: Comparison between Borda count and Query-API proximity in estimating API relevance
using (a) accuracy, (b) reciprocal rank, (c) precision, and (d) recall

class to a given query. However, the proximity demonstrates its potential especially with accuracy and recall

measures. More interestingly, combination of these two proxies ensures the best performance of our technique

in all four metrics. Non-parametric statistical tests also report that performances with Borda+Proximity are

signi�cantly higher than those with either Borda Count (i.e., all p-values<0.05, 0.34 ≤ ∆ ≤ 0.82 (large)) or

Query-API Semantic Proximity (i.e., all p-values<0.05, 0.20 ≤ ∆ ≤ 0.90 (large)).

We also investigate the parameters of fastText [54] that were used to determine the query-API proximity.

Although we experimented using various custom parameters, we did not see any signi�cant performance gain

over the default parameters. Besides, increased thresholds (e.g., context window size, output vector size)

could be computationally costly. We thus adopt the default settings of fastText in this work.

Summary of RQ1: Our technique provides the �rst relevant API class at the second position, ≈ 50% of

our suggested classes are true positive, and the technique succeeds eight out of 10 times (i.e., 82% Top-10

accuracy). Besides, our adopted parameters and thresholds (e.g., M , N) are justi�ed.

Answering RQ2� Comparison with Existing Studies on Relevant API Class Suggestion: We

compare our technique with the state-of-the-art approach � RACK [201] � on API class suggestion for a

natural language query. Rahman et al. [201] employ two heuristics� Keyword-API Co-occurrence (KAC)

and Keyword-Keyword Coherence (KKC)�for suggesting relevant API classes from Q & A threads of Stack

Over�ow for a given query. Their approach outperformed earlier approaches [63, 243] which made it the

state-of-the-art in relevant API class suggestion. We collect the authors' implementation of RACK from

corresponding web portal, ran the tool as is on our dataset, and then extract the evaluation results.

From Table 8.3, we see that our technique�NLP2API� outperforms RACK especially in precision, recall

and reciprocal rank. It should be noted that our reported performance measures for RACK are pretty close

204

Table 8.3: Comparison with the State-of-the-art in API Class Suggestion

Technique Metric Top-1 Top-3 Top-5 Top-10

RACK [201]

Top-K Accuracy 20.97% 52.90% 64.19% 77.10%

MRR@K 0.21 0.35 0.37 0.39

MAP@K 20.97% 34.76% 36.76% 36.38%

MR@K 6.25% 20.81% 28.06% 39.22%

Top-K Accuracy 41.94% 64.19% 72.90% 81.61%

NLP2API MRR@K 0.42 0.52 0.54 0.55

(Proposed) MAP@K 41.94% 50.62% 50.56% 47.85%

MR@K 12.53% 30.17% 40.28% 57.87%

Top-K = Performance measures for Top-K suggestions

Figure 8.7: Reformulated vs. baseline query using (a) Top-10 accuracy and (b) MRR@10

to the authors' reported measures [201], which indicates a fair comparison. We see that RACK recommends

API classes correctly for 64% of the queries with 37% precision, 28% recall and a reciprocal rank of 0.37 when

Top-5 results are considered. On the contrary, our technique recommends correctly for 73% of the queries

with 51% precision, 40% recall and a promising reciprocal rank of 0.54 in the same context. These are 14%,

38%, 44% and 46% improvement respectively over the state-of-the-art performance measures. Statistical tests

for various Top-K results (i.e., 1≤K≤10) also reported signi�cance (i.e., all p-values≤0.05) of our technique

over the state-of-the-art with large e�ect sizes (i.e., 0.39 ≤ ∆ ≤ 0.90).

Summary of RQ3: Our technique outperforms the state-of-the-art approach on relevant API class sugges-

tion, and it suggests relevant API classes with 38% higher precision and 46% higher reciprocal rank than

those of the state-of-the-art.

8.3.4 Evaluation of NLP2API: Query Reformulation

Although our approach outperforms the state-of-the-art on relevant API class suggestion, we further apply

the suggested API classes to query reformulations. Then we demonstrate the potential of our reformulated

queries for improving the code snippet search. In this section, we also answer RQ3, RQ4 and RQ5 using our

experiments as follows:

205

Table 8.4: Impact of Reformulations on Generic NL Queries

Reformulation RL Improved/MRD Worsened/MRD Preserved

NLP2APIB
05 43.23%/-245 31.29%/+54 25.48%

10 48.07%/-223 26.13%/+65 25.81%

NLP2APIP 10 40.97%/-148 30.97%/+44 28.06%

NLP2API

05 40.00%/-159 27.74%/+54 32.26%

10 48.07%/-209 25.16%/+45 26.77%

15 49.03%/-217 22.26%/+46 28.71%

MRD = Mean Rank Di�erence between reformulated and given queries

Answering RQ3�Improvement of Natural Language Queries with the Suggested API Classes:

We reformulate each of the generic natural language queries for code search using the API classes suggested

by our technique. Then we investigate the performance of these reformulated queries using code search. We

prepare a code corpus of 4,170 code segments where 310 segments are ground truth code segments (Section

8.3.1) and 3,860 code segments were taken from a publicly available and curated dataset [184] based on

hundreds of GitHub projects. We normalize these segments using standard natural language preprocessing

(i.e., stop and keyword removal, token splitting), and index them with Lucene. We then perform code search

on this corpus, and contrast between generic natural language queries and our reformulated queries in terms

of their E�ectiveness and code retrieval performances.

From Table 8.4, we see that our reformulations improve or preserve 75% (i.e., 48% improvement and 27%

preserving) of the given queries. The improvement ratio reaches the maximum of 49% with a reformulation

length of 20. According to relevant literature [98, 164, 191], such statistics are promising. Fig. 8.7 further

demonstrates the impact of our reformulations on the baseline generic queries. We see that the baseline

natural language queries retrieve ground truth code segments with 50% Top-10 accuracy (dashed line, Fig.

8.7-(a)) and 0.32 mean reciprocal rank (dashed line, Fig. 8.7-(b)). On the contrary, our reformulated queries

achieve a maximum of 69% Top-10 accuracy with a reciprocal rank of 0.47 which are 37% and 47% higher

respectively than the baseline. Quantile analysis in Table 8.5 also shows that our provided result ranks are

more promising than those of the baseline queries.

Summary of RQ3: Reformulations o�ered by our technique improve 49% of the generic natural language

queries, and the reformulated queries achieve 37% higher accuracy and 47% higher reciprocal rank than

those of the generic NL queries.

Answering RQ4�Comparison with Existing Query Reformulation Techniques: Nie et al. [168]

collect pseudo-relevance feedbacks from Stack Over�ow on a given query and then apply Rocchio's method

to expand the query. Their approach, QECK, outperformed earlier studies [144, 152] on query reformulation

targeting code search which made it the state-of-the-art. Another contemporary work, CoCaBu [229] applies

Vector Space Model (VSM) in identifying appropriate program elements from Stack Over�ow posts. To

the best of our knowledge, these are the most recent and most closely related works to ours. Due to the

206

T
a
b
le
8
.5
:
C
o
m
p
a
ri
so
n
o
f
Q
u
er
y
E
�
ec
ti
ve
n
es
s
w
it
h
E
x
is
ti
n
g
Q
u
er
y
R
ef
o
rm

u
la
ti
o
n
T
ec
h
n
iq
u
es

T
e
ch
n
iq
u
e

#
Q
C

Im
p
ro
v
e
m
e
n
t

W
o
rs
e
n
in
g

P
re
se
rv
in
g

#
Im

p
ro
ve
d

M
ea
n

Q
1

Q
2

Q
3

M
in
.

M
a
x
.

#
W
o
rs
en
ed

M
ea
n

Q
1

Q
2

Q
3

M
in
.

M
a
x
.

#
P
re
se
rv
ed

Q
E
C
K
[1
6
8
]

3
1
0

7
2
(2
3
.2
3
%
)

1
3
9

0
2

1
1

7
4

0
1

1
,8
6
1

1
7
7
(5
7
.1
0
%
)

1
3
1

1
1

3
5

1
6
3

0
2

1
,2
5
9

6
1
(1
9
.6
8
%
)

R
A
C
K

[2
0
1
]

3
1
0

1
0
5
(3
3
.8
7
%
)

7
5

0
2

0
8

6
0

0
1

9
7
1

1
4
7
(4
7
.4
2
%
)

1
3
6

0
7

3
1

1
5
6

0
2

1
,2
7
7

5
8
(1
8
.7
1
%
)

C
o
C
a
B
u
[2
2
9
]

3
1
0

1
1
3
(3
6
.4
5
%
)

1
9
1

0
2

1
4

1
0
3

0
1

2
,6
0
7

1
3
1
(4
2
.2
6
%
)

1
0
2

0
6

2
4

9
1

0
2

1
,5
6
7

6
6
(2
1
.2
9
%
)

B
a
se
li
n
e

3
1
0

-
-

0
7

2
5

1
4
5

0
2

1
,4
6
0

-
-

0
1

0
3

1
5

0
1

5
8
2

-

N
L
P
2
A
P
I

3
1
0

1
4
9
(4
8
.0
7
%
)

1
7
0

0
2

1
2

7
4

0
1

2
,8
1
6

7
8
(2
5
.1
6
%
)

7
5

0
3

1
3

5
9

0
2

8
2
6

8
3
(2
6
.7
7
%
)

N
L
P
2
A
P
I m

a
x

3
1
0

1
5
2
(4
9
.0
3
%
)

1
7
2

0
2

1
0

6
1

0
1

2
,9
2
6

6
9
(2
2
.2
6
%
)

7
3

0
3

1
1

7
0

0
2

7
8
6

8
9
(2
8
.7
1
%
)

M
e
a
n
=
M
ea
n
ra
n
k
o
f
�
rs
t
co
rr
ec
t
re
su
lt
s
re
tu
rn
ed

b
y
th
e
q
u
er
ie
s,
Q
i=

it
h
q
u
a
rt
il
e
o
f
a
ll
ra
n
k
s
co
n
si
d
er
ed

207

unavailability of authors' prototype, we re-implement them ourselves using their best performing parameters

(e.g., PRF size = 5�10, reformulation length = 10), and then compare them with ours. We also compare

with RACK [201] in the context of query reformulation due to its highly related nature.

Table 8.5 shows a quantile analysis of the result ranks provided by the existing techniques. If results are

returned closer to the top of the list by a reformulated query than its baseline counterpart, we call it query

improved and vice versa as query worsened. We see that CoCaBu and RACK perform relatively higher than

QECK. CoCaBu improves 36% and worsens 42% of the 310 baseline queries. On the contrary, our technique

improves 48% and worsens 25% of the given queries which are 32% higher and 40% lower respectively than

those of CoCaBu. Furthermore, according to the quantile analyses, the extents of our rank improvement over

the baseline are comparatively higher than the extents of rank worsening which indicates a net bene�t of the

reformulation operations.

Summary of RQ4: Our technique outperforms the state-of-the-art approaches on query reformulation, and

it improves 32% more and worsens 40% less queries than those of the state-of-the-art.

Answering RQ5�Comparison with Existing Code/Web Search Engines: Although our approach

outperforms the state-of-the-art studies [168, 201] on relevant API suggestion and query reformulation, we

further compare with two popular web search engines � Google, Stack Over�ow native search � and one

popular code search engine �GitHub code search. Given the enormous and dynamic index database and

restrictions on the query length or type, a full scale or direct comparison with these search engines is neither

feasible nor fair. We thus investigate whether results returned by these contemporary search engines for

generic queries could be signi�cantly improved or not with the help of our reformulated queries.

Collection of Search Results and Establishment of Ground Truth: We �rst collect Top-30 results

returned by each search engine for each of the 310 queries. For result collection, we make use of Google's

custom search API [8] and the native API endpoints provided by Stack Over�ow and GitHub. Since our

goal is to �nd relevant code snippets, we adopt a pragmatic approach in the establishment of ground truth

for this experiment. In particular, we analyse those 30 results semi-automatically, look for ground truth code

segments (i.e., collected in Section 8.3.1) in their contents, and then select Top-10 results as ground truth

search results that contain either the ground truth code or highly similar code. It should be noted that

ground truth code segments and our suggested API classes are taken from two di�erent sources.

Comparison between Initial Search Results and Re-ranked Results with Reformulated Queries:

While the search engines return results mostly for the natural language queries, we further re-rank the results

with our reformulated queries (i.e., generic search keywords + relevant API classes) using lexical similarity

analysis (e.g., cosine similarity [184]). We then evaluate Top-10 results both by each search engine and

by our re-ranking approach against the ground truth search results, and demonstrate the potential of our

reformulations.

From Table 8.6, we see that the re-ranking approach that leverages our reformulated queries improves the

initial search results returned by each of the engines. In particular, the performances are improved in terms

208

Table 8.6: Comparison with Popular Web/Code Search Engines

Technique Hit@10 MAP@10 MRR@10 NDCG@10

Google 100.00% 65.50% 0.80 0.47

NLP2APIGoogle 100.00% 76.73% 0.83 0.61

Stack Over�ow 90.65% 59.46% 0.67 0.40

NLP2APISO 91.29% 79.95% 0.87 0.67

GitHub 88.06% 53.06% 0.55 0.41

NLP2APIGitHub 89.03% 70.69% 0.78 0.59

NDCG=Normalized Discounted Cumulative Gain [253]

Figure 8.8: Comparison between popular web/code search engines and NLP2API in relevant code
segment retrieval using (a) MAP@K and (b) NDCG@K

of precision and discounted cumulative gain. For example, Google returns search results with 66% precision

and 0.47 NDCG when Top-10 results are considered. Our approach, NLP2APIGoogle, improves the ranking

and achieves a MAP@10 of 77% and a NDCG@10 of 0.61 which are 17% and 30% higher respectively. That

is, although Google performs high as a general purpose web search engine, it might always not be precise

for code search due to the lack of appropriate contexts. Our approach incorporates context into the search

using relevant API names, and delivers more precise code search results. As shown in Table 8.6 and Fig. 8.8,

similar �ndings were also achieved against GitHub code search and Stack Over�ow native search.

