SUPPORTING SOURCE CODE SEARCH WITH CONTEXT-AWARE

AND SEMANTICS-DRIVEN QUERY REFORMULATION

A Thesis Submitted to the
College of Graduate and Postdoctoral Studies
in Partial Fulfillment of the Requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science
University of Saskatchewan

Saskatoon

By

Mohammad Masudur Rahman

(©Mohammad Masudur Rahman, September/2019. All rights reserved.

PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the
University of Saskatchewan, I agree that the Libraries of this University may make it freely available for
inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for
scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their
absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is
understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not
be allowed without my written permission. It is also understood that due recognition shall be given to me
and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should be

addressed to:

Head of the Department of Computer Science
176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7TN 5C9

ABSTRACT

Software bugs and failures cost trillions of dollars every year, and could even lead to deadly accidents (e.g.,
Therac-25 accident). During maintenance, software developers fix numerous bugs and implement hundreds
of new features by making necessary changes to the existing software code. Once an issue report (e.g., bug
report, change request) is assigned to a developer, she chooses a few important keywords from the report
as a search query, and then attempts to find out the exact locations in the software code that need to be
either repaired or enhanced. As a part of this maintenance, developers also often select ad hoc queries on the
fly, and attempt to locate the reusable code from the Internet that could assist them either in bug fixing or
in feature implementation. Unfortunately, even the experienced developers often fail to construct the right
search queries. Even if the developers come up with a few ad hoc queries, most of them require frequent
modifications which cost significant development time and efforts. Thus, construction of an appropriate query
for localizing the software bugs, programming concepts or even the reusable code is a major challenge. In
this thesis, we overcome this query construction challenge with six studies, and develop a novel, effective
code search solution (BugDoctor) that assists the developers in localizing the software code of interest (e.g.,
bugs, concepts and reusable code) during software maintenance. In particular, we reformulate a given search
query (1) by designing novel keyword selection algorithms (e.g., CodeRank) that outperform the traditional
alternatives (e.g., TF-IDF), (2) by leveraging the bug report quality paradigm and source document structures
which were previously overlooked and (3) by exploiting the crowd knowledge and word semantics derived from
Stack Overflow Q&A site, which were previously untapped. Our experiment using 5000+ search queries (bug
reports, change requests, and ad hoc queries) suggests that our proposed approach can improve the given
queries significantly through automated query reformulations. Comparison with 10+ existing studies on bug
localization, concept location and Internet-scale code search suggests that our approach can outperform the

state-of-the-art approaches with a significant margin.

ii

ACKNOWLEDGEMENTS

First, I thank the Almighty, the most gracious and the most merciful, who granted me all the abilities
to carry out this work. Then I would like to express my heartiest gratitude to my advisor Dr. Chanchal K.
Roy for his constant guidance, advice, critical insights, positive encouragements and extraordinary patience
during this thesis work. He is definitely a great mentor who can bring out the best in a student. This work
would have been impossible without his supports.

I would like to thank Dr. Denys Poshyvanyk, Dr. Andrew Grosvenor, Dr. Ian Stavness, Dr. Natalia
Stakhanova, Dr. Debajyoti Mondal and Dr. Banani Roy for their willingness to take part in the advisement
and evaluation of my thesis work. I would also like to thank them for their valuable time, useful suggestions
and critical insights. Their comments helped improve my thesis significantly.

I would like to convey my greatest love and gratitude to my beloved wife, Shamima Yeasmin, and my
lovely daughter, Anisha. They are the love and inspirations of my life. Shamima always stayed with me in
ease and hardship, inspired me constantly, and helped me with ideas and suggestions in this work. Anisha
helped me see the life in a new light with her heavenly innocence, unforgettable smiles and constant babbling.

I would like to express my deepest love to my mother Morium Begum and my father Md. Sadiqur
Rahman who brought me to this world. Their endless sacrifice, unconditional love and constant well wishes
have made me reach this stage of my life. T would also like to thank my mother-in-law Mrs. Rezia Khatun
and father-in-law Md. Shamsul Islam for their constant well wishes and inspirations in this thesis work. My
siblings — Asad, Mamun and Sayed, and in-laws — Masum, Mamun, Maruf, Shefa, Rabeya, Farzana, Dipa,
and Sharmin have always inspired me in completing my thesis work, and I thank all of them.

I specially thank all the members of Software Research Lab with whom I have had the opportunity to
grow as a researcher. In particular, I would like to thank Dr. Manishankar Mondal, Dr. Md. Saidur Rahman,
Dr. Muhammad Asaduzzaman, Dr. Jeffrey Svajlenko, Dr. Fahim Zibran, Judith, Farouq, Mostaeen, Saikat,
Amit, Nafi, Joy, Khaled, Rayhan, Avijit, Nadim, Rodrigo and Hamid. I am grateful to the University
of Saskatchewan and its Department of Computer Science for their generous financial supports through
scholarships, awards and bursaries. I am also grateful to NSERC for the prestigious Industry Engage grant.
All these supports helped me concentrate deeply in my thesis work.

I thank all the anonymous reviewers and editors for their valuable comments and suggestions in improving
the research papers produced from this thesis. I would also like to thank my research collaborators — Dr.
David Lo, Dr. Raula G. Kula and Dr. Iman Keivanloo — for their collaborations.

I would like to thank all of my friends and staff members from the Department of Computer Science who
have helped me reach this stage with time, efforts and suggestions. In particular, I would like to thank Dr.
Rafizul Haque, Priyasree Bhowmik, Farhad Maleki, Kimberly Mackay, Varun Gaur, Kiemute Oyibo, Rasam
Bin Hossain, Sowgat Ibne Mahmud, Sami Uddin, Aminul Islam, Nazifa Azam Khan and Gwen Lancaster,

Shakiba Jalal, Sophie Findlay and Heather Webb.

iii

I dedicate this thesis to my mother Mrs. Morium Begum and my father Md. Sadiqur Rahman whose

inspirations help me accomplish every goal of my life.

iv

CONTENTS

Permission to Use i
Abstract ii
Acknowledgements 1ii
Contents v
List of Tables X
List of Figures xii
List of Abbreviations XV
1 Introduction 1
1.1 Motivation e e e e 1
1.2 Problem Statement L. e 2
1.3 Our Contribution e e e e 5
1.3.1 Concept Location L 5

1.3.2 Bug Localization e)

1.3.3 Internet-scale Code Search e 6

1.4 Related Publications 9
1.5 Outline of the Thesis o 12
Background 14
2.1 Automated Query Reformulation o 14
2.2 Types of Query Reformulationo L 14
2.2.1 Query Expansion oL 15

2.2.2 Query Reduction e 15

2.2.3 Query Replacemento 15

2.3 Working Contexts of Query Reformulation 15
2.3.1 Local Code Search e 16

2.3.2 Internet-Scale Code Search L 16

2.4 Steps of Automated Query Reformulation L. 17
2.4.1 Query Feedback Collection e 17

2.4.2 Candidate Keyword Selection L 18

2.4.3 Reformulation of a Search Query L L oo 18

2.5 Term Weighting L e 18
2.5.1 TF-IDF e 19

2.5.2 TextRank & POSRank o 19

2.6 Implications of Automated Query Reformulation 20
2.6.1 Benefits of Query Reformulation oL oo oL 20

2.6.2 Costs of Query Reformulation 0oL 0L 20

2.7 Word Embeddings e 21
2.8 Cosine Similarity L e e e e 21
2.9 SUmMMAry e e e e e e e 22
Search Query Reformulation for Concept Location using Graph-Based Term Weighting 23
3.1 Imtroduction e e 23
3.2 Motivating Example e 26

3.3 STRICT: Automated Search Query Suggestion from a Change Request for Concept Location

3.3.1 Data Collection o
3.3.2 Text Preprocessing
3.3.3 Text Graph Development e
3.3.4 TextRank (TR) Calculation
3.3.5 POSRank (POSR) Calculation
3.3.6 Weighted K-Core Calculation
3.3.7 Term Ranking and Candidate Query Selection
3.3.8 Best Query Suggestion with Machine Learning
3.3.9 A Working Example e
3.4 Experiment oL e e
3.4.1 Experimental Dataset
3.4.2 Search Engine.
3.4.3 Performance Metrics e
3.4.4 Evaluation of STRICT e
3.4.5 Comparison with Existing Techniques
3.4.6 Evaluation of Working Prototype
3.5 Threats to Validity e
3.6 Related Work L e
3.6.1 Search Query Suggestion & Reformulation
3.6.2 Code Search Algorithm
3.7 Summary ... e e e e

Search Query Reformulation for Concept Location using CodeRank and Source Doc-
ument Structures

4.1 Introduction e e
4.2 ACER: Automated Query Reformulation with CodeRank and Document Structures for Con-
cept Location Lo
4.2.1 Pseudo-relevance Feedback o o
4.2.2 Source Token Selection for Query Reformulation
4.2.3 Source Code Preprocessing e
4.2.4 Source Term Graph Development o
4.2.5 CodeRank Calculation
4.2.6 Suggestion of the Best Query Reformulation
4.3 Experimento e e e e
4.3.1 Experimental Dataset
4.3.2 Corpus Indexing & Source Code Search
4.3.3 Performance Metrics L
4.3.4 Evaluation of ACER and CodeRank
4.3.5 Comparison with Existing Approaches L.
4.4 Threats to Validity
4.5 Related Work L e
4.6 SUMIMATY« v v o it s e e e e

Search Query Reformulation for Bug Localization using Report Quality Dynamics &

Graph-Based Term Weighting

5.1 Imtroduction oL e

5.2 BLIZZARD: Automated Query Suggestion using Report Quality Dynamics and Term Weight-
ing for Bug Localization e e
5.2.1 Bug Report Classification L
5.2.2 Query Reformulation oL
5.2.3 Bug Localization e

5.3 Experiment L e e
5.3.1 Experimental Dataset L

vi

5.3.2 Performance Metrics e e e e e 96

5.3.3 Experimental Results 97
5.3.4 Comparison with Existing Techniques, 101
5.4 Threats to Validity L 107
5.5 Related Work o 107
5.6 SUMMATY o o e e e e e e e e e e e 108
Search Query Reformulation for Bug Localization using Word Semantics & Clustering
Tendency Analysis 110
6.1 Introduction 110
6.2 Motivating Example 113
6.3 BLADER: Automated Query Reformulation using Word Semantics & Clustering Tendency
Analysis for Bug Localization e 114
6.3.1 Construction of a Semantic Hyperspace from Stack Overflow Q&A Threads 114
6.3.2 Automated Search Query Reformulation with Semantic Hyperspace, Clustering Ten-
dency & Machine Learningo 117
6.3.3 Bug Localization e 120
6.4 Experiment e e e e 120
6.4.1 Experimental Dataset 120
6.4.2 Performance Metricso 121
6.4.3 Evaluation of BLADER 122
6.4.4 Comparison with Existing Techniques, 125
6.5 Threats to Validity e e 130
6.6 Related Work L 131
6.7 SUIMMATY oo e e 132

Search Query Reformulation for Internet-scale Code Search using Crowdsourced Knowl-

edge

7.1
7.2

7.3

7.4

134
Introduction L e 134
Exploratory Study e e e e e e 138
7.2.1 Data Collection L 138
7.2.2 API Class Name Extraction 140
7.2.3 Answering RQ;: Use of APIs in the accepted answers of Stack Overflow 141

7.2.4 Answering RQs: Coverage of API classes in the accepted answers from Stack Overflow
Q& Assite . . . e 142

7.2.5 Answering RQs: Presence of code search keywords in the title of questions from Stack
Overflow o e 144

RACK: Automated Query Reformulation for Internet-scale Code Search using Crowdsourced
Knowledge e 148
7.3.1 Construction of NL Token-API Mapping Database 149
7.3.2 API Relevance Ranking & Reformulation of the NL-Query 150
Experiment Lo e e e e 156
7.4.1 Experimental Dataset L 156
7.4.2 Performance Metrics L L 159
7.4.3 Evaluation Scenarios 161
7.4.4 Statistical Significance Tests L 161
7.4.5 Matching of Suggested APIs with Goldset APIs. 161

7.4.6 Answering RQ,4: How does the proposed technique perform in suggesting relevant APIs
for a code search query? L 162

7.4.7 Answering RQs: How effective are the proposed heuristics—-KAC, KPAC and KKC- in
capturing the relevant API classes for a query? 164

7.4.8 Answering RQg: Does an appropriate subset of the query keywords perform better
than the whole query in retrieving the relevant API classes? 166

vii

7.49 Answering RQ7: How do the heuristic weights (i.e., o, 8) and threshold settings (i.e.,

7, 0) influence the performance of our technique? 167

7.4.10 Answering RQg: Can RACK outperform the state-of-the-art techniques in suggesting
relevant APT classes for a given set of queries? 169

7.4.11 Answering RQg: Can RACK significantly improve the natural language queries in
terms of relevant code retrieval performance?00 172

7.4.12 Answering RQ1o: Can RACK outperform the state-of-the-art techniques in improving
the natural language queries intended for code search? 176

7.4.13 Answering RQ1;: How does RACK perform compared to the popular web search
engines and code search engines?o L Lo 181
7.5 Threats to Validity e 185
7.5.1 Threats to Internal Validity L oo 185
7.5.2 Threats to External Validity o 185
7.5.3 Threats to Construct Validity L o 186
7.5.4 Threats to Statistical Conclusion Validity 186
7.6 Related Work oL 186
7.6.1 API Recommendation e e 186
7.6.2 API Usage Pattern Recommendation 187
7.6.3 Query Reformulation for Code Search 0., 187
7.6.4 Crowdsourced Knowledge Mining 188
T7 SUMMATY oo e e e e e e e e e 189
8 Search Query Reformulation for Internet-scale Code Search using Word Semantics 191
8.1 Imtroduction e e 191

8.2 NLP2API: Automated Query Reformulation using Word Semantics & Crowd Knowledge for
Internet-scale Code Search L e 194
8.2.1 Development of Candidate APT Lists 194
8.2.2 Borda Score Calculation L 197
8.2.3 Query-API Semantic Proximity Analysis oo oo 199
8.2.4 API Class Relevance Ranking & Query Reformulation 200
8.3 Experiment e e e e 200
8.3.1 Experimental Dataset L 201
8.3.2 Performance Metricso 201
8.3.3 Evaluation of NLP2API: Relevant API Class Suggestion 202
8.3.4 Evaluation of NLP2API: Query Reformulation 205
8.4 Threats to Validity e 209
8.5 Related Work L 210
8.6 SUMIMATY i e e e e e 211
9 Conclusion 213
9.1 Concluding Remarks e 213
9.2 Future Work L 216
9.2.1 Promises of Keyword Selection Algorithms in IR-Based Bug Localization 217
9.2.2 Promises of Genetic Algorithms in IR-Based Bug Localization 217
9.2.3 Improving Term Weighting Algorithms with Useful Term Contexts 218
9.2.4 Query Worsening Minimization L 0 o 218
9.2.5 Improving Pseudo-Relevance Feedback (PRF) 219
9.2.6 Promises of PageRank in Term Weighting/Source Code Retrieval 219
9.2.7 Word Embedding Technology in Query Reformulation/Code Search 219
9.2.8 Promises of Stack Overflow in Query Reformulation/Code Search 220
9.2.9 Word Embeddings Technology for Bug Understanding/Diagnosis 221
9.2.10 Query Reformulation as a Feasible Choice for Improved Bug Localization 221
A Replication Packages 240
A1 STRICT o e e e 240

A2 ACER . . . 240
A3 BLIZZARD e 240
A4 BLADER . . . 240
A5 RACK . . o 240
A6 NLP2API . . . o o 241
A.7 Other PhD Projects e e e e 241
BugDoctor 242
B.1 Download e e 242
B.2 Configuration Setup e e 242
B.3 Enabling BugDoctor in the IDE o 243
B.4 BugDoctor User Interfaces L 243
B.5 Loading an Issue Report (e.g., Change Request, Bug Report) 247
B.6 Concept Location with BugDoctor oo 248
B.7 Bug Localization with BugDoctor o 251
B.8 Code Example Search with BugDoctor 252

ix

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
9.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

LIST OF TABLES

Thesis Contribution Overview 0 0 o e e e e

An Example Change Request (Issue #303705, eclipse.jdt.ui)
A Working Example of Query Suggestion by STRICT
Experimental Dataset L
Comparison of Query Effectiveness between STRICT and Baseline Queries
Effectiveness Details of STRICT Query vs. Baseline Queries, (Title+Description)code

Document Retrieval Performance of STRICT Queries
Retrieval Performance of TextRank, POSRank and WK-Core
Comparison between Proposed and Traditional Term Weights
Comparison of Baseline Query Improvements between STRICT and Existing Techniques . . .
Comparison of Query Effectiveness with Existing Query Reformulation Techniques
Comparison with Existing Techniques in Document Retrieval

An Example Change Request (Issue #31110, eclipse.jdt.debug)
A Working Example (Bug #31110, eclipse.jdt.debug),
Experimental Dataset e e e e e
Effectiveness of ACER Query against Baseline Query
Effectiveness of ACER Variants against Baseline Queries
Comparison of ACER’s Retrieval Performance with Baseline Queries
Comparison between CodeRank and Traditional Term Weights
Impact of Stemming on Query Effectivenesso 0oL
Comparison of Query Effectiveness with Existing Techniques

A Noisy Bug Report (Issue #31637, eclipse.jdt.debug)
A Poor Bug Report (Issue #187316, eclipse.jdt.ui)
Working Examples o
Experimental Dataset L
Performance of BLIZZARD in Bug Localization
Query Improvement by BLIZZARD over Baseline Queries
Comparison with IR-Based Bug Localization Techniques
Components behind Existing IR-Based Bug Localization
Comparison of Query Effectiveness with Existing Query Reformulation Techniques

An Example of Low Quality Bug Report (Issue #192756, ECF)
Experimental Dataset (Subject Systems & Bug Reports)
Performance of BLADERgy, in Bug Localization
Comparison of Query Effectiveness with Baseline Queries
Comparison with Existing Bug Localization Techniques
Comparison of Query Effectiveness with Existing Query Reformulation Techniques
Comparison with Existing Studies using Feature Matrix

API Packages for Exploratory Study
Research Questions Answered using Exploratory Study
Keywords Intended for Code Search Lo
Code Search Keywords Found in Tutorial Sites
An Example of Query Reformulation using RACK
Research Questions Answered using our Experiment
Performance of RACK
Role of Proposed Heuristics— KAC, KPAC and KKC

7.9
7.10

7.11
7.12
7.13
7.14
7.15
7.16

8.1
8.2
8.3
8.4
8.5
8.6

Impact of Different Query Term Selection 166
Comparison of API Recommendation Performance with Existing Techniques (for various Top-

K Results)o 170
Comparison of Source Code Retrieval Performance with Baseline Queries 173
Improvement of Baseline Queries by RACK 176
Comparison of Code Retrieval Performance with Existing Techniques 177
Comparison of Query Improvements with Existing Techniques 180
Comparison with Popular Web/Code Search Engines 182
Comparison among the Traditional Code Search Engines 184
Reformulations of an NL Query for Improved Internet-scale Code Search 193
Performance of NLP2API in Relevant API Suggestion 202
Comparison with the State-of-the-art in API Class Suggestion 205
Impact of Reformulations on Generic NL Queries 206
Comparison of Query Effectiveness with Existing Query Reformulation Techniques 207
Comparison with Popular Web/Code Search Engines 209

xi

LIST OF FIGURES

1.1 (a) An example of noisy bug report (noisy query) and (b) Reformulated search query suggested
by BugDoctor. The noisy query returns the buggy code at the 537¢ position whereas the
reformulated query returns that at the 1%¢ position within the result list. 3
1.2 (a) An example of software change request (query) and (b) Reformulated search query sug-
gested by BugDoctor. The given query returns the code of interest at the 14" position whereas
the reformulated query returns that at the 1% position within the result list. 4
1.3 (a) An example of poor bug report (poor query) and (b) Reformulated search query suggested
by BugDoctor. The poor query returns the buggy code at the 12! position whereas the

reformulated query returns that at the 3"¢ position within the result list 4
2.1 Automatic query reformulations in local code searcho o000 15
2.2 Automatic query reformulations in the Internet-scale code search 17

3.1 Text graphs of the change request in Table 3.1 — (a) using word co-occurrences, and (b) using

syntactic dependencies L Lo e e e e e 25
3.2 Schematic diagram of the proposed query reformulation technique-STRICT 27
3.3 Improvement, worsening and preserving of the baseline queries by our proposed technique —

STRICT o e e e e e 41
3.4 Comparison of the document retrieval performance of STRICT queries against baseline queries

in terms of (a) Hit@10, (b) MAP@10, and (¢c) MRR@10 43
3.5 Comparison of STRICT queries with baseline queries for Top 1 to 100 results in terms of (a)

MAPQK and (b) Hit@K o e 45
3.6 Role of three term weighting algorithms in the improvement, worsening and preserving of the

baseline queries L Lo e e e e 50
3.7 Impact of the adopted parameters and thresholds — (a,b) suggested query length, (c) use of

data re-sampling, and (d) use of machine learning algorithm 51
3.8 Comparison of baseline query improvements or worsening between our technique, STRICT,

and the existing techniques oL 52
3.9 Comparison between queries of STRICT and the queries of existing approaches in terms of

their (a) Hit@Q10, (b) MAPQ10, and (¢) MRR@Q10 53
3.10 Comparison between queries of STRICT and queries from the existing approaches in terms of

(a) MAPK and (b) Hit@K 54
3.11 Stage I - Distribution of the grades for study tasks 54

3.12 Stage II - User evaluation of the proposed prototype in terms of EI=Ease of Installation,
DQ=Documentation Quality, UF=Usefulness of Features, LF=Likelihood of Features, QSQ=Quality

of Suggested Queries, MER=Manual Effort Reduction, TSP=Time Saving Potential 55
4.1 An example term graph generated by CodeRank for the source code of Fig. 4.2 63
4.2 Source code used for automated query reformulationo 0000 65
4.3 Schematic diagram of the proposed query reformulation technique-ACER 65
4.4 Comparison of query improvement between CodeRank and traditional term weights for (a)

Top K=1 to 10 and (b) Top K=1 to 30 reformulated query terms 78
4.5 TImproved queries by reformulation from method signatures and field signatures using (a)

CodeRank (CR) and (b) Term Frequency (TF). (¢) ACER vs. TF (all content) 79
4.6 Effectiveness of ACER queries for (a) Top-10 and (b) Top-30 reformulated terms 81
4.7 Comparison of (a) query effectiveness, and (b) retrieval performance 81

5.1 Schematic diagram of the proposed query reformulation technique -BLIZZARD—(A) Bug re-
port classification and (B) Search query suggestion 88
5.2 Trace graph of stack traces in Table 5.1 90

xii

5.3
5.4
5.5
5.6

5.7
5.8

6.1

6.2

6.3

6.4

6.5

6.6

7.1
7.2
7.3
7.4
7.5

7.6
7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

Comparison of BLIZZARD with baseline technique in terms of (a) MAPQ@QK and (b) MRR@QK 98
Impact of query reformulation length on the MAP@10 of our technique-BLIZZARD 98
Quality improvement of (a) noisy and (b) poor baseline queries by our technique-BLIZZARD 99

Comparison of (a) MAP@K and (b) Hit@K with the state-of-the-art IR-based bug localization
techniques L L e 105
Comparison of Hit@10 across all subject systems 105
Comparison of (a) MRR@10 and (b) MAP@10 with existing techniques across the subject
SYSEEIMIS « v o o o e e e e e e e e e e e e e 106
Schematic diagram of the proposed query reformulation technique -BLADER- (A) Construc-
tion of a semantic hyperspace and (B) Reformulation of a query for bug localization 113
Comparison of our approach, BLADERgy,, with the baseline approach in bug localization using
(a) MAP and (b) MRR 122

Impact of our adopted thresholds, parameters and choices — (a) Multiple reformulation can-
didates, (b) Number of candidate source terms, (c) Machine learning algorithm for the best

query selection, and (d) Corpus for learning word embeddings 124
Comparison of our approach with the existing techniques in bug localization using (a) MAP,
and (b) MRR for top 1 to 10 results L 128

(a) Overlap of the successfully localized bugs between BLADERg), and the state-of-the-art, and
(b) Overlap of the improved queries between BLADERgR and the state-of-the-art approaches 129
Comparison of our approach with the existing techniques in query reformulation using very
low quality queries L e e 130

An example of (a) Stack Overflow question and (b) its accepted answer 136
Frequency distribution for core API classes — (a) API frequency PMF, (b) API frequency CDF 140
Frequency distribution for core and non-core API classes over the extended dataset — (a) API

frequency PMF, (b) API frequency CDF 140
Frequency distribution of unique APT classes from core packages — (a) Distinct API frequency
PMF, (b) Distinct API frequency CDF 141
Frequency distribution of unique APT classes from core and non-core packages — (a) Distinct
API frequency PMF, (b) Distinct API frequency CDF 141
Coverage of API classes from core packages by Stack Overflow answers 143
Coverage of API classes from (a) core and (b) non-core packages by Stack Overflow answers
(extended dataset) e e e 144
Use of core API packages in the Stack Overflow answers 145
Use of (a) core and (b) non-core API packages in the Stack Overflow answers (extended dataset)146
Coverage of keywords from the collected queries in Stack Overflow questions 147
Collected search query keywords in Stack Overflow— (a) Keyword frequency PMF (b) Keyword
frequency CDF o L e e e e 147

Schematic diagram of the proposed query reformulation technique ~-RACK—(a) Construction
of token-API mapping database, (b) Translation of a code search query into relevant API classes148
HitQK, Mean Average Precision@K, and Mean Recall@K of RACK using (a) non-weighted

version (i.e., dashed line) and (b) weighted version (i.e., solid line) 163
(a) HitQK of RACK, (b) Mean Average Precision@K (MAPQ@K) of RACK, and (c) Mean
Recall@aK (MRQ@K) of RACK for three heuristics-KAC, KPAC and KKC 165
(a) Mean Average Precision@10 (MAP@10), and (b) Mean Recall@10 (MR@10) of RACK for
different values of the heuristic weights—aand 8 168
Performance of RACK for different ¢ thresholds with (a) Top-5 results and (b) Top-10 results
consideredo L 168
Performance of RACK for different v thresholds with (a) Top-5 results and (b) Top-10 results
considered L 169
Comparison of API recommendation performances with the existing techniques-(a) HitQK,
(b) Mean Reciprocal Rank@K, (c) Mean Average Precision@K, and (d) Mean Recall@K . . . 171

Comparison of API recommendation with existing techniques using box plots 172

xiii

7.20 Comparison of code retrieval performance with the baseline queries in terms of (a) Hit@K and
(b) MRRAK
7.21 Comparison of QE distribution with baseline queries across (a) 4K-Corpus, (b) 256K-Corpus
and (€) T69K-Corpus o
7.22 Comparison of code retrieval performance with existing techniques using (a,b) 4K-Corpus,
(c,d) 256K-Corpus and (e,f) 756K-Corpus L
7.23 Comparison of QE distribution with the state-of-the-art using (a) 4K-Corpus, (b) 256K-
Corpus, and (¢) 769K-Corpus o v v i i e e
7.24 Comparison of RACK with popular web/code search engines

8.1 An example code snippet for the programming task— “Convert image to grayscale without
losing transparency" — (taken from [9])o Lo Lo
8.2 Schematic diagram of the proposed query reformulation technique-NLP2APT
8.3 API co-occurrence graph for code segment in Fig. 8.1
8.4 Performance of NLP2APT in API class suggestion for various Top-K results
8.5 Impact of (a) PRF size (M), and (b) Candidate API list size (N) on relevant API class sug-
gestion from Stack Overflow L
8.6 Comparison between Borda count and Query-API proximity in estimating API relevance using
(a) accuracy, (b) reciprocal rank, (c) precision, and (d) recall
8.7 Reformulated vs. baseline query using (a) Top-10 accuracy and (b) MRR@Q10
8.8 Comparison between popular web/code search engines and NLP2API in relevant code segment
retrieval using (a) MAP@K and (b) NDCG@QK

B.1 Setting up custom configurations for BugDoctor L.
B.2 Enabling BugDoctor with (a) main menu option and (b) context menu option
B.3 BugDoctor Dashboard: (a) Query execution panel, (b) Bug report panel, (¢) Query reformu-
lation panel, and (d) Code search results panel
B.4 BugDoctor Utility Dashboard: (a) API suggestion & query execution panel, (b) Query expan-
sion panel, and (c) Code viewer L L
B.5 Code Example Dashboard: (a) Top-K relevant code examples, and (b) Code viewer
B.6 Loading of an issue report: (1) Click the button, (2) Choose the report, and (3) View the
report within the IDE
B.7 Concept location with query reduction: (1-2) Open a change request, i.e., given query, (3-4)
Keyword suggestion, (5-6) Reduced query, (7) Code search, and (8) Located concept within
the Top-10 results e e
B.8 Concept location with baseline query: (1-3) Selection of report title as a baseline query, (4)
Code search, and (5) Concept not located within the Top-10 results
B.9 Concept location with query expansion : (1) Selection of report title as a given query, (2-3)
Query expansion, (4-5) Expanded query, (6) Code search, and (7) Concept located within the
Top-10results L e e e
B.10 Bug localization with query reduction: (1-2) Open a bug report, i.e., given query, (3-4) Key-
word suggestion, (5-6) Reduced query, (7) Code search, and (8) Localized buggy class as the
topmost result, and (9) Analysis for bug fixing L.
B.11 Code example search with query expansion: (1) Given programming task, i.e., given query,
(2-3) Relevant APT suggestion, (4-5) Expanded query, (6) Code example search, (7) Retrieved
code example, (8) Original code location on the web, and (9) Click the button for Top-K code
eXamMpPlES . . L L e e e e e e e e e e e e
B.12 Relevant code examples: (1) Top-K code examples, and (2) Code example viewer

Xiv

ACR
API
BL
BR
CART
CBOW
CDF
CT
ECF
HS
HTML
IDCG
IDE
IRC
IR
JDK
JDT
KAC
KKC
KPAC
MAP
MCAS
MRD
MRR
MWW
NDCG
NL

PA
PE
PMF
POSR
POS
PRF
Q&A
QE
QR
RC
RF
RQ
RSV
SAN
SCP
SE
ST
TF-IDF
TR
W
Ul
VSM
WE
WSR

LIST OF ABBREVIATIONS

APT Class Rank

Application Programming Interface
Bug Localization

Bug Report

Classification and Regression Tree
Continuous Bag of Words
Cumulative Density Function
Candidate Token

Eclipse Communication Framework
Hopkins Statistic

Hyper Text Markup Language
Ideal Discounted Cumulative Gain
Integrated Development Environment
Internet Relay Chat

Information Retrieval

Java Development Kit

Java Development Tools
Keyword-API Co-occurrence
Keyword-Keyword Coherence
Keyword Pair-API Co-occurrence
Mean Average Precision
Maneuvering Characteristics Augmentation System
Mean Rank Difference

Mean Reciprocal Rank
Mann-Whitney Wilcoxon
Normalized Discounted Cumulative Gain
Natural Language

Polygon Area

Program Entity

Probability Mass Function
POSRank

Parts of Speech

Pseudo-Relevance Feedback
Question & Answering

Query Effectiveness

Query Reformulation
Reformulation Candidate
Relevance Feedback

Research Question

Robertson Selection Value
Spreading Activation Network
Spatial Code Proximity

Software Engineering

Stack Trace

Term Frequency x Inverse Document Frequency
TextRank

Term Weight

User Interface

Vector Space Model

Word Embedding

Wilcoxon Signed Rank

XV

CHAPTER 1

INTRODUCTION

1.1 Motivation

Software bugs and failures cost trillions of dollars every year. In 2017 alone, 606 software bugs' cost around
$1.7 trillion with 3.7 billion people affected and 314 companies impacted. During 2009-2018, about half a
million elderly British women missed their mammography tests due to scheduling errors caused by a software
bug?, which might have led to hundreds of premature deaths. Back in 1985-1987, four Canadian patients
also lost their lives and two were heavily injured due to fatal software bugs in Therac-25 radiation therapy
system?®. All these unfortunate tragedies demonstrate the serious consequences of software bugs and failures.
There have been active researches for the last five decades to prevent software bugs, errors and failures.
However, given their high costs and deadly consequences, further researches are warranted more than ever.

Software developers attempt to solve hundreds of bugs and failures every day. For example, Mozilla
Corporation receives =300 software bug reports every day that need urgent fixes [38, 249]. Bug report is a
text document that explains the encountered errors or failures in a software system. For example, Fig. 1.1-(a)
shows an example bug report that explains an error encountered in the Eclipse IDE. While software bugs
and errors are already hard to tackle, developers also receive hundreds if not thousands of software change
requests during maintenance [88]. Change request is a text document that warrants for either new software
features or enhancements to the existing features in a software system. Fig. 1.2-(a) shows an example change
request that warrants for enhancement in the custom search feature of Eclipse IDE. Resolving the software
bugs and addressing the change requests are two major parts of software maintenance. Finding and fixing the
bugs consume about 50% of the development time and efforts which amount to 20% of the total maintenance
costs [4, 28, 81]. On the other hand, adding new features to the existing software systems claims even up to
60% of the total maintenance costs [88].

The very first challenge of any software maintenance is to identify the exact locations in the software
code that need to be repaired or modified. One needs to find out the exact locations where the bug should
be fixed or the existing feature that should be enhanced. Unfortunately, given million lines of code and

inherent complexities in the modern software systems, identification of such locations is extremely challenging.

Lhttps://tek.io/2FBNI2i
Zhttps://bit.ly/2E1fYap
Shttps://bit.ly/2KU9IR2

Locating the buggy code against a bug report is called bug localization [276]. On the other hand, locating
the target code against a change request is known as concept location [98, 120]. Thus, both bug localization
and concept location are a special type of code search that is performed within a software codebase. Besides
these specialized searches, developers also search for relevant, reusable code on the web (e.g., GitHub [31]) to
implement various programming tasks as a part of software maintenance. This search is known as Internet-

scale code search in the literature [45, 151].

Every search operation requires a query that reflects the information needs. During maintenance, software
developers often (1) choose a few important keywords [120] or (2) use the whole texts [220] from an issue
report (i.e., change request or bug report) as a search query. During code search on the web, they also choose
a few keywords as an ad hoc search query [45]. Then the query is executed with a search engine to find
out (1) the exact code locations (within a software system) that need to be repaired or enhanced, and (2)
the relevant code examples (from thousands of online projects) that can be reused. Unfortunately, even the
experienced developers often fail to choose the right search queries [83, 120, 125, 142]. Multiple developer
studies [120, 125] report that the search queries chosen by developers could fail up to 88% of the time in
localizing the desired code (e.g., bugs, concepts, reusable code). That is, whether it is bug localization,
concept location or Internet-scale code search, appropriate query construction is a major challenge. Thus,

software developers are badly in need of automated supports for query construction during the code search.

1.2 Problem Statement

Software bugs are pervasive and code changes are inevitable in modern software systems [88]. Whether it is
a bug or a programming concept, they need to be localized correctly using code search. Appropriate query
construction is a major challenge in any type of code search, let it be bug localization, concept location
or even general-purpose, Internet-scale code search. There have been active researches [64, 65, 84, 95, 98,
104, 109, 120, 134, 135, 144, 151, 168, 226, 231, 251, 265, 274] on automated query construction for bug
localization, concept location and general-purpose code search. These studies accept either an issue report
or a set of generic keywords as a query, and then deliver an improved version of the query through query
reformulations. Such reformulations involve removal of noisy keywords, addition of complementary keywords,
and replacement of the poor keywords with more appropriate ones. Although there have been a substantial
body of works, the existing literature on automated query reformulation is far from adequate. According to
our systematic literature review [17], they suffer from four major limitations as follows:

(a) Term dependency overlooked: Determining relative importance of the candidate keywords is a
primary step of automated query reformulations. Existing studies [49, 96, 98, 120, 139, 158, 273] extensively
use TF-IDF [114] in term weighting and then choosing the highly weighted keywords from change requests or
bug reports as queries. Unfortunately, TF-IDF suffers from a major limitation [53, 153]. It fails to capture the

semantic dependencies between a given word and its surrounding words. The semantics of a word are often

Bug 31637 - should be able to cast "null"

When trying to debug an application the wariables tab is empty.
Blso when I try to inspect or display a wariable I get the following
error logged in the eclipse log file:

'ENTRY org.eclipse.jdt.debug 4 120 Fek 12, 2003 11:11:29,503

IMESSAGE Imternal error logged from JDI Debug:

ISTACK O

java.lang.MullPointerException

at org.eclipse.jdt.internal.debug.core.model.JDIValue.toS5tring (JDIValue.java:362)

at org.eclipse.jdt.internal.debug.eval.ast.instructions.Cast.execute (Cast.java:88)

at org.eclipse.jdt.internal.debug.eval.ast.engine.Interpreter.execute (Interpreter.java:44)
at org.eclipse.jdt.internal.debug.eval.ast.engine.EvaluationThreadSl5EvaluationRunnable.
run (EvaluationThread.java:158)

at org.eclipse.jdt.internal.debug.core.model.JDIThread. runEvaluation (JDIThread. java:600)
at org.eclipse.jdt.internal.debug.eval.ast.engine.EvaluationThread.

doEvaluation (EvaluationThread.java:180)

at org.eclipse.jdt.internal.debug.eval.ast.engine.EvaluationThread.

accesss2 (EvaluationThread. java:142)

at org.eclipse.jdt.internal.debug.eval.ast.engine . EvaluationThreadsl.

run (EvaluationThread.java:11&)

at java.lang.Thread.run(Thread.java:536) (El)
I am using Eclipse 2.1 (M5 / RCO).

Bug should be able to cast null + NullPointerException +
toString IDIValue EvaluationThread EvaluationRunnable String
access Evaluation run execute Thread runEvaluation (b)

Figure 1.1: (a) An example of noisy bug report (noisy query) and (b) Reformulated search query
suggested by BugDoctor. The noisy query returns the buggy code at the 537¢ position whereas the
reformulated query returns that at the 1%¢ position within the result list.

determined by its surrounding words within a particular context (e.g., sentence) [157, 272]. For example,
the word “bank” has multiple meanings. It could mean either “the land alongside a river" or “a financial
institution”, which is determined by its surrounding words. However, TF-IDF overlooks such a crucial aspect
(i.e., term dependency) during determining the term importance. Thus, the existing studies might produce
such queries that fail to localize the buggy code or the code implementing a concept of interest.

(b) Sole reliance on source code vocabulary: Existing studies [84, 96, 98, 251] often reformulate a
poor query with important keywords taken from the source code where TF-IDF is used for keyword selection.
However, TF-IDF was originally targeted for regular texts (e.g., news articles) rather than source code.
Regular texts and source code differ significantly from each other in their syntax, semantics and structures
[102, 233]. While regular texts are rich in vocabulary, source code is poor in vocabulary but rich in structures
[102]. Unfortunately, TF-IDF fails to leverage such structural aspect of the code and solely relies on the
vocabulary aspect during keyword selection. Thus, existing studies might fail to improve the poor search
queries or even worse, deliver poorer queries due to reformulation with inappropriate keywords.

(c) Overlooking the quality aspects of bug reports: Bug reports often contain a mix of unstructured
regular texts and structured program elements (e.g., class names). These structured elements often provide

useful hints about the location of an encountered bug. However, a significant fraction of the reports (=~ 30%)

Bug 303705 - [search] Custom search results not shown
hierarchically in the java search results view

gn element that is
in a class

Consider an instance of org.eclipse.search.ul.text.Match wit]p
neither an IRescurce nor an IJavaElement. It might be an e
diagram, for example.

When such an element is reported, it will be =shown as a plain, flat element in
the otherwise hierarchical java search results view. Thi=s is because the
LevelTreeContentProvider and its superclasses only check for IJavaElement and

IResource. (a)

I propose to also check for IAdaptabkle and tryv to adapt to IJavaElement and
IRescurce, if the other checks fail.

elemnent IRe=curce Prowvider Lewsl Tree @ (b)

Figure 1.2: (a) An example of software change request (query) and (b) Reformulated search query
suggested by BugDoctor. The given query returns the code of interest at the 14" position whereas
the reformulated query returns that at the 1% position within the result list.

Bug 192756 - [IRC] On channel join, get rid of 'entered’ spam in

If you join a big channel, yvou get a ton of "=zz= entered".

I think on channel entrv, we don't show these mnessages. We should

show these messzagesz in mavbe the "server tab". ie.. irc. freenode. net,

=imilar to how other IRC clients do it. (a)

{title} + {description} + connect invitation handle message room chat user SEHd@ (b)

Figure 1.3: (a) An example of poor bug report (poor query) and (b) Reformulated search query
suggested by BugDoctor. The poor query returns the buggy code at the 12" position whereas the
reformulated query returns that at the 3¢ position within the result list

could be poor containing no localization hints. On the contrary, about 15% of the reports are moisy, which
are crowded with too much structured information (e.g., stack traces). Both these bug reports verbatim
do not make good search queries for bug localization [193, 248]. However, majority of the existing studies
[130, 167, 207, 220, 230, 249, 276] use almost verbatim texts from a bug report as a search query for the
bug localization. Thus, their queries could be either noisy due to stack traces or poor due to the lack of
localization hints. As a result, their queries might fail to localize the reported software bugs.

(d) Relevant API selection impaired: As a frequent practice, developers often issue free-form natural
language queries for searching relevant code snippets on the web (e.g., GitHub). Unfortunately, these queries
hardly lead to any relevant results (e.g., only 12%) [45]. Several existing studies [63, 147, 152, 243, 271]
attempt to reformulate a free-form query with relevant API classes. The baseline idea is to reduce the lexical
gap between the query and potentially relevant code snippets. However, they simply rely on the lezical
similarity between a given query and the candidate API classes or corresponding API documentations for

relevant API selection. Thus, the existing approaches might fail to reformulate the query if it is not lexically

similar to the relevant APIs and their official documentations. As a result, their queries might not be able

to retrieve the relevant code snippets from the web.

1.3 Owur Contribution

Any changes to existing software systems to resolve or prevent these bugs or failures also cost billions of
dollars every year [1, 28]. Thus, identifying the exact locations in the source code that need to be repaired
is extremely important. Post-release changes to the software features also claim up to 60% of the total
maintenance costs. Thus, locating the software code that needs to be either enhanced or reused is also
equally important. For these search tasks, various traditional code search methods — bug localization, concept
location and Internet-scale code search — are used which are frequently impaired by poor or noisy search
queries. In this thesis, we tackle the challenges of poor and noisy queries, and significantly advance the
current state of query reformulation research. In particular, we conduct six different studies (Table 1.1)
where first and second studies improve concept location, third and fourth studies improve bug localization,
and finally fifth and sixth studies improve general-purpose, Internet-scale code search, by incorporating
automatically reformulated search queries into these tasks. Finally, we combine all six approaches above, and
develop a novel tool namely BugDoctor, an Eclipse IDE plug-in (Appendix B). It assists the developers in
concept location, bug localization, and Internet-net scale code search with reformulated queries so that they
can localize their code of interest (e.g., software bugs, programming concepts, reusable code examples) with

less effort and less development time spent. We briefly introduce each of our studies as follows.

1.3.1 Concept Location

Two of our studies support concept location task with automated query reformulations.

(a) STRICT: We design a novel query reformulation approach (Chapter 3) that accepts a change request
as an initial query, identifies appropriate query keywords from the request texts using multiple graph-based
term weighting algorithms (e.g., TextRank [153], POSRank [53, 153]), and then delivers an improved, refor-
mulated search query for concept location. Fig. 1.2-(a) shows an example change request (query) whereas
Fig. 1.2-(b) shows the corresponding reformulated query delivered by this approach.

(b) ACER: We design another novel query reformulation approach (Chapter 4) that accepts a poor
query, identifies complementary keywords from the relevant source code using a graph-based term weighting
algorithm (CodeRank [189]), and then delivers an improved query (poor query + complementary keywords)
(e.g., Table 4.1) for concept location.

1.3.2 Bug Localization

Two of our studies support bug localization task with automated query reformulations.

Table 1.1: Thesis Contribution Overview

Approach ‘Working Context Input Output Novel Contribution

S1: STRICT concept location change request reformulated query | graph-based term weighting on
change request

S2: ACER concept location developer query | reformulated query | graph-based term weighting on

source code

S3: BLIZZARD | bug localization bug report reformulated query | report quality dynamics in search
query improvement
S4: BLADER bug localization bug report reformulated query | clustering tendency analysis for
search query improvement
S5: RACK Internet-scale code search | programming reformulated query | crowd knowledge in query-API
task description relevance estimation
S6: NLP2API Internet-scale code search | programming reformulated query | query-API semantic distance cal-

task description

culation for query reformulation

(c) BLIZZARD: We design a novel query reformulation approach (Chapter 5) that accepts either a
noisy bug report (e.g., Fig. 1.1-(a)) or a poor bug report (e.g., Fig. 1.3-(a)) as a query, identifies appropriate
keywords by leveraging the structured entities and reporting quality dynamics of the report, and then delivers

an improved, reformulated search query (e.g., 1.1-(b), 1.3-(b)) for the bug localization.

(d) BLADER: We design another novel query reformulation approach (Chapter 6) that accepts a poor
bug report (e.g., Fig. 1.3) as a query, identifies complementary keywords from the relevant source code by
analysing clustering tendency between the query and the candidate keywords, and then delivers an improved,
reformulated version (poor query + complementary keywords) of the given poor query (e.g., Table 6.1) for

the bug localization.

1.3.3 Internet-scale Code Search

Two of our studies support Internet-scale code search with automated query reformulations.

(e) RACK: We design a novel query reformulation approach (Chapter 7) that accepts a generic natural
language query on a programming task, identifies relevant API classes for the task by harnessing crowd
generated knowledge at Stack Overflow, and then delivers an improved, reformulated query (generic query +
relevant API classes) (e.g., Table 7.5) for Internet-scale code search. Query reformulation using the relevant

APT classes reduces the lexical gap between the query and the solution code.

(f) NLP2API: We design another novel query reformulation approach (Chapter 8) that accepts a pro-
gramming task description as a query, identifies relevant API classes by mining Stack Overflow Q&A threads
and by determining semantic distance between the query and the candidate API classes, and then delivers an
improved, reformulated version (generic query + relevant API classes) of the given query for general-purpose,

Internet-scale code search.

Each of these studies has been evaluated extensively using appropriate dataset such as actual bug reports,
change requests and changed source code documents. They are also compared against multiple baselines
including the state-of-the-art to demonstrate their superiority. Experimental findings suggest that our ap-
proaches not only improve the given search queries significantly but also outperform the state-of-the-art with
statistically significant margins. Furthermore, they support the developers in concept location, bug localiza-
tion, and Internet-net scale code search so that they can locate their concepts, software bugs and relevant
code examples respectively with less efforts and time spent. Thus, from a technical point of view, this PhD

dissertation makes five major contributions to the existing body of knowledge as follows.

(a) Introducing a novel, effective algorithm for search keyword selection in Software Engi-
neering tasks: TF-IDF [114] (1) overlooks the semantic or syntactic dependencies among the words within
a particular context (e.g., sentence), and also (2) fails to leverage the structural aspect of a body of texts
(e.g., bug report, source code document), which are crucial to term importance [53, 153]. Thus, it might not
be sufficient enough for determining term importance and for selecting appropriate search keywords. Our
works [187, 189, 191, 192] (Chapters 3, 4, 5) propose and design a novel algorithm that not only captures the
dependencies among the candidate keywords but also leverages the structural aspect of a document (contain-
ing the keywords) in selecting the appropriate keywords. Furthermore, our algorithm outperforms TF-IDF
in selecting search keywords from bug reports [192], change requests [191], source code documents [189] and
even from the noisy stack traces [192]. Thus, we offer a better solution for search keyword selection in the

context of Software Engineering.

(b) Incorporation of bug report quality dynamics in query reformulations for improved bug
localization: Earlier studies [220, 250, 255, 276] overlook the quality aspect of bug reports, and use almost
verbatim texts from noisy (e.g., Fig. 1.1-(a)) and poor bug reports (e.g., Fig. 1.3-(a)) as queries for bug
localization. Thus, they potentially use noisy or poor queries which often fail to localize the buggy entities
[248]. My PhD works [192, 193] analyse the quality of a bug report (a.k.a., given query) and apply appropriate
reformulations to the query based on its quality unlike the earlier approaches. In particular, we (1) refine the
noisy bug report by discarding the noisy keywords, (2) complement the poor bug report with appropriate
keywords collected from the relevant source code, and (3) then deliver an improved, reformulated query (e.g.,
Fig. 1.1-(b), 1.3-(b)) for bug localization. Such opportunistic reformulations significantly improve the given

queries in bug localization [192].

(c) Exploiting structures from source code documents in search query improvement: Existing
studies [98, 150, 213] overlook the structural aspect of source code documents and treat them as regular text
documents during keyword selection from them. My PhD works [188, 189, 192] (Chapters 4, 5) leverage the
query contexts and structures from the source code documents in reformulating a given query. In particular,
we treat each source code document as a network of various structural constructs (e.g., method signatures,
field signatures) rather than a bag of words. We leverage these structures, and prepare multiple reformulation

candidates using graph-based term weighting for a given search query. Then we deliver the best candidate

as a reformulated query using machine learning. Such a novel use of structural constructs from source code

documents has significantly improved a given query in concept location [189].

(d) Exploiting crowd generated knowledge in search query improvement: Earlier studies (1)
mine open source projects [109, 265, 266, 274], web search logs [181, 223| or official API documentations
[147, 243, 271] and (2) use English language thesaurus (e.g., WordNet [134, 144]) to reformulate a given
query with synonyms, similar words and API classes. Stack Overflow has been a popular Q&A site for
programming issues or API usage examples with 14 million questions, 22 million answers and 10 million
registered users [58]. However, its potential for query improvement with API related resources was largely
unexplored. My PhD works [71, 194, 195, 201, 204, 206] (Chapters 6, 7, 8) demonstrate the high potential of
Stack Overflow for improving search queries intended for bug localization and for Internet-scale code search.
In particular, we complement a generic query on a programming task with relevant API classes where the
relevance between the query and the API classes is learned from the large technical crowd of Stack Overflow.
The knowledge on API relevance is non-trivial and can only be gained through actual work experience. Thus,
our query reformulation approach that exploits such invaluable crowd knowledge is a novel addition to the
literature. Furthermore, the extension using relevant API classes has also significantly improved the generic

queries in general-purpose, Internet-scale code search [194, 206].

(e) Exploiting word embeddings and clustering tendency in search query improvement:
Several existing studies [71, 194, 268, 274] use word embeddings technology, calculate semantic distance
between a given query and a candidate API class, and then expand the query with semantically close API
classes. While the semantic distance idea might work for Internet-scale code search, it might not be sufficient
enough for the specialized code search such as bug localization. The latter search warrants more precision
since the changes in wrong code locations could be very costly. My PhD work [182] (Chapter 6) goes beyond
semantic distance, and exploits clustering tendency in improving the search queries for bug localization. In
particular, we construct two reformulation candidates for a given poor query, and determine the clustering
tendency between the query and the reformulation candidates using advanced metrics from computational
geometry (e.g., Hopkins statistics [108]) and word embeddings technology [54, 155]. Then, we deliver the
best candidate as a reformulated query using machine learning. Our approach significantly improves the poor
queries in terms of their bug localization performance. Such a solution is a novel addition to the existing

body of knowledge on automated query reformulation targeting any types of code search.

Besides the above thesis works, we have conducted significant researches on code review automation
[190, 200, 202, 203], mining software repositories [160, 161, 186, 196] and source code re-documentation [199]
during my PhD study. My MSc works [183, 184, 185, 197, 198] also develop tools for web/code searches to

assist the developers in solving programming errors and exceptions encountered within their IDE.

1.4 Related Publications

Five out of six studies from this thesis are published in different premier conferences and journals. We

provide a list of publications that were produced from this PhD study (2014-2019). Due to strong relevance,

six papers from my MSc study (2012-2014) are also included here. In majority of these papers, I am the

primary author, and the studies were conducted by me under the supervision of Dr. Chanchal K. Roy.

While I conducted the experiments and wrote the papers, the co-authors took part in advising, editing, and

reviewing the papers. I also co-supervised three published works where I am the second/third author. In

these works, I co-supervised the whole life cycle of each project from brainstorming the research ideas to

co-authoring the papers.

(1)

M. Masudur Rahman, “Supporting Code Search with Context-Aware, Analytics-Driven, Effective
Query Reformulation”, In Proceeding of The 41st ACM/IEEE International Conference on Software
Engineering (Companion volume, Doctoral Symposium Track) (ICSE 2019), pp. 226-229, Montreal,
Canada, May, 2019 (Acceptance rate: 9/31=29.00%)

S. Mondal, M. Masudur Rahman and C. K. Roy, “Can Issues Reported at Stack Overflow Questions
be Reproduced? An Exploratory Study”, In Proceeding of The 16th International Conference on Mining
Software Repositories (MSR 2019), pp. 479489, Montreal, Canada, May, 2019 (Acceptance rate:
32/126=25.40%)

Rodrigo F. G. Da Silva, C. K. Roy, M. Masudur Rahman, K. Schneider, K. Paixdo and M. Maia,
“Recommending Comprehensive Solutions for Programming Tasks by Mining Crowd Knowledge”, In
Proceeding of The 27th IEEE /ACM International Conference on Program Comprehension (ICPC 2019),
pp. 358-368, Montreal, Canada, May, 2019 (Acceptance rate: 28/93=30.10%) (

)

M. Masudur Rahman, C. K. Roy and David Lo, “Automatic Query Reformulation for Code Search
using Crowdsourced Knowledge", Empirical Software Engineering Journal (EMSE), 56 pp., (Impact
Factor—4.46)

M. Masudur Rahman and C. K. Roy, “Improving IR-Based Bug Localization with Context-Aware
Query Reformulation”, In Proceeding of The 26th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC /FSE 2018), pp. 621-632,
Florida, USA, November, 2018 (Acceptance rate: 55/295=19.00%) (ACM Artifact Badges by peer

reviews:)

M. Masudur Rahman and C. K. Roy, “Effective Reformulation of Query for Code Search using
Crowdsourced Knowledge and FExtra-Large Data Analytics”, In Proceeding of The 34th International
Conference on Software Maintenance and Evolution (ICSME 2018), pp. 516-527, Madrid, Spain,

(10)

September, 2018 (Acceptance rate: 37/174=21.00%) (
)

M. Masudur Rahman and C. K. Roy, “Poster: Improving Bug Localization with Report Quality
Dynamics and Query Reformulation”, In Proceeding of The 40*" International Conference on Software

Engineering (ICSE 2018), pp. 348-349, Gothenburg, Sweden, May, 2018

M. Masudur Rahman and C. K. Roy, “NLP2API: Query Reformulation for Code Search using
Crowdsourced Knowledge and FExtra-Large Data Analytics”, In Proceeding of The 34th International
Conference on Software Maintenance and Evolution (Artifact Track) (ICSME 2018), pp. 714, Madrid,
Spain, September, 2018 (Artifact)

M. Masudur Rahman and C. K. Roy, “Improved Query Reformulation for Concept Location using
CodeRank and Document Structures”, In Proceeding of The 32"? IEEE/ACM International Conference
on Automated Software Engineering (ASE 2017), pp. 428-439, Urbana-Champaign, Illinois, USA,
October, 2017 (Acceptance rate: 65/314=21.00%)

M. Masudur Rahman and C. K. Roy and R. G. Kula, “Predicting Usefulness of Code Review Com-
ments using Textual Features and Developer Experience”, In Proceeding of The 14*" International
Conference on Mining Software Repositories (MSR 2017), pp. 215-226, Buenos Aires, Argentina,
May, 2017 (Acceptance rate: 37/121=30.60%)

M. Masudur Rahman and C. K. Roy and David Lo, “RACK: Code Search in the IDE using Crowd-
sourced Knowledge”, In Proceeding of The 39!" International Conference on Software Engineering
(Companion Volume) (ICSE 2017), pp. 51-54, Buenos Aires, Argentina, May, 2017 (Acceptance
rate: 18/57—=31.58%)

M. Masudur Rahman and C. K. Roy, “STRICT: Information Retrieval Based Search Term Identi-
fication for Concept Location”, In Proceeding of The 24'" IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER 2017), pp. 79-90, Klagenfurt, Austria, February 2017
(Acceptance rate: 34/140—24.00%)

M. Masudur Rahman and C. K. Roy, “Impact of Continuous Integration on Code Reviews”, In
Proceeding of The 14*" International Conference on Mining Software Repositories (MSR 2017), pp.
499-502, Buenos Aires, Argentina, May, 2017

M. Masudur Rahman, C. K. Roy, and Jason Collins, “CORRECT: Code Reviewer Recommendation
in GitHub Based on Cross-Project and Technology Experience”, In Proceeding of The 38" International
Conference on Software Engineering (Companion Volume) (ICSE 2016), pp. 222-231, Austin Texas,
USA, May 2016 (Acceptance rate: 28/108=26.00%)

10

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(23)

M. Masudur Rahman and C. K. Roy, “QUICKAR: Automatic Query Reformulation for Concept
Location Using Crowdsourced Knowledge", In Proceeding of The 315 IEEE/ACM International Con-
ference on Automated Software Engineering (ASE 2016) (New Ideas Track), pp. 220-225, Singapore,
September 2016

M. Masudur Rahman, C. K. Roy, Jesse Redl, and Jason Collins, “CORRECT: Code Reviewer
Recommendation at GitHub for Vendasta Technologies”, In Proceeding of The 31%' IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2016) (Tool Demo Track), pp. 792-797,
Singapore, September 2016

M. Masudur Rahman, C. K. Roy and David Lo, “RACK: Automatic API Recommendation us-
ing Crowdsourced Knowledge", In Proceeding of The 23"% IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER 2016), pp. 349-359, Osaka, Japan, March 2016 (Ac-
ceptance rate: 52/140=37.00%)

Amit K. Mondal, M. Masudur Rahman and C. K. Roy, “Embedded Emotion-based Classification
of Stack Overflow Questions Towards the Question Quality Prediction”, In Proceeding of The 28"
International Conference on Software Engineering & Knowledge Engineering (SEKE 2016), pp. 521-
526, San Francisco Bay, California, USA, July 2016

M. Masudur Rahman, C. K. Roy and Iman Keivanloo, “Recommending Insightful Comments for
Source Code using Crowdsourced Knowledge”, In Proceeding of The 15'* IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM 2015), pp. 81-90, Bremen, Germany,
September 2015 (Acceptance: 24/68=35.00%)

M. Masudur Rahman and C. K. Roy, “Recommending Relevant Sections from a Webpage about
Programming Errors and Ezxceptions”, In Proceeding of The 25" International Conference on Computer
Science and Software Engineering (CASCON 2015), pp. 181-190, Markham, Canada, November 2015
(Acceptance rate: 21/71=29.57%)

M. Masudur Rahman and C. K. Roy, “An Insight into the Unresolved Questions at Stack Overflow”,
In Proceeding of the 12" Working Conference on Mining Software Repositories (Challenge Track)
(MSR 2015), pp. 426-429, Florence, Italy, May 2015

M. Masudur Rahman and C. K. Roy, “TextRank Based Search Term Identification for Software
Change Tasks", In Proceeding of the 22"¢ IEEE International Conference on Software Analysis, Evo-
lution, and Reengineering (ERA Track) (SANER, 2015), pp. 540-544, Montreal, Canada, March 2015

M. Masudur Rahman, S. Yeasmin and C. K. Roy, “Towards a Context-Aware Meta Search Engine

for IDE-Based Recommendation about Programming FErrors and Exceptions”, In Proceeding of the

11

(24)

(25)

(26)

IEEE CSMR-18/WCRE-21 (CSMR/WCRE 2014), pp. 194-203, Antwerp, Belgium, February 2014
(Acceptance rate: 27/87=31.00%)

M. Masudur Rahman and C. K. Roy, “On the Use of Context in Recommending Ezception Handling
Code Examples”, In Proceeding of the 14! IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM 2014), pp. 285-294, Victoria, Canada, September 2014 (Acceptance
rate: 26,/82=31.70%)

M. Masudur Rahman and C. K. Roy, “SurfClipse: Context-Aware Meta Search in the IDE", In
Proceeding of the 30" International Conference on Software Maintenance and Evolution (Demo Track)

(ICSME 2014), pp. 617-620, Victoria, Canada, September 2014

M. Masudur Rahman and C. K. Roy, “An Insight into the Pull Requests of GitHub", In Proceeding
of the 11** Working Conference on Mining Software Repositories (Challenge Track) (MSR. 2014), pp.
364-367, Hyderabad, India, May 2014

M. Masudur Rahman, S. Yeasmin and C. K. Roy, “An IDE-Based Context-Aware Meta Search
Engine”, In Proceedings of the 20*"* Working Conference on Reverse Engineering (ERA Track) (WCRE
2013), pp. 467-471, Koblenz, Germany, October 2013

1.5 Outline of the Thesis

The thesis contains nine chapters in total. In order to deal with query reformulation challenges in code search,

we conduct six independent but interrelated studies. Our studies target three maintenance task contexts —

concept location, bug localization and Internet-scale code search. This section outlines different chapters of

the thesis as follows.

e Chapter 2 provides a background overview on automated search query reformulations such as type-

s/steps of reformulation, working contexts and implications of reformulation.

Chapter 3 discusses the first study namely STRICT that accepts a change request as a query and

delivers a reformulated query for concept location.

Chapter 4 presents the second study namely ACER that reformulates a given query for concept

location with appropriate keywords extracted from the relevant source code.

Chapter 5 presents the third study namely BLIZZARD that accepts either a noisy or poor bug

report as a query, and delivers a reformulated query for bug localization.

Chapter 6 discusses the fourth study namely BLADER that reformulates a given query for bug

localization using clustering tendency analysis and word embeddings technology.

12

e Chapter 7 presents RACK that accepts a generic query on a programming task, and reformulates

the query with relevant API classes mined from Stack Overflow for Internet-scale code search.

e Chapter 8 presents NL2API that reformulates a given query for Internet-scale code search using

crowd generated knowledge from Stack Overflow and word embeddings technology.

e Chapter 9 concludes the thesis with a list of future research directions inspired by this PhD thesis.

13

CHAPTER 2

BACKGROUND

In this chapter, we introduce the terminologies and background concepts that are required to follow the rest
of thesis. Section 2.1 defines automated query reformulation, Section 2.2 discusses the types of reformulation
and Section 2.3 describes the working contexts of query reformulation. Section 2.4 focuses on the steps,
Section 2.5 discusses term weighting algorithms, and Section 2.6 explains the implications of automated
query reformulations. Section 2.7 explains word embeddings, Section 2.8 defines cosine similarity, and finally,

Section 2.9 summarizes this chapter.

2.1 Automated Query Reformulation

Software developers search for source code both in a local codebase (e.g., Fig. 2.1) and in the Internet-scale
code repositories (e.g., Fig. 2.2). One primary step of any kind of search operation is the construction of
an appropriate query that reflects the information need. Unfortunately, developers often fail to choose the
right queries for code search. Existing studies [120, 125] show that they might fail even 88% of the time.
As a result, they need to frequently modify their queries (1) by adding new keywords, (2) by removing poor
keywords or (3) by replacing the existing keywords with more appropriate ones. When these reformulations
are performed using tool supports, they are called automated query reformulations. Although introduced by
the Information Retrieval (IR) community several decades ago, automated query reformulation has been an

active research area within Software Engineering for more than a decade [82, 146, 226].

2.2 Types of Query Reformulation

Constructing an appropriate search query that reflects one’s information need has always been a challenging
task [60]. The task is even more challenging for source code search. Search queries often comprise of natural
language (NL) keywords. On the contrary, source code documents are a mix of programming language
keywords, identifier names and complex programming constructs [121]. That means, search queries and
source code documents deal with two different vocabularies which have a little overlap and possibly different
semantics [94, 233]. Thus, search queries chosen by the developers often could be either poor or inappropriate
for the source code search. Different types of queries thus require different types of reformulations [98].

Traditionally, query reformulations are classified into three major categories as follows.

14

Issue report Developer Code search

Local codebase

{0} @@CJ ol

Query reformulation Query reformulation

User

Figure 2.1: Automatic query reformulations in local code search

2.2.1 Query Expansion

A given search query is expanded by adding similar (e.g., synonyms) or complementary keywords. This is
the most common reformulation strategy since the initial queries from the developers are often short. Studies
[78, 219] show that an average search query contains 1-3 keywords. According to existing findings, 33%—76%
of the queries are incrementally expanded by the developers during code search on the web [45, 219]. Majority

of our proposed solutions in this thesis [182, 189, 194, 206] also perform query expansion.

2.2.2 Query Reduction

A given search query is refined by removing the noisy, ambiguous or less discriminative keywords from the
query. One of the widely used heuristics for query reduction is document coverage. That is, keywords that
are found in more than 25% of the documents within a corpus are removed from the query. These keywords
are not specific enough and thus might fail to retrieve the documents of interest [98, 188]. Earlier studies
also select the best sub-query as a form of query reduction [127]. A few other studies also retain important

keywords from a given search query by using term weighting methods [120] and POS tagging [271, 273].

2.2.3 Query Replacement

The keywords of a given query are replaced with more appropriate ones [47, 129, 139, 252, 261]. Such a
replacement could be intended for spelling corrections [85], query generalization or for query specialization
[144, 157]. Developers often learn new information from browsing the search results, redefine their information

needs, and then replace the initial search query altogether with more appropriate ones [87, 151].