Summary of RQ5: Our technique improves upon the result ranking of all three popular search engines

using its reformulated queries. It achieves 17% higher precision and 30% higher NDCG than Google, i.e.,

the best performing search engine.

8.4 Threats to Validity

Threats to internal validity relate to experimental errors and biases. Re-implementation of the existing

techniques could pose a threat. However, we used authors' implementation of RACK [201] and replicated

Nie et al. [168] and Sirres et al. [229] carefully. We had multiple runs and found their best performances with

209

the authors' adopted parameters which were �nally chosen for comparisons. Thus, threats associated with

the re-implementation might be mitigated.

Our code corpus (Section 8.3.1) contains 4,170 documents including 310 ground truth code segments. It

is limited compared to a real life corpus (e.g., GitHub). However, our corpus might be su�cient enough for

comparing a generic NL query with a reformulated query in code retrieval. Please note that our goal is to

reformulate a query e�ectively for code search. Besides, we compared with three popular search engines and

demonstrated the potential of our query reformulations.

Threats to external validity relate to generalizability of a technique. Although we experimented with

Java based Q & A threads and tasks, our technique could be adapted easily for other programming languages

given that code segments and API classes are extracted correctly from Stack Over�ow.

8.5 Related Work

Relevant API Suggestion: There have been several studies [63, 92, 124, 138, 152, 243] that return relevant

functions, API classes and methods against natural language queries. McMillan et al. [152] employ natural

language processing (NLP), PageRank and spreading activation network (SAN) on a large corpus (e.g.,

FreeBSD), and identify functions relevant to a given query. Although they apply advanced approach for

function ranking (e.g., PageRank), their candidate functions were selected using simple textual similarity

which is subject to vocabulary mismatch issues [83]. On the contrary, we apply pseudo-relevance feedback,

PageRank and TF-IDF for selecting the candidate API classes. Chan et al. [63] apply sophisticated graph

mining techniques and return relevant API elements as a connected sub-graph. However, mining a large

corpus could be very costly. Thung et al. [243] mine API documentations and feature history, and suggest

relevant methods for an incoming feature request. However, this approach is project-speci�c and does not

overcome the vocabulary mismatch issues. Rahman et al. [201] apply two heuristics derived from keyword-

API co-occurrences in Stack Over�ow Q & A threads, and attempt to counteract the vocabulary mismatch

issues during API suggestion. Unfortunately, their approach su�ers from low precision due to the adoption

of simple co-occurrences. On the contrary, we (1) exploit query-API co-occurrence using a skip-gram based

probabilistic model (i.e., fastText [54, 156]), and (2) employ pseudo-relevance feedback, Borda count and

PageRank algorithm, and thus, (3) provide a novel solution that partially overcomes the limitations of earlier

approaches. Rahman et al. is the most closely related work to ours in API suggestion. We compare ours

with this work, and the detail comparison can be found in Section 8.3.3. Gvero and Kuncak [92] accept

free-form NL queries, perform natural language processing, statistical language modelling on source code and

suggest relevant method signatures. There exist other works that provide relevant code for natural language

queries [44, 46, 58, 118], test cases [132, 133, 209], structural contexts [107], dependencies [254], and API

class types [240, 264]. On the contrary, we collect relevant API classes for free-form NL queries by mining

crowd generated knowledge stored in Stack Over�ow questions and answers.

210

Query Reformulation for Code Search: Several earlier studies [92, 104, 124, 136, 138, 144, 151,

168, 251] reformulate a natural language query to improve the search for relevant code or software artefacts.

Hill et al. [104] expand a natural language query by collecting frequently co-occurring terms in the method

and �eld signatures. Conversely, we apply a di�erent context (i.e., Q & A pairs) and a more sophisticated

co-occurrence mining (e.g., skip-gram model). Lu et al. [144] expand a search query by using part of speech

(POS) tagging and WordNet synonyms. Lemos et al. [134] combine WordNet and test cases in the query

reformulation. However, WordNet is based on natural language corpora, and existing �ndings suggest that

it might not be e�ective for synonym suggestion in software contexts [233]. On the contrary, we use a

software-speci�c corpus (e.g., programming Q & A site), and more importantly, apply relevant API classes

to query reformulation. Wang et al. [251] employ relevance feedback from developers to improve code search.

Recently, Nie et al. [168] collect pseudo-relevance feedback from Stack Over�ow, and reformulate a natural

language query using Rocchio's method. However, their suggested terms are natural language terms which

might not be e�ective enough for code search given the existing evidence [45]. Another contemporary work

[229] simply relies on Lucene to identify appropriate program elements from Stack Over�ow answers for query

reformulation. On the contrary, we employ PRF, PageRank, TF-IDF, Borda count and word semantics, and

provide relevant API classes for query reformulation. The above two works are the most closely related to

ours. We compare with them empirically, and the detail comparison can be found in Section 8.3.4. There

exist other studies that search source code [124, 261], project repository [136], and artefact repository [138] by

reformulating natural language queries. There also exist a number of query reformulation techniques [65, 84,

98, 120, 121, 188, 191, 226, 231] for concept/feature/bug/concern location. However, they suggest project-

speci�c terms (e.g., domain terms [94]) rather than relevant API classes (like we do) for query reformulations.

Hence, such terms might not be e�ective enough for code search on a large corpus (i.e., Internet-scale code

search) that contains cross-domain projects.

In short, we meticulously bring together crowd generated knowledge [168], word semantics [54], and several

IR-based approaches to e�ectively solve a complex Software Engineering problem, i.e., query reformulation for

Internet-scale code search, which was not done by the earlier studies. Our query reformulation technique can

also be employed on top of the existing code/web search engines for improving their code search performances

(i.e., RQ5).

8.6 Summary

Software maintenance costs a signi�cant amount of development time and e�orts [88]. Developers often

search for relevant code examples on the Internet [55], and reuse them in various maintenance tasks (e.g.,

new feature addition). As in the local code searches (e.g., concept location, bug location), developers also face

major query construction challenges in the Internet-scale code search. In this chapter, we propose a novel

technique�NLP2API�that accepts a programming task description as a query, reformulates the query with

211

relevant API classes by leveraging query-API semantic distance and by mining crowd knowledge from Stack

Over�ow, and then delivers an improved, reformulated query for code search on the web. Experiments using

310 queries report that our technique (1) suggests ground truth API classes with 48% precision and 58%

recall for 82% of the queries, and (2) improves the given search queries signi�cantly through reformulations.

Comparisons with three state-of-the-art techniques and three popular search engines not only validate our

empirical �ndings but also demonstrate the superiority of our technique.

In future, we plan to further investigate the potential of our skip-gram model constructed from Stack

Over�ow corpus. Since this model (a.k.a., word embedding technology) o�ers a geometric representation

(e.g., vector) for word semantics, more complex semantic analyses could be performed using the geometric

theories. Such analyses might (1) better explain the intent behind a given query for the code search or

oppositely (2) better reveal the speci�cation of a given code segment.

212

Chapter 9

Conclusion

9.1 Concluding Remarks

Software bugs and failures cost trillions of dollars every year [1, 28] and even lead to deadly accidents (e.g.,

Therac-25 accident1). Finding and �xing these bugs upfront consume about 50% of the development time

and e�orts [28, 81, 88]. While software bugs and errors are already hard to tackle, developers also receive

hundreds if not thousands of change requests during software maintenance [81, 88]. Adding new features to

already delivered software systems also claims about 60% of the maintenance costs [88]. Thus, resolving the

bugs and addressing the change requests are two major parts of software maintenance.

The very �rst challenge of the two maintenance tasks above is to identify the exact locations in the source

code that need to be repaired, modi�ed or enhanced. One needs to �nd out the exact locations where the

bug should be �xed or the existing feature that should be enhanced. Unfortunately, given million lines of

code and inherent complexities in the modern software systems, identi�cation of such locations is extremely

challenging. Locating the buggy code against a bug report is called bug localization [276]. On the contrary,

locating the target code against a change request is known as concept location [98, 120]. In essence, both

bug localization and concept location are a special type of code search that is performed within a software

system. Besides these specialized searches, developers also search for relevant code examples on the web,

and reuse them in various software maintenance tasks (e.g., implementing new features). This type of code

search is often called as Internet-scale code search [45, 151].

Every search operation above requires a query that re�ects the information needs. During maintenance,

software developers attempt to (1) construct search queries from the change requests for concept location, (2)

construct search queries from the bug reports for bug localization, and (3) choose meaningful keywords on

the �y for Internet-scale code search. Unfortunately, even the experienced developers often fail to choose the

right search queries [83, 120, 125, 142]. That is, whether it is bug localization, concept location or Internet-

scale code search, appropriate query construction is a major challenge. Thus, software developers are badly

in need of automated tool supports for query construction during the code search.

Automated support in constructing search queries for local code searches (e.g., concept location, bug

localization, feature location) has been an active research topic for over a decade [64, 65, 84, 95, 98, 104, 109,

1https://bit.ly/2KU9IR2

213

120, 226, 231, 265]. There also exist a number of studies on Internet-scale code search [134, 135, 144, 151,

168, 251, 274] that reformulate a free-form natural language query with more appropriate keywords (e.g.,

relevant API classes [274]). Unfortunately, the existing literature on query reformulation is far from adequate.

According to our systematic literature review, they su�er from several major limitations as follows.

First, although TF-IDF [114] has been extensively used by the existing literature [98, 120], it su�ers from

a major limitation. TF-IDF assumes the notion of term independence [137] and overlooks the semantic or

syntactic dependencies among the terms during their weight calculation [53, 153]. However, such dependencies

are a crucial factor in determining the term semantics or term importance [53, 157, 272]. Thus, TF-IDF might

fail to deliver the appropriate search keywords from the change requests or the bug reports. As a result,

TF-IDF based search queries might perform poorly in localizing the desired concepts or the bugs within the

source code of a software system.

Second, regular texts and source code di�er signi�cantly from each other in their syntax, semantics

and structures. While regular texts are rich in vocabulary, source code is poor in vocabulary but rich in

structures or dependencies [102]. TF-IDF has been frequently used for keyword selection from the source

code [84, 96, 98]. Due to term independence assumption, TF-IDF fails to capture the structural aspects of

the code and simply relies on the vocabulary. Thus, it might also not be able to deliver the appropriate

search keywords from the source code documents for search query reformulation.

Third, bug reports could be noisy containing stack traces or poor containing no localization hints (e.g.,

class names) [248]. However, existing studies [130, 167, 207, 220, 230, 249, 276] overlook such a dimension of

report quality, and use almost verbatim texts from the bug report as a search query for bug localization. As

a result, their search query could be either noisy due to excessive structured information (e.g., stack traces)

or poor due to the lack of localization hints. Thus, existing approaches are inherently limited and might not

be able to localize the software bugs when the bug reports are noisy or poor [193, 248, 276].

Fourth, search queries are often expanded with relevant program elements (e.g., API classes, methods)

in Internet-scale code search [45]. Many existing studies [63, 147, 152, 271] rely on the lexical similarity

between a given query and the API documentations of the candidate APIs for relevant API selection. Such

an approach warrants that the given query should be carefully constructed, and the developer should or must

possess a certain level of experience with the target APIs beforehand. Thus, the existing approaches on query

reformulations might not work well if a given query (1) is not carefully constructed or (2) is not lexically

similar to the documentations of a relevant API.

In this thesis, we attempt to overcome the above four challenges (1) by proposing graph-based term

weighting algorithms (e.g., CodeRank [189]) that outperform TF-IDF, (2) by leveraging bug report qual-

ity dynamics and source document structures that were previously overlooked, (3) by harnessing the crowd

knowledge from Stack Over�ow which was previously untapped, and (4) by exploiting the semantics of the

given queries and candidate keywords derived from 1.40 million Q&A threads of Stack Over�ow, which was

previously unexplored. Our goal was to deliver e�ective solutions for source code search during

214

software maintenance with automated query reformulations, let it be concept location, bug localiza-

tion or even the Internet-scale code search. In particular, we conduct two studies (Chapters 3, 4) targeting

concept location, two studies (Chapters 5, 6) targeting bug localization, and two more studies (Chapters 7,

8) targeting Internet-scale code search as follows.

(a) The �rst study �STRICT (Chapter 3)� accepts a change request as a search query, employs graph-

based term weighting algorithms, query di�culty analysis and machine learning for keyword selection

from the request texts, and then delivers an improved, reformulated search query for concept location.

Experiments using 2,885 change requests suggest that (1) our reformulated queries outperform the

baseline search queries with a signi�cant margin, (2) our graph-based term weighting method is a

better alternative than TF-IDF for keyword selection, and (3) our approach equipped with machine

learning outperforms the state-of-the-art approaches [120, 213] in constructing queries from the change

requests for the concept location task.

(b) The second study �ACER (Chapter 4)� accepts a poor search query as input, collects complemen-

tary keywords from the relevant source code documents by employing a graph-based term weighting

method (CodeRank) and by leveraging the source document structures (e.g., method signatures, �eld

signatures), and then delivers an improved, reformulated search query for concept location. Experi-

ments using 1,675 queries report that our algorithm �CodeRank� that leverages the structural aspects

of source code outperforms the traditional approach (e.g., TF-IDF) in keyword selection. Our query

reformulation approach �ACER� also outperforms �ve existing studies [98, 104, 212, 213, 231] including

the state-of-the-art [98] in reformulating the search queries for concept location.