2.3 Working Contexts of Query Reformulation

Working context often plays a key role in automated tool supports. Existing studies report significant benefits
of incorporating contextual information in the automation of several Software Engineering tasks such as web

search [70, 198], exception handling [184] and code snippet search [86, 107, 184]. Similarly, automated

15

reformulation of a search query could be guided by its contexts. Based on the developer’s working context,

source code searches and their query reformulations can be classified in two broad categories as follows.

2.3.1 Local Code Search

Local code search is a primary step of several software maintenance tasks such as bug localization, concept
location, and feature location. Each of these maintenance tasks is initiated by a software user through his/her
submission of an issue report (a.k.a., bug report, change request, feature request) (i.e., Step 1, Fig. 2.1). A
developer then (1) makes use of the report texts, (2) constructs one or more queries, and (3) then searches for
the source code locations that need to be repaired or enhanced. This search is limited within a local codebase
(i-e., single software system). Query reformulation approaches supporting this code search mostly analyse the
issue report texts and the local codebase (i.e., Steps 1, 3, 6, 7, Fig. 2.1) to deliver the reformulated queries.
Local code searches can be divided into three major categories as follows:

e Bug Localization localizes a hidden software bug or a defect within the source code of a system
[276]. Existing studies [130, 170, 250] adopt several methodologies — spectral analysis, static analysis
and Information Retrieval — for bug localization. In this thesis, we deal with Information Retrieval
(IR)-based bug localization since it has a high potential for low cost debugging [207, 248]. IR-based
localization leverages the textual similarity between a bug report and the source code. Bug reports
verbatim often do not make good search queries. Hence, they need to be reformulated carefully before
using them in the IR-based bug localization [231].

e Feature Location finds out a software feature that is implemented within the source code of a software
system [69]. Features are the visible components or attributes of a system that the users can interact
with. Feature location deals with feature requests [178].

e Concept Location finds out an abstract programming concept (e.g., linked list) that is implemented
within the source code of a software system [98]. All concepts implemented in the code might not
result into visible software features. Both bug localization and feature location can be considered as

two special cases of concept location.

2.3.2 Internet-Scale Code Search

Code search on the web is an integral part of problem solving activities of the software developers. It is
initiated by a developer through his/her submission of a free-form natural language (NL) query to a code
search engine (e.g., GitHub code search). Recent studies [205, 219] suggest that developers also frequently
use general-purpose web search engines (e.g., Google) for code search. Unlike local code search (limited to
single code repository), this search is performed over thousands of code repositories across various application
domains (Steps 3, 4, 5, Fig. 2.2). That is, the code corpus is much bigger and noisier. Hence, construction of
an appropriate query is a major challenge for this search. Besides, supporting materials such as issue reports

might not be available in this case. Several studies attempt to discover the intent [110, 201, 274], linguistic

16

Developer Code search

ol | @y

:
Search query

N N
N

Internet-scale
code repositories

@(.‘J oo

Query reformulation

Figure 2.2: Automatic query reformulations in the Internet-scale code search

or semantic issues [144, 234] of a free-form NL query, and then reformulate the query. The goal is to retrieve

one or more relevant code examples that meet the information need expressed in the query.

2.4 Steps of Automated Query Reformulation

The steps of automated query reformulation might vary based on the type or working context of a search
query. However, most of the existing approaches from the literature [84, 96, 98, 189, 191, 231] share a common

set of steps. These steps can be categorized into three major tasks as follows.

2.4.1 Query Feedback Collection

The first step towards improving a given query is to collect feedback on the query from reliable sources (e.g.,
developers). A number of studies from the Information Retrieval domain investigate the notion of relevance
feedback in query reformulation. Rocchio [213] first introduced relevance feedback in the context of Vector
Space Model (VSM) back in 1971, which was adopted by dozens of later studies. Lucia et al. [146] first apply
relevance feedback in the context of Software Engineering where they deal with traceability link recovery
problem. Then later studies incorporate that into concept/concern location [84, 98, 105] and bug localization
[231]. The underlying idea is to collect meaningful, reliable feedback on a given query and then to leverage
such feedback opportunistically in improving the query. Relevance feedback mechanism supporting query
reformulations can be classified into three major categories as follows.

(a) Explicit Relevance Feedback: Developers are expected to provide explicit feedback on the rele-
vance of the documents retrieved by a given query. They annotate each of these documents as either relevant
or irrelevant to their information need [84, 251]. Although these feedback could be accurate and meaningful,
capturing them regularly from the developers is time-consuming and sometimes even impossible.

(b) Implicit Relevance Feedback: Given the high cost of explicit feedback, several studies focus
on capturing low cost feedback that is implicitly provided by the developers [119]. This type of feedback
comprises of developer’s reactions towards the retrieved documents such as eye movements, document exam-

ination patterns, and keyword deletion or retention pattens.

17

(c) Pseudo-Relevance Feedback: Unlike the above two types, this feedback does not warrant for
developer intervention. It is often a part of fully automated query reformulation. That is, the Top-K source
documents retrieved by a given query are naively considered as relevant to the query [98, 104, 222]. It is also
known as blind feedback. Existing studies from the literature [98, 188, 189, 192, 222] have provided significant

evidence that such feedback is indeed useful for reformulating and improving a search query.

2.4.2 Candidate Keyword Selection

Once the feedback on a query is collected, the next step is to identify appropriate candidate keywords for
query reformulation with the help of such feedback. Existing approaches [98, 191, 231] attempt to find out
appropriate candidate keywords from various information sources including the relevance feedback documents.
In order to do that, they often make use of various term weighting methods borrowed from the Information
Retrieval (IR) domain. Term weighting methods can be roughly categorized into three major categories
—(1) frequency-based methods, (2) graph-based methods and (3) probabilistic methods. According to our
systematic literature review, TF-IDF [114], a frequency-based method, has been extensively used for keyword

selection and/or query reformulation in the context of code search.

2.4.3 Reformulation of a Search Query

Once candidate keywords are collected, they are ranked based on their estimated weights, and only Top-
K (e.g., K=10) candidates are suggested [62, 191, 213, 231]. These important keywords are then used to
expand or replace the given poor query. Haiduc et al. [98] argue that a single reformulation strategy might
not be appropriate for all queries. That is, different queries might need different types of reformulations
(e.g., expansion, reduction, replacement). Towards this goal, several studies [96, 98, 164, 189] adopt query
difficulty analysis and machine learning to deliver the best reformulated query. In particular, they (1)
construct multiple reformulation candidates for a given query, (2) determine their quality using 21-28 query
difficulty metrics from the Information Retrieval domain [62], and then (3) deliver the best candidate as a

reformulated query using machine learning.

2.5 Term Weighting

Determining the relative importance of a term/word within a body of texts is commonly known as term
weighting [40, 101]. Although the underlying concepts and algorithms were introduced by the Information
Retrieval (IR) community, term weighting has been frequently used by the IR-based solutions targeting
Software Engineering problems (e.g., code search, bug localization). Two term weighting algorithms are

frequently mentioned throughout the rest of this thesis as follows.

18

2.5.1 TF-IDF

Jones [114] proposed TF-IDF to determine the relative importance of a term within a body of texts (e.g.,
news article) back in 1972. TF-IDF stands for Term Frequency (TF) x Inverse Document Frequency (IDF).
While TF counts the occurrences of a term within a document, IDF is based on the multiplicative inverse
of the number of documents in the corpus that contain the target term. TF-IDF can be calculated using

different variants of TF and IDF as follows:

TF-IDF(t,d) = fi.a X log(@ +0.01) (2.1)
Tt
TF-IDF(t,d) = (1 + logfi.q) x log(1 + @) (2.2)
n¢

Here f; 4 refers to the frequency of a term ¢ in the document d, n; refers to the number of documents
containing the term ¢, and D is the set of all documents in the corpus. Thus, if a term is frequent within
a document but not so frequent in other documents across the corpus, then this term is considered to be
important (e.g., search keyword) within the target document.

TF-IDF adopts the notion of term independence. That is, it does not capture the impact of the surrounding
terms upon a given term while determining the importance of the given term. [137]. However, idioms and
phrases clearly depend on each other for their comprehensive meaning. For example, “search engine”, a noun
phrase, conveys a different semantic than that of “search” and “engine” in isolation. Besides, important
keywords of a document might always not be the most frequent ones, which is especially observed with the
source code documents [102]. Despite these issues above, many of the existing studies [62, 98, 213] adopt
frequency based term weights (e.g., TF-IDF) in keyword selection (and query reformulation) since they are

light weight, intuitive and easy to use.

2.5.2 TextRank & POSRank

Unlike TF-IDF [114], several existing algorithms capture dependencies among the terms within a body of texts
using term co-occurrences [153] and syntactic dependencies [53]. First, they transform each text document
into a graph where the nodes represent the distinct words and the connecting edges refer to the dependencies
among the words from the document. Second, they adapt Google’s PageRank algorithm [57] for natural
language texts, and determine the relative weight of each word using recursive weight computation (e.g.,
Chapter 3). Term weight based on word co-occurrences is called TextRank whereas the weight computed
using syntactic dependencies is called POSRank [53]. Several of our studies [189, 191, 192] leverage these
dependencies among the words for determining their relative importance. Unlike regular texts (e.g., news
articles), source code is often scarce in vocabulary but rich in structures and dependencies [102]. Thus,

graph-based algorithms could be a more suitable choice than TF-IDF for term weighting and for candidate

19

term selection from the source code. Our experiments [189, 192] also support this propositions by providing

positive empirical evidence.

2.6 Implications of Automated Query Reformulation

Developers often fail to choose the appropriate queries from a change request while locating the concepts
within a software system [120]. As a result, they need to reformulate their queries frequently [98]. The
same challenge also exists in the Internet-scale code search, which warrants frequent query reformulations
[205, 219]. In short, constructing an appropriate query is challenging regardless of the working context of
a code search operation. Thus, automated supports are highly warranted in query construction for the low
cost code searches. However, like any other automated tool supports, automated query reformulation comes

with both positive and negative implications as follows.

2.6.1 Benefits of Query Reformulation

Traditional web/code search engines encourage short and concise queries [205, 263]. Developers thus often
use short queries (e.g., 1-3 keywords) for code search which might not reflect their information need properly
[78, 219]. There is also a little chance (i.e., 10%-15%) that a developer might guess the exact same words
used in the source code documents that were authored by other developers [83]. All these circumstances make
the appropriate query construction highly challenging. Fortunately, addition of similar (e.g., synonyms) or
complementary keywords often improves a poorly designed query. Existing studies have reported ~ 20%
performance improvement as a result of automated query reformulations [145]. Furthermore, automatically
reformulated queries and the documents retrieved by them help the developers (1) redefine their information

needs and (2) retrieve the source code documents of interest more quickly.

2.6.2 Costs of Query Reformulation

While query reformulations are useful, they might have a few negative effects as well. For example, automated
reformulations might hurt such queries that are already of high quality [61, 98, 189]. Adding extra keywords
to these queries makes them noisy. Hence, they might drift away from their original topics. Existing studies
[172, 228, 233] also argue that inappropriate reformulations of a search query are more harmful than no
reformulation at all. There also exist a few queries in each subject system namely difficult queries which
could not be improved using the existing approaches from literature [61, 87].

Given these two-fold implications of automated query reformulation above, contemporary approaches
attempt to maximize the benefits and minimize the costs of reformulation. For example, several studies
[96, 98, 189] adopt machine learning techniques and query difficulty analysis to improve the poor queries and

to preserve the high quality queries during query reformulation.

20

2.7 Word Embeddings

Traditional code search engines (e.g., Lucene, GitHub code search) often suffer from vocabulary mismatch
issues (e.g., polysemy, synonymy) [95, 142, 265]. One crucial step towards tackling these challenges is to
determine the semantics of a word correctly. There have been several studies [156, 188, 268, 272] that
attempt to determine the semantics of a word using its context which is captured from a large corpus (e.g.,
Stack Overflow). Mikolov et al. [156] propose word2vec, a feed-forward neural network based text mining tool
that mines a corpus and represents each word as a high dimensional numeric vector. This vector is also called
word embeddings [156, 268]. In order to learn embeddings, word2vec uses two predictive models— continuous
bag of words (CBOW) and skip-gram. CBOW model predicts a word given its contextual words whereas
skip-gram attempts to predict the context of a given word. Embeddings are learned in such a way that similar
words co-occur close to each other within a high dimensional semantic space. Two of our conducted studies
(Chapters 6, 8) make use of word embeddings in reformulating queries for source code search. In this thesis,
we use an updated version of word2vec namely fastText [54] and Stack Overflow as a corpus for learning our

word embeddings [194].

2.8 Cosine Similarity

It is a measure! that indicates the orientation between two vector spaces with varying number of dimensions.
Cosine similarity is frequently used in Information Retrieval to determine the lexical similarity between any
two text documents. In particular, each unique term is considered as a dimension and each document is
considered as a vector of such dimensions. Let us consider that A and B are two documents representing
a query and a code segment respectively in our research context. First, A and B are normalized using
standard natural language preprocessing (e.g., stop word removal, punctuation removal, token splitting), and
a combined vector C' is constructed using all the unique terms from them. Then the cosine similarity Seos

between A and B can be calculated as follows.

_ >ie1 Ai x B
Vi A x VXL B]

Seos (2.3)

Here, A; represents the weight (e.g., TF, TF-IDF) of i** term from C in vector A, and B; represents the
similar weight in vector B. This measure values from zero (i.e., complete dissimilarity) to one (i.e., complete
lexical similarity). The measure is widely used, intuitive and easy to calculate.

In this thesis, we use this measure to determine the semantic distance between any two words that are
represented as embedding vectors. We also use Lucene [32], a cosine similarity based code search engine, to

retrieve the relevant source code against original and reformulated search queries.

Thttps://bit.ly/KTDKUy

21

2.9 Summary

In this chapter, we introduced several important terminologies and background concepts that would help one
to follow the remaining of thesis. We defined automated query reformulation, and discussed its three types
and two working contexts— local code search (e.g., concept location, bug localization) and Internet-scale code
search. We discussed the common steps of query reformulation, term weighting algorithms (e.g., TF-IDF,
TextRank) and explained both positive and negative impacts of automated query reformulations. Finally,
we defined word embeddings and cosine similarity which are frequently used throughout this thesis. In the
next six chapters, we discuss our six studies supporting concept location (Chapters 3, 4), bug localization
(Chapters 5, 6) and Internet-scale code search (Chapters 7, 8) with automated query reformulations. While
Fig. 2.1 shows the working contexts of the first four studies (S1, S2, S3, S4), Fig. 2.2 does the same for the

remaining two studies (S5, S6).

22

CHAPTER 3

SEARCH QUERY REFORMULATION FOR CONCEPT LOCATION

USING GRAPH-BASED TERM WEIGHTING

Software maintenance costs about 60% of the total development time and efforts [88]. Developers receive
thousands of software change requests from the users during maintenance phase. Change requests are often
a mix of unstructured regular texts and domain level concepts. Developers need to find the right keywords
from these concepts so that they could identify the relevant code entities (that should be changed) using a
search technique. Unfortunately, according to existing evidence [120], choosing the right search keywords is
highly challenging even for the experienced developers. In this chapter, we attempt to overcome this keyword
selection challenge. Here, we present our first study (STRICT) that accepts a change request as a search
query, identifies the appropriate search keywords from the request texts, and then delivers an improved,
reformulated search query for the concept location task.

The rest of the chapter is organized as follows: Section 3.1 presents a brief overview of our study and
Section 3.2 offers a motivating example. Section 3.3 presents our proposed technique for search query con-
struction intended for the concept location. Section 3.4 discusses our experiments, results and validation,
Section 3.5 identifies the threats to validity, Section 3.6 discusses the related work, and finally Section 3.7

concludes the chapter with future work.

3.1 Introduction

During software maintenance, developers deal with a number of change requests. They make frequent changes
to the source code of a software system in order to address these requests. Before making a code change, one
needs to identify the exact locations in the code, which is a major challenge, even for a medium sized system
[265]. Such challenge is exacerbated by the unstructured nature of a submitted request. Change requests are
often written by the users of a software system who might be familiar with the application domain (e.g., word
processing) of a software (e.g., Microsoft Word). However, they generally lack the idea of how a particular
software feature is implemented in the software code. Hence, a change request from them generally entails
unstructured natural language texts and one or more “high level” concepts from the application domain.

A developer needs to map these concepts to the relevant code locations of a software system in order to

23

implement the changes requested by the users [121, 149]. Such mapping has been termed as concept location

or concept assignment problem by the research community over the years [84, 98, 142].

The mapping between concepts and source code is possibly trivial for a developer who has substantial
knowledge on a target system. Unfortunately, developers involved in the maintenance might always not
be aware of the low-level architecture of a software system. The design documents required for a code
change might also not be available [72, 171]. Thus, the developers often experience difficulties in identifying
the exact source code locations (e.g., methods) that need to be changed. The conceptual mapping above
generally starts with a search within the project codebase which requires one or more suitable search terms
[98]. Unfortunately, the developers perform poorly in choosing appropriate queries from a change request
regardless of their development experience [83, 120, 142]. Based on a user study, Kevic and Fritz [120] report
that only 12.20% of the search terms chosen by the developers were able to retrieve the code of interest.
Furthermore, the chances that a developer would correctly guess the exact words used in the source code are
slim (i.e., 10% — 15%) [83]. Therefore, search term identification for concept location is a major challenge
for the developers. One way to help them overcome this challenge is to automatically suggest suitable search
terms from the change request texts at hand. Our work in this chapter addresses this particular research

problem—search term suggestion—for concept location.

Relevant existing approaches from the literature apply lightweight heuristics [120], relevance feedback
[84, 93, 95, 98, 188], query difficulty analysis [93, 95, 97, 98], natural language processing [65, 104, 226] and
software repository mining [104, 109, 265]. However, most of these approaches expect a developer to provide
the initial search query which they can improve upon. Unfortunately, preparing such a query is often a non-
trivial task for the developers as shown by the existing evidence [83, 120, 142]. One can think of using the
whole texts (i-e., title + description) of a change request as a search query. However, such texts often produce
verbose and poor queries [64, 120]. Kevic and Fritz propose the only approach for automatically identifying
search terms from a change request. They consider several heuristics concerning frequency, location, part of
speech and notation of the terms from a request text. According to preliminary evaluation, their model is
found promising. However, it suffers from two major limitations. First, their model is neither trained using
a large dataset nor cross-validated against multiple software systems. They use a small dataset of only 20
change requests from a single subject system. Since the dataset was small and restricted to one system only,
their model might require frequent re-training for other set of bug reports. Thus, their model is yet to be
matured and reliable. Second, TF-IDF is reported as the most important feature of their model. However,
TF-IDF fails to capture the semantic or syntactic dependencies among terms during the estimation of term

importance, which has been reported as its major limitation [53, 153].

In this chapter, we propose and design a novel query suggestion technique-STRICT—that automatically
identifies and recommends high quality search terms from a change request for concept location. We first
determine the importance of each term from the texts of a request by employing three graph-based term

weighting algorithms—TextRank, POSRank and WK-Core, and then suggest the most important terms as a

24

search plain ‘ IJavaElement diagram search plain ‘ IJavaElement diagram
superclasses ui hierarchically - superclasses ui hierarchically -

reported LevelTreeContentProvider Custom reported LevelTreeContentProvider Custom
Element hierarchical check eclipse class Element hierarchical check eclipse class

instance view flat text ‘IJava Content instance view flat text .IJava Content

Figure 3.1: Text graphs of the change request in Table 3.1 — (a) using word co-occurrences, and (b)
using syntactic dependencies

search query. Both TextRank and POSRank are the adaptations of PageRank algorithm [57] in the context
of natural language texts. They first transform the textual content of a change request into a text graph
(e.g., Fig. 3.1) by using either co-occurrences or syntactic dependencies among the terms. Then they
determine term importance by leveraging the topology of the constructed graphs with PageRank algorithm
[101, 153]. WK-Core extracts a cohesive sub-graph from such a text graph using K-Core decomposition,
and then identifies the important terms using centrality and cohesion of the nodes in the sub-graph. Unlike
the model of Kevic and Fritz [120] that overlooks term dependencies, our term weighting methods leverage
term dependencies (e.g., semantic & syntactic dependencies) and textual cohesion within a change request
for determining the term importance [53, 153, 217]. Thus, our approach has a higher potential for returning

the good quality search terms from a given change request.

Experiments using 2,885 change requests from eight Java-based subject systems report that our technique—
STRICT-can provide higher quality search terms than 43%-74% of the baseline queries (RQ;) which is
highly promising according to the literature [98, 164]. Our suggested queries can retrieve relevant source
code documents for 46%—78% of the change tasks with 29% precision and a reciprocal rank of 0.29 which are
26%, 25% and 26% higher respectively than the best performing baseline (RQ2). Comparisons with two
state-of-the-art techniques—Kevic and Fritz [120] and Rocchio [213]-report that our technique can improve
19%—23% more of the baseline queries than the state-of-the-art (RQs). Furthermore, our queries achieve
37% higher accuracy, 31% higher precision and 38% higher reciprocal rank than the state-of-the-art when
Top-10 results are analysed (RQg). All these findings above clearly demonstrate the high potential of our

approach over the state-of-the-art.

Novelty of Contributions: Our work in this chapter is a significantly extended version of our earlier
work on search term identification [191]. The earlier work (1) proposes a basic graph-based term selection

approach, and (2) conducts evaluation using a limited set of 1,939 change requests and four research questions.

25

Table 3.1: An Example Change Request (Issue #303705, eclipse.jdt.ui)
Field Content QE

Title [search] Custom search results not shown hierarchically in the java search | 559

results view

Description | Consider an instance of org.eclipse.search.ui.text.Match with an el- | 63
ement that is neither an IResource nor an IJavaElement. It might be an
element in a class diagram, for example. When such an element is reported,
it will be shown as a plain, flat element in the otherwise hierarchical java
search results view. This is because the LevelTreeContentProvider and

its superclasses only check for IJavaElement and IResource.

An Example of Query Suggestion

Baseline {Title + Description} 14
STRICT | {element IResource Provider Level Tree} 01

QE = Rank of the first correct result returned by the query

On the other hand, our work in this chapter provides an improved version of the approach using not only
three graph-based algorithms (TextRank [153], POSRank [53], Weighted K-Core [217]) but also two novel
aspects such as query difficulty analysis and machine learning. We also conduct a more extended evaluation
using 2,885 change requests, and answer seven research questions. We perform more in-depth analysis for
the research questions that are taken from our earlier work [191], and contrast between difficult and easy
queries. Furthermore, we provide a working prototype and detailed replication package [24] which have been
successfully verified by the third parties.

Thus, we make the following contributions in this work:

(a) A novel query reformulation technique —STRICT- that accepts a change request as an input, and
delivers a reformulated query (high quality search terms) for concept location.

(b) Comprehensive evaluation of the technique using ~3K change requests from eight Java-based subject
systems, four state-of-the-art performance metrics and two different performance dimensions.

(c) Comprehensive validation of the technique using comparisons with two state-of-the-art techniques on
query construction [120, 213].

(d) A verified replication package [24] that includes a working prototype, experimental data and other

associated materials for replication and third party reuses.

3.2 Motivating Example

In order to demonstrate the capability of our approach in the search query suggestion, we provide an example

where our query outperforms three baseline queries. Table 3.1 shows a change request from eclipse. jdt.ui

26

Text graph TextRank Query quality

(Term co-occurrence) calculation analysis

N K-Core (
z °. \
_n decomposition
Software change Preprocessing Machine Best query — Suggested search
request (input) ~ @ learning selection query (output)
Text graph POSRank
(POS dependence) calculation ~ Data resampling

Figure 3.2: Schematic diagram of the proposed query reformulation technique-STRICT

system that reports a concern about custom search result display in Eclipse IDE. Our technique-STRICT-
first transforms the textual content of the request into two text graphs by capturing (a) co-occurrences among
the terms (i.e., Fig. 3.1-(a)) and (b) syntactic dependencies among the terms (i.e., Fig. 3.1-(b)) respectively.
Then, it identifies the most important terms by recursively analysing the topological characteristics of both
graphs and by employing term weighting, query quality analysis and machine learning. STRICT returns
the following Top-5 search terms (i.e., highlighted, Fig. 3.1)— ‘element’, ‘IResource’, ‘Provider’, ‘Level’ and
‘Tree’—which return the first correct result at the topmost position of the result list. On the contrary, the
baseline queries— Title, Description and Title+Description— return the same result at the 559", 637¢ and
14" positions. Thus, our search query (1) can locate a starting point within the source code (for the code
change) more easily, and thus, (2) can potentially reduce the manual efforts spent on query preparation, code

search and on overall code changes by the developers.

3.3 STRICT: Automated Search Query Suggestion from a Change

Request for Concept Location

Since appropriate search term identification is a major challenge for the developers, we introduce a novel
approach for search term identification and suggestion from a software change request. Figure 3.2 shows the
schematic diagram of our proposed technique- STRICT. Furthermore, Algorithms 1-3 present the pseudo-
code of our approach. We first transform a change request into two text graphs (e.g., Fig. 3.1) based on
word co-occurrences and syntactic dependencies among the words, and then identify suitable search terms

using three term weighting algorithms, query difficulty analysis and machine learning as follows:

27

3.3.1 Data Collection

Our technique accepts the user-provided texts from a change request as the input (i.e., Step 1, Fig. 3.2),
and returns a ranked list of search terms as the output (i.e., Step 10, Fig. 3.2). We collect change requests
from two popular bug tracking systems—BugZilla and JIRA. Each change request is submitted as a semi-
structured report written using natural language texts, and it contains several fields such as Issue ID (e.g.,
303705), Product (e.g., JDT), Component (e.g., UI), Title and Description. We extract the last two fields
from each report for analysis, as was also done by the literature [98, 120]. Title summarizes a requested
change task whereas Description contains detailed explanation of the task provided by the submitter using

natural language texts.

3.3.2 Text Preprocessing

We analyse Title and Description fields of a software change request, and perform several preprocessing
operations on them (i.e., Step 2, Fig. 3.2, Lines 3-6, Algorithm 1). We consider sentence as a logical
unit of the request texts, and collect each of the sentences from both fields. Then we perform standard
natural language preprocessing (i.e., removal of stop words, keywords and punctuation marks, and splitting
of structured terms) on each of these sentences, and extract the candidate search terms. In particular, we
remove stop words or keywords, and turn each structured artifact (e.g., org.eclipse.ui.part) into multiple
technical terms (e.g., org, eclipse, ui and part) using token splitting. We also split each-camel case token
(e.g., createPartControl) into simpler tokens (i.e., create, Part and Control), and keep both simpler and
camel-case tokens for our analysis [75, 98]. It should be noted that we avoid term stemming (i.e., extracting
root form of a given term) since it degrades the performance of our technique, as was also reported by several

earlier studies [106, 120].

3.3.3 Text Graph Development

Using Term Co-occurrence: After the preprocessing step above, we get a list of sentences from each
change request. Each preprocessed sentence comprises of an ordered list of candidate search terms. We use
these sentences to transform the change request into a text graph (i.e., Step 3, Fig. 3.2, Line 8, Algorithm
1). In the text graph, unique terms are represented as nodes and the co-occurrences of terms within each
sentence are denoted as connecting edges (e.g., Fig. 3.1-(a)). The underlying idea is that all the terms that
co-occur in the texts within a fixed window have some level of semantic relatedness or dependencies among
them [53, 153]. For example, if we consider the sentence— “Custom search results not shown hierarchically
in the java search results view"—from the example request texts (i.e., Table 3.1), the preprocessed version
forms an ordered list of terms— “custom search hierarchically java search view.” It should be noted that the
transformed sentence contains several phrases such as “custom search” and “search view". The terms in each

of these phrases complement each other semantically, and convey an enriched semantic than their original

28

generic semantics. Thus, these terms are semantically dependent on each other for a comprehensive new
meaning. Term co-occurrence information captures such dependencies in a statistical sense. We thus employ
a sliding window of window size = 2 (as recommended by Mihalcea and Tarau [153]), and derive the following

term co-occurrence relationships:

custom<— search, search<—; hierarchically, hierarchically<—s java, java<—s search and search<+— view.

Then these term relationships are represented as connecting edges among the corresponding nodes in the
text graph (i.e., Fig. 3.1-(a)). Given that both terms depend on each other for their semantics, we represent
each of the connections using bi-directional edges (e.g., Fig. 3.1-(a)).

Using Syntactic Dependence: Although term co-occurrence captures semantic dependencies among
the terms through a statistical sense, it might always not be effective for term weight estimation. Another
orthogonal approach to capture term importance could be syntactic dependencies among the terms. Jespersen
[113] suggests that words from a sentence can be divided into three major ranks— primary (i.e., nouns),
secondary (i.e., verbs, adjectives), and tertiary (i.e., adverbs), which is often called as Jespersen’s Rank
Theory of Three. According to this theory, a word from a higher rank defines (i.e., modifies) another word
from the same or lower ranks within a sentence. Thus, a noun can modify only another noun whereas a
verb can modify another noun, verb or adjective but not an adverb. We leverage this principle for our
term weight estimation, capture the grammatical modifications or dependencies among the words, and then
represent such dependencies as directed edges in the text graph (i.e., Step 4, Fig. 3.2, Line 9, Algorithm
1). We first annotate each of the sentences from a change request using Stanford POS tagger [244], and
then group them according to their Jespersen ranks. For instance, the example statement— “element reported
plain flat element hierarchical java search view"—can be organized into two ranks—primary (“search”, “view",
“ava", “element”), and secondary (“plain”, “flat”, “hierarchical”, and “reported”). We derive the following

relationships based on their syntactic dependencies.

search<—view, views+—java, java<—s element, reported——>search, reported—sview, reported—:java, re-

ported—> element, reported— plain, reported— flat, reported— hierarchical,

Then we encode the above relationships into connecting edges in the text graph (e.g., Fig. 3.1-(b)). It should

be noted that these dependencies could be mutual or uni-directional.

3.3.4 TextRank (TR) Calculation

Once a text graph is developed based on term co-occurrences within the request texts, we treat the graph as
a regular connected network. We apply a popular graph-based ranking algorithm namely TextRank [53, 153]
to estimate the importance of the nodes (i.e., terms) in the graph (Step 5, Fig. 3.2, Lines 10-11, Algorithm
1). TextRank is an adaptation of PageRank algorithm which was proposed by Brin and Page [57] originally
for web link analysis. TextRank analyses the connected neighbours and their weights for each term v; in the

graph recursively, and then calculates the term weight, T R(v;), as follows:

29

TR@w)=(1-0)+6 Y o) <4< (3.1)

Here, V(v;) and ¢ denote node list connected to v; and damping factor respectively. In the text graph
(e.g., Fig. 3.1-(a)), co-occurrences among the terms are represented as bi-directional edges between the
corresponding nodes. In the context of web surfing, damping factor, ¢, is considered as the probability of
randomly choosing a web page by the surfer, and 1 — ¢ as the probability of jumping off that page. Mihalcea
and Tarau [153] use a heuristic value of ¢ = 0.85 for natural language texts in the context of keyword
extraction, and we also use the same value for our TextRank calculation. We initialize each of the terms in
the graph with a default value of 0.25, and run an iterative version of the algorithm [57]. It should be noted
that the initial value of a term does not affect its final score [153]. The computation iterates until the scores
of all the terms converge below a certain threshold or it reaches the maximum iteration limit (i.e., 100 as
suggested by Blanco and Lioma [53]). As Mihalcea and Tarau [153] suggest, we use a heuristic threshold of
0.0001 for the convergence checking of the scores.

TextRank adopts the underlying mechanism of a recommendation system where a term (e.g., “Custom”)
recommends (i.e., votes) another term (e.g., “search”) if the second term complements the semantics of the
first term in any way (e.g., “custom search™) [153]. The algorithm captures votes cast for a term by analysing
its connected edges within the text graph (e.g., Fig. 3.1-(a)). It should be noted that the votes could be cast
by other terms both from a local context (i.e., same sentence) and from the global context (i.e., entire request
texts). Thus, the algorithm determines importance of a term using both its local and global contexts. Once
the computation is over, each of the nodes of the graph is found with a final score. Such score is considered

as the relative weight or relative importance of the corresponding term within the whole request texts.

3.3.5 POSRank (POSR) Calculation

While TextRank operates on a text graph based on word co-occurrences (e.g., Fig. 3.1-(a)), POSRank
determines term-weight by analysing syntactic dependencies among the terms (e.g., Fig. 3.1-(b), Step 6, Fig.
3.2). POSRank is another adaptation of PageRank [57] for natural language texts. Similar to TextRank,
it also analyses connectivity of each term in the graph but considers the links according to their directions.
Incoming links and outgoing links of the term are treated differently. Incoming links represent votes cast for
the term by other terms whereas the outgoing links represent the opposite. Thus, POSRank POSR(v;) of

each term wv; is calculated as follows:

POSR(
POSR(vi)=(1-¢)+¢ > Out v]”)ﬂ‘ 0<o<1) (3.2)

jeIn(v;)

Here In(v;) and Out(v;) denote the node lists to which node v; is connected to through incoming and outgoing

links respectively. Since the underlying mechanism of PageRank-based algorithms is recommendation (i.e.,

30

votes) from other nodes of the graph, POSRank follows the suit of TextRank. That is, it determines the
weight (i.e., importance) of a term by capturing and analysing the weights of the incoming links recursively.
It should be noted that not only frequent votes but also the votes from other high scored nodes of the
graph are essential for a node (i.e., term) to be highly scored (i.e., important). Given the similar topological
properties (i.e., Fig. 3.1-(b)), we apply the same settings as of TextRank (Section 3.3.4). In particular, we
apply the same damping factor (¢), iteration count, initial score, and convergence threshold for the POSRank

calculation of each of the terms.

3.3.6 Weighted K-Core Calculation

Based on a user study, Rousseau and Vazirgiannis [217] report that keywords chosen by human subjects are
generally phrases rather than single words. Although TextRank and POSRank employ topological properties
of a graph constructed from texts, they might return a list of terms that are neither coherent nor comprehen-
sive about the information need [217]. One way to possibly address this challenge is to analyse the K-core of
the graph. K-core refers to a connected sub-graph of a graph where each node has a degree of at least size K.
K-core decomposition has been applied in identifying highly connected groups within a large social network
[50] and in extracting a coherent set of keywords from a body of texts [217]. Similarly, we employ a weighted
version of K-core decomposition for identifying coherent search terms from a change request for concept
location. In particular, we first extract K-core from each of the two graphs above by invoking Algorithm 2
(i.e., Step 7, Fig. 3.2, Lines 13-15, Algorithm 1). We iterate through all the nodes of a graph, and delete the
nodes (and their edges) having a degree below K (i.e., Lines 1-6, Algorithm 2). This process continues until
the graph is left with only such nodes that have a weighted degree greater than K. Then we calculate score,
W K-Core(v;), of each node v; based on its degree and weights of the connecting edges (i.e., Lines 16-18,
Algorithm 1) as follows:

WK — Core(v;) = Z w(v;, ;) (3.3)
jeV(vi)

Here, w(v;,v;) denotes the weight of a connecting edge between nodes v; and v;, and V(v;) refers to all nodes
directly connected to v;. We perform K-core decomposition on both text graphs constructed above (e.g., Fig.
3.1-a, b). Thus, the weight of an edge is determined based on either co-occurrence frequency or grammatical

modification frequency between the two terms connected.

3.3.7 Term Ranking and Candidate Query Selection

Once the scores are calculated, we rank the candidate search terms based on their TextRank, POSRank and
WK-Core (i.e., Lines 20-22, Algorithm 1). Then we collect top scored X% (e.g., X = 33) candidate terms
from each of the ranked lists, and construct the candidate search queries (i.e., Line 23, Algorithm 1). It

should be noted that we collect a varying number of terms from each change request given that the requests

31

Algorithm 1 Search Keyword Identification with Graph-based Term Weighting

1: procedure STRICT(CR)

2:

3:

4:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

Le{)

> collecting task details from the change request

T < collectTitle(C'R)

D < collectDescription(C'R)

T D <preprocess(combine(T, D))

> developing text graphs from the task details

Geoc <+ developTGUsingCo-occurrence(T' D)

Gpos + developTGUsingPOS-dependence(T D)

> calculating TextRank and POSRank

TR « calculateTR(Gcoc)

POSR < calculatePOSR(G pos)

> collecting K-core from the graphs

Grcooc +extractK-Core(Gooc, K)

Grpos +extractK-Core(Gpos, K)

> calculating K-core scores

KCecoc calculateWK-Core(G g coc)

KCpogs calculateWK-Core(G g pos)

> getting candidate queries and their difficulties

Let CTS «+{TR, POSR, KCcoc, KCpos}

for CandidateQueryKey ckey € CT'S.keys do
sortedTerms <—sortByScore(CT S[ckey])

CQ|ckey] +getTopXPercent(sortedTerms) + T

QD|ckey] +getQueryDifficulty (CQ|ckey])

end for

> getting the best search query for change request

QD' +—resampleWithReplacement(QD)
QDM <+developQueryDifficultyModel(QD’)

BQ «+ getBestCandidateQuery(QDM, {CQ UTD})

L + getTopKSearchTerms(BQ)

return L

: end procedure

> C'R: change request

> list of search terms

32

Algorithm 2 K-Core Decomposition of a Graph

1: procedure EXTRACTK-CORE(G, K)
2: Let F + G
3: > extracting the K-Core

4 while nodeExists(z) and wDegreer(z)<K do

5 F +delete(x, F)
6: end while
7 return F

8: end procedure

are of varying lengths. Earlier studies reported better performances for varying sized queries [50, 153, 217].
Our experimental results also suggest that variable size is better in terms of retrieval performance than a
fixed size of the query. We also found that terms from Title field of a change request are more salient than
those from the Description field. Hence, we append the terms from Title to each of the candidate queries as
well. Existing studies have shown that no single reformulation strategy [98, 99], information source [188, 189]
or retrieval algorithm [164] is sufficient enough for all queries under study. Similarly, we conjecture that no
single term weighting method could be sufficient enough for search term identification from all the change
requests. We thus develop six candidate search queries using the three term weighting methods discussed
above. Table 3.2 shows the candidate queries for the showcase change request (i.e., Table 3.1) based on

TextRank, POSRank and WK-Core score.

3.3.8 Best Query Suggestion with Machine Learning

Once multiple candidate queries are constructed from a software change request, the next challenge is to
identify the best one among them for suggesting to the developer. Query difficulty prediction has been an
active area of research to the Information Retrieval (IR) community [61]. Recently, such idea has also been
adopted successfully in the Software Engineering problems [96, 98]. In the same vein, we also perform query
difficulty analysis and then apply machine learning for identifying and suggesting the best candidate query
(i-e., Steps 8-10, Fig. 3.2) as follows:

Query Difficulty Analysis: Prediction of query difficulty or query quality had been an active avenue of
research for the Information Retrieval community over the last few decades. Haiduc et al. [96] first introduce
query difficulty analysis in the context of Software Engineering where they employ 21 pre-retrieval metrics
as query difficulty predictors. Pre-retrieval metrics do not require document retrieval to predict the quality
of a given query. They are lightweight and often computed using the information gathered during corpus
indexing (e.g., Term Frequency, Inverse Document Frequency). We use 20 of their metrics in our problem
context (i.e., Step 8a, Fig. 3.2, Line 24, Algorithm 1), and capture four quality aspects of a given query —

specificity, coherency, term relatedness among the query terms, and textual similarity between the query and

33

Algorithm 3 Best Candidate Query Selection
1: procedure GETBESTCANDIATEQUERY(QDM, CQ)

2 P «—{} > query difficulty class predictions
3: C+{} > instance occurrence counts
4: for QueryDiffModel QDM; € QDM do

5: for CandidateQueryKey ckey € CQ.keys do

6: ptemp <—getPredictionForHigh(ckey, QDM;)

7 Plckey] < P|ckey]+ptemp

8: Clckey] +C|ckey]+1

9: end for

10: end for

11: for CandidateQueryKey ckey € CQ.keys do

12: P|ckey] + P|ckey]/C|ckey]

13: end for

14: highK ey +sortKeyByPrediction(P)

15: return CQ[highKey]

16: end procedure

the document corpus. We collect query difficulty estimates of six candidate queries and one baseline query

(e.g., Table 3.2) for each of the change requests.

Dataset Labelling: We adopt a supervised machine learning approach for identifying the best query
among the candidates. Once query quality estimates are collected, we annotate each of the candidate queries
based on their quality. In particular, we determine the Effectiveness of each query, and classify the six
candidates and the baseline query into three classes— “high”, “medium” and “low”. The candidate query that
returns the first correct result at the closest position to the top of a result list is annotated as high and the
vice versa as low. The candidates that return the results between these two extreme positions are annotated
as medium quality queries. Thus, each of the instances in our training dataset has 20 query quality (or query

difficulty) predictors and one assigned class label.

Data Resampling with Bootstrapping: Our goal is to suggest only the high quality candidate query
to a developer for any given change request. Thus, the training dataset constructed above is inherently
skewed for the task. Only one out of each seven instances (i.e., six candidates + one baseline query) in the
dataset could be a true positive. We thus perform bootstrapping [116, 237] on the training dataset with
100% sample size and with sample replacement (i.e., Step 8b, Fig. 3.2, Line 27, Algorithm 1). In particular,
we make use of WEKA!, resample the training data multiple times (e.g., 100) and then develop multiple

Yhttp://www.cs.waikato.ac.nz/ml/weka

34

training datasets. The underlying idea was to introduce limited bias in the training dataset deliberately
through resampling and thus to counteract the data skewness.

Suggestion of the Best Candidate Query: Once training datasets are ready, we apply machine
learning on each of them, and develop a query difficulty model for each (i.e., Line 28, Algorithm 1, Step 8c,
Fig. 3.2). Haiduc et al. [98] first employ Classification and Regression Tree (CART) algorithm for learning
such model. However, RandomForest performs higher than CART according to our investigations. We thus
use RandomForest for learning the query difficulty model in our work. Given the inherent data skewness
and the limited strength of individual predictors, single quality model might be not sufficient enough for
the best query prediction. We thus adopt the method of ensemble learning where multiple weak models
are combined to develop a strong prediction model. In particular, we train our models on all the sampled
datasets above, perform 10-fold cross validations, and then collect the predictions for high class returned by
each of the models. Then we average such predictions of each candidate query for a change request, and
identify such candidate that has the highest prediction for high quality (i.e., Lines 29-30, Algorithm 1, Lines
1-15, Algorithm 3, Steps 8-10, Fig. 3.2). Such candidate is then suggested as the search query from the

change request for concept location by our technique.

3.3.9 A Working Example

Table 3.2 shows a working example of our technique-STRICT—for the showcase change request in Table 3.1.
We employ three term weighting methods—TextRank, POSRank and WK-Core—and develop six candidate
queries. It should be noted that each candidate query performs better than the baseline query (i.e., pre-
processed Title from the request) which justifies our term weighting methods. However, we conduct further
analysis on quality aspect of the queries, employ machine learning, and suggest the best performing candi-
date as the suggested query. For example, the candidate query-CQrr4posr—that uses both TextRank and
POSRank for term weighting, performs the best. It returns the first correct result at the third position of
the result list. Our approach identifies this candidate using machine learning, and suggests the query to
the developer for code search. On the contrary, the baseline query returns such result at the 559" position
which far below in the result list. Thus, our approach offers a major rank improvement over the baseline.
Furthermore, tuned version of our suggested query—{element IResource Provider Level Tree}-returns the

same result at the topmost position of the result list which is highly promising.

3.4 Experiment

Given two evaluation methods—pre-retrieval and post-retrieval—in the literature [93, 95], we choose post-
retrieval method for the evaluation and validation of our search queries. This method evaluates the results
retrieved by a query rather than simply analysing the query properties which makes it more reliable. Besides,

past relevant studies [49, 98, 164] also adopted this method for evaluation and validation. We evaluate our

35

Table 3.2: A Working Example of Query Suggestion by STRICT

Technique Search Query QE

Baseline CQr = {Bug search Custom search hierarchically javae search view} 559

TextRank (TR) CQrr = {search element check IJavaFElement IJava Element Resource IRe- | 04
source Level Tree}

POSRank (POSR) CQposr = {Resource element Java IResource superclasses Element | 77
Provider Bug search Custom}

TR + POSR CQrriprosr = {element Resource IResource java IJavaElement IJava El- | 03
ement search Level Tree}

WK-Corecoa CQcoc = {search element IJavaElement IJava Element check java Re- | 19
source IResource IAdaptable}

WK-Corepos CQpos = {check Resource Element adapt IResource Java propose fail | 77
LJavaFlement IJava}

WK-Corecoc + | CQcoctros = {check Resource Element IResource IJavaElement IJava | 89

WK-Corepos Element element search java}

Qprst = getBestCandidateQuery(QDM, CQ)
STRICT *Qprst = {element Resource IResource java IJavaElement IJava | 03

Element search Level Tree}

technique using 2,885 software change requests with four state-of-the-art performance metrics. Furthermore,

we compare with two state-of-the-art techniques on search query suggestion [120, 213] and conduct a user

* = Suggested search query by our technique

study involving five participants. Thus, we answer seven research questions as follows:

e RQ;: Can our suggested queries outperform the baseline queries from the change requests?

e RQ2: How do our suggested queries perform in retrieving the relevant source code documents?
e RQj3: How effective are the proposed term weighting algorithms —TextRank, POSRank and WK-Core—

in identifying good quality search terms from a change request? How do they perform in comparison

to the traditional term weighting methods (e.g., TF, TF-IDF)?

e RQ4: Are the parameters and thresholds adopted by our proposed technique justified?

e RQj5: Can STRICT outperform the state-of-the-art techniques in identifying good quality search terms

from a change request?

e RQg: Can STRICT outperform the state-of-the-art techniques in retrieving relevant source code doc-

uments from the corpus?

e RQ7: How does our working prototype perform in terms of usability and usefulness?

36

Table 3.3: Experimental Dataset

System ‘ SLOC ‘ #MD ‘ #CR ‘ Description

eclipse.jdt.core-4.7.0 951K 64K 404 | Java infrastructure and compiler of Eclipse IDE
eclipse.jdt.debug-4.6.0 | 233K 16K 229 Debugging support module of Eclipse IDE
eclipse.jdt.ui-4.7.0 625K 57K 695 User Interface module of Eclipse IDE
eclipse.pde.ui-4.7.0 386K 32K 525 | User Interface module for Eclipse IDE plug-ins.
ecf-170.170 222K 21K 345 An Eclipse communication framework
log4j-1.2.17 32K 3K 60 Apache logging service

sling-0.1.10 326K 30K 76 Apace framework for RESTful web applications
tomcat-7.0.70 286K 24K 551 Apache web server for Servlet and JSP

Total #CR: 2,885

SLOC: Source Line Of Code, MD: Method Definitions, CR: Change Requests selected for experiments
3.4.1 Experimental Dataset

Data Collection: We collect a total of 2,885 software change requests from eight Java-based subject systems
(i-e., five Eclipse systems + three Apache systems) for our experiments. Table 3.3 shows the details of our
selected systems. We first collect the RESOLVED change requests from BugZilla and JIRA bug repositories of
these systems, and then map them to their corresponding bug-fixing commits at GitHub and SVN. We analyse
commit messages from each project, and identify specific Issue ID (i.e., identifier of a change task) in these
messages using appropriate regular expressions [43]. Then, we include any change request in the experimental
dataset only if there exists a corresponding commit pointing to the request. Such data acquisition approach
is regularly adopted by the relevant literature [49, 98, 120, 276], and we also follow the same. In order to
ensure a fair evaluation, we also discard the change requests from our dataset for which no source code files
(i.e., Java classes) were changed or the relevant code files were missing from the system.

Ground Truth Construction: We collect the changeset (i.e., list of changed files) from each of our
selected commits from the version control history, and develop solution set (i.e., ground truth) for the cor-
responding change tasks. Thus, for experiments, we collect not only the actual change requests from the
reputed subject systems but also their solutions which were applied in practice by the developers [97]. We
use several utility commands such as git, clone, rev-list, shortlog and log on GitHub and SVN consoles for
collecting these information.

Replication Package: Our detailed experimental data, supporting materials and the working prototype

are hosted online (https://goo.gl/7THrgmb) for replication or third-part reuse.

3.4.2 Search Engine

We use a Vector Space Model (VSM) based search engine (e.g., Apache Lucene [95, 98]) to search for the

documents that were changed in order to address the requested changes. Search engines generally index

37

the documents of a corpus prior to search. Lucene is mostly targeted for simple text documents (e.g.,
news article). Since source code documents in our projects contain items beyond regular texts (e.g., code
segments), we apply limited preprocessing on them. In particular, we extract method bodies from each of
the Java classes, and treat each method as an individual document in the corpus (Table 3.3). We remove
all programming keywords, stop words and punctuation characters, and split the complex and camel case
tokens into simpler ones [75]. For token splitting, we employ a state-of-the-art token splitting tool-Samurai
[79]. Please note that we avoid stemming of the tokens for aforementioned reasons as described in Section
3.3.2 [120]. Once a search is initiated using a query, the search engine collects relevant documents from the
corpus. It first uses a Boolean Search Model for short listing the documents, and then employs a TF-IDF
based scoring technique (e.g., BM25 [227]) to return a ranked list of relevant documents. As existing studies
suggest [120, 125], we consider the Top-10 results from the search engine for calculating the performance of
our suggested queries.

One can argue about our choice of Lucene over the others (e.g., Indri [220]) as the back end code search
engine. However, a recent third-party investigation? suggests that Apache Lucene and its variants (e.g.,
Apache Solr, ElasticSearch) have ~77% market share in the enterprise search. Thus, Lucene is widely used
for search operation not only in academia [98, 163, 164, 175, 176] but also in the industry level applications.
Despite this strong supporting evidence, we also conduct an experiment to compare between Lucene and a
potential contender — Indri. Our experiment suggests that Lucene can deliver 12% higher accuracy (Hit@10)
than that of Indri for the same set of queries. More detailed supporting evidence could be found in Section

5.3.3, RQ1-(b) and Table 5.5. Thus, our choice of using Lucene is likely to be justified.

3.4.3 Performance Metrics

We choose four state-of-the-art performance metrics for evaluation and validation of our suggested queries.
These metrics are frequently used by the relevant studies from the literature [98, 163, 164, 220], and thus are
highly appropriate for our experiments as well.

Query Effectiveness (QE): It approximates a developer’s effort in locating the concept of interest in
the source code [98, 163]. In practice, the metric returns the rank of the first correct result that matches
with the ground truth, in the ranked list. The underlying idea is to provide an accurate starting point to the
developer that deals with the concepts discussed in the change request. The lower the effectiveness value is,
the better a query is since the developer can locate the correct result more quickly and with less efforts.

Mean Reciprocal Rank (MRR@K): Reciprocal rank@K refers to the multiplicative inverse of the
rank of the first correctly returned result (i.e., matches with the ground truth) within the Top-K results
[220, 276]. Mean Reciprocal Rank@K (MRR@K) averages such measures for all search queries (Q) in the

dataset. It can be defined as follows:

Zhttps://www.datanyze.com/market-share/enterprise-search

38

1 1
MRR(Q) = 1 ;2 FirstRank(q)

Here, firstRank(q) provides the rank of the first correctly returned result. MRR can take a maximum value
of 1.00. The bigger the MRR value is, the better the search query is.

Mean Average Precision@K (MAPQK): Precision@K refers to the precision calculated at the oc-
currence of every single relevant result in the ranked list [220, 276]. Average Precision@K (APQK) averages
the precision@K for all the relevant results in the list for a search query. Thus, Mean Average Precision@K

is calculated from the mean of average precision@K for all the queries Q) as follows:

240 APAK(q)
Q)

Here, rel(k) denotes the relevance function of k' result in the ranked list that returns either 0 or 1, Py

Zszl Py, x rel(k)

APQK =
Bl

, MAP@K =

denotes the precision calculated at the k** result, and D refers to the number of total results. S is the true
positive retrieved by a query, and @ is the set of all queries (i.e., change requests).

Top-K Accuracy / Hit@K: It refers to the percentage of the search queries (i.e., change requests) for
each of which at least one result file is correctly returned (i.e., matches with the ground truth) within the

Top-K result list [239, 250, 276].

3.4.4 Evaluation of STRICT

We conduct experiments using 2,885 change requests from eight subject systems (Table 3.3) where the above
four metrics (Section 3.4.3) are applied to performance evaluation. We run each of our suggested queries
with Lucene search engine (Section 3.4.2), check their results against the ground truth (Section 3.4.1), and
then compare with the baseline queries from those requests. In this section, we discuss our evaluation details
and answer RQ;-RQ4 as follows.

Baseline Query Selection: Developers often copy and paste the texts from a software change request
on an ad-hoc basis, and search for the source code that needs to be changed. Hence, request texts can
be considered as the baseline queries for our evaluation or validation [49, 98, 120]. We consider four types
of baseline queries from each request using its fields and structures. In particular, we capture Title and
Description fields from each change request, conduct standard natural language preprocessing (i.e., removal
of stop words and punctuation marks, splitting of complex or camel case tokens) on them, and then prepare
three baseline queries— Title, Description, Title + Description. It should be noted that the same set of
preprocessing steps were also applied in our approach in Section 3.3.2. Structured tokens (e.g., camel-case
structures) are reported as better keywords than unstructured natural language terms by several earlier
studies [49, 120, 191]. We thus extract the structured tokens from each request using appropriate regular
expressions. Then we split these tokens using a state-of-the-art token splitting tool-Sarnurai [79], and then

prepare another baseline query, (Title+Description)cqede, for our experiments.

39

=y ‘sorronb ourpseq pue DTS U0OMID] 9OUSIDHI(] Juey Ued]N = (YIA ‘Surussion pue jusuosodull Us9mIa(dOUISYIP JUeIYIUSIG = 4

9JURIYTUSIS JO BZIS 199[0 “@Io(I S JID

spo2(orydrrose(q

9Z1- %LS'9 (981e1)00°T/800"0x (09¢+)/%¢€6°12 (98%-) /% TS 1L 8G8‘T + 9IIL) ‘sAa LOTULS

uondros

01- %9022 (e81e1)00°1/800 0 (g62+)/%¥8°91 (50€-)/%01°9¢ 8C6'T -0 + AL 'SA IDIULS

291~ %9L°¢ (e81e1)00"1/800 0+ (21e+)/ %0661 (P2¥-)/ %V € ¥ L ¢e0's uondinsa(] sA LOTYLS

PI+ %aS'8 (e81e1)00"1/800 0+ (292+) %EVTT (8¥2-)/%90°69 868‘T OILL SA LOIULS
serIaN() auI[eseq NOIPI YUm uostreduwo)

*po>(gorpdrrosa

€02- %g0°LT | (98xe1) 00°1/800°0x | (661+)/%92°ST (20¥-)/%IL¥S g88°T + °oMLL) ‘sA LOTHLS

uorydrios

2e- %10°8€ (e8xe1) £6°0/800 0% (902+)/%6¢8T (8¢2-)/ %1€ ¢88°C -9 + 9L SA LDIYULS

902~ %9T CT (e8xe1) 00°1/800 0+ (002+)/%¥6°72 (90%-)/%16°69 ¢88°C uondinso(] “sA LOTHLS

€z %EC 8T (e8xer) 00°T/20"0« (621+)/%90°¢2 (861-)/%1¥°9¢ e88'C AL sa LOTYLS

dYIN 1N | peatesaig v/onrea-d (@U)/poussiop | (AUIN)/paasoaduy | sorrend) sareq Arond)

selIon{) aurjeseq pue OIS Ueomia(ssouaaljodyy A1engd) jo uosiredwo)) :§°'¢ oa[qel,

40

e I I 1
Title+Desc pge PR -
il S— —
Title+Desc I I T
e — —
Description — -4
° ot -
b T F------ |
Title r-- - -4
-

l l l l l l
10% 20% 30% 40% 50% 60%

O Improved O \Worsened O Preserved

Figure 3.3: Improvement, worsening and preserving of the baseline queries by our proposed technique
— STRICT

Query Improvement, Worsening and Preserving: We use these terminologies frequently throughout
the rest of the discussions on experiments, and they are defined as follows. If a suggested query provides a
better rank than its corresponding baseline query for the first correct result, then we call it query improvement
and vice versa as query worsening. On the contrary, if both queries provide the same rank, then we call it
query preserving by the suggested query. Thus, a technique that improves more baseline queries than it
worsens is a better technique than the baseline approaches.

Answering RQ;—Comparison with Baseline Queries: We execute each of the baseline queries with
our search engine—Lucene, and collect the ranks of their first correct results in the list. We also collect similar
ranks returned by our queries suggested from each of the change requests, and compare with that of the
baseline queries. Tables 3.4, 3.5 and Fig. 3.3 summarize our comparative analysis. From Table 3.4 (upper
half), we see that our queries provide higher ranks than 43%-60% of the baseline queries. Such statistic is
promising according to the relevant literature that reported a maximum of 55% improvement on a different
dataset [98, 164]. Our queries also provide relatively lower ranks than 19%-28% of the baseline queries on
average. Given these mixed findings, we compare the query improvement ratios of our technique against
the worsening ratios across eight subject systems using statistical tests (e.g., Wilcozon Signed Rank, Cliff s
Delta). As shown in Table 3.4, the query improvements by our technique are significantly higher (i.e., p-
value<0.05) than the worsening ratios with large effect sizes (i.e., 0.97< A <1.00). Mean Rank Difference
(MRD) calculates the rank difference between baseline and suggested queries where a negative value refers to
rank improvement and vice versa as rank worsening. According to MRD analysis, our queries push the first
correct results towards the top of the list by 23 to 206 positions which is a major rank improvement over the
baseline counterpart.

We also consider Effectiveness of the baseline queries and divide them into two categories—easy and
difficult. If a baseline query returns its first correct result within the Top-10 positions of the list, we call

it easy query and vice versa as difficult query [96, 98]. We found that the difficult baseline queries are

41

JURAS[DI }SI JO YUkl UedN—UeA ‘Tn-opd-ssdrToe — mapd ‘tn-apl-osdi1oe — m-pl ‘Snqep-1pl-ssdi1oe — 8nqgoap ‘@105 9pl-osdi1de — 210D

S[URI [0S0l [[e Jo o[Ijrenb 2 103 onfea Yuey ='{) ‘YNSol YIRS oY} Ul JUSWNIOP

9Z¥ 66. 099°1T G88‘C ejor,
- 766 1 € | 9 T 657 yuey oseq || GCI'F 4 8T | 17 | 6 10g | <-Yuey oseg
“ “ 16C | 0L¥eowo}
L1T 90¥'¢ 4 66 | 1¢ | 9 49} 18T LPTT 1 8¢ | A z GG €39T
- 968 1 e | 9 T 1. —yuey oseq || 0€8°¢ 4 96% | ¢OT | T | T09 | <uey oseqg o Surs
uy
eT L¥ST 4 GZC | 6S | OT | 6¥2 4 ¢8¥'C T 114 q T 611 8¢
- G8T 1 0z | ¥ 4 92 «uey oseq || 0.L¢ 4 08 | ¢F | T €9 <yuey oseq 0 -
[y8o]
12 (44 e € | €T | & 9% 91 98. 1 47 g ¢ LS €T
- 763 1 e | 9T | ¥ 917 | «—uey oseq || 616°S 4 PG | 0ST | ¢ | CFS | <uey oseqg
ege m-opd
89 10.°6 e €6S | 89 | 61 | SIS 28T 169% 1 16 | ST | & 06T 01g
- 108'% T ¥6 | ¢1 | ¢ L1€C | <yuey oseq || €£6 4 269 | 6ET | LT | 9¥L | <yuey oseq c6o wpt
m-ypl
89 69S°6 e T1€ | ¢S | 2T | 96¥ 691 TL8°'6 1 68 | ¢T | T PLI 8S¥
- €86°C T 9.1 | ¥¢ | ¢ L8T | <-yuey oseq || 160°C 4 €CE | L0T | ¢F | T8¢ | <—yuey oseqg
“ “ 62z 3nqop
ST 86S°C iZ C6E | GL | 1€ | 9%E 89 888‘¢C 1 6L | 6C | 6 6¥1 9% 1
- 45574 1 0¢ | €1 | ¢ 9¢ <uey oseq || €556 4 PSC | ¥9 | TIT | €19 | <-uey oseg
0% 9102
6L 1.1°G z TLT | 09 | CT | 092 L Tev'9 1 47 g 1 28T 8T
- TLOT T Ge 6 4 16 <yuey oseq || 966°C 4 80C | 8% | OT | Lgg | <—yuey aseqg ore
i Jo9
qq ePe'e 4 9%1 | SF | ¢I e 901 81'e 1 6¢ | OT | ¢ e6 P81
poAIoSOIJ# XeN | UIN | €0 | ¢ | TO | uesly | poussiopn # XN | Uiy | €0 | ¢O | 1O | uwesy | posoaduur O# wa)sAg
3uiazeseag SUTuaSIOAA JuatuaAoxdu]

°PO(uondLIds9(+o[11],) ‘Soltony) ouleseq ‘sa A1onf) LOIYULS JO S[re1o(SSouoAldelH :G'¢ o[qel,

42

Table 3.6: Document Retrieval Performance of STRICT Queries

Query #Keywords | Hit@l | Hit@s | Hit@1l0 | MAP@10 | MRR@10
Title 08 13.24% | 26.76% | 35.23% | 19.78% 0.19
Description 7 13.03% | 25.52% | 3L70% | 18.91% 0.18
Title-+ Description 100 17.32% | 29.36% | 35.21% | 22.70% 0.22
(Title+ Description)eo. 34 16.89% | 30.59% | 36.88% | 23.21% 0.23
STRICT14 10 1318% | 26.60% | 32.33% | 18.95% 0.19
STRICT 19 20 17.84% | 33.18% | 40.65% | 24.82% 0.24
STRICT1s0 30 1931% | 35.69% | 43.90% | 26.91% 0.26
STRICT 37 *21.95% | *38.07% | *46.43% | *28.99% | *0.29

Emboldened = Comparatively higher, * = Statistically significant difference between suggested and the

baseline queries

. - - T
R : S ! s '
1 I T = = I
-— I 1
= | | I
£ , . . - T
- | s 87 2 a7 T -
@ = [& &) | !
9 &1 g : . | pmm
T | 1 = g_ = o 1
=2 L o ° 1
LW = | -
™ : — ! 1 L
. ! i - ! ! i
= i S- 20 i ! -
& L @ = ° = ()
| Title O Title+Description 0O STRICT
E Description O (Title+Description)gq.

Figure 3.4: Comparison of the document retrieval performance of STRICT queries against baseline
queries in terms of (a) Hit@10, (b) MAP@10, and (c) MRR@10

significantly improved by our approach. From Table 3.4 (lower half), we see that our approach improve
56%—74% of the difficult baseline queries while worsening only 17%-22%. Thus, our query improvements are
three to four times higher than the query worsening ratios which is highly promising. We also found that the
easy queries cannot be further improved by our approach rather their quality level remain unchanged. Such

finding is also consistent with the earlier findings from the literature [98, 189].

Earlier studies report significant benefit in including source code tokens in the search query for bug
localization [163] and feature location [49]. We thus compare with another baseline, (Title+Description)code
that comprises of only structured or code-like tokens (e.g., camel-case tokens, HashSet) and their split
versions extracted from the change request. Although these queries perform highly compared to other three
baselines, our suggested queries perform even higher. From Table 3.4 (upper part and lower part), we see
that STRICT can improve 55%-72% of the (Title+Description) .qe queries in two different circumstances

which demonstrates the high potential of our approach for the query suggestion.

We also further investigate the ranks of first correct results returned by our approach, and compare them

with the ranks of (Title+Description)code, one of the high performing baselines. In particular, we compare

43

the rank distribution of STRICT with that of the baseline queries using descriptive statistics. From Table
3.5, we see that the rank improvements by our technique are generally higher than the corresponding rank
worsening. For example, the mean baseline rank of 248 queries from eclipse.jdt.core system is 613. Our
technique improves that rank to 157, and returns correct results for at least 50% of these queries within the
Top-5 positions of the result list (i.e., Q2 = 5) which are promising. Our technique also worsens the mean
rank of 77 baseline queries of the same subject system from 36 to 260. We compare such rank improvement
or worsening of STRICT against the baseline across eight subject systems, and found statistical significance
(i.e., p-value=0.02<0.05) with a medium effect size (i.e., A = 0.38). In fact, our mean rank improvement
(i.e., -402) is two times higher than the mean rank worsening (i.e., +199). According to our quantile analysis,
STRICT turns 50% of the difficult baseline queries into easy ones (i.e., rank within Top-10 positions) from
five systems — ecf, eclipse.jdt.core, log4j, sling and tomcat70. Fig. 3.3 further demonstrates the box
plots of improvement and worsening of the baseline queries by our technique across eight subject systems.
We see that the medians of query improvement ratios of our technique are much higher than that of the
corresponding worsening ratios. In fact, STRICT improves 50%—66% of the queries for six out of eight
systems which is promising.

We also manually investigate the baseline queries that are worsened by our approach, and found two
important observations. First, the extent of our rank worsening is relatively smaller than that of rank
improvement. Second, most of these worsened queries contain structured entities (e.g., stack traces). STRICT
could have performed even higher if such structures were properly incorporated in the text graphs. Such
an issue has actually been resolved by our later study called BLIZZARD (Chapter 5). We also manually
investigate the source code tokens in the baseline queries. We found that such items can always not be
guaranteed in the request texts. According to an earlier study [248], up to 55% of the change requests of a
system might contain only unstructured plain texts. Thus, the performance of the code-only baseline queries,
(Title+Description)coge, could be limited. On the contrary, we suggest relatively higher quality queries from
the careful analysis of any available textual information in the change request. All these empirical evidences

presented above demonstrate the high potential of our approach.

Summary of RQ;: STRICT improves 43%-74% of the baseline queries. Furthermore, the extent of our

result rank improvement is two to three times higher than that of the rank worsening.

Answering RQs; — Document Retrieval Performance: Although our approach improves majority
of the baseline queries in RQq, we further evaluate the approach in terms of document retrieval performance.
While RQ; considers only first relevant document of the result list, we consider all the relevant documents
retrieved by a query in RQs. We execute each of our queries, analyse the Top-10 results (as many existing
studies do [98, 120, 239]), and calculate Hit@QK, mean average precision@K and mean reciprocal rank@K of
our technique. Table 3.6, Figures 3.4 and 3.5 summarize our performance details. From Table 3.6, we see that
our queries return correct results for 46% of 2,885 change requests with 29% mean average precision@10 and

a mean reciprocal rank@10 of 0.29 which are 26%, 25% and 26% higher respectively than the best baseline

44

¥- = e
** ® | *-*-*'K,zf&
o ~ - AT A ATRIGCH
& | *_ z | . ,@,ﬁfﬁf
e R *'\. [7=] * /ég =
©° |* B:m el x .=
L . /%—e:\é::@ *'*-*..* 9 A& é/$f¢’®-$“"’$’$_$
2 8o Snag 8oasy TS Al
T e A — Zz
Fuoog Bilg. /)
o * h@:@::@,_%:@:é ETQ_
54/ (@) ®Igzgl 1] (b)
D B S S T 1 T T T T T T 1 T 1
15 20 40 g0 80 100 1 5 20 40 60 80 100
K K
< Title & Title+Description * STRICT
4 Description ® (Title+Description) qge

Figure 3.5: Comparison of STRICT queries with baseline queries for Top 1 to 100 results in terms
of (a) MAP@K and (b) Hit@K

measures (i.e., (Title+Description).oq.). Such performances are also comparable to other earlier findings
that use different datasets [37, 49, 59], which signals the external validity of our results. Our queries also
have more potential for practical use than the baseline queries. We achieve relatively higher performance
using a limited number of the search terms. For example, two of the baseline approaches—Description and
Title+ Description— achieve 32%—35% Hit@10 with 72-100 keywords in each of their queries on average. Such
long queries are noisy, and difficult to tweak manually. On the other hand, we offer 38% Hit@10 using only
top 10 of our suggested keywords. (Title+Description)coqe performs the best among the baseline approaches,
and it has a query length comparable to ours (e.g., 34). We thus consider it as an appropriate baseline
opponent and compare with it more extensively using statistical tests. Our tests report that the performance

of our query is significantly higher (i.e., p-value<0.05) with a medium effect size (i.e., A=0.34) in terms of
HitQK, MAP@10 and MRR@10.

Fig. 3.4 further contrasts our queries against the baseline in terms of (a) MAP@10, (b) MRR@10 and
(c) Hit@10 using box plots over all the subject systems. We see that our technique, STRICT, has a higher
median (i.e., 50% percentile) for each of the three performance measures. That is, top 50% of our measures
are comparatively higher than the top 50% of any baseline measures. In other words, our suggested queries
can retrieve the relevant source code documents more efficiently than the baseline ones.

Although our queries show high performance for Top-10 results, we further investigate how they perform
when more results (e.g., 100) are considered. Fig. 3.5 shows (a) MAP@K and (b) Hit@K for Top-1 to Top-
100 results. We see that STRICT achieves a Top-50 accuracy of 69% and Top-100 accuracy of 78% which
are 24% and 20% higher respectively than the equivalent baseline measures, (Title+Description)coqe. More
importantly, our accuracy measures remained significantly higher (i.e., p-value<0.05) than the corresponding
baseline measures with small to large effect sizes (i.e., 0.24<A<0.64) for various Top-K results. Our queries
also remained significantly more precise than the baseline queries (i.e., p-value<0.05, 0.42<A<0.96) across

all Top-K results which demonstrates the relative strength of our proposed approach over the baseline.

45

Summary of RQs: Our queries achieve 26% higher accuracy, 25% higher precision and 26% higher recip-
rocal rank than the best performing baseline when Top-10 results are analysed. Furthermore, STRICT is

found more accurate and more precise than the baseline when Top-100 results are analysed.

Answering RQ3z — (a) Role of our Term Weighting Algorithms: We investigate how three term-
weighting algorithms — TexztRank, POSRank and Weighted K-Core — perform in identifying good quality
search terms from a software change request. Table 3.7 and Fig. 3.6 summarize our investigation details.
From Table 3.7, we see that both TextRank and POSRank perform almost equally in terms of Hit@QK,
MAP@10 and MRR@10. Their combination marginally improves upon the individual performances. On the
contrary, WK-Core is a relatively better approach for term weighting. It achieves 41% Hit@Q10 as opposed
to 39% of TextRank and POSRank. Our technique, STRICT, combines all three term-weighting algorithms
using machine learning, and achieves 46% Hit@10 which is ~16% higher. Similar findings are also observed
in the case of precision and reciprocal rank. Fig. 3.6 further demonstrates the improvement, worsening
and preserving ratios of the baseline queries by each of the term weighting approaches. We see that the
combination of all three approaches benefits the baseline queries on average. For example, TextRank improves
48% and worsens 39% of the baseline queries. On the contrary, our technique that combines all three term
weighting approaches improves 55% and worsens 28% of the queries which are 14% higher and 27% lower

respectively. Thus, our choice of combining different term weighting algorithms is justified.

(b) Comparison with Traditional Term Weighting Algorithms: TF-IDF has been a popular
term weighting approach for over the last five decades [114]. It stands for term frequency (TF) times the
inverse document frequency (IDF), i.e., TF-IDF = TFxIDF. While TF counts the occurrences of a term
within a document, IDF is computed using the number of documents from corpus containing that term.
Thus, TF-IDF captures both local and global contributions of a term, and determines its importance. We
compare our term weighting approaches with this traditional approach, and demonstrate the potential of
our approaches. From Table 3.8, we see that IDF performs the best among three traditional approaches -
TF, IDF and TF-IDF. It improves 1,467 baseline queries and retains the rank of 281 queries. Thus, the
traditional approaches improve or at least preserve 1,748 (60.59%) of 2,885 baseline queries. On the contrary,
our combined term weight, { TextRank+POSRank+WXK-Core}, improves or preserves 1,784 (61.84%) baseline
queries which is comparatively higher. Furthermore, when our term weighting approaches are combined with
machine learning, they improve or preserve 70% of the baseline queries which is 16% higher than that of

traditional approaches.

Summary of RQj3: Each of the term weighting algorithms has its own strengths and weaknesses. Our
approach achieves 16% higher Hit@10, improves 15% more of the baseline queries, and worsens 24% less of
the queries when all three algorithms are combined using machine learning. Furthermore, our term weighting

algorithms are more promising than the traditional counterparts.

46

Table 3.7: Retrieval Performance of TextRank, POSRank and WK-Core

Term weight

\ Hit@1 \ Hit@5

| Hit@10 | MAP | MRR

TextRank 14.75% | 30.30% | 39.47% | 22.20% | 0.22
POSRank 14.68% | 29.67% | 38.97% | 22.29% | 0.21
{TextRank + POSRank} 16.55% | 31.29% | 39.94% | 23.51% | 0.23
WK-Corecoc 16.57% | 30.73% | 40.58% | 23.14% | 0.23
WK-Corepos 15.80% | 30.49% | 40.80% | 23.63% | 0.23
{WK-Corecoc + WK-Corepos} | 16.74% | 31.67% | 41.03% | 24.19% | 0.23
STRICT \ *21.95% | *38.07% | *46.43% | *28.99% | *0.29

Table 3.8: Comparison between Proposed and Traditional Term Weights

Term weight ‘ #Queries ‘ Improved ‘ Worsened ‘ Preserved
TF 2,885 1,439 (49.88%) 1,112 (38.54%) 247 (8.56%)
IDF 2,885 1,467 (50.85%) 1,031 (35.74%) 281 (9.74%)
TF-IDF 2,885 1,439 (49.88%) 1,082 (37.50%) 267 (9.25%)
TextRank 2,885 1,470 (50.95%) 1,077 (37.33%) 256 (8.87%)
POSRank 2,885 1,397 (48.42%) 1,124 (38.96%) 274 (9.50%)
{TextRank + POSRank} 2,885 1,445 (50.09%) 1,056 (36.60%) 304 (10.54%)
{TextRank + POSRank +

WEK-Core} 2,885 1,476 (51.16%) | 1,021 (35.39%) | 308 (10.68%)
STRICT 2,885 | 1,660 (57.54%) | 792 (27.45%) | 366 (12.69%)

Answering RQ4 — Impact of the Adopted Parameters and Thresholds: We conduct experiments
to justify our choice on the suggested query length, the use of data re-sampling, and the use of machine
learning algorithm. Figure 3.7 demonstrates the impacts of various parameters and thresholds upon the
performance of our approach. From Fig. 3.7-(a), we see that our approach improves more baseline queries
than it actually worsens when only Top-10 terms from each of our queries are used for code search. This
performance gradually improves up to a query length of /=35 which makes it a potential threshold. Similar
findings can also be observed in Fig. 3.7-(b). However, earlier studies [50, 153, 217] report significant benefits
of a dynamic threshold over a fixed threshold. Furthermore, about 50% of our change requests have a query
length of ~ 40. Thus, almost all terms from these change requests are likely to return as search terms with
a fixed threshold of 35 which makes the automated query suggestion irrelevant. Hence, we use a dynamic
threshold for our query length rather than a fixed threshold. In particular, we choose the top 33% of the highly
weighted terms from each change request as our query. Earlier studies [50, 153, 217] based on graph-based
term weighting use such threshold for keyword selection. Such threshold also helps us achieve the optimal
performance (i.e., dashed and dotted lines) both in query improvement and in the retrieval of relevant source
documents. More interestingly, such threshold ensures an average length of 37 for our suggested queries

which is also close to 35.

47

Table 3.9: Comparison of Baseline Query Improvements between STRICT and Existing Techniques

Query Pairs #Queries ‘ Improved/(MRD) | Worsened/(MRD) | Preserved | Net Gain | Net MRD
Kevic and Fritz [120]-I 2,885 38.52%/(-505) 49.82%/(+288) 11.67% -11.30% -
Kevic and Fritz [120]-1I 2,885 47.28% /(-455) 40.16%/(+228) 12.55% +7.12% -227
Rocchio [213]-1 2,885 43.53%/(-479) 47.96% /(+395) 8.51% -4.43% -
Rocchio [213]-1T 2,885 45.41%/(-436) 41.73%/(+302) 12.86% +3.68% -134
Rahman and Roy [191] 2,885 47.59%/(-424) 37.16%/(+200) 15.25% +10.43% -224
STRICT 2,885 54.71%/(-402) 28.26%/(+199) 17.03% | +26.45% -203
Comparison using Difficult Baseline Queries

Kevic and Fritz [120]-I 1,858 53.02%/(-578) 38.89%/(+406) 8.09% +14.13% -172
Kevic and Fritz [120]-1T 1,858 63.33%/(-532) 30.10%/(+387) 6.57% +33.23% -145
Rocchio [213]-I 1,858 59.76%/(-553) 35.04%/(+602) 5.20% +24.72% +49
Rocchio [213]-IT 1,858 60.74% /(-520) 33.58%/(+494) 5.68% +27.16% -26
Rahman and Roy [191] 1,858 64.36%/(-497) 28.43%/(+361) 7.22% +35.93% -136
STRICT 1,858 71.51% /(-486) 21.93%/(+360) 6.57% | +49.58% -126

We also investigate whether the re-sampling of training data has any impact upon our performance or
not. In particular, we compare performance between two variants of our approach where one variant uses
data re-sampling and the other does not. Our statistical tests report that re-sampling based variant achieves
significantly higher accuracy (Hit@K) and significantly higher precision (MAPQK) with small to large effect
sizes (i.e., all p-values<0.05, 0.26<A<0.68).

We also investigate whether the use of any particular machine learning algorithm in our approach makes
a difference or not. In particular, we compare performance between two variants of our approach where
on variant use RandomForest and the other uses Classification and Regression Tree (CART) as the learning
algorithm. Our statistical tests report that RandomForest-based variant achieves significantly higher accuracy
(Hit@QK) and significantly higher precision (MAP@K) than the CART-based variant with small to medium
effect sizes (i.e., all p-values<0.05, 0.17<A<0.46).

Summary of RQ4: We use a dynamic threshold for our query length, apply re-sampling to our training
data to cater for data skewness, and employ RandomForest as our learning algorithm for search query

suggestion. All these choices of ours are justified by the appropriate empirical evidences above.

3.4.5 Comparison with Existing Techniques

Although our suggested queries outperform the baseline queries with a large margin, we further compare our
approach with the state-of-the-art. Our approach, STRICT, could be considered as a technique both for (1)
search term identification and for (2) query reformulation. That is, STRICT not only identifies high quality
search terms from a change request but also, in essence, reformulates the baseline query by removing the low

quality search terms. We thus compare our approach with the state-of-the-art studies [120, 213] from these

48

SOLION(Y) oUl[osey PoAISOIJ=0)d ‘SOLION() oulesey PoUdSIO AN = AA ‘Soliong) ourppsey porordwu=01

99¢ 10L6 (4 VI | LV | CT | 62¢ 26L cL8'6 I 8¢ | T | ¢ TPT | 099°T LOTYLS
- 108V T 9¢ | 0T | @ LET - €246 e €6¢ | 88 | 8T c0g - ourfeseqg
v0€ 6956 e 1€g | 67 | 11 81¢ 9¢0°'T TL€°L I LL| LT | € 6S1 ¢yp'l | Loy pue uewyey
792 LyS'6 e ¢Te | 1L | 6T 6¢¥ 06T‘T || 89L'L I L | ¥ | ¥ veT | TFET I1-01y200Y
er1 092°6 e IV | €6 | T | €6¥ 0L€1 eee'6 I LT | ¢ | € 6T | €0€°T [-01200Y
9€¢ 08%'8 e e9z | 19 | V1 %8 CIT'T || 609°L I 19 | ¢T | € VIl 9EF'T | II-Z)11d pue JTAdY
61 ¢ra‘9 e 0T¢ | 8L | 0T 19¢€ 8TC'T || 90¥7'S I ¢ | 1¢ | ¥ GET | 6LT'T | I-Z31L pUR OTAS}]
04a# "XeN | U | €O | 2D | TO | UBSIN | OMF# || ‘XBIN | 'UIIA | €0 | D | TO | uBIN | OI#
onbruyoaf,
Surazesexg SuruasIopp JuauaAoxduuy

senbruyoa], UoIpe[NUWIOPY AIoN{) SUISIXH [IM SSOULAIOPH Alonf) jo uosuredwo)) :QT1°€ S[qeL

49

STRICT —
Wi-Core_COC+POS —
Wi-Core_POS —
Wi-Core_COC —
TR+POSR —
POSRank —

——
JEili g =
| | | | | |
0% 10% 20% 30% 40% 50%
Query Quality Changed

* Improved Worsened < Preserved ‘

Figure 3.6: Role of three term weighting algorithms in the improvement, worsening and preserving
of the baseline queries

two domains above. Kevic and Fritz [120] use a regression model to identify search terms from a change
request. They employ several heuristics concerning frequency, location, part of speech, and notation of the
terms from the request texts. To the best of our knowledge, Kevic and Fritz [120] is the only available study
in the literature for search term identification from a change request which makes it the state-of-the-art.
Rocchio [213] collects top K (e.g., K = 5) documents from the corpus returned by a given query, identifies
appropriate candidate terms from these documents using term weighting (e.g., TF-IDF [114]), and then
expands the query. Such expansion strategy has been adopted by a number of studies on query reformulation
[84, 98, 168, 189, 251] which makes it a suitable candidate for our comparison. We implement both of these
approaches using the authors’ provided settings and parameters (e.g., metric weights), and collect the search
queries returned by them for our dataset. In particular, we develop two variants of each approach where
partial and the whole texts of a request are used as their inputs. We also select our earlier work, Rahman and
Roy [191], for comparison which is essentially the current state-of-the-art on search term identification. We
compare our queries with the queries from these five existing techniques using two performance dimensions
— (1) query rank improvement, and (2) relevant source document retrieval, and answer RQs and RQg as

follows:

Answering RQs—Comparison with the State-of-the-Art using Query Rank Improvement:
Table 3.9 compares our approach with the existing approaches in terms of baseline query improvement,
worsening and preserving ratios. We see that Kevic and Fritz-II performs the best among the existing
approaches, and improves 47% of the baseline queries while worsening 40%. On the contrary, our approach
improves 55% of the baseline queries and worsens only 28% of the queries which are 16% higher and 30% lower
respectively. That is, while the existing works improve the baseline queries, they also degrade a significant
amount of queries which makes the net gain (i.e., improvement ratio — worsening ratio) insignificant. For

example, none of the existing approaches achieves a net gain over 10%. On the contrary, our approach

50

P il Teswow-x-x [T % e
3 55_? ,*_*_* K- N—¥ — _ *
SR I £ 27 *
2 7 — < /
@ ¥ ~ 5] *
5 V~9mg 52 /
=] — - - - - L R -
= T DU yo¥runvsn| E o [¢ PSR e
5 1 R ol
- P Rk R B Al Q7
g5 {pe e i (b)
E; A T l T l I l T l T l T l T l I l T T T l
5 10 20 30 40 50 5 10 20 30 40 50
K K
—¥— Improved ---- Improved . —¥— Hit@10 === Hit@10,ay
—%— Worsened - Worsened;, —— MAP@10 - MAP@10 0
% Preserved
2 2
= _*-*'* = N :¥
* - e RF * '¥:¥'# ¥
2 SpK 2 ¥
[T ‘*'—;/ o ;*’
v © Pl v © /ﬁi
© 7 */* © A #/
T 54 /# TE| .z
= x () =
158 ° 1% (d)
o |¢f0-3781%:0-0-0-0. e 0°810:0:9.6.
g_gég 8 8-8—8-8-88:8:9 s ©:0:0:0:9:0:0:0
o T T 17T T 17T 1T T T T T 1 ™ T T 17T T 1T T T T T T 1
135 20 40 60 80 100 15 20 40 60 80 100
K K
- Hit@Ksampling - I“'Ill"‘g‘p@Ksampling — Hit@KF{F 4 I“"'Il"""'d:}@KF{F
—— Hit@Knasampling —&— MAP@Knnsampling —k— Hit@KCAF‘.T —&— MAP@KCART

Figure 3.7: Impact of the adopted parameters and thresholds — (a,b) suggested query length, (c) use
of data re-sampling, and (d) use of machine learning algorithm

achieves a net gain improvement of 27% which is highly promising. According to mean rank difference
(MRD) analysis, our approach improves the result ranks up to 203 positions. This work also achieves 15%

more improvement than our earlier work Rahman and Roy, and thus advances the state-of-the-art.

We also compare our approach against the existing approaches using the difficult baseline queries that
return their results beyond 10" position of the result list. From Table 3.9 (lower part), we see that Kevic and
Fritz-II improves 63% of the queries and worsens 30% of the queries. On the contrary, our approach improves
72% and worsens 22% which are 13% higher and 27% lower respectively. Thus, our approach outperforms
the five existing techniques above in two different circumstances which clearly demonstrates its high potential

for query suggestion.

We also analyse the distribution of result ranks, and compare our approach with the existing approaches
using such analysis. From Table 3.10, we see that Kevic and Fritz-IT and our earlier work are strong competitor
of each other. They improve a maximum of 1,445 queries with 25% quantile at 3 and 50% quantile at 15.
On the contrary, our approach improves a total of 1,660 baseline queries with 25% quantile at 2 and 50%
quantile at 12 which are 15%, 33% and 20% higher respectively. While each of the existing approaches provide

relatively better ranks than the baseline, our ranks are even more promising. Furthermore, our approach

51

STRICT —| |-____|:|:|__|
Rahman & Roy — [REEE T
Rocchio-ll b T) i
Rocchio-l }—--{:D _______ i
Kevic & Fritz-ll bommmme- -
Kevic & Fritz-l = F---------- - ()

I T T I I T I I I
20% 23%% 30% 35% 40% 45% 30% 59% 60% 65%

Improved

stret+ F---[[H
Rahman & Roy — HO T - 1
Rocchio-Il Ho T H
Rocchio- [T D] ______ 1

Kevic & Fritz-ll - F-- |
Kevic & Fritz1— (b) . -

T I I I T I I I
20% 25% 30% 35%% 40% 45% 50% S59%

Worsened

Figure 3.8: Comparison of baseline query improvements or worsening between our technique,

STRICT, and the existing techniques
worsens the least amount (i.e., 792) of baseline queries while ensuring the maximum improvement (i.e., 1,660)
at the same time.

We also further analyse the query improvement and worsening ratios of eight subject systems, and compare
our approach with the existing ones using box plots. From Fig. 3.8, we see that the median of improvement
and worsening ratios of Kevic and Fritz-II are 48% and 41%. On the contrary, our approach achieves 56%
improvement and 30% worsening which are 17% higher and 27% lower respectively. All these evidences above

clearly demonstrate the superiority of our approach over the state-of-the-art.

Summary of RQ5: Our approach clearly outperforms the existing approaches including the state-of-the-art
in improving the baseline queries. It improves 16% more and worsens 30% less of the baseline queries.
Furthermore, it delivers two to three times higher net gain in the result ranks than that of the state-of-the-

art approaches.

Answering RQg—Comparison with the State-of-the-Art using Relevant Document Retrieval:
While our approach outperforms the existing approaches on query improvement, we further compare using
relevant document retrieval performance. From Table 3.11, we see that Kevic and Fritz-II achieves 37%
Hit@10 with 21% precision and a reciprocal rank of 0.21 when only Top-10 results are analysed. On the
other hand, our approach achieves 46.43% Hit@10, 29% MAP and 0.29 reciprocal rank which are 25%, 37%
and 38% higher respectively. Our performance measures are also 16%, 23% and 26% higher respectively than
that of our earlier work [191] which demonstrate the potential of STRICT over the state-of-the-art. When

52

Table 3.11: Comparison with Existing Techniques in Document Retrieval

Technique Hit@1 Hit@5 Hit@10 MAP MRR
Kevic and Fritz-1 11.87% 22.42% 28.55% 16.56% 0.16
Kevic and Fritz-1T | 15.11% 28.28% 37.17% 21.13% 0.21
Rocchio-I 12.54% 22.97% 31.10% 18.46% 0.17
Rocchio-II 15.92% 28.33% 33.90% 22.21% 0.21
Rahman and Roy 16.55% 31.29% 39.94% 23.51% 0.23
STRICT *21.95% | *38.07% | *46.43% | *28.99% | *0.29

* — Significant difference between proposed and existing techniques

= " T T
10 | 1 = 1
lf‘.l - g = 1
= T i — - - T - T
9 ! s | L T P
= Eid | !
- - ==t ! o | | |
= ! | = ™ ; - = ° 1 !
= | I ® |7 - 9 -~
e l g l & : -
= £ = o
3 bl S] BN]
= i P4 _ 1 1
e . : T4 T — ! 1
| — ! 1 = T 1 1 o 1 1 .
e 1 = 1 - 1 ! - 1 1 1
£ = L (a) lL L L (b) S S A &)
‘ B Kevic & Fritz-l B Kevic & Fritzdl B Rocchio- O Rocchio-l O Rahman & Roy O STRICT ‘

Figure 3.9: Comparison between queries of STRICT and the queries of existing approaches in terms
of their (a) Hit@10, (b) MAP@10, and (¢) MRR@10

Top-1 or Top-5 results are considered, our accuracy measures are also 32% and 22% higher respectively than
the state-of-the-art measures. Fig. 3.9 further contrasts the Top-10 performance between our approach and
the existing approaches using box plots. We see that our median accuracy, precision and reciprocal rank
are clearly higher than that of the competing approaches (e.g., Kevic and Fritz-II). Our statistical tests
also report significance with medium to large effect sizes (i.e., all p-values <0.05, 0.38<A<0.53) over the
state-of-the-art.

While the above analysis is based on Top-10 retrieved documents only, we further compare our approach
against the existing approaches using Top-100 results. In particular, we collect accuracy and precision of
each technique for top 1 to 100 documents, and compare our measures with the state-of-the-art measures.
From Fig. 3.10, we see that our precision and accuracy are clearly the highest. Kevic and Fritz-II achieves
a maximum precision of 21% and a maximum accuracy of 72%. On the contrary, our approach delivers
29% precision and 78% accuracy which are 38% and 8% higher respectively. Our statistical tests also report
significant difference (i.e., all p-values <0.05, 0.32<A<0.97) between our precision or accuracy and those
from the state-of-the-art approaches. All these evidences clearly demonstrate the superiority of our approach

over the existing approaches including the state-of-the-art.

53

= o R 2
] = P
o Sk g LI OF PEES
2 * ~ LI RN
D T - '*:gfm' a—é“@’
¥ Nk e-e L v =2 /*53, é»@’
9 “8-a it > 27 3
L 2 TeE-fre *-p| 90 Smle
< O /$ F-mIs . T 1 s
= ™ @/f—\'&‘"—‘uﬂ ﬂh%:g:é:o_._. = | -
= | 0'0*0‘053“1&%&%&%2:‘%:@ a */¢¢
wn Ty B LN -
274 (a) RS I | (b)
T T T T T T T T T T = R A I B 1
15 20 40 60 80 100 15 20 40 60 80 100
K K
& Kevic & Fritzl £ Rocchio-l * Rahman & Roy
¢ Kevic & Fritz-l 8 Rocchio-ll F STRICT

Figure 3.10: Comparison between queries of STRICT and queries from the existing approaches in
terms of (a) MAPK and (b) Hit@QK

o] — i -
=]] g !
@ | :
o
s 51 o .
© 4 |
U] o - i !
55_ T : : :
& | l i i
1 1 1 1 1
I I | 1
— I I I R —
= N :
= T T T T T
T T2 T3 T4 Total

Figure 3.11: Stage I - Distribution of the grades for study tasks

Summary of RQg: Our approach clearly outperforms the existing approaches including the state-of-the-art
in the retrieval of relevant source code documents (ground truth). STRICT achieves 25% higher accuracy,

37% higher precision and 38% higher reciprocal rank than that of the state-of-the-art.

3.4.6 Evaluation of Working Prototype

Empirical evaluations using 2,885 bug reports and two evaluation dimensions clearly demonstrate the superi-
ority of our approach over the state-of-the-art. Despite such strong evidences, we further evaluate our working
prototype with a user study involving 25 participants (7 graduate students + 18 fourth year undergraduate
students, from the Department of Computer Science, University of Saskatchewan).

User Study Design: We design a user study where participants use the proposed prototype for problem
solving. Our study was conducted in two stages. In the first stage, participants were instructed to perform
four different tasks® targeting concept location. The goal was to find out the best search queries possible from

the change requests for concept location using partial and complete supports from the prototype. Each of the

Shttps://goo.gl/uBpYe8

54

Very High_ - H -

High —

Moderate : : -
1 ;] ;

1 H I

i i i

1 H]

Low — < - : < f—

T T T T T : T T
El DQ UF LF QSsQ MER TSP

Figure 3.12: Stage II - User evaluation of the proposed prototype in terms of EI=Ease of Installation,

DQ=Documentation Quality, UF=Usefulness of Features, LF=Likelihood of Features, QSQ=Quality

of Suggested Queries, MER=Manual Effort Reduction, TSP=Time Saving Potential
participants completed the tasks using our prototype and then submitted their results. In the second stage,
the participants completed a questionnaire? based on their work experience. They were asked 11 questions
about the installation, usability, perceived usefulness and benefits of the proposed prototype.

Participant Selection: In the first stage, 18 undergraduate students from the Department of Computer
Science, University of Saskatchewan took part in our study. In the second stage, six graduate and under-
graduate students chose to fill in the questionnaire. Each of these students were enrolled in CMPT 470/816:
Advanced Software Engineering, a graduate level course offered at the University of Saskatchewan. Thus,
they received basic training on concept location and software change life cycle, which made them suitable
candidates for our study.

Study Tasks and Ground Truth: We choose 10 change requests from ecf system for our study. Each
request contains only regular texts and was already marked as RESOLVED. We instruct the participants to
perform four tasks with each of these requests — T1: execute the available tool commands, T2: get the best
query from STRICT, T3: determine the result rank improvement over the baseline, and T4: construct the
optimal query with STRICT using manual keyword tweaking. We also perform each of these tasks ourselves,
consult with the change requests and their corresponding changed source documents, and then construct the
ground truth.

User Study Results (Stage-I): Once the first stage of our study was over, we evaluated the task results
(submitted by the participants) against our ground truth. Each of these submissions was graded between
0 to 100. Fig. 3.11 shows the distribution of grades for each of the tasks scored by 18 participants. We
see that almost each participant was able to successfully execute the available commands and produce the
expected results (i.e., T1). This suggests that our prototype is functional. Participants scored a median
grade of 75%—85% for T2 and T3. This suggests that they were able to spot the differences in query quality
between baseline and STRICT, and also found the prototype’s documentation helpful. In the fourth task, the
participants used STRICT queries as a starting point, and then attempted to identify the best possible queries

*https://goo.gl/ztoLp7

95

using manual keyword tweaking. Their median grade (= 70%) suggests that our prototype significantly helped
them in such attempts (i.e., also check TSP in Fig. 3.12). Finally, the mean grade of ~70% and a median
grade of 74% indicate that on average, each participant did pretty well and 50% of them did very well in
performing all four given tasks. It should be noted that three students performed poorly, and scored less
than 25%. Based on follow-up communications with them, we discovered that they either misunderstood
the tasks or possibly were not sincere enough. Alternatively, our provided tasks could be too difficult for
them technically. However, majority of the participants were successful in performing the given tasks. Such
findings indicate that, on average, the participants found our prototype working and useful for their tasks.
User Study Results (Stage-II): Although the results above clearly demonstrate the benefits of our
prototype, we additionally conduct another round of investigation by inviting the participants. We asked
them 11 questions on the ease of tool installation (EI), documentation quality (DQ), overall usefulness (UF),
liking for the tool features (LF), quality of our suggested queries (QSQ) and the tool’s potential for manual
effort reduction (MER) or saving time (TSP) in the concept location process. Figure 3.12 summarizes our
findings from the survey using box plots. The participants provided responses on a scale between 1 and 5
where 1 represents the most negative, 3 represents neutral and 5 refers to the most positive response about
the tool. We see that the median response from the participants is positive (high) for each of the seven
dimensions. Thus, according to the participants, installation of our prototype is very easy (i.e., EI), our
provided features are likeable (i.e., UF, LF) and the suggested queries are of high quality (i.e., DQ). Besides,
our tool has the potential for reducing manual efforts (i.e., MER) and spent time (i.e., TSP) during concept
location. Furthermore, 66% of the participants preferred our suggested queries over the baseline ones in
their task. A few students did not put much time and efforts in the first stage, and misunderstood the task
requirements, which was also reflected in their survey responses. However, majority of the participants used
our tool successfully for a problem solving such as concept location. In short, all the positive responses above

indicate a high potential of our approach for its possible applications in practice.

Summary of RQ7: Participants found our prototype useful in locating concepts within the source code,
and most of them scored high grades in their tasks. Our prototype is easy to install, our queries are of high
quality than baseline, and they have the potential for reducing human efforts and spent time during

concept location.

3.5 Threats to Validity

We identify a few threats to the validity of our findings in this work. We not only discuss these threats but
also outline the means that were adopted to mitigate them as follows:

Threats to internal validity relate to experimental errors and biases [272]. Re-implementation of the
existing approaches is a possible source of such threat. Due to the lack of reliable or directly applicable

prototypes, both existing techniques—Kevic and Fritz [120] and Rocchio [213]-were re-implemented. These

56

techniques are based on two different equations with clearly stated independent and dependent variables.
We implement them carefully using authors’ provided parameters, and develop multiple variants using var-
ious settings. Furthermore, we ran them in our experiments multiple times, and compared with their best

performance. Thus, such threat might be mitigated.

Our suggested queries have an average length of 37 keywords which is a bit lengthy compared to the
queries used for traditional web or code search (e.g., 2-3 keywords) [45, 205]. However, unlike web or code
search, a change request deals with multiple domain level concepts which might not be expressed properly
using only a few keywords [87]. Our queries are thus longer than title but shorter than the description of
a change request. Future works might attempt to reduce the query length using more sophisticated term

weighting approaches.

The POS tagging (Section 3.3.3) might contain a few false positives given that preprocessed sentences are
used instead of original sentences. However, its impact might be low since stemming was not performed that
affects the individual words. Furthermore, the preprocessing step mostly removes the stop words, punctuation

marks and digits which convey only little semantics.

The data-resampling step of our query difficulty model (Section 3.3.8) plays an important role in delivering
the best candidate queries. However, our query difficulty model might be slightly biased towards the high-
class candidates. The challenges of data imbalance might not have been handled rigorously. Future work
should employ more rigorous methods for dealing with imbalanced data. In other words, while our work in
this chapter produces multiple high quality candidate queries from a change request, the future work should

focus on delivering the best candidate query from them more accurately but in a non-biased fashion.

Threats to external validity relate to the generalizability of an approach [201, 272]. So far, we
experimented with eight Java-based systems. However, given our generic approaches for term weighting
and the simplicity in the corpus creation (Section 3.4.2), our approach can be easily replicated for subject
systems using other programming languages. It also should be noted that our approach is not constrained

by programming language specific features.

Threats to construct validity relate to the suitability of metrics or measures adopted for the evaluation.
We use post-retrieval metrics such as Hit@QK, MAP and MRR which are widely adopted by the relevant
literature on search query suggestion [53, 120, 153] and query reformulation [98, 189]. Thus, such threats are
possibly mitigated.

Threats to conclusion validity stem from the relationship between treatment and outcome [140].
We evaluate our term weighting approaches and query suggestion performance using six research questions,
and claim superiority of STRICT over the baseline and the state-of-the-art. However, these claims are
substantiated with appropriate experiments, and several statistical tests such as Wilcozon Signed Rank and
Cliff’s Delta are performed. We also report details (e.g., p-values, A) of the conducted tests before making

any claims. Thus, such threats might also be mitigated.

57

3.6 Related Work

3.6.1 Search Query Suggestion & Reformulation

A number of studies in the literature attempt to support software developers in concept/feature/concern
location tasks using search query suggestion. They apply different lightweight heuristics [120], structural
analyses [49, 163] and query reformulation strategies [65, 84, 98, 99, 188, 189, 191, 226]. They also perform
different query quality analyses [95, 96, 97, 192] and data mining activities [109, 109, 121, 139, 265]. However,
most of these approaches (1) expect a developer to provide the initial search query which they can improve
upon, and (2) their main focus is improving a given query from the change request. Unfortunately, as existing
studies [83, 120, 142] suggest, preparing an initial search query is equally challenging, and those approaches do
not provide much support in this regard. In this study, we propose a novel technique-STRICT—-that suggests
a list of suitable terms as an initial search query from a change request. Kevic and Fritz [120] consider a list
of heuristics such as frequency, location, part of speech and notation of the terms in the task description, and
employ a logistic regression model for identifying search terms from a change request. Our work is closely

related to theirs, and we compare with it directly in our experiments (Section 3.4.5).

In essence, our work is also aligned with query reformulation domain since it reformulates a baseline
query (i.e., change request) by discarding the low quality search terms from the query. Rocchio [213] collects
top documents from the corpus returned by a given query, identifies appropriate candidate terms from these
documents using term weighting (e.g., TF-IDF [114]), and then reformulates the query. Such expansion
strategy serves as a popular baseline for a number of recent studies on query reformulation [84, 98, 168,
189, 192, 251]. We thus consider Rocchio’s method as a suitable candidate for our comparison as well
(Section 3.4.5). Our work in this article is also significantly different from our earlier work [191] in terms
of methodology and experiments. Previously, we proposed a basic graph-based term selection approach,
and conducted evaluation using a limited set and variety of change requests and research questions. This
work provides an improved version of that approach using not only three graph-based algorithms (TeztRank
[153], POSRank [53], Weighted K-Core [217]) but also two novel dimensions such as query difficulty analysis
and machine learning. We also conduct a more extended evaluation using ~1000 more change requests and
three more research questions. Furthermore, we perform more in-depth analysis on our previous research
questions, and also provide a verified working prototype for replication and reuse. We directly compare with
three state-of-the-art approaches — Kevic and Fritz, Rocchio and our earlier work (Rahman and Roy), and
the detailed comparison can be found in Section 3.4.5.

Haiduc et al. and colleagues conduct several studies on how to reformulate a given search query where
they apply query quality analyses [95, 97] and machine learning [98]. Although their studies are closely
related to ours from a technical perspective, they are also significantly different in several aspects. First of

all, they make use of source code for query preparation, whereas we use change request texts. Second, they

58

require an initial query from the developers which is already challenging for them to prepare [120, 142]. Since
our approach suggests a search query from the change request using light-weight analysis, our work has the
potential to complement the existing works on query reformulation including Haiduc et al. A few studies
[109, 265] suggest semantically similar query for a given query by mining comment-code mapping from a
source code repository. They could also possibly perform better if the initial query is prepared carefully
which our technique does, rather than the query is chosen randomly. Bassett and Kraft [49] apply structural
term weighting to feature location by emphasizing on source code tokens during query formulation. However,
as our finding suggests (RQ1, Section 3.4.4), source code tokens might always not be available, and thus
queries based on them could be limited in performance. Chaparro et al. [65] recently analyse bug report
texts, identify expected behaviour (EB), observed behaviour (OB) and steps to reproduce (S2R), and return
OB as a search query from the report. Their work is also related to ours. However, their study is empirical in
nature which involves significant manual analysis, and do not provide any reusable prototype. We thus could
not directly compare with their work. Several other studies apply ontology [257], query-based configurations
[49, 163, 164] and phrasal concepts [105, 226] in concept location. Several other studies [58, 131, 144, 151, 274]
on automated query suggestion and reformulation target general-purpose or internet-scale code search, and

thus, they are not closely related to ours.

3.6.2 Code Search Algorithm

There also exist a number of studies [37, 142, 150, 178, 210, 225] that apply various underlying algorithms
to actually locate the concepts, features, concerns or bugs in the source code. They adopt static analysis,
dynamic analysis or perform both analyses on the source code to identify the items of interest such as
methods to be changed. Revelle et al. [210] combine information from three different processes—textual
analysis, dynamic analysis and web mining—and apply PageRank algorithm [57] like ours. However, they
apply the algorithm in a different context — ranking methods within the project source. On the contrary, we
use PageRank algorithm for the search term identification from a change request. Antoniol et al. [37] first use
Vector Space Model (VSM) for traceability analysis which was later improved by Zhou et al. [276] as rVSM
for bug localization. Since then several approaches adopt VSM-based search engine for bug localization
[163, 164, 192, 258] and concept location [98, 104, 189, 201]. We also similarly use a VSM-based engine
namely Lucene® for concept location. However, as demonstrated and claimed in earlier sections, our main
contribution is the suggestion of appropriate search queries from the change requests.

Thus, from a technical perspective, we (1) adapt three graph-based term weighting algorithms (TextRank,
POSRank and WK-Core) in the context of concept location which are borrowed from Information Retrieval
domain, and (2) then identify a list of suitable terms from each change request. We exploit not only the co-
occurrences but also the syntactic dependencies and cohesion among the words for search term identification.

Furthermore, we employ query quality analysis and machine learning for identifying the best search query

Shttp://lucene.apache.org/core

59

from a change request. Such idea was considered by no relevant existing studies, and the experimental

findings also confirm the high potential of our idea.

3.7 Summary

Software maintenance is costly in terms of time, money and development efforts [88]. Developers deal with
thousands of change requests during the maintenance phase. Studies suggest that choosing an appropriate
search query from a change request is a major challenge for the developers [120, 142, 150]. We propose
a novel technique —STRICT- that accepts a change request as a search query, automatically identifies the
suitable keywords from the request texts, and then delivers a reformulated query for concept location. In
particular, our approach constructs multiple reformulation candidates from the request texts by employing
three graph-based term-weighting algorithms (TextRank, POSRank and WK-Core), and then delivers the
best reformulated query using query difficulty analysis and machine learning. Experiments using 2,885 change
requests from eight subject systems show that our approach improves 43%-74% of the baseline queries,
and achieves 26% higher accuracy, 25% higher precision and 26% higher reciprocal rank than the baseline.
Comparison with three existing studies including the state-of-the-art also shows that our approach improves
16% more baseline queries, and achieves 25% higher accuracy, 37% higher precision and 38% higher reciprocal
rank than the those of state-of-the-art. Our developed tool was also successfully verified by third parties,
and it received an overall positive response.

Despite these inspiring instances, we notice that our approach could be limited by the content of the
change requests. That is, if a change request does not contain the right search keywords in the first place,
our approach cannot deliver them. Our second study in the next chapter (ACER, Chapter 4) overcomes this
challenge, and reformulates a given query with complementary keywords carefully collected from the relevant

source code in order to improve the concept location task.

60

CHAPTER 4
SEARCH QUERY REFORMULATION FOR CONCEPT LOCATION

USING CODERANK AND SOURCE DOCUMENT STRUCTURES

Software developers address thousands of change requests during maintenance phase, which cost a sig-
nificant amount of development time and efforts [88]. Our previous study (STRICT, Chapter 3) accepts a
change request as a search query, identifies suitable keywords from the request texts, and then suggests a
reformulated search query for concept location. Extensive empirical evaluation, validation and user study
demonstrate the high potential of the approach (Section 3.4). However, STRICT could be limited due to its
sole reliance on the change requests. That is, the approach might not be able to deliver appropriate search
keywords if they are missing from the change requests in the first place. We overcome such a challenge
with another study in this chapter. Here, we present ACER that accepts a poor search query, identifies
complementary search keywords from the relevant source code (retrieved by the query), and then delivers an
improved, reformulated version of the given query for the concept location task.

The rest of the chapter is organized as follows — Section 4.1 presents an overview of our study, and Section
4.2 provides our proposed technique for query reformulation for concept location. Section 4.3 discusses our
conducted experiments, findings and validations, Section 4.4 identifies the threats to the validity, Section 4.5

discusses the related work, and finally Section 4.6 concludes the chapter with future work.

4.1 Introduction

Studies show that 40%—80% of the total development effort is spent in software maintenance [88, 175].
Developers deal with thousands of software issues during the maintenance [170, 220, 247]. Software issue
reports (e.g., change requests, bug reports) discuss either unexpected (or erroneous) features such as software
bugs or expected but non-existent features such as new software functionalities. Whether it is a bug resolution
or a new feature implementation, a developer is always required to map the concept discussed in the issue
report to appropriate code locations within a software project. Such a mapping task is widely known as
concept location in the literature [121, 150, 188]. Developers generally choose one or more important keywords
from the report texts, and then use a search method (e.g., regular expression) to locate the source code entities
(e.g., classes, methods) that need to be changed. Unfortunately, as the existing studies [120, 142] report,

developers regardless of their development experience perform poorly in choosing the right search queries for

61

concept location. According to a user study of Kevic and Fritz [120], only 12.20% of the search keywords
chosen by the developers were able to locate the relevant source code during concept location. Furnas et al.
[83] also suggest that there is a little chance (i.e., 10%—-15%) that the developers would guess the exact words
used in the source code. Thus, appropriate search query construction for concept location task is a major
challenge. One way to assist the developers in this regard is to automatically reformulate their chosen queries

with complementary keywords.

Existing studies employ relevance feedback from developers [84], pseudo-relevance feedback from Infor-
mation Retrieval methods [98], and machine learning [98, 164] for the query reformulation tasks. They also
make use of the context of query keywords from source code [104, 109, 188, 231, 265], text retrieval configura-
tions [98, 164], and quality of queries [96, 97] in suggesting the reformulated queries. Gay et al. [84] capture
explicit feedback on document relevance from the developers, and then suggest reformulated queries using
Rocchio’s expansion [213]. Haiduc et al. and colleagues [95, 96, 97, 98, 99] take quality of a given query (i.e.,
query difficulty) into consideration, and suggest the best reformulation strategy for the query using machine
learning. While all these above techniques are reported to be novel or effective, most of them also share sev-
eral limitations. First, source code documents contain both structured items (e.g., method signatures, field
signatures) and unstructured items (e.g., code comments). Unfortunately, many of the above reformulation
approaches [84, 98, 231] treat the source code documents as simple plain text documents, and ignore most of
their structural aspects except the structured tokens. Since they rely on source code for constructing their
reformulated queries, such an inappropriate treatment of the code might lead them to suboptimal or poor
queries. In fact, Hill et al. [104] first consider source document structures, and suggest natural language
phrases from method signatures and field signatures for concern location. However, since they apply only
simple textual matching between given queries and the signatures, their suggested phrases are subject to the
quality of not only the given queries and but also of the identifier names from the signatures. Second, many of
the above approaches often directly apply traditional metrics of term importance (e.g., TF-IDF [98, 213]) to
source code, which were originally targeted for unstructured regular texts such as news articles [114]. Thus,
they might fail to identify the appropriate search terms from the structured source code documents, which

could badly hurt their reformulated search queries.

In this chapter, we propose and design a novel query reformulation technique — ACER- that automat-
ically reformulates a poor search query for concept location task. We first introduce a novel graph-based
term weighting algorithm —CodeRank— for identifying important terms from source code. CodeRank deter-
mines importance of a term not only by capturing its occurrences within the structured tokens (e.g., camel
case tokens) but also by exploiting its co-occurrences with other terms across various salient entities (e.g.,
method signatures) within the code. Our technique ~ACER- accepts a given search query as an input,
employs CodeRank algorithm on the source code documents returned by the query, and develops multiple

reformulation candidates using two important structural contexts from the code — method signatures and

62

provider

(classpath)

Figure 4.1: An example term graph generated by CodeRank for the source code of Fig. 4.2

field signatures. Then it performs query difficulty analysis and machine learning [96, 98], and delivers the

best candidate as a reformulated query for the given poor query.

Table 4.1 shows an example change request [6] submitted for eclipse.jdt.debug system, and it refers
to “debugger source lookup" issue of Eclipse IDE. Let us assume that the developer chooses a few important
keywords from the title of the change request, and formulates a generic search query—‘debugger source
lookup." Unfortunately, the query does not perform well, and returns the first correct result at the 79"
position of the result list. Further extension—‘debugger source lookup work variables"—-also does not help,
and returns the result at the 77" position. The existing technique — RSV [62]- extends the query as
follows—‘debugger source lookup work variables launch configuration jdt java debug"—where the new terms
are collected from the project source code using TF-IDF based term weight. This query returns the correct
result at the 30" position which is also far from ideal unfortunately. The query of Sisman and Kak [231]-
“debugger source lookup work variables test exception suite core code"—also returns the correct result at the
515 position. On the other hand, our suggested query—“debugger source lookup work variables launch debug
problem resolve required classpath”-returns the correct result at the 2"¢ position which is highly promising.
We first collect structured tokens (e.g., resolveRuntimeClasspathEntry) from method signatures and field
signatures of the source code (e.g., Fig. 4.2), and split them into simpler terms (e.g., resolve, Runtime,
Classpath and Entry). The underlying idea is that such signatures often encode high level intents and
important domain concepts whereas the rest of the code focuses on more granular level implementation
details, and thus possibly contains more noise [104, 226]. We develop individual term graph (e.g., Fig.
4.1) based on term co-occurrences from each signature type, apply CodeRank term weighting, and extract
multiple candidate reformulations with the highly weighted terms (e.g., gray coloured, Fig. 4.1). Then we
analyze the quality of the candidates using their quality measures [96], apply machine learning, and suggest
the best reformulation to the given query. Thus, our technique (1) first captures salient terms from the
source code documents by leveraging their structural aspect with an appropriate term weighting algorithm
(CodeRank), (2) generates multiple reformulation candidates from the two signatures (method signatures
and field signatures), and (3) then delivers the best reformulated query using query difficulty analysis and

machine learning [96].

63

Table 4.1: An Example Change Request (Issue #31110, eclipse.jdt.debug)

Field Content
Title Debbugger Source Lookup does not work with variables
Description In the Debugger Source Lookup dialog I can also select variables for source lookup. (Ad-
vanced... > Add Variables). I selected the variable which points
to the archive containing the source file for the type, but the debugger still claims that he
cannot find the source.
An Example of Query Reformulation
Technique Reformulated Query QE
Baseline {debugger source lookup work variables} 7
RSV [212] {debugger source lookup work variables} +
{launch configuration jdt java debug} 30
Sisman and Kak [231] | {debugger source lookup work variables} +
{test exception suite core code} 51
ACER {debugger source lookup work variables} +
(Proposed) {launch debug resolve required classpath} 02

QE = Rank of the first correct result returned by the query

Experiments using 1,675 baseline queries from eight open source subject systems show that our technique

can improve 71% (and preserve 26%) of the baseline queries which are highly promising according to the

relevant literature [62, 98, 164]. Our suggested queries return correct results for 64% of the queries in the

Top-100 results. Our findings report that CodeRank is a more effective term weighting method than the

traditional alternatives (e.g., TF, TF-IDF) for search query reformulation in the context of source code.

Our findings also suggest that structure of a source code document is an important paradigm both for term

weighting and for search query reformulation.

Comparison with five closely related existing approaches

[62, 98, 104, 213, 231] not only validates our empirical findings but also demonstrates the superiority of our

technique. Thus, our work makes the following contributions:

(a) A novel term weighting method for source code —CodeRank- that identifies the important keywords

from a list of given source code entities (e.g., classes, methods).

(b) A novel query reformulation technique ~ACER~ that accepts a poor search query, identifies comple-

mentary keywords from the source code using CodeRank, source document structures, query quality

analysis and machine learning, and then delivers an improved, reformulated query for concept location.

(c) Comprehensive evaluation of the proposed technique using 1,675 baseline queries from eight open source

subject systems.

(d) Comparison with five closely related existing approaches from the literature.

64

public static IRuntimeClasspathEntry|[] resolveRuntime

ClasspathEntry (IRuntimeClasspathEntry entry,
IJavaProject project) throws CoreException |
switeh (entry.getTypel()) |
case IRuntimeClasspathEntry.PROJECT:
if the project has multiple cutput locations,
they must be returned
IResource resource = entry.getResource();
if (resource instanceof IProject) |
IJavaPraoject Jp = JavaCore.create(({IProject)

resource) ;
if (jp.exists () && Jp.getProject () .isOpen())
IRuntimeClasspathEntry[] entries =
resolveQutputlocaticns (jp);

Figure 4.2: Source code used for automated query reformulation

Pseudo-relevance Source term graphs for
Initial query @feedback @ method and field signatures
? AN—
20 n %& \—550
Software change (input) Preprocessing Code search Source token
request l selection & preprocessing
@) & © .
H—C)—W—E— 41—
U \n) =
= e
Reformulated query Query Select best Quality metric Candidate Search term CodeRank
(output) expansion reformulation data resampling reformulations ranking calculation

Figure 4.3: Schematic diagram of the proposed query reformulation technique-ACER

4.2 ACER: Automated Query Reformulation with CodeRank and

Document Structures for Concept Location

Fig. 4.3 shows the schematic diagram of our proposed technique-ACER~for automatic query reformulation.
We use a novel graph-based metric of term importance-—CodeRank— for source code, and apply source doc-
ument structures, query quality analysis and machine learning for query reformulation for concept location.

We define CodeRank and discuss different steps of ACER in the following sections.

4.2.1 Pseudo-relevance Feedback

In order to suggest meaningful reformulations to an initial query, feedback on the query is required. Gay
et al. [84] first reformulate queries based on explicit feedback from the developers. Although such feedback

could be useful, gathering them is often time-consuming and sometimes infeasible. Hence, a number of recent

65

studies [62, 98, 188, 191] apply pseudo-relevance feedback as a feasible alternative. The top ranked results
returned by the code search tool for an initial query are considered as the pseudo-relevance feedback for the
query. We first refine an initial query by removing the punctuation marks, numbers, special symbols and
stop words (Step 1, Fig. 4.3). Then we collect the Top-K (i.e., K = 10, best performing heuristic according
to our experiments) search results returned by the query, and use them as the source for our candidate terms

for query reformulation (Steps 2, 3, Fig. 4.3).

4.2.2 Source Token Selection for Query Reformulation

Global Query Contexts: Pseudo-relevance feedback on an initial query provides a list of relevant source
documents where one or more terms from the query generally occur. Sisman and Kak [231] choose such
terms for query reformulation that frequently co-occur with the initial query terms within a fixed window
size in the feedback documents. Hill et al. [104] consider presence of the query terms in method signatures
or field signatures as an indicator of their relevance, and suggest natural language phrases from them as
reformulated queries. Both reformulation approaches are highly subject to the quality of the initial query
due to their imposed constraints— co-occurrences with query terms [231] and textual similarity with query
terms [104]. Rocchio [213] determines importance (i.e., TF-IDF) of a candidate term across all the feedback
documents, and suggests the top-ranked terms for query reformulation. Carmel et al. [61] suggest that a
single natural language query might focus on multiple topics, and different parts of the returned results
might cover different topics. That is, the same candidate term is not supposed to be important across all the
feedback documents. In other words, accumulating term weight across all the documents might not always
return the most appropriate terms for query reformulation. Such sort of calculation might add unnecessary
noise to the term weight from the unrelated topics. Hence, we consider all the feedback documents as a
single body of structured texts which acts as a “global context” for the query terms. Thus, with the help of
an appropriate term weighting method, the terms representing the most dominant topic across the feedback

documents (i.e., also in the initial query) could simply stand out, and could be chosen for reformulation.

Candidate Token Mining: Developers often express their intent behind the code and encode domain
related concepts in the identifier names and comments [94]. However, code comments are often inadequate
or outdated [246]. All identifier types also do not have the same level of importance. For example, while
the signature of a method encodes the high level intent for the method, its body focuses on granular level
implementation details and thus possibly contains more noisy terms [104]. In fact, Hill et al. [104] first analyze
method signatures and field signatures to suggest natural language phrases as queries for code search. In
the same vein, we thus also consider method signatures (msig) and field signatures (fsig) as the source
for our candidate reformulation terms. We extract structured identifier names from these signatures using
appropriate regular expressions [211] (Step 4, Fig. 4.3). Since different contexts of a source document might

convey different types or levels of semantics (i.e., developers’ intent), we develop a separate candidate token

66

set (CTy;q) for each of the two signature types (sig € {msig, fsig}) from the feedback documents (Vd € Dgrp)

(i.e., relevant source documents) as follows:

CTlyig = U {3t € Tsig} | structured(t) A Tsig = sig(d) (4.1)
VYdeEDRrr

Here sig(d) extracts all tokens from method signatures or field signatures, and structured(t) determines
whether the token ¢ € Ty;, is structured or not. Although we deal with Java source code in this research
where the developers generally use camel case tokens (e.g., MessageType) or occasionally might use same
case tokens (e.g., DECIMALTYPE), our approach can also be easily replicated for snake case tokens (e.g.,

reverse_traversal).

4.2.3 Source Code Preprocessing

Token Splitting: Structured tokens often consist of multiple terms where the terms co-occur (i.e., are
concatenated) due to their semantic or temporal relationships [226]. We first split each of the complex tokens
based on punctuation marks (e.g., dot, braces) which returns the individual tokens (Step 4, Fig. 4.3). Then
each of these tokens is splitted using a state-of-the-art token splitting tool-Samurai [79]-given that regular
expression based splitting might not be always sufficient enough. Samurai mines software repositories to
identify the most frequent terms, and then suggests the splits for a given token. We implement Samurai in
our working environment where our subject systems (Section 4.3.1) are used for mining the frequent terms,
and the author’s provided prefix and suffix lists [19] are applied to the splitting task.

Stop word and Keyword Removal: Since our structured tokens comprise of natural language terms,
we discard stop words from them as a common practice (Step 4, Fig. 4.3). We use a standard list [25] hosted
by Google for stop word removal. Programming keywords can often be considered as the equivalence of stop
words in the source code which are also discarded from our analysis. Since we deal with Java source code, the
keywords of Java are considered for this step. As suggested by earlier study [98], we also discard insignificant
source terms (i.e., having word length< 3) from our analysis.

Stemming: It extracts the root (e.g., “send") out of a word (e.g., “sending"). Although existing stud-
ies suggest contradictory [120, 220] or conflicting [106] evidences for stemming with the source code, we

investigate the impact of stemming with RQ4 where Snowball stemmer [106, 176] is used for stemming.

4.2.4 Source Term Graph Development

Once candidate tokens are extracted from method signatures and field signatures, and are splitted into
candidate terms, we develop source term graphs (e.g., Fig. 4.1) from them (Step 5, Fig. 4.3). Developers often
encode their intent behind the code and domain vocabulary into the carefully crafted identifier names where

multiple terms are concatenated. For example, the method name-getChatRoomBots-looks like a natural

67

language phrase—“get chat room bots”-when splitted properly. Please note that each of these three terms—
“chat”, “room” and “bots”- co-occur with each other to convey an important concept— a robotic technology,
and thus, they are semantically connected. On the other hand, the remaining term—“get”- co-occurs with
them due to a temporal relationship (i.e., develops a verbal phrase). Similar phrasal representations (refined
with lexical matching) were directly returned by Hill et al. for query reformulation. However, their approach
could be limited due to the added constraint (e.g., warrants query terms in signatures). We thus perform
further analysis on such phrases, and exploit the co-occurrences among the terms for our graph based term
weighting. In particular, we encode the term co-occurrences into connecting edges (E) in the term graph

(G(V, E)) where the individual terms (V;) are denoted as vertices (V).

V= U {Vi € splitted(t) | validterm(V;)} (4.2)
Vt€CTaig

E= |J {WWIViVietnli-jl=1} (4.3)
Vi, VeV

Here splitted(t) returns individual terms from the token ¢ € C'Ty;4, and validterm(V;) determines whether
the term is valid (i.e., not an insignificant or a stop word) or not. We consider a window size of two within
each phrase for capturing co-occurrences among the terms. Such window size for co-occurrence was reported
to perform well by the earlier studies [53, 153, 191]. Thus, the above method name can be represented as the
following edges— get<— chat, chat<—room, and room<—bots — in the term graph. That is, if a set of terms
are frequently shared across multiple tokens from two signature types, such occurrences are represented as

the high connectivity in the term graph (e.g., “Classpath” in Fig. 4.1).

4.2.5 CodeRank Calculation

CodeRank: PageRank [57] is one of the most popular algorithms for web link analysis which was later
adapted by Mihalcea and Tarau [153] for text documents as TextRank. In this research, we adapt our term
weighting method from TextRank [53, 153, 191] for source code, and we call it CodeRank. To date, only
traditional term weights (e.g., TF, TF-IDF [98, 213, 231]) are applied to source code which were originally
proposed for regular texts [114] and are mostly based on isolated frequencies. On the contrary, CodeRank
not only analyzes the connectivity (i.e., incoming links and outgoing links) of each source term, but also the
relative weight of the connected terms from the graph recursively, and calculates the term weight, S(V;), as

follows (Step 6, Fig. 4.3):

SV =10-9)+v Y, m (0<y<1) (4.4)
jeIn(V;) J

68

Here, In(V;), Out(Vj), and ¢ denote the vertices to which V; is connected through incoming links, the vertices
to which Vj is connected through outgoing links, and the damping factor respectively. As shown earlier using
the example-getChatRoomBots, co-occurred terms complement each other with their semantics which are
represented as bi-directional edges in the term graph. Thus, each (V;) of the vertices from the graph has
equal number of incoming links and outgoing links, i.e., in-degree(V;)=out-degree(V;).

Parameters and Configurations: Brin and Page [57] consider damping factor, 1, as the probability
of randomly choosing a web page in the context of web surfing by a random web surfer. That is, 1 — ¢
is the probability of jumping off that page by the surfer. They use a well-tested value of 0.85 for ¢) which
was later adopted by Mihalcea and Tarau [153] for text documents. Similarly, we also use the same value
of ¢ for CodeRank calculation. Each of the vertices is assigned to a default value (i.e., base term weight)
of 0.25 (as suggested by earlier studies [57, 153]) with which CodeRank is calculated. It should be noted
that the base weight of a vertex does not determine its final weight when PageRank based algorithms are
applied [153]. CodeRank adopts the underlying mechanism of recommendation or votes [153, 191] for term
weighting. That is, each vertex feeds off from the scores of surrounding connected vertices from the graph in
terms of recommendation (i.e., incoming edges). PageRank generally has two modes of computation—iterative
version and random walk version. We use the iterative version for CodeRank, and the computation iterates
until the weights of the terms converge below a certain threshold or they reach the maximum iteration limit
(i.e., 100 as suggested by Blanco and Lioma [53]). As applied by earlier studies [53, 153], we also apply a
heuristic threshold of 0.0001 for the convergence checking. The algorithm captures importance of a source
term not only by estimating its local impact but also by considering its global influence over other terms. For
example, the term, “Classpath”, Fig. 4.1, occurs in multiple structured tokens (Fig. 4.2), complements the
semantics of five other terms, and thus is highly important within the term graph (i.e., Fig. 4.1). Once the
iterative computation is over, each of the terms from the graph is found with a numeric score. We consider

these scores as the relative weight or importance of the corresponding terms from the source code.

4.2.6 Suggestion of the Best Query Reformulation

Candidate Reformulation Selection: Algorithms 4 and 5 show the pseudo-code of our query reformu-
lation technique~ACER—for concept location. We first collect pseudo-relevance feedback for the initially
provided query (@) where Top-K source documents are returned (Lines 3-5, Algorithm 4). Then we collect
method signatures and field signatures from each of the documents (Vd € Dgp), and extract structured
tokens from them. We prepare three token sets—CT,sig, CTtsig and CTeomp from these signatures (Lines
6-12, Algorithm 4, Step 4, Fig. 4.3) where CT¢,, combines tokens from both signatures. Then we perform
limited natural language preprocessing on each token set where Samurai algorithm [79] is used for token
splitting. We develop separate term graph for each of these token sets where individual terms are represented
as vertices, and term co-occurrences are encoded as connecting edges (Lines 3-7, Algorithm 5, Step 5, Fig.

4.3). We apply CodeRank term weighting to each of the graphs which provides a ranked list of terms based

69

on their relative importance. Then we select Top-K (e.g., K = 10) important terms from each of the three

graphs, and prepare three reformulation candidates (Lines 8-12, Algorithm 5, Steps 6, 7, 8, Fig. 4.3).

Algorithm 4 ACER: Proposed Query Reformulation

1: procedure ACER(Q)

2:

3:

4:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

L {}
> collecting pseudo-relevance feedback for @
Qup + preprocess(Q)
Drp < getRelevanceFeedback(Q,p)
> collecting candidate source tokens from signatures
for SourceDocument d € Drr do
CTnsig < CThsig U getMethodSigTokens(d)
CTysig < CTygiq U getFieldSigTokens(d)
end for
CTeomp — CTnsig U CTysig
CTou < {CTsig, CTrsig, CTeoms }
for TokenList CT;y € CT,y do
QR|sig] + getQRCandidate(CTs;g)
end for
> suggesting the best reformulated query for @
QD <+ resample(getQueryQualityMetrics(QR))
QRpest < getBestCandidateUsingML(QR, Qpp, QD)
L < combine(Qpp, QRpest)

return L

: end procedure

> @: initial search query

> list of best reformulation query terms

Selection of the Best Reformulation: Haiduc et al. [98] argue that the same type of reformulation

(i.e., addition, deletion or replacement of query terms) might not be appropriate for all given queries. In the

same vein, we argue that query reformulations from different contexts of the source document (e.g., method

signature, field signature) might have different level of effectiveness given that they embody different level

of semantics and noise. That means, one or more of the reformulation candidates could improve the initial

query, but the best one should be chosen carefully for useful recommendation.

Haiduc et al. [96] suggest that quality of a query with respect to the corpus could be determined using

four of its statistical properties— specificity, coherency, similarity and term relatedness—that comprise of 21

metrics [60]. They apply machine learning on these properties, and separate high quality queries from low

quality ones. We thus also similarly apply machine learning on our reformulation candidates (and their

70

metrics), and develop classifier model(s) where Classification And Regression Tree (CART) is used as the
learning algorithm [96]. Since only the best of the four reformulation candidates (i.e., including baseline)
is of our interest, the training data was inherently skewed. We thus perform bootstrapping (i.e., random
resampling) [116, 237] on the data multiple times (e.g., 50) with 100% sample size and replacement (Step 9,
Fig. 4.3), train multiple models using the sampled data, and then record their output predictions. Then, we
average all the predictions for each test instance from all models, and determine their average probability of
being the best candidate reformulation. Thus, we identify the best of the four candidates using our models,
and suggest the best reformulation to the initial query (Lines 16-20, Algorithm 4, Steps 10, 11, Fig. 4.3).
Bassett and Kraft [49] suggest that repetition of certain query terms might improve retrieval performance of
the query. If none of the candidates is likely to improve the initial query according to the quality model (i.e.,

baseline itself is the best), we repeat all the terms from the initial query as the reformulation.