(c) The third study �BLIZZARD (Chapter 5)� accepts a bug report as a search query, employs appropri-

ate methodologies for keyword selection from the report texts based on the report quality (e.g., noisy,

poor), and then delivers an improved, reformulated query for bug localization. Unlike the existing stud-

ies, our approach adopts appropriate methodologies (1) to mitigate the noise from noisy bug reports

and (2) to complement the poor bug reports that lack localization hints. Experiments using 5,139 bug

reports suggest that (1) our reformulated queries outperform the baseline queries signi�cantly, and (2)

our approach outperforms the state-of-the-art studies on IR-based localization [220, 250, 276] and on

query reformulation [191, 212, 213, 231] with signi�cant margins.

(d) The fourth study �BLADER (Chapter 6)� accepts a poor bug report as a search query, identi�es

appropriate candidate keywords from the relevant source code by analysing the clustering tendency

between the query and the candidate keywords in terms of their underlying semantics, and then delivers

an improved, reformulated query for the bug localization. Experiments using 1,546 poor bug reports

suggest that (1) our reformulated queries outperform the baseline poor queries with a signi�cant margin,

and (2) our approach, BLADER, outperforms eleven existing studies from literature not only in IR-

based bug localization [192, 220, 250, 268, 276] but also in automated search query reformulation

[188, 191, 192, 212, 213, 231].

215

(e) The �fth study �RACK (Chapter 7)� accepts a free-form query on a programming task, expands the

query with relevant API classes carefully mined from Stack Over�ow, and then delivers an improved,

reformulated query for Internet-scale code search. Experiments using 175 free-form search queries re-

port that (1) our reformulated queries outperform the baseline queries signi�cantly, (2) our approach

outperforms three existing studies [168, 243, 274] including the state-of-the-art [243], and (3) our refor-

mulated queries can signi�cantly improve the performance of three traditional web/code search engines

(e.g., Google, GitHub native search, Stack Over�ow native search) in the Internet-scale code search.

(f) The sixth study �NLP2API (Chapter 8)� accepts a free-form query on a programming task, expands

the query with relevant API classes that are selected based on query-API semantic distance analy-

sis and crowd knowledge of Stack Over�ow, and �nally delivers an improved, reformulated query for

Internet-scale code search. Experiments using 310 free-form search queries report that (1) our reformu-

lated queries outperform the baseline free-form queries with a signi�cant margin and (2) our approach

outperforms three existing studies [168, 201, 229] including the state-of-the-art [229] and signi�cantly

improves three traditional web/code search engines in Internet-scale code search.

Given the above studies and their �ndings in our thesis, we conclude the following: (1) our graph-based

term weighting approach is much more e�ective than the traditional alternatives (e.g., TF-IDF [98, 120])

for delivering the search keywords from the source code documents, change requests and bug reports (2)

bug report quality is crucial to appropriate query construction for the bug localization, (3) source document

structures can o�er multiple feasible options to reformulate a given query, and (4) crowd knowledge and

word semantics derived from Stack Over�ow Q&A threads could be the e�ective means for mitigating the

vocabulary mismatch problems both in local and Internet-scale code searches. Since our proposed approaches

embody these solutions, they have a high potential for improving search queries and thus code searches in

the Software Engineering contexts. Furthermore, each of our conducted studies could be replicated using our

publicly available replication packages (Appendix A).

9.2 Future Work

In this thesis, we deal with di�erent challenges concerning search query reformulations in three di�erent

code search contexts � concept location, bug localization and Internet-scale code search. My PhD works have

produced a total of 21 peer-reviewed publications. Despite these signi�cant number of studies, we believe

that there is still room for further works and many novel dimensions (inspired by this thesis) are yet to be

explored. Based on our experiments, empirical analysis, and qualitative analysis, we present a list of future

research directions on automated query reformulation, software debugging and code search as follows:

216

9.2.1 Promises of Keyword Selection Algorithms in IR-Based Bug Localization

Information Retrieval (IR) has been extensively used in at least 20 Software Engineering tasks including bug

localization [98]. It should be noted that bug localization is a form of local code search where bug reports

are assumed as search queries. A few recent studies [123, 126, 248] have pointed out the potential biases and

limitations of IR-based bug localization. According to them, IR-based localization is only good when the bug

reports contain localization hints (e.g., program entity names). However, they use the whole texts from a

bug report as a search query and overlook the potential of optimal search queries. Mills et al. [159] recently

conduct a large-scale empirical study using Genetic Algorithms and present positive evidence for bug reports

and IR-based localization. They suggest that bug reports often contain su�cient keywords which could return

the buggy source documents at the top-most positions of the result list. In particular, IR-based localization

could succeed 67%�88% of the time even if the bug reports do not contain any localization hints. Thus,

the real challenge is to automatically extract the appropriate search keywords from a given bug report for

bug localization. Term weighting algorithms could play a major role in identifying such keywords. To date,

existing literature adopts two types of term weighting algorithms �frequency-based [98, 120, 212, 213, 231, 232]

and graph-based [187, 189, 191, 192]� for keyword selection in Software Engineering. My PhD thesis has

inspired the graph-based term weighting paradigm, and demonstrated that it is a better choice than the

existing alternatives (e.g., TF-IDF) for keyword selection from the bug reports. However, our in-depth

investigations suggest that the literature might yet not be su�cient enough to always deliver the important

keywords from a bug report. Thus, more sophisticated and e�cient term weighting algorithms are warranted

to improve the search queries for IR-based bug localization.

9.2.2 Promises of Genetic Algorithms in IR-Based Bug Localization

Mills et al. [159] demonstrate that Genetic Algorithms (GA) are capable of generating the optimal search

queries from bug reports for IR-based bug localization. They use ground truth to evaluate the �tness of the

candidate search queries. However, in practice, ground truth is not known beforehand during bug localization.

Thus, designing an appropriate �tness function is a major challenge while reformulating queries with Genetic

Algorithms. In particular, given two candidate search queries, the �tness function should be able to identify

the better one without executing them. Several studies [96, 98, 158, 164, 189] make use of query di�culty

metrics (e.g., speci�city, coherency [62]) to identify the best one from a list of given queries. However,

these metrics have non-linear relationships with query performance and generally work in collaboration with

machine learning algorithms. Thus, they might not be an ideal choice for the �tness function. In this thesis,

we use TextRank [191], POSRank [191] and WK-Core [50] as proxies to term importance, and demonstrate

their superiority to the traditional alternatives (e.g., TF-IDF). Our preliminary investigation suggests that

they might also have a non-linear relationship with the query performance. Thus, future works should focus

on designing more appropriate �tness functions since Genetic Algorithm has the potential for delivering

217

the optimal search queries from the bug reports [159]. IR-based localization is not yet widely adopted by

the software practitioners due to its limitations [248]. However, we believe that IR-based bug localization

equipped with GA-based optimal queries could be a preferable alternative to the developers as opposed to

ad hoc, costly localization processes.

9.2.3 Improving Term Weighting Algorithms with Useful Term Contexts

Determining importance of a term within a body of texts (e.g., bug report, source document) has long been

recognized as a major challenge [114, 120]. TF-IDF is a term weighting algorithm that has been widely

used both in Information Retrieval and in Software Engineering. It determines the importance of a term

in isolation, and does not consider the contexts (e.g., surrounding terms) of the term. However, a term's

semantics are often determined by its contexts [157, 272]. Besides, several existing studies demonstrate the

bene�ts of incorporating contexts in the term weighting algorithms. To date, several contextual data items

such as spatial code proximity [231], positional relevance [192, 232], term co-occurrences [85, 104, 189, 191,

226], syntactic dependencies [191], time-awareness [273], and structural awareness [49, 77, 192] are employed.

My PhD thesis contributes to the literature by studying term co-occurrences, syntactic dependencies, and

structural/hierarchical dependencies among the terms from bug reports [192], change requests [187, 191]

and source code documents [189]. However, these contexts were employed by multiple studies in isolation.

Future studies should investigate how combining these contextual dimensions could bene�t the existing term

weighting approaches (e.g., TextRank). While Genetic Algorithms can be employed to optimize their relative

weights, machine learning algorithms could also be used to design even more complex, non-linear relationships

between these contexts and a term's importance.

9.2.4 Query Worsening Minimization

Automated query reformulation comes with both bene�ts and costs. Existing studies suggest that automatic

query reformulation might improve the search performance up to 20% [145, 273]. However, several studies

also question the complete automation in query reformulation [104, 172, 228]. Automated reformulations

sometimes might add noise which drifts the query away from its original topic [228]. Thus, we need such

tool supports that maximize the bene�ts and minimize the costs of automated query reformulations. Haiduc

et al. and colleagues [96, 98] �rst analyse the quality of search queries in the context of concept location task,

and then automatically reformulate the poor queries only. A few studies [96, 98, 158, 189] including ours

[182, 189] employ query di�culty metrics and machine learning to deliver the best reformulation for a given

query. Despite these attempts, the risk of query worsening due to automated reformulations still remains.

Like earlier studies [74, 85, 104, 251], we believe that human cognitive power could be leveraged in this case.

According to Dietrich et al. [74], human developers might perform well in removing irrelevant terms from

a search query, but perform poorly in adding the new relevant terms. Relevant keywords could be hidden

within thousands of identi�er names (e.g., classes, methods) of a system's codebase. Future works should

218

incorporate the strengths of both human developers and automated tools, and then minimize both (1) the

cognitive burdens on the developer and (2) the costs of inappropriate query reformulations.

9.2.5 Improving Pseudo-Relevance Feedback (PRF)

Collecting relevance feedback on a given query from the developers could be costly and sometimes even

impractical. Hence, several existing studies [98, 188, 189, 231] including ours [188, 189, 192] employ pseudo-

relevance feedback (PRF) as a feasible alternative during query reformulation. That is, they naively assume

the Top-K documents retrieved by a given query as relevant, and then suggest important keywords from them

for query reformulation. These approaches have been reported to improve over the given queries [98, 145].

However, such a feedback might not help much if the given queries are already very poor [192]. Then the

retrieved documents are likely to be irrelevant. While PRF has been mostly tested in local code searches

(e.g., concept location, bug localization), its e�ectiveness in the Internet-scale code search is not well studied.

During code search on the Internet, the relevance feedback results are retrieved from thousands of open

source projects which could be noisy and hard to comprehend. Thus, despite a few attempts [111, 151], much

investigations are yet to be done in the area of pseudo-relevance feedback. Future works should focus on

designing such a relevance feedback mechanism that is cheap, light-weight, adaptive to query quality and yet

reliable enough for delivering the appropriate keywords for search query reformulation.

9.2.6 Promises of PageRank in Term Weighting/Source Code Retrieval

In this thesis, we adapt PageRank algorithm [57] from Information Retrieval domain, and use it in search

query construction for various Software Engineering tasks such as bug localization [192], concept location

[187, 188, 189, 191] and Internet-scale code search [194]. Other studies [141, 152] make use of PageRank

algorithm in the ranking of code examples for Internet-scale code search. PageRank operates on a graph-

based structure, adopts a notion of voting/recommendation, and then identi�es the most important nodes

from the graph using recursive score computations (e.g., Equation 4.4) [53, 153]. Since source code is full of

structures, entities, and explicit/implicit dependencies among them, it can be represented as a graph/network.

Thus, unlike traditional TF-IDF, PageRank could be a better choice for keyword selection from the source

code documents. Although we conduct a few studies on this topic [189, 192], further studies are warranted

to better understand the true potential of PageRank algorithm in the contexts of Software Engineering (e.g.,

code example search, developer network analysis).

9.2.7 Word Embedding Technology in Query Reformulation/Code Search

Several existing studies [85, 104, 134, 144] employ English language thesauri such as WordNet [157] to

expand a given query for code search. They generally expand the query with synonyms and semantically

similar/relevant words. However, Sridhara et al. [233] demonstrate that the same word has two di�erent

219

semantics in source code and in regular texts. Thus, English language thesaurus might be neither appropriate

nor su�cient for query expansion intended for source code search. Alternatively, several studies [109, 265,

266, 272] provide software-speci�c thesauri (e.g., SWordNet [266]) by analysing various software repositories

(e.g., source code, Stack Over�ow Q&A threads). Unfortunately, construction of these thesauri is costly, and

their e�ectiveness in the query reformulation is not yet well tested.

Recently, a few studies [194, 268, 274] including ours [194] make use of word embedding technology

in determining semantic similarity/relevance between any two software speci�c words. They also leverage

the word embeddings in reformulating queries for source code search, and report positive evidence. Word

embedding technology approximates the semantics of a given word in terms of a high dimensional numeric

vector. Thus, the technology reduces various text understanding tasks (e.g., synonym detection, semantic

distance calculation) into simple algebraic or geometric operations. We thus believe that this technology has

lots to o�er not only in query reformulation but also in other text retrieval tasks of Software Engineering.

In our fourth study (Chapter 6), we go beyond semantic distance calculation with word embedding

technology. We construct a large semantic hyperspace, analyse the clustering tendency between a given

query and the candidate keywords in terms of their underlying semantics, and then deliver a high quality

reformulated query for bug localization. In our semantic hyperspace, each embedding vector places its

corresponding word as a single co-ordinate within a high dimensional semantic space. Such a convenient

approximation of word semantics is likely to encourage various geometric theories into the text processing

tasks of Software Engineering (e.g., observed/expected behaviour detection from bug reports [65]).

9.2.8 Promises of Stack Over�ow in Query Reformulation/Code Search

Despite existing attempts to use code examples [47] or test cases [133, 209, 234] as search queries, developers

primarily use natural language keywords as queries for code search on the web [44, 45]. Their goal is to describe

a programming task with a few keywords. Unfortunately, these queries often do not work well since they lack

necessary information required for the task. Existing �ndings [45, 135, 194, 274] suggest that inclusion of

relevant API classes or methods in the query consistently improves the code search performance. Towards this

goal, two of our studies [194, 206] expand a generic NL query with relevant API classes from Stack Over�ow.

In particular, we leverage the co-occurrences between query keywords (from question titles) and API classes

(from accepted answers) in Stack Over�ow threads, determine the relevance of each API to a given query

(programming task) using three heuristics, and then suggest the relevant API classes for query expansion.

Given our �ndings [194, 201, 206], we believe that Stack Over�ow has lots to o�er in Software Engineering.

Stack Over�ow could be leveraged to transform a feature request into relevant/required API classes through

machine translation [139, 181]. Such API classes could then be leveraged in implementing the software

feature. Since the Q&A site deals with thousands of API programming issues/bugs and corresponding code

level solutions, they could be leveraged as a starting point for automatically localizing and then solving the

common software bugs in the software systems.

220

9.2.9 Word Embeddings Technology for Bug Understanding/Diagnosis

Chaparro et al. [66] �rst extract Observed Behaviour (OB), Expected Behaviour (EB) and Steps to Reproduce

(S2R) the bug from hundreds of bug reports, and identify 154 discourse patterns using Grounded Theory

approach. They later make use of OB part as a reduced version of the original query (bug report) for IR-

based bug localization [65] and duplicate bug report detection [67]. Identi�cation of these components and

patterns is a major step forward in the automated bug understanding/diagnosis (e.g., root cause analysis

[162, 256]). While these patterns and components are extracted using Grounded Theory, they could be

further investigated and possibly extended using duplicate bug reports and word embedding technology.

Duplicate bug reports are likely to refer to the same or similar bugs. Thus, they are also likely to share

the underlying semantics, observed behaviour, expected behaviour and even the discourse patterns. Our

fourth study (Chapter 6) constructs a large semantic hyperspace using FastText [54] on the corpus of Stack

Over�ow. If words used in the duplicate bug reports are visualized within such a semantic hyperspace with

their corresponding embedding vectors, they might provide further insights about the discourse patterns

above. Since the hyperspace provides a geometric representation for word semantics, such patterns might

even be explained with geometric theories. A solid understanding of such patterns could also encourage novel

tools both for bug understanding/diagnosis and even for bug �xing.

9.2.10 Query Reformulation as a Feasible Choice for Improved Bug Localization

Antoniol et al. [37] �rst use Vector Space Model (VSM) in traceability link recovery. Zhou et al. [276] later

use rVSM (re�ned VSM) and incorporate past bug reports in the IR-based bug localization. Saha et al. [220]

make use of structures both from bug reports and from source code documents in localizing the bugs. Wong

et al. [258] boost up bug-proneness score of a source document based on stack trace information in the bug

report. Sisman and Kak [230] and Wen et al. [255] incorporate version control history in the IR-based bug

localization. Finally, Wang and Lo [250] incorporate �ve major items � past bug reports, structures, stack

traces, version history and author history � from the literature, and outperform the earlier approaches on IR-

based localization. Thus, existing literature often adopts an incremental approach of including more and more

external artifacts in the bug localization. While these artifacts have positive in�uences on the localization

performance, their inclusion makes the proposed approaches less scalable and less usable unfortunately. Such

limitations might also explain the reluctance of the practitioners in adopting IR-based localization [170, 248].

In this thesis, our studies [187, 188, 189, 191, 192] make e�ective use of primary resources available to

the practitioners� bug report and source code, employ appropriate query reformulations, and then deliver

reasonably high localization performance at low costs. Thus, we believe that query reformulation could be

an important part of at least 20 IR-based SE tasks including bug localization [192], duplicate bug detection

[67], bug triaging and bug report summarization. Future studies should (1) investigate the impacts of query

reformulations on these tasks and (2) develop more appropriate tool supports for them.

221

Bibliography

[1] Report: Software failure caused $1.7 trillion in �nancial losses in 2017. URL https://tek.io/2FBNl2i.

[2] ACER experimental data. URL https://goo.gl/ZkaNvd.

[3] Borda count. URL https://en.wikipedia.org/wiki/Borda_count.

[4] Software maintenance cost de�ned. URL https://galorath.com/software-maintenance-costs/.

[5] Theoretical CDF. URL http://stats.stackexchange.com/questions/132652.

[6] Debbugger Source Lookup does not work with variables. URL https://bit.ly/2xz9UQr.

[7] CodeJava. URL http://www.codejava.net.

[8] Google custom search engine. URL https://developers.google.com/custom-search.

[9] Example code snippet. URL https://goo.gl/WSZHiC.

[10] Backend of GitHub search. URL https://bit.ly/2XwakSj.

[11] Java2s: Java Tutorials, . URL http://java2s.com.

[12] Java Language Grammar, . URL https://github.com/antlr/grammars-v4/tree/master/java8.

[13] JavaDB: Java Code Examples, . URL http://www.javadb.com.

[14] Jsoup: Java HTML Parser. URL http://jsoup.org.

[15] KodeJava: Java Examples. URL http://kodejava.org.

[16] Enterprise search: Market share. URL https://www.datanyze.com/market-share/

enterprise-search.

[17] A systematic literature review of automated query reformulations in source code search. URL https:

//bit.ly/2JFGWUC.

[18] NLP2API: Replication package. URL https://goo.gl/sJSp2D.

[19] Samurai pre�x and su�x list. URL https://hiper.cis.udel.edu/Samurai.

[20] How do i decompress a gzip �le in java? URL https://goo.gl/14QkXq.

222

https://tek.io/2FBNl2i
https://goo.gl/ZkaNvd
https://en.wikipedia.org/wiki/Borda_count
https://galorath.com/software-maintenance-costs/
http://stats.stackexchange.com/questions/132652
https://bit.ly/2xz9UQr
http://www.codejava.net
https://developers.google.com/custom-search
https://goo.gl/WSZHiC
https://bit.ly/2XwakSj
http://java2s.com
https://github.com/antlr/grammars-v4/tree/master/java8
http://www.javadb.com
http://jsoup.org
http://kodejava.org
https://www.datanyze.com/market-share/enterprise-search
https://www.datanyze.com/market-share/enterprise-search
https://bit.ly/2JFGWUC
https://bit.ly/2JFGWUC
https://goo.gl/sJSp2D
https://hiper.cis.udel.edu/Samurai
https://goo.gl/14QkXq

[21] Re�ections Library. URL https://code.google.com/p/reflections.

[22] Resampling. URL http://www.creative-wisdom.com/teaching/WBI/resampling.shtml.

[23] Stack Exchange Data Explorer. URL http://data.stackexchange.com/stackoverflow.

[24] STRICT: Experimental Data. URL http://homepage.usask.ca/~masud.rahman/strict.

[25] Stop words, 2011. URL https://code.google.com/p/stop-words. Accessed: June 2017.

[26] Java keywords, 2015. URL https://bit.ly/1Gz0V2B.

[27] Blizzard: Replication package, 2018. URL https://goo.gl/NTUqcK.

[28] Cost of software debugging, 2019. URL https://goo.gl/okoj21.

[29] BLADER�Replication Package, 2019. URL https://goo.gl/tcVKup.

[30] Blizzard-experimental data, 2019. URL https://goo.gl/toCZrs.

[31] Github code search, 2019. URL https://github.com/search.

[32] Apache Lucene Core, 2019. URL https://lucene.apache.org/core.

[33] Polygon area calculation, 2019. URL https://goo.gl/TnXhrP.

[34] Polygon, 2019. URL https://goo.gl/yVW3dR.

[35] Stack Exchange archive, 2019. URL https://archive.org/download/stackexchange.

[36] Word2vec tutorial - the skip-gram model, 2019. URL https://goo.gl/CixemG.

[37] G Antoniol, G Canfora, G Casazza, A De Lucia, and E Merlo. Recovering Traceability Links between

Code and Documentation. TSE, 28(10):970�983, 2002.

[38] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an open bug repository. In Proc. OOPSLA/Eclipse,

pages 35�39, 2005.

[39] J Anvik, L Hiew, and G C Murphy. Who Should Fix This Bug? In Proc. ICSE, pages 361�370, 2006.

[40] A Arif, M M Rahman, and S Y Mukta. Information Retrieval by Modi�ed Term Weighting Method

Using Random Walk Model with Query Term Position Ranking. In Proc. ICSPS, pages 526�530, 2009.

[41] B Ashok, J Joy, H Liang, S K Rajamani, G Srinivasa, and V Vangala. DebugAdvisor: A Recommender

System for Debugging. In Proc. ESEC/FSE, pages 373�382, 2009.

[42] A Bacchelli, M Lanza, and R Robbes. Linking e-Mails and Source Code Artifacts. In Proc. ICSE,

pages 375�384, 2010.

223

https://code.google.com/p/reflections
http://www.creative-wisdom.com/teaching/WBI/resampling.shtml
http://data.stackexchange.com/stackoverflow
http://homepage.usask.ca/~masud.rahman/strict
https://code.google.com/p/stop-words
https://bit.ly/1Gz0V2B
https://goo.gl/NTUqcK
https://goo.gl/okoj21
https://goo.gl/tcVKup
https://goo.gl/toCZrs
https://github.com/search
https://lucene.apache.org/core
https://goo.gl/TnXhrP
https://goo.gl/yVW3dR
https://archive.org/download/stackexchange
https://goo.gl/CixemG

[43] A Bachmann and A Bernstein. Software Process Data Quality and Characteristics: A Historical View

on Open and Closed Source Projects. In Proc. IWPSE, pages 119�128, 2009.

[44] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and C. Lopes. Sourcerer: A search

engine for open source code supporting structure-based search. In Proc. OOPSLA-C, pages 681�682,

2006.

[45] S. K. Bajracharya and C. V. Lopes. Analyzing and mining a code search engine usage log. EMSE, 17

(4-5):424�466, 2012.

[46] S. K. Bajracharya, J. Ossher, and C. V. Lopes. Leveraging usage similarity for e�ective retrieval of

examples in code repositories. In Proc. FSE, pages 157�166, 2010.

[47] V. Balachandran. Query by example in large-scale code repositories. In Proc. SANER, pages 467�476,

2015.

[48] A. Banerjee and R. N. Dave. Validating clusters using the hopkins statistic. In Proc. FUZZ-IEEE,

volume 1, pages 149�153, 2004.

[49] B Bassett and N A Kraft. Structural Information based Term Weighting in Text Retrieval for Feature

Location. In Proc. ICPC, pages 133�141, 2013.

[50] V. Batagelj and M. Zaver²nik. Fast algorithms for determining (generalized) core groups in social

networks. Advances in Data Analysis and Classi�cation, 5(2):129�145, 2011.

[51] N Bettenburg, S Just, A Schröter, C Weiss, R Premraj, and T Zimmermann. What Makes a Good

Bug Report? In Proc. FSE, pages 308�318, 2008.

[52] N Bettenburg, R Premraj, T Zimmermann, and S Kim. Extracting Structural Information from Bug

Reports. In Proc. MSR, pages 27�30, 2008.

[53] R Blanco and C Lioma. Graph-based Term Weighting for Information Retrieval. Inf. Retr., 15(1):

54�92, 2012.

[54] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword information.

arXiv preprint arXiv:1607.04606, 2016.

[55] J Brandt, P J Guo, J Lewenstein, M Dontcheva, and S R Klemmer. Two Studies of Opportunistic

Programming: Interleaving Web Foraging, Learning, and Writing Code. In Proc. SIGCHI, pages

1589�1598, 2009.

[56] Leo Breiman. Random forests. Mach. Learn., 45(1):5�32, 2001.

[57] S Brin and L Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine. Comput. Netw.

ISDN Syst., 30(1-7):107�117, 1998.

224

[58] B. A. Campbell and C. Treude. Nlp2code: Code snippet content assist via natural language tasks. In

Proc. ICSME, pages 628�632, 2017.

[59] G Capobianco, A D Lucia, R Oliveto, A Panichella, and S Panichella. Improving IR-based Traceability

Recovery via Noun-Based Indexing of Software Artifacts. JSEP, 25(7):743�762, 2013.

[60] D Carmel and E Yom-Tov. Estimating the Query Di�culty for Information Retrieval. Morgan &

Claypool, 2010.

[61] D Carmel, E Yom-Tov, A Darlow, and D Pelleg. What Makes a Query Di�cult? In Proc. SIGIR,

pages 390�397, 2006.

[62] C Carpineto and G Romano. A Survey of Automatic Query Expansion in Information Retrieval. ACM

Comput. Surv., 44(1):1:1�1:50, 2012.

[63] W Chan, H Cheng, and D Lo. Searching Connected API Subgraph via Text Phrases. In Proc. FSE,

pages 10:1�-10:11, 2012.

[64] O Chaparro and A Marcus. On the Reduction of Verbose Queries in Text Retrieval Based Software

Maintenance. In Proc. ICSE-C, pages 716�718, 2016.

[65] O Chaparro, J M Florez, and A Marcus. Using Observed Behavior to Reformulate Queries during Text

Retrieval-based Bug Localization. In Proc. ICSME, pages 376�387, 2017.

[66] O Chaparro, J Lu, F Zampetti, L Moreno, M Di Penta, A Marcus, G Bavota, and V Ng. Detecting

Missing Information in Bug Descriptions. In Proc. ESEC/FSE, pages 396�407, 2017.

[67] O. Chaparro, J. M. Florez, U. Singh, and A. Marcus. Reformulating queries for duplicate bug report

detection. In Proc. SANER, page 12, 2019.

[68] F Chen and S Kim. Crowd Debugging. In Proc. ESEC/FSE, pages 320�332, 2015.

[69] B. Cleary, C. Exton, J. Buckley, and M. English. An empirical analysis of information retrieval based

concept location techniques in software comprehension. EMSE, 14(1):93�130, 2009.