Algorithm 5 getQRCandidate: Get a candidate reformulation

1: procedure GETQRCANDIDATE(CT};g) > CTy4: extracted candidate tokens from the signatures sig

2: QRgig + {} > candidate query reformulation
3: > extracting terms and their co-occurrences
4 ST, < preprocess(Samurai(CTy;g))

5: COyg;q + getTermCo-occurrences(STyiq, CTsig)
6: > developing term graph from token set

7: Gig < developTermGraph (ST, g, COgg)

8: > calculating CodeRank using the graph

9: CRg;4 + normalize(calculateCodeRank(Gs;g))
10: > getting candidate reformulated query

11: QRgiy + getTopKTerms(sortByValue(C'Ry;y))

12: return QRq

13: end procedure

Working Example: Let us consider the query—{debugger source lookup work variables}—from our run-
ning example in Table 4.2. Our term weighting method-CodeRank—extracts three candidate reformulations
from method signatures and field signatures. We see that different candidates have different level of effec-
tiveness (i.e., rank 02 to rank 16), and in this case, the candidate from the method signatures (QRy,sig) is
the most effective. Our technique~ACER- not only prepares such candidate queries from various contexts
(using a novel term weighting method) but also suggests the best candidate (Q Rpest) for query reformulation.
The reformulated query—{debugger source lookup work variables launch debug resolve required classpath} —
returns the first correct result at the top position (i.e., rank 02) of the result list which is highly promising.

Such effective reformulations are likely to reduce a developer’s effort during software change implementation.

71

Table 4.2: A Working Example (Bug #31110, eclipse.jdt.debug)

Source Query Terms QE

Bug Title | Debbugger Source Lookup does not work with variables 72

Initial 7

{debugger source lookup work variables}

Query (Q)

Qrnsig Qpp U (QRysig={launch debug resolve required classpath}) 02
rsig Qpp U (QRysig={label classpath system resolution launch}) 06
! b Qpp U (QRcomp={java type launch classpath label}) 16

QRpest = getBestCandidateUsingML(QRuusig, @R fsig, @Rcomp, Qpp, QD)

"WCER Qpp YU QRpest 02

QE = Query Effectiveness, rank of the first correct result returned by the query

4.3 Experiment

Although pre-retrieval methods (e.g., coherency, specificity [96]) are lightweight and reported to be effective
for query quality analysis, post-retrieval methods are more accurate and more reliable [98]. Existing studies
[98, 164, 191, 220] also adopt these methods widely for evaluation and validation. We evaluate our term
weighting method and query reformulation technique using 1,675 baseline queries and three performance
metrics. We also compare our technique with five closely related existing techniques [62, 98, 104, 213, 231].

We thus answer five research questions using our experiments as follows:

e RQ1: Does query reformulation of ACER improve the baseline queries significantly in terms of query

effectiveness and retrieval performance?

e RQ2: Does CodeRank perform better than traditional term weighting methods (e.g., TF, TF-IDF) in

identifying effective search terms from the source code?

e RQg3: Does employment of document structure improve ACER’s suggestion on good quality search

terms from the source code?
e RQ4: How stemming, query length, and relevance feedback size affect the performance of our technique?

e RQ5: Can ACER outperform the existing query reformulation techniques from the literature in terms

of effectiveness and retrieval performance of the queries?

4.3.1 Experimental Dataset

Data Collection: We collect a total of 1,675 change requests from eight open source subject systems (i.e.,

five Eclipse systems and three Apache systems) for our experiments. Table 4.3 shows the experimental

72

Table 4.3: Experimental Dataset

System #Classes | #CR H System #Classes | #CR
eclipse. jdt.core-4.7.0 5,908 198 ecf-279.279 2,827 154
eclipse.jdt.debug—4.6.0 1,519 154 log4j—1.2.18 309 28
eclipse.jdt.ui-4.7.0 10,927 309 sling-9.0 4,328 76
eclipse.pde.ui—4.6.0 5,303 302 tomcat70-7.0.73 1,841 454

CR~= Change requests

dataset. We first extract resolved change requests (i.e., marked as RESOLVED) from BugZilla and JIRA
repositories, and then collect corresponding bug-fixing commits from GitHub version control histories of these
eight systems. Such an approach was regularly adopted by the relevant literature [49, 98, 191, 231], and we
also follow the same. In order to ensure a fair evaluation or validation, we discard the change requests from
our dataset for which no source code files (e.g., Java classes) were changed or no relevant source files exist in
the system snapshot collected for our study. We also discard such change requests that contain stack traces
using appropriate regular expressions [163]. They do not represent a typical change request (i.e., mostly

containing natural language texts) from the regular software users.

Baseline Query Selection: We select the title of a change request as the baseline query for our
experiments, as was also selected by earlier studies [98, 120, 231]. However, we discard such baseline queries
that already return their first correct results within the Top-10 positions. They possibly do not need any
query reformulation [98]. Finally, we ended up with a collection of 1,675 baseline queries. We perform the
same preprocessing steps as were done on the source documents (Section 4.2.3), on the queries before using

them for code search in our experiments.

Goldset Development: Developers often mention a Bug ID in the title of a commit when they fix the
corresponding reported bug [43]. We collect the changeset (i.e., list of changed files) from each of our selected
bug-fixing commits, and develop individual solution set (i.e., goldset) for each of the corresponding change

requests. Such solution sets are then used for the evaluation and validation of our suggested queries.

Replication: All experimental data, intermediate results, and relevant materials are hosted online [2]

for replication or third party reuse.

4.3.2 Corpus Indexing & Source Code Search

Since we locate concept within project source, each of the source files is considered as an individual document
of the corpus [220]. We apply the same preprocessing steps on the corpus documents as were done for
query reformulation (i.e., details in Section 4.2.3). We remove punctuation marks and stop words from each
document. Then, we split the structured tokens, and keep both the original and the splitted tokens in the
preprocessed documents. We then apply Apache Lucene, a Vector Space Model (VSM) based popular search

73

engine, to index all the documents and to search for relevant documents from the corpus for any given query.

Such approaches and tools were widely adopted by earlier studies [98, 120, 191, 224].

4.3.3 Performance Metrics

Query Effectiveness (QE): It approximates the effort required to find out the first correct result for a
query. In other words, query effectiveness is defined as the rank of the first correct result returned by the
query [98, 163]. The lower the effectiveness score, the better the query is.

Mean Reciprocal Rank (MRR): Reciprocal rank is defined as the multiplicative inverse of query
effectiveness measure [220, 276]. Mean Reciprocal Rank averages such measures for all the queries. The
higher the MRR value, the better the query is.

Top-K Accuracy: It refers to the percentage of queries by which at least one correct result is returned

within the Top-K results [239, 250, 276]. The higher the metric value is, the better the queries are.

4.3.4 Evaluation of ACER and CodeRank

We evaluate our technique using 1,675 baseline queries from eight subject systems and three performance
metrics discussed above. We determine effectiveness and retrieval performance of our suggested reformulated
queries, and then compare them with their baseline counterparts. We also contrast our term weight with
traditional term weights, and calibrate our technique using various configurations.

Answering RQ;—Effectiveness of ACER Queries: Table 4.4 and 4.5 show the effectiveness of ACER
queries. If our query returns the first correct result closer to the top position than the baseline query, then
we consider that as query improvement, and the vice versa as query worsening. If both queries return their
first correct results at the same position, we cosider that as query preserving. From Table 4.4, we see that
ACER can improve or preserve 97% of the baseline queries (i.e., about 71% improvement and about 26%
preserving) while worsening the quality of only about 3% of the queries. All these statistics are highly
promising according to the relevant literature [98, 164, 191], i.e., maximum 52% improvement reported [98],
and they demonstrate the potential of our technique. When individual systems are considered, our technique
provides 63%-82% improvement across eight systems. According to the quantile analysis in Table 4.4, 25%
of our queries return their first correct results within the Top-10 positions for all the systems except two
(i-e., Top-12 position for log4j and Top-21 position for tomcat70). Please note that only 6% of the baseline
queries return their correct results within the Top-10 positions (Table 4.6). Ou the contrary, 25% of our
queries do so for six out of eight systems, which demonstrates the potential of our technique. While query
improvement ratios are significantly higher than the worsening ratios (i.e., 28 times higher), it should be
noted that our technique does not worsen any of the queries for two of the systems-log4j and sling.

Table 4.5 reports further effectiveness and the extent of actual rank improvements by our suggested
queries. We see that reformulations from the method signatures improve the baseline queries significantly.

For example, they improve 59% of the baseline queries while worsening 38% of them. Reformulations from

74

POIOPISUOD SYUeI [[e Jo a[1jrenb

U1

1 ='P) ‘souonb oyy £q pouinjox

SI[NSAI }29110D 98I JO URI U]\ = UBIJA ‘Tn opd-esdrioe = m'apd ‘tn-qpl-esdiToe = m*ypl ‘Snqep-qpl-esdr1oe = Snqoep*pl ‘@105 qp[-esdiToe = a1021pl

%¥¥'9T = 3AV %BIC'T = 8AY %S0°TL = 3AV | GL9'T = [®10L,
(%91°6T) L8 8¢6 | ¥¢ | 6aF | 19¢ | L6 | @6z | (%¥ST) e || GL9T| T | 168 | @6 | 1z | 9¢¢ | (%66°SL) ¢¥e iZ5% 0Lyeouroy}
(%L£728) L1 - - - -] - - (%000)0 || 06T | & |02T | ST | 6 | 9T (%€9°42) 69 9. Surrs
(%98°LT) & - - - -] - - (%00°0) 0 9e1 ¢ | 8¢ | it | T | c¢¢ (%¥1°28) € 8C [p8or
(%FPF€) 0T || LT'T | OF | 090°T | LLF | OL | 20 (%gee) L || ¥0gc | T |coT | €¢ | 8 | €FT | (%S%°€9) 161 zog m-opd
(%68°¢8) 08 69T | 61 | 89¢ | 16 | 6¢ | 9 | (%1e¥F) el || @9r'e| T | @6 | 26 | OT | 69T | (%06°69) 912 60€ mypf
(%29'92) TF c9z | 8P | 99z | %ol | 8% | seI (%s6'1) ¢ || ¥eeT | T | €4 | €¢ | OT | &L (%eP 12) 011 el 8nqop-3pf
(%egee) 99 G6T | €1 | 2€T | 8¢ | 91 | @l (%¥ee) 2 || eSFT| 1 ¢ oz | 8 | 68 (%e1°29) ce1 86T 2100°9pf
(%e8'TE) 6F 62¢ | ¢F | Ozz | 88 | 8% | <&l (%sz€e) © 79 T | 8¢ |0z | 8 9 (%¥6°%9) 001 el Joo
porwsorg# || xept | wgg | €0 | eb | 10 | ueopy | powosiog# || wepy | i | €0 | @b | 10 | weopy | pososdury
sorIeN() # wa)sAg
Suiaresaag SuruasIop Juaraaoxduuy

A1ont) aurpeseq jsurede Lnl) YHOY JO SSOUSATIORLH :F°F o[qeL

75

Table 4.5: Effectiveness of ACER Variants against Baseline Queries

Query Pairs Improved (MRD) | Worsened (MRD) ‘ p-value ‘ Preserved
ACER,,;, vs. Baseline | 58.93% (-61) 37.99% (+131) *0.007 | 3.08%
ACERy,;, vs. Baseline 52.51% (-51) 44.57% (+151) 0.063 2.91%
ACER,,,p vs. Baseline 58.62% (-51) 38.19% (+136) *0.018 3.20%
ACER vs. Baseline 71.05% (-81) 2.51% (+104) *<0.001 | 26.44%

* = Statistically significant difference between improvement and worsening, MRD = Mean

Rank Difference between ACER and baseline queries

the field signatures are found relatively less effective. However, ACER reduces the worsening ratio to as low
as 2.51%, and increases the improvement ratio up to 71%, which are highly promising. More importantly,
the mean rank differences (MRD) suggest that ACER elevates first correct results in the ranked list by 81
positions on average for at least 71% of the queries while dropping them for only 3% of the queries by 104
positions. Such rank improvements are likely to reduce human efforts significantly during concept location.

Retrieval Performance of ACER Queries: Table 4.6 reports the comparison of retrieval performance
between our queries and baseline queries. Given that most of our selected queries are difficult (i.e., no correct
results within the Top-10 positions [98]), the baseline queries retrieve at least one correct result within the
Top-100 positions for 56% of the cases. However, our reformulations improve this ratio to about 64%, and the
improvement is statistically significant (i.e., paired t-test, p-value=0.010<0.05, Cohen’s D=0.68 (moderate)).

Similar scenarios are observed with mean reciprocal rank as well.

Summary of RQj: The reformulation offered by our approach, ACER, improves the baseline queries
significantly both in terms of query effectiveness and retrieval performance. ACER improves 71% of the

baseline queries with 64% Top-100 retrieval accuracy.

Answering RQ2—CodeRank vs. Traditional Term Weighting Methods: Table 4.7 shows the
comparative analysis between CodeRank and two traditional term weights—TF and TF-IDF- which are
widely used in the text retrieval contexts [62, 120, 213]. While TF estimates the importance of a term based
on its occurrences within a document, TF-IDF additionally captures the global occurrences of the term
across all the documents of the corpus [114]. On the contrary, CodeRank employs a graph-based scoring
mechanism that determines the importance of a term based on its co-occurrences with other important terms
within a certain context. From Table 4.7, we see that CodeRank performs significantly better than both TF
(i-e., paired t-test, p-value=0.005<0.05) and TF-IDF (i.e., p-value<0.001) in identifying important search
terms from source code, especially from the method signatures. Considering the whole source code rather
than signatures improves the performance of both TF (i.e., 56% query improvement) and TF-IDF (i.e., 52%
query improvement). However, our term weight—CodeRank—is still better alone (i.e., 59%), and improves
significantly higher (i.e., p-value=1.717e-06) fraction (i.e., 71%) of the baseline queries when employed with

our proposed reformulation algorithm—ACER.

76

Table 4.6: Comparison of ACER’s Retrieval Performance with Baseline Queries

Query Metric ‘ Top-10 ‘ Top-20 ‘ Top-50 ‘ Top-100

Top-K Accuracy 5.78% 18.91% 41.09% 56.30%
Baseline

MRR@K 0.01 0.02 0.03 0.03

Top-K Accuracy | 10.45% 21.48% 38.12% 51.31%
ACER i

MRR@K 0.02 0.03 0.04 0.04

Top-K Accuracy 7.77% 17.40% 36.25% 47.23%
ACER;.;,

MRR@QK 0.02 0.03 0.03 0.03

Top-K Accuracy 8.68% 20.78% 36.87% 51.75%
ACER.omb

MRR@QK 0.02 0.03 0.03 0.04
ACER Top-K Accuracy | *14.72% | *31.22% | *49.89% | *63.89%

MRR@QK 0.04 0.05 0.06 0.06

* — Statistically significant difference between ACER and baseline

Fig. 4.4 shows how CodeRank and traditional term weights perform in reformulating the baseline queries
with their (a) Top-10 and (b) Top-30 terms. We see that TF reaches its peak performance pretty quickly
(i.e., K = 3), and then shows a stationary or irregular behaviour. That means, TF identifies frequent
terms for query reformulation, and few of them (e.g., Top-3) could be highly effective. On the contrary,
our method—CodeRank— demonstrates a gradual improvement in the performance up to Top-12 terms (i.e.,
K=12, Fig. 4.4-(b)), and crosses the performance peak of TF with a large margin (i.e., paired t-test, p-
value=0.004<0.05, Cohen’s D=38.77>1.00 (large)), for K=10 to K=15). CodeRank emphasizes on the votes
from other important terms (i.e., by leveraging co-occurrences) for determining weight of a term, and as
demonstrated in Fig. 4.4, this weight is found to be more reliable than TF. TF-IDF is found relatively less

effective according to our investigation.

Summary of RQ;: CodeRank performs significantly better than traditional methods in identifying effective

terms for query reformulation from the source code.

Answering RQs—Do Document Structures Matter? While most of the earlier reformulation tech-
niques miss or ignore the structural aspect of a source document, we consider such aspect as an important
paradigm of our technique. We consider a source document as a collection of structured entities (e.g., signa-
tures, methods, fields) [184] rather than a regular text document. Thus, we make use of method signatures
and field signatures rather than the whole source code for query reformulation given that they are likely to
contain more salient terms and less noise [104]. Fig. 4.5 demonstrates how incorporation of document struc-
tures into a technique could be useful for query reformulations. We see that reformulations using method
signatures and field signatures improve two different sets of baseline queries, and this happens with both term
weighting methods—(a) CodeRank and (b) TF. While these sets share about half of the queries (49%-57%),

reformulations based on each signature type also improve a significant amount (i.e., 19% (73+136+24) — 25%

7

Table 4.7: Comparison between CodeRank and Traditional Term Weights

Query Pairs

Improved

Worsened

Preserved

ACERmsig VS. TFmsig

*58.93% / 53.40%

*37.99% | 44.60%

3.08% / 2.00%

ACERfSig VS. TFfsig

52.51% / 51.57%

44.57% / 46.85%

2.91% / 1.57%

ACERcomb VS. TFcomb

*58.62% / 54.34%

*38.19% / 44.11%

3.20% / 1.54%

ACER vs. TF,L”

*71.05% / 56.01%

*2.51% / 41.44%

*26.44% | 2.55%

ACERmsig VS. TF—IDFmSZ‘g

*58.93% / 45.55%

*37.99% / 49.88%

3.08% / 4.57%

ACERy.;, vs. TF-IDF ;.

52.51% / 51.06%

44.57% | 46.77%

2.91% / 2.17%

ACEchmb VS. TF—IDFcomb

*58.62% / 50.35%

*38.19% / 47.25%

3.20% / 2.40%

ACER vs. TF-IDF,;

*71.05% / 52.17%

*2.51% / 45.13%

*26.44% | 2.70%

* — Statistically significant difference between ACER measures and their counterparts

e = x| 2 8 //\/\/V N
11}
g n /*"“l"—*’#* E .
2 —¥ 2 B
g & 3 8
=31/ e—a| 5
E el - el E
E] Gt m=i £ e
g o / = e g o - CRcumb
S5 & | - = al
Rl 9 e TFIDF,
e =
1T T T 1 T T T T 1 = T I I I I I |
K=1 2 3 4 5 6 7 & 9 10 K=1 5 10 15 20 25 30
(a) (b)
—— ACER TF coms TF-IDF,,
- CR.m TF.,
—— CRpug TF-IDF oms
Figure 4.4: Comparison of query improvement between CodeRank and traditional term weights for

(a) Top K=1 to 10 and (b) Top K=1 to 30 reformulated query terms

(105+152+46)) of unique baseline queries. In Fig. 4.5-(c), when these signatures (i.e., along with ACER)
are contrasted with the whole source code (i.e., along with TF), we even found that the signature-based
reformulations outperform the whole code-based reformulations by a large margin (i.e., (25.2%—8.39%) ~
17% more query improvement). That is, the use of the whole source code introduces additional noise, and
diminishes the strength or salience of the individual structures (i.e., signatures). Most of the existing methods
[84, 98, 188] suffer from this limitation. On the contrary, our technique ACER exploits document structures
(i-e., signatures), and carefully chooses the best among all the candidate reformulations derived from such

structures using query quality analysis and machine learning.

Summary of RQ3: Document structures (e.g., method signatures, field signatures) improve the suggestion

of query reformulation terms from the source code.

Answering RQ4— Impact of Stemming, Query Length, and Relevance Feedback: From Table
4.8, we see that stemming generally degrades the effectiveness of our reformulated queries. Similar findings

were also reported by earlier studies [120, 220]. Fig. 4.6 shows how (a) Top-10 and (b) Top-30 reformulation

78

Method signature Field signature Iethod signature Field signature
ACER
30 1 All content (TF)
73 136 105 152
CR TF
678 584
25.2% 66.5% 8.39%
188 68 165 104
(a) (b) ()
29 46
Both signatures Eoth signatures

Figure 4.5: Improved queries by reformulation from method signatures and field signatures using (a)
CodeRank (CR) and (b) Term Frequency (TF). (¢) ACER vs. TF (all content)

Table 4.8: Impact of Stemming on Query Effectiveness

Source ‘ Query ‘ Improved (MRD) ‘ Worsened (MRD) ‘ Preserved
Method | ACERpsig.stem | 52.66% (-58) 44.73% (+127) 2.61%
signature | ACER.,si4 *58.93% (-61) *37.99% (+131) 3.08%
Field ACER g, stem 48.14% (-53) 47.47% (+151) 4.39%
signature | ACERy, 52.51% (-51) 44.57% (+151) 2.91%
Both ACER comb.stem 52.68% (-57) 44.38% (+128) 2.94%
signatures | ACER omp *58.62% (-51) *38.19% (+136) 3.20%
Both ACERyem 68.11% (-78) 5.37% (+67) 26.51%
signatures | ACER 71.05% (-81) *2.51% (+104) 26.44%

* = Statistically significant difference between two measures from the same signature,

MRD = Mean Rank Difference between ACER and baseline queries

terms improve the baseline queries. We see that our reformulations perform the best (i.e., about 60% query
improvement) with Top-10 to 15 search terms collected from each signature type. However, when query
quality analysis [96] is employed, our technique-~ACER~—can improve 71% of the baseline queries with only
Top-10 reformulation terms. We also repeat the same investigation with Top-30 terms, and achieved the same
top performance (i.e., Fig. 4.6-(b)). Thus, our choice of returning Top-10 reformulation terms is justified.
We also investigate how the size of pseudo-relevance feedback influences our performance, and experimented
with Top-30 documents. We found that reformulations for ACER reach the performance peak when Top-10
to 15 feedback source documents (i.e., returned by the baseline queries) are analyzed for candidate terms.

This possibly justifies our choice of Top-10 documents as the pseudo-relevance feedback.

Summary of RQ4: Token stemming degrades the query effectiveness of ACER. Reformulation size and
relevance feedback size gradually improve the performance of ACER’s queries as long as they are below a

certain threshold (i.e., K = 15).

79

syredIojunoo

T0Y} PUR SOINSBOW Y)Y UooM}Oq OOUSIDPIP JURIYIUSIS A[[ROIISTIRIG = 4 ‘POIOPISU0D SURI [[R Jo o[yrenb 2 ='P) ‘sortonb oy} Aq POUINIOI SHNSOI J001I00 JSIY JO URI URS]N = UBDIAL

(%¥€'6T) GTGx || 84T | €I | 2e€ | S¥1 | 0 | 108 | (%PL'T) 8bs || co1'c| 1 |¥el | ¥¢ | OT | 6V1 | (%T6°L9) T6T‘Ix eGLl AV
- 812 T | 29T | 6% | ¥2 | €IT - 1817 | € |sec| ss | ae | L@ - eL9'T aurfoseq
(%18'92) 6%Fy || 69€'T | €T | GLE | OFT | €5 | 09T (%0%°€) 284 || TOT'¢| T |0€T | g€ | TL | 9ST | (%62'69) 69T Ty GL9'T qaov
(%2¢70) €F 09e‘e | ¥ | 9ee | 68T | @5 | S | (%FGOP) FL9 || LTTF| T | W61 | 6V | ST | 9T (%61°28) 856 cL91 PUOYHDY
(%€93) ¥¥ °z8F | @ | TPe | 68T | a¢ | @le | (%ee6e) 299 | 6F9'e | T | @6T | 67 | FT | 80T (%58°48) 696 €L91 i icfe)
(%¢€0'2) ¥e 687'¢ | 9 | 90F | 99T | €9 | <cce | (%L0°6T) 48% || 609'F | T | TPT | €€ | TT | 99T | (%06°89) HSTI‘T GLI'T [86] P79 rssnbogay
(%2¢70) €F 6SF'¢ | € | 6aF | OLT | €9 | vee | (%00FP) €L || 609F | T | SST | TC | ST | LIZ (%e¥eg) 968 eL9'T [86] snbogey
(%9€°91) ¥Lz || s¥C'e | 8 |¢ove | L¥T | 65 | €2c | (%eese)cp9 | LoL€| 1 | €la| 19 | L1 | L0 (%T&°F) 68L €L91 [1€3] 3yey] pue wewsig
(%22°2) 8¢ 18¢'€ | L | CTF | 09T | €9 | 06 | (%9U€F)€eL | TI9% | T | 96T | oS | ¢1 | 91 (%15'%8) ¥16 CLOT [zol ASH
(%sve) 0 6S¥'¢ | € | 6eF | OLT | €9 | eee | (%ITFP)6€L || 609F | T | SST | 6V | ST | 612 (%eree) 968 cL9'T [e17] ompooy
(%9691) ¥8¢ || 618'F | ¥ | 00€ | 61T | ¥S | 192 | (%LE'GH) 09L | ¥92'C | T | 19T | 8F | 8T | LCI (%L9°28) 129 CL9'T [vo1] T° % H
poatosorg# || “xely 7 gy 7) 7 20 7 10 7 uealy 7 powostom# || ey 7 gy 7 0 7) 7 10 7 weapy 7 poaoxduy# corzony snbrmpo
SurazesarJ SUIuasIOA JuaswraAoxduuy

senbruyoa, SUISIXG [IM SSOULAIRYH Along) jo uostredwio) :6'F 2[qeL

80

350 — /*_ N
T r~ L 3 c
@ *’ @
£ Pt Tt o £
g & ¥ = S P
= O putl
o @ / | a
= » a<a="" | E ACER

_ . —_

§ - g—m=°* 2 03%“ ACER

L=}
i4/, : i

]
—*’ T T T T T T T T T [I I T

K=12 3 4 5 6 7 8 9 10

(a) —— ACER.ms ACERy (b)
ACER, ;g %= ACER

15 200 25 30

Figure 4.6: Effectiveness of ACER queries for (a) Top-10 and (b) Top-30 reformulated terms

5 4 T 2 | R
© | E @ _| —%
= *
- [#) -
o | : g = 7 /* ——"‘E\
g = 3 b o oA
i | ﬁ 2 ¥+ * /8%[_\
ﬁ - T / T
- - X o2 * géﬂ/
= - o g 2 55
[= — / . =
™~ | pas
2 = £ 147 7
= : T - T T T T T T T T T T
(a) Improvement Worsening (b) K=10 20 30 40 50 60 70 80 90 100
— Hill et al RSV — Refoqus —&— Hilletal RSV —=— Refoqus
Rocchio Sisman & Kak —— ACER Rocchio Sisman & Kak —%— ACER

Figure 4.7: Comparison of (a) query effectiveness, and (b) retrieval performance

4.3.5 Comparison with Existing Approaches

Answering RQj5: While the empirical evaluation in terms of performance metrics above clearly demonstrates
the promising aspects of our query reformulation technique, we still compare with five closely-related existing
approaches [62, 98, 104, 213, 231]. Hill et al. [104] suggest relevant phrases from method signatures and field
signatures as query reformulations. While Sisman and Kak [231] focus on term co-occurrences with query
keywords, Rocchio [213] and RSV [62] apply TF-IDF based term weights for choosing query reformulation
terms. Refoqus [98] is closely related to ours and is reported to perform better than RSV and other earlier
approaches, which probably makes it the state-of-the-art for our research problem. We replicate each of Hill
et al., Rocchio, RSV, Sisman and Kak, and Refoqus in our working environment by carefully following their
algorithms, equations and methodologies given that their implementations are not publicly available. In the
case of Refoqus, we implement 27 metrics (20 pre-retrieval [96] and 7 post-retrieval [98]) that estimate query
difficulty. We develop a machine learning model using CART algorithm (i.e., as used by them) and 10-fold
cross validation. Then, we use the model to return the best reformulation out of four candidates of Refoqus—
query reduction, Dice expansion, Rocchio’s expansion and RSV expansion—for each baseline query. Table 4.9
and Fig. 4.7 summarize our comparative analyses.

From Table 4.9, we see that RSV and Refoqus perform better than the other existing approaches. They

improve about 55% and about 53% of the baseline queries respectively. Such ratios are also pretty close to

81

the originally reported performances by Haiduc et al. on a different dataset, which possibly validates the
correctness of our implementation. While 55% query improvement is the maximum performance provided by
any of the existing approaches, our technique-ACER-improves about 70% of the baseline queries (i.e., 1%
difference between Table 4.5 and Table 4.9 due to rounding error) which is significantly higher, i.e., paired t-
test, p-value=6.663e-06<0.05, Cohen’s D=2.43>1.00 (large). Refoqus adopts a similar methodology like ours.
Unfortunately, the approach is limited due to possibly the low performance of its candidate reformulations.
One might argue about the data resampling step (i.e., Step 9, Fig. 4.3) of ACER for the high performance.
However, we also apply data resampling to Refoqus using the same settings as ours for further investigation.
We see that Refoqussgmpicq has a similar improvement ratio like ours, but it still worsens a significant amount
of queries, 29%, compared to our query worsening ratio of 3.40%. Thus, our technique still performs better
than Refoqus in the equal settings. Our quantile measures and mean ranks are more promising than those
from the baseline or competing methods as reported in Table 4.9. Table 4.5 and RQ; also suggest that our
queries have high potential for reducing human efforts. We also experiment with an extended dataset (i.e.,
1,755=1,675 + 8x10) containing 80 very good queries. As reported in Table 4.9, ACER,; mostly preserves
the good quality queries rather than worsening, which also demonstrates its high potential.

Fig. 4.7-(a) shows the box plots of query improvement and query worsening ratios by all the techniques
under study. We see that ACER outperforms the existing techniques including the state-of-the-art [98] by
a large margin. Our median improvement ratio is about 75%, which is higher than even the maximum
improvement ratios of the counterparts, which demonstrates the promising aspect of ACER. Fig. 4.7-(b)
shows the Top-K accuracy of the query reformulation techniques. We see that our accuracy is relatively
higher than that of each of the existing approaches across various Top-K (i.e., 10-100) values. The best
performing existing method is RSV. However, our performance is significantly higher than that of RSV for

various K values according to statistical significance tests (i-e., paired t-test, p-value<0.05, Cohen’s D=0.34).

Summary of RQs: Our technique, ACER, outperforms the state-of-the-art techniques in terms of refor-
mulation query effectiveness, and performs significantly better than each of the existing techniques in terms

of document retrieval accuracy.

4.4 Threats to Validity

Threats to internal validity relate to experimental errors and biases [272]. Although CodeRank and document
structures play a major role, the data resampling step (Section 4.2.6, Step 9, Fig. 4.3) has a significant role
behind the high performance of our technique. Unfortunately, to the best of our knowledge, Refoqus [98] does
not have such a step. Thus, the performance comparison might look like a bit unfair. Besides, models based
on data resampling are sometimes criticized for their intrinsic biases [22]. However, we apply the same data

resampling step to Refoqus as well (i.e., Refoqussempiea), and demonstrate that our technique still performs

82

better in terms of query worsening ratio. Despite all these inspiring instances, our query difficulty models
might still be slightly biased due to data imbalance problem. Future work should employ more rigorous

methods for dealing with the imbalanced data.

Threats to external validity relate to the generalization of the obtained results [98]. All of our subject
systems are Java-based. So, there might be different results with systems from other programming languages.
However, we experimented with eight different systems with promising performance, and the comparison with

the state-of-the-art techniques demonstrates the superiority of our approach.

4.5 Related Work

There exist a number of studies in the literature that reformulate a given query for concept location in the
context of software change tasks. Existing studies apply relevance feedback from developers [84], pseudo-
relevance feedback from IR tools [98], partial phrasal matching [104, 215], and machine learning [98, 164] to
query reformulation. They also make use of context of query terms from source code [109, 188, 231, 265],
text retrieval configuration [98, 164], and quality of queries [96, 97] in suggesting the reformulated queries.
Hill et al. [104] consider the presence of query terms in the method or field signatures as an indicator of
their relevance, and suggest natural language phrases from them as reformulated queries. Sisman and Kak
[231] choose such terms for query reformulation that frequently co-occur with query terms within a fixed size
of window in the code. Rocchio [213] and RSV [62] determine importance of a term using TF-IDF based
metrics. Haiduc et al. [98] identify the best of four reformulation candidates for any given query using a
machine learning model with 28 metrics. All these five studies are highly relevant to ours, and we directly

compare with them using experiments. Readers are referred to Section 4.3.5 for comparison details.

Other related studies [187, 191, 267] explore graph-based methods for term weighting. Rahman and Roy
[187, 191] simply use TextRank on change request texts for suggesting initial queries for concept location. Yao
et al. [267] build a term augmented tuple graph and use a random walk approach to reformulate queries for
structured bibliographic DBLP Data (i.e., non-source code). Ours is significantly different from these studies
in the sense that we reformulate the initial queries not only by employing our term weighting method—
CodeRank for source code, but also by applying source code document structures, query quality analysis and
machine learning. Besides, their reported best performance (i.e., 58%—62% query improvement over baseline
[191]) is quite lower than our performance (i.e., 71%, even with difficult queries). Given that reformulation
is often performed on the initial queries, our technique can potentially complement theirs. Howard et al.
[109] map method signatures to associated comments for query reformulation, and thus, might not work
well with source code without comments. Our earlier work [188] exploits crowd sourced knowledge for query
reformulation, and that method is also subject to the availability of a third party information source. Thus,

while earlier studies adopt various methodologies or information sources, our technique not only employs

83

a novel and promising term weight —CodeRank, but also exploits structures of the source documents for

identifying the best reformulation to a given query for improved concept location.

4.6 Summary

Software developers deal with thousands of change requests during maintenance phase. Locating a concept
within the source code using the request texts is a major challenge. About 88% of the time, software
developers fail to choose the right search queries from the change requests [120]. Their queries thus need to
be carefully reformulated before using them for concept location. In this chapter, we propose a novel technique
—ACER- that reformulates the search queries from the developers and supports the concept location task. In
particular, ACER accepts a given query as input, and constructs multiple reformulation candidates from the
relevant source code documents using a novel term weighting method namely CodeRank. Then it suggests the
best reformulated query using query difficulty analysis and machine learning. Experiments with 1,675 search
queries from eight systems report that our technique can improve 71% of the given queries and preserve 26%
of them, which are highly promising. Comparison with five closely related existing approaches including the
state-of-the-art approach not only validates our empirical findings but also demonstrates the high potential
of our technique.

Our study in this chapter (ACER) and our previous study (STRICT, Chapter 3) extract important
keywords from source code documents and change requests respectively, and help the developers locate the
concepts of interest (e.g., program entities) within a software system. Although they are found promising for
concept location, they might not be directly applicable to bug localization. Bug reports often contain highly
structured entities (e.g., stack traces, test cases) as opposed to the unstructured texts in the change requests.
Thus, STRICT or ACER might not be suitable for extracting appropriate keywords from these structured
entities. In the next chapter, our third study (BLIZZARD, Chapter 5) overcomes this challenge. BLIZZARD
accepts a bug report as a search query, employs context-aware query reformulations, and then delivers an

improved, reformulated search query for bug localization even from the noisy and poor quality bug reports.

84

CHAPTER 5
SEARCH QUERY REFORMULATION FOR BUG LOCALIZATION
USING REPORT QUALITY DYNAMICS & GRAPH-BASED TERM

WEIGHTING

Software bugs and failures cost trillions of dollars every year [1]. One crucial step towards resolving the
bugs is finding the locations of the bugs within a software system [220, 248, 276]. Our previous studies
(STRICT, Chapters 3, ACER, 4) accept a change request as a search query, and then deliver a reformulated
query for concept location. Although they are found promising for concept location, they might not be directly
applicable to bug localization task. Bug reports often contain highly structured entities (e.g., stack traces) as
opposed to the regular texts in the change requests. Thus, our previous studies that are designed for change
requests might deliver sub-optimal queries from the bug reports, which hurt the bug localization performance.
In this chapter, we present another study (BLIZZARD) that overcomes this challenge. BLIZZARD accepts
a bug report as a search query, employs appropriate methodologies or algorithms based on the quality of the
report (e.g., noisy, poor), and then delivers an improved, reformulated search query for the bug localization.

The rest of the chapter is organized as follows— Section 5.1 presents an overview of our study, and Section
5.2 describes our proposed approach for search query reformulation and bug localization. Section 5.3 discusses
our evaluation, validation and answers four research questions. Section 5.4 identifies the threats to validity,

Section 5.5 discusses the related work, and finally Section 5.6 concludes the chapter with future work.

5.1 Introduction

Despite numerous attempts for automation [41, 68, 91, 165, 278], software debugging is still largely a manual
process which costs a significant amount of development time and efforts [39, 170, 262]. One of the three
steps of debugging is the identification of the location of a bug in the source code, i.e., bug localization
[170, 248]. Recent bug localization techniques can be classified into two broad families—spectra based and
Information Retrieval (IR) based [130]. While spectra-based techniques rely on execution traces of a software
system, IR-based techniques analyse shared vocabulary between a bug report (i.e., query) and the project
source for bug localization [163, 276]. Performances of IR-based techniques are reported to be as good as that

of spectra-based techniques, and such performances are achieved using a low cost text analysis [207, 248].

85

Unfortunately, recent qualitative and empirical studies [193, 248] have reported two major limitations. First,
IR-based techniques cannot perform well without the presence of rich structured information (e.g., program
entity names pointing to defects) in the bug reports. Second, they also might not perform well with a
bug report that contains excessive structured information (e.g., stack traces, Table 5.1) [248]. One possible
explanation of these limitations could be that most of the contemporary IR-based techniques [130, 167, 207,
220, 230, 249, 276] use almost verbatim texts from a bug report as a query for bug localization. That is, they
do not perform any meaningful modification to the query except a limited natural language pre-processing
(e.g., stop word removal, token splitting, stemming). As a result, their query could be either noisy due to
excessive structured information (e.g., stack traces) or poor due to the lack of relevant structured information
(e.g., Table 5.2). One way to overcome the above challenges is to (a) refine the noisy query (e.g., Table 5.1)
using appropriate filters and (b) complement the poor query (e.g., Table 5.2) with relevant search terms.
Existing studies [128, 249, 250, 268] that attempt to complement basic IR-based localization with costly data

mining or machine learning alternatives can also equally benefit from such query reformulations.

In this chapter, we propose and design a novel technique ~-BLIZZARD- that locates software bugs from
source code by employing context-aware query reformulation and information retrieval. Our technique (1)
first determines the quality (i.e., prevalence of structured entities or lack thereof) of a bug report (i.e., query)
and classifies it as either noisy, rich or poor, (2) then applies appropriate reformulation to the query, and (3)
finally uses the improved query for the bug localization with information retrieval. Unlike earlier approaches
[220, 221, 249, 276], it either refines a noisy query or complements a poor query for effective information

retrieval. Thus, BLIZZARD has a high potential for improving IR-based bug localization.

To illustrate the capability of our technique in improving bug localization, we provide two examples in
which it outperforms the baseline. The baseline technique that uses all terms except punctuation marks,
stop words and digits from a bug report, returns its first correct result for the noisy query containing stack
traces in Table 5.1 at the 53" position. On the contrary, our technique refines the same noisy query, and
returns the first correct result at the first position of the ranked list which is a significant improvement over
the baseline. Similarly, when we use a poor query containing no structured entities such as in Table 5.2, the

0" position. On the other hand, our technique improves

baseline technique returns the correct result at the 3
the same poor query, and returns the result again at the first position. BugLocator [276], one of the well
cited IR-based techniques, returns such results at the 19" and 26" positions respectively for the noisy and

poor queries which are far from ideal.

We evaluate our technique in several different dimensions using four widely used performance metrics
and 5,139 bug reports (i.e., queries) from six Java-based subject systems. First, we evaluate in terms of
the performance metrics, contrast with the baseline, and BLIZZARD localizes bugs with 7%—56% higher
accuracy (i.e., Hit@10), 6%-62% higher precision (i.e., MAP@10) and and 6%-62% higher result ranks (i.e.,
MRR@10) than the baseline (Section 5.3.3). Second, we compare our technique with three bug localization
techniques [220, 250, 276], and our technique can improve 19% in MAP@10 and 20% in MRR@10 over the

86

Table 5.1: A Noisy Bug Report (Issue #31637, eclipse.jdt.debug)
Field Content

Title should be able to cast “null"

Description When trying to debug an application the variables tab is empty. Also when I try to inspect or
display a variable, I get following error logged in the eclipse log file:
java.lang.NullPointerException

at org.eclipse.jdt.internal.debug.core. model.JDIValue.toString(JDIValue.java:362)
at org.eclipse.jdt.internal.debug.eval.ast.instructions.Cast.execute(Cast.java:88)
at org.eclipse.jdt.internal.debug.eval.ast.engine.
Interpreter.execute(Interpreter. java:44)

at org.eclipse.jdt.internal.debug.eval.ast.engine.
EvaluationThread1EvaluationRunnable

at org.eclipse.jdt.internal.debug.core.model.JDIThread.runEvaluation

(JDIThread. java:600)

An Example of Noise Filtration

Technique Suggested Query QE

Baseline {Title + Description } 53

BLIZZARD | NullPointerException + “Bug should be able to cast null” + {JDIValue toString execute | 01

EvaluationThread run}

state-of-the-art [250] (Section 5.3.4). Third, we also compare our approach with four state-of-the-art query
reformulations techniques, and BLIZZARD improves the result ranks of 59% of the noisy queries and 39% of
the poor queries which are 22% and 28% higher respectively than that of the state-of-the-art [191] (Section
5.3.4). By incorporating report quality aspect and query reformulation into IR-based bug localization, we
resolve an important issue which was either not addressed properly or otherwise overlooked by earlier studies,

which makes our work novel. Thus, our work makes the following contributions:

(a) A novel query reformulation technique —-BLIZZARD- that filters noise from and adds complementary
information to the bug report, and suggests improved, reformulated search queries for bug localization.

(b) A novel bug localization technique that locates bugs from the project source by employing quality
paradigm of bug reports, query reformulation, and information retrieval.

(c) Comprehensive evaluation of the technique using 5,139 bug reports from six open source systems and
validation against seven techniques including the state-of-the-art.

(d) A working prototype [27] with detailed experimental data for replication and third party reuses.

87

Table 5.2: A Poor Bug Report (Issue #187316, eclipse.jdt.ui)
Field Content

Title [preferences| Mark Occurences Pref Page

Description There should be a link to the pref page on which you can change the color. Namely: General /Edi-
tors/Text Editors/Annotations. It’s a pain in the a** to find the pref if you do not know Eclipse’s

preference structure well.

An Example of Query Expansion

Technique Expanded Query QE

Baseline {Title + Description} 30

BLIZZARD | {Title + Description} + {compliance create preference add configuration field | 01

dialog annotation}

® fF—— Qg
BRst Exception & traces Trace graph Term ranklng
ORISR -
-e L ﬁrﬁ‘ ..|I|

Bug report Bug repor‘N,3 PE Text preprocessing eXt gra%l)h'bis?d Suggested
term weightin query
lassifi g g
classification . (;)(:)

BRNL Pseudo-relevance Source token
@ feedback graph

Figure 5.1: Schematic diagram of the proposed query reformulation technique ~-BLIZZARD-(A) Bug
report classification and (B) Search query suggestion

5.2 BLIZZARD: Automated Query Suggestion using Report Qual-

ity Dynamics and Term Weighting for Bug Localization

Fig. 5.1 shows the schematic diagram of our proposed technique for automated query suggestion-BLIZZARD.
Furthermore, Algorithm 6 shows the pseudo-code for BLIZZARD. We construct appropriate search queries
from the bug reports by making use of the report quality dimension and graph-based term weighting, and

then employ them for localizing the bugs in source code with information retrieval as follows.

5.2.1 Bug Report Classification

Since our primary objective with this work is to overcome the challenges posed by the different kinds of
information bug reports may contain, we categorize the reports prior to bug localization. In addition to
having natural language texts, a bug report typically may contain different structured elements: (1) stack
traces (reported active stack frames during the occurrence of a bug, e.g., Table 5.1), and (2) program elements

such as method invocations, package names, and source file names. Having consulted with the relevant

88

literature [51, 52, 248], we classify the bug reports into three board categories (Steps 1, 2a, 2b and 2c, Fig.
5.1) as follows:

BRgt: ST stands for stack traces. If a bug report contains one or more stack traces besides the
regular texts or program elements, it is classified into BRgr. Since trace entries contain too much structured
information, query generated from such a report is generally considered noisy. We apply the following regular

expression [163] to locate the trace entries from the report content.

CR)?7CHN.CH) NP\ . java:\d+\) |\ (Unknown Source\) |\ (Native Method\))

BRpg: PE stands for program elements. If a bug report contains one or more program elements (e.g.,
method invocations, package names, source file name) but no stack traces in the texts, then it is classified
into BRpg. Queries generated from such report are considered rich. We use appropriate regular expressions
[211] to identify the program elements from the texts. For example, we use the following one to identify API

method invocations within the bug report texts.

(Aw+H) 7\, [\s\n\rl*[\w]+) [\s\n\r]*(?=\(.*\)) | ([A-Z] [a-z0-9]+) {2,}

BRNy1: NL stands for natural language. If a bug report contains neither any program elements nor any
stack traces, it is classified into BR . That is, it contains only unstructured natural language description
of the bug. Queries generated from such reports are generally considered poor in this work.

We adopt a semi-automated approach in classifying the bug reports (i.e., the queries). Once a bug report
is provided, we employ each of our regular expressions to determine its class. If the automated step fails due
to ill-defined structures of the report, the class is determined based on manual analysis. Given the explicit
nature of the structured entities, human developers can identify the class easily. The contents of each bug

report are considered as the initial queries which are reformulated in the next few steps.

5.2.2 Query Reformulation

Once bug reports (i.e., queries) are classified into three classes above based on their structured elements
or lack thereof, we apply appropriate reformulations to them. In particular, we analyse either bug report
contents or the results retrieved by them, employ graph-based term weighting, and then identify important
keywords from them for query reformulation as follows:

Trace Graph Development from BRgr: According to existing findings [193, 248], bug reports con-
taining stack traces are potentially noisy, and performances of the bug localization using such reports (i.e.,
the queries) are below the average. Hence, important search keywords should be extracted from the noisy
queries for effective bug localization. In this work, we transform the stack traces into a trace graph (e.g.,
Fig. 5.2) (Steps 3a, 4a, Fig. 5.1, Lines 8-10, Algorithm 6), and identify the important keywords using a
graph-based term weighting algorithm namely PageRank [53, 153].

To the best of our knowledge, to date, graph-based term weighting has been employed only on unstructured

natural language texts [191] and semi-structured source code [189]. On the contrary, we deal with stack traces

89

EvaluationThread

s

=\

runEvaluation

N

NIV

Interpreter JDIThread

Figure 5.2: Trace graph of stack traces in Table 5.1

JDIValue

which are structured and should be analysed carefully. Stack traces generally comprise of an error message
containing the encountered exception(s), and an ordered list of method invocation entries. Each invocation
entry can be considered as a tuple t{ P, C, M } that contains a package name P, a class name C, and a method
name M. While these entities are statically connected within a tuple, they are often hierarchically connected
(e.g., caller-callee relationships) to other tuples from the traces as well. Hill et al. [104] consider method
signatures and field signatures as salient entities from the source code, and suggest keywords from them for
code search. Similarly, we consider class name and method name from each of the IV tuples as the salient
items, and represent them as the nodes and their dependencies as the connecting edges in the graph. In stack
traces, the topmost entry (i.e., ¢ = 1) has the highest degree of interest [70] which gradually decreases for the
entries at the lower positions in the list. That is, if t;{P;, C;, M;} is a tuple under analysis, and t;{P;, C;, M;}
is a neighbouring tuple with greater degree of interest, then the nodes V; and edges E; are added to the trace

graph Ggr as follows:

N v (5.1)
v=Um, B=UiE), Gsr=(5)

i=1 i=1

For the example stack traces in Table 5.1, the following connecting edges: JDIValue<>toString, Cast«>
execute, Cast—JDIValue, execute—toString, Interpreter<rexecute, and Interpreter—Cast are added
to the example trace graph in Fig. 5.2.

Text Graph Development from BRpg: Bug reports containing relevant program entities (e.g.,
method names) are found effective as queries for IR-based bug localization [193, 220, 248]. However, we
believe that appropriate keyword selection from such reports can further boost up the localization perfor-
mance. Existing studies employ TextRank and POSRank on natural language texts, and identify search
keywords for concept location [191] and information retrieval [53, 153]. Although bug reports (i.e., from
BRpg) might contain certain structures such as program entity names (e.g., class name, method name) and
code snippets besides natural language texts, the existing techniques could still be applied to them given

that these structures are treated appropriately. We thus remove stop words [25] and programming keywords

90

[26] from a bug report, split the structured tokens using Samurai (i.e., a state-of-the-art token splitting tool
[79]), and then transform the preprocessed report (R,,) into a set of sentences (S € Rp,). We adopt Rah-
man and Roy [191] that exploits co-occurrences and syntactic dependencies among the terms for identifying
important terms from a textual body (e.g., change request). We thus develop two text graphs (Steps 3b, 4b,
Fig. 5.1, Lines 10-11, Algorithm 6) using co-occurrences and syntactic dependencies among the words from
each report as follows:

(1) Text Graph using Word Co-occurrences: In natural language texts, the semantics (i.e., senses) of
a given word are often determined by its contexts (i.e., surrounding words) [154, 156, 268]. That is, co-
occurring words complement the semantics of each other. We thus consider a sliding window of size K (e.g.,
K = 2) [153], capture co-occurring words, and then encode the word co-occurrences within each window into
connecting edges E of a text graph [191]. The individual words (Vw; € V') are denoted as nodes in the graph.
Thus, for a word w;, the following node V; and two edges F; will be added to the text graph Gpg as follows:

Vi = {wz}, E;, = {wl o Wi—1, W; <> wi—i—l} ‘ SE [wl..wi..wN]

v U U= U U (B} Grs=WB)

VSERp, wi €S VSER,, wieS

(5.2)

Thus, the example phrase—“source code directory”—yields two edges, “source "<« “code” and “code "<« “directory”
while extending the text graph with three distinct nodes— “source”; “code” and “directory”.

(2) Text Graph using POS Dependencies: According to Jespersen’s Rank theory [53, 113, 191], parts of
speech (POS) from a sentence can be divided into three ranks— primary (i.e., noun), secondary (i.e., verb,
adjective) and tertiary (i.e., adverb)— where words from a higher rank generally define (i.e., modify) the words
from the same or lower ranks. That is, a noun modifies only another noun whereas a verb modifies another
noun, verb or an adjective. We determine POS tags using Stanford POS tagger [244], and encode such syntac-
tic dependencies among words into connecting edges and individual words as nodes in a text graph. For exam-
ple, the sentence annotated using Penn Treebank tags [244]-“Openy g thepr sourcenn codenn directorynn”—

has the following syntactic dependencies: “source”<«> “code"”; “code" < “directory”, “source"< “directory”,

“open” < “source”, “open"<“code” and “open”<+“directory”, and thus adds six edges to the text graph.
Source Term Graph Development for BRny: Bug reports containing only natural language texts
and no structured entities are found not effective for IR-based bug localization [193, 248]. We believe that
such bug reports possibly miss the right keywords for bug localization. Hence, they need to be complemented
with appropriate keywords before using. A recent study [189] provides improved reformulations to a poor
natural language query for concept location by first collecting pseudo-relevance feedback and then employing
graph-based term weighting. In pseudo-relevance feedback, Top-K result documents, returned by a given
query, are naively considered as relevant and hence, are selected for query reformulation [62, 98]. Since bug

reports from BRy class contain only natural language texts, the above study might directly be applicable

to them. We thus adopt their approach for our query reformulation, collect Top-K (e.g., K = 10) source code

91

documents retrieved by a BR y-based query, and develop a source term graph (Steps 3c, 4c, Fig. 5.1, Lines
13-15, Algorithm 6).

Hill et al. [104] consider method signatures and fields signatures from source code as the salient items,
and suggest keywords for code search from them. In the same vein, we also collect these signatures from
each of the K feedback documents for query reformulation. In particular, we extract structured tokens
from each signature, split them using Samurai, and then generate a natural language phrase from each
token [104]. For example, the method signature-getContextClassLoader ()—can be represented as a verbal
phrase— “get Context Class Loader”. We then analyse such phrases across all the feedback documents, capture
co-occurrences of terms within a fixed window (i.e., K = 2) from each phrase, and develop a source term
graph. Thus, the above phrase adds four distinct nodes and three connecting edges — “get” <> “context”,
“context” < “class” and “class”< “loader” — to the source term graph.

Term Weighting using PageRank: Once each body of texts (e.g., stack traces, regular texts, source
document) is transformed into a graph, we apply PageRank [57, 153, 189, 191] to the graph for identifying
important keywords. PageRank was originally designed for web link analysis, and it determines the reputation
of a web page based on the votes or recommendations (i.e., hyperlinks) from other reputed pages on the web
[57]. Similarly, in the context of our developed graphs, the algorithm determines importance of a node
(i.e., term) based on incoming links from other important nodes of the graph. In particular, it analyses the
connectivity (i.e., connected neighbours and their weights) of each term V; in the graph recursively, and then

calculates the node’s weight TW (V;):

W) =(1-0)+6 Y orlh 0<esy) (53)
jeIn(V;) J

Here, In(V;) refers to nodes providing incoming links to V;, Out(V;) refers to nodes that V; is connected
to through outgoing links, and ¢ is the damping factor. Brin and Page [57] consider ¢ as the probability
of randomly clicking a linked web page and 1 — ¢ as the probability of jumping off the page by a random
web surfer. They use ¢ = 0.85 which was adopted by later studies [53, 153, 191], and we also do the same.
We initialize each node in the graph with a value of 0.25 [153], and recursively calculate their weights unless
they converge below a certain threshold (i.e., 0.0001) or the iteration count reaches the maximum (i.e., 100)
[153]. Once the calculation is over, we end up with an accumulated weight for each node (Step 5, Fig. 5.1,
Lines 16-20, Algorithm 6). Such weight of a node is considered as an estimation of relative importance of
corresponding term among all the terms (i.e., nodes) from the bug report (i.e., graph).

Reformulation of the Initial Query: Once term weights are calculated, we rank the terms based on
their weights, and select the Top-K (8< K <30, Fig. 5.4) terms for query reformulations. Since bug reports
(i-e., initial queries) from three classes have different degrees of structured information (or lack thereof),
we carefully apply our reformulations to them (Steps 6, 7, Fig. 5.1, Lines 21-30, Algorithm 6). In case of

BRgr (i.e., noisy query), we replace trace entries with the reformulation terms, extract the error message(s)

92

Algorithm 6 Bug Localization with Query Reformulation and IR

1: procedure BLIZZARD(R)

2:

3:

4:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

Q « {}

> Classifying and preprocessing the bug report R
Cr < getBugReportClass(R)

R,, + preprocess (R)

> Representing the bug report as a graph
switch Cr do

case BRgr

ST + getStackTraces (R)

Gsr + getTraceGraph (ST)

case BRpg

Gpg + getTextGraphs (R,,)

case BRy,

Rp < getPseudoRelevanceFeedback (Rpp)

Gn1, + getSourceTermGraph (Rp)

> Getting term weights and search keywords

if ClassKey CK € {ST,PE,NL} then

PRck + getPageRank (Gor)

Q[CR] + getTopKTerm (sortByWeight(PRcx))
end if

> Constructing the reformulated query Q'
switch Cr do

case BRgp

Npg + getExceptionName(R)

Mpg < getErrorMessage(R)

Q' < {NpUMgUQ[Cg]}

case BRpg

Q'+ Q[Ck]

case BRy,

Q" {Rp, UQICR}

> Bug localization with Q" from codebase corpus

return Lucene(corpus, Q')

: end procedure

> R: a given bug report

> reformulated query terms

93

Table 5.3: Working Examples

Technique ‘ Group ‘ Query Terms QE

Baseline 127 terms from Table 5.1 after preprocessing, Bug ID# 31637, eclipse.jdt.debug 53
——— 1 BRsr

BLIZZARD NullPointerException + “Bug should be able to cast null"” + {JDIValue toString | 01

execute EvaluationThread run}

Baseline 195 terms (after preprocessing) from Bug ID+# 15036, eclipse.jdt.core 27
BLIZZARD BRpe {astvisitor post postvisit previsit pre file post pre astnode visitor} 01
Baseline 32 terms from Table 5.2 after preprocessing, Bug ID# 187316, eclipse.jdt.ui 30
BLIZZARD Bl Preprocessed report texts + {compliance create preference add configuration | 01

field dialog annotation}

QE = Query Effectiveness, rank of the first returned correct result

containing exception name(s), and combine them as the reformulated query. For BRy (i.e., poor query),
we combine preprocessed report texts with the highly weighted source code terms as the reformulated query.
In the case of BRpp category, only Top-K weighted terms from the bug report are used as a reformulated

query for bug localization.

5.2.3 Bug Localization

Code Search: Once a reformulated query is constructed, we submit the query to Lucene [98, 164]. Lucene
is a widely adopted search engine for document search that combines Boolean search and VSM-based search
methodologies (e.g., TF-IDF [114]). In particular, we employ the Okapi BM25 similarity from the engine, use
the reformulated query for the code search, and then collect the results (Lines 31-32, Algorithm 6). These
resultant and potentially buggy source code documents are then presented as a ranked list to the developer

for manual analysis.

Working Examples: Table 5.3 shows our reformulated queries for the showcase bug reports in Table
5.1 (i-e., BRgr), Table 5.2 (i.e., BRyr), and another example report from BRpg class. Baseline queries from
these reports return their first correct results at the 537¢ (for BRgr), 27" (for BRpg) and 30" (for BRyz)
positions of their corresponding ranked lists. On the contrary, BLIZZARD refines the noisy query from BRgr
report, selects important keywords from BRpg report, and enriches the poor query from BRyp report by
adding complementary terms from relevant source code. As a result, all three reformulated queries return
their first correct results (i.e., buggy source files) at the topmost (i.e., first) positions, which demonstrate the

potential of our technique for bug localization.

94

Table 5.4: Experimental Dataset

System Time Period BRsT BRpr BRnL BRan
ecf Oct, 2001-Jan, 2017 71 319 163 553
eclipse.jdt.core Oct, 2001-Sep, 2016 159 698 132 989
eclipse.jdt.debug | Oct, 2001-Jan, 2017 126 202 229 557
eclipse.jdt.ui Oct, 2001-Jun, 2016 130 578 407 1,115
eclipse.pde.ui Oct, 2001 Jun, 2016 123 239 510 872
tomcat70 Sep, 2001 Aug, 2016 217 731 105 1,053
Total . 826 (16.06%) | 2,767 (53.81%) | 1,546 (30.08%) | 5,139

BRsr=Bug reports with stack traces, BRpr=Bug reports with program entities but no stack traces,

BR ;=Bug reports with only natural language texts
5.3 Experiment

We evaluate our proposed technique in several different dimensions using four widely used performance
metrics and more than 5K bug reports (the queries) from six different subject systems. First, we evaluate in
terms of the performance metrics and contrast with the baseline for different classes of bug reports/queries
(Section 5.3.3). Second, we compare our approach with three state-of-the-art bug localization techniques
(Section 5.3.4). Third, and possibly the most importantly, we also compare our approach with four state-
of-the-art query reformulations techniques (Section 5.3.4). In particular, we answer four research questions

using our experiments as follows:

e RQ;: (a) How does the proposed approach —~-BLIZZARD- perform in bug localization, and (b) how do

various parameters affect its performance?
e RQ5: Do our reformulated queries perform better than the baseline search queries from the bug reports?

e RQg3: Can the proposed approach -BLIZZARD- outperform the existing bug localization techniques

including the state-of-the-art?

e RQ4: Can the proposed approach —-BLIZZARD- outperform the existing query reformulation tech-

niques targeting concept /feature location and bug localization?

5.3.1 Experimental Dataset

Dataset Collection: We collect a total of 5,139 bug reports from six open source subject systems for our
experiments. The dataset was taken from an earlier empirical study [193]. Table 5.4 shows our dataset. First,
all the resolved (i.e., marked as RESOLVED) bug reports of each subject system were collected from the
BugZilla and JIRA repositories given that they were submitted within a specific time interval (Table 5.4).
Then the version control history of each system at GitHub was consulted to identify the bug-fixing commits

[43]. Such approach was regularly adopted by the relevant literature [49, 163, 276], and we also follow the

95

same. In order to ensure a fair evaluation, we also discard such bug reports from our dataset for which no
source code files (e.g., Java classes) were changed or no relevant source files exist in the collected system
snapshot.
Goldset Development: We collect changeset (i.e., list of changed files) from each of our selected bug-
fixing commits, and develop a goldset. Multiple changesets for the same bug were merged together.
Replication Package: Our working prototype and experimental data are publicly available [27] for

replication and reuse.

5.3.2 Performance Metrics

We use four performance metrics for the evaluation and comparison of our technique. Since these metrics
were frequently used by the relevant literature [163, 191, 220, 249, 268, 276], they are also highly appropriate
for our experiments in this work.

Hit@QK: It is defined as the percentage of queries for which at least one buggy file (i.e., from the goldset)
is correctly returned within the Top-K results [250]. It is also called Recall@Top-K [220] and Top-K Accuracy
[239] in the literature.

Mean Average Precision@K (MAP@K): Unlike regular precision, this metric considers the ranks of
correct results within a ranked list. Precision@K calculates precision at the occurrence of each buggy file in
the list. Average Precision@K (APQK) is defined as the average of Precision@K for all the buggy files in a
ranked list for a given query [220, 276]. Thus, Mean Average Precision@K is defined as the mean of Average
Precision@K (APQK) of all queries as follows:

D
P Pkgbuggy(k:)’ MAPGK — > 4eQ ?;@K(Q)

Here, function buggy(k) determines whether k** file (or result) is faulty /buggy (i.e., returns 1) or not (i.e.,

APQK =

returns 0), and Py provides the precision at k*" result. D refers to the number of total results, S is the true
positive result set of a query, and @ is the set of all queries. The bigger the MAPQK value is, the better a
technique is.

Mean Reciprocal Rank@K (MRR@K): Reciprocal Rank@K is defined as the multiplicative inverse
of the rank of first correctly returned buggy file (i.e., from gold set) within the Top-K results [220, 276].
Thus, Mean Reciprocal Rank@K (MRR@K) averages such measures for all queries in the dataset as follows:

1 1
MRROK(Q) = q;) firstRank(q)

Here, firstRank(q) provides the rank of first buggy file within a ranked list. MRR@K can take a maximum
value of 1 and a minimum value of 0. The bigger the MRRQK value is, the better a bug localization technique
is.

Effectiveness (E): It approximates a developer’s effort in locating the first buggy file in the result list
[98, 163]. That is, the measure returns the rank of first buggy file in the result list. The lower the effectiveness

96

Table 5.5: Performance of BLIZZARD in Bug Localization

Dataset | Technique ‘ Hit@1 ‘ Hit@5 ‘Hit@lO ‘MAP@IO MRR@10

Baseline 21.67% 40.03% 48.25% 28.09% 0.29
BRsr Baseline pynet 13.52% 28.25% 37.27% 19.74% 0.20
BLIZZARD *34.42% | *66.28% | *75.21% *45.50% *0.47
Baseline 39.85% 64.29% 72.09% 47.28% 0.50
BRpg Baseline pynet 25.46% 45.57% 55.39% 32.34% 0.34
BLIZZARD 44.31% *69.48% | *77.84% *52.08% *0.55
Baseline 28.24% 50.96% 61.23% 35.48% 0.38
BRnL Baseline pypct 21.59% 43.03% 53.17% 28.67% 0.31
BLIZZARD 29.16% 53.78% 65.21% *37.62% 0.40
Baseline 34.32% 57.83% 66.47% 41.66% 0.44
Al Baselinepyne: | 22.56% 42.51% 52.46% 29.55% 0.31
Baselinej,,4r; 32.24% 52.43% 59.51% 39.09% 0.32
BLIZZARD *38.58% | *65.08% | *74.52% *47.13% *0.50

*=Significantly higher than baseline, Emboldened= Comparatively higher

value is, the better a given query is, i.e., the developer needs to check less amount of results from the top

before reaching the actual buggy file in the list.

5.3.3 Experimental Results

We first show the performance of our technique in terms of appropriate metrics (RQi-(a)), then discuss the
impacts of different adopted parameters upon the performance (RQ:-(b)), and finally show our comparison
with the baseline queries (RQ2) as follows:

Selection of Baseline Queries, and Establishment of Baseline Technique and Baseline Per-
formance: Existing studies suggest that text retrieval performances could be affected by query quality [98],
underlying retrieval engine [164] or even text preprocessing steps [106, 120]. Hence, we choose the baseline
queries and baseline technique pragmatically for our experiments. We conduct a detailed study where three
independent variables— bug report field (e.g., title, whole texts), retrieval engine (e.g., Lucene [98], Indri
[220]) and text preprocessing step (i.e., stemming, no stemming)—are alternated, and then we choose the best
performing configuration as the baseline approach. In particular, we chose the preprocessed version (i.e.,
performed stop word and punctuation removal, split complex tokens but avoided stemming) of the whole
texts (i.e., title + description) from a bug report as a baseline query. Lucene was selected as the baseline
technique since it outperformed Indri on our dataset. The performance of Lucene with the baseline queries
was selected as the baseline performance (i.e., Table 5.5) for IR-based bug localization in this study. In short,

our baseline is: (preprocessed whole texts + splitting of complex tokens + Lucene search engine).

97

[Ts}
I.O__
I o
2 o
& -
x v -
9 7 /, 9= /_7
o 2 r .,
‘f w7 i o
= @ =z o
& T TTTTT TS w0 | T TTTTEEE T
[T F o
o~ |, o | .
2| cll Eli é 1|O 1|2 1|4 2| 4{ Eli é 1|O 1|2 14
(a) K (b) K
— BRer BRw — BLIZZARD
BRez = = Baseline

Figure 5.3: Comparison of BLIZZARD with baseline technique in terms of (a) MAPQK and (b)

MRR@K
2 2
0 - e o — |
~ H o :
o & | o |
@Y : @ = :
0 .= : L S i
‘f 2 — 1 q o]
=3 ; = | !
2 : |
% N / ‘ — BRgr BRy,L 350 _ — BRg
S) R R R - I | | | |
2 4 6 8 10 12 14 0 5 10 15 20 25 30
(a) Reformulation Length, R, (b) Reformulation Length, R,

Figure 5.4: Impact of query reformulation length on the MAP@10 of our technique-BLIZZARD

Answering RQ; (a) — Performance of BLIZZARD: As shown in Table 5.5, on average, our technique—
BLIZZARD-localizes 74.52% of the bugs from a dataset of 5,139 bug reports with 47% mean average preci-
sion@10 and a mean reciprocal rank@10 of 0.50 which are 12%, 13% and 14% higher respectively than the
baseline performance measures. That is, on average, our technique can return the first buggy file at the second
position of the ranked list, almost half of returned files are buggy (i.e., true positive) and it succeeds three
out of four times in localizing the bugs. Furthermore, while the baseline technique is badly affected by the
noisy (i.e., BRgr) and poor queries (i.e., BRx1.), our technique overcomes such challenges with appropriate
query reformulations, and provides significantly higher performances. For example, the baseline technique
can localize 48% of the bugs from BRgr dataset (i.e., noisy queries) with only 28% precision when Top-10
results are considered. On the contrary, our technique localizes 75% of the bugs with 46% precision in the
same context which are 56% and 62% higher respectively than the corresponding baseline measures. Such
improvements are about 7% for BRyr, i.e., poor queries. In the cases where bug reports contain program
entities, i.e., BRpg, and the baseline performance measures are already pretty high, our technique further
refines the query and provides even higher performances. For example, BLIZZARD improves both baseline

MRR@10 and baseline MAP@10 for BRpg dataset by 10% which is promising.

Fig. 5.3 further demonstrates the comparative analyses between BLIZZARD and the baseline technique for
various Top-K results in terms of (a) precision and (b) reciprocal rank in the bug localization. From Fig. 5.3-

(a), we see that precision reaches to the maximum pretty quickly (i.e., at K = 4) for both techniques. While

98

Table 5.6: Query Improvement by BLIZZARD over Baseline Queries

Dataset | Query Pair Improved/MRD Worsened/MRD Preserved
BRay BLIZZARD vs. BLp 484 (58.60%)/-82 206 (24.94%)/+34 136 (16.46%)
BLIZZARD vs. BL 485 (58.72%)/-122 174 (21.07%)/+72 167 (20.22%)
BRpp BLIZZARD vs. BLy | 1,397 (50.49%)/-60 | 600 (21.68%)/+38 770 (27.83%)
BLIZZARD vs. BL 865 (31.26%)/-34 616 (22.26%)/+24 | 1,286 (46.48%)
BRa, BLIZZARD vs. BLy 869 (56.21%)/-27 355 (22.96%)/+29 322 (20.83%)
BLIZZARD vs. BL 597 (38.62%)/-16 455 (29.43%)/+31 494 (31.95%)
Al BLIZZARD vs. BLy | 2,750 (53.51%) /-55 | 1,161 (22.59%)/+32 | 1,228 (23.90%)
BLIZZARD vs. BL 1,947 (37.89%)/-50 | 1,245 (24.22%)/+30 | 1,947 (37.89)%

Preserved=Query quality unchanged, MRD = Mean Rank Difference between BLIZZARD and
baseline queries, BLy = title, BL = title + description

o = o _
L O @ _
o)~ — o _
g & 2
s . 1
O & O @
£ 5 £
ERE EF:
o w
[J-ig g~ |
g3 S
g & a8 | |
o ecf jdt.core jdtdebug jdtui pde.ui tomcat?l o ecf jdtcore jdtdebug jdtui pde.ui tomcat?0
(a} + Improved Worsened < Presewed‘ (b)

Figure 5.5: Quality improvement of (a) noisy and (b) poor baseline queries by our technique—
BLIZZARD

the baseline technique suffers from noisy (i.e., from BRgr) and poor (i.e., from BR 1) queries, BLIZZARD
achieves significantly higher precision than the baseline. Our non-parametric statistical tests—Mann- Whitney
Wilcozon and Cliff’s Delta—reported p-values< 0.05 with a large effect size (i.e., 0.77 < A < 1.00). Although
the baseline precision for BRpg is higher, BLIZZARD offers even higher precision. From Fig. 5.3-(b), we see
that mean reciprocal ranks of BLIZZARD have a logarithmic shape and whereas the baseline counterparts
look comparatively flat. That is, as more results from the top of the ranked list are considered, more true
positives are identified by our technique than the baseline technique does. Statistical tests also reported
strong significance (i.e., p-values<0.001) and a large effect size (i.e., 0.62<A<1.00) of our measures over the
baseline counterparts. That is, BLIZZARD performs a good job in reformulating the noisy and poor queries,

and such reformulations contribute to a significant improvement in the bug localization performances.

Answering RQ;(b) —Impact of Parameters and Settings: We investigate the impacts of different
adopted parameters -query reformulation length, word stemming, and retrieval engine - upon our technique,
and justify our choices. BLIZZARD reformulates a given query (i.e., bug report) for bug localization, and

hence, size of the reformulated query is an important parameter. Fig. 5.4 demonstrates how various refor-

99

mulation lengths can affect the MAP@10 of our technique. We see that precision reaches the maximum for
three report classes at different query reformulation lengths (i.e., Ry). For BRgr, we achieve the maximum
precision at Rp=11, and for BRy, such maximum is detected with Ry ranging between 8 and 12. On
the contrary, precision increases in a logarithmic manner for BRpg bug reports. We investigated up to 30
reformulation terms and found the maximum precision. Given the above empirical findings, we chose Rp=11
for BRs7, R,=30 for BRpgr and R;=8 for Ry, as the adopted query reformulation lengths and our choices
are likely to be justified.

We also investigate the impact of stemming and text retrieval engine on our technique. We found that
stemming did not improve the performance of BLIZZARD, i.e., reduced localization accuracy. Similar finding
was reported by earlier studies as well [106, 120]. We also found that Lucene performs better than Indri on
our dataset. From Table 5.5, we see that Lucene (i.e., Baseline) achieves 12% higher Hit@10, 7% higher
MAP@10 and 38% higher MRR@10 than those of Indri (i.e., Baseliner,qyri). Besides, Lucene has been widely
used by the relevant literature [98, 163, 164, 176]. Furthermore, according to a recent third-party study [16],
Apache Lucene and its variants (e.g., Solr, ElasticSearch) have ~77% market share in the enterprise search,
which suggests the mass adoption of Lucene in the industrial applications. Given the above findings and
earlier suggestions, our choices on stemming and code retrieval engine are also justified.

One might also argue for the inclusion of punctuation marks into the search queries for bug localization.
The underlying assumption is that the punctuation marks could provide additional contexts to the search
keywords and thus could enrich their semantics which might improve their bug localization performance.
However, punctuation marks themselves convey very little semantics compared to the keywords (e.g., natural
language terms, identifier names). Thus, the existing literature [120, 220, 250] generally considers them as
noise and discard them from the analysis. Despite this widely used practice, we investigate the impact of
including punctuation marks into the query. In particular, for each subject system, we (1) construct a corpus
where source documents are indexed with their terms and punctuation marks, and (2) collect a set of search
queries (from the bug reports) that contain both search keywords and punctuation marks. Then we compare
between queries with punctuation marks (Baselinepynct) and the same queries without the punctuation
marks (Baseline). From Table 5.5, we see that the queries with punctuation marks (Baselinepnct) perform
poorly compared to their counterpart (Baseline) in all measures and in all cases. That is, punctuation marks
possibly bring more noise than semantics in the search query. Thus, our choice of discarding punctuation

marks from the search query is likely to be justified.

Summary of RQ;: BLIZZARD outperforms baseline in accuracy, precision and reciprocal rank by 7%—56%,

6%—62% and 6%—62% respectively across three report groups, and our adopted parameters are also justified.

Answering RQz-Comparison with Baseline Queries: While Table 5.5 contrasts BLIZZARD with
the baseline approach for top 1 to 10 results, we further investigate how BLIZZARD performs compared to

the baseline when all results of a query are considered. We compare our queries with two baseline queries

100

—title (i.e., BLy), title+description (i.e., BL) — from each of the bug reports. When our query returns the first
correct result at a higher position in the result list than that of corresponding baseline query, we call it query
improvement and vice versa query worsening. When result ranks of the reformulated query and the baseline
query are the same, then we call it query preserving. From Table 5.6, we see that our applied reformulations
improve 59% of the noisy queries (i.e., BRgr) and 39%-56% of the poor (i.e., BRy) queries both with
~ 25% worsening ratios. That is, the improvements are more than two times the worsening ratios. Fig.
5.5 further demonstrates the potential of our reformulations where improvement, worsening and preserving
ratios are plotted for each of the six subject systems. We see that noisy queries get benefited greatly from our
reformulations, and on average, their query effectiveness improve up to 122 positions (i.e., MRD of BRgr,
Table 5.6) in the result list. Such improvement of ranks can definitely help the developers in locating the
buggy files in the result list more easily. The poor queries also improve due to our reformulations significantly
(i-e., p-value=0.004<0.05, Cliff s A=0.94 (large)), and the correct results can be found 16 positions earlier
(than the baseline) in the result list starting from the top. Quantile analysis in Table 5.9 also confirms that
noisy and poor queries are significantly improved by our provided reformulations. Besides, the benefits of

query reformulations are also demonstrated by our findings in Table 5.5 and Fig. 5.3.

Summary of RQ,: Our applied reformulations to the bug localization queries improve 59% of the noisy
queries and 39%-56% of the poor queries, and return the buggy files closer to the top of result list. Such

improvements can reduce a developer’s effort in locating bugs.

5.3.4 Comparison with Existing Techniques

Answering RQ3 —Comparison with Existing IR-Based Bug Localization Techniques: Our eval-
uation of BLIZZARD with four widely used performance metrics shows promising results. The comparison
with the best performing baseline shows that our approach outperforms the baselines. However, in order to
further gain confidence and to place our work in the literature, we also compared our approach with three
IR-based bug localization techniques [220, 250, 276] including the state-of-the-art [250]. Zhou et al. [276]
first employ improved Vector Space Model (i.e., r'VSM) and bug report similarity for locating buggy source
files for a new bug report. Saha et al. [220] employ structured information retrieval where (1) a bug report
is divided into two fields—title, description and a source document is divided into four fields—class, method,
variable and comments, and then (2) eight similarity measures between these two groups are accumulated to
rank the source document. We collect authors’ implementations of both techniques for our experiments.
While the above studies use bug report contents only, the later approaches combine them [221] and add
more internal [258] or external information sources such as version control history [249] and author information
[250]. In the same vein, Wang and Lo [250] recently combine five internal and external information sources
- similar bug report, structured IR, stack traces, version control history and bug reporter’s history — for

ranking a source document, and outperform five earlier approaches which makes it the state-of-the-art in

101

IR-based bug localization. Given that authors’ implementation is not publicly available, we implement this
technique ourselves by consulting with the original authors. Since BLIZZARD does not incorporate any
external information sources, to ensure a fair comparison, we also implement a variant of the state-of-the-art
namely Amal.gam+ gro where BRO stands for Bug Report Only. It combines bug report texts, structured

IR and stack traces (i.e., Table 5.8) for source document ranking.

Table 5.7: Comparison with IR-Based Bug Localization Techniques

RG ‘Technique ‘ Hit@1 ‘ Hit@5 ‘Hit@lo ‘MAP@IO MRR@10
BugLocator 28.79% 55.08% 67.00% 38.49% 0.40
BLUiR 23.38% 44.34% 54.06% 30.96% 0.32
AmaLgam+ gro 45.33% 66.97% 73.29% 52.88% 0.55

BRsr | BLIZZARD 34.42% 66.28% 75.21% 45.50% 0.47
BLIZZARDggro | 47.42% | 73.74% | 78.77% 56.22% 0.59
AmaLgam+ 50.51% 66.47% 71.66% 55.97% 0.58
BLIZZARD+ 53.39% | *76.12% | *80.03% | 60.65% 0.63
BugLocator 36.25% 61.37% 70.96% 44.24% 0.47
BLUiR 35.54% 62.93% 72.17% 43.67% 0.47
AmalLgamgro 33.90% 60.48% 69.09% 42.00% 0.45

BRpr | BLIZZARD *44.31% | *69.48% | 77.84% | *52.08% *0.55
BLIZZARDggro | 47.16% | 71.26% | 78.25% 53.69% 0.57
Amalgam + 52.00% 68.54% 72.93% 55.80% 0.59
BLIZZARD+ 56.84% | 74.70% | 80.09% 60.78% 0.65
BugLocator 25.11% 48.52% 59.04% 32.19% 0.35
BLUiR 29.87% 56.63% 66.10% 38.07% 0.41
AmalLgam+ ro 29.40% 56.07% 65.01% 37.74% 0.40

BRyr | BLIZZARD 29.16% | 53.78% | 65.21% 37.62% 0.40
BLIZZARDgro | 35.45% | 58.75% | 69.17% 42.26% 0.46
AmaLgam + 49.72% 65.42% 71.49% 52.74% 0.57
BLIZZARD+ 47.97% | 66.24% | 74.49% 52.12% 0.56
BugLocator 31.85% 57.37% 67.87% 40.17% 0.43
BLUiR 32.45% 59.18% 68.65% 40.82% 0.44
Amalgam+ gro 35.03% 61.32% 69.89% 43.36% 0.46

All BLIZZARD 38.58% | 65.08% | 74.52% 47.13% *0.50
BLIZZARDgro | 44.26% | 69.15% | 76.61% 51.41% *0.55
AmaLgam + 52.29% 68.53% 73.58% 56.03% 0.59
BLIZZARD+ 54.78% | 73.76% | 79.66% 59.32% 0.63

RG=Report Group, BRO=Bug Report Only, *=Significantly higher

102

Table 5.8: Components behind Existing IR-Based Bug Localization

Technique Bug Report Only External Resources MRR
BRT ‘ BRS ‘ ST ‘ QR | BRH ‘ VCH ‘ AH
Baseline] 0.44
BugLocator o ([0.43
BLUiR [[] 0.44
AmaLgam+gro (] o (] 0.46
BLIZZARD o ([*0.50
BLIZZARDgro o] (] ([*0.55
AmaLgam+ o] ([[[[] 0.59
BLIZZARD-+ (]] (] (] [[] 0.63

BRT=Bug Report Texts, BRS=Bug Report Structures, ST=Stack Traces,
QR=Query Reformulation, BRH=Bug Report History, VCH=Version Control
History, AH=Authoring History, BRO=Bug Report Only, ®@=Feature used

From Table 5.7, we see that AmalLgam+ performs better than the other existing techniques under our
study — BugLocator and BLUiR. However, its performance comes at a high cost of mining six information
contents (i.e., Table 5.8). Besides, for optimal performance, Amalgam+ needs past bug reports, version
control history and author history which might always not be available. Thus, to ensure a fair comparison,
we develop two variants of our technique-BLIZZARDgro and BLIZZARD—+. BLIZZARDggro combines
query reformulation with bug report only features whereas BLIZZARD+ combines query reformulation with
all ranking components of AmaLgam+ (i.e., details in Table 5.8). We then compare both BLIZZARD and
BLIZZARD gro with AmaLgam+ gro, and BLIZZARD+ with Amal.gam+ respectively.

As shown in Table 5.7, BLIZZARD outperforms Amal.gam+ggo in terms of all three metrics especially
for BRpg reports while performing moderately high with other report groups. For example, BLIZZARD
provides 22% higher MRR@10 and 24% higher MAP@10 than AmalLgam+ gro for BRpr. When all report
only features are complemented with appropriate query reformulations, our technique, BLIZZARD gro out-
performs Amal.gam+ gro in terms of all three metrics—HitQK, MAP@10 and MRR@10- with each report
groups. Such findings suggest that BLIZZARD gro can better exploit the available resources (i.e., bug report
contents) than the state-of-the-art variant, and returns the buggy files at relatively higher positions in the
ranked list. Furthermore, BLIZZARD+ outperforms the state-of-the-art, AmalLgam+-, by introducing query
reformulation paradigm. For example, BLIZZARD+ improves Hit@5 and Hit@10 over AmalL.gam+ for each
of the three query types, e.g., 15% and 12% respectively for noisy queries (BRgr). It also should be noted
that none of the existing techniques is robust to all three report groups simultaneously. We overcome such
issue with appropriate query reformulations, and deliver ~75%-80% Hit@10 irrespective of the bug report

quality. From Table 5.8, we see that BLIZZARD gro provides 20% higher MRR@10 than AmaLgam+gro

103

(%s6°18) ¥6% || 720G | @ PG | ST | ¢ 26 | (%ev62) ssb || €90'c | T Ze | 8 | ¢ sL | (%z29°8¢) 269 auvzziid

7681 I 0¢ | 8 4 19 vEV'C 4 L6 | GT | ¢ 16 ourpseq
(%¥¥Lo) qob || €86'F | ¢ €9 | 8T | ¢ | @aII (%0eeh) 99 || €16'T | 1 0| 9| ¢ LS (%17°0¢) L9V | (9%CT) [16T] LOTULS
(%L¥08) oLy || #05'G | ¢ ¥9 | oT | ¢ 86 (%61°L8) CL8 || 610G | 1T 9% | 9 | ¢ 69 (%8z'ge) 667 | TNUd | [1eg] eyl pue wewslg
(%11°68) 0SF || OPI‘C | @ 18 | €¢ | L | 0T | (%L9'8F) TG || P9C'9 | I 8¢ | 6 | € | oIl | (%lzce) obe [z12] ASH
(%8€°96) 067°T || 098 ¢ |9vT | et | ¥ | oFl (%8S'T) ¥ og T |61 | 8 | ¥ €e (%2072) T [€1g] ompooy
(%22 02) L9T || 8sE'¢ | & 09 | ST | ¥ | aIT | (%0°1%) PLI || 2€6 I 6 | €| 1T 2% | (%gL8g) s8¥ auvzziid

697 I 0g | ¢ 1 0L 128G 4 6VI | g€ | 2 €a1 ourpseq
(%0z°€1) 60T || 990°¢ | @ |OIT | Qo | 9 | 68T | (%09'8¢)STE || 8C°T | T AR ee (%0e'8%) 668 | (928) [16T] LOTYLS
(%88°9z) coe || 9¥8‘c | @ | 00T | €c | L | TeT | (%802€) ¢9z || SFe'T | I € | eT | ¥ 99 (%F0'TF) 688 | Loud | [1€g| e pue wewstg
(%P0'eF) cle || L8FT | @ | S¥e | 1L | LT | 86T | (%L2'8T) 9¢ €0T'c| T |SST|€F | OT | €91 | (%6£92) 8T [z12] ASH
(%¥eLe) coe || Fesc | @ | 26 | 12| 9 | 81T | (%96'1€) ¥9 SPET | T 09 | T | ¥ 89 (%08°0%) L£€ [e1g]| ooy
poATesoI1J# “Xe\ 7 W 7) 7 4o 7 0 7 weo[\ 7 poussIopm # X[y 7 Ty 7 €0 7 4o 7 0 7 ueo\ 7 posoxdwr# b
Suraresaig SuruasIopp JuawaAoxdury oY SHPHHAL

SonbIuy0e], UOTIR[NUIOPY AIoN{) SUMSIXH UM SSOUaATRPH Alon{) jo uostedwo)) :6°G S[qel,

104

g=9—9%9—0-0—g_g_gq_g4

80%

i = | ~a=—9==
+4 7/ 0 o,.o-"’__x-g:i—g
e — D o £
= —?-V-Y—-V-y-g-— 4 A o EELE
55 v Vovmeevl 2| /°/v:*’*_ 23
g /*,*.—*—‘k—*—*—*—*_* © 2], v *
L2 T /M
= o / R T T T T PP, =2 e
I, Q—v/,-
o .t e
a_ ! (a) = (b)
) I~
I I I I I % I I I I I
2 4 6 8 10 4 6 8 10
K K
BuglLocator AmalLgamgg, == BLIZZARDg,, —e— BLIZZARD+
+ BLUR —#— BLIZZARD AmalLgam+

Figure 5.6: Comparison of (a) MAPQK and (b) HitQK with the state-of-the-art IR-based bug
localization techniques

80%
T N

50%

Hit@10

e

A
\
\
)

—N

jdt.debug

>

0% 20%

jdi.core jdt.ui

[BuglLocator O Amalgamggy, & BLIZZARDgr, M BLIZZARD+
B BLUIR I BLIZZARD AmalLgam+

Figure 5.7: Comparison of Hit@10 across all subject systems

by consuming equal amount of resources, i.e., bug report only. All these findings above suggest two important
points. First, earlier studies might have failed to exploit the report contents and structures properly for bug
localization. Second, query reformulation has a high potential for improving the IR-based bug localization.
Fig. 5.6 demonstrates a comparison of BLIZZARD with the existing techniques in terms of (a) MAPQK
and (b) Hit@QK for various Top-K results. Our statistical tests report that BLIZZARD, BLIZZARD gro and
BLIZZARD+ outperform AmalLgam+pro and AmaLgam+ respectively in MAP@K by a significant margin
(i-e., p-values<0.001) and large effect size (i.e., 0.82<A<1.00). Similar findings were also achieved for HitQK.

Fig. 5.7 and Fig. 5.8 focus on subject system specific performances. From Fig. 5.7, we see that
BLIZZARD outperforms Amalgam-+ gro with four systems in Hit@10, and falls short with two systems.
However, BLIZZARD gpro and BLIZZARD+ outperform Amalgam+gro and AmalLgam+ respectively for
all six systems. As shown in the box plots of Fig. 5.8, BLIZZARD has a higher median in MRR@10 and
MAP@10 than Amal.gam+ gro across all subject systems. Amal.gam+ improves both measures especially
MAP@10. However, BLIZZARD+ provides even higher MRR@10 and MAP@10 than any of the existing

techniques including the state-of-the-art.

105

B85%
|

55%
|

) mi Hg

1
4

MAP@10

MRR@10
45%
|

05

1
1
1

04
F--

(b)

|

O

35%
|

BugLocator Amalgamgps —#— BLIZZARDgpo =8=— BLIZZARD+
BLUIR —&— BLIZZARD Amalgam+

Figure 5.8: Comparison of (a) MRR@10 and (b) MAP@10 with existing techniques across the subject
systems

Summary of RQj3: Our technique outperforms the state-of-the-art from IR-based bug localization in various
dimensions. It offers 20% higher precision and reciprocal rank than that of state-of-the-art variant (i.e.,
Amal.gam+ gro) by using only query reformulation rather than costly alternatives, e.g., mining of version

control history

Answering RQ, —Comparison with Existing Query Reformulation Techniques: While we have
already showed that our approach outperforms the baselines and the state-of-the-art IR-based bug localization
approaches, we also wanted to further evaluate our approach in the context of query reformulation. We thus
compared BLIZZARD with four query reformulation techniques [98, 191, 213, 231] including the state-of-
the-art [191] that were mostly used for concept/feature location. We use authors’ implementation of the
state-of-the-art, STRICT, and re-implement the remaining three techniques. We collect Query Effectiveness
(i-e., rank of the first correct result) of each of the reformulated queries provided by each technique, and
compare with ours using quantile analysis. From Table 5.9, we see that 48% of the noisy (i.e., BRsr) queries
are improved by STRICT, and 32% of the poor (i.e., BRyy) queries are improved by Sisman and Kak
[231]. Neither of these techniques considers bug report quality (i.e., prevalence of structured information or
lack thereof) and each technique applies the same reformulation strategy to all reports. On the contrary,
BLIZZARD chooses appropriate reformulation based on the class of a bug report, and improves 59% of the
noisy queries and 39% of the poor queries which are 22% and 20% higher respectively. When compared using
quantile analysis, we see that our quantiles are highly promising compared to the baseline. Our reformulations
clearly improve the noisy queries, and 75% of the improved queries return their first correct results within
Top-9 (i.e., Q3=9) positions whereas STRICT needs Top-17 positions for the same. In the case of poor
queries, quantiles of BLIZZARD are comparable to that of Sisman and Kak. However, BLIZZARD worsens

less and preserves higher amount of the baseline queries which demonstrate its high potential.

Summary of RQ4: Our approach, BLIZZARD, outperforms the state-of-the-art in query reformulation

using context-aware (i.e., responsive to report quality) query reformulation. Whatever improvements are

106

offered to noisy and poor queries by the state-of-the-art, our technique improves 22% more of noisy queries

and 20% more of the poor queries.

5.4 Threats to Validity

Threats to internal validity relate to experimental errors and biases [272]. Replication of existing studies
and misclassification of the bug reports are possible sources of such threats. We use authors’ implementation
of three techniques [191, 220, 276] and re-implement the remaining four. While we cannot rule out the
possibility of any implementation errors, we re-implemented them by consulting with the original authors
[250] and their reported settings and parameters [98, 213, 231]. While our technique employs appropriate
regular expressions for bug report classification, they are limited in certain contexts (e.g., ill-structured
stack traces) which require limited manual analysis currently. More sophisticated classification approaches
[173, 241, 277] could be applied in the future work.

Threats to external validity relate to generalizability of a technique [272]. We conduct experiments using
Java systems. However, since we deal with mostly structured items (e.g., stack traces, program entities) from

a bug report, our technique can be adapted to other OOP-based systems that have such structured items.

5.5 Related Work

Bug Localization: Automated bug localization has been an active research area for over two decades [220].
Existing studies from the literature can be roughly categorized into two broad families—spectra based and
information retrieval (IR) based [130, 248]. We deal with IR-based bug localization in this work. Given that
spectra based techniques are costly and lack scalability [163, 248], several studies adopt IR-based methods
such as Latent Semantic Indexing (LSI) [179], Latent Dirichlet Allocation (LDA) [167, 207] and Vector Space
Model (VSM) [122, 163, 220, 230, 258, 276] for bug localization. They leverage the shared vocabulary between
bug reports and source code entities for bug localization. Unfortunately, as existing evidences [193, 248|
suggest, they are inherently subject to the quality of bug reports. A number of recent studies complement
traditional IR-based localization with spectra based analysis [130], machine learning [128, 269] and mining of
various repositories— bug report history [221], version control history [230, 249], code change history [255, 270]
and bug reporter history [250]. Recently, Wang and Lo [250] combine bug report contents and three external
repositories, and outperform five earlier IR-based bug localization techniques [220, 221, 230, 249, 258, 276]
which makes it the state-of-the-art. In short, the contemporary studies advocate for combining (1) multiple
localization approaches (e.g., dynamic trace analysis [130], Deep learning [128], learning to rank [268, 269])
and (2) multiple external information sources with classic IR-based localization, and thus, improve the
localization performances. However, such solutions could be costly (i.e., multiple repository mining) and

less scalable (i.e., dependency on external information sources), and hence, could be infeasible to use in

107

practice. In this work, we approach the problem differently, and focus on better leveraging the potential of
the resources at hand (i.e., bug report and source code) which might have been underestimated by the earlier
studies. In particular, we refine the noisy queries (i.e., containing stack traces) and complement the poor
queries (i.e., lacks structured items), and offer an effective information retrieval unlike the earlier studies.
Thus, issues raised by low quality bug reports [248] have been significantly addressed by our technique, and
our experimental findings support such conjecture. We compare with three existing studies including the
state-of-the-art [250], and the detailed comparison can be found in Section 5.3.4 (i.e., RQ3).

A few studies [163, 258] analyse stack traces from a bug report for bug localization. However, they apply
the trace entries to boost up source document ranking, and superfluous trace entries were not discarded
from their stack traces. Learning-to-rank [268, 269] and Deep learning [128] based approaches might also
suffer from noisy and poor queries since they adopt classic IR without query reformulation in their document
ranking. Recent studies [245, 268] employ distributional semantics of words to address limitations of VSM.
Since noisy terms in the report could be an issue, our approach can complement these approaches through
query reformulation.

Query Reformulation: There exist several studies [64, 84, 96, 98, 104, 120, 188, 191, 208, 268] that sup-
port concept /feature/concern location tasks using query reformulation. However, these approaches mostly
deal with unstructured natural language texts. Thus, they might not perform well with bug reports con-
taining excessive structured information (e.g., stack traces), and our experimental findings also support this
conjecture (Table 5.9). Sisman and Kak [231] first introduce query reformulation in the context of IR-based
bug localization. However, their approach cannot remove noise from a query. Recently, Chaparro et al. [65]
identify observed behaviour (OB), expected behaviour (EB) and steps to reproduce (S2R) from a bug report,
and then use OB texts as a reformulated query for bug localization. However, they only analyse unstructured
texts whereas we deal with both structured and unstructured contents. Since we apply query reformulation,
we compare with four recent query reformulation techniques employed for concept location—Rocchio [213],
RSV [212], STRICT [191] [189] and bug localization— SCP [231]. The detailed comparison can be found in
Section 5.3.4 (i.e., RQ4).

In short, existing IR-based techniques suffer from quality issues of bug reports whereas traditional query
reformulation techniques are not well-adapted for the bug reports containing excessive structured information
(e.g., stack traces). Our work fills this gap of the literature by incorporating context-aware (i.e., report quality
aware) query reformulation into the IR-based bug localization. Our technique better exploits resources at
hand and delivers equal or higher performance than the state-of-the-art at a relatively lower cost. To the

best of our knowledge, such comprehensive solution was not provided by any of the existing studies.

5.6 Summary

Developers spend about 50% of their development time in dealing with software bugs and failures, which

cost billions of dollars every year [1]. Finding the locations of bugs within the source code is a crucial step

108

of the bug resolution process. Traditional solutions for bug localization are limited. They do not perform
well when the bug reports are noisy or poor in quality [248]. In this chapter, we propose a novel technique
—BLIZZARD- that accepts a bug report as a search query, employs appropriate query reformulations based
on its reporting quality (e.g., noisy, poor), and then delivers an improved, reformulated search query for
the bug localization. Experiments using 5,139 bug reports from six open source subject systems report that
BLIZZARD can offer up to 62% higher precision than the best baseline and 20% higher precision than the
state-of-the-art measure. Our technique also improves 22% more of noisy queries and 20% more of the poor
queries than that of the state-of-the-art.

Although our approach suggests appropriate search queries from the noisy and poor quality bug reports,
they might require further reformulations to achieve the optimal performance during bug localization. In
particular, we notice that BLIZZARD might achieve only marginal improvement over the baseline when
the bug reports are really poor. In the next chapter, our fourth study (BLADER, Chapter 6) attempts to
overcome this challenge. BLADER accepts a poor bug report as a search query, and reformulates the query

using word embedding technology and clustering tendency analysis for the bug localization.

109

CHAPTER 6
SEARCH QUERY REFORMULATION FOR BUG LOCALIZATION
USING WORD SEMANTICS & CLUSTERING TENDENCY

ANALYSIS

Software bugs and failures are pervasive in modern software systems [1]. Changes to the existing software
systems are also frequent and inevitable during the maintenance. Thus, finding bugs in the software code
(a.k.a., bug localization) and identifying concepts of interest in the software code (a.k.a., concept location)
are two major challenges of the software maintenance. Our previous studies (Chapters 3, 4, 5) deliver
search queries for concept location and bug localization by analysing change requests, bug reports and
relevant source code documents. They determine keyword importance using statistical properties (e.g., term
co-occurrences, Section 3.3.3) and dependency relationships among the keywords (e.g., syntactic, static or
hierarchical dependencies, Section 5.2.2). While these dimensions were found promising, the underlying
semantics of the keywords were overlooked, which could have been another important dimension. In this
chapter, we overcome this issue with another study. Here, we present BLADER that accepts a poor quality
bug report as a query, analyses clustering tendency between the query and the candidate keywords in terms of
their underlying semantics, and then delivers an improved, reformulated search query for the bug localization.

The rest of the chapter is organized as follows — Section 6.1 presents an overview of our study, and
Section 6.2 offers a motivating example. Section 6.3 describes our proposed technique for search query
reformulation for bug localization, and Section 6.4 discusses our experiments, evaluation and validation.
Section 6.5 identifies the threats to the validity of our findings, Section 6.6 discusses related work, and finally

Section 6.7 concludes the chapter with future work.

6.1 Introduction

Software bugs and failures cost trillions of dollars every year and consume almost half of the development
time and efforts [1, 28]. Bug localization is one of the most challenging steps of software debugging. It
involves finding out the bugs or faults within the source code of a software system [130, 170]. Over the last
two decades, Information Retrieval (hereby IR) had been widely adopted in the localization of software bugs

[98, 163, 164, 220, 249, 276]. IR-based localization leverages textual similarity between a bug report (query)

110

and the source code in localizing the bug [276]. Such a localization is reported as light-weight, cost-effective
and even as accurate as spectra-based techniques which localize a bug by analysing the execution traces
[207, 248]. Unfortunately, recent findings [192, 193, 248] suggest that IR-based approaches suffer heavily
when the quality of a bug report is low (i.e., poor query). They cannot perform well without the presence
of relevant program entity names (e.g., class names, method names) in the report texts. Such entities could
essentially help find the locations of the encountered bugs or failures within the source code. According to
existing investigations [193, 248], up to 55% of bug reports of a software system could be of low quality (i.e.,
lack program entities). Thus, such automated supports are highly warranted that could localize the bugs in

the software even with these low quality bug reports (i.e., poor queries).

Software developers often use a few important keywords from a bug report as a search query for bug
localization [120, 231]. Unfortunately, choosing such keywords from the bug report is often challenging, and
even the experienced developers cannot do this job well [83, 120, 142]. Furthermore, they might not even
find any useful keywords from the low quality bug reports. An ad hoc alternative to this issue could be the
use of the whole texts (i.e., title + description) of a bug report as a search query. Unfortunately, such texts
might also produce verbose and poor queries [64]. Thus, appropriate query selection for bug localization is a
major challenge, and the developers are badly in need of automated tool supports. Our work in this chapter

addresses this particular research problem— query reformulation for the IR-based bug localization.

Several existing studies offer automated supports for query reformulations in the context of concept/fea-
ture location [84, 98, 104, 164, 191] and bug localization [65, 163, 192, 231]. Unfortunately, they might fail
with low quality bug reports (poor queries) due to their high reliance on the report contents. Most of them
use pseudo-relevance feedback (PRF) [222] and term selection methods (e.g., TF-IDF [114]). PRF-based
techniques accept a search query, retrieve a few apparently relevant source documents, and then expand the
query with important keywords extracted from these documents [222]. However, if the given query is already
poor, the retrieved documents could be either noisy or even completely irrelevant which can negatively affect
the reformulated query. Low quality bug reports (i.e., poor queries) generally do not contain any relevant
program entity names (e.g., class names) [193, 248]. Thus, term selection based approaches [120, 191] might

also not be sufficient enough for selecting appropriate queries from the low quality bug reports.

In this chapter, we propose and design a novel technique-BLADER- that reformulates a poor search
query by analysing and complementing its underlying semantics, and then localizes the bugs in the software
code using the reformulated query. First, we construct a high dimensional semantic space (a.k.a., semantic
hyperspace) and a large vocabulary of ~660K words by employing a widely used text mining tool, FastText
[54], on 1.40 million Q&A threads of Stack Overflow. FastText represents each word of the vocabulary as
a point within the semantic hyperspace so that similar or relevant words cluster together within the space.
Second, we collect multiple reformulation candidates from the relevant source code against a given query,
and determine their appropriateness based on their clustering tendency towards the given query within the

hyperspace (i.e., use of word semantics). Third, we choose the best candidate using machine learning as our

111

Table 6.1: An Example of Low Quality Bug Report (Issue #192756, ECF)
Field Content

Title [IRC] On channel join, get rid of ‘entered’ spam in

Description If you join a big channel, you get a ton of “xxx entered". I think on channel entry, we
don’t show these messages. We should show these messages in maybe the ‘server tab’, ie.,

irc.freenode.net, similar to how other IRC clients do it.

An Example of Query Reformulation

Technique Reformulated Query QE
Baseliney {title} 30
Baselinep {description} 10
Baseline {title + description} 12

Rocchio [213] | {title + description} + {remoteserviceadminevent admin service feed remote synd | 10
mask writer event export}

BLADER {title 4 description} + 03

(Proposed) {connect invitation handle message room chat user send}

QE = Rank of the first buggy document retrieved by the query

reformulated query (i.e., poor query -+ complementary keywords), and then employ this query in the bug
localization with information retrieval. While many earlier approaches [220, 276] simply use the poor queries
(i-e., low quality bug reports) verbatim, our approach complements such queries with relevant keywords
from the source code using word semantics, clustering tendency analysis and machine learning. Thus, our
approach, BLADER, has a greater chance of overcoming the challenges posed by low quality bug reports
(poor queries). To the best of our knowledge, this is the first attempt to apply clustering tendency analysis
and word semantics (derived from Stack Overflow Q&A threads) in the query reformulation intended for bug

localization, which makes our work nowvel.

We evaluate our technique using four widely used performance metrics, two different dimensions (bug
localization and query reformulation), and a dataset of 1,546 bug reports from siz subject systems. First, we
evaluate in terms of bug localization performance (RQ1). In contrast with a baseline approach, our technique
localizes software bugs with 9% higher Hit@10, 17% higher MAP and 21% higher MRR. Second, we compare
with five well known existing studies on bug localization [192, 220, 250, 268, 276] (RQs), where BLADER
achieves 11% higher MAP and 15% higher MRR than the state-of-the-art [192]. Third, we compare with
siz well known existing approaches on query reformulation [188, 191, 192, 212, 213, 231] (RQ4). BLADER
improves 48%-72% of the poor queries which is 283% higher than that of the state-of-the-art [192]. Such
an improvement can help the practitioners find out the buggy documents with less manual or cognitive
efforts. Our work also demonstrates the novel and effective application of clustering tendency analysis and
word semantics derived from Stack Overflow in addressing a complex Software Engineering challenge such

as query reformulation for IR-based bug localization. Thus, our work makes the following contributions.

112

Stack Overflow Initial query
Q & A threads bug report)
Best candidate

r (
de B g
@ selection ()
= 900

Semantic
hyperspace

Preprocessing FastText Data Reformulated
(Word2Vec) resampling query
(:) Query—candidate @
clustering .
Candidate source tendency analysis Reformulation
term selection

(A) candidates (B)

Figure 6.1: Schematic diagram of the proposed query reformulation technique ~BLADER- (A)
Construction of a semantic hyperspace and (B) Reformulation of a query for bug localization
(a) A novel query reformulation technique, BLADERQRg, that improves a poor search query with appro-
priate keywords from the source code of a software system by employing word semantics, clustering
tendency analysis, machine learning and pseudo-relevance feedback.
(b) A novel bug localization technique, BLADERRg;,, that employs query reformulation, Information Re-
trieval, and word semantics for the bug localization.
(c) Comprehensive evaluation of the proposed approach using 1,546 bug reports and comparison with
eleven existing techniques in two different dimensions.
(d) A replication package [29] that includes a working prototype, experimental dataset and other associated

materials for third party reuse and replication.

6.2 Motivating Example

In order to demonstrate the capability of our technique in improving search queries and thereby in bug local-
ization, we provide an example where BLADER outperforms three baseline approaches and one frequently
cited existing approach—Rocchio [213]. The upper part of Table 6.1 shows a low quality bug report. The
report explains a bug on IRC chat using only regular texts. It does not contain any program entities (e.g.,
class names) which might have assisted in the bug localization process. In the lower part of Table 6.1, we
compare our approach with others. We see that three baseline approaches — Baseliner (title only), Baselinep
(description only) and Baseline (title+description) do not perform well, and they return the first buggy
document at the 30t", 10*" and 12" positions respectively in their result lists. On the contrary, BLADER
complements this low quality bug report (poor query) with appropriate search keywords from the
source code, and then returns the same result at the third position which is a 70% rank improvement over
the baseline. Despite the expansion, Rocchio’s method fails to improve over baseline due to its high reliance

on the poor query. Please note that our keywords are more appropriate and more relevant.

113

6.3 BLADER: Automated Query Reformulation using Word Se-

mantics & Clustering Tendency Analysis for Bug Localization

Fig. 6.1 shows the schematic diagram of our proposed technique for query reformulation targeting bug lo-
calization. Furthermore, Algorithm 7 shows the pseudo code of our approach. We first construct a semantic
hyperspace (i.e., multi-dimensional semantic space) from 1.40 million Q&A threads of Stack Overflow us-
ing FastText. Then we reformulate a poor query using two clustering tendency metrics derived from this

hyperspace and perform bug localization with the reformulated query as follows:

6.3.1 Construction of a Semantic Hyperspace from Stack Overflow Q& A Threads

Several earlier studies [144, 226] make use of natural language thesauri (e.g., WordNet) to expand a search
query with synonyms and semantically similar words. However, Sridhara et al. [233] later suggest that words
used in Software Engineering literature have different semantics than what they have in the regular texts
(e.g., news article). That is, natural language thesaurus such as WordNet might not be sufficient enough
for keyword suggestion in the context of Software Engineering (SE) tasks (e.g., bug localization). We thus
construct a dictionary-like mechanism (e.g., semantic hyperspace) using the contents relevant to Software
Engineering (e.g., programming Q & A threads) for our query reformulation.

Data Collection: We use Stack Overflow, the most popular programming Q & A site on the web, for our
semantic hyperspace construction (i.e., Step 1, Fig. 6.1). Stack Overflow is a large body of knowledge with
14 million questions and 22 million answers across various programming languages, algorithms, API libraries,
and state-of-the-art software development practices [58]. These contents are spontaneously produced by
millions of software engineers, programming hobbyists, and researchers from all over the world. They are also
systematically curated by this large technical crowd with a voting based system. Thus, Stack Overflow offers
a massive body of relevant, reusable, and useful resources. Furthermore, such resources could be leveraged
in exploring the underlying semantics of the keywords from queries related to Software Engineering tasks.
Several earlier studies [58, 201, 205, 272] also demonstrate the high potential of Stack Overflow for SE tasks.

We collect a total of 1.40 million questions and answers related to Java from Stack Overflow for our
corpus preparation. We make use of the official data dump [35] released on March, 2018 by Stack Overflow.
Since we deal with Java-based subject systems, we were interested in the Java related questions, answers and
discussions posted on Stack Overflow. We identify them using <java> tag of the questions. We also make
sure that each of the questions has at least one answer in order to avoid the low quality questions.

Text Preprocessing: As a widely used practice [272], we perform standard natural language prepro-
cessing on each of the questions and answers (i.e., Step 2, Fig. 6.1). In particular, we first remove stop
words, programming keywords, punctuation marks, and digits, and then split the complex or structured

tokens (e.g., camel case, GoogleTalk) into simpler ones (e.g., Google, Talk). Stop words (e.g., ‘a’, ‘an’, ‘the’)

114

and keywords (e.g., for, while) are frequently used words in the texts and source code respectively which
convey very little semantics. We use a standard list of stop words [25] and an official list of Java language
keywords [12] for the stop word removal and keyword removal respectively. It should be noted that we avoid

stemming in our analysis due to the controversial evidence of stemming in the software text retrieval [106].

Learning of Word Embeddings: Semantics of a word are often determined by its contexts (i.e.,
surrounding words) within the texts. The same word can express different meanings in different contexts.
For example, the word ‘bank’ could mean a financial institution in one context, and could also mean an
edge of the river in another context. Thus, determining the ezact meaning of a word is a major challenge.
Since bug reports are written by mostly layman users, search queries constructed from these reports could
be ambiguous as well. There have been several attempts [109, 154, 188, 233, 265, 272| for understanding
software word semantics during the last decade. Recently, Mikolov et al. [L56] propose a neural network based
approach called Word2Vec that learns the semantics of a word in terms of a numeric vector. Such a vector
is also called word embeddings. Word2Vec has been found surprisingly effective for various traditional text
classification tasks (e.g., sentiment analysis [115, 238]). We use a recent version of their approach namely

FuastText [54] for learning the word embeddings in our work.

We use a three-layer neural network (i.e., input layer + hidden layer + output layer) with Skip-gram
algorithm to learn word embeddings (Step 3a, Fig. 6.1). The training of this network (1) starts with a set of
random weights and an activation function (e.g., linear function) in the hidden layer, and (2) finishes with a

set of fine-tuned weights in the hidden layer neurons.

Then the hidden layer weights learned by the network for each of the words are considered as their
corresponding word embeddings [36, 156]. We implement FastText using gensim library in Python platform,
and use the default set of parameters like earlier studies [194, 274]. In particular, we use a window size of 5,
a minimum frequency of 5, and a hidden layer of 100 neurons. Thus, our trained model returns a numeric

vector of 100 weights as the word embeddings for each of the 660K words from the corpus.

Modelling of a Semantic Hyperspace with Word Embeddings: Although word embeddings are
learned from a simple, shallow neural network, they have useful properties that could be leveraged for
various text processing tasks (e.g., semantic similarity estimation [268, 274]). For example, the embeddings
are learned in such a fashion that similar or relevant words are found close to one another when their word
embeddings are visualized. We make use of this interesting property, and map the embedding vector of
each word to a unique point within the semantic hyperspace. Hyperspace refers to a space having more than
three dimensions. Thus, each point (or word) could be considered as an intersection of multiple dimensions
pointing towards multiple semantics. Our corpus from Stack Overflow contains a total of ~660K unique
words, and their word embeddings thus construct a large-scale, multi-dimensional semantic space (a.k.a.,

semantic hyperspace) (Step 3b, Fig. 6.1).

115

Algorithm 7 Bug Localization with QR using Word Semantics & Clustering Tendency Analysis
1: procedure BLADER(Q, WE)

2: > @: a poor bug report, a.k.a., search query

3: > WE: word embeddings learned from Stack Overflow

4: > stopword /keyword /punctuation removal, and token splitting
5: Qpp <preprocess(Q)
6: > collect candidate terms for reformulation

7: C <—getCandidateTermsFromProjectSource(Qpp)
8: X {C U Qpp}

9: > get reformulation candidates using clustering tendency
10: S« {Vz:xe X}, S +{Vo:z e X} > set initialization
11: > get the candidate using Hopkins statistic
12: Y+ {y:ye X NY C X} > uniformly distributed set
13: for CandidateTerm ¢ € X do
14: re+ {Ve:x € SAx #t}
15: H S[rc] +—calculateHopkinsStatistic(rc, X, Y, WE)
16: if HS[rc] > HSpax then
17: RCpyg < rc > candidate with maximum HS
18: S+ {S\t}
19: end if
20: end for
21: > get the candidate using polygon area
22; for CandidateTerm ¢t € X do
23: re« {Vx:x €S Nx#t}
24: PA[rc] <—calculatePolygonArea(rc, WE)
25: if PA[rc] < PAin then
26: RCpag < rc > candidate with minimum PA
27 ST {S"\t}
28: end if
29: end for
30: > get the best reformulation using machine learning

31: RChest +getBestQR(RCrs, RCpa, RChase)
32: QR — {Qpp U Rcbest}

33: > bug localization on codebase with reformulated query QF
34: R < Lucene(corpus, QF)
35: return R

36: end procedure

116

6.3.2 Automated Search Query Reformulation with Semantic Hyperspace, Clus-

tering Tendency & Machine Learning

We use the semantic hyperspace constructed above (Section 6.3.1), identify the best reformulation candidate
using two clustering tendency metrics and machine learning, and then expand a poor query intended for

IR-based bug localization as follows:

Selection of Candidate Source Terms: First step of automatic query reformulation is to collect
suitable candidate terms for the reformulation. Existing approaches from the literature often make use of
relevance feedback [84, 146] or pseudo-relevance feedback [62, 98, 213, 222] for candidate selection. Rahman
and Roy [189] recently make use of field and method signatures from the source code of a software system,
and suggest suitable terms for query reformulation using pseudo-relevance feedback and an advanced term
weighting method (e.g., PageRank [57]). Their approach also outperforms contemporary PRF-based ap-
proaches which makes it an ideal choice for our candidate term selection. We use authors’ implementation of
the tool, and extract the Top-25 terms (i.e., threshold justified in RQ;) from the source code as the candidate
terms (i.e., Step 4, Fig. 6.1, Lines 4-8, Algorithm 7). Given that low quality bug reports often lack relevant

program entities, such terms from the relevant source code could complement them for bug localization.

Clustering Tendency Amnalysis: Once candidate terms are selected, we attempt to identify the most
appropriate ones from them to reformulate a given query (i.e., bug report). Several earlier studies [194,
268, 274] simply rely on semantic distance between query keywords and candidate terms for choosing the
appropriate terms for query reformulation. However, their idea might fail with poor search queries (i.e., low
quality bug reports). While a term from the source code could be semantically close to one of the query
keywords, (1) it might not be relevant to the whole query or (2) the keyword itself might not be a salient one.
We thus leverage the clustering tendency of the candidate terms towards the query keywords rather than
simply relying on their semantic distance. In particular, we locate the query keywords and the candidate terms
within our semantic hyperspace using their embedding vectors (i.e., coordinates), determine their clustering
tendency with each other using two metrics below, and then develop two reformulation candidates as follows
(Steps 56, Fig. 6.1, Lines 9-29, Algorithm 7):

(a) Hopkins Statistic is a statistical hypothesis test that determines the clustering tendency of a given
dataset [48, 108]. It assumes a null hypothesis that the data points in the dataset have a uniform random
distribution, and thus do not form any cluster. We use this statistic to identify a subset of the candidate

terms that have the highest clustering tendency with a given query.

We first combine query keywords and candidate source terms, and develop a sample set X of size n. For
the sake of brevity, we assume that X contains n items. Now, we construct a subset S C X of size m << n
by iteratively discarding the individual items. We also draw a uniform random sample Y C X of size | << n
where Y contains only [distinct items (i.e., uniformly distributed). That is, S is the real dataset and Y is

the uniformly sampled set. We then determine the distance between each item and its nearest neighbour

117

from X. Lets assume that u; is the distance between z; € S and its nearest neighbour in X whereas v; is the
distance between y; € Y and its the nearest neighbour in X. Now, we calculate the Hopkins statistic HS for

S using the distance measures as follows:

(6.1)

Here, d refers to the dimension of each data point. Since we represent each item z; € X using correspond-
ing embedding vector with a size of d, the distance measures above are calculated using cosine similarity
[90]. Let us assume that two items (i.e., terms) r € S and ¢ € X have two embedding vectors R and T
respectively which are derived from our semantic hyperspace (i.e., Section 6.3.1). Now, the semantic distance

u? between r and t is calculated as follows:

‘ d d
VIl s /o, 1

Hopkins statistic takes a value between 0 and 1. A value close to 1 indicates that the sample set S is
highly clustered whereas 0.5 indicates that S is randomly sampled, and does not contain any meaningful
clusters. We construct a number of subsets S C X, and choose the one with the highest HS value as our
reformulation candidate RCgg (i.e., Step 6a, Fig. 6.1, Lines 11-20, Algorithm 7).

(b) Polygon Area calculation, a well known concept from Coordinate Geometry, has found numerous
applications in the real world problems (e.g., architectural planning, computer 3D modelling) [34]. These
problems often involve the maximization or minimization of the area of an irregular polygon. In order to
reformulate a poor query, we deal with a set of points within the semantic hyperspace which also essentially
form an irregular polygon. Carmel et al. [61] suggest that poor queries often discuss multiple topics which
make them ambiguous, and good quality queries are mostly precise. Similarly, we argue that terms of a good
quality search query are closely related in their semantics. Hence, the area of polygon created by them within
our semantic hyperspace is likely to be small. Conversely, a large polygon area indicates broad or ambiguous
query topics. Thus, the polygon area could be another prozy to clustering tendency between the candidate
reformulation terms and the query keywords (e.g., bug report).

We develop a sample set X by combining candidate terms and query keywords. For the sake of brevity, let
us assume that X contains n points where each point is an embedding vector of size d for corresponding term
or keyword from X. Since we deal with a d-dimensional space (a.k.a., hyperspace), we adapt the traditional
2-dimensional polygon area calculation [33] with d-dimensions. In particular, we choose ?Cy dimension pairs,

calculate the polygon area for each pair, and then sum them up to obtain the final area PA. Let us assume

118

that R and T contain 7" and ' coordinates from n points above. Now we calculate their polygon area

using the following equation.

1 n
PApr =3 > (Rj+Ri)x (I; - T;) where j=i—1 (6.3)

i=1

Here, j takes a value of n when i = 1, otherwise it always takes the previous value of i, i.e., j =i —1. We
construct a number of subsets S C X, extract their embedding vectors, and calculate the polygon area for
each subset. Then, we choose the one with the smallest polygon area as the reformulation candidate RC'p 4
(i.e., Step 6b, Fig. 6.1, Lines 21-29, Algorithm 7).

Selection of the Best Reformulation Candidate: The clustering tendency metrics above provide
two reformulation candidates (RCus, RCpa) using the candidate terms from the source code of a software
system. An earlier study [193] suggests that baseline queries might also perform well in some cases. We thus
use the preprocessed version of a given bug report as the third reformulation candidate RChase (Step 6c,
Fig. 6.1). Existing evidence [98, 189] shows that combination of multiple reformulation strategies performs
consistently higher than any single strategy. We thus consider all three reformulation candidates, and choose

the best one among them using machine learning (Lines 30-32, Algorithm 7) as follows:

(a) Data Resampling: Query difficulty metrics [62] have been used by several existing studies [96, 98,
189] to identify the best reformulation candidate. However, they might not be effective for poor queries (our
problem context) since they mostly rely on the linguistic aspect of the queries. We thus attempt to predict
the best reformulation candidate using the above two data analytics based metrics — Hopkins Statistic, and
Polygon Area— of each candidate. We also determine Query Effectiveness of each of the three reformulation
candidates, and annotate them with one of these three labels —‘high’, ‘medium’, and ‘low’ — based on their
performances. Since only ‘high’ labelled candidates are of our interest, the training dataset is inherently
skewed. We thus perform bootstrapping (i.e., random resampling [116]) on the training dataset with 100%
sample size and with replacement option. Bootstrapping is often used to mitigate data skewness [116]. In
particular, we draw 50 random samples (i.e., suggested by an earlier study [189]) from this dataset, and

prepare multiple datasets for our model training (Step 7, Fig. 6.1).

(b) Machine Learning: Given multiple training datasets, we develop multiple machine learning models,
and then identify the best reformulation candidate by combining the predictions from each of these models.
Such an approach of combining multiple models is known as ensemble learning [174, 214]. It is often used when
individual models might be weak. As shown by earlier studies [56, 203], RandomForest algorithm has the
potential to avoid model overfitting which makes it a suitable choice for our machine learning task. Besides,
our investigation in RQq, Section 6.4.3 shows that RandomForest is the best choice for our dataset. We thus

train RandomForest model with 10-fold cross validations on each of the training datasets, combine predictions

119

from all the models for a given test instance, and then suggest the best candidate as the reformulated query

(i.e., Steps 79, Fig. 6.1).

6.3.3 Bug Localization

Once BLADER returns a reformulated query against a poor search query (i.e., low quality bug report), we
submit the reformulated query to a widely used code search engine namely Lucene [32]. Lucene employs
Boolean Search Model and Vector Space Model [114] for the search, and it is widely adopted both by the
industry (e.g., ElasticSearch) and by the existing literature [98, 164, 189]. We use Okapi BM25 similarity [227]
between a query and the source code documents, and retrieve a ranked list of buggy source documents for
each query using Lucene (i.e., Lines 33-35, Algorithm 7). These ranked buggy documents are then presented
to the developer for manual analysis. As shown in Table 6.1, our suggested query returns the first buggy

2th

document at the third position as opposed to the 12** position by the given query.

6.4 Experiment

We evaluate our proposed technique —-BLADER- with four widely used performance metrics and 1,546
bug reports from siz subject systems. We further consider two different dimensions — (1) bug localization
and (2) query reformulation— for our evaluation. We first determine our bug localization performance (i.e.,
BLADERgp,), and compare with one baseline approach and five existing approaches on bug localization [192,
220, 250, 268, 276] including the state-of-the-art [192]. In addition to that, we contrast our query reformulation
performance (i.e., BLADERGg) with that of another six existing approaches on query reformulation [188,
191, 192, 212, 213, 231] including the state-of-the-art [192]. Thus, we answer four research questions using
our experiments as follows:
e RQ;: Can BLADERgy, outperform the baseline approach in bug localization? Are the adopted thresh-
olds, parameters and choices justified?
e RQ,: Can BLADERR outperform the baseline approach in query reformulation intended for bug
localization?
e RQ3: Can BLADERRg;, outperform the state-of-the-art in the IR-based bug localization?
¢ RQ4: Can BLADERR outperform the state-of-the-art in query reformulation intended for bug/con-

cept location?

6.4.1 Experimental Dataset

Dataset Collection: We use a total of 1,546 bug reports from six open source, Java-based systems for the
evaluation and validation of our technique. We collect these bug reports from a publicly available benchmark

dataset [30, 192, 193]. Table 6.2 shows the details of our dataset. First, all the resolved bug reports (i.e.,

120

marked as RESOLVED) are collected from either BugZilla or JIRA repository of each system. Second, bug-
fixing commits (i.e., commits solving the bugs) are extracted from the version control history of each system
at GitHub using a set of appropriate regular expressions [43]. Such bug reports are then selected that have the
corresponding bug-fixing commits. Third, we retain such bug reports that contain only unstructured regular
texts, and do not contain any structured entities (e.g., class names, stack traces), i.e., BRyy, category, poor
bug reports [192, 248]. Fourth, we also discard such bug reports for which (1) no source code documents (e.g.,
Java classes) are changed, and (2) the changed source code documents do not exist any more in the current
snapshot of the subject system.

Construction of Ground Truth: We extract the changeset (i.e., list of changed files) from each of
the bug-fixing commits, and use them as the ground truth for corresponding bug reports. When multiple
commits are found for the same bug report, their changesets are merged together to form the ground truth.
Recent studies [103, 260] report concerns about tangled commits that often contain changes irrelevant to
the fixed bug. In order to mitigate such threat, we also discard the large commits that contain more than
five changed documents from the dataset. It should be noted that evaluations are performed both with and
without tangled commits.

Replication Package: Our dataset, experimental results and working prototype are publicly available

(https://goo.gl/tcVKup) for the replication or third party reuse.

6.4.2 Performance Metrics

We use four state-of-the-art performance metrics that are frequently adopted for evaluation by the existing
approaches on IR-based bug localization [163, 220, 250] and on query reformulation [98, 164, 189]. They are
defined as follows:

Hit@K / Top-K Accuracy determines the fraction of all queries by each of which at least one buggy
source document is retrieved within the Top-K positions of result list [191, 220, 250]. The higher the measure
is, the better the approach (or its query) is.

Mean Average Precision@K (MAP) considers the rank of the results unlike the traditional precision
measure [164, 220, 276]. Precision@K calculates the precision of an approach at the occurrence of k** result.
Average Precision@K (APQK) averages the Precision@K from all the true positive results (i.e., buggy source
documents) within a result list. Mean Average Precision@K (MAP) averages APQK over all the queries in

the dataset (@) as follows:

i Pe x buggy(k) 35 APQK(q)
5] Q]

Here, Py, refers to Precision@K, K is the number of top results under analysis, and S is the set of true positive

AP@K = , MAP(Q) =

results retrieved by each query. The function buggy(k) returns a value of 1 when k** result from the list is
true positive (i.e., actually buggy) and 0 for the opposite. The higher the MAP measure is, the better the
approach (or its query) is. We calculate MAP for top 1 to 15 results only.

121

Table 6.2: Experimental Dataset (Subject Systems & Bug Reports)

System Duration ‘ #BR H System Duration ‘ #BR

ecf 2001-2017 163 eclipse.jdt.ui | 2001-2016 407

eclipse.jdt.core 2001-2016 132 eclipse.pde.ui | 2001-2016 510

eclipse.jdt.debug | 20012017 229 tomcat70 2001-2016 105

Total: 1,546

- g ¥ *****¥*** 2 | %******%%K
g = %
</ *
* PO R R Y NN 7 / ‘7‘‘_‘_“.;.14-;
o a” Xy % uh
g gn— / PR B B A S R e R e % o| A T I S-SR~ EE~
o |4 0’¢- . | / Az@,gzgﬁré- T
1./ 7ol 'l
a* _
s ()| &/ (b)
~ T T T T T T T T T T T T T T
2 4 6 8 10 12 14 2 4 6 8 10 12 14
K K

‘—9— Baseliner —e— Baselinep —— Baseline —#% BLADERg_

Figure 6.2: Comparison of our approach, BLADEREg,, with the baseline approach in bug localization
using (a) MAP and (b) MRR

Mean Reciprocal Rank (MRR) is defined as the mean of Reciprocal Rank of all queries (Q). Recip-
rocal Rank is the multiplicative inverse of the rank of the first buggy document within the results retrieved
by each query [163, 220, 276]. For the sake of practicality, we only consider top 1 to 15 results retrieved by
the query for our analysis. Thus, MRR can be calculated as follows:

1 1
MRR = — _—
(@) |Q| Z firstRank(q)
qeQ

Here, firstRank(q) returns the rank of the first buggy document retrieved by a query g. The bigger the
measure is, the better the approach (or its query) is.

Query Effectiveness (QE) is defined as the rank of the first buggy source document retrieved by a
query [98, 163, 164]. It should be noted that all retrieved results are analysed in this case rather than Top-K
only. The measure approximates a developer’s effort in locating the first buggy document in the result list.

The higher the rank is, the quicker a developer locates the first buggy source document. Thus, a small QE

value indicates high quality of a query.

6.4.3 Evaluation of BLADER

We first show the bug localization performance of our technique using the metrics above (Section 6.4.2), and
then compare with a baseline approach and two of its variants. Like several earlier studies [98, 164, 192, 220],
our baseline uses a pre-processed version of the bug report as a query, and employs Lucene [32] as the
document retrieval engine. Thus, our Baseline = (pre-processed bug report texts + Lucene). We answer

RQ; and RQs as follows:

122

Table 6.3: Performance of BLADERg;, in Bug Localization

Technique Hit@1 Hit@5 Hit@10 MAP MRR
Baseliner 22.73% 45.22% 56.35% 30.30% 0.32
Baselinep 22.65% 44.55% 53.60% 29.49% 0.32
Baseline 28.89% 52.10% 62.54% 36.23% 0.39

BLADERg;, | *36.64% | *59.39% | *68.29% | *42.46% | *0.47

Performance of BLADERRE;, without Tangled Commits

Baseliner 19.27% 42.69% 53.59% 27.87% 0.29
Baselinep 19.66% 41.44% 49.76% 27.66% 0.29
Baseline 25.90% 49.12% 60.32% 34.73% 0.36

BLADERgp, | *32.97% | *55.95% | *65.56% | *41.11% | *0.43

* = Significantly higher than Baseline, Baseline uses whole texts (title +
description), Baseliner uses only title, and Baselinep uses only

description from a bug report

Answering RQ;—(a) Performance of BLADERg;, in Bug Localization: Table 6.3 (upper part)
shows Top-1, Top-5 and Top-10 performances of our technique. While the baseline achieves a maximum
Hit@1 of 29%, our approach returns the correct results (i.e., buggy source documents) at the Top-1 position
for 37% of the queries (i.e., 37% Hit@1) which is 27% higher than the baseline measure. However, the main
strengths of our approach, BLADERgy,, are in precision and reciprocal rank. Baseline approach achieves
a precision of 36% and a reciprocal rank of 0.39 when Top-10 results are analysed. On the contrary, our
approach achieves a precision of 42% and a reciprocal rank of 0.47 in the same case which are 17% and 21%
higher respectively. Statistical tests such as Wilcozon Signed Rank and Cliff ’s Delta tests (across six subject
systems) also report strong significance with p-values<0.05 and a large effect size (i.e., 6=0.78). Fig. 6.2
also clearly demonstrates that BLADERg], achieves higher precision and higher reciprocal rank than those

of the baseline and its two variants for top 1 to 15 results.

Several earlier studies [103, 260] voice concerns about tangled commits that fix bugs but contain changes
unrelated to the bugs. We discard such commits, and repeat our experiments. From Table 6.3 (lower part),
we see that our approach performs significantly higher than the baseline even with this refined dataset.
For example, BLADERgy, achieves 18% higher precision and 19% higher reciprocal rank than those of the
baseline. All these empirical findings above suggest that BLADERp;, has higher potential than the baseline

approach and its two variants for the IR-based bug localization.

Answering RQ;—(b) Impact of Adopted Thresholds, Parameters and Choices: We conduct
several experiments to justify our adopted thresholds, parameters and choices — (a) use of multiple reformu-
lation candidates, (b) number of candidate terms, (c) use of machine learning algorithm, and (d) use of Stack

Overflow for learning word embeddings. From Fig. 6.3-(a), we see that reformulation candidates based on

123

2
2| - — BLADERus .7
- BLADERgA -
— o -
=2 & -
o - e T
é 7 o S -7
= _ < B 4
I = : 2 <
o P RS
N o (b)
.~ 2 R .
& o
~ T T T T T S T 1 1 T T
2 4 6 8 10 10 20 25 30 35
K CS
| - -'-"?.:'-'-‘“‘-'-h P
_ o
o 7
o & - F
< O o @
=V < /
. 1/ = BLADER.¢.op
—— BLADERg, 3 { - BLADERp, oo
. ~ = BLADERgart E BLADER e
= (€)| ... BLaDERL, a ¢ (d) BLADERa.an
©)
| | I | | | | | | |
2 4 6 8 10 2 4 6 8 10
K K

Figure 6.3: Impact of our adopted thresholds, parameters and choices — (a) Multiple reformulation
candidates, (b) Number of candidate source terms, (¢) Machine learning algorithm for the best query
selection, and (d) Corpus for learning word embeddings

Hopkins Statistic (i.e., BLADERps) and Polygon Area (i.e., BLADERp4) perform similarly. However, our
approach, BLADERgy,, leverages both these candidates, delivers the best candidate using machine learning
(Steps 6-9, Fig. 6.1), and thus achieves comparatively higher Hit@K performance. Such finding justifies the
use of multiple reformulation candidates. Similar evidence was found in the earlier studies [98, 189] as well.
Fig. 6.3-(b) shows that our approach performs optimally when Top-25 terms are collected from the project
source code as the candidate terms (Step 4b, Fig. 6.1). We also conduct experiments using three machine
learning algorithms — CART [98], J48 [180] and RandomForest [56]- for identifying the best reformulation
candidate (Section 6.3.2, Step 8, Fig. 6.1). As shown in Fig. 6.3-(c), RandomForest based approach (i.e.,
BLADERgy) performs better than BLADER ;45 and marginally better than BLADER ¢ srr. RandomFor-
est is also more robust to model over fitting problem [56]. Thus, our choice of using RandomForest as the
machine learning algorithm is possibly justified. We also investigate whether the use of corpus in learning
the word embeddings matters or not (Section 6.3.1, Steps 1-3, Fig. 6.1). We conduct experiments using two
open source corpora - Stack Overflow [194] and GitHub [90]. As shown in Fig. 6.3-(d), Stack Overflow based
versions, (i.e., BLADERpys s0), perform marginally higher than the GitHub based versions. Such finding

also justifies our choice of using Stack Overflow for learning the word embeddings.