[70] J Cordeiro, B Antunes, and P Gomes. Context-based Recommendation to Support Problem Solving

in Software Development. In Proc. RSSE, pages 85�89, 2012.

[71] R. F. G. Da Silva, C. K. Roy, M. M. Rahman, K. Schneider, K. Paixão, and M. Maia. Recommending

comprehensive solutions for programming tasks by mining crowd knowledge. In Proc. ICPC, page 11,

2019.

[72] B Dagenais and M P Robillard. Creating and Evolving Developer Documentation: Understanding the

Decisions of Open Source Contributors. In Proc. FSE, pages 127�136, 2010.

225

[73] B Dagenais and M P Robillard. Recovering Traceability Links between an API and its Learning

Resources. In Proc. ICSE, pages 47�57, 2012.

[74] T. Dietrich, J. Cleland-Huang, and Y. Shin. Learning e�ective query transformations for enhanced

requirements trace retrieval. In Proc. ASE, pages 586�591, 2013.

[75] B Dit, L Guerrouj, D Poshyvanyk, and G Antoniol. Can Better Identi�er Splitting Techniques Help

Feature Location? In Proc. ICPC, pages 11�20, 2011.

[76] M. Duijn, A. Kucera, and A. Bacchelli. Quality questions need quality code: Classifying code fragments

on stack over�ow. In Proc. MSR, pages 410�413, 2015.

[77] Brian P. Eddy, Nicholas A. Kraft, and Je� Gray. Impact of structural weighting on a latent dirichlet

allocation based feature location technique. JSEP, 30(1):e1892, 2018.

[78] F. Ensan, E. Bagheri, and M. Kahani. The application of users' collective experience for crafting

suitable search engine query recommendations. In Proc. CNSR, pages 148�156, 2007.

[79] E Enslen, E Hill, L Pollock, and K Vijay-Shanker. Mining Source Code to Automatically Split Identi�ers

for Software Analysis. In Proc. MSR, pages 71�80, 2009.

[80] S Ercan, Q Stokkink, and A Bacchelli. Automatic Assessments of Code Explanations: Predicting

Answering Times on Stack Over�ow. In Proc. MSR, pages 442�445, 2015.

[81] L Favre. Modernizing Software & System Engineering Processes. In Proc. ICSENG, pages 442�447,

2008.

[82] G. Fischer and H. Nieper-Lemke. Helgon: Extending the retrieval by reformulation paradigm. In Proc.

CHI, pages 357�362, 1989.

[83] G W Furnas, T K Landauer, L M Gomez, and S T Dumais. The Vocabulary Problem in Human-system

Communication. Commun. ACM, 30(11):964�971, 1987.

[84] G Gay, S Haiduc, A Marcus, and T Menzies. On the Use of Relevance Feedback in IR-based Concept

Location. In Proc. ICSM, pages 351�360, 2009.

[85] X. Ge, D. C. Shepherd, K. Damevski, and E. Murphy-Hill. Design and evaluation of a multi-

recommendation system for local code search. Journal of Visual Languages and Computing, 39:1 �

9, 2017.

[86] M. Ghafari and H. Moradi. A framework for classifying and comparing source code recommendation

systems. In Proc. SANER, pages 555�556, 2017.

[87] M. Gibiec, A. Czauderna, and J. Cleland-Huang. Towards mining replacement queries for hard-to-

retrieve traces. In Proc. ASE, pages 245�254, 2010.

226

[88] R. L. Glass. Frequently forgotten fundamental facts about software engineering. IEEE Software, 18

(3):112�111, 2001.

[89] J Gosling, B Joy, G Steele, and G Bracha. The Java Language Speci�cation: Java SE 7 Edition. 2012.

[90] X. Gu, H. Zhang, and S. Kim. Deep code search. In Proc. ICSE, pages 933�944, 2018.

[91] Z Gu, E T Barr, D Schleck, and Z Su. Reusing Debugging Knowledge via Trace-based Bug Search. In

Proc. OOPSLA, pages 927�942, 2012.

[92] T Gvero and V Kuncak. Interactive Synthesis Using Free-form Queries. In Proc. ICSE, pages 689�692,

2015.

[93] S Haiduc. Automatically Detecting the Quality of the Query and its Implications in IR-based Concept

Location. In Proc. ASE, pages 637�640, 2011.

[94] S. Haiduc and A. Marcus. On the Use of Domain Terms in Source Code. In Proc. ICPC, pages 113�122,

2008.

[95] S Haiduc and A Marcus. On the E�ect of the Query in IR-based Concept Location. In Proc. ICPC,

pages 234�237, jun 2011.

[96] S Haiduc, G Bavota, R Oliveto, A De Lucia, and A Marcus. Automatic Query Performance Assessment

During the Retrieval of Software Artifacts. In Proc. ASE, pages 90�99, 2012.

[97] S Haiduc, G Bavota, R Oliveto, A Marcus, and A De Lucia. Evaluating the Speci�city of Text Retrieval

Queries to Support Software Engineering Tasks. In Proc. ICSE, pages 1273�1276, 2012.

[98] S Haiduc, G Bavota, A Marcus, R Oliveto, A De Lucia, and T Menzies. Automatic Query Reformula-

tions for Text Retrieval in Software Engineering. In Proc. ICSE, pages 842�851, 2013.

[99] S Haiduc, G De Rosa, G Bavota, R Oliveto, A De Lucia, and A Marcus. Query Quality Prediction and

Reformulation for Source Code Search: the Refoqus Tool. In Proc. ICSE, pages 1307�1310, 2013.

[100] Z Harris. Mathematical Structures in Language Contents. 1968.

[101] S Hassan, R Mihalcea, and C Banea. Random-Walk Term Weighting for Improved Text Classi�cation.

In Proc. ICSC, pages 242�249, 2007.

[102] V. J. Hellendoorn and P. Devanbu. Are deep neural networks the best choice for modeling source code?

In Proc. ESEC/FSE, pages 763�773, 2017.

[103] K. Herzig and A. Zeller. The impact of tangled code changes. In Proc. MSR, pages 121�130, 2013.

[104] E Hill, L Pollock, and K Vijay-Shanker. Automatically Capturing Source Code Context of NL-queries

for Software Maintenance and Reuse. In Proc. ICSE, pages 232�242, 2009.

227

[105] E Hill, L Pollock, and K Vijay-Shanker. Improving Source Code Search with Natural Language Phrasal

Representations of Method Signatures. In Proc. ASE, pages 524�527, 2011.

[106] E Hill, S Rao, and A Kak. On the Use of Stemming for Concern Location and Bug Localization in

Java. In Proc. SCAM, pages 184�193, 2012.

[107] R Holmes and G C Murphy. Using Structural Context to Recommend Source Code Examples. In Proc.

ICSE, pages 117�125, 2005.

[108] B. Hopkins and J. G. Skellam. A new method for determining the type of distribution of plant indi-

viduals. Annals of Botany, 18(70):213�227, 1954.

[109] M J Howard, S Gupta, L Pollock, and K Vijay-Shanker. Automatically Mining Software-based,

Semantically-Similar Words from Comment-Code Mappings. In Proc. MSR, pages 377�386, 2013.

[110] Q. Huang, Y. Yang, X. Wang, H. Wan, R. Wang, and G. Wu. Query expansion via intent predicting.

IJSEKE, 27(09n10):1591�1601, 2017.

[111] Q. Huang, Y. Yang, X. Zhan, H. Wan, and G. Wu. Query expansion based on statistical learning from

code changes. SPE, 48(7):1333�1351, 2018.

[112] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf.

Syst., 20(4):422�446, 2002.

[113] Otto Jespersen. The Philosophy of Grammar. 1929.

[114] K. S. Jones. A statistical interpretation of term speci�city and its application in retrieval. J. Doc., 28

(1):11�21, 1972.

[115] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for e�cient text

classi�cation. arXiv preprint arXiv:1607.01759, 2016.

[116] T Kaneishi and T Dohi. Parametric Bootstrapping for Assessing Software Reliability Measures. In

Proc. PRDC, pages 1�9, 2011.

[117] I. Keivanloo and J. Rilling. Internet-scale java source code data set, 2011. URL http://aseg.cs.

concordia.ca/codesearch/#IJaDataSet.

[118] I. Keivanloo, J. Rilling, and Y. Zou. Spotting working code examples. In Proc. ICSE, pages 664�675,

2014.

[119] D. Kelly and J. Teevan. Implicit feedback for inferring user preference: A bibliography. SIGIR Forum,

37(2):18�28, 2003.

228

http://aseg.cs.concordia.ca/codesearch/#IJaDataSet
http://aseg.cs.concordia.ca/codesearch/#IJaDataSet

[120] K Kevic and T Fritz. Automatic Search Term Identi�cation for Change Tasks. In Proc. ICSE, pages

468�471, 2014.

[121] K Kevic and T Fritz. A Dictionary to Translate Change Tasks to Source Code. In Proc. MSR, pages

320�323, 2014.

[122] D Kim, Y Tao, S Kim, and A Zeller. Where Should We Fix This Bug? A Two-Phase Recommendation

Model. TSE, 39(11):1597�1610, 2013.

[123] M. Kim and E. Lee. Are information retrieval-based bug localization techniques trustworthy? In Proc.

ICSE, pages 248�249, 2018.

[124] M. Kimmig, M. Monperrus, and M. Mezini. Querying source code with natural language. In Proc.

ASE, pages 376�379, 2011.

[125] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. An exploratory study of how

developers seek, relate, and collect relevant information during software maintenance tasks. TSE, 32

(12):971�987, 2006.

[126] P. S. Kochhar, Y. Tian, and D. Lo. Potential biases in bug localization: Do they matter? In Proc.

ASE, pages 803�814, 2014.

[127] G. Kumaran and V. R. Carvalho. Reducing long queries using query quality predictors. In Proc. SIGIR,

pages 564�571, 2009.

[128] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Bug localization with combination of

deep learning and information retrieval. In Proc. ICPC, pages 218�229, 2017.

[129] R. Lapeña, J. Font, F. Pérez, and C. Cetina. Improving feature location by transforming the query

from natural language into requirements. In Proc. SPLC, pages 362�369, 2016.

[130] Tien-Duy B Le, R J Oentaryo, and D Lo. Information Retrieval and Spectrum Based Bug Localization:

Better Together. In Proc. ESEC/FSE, pages 579�590, 2015.

[131] Vu Le, Sumit Gulwani, and Zhendong Su. Smartsynth: Synthesizing smartphone automation scripts

from natural language. In Proc. MobiSys, pages 193�206, 2013.

[132] O. A. L. Lemos, S. K. Bajracharya, J. Ossher, R. S. Morla, P. C. Masiero, P. Baldi, and C. V. Lopes.

Codegenie: Using test-cases to search and reuse source code. In Proc. ASE, pages 525�526, 2007.

[133] O. A. L. Lemos, S. Bajracharya, J. Ossher, P. C. Masiero, and C. Lopes. A test-driven approach to

code search and its application to the reuse of auxiliary functionality. IST, 53(4):294 � 306, 2011.

[134] O. A. L. Lemos, A. C. de Paula, F. C. Zanichelli, and C. V. Lopes. Thesaurus-based automatic query

expansion for interface-driven code search. In Proc. MSR, pages 212�221, 2014.

229

[135] O. A. L. Lemos, A. C. de Paula, H. Sajnani, and C. V. Lopes. Can the use of types and query expansion

help improve large-scale code search? In Proc. SCAM, pages 41�50, 2015.

[136] Z. Li, T. Wang, Y. Zhang, Y. Zhan, and G. Yin. Query reformulation by leveraging crowd wisdom for

scenario-based software search. In Proc. Internetware, pages 36�44, 2016.

[137] J. Lin and G. C. Murray. Assessing the term independence assumption in blind relevance feedback. In

Proc. SIGIR, pages 635�636, 2005.

[138] J. Lin, Y. Liu, J. Guo, J. Cleland-Huang, W. Goss, W. Liu, S. Lohar, N. Monaikul, and A. Rasin. Tiqi:

A natural language interface for querying software project data. In Proc. ASE, pages 973�977, 2017.

[139] Z. Lin, Y. Zou, J. Zhao, and B. Xie. Improving software text retrieval using conceptual knowledge in

source code. In Proc. ASE, pages 123�134, 2017.

[140] M Linares-Vásquez, G Bavota, M Di Penta, R Oliveto, and D Poshyvanyk. How Do API Changes

Trigger Stack Over�ow Discussions? A Study on the Android SDK. In Proc. ICPC, pages 83�94, 2014.

[141] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi. Sourcerer: mining and searching

internet-scale software repositories. Data Mining and Knowledge Discovery, 18(2):300�336, 2009.

[142] D Liu, A Marcus, D Poshyvanyk, and V Rajlich. Feature Location via Information Retrieval Based

Filtering of a Single Scenario Execution Trace. In Proc. ASE, pages 234�243, 2007.

[143] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi. UCI source code data sets, 2010. URL http:

//www.ics.uci.edu/~lopes/datasets/.

[144] Meili Lu, X. Sun, S. Wang, D. Lo, and Yucong Duan. Query expansion via wordnet for e�ective code

search. In Proc. SANER, pages 545�549, 2015.

[145] X Allan Lu and Robert B Keefer. Query expansion / reduction and its impact on retrieval e�ectiveness.

In Proc. TREC, pages 1�9, 1995.

[146] A. D. Lucia, R. Oliveto, and P. Sgueglia. Incremental approach and user feedbacks: a silver bullet for

traceability recovery. In Proc. ICSM, pages 299�309, 2006.

[147] F. Lv, H. Zhang, J. Lou, S. Wang, D. Zhang, and J. Zhao. Codehow: E�ective code search based on

api understanding and extended boolean model. In Proc. ASE, pages 260�270, 2015.