Summary of RQ;: Our technique, BLADERgL, achieves 27% higher accuracy, 17% higher precision
and 21% higher reciprocal rank than those of the baseline approach. Furthermore, our adopted thresholds,

parameters and choices are justified.

124

Table 6.4: Comparison of Query Effectiveness with Baseline Queries

Query Pairs ‘ Improved ‘ Worsened ‘ Preserved

Comparison with All Queries (1,546)
BLADERqR vs. BQ ‘ 735 (47.54%) ‘ 182 (11.77%) ‘ 629 (40.69%)

Comparison with Low Quality Baseline Queries (569)
BLADERqR vs. BQ ‘ 410 (72.06%) ‘ 85 (14.94%) ‘ 74 (13.01%)

Comparison without Tangled Commits (1,074)
BLADERGqg vs. BQ \ 537 (50.00%) \ 134 (12.48%) \ 403 (37.52%)

BQ = Baseline Queries

Answering RQs—Comparison with the Baseline Queries: Although RQ; shows high potential of
our approach, we further compare with the baseline queries. In particular, we compare the rank of the first
correct result (i.e., buggy source document) returned by a baseline query with such rank of the corresponding
reformulated query from BLADERgg. If the rank of BLADERgR is higher than that of the baseline, we call
it query improvement, and the opposite as query worsening. On the contrary, if both ranks are equal, we call
it query preserving. From Table 6.4, we see that BLADERgr improves 48% of the baseline queries, keeps
the quality of 41% queries unchanged, and worsens only 12% of the queries. That is, on average, nine out of
ten baseline queries (i.e., 90%~48%+41%) either get improved or get preserved through the reformulations
offered by BLADERqR, which are highly promising according to relevant literature [98, 191, 231]. Result
rank distributions shown in Table 6.6 also suggest that the ranks achieved by BLADERqg are closer to the
top of the list than those of the baseline. We also repeat our experiments using very low quality baseline
queries which return their first correct results below the 10" position of the list (i.e., QE>10). As shown
in Table 6.4, BLADERqR improves 72% of these low quality queries. Similar findings are also observed for
the queries without tangled commits (e.g., 50% improvement). All these empirical findings above clearly

demonstrate the high potential of our reformulated queries over the baseline queries.

Summary of RQs: About 48%-72% of the queries provided by our technique perform better than the
corresponding baseline queries (taken from bug reports). Nine out of ten baseline queries either get improved

or get preserved due to the reformulations of BLADERgR.

6.4.4 Comparison with Existing Techniques

Although our approach demonstrates high potential over the baseline approach both in RQ; and RQs, we
further compare with the state-of-the-art in order to place our work in the literature. In particular, we
extensively compare with five existing studies on IR-based bug localization [192, 220, 250, 268, 276] including
the state-of-the-art [192] and six existing studies on query reformulation [188, 191, 192, 212, 213, 231]. We

answer RQ3 and RQy as follows:

125

Table 6.5: Comparison with Existing Bug Localization Techniques

Technique ‘ Hit@1 ‘ Hit@5 ‘Hit@lO ‘ MAP ‘MRR

Basic and Structured Information Retrieval

BugLocator 25.04% 48.51% 58.90% 32.11% 0.35
BLIZZARD 29.16% 53.78% 65.21% 37.62% 0.40
BLUiR 29.91% 56.59% 66.10% 38.11% 0.41
BLADERRg;, *36.64% 59.39% 68.29% *¥42.46% | *0.47

Information Retrieval 4+ Multiple Ranking Algorithms
AmalLgam+gro 29.40% 56.07% 65.01% 37.74% 0.40
BLIZZARDgro 35.45% 58.75% 69.17% 42.26% 0.46
BLADERggro L | 35.44% | 61.27% | 70.63% | 42.97% | 0.47

Information Retrieval 4+ Multiple Ranking + External Resources

AmalLgam+ 49.72% 65.42% 71.49% 52.74% 0.57

BLIZZARD-++ 47.97% 66.24% 74.49% 52.12% 0.56

BLADER+ gL, 48.39% 67.60% 75.70% 52.62% 0.57
Information Retrieval + Word Embeddings

Ye et al. 21.74% 43.36% 55.33% 29.24% 0.31

BLADERSE: *36.64% | *59.39% | *68.29% | *42.46% | *0.47

*—Significantly higher than baseline, Emboldened=Comparatively higher

Answering RQ3 — Comparison with IR-Based Bug Localization Techniques: Zhou et al. [276]
first use an improved version of Vector Space Model (a.k.a., r'VSM), and localize software bugs with Infor-
mation Retrieval (IR). Saha et al. [220] introduce structured Information Retrieval where they leverage the
structures of both bug reports and source code documents for the bug localization. Later studies [249, 258]
combine both rVSM and structures. In the same vein, Wang and Lo [250] combine five items from the
literature — similar bug reports, structured IR, stack traces, version control history and author history, and
outperform earlier approaches. However, recently, our another work [192] introduces novel aspects such as
report quality dynamics and query reformulation, and outperforms earlier approaches in the IR-based bug
localization which makes it state-of-the-art. Ye et al. [268] recently combine semantic similarity and tex-
tual similarity for IR-based bug localization. These five works above namely BugLocator [276], BLUIR [220],
AmalLgam+ [250], BLIZZARD [192] and Ye et al. [268] are highly relevant to ours, and we compare with them
experimentally. We collect the authors’ implementations of three techniques [192, 220, 276], and carefully
re-implement the remaining two [250, 268] by consulting with their original authors for the comparison.

From Table 6.5 (upper part), we see that two of the existing approaches ~-BLUiR and BLIZZARD- that
rely on structured Information Retrieval stand out from the rest. BLUiR achieves a maximum precision
of 38% and a maximum reciprocal rank of 0.41 when Top-10 results are analysed. On the contrary, our
approach, BLADERgy,, achieves 11% higher precision and 15% higher reciprocal rank than BLUiR in the
same context. Fig. 6.4 further contrasts the precision and reciprocal rank of BLADERp, with that of the

126

POIOPISUOD syuel [[e JO d[rrenb .2 =) ‘soronb oy £q PoUINIOI SHMNSIT 1991100 JSIY JO JURI UL\ — UBDIAI

(%69°0%) 629 || ¥7F%c | ¢ | @8 | 9T | ¢ | ¢cor | (%LLTI1)e8T || 6082 | T | %2 | & | ¢ | 9% | (%peLb) e OYgavid

- 768°'T T v | 6 é 6. - 257 (é 6V | €1 | ¢ 78 - oureseq
(%s6'1€) P67 || P20c | & | FG | ¢ | & c6 (%ev6e) eov || €90 | T | ee | 8 | @ ¢, | (%29'8¢) L6S [e61] auvzziid
(%6¥°L2) Gev || €86F | & | €9 | 8T | ¢ | eIl | (%0€eh) ¥¢9 || €8T | T |0€ | 9 | T | LS (%12°08) L9¥ [161] LOTYLS
(%eg08) el¥ || v0G'e | @ 9 | 91 | ¢ 86 (%61°2¢) €28 || 610'C I cc | 9| ¢ 65 (%8z'ce) 667 | [1eg] Yed] pue uewsig
(%ezoe) €1e || 192 | ¢ | 10T | ¥e | 9 | <ser | (%10%9)ce8 | €T | 1 | 1€ | L | ¢ <9 (%2¢-e) g6¢ [881] MVIOIND
(%11°62) 0SF || OFPI‘C | @ 18 | €& | L | cor | (%Le8p)1CL || #9¢9 | T [8¢ | 6 | € | oIl | (%Lz2e) ¢ve [z1e] ASU
(%8€°96) 067T || 098 ¢ |9vL | el | v | oFl (%se1) ¥¢ c9g T |61 | 8 | v | g€ (%20°2) ¢& [e12] orypooy

PoAIOSaIJH#

XeN 7 Ut 7 ¢0 7 0 7 10 7 ueoIN 7 POUASIOAN #

XeN 7 U 7 ¢0 7 0 7 10 7 oI 7 posoadwy#

duraresaag

SuruasIopn

juataAoxduu]

anbruyoay,

SoNb1uYD9T, UOTIR[NULIORY AION{) SUIISIXH [IM SSOULATIRPH AIon) jo uostreduio)) :9°9 a[qe],

127

Table 6.7: Comparison with Existing Studies using Feature Matrix

Report Content Data Analytics
Technique QR SVA | MRR
RT RS SS CTA
Baseline [0.39
BugLocator ([0.35
BLUiR (] (] 0.41
BLIZZARD ([[0.40
Ye et al. ([[0.31
BLADERsgL ([[o 0.47
AmaLgam+ ([] ([0.57
BLIZZARD+ [(] [([] 0.56
BLADER+gL, | @] [([([0.57

RT=Report Texts, RS=Report Structure, QR=Query Reformulation,
SS=Semantic Similarity, CTA=Clustering Tendency Analysis, SVA=Similar

reports, Version control history, and Author history, @=Feature used

. *,*—*—*-*-k-*._*_* ’*_*_*_*-*—*—F‘F
= ¥ /;r:?i?ii’:?:'i’:?:? g— /* vﬂgiy;vd_i’_?—i’—?

- ¥ * =¥
% EQ_/ /o,o,o’o—o—o_o,_o v D—/'i' OHOJO__O,O_O—O—O
= % /o .d_-_.—I—I—I—I % g_ /o/ .ﬂ.__.__.d_l—lfl

—Ho o - o ./l
4./ @| s4~ (b)
[[
I I I I I I I I I I
2 4 6 8 10 2 4 6 8 10
K K

—— Buglocaor—e— BLIZZARD —%— BLADERgp_
—<— BLUR —® Yeetal

Figure 6.4: Comparison of our approach with the existing techniques in bug localization using (a)
MAP, and (b) MRR for top 1 to 10 results

state-of-the-art approaches for top 1 to 10 results. We see that BLADERgy outperforms four (m = 4)
existing approaches including the state-of-the-art with statistical significance. We perform Wilcozon Signed
Rank and Cliff ’s delta tests with Bonferroni Correction, and report each p-value<0.0125 (a/m) and a large
effect size with 0.84< § <1.00. Fig. 6.5-(a) shows the overlap of successfully localized bugs by BLADERg;,
and by the state-of-the-art approaches [192, 220]. We see that our approach localizes about 92% of the bugs
that were identified by BLUiR and BLIZZARD, and then it localizes an additional 34 unique bugs when only
Top-10 results are analysed. All these findings above suggest the high potential of our approach over the
state-of-the-art especially in terms of precision and reciprocal rank.

From Table 6.5 (middle part), we also see that AmaLgam+, BLIZZARD+ and their variants achieve
higher performances than that of BLADERg;, by combining multiple ranking algorithms and by employing

additional resources (e.g., past bug reports, version control history, author history). Although such perfor-

128

BLUIR BLIZZARD Sisman & Kak BLIZZARD

20 26
97 19 80 53
869 283
52 106 110 235
34 107

(@) BLADERg, (b) BLADERQR

Figure 6.5: (a) Overlap of the successfully localized bugs between BLADERg;, and the state-of-the-
art, and (b) Overlap of the improved queries between BLADERGg and the state-of-the-art approaches

mance improvements are highly desirable, we argue that these approaches [249, 250] are not only less scalable
but also limited in their usability. Majority of their performances come from third party items which could
be unavailable. On the contrary, our goal is to improve the basic IR-based localization using the primary
resources available at hand (e.g., bug reports and source code documents). Our localization is cheap, easy-
to-use, and scalable. Nonetheless, when these third party items are considered, one of the variants of our
approach, BLADER+py,, performs equally or higher than the competing approaches [192, 250] (Table 6.5).
We also compare with Ye et al. [268] that combines textual similarity and semantic similarity between a bug
report and the source code document. Our investigation in Table 6.5 (lower part) demonstrates that simple
semantic similarity might not be sufficient enough if the poor queries are not improved at the first place.
Our approach BLADERg;, employs word semantics and clustering tendency analysis, complements the poor
queries with appropriate keywords from the source code, and thus, outperforms Ye et al. in bug localization.
Table 6.7 shows a matrix of eight different features that are used by the contemporary approaches. We add
clustering tendency analysis (CTA) as a novel dimension there, overcome the challenges with poor search

queries and outperform the state-of-the-art approaches [192, 220].

Summary of RQg: Our approach outperforms five existing approaches on IR-based bug localization by a
significant margin. BLADERg;, achieves 11% higher precision and 15% higher reciprocal rank than that of
the state-of-the-art.

Answering RQ4 — Comparison with Query Reformulation Techniques: Although our approach
outperforms the state-of-the-art on bug localization, we further compare with six existing studies on query
reformulation [188, 191, 192, 212, 213, 231]. Rocchio [213] and RSV [212] are two widely used query refor-
mulation techniques in source code search [98, 251, 274]. STRICT [191] and QUICKAR [188] reformulate
search queries for concept location by employing term weighting methods (e.g., TextRank) and crowdsourced
knowledge from Stack Overflow respectively. Sisman and Kak [231] and BLIZZARD [192] reformulate queries
for bug localization where they leverage spatial code proximity and context-awareness respectively. We use
the authors’ implementation for QUICKAR, STRICT and BLIZZARD, carefully re-implement the remaining
three [212, 213, 231] (i.e., unavailable prototypes), and then compare with their best performances on our

dataset. We determine the rank of the first buggy document retrieved by each of the queries from each of

129

Rocchio IH
[I I I I I I I I I
0% 0% 20% 30% 40% 50% 60% 70% 80% 90%
Query Quality Changed

* Improved Worsened < Preserved

Figure 6.6: Comparison of our approach with the existing techniques in query reformulation using
very low quality queries

these techniques, and then compare with corresponding baseline rank. If the rank of the reformulated query is
higher than the baseline rank, we call it query improvement and the opposite as query worsening. From Table
6.6, we see that BLIZZARD, the state-of-the-art, improves 39% and worsens 29% of 1,546 baseline queries.
On the contrary, our approach improves 48% and worsens 12% of the queries which are 23% higher and 60%
lower respectively. Quartile analysis of the result ranks also demonstrates that our ranks are more promis-
ing (i.e., closer to the top) than the state-of-the-art ranks. Fig. 6.5-(b) shows the overlap of our improved
queries with that of BLIZZARD and Sisman and Kak [231]. We see that our approach improves 78%—87%
of the queries that were also improved by these two approaches. However, additional 107 unique queries are
improved by BLADERqR where the earlier approaches totally fail. We further conduct experiments using

569 very poor queries which return their buggy source documents below the 10"

position. As shown in Fig.
6.6, our approach improves the maximum amount of these poor queries (e.g., 72%) among all the approaches.
Such ratios are 61% and 45% for BLIZZARD and Sisman and Kak respectively. Furthermore, BLADERqR

worsens fewer queries (e.g., 12%—-15%) than the existing approaches.

Summary RQ,4: Our approach outperforms six existing approaches on query reformulation intended for
concept/bug localization. BLADERqr improves 23% more of the poor queries (i.e., low quality bug reports)
than that of the state-of-the-art.

6.5 Threats to Validity

Threats to internal validity relate to experimental errors and biases [272]. Re-implementation of the existing
approaches is a possible source of such threats. We re-implement five approaches [212, 213, 231, 250, 268] and
reuse authors’ implementation of the remaining five approaches [188, 191, 192, 220, 276]. While we cannot
rule out the possibility of human errors, we also partially validate our implementations against the previously

published results [192, 250].

130

Threats to external validity relate to the generalizability of an approach [272]. Although we deal with Java-
based systems and Java related Q & A threads from Stack Overflow, our approach can be easily replicated
for other platforms. Our approach is not restricted by any programming language-specific features let it be

semantic hyperspace construction or bug localization.

The use of data re-sampling during machine learning (Step 7, Fig. 6.1) might pose a threat to the
reproducibility of our results. However, we employ random seeds to address this, repeat our experiments at
least 50 times, and then use the average results. Thus, such a threat about reproducibility might also be
mitigated. Furthermore, we have made our replication package publicly available [29]. Our query difficulty
model might also be slightly biased towards the high-class candidates. Future work should adopt more
rigorous methods for dealing with imbalanced data and focus on accurately predicting the best one from the

list of reformulation candidates produced by our approach.

6.6 Related Work

Bug Localization: Automated bug localization has been one of the major challenges in Software Engineering
over the last few decades [220, 248]. There have been a number of studies on bug localization which can be
classified into two broad categories — spectra based and Information Retrieval (IR) based [248]. While spectra
based approaches analyse execution traces, IR-based approaches leverage the textual similarity between bug
report texts and source code documents for the bug localization. In this work, we deal with IR-based bug
localization only. It is cheap, easy to use, and still provides good results [207, 248]. To date, existing studies
make use of several Information Retrieval methods such as Latent Semantic Analysis (LSA) [150, 179], Latent
Dirichlet Allocation (LDA) [167, 207] and Vector Space Model (VSM) [163, 192, 249, 250, 258, 276].

Zhou et al. [276] first introduce an improved version of Vector Space Model (VSM) namely rVSM, and
localize software bugs using Information Retrieval (IR). Saha et al. [220] employ structured IR where they
leverage the structures of both bug reports and source code documents for the localization task. Later studies
[221, 249, 258] combine both rVSM and structured IR, and report improved performances. Wen et al. [255]
also combine code level changes with basic IR for improved localization. Other studies combine spectral
analysis [130, 142] and deep learning [128] with the basic IR. In the same vein, Wang and Lo [250] combine
five items — similar bug reports [276], structured IR [220], stack traces [258], version control history [249], and
author history, and outperform five earlier IR-based approaches. Rahman and Roy [192] recently integrate
report quality dynamics and query reformulation, and their approach outperforms seven earlier approaches
which makes it the state-of-the-art on IR-based bug localization. While most of these approaches combine
additional ranking methods or external resources (e.g., version control history) with basic IR, we focus on
improving the basic IR approach by reformulating the search query. From this point of view, Rahman and
Roy [192] shares a similar goal like us. Unfortunately, their approach falls short in dealing with the poor

queries as demonstrated by our and their experiments. We compare with five of the earlier studies on IR-based

131

bug localization [192, 220, 250, 268, 276] including the state-of-the-art [192], and the detailed comparison
results can be found in Tables 6.5, 6.7, Fig. 6.4, and Section 6.4.4.

Query Reformulation: Existing studies on query reformulation employ term weighting [189, 191, 213],
heuristics [64, 65, 104, 120, 231], pseudo-relevance feedback [213, 231], and machine learning [98, 189]. Rocchio
[213] and RSV [212] are frequently used for query reformulation in Software Engineering contexts [98, 274].
STRICT [191] employs graph-based term weighting methods (e.g., TextRank, POSRank) to select appropri-
ate search keywords from a bug report for concept location. QUICKAR [188] makes use of crowdsourced
knowledge from Stack Overflow in the query reformulation task. Sisman and Kak [231] first introduce query
reformulation in IR-based bug localization where they employ spatial code proximity (SCP) analysis. Re-
cently, Rahman and Roy [192] integrate report quality dynamics into query reformulation, and their approach
outperforms four earlier approaches which makes it the state-of-the-art. We compare with six of these existing
approaches [188, 191, 192, 212, 213, 231] including the state-of-the-art [192], and the detailed comparison
can be found in Table 6.6, Fig. 6.6, and Section 6.4.4. While the keyword selection method of Rahman and
Roy works well with rich bug reports containing structured entities (e.g., stack traces), it generally fails with
poor queries (i.e., low quality bug reports). On the contrary, our approach overcomes such challenge using
word semantics, clustering tendency analysis and machine learning.

Word Semantics: Recent studies use word embeddings [54] in bug localization [128] and in code search
[90, 194, 274] where they learn the embeddings from one or more large corpora (e.g., GitHub). However, all
these studies simply rely on semantic similarity between a search query and the source code which might
not, be sufficient enough for dealing with the poor queries. According to our investigation (Table 6.5), poor
queries need to be improved first before employing them for bug localization. Our approach exactly does that
using appropriate keywords from the relevant source code, which are carefully chosen with word semantics
(from Stack Overflow) and machine learning.

In short, while the existing approaches including the state-of-the-art fail to deal with poor queries (low
quality bug reports), we overcome this crucial issue using word semantics, clustering tendency analysis,
query reformulation and Information Retrieval. Such a comprehensive solution was not provided by any of

the earlier studies from the literature.

6.7 Summary

Software bugs and failures cost billions of dollars every year [1]. Thus, resolution of the bugs or errors is a
major part of software maintenance. Bug localization is a crucial step of the whole bug resolution process.
Traditional solutions for bug localization do not perform well with poor quality bug reports (queries) since
they do not contain any localization hints (e.g., program entities). We propose BLADER that overcomes
this issue, and reformulates a given search query for bug localization using the underlying semantics of the

keywords. In particular, our approach accepts a poor bug report as a search query, analyses the clustering

132

tendency between the query and the reformulation candidates in terms of their underlying semantics, and
then delivers an improved, reformulated search query for the bug localization. We evaluate our technique
using four performance metrics, two evaluation dimensions and 1,546 low quality bug reports (queries) from
six subject systems. Our approach outperforms the state-of-the-art approach on IR-based bug localization
by 11% higher precision and 15% higher reciprocal rank. Furthermore, our approach outperforms six existing
approaches on query reformulation, and improves 23% more queries than the state-of-the-art.

During bug localization and concept location, software developers generally perform code search within a
single software system. However, developers also frequently search for relevant code on the web, and reuse the
retrieved code in various software maintenance tasks (e.g., new feature implementation). Thus, in essence,
they perform code search within thousands of online software systems during the code search on the web
(a.k.a., Internet-scale code search). Since each of our proposed approaches including this one (Chapters 3,
4, 5, 6) targets either concept location or bug localization, they might not be sufficient enough for query
construction intended for Internet-scale code search. Online code repositories (e.g., GitHub, SourceForge)
are much larger and noisier, and thus pose new challenges. In the next chapter, our fifth study (RACK,
Chapter 7) overcomes these challenges, and reformulates a generic query for Internet-scale code search using

the crowd generated knowledge from Stack Overflow Q&A site.

133

CHAPTER 7
SEARCH QUERY REFORMULATION FOR INTERNET-SCALE CODE

SEARCH USING CROWDSOURCED KNOWLEDGE

Software maintenance costs about 60% of the total development time and efforts [88]. Bug localization and
concept location are two major challenges of the maintenance phase. During bug localization and concept
location, developers generally search for code within a single software system. However, developers also
frequently search for relevant code on the web (a.k.a., Internet-scale code search) [55], and reuse the retrieved
code in various software maintenance tasks (e.g., new feature addition). In this case, they search for relevant
code within thousands of online software systems. Since each of our previous approaches (Chapters 3, 4, 5,
6) targets either concept location or bug localization (i.e., designed for single software system), they might
not be sufficient enough for query construction intended for Internet-scale code search. Internet-scale code
repositories (e.g., GitHub, SourceForge) are much larger and noisier, and thus pose new challenges in query
construction and code search. In this chapter, we overcome this issue with another study. Here, we present
RACK that accepts a programming task description as a query, reformulates the query with relevant API
classes from Stack Overflow, and then delivers an improved, reformulated query for Internet-scale code search.

The rest of the chapter is organized as follows: Section 7.1 presents an overview of our study, Section 7.2
discusses the design and findings of our exploratory study, and Section 7.3 describes our proposed technique
for search query reformulation. Section 7.4 discusses our evaluation and validation, and Section 7.5 identifies
the threats to the validity of our findings. Section 7.6 discusses related work from the literature, and finally

Section 7.7 concludes the chapter with future work.

7.1 Introduction

Studies show that software developers on average spend about 19% of their development time in web search
[55]. On the web, they frequently look for relevant code snippets for their tasks [55, 263]. Online code search
engines (e.g., Open Hub, Koders, GitHub) index thousands of large open source projects, and these projects
are a potential source for such code snippets [44, 152]. However, these traditional, Internet-scale code search
engines mostly employ keyword matching. Hence, they often do not perform well with unstructured natural
language (NL) queries due to vocabulary mismatch between NL query and source code [45]. They retrieve

code snippets based on lexical similarity between a search query and the project source code. That means,

134

these engines require the queries to be carefully designed by the users and to contain solution code-like
information (e.g., relevant API classes). Unfortunately, preparing an effective search query that contains
information on relevant APIs is not only challenging but also time-consuming for the developers [55, 120].
Previous studies [120, 125] also suggested that on average, developers regardless of their experience levels
performed poorly in coming up with good queries for the code search. Thus, an automated technique that
complements a natural language query with a list of relevant API classes or methods (i.e., search-engine
friendly query) can greatly assist the developers in performing the code search. Our work addresses this
particular research problem—query reformulation with relevant API classes—by exploiting the crowdsourced

knowledge stored at Stack Overflow programming Q & A site.

Existing studies on API recommendation accept one or more natural language queries, and return relevant
API classes and methods by mining feature request history and API documentations [243], large code reposi-
tories [274], API invocation graphs [63], library usage patterns [242], code surfing behaviour of the developers
and APT invocation chains [152]. McMillan et al. [152] first propose Portfolio that recommends relevant API
methods for a given code search query and demonstrates their usage from a large codebase. Chan et al. [63]
improve upon Portfolio by employing further sophisticated graph-mining and textual similarity techniques.
Thung et al. [243] recommend relevant API methods to assist the implementation of an incoming feature re-
quest. Although all these techniques perform well in different working contexts, they share a set of limitations
and thus fail to address the research problem of our interest. First, each of these techniques [63, 152, 243]
exploits lexical similarity measure (e.g., Dice’s coefficients [63]) for candidate API selection. This warrants
that the search query should be carefully prepared, and it should contain keywords similar to the API names.
In other words, the developer should or must possess a certain level of experience with the target APIs to
actually use these techniques [45]. Second, API names and search queries are generally provided by different
developers who may use different vocabularies to convey the same concept [121]. Furnas et al. [83] named this
the vocabulary mismatch problem. Lexical similarity based techniques often suffer from this problem. Hence,
the performance of these techniques is not only limited but also subject to the identifier naming practices
adopted in the codebase under study. We thus need a technique that overcomes the above limitations, and

recommends relevant or appropriate APIs for natural language queries from a wider vocabulary.

One possible way to tackle the above challenges is to leverage the knowledge or experience of a large
technical crowd on the usage of particular API classes and methods. Let us consider a natural language
query—“Generating MD5 hash of a Java string." Now, hundreds of Q&A threads from Stack Overflow discuss
potential solutions and relevant APIs for this task which could be leveraged for our research. For instance,
the Q&A example in Fig. 7.1 discusses on how to generate an MD5 hash (Fig. 7.1-(a)), and the accepted
answer (Fig. 7.1-(b)) suggests that MessageDigest API should be used for the task. Such a usage of the
APT has also been recommended by at least 305 technical users from Stack Overflow, which validates the
appropriateness of the usage. We leverage this crowd generated knowledge in relevant API suggestion. Our

approach is thus generic, language independent, project insensitive, and at the same time, it overcomes the

135

How can | generate an MD5 hash? (a)

4 |sthere any method to generate MD5 hash of a string in Java?
491 java hash mds hashcode
v share edit flag edited Aug 13 14 at 3:05 asked Jan 609 at 9-45

hay bjb568 44- Akshay
85078 » 9022048 v 2,904 » 4+ 198 26

130
20 Keep in mind that according to the recent research "MD5 should be considered cryptographically broken
and unsuitable for further use”. en wikipedia.org/wiki/MD5 — Zakharia Stanley May 313 at 1:05
4 MD5 might be unsafe as a one-way security feature, but it is still good for generic checksum applications.
— rustyx Feb 6 at 15:57
27 Answers

y % Messageligest s your friend. Call getinstance("MD5") to get an MD5 message digest you can use.
305 share edit flag edited Aug 29 11 at 19:48 answered Jan 609 at 9:47
v z IEIDmbe

(b) ‘ 38.9k » 10 » 32 » 06

Figure 7.1: An example of (a) Stack Overflow question and (b) its accepted answer

vocabulary mismatch problem suffered by the past studies. One can argue in favour of Google which is
often used by the developers for searching code on the web. Unfortunately, recent study [205] shows that
developers need to spend more efforts (i.e., two times) in code search than in web search while using Google
search engine. In particular, they need to reformulate their queries more frequently and more extensively
for the code search. Such finding suggests that the general-purpose web search engines (e.g., Google) might
be calibrated for the web pages only, and they perform sub-optimally with the source code, especially due
to vocabulary mismatch issues [95, 102]. Thus, automatic tool supports in the query formulation for code

search is still an open research problem that warrants further investigation.

In this chapter, we propose a novel query reformulation technique—-RACK-that exploits the associations
between query keywords and different APT classes used in Stack Overflow and translates a natural language
query intended for Internet-scale code search into a set of relevant API classes. First, we motivate our
idea of using crowdsourced knowledge for API recommendation with an exploratory study where we analyse
172,043 questions and their accepted answers from Stack Overflow. Second, we construct a keyword-API
mapping database using these questions and answers where the keywords (i.e., programming requirements)
are extracted from questions and the APIs (i.e., programming solutions) are collected from the corresponding
accepted answers. Third, we propose an API recommendation technique that employs three heuristics on

keyword-API associations and recommends a ranked list of API classes for a given query for its reformulation.

136

The baseline idea is to capture and learn the responses from millions of technical users (e.g., developers,
researchers, programming hobbyists) for different programming problems, and then exploit them for relevant
API suggestion. Our technique (1) does not rely on the lexical similarity between a query and the API classes
(or their documentations) for API selection, and (2) addresses the vocabulary mismatch problems by using
a large vocabulary (i.e., 20K) produced by millions of users of Stack Overflow. Thus, it has a great potential
for overcoming the challenges faced with the past studies.

An exploratory study with 172,043 Java related Q & A threads (i.e., question + accepted answer) from
Stack Overflow shows that (1) each answer uses at least two different API classes on average (RQ;), and
(2) about 65% of the classes from each of the 11 core Java API packages are used in these answers (RQz).
Such findings clearly suggest the potential of using Stack Overflow for relevant API suggestion. Experiments
using 175 code search queries randomly chosen from three Java tutorial sites—KodeJava, Java2s and Javadb—
show that our technique can recommend relevant API classes with an accuracy of 83%, a mean average
precision@10 of 46% and a recall@10 of 54%, which are 66%, 79% and 87% higher respectively than that of
the state-of-the-art [243] (RQ4, RQg). Query reformulations using our suggested API classes improve 46%—
64% of the baseline queries (i.e., contain natural language only), and their overall code retrieval accuracy
improves by 19% (RQg). Comparisons with the state-of-the-art techniques on query reformulation [168, 274]
also demonstrate that RACK offers 48% net improvement in the baseline query quality as opposed to 26%
by the state-of-the-art, which is 87% higher (RQ1p). Our investigations with Google, Stack Overflow native
search, and GitHub native code search also report that our reformulated queries can improve their results by
22%—26% in precision and 12%-28% in reciprocal rank in the context of code example search (RQ11).

Novelty in Contribution: This work is a significantly extended version of our earlier work [201] which
employed two heuristics (KAC and KKC, Section III-B), experimented with 150 queries, and answered seven
research questions. This work extends the earlier work in various aspects. First, we improve the earlier
heuristics by recalibrating their weights and thresholds (i.e., RQ7). Second, we introduce a novel heuristic—
Keyword Pair API Co-occurrence (KPAC, Section III-B)-that leverages word co-occurrences for candidate
API selection more effectively. In fact, this one performs better than the earlier two. Third, we conduct
experiments with a larger dataset containing 175 distinct queries, and further evaluate them in terms of their
code retrieval performance (i.e., missing in the earlier work). Fourth, we extend our earlier analysis and
answer 11 research questions (i.e., as opposed to seven questions answered by the earlier work). Fifth, we
investigate the potential application of our approach in the context of code search using popular web search
engines (e.g., Google) and Internet-scale code search engines (e.g., GitHub).

Thus, our work in this chapter makes the following contributions:

(a) An exploratory study that suggests the potential of using Stack Overflow for relevant API suggestion

against an NL query intended for Internet-scale code search.

(b) A keyword-API mapping database that maps 655K natural language question keywords to 551K API
classes from Stack Overflow Q&A site.

137

Table 7.1: API Packages for Exploratory Study

Package #Class || Package #Class

Core Packages

java.lang 255 java.net 84
java.util 470 java.security 148
java.io 105 java.awt 423
java.math 09 java.sql 29
java.nio 189 javax.swing 1,195
java.applet 05

Non-Core Packages

java.beans 62 java.rmi 67
javax.xml 327 javax.annotation 17
java.text 44 javax.print 123
javax.sound 56 javax.management 201

Total API Classes: 3,809

(c) A novel query reformulation technique-RACK-that exploits query keyword-API associations stored in
the crowdsourced knowledge of Stack Overflow, and reformulates a natural language query with a set

of relevant API classes for Internet-scale code search.

(d) Comprehensive evaluation of the proposed technique with six performance metrics, and comparison
with the state-of-the-art techniques and contemporary web search engines (e.g., Google, Stack Overflow

native search) and Internet-scale code search engines (e.g., GitHub native code search).

7.2 Exploratory Study

Our technique relies on the mapping between natural language keywords from the questions of Stack Overflow
and API classes from corresponding accepted answers for translating a code search query into relevant API
classes. Thus, an investigation is warranted whether such answers contain any API related information and
the questions contain any search query keywords. We perform an exploratory study using 172,043 Q & A
threads from Stack Overflow, and analyse the usage and coverage of standard Java API classes in them. We
also explore if the question titles are a potential source of suitable keywords for code search. We particularly

answer three research questions as shown in Table 7.2.

7.2.1 Data Collection

We collect 172,043 questions and their accepted answers from Stack Overflow using StackExchange data

explorer [23] for our investigation. Since we are interested in Java APIs, we only collect such questions that

138

Table 7.2: Research Questions Answered using Exploratory Study

Research Questions Targeting API Coverage

RQ;: To what extent do the accepted answers from Stack Overflow refer to standard Java

API classes?

RQ2: To what extent are the API classes from each of the core Java packages covered (i.e.,

mentioned) in the accepted answers from Stack Overflow?

Research Question on Search Keyword Matching

RQs: Do the titles from Stack Overflow questions contain potential query keywords (i.e.,

technical terms) for code snippet search?

are annotated with java tag. In addition, we apply several other constraints—(1) each of the questions should
have at least three answers (i.e., average answer count) with one answer being accepted as the solution, in
order to ensure that the questions are answered substantially and successfully [148], and (2) the accepted
answers should contain code like elements such as code snippets or code tokens so that API information can
be extracted from them. We identify the code elements with the help of <code> tags in the HTML source of
the answers (details in Section 7.2.2), and use Jsoup®, a popular Java library, for HTML parsing and content

extraction.

We repeat the above steps, and construct another dataset by collecting 440K Q & A threads from one of
our recent works [194]. This dataset is a superset of the above collection, and it contains more recent threads

from Stack Overflow. We call it the extended dataset in the remaining sections of the exploratory study.

We collect a total of 3,809 Java API classes for our study from 19 packages of standard Java edition 7.
While 2,912 classes are taken from 11 core Java packages?, the remaining classes have come from 8 non-core
Java packages. The goal is to find out if these classes are referred to in Stack Overflow posts, and if yes, to
what extent they are referred to. We first use Java Reflections [21], a runtime meta data analysis library,
to collect the APT classes from JDK 7, and then apply regular expressions on their fully qualified names for
extracting the class name tokens. Table 7.1 shows class statistics of the 19 API packages selected for our

investigation.

We also collect a set of 18,662 real life search queries from the Google search history of the first author
over the last eight years, which are analysed to answer the third research question. Although the queries come
from a single user, they contain a large vocabulary of 9,029 distinct natural language search keywords, and
the vocabulary is built over a long period of time. Thus, a study using these queries can produce significant

intuitions and help answer the third research question.

Lhttps://jsoup.org/
Zhttps://goo.gl/ A6gEqA

139

o |o 2 =3 -
S -
(]
e S ?
© 4
Lo 5°]
o o O = _|
g o
1% (a) o % (b)
o % o ;'
O - —— - —
SH I I T T < I I I T I
0 100 200 300 400 0 100 200 300 400
#API-Classes / answer #APIl-Classes / answer

Figure 7.2: Frequency distribution for core API classes — (a) API frequency PMF, (b) API frequency
CDF

[} E — R
] @ |
S o e
o w
L 1o w o | &
= [3
L o |o O < i
Lo o
° |8 o
N (a) © b
21 °7 (b)
o | | I e I | | I
0 500 1000 1500 0 500 1000 1500
#API-Classes / answer #API-Classes | answer

Figure 7.3: Frequency distribution for core and non-core API classes over the extended dataset — (a)
API frequency PMF, (b) API frequency CDF

7.2.2 API Class Name Extraction

Several existing studies [42, 73, 211] extract code elements such as API packages, classes and methods from
unstructured natural language texts (e.g., forum posts, mailing lists) using information retrieval (e.g., TF-
IDF) and island parsing techniques. In the case of island parsing, they apply a set of regular expressions
describing Java language specifications [89], and isolate the land (i.e., code elements) from water (i.e., free-
form texts). We borrow their parsing technique [211], and apply it to the extraction of API elements from
Stack Overflow posts. Since we are interested in the API classes only, we adopt a selective approach for
identifying them in the post contents. We first isolate the code like sections from HTML source of each
of the answers from Stack Overflow using <code> tags. Then we split the sections based on white spaces
and punctuation marks, and collect the tokens having the camel-case notation of Java class (e.g., HashSet).
According to the existing studies [73, 211], such parsing of code elements sometimes introduces false positives.
Thus, we restrict our exploratory analysis to a closed set of 3,809 API classes from 19 Java packages (details

in Table 7.1) to avoid false positives (e.g., camel-case tokens but not valid APT classes).

140

[) E— B - -2
w
°74s @ | i]
415 o Py
B A w | .
L o s} L o ¥
= [} *
LT O < |
o [an]
, #*
[an]
] (a) o7 * (b)
(=) = | __..*
= | | | = | | | | |
20 40 60 0 20 40 60 80
#Distinct API-Classes / answer #Distinct API-Classes / answer

Figure 7.4: Frequency distribution of unique API classes from core packages — (a) Distinct API
frequency PMF, (b) Distinct API frequency CDF

— E — ﬁew -------------- €
a
o 1, g - N
Qe © *
w ™Nqa@ L o | &
= o 0o
o 49 O = |
2% %
s | ¥ o
1= (a) o7 & (b)
g Ou L
SH. T T T = T T T T
0 50 100 150 0 50 100 150
#Distinct API-Classes / answer #Distinct API-Classes / answer

Figure 7.5: Frequency distribution of unique API classes from core and non-core packages — (a)
Distinct API frequency PMF, (b) Distinct API frequency CDF

7.2.3 Answering RQ;: Use of APIs in the accepted answers of Stack Overflow

Since our API suggestion technique exploits keyword-API associations from Stack Overflow, we investigate
whether the accepted answers actually use certain API classes of interest in the first place. According to
our investigation, out of 172,043 accepted answers, 136,796 (79.51%) answers refer to one or more Java API
class-like tokens. About 61.02% of the answers actually use API classes from 11 core Java packages whereas
9.94% of them use the classes from 8 non-core packages as a part of their solution. We analyse the HTML
contents from Stack Overflow answers with tool supports and then detect the occurrences of 3,809 standard
API classes (Table 7.1) in each of the accepted answers using a closed-world assumption [211]. We then
examine the statistical properties or distribution of such API occurrence frequencies (i.e., total appearances,
unique appearances) and attempt to answer our first research question.

Fig. 7.2 shows (a) probability mass function (PMF) and (b) cumulative density function (CDF) for the
total occurrences of API classes per SO answer where the API classes belong to the core Java API packages.
Both density curves suggest that the frequency observations derive from a heavy-tailed distribution, and
majority of the densities accumulate over a short frequency range. That is, most of the time only a limited
number of API classes co-occur in each answer from Stack Overflow. The empirical CDF curve also closely

matches with the theoretical CDF [5] (i.e., red dots in Fig. 7.2-(b)) of a Poisson distribution. Thus, we believe

141

that the observations are probably taken from a Poisson distribution. We get a 95% confidence interval over
[5.27, 5.37] for mean frequency, A = 5.32, which suggests that the API classes from the core packages are
referred to at least five times on average in each of the answers from Stack Overflow. We also get 10*"
quantile at frequency=2 and 97.5"" quantile at frequency=10 which suggest that only 10% of the frequencies
are below 3 and only 2.5% of the frequencies are above 10. When our investigation is repeated for non-core
classes, we get a mean frequency, A = 0.36, with 95% confidence interval over [0.35, 0.37]. When 11 core
and 8 non-core packages are combined and employed against the exztended dataset, we get a 95% confidence
interval over [23.62, 23.87] for the mean frequency, A=23.75 with a similar distribution (i.e., Fig. 7.3). Fig.
7.4 shows density curves of the core API class occurrences per answer where only unique API classes are
considered. These observations are also drawn from a heavy-tailed distribution. We get a 95% confidence
interval over [2.35, 2.38] for the mean frequency, A = 2.37, which suggests that at least two distinct classes are

0" quantile at frequency = 1 and 80" quantile at frequency = 4 suggest

used on average in each answer. 3
that 30% of the Stack Overflow answers refer to at least one API class whereas 20% of the answers refer to at
least four distinct API classes from the core Java packages under our study. In the case of non-core classes,
we get 90" quantile at frequency = 1, which suggests that their frequencies are negligible. When the same

investigation is repeated with 19 (11 core + 8 non-core) packages against the extended dataset, we get a 95%

confidence interval over [3.44, 3.46] for A=3.45 with a similar heavy tailed distribution (i.e., Fig. 7.5).

Summary of RQ;: At least two different API classes from the core Java packages are referred to in each
of the 61% accepted answers that are collected from Stack Overflow. These classes are mentioned at least
five times on average in each answer. API classes from non-core packages are discussed in ~10% of the
answers. Furthermore, our observations derived from 172K answers are similar to that derived from an

extended dataset of 440K answers from Stack Overflow.

7.2.4 Answering RQ,: Coverage of API classes in the accepted answers from

Stack Overflow Q & A site

Since our technique exploits inherent mapping between API classes in Stack Overflow answers and keywords
from corresponding questions for API suggestion, we need to investigate if such answers actually use a
significant portion of the API classes from the standard packages as a part of the solution. We thus identify
the occurrences of the API classes from core and non-core packages (Table 7.1) in Stack Overflow answers,
and determine the API coverage for these packages.

Fig. 7.6 shows the fraction of the API classes that are used in Stack Overflow answers for each of the 11
core packages under study. We note that at least 60% of the classes are used in Stack Overflow for nine out
of 11 packages. The remaining two packages—java.math and javax.swing have 55.56% and 37.41% class
coverage respectively. Among these nine packages, three large packages— java.lang, java.util and java.io

have a class coverage over 70%. Thus, on average, 65% of the classes are mentioned at least once in Stack

142

80%
|

40% 80%
| |

AP| Classes Used (%)

20%
|

Core Java Package:

0%

Java.lang
java.util
java.io
Java.math
java.nio
java.net

% Java security
Java.awt
Jjava.sql
Javax .swing
Java.applet

Figure 7.6: Coverage of API classes from core packages by Stack Overflow answers

Overflow. In Fig. 7.7, when our investigations are repeated using 19 (11 core + 8 non-core) packages and
an extended dataset, we get a 95% confidence interval over [56.11, 73.01] for mean coverage, u=64.56% with
a normal distribution. We note that at least 40% of the classes from seven non-core packages are used in
Stack Overflow. The remaining package, javax.management, has a class coverage of ~ 20%. Fig. 7.8 shows
the fraction of Stack Overflow answers (under study) that use API classes from each of the core 11 packages.
We see that classes from java.lang package are used in over 50% of the answers, which can be explained
since the package contains a number of frequently used and basic classes such as String, Integer, Method,
Exception and so on. Two packages— java.util and java.awt that focus on utility functions (e.g., unzip,
pattern matching) and user interface controls (e.g., radio button, check box) respectively have a post coverage
over 20%. We also note that classes from java.io and javax.swing packages are used in over 10% of the
Stack Overflow answers, whereas the same statistic for the remaining six packages is less than 10%. When
our investigations are repeated using 19 (11 core + 8 non-core) packages with the extended dataset, most of
the above findings on core packages are reproduced, as shown in Fig. 7.9-(a). However, as in Fig. 7.9-(b)),
we see that API classes from all eight non-core packages except javax.xml are used in less than 5% of the
Stack Overflow answers under study. Thus, although a significant amount (e.g., 40%) of the classes from
non-core packages are mentioned in Stack Overflow at least for once (i.e., Fig. 7.7-(b)), as a whole, they
are less frequently discussed compared to the core classes. Such finding can also be explained by the highly

specific functionalities (e.g., RMI, print) of the classes from non-core packages under study.

Summary of RQs: On average, 65% of the API classes from each of the 19 (core + non-core) Java packages

are used in Stack Overflow accepted answers. Each of these packages is referred to (using their classes) by

143

=
3 4
w
£
- &
[T
[]
:) —
o
[
w o -
oo
U —
o

<
&
(]
F

© 2 s 2 £ 2 B &z ¥ T 2 B 2 E ¥ 2 E 5§ E E

T - @® ® £ £ = @ “ = &7 @ = M4 3 = w5 T ©

= ® = E ®©® @®@ 3 © ® = o U % g 2 ® ®m < £

& 2 & 5 2 2 @ = 7 & ® 2 @ £ @ > B§ = o

= o g B B o B B x g m 2 @ = ® £~ T o

=, @ - s g = = B = @ T £ g @

=, o = m m = @ 2 c

& E._‘ —_ o H m

(a) h (b) R -

o m

ﬁ &

Core Java Packages MNon-core Java Packages —

Figure 7.7: Coverage of API classes from (a) core and (b) non-core packages by Stack Overflow
answers (extended dataset)

Table 7.3: Keywords Intended for Code Search

java code example
sql server file
string mvce web

add type lucene

android table programmatically

at least 10% of the answers under our study. Such findings clearly suggest a significant presence of standard

API classes in Stack Overflow posts, and thus, signal their high potential.

7.2.5 Answering RQj3: Presence of code search keywords in the title of questions

from Stack Overflow

Our technique relies on the mapping between natural language terms from Stack Overflow questions and API
classes from corresponding accepted answers for augmenting a code search query with relevant API classes.
Thus, an investigation is warranted on whether keywords used for code search are present in the SO question
texts or not. We are particularly interested in the title of a Stack Overflow question since it summarizes the
technical requirement precisely using a few important words, and also resembles a search query. We analyse
the titles of 172,043 Stack Overflow questions and 18,662 real life queries used for Google search (Section

7.2.1). Since we are interested in code related queries, we only select such queries that were intended for

144

search keywords.

question titles.

20% 30% 40% 50%
]] | |

Accepted Answers from SO (%)

10%

0%
|

javalang

Jawa.util
java.io
Java.math

java.nio
Java.net

Core Java Packages

java.awt

=
]
o
[}
wn
m
=
m
—

Java.sql]

Javax.swing

java.applet

Figure 7.8: Use of core API packages in the Stack Overflow answers

Table 7.4: Code Search Keywords Found in Tutorial Sites
Website #Pages | #Terms | Source Matched
784 Title 20.54%
Javatpoint 1,291
10,099 Title+Body 60.12%
1,292 Title 20.14%
Tutorialspoint 2,219
14,930 Title+Body 63.62%
Stack Overflow ‘ 172,043 ‘ 20,391 ‘ Title 69.22%

Matched—=Overlap between extracted terms and code search keywords

145

code search. Rahman et al. [205] recently used popular tags from Stack Overflow questions to separate code
related queries from non-code queries that were submitted to a general-purpose search engine, Google. We
use a subset of their selected tags (shown in Table 7.3) for identifying the code related queries. We discover

3,073 such queries from our query collection (Section 7.2.1) where the queries contain a total of 2,001 unique

According to our analysis, 172,043 question titles contain 20,391 unique terms after performing natural
language preprocessing (i.e., stop word removal, splitting and stemming). These terms match 69.22% of the
keywords collected from our code search queries. Fig. 7.10 shows the fraction of the search keywords that
match with the terms from Stack Overflow questions for the past eight years starting from 2008. On average,

62.69% of the code search keywords from each year match with Stack Overflow vocabulary derived from its

50% 60%
| |

40%
|

20%
|

Accepted Answers from SO (%)
30%
|

H
]
]

[]
]
]
I

H

H

|

H

|

— + +— f— + — +— —_ - 4+
25 2 £ 2 £ = T P2 B £ E ¥ B E B E T
o @ [} - s E @) = O o = o 5 = = =]
= ® 2 E @ ® Z @ © £ o T o g © @ ® 2 E
@ = o o= = g = o2 2 @ 2 g z @® =2 5 x @
2 & S & B o« @ & = g m z @™ = & £ § o
= [it] @ < = = = — @ = @ s

— = ol o o =] —
i1 — — — ﬂ 2 g
B 5 _
(a) (b) & %
B g
=,
Core Java Packages MNon-core Java Packages

Figure 7.9: Use of (a) core and (b) non-core API packages in the Stack Overflow answers (extended
dataset)

Fig. 7.11 shows (a) probability mass function, and (b) cumulative density function of keyword frequency
in the question titles. We see that the density curve shows the central tendency like a normal curve (i.e.,
bell shaped curve), and the empirical CDF closely matches with the theoretical CDF (i.e., red curve) of a
normal distribution with mean, 4 = 3.22 and standard deviation, o = 1.60. We also draw 172,043 random
samples from a normal distribution with equal mean and standard deviation, and compare with the keyword
frequencies. Our Kolmogorov-Smirnov test reported a p-value of 2.2e-16<0.05 which suggests that both
sample sets belong to the same distribution. Thus, we believe that the keyword frequency observations come
from a normal distribution. We get a mean frequency, p = 3.22 with 95% confidence interval over [3.21,
3.23], which suggests that each of the question titles from Stack Overflow contains at least three code search
keywords on average. Furthermore, a recent query classification model that leverages Stack Overflow tags
for separating code queries from non-code queries achieves a promising accuracy of 87% precision and 86%
recall [205]. Such findings further suggest the potential of Stack Overflow vocabulary for improving the code
search.

We also collect all the Q & A threads from two other popular tutorial sites—Javatpoint® and Tutori-
alspoint*, construct two baseline vocabularies from them, and then contrast with the vocabulary of Stack
Overflow. Table 7.4 shows the statistics on downloaded pages and unique terms extracted from them. For
example, Tutorialspoint has a total of 2,219 web pages, and they form a vocabulary of 14,930 unique terms

when both title and body of the pages are considered. It encompasses various programming domains in-

Shttps://www.javatpoint.com
4https://www.tutorialspoint.com

146

80%
|

40%
|

20%
I

Keywords Found in Stack Overflow (%)

0%
|

2008 2009 2010 2011 2012 2013 2014 2015
Year

Figure 7.10: Coverage of keywords from the collected queries in Stack Overflow questions

— 1. = B
o S ® f'_"’
o — '. o
(=] " /
2 4 | : o o~
< ' [} i
D ‘CJ_ | O < _| ;,’
05 o (o4
7 a] b
g | (a) o _‘,ZZ (b)
o T T T T T T T = T T T T
0 2 4 6 8 10 12 14 0 5 10 15
Code search keywards / question title Code search keywords / question title

Figure 7.11: Collected search query keywords in Stack Overflow— (a) Keyword frequency PMF (b)

Keyword frequency CDF
cluding Java, C/C++, and C#. On the contrary, when titles from only Java related questions of Stack
Overflow are considered, they form a vocabulary of 20K. We also note that terms from Tutorialspoint page
titles match only =~20% of the code search keywords. On the contrary, such matching ratio is 69% for Stack
Overflow which is 237% higher. Surprisingly, when analysed from a granular perspective, Stack Overflow
might not be better than these two sites. For example, titles from Javatpoint and Tutorialspoint provide
15.91% and 9.08% of search keywords as opposed to <1.00% by Stack Overflow when 1000 random pages are
analysed. However, Stack Overflow offers (1) a nice combination of query terms (in the questions) and API
classes (in the code snippets), and (2) a much larger collection of Q & A threads compared to Javatpoint
and Tutorialspoint across various domains. Thus, it has a higher potential for assisting the developers in

traditional code search.

Summary of RQj3: Each question title from Stack Overflow contains three potential keywords for code
search on average. Term extracted from these titles match 69% of the code search keywords produced in
real life over the last eight years. Furthermore, vocabulary developed from Stack Overflow posts is much

larger than that of any other available tutorial sites on the web.

147

L ;
4
Question title Natural language Matural Iangu.age\ O -

[input] pre processing tokens C
—
e
TDken-AF'I Linking hé‘

Stack Overflow TD_ken-AF'I
posts o 2 [mapping database
1 [output]

ACCEF:tEd answer Code segment AF'I parsing Extracted APl Classes
[input] extraction

N
Code search query ppg 1agging & Natural Ianguage
linpug] ML preprocessing mke”S @ I_)
_.lll

2
9‘ Heurlstlc metric AP relevance Recommended
~
b 0 4 t calculation ranking APl classes
‘é, [output]

Candidate API

Token-API mapping lecti
selection

database [input]

Figure 7.12: Schematic diagram of the proposed query reformulation technique ~RACK—(a) Con-
struction of token-API mapping database, (b) Translation of a code search query into relevant API
classes

7.3 RACK: Automated Query Reformulation for Internet-scale Code

Search using Crowdsourced Knowledge

According to the exploratory study (Section 7.2), at least two API classes are used in each of the accepted
answers of Stack Overflow, and about 65% of the API classes from the core packages are used in these
answers. Besides, the titles from Stack Overflow questions are a major source of query keywords for code
search. Such findings suggest that Stack Overflow might be a potential source not only for code search
keywords but also for API classes relevant to them. Since we are interested in exploiting this keyword-API
association from Stack Overflow questions and answers for API suggestion (i.e., for query reformulation), we
need a technique that stores such associations, mines them automatically, and then recommends the most
relevant APIs. Thus, our proposed technique has two major steps — (a) Construction of token-API mapping
database, and (b) Recommendation of relevant APT classes for a code search query which is written in natural
language (a.k.a., NL query). Fig. 7.12 shows the schematic diagram of our proposed technique-RACK- for

automated query reformulation with relevant API classes for Internet-scale code search.

148

7.3.1 Construction of NL Token-API Mapping Database

Since our technique relies on keyword-API associations from Stack Overflow, we need to extract and store
such associations for quick access. In Stack Overflow, each question describes a technical requirement such
as ‘how to send an email in Java?” The corresponding answer offers a solution containing code example(s)
that refer(s) to one or more API classes (e.g., MimeMessage, Transport). We capture both the requirement
and API classes carefully, and exploit their semantic association for the development of token-API mapping
database. Since the title summarizes a question using a few but important words, we only use the titles from
the questions. Acceptance of an answer by the person who posted the question indicates that the answer
actually meets the requirement in the question. Thus, we consider only the accepted answers from the answer
collection for our analysis. The construction of the mapping database has several steps as follows:

Token Extraction from Titles: We collect title(s) from each of the questions, and apply standard
natural language pre-processing steps such as stop word removal, splitting and stemming on them (Step 1,
Fig. 7.12-(a)). Stop words are the frequently used words (e.g., the, and, some) that carry very little meaning
for a sentence. We use a stop word list [25] hosted by Google for the stop word removal step. The splitting
step splits each word containing any punctuation mark (e.g., .,7,!,;), and transforms it into a list of words.
Finally, the stemming step extracts the root of each of the words (e.g., “send" from “sending") from the
list, where Snowball stemmer [176, 246] is used. Thus, we extract a set of unique and stemmed words that
collectively convey the meaning of the question title, and we consider them as the “tokens" from the title of
a question from Stack Overflow. Finally, our database ended up with a total of 19,783 unique NL terms.

API Class Extraction: We collect the accepted answer for each of our selected questions, and parse
their HTML source using Jsoup parser [14] for code segments (Step 2, 3, Fig. 7.12-(a)). We extract all <code>
and <pre> tags from the source content as they generally contain code segments [198]. It should be noted
that code segments may sometimes be demarcated by other tags or no tag at all. However, identification
of such code segments is challenging and often prone to false-positives. Thus, we restrict our analysis to
contents inside <code> tags and <pre> for code segment collection from Stack Overflow. We split each
of the segments based on punctuation marks and white spaces, and discard the programming keywords.
Existing studies [42, 211] apply island parsing for API method or class extraction where they use a set of
regular expressions. Similarly, we use a regular expression for Java class [89], and extract the API class
tokens having a camel case notation. Thus, we collect a set of unique APT classes from each of the accepted
answers. The API classes (e.g., String, Integer, Double) from java.lang package are mostly generic and
frequently used in the code, which is also supported by our RQs. Hence, we also avoid all the APT classes
from this package during our API extraction from Stack Overflow answers.

Token-API Linking: Natural language tokens from a question title hint about the technical requirement
described in the question, and API names from the accepted answer represent the relevant APIs that can meet
such requirement. Thus, the programming Q & A site-Stack Overflow— inherently provides an important

semantic association between a list of tokens and a list of APIs. For instance, our technique generates a list

149

of natural language tokens—{generat, md5, hash}— and an API token— MessageDigest— from the showcase
example on MD5 hash (Fig. 7.1). We capture such associations from 126,567 Stack Overflow question and
accepted answer pairs, and store them in a relational database (Step 4, 5, Fig. 7.12-(a)) for relevant API

recommendation for any code search query.

7.3.2 API Relevance Ranking & Reformulation of the NL-Query

In the token-API mapping database, each NL token (or term) associates with different APIs, and each
API class associates with a number of NL tokens. Thus, we need a technique that carefully analyses such
associations, identifies the candidate APIs, and then recommends the most relevant ones from them for
a given query. It should be noted that we do not apply the traditional association rule mining [264]. Our
investigations using the constructed database (Section 7.3.1) report that frequencies of co-occurrence between
NL terms and APT classes in Stack Overflow posts are not sufficient enough to form association rules for
all queries. The API class ranking and recommendation targeting our query reformulation for code search

involve several steps as follows:

Identification of Keyword Context

In natural language processing, the context of a word refers to the list of other words that co-occur with that
word in the same phrase, same sentence or even the same paragraph [100]. Co-occurring words complement
the semantics of one another [153]. Yuan et al. [272] analyse programming posts and tags from Stack Overflow
Q & A site, and use word context for determining semantic similarity between any two software-specific words.
In this research, we identify the words that co-occur with each query keyword in the thousands of question
titles from Stack Overflow. For each keyword, we refer to these co-occurring words as its context. We then

opportunistically use these contextual words for estimating semantic relevance between any two keywords.

Candidate API Selection

In order to collect candidate APIs for a NL query, we employ three different heuristics. These heuristics
consider not only the association between query keywords and APIs but also the coherence among the APIs
themselves. Thus, the key idea is to identify such programming APIs as candidates that are not only likely
for the query keywords but also functionally consistent to one another.

Keyword-API Co-occurrence (KAC): Stack Overflow discusses thousands of programming problems,
and these discussions contain both natural language texts (i.e., keywords) and reference to a number of APIs.
According to our observation, several keywords might co-occur with a particular APT and a particular keyword
might co-occur with several APIs across different programming solutions. This co-occurrence generally takes
place either by chance or due to semantic relevance. Thus, if carefully analysed, such co-occurrences could be
a potential source for semantic association between keywords and APIs. We capture these co-occurrences (i.e.,

associations) between keywords from question titles and APIs from accepted answers, discard the random

150

associations using a heuristic threshold (), and then collect the top API classes (Lk ac[K;]) for each keyword
(K;) that co-occurred most frequently with the keyword at Stack Overflow.

LKAC[KA = {AJ | AjGA AN rcmkfreq(Ki — AJ) < (5} (71)

Here, K; — A; denotes the association between a keyword K; and an API class A, rankq returns rank
of the association from the ranked list based on association frequency, and ¢ is a heuristic rank threshold.
In our research, we consider top ten (i.e., § = 10) APIs as candidates for each keyword, which is carefully
chosen based on iterative experiments on our dataset (see RQ7 for details).

Keyword Pair—-API Co-occurrence (KPAC): While frequent co-occurrences of APIs with a query
keyword are a good indication of their relevance to the query, they might also fall short due to the fact that
the query might contain more than one keyword. That is, API classes relevant to (i.e., frequently co-occurred
with) one keyword might not be relevant to other keywords from the query. Thus, API classes that are
simultaneously relevant to multiple keywords should be selected as candidates. We consider "Cy keyword
pairs from n keywords of a query using combination theory, and identify such APIs that frequently co-occur
with both keywords from each pair in the same context (e.g., same Q & A thread). Suppose, K; and K; are
two keywords, and they form one of the "Cy keyword pairs from the query. Now, the candidate APIT classes
(Lxpac|Ki, K;]) are relevant if they occur in an accepted answer of Stack Overflow whereas both keywords

appear in the corresponding question title. We select such relevant candidates as follows:

LKpAc[Ki,Kj] = {Am | A eA N rankfreq((Ki7Kj) — Am) < (5} (7.2)

Here (K;, K;) — A,, denotes the association between keyword pair (K, K;) from a question title and
API class A,, from the corresponding accepted answer of Stack Overflow. We capture top ten (i.e., 6 = 10)
such co-occurrences for KPAC heuristic, and the detailed justification for this choice can be found in RQ7.
We determine the association based on their co-occurrences in the same set of documents. In this case, each
question-answer thread from Stack Overflow is considered as a document. While co-occurrences of keyword
triples with APIs could also be considered for API candidacy, existing IR-based studies report that phrases
of two words are more effective as a semantic unit (e.g., “chat room") rather than the triples (e.g., “find chat
room") [153, 191].

Keyword—Keyword Coherence (KKC): The two heuristics above determine relevant API candidacy
based on the co-occurrence between query keywords and APIs in the same document. That is, multiple
keywords from the query are also warranted to co-occur in the same document. However, such co-occurrences
might not always happen, and yet the keywords could be semantically related to one another (i.e., co-occurred
in the query). More importantly, the candidate APIs should be relevant to multiple keywords that do not
co-occur. Yuan et al. [272] determine semantic similarity between any two software specific words by using
their contexts from Stack Overflow questions and answers. We adapt their technique for identifying coherent

keyword pairs which might not co-occur. The goal is to collect candidate APIs relevant to these pairs based on

151

their coherence. We (1) develop a context (C;) for each of the n query keywords by collecting its co-occurring
words from thousands of question titles from Stack Overflow, (2) determine semantic similarity for each of
the "Cy keyword pairs based on their context derived from Stack Overflow, and (3) use these measures to
identify the coherent pairs and then to collect the functionally coherent APIs for them. At the end of this
step, we have a set of candidate APIs for each of the coherent keyword pairs.

Suppose, two query keywords K; and K; have context word list C; and C; respectively. Now, the candidate
APIs (Li k) that are relevant to both query keywords and functionally consistent with one another can be

selected as follows:

LrkclKi, Kj] = {L[K;] N LIK;] | cos(Ci, C5) > 7} (7.3)

Here, cos(C;, C;) denotes the cosine similarity [198] between two context lists— C; and Cj, and + is the
similarity threshold. We consider v = 0 in this work based on iterative experiments on our dataset (see RQ~
for the detailed justification). L[K;] and L[K;] are top frequent APIs for the two keywords— K; and K
where K; and K, might not co-occur in the same question title. Thus, Lxxc[K;, K;] contains such APIs
that are relevant to both keywords (i.e., co-occurred with them in Stack Overflow answers) and functionally
consistent with one another. Since the candidate APIs co-occur with the keywords from each coherent pair
(i-e., semantically similar, v > 0) in different contexts, they are also likely to be coherent for the programming

task at hand. Such coherence often could be explained in terms of the dependencies among the APT classes.

API Relevance Ranking Algorithm

Fig. 7.12-(b) shows the schematic diagram, and Algorithm 8 shows the pseudo code of our API relevance
ranking algorithm—RACK. Once a search query is submitted, we (1) perform Part-of-Speech (POS) tagging
on the query for extracting the meaningful words such as nouns and verbs [59, 259], and (2) apply standard
natural language preprocessing (i.e., stop word removal, splitting, and stemming) on them to extract the
stemmed words (Lines 3-4, Algorithm 8). For example, the query—‘“html parser in Java" turns into three

3

keywords—‘html’, ‘parser’ and ‘java’ at the end of the above step. We then apply our three heuristics—KAC,
KPAC and KKC- on the stemmed keywords, and collect candidate APIs from the token-APT linking database
(Step 2, Fig. 7.12-(b), Lines 5-8, Algorithm 8). The candidate APIs are selected based on not only their co-
occurrence with the query keywords but also the coherence (i.e., functional consistency) among themselves.
We then use the following metrics (i.e., derived from the above heuristics) to estimate the relevance of the
candidate API classes for the query.