[148] L Mamykina, B Manoim, M Mittal, G Hripcsak, and B Hartmann. Design Lessons from the Fastest Q

& A Site in the West. In Proc. CHI, pages 2857�2866, 2011.

[149] A Marcus and S Haiduc. Text Retrieval Approaches for Concept Location in Source Code. In Software

Engineering, volume 7171, pages 126�158. 2013.

230

http://www.ics.uci.edu/~lopes/datasets/
http://www.ics.uci.edu/~lopes/datasets/

[150] A Marcus, A Sergeyev, V Rajlich, and J I Maletic. An Information Retrieval Approach to Concept

Location in Source Code. In Proc. WCRE, pages 214�223, 2004.

[151] L. Martie, T. D. LaToza, and A. v. d. Hoek. Codeexchange: Supporting reformulation of internet-scale

code queries in context (t). In Proc. ASE, pages 24�35, 2015.

[152] C McMillan, M Grechanik, D Poshyvanyk, Q Xie, and C Fu. Portfolio: Finding Relevant Functions

and their Usage. In Proc. ICSE, pages 111�120, 2011.

[153] R Mihalcea and P Tarau. TextRank: Bringing Order into Texts. In Proc. EMNLP, pages 404�411,

2004.

[154] R Mihalcea, P Tarau, and E Figa. PageRank on Semantic Networks, with Application to Word Sense

Disambiguation. In Proc. COLING, 2004.

[155] T. Mikolov, K. Chen, G. Corrado, and J. Dean. E�cient estimation of word representations in vector

space. CoRR, abs/1301.3781, 2013.

[156] T Mikolov, I Sutskever, K Chen, G S Corrado, and J Dean. Distributed Representations of Words and

Phrases and their Compositionality. In Proc. NIPS, pages 3111�3119, 2013.

[157] George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39�41, 1995.

[158] C. Mills, G. Bavota, S. Haiduc, R. Oliveto, A. Marcus, and A. D. Lucia. Predicting query quality for

applications of text retrieval to software engineering tasks. TOSEM, 26(1):3:1�3:45, 2017.

[159] C. Mills, J. Pantiuchina, E. Parra, G. Bavota, and S. Haiduc. Are bug reports enough for text retrieval-

based bug localization? In Proc. ICSME, pages 381�392, 2018.

[160] A. Mondal, M. M. Rahman, and C. K. Roy. Embedded Emotion-based Classi�cation of Stack Over�ow

Questions Towards the Question Quality Prediction. In Proc. SEKE, pages 521�526, 2016.

[161] S. Mondal, M. M. Rahman, and C. K. Roy. Can issues reported at stack over�ow questions be repro-

duced? an exploratory study. In Proc. MSR, page 11, 2019.

[162] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and D. Poshyvanyk. Automatically

discovering, reporting and reproducing android application crashes. In Proc. ICST, pages 33�44, 2016.

[163] L. Moreno, J. J. Treadway, A. Marcus, and W. Shen. On the use of stack traces to improve text

retrieval-based bug localization. In Proc. ICSME, pages 151�160, 2014.

[164] L Moreno, G Bavota, S Haiduc, M Di Penta, R Oliveto, B Russo, and A Marcus. Query-based

Con�guration of Text Retrieval Solutions for Software Engineering Tasks. In Proc. ESEC/FSE, pages

567�578, 2015.

231

[165] D Mujumdar, M Kallenbach, B Liu, and B Hartmann. Crowdsourcing Suggestions to Programming

Problems for Dynamic Web Development Languages. In Proc. CHI, pages 1525�1530, 2011.

[166] K. Nakasai, M. Tsunoda, and H. Hata. Web search behaviors for software development. In Proc.

CHASE, pages 125�128, 2016.

[167] A T Nguyen, T T Nguyen, J Al-Kofahi, H V Nguyen, and T N Nguyen. A Topic-based Approach for

Narrowing the Search Space of Buggy Files from a Bug Report. In Proc. ASE, pages 263�272, 2011.

[168] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li. Query expansion based on crowd knowledge for code

search. TSC, 9(5):771�783, 2016.

[169] F. J. Ortega, C. Macdonald, J. A. Troyano, and F. Cruz. Spam detection with a content-based random-

walk algorithm. In Proc. SMUC, pages 45�52, 2010.

[170] C Parnin and A Orso. Are Automated Debugging Techniques Actually Helping Programmers? In

Proc. ISSTA, pages 199�209, 2011.

[171] C Parnin and C Treude. Measuring API Documentation on the Web. In Proc. Web2SE, pages 25�30,

2011.

[172] F. Perez, J. Font, L. Arcega, and C. Cetina. Automatic query reformulations for feature location in a

model-based family of software products. Data & Knowledge Engineering, 116:159 � 176, 2018.

[173] N Pingclasai, H Hata, and K i. Matsumoto. Classifying Bug Reports to Bugs and Other Requests

Using Topic Modeling. In Proc. APSEC, volume 2, pages 13�18, 2013.

[174] R. Polikar. Ensemble based systems in decision making. Proc. MCAS, 6(3):21�45, 2006.

[175] L Ponzanelli, A Bacchelli, and M Lanza. Seahawk: Stack Over�ow in the IDE. In Proc. ICSE, pages

1295�1298, 2013.

[176] L Ponzanelli, G Bavota, M D Penta, R Oliveto, and M Lanza. Prompter: A Self-Con�dent Recom-

mender System. In Proc. ICSME, pages 577�580, 2014.

[177] L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton. Improving Low Quality Stack

Over�ow Post Detection. In Proc. ICSME, pages 541�544, 2014.

[178] D Poshyvanyk and A Marcus. Combining Formal Concept Analysis with Information Retrieval for

Concept Location in Source Code. In Proc. ICPC, pages 37�48, 2007.

[179] D Poshyvanyk, Y G Gueheneuc, A Marcus, G Antoniol, and V Rajlich. Feature Location Using

Probabilistic Ranking of Methods Based on Execution Scenarios and Information Retrieval. TSE, 33

(6):420�432, 2007.

232

[180] R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.

[181] M. Raghothaman, Y. Wei, and Y. Hamadi. Swim: Synthesizing what i mean: Code search and idiomatic

snippet synthesis. In Proc. ICSE, pages 357�367, 2016.

[182] M. M. Rahman. Supporting code search with context-aware, analytics-driven, e�ective query reformu-

lation. In Proc. ICSE-C, page 4, 2019.

[183] M. M. Rahman and C. K. Roy. Surfclipse: Context-aware meta-search in the ide. In Proc. ICSME,

pages 617�620, 2014.

[184] M. M. Rahman and C. K. Roy. On the use of context in recommending exception handling code

examples. In Proc. SCAM, pages 285�294, 2014.

[185] M. M. Rahman and C. K. Roy. Recommending relevant sections from a webpage about programming

errors and exceptions. In Proc. CASCON, pages 181�190, 2015.

[186] M. M. Rahman and C. K. Roy. An insight into the unresolved questions at stack over�ow. In Proc.

MSR, pages 426�429, 2015.

[187] M M Rahman and C K Roy. TextRank Based Search Term Identi�cation for Software Change Tasks.

In Proc. SANER, pages 540�544, 2015.

[188] M M Rahman and C K Roy. QUICKAR: Automatic Query Reformulation for Concept Location Using

Crowdsourced Knowledge. In Proc. ASE, pages 220�225, 2016.

[189] M M Rahman and C K Roy. Improved Query Reformulation for Concept Location using CodeRank

and Document Structures. In Proc. ASE, pages 428�439, 2017.

[190] M. M. Rahman and C. K. Roy. Impact of continuous integration on code reviews. In Proc. MSR, pages

499�502, 2017.

[191] M M Rahman and C K Roy. STRICT: Information Retrieval Based Search Term Identi�cation for

Concept Location. In Proc. SANER, pages 79�90, 2017.

[192] M. M. Rahman and C. K. Roy. Improving ir-based bug localization with context-aware query reformu-

lation. In Proc. ESEC/FSE, pages 621�632, 2018.

[193] M. M. Rahman and C. K. Roy. Improving bug localization with report quality dynamics and query

reformulation. In Proc. ICSE-C, pages 348�349, 2018.

[194] M. M. Rahman and C. K. Roy. E�ective reformulation of query for code search using crowdsourced

knowledge and extra-large data analytics. In Proc. ICSME, pages 516�527, 2018.

233

[195] M. M. Rahman and C. K. Roy. Nlp2api: Query reformulation for code search using crowdsourced

knowledge and extra-large data analytics. In Proc. ICSME, page 714, 2018.

[196] M. M. Rahman and Chanchal K. Roy. An insight into the pull requests of github. In Proc. MSR, pages

364�367.

[197] M. M. Rahman, S. Yeasmin, and C. K. Roy. An ide-based context-aware meta search engine. In Proc.

WCRE, pages 467�471, 2013.

[198] M M Rahman, S Yeasmin, and C K Roy. Towards a Context-Aware IDE-Based Meta Search Engine for

Recommendation about Programming Errors and Exceptions. In Proc. CSMR-WCRE, pages 194�203,

2014.

[199] M. M. Rahman, C. K. Roy, and I. Keivanloo. Recommending Insightful Comments for Source Code

using Crowdsourced Knowledge. In Proc. SCAM, pages 81�90, 2015.

[200] M M Rahman, C K Roy, and J Collins. CORRECT: Code Reviewer Recommendation Based on

Cross-Project and Technology Experience. In Proc. ICSE, page to appear, 2016.

[201] M M Rahman, C K Roy, and D Lo. RACK: Automatic API Recommendation using Crowdsourced

Knowledge. In Proc. SANER, pages 349�359, 2016.

[202] M. M. Rahman, C. K. Roy, J Redl, and J. Collins. CORRECT: Code Reviewer Recommendation at

GitHub for Vendasta Technologies. In Proc. ASE, pages 792�797, 2016.

[203] M. M. Rahman, C. K. Roy, and R. G. Kula. Predicting usefulness of code review comments using

textual features and developer experience. In Proc. MSR, pages 215�226, 2017.

[204] M. M. Rahman, C. K. Roy, and D. Lo. Rack: Code search in the ide using crowdsourced knowledge.

In Proc. ICSE-C, pages 51�54, 2017.

[205] M. M. Rahman, J. Barson, S. Paul, J. Kayani, F. A. Lois, S. F. Quezada, C. Parnin, K T. Stolee, and

Baishakhi Ray. Evaluating how developers use general-purpose web-search for code retrieval. In Proc.

MSR, page 10, 2018.

[206] M. M. Rahman, C. K. Roy, and D. Lo. Automatic query reformulation for code search using crowd-

sourced knowledge. EMSE, page 56, 2018.

[207] S Rao and A Kak. Retrieval from Software Libraries for Bug Localization: A Comparative Study of

Generic and Composite Text Models. In Proc. MSR, pages 43�52, 2011.

[208] S Rastkar, G C Murphy, and G Murray. Summarizing Software Artifacts: A Case Study of Bug Reports.

In Proc. ICSE, pages 505�514, 2010.

234

[209] Steven P. Reiss. Semantics-based code search. In Proc. ICSE, pages 243�253, 2009.

[210] M. Revelle, B. Dit, and D. Poshyvanyk. Using data fusion and web mining to support feature location

in software. In Proc. ICPC, pages 14�23, 2010.

[211] P C Rigby and M P Robillard. Discovering Essential Code Elements in Informal Documentation. In

Proc. ICSE, pages 832�841, 2013.

[212] S. E. Robertson. On term selection for query expansion. J. Doc., 46(4):359�364, 1991.

[213] J J Rocchio. The SMART Retrieval System�Experiments in Automatic Document Processing. Prentice-

Hall, Inc.

[214] Lior Rokach. Ensemble-based classi�ers. JAIR, 33(1):1�39, 2010.

[215] M. Roldan-Vega, G. Mallet, E. Hill, and J. A. Fails. Conquer: A tool for nl-based query re�nement

and contextualizing code search results. In Proc. ICSM, pages 512�515, 2013.

[216] J. Romano, J.D. Kromrey, J. Coraggio, and J. Skowronek. Appropriate statistics for ordinal level data:

Should we really be using t-test and Cohen'sd for evaluating group di�erences on the NSSE and other

surveys? In Annual meeting of the Florida Association of Institutional Research, pages 1�3, 2006.

[217] F. Rousseau and M. Vazirgiannis. Main core retention on graph-of-words for single-document keyword

extraction. In Proc. ECIR, pages 382�393, 2015.

[218] C K Roy and J R Cordy. NICAD: Accurate Detection of Near-Miss Intentional Clones Using Flexible

Pretty-Printing and Code Normalization. In Proc. ICPC, pages 172�181, 2008.

[219] C. Sadowski, K. T. Stolee, and S. Elbaum. How developers search for code: A case study. In Proc.

ESEC/FSE, pages 191�201, 2015.

[220] R K Saha, M Lease, S Khurshid, and D E Perry. Improving Bug Localization using Structured Infor-

mation Retrieval. In Proc. ASE, pages 345�355, 2013.

[221] R. K. Saha, J. Lawall, S. Khurshid, and D. E. Perry. On the e�ectiveness of information retrieval based

bug localization for c programs. In Proc. ICSME, pages 161�170, 2014.

[222] G. Salton and C. Buckley. Readings in information retrieval. chapter Improving Retrieval Performance

by Relevance Feedback, pages 355�364. 1997.

[223] A. Satter and K. Sakib. A search log mining based query expansion technique to improve e�ectiveness

in code search. In Proc. ICCIT, pages 586�591, 2016.

[224] T Savage, M Revelle, and D Poshyvanyk. FLAT3: Feature Location and Textual Tracing Tool. In

Proc. ICSE, pages 255�258, 2010.

235

[225] G Scanniello and A Marcus. Clustering Support for Static Concept Location in Source Code. In Proc.