API Co-occurrence Likelihood estimates the probability of co-occurrence of a candidate API (A;)
with one (K;) or more (K, K;) keywords from the search query. It considers the rank of the API in the
ranked list based on keyword-API co-occurrence frequency (i.e., KAC and K PAC) and the size of the list,

and then provides a normalized score (on the scale from 0 to 1) as follows:

152

Algorithm 8 API Relevance Ranking using the Proposed Heuristics

1: procedure RACK(Q) > Q: natural language query for code search
2 R+ {} > list of API classes relevant to @
3: > collecting keywords using POS tagging and NL preprocessing

4: K <« preprocess(collectNounVerbs(Q))

5: > collecting candidate API classes

6: Liac < getKACList(K)

7: Lixpac < getKPACList(K)

8: Ligkco < getKKCList(K)

9: > estimating relevance of the candidate APIs

10: for Keyword K; € K do

11: for APIClass A; € Lgac[K;] do

12: > relevance of an API with single keyword
13: Skac + getKACScore(A;, Lk ac[K;])

14: Ri ac[Aj].score < R ac[Aj].score + Sk ac
15: end for

16: end for

17: for Keyword K;, K; € K do

18: > relevance of an API with multiple keywords

19: for APIClass A; € Lxpac|K;, K] do

20: Skpac < getKPACScore(Aj, Lxpac([K;, K;])
21: RipaclAj).score <~ RxpaclAjl.score + Sxpac
22; end for

23: > coherence of an API with other candidate APIs
24: C; < getContextList(K;)

25: C; + getContextList(K;)

26: Skrc getKKCScore(C;, Cj)

27: for APIClass A; € Lxkc|K;, K| do

28: RirclAj].score < RxkclAj].score + Sxkc

29: end for

30: end for

31: > ranking of the API classes using their normalized scores and relative weights

32: for APIClass A; € {Rxac, Rxkpac, Rxkxc} do

33: R[A]] — max(a X RKAC[Aj]a B X RKPAC[Aj]7 (1 - — ﬁ) X RKKC[AJ])
34: end for
35: return sortByScore(R)

36: end procedure

153

rank(A;, sort ByFreq(L[K;
|LkaclKi]|
rank(A;, sortByFreq(L K, K;
SKPAC(AijiaKj) -1 (J |L Yy }J((;((I'DAC[J])) (75)
KPAC’[79 j”

Here, Sk ac and Sk pac denote the API co-occurrence likelihood estimates, and they range from 0 (i.e.,
not likely at all for the keywords) to 1 (i.e., very much likely for the keywords). The more likely an API
is for the keywords, the more relevant it is for the query. This approach might also encourage the common
API classes (e.g., List, String) that are often used with most programming tasks. Such APIs might not
be helpful for relevant code snippet search. We thus apply appropriate filters and thresholds to avoid such
noisy items.

API Coherence estimates the coherence of an API (A4;) with other candidate APIs for a query. Since
the query targets a particular programming task (e.g., “parsing the HTML source”), the suggested APIs
should be logically consistent with one another. One way to heuristically determine such coherence is to
exploit the semantic relevance among the corresponding keywords that co-occurred with that API (A4;).
The underlying idea is that if two keywords are semantically similar, their co-occurred API sets could also
be logically consistent with each other. We thus determine semantic similarity between any two keywords
(K;, K;) from the query using their context lists (C;, C;) [272], and then propagate that measure to each of
their candidate API classes (A4;) that co-occurred with both of the keywords (i.e., KKC) as follows:

SKKc(Aj,Ki,Kj) = COS(CZ',C]') | (Kl — AJ) N (Kj — A]) (76)

Here, Skkc denotes the API Coherence estimate, and it ranges from 0 (i.e., not relevant at all with
multiple keywords) to 1 (i.e., highly relevant). It should be noted that each candidate, A;, comes from L[K;]
or L[Kj], i.e., the API is already relevant to each of K; and K in their corresponding contexts. Skxc
investigates how similar those contexts are, and thus heuristically estimates the coherence between the APIs
from these contexts.

We first estimate API Co-occurrence Likelihood of each of the candidate APIs that suggests the likeliness
of the API for one or more keywords from the given query (Lines 9-22, Algorithm 8). Then we determine API
Coherence for each candidate API that suggests coherence of the API with other candidate APIs for the query
(Lines 23-30). Once all metrics of each candidate are calculated (Step 3, Fig. 7.12-(b)), only the maximum
score is taken into consideration where appropriate weights—«, 8 and (1 — « — 8)—are applied (Lines 31-34,
Algorithm 8). These weights control how two of our above dimensions— co-occurrence and coherence—affect
the final relevance ranking of the candidates. We consider a heuristic value of 0.325 for « and a value of 0.575
for 8, and the detailed weight selection method is discussed in Section 7.4.9. The candidates are then ranked
based on their final scores, and Top-K API classes from the ranked list are returned as API recommendation

(Line 35, Algorithm 8, Step 4, 5, Fig. 7.12-(b)). Such API classes are then used for NL-query reformulation.

154

Table 7.5: An Example of Query Reformulation using RACK

html ‘ Skac ‘ parser Skac java SkaAc
Document 1.00 Document 1.00 Object 1.00
Jsoup 0.80 Element 0.80 ArrayList 0.80
KAC Element 0.60 File 0.60 File 0.60
Elements 0.40 I0Exception 0.40 Class 0.40
I0Exception 0.20 Node 0.20 I0Exception 0.20
(html, parser) | Skpac | (html, java) Skpac (parser, java) Skprac
Document 1.00 Document 1.00 Document 1.00
Jsoup 0.80 Jsoup 0.80 Element 0.80
KPAC | Element 0.60 Element 0.60 File 0.60
Elements 0.40 I0OException 0.40 DocumentBuilder 0.40
Parser 0.20 Elements 0.20 DocumentBuilderFactory 0.20
(html, parser) SkkC (html, java) SkkC (parser, java) SkkcC
Document 0.42 IOException 0.28 File 0.20
Element 0.42 File 0.28 I0Exception 0.20
KKC I0Exception 0.42
File 0.42
ArrayList 0.42
Initial Query Reformulated Query Suggested API Score
Document 0.79
@Q'—{Document, Element, | Element 0.69
RACK | Q=“HTML parser in Java" | File, I0Exception, File 0.69
Jsoup} + Q I0Exception 0.52
Jsoup 0.50

155

Working Example: Table 7.5 shows a working example of how our proposed query reformulation
technique ~-RACK— works. Here we reformulate our natural language query—“HTML parser in Java"-into
relevant API classes. We first apply KAC heuristic, and collect the Top-5 (i.e., § = 5) candidate APIs for each
of the three keywords—‘html’, ‘parser’ and ‘java’— based on co-occurrence frequencies of the candidates with
the keywords. We also repeat the same step for each of the three (i.e., 2Cy) keyword pairs—(html, parser),
(html, java) and (parser, java) by applying our KPAC heuristic. Then we estimate co-occurrence likelihood
(with the keywords and keyword pairs) of each of the candidate APIs. For example, Document has a maximum
likelihood of 1.00 among the candidates not only for the single search keyword but also for the keyword pairs.
We then determine coherence of each candidate API (with other candidates) based on semantic relevance
among the above three keyword pairs. For example, ‘html’ and ‘parser’ have a semantic relevance of 0.42
between them (on the scale from 0 to 1) based on their contexts from Stack Overflow questions and answers,
and they have several common candidates such as Document, Element and File. Since the two keywords are
semantically relevant, their relevance score (i.e., 0.42, Sk k) is propagated to their shared candidate APIs
as a proxy to the coherence among the candidates. We then gather all scores for each candidate, choose the
best score, and finally get a ranked list. From the recommended list, we see that Document, Element and
Jsoup are highly relevant APIs from Jsoup library for the given NL-query. Our technique returns such a list

of relevant API classes as the reformulation to an original NL query.

7.4 Experiment

One of the most effective ways to evaluate a technique that suggests relevant API classes or methods for a
query is to check their conformance with the gold set APIs of the query. Since the suggested APIs could
be used to reformulate the initial query (i.e., using natural language), the quality of the automatically
reformulated query could be another performance indicator for the technique. We evaluate our technique
using 175 code search queries, their goldset APIs and their relevant code segments (i.e., implementing the
tasks in the query) collected from three programming tutorial sites. We determine the performance of our
technique using six appropriate metrics from the literature. Then we compare with two variants of the
state-of-the-art technique on API recommendation [243] and a popular code search engine—Lucene [98]-for

validating our performance. We answer eight research questions with our experiments as shown in Table 7.6.

7.4.1 Experimental Dataset

Data Collection: We collect 175 code search queries for our experiment from three Java tutorial sites—
KodeJava [15], JavaDB [13] and Java2s [11]. These sites discuss hundreds of programming tasks that involve
the usage of different API classes from the standard Java API libraries. Each of these task descriptions
generally has three parts—(1) a title (i.e., question) for the task, (2) one or more code snippets (i.e., answer),

and (3) an associated prose explaining the code. The title summarizes a programming task (e.g., “How do I

156

Table 7.6: Research Questions Answered using our Experiment

Research Questions on API Suggestion

RQ4: How does the proposed technique ~-RACK- perform in recommending relevant APIs for a code

search query?

RQs5: How effective are the proposed heuristics—KAC, KPAC and KKC-in capturing the relevant APIs

for a query?

RQge: Does an appropriate subset of the query keywords perform better than the whole query in

retrieving the relevant APIs?

RQ~7: How do the heuristic weights (i.e., «,) and threshold settings (i.e., 7y, ¢) influence the perfor-

mance of our technique?

RQs: Can RACK outperform the state-of-the-art techniques in recommending relevant APIs for a

given set of natural language queries?

Research Questions on Query Reformulation

RQg: Can RACK significantly improve the natural language queries in terms of relevant code retrieval

performance?

RQ10: Can RACK outperform the state-of-the-art technique in improving the natural language queries

for code search?

RQ11: How does RACK perform compared to the popular web search engines (e.g., Google) and code

search engines (e.g., GitHub code search)?

157

decompress a GZip file in Java?") using natural language texts. It generally uses a few pertinent keywords
(e.g., “decompress”, “GZip"), and also often resembles a query for code search (Section 7.2.5). We thus
consider such titles from the tutorial sites as the code search queries, and use them for our experiment in
this research.

Gold Set Development: The prose explaining the code often refers to one or more APIs (e.g.,
GZipOutputStream, FileOutputStream) from the code snippet(s) that are found to be essential for the
task. In other words, such APIs can be considered as the most relevant ones (i.e., vital) for the target
programming task. We collect such APIs from the prose against each of the task titles (i.e., code search
queries) from our dataset, and develop a gold set—API-goldset—for the experiment. Since relevance of the
APIs is determined based on working code examples and their associated prose from the publicly available
and popular tutorial sites, the subjectivity associated with the relevance of the collected APIs is minimized
[63]. We also collect the code segments verbatim that implement each of the selected tasks (i.e., our queries)
from these tutorial sites, and develop another gold set—Code-goldset—for our experiments. Our goals are to
(1) compare our queries containing the suggested API classes with the baseline queries containing only NL
keywords and (2) compare our queries with the reformulated queries by the state-of-the-art techniques on
API recommendation [168, 243, 274].

Corpus Preparation: We evaluate not only the API recommendation performance of RACK but also
the retrieval performance of its reformulated queries. We collect relevant code snippets (i.e., ground truth)
for each of our 175 search queries from the above tutorial sites, and develop a corpus. It should be noted
that each query-code snippet pair comes from the same Q & A thread from the tutorial sites. However,
this approach leaves us with a corpus of 175 documents which do not represent a real world corpus. We
thus extend our code corpus by adding more code snippets from one of our earlier works [184], and this
provided a corpus containing 4,170 (175+3,995) code snippets. It should be noted that the additional 3,995
code snippets were carefully collected from hundreds of open source projects hosted at GitHub (see [184] for
details). This corpus is referred to as 4K-Corpus throughout the later sections in the chapter.

We also develop two other corpora containing 256,754 (175+256,399) and 769,244 (1754769,069) docu-
ments respectively. They are referred to as 256 K-Corpus and 769K-Corpus in the rest of the sections. These
corpus documents are Java classes extracted from an internet-scale and well-established dataset— IJaDataset
[118, 143, 236]. The dataset was constructed using 24,666 real world Java projects across various domains,
and they were collected from SourceForge® and Google Code® repositories. We analyse 1,500,000 Java source
files from the dataset, and discard the ones with a size greater than 3KB. 95% of our ground truth code
segments have a size less than 3KB. The goal was to avoid the large and potentially noisy code snippets in
the corpus. Given the large size (i.e., 769K documents) and cross-domain nature of the collected projects,

our corpora are thus likely to represent a real world code search scenario.

Shttps://sourceforge.net/
Shttps://code.google.com/

158

We consider each of these code snippets from all three corpora as an individual document, apply standard
natural language preprocessing (i.e., token splitting, stop word removal, programming keyword removal) to

7, a search engine widely used by the

them, and then index the corpus documents using Apache Lucene
relevant literature [98, 120, 163]. The indexed corpus is then used to determine the retrieval performance of
the initial and reformulated queries for code search.

Replication: All the experimental data, associated tools and implementations are hosted online [201]

for replication or third party reuse.

7.4.2 Performance Metrics

We choose six performance metrics for the evaluation and validation of our technique that are widely adopted
by relevant literature [63, 152, 243]. Two of them are related to recommendation systems whereas the other
four metrics are widely popular in the information retrieval domain.

Top-K Accuracy /Hit@QK: It refers to the percentage of the search queries for each of which at least
one item (e.g., API class, code segment) is correctly returned within the Top-K results by a recommendation
technique. It is also called Hit@K [239, 250]. Top-K Accuracy of a technique can be defined as follows:

isCorrect(q, K
Top” K Accuracy(Q) = 2qc0 0] (€)%

Here, isCorrect(q, K) returns a value 1 if there exists at least one correct API class (i.e., from the API-

goldset) or one correct code segment (i.e., implements the task in query) in the Top-K returned results, and
returns 0 otherwise. @) denotes the set of all search queries used in the experiment. Although Top-K Accuracy
and Hit@QK are used interchangeably in the literature [239, 249], we use Hit@QK to denote recommendation
accuracy in the remaining sections for the sake of consistency.

Mean Reciprocal Rank@K (MRR@K): Reciprocal rank@K refers to the multiplicative inverse of the
rank (i.e., 1/rank(q, K),q € Q) of the first relevant API class or code segment in the Top-K results returned
by a technique [220, 276]. Mean Reciprocal Rank@K (MRR@K) averages such measures for all search queries
(Vg € Q) in the dataset. It can be defined as follows:

1 1
MRRQK(Q) = ol q;) rank(q, K)

Here, rank(q, K) returns the rank of the first correct API or the correct code segment from a ranked list of
size K. If no correct APT class or code segment is found within the Top-K positions, then rank(q, K) returns
00. On the contrary, it returns 1 for the correct result at the topmost position of a ranked list. Thus, MRR
can take a maximum value of 1 and a minimum value of 0. The bigger the MRR value is, the better the
technique is.

Mean Average Precision@K (MAPQK): Precision@K calculates the precision at the occurrence of
every single relevant item (e.g., API class, code segment) in the ranked list. Average Precision@K (APQK)

"http://lucene.apache.org/

159

averages the precision@K for all relevant items within Top-K results for a code search query [220, 276]. Mean
Average Precision@K is the mean of Average Precision@K for all queries (@) from the dataset. MAPQK of

a technique can be defined as follows:

Zf:l Pk X relk

APQK =
|RR|
APQK
MAPGQK — W

Here, rel;, denotes the relevance function of £ result in the ranked list that returns either 1 (i.e., relevant) or

kth result, and K refers to number of top results considered.

0 (i.e., non-relevant), P, denotes the precision at
RR is the set of relevant results for a query, and @ is the set of all queries.

Mean Recall@K (MRQK): Recall@K refers to the percentage of gold set items (e.g., API, code
segment) that are correctly recommended for a code search query in the Top-K results by a technique [249].
Mean Recall@K (MR@K) averages such measures for all queries (Q) in the dataset. It can be defined as

follows:

|result(q, K') N gold(q)|
Igold()l

Here, result(q, K) refers to Top-K recommended APIs by a technique, and gold(q) refers to goldset APIs for

MRQK(Q =i Z
q€eQ

each query g € @. The bigger the MR@K value is, the better the recommendation technique is.

Query Effectiveness (QE): It refers to the rank of first relevant document in the results list retrieved
by a query. The metric approximates a developer’s effort in locating the first item of interest. Thus, the lower
the effectiveness measure is, the more effective the query is [98, 164, 191]. We use this measure to determine
whether a given query is improved or not after its reformulation.

Normalized Discounted Cumulative Gain (NDCG): It determines the quality of ranking provided
by a technique. With a graded relevance scale for results, the metric accumulates overall gain or usefulness
from the top to the bottom of the list [112, 253]. It assumes that (1) highly relevant results are more useful
when they appear earlier in the ranked list, and (2) highly relevant results are more useful than marginally
relevant results. Thus, Discounted Cumulative Gain (DCG) of a ranked list returned by a query ¢ can be

calculated as follows:

goldRank(k, gold(q))
lgold(q)]

grely .
DCG(q Z l092 Uit 1) where grely, =1 —

(7.7)

Here, grely refers to the graded relevance of the result at position k. goldRank(.) returns the rank of the k"
result within the goldset items gold(q). If k*" result is not found in the goldset, grel), simply returns 0 as a
special case. Thus, grel, provides a graded relevance scale between 0 and 1 for each relevant result. Once
DCG(q) is calculated, the normalized DCG can be calculated as follows:

DCG(q)

, NDGC(Q) = —= > _ NCDG(q) (7.8)

@ P

160

Here IDCG(q) is the Ideal Discounted Cumulative Gain which is derived from the ranking of goldset items.
Thus, NDCG(q) is the metric for one single query g, whereas NDCG(Q) averages the metric over all queries
(Vg € Q). We use NDCG in order to determine the quality of code search ranking from the traditional

web/code search engines (Section 7.4.13).

7.4.3 Evaluation Scenarios

Our work in this article has two different aspects— (a) relevant API suggestion and (b) automatic query refor-
mulation. We thus employ two different setups for evaluating our approach. In the first case, we investigate
API suggestion performance of RACK, calibrate our adopted parameters, and compare with the state-of-
the-art approaches on API suggestion [243, 274] (RQ4—RQs). In the second case, we reformulate the initial
NL queries from the dataset using our suggested APT classes. Then we compare our reformulated queries
not only with the baseline queries but also with the queries generated by the state-of-the-art approaches on
query reformulation [168, 274] (RQo—RQ10). We also investigate the potential of our queries in the context

of contemporary web and code search practices (RQ11).

7.4.4 Statistical Significance Tests

In our comparison studies, we perform two statistical tests before claiming significance of one set of items over
the other. In particular, we employ Mann- Whitney Wilcozon (MWW) and Wilcozon Signed Rank (WSR) for
significance tests. We refer to them as MWW and WSR respectively in the remaining sections. MWW is a
non-parametric test that (1) does not assume normality of the data and (2) is appropriate for small dataset
[98]. We use this test for comparing any two arbitrary lists of items. WSR test is another non-parametric
test that performs pair-wise comparison between two lists. In our experiment, WSR was used for significance
test between performance measures (e.g., Hit@K) of RACK in API/code suggestion and that of an existing
approach for the same K positions (i.e., 1<K<10) (RQs, RQg, RQ10). We report p-value of each statistical
test, and use 0.05 as the significance threshold. In addition to these significance tests, we also perform effect
size test using Cliff’s delta to demonstrate the level of significance. For this work, we use three significance
levels — short (0.147<A<0.33), medium (0.33<A<0.474) and large (A>0.474) [216]. We use two R packages

— stats, effsize — for conducting these statistical tests.

7.4.5 Matching of Suggested APIs with Goldset APIs

In order to determine performance of a technique, we apply strict matching between gold set APIs and the
recommended APIs. That is, we consider two API classes matched if (1) they are categorically the same,
and (2) they are superclass or subclass of each other. For example, if QutputStream is a gold set API and
FileQutputStream is a recommended API, we consider them and their inverse as matched. If a base class is

relevant for a programming task, the derived class is also likely to be relevant and thus, the recommendation

161

Table 7.7: Performance of RACK

Non-weighted Version Weighted Version
Metric

Top-1 ‘ Top-3 ‘ Top-5 ‘ Top-10 || Top-1 ‘ Top-3 ‘ Top-5 ‘ Top-10

Hit@K 30.29% | 55.43% | 68.57% | 83.43% || 38.29% | 61.14% | 72.00% | 83.43%
MRR@K 0.30 0.41 0.44 0.46 0.38 0.48 0.48 0.52

MAP@K | 30.29% | 40.19% | 42.00% | 39.66% | 38.29% | 48.14% | 48.39% | 45.74%
MR@K 9.24% | 22.67% | 33.53% | 52.78% || 12.12% | 26.41% | 37.94% | 54.07%

is considered to be accurate. In the case of relevant code segment retrieval, we also apply exact matching
between gold set segment and returned segment by a query. Since the tutorial sites clearly indicate which of
the code segments implements which of our selected tasks (i.e., queries), such matching is warranted for this
case. It should be noted that items (e.g., API class, code segment) outside the goldset could be also relevant
to our queries. However, we stick to our gold sets for the sake of simplicity and clarity of our experiments.

Our gold sets are also publicly available [201] for third-party replication or reuse.

7.4.6 Answering RQ4: How does the proposed technique perform in suggesting

relevant APIs for a code search query?

Each of our selected queries summarizes a programming task that requires the use of one or more API classes
from various Java libraries. Our technique recommends Top-K (e.g., K = 10) relevant API classes for each
query. We compare the recommended items with the A PI-goldset and evaluate them using above four metrics.

In this section, we answer RQ, using Table 7.7 and Fig. 7.13.

Table 7.7 shows the performance details of our technique for Top-1, Top-3, Top-5 and Top-10 API rec-
ommendations. We see that our technique recommends at least one API correctly for 83%+ of the queries
with both its (a) non-weighted and (b) weighted versions. The weighted version applies a fine tuned weight
to each of our three heuristics-KAC, KPAC and KKC-whereas the non-weighted version treats each of the
heuristics equally. Such accuracy is highly promising according to the relevant literature [63, 152]. Mean
average precision and mean recall of RACK are 40%-46% and 53%-54% respectively for Top-10 results which
are also promising. It also should be noted that RACK provides 55%—61% accuracy and 40%—-48% precision
for only Top-3 results which are good. That means, one out of the two suggested API classes is found to
be relevant for the task, which could be really helpful for effective code search. Our mean reciprocal ranks
are 0.46 and 0.52 for non-weighted and weighted version respectively. That is, the first correct suggestion is
generally found between first to second position of our ranked list, which demonstrates the potential of our
technique. Fig. 7.13 shows how different performance metrics — accuracy, precision and recall- change over
different values of Top-K. We see that our technique reaches a high precision (i.e., 48.14%) quite early (i.e.,
K = 3) and the highest (i.e., 48.39%) at K = 5, and then stays comparable for the rest of the K values.

However, the improvement of recall measure is comparatively slow. It is &~ 10% for K = 1, and then increases

162

k¥ - S
2 kT S S
o kT = — *=
o - W —
[] S]] *
= ,*’ P @ i'la‘/ a—t
E o g AT E o] —~t— e~y _h T
E g _rf_)i(_"._-._-._-z:;‘:_._'._'. E g_*ﬁ. ‘/.l"'_‘ * *
=4 e AT T A
a * Y * Hit@K o i * Hit@k
i ‘/h * MAP@K . /A/ * WARGK
£ |, 2 MR@EK £ _|a & MREK
A I l l l I l I l I l — I l l T T l I l l l
2 3 4 5 6 7 8 9 10 23 4 5 6 7 & 9 10
(a) . (b))

Figure 7.13: Hit@QK, Mean Average Precision@K, and Mean Recall@K of RACK using (a) non-

weighted version (i.e., dashed line) and (b) weighted version (i.e., solid line)
somewhat linearly up to 54% for the last value of K = 10. On the contrary, the accuracy of RACK improves
in a log-linear fashion, and becomes somewhat stationary for K = 10 with 83%. While our accuracy and
recall could further improve for increased K-values, the precision is likely to drop. Thus, we conduct our
experiments using only Top-10 suggestions from a technique. Developers generally do not check items beyond
the Top-10 items from the ranked list, and relevant literature [191, 239] also widely apply such cut-off value.
Thus, our choice of K =1 to 10 is also justified.

We also analyse the distribution of API classes from 19 (11 core + 8 non-core) Java packages (i.e., Table
7.1) in our ground truth, and investigate how they correlate with corresponding distributions from Stack
Overflow. We found that on average, 10% of the standard Java API classes from each package overlap with
our ground truth classes. On the contrary, 65% of the API classes from each package are discussed in Stack
Overflow Q & A threads according to RQs. Thus, Stack Overflow discusses more API classes than the ground
truth warrants for. In short, Stack Overflow is highly likely to deliver the relevant classes from standard API
packages, and our approach harnesses that power. We also found that 51% of the ground truth classes come
from the core packages whereas 10% of them come from the non-core packages. Since Stack Overflow has a
good coverage (e.g., = 65%) for both core and non-core packages (Fig. 7.7), RACK is also likely to perform
well for such queries that require the API classes from non-core packages only.

We also determine correlation between four performance measures (e.g., Hit@10, reciprocal rank, average
precision, recall) of our API suggestions (against NL queries) and the coverage of their corresponding ground
truth in the constructed API database (Section 7.3.1). We employed two correlation methods — Pearson
and Spearman, and found either very weak or negligible correlations (i.e., 0.04< p <0.12) between those two
entities. That is, the API suggestion performance of RACK is not biased by the coverage of the ground truth

API classes in our API database. Such finding strengthens the external validity of our results.

Summary of RQy: RACK suggests relevant API classes for about 83% of the generic NL queries with a
mean average precision@10 of 40%—46%, a mean reciprocal rank@10 of 0.46—0.52, and a mean recall@10

of 53%54%, which are highly promising.

163

Table 7.8: Role of Proposed Heuristics— KAC, KPAC and KKC

Heuristics ‘Metric ‘ Top-1 ‘ Top-3 ‘ Top-5 ‘Top-lO

HitQK 19.43% 42.29% | 58.86% | 76.00%
{Keyword-API MRRQK 0.19 0.29 0.33 0.36

Co-occurrence (KAC)} | MAPQK | 19.43% | 29.05% | 31.94% | 32.57%
MR@QK 5.97% 15.35% | 25.71% | 46.42%

HitQK 36.57% 58.86% | 69.14% | 79.43%
{Keyword Pair-API MRRQK 0.37 0.46 0.49 0.50

Co-occurrence (KPAC)} | MAPQK | 36.57% | 46.19% | 46.13% | 43.65%
MR@QK 11.08%% | 24.88% | 36.20% | 52.21%

Hit@QK 13.71% | 32.57% | 41.14% | 55.43%
{Keyword-Keyword MRRQK 0.14 .22 0.24 0.26

Coherence (KKC)} MAPQK | 13.71% | 21.52% | 23.05% | 24.26%
MR@K 4.46% 12.32% | 18.07% | 28.29%

HitQK 17.71% 40.00% | 58.29% | 77.71%
MRR@K 0.18 0.28 0.32 0.34

MAPQK | 17.71% 27.57% | 30.24% | 30.84%
MROK 5.65% 14.66% | 25.56% | 46.15%

{KAC + KKC} [201]

HitQK 38.29% 61.14% | 72.00% | 83.43%
MRR@K 0.38 0.48 0.48 0.52

MAPQK | 38.29% 48.14% | 48.39% | 45.74%
MROK 12.12% 26.41% | 37.94% | 54.07%

RACK [206]

7.4.7 Answering RQs5: How effective are the proposed heuristics—KAC, KPAC

and KKC- in capturing the relevant APIT classes for a query?

We investigate the effectiveness of our adopted heuristics— KAC, KPAC and KKC, and justify their com-
bination in the API ranking algorithm (i.e., Algorithm 8). Table 7.8 and Fig. 7.14 demonstrate how each
heuristic performs in capturing the relevant APIs for a given set of code search query as follows:

From Table 7.8, we see that our technique suggests correct API classes for 78.00% and 79% of the queries
when KAC and KPAC heuristics are employed respectively. Both heuristics leverage co-occurrences between
query keywords (in the question titles) and API classes (in the accepted answers) from Stack Overflow for
such recommendation. On the contrary, KKC considers coherence among the candidate API classes, and is
found less effective than the former two heuristics. In fact, KPAC performs the best among all three heuristics
with up to 46% precision and 52% recall. However, the weighted combination of our heuristics provides the
maximum performance in terms of four metrics. It provides 83% Hit@10 with a mean reciprocal rank@10 of

0.52, a mean average precision@10 of 46% and a mean recall@10 of 54%. That is, our combination harnesses

164

= -0 A0 —0—0—0O
3] e e = B
. P 3=
= =8 & « 347
N %_ /9/ Lk . @JD s
@ g7 K T v *__.)g.fale-*—*—*
=] / ‘,-—“ LEM— /*r
T & / * - o *
oS¢ T a-t = * N4 A—A—A—a
q_ ¥ a7 o~ |7 /Af“'
2 | /a7 (a) ok 4 (b)
o ¥ A
N T T T T T T T T 1 T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
K K
L =)
gUtTeTemesdziTiz: B =57
ETQ_ / | Q’//e /_*_{
b g o e 9§ /_*_
@ ¢ © = ¢~ ¥
% . I it (=i # K Py
= &4 5 = fg */* A
[ey —] - -
3 /‘*‘ ‘_—“_"_‘d_‘_‘_‘ BQ g/_*_/%/‘#
£ (@] S5t” (d)
SN T T T T T T T T 1T T T T T 1T T T 1
1.2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
K K

—— Al —— KAC —— KPAC —— KKC

Figure 7.14: (a) HitQK of RACK, (b) Mean Average Precision@K (MAPQK) of RACK, and (c)
Mean Recall@K (MR@K) of RACK for three heuristics-KAC, KPAC and KKC

the strength from all the heuristics, and also overcomes their weaknesses simultaneously using appropriate
weights. All these statistics are also highly promising according to the relevant literature [152, 243]. Thus, our
combination of these three heuristics is also justified. Our earlier work combines KAC and KKC, and provides
79% Hit@Q10 with 35% precision and 45% recall from the experiments with 150 queries. Replication with our
current extended dataset (i.e., 175 queries) reports similar performance (e.g., 78% Hit@10), which supports
our earlier findings [201] as well. In this work, we introduce the new heuristic-KPAC—which improved
our performance in terms of all four metrics— Hit@10 (i.e., 7% improvement), reciprocal rank (i.e., 53%
improvement), precision (i.e., 48% improvement) and recall (i.e., 17% improvement). Thus, the addition
of KPAC heuristic to our ranking algorithm is justified. Furthermore, we apply appropriate weights to
these heuristics for controlling their influence in the API relevance ranking. Fig. 7.14 further demonstrates
how the performance of our heuristics changes over various Top-K results. We see that KPAC is the most
dominant one among the heuristics (as observed above) and achieves the maximum performance. However,
the addition of the other two heuristics also improves our performance marginally (i.e., 2% — 4%) in terms

of all four metrics.

Summary of RQ;5: KPAC and KAC are found more effective than KKC in capturing the relevant API
classes from Stack Overflow Q & A threads. However, combination of all three heuristics using appropriate

relative weights delivers the maximum performance. Thus, their combination for API ranking is justified.

165

Table 7.9: Impact of Different Query Term Selection

Query Terms ‘ Metric ‘ Top-1 ‘ Top-3 ‘ Top-5 ‘ Top-10

Hit@K 37.14% | 60.57% | 71.43% | 82.86%
All terms MRR@K 0.37 0.48 0.50 0.52

from query MAPQK | 37.14% | 47.29% | 47.81% | 45.29%
MR@K 11.69% | 26.93% | 38.85% | 54.80%

HitQK 33.71% | 58.86% | 70.29% | 82.29%
MRR@K 0.34 0.45 0.48 0.49

MAPQ@K | 33.71% | 44.95% | 45.71% | 42.62%
MRQK 10.56% | 25.47% | 36.67% | 55.21%

Noun terms only

HitQK 7.43% | 17.711% | 24.00% | 35.43%
MRR@K 0.07 0.11 0.13 0.14

MAPQK | 7.43% | 11.52% | 12.68% | 14.02%
MRQK 2.14% | 6.69% | 10.46% | 17.38%

Verb terms only

HitQK 38.29% | 61.14% | 72.00% | 83.43%
{Noun terms + MRR@K 0.38 0.48 0.48 0.52

Verb terms} MAPQK | 38.29% | 48.14% | 48.39% | 45.74%
MR@QK 12.12% | 26.41% | 37.94% | 54.07%

HitQK 37.14% | 60.57% | 72.00% | 83.43%
{Noun terms + MRR@K 0.37 0.47 0.47 0.52

Verb terms}-“java" | MAPQK | 37.14% | 46.90% | 47.35% | 45.19%
MR@QK 11.84% | 26.18% | 38.09% | 54.08%

7.4.8 Answering RQg: Does an appropriate subset of the query keywords per-

form better than the whole query in retrieving the relevant API classes?

Since the proposed technique identifies relevant APT classes based on their co-occurrences with the keywords
from a query, the keywords should be chosen carefully. Selection of random keywords might not return
appropriate API classes. Several earlier studies choose nouns and verbs from a sentence, and report their
salience in automated comment generation [259] and corpus indexing [59]. We thus also extract noun and
verb terms from each query as the search keywords using Stanford POS tagger [244], and then use them for
our experiments. In particular, we investigate whether our selection of keywords for code search is effective
or not.

From Table 7.9, we see that our technique performs better with noun-based keywords than with verb-
based keywords. The verb-based keywords provide a maximum of 35% Hit@10. On the contrary, RACK
returns correct APT classes for 82% of queries with 43% precision, 55% recall and a reciprocal rank of 0.49

when only noun-based keywords are chosen for search. However, none of the performance metrics reaches the

166

baseline performance except recall. That is, they are lower than the performance of RACK with all query
terms minus the stop words. Interestingly, when both nouns and verbs are employed as search keywords, the
performance reaches the maximum especially in terms of accuracy, precision and reciprocal rank. For example,
RACK achieves 83% Hit@Q10 with 46% precision, 54% recall and a reciprocal rank of 0.52. Although the
improvement over the baseline performance (i.e., with all keywords of a query) is marginal, such performances
were delivered using a fewer number of search keywords. That is, our subset of keywords not only avoids
the noise but also ensures a comparatively higher performance than the baseline with relatively lower costs
(i.e., fewer keywords). Thus, selection of a subset of keywords from the NL query intended for code search is
justified, and our subset is also found effective.

We also investigate the impact of generic search keywords such as “java" in our query. According to our
analysis, 11.43% of our queries in the dataset contain this keyword. From Table 7.9, we see that removal
of this keyword marginally degrades most of the performance measures of our technique. Only marginal
improvements can be observed in the recall measure for Top-5 and Top-10 results. Thus, our choice of

retaining the generic keywords is also justified.

Summary of RQg: Important keywords from a natural language query mainly consist of its noun and verb
terms. Our keyword selection approach of leveraging noun and verbs from a query is found quite effective in

the relevant API suggestion.

7.4.9 Answering RQ7: How do the heuristic weights (i.e., o,) and threshold

settings (i.e., v, 0) influence the performance of our technique?

Our relevance ranking algorithm applies two relative weights—a and S—to our proposed heuristics, and the
heuristics are also constrained with two thresholds—y and J. While the thresholds help the heuristics collect
appropriate candidate API classes, the weights control the influence of the heuristics in the API relevance
ranking. In this section, we justify our chosen weights and thresholds, and investigate how they affect the
performance of our technique.

We adopt a greedy search-based technique [272] (i.e., controlled iterative approach) for determining the
relative weights for our heuristics. That is, we start our searches with our best initial guesses for « (i.e., 0.25)
and S (i.e., 0.30), refine our weight estimates in every iteration with a step size of 0.025, and then stop when
the fitness function [272] (i.e., performance) reaches the global maximum. We use mean average precision@10
and mean recall@10 as the fitness functions in the search for o and 8. Fig. 7.15 shows how different values of
« and S can influence the performance of RACK. Please note that when one weight is calibrated, the other
one is kept constant during performance computation. We see that precision and recall of RACK reach the
maximum when « € [0.300, 0.325] and $=0.575. The target weights are identified using dashed vertical lines
above. While o and (8 are considered as the relative importance of the co-occurrence based heuristics, KAC

and KPAC respectively, (1 — o —) goes to the remaining heuristic-KKC. Since KKC is found relatively

167

69‘ e ——————
| Q]
il \\
=i 2 ¢
@ o | @ F
e R i
N 2z
2 - &
u
2
[Ty
< I I I I I I I
0.25 0.30 0.35 0.40 (EI) 03 04 05 06
o B
2 - =
31 \ 5 M/N
[T'e] [Ty
2 - 2
S Sa
4 4
= = £
[Ty [Ty
2 | £
o T T T b7 T | T T
0.25 0.30 0.35 0.40 (b) 0.3 0.4 05 06
o B

Figure 7.15: (a) Mean Average Precision@10 (MAP@10), and (b) Mean Recall@10 (MR@10) of
RACK for different values of the heuristic weights—« and

S - M F ey — e T e
R ° .
Q % @ S
z o M~ (%
S 2| g A
£ et " —— e . g = A b — A —— h —— 4
S o 5 o | £ .
E B ’___‘ A — " E e o—r— 9 .
o] ot o,
@ la S a
| | | | | | @ | | | | | |
(a) 2 4 6 & 10 12 14 (b) 2 4 6 & 10 12 14
& &
—#— Hit@s —— MR@5 - Hit@10 —— mr@10
—— MAP@5 —— MAP@10

Figure 7.16: Performance of RACK for different ¢ thresholds with (a) Top-5 results and (b) Top-10
results considered

weak according to our earlier investigation, we emphasize more on « and 3, and chose the following heuristic
weights: 0.325, 0.575 and 0.10-for KAC, KPAC and KKC respectively. Thus, all the weights sum to 1, and
such weighting mechanism was also used by an earlier study [163]. The performance of RACK is significantly
higher than its non-weighted version especially in terms of MRR@K (i.e., WSR, p-value= 0.002, A = 1.00
(large)) and MAPQK (i.e., WSR, p-value< 0.001, A = 0.84 (large)) for Top-1 to Top-10 results. Thus, the

application of relative weights to our adopted heuristics is also justified.

Both KAC and KPAC apply ¢ threshold for collecting candidate API classes from the token-API linking
database. Fig. 7.16 shows how different values of § can affect our performance. We use Hit@K, MAPQK and
MR@K as the fitness functions, and determine our fitness for Top-5 and Top-10 returned results. We see that

each of these performance measures reach their maximum when § = 10 for both settings. That is, collecting

168

K ¥ * * *— %] 3 ¥ * * * £
Ty) =)]
Qe 9 =
G O L o
% w % [
£ E
£ R} . . . «-——= =]
) g o | & & & & &
O = | o g
= Py A A A—a O e
[T T T T I [I T T T T
0.0 01 02 0.3 04 0.5 0.0 0.1 02 03 04 05
(a) v (b) Y
- Hit@5 —— nr@s = Hit@10 —— wmrR@10
—+— MAP@S —+— MAP@10

Figure 7.17: Performance of RACK for different ~ thresholds with (a) Top-5 results and (b) Top-10
results considered

10 candidate API classes for each keyword or keyword pair from the query is the most appropriate choice.
Less or more than that provides comparable performance but not the best one. Thus, we chose § = 10 in our
algorithm, and our choice is justified.

KKC applies another threshold, ~, for candidate APT selection that refers to the degree of contextual
similarity between any two keywords from the query. Fig. 7.17 reports our investigation on this threshold.
We see that different values of v starting from 0 to 0.5 do not change our fitness (i.e., performance) at all.
Since the heuristic itself, KKC, is not strong, the variance of 7 also does not have much influence on the
performance of our technique. Thus, our choice of v = 0 is also justified. That is, we consider two API

classes coherent to each other when their contexts share at least one search keyword.

Summary of RQ7: The performance of RACK reaches the mazimum for certain weights and thresholds,
a=0.325, =0.575, v=0, and 6—=10. They were chosen carefully based on controlled iterative experiments,

as were also done by the earlier studies [163, 272] from relevant literature.

7.4.10 Answering RQg: Can RACK outperform the state-of-the-art techniques

in suggesting relevant API classes for a given set of queries?

Thung et al. [243] accept a feature request as an input and return a list of relevant API methods. Their API
suggestions are based not only on the mining of feature request history but also on the textual similarity
between the request texts and the corresponding API documentations. Zhang et al. [274] determine semantic
distance between an NL query and a candidate API using a neural network model (CBOW) and a large code
repository, and then suggest a list of relevant APT classes for the query. To the best of our knowledge, these
are the latest and the closest studies to ours in the context of API suggestion, and thus, we select them for
comparison.

Since feature request history is not available in our experimental settings, we implement Description-

Based Recommender module from Thung et al. We collect API documentations of 3,300 classes from the

169

Table 7.10: Comparison of API Recommendation Performance with Existing Techniques (for various
Top-K Results)

Technique ‘ Metric ‘ Top-1 ‘ Top-3 ‘ Top-5 ‘ Top-10

Hit@K 20.57% | 30.85% | 38.29% | 44.00%
MRR@QK | 0.21 0.25 0.26 0.27

MAPQK | 20.57% | 24.57% | 25.47% | 24.84%
MR@K 6.37% | 11.74% | 15.79% | 22.19%
Hit@QK 20.00% | 32.57% | 39.43% | 50.29%
MRR@K | 0.20 0.26 0.27 0.29

MAPQ@K | 20.00% | 25.14% | 25.85% | 25.59%
MR@K 6.19% | 13.02% | 18.47% | 28.95%
HitQK 19.43% | 32.00% | 36.00% | 39.43%
MRR@K | 0.19 0.25 0.26 0.26

MAPQK | 19.43% | 24.86% | 25.44% | 24.81%
MR@K 6.00% | 15.86% | 21.54% | 29.87%

Thung et al. [243]-1

Thung et al. [243]-1I

Zhang et al. [274]

HitQK 38.29% | 61.14% 72.00% 83.43%
RACK [206] MRR@QK 0.38 0.48 0.48 0.52

(Proposed technique) | MAPQK | 38.29% | 48.14% | 48.39% | 45.74%
MR@K 12.12% | 26.41% | 37.94%% | 54.07%

*Emboldened items are the highest statistics for the existing and proposed

techniques

Java standard libraries (i.e., JDK 6), and develop Vector Space Model (VSM) for each of the API classes. In
fact, we develop two models for each API class using (1) class header comments only, and (2) class header
comments + method header comments, and implement two variants— Thung et al.-I and Thung et al.-II for
our experiments. We use Apache Lucene [32] for VSM development, corpus indexing and for textual similarity
matching between the API documentations and each of the queries from our dataset. In the case of Zhang
et al., we (1) make use of IJaDataset [117] as a training corpus (as was done by the original authors), and
(2) learn the word embeddings for both keywords and API classes using fastText [54], an improved version
of word2vec implementation. We then use these vectors to determine semantic distance between a query
and the candidate API classes using cosine similarity [198]. We also determine API popularity within the
training corpus, and then combine with semantic distance metric to identify a set of relevant API classes for

the NL query.

Table 7.10 summarizes the comparative analysis between our technique-RACK- and three existing tech-
niques. Here, emboldened items refer to maximum measures provided by the existing techniques and our
technique. We see that the variants of Thung et al. can provide a maximum of about 50% accuracy with

about 26% precision and 29% recall for Top-10 results. On the other hand, RACK achieves a maximum

170

= | r—* 2 —p—F—V—T—V¥—¥
@ P S v v
* v
" 7
&= = v g /
X 3 -~ ®c |
@ * z
T . / x
B =g
= Fooor Hee ko ™M~
= i e * * (o]
E =e * — g VITVY AR AR
£ |y R |
o~ T T T T T T T T T =T T T T T T T T T T
2 3 4 5 6 T 8 9 10 12 3 4 5 6 7 8 9 10
(a) K (b) K
—¥— RACK Thung et al -l —&— RACK Thung et al -l
Thung et al.-l <% Zhang et al. Thung et al.-l " Zhang et al.
./0—0—0—0__._’_.__. g_ #‘/“
5] ‘_....l
| / N =
e Fe ! /1"’
@ @ a&! F
[F o / . s -
=T 6“9» = (o] A Yy
= 2 ‘/ P
— F Y
P * & [Je— 1 + % Y " ‘/‘_f 4
= =k
o I - L)
o™ I I I I I I I I I I I I T I T I I I I I
1 2 3 4 5 6 7 8§ 9 10 12 3 4 5 6 7 8 9 10
(c) K (d) K
—+— RACK Thung et al -l —— RACK Thung et al Il
Thung et al-| ~* Zhang et al. Thung et al-l ~*- Zhang et al.

Figure 7.18: Comparison of API recommendation performances with the existing techniques-(a)

Hit@QK, (b) Mean Reciprocal Rank@K, (c) Mean Average Precision@K, and (d) Mean Recall@K
accuracy of 83% with 46% precision and 54% recall which are 66%, 79% and 87% higher respectively. We
investigate how the four performance measures change for different Top-K results for each of these three
techniques. From Fig. 7.18, we see that Hit@QK of RACK increases gradually up to 83% whereas such perfor-
mance measures for the textual similarity based techniques stop at 50%. The MRR@QK of RACK improves
from 0.38 to 0.52 whereas such measures for the counterparts are as low as 0.20-0.29. It should be noted
that RACK reaches its maximum precision, i.e., 48%, quite early at K = 3, and then its recall gradually
improves up to 54% (at K = 10). On the contrary, such measures for the counterparts are at best 25%
and 30% respectively. These demonstrate the superiority of our technique. From the box plots in Fig. 7.19,
we see that RACK performs significantly higher than both variants in terms of all three metrics— accuracy,
precision and recall. Our median accuracy is above 70% whereas such measures for those variants are close
to 40%. The same goes for precision and recall measures. We perform significance and effect size tests,
and compare our performance measures with the measures of the state-of-the-art for various Top-K results
(1<K<10). We found that the performance of our approach is significantly higher than that of the existing
techniques in terms of Hit@QK (i.e., WSR, p-value=0.002<0.05, A=0.79 (large)), MRR@K (i.e., WSR, p-
value=0.002<0.05, A=0.90 (large)), MAPQK (i.e., WSR, p-value=0.002<0.05, A=0.90 (large)) and MRQK
(i.e., WSR, p-value=0.002<0.05, A=0.70 (large)). All these findings above suggest that (1) textual similarity

between query and API signature or documentations might not be always effective for API recommendation,

171

70%

B RACK

50%
|

— _ O Thung et al.-l
| O Thung et al-ll
O Zhang et al.

|

|

|

|

-4

30%
|

10%
|

Hité@l(MAFL@K MR@K
Figure 7.19: Comparison of API recommendation with existing techniques using box plots

and (2) semantic distance between keyword and APT classes should be calculated using appropriate training
corpus. Our technique overcomes that issue by applying three heuristics - KAC, KPAC and KKC- which
leverage the API usage knowledge of a large developer crowd stored in Stack Overflow. Performance reported
for Thung et al. is project-specific, and the technique is restricted to feature requests [243]. On the contrary,
our technique is generic and adaptable for any type of code search. It is also independent of any subject
systems. Although Zhang et al. employ a large training corpus, they learn word embeddings for NL keywords
from the source code which might not be always helpful. Source code inherently has a smaller vocabulary
than regular texts [102]. On the contrary, we leverage the contexts of NL keywords and API classes more
carefully from Stack Overflow Q & A site to determine their relevance. Furthermore, we harnesses the ex-
pertise of a large crowd of technical users effectively for relevant API suggestion which was not considered

by the past studies from literature. Thus, our technique possibly has a greater potential.

Summary of RQg: Our approach, RACK, outperforms multiple existing studies on relevant API suggestion
for NL queries, and achieves 66% higher accuracy, 79% higher precision and 87% higher recall than those
of the state-of-the-art.

7.4.11 Answering RQg: Can RACK significantly improve the natural language

queries in terms of relevant code retrieval performance?

Our earlier research questions (RQ4—RQg) evaluate the performance of RACK in suggesting relevant API
classes for a natural language query intended for code search. Although they clearly demonstrate the potential
of our technique, another way of evaluation could be the retrieval performance of our suggested queries. In
this section, we investigate whether our reformulations to the baseline queries improve them or not in terms
of their relevant code retrieval performances. We employ three corpora — 4K-Corpus, 256K-Corpus, and
769K-Corpus— each of which includes 175 ground truth code segments (see Section 7.4.1 for details). We

apply limited natural language preprocessing (i.e., removal of stop words and keywords, splitting of complex

172

Table 7.11: Comparison of Source Code Retrieval Performance with Baseline Queries

Query ‘Metric ‘ Top-1 ‘ Top-3 ‘ Top-5 ‘ Top-10

Retrieval Performance with Small Dataset (4K-Corpus)

Baseline Hit@QK 39.43% | 54.86% 62.29% 68.57%
(NL Keywords) | MRRQK 0.39 0.46 0.48 0.49

HitQK 65.71% | 85.71% 89.14% 91.43%
Goldset API

MRR@K 0.66 0.75 0.76 0.76
Baseline + HitQK 70.29% | 88.00% 96.00% 97.14%
Goldset API MRR@K 0.70 0.78 0.80 0.80

HitQK 29.71% | 50.29% 56.00% 68.57%
RACK 4

MRRQK 0.30 0.39 0.40 0.42

HitQK 50.86% | 73.14% | 77.71% 84.00%

MRRQK 0.51 0.61 0.62 0.63

Retrieval Performance with Large Dataset (256K-Corpus)

Baseline Hit@QK 22.29% | 30.86% 37.711% 44.00%
(NL Keywords) | MRRQK 0.22 0.26 0.27 0.28

HitQK 60.00% | 78.29% 84.57% 90.29%
Goldset API

MRR@K 0.60 0.69 0.70 0.71
Baseline + HitQK 76.00% | 89.14% 90.86% 94.86%
Goldset API MRR@K 0.76 0.82 0.82 0.83

Hit@QK 14.29% | 26.29% 30.86% 36.57%
RACK 4

MRR@K 0.14 0.19 0.20 0.21

HitQK 40.00% | 52.57% | 59.43% 66.29%

MRR@K 0.40 0.46 0.47 0.48

Retrieval Performance with Extra-Large Dataset (769K-Corpus)

Baseline Hit@QK 17.14% | 24.57% | 0.28.57% 34.29%
(NL Keywords) | MRRQK 0.17 0.20 0.21 0.22

HitQK 50.86% | 69.14% 75.43% 81.14%
Goldset API

MRR@K 0.51 0.59 0.61 0.62
Baseline + HitQK 64.00% | 80.00% 86.86% 90.29%
Goldset API MRR@K 0.64 0.71 0.73 0.73

HitQK 10.86% | 18.29% 22.29% 26.86%
RACK 4

MRR@K 0.11 0.14 0.15 0.16

HitQK 26.86% | 42.29% | 49.14% 56.57%

MRR@K 0.27 0.33 0.35 0.36

A —=Suggested API classes only, A+Q=Reformulated query combining both

suggested API classes and baseline query keywords.

173

tokens) to each corpus document, and then index them for retrieval. We employ Apache Lucene®, a popular
code search engine that has been used by several earlier studies from the literature [98, 163, 176], for document

indexing and for source code retrieval.

Table 7.11 and Fig. 7.20 summarize our findings on comparing our reformulated queries with the baseline
queries. We consider two versions of our reformulated queries— RACK 4 and RACK 44 o—for our experiments.
While RACK 4 comprises of suggested API classes only, RACK 41¢ combines both the suggested API classes
and the NL keywords from baseline queries. From Table 7.11, we see that the baseline queries (i.e., comprise
of NL keywords) perform poorly especially with the large corpora. In the case of 256K-Corpus, they return
relevant code segments at the Top-1 position and within the Top-5 positions for only 22% and 38% of the
queries respectively (i.e., Hit@K). On the contrary, our reformulated queries, RACK 44 ¢, can return relevant
code segments for 40% and 59% of the queries within Top-1 and Top-5 positions respectively, which are more
promising. We see a notable increase in the query performance with the smaller corpus (i.e., 4K-Corpus) and
a notable decrease with the bigger corpus (i.e., 769K-Corpus). Such observations can be explained by the
reduced and added noise in the corpus respectively. However, our reformulated queries perform consistently
higher than the baseline across all three corpora. For example, while the baseline Hit@10 reduces to 34%
for 769K-Corpus, our reformulated queries deliver a Hit@10 of 57% which is 65% higher. Thus, our query
reformulations offer 23%-80% improvement in Hit@QK over the baseline performance across the three corpora.
It should be noted that Hit@1 and Hit@5 could reach up to 60% and 85% respectively when the goldset
APT classes are used as the search queries. Combination of NL queries and goldset API classes performs
even better. Such findings also strengthen our idea of suggesting and using relevant API classes for code
search. However, we also see that reformulated queries containing both NL keywords and API classes (e.g.,

RACK 44¢) are always better than those containing only the suggested API classes (e.g., RACK 4).

Our MRR@K measures in Table 7.11 are also found more promising. They suggest that on average, the
relevant code segments are returned by our queries within the top three positions of the result list across all
three corpora, which is promising from the perspective of practical use. Furthermore, our MRR@K measures
are 29%—81% higher than the baseline counterparts across all three corpora which demonstrate the potential

of our reformulated queries for code search.

Fig. 7.20 further demonstrates the performance of baseline queries and our reformulated queries for various
Top-K results. We see that Hit@K and MRRQK of our queries are higher than those of the baseline queries
by a large margin across all three corpora —4K-Corpus, 256K-Corpus, and 769K-Corpus. Non-parametric
tests such as Wilcozon Singed Rank, Mann-Whitney Wilcozon and Cliff’s delta tests also report statistical
significance of our performance improvements for both Hit@QK (i.e., all p-values<0.05, 0.82<A<0.94 (large))
and MRR@K (i.e., all p-values<0.05, A=1.00 (large)). For the sake of simplicity, only one code segment (i.e.,
collected from the tutorial sites, Section 7.4.1) was chosen as the ground truth of each query. Thus, Hit@K

8https://lucene.apache.org/

174

E'é— _ ,a{eﬁ*—*’*_* o _| VTNV TV VTV
@ k- o v
- ~* S
= * SRTRTETR e v v B v ST v e v
© "k sermT k¥ r S
O x T e Ak ek A
= kK —v__.v
e ¥ o~ |
[on B! [en]
R T T T 1T T T 1 1 T 1T 1T T T T T 1T
12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
(a) K (b) K
— RACK — 4K-Corpus - 769K-Corpus
Baseline ---- 256K-Corpus

Figure 7.20: Comparison of code retrieval performance with the baseline queries in terms of (a)
Hit@K and (b) MRRGK

o
I — = — A — A —
w
! (a) | (b) | (c)
o 1 1 o 1
[1 | o - |
1 o 1 = 1
| [| |
1 = | |
1 | |
% [Te] : % : % = :
e-1 = ! 287
o ! = 1] 1
= 1 = | 1 = 1
2 = 2 | 2 |
w o _| L m ! w =2 | !
e A= [l
) [T o o
8 8 8
_
1
[
0 - ! g- S —_
- 1
I
_ I_-_I
[= . R (=1 I I | [=
I I T I T I
Baseline RACK Baszeline RACK Baseline RACK

Figure 7.21: Comparison of QE distribution with baseline queries across (a) 4K-Corpus, (b) 256K-
Corpus and (c) 769K-Corpus

and MRRQK are the most appropriate performance metrics for this case, and consequently, precision and

recall were not chosen for this evaluation.

We also investigate query performance by relaxing the Top-K constraint and by analysing all the results
returned by each query. Table 7.12 and Fig. 7.21 report our findings on query effectiveness [163, 164]. That
is, if the first relevant code segment by a reformulated query is returned closer to the top of the result list
than that of the baseline query, we consider it as query quality improvement, and vice versa as query quality
worsening. If there is no change in the result ranks between baseline and reformulated queries, we call it
query quality preserving. From Table 7.12, we see that 46%—64% of the baseline queries can be improved
by our technique, RACK 44 ¢, across all three corpora. It worsens only 11%-16% of the queries, and thus,
offers a net gain of 35%—49% query improvement. While 60% net gain is possible in the best case scenario
using gold set APIs directly, our technique delivers ~ 50%, which is promising according to relevant literature

[98, 191]. Fig. 7.21 further contrast between baseline and our reformulated queries. We see that the result

175

Table 7.12: Improvement of Baseline Queries by RACK

Query Pairs Improved | Worsened | Net Gain | Preserved

Query Improvement with Small Dataset (4K-Corpus)

Goldset API vs. Baseline 54.29% 13.71% +40.58% 32.00%
RACK 4 vs. Baseline 42.29% 39.43% +2.86% 18.29%
RACKA+Q vs. Baseline 46.29% 10.86% +35.43% 42.86%

Query Improvement with Large Dataset

(256K-Corpus)

Goldset API vs. Baseline 70.86% 14.29% +56.00% 14.86%
RACK 4 43.43% 48.00% -4.57% 8.57%
RACK 44 61.71% 13.14% +48.57% 25.14%

Query Improvement with Extra-Large Dataset (769K-Corpus)

Goldset API vs. Baseline 74.86% 14.86% +60.00% 10.29%
RACK 4 44.00% 48.00% -4.00% 8.00%
RACKA+Q 64.00% 16.00% +48.00% 20.00%

Net Gain = Gained improvement of result ranks through query reformulations
ranks provided by RACK are closer to zero (i.e., top of the list) across all three corpora. Such finding provides

more evidence on the high potential of our suggested queries.

Summary of RQg: Reformulated queries by RACK retrieve relevant code segments with 283%—80% higher
accuracy and 29%-81% higher reciprocal rank than those of the baseline queries. Furthermore, RACK
improves 46%—64% of the baseline queries, and they return the results closer to the top of the list.

7.4.12 Answering RQq9: Can RACK outperform the state-of-the-art techniques

in improving the natural language queries intended for code search?

Although our reformulations improve the baseline queries significantly, we further validate them against the
queries generated by existing techniques including the state-of-the-art. The study of Zhang et al. [274] is
a closely related work to ours. They suggest relevant APT classes for natural language queries intended for
code search by analysing semantic distance between query keywords and API classes. Thung et al. [243]
is another related study in the context of relevant API suggestion which was originally targeted for feature
location (i.e., project-specific code search). Recently, Nie et al. [168] reformulate a query for code search by
collecting pseudo-relevance feedback from Stack Overflow, and then by applying Rocchio’s expansion [213]
to the query. Their tool QECK suggests software-specific terms from programming questions and answers as
query expansions. To the best of our knowledge, these are the most recent and the most closely related work
to ours in the context of query reformulation for code search which make them the state-of-the-art. We thus
compare our technique with these three existing techniques [168, 243, 274] in terms of HitQK, MRRQ@K and
Query Effectiveness (QE).

176

Table 7.13: Comparison of Code Retrieval Performance with Existing Techniques

Technique ‘Metric ‘ Top-1 ‘ Top-3 ‘ Top-5 ‘Top-lO

Retrieval Performance with Small Dataset (4K-Corpus)

HitQK 41.14% | 58.29% | 69.14% | 74.29%
Thung et al. [243]-1

MRR@K 0.41 0.49 0.51 0.52

HitQK 44.00% | 62.29% | 71.43% | 77.711%
Thung et al. [243]-11

MRR@K 0.44 0.52 0.55 0.55

HitQK 48.57% | 69.14% | 74.86% | 81.14%
Nie et al. [168]

MRR@K 0.49 0.58 0.59 0.60

HitQK 43.43% | 64.00% | 69.14% | 77.711%
Zhang et al. [274]

MRR@K 0.43 0.53 0.54 0.55

Hit@K | 50.86% | 73.14% | 77.71% | 84.00%
RACK [206]

MRR@K 0.51 0.61 0.62 0.63

Retrieval Performance with Large Dataset (256 K-Corpus)

HitQK 2743% | 40.57% | 48.00% | 54.86%

Thung et al. [243]-1

MRR@K 0.27 0.33 0.35 0.36

HitQK 33.71% | 44.57% | 50.29% | 59.43%
Thung et al. [243]-1I

MRR@K 0.34 0.39 0.40 0.41

HitQK 29.71% | 44.00% | 52.57% | 60.00%
Nie et al. [168]

MRR@K 0.30 0.36 0.38 0.39

Hit@QK 24.00% | 34.29% | 41.71% | 52.57%
Zhang et al. [274] -

MRRQ@K 0.24 0.29 0.30 0.32

Hit@QK 40.00% | 52.57% | 59.43% | 66.29%
RACK |[206] -

MRRQ@K 0.40 0.46 0.47 0.48

Retrieval Performance with Extra-Large Dataset (769K-Corpus)

HitQK 20.57% | 29.71% | 36.57% | 42.86%
Thung et al. [243]-1

MRR@K 0.21 0.24 0.26 0.27

HitQK 25.71% | 35.43% | 41.14% | 46.86%
Thung et al. [243]-1I

MRRQK 0.26 0.30 0.31 0.32

HitQK 25.14% | 36.57% | 41.14% | 48.00%
Nie et al. [168]

MRR@K 0.25 0.30 0.31 0.32

HitQK 20.00% | 28.57% | 33.14% | 38.29%
Zhang et al. [274]

MRR@K 0.20 0.24 0.25 0.26

HitQK | 26.86% | 42.29% | 49.14% | 56.57%
RACK [206]

MRR@K 0.27 0.33 0.35 0.36

177

From Table 7.13, we see that the retrieval performance of RACK is consistently higher than that of
the state-of-the-art techniques or their variants across all three corpora. Nie et al. [168], performs the best
among the existing techniques. Their approach achieves 41%-75% Hit@5 with a MRR@5 between 0.31 to
0.59 on our dataset. However, our technique, RACK, achieves 49%—78% Hit@5 with 0.35-0.62 MRR@5 which
are 4%-19% and 5%—13% higher respectively. RACK also achieves a Hit@10 of 57% with the extra-large
corpus (i.e., 769K-Corpus) which is 18% higher than the state-of-the-art measure, i.e., 48% Hit@10 by Nie
et al. While the performance measures of each technique degrade as the corpus size grows from 4K to 769K
documents, our performance measures remain consistently higher than the state-of-the-art. Thus, RACK is

more robust to varying sizes of corpora than any of the existing techniques under our study.

Fig. 7.22 further demonstrates how RACK outperforms the state-of-the-art techniques for various Top-K
results in terms of Hit@K and MRR@QK. We compare RACK with QECK by Nie et al. [168] for Top-1 to
Top-10 performance measures using non-parametric tests. Nie et al. is clearly the state-of-the-art according
to the above analysis. Our Mann-Whitney Wilcoxon and Cliff’s delta tests reported statistical significance
of RACK over Nie et al. with large effect sizes for both Hit@QK (i.e., p-values<0.05, 0.33<A<0.52 (large))
and MRRQK (i.e., p-values<0.05, 0.68<A<0.90 (large)) across all three corpora. Thus, the findings above

clearly demonstrate the superiority of our technique over the existing studies on query reformulation.

We also compare our technique with the existing techniques in terms of Query Effectiveness (QE). From
Table 7.14, we see that Nie et al. performs the best with 4K-Corpus whereas Thung et al.-II performs the best
with the remaining two corpora— 256K-Corpus and 769K-Corpus. Nie et al. improves 32% of the baseline
queries whereas Thung et al.-IT improves 43%-49% of the queries. On the contrary, RACK improves 46%
and 62%—64% of the baseline queries in the same contexts. In particular, our technique offers 48% net gain as
opposed to 26% provided by Thung et al.-II which is 87% higher. Thus, RACK clearly has a high potential
for query reformulation than the state-of-the-art. It also should be noted that RACK degrades only 11%-16%
of the queries across all three corpora which suggests the reliability and robustness of the technique. Fig.
7.23 further contrasts the result ranks of RACK with that of the state-of-the-art approaches using box plots.
We see that on average, RACK provides higher ranks, and returns results closer to the top of list than the
competing approaches. For example, Thung et al.-II returns 50% of its first correct results within the Top-8
positions and 75% of them within the Top-96 positions when dealing with extra-large corpus (i.e., 769K-
Corpus). On the contrary, RACK returns such results within Top-5 and Top-42 positions which are 38% and
57% higher respectively. Similar findings can be observed with the remaining two corpora. All these findings

above clearly demonstrate of superiority of our technique in query reformulation over the state-of-the-art.

Summary of RQip: Reformulated queries of RACK retrieve relevant code segments with 19% higher
accuracy and 13% higher reciprocal rank than the state-of-the-art. Furthermore, RACK offers 48% net

improvement in the quality of baseline queries, which is 87% higher than the state-of-the-art counterpart.