ICPC, pages 1�10, 2011.

[226] D Shepherd, Z P Fry, E Hill, L Pollock, and K Vijay-Shanker. Using Natural Language Program

Analysis to Locate and Understand Action-Oriented Concerns. In Proc. ASOD, pages 212�224, 2007.

[227] Z Shi, J Keung, and Q Song. An Empirical Study of BM25 and BM25F Based Feature Location

Techniques. In Proc. InnoSWDev, pages 106�114, 2014.

[228] A. Shtok, O. Kurland, D. Carmel, F. Raiber, and G. Markovits. Predicting query performance by

query-drift estimation. TOIS, 30(2):11:1�11:35, 2012.

[229] R. Sirres, T. F. Bissyandé, D. Kim, D. Lo, J. Klein, K. Kim, and Y. L. Traon. Augmenting and

structuring user queries to support e�cient free-form code search. EMSE, pages 2622�2654, 2018.

[230] B Sisman and A C Kak. Incorporating Version Histories in Information Retrieval Based Bug Localiza-

tion. In Proc. MSR, pages 50�59, 2012.

[231] B Sisman and A C Kak. Assisting Code Search with Automatic Query Reformulation for Bug Local-

ization. In Proc. MSR, pages 309�318, 2013.

[232] B. Sisman, S. A. Akbar, and A. C. Kak. Exploiting spatial code proximity and order for improved

source code retrieval for bug localization. JSEP, 29(1):e1805, 2017.

[233] G Sridhara, E Hill, L Pollock, and K Vijay-Shanker. Identifying Word Relations in Software: A

Comparative Study of Semantic Similarity Tools. In Proc. ICPC, pages 123�132, 2008.

[234] K. T. Stolee, S. Elbaum, and M. B. Dwyer. Code search with input/output queries: Generalizing,

ranking, and assessment. JSS, 116(C):35�48, 2016.

[235] J. Svajlenko and C. K. Roy. Fast, scalable and user-guided clone detection. In Proc. ICSE-C, pages

352�353, 2018.

[236] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia. Towards a big data curated

benchmark of inter-project code clones. In Proc. ICSME, pages 476�480, 2014.

[237] M Tan, L Tan, S Dara, and C Mayeux. Online Defect Prediction for Imbalanced Data. In Proc. ICSE,

volume 2, pages 99�108, 2015.

[238] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin. Learning sentiment-speci�c word embedding

for twitter sentiment classi�cation. In Proc. ACL, pages 1555�1565, 2014.

[239] P Thongtanunam, R G Kula, N Yoshida, H Iida, and K Matsumoto. Who Should Review My Code?

In Proc. SANER, pages 141�150, 2015.

236

[240] S Thummalapenta and T Xie. Parseweb: A Programmer Assistant for Reusing Open Source Code on

the Web. In Proc. ASE, pages 204�213, 2007.

[241] F Thung, D Lo, and L Jiang. Automatic Defect Categorization. In Proc. WCRE, pages 205�214, 2012.

[242] F Thung, D Lo, and J Lawall. Automated Library Recommendation. In Proc. WCRE, pages 182�191,

2013.

[243] F Thung, S Wang, D Lo, and J Lawall. Automatic Recommendation of API Methods from Feature

Requests. In Proc. ASE, pages 290�300, 2013.

[244] K Toutanova, D Klein, C D Manning, and Y Singer. Feature-Rich Part-of-Speech Tagging with a

Cyclic Dependency Network. In Proc. HLT-NAACL, pages 252�259, 2003.

[245] Y. Uneno, O. Mizuno, and E. H. Choi. Using a distributed representation of words in localizing relevant

�les for bug reports. In Proc. QRS, pages 183�190, 2016.

[246] C Vassallo, S Panichella, M Di Penta, and G Canfora. CODES: Mining Source Code Descriptions from

Developers Discussions. In Proc. ICPC, pages 106�109, 2014.

[247] I Vessey. Expertise in Debugging Computer Programs: An Analysis of the Content of Verbal Protocols.

TSMC, 16(5):621�637, 1986.

[248] Q Wang, C Parnin, and A Orso. Evaluating the Usefulness of IR-based Fault Localization Techniques.

In Proc. ISSTA, pages 1�11, 2015.

[249] S Wang and D Lo. Version History, Similar Report, and Structure: Putting Them Together for Improved

Bug Localization. In Proc. ICPC, pages 53�63, 2014.

[250] S. Wang and D. Lo. Amalgam+: Composing rich information sources for accurate bug localization.

JSEP, 28(10):921�942, 2016.

[251] S. Wang, D. Lo, and L. Jiang. Active code search: Incorporating user feedback to improve code search

relevance. In Proc. ASE, pages 677�682, 2014.

[252] S. Wang, D. Lo, and L. Jiang. Autoquery: automatic construction of dependency queries for code

search. ASE, 23(3):393�425, Sep 2016.

[253] Y. Wang, L. Wang, Y. Li, D. He, and T. Liu. A theoretical analysis of NDCG type ranking measures.

In Proc. COLT, pages 25�54, 2013.

[254] F W Warr and M P Robillard. Suade: Topology-Based Searches for Software Investigation. In Proc.

ICSE, pages 780�783, 2007.

237

[255] M Wen, R Wu, and S C Cheung. Locus: Locating bugs from software changes. In Proc. ASE, pages

262�273, 2016.

[256] M. White, M. Linares-Vásquez, P. Johnson, C. Bernal-Cárdenas, and D. Poshyvanyk. Generating

reproducible and replayable bug reports from android application crashes. In Proc. ICPC, pages 48�59,

2015.

[257] L A Wilson. Using Ontology Fragments in Concept Location. In Proc. ICSM, pages 1�2, 2010.

[258] C P Wong, Y Xiong, H Zhang, D Hao, L Zhang, and H Mei. Boosting Bug-Report-Oriented Fault

Localization with Segmentation and Stack-Trace Analysis. In Proc. ICSME, pages 181�190, 2014.

[259] E Wong, J Yang, and L Tan. AutoComment: Mining Question and Answer sites for Automatic

Comment Generation. In Proc. ASE, pages 562�567, 2013.

[260] R. Wu, H. Zhang, S. Kim, and S. Cheung. Relink: Recovering links between bugs and changes. In

Proc. ESEC/FSE, pages 15�25, 2011.

[261] M. Wursch, G. Ghezzi, G. Reif, and H. C. Gall. Supporting developers with natural language queries.

In Proc. ICSE, pages 165�174, 2010.

[262] X. Xia, L. Bao, D. Lo, and S. Li. �automated debugging considered harmful" considered harmful:

A user study revisiting the usefulness of spectra-based fault localization techniques with professionals

using real bugs from large systems. In Proc. ICSME, pages 267�278, 2016.

[263] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing. What do developers search for on

the web? EMSE, 22(6):3149�3185, 2017.

[264] T Xie and J Pei. MAPO: Mining API Usages from Open Source Repositories. In Proc. MSR, pages

54�57, 2006.

[265] J Yang and L Tan. Inferring Semantically Related Words from Software Context. In Proc. MSR, pages

161�170, 2012.

[266] J. Yang and L. Tan. Swordnet: Inferring semantically related words from software context. EMSE, 19

(6):1856�1886, 2014.

[267] J. Yao, B. Cui, L. Hua, and Y. Huang. Keyword Query Reformulation on Structured Data. In Proc.

ICDE, pages 953�964, 2012.

[268] X Ye, H Shen, X Ma, R Bunescu, and C Liu. From Word Embeddings to Document Similarities for

Improved Information Retrieval in Software Engineering. In Proc. ICSE, pages 404�415, 2016.

[269] Xin Ye, Razvan Bunescu, and Chang Liu. Learning to rank relevant �les for bug reports using domain

knowledge. In Proc. FSE, pages 689�699, 2014.

238

[270] K C Youm, J Ahn, J Kim, and E Lee. Bug Localization Based on Code Change Histories and Bug

Reports. In Proc. APSEC, pages 190�197, 2015.

[271] H. Yu, W. Song, and T. Mine. Apibook: An e�ective approach for �nding apis. In Proc. Internetware,

pages 45�53, 2016.

[272] T Yuan, D Lo, and J Lawall. Automated Construction of a Software-Speci�c Word Similarity Database.

In Proc. CSMR-WCRE, pages 44�53, 2014.

[273] S. Zamani, S. Peck Lee, R. Shokripour, and J. Anvik. A noun-based approach to feature location using

time-aware term-weighting. IST, 56(8):991 � 1011, 2014.

[274] F. Zhang, H. Niu, I. Keivanloo, and Y. Zou. Expanding queries for code search using semantically

related api class-names. TSE, 44(11):1070�1082, 2018.

[275] Y. Zhang, W. Zhang, J. Pei, X. Lin, Q. Lin, and A. Li. Consensus-based ranking of multivalued objects:

A generalized borda count approach. TKDE, 26(1):83�96, 2014.

[276] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be �xed? more accurate information retrieval-

based bug localization based on bug reports. In Proc. ICSE, pages 14�24, 2012.

[277] Y Zhou, Y Tong, R Gu, and H Gall. Combining Text Mining and Data Mining for Bug Report

Classi�cation. In Proc. ICSME, pages 311�320, 2014.

[278] T Zimmermann, N Nagappan, and A Zeller. Predicting Bugs from History. In Software Evolution,

pages 69�88. Springer, 2008.

239

Appendix A

Replication Packages

A.1 STRICT

It accepts a change request as a query, identi�es suitable keywords from the request texts using graph-based
term weighting algorithms, and then delivers an improved, reformulated query for concept location.

• Project website: http://www.usask.ca/∼mor543/strict

• GitHub repository: https://github.com/masud-technope/STRICT-Replication-Package

A.2 ACER

It accepts a given query as input, identi�es complementary keywords from the relevant source code docu-
ments (retrieved by the query) using a graph-based term weighting method, and then delivers an improved,
reformulated search query for concept location.

• Project website: http://www.usask.ca/∼mor543/acer

• GitHub repository: https://github.com/masud-technope/ACER-Replication-Package-ASE2017

A.3 BLIZZARD

It accepts a bug report as a query, employs appropriate methodologies or algorithms for keyword selection
from the report texts based on the quality of report (e.g., noisy, poor), and then delivers an improved,
reformulated search query for bug localization.

• Project website: http://www.usask.ca/∼mor543/blizzard

• GitHub repository: https://github.com/masud-technope/BLIZZARD-Replication-Package-ESEC-
FSE2018

• ACM archive: https://dl.acm.org/citation.cfm?id=3277001

A.4 BLADER

It accepts a poor bug report as a query, identi�es complementary keywords from the relevant source code
documents based on the clustering tendency between the query and the candidate keywords, and then delivers
an improved, reformulated search query for the bug localization.

• GitHub repository: https://github.com/masud-technope/BLADER-ICSE2019-Replication-Package

A.5 RACK

It accepts a free-form search query on a programming task, expands the query with relevant API classes that
are carefully mined from the crowd generated knowledge of Stack Over�ow Q&A site, and then delivers an
improved, reformulated query for Internet-scale code search.

• Project website: http://www.usask.ca/∼mor543/rack

• GitHub repository: https://github.com/masud-technope/RACK-Replication-Package

• Tool demonstration: https://youtu.be/50Fbx8g5eXk

240

http://www.usask.ca/~mor543/strict
https://github.com/masud-technope/STRICT-Replication-Package
http://www.usask.ca/~mor543/acer
https://github.com/masud-technope/ACER-Replication-Package-ASE2017
http://www.usask.ca/~mor543/blizzard
https://github.com/masud-technope/BLIZZARD-Replication-Package-ESEC-FSE2018
https://github.com/masud-technope/BLIZZARD-Replication-Package-ESEC-FSE2018
https://dl.acm.org/citation.cfm?id=3277001
https://github.com/masud-technope/BLADER-ICSE2019-Replication-Package
http://www.usask.ca/~mor543/rack
https://github.com/masud-technope/RACK-Replication-Package
https://youtu.be/50Fbx8g5eXk

A.6 NLP2API

It accepts a free-form search query on a programming task, expands the query with relevant API classes
that are carefully collected based on query-API semantic distance analysis, and the delivers an improved,
reformulated query for Internet-scale code search.

• Project website: http://www.usask.ca/∼mor543/nlp2api

• GitHub repository: https://github.com/masud-technope/NLP2API-Replication-Package

A.7 Other PhD Projects

• Other completed PhD projects & associated materials

241

http://www.usask.ca/~mor543/nlp2api
https://github.com/masud-technope/NLP2API-Replication-Package
http://www.usask.ca/~mor543/tools

Appendix B

BugDoctor

We present six studies � STRICT (Chapter 3), ACER (Chapter 4), BLIZZARD (Chapter 5), BLADER
(Chapter 6), RACK (Chapter 7) and NLP2API (Chapter 8)� that support the software developers in various
code searches with automated query reformulations. Although each of these studies has produced individual
tool with command line user interfaces, we further combine them, and package them into a single Eclipse
IDE plug-in namely BugDoctor. The plug-in can be downloaded, installed and easily integrated into the
developer's work environment (e.g., IDE). In this appendix, we present the download link and several use
case scenarios (e.g., concept location, bug localization, Internet-scale code search) of our developed tool.

B.1 Download

The Eclipse plug-in and its dependencies can be downloaded from the BugDoctor website. Please consult
with the README �le for detailed installation guidelines. An overview on BugDoctor can also be found at
YouTube: https://www.youtube.com/watch?v=RPMBr0Ktxks.

B.2 Con�guration Setup

Once the plug-in is installed successfully, the default con�gurations (Fig. B.1) should be modi�ed. The
con�guration window can be found here: Window > Preferences >Ant > BugDoctor

Figure B.1: Setting up custom con�gurations for BugDoctor

242

http://homepage.usask.ca/~masud.rahman/bugdoctor/
https://www.youtube.com/watch?v=RPMBr0Ktxks

B.3 Enabling BugDoctor in the IDE

Figure B.2: Enabling BugDoctor with (a) main menu option and (b) context menu option

B.4 BugDoctor User Interfaces

BugDoctor has three di�erent windows: BugDoctor Dashboard (Fig. B.3), BugDoctor Utility Dashboard
(Fig. B.4), and Relevant Code Example Dashboard (Fig. B.5)

243

F
ig
u
re

B
.3
:
B
u
g
D
o
ct
o
r
D
a
sh
b
o
a
rd
:
(a
)
Q
u
er
y
ex
ec
u
ti
o
n
p
a
n
el
,
(b
)
B
u
g
re
p
o
rt

p
a
n
el
,
(c
)
Q
u
er
y
re
fo
rm

u
la
ti
o
n
p
a
n
el
,
a
n
d
(d
)
C
o
d
e
se
a
rc
h

re
su
lt
s
p
a
n
el

244

F
ig
u
re

B
.4
:
B
u
g
D
o
ct
o
r
U
ti
li
ty

D
a
sh
b
o
a
rd
:
(a
)
A
P
I
su
g
g
es
ti
o
n
&
q
u
er
y
ex
ec
u
ti
o
n
p
a
n
el
,
(b
)
Q
u
er
y
ex
p
a
n
si
o
n
p
a
n
el
,
a
n
d
(c
)
C
o
d
e
v
ie
w
er

245

F
ig
u
re

B
.5
:
C
o
d
e
E
x
a
m
p
le
D
a
sh
b
o
a
rd
:
(a
)
T
o
p
-K

re
le
va
n
t
co
d
e
ex
a
m
p
le
s,
a
n
d
(b
)
C
o
d
e
v
ie
w
er

246

B.5 Loading an Issue Report (e.g., Change Request, Bug Report)

F
ig
u
re

B
.6
:
L
o
a
d
in
g
o
f
a
n
is
su
e
re
p
o
rt
:
(1
)
C
li
ck

th
e
b
u
tt
o
n
,
(2
)
C
h
o
o
se

th
e
re
p
o
rt
,
a
n
d
(3
)
V
ie
w
th
e
re
p
o
rt

w
it
h
in

th
e
ID

E

247

B.6 Concept Location with BugDoctor

BugDoctor accepts a change request as a search query, improves it with either query reduction (Fig. B.7) or
query expansion B.9), and then �nds out the code that needs to be changed.

F
ig
u
re
B
.7
:
C
o
n
ce
p
t
lo
ca
ti
o
n
w
it
h
q
u
er
y
re
d
u
ct
io
n
:
(1
-2
)
O
p
en

a
ch
a
n
g
e
re
q
u
es
t,
i.
e.
,
g
iv
en

q
u
er
y,
(3
-4
)
K
ey
w
o
rd

su
g
g
es
ti
o
n
,

(5
-6
)
R
ed
u
ce
d
q
u
er
y,
(7
)
C
o
d
e
se
a
rc
h
,
a
n
d
(8
)
L
o
ca
te
d
co
n
ce
p
t
w
it
h
in

th
e
T
o
p
-1
0
re
su
lt
s

248

F
ig
u
re

B
.8
:
C
o
n
ce
p
t
lo
ca
ti
o
n
w
it
h
b
a
se
li
n
e
q
u
er
y
:
(1
-3
)
S
el
ec
ti
o
n
o
f
re
p
o
rt

ti
tl
e
a
s
a
b
a
se
li
n
e
q
u
er
y,
(4
)
C
o
d
e
se
a
rc
h
,
a
n
d
(5
)
C
o
n
ce
p
t
n
o
t

lo
ca
te
d
w
it
h
in

th
e
T
o
p
-1
0
re
su
lt
s

249

F
ig
u
re

B
.9
:
C
o
n
ce
p
t
lo
ca
ti
o
n
w
it
h
q
u
er
y
ex
p
an
si
o
n
:
(1
)
S
el
ec
ti
o
n
o
f
re
p
o
rt

ti
tl
e
a
s
a
g
iv
en

q
u
er
y,
(2
-3
)
Q
u
er
y
ex
p
a
n
si
o
n
,
(4
-5
)
E
x
p
a
n
d
ed

q
u
er
y,
(6
)
C
o
d
e
se
a
rc
h
,
a
n
d
(7
)
C
o
n
ce
p
t
lo
ca
te
d
w
it
h
in

th
e
T
o
p
-1
0
re
su
lt
s

250

B.7 Bug Localization with BugDoctor

BugDoctor accepts a bug report as a search query, improves it with either query reduction (Fig. B.10) or
query expansion, and then �nds out the buggy code that needs to be �xed.

F
ig
u
re

B
.1
0
:
B
u
g
lo
ca
li
za
ti
o
n
w
it
h
q
u
er
y
re
d
u
ct
io
n
:
(1
-2
)
O
p
en

a
b
u
g
re
p
o
rt
,
i.
e.
,
g
iv
en

q
u
er
y,
(3
-4
)
K
ey
w
o
rd

su
g
g
es
ti
o
n
,

(5
-6
)
R
ed
u
ce
d
q
u
er
y,
(7
)
C
o
d
e
se
a
rc
h
,
a
n
d
(8
)
L
o
ca
li
ze
d
b
u
g
g
y
cl
a
ss

a
s
th
e
to
p
m
o
st

re
su
lt
,
a
n
d
(9
)
A
n
a
ly
si
s
fo
r
b
u
g
�
x
in
g

251

B.8 Code Example Search with BugDoctor

BugDoctor accepts a programming task description as a search query, improves it using relevant API classes,
and then delivers the relevant code examples that implement the given task.

F
ig
u
re

B
.1
1
:
C
o
d
e
ex
a
m
p
le
se
a
rc
h
w
it
h
q
u
er
y
ex
p
a
n
si
o
n
:
(1
)
G
iv
en

p
ro
g
ra
m
m
in
g
ta
sk
,
i.
e.
,
g
iv
en

q
u
er
y,
(2
-3
)
R
el
ev
a
n
t
A
P
I

su
g
g
es
ti
o
n
,
(4
-5
)
E
x
p
a
n
d
ed

q
u
er
y,

(6
)
C
o
d
e
ex
a
m
p
le

se
a
rc
h
,
(7
)
R
et
ri
ev
ed

co
d
e
ex
a
m
p
le
,
(8
)
O
ri
g
in
a
l
co
d
e
lo
ca
ti
o
n
o
n
th
e

w
eb
,
a
n
d
(9
)
C
li
ck

th
e
b
u
tt
o
n
fo
r
T
o
p
-K

co
d
e
ex
a
m
p
le
s

252

F
ig
u
re

B
.1
2
:
R
el
ev
a
n
t
co
d
e
ex
a
m
p
le
s:

(1
)
T
o
p
-K

co
d
e
ex
a
m
p
le
s,
a
n
d
(2
)
C
o
d
e
ex
a
m
p
le
v
ie
w
er

253

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Problem Statement
	Our Contribution
	Concept Location
	Bug Localization
	Internet-scale Code Search

	Related Publications
	Outline of the Thesis

	Background
	Automated Query Reformulation
	Types of Query Reformulation
	Query Expansion
	Query Reduction
	Query Replacement

	Working Contexts of Query Reformulation
	Local Code Search
	Internet-Scale Code Search

	Steps of Automated Query Reformulation
	Query Feedback Collection
	Candidate Keyword Selection
	Reformulation of a Search Query

	Term Weighting
	TF-IDF
	TextRank & POSRank

	Implications of Automated Query Reformulation
	Benefits of Query Reformulation
	Costs of Query Reformulation

	Word Embeddings
	Cosine Similarity
	Summary

	Search Query Reformulation for Concept Location using Graph-Based Term Weighting
	Introduction
	Motivating Example
	STRICT: Automated Search Query Suggestion from a Change Request for Concept Location
	Data Collection
	Text Preprocessing
	Text Graph Development
	TextRank (TR) Calculation
	POSRank (POSR) Calculation
	Weighted K-Core Calculation
	Term Ranking and Candidate Query Selection
	Best Query Suggestion with Machine Learning
	A Working Example

	Experiment
	Experimental Dataset
	Search Engine
	Performance Metrics
	Evaluation of STRICT
	Comparison with Existing Techniques
	Evaluation of Working Prototype

	Threats to Validity
	Related Work
	Search Query Suggestion & Reformulation
	Code Search Algorithm

	Summary

	Search Query Reformulation for Concept Location using CodeRank and Source Document Structures
	Introduction
	ACER: Automated Query Reformulation with CodeRank and Document Structures for Concept Location
	Pseudo-relevance Feedback
	Source Token Selection for Query Reformulation
	Source Code Preprocessing
	Source Term Graph Development
	CodeRank Calculation
	Suggestion of the Best Query Reformulation

	Experiment
	Experimental Dataset
	Corpus Indexing & Source Code Search
	Performance Metrics
	Evaluation of ACER and CodeRank
	Comparison with Existing Approaches

	Threats to Validity
	Related Work
	Summary

	Search Query Reformulation for Bug Localization using Report Quality Dynamics & Graph-Based Term Weighting
	Introduction
	BLIZZARD: Automated Query Suggestion using Report Quality Dynamics and Term Weighting for Bug Localization
	Bug Report Classification
	Query Reformulation
	Bug Localization

	Experiment
	Experimental Dataset
	Performance Metrics
	Experimental Results
	Comparison with Existing Techniques

	Threats to Validity
	Related Work
	Summary

	Search Query Reformulation for Bug Localization using Word Semantics & Clustering Tendency Analysis
	Introduction
	Motivating Example
	BLADER: Automated Query Reformulation using Word Semantics & Clustering Tendency Analysis for Bug Localization
	Construction of a Semantic Hyperspace from Stack Overflow Q&A Threads
	Automated Search Query Reformulation with Semantic Hyperspace, Clustering Tendency & Machine Learning
	Bug Localization

	Experiment
	Experimental Dataset
	Performance Metrics
	Evaluation of BLADER
	Comparison with Existing Techniques

	Threats to Validity
	Related Work
	Summary

	Search Query Reformulation for Internet-scale Code Search using Crowdsourced Knowledge
	Introduction
	Exploratory Study
	Data Collection
	API Class Name Extraction
	Answering RQ1: Use of APIs in the accepted answers of Stack Overflow
	Answering RQ2: Coverage of API classes in the accepted answers from Stack Overflow Q & A site
	Answering RQ3: Presence of code search keywords in the title of questions from Stack Overflow

	RACK: Automated Query Reformulation for Internet-scale Code Search using Crowdsourced Knowledge
	Construction of NL Token-API Mapping Database
	API Relevance Ranking & Reformulation of the NL-Query

	Experiment
	Experimental Dataset
	Performance Metrics
	Evaluation Scenarios
	Statistical Significance Tests
	Matching of Suggested APIs with Goldset APIs
	Answering RQ4: How does the proposed technique perform in suggesting relevant APIs for a code search query?
	Answering RQ5: How effective are the proposed heuristics–KAC, KPAC and KKC– in capturing the relevant API classes for a query?
	Answering RQ6: Does an appropriate subset of the query keywords perform better than the whole query in retrieving the relevant API classes?
	Answering RQ7: How do the heuristic weights (i.e., ,) and threshold settings (i.e., ,) influence the performance of our technique?
	Answering RQ8: Can RACK outperform the state-of-the-art techniques in suggesting relevant API classes for a given set of queries?
	Answering RQ9: Can RACK significantly improve the natural language queries in terms of relevant code retrieval performance?
	Answering RQ10: Can RACK outperform the state-of-the-art techniques in improving the natural language queries intended for code search?
	Answering RQ11: How does RACK perform compared to the popular web search engines and code search engines?

	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Construct Validity
	Threats to Statistical Conclusion Validity

	Related Work
	API Recommendation
	API Usage Pattern Recommendation
	Query Reformulation for Code Search
	Crowdsourced Knowledge Mining

	Summary

	Search Query Reformulation for Internet-scale Code Search using Word Semantics
	Introduction
	NLP2API: Automated Query Reformulation using Word Semantics & Crowd Knowledge for Internet-scale Code Search
	Development of Candidate API Lists
	Borda Score Calculation
	Query-API Semantic Proximity Analysis
	API Class Relevance Ranking & Query Reformulation

	Experiment
	Experimental Dataset
	Performance Metrics
	Evaluation of NLP2API: Relevant API Class Suggestion
	Evaluation of NLP2API: Query Reformulation

	Threats to Validity
	Related Work-.1cm
	Summary

	Conclusion
	Concluding Remarks
	Future Work
	Promises of Keyword Selection Algorithms in IR-Based Bug Localization
	Promises of Genetic Algorithms in IR-Based Bug Localization
	Improving Term Weighting Algorithms with Useful Term Contexts
	Query Worsening Minimization
	Improving Pseudo-Relevance Feedback (PRF)
	Promises of PageRank in Term Weighting/Source Code Retrieval
	Word Embedding Technology in Query Reformulation/Code Search
	Promises of Stack Overflow in Query Reformulation/Code Search
	Word Embeddings Technology for Bug Understanding/Diagnosis
	Query Reformulation as a Feasible Choice for Improved Bug Localization

	Replication Packages
	STRICT
	ACER
	BLIZZARD
	BLADER
	RACK
	NLP2API
	Other PhD Projects

	BugDoctor
	Download
	Configuration Setup
	Enabling BugDoctor in the IDE
	BugDoctor User Interfaces
	Loading an Issue Report (e.g., Change Request, Bug Report)
	Concept Location with BugDoctor
	Bug Localization with BugDoctor
	Code Example Search with BugDoctor