178

fe——d—d—%

= | I S e
o a2 & - ~¥ A—a
o XD é?‘;’\ﬁ-lfv o . o h— Ak A—d—
E M Rl e v -
_ /‘/&/%ﬁg =%V « 8 "
— —— — :,!.i.ﬁi-!l
S .| Sl QS P
Qe | [i ¥/ R
v o v
,/ 21/
o (a) < |8 (b)
%"? T T T T T T T 1 T T T T T T
1 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
K K
e ———k—¥—%
— =k
* Y St o
e ¥ a7 ok] e
é %_ e :/J%"’v_v/gfg é * . F’:/:_:"_—‘f‘d—‘
A —_
—% N e = i o
/v a” — 4 p—s—a—amh
59“—:/&/ v/a/&#ﬂf
@ E/ (c) ?3__&/ (d)
I I I I I I I I I I < I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7T 8 9 10
K K
w—%—% @] p—k—k— Rk
= r—% e %
o »*
B =4 —a—s—a—a—s
‘.,.s‘ o g=1
% = _ w o K e~
- * - STV © o /.
@ 97 = v At o
T 2 S SN i *’/ B
= /*/ AT =8t YT R A A—LA—A—A
o B4 =] YN
e} %/ /gf
o e f
< g’ @ sl (A
™ T T T T T T T T T T = T T T I T T T I T T
1 2 3 4 5 6 7 &8 9 10 2 3 4 5 6 7 8 9 10
K K
—#— RACK —%— Thungetal-| =+ Thungetal-l - QECK —&— Zhang et al.

Figure 7.22: Comparison of code retrieval performance with existing techniques using (a,b) 4K-
Corpus, (c,d) 256K-Corpus and (e,f) 756K-Corpus

179

Table 7.14: Comparison of Query Improvements with Existing Techniques

Query Pairs

Improved

Worsened

Net Gain

Preserved

Query Improvement with Small Dataset (4K-Corpus)

Thung et al. [243]-I vs. Baseline 24.00% 11.43% +12.57% 64.57%
Thung et al. [243]-IT vs. Baseline 31.43% 10.86% +20.57% 57.71%
Nie et al. [168] vs. Baseline 32.00% 8.00% +24.00% 60.00%
Zhang et al. [274] vs. Baseline 28.00% 10.29% +17.71% 61.71%
RACK vs. Baseline 46.29% 10.86% +35.43% 42.86%
Query Improvement with Large Dataset (256K-Corpus)
Thung et al. [243]-1 vs. Baseline 37.711% 22.29% +15.42% 40.00%
Thung et al. [243]-1I vs. Baseline | 42.86% 21.14% +21.72% 36.00%
Nie et al. [168| vs. Baseline 41.711% 24.57% +17.14% 33.711%
Zhang et al. [274] vs. Baseline 36.00% 26.86% +9.14% 37.14%
RACK vs. Baseline 61.71% 13.14% +48.57% 25.14%

Query Improvement w

ith Extra-Large Dataset

(769K-Corpus)

Thung et al. [243]-1 vs. Baseline 41.14% 25.71% +15.43% 33.14%
Thung et al. [243]-II vs. Baseline | 48.57% 22.86% +25.71% 28.57%
Nie et al. [168] vs. Baseline 45.71% 24.57% +21.14% 29.71%
Zhang et al. [274] vs. Baseline 41.14% 28.57% 12.57% 30.29%
RACK vs. Baseline 64.00% 16.00% +48.00% 20.00%

Net Gain = Gained improvement of result ranks through query reformulations

180

w0 _-r _-r _-r
! (a) | (b) , (c)
o D_
! — 2 ! S !
1 ! 1 1
1 : 1 1
© i ! i i
w 1 O o _| 1 w o 1
: | £2 91
o 1 ! @ 1] 1
= 1 ! = 1 = 1
=] ! ' T ! =] !
- h
5 : Sed B Sel
oy i | Falil _
] o l] 1
3 = | 3 |
Qa s} I) 1
|
7 R- | 2 |
T T
1 1
1 1
o - —1 —1 o— o -
I I I T I I
QECK RALCK Thung et ak-ll RACK Thung et al-ll RACK

Figure 7.23: Comparison of QE distribution with the state-of-the-art using (a) 4K-Corpus, (b)
256K-Corpus, and (c) 769K-Corpus

7.4.13 Answering RQ;;: How does RACK perform compared to the popular

web search engines and code search engines?

Existing studies [166, 205, 219, 263] report that software developers frequently use general-purpose web search
engines (e.g., Google) for code search. Hence, these search engines are natural candidates for comparison
with our technique. We thus compare our approach with three popular web and code search engines— Google,
Stack Overflow native search and GitHub code search. Unfortunately, we faced several challenges during our
comparison with these commercial search engines. First, results from these search engines frequently change
due to their dynamic indexing. This makes it hard to develop a reliable or stable oracle from their results.
In fact, we found that Top-30 Google results collected for the same query in two different dates (i.e., two
weeks apart) matched only 55%. Second, Google search API [8] was used for our experiments given that GUI
based Google search is not a practical idea for 175 x 2 = 350 queries. However, this paid search API imposes
certain restrictions on the number of APT calls to be made. That is, results for 175 baseline queries and their
reformulated queries could not be collected all at the same time. Given the changing nature of the underlying
corpus, comparison between the results of baseline and reformulated queries could thus not be fair. Third,
these commercial search engines are mostly designed for natural language queries. They also impose certain
restrictions on the query length and query type. Hence, they might either produce poor results or totally fail
to produce any results for our reformulated queries which mostly contain structured keywords (e.g., multiple
API classes). Thus, we found a head-to-head comparison with these commercial search engines infeasible.
Despite the above challenges, we still compare with these engines, and investigate whether our reformulated

queries can improve their search results significantly or not through a post-processing step of their results.

181

Table 7.15: Comparison with Popular Web/Code Search Engines

Technique ‘ Hit@10 ‘ MAP@10 ‘ MRR@10 ‘ NDCGQ@10
Google 100.00% 68.56% 0.82 0.46
RACK¢googie 100.00% 83.71% 0.92 0.67
Stack Overflow | 91.43% 59.54% 0.67 0.43
RACKgso 91.43% 75.27% 0.82 0.62
GitHub 89.71% 55.27% 0.58 0.47
RACKgitgup 90.29% 68.59% 0.74 0.59

Emboldened= Comparatively higher than counterpart

Collection of Search Results and Construction of Oracle: We collect Top-30 results for each query
from each search engine for oracle construction. We make use of Custom Search API® by Google and native
API endpoints by Stack Overflow'® and GitHub'', and collect the search results. Given the large volume
of search results (i.e., 175 x 30 = 5,250), it is impractical to manually analyze them all. Hence, we used
a semi-automated approach in constructing the oracle for these web/code search engines. In particular, we
extract the code segments from each of the result pages using appropriate tools (e.g., Jsoup'?). In the case
of GitHub search results, we use JavaParser'® to extract the method bodies as code segments. Then we
determine their similarity against the original ground truth code that was extracted from tutorial sites in
Section 7.4.1. For this, we use four code similarity algorithms — Cosine similarity [198], Dice similarity [98],
Jaccard similarity [235] and Longest Common Subsequence (LCS) [218]. These algorithms are frequently
used as the baseline for various code clone detection techniques [218, 235]. We collect four normalized code
similarity scores from each result, average them, and then extract the Top-10 results containing the most
relevant code segments. We then manually analyse a few of these results (and their code segments), and
attempt to tweak them with various similarity score thresholds. Unfortunately, score thresholds were not
sufficient enough to construct oracle for all the queries. We thus use these Top-10 results as the oracle for
our web/code search engines.

Comparison between Initial Search Results and Re-ranked Results using the Reformulated
Queries: Once a search engine returns results for natural language (NL) queries, we re-rank them with the
corresponding reformulated queries provided by RACK. We first detect the presence of code segments in
their contents, and then collect Top-10 documents based on their relevance to our reformulated queries (i.e.,
NL keywords + relevant API classes). We compare both the initial and re-ranked results with the oracle
constructed above.

From Table 7.15, we see that our re-ranking approach improves upon the initial results returned by

each of the web and code search engines. The improvements are observed especially in terms of precision,

https://developers.google.com/custom-search
Ohttps://api.stackexchange.com
Hhttps://developer.github.com/v3
2https:/ /jsoup.org/
3https://github.com/javaparser

182

“'\-\D._
. = o [W FF KK —F—F—F|
& e * e LT T —x Ci_*_ ¥
_ —-— | R R~R-R-R-R-F
v/¥*¥Vvvav SYTRT
¥ oo S e—eF 4 % x . v . _Le—e—t—s—e—s—0-—0
© 5% o~ =S¥y Oy -
o S e I —— % i A A
= 1 Y VIVhyeg = +q Y 00w
2 |V emsTtTETe e o [T ettt
o . T .
I3 [en]
. (a) . (b)
T T T | T | | | | |
2 4 6 8 10 2 4 6 8 10
K K
o K F R E—R— K%
ow
o -k/ v—v—v
—._v—'-'-v Y—.—.—.—.
]
@ID.—V
o™ O
8 _
22 ____#:3*_::*:::%---%:::%
(] * ,'f;:: * BN v w
e vV
. e TV V
Q_v_..v"'v (c)
< T T I T T
2 4 6 8 10
K
¥ Google <% Stack Overflow —-*- GitHub
—#— RACKggoge —+ RACKgo —— RACKGitHue

Figure 7.24: Comparison of RACK with popular web/code search engines

reciprocal rank and NDCG. For example, Google achieves 69% precision with a reciprocal rank of 0.82 and
an NDCG of 0.46. However, our approach, RACKggoge achieves 84% precision with a reciprocal rank of
0.92 and an NCCG of 0.67, which are 22%, 12% and 46% higher respectively. That is, although Google
performs high as a general-purpose web search engine, it might not be always precise for code search. Similar
observation is shared by a recent survey [205] that reports that developers need more query reformulations
during code search using the web search engines. GitHub native search achieves 55% precision, a reciprocal
rank of 0.58 and an NDCG of 0.47. On the contrary, our approach, RACK g gup, delivers 69% precision
with a reciprocal rank of 0.74 and an NDCG of 0.62, which are 24%, 28% and 26% higher respectively.
Such findings demonstrate the potential of our reformulated queries. Fig. 7.24 further contrasts between
our approach and the contemporary web/code search engines for Top-1 to Top-10 results. While Google is
the best performer among the three search engines, our re-ranking using RACK outperforms Google with
a significant margin in terms of precision (i.e., WSR, p-value<0.05, A=0.90 (large)), reciprocal rank (i.e.,
WSR, p-value<0.05, A=0.90 (large)) and NDCG (i.e., WSR, p-value<0.05, A=1.00 (large)). Thus, all the
findings above suggest the high potential of our reformulated queries for improving the code search performed
either with web or code search engines. The status quo of Internet-scale code search is far from ideal [205],

and our reformulated queries could benefit the traditional practices.

183

Table 7.16: Comparison among the Traditional Code Search Engines

Serial | Question ‘ Krugle? SearchCodeb‘ GitHub® Codased‘ Snipplr®
Q1 How to send email in Java? N/A 1/5 1/5 N/A 0

Q2 How to calculate MD5 hash for a string? N/A 4/5 5/5 N/A 0

Q3 How to parse HTML in Java? N/A 0/5 1/5 N/A 1/5
Q4 How to parse XML in Java? N/A 5/5 3/5 N/A 1/5
Q5 How to download a file in Java? N/A 1/5 1/5 N/A 1/5

“https://www.krugle.com, "https://searchcode.com, “https://github.com/search, “http://www.codase.com, “https://snipplr.com/search.php

One might also argue about our choice of GitHub code search over the other available code search en-
gines (e.g., SearchCode, Krugle) for the comparison above. However, GitHub'* has been the largest online
codebase with 100 million repositories and 37 million users including the professional developers from the
large companies (e.g., Microsoft, Google). Thus, GitHub is likely to contain a large collection of high quality
code examples that implement numerous programming tasks, which could be leveraged by our approach.
Despite this strong motivation, we conduct an experiment using five sample queries and five traditional code
search engines (Table 7.16). In particular, we select the Top-5 code search engines according to a third-party
survey'®, execute the sample queries against them, and then report our findings. From Table 7.16, we see
that Krugle and Codase accept the queries but fail to return any code segments. They might not be well
calibrated for the free-form search queries. SearchCode was able to retrieve at least one somewhat relevant
code example within the Top-5 results for 4 out of 5 queries. Interestingly, GitHub was able to retrieve
at least one relevant code example for all five queries. Further analysis suggests that GitHub has its own
codebase whereas SearchCode is dependent on GitHub for the results. GitHub also has a well managed API
service which was crucial to our extensive experiment with 250 queries. We needed to make hundreds of API
calls to collect the results against the search queries. In short, GitHub has the largest codebase online, a
native search engine with public API service, and it performs better than the other traditional code search

engines. Thus, our choice of using GitHub for the comparison study above is likely to be justified.

Summary of RQ;i;: Developers face difficulties in the code search while using contemporary web or code
search engines (e.g., Google). Our technique can significantly improve their result ranks with the help of our
reformulated queries that contain relevant API classes. In particular, RACK can improve upon the precision
of Google in the code search by 22%, which is promising. Our choice about web/code search engines for the

comparison using experiments is also likely to be justified.

Mhttps://en.wikipedia.org/wiki/GitHub
S https://wparena.com/top-source-code-search-engines/

184

7.5 Threats to Validity

We identify a few threats to the validity of our findings. While we attempt to mitigate most of them using
appropriate measures, the remaining ones should be addressed in future work. Our identified threats and

their mitigation details are discussed as follows:

7.5.1 Threats to Internal Validity

They relate to experimental errors and biases [272]. We develop a gold set for each query by analysing the
code examples and the discussions from tutorial sites which might involve some subjectivity. However, each
of the examples is a working solution to the corresponding task (i.e., NL-query), and they are frequently
consulted. Thus, the gold set development using sample code from the tutorial sites is probably a more
objective evaluation approach than human judgements of API relevance or code relevance that introduce
more subjective bias [63]. According to the exploratory findings (Section 7.2.4), our technique might be
effective only for the recommendation of popular and frequently used API classes. Since fully qualified names
are mostly missing in Stack Overflow texts, third-party APIs similar to Java APT classes could also have been
mistakenly considered despite the fact that questions and answers selected for the study were tagged with
<java> tag.

We use a dataset of 175 queries and a popular code search engine—Apache Lucene [98]—for determining their
retrieval performance across three corpora of varying sizes. For the sake of simplicity, only one code segment
was considered as relevant for each query. However, in practice, there could be multiple code segments in
the corpus that are relevant to a given query. In this work, we trade such perfection with transparency and
objectivity in our evaluation and validation.

During code or web search, developers generally choose the most appropriate keywords when a list of
auto-generated suggestions are provided. We re-enact such behaviour of the developers by choosing only
goldset API classes from within the suggested list, and use them for query reformulation. Such choice might
have favoured the code retrieval performance of our queries. However, the same approach was carefully
followed for all the existing techniques under study [168, 243, 274]. Thus, they received the same treatment
in the performance evaluation as ours. Furthermore, the validation results (i.e., RQio) clearly report the
superiority of our suggested queries over their counterparts from the existing techniques. Our investigation

using the three contemporary web/code search engines also has drawn a similar conclusion for RACK (i.e.,

RQ11).

7.5.2 Threats to External Validity

They relate to the generalizablity of a technique. So far, we experimented using API classes from only
standard Java libraries. However, since our technique mainly exploits co-occurrence between keywords and

APIs, the technique can be easily adapted for API recommendation in other programming domains. Since

185

popularity of a programming language or change proneness of an API [140] has a significant role in triggering
discussions at Stack Overflow which are mined by us, RACK could be effective for popular languages (e.g.,

Java, C#) but comparatively less effective for non-popular or less used languages (e.g., Erlang).

7.5.3 Threats to Construct Validity

Construct validity relates to suitability of evaluation metrics. Our work is aligned to both recommendation
system and information retrieval domains. We use Hit@QK and Reciprocal Rank which are widely used for
evaluating recommendation systems [239, 243]. The remaining two metrics are well known in information
retrieval, and are also frequently used by studies [63, 152, 243] relevant to our work. This confirms no or

little threat to construct validity.

7.5.4 Threats to Statistical Conclusion Validity

Conclusion validity concerns the relationship between treatment and outcome [140]. We answer 11 research
questions in this work, and collect our data from publicly available, popular programming Q & A and tutorial
sites. In order to answer these questions, we use non-parametric tests for statistical significance (e.g., Mann-
Whitney Wilcoxon, Wilcoxon Signed Rank), effect size analysis (e.g., Cliff’s delta) and confidence interval
analysis. We apply these tests to our experiments opportunistically and report the detailed test results (e.g.,

p-values, Cliff’s delta). Thus, threats to the statistical conclusion validity might be mitigated.

7.6 Related Work

Our work is aligned with three research topics—(1) API/API usage recommendation, (2) query reformulation
for code search, and (3) crowdsourced knowledge mining. In this section, we discuss existing studies from

the literature of each of these research topics, and compare or contrast our work with them.

7.6.1 API Recommendation

Existing studies on API recommendation accept one or more natural language queries, and recommend
relevant APT classes and methods by analysing code surfing behaviour of the developers and APT invocation
chains [152], API dependency graphs [63], feature request history or API documentations [243], and library
usage patterns [242]. McMillan et al. [152] first propose Portfolio that recommends relevant API methods for
a code search query by employing natural language processing, indexing and graph-based algorithms (e.g.,
PageRank [57]). Chan et al. [63] improve upon Portfolio, and return a connected sub-graph containing the
most relevant APIs by employing further sophisticated graph-mining and textual similarity techniques. Gvero
and Kuncak [92] accept a free-form NL-query, and return a list of relevant method signatures by employing
natural language processing and statistical language modelling on the source code. A few studies offer NL

interfaces for searching relevant program elements from the project source [124] or relevant artefacts from

186

the project management repository [138]. Thung et al. [243] recommend relevant API methods to assist the
implementation of an incoming feature request by analysing request history and textual similarity between
API details and the request texts. In short, each of these relevant studies above analyse lexical similarity
between a query and the signature or documentation of the API for finding out candidate APIs. Such
approaches might not be always effective and might face vocabulary mismatch issues given that choice of
query keywords could be highly subjective [83]. On the other hand, we exploit three co-occurrence heuristics
that are derived from crowdsourced knowledge, and they are found to be more effective in the selection
of candidate API classes. Co-occurrence heuristics overcome the vocabulary mismatch issues [83, 95], and
provide a generic, both language and project independent solution. Besides, we exploit the expertise of a
large crowd of technical users stored in Stack Overflow for API recommendation which none of the earlier
relevant studies did. Zhang et al. [274] determine semantic distance between NL keywords and API classes
using a neural network model (CBOW), and suggest relevant API classes for a generic NL query intended
for code search. They collect their API classes from the OSS projects whereas ours are collected from Stack
Overflow, the largest programming Q & A site on the web. Their work is closely related to ours. We compare
with two variants of Thung et al. and Zhang et al., and readers are referred to Sections 7.4.10, 7.4.12 for the
detailed comparison. Since Thung et al. outperform Chan et al. as reported [243], we compared with Thung

et al. for our validation.

7.6.2 API Usage Pattern Recommendation

Thummalapenta and Xie [240] propose Parse Web that takes in a source object type and a destination object
type, and returns a sequence of method invocations that serve as a solution that yields the destination object
from the source object. Xie and Pei [264] take a query that describes the method or class of an API, and
recommends a frequent sequence of method invocations for the API by analysing hundreds of open source
projects. Warr and Robillard [254] recommend a set of API methods that are relevant to a target method
by analysing the structural dependencies between the two sets. Each of these techniques is relevant to our
work since they recommend API methods. However, they operate on structured queries rather than natural
language queries, and thus comparing ours with theirs is not feasible. Of course, we introduced three heuristics
and exploited crowd knowledge for API recommendation, which were not considered by any of these existing

techniques. This makes our contribution significantly different from all of them.

7.6.3 Query Reformulation for Code Search

There have been a number of studies on query reformulation that target either project-specific code search
(e.g., concept/feature location [84, 95, 98, 104, 109, 121, 188, 191, 265], bug localization [65, 231]) or general-
purpose code search [92, 136, 168]. Gay et al. [84] first propose “relevance feedback" based model for query
reformulation in the context of concept location. Once the initial query retrieves search results, a developer

is expected to mark them as either relevant or irrelevant. Then their model analyses these marked source

187

documents, and expands the initial query using Rocchio expansion [213]. Although developer feedbacks
on document relevance are effective, collecting them is time consuming and sometimes infeasible as well.
Therefore, latter studies came up with a less efficient but feasible alternative—pseudo relevance feedback— for
query reformulation where they consider only Top-K search results (retrieved by the initial query) as the
relevant ones. Then they apply term weighting [120, 191, 213], term context analysis [104, 109, 231, 265],
query quality analysis [95, 98], and machine learning [98] to reformulate a given query for concept/feature
location. Our work falls into the category of general purpose code search. Relevance feedback models were
also adopted in this case for query reformulation. Wang et al. [251] incorporate developer feedback in the
code search, and improve result ranking. Nie et al. [168] employ Stack Overflow as the provider of relevance
feedback on the initial query, and then reformulate it using Rocchio expansion. Although we do not apply
relevance feedback for query reformulation, the work of Nie et al. is not only closely related to ours but also
relatively more recent. Another closely related recent work by Zhang et al. [274] leverages semantic distance
between NL keywords and API classes, and then expands the NL queries using semantically relevant API
classes for code search. We thus compare our technique with three techniques above [168, 243, 274], and
the detailed comparison can be found in RQo. Li et al. [136] develop a lexical database by using software-
specific tags from Stack Overflow questions, and reformulate a given query using synonymy substitution.
However, their approach searches for relevant software projects rather than source code segments. Campbell
and Treude [58] mine titles from Stack Overflow questions, and suggest automatic expansion to the initial
query in the form of auto-completion. However, this approach also relies on textual similarity between initial
query and the expanded query, and thus, is subject to the vocabulary mismatch issues. On the contrary,
we overcome such issues using three co-occurrence based heuristics. Besides, their approach is constrained
by a fixed set of predefined queries from Stack Overflow questions, and thus, might not help much in the

formulation of custom queries. RACK does not impose such restrictions on query formulation.

7.6.4 Crowdsourced Knowledge Mining

Existing studies [136, 168, 176, 188, 229, 272| leverage crowd generated knowledge to support several search
related activities performed by the developers. Yuan et al. [272] first used programming questions and
answers from Stack Overflow to identify semantically similar software specific word pairs. They first construct
context of each word by collecting co-occurred words from Stack Overflow questions, answers and tags. Then
they determine the semantic similarity between a pair of NL words based on the overlap between their
corresponding contexts. Such word pairs might help in addressing the vocabulary mismatch issues with web
search. However, they might not help much with code search given that source code and regular texts often
hold different semantics for the same word [45, 265]. Wong et al. [259] mine developer’s descriptions of the
code snippets from Stack Overflow answers, and suggest them as comments for similar code segments. Rigby
and Robillard [211] mine posts from Stack Overflow, and extract salient program elements using regular

expressions and machine learning. Along the same line with the earlier studies, we mine Stack Overflow

188

questions and answers to reformulate a given natural language query for code search. While our work is related
to earlier studies [136, 168], it is also significantly different in many ways. First, we suggest relevant API
classes for a NL-query by considering keyword-API co-occurrences whereas Nie et al. suggest mostly natural
language terms as query expansions by employing pseudo-relevance feedback. Li et al. [136] reformulate
queries using crowd wisdom from Stack Overflow for searching open source projects whereas our queries are
targeted for more granular software artefacts, e.g., source code snippets. Furthermore, we suggest relevant
API classes in contrast with synonymous NL tags by Li et al., which are more appropriate and effective for
code search [45]. Another contemporary work [229] uses all program artifacts indiscriminately from Stack
Overflow posts for expanding code search queries which could be noisy. On the contrary, we leverage co-
occurrences between NL keywords (in the question title) and API classes (in the accepted answer) as a proxy
to their relevance, and choose appropriate API classes only for our query reformulation.

Our work in this article also significantly extends our earlier work [201] in various aspects. We improve
earlier heuristics by extensively calibrating their weights and thresholds, and introduce a novel heuristic—
Keyword Pair API Co-occurrence— that performs better than the earlier ones. We conduct experiments with
a relatively larger dataset containing 175 distinct queries, and further evaluate them in terms of relevant code
retrieval performance which was missing in the earlier work. We not only compare with several state-of-the-
art studies but also demonstrate RACK’s potential for application in the context of traditional web/code
search practices. Furthermore, we extend our earlier analysis and answer 11 research questions as opposed

to seven questions answered by the earlier work.

7.7 Summary

Software developers often search for relevant code examples on the web [55], and reuse them in various
software maintenance tasks (e.g., new feature addition). As in the local code searches (e.g., bug localization,
concept location), appropriate query construction is also a major challenge in the Internet-scale code search
[45]. We propose a novel query reformulation technique ~RACK- that accepts a generic query, expands
the query with relevant APT classes carefully mined from Stack Overflow, and then delivers an improved,
reformulated query for Internet-scale code search. Experiments using 175 queries from three tutorial sites
show that our reformulated queries (using relevant API classes) can significantly improve upon the given
queries in terms of code retrieval performance. Comparison with the state-of-the-art approaches shows
that our approach outperforms them in the query reformulation by a significant margin. Furthermore, our
technique is generic, project independent, and it exploits invaluable crowd generated knowledge from Stack
Overflow for automated query reformulation.

Despite these positive instances above, RACK bears the risk of hurting a given search query with noisy
or false-positive API classes. The implicit association between the query keywords and the API classes is
an effective proxy to their relevance. However, such a proxy overlooks the underlying semantics of both

the keywords and the API classes, which could be a crucial factor. In the next chapter, our sixth study

189

(NLP2API, Chapter 8) overcomes this issue. NLP2APT accepts a programming task description as a query,
reformulates the query with relevant API classes that are determined based on the underlying semantics

of both the query keywords and the API classes, and then delivers an improved, reformulated query for

Internet-scale code search.

190

CHAPTER 8
SEARCH QUERY REFORMULATION FOR INTERNET-SCALE CODE

SEARCH USING WORD SEMANTICS

Software maintenance costs a major part of the development time and efforts [88]. Software developers
often search for relevant code examples on the web [55], and reuse them in various maintenance tasks (e.g.,
new feature addition). As in the local code searches (e.g., bug localization, concept location), appropriate
query construction is also a major challenge in the Internet-scale code search. Our previous study (RACK,
Chapter 7) leverages the implicit association between query keywords and API classes within Stack Overflow
Q&A threads as a proxy to their relevance. Although such an association was found reliable as a proxy to
relevance (Section 7.4), the underlying semantics of both the keywords and the candidate API classes were
overlooked, which could be a crucial factor. In this chapter, we address this issue with another study. Here,
we present NLP2API that accepts a programming task description as a query, reformulates the query with
relevant API classes by leveraging query—API semantic distance and by mining crowd knowledge from Stack
Overflow, and then delivers an improved, reformulated search for Internet-scale code search.

The rest of the chapter is organized as follows— Section 8.1 presents an overview of our study, and Section
8.2 discusses our proposed technique for automatic query reformulation for Internet-scale code search. Section
8.3 discusses our evaluation and validation details, Section 8.4 focuses on the threats to validity, Section 8.5

discusses the related work, and finally Section 8.6 concludes the chapter with future work.

8.1 Introduction

Software developers spend about 19% of their development time in searching for relevant code snippets (e.g.,
APT usage examples) on the web [55, 263]. Although open source software repositories (e.g., GitHub, Source-
Forge) are a great source of such code snippets, retrieving them is a major challenge [44]. Developers often
use traditional code search engines (e.g., GitHub native search) to collect code snippets from such reposi-
tories using generic natural language queries [45]. Unfortunately, such queries hardly lead to any relevant
results (i.e., only 12% [45]) due to vocabulary mismatch issues [83, 142]. Hence, the developers frequently
reformulate their queries by removing irrelevant keywords and by adding more appropriate keywords. Studies
[45, 120, 219] have shown that 33%-73% of all the queries are incrementally reformulated by the developers.

These manual reformulations involve numerous trials and errors, and often cost significant development time

191

and efforts [120]. One way to help the developers overcome this challenge is to automatically reformulate
their generic queries (which are often poorly designed [120, 142]) with meaningful query keywords such as rel-
evant APT classes. Our work in the chapter addresses this particular research problem — query reformulation

targeting Internet-scale code search.

Several existing studies offer automatic query reformulation supports for Internet-scale code search using
either actual or pseudo relevance feedback on the query [168, 251] and by mining crowd generated knowledge
stored in Stack Overflow programming Q & A site [136, 168, 201]. Nie et al. [168] collect pseudo-relevance
feedback (PRF) on a given query by employing Stack Overflow as a feedback provider, and then suggest
query expansion by analysing the feedback documents, i.e., relevant programming questions and answers.
However, they treat the Q & A threads as regular texts, and suggest natural language (i.e., software-specific)
terms as query expansion. Existing evidence suggests that queries containing only natural language terms
perform poorly in code search [45]. Rahman et al. [201] mine co-occurrences between query keywords (found
in the question titles) and API classes (found in the answers) of Stack Overflow, apply two heuristics, and
then suggest a set of relevant API classes for a given query. Unfortunately, their heuristics heavily rely on
the association between the query keywords and the candidate APT classes for relevance estimation, which
might always not be sufficient enough. In particular, such heuristics bear the risk of returning the generic,

frequent but less-relevant API classes (e.g., String, ArrayList, List) if appropriate filters are not used.

In this chapter, we propose a novel technique-NLP2API-that automatically identifies relevant API classes
for a programming task written as a natural language query, and then reformulates the query using these
API classes for Internet-scale code search. We first (1) collect candidate API classes for a query from
relevant questions and answers of Stack Overflow (i.e., crowdsourced knowledge) (Section 8.2.1), and then (2)
identify appropriate classes from the candidates using Borda count (Section 8.2.2) and query-API semantic
proximity (i.e., word semantics) (Section 8.2.3). In particular, we determine semantics of either a keyword
or an API class based on their positions within a high dimensional semantic space developed by fastText
[54] using 1.40 million questions and answers of Stack Overflow. Then we estimate the relevance of the
candidate APIT class to the search query using their semantic proximity measure. Earlier approaches only
perform either local context analysis [168, 251] or global context analysis [134, 144, 201]. On the contrary,
our technique analyses both local (e.g., PageRank [57]) and global (e.g., semantic proximity) contexts of the
query keywords for relevant API class identification and query reformulation. Thus, NLP2API has a higher
potential for query reformulation. Besides, opportunistic blending of pseudo-relevance feedback [62, 222],

term weighting methods [57, 114], Borda count [275] and word semantics [54] also makes our work novel.

Table 1 and Fig. 8.1 present a use-case scenario of our technique where a developer is looking for a
working code snippet that can convert a colour image to grayscale without losing transparency. First, the
developer issues a generic query—“Convert image to grayscale without losing transparency”. Then she submits
it to Lucene, a search engine that is widely used both by contemporary code search solutions such as GitHub

native search [10] or ElasticSearch and by academic studies [98, 164, 191]. Unfortunately, the generic natural

192

BufferedImage master = ImagelO.read (new URL (

"http://www. javaZs.com/style/download.png"));
BufferedImage gray = new BufferedImage (master.getWidth(),
master.getHeight (), BufferedImage.TYPE_INT_ARGRE);

ColorConvertOp op = new ColorConvertOp (
ColorSpace.getInstance (ColorSpace.CS_GRAY), null);
op.filter (master, gray);

ImageI0.write (master, "png",new File ("path/to/master"));
ImageIO.write(gray, "png", new File("path/to/gray/image"));

Figure 8.1: An example code snippet for the programming task— “Convert image to grayscale without
losing transparency"” — (taken from [9])

Table 8.1: Reformulations of an NL Query for Improved Internet-scale Code Search

Technique | Reformulated Query QE

Baseline Convert image to grayscale without losing transparency 115

QECK [168] | {Convert image grayscale losing transparency} + {hsb pixelsByte png iArray | 11

img correctly HSB mountainMap enhancedImagePixels file}

Google Convert image to grayscale without losing transparency 02

Proposed {Convert image grayscale losing transparency} + {BufferedImage | 02

Grayscale ImageEdit ColorConvertOp File Transparency ColorSpace

BufferedImageOp Graphics ImageEffects}

QE = Rank of the first correct result returned by the query

language query does not perform well due to vocabulary mismatch between its keywords and the source
code, and returns the relevant code snippet (e.g., Fig. 8.1) at the 115" position. On the contrary, (1) our
proposed technique complements this query with not only relevant, but also highly specific API classes (e.g.,
BufferedImage, ColorConvert0Op, ColorSpace), and (2) our improved query returns the target code snippet
at the second position of the ranked list which is a major rank improvement over the baseline. The most

recent and closely related technique-QECK [168] returns the same code snippet at the 11t"

position which is
not ideal. Google, the most popular web search engine, returns a similar code at the second position as well.
However, in the case of web search, relevant code snippets are sporadic and often buried into a large bulk of
unstructured, noisy and redundant natural language texts across multiple web pages which might overwhelm

the developer with information overload [151].

Experiments using 310 code search queries randomly collected from four Java tutorial sites—KodeJava,
Java2s, CodeJava and JavaDB-report that our technique can suggest relevant API classes with 82% Top-10
Accuracy, 48% precision, 58% recall and a reciprocal rank of 0.55 which are 6%, 32%, 48% and 41% higher
respectively than those of the state-of-the-art [201]. Comparisons with three state-of-the-art studies and
three popular code (or web) search engines — Google, Stack Overflow native search and GitHub native search

— reported that our technique (1) can outperform the existing studies [168, 201, 229] in query effectiveness

193

Initial natural Preprocessed PageRank (5, didate API Borda score

language query query Lucene PRF @ ¥ classes calculator

A6 ©

©)

—

v = Bord

, Preprocessing B TF-IDF @ ® orda score

R\ [N N . Query-API Ve
fastText @

@ El & ﬁ _ proximity O

Score

Reformulated . : Skiperam
Questions & & A thread ipgr
query answers Q corpu Sr e Word2Vec model accumulator
Relevant API classes APT relevance ranking»_.|l|

Figure 8.2: Schematic diagram of the proposed query reformulation technique-NLP2API

and (2) can improve upon the precision of these search engines by 17%, 34% and 33% respectively using our

reformulated queries. Thus, our work makes the following contributions:

(a) A novel query reformulation technique -NLP2API- that reformulates generic natural language queries
for Internet-scale code search using word semantics and crowd knowledge derived from Stack Overflow.

(b) Comprehensive evaluation of the proposed technique using 310 queries and validation against the state-
of-the-art techniques and widely used web/code search engines.

(c) A replication package that includes our working prototype and the detailed experimental dataset [18].

8.2 NLP2API: Automated Query Reformulation using Word Se-

mantics & Crowd Knowledge for Internet-scale Code Search

Fig. 8.2 shows the schematic diagram of our proposed technique for the reformulation of a generic query
targeting Internet-scale code search. Furthermore, Algorithm 9 shows the pseudo-code of our technique. We
make use of pseudo-relevance feedback (PRF), crowd generated knowledge stored at Stack Overflow, two

term weighting algorithms, and word semantics for our query reformulation as follows:

8.2.1 Development of Candidate API Lists

We collect candidate API classes from Stack Overflow Q & A site to reformulate a generic query (i.e., Fig.
8.2, Steps la, 1b, 2-7). Stack Overflow is a large body of crowd knowledge with 14 million questions and 22
million answers across multiple programming languages and domains [58]. Hence, it might contain at least
a few questions and answers related to any programming task at hand. Earlier studies from the literature
[58, 136, 168] also strongly support this conjecture. Given that relevant program elements are a better choice
than generic natural language terms for code search [45], we collect API classes as candidates for query

reformulation by mining the programming Q & A threads of Stack Overflow.

194

Corpus Preparation: We collect a total of 656,538 Q & A threads related to Java (i.e., using <java>
tag) from Stack Overflow for corpus preparation (Fig. 8.2, Steps la, 1b, Algorithm 9, Line 3). We use the
public data dump [35] released on March 2018 for data collection. Since we are mostly interested in the API
classes discussed in the Q & A texts, we adopt certain restrictions. First, we make sure that each question or
answer contains a bit of code, i.e., the thread is about coding. For this, we check the existence of <code> tags
in their texts like the earlier studies [76, 80, 177, 198]. Second, to ensure high quality content, we chose only
such Q & A threads where the answer was accepted as solution by the person who submitted the question
[168, 201]. Once the Q & A threads are collected, we perform standard natural language preprocessing (i.e.,
removal of stop words, punctuation marks and programming keywords, token splitting) on each thread, and
normalize their contents. Given the controversial evidence on the impact of stemming on source code [106],
we avoid stemming on these threads given that they contain code segments. Our corpus is then indexed using
Lucene, a widely used search engine by the literature [98, 164, 191], and later used for collecting feedbacks

on a generic natural language query.

Pseudo-Relevance Feedback (PRF) on the NL Query: Nie et al. [168] first employ Stack Overflow
in collecting pseudo-relevance feedback on a given query. Their idea was to extract software-specific words
relevant to a given query, and then to use them for query reformulation. Similarly, we also collect pseudo-
relevance feedback on the query using Stack Overflow. We first normalize a natural language query using
standard natural language preprocessing (i.e., stopword removal, token splitting), and then use it to retrieve
Top-M (e.g., M = 35, check RQ for detailed justification) Q & A threads from the above corpus with
Lucene search engine (i.e., Fig. 8.2, Steps 2-4, Algorithm 9, Lines 4-8). The baseline idea is to extract
appropriate API classes from them using appropriate selection methods [139], and then, to use them for
query reformulation. We thus extract the program elements (e.g., code segments, API classes) from each of
the threads by analysing their HTML contents. We use Jsoup [14], a Java library for the HTML scraping.
We also develop two separate sets of code segments from the questions and answers of the feedback threads.
Then we use two widely used term-weighting methods — TF-IDF and PageRank— for collecting candidate API

classes from them.

API Class Weight Estimation with TF-IDF: Existing studies [84, 98, 168] often apply Rocchio’s
method [213] for query reformulation where they use TF-IDF to select appropriate expansion terms. Similarly,
we adopt TF-IDF for selecting potential reformulation candidates from the code segments that were collected
above. In particular, we extract all AP classes from each code segment (i.e., feedback document) with the
help of island parsing (i.e., uses regular expressions) [211], and then determine their relative weight (i.e., Fig.

8.2, Step 5, Algorithm 9, Lines 11-12) as follows:

TF — IDF(A;) = (1 +log(TFy,)) x log(1 + %) (8.1)

195

BufferedImage
ColorConvertOp

Figure 8.3: API co-occurrence graph for code segment in Fig. 8.1

Here T'F 4, refers to total occurrence frequency of an API class A; in the collected code segments, N refers
to total Q & A threads in the corpus, and DFj, is the number of threads that mentioned API class A; in

their texts or code segments.

API Class Weight Estimation with PageRank: Semantics of a term are often determined by its
contexts, i.e., surrounding terms [268, 272]. Hence, inter-dependence of terms is an important factor in the
estimation of term weight. However, TF-IDF assumes term independence (i.e., ignores term contexts) in the
weight estimation. Hence, it might fail to identify highly important but not so frequent terms from a body of
texts [153, 189]. We thus employ another term weighting method that considers dependencies among terms
in the weight estimation. In particular, we apply PageRank algorithm [57, 153] to the relevance feedback

documents, i.e., relevant code segments, and identify the important API classes as follows:

Construction of API Co-occurrence Graph: Since PageRank algorithm operates on a graph-based struc-
ture, we transform pseudo-relevance feedback documents into a graph of API classes (i.e., Fig. 8.2, Step 6,
Algorithm 9, Line 13). In particular, we extract all API classes from each code segment using island parsing
[211], and then develop an ordered list by preserving their initialization order in the code. For example,
the code snippet in Fig. 8.1 is converted into a list of six API classes. Co-occurrences of items in a certain
context has long been considered as an indication of relatedness among the items [153, 272]. We thus capture
the immediate co-occurrences of API classes in the above list, consider such co-occurrences as connecting
edges, and then develop an API co-occurrence graph (e.g., Fig. 8.3). We repeat the same step for each of
the code segments, and update the connectivities in the graph. We develop one graph for the code segments
from questions and another graph for the code segments from answers which were returned as a part of the

pseudo-relevance feedback.

API Class Rank Calculation: PageRank has been widely used for web link analysis [57] and term weighting
in Information Retrieval domain [153]. It applies the underlying mechanism of recommendation or voting
for determining importance of an item (e.g., web page, term) [191]. That is, PageRank considers a node
as important only if it is recommended (i.e., connected to) by other important nodes in the graph. The
same idea has been widely used for separating legitimate pages from spam pages [169]. Similarly, in our
problem context, if an APT class co-occurs with other important APT classes across multiple code segments
that are relevant to a programming task, then this API class is also considered to be important for the task.

We apply PageRank algorithm on each of the two graphs (i.e., Fig. 8.2, Step 6, Algorithm 9, Line 14),

196

and determine the importance ACR(v;) (i.e., API Class Rank) of each node v; by recursively applying the

following equation:

ACR;) (<4< 1) (8.2)

ACR(wi)=(1—-¢)+¢ > Outio)] ©<
J

jeIn(v;)

Here, In(v;) refers to nodes providing inbound links (i.e., votes) to node v; whereas Out(v;) refers to nodes
that v; is connected to through outbound links, and ¢ is the damping factor. In the context of world wide
web, Brin and Page [57] considered ¢ as the probability of visiting a web page and 1 — ¢ as the probability
of jumping off the page by a random surfer. We use a value ¢ = 0.85 for our work like the previous studies
[57, 153, 189]. We initialize each node with a score of 0.25, and run an iterative version of PageRank on the
graph. The algorithm pulls out weights from the surrounding nodes recursively, and updates the weight of a
target node. This recursive process continues until the scores of the nodes converge below a certain threshold
(e.g., 0.0001 [153]) or total iteration count reaches the maximum (e.g., 100 [153]). Once the computation is
over, each node (i.e., API class) is left with a score which is considered as a numerical proxy to its relative
importance among all nodes.

Selection of Candidate API Classes: Once two weights “TF-IDF and PageRank- of each of the
potential candidates are calculated, we rank the candidates according to their weights. Then we select Top-N
(e.g., N = 16, check RQ; for justification) API classes from each of the four lists (i.e., two lists for each term
weight, Fig. 8.2, Step 7, Algorithm 9, Lines 9-16). In Stack Overflow Q & A site, a question often describes
a programming problem (or a task) whereas the answer offers a solution. Thus, APT classes involved with
the problem and API classes forming the solution should be treated differently for identifying the relevant
and specific API classes for the task. We leverage this inherent differences of context and semantics between
questions and answers, and treat their code segments separately unlike the earlier study of Nie et al. [168]

that overlooks such differences.

8.2.2 Borda Score Calculation

Borda count is a widely used election method where the voters sort their political candidates on a scale of
preference [3, 275]. In the context of Software Engineering, Holmes and Murphy [107] first apply Borda count
to recommend relevant code examples for the code under development in the IDE. They apply this method to
six ranked list of code examples collected using six structural heuristics, and then suggest the most frequent
examples across these lists as the most relevant ones. Similarly, we apply this method to our four candidate
API lists (i.e., Fig. 8.2, Step 8, Algorithm 9, Lines 22-23) where each of the API classes are ranked based
on their importance estimates (e.g., TF-IDF, API Class Rank). We calculate Borda score S for each of the
API classes (VA; € A) from the these ranked candidate lists-WRC = {WCq, WC4, RCq, RC 4 }-as follows:

197

Algorithm 9 Automated Query Reformulation using Relevant APT Classes

1: procedure NLP2API(Q)

2:

3:

4:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

R+ {}

C' +developQ&ACorpus(SODump)

Qpp <preprocess(Q)

> collecting pseudo-relevance feedback

PRF +getPRF(Qpp, C)

PRFg + getQuestionCodeSegments(PRF)
PRFy < getAnswerCodeSegments(PRE)

> collecting candidate APT list

for PRF prf € {PRFg, PRF,} do

TW <-calculate TFIDF (pr f, C)

WClprf] <—getTopK Weighted Classes(T'W)
G +developAPICo-occurrenceGraph(pr f)
ACR <calculateAPIClassRank(G)
RC'pr f] <—getTopKRankedClasses(ACR)

end for

> training the fastText model

My <getFastTextModel(preprocess(SODump))

> API relevance estimation

A +getAllCandidateAPIClasses(RC U W C)

for CandidateAPIClass A; € A do

> calculate Borda score

SplA;i] < getBordaScore(4;, RC,W(C')

> semantic relevance between API class and query
Sp[A;] + getQuery-APIProximity(A;, Qpp, Myt)
R[A;].score + Sp[A;] + Sp[Ai]

end for

> ranking of the API classes
rankedClasses < sortByFinalScore(R)
> reformulation of the initial query

return Q,, + rankedClasses

: end procedure

> @: natural language query
> R: Relevant APT classes
> C: SO corpus

198

rank(A;, RL;
RL;EWRC J

Here, A refers to the set of all API classes extracted from the ranked candidate lists -W RC, |RL;| denotes
each list size, and rank(A;, RL;) returns the rank of class A; in the ranked list. Thus, an API class that
occurs at the top positions in multiple candidate lists is likely to be more important for a target programming

task than the ones that either occurs at the lower positions or does not occur in multiple lists.

8.2.3 Query-API Semantic Proximity Analysis

Pseudo-relevance feedback, PageRank (Section 8.2.1) and Borda count (Section 8.2.2) analyse local contexts
of the query keywords within a set of tentatively relevant documents (i.e., Q & A threads) and then extract
candidate API classes for query reformulation. Although local context analysis is useful, existing studies
report that such analysis alone might cause topic drift from the original query [62, 136]. We thus further
analyse global contexts of the query keywords, and determine the semantic proximity between the given
natural language query and the candidate API classes as follows:

Word2Vec Model Development: Mikolov et al. [156] and colleagues propose a neural network based
tool-word2vec—for learning word embeddings from an ultra-large body of texts where they employ continuous
bag of words (CBOW) and skip-gram models. While other studies attempt to define context of a word using
co-occurrence frequencies or TF-IDF [150, 201, 272], they offer a probabilistic representation of the context.
In particular, they learn word embeddings (Section 2.7) for each of the words from the corpus, and map each
word to a point in the semantic space so that semantically similar words appear in the close proximity. We
leverage this notion of semantic proximity, and determine the relevance of a candidate API class to the given
query. It should be noted that such proximity measure could be an effective tool to overcome the vocabulary
mismatch issues [83]. We thus develop a word2vec model where 1.3 million programming questions and
answers (i.e., 656,538 Q & A pairs, collected in Section 8.2.1) are employed as the corpus. We normalize
each question and answer using standard natural language preprocessing, and learn the word embeddings
(Fig. 8.2, Step 1b, 1c, 1d, Algorithm 9, Lines 17-18) using skip-gram model. For our learning, we use
fastTexat [54], an improved version of word2vec that incorporates sub-word information into the model. We
performed the learning offline and it took about one hour. It should be noted that our model is learned using
default parameters (e.g., output vector size = 100, context window size = 5, minimum word occurrences =
5) provided by the tool.

Semantic Relevance Estimation: While a given query contains multiple keywords, a candidate API
class might not be semantically close to all of them. We thus capture the maximum proximity estimate
between an API class and any of the query keywords as the relevance estimate of the class. In particular, we

collect word embeddings (i.e., a vector of 100 real valued estimates of the contexts) of each candidate API

199

class A; € A and each keyword ¢ € @, and determine their semantic proximity Sp using cosine similarity

(i.e., Fig. 8.2, Step 9, Algorithm 9, Lines 24-25) as follows:

Sp(Ai € A) ={f(Ai,q) | f(Ai,q) > f(Ai,)V € Q} (8.4)

f(4;,q) = cosine(fastText(A;), fastText(q)) (8.5)

Here fastText(.) returns the learned word embeddings of either a query keyword or an API class, and
f(A;, q) returns the cosine similarity between their word embeddings. We use print-word-vectors option

of fastText, and collect the word embeddings from our learned model on Stack Overflow.

8.2.4 API Class Relevance Ranking & Query Reformulation

Once Borda score Sp and semantic proximity score Sp are calculated, we normalize both scores between 0 and
1, and then sum them up using a linear combination (i.e., Line 26, Algorithm 9) for each of the candidate API
classes. While fine tuned relative weight estimation for these two scores could have been a better approach,
we keep that as a part of future work. Besides, equal weights also reported pretty good results (e.g., 82%
Top-10 accuracy) according to our investigation. The API classes are then ranked according to their final
scores, and Top-K (e.g., K = 10) classes are suggested as the relevant classes for the programming task
stated as a generic query (i.e., Fig. 8.2, Steps 10-12, Algorithm 9, Lines 19-29). These API classes are then
appended to the given query as reformulations [98] (i.e., Fig. 8.2, Steps 13, Algorithm 9, Lines 30-31). Table
8.1 shows our reformulated query for the showcase natural language query using the relevant API classes

suggested by NLP2API.

8.3 Experiment

We conduct experiments with 310 code search queries randomly collected from four popular programming
tutorial sites, and evaluate our query reformulation technique. We choose five appropriate performance
metrics from the literature, and evaluate two aspects of our provided supports-(1) relevant API class sugges-
tion and (2) query reformulation. Our technique is also validated against three state-of-the-art techniques
[168, 201, 229] and three popular code/web search engines including Google. We thus answer five research
question using our experiments as follows:
e RQ;: How does NLP2API perform in recommending relevant API classes for a given query? How do
different parameters and thresholds influence the performance?
e RQ>: Can NLP2API outperform the state-of-the-art technique on relevant APIT class suggestion for a
query?

e RQg3: Can the reformulated queries of NLP2API outperform the baseline natural language queries?

200

e RQ4: Can NLP2API outperform the state-of-the-art technique on query reformulation that uses crowd-
sourced knowledge from Stack Overflow?
e RQ5: Can our approach, NLP2API, significantly improve the results provided by state-of-the-art code

or web search engines?

8.3.1 Experimental Dataset

Dataset Collection: We collect 310 code search queries from four popular programming tutorial sites—
KodeJava [15], Java2s [11], CodeJava [7] and JavaDB [13]for our experiments. While 150 of these queries
were taken from a publicly available dataset [201], we attempted to extend the dataset by adding 200 more
queries. However, after removing the duplicates and near duplicates, we ended up with 160 queries. Thus,
our dataset contains a total of 310 (i.e., 150 old + 160 new) search queries. Each of these sites above discusses
hundreds of programming tasks as Q & A threads where each thread generally contains (1) a question title,
(2) a solution (i.e., code), and (3) a prose explaining the code succinctly. The question title (e.g., “How do I
decompress a GZip file in Java?" [20]) generally comprises of a few important keywords and often resembles
a real life search query. We thus use these titles from tutorial sites as code search queries in our experiments,
as were also used by the earlier studies [63, 201].

Ground Truth Preparation: The prose that explains code in the tutorial sites above often includes one
or more API classes from the code (e.g., GZipInputStream, FileQutputStream). Since these API classes are
chosen to explain the code that implements a programming task, they are generally relevant and specific to
the task. We thus consider these relevant and specific API classes as the ground truth for the corresponding
question title (i.e., our search query) [201]. We develop a ground truth API set to evaluate the performance
of our technique in the APT class suggestion. We also collect the code segments from each of the 310 Q & A
threads from the tutorial sites above as the ground truth code segments, and use them to evaluate the query
reformulation performance (i.e., in terms of code retrieval) of our technique. Given that these API classes
and code segments are publicly available online and were consulted by thousands of technical users over the
years, subjectivity associated with their relevance to the corresponding tasks (i.e., our selected queries) is
minimized [63]. Our dataset preparation step took ~ 25 man hours.

Replication Package: Our dataset, working prototype and other materials are accepted for publication

[195]. They are publicly available [18] for replication and third party reuse.

8.3.2 Performance Metrics

We choose five performance metrics that were widely adopted by relevant literature [63, 152, 168, 191, 201,
243], for the evaluation and validation of our technique as follows:

Top-K Accuracy / Hit@K: It is the percentage of search queries for each of which at least one item
(e.g., API class) from the ground truth is returned within the Top-K results [239, 243, 250].

201

N ppave e BN R
=2 | - o *
E o — */
1]
E B ./ & e %_ /
o & —a @J [=]
EQ] Ly VvV Yza=¥-v—v| ¢]
'g ¥ /E/ % w
= ~B T
27 E/E ¢ Top-K Accuracy < i
_ 7 MAP@K
) E/ (a) | & wrR@K S (b)
= T T T T T o T T T T T
2 4] 8 10 2 4 6 8 10
K K

Figure 8.4: Performance of NLP2APT in API class suggestion for various Top-K results

Table 8.2: Performance of NLP2API in Relevant API Suggestion

Performance Metric ‘ Top-1 ‘ Top-3 ‘ Top-5 ‘ Top-10
Top-K Accuracy 41.94% | 64.19% | 72.90% | 81.61%
Mean Reciprocal Rank@QK 0.42 0.52 0.54 0.55

Mean Average Precision@K | 41.94% | 50.62% | 50.56% | 47.85%
Mean Recall@K 12.53% | 30.17% | 40.28% | 57.87%

Top-K = Performance measures for Top-K suggestions

Mean Reciprocal Rank@K (MRR@K): Reciprocal Rank@K is defined as the multiplicative inverse
of the rank of first relevant item (e.g., API class from ground truth) in the Top-K results returned by a
technique [220, 276]. Mean Reciprocal Rank@K (MRR@K) averages such measures for all queries.

Mean Average Precision@K (MAP@K): Precision@K is the precision calculated at the occurrence
of K* item in the ranked list. Average Precision@K (AP@K) averages the precision@K for all relevant items
(e.g., API class from ground truth) within the Top-K results for a search query [220, 276]. Mean Average
Precision@K is the mean of Average Precision@K for all queries from the dataset.

Mean Recall@oK (MR@K): Recall@K is defined as the percentage of ground truth items (e.g., API
classes) that are correctly recommended for a query in the Top-K results by a technique [63, 249]. Mean
RecallaK (MR@QK) averages such measures for all queries from the dataset.

Query Effectiveness (QE): It is defined as the rank of first correct item (i.e., ground truth code
segment) in the result list returned by a query. The measure is an approximation of the developer’s effort
in locating the first code segment relevant to a given query. Thus, the lower the effectiveness measure is,
the more effective the query is [98, 164, 191]. We use this measure to evaluate the improvement of a query

through reformulations offered by a technique.

8.3.3 Evaluation of NLP2API: Relevant API Class Suggestion

We first evaluate the performance of our technique in the relevant API class suggestion for a generic code
search query. We make use of 310 code search queries (Section 8.3.1) and four performance metrics (Section

8.3.2) for this experiment. We collect Top-K (e.g., K=10) API classes suggested for each query, compare

202

i€ B £ "
| x0T Lak
7 * - ax® *hpgkr
o o 51
© 7 © *
i *..H_* ¢ ¢ - *
I.O_ —]
N / o =27
(o]
2 |x al 9]/ (b)
g T H‘I‘ T T T [T (}I g *I- T T T T T
10 15 20 25 30 35 40 45 5 10 15 20 25 30
PRF size (M) Candidate list size (N)

Figure 8.5: Impact of (a) PRF size (M), and (b) Candidate APT list size (N) on relevant APT class
suggestion from Stack Overflow

them with the ground truth API classes, and then determine our APT suggestion performance. In this section,

we also answer RQ; and RQ as follows:

Answering RQ;—Relevant API Class Suggestion: From Table 8.2, we see that our technique returns
relevant API classes for 73% of the queries with 51% mean average precision and 40% recall when only Top-5
results are considered. That is, half of the suggested classes come from the ground truth, and our approach
succeeds for seven out of 10 queries. More importantly, it achieves a mean reciprocal rank of 0.54. That
means, on average, the first relevant API class can be found at the second position of the result list. Such
classes can also be found at the first position for 42% of the queries. All these statistics are highly promising
according to relevant literature [201, 243]. Fig. 8.4 further demonstrates our performance measures for Top-1
to Top-10 results. We see that accuracy, recall and reciprocal rank measures increase monotonically which
are expected. Interestingly, the precision measure shows an almost steady behaviour. That means, as more
results were collected, our technique was able to filter out the false positives which demonstrates its high

potential for API suggestion.

Impact of Pseudo-Relevance Feedback Size (M) and Candidate API List Size (N): We inves-
tigate how different sizes of pseudo-relevance feedback (i.e., number of Q & A threads retrieved from Stack
Overflow by the given query) and candidate API list (i.e., detailed in Section 8.2.1) affect the performance of
our technique. We conduct experiments using 1045 feedback Q & A threads and 5-30 candidate API classes.
We found that these parameters improved accuracy and recall measures monotonically (i.e., as expected) but
affected precision measures in an irregular fashion (i.e., not monotonic). However, we found an interesting
pattern with mean reciprocal rank. From Fig. 8.5, we see that mean reciprocal rank@10 of our technique
reaches the maximum when (a) pseudo-relevance feedback size, M is 35 and (b) candidate API list size, N

is 16. We thus adopt these thresholds, i.e., M = 35 and N = 16, in our technique for the experiments.

Borda Count vs. Query-API Class Proximity as API Relevance Estimate: Once candidate
API classes are selected (Section 8.2.1), we employ two proxies (Sections 8.2.2, 8.2.3) for estimating the
relevance of an API class to the NL query. We compare the appropriateness of these proxies— Borda Count
and Query-API Prozimity— in capturing the API class relevance, and report our findings in Fig. 8.6. We

see that Borda Count is more effective than Query-API Proximity in capturing the relevance of an API

203

[Ty
e—eo—t—"* 0 kKR kX
o - " b e *’
a 6(5 L] - * sy - * /
S ~ e=" * ok Rk
3 * L Ty *_,_,*
3 Ve 4 @ < $
b R . ./ E (=] ", */
=
i3 /' Z = /
o / —— Borda Count o |% —%— Borda Count
Query-AP| Proximity < b Query-AP| Proximity
= (a) |~ Borda + Proximity (b) |4 Borda + Proximity
3 T T T | T T T T | T
2 4 6 8 10 2 4 6 8 10
K K
\9
=) AT —T—w— 2
S /v VoY=V —9—y—g—g o e
J— —_ —_ -
- v v/v Vv v—_v,__v__v__v % ﬂ’ﬂ /E/E
é s v/ x ~a - " :
' —_
% &= g R n/ B —*
o —— Borda Count g/ —&— Borda Count
g Query-AP| Proximity A / Query-AP| Proximity
™ (C} —¥— Borda + Proximity E'D“‘ L '(d} —&@— Borda + Proximity
T T T T T - T T T T T
2 4 6 8 10 2 4 6 8 10
K K

Figure 8.6: Comparison between Borda count and Query-API proximity in estimating API relevance
using (a) accuracy, (b) reciprocal rank, (c) precision, and (d) recall

class to a given query. However, the proximity demonstrates its potential especially with accuracy and recall
measures. More interestingly, combination of these two proxies ensures the best performance of our technique
in all four metrics. Non-parametric statistical tests also report that performances with Borda+Proximity are
significantly higher than those with either Borda Count (i.e., all p-values<0.05, 0.34 < A < 0.82 (large)) or
Query-API Semantic Proximity (i.e., all p-values<0.05, 0.20 < A < 0.90 (large)).

We also investigate the parameters of fastText [54] that were used to determine the query-API proximity.
Although we experimented using various custom parameters, we did not see any significant performance gain
over the default parameters. Besides, increased thresholds (e.g., context window size, output vector size)

could be computationally costly. We thus adopt the default settings of fastText in this work.

Summary of RQ;: Our technique provides the first relevant API class at the second position, ~ 50% of
our suggested classes are true positive, and the technique succeeds eight out of 10 times (i.e., 82% Top-10

accuracy). Besides, our adopted parameters and thresholds (e.g., M, N) are justified.

Answering RQ.— Comparison with Existing Studies on Relevant API Class Suggestion: We
compare our technique with the state-of-the-art approach — RACK [201] — on API class suggestion for a
natural language query. Rahman et al. [201] employ two heuristics— Keyword-API Co-occurrence (KAC)
and Keyword-Keyword Coherence (KKC)—for suggesting relevant API classes from Q & A threads of Stack
Overflow for a given query. Their approach outperformed earlier approaches [63, 243] which made it the
state-of-the-art in relevant API class suggestion. We collect the authors’ implementation of RACK from
corresponding web portal, ran the tool as is on our dataset, and then extract the evaluation results.

From Table 8.3, we see that our technique-NLP2API- outperforms RACK especially in precision, recall

and reciprocal rank. It should be noted that our reported performance measures for RACK are pretty close

204

Table 8.3: Comparison with the State-of-the-art in API Class Suggestion

Technique | Metric

Top-1 ‘ Top-3 ‘ Top-5 ‘Top-lO

Top-K Accuracy | 20.97% | 52.90% | 64.19% | 77.10%
RACK [201] MRRQ@K 0.21 0.35 0.37 0.39
MAPQ@QK 20.97% | 34.76% | 36.76% | 36.38%
MR@K 6.25% | 20.81% | 28.06% | 39.22%
Top-K Accuracy | 41.94% | 64.19% | 72.90% | 81.61%
NLP2API | MRRQK 0.42 0.52 0.54 0.55
(Proposed) | MAP@K 41.94% | 50.62% | 50.56% | 47.85%
MR@K 12.53% | 30.17% | 40.28% | 57.87%

Top-K = Performance measures for Top-K suggestions

o
= = -
58 °
m
5 o
2 -
< 3 99
o D i o) -
— D o
& =
s |
- = = NLP2AP| - NLP2API, = NLP2AP| - NLP2API,
o (a) | — ncp2eri, Baseline 0| (b) | — nLP2rPI, Baseline
) I
T T T T o T T T T
5 10 15 20 5 10 15 20
Reformulation Length Reformulation Length

Figure 8.7: Reformulated vs. baseline query using (a) Top-10 accuracy and (b) MRR@10

to the authors’ reported measures [201], which indicates a fair comparison. We see that RACK recommends
API classes correctly for 64% of the queries with 37% precision, 28% recall and a reciprocal rank of 0.37 when
Top-5 results are considered. On the contrary, our technique recommends correctly for 73% of the queries
with 51% precision, 40% recall and a promising reciprocal rank of 0.54 in the same context. These are 14%,
38%, 44% and 46% improvement respectively over the state-of-the-art performance measures. Statistical tests
for various Top-K results (i.e., 1<K<10) also reported significance (i.e., all p-values<0.05) of our technique

over the state-of-the-art with large effect sizes (i.e., 0.39 < A < 0.90).

Summary of RQj3: Our technique outperforms the state-of-the-art approach on relevant API class sugges-
tion, and it suggests relevant API classes with 38% higher precision and 46% higher reciprocal rank than
those of the state-of-the-art.

8.3.4 Evaluation of NLP2API: Query Reformulation

Although our approach outperforms the state-of-the-art on relevant API class suggestion, we further apply
the suggested API classes to query reformulations. Then we demonstrate the potential of our reformulated
queries for improving the code snippet search. In this section, we also answer RQs, RQ4 and RQ5 using our

experiments as follows:

205

Table 8.4: Impact of Reformulations on Generic NL Queries

Reformulation ‘ RL ‘ Improved/MRD | Worsened/MRD | Preserved

05 43.23% /-245 31.29%/+54 25.48%
NLP2API

10 48.07%/-223 26.13% /465 25.81%
NLP2APIp 10 40.97% /-148 30.97%/+44 28.06%

05 40.00% /-159 27.74% /+54 32.26%
NLP2API 10 48.07%/-209 25.16%/+45 26.77%

15 49.03%/-217 22.26%/+46 28.71%

MRD = Mean Rank Difference between reformulated and given queries

Answering RQs—Improvement of Natural Language Queries with the Suggested API Classes:
We reformulate each of the generic natural language queries for code search using the API classes suggested
by our technique. Then we investigate the performance of these reformulated queries using code search. We
prepare a code corpus of 4,170 code segments where 310 segments are ground truth code segments (Section
8.3.1) and 3,860 code segments were taken from a publicly available and curated dataset [184] based on
hundreds of GitHub projects. We normalize these segments using standard natural language preprocessing
(i-e., stop and keyword removal, token splitting), and index them with Lucene. We then perform code search
on this corpus, and contrast between generic natural language queries and our reformulated queries in terms
of their Effectiveness and code retrieval performances.

From Table 8.4, we see that our reformulations improve or preserve 75% (i.e., 48% improvement and 27%
preserving) of the given queries. The improvement ratio reaches the maximum of 49% with a reformulation
length of 20. According to relevant literature [98, 164, 191], such statistics are promising. Fig. 8.7 further
demonstrates the impact of our reformulations on the baseline generic queries. We see that the baseline
natural language queries retrieve ground truth code segments with 50% Top-10 accuracy (dashed line, Fig.
8.7-(a)) and 0.32 mean reciprocal rank (dashed line, Fig. 8.7-(b)). On the contrary, our reformulated queries
achieve a maximum of 69% Top-10 accuracy with a reciprocal rank of 0.47 which are 37% and 47% higher
respectively than the baseline. Quantile analysis in Table 8.5 also shows that our provided result ranks are

more promising than those of the baseline queries.

Summary of RQjs: Reformulations offered by our technique improve 49% of the generic natural language
queries, and the reformulated queries achieve 37% higher accuracy and 47% higher reciprocal rank than

those of the generic NL queries.

Answering RQ,—Comparison with Existing Query Reformulation Techniques: Nie et al. [168]
collect pseudo-relevance feedbacks from Stack Overflow on a given query and then apply Rocchio’s method
to expand the query. Their approach, QECK, outperformed earlier studies [144, 152] on query reformulation
targeting code search which made it the state-of-the-art. Another contemporary work, CoCaBu [229] applies
Vector Space Model (VSM) in identifying appropriate program elements from Stack Overflow posts. To

the best of our knowledge, these are the most recent and most closely related works to ours. Due to the

206

PoIoPISUOD SyUeI [[e JO o[iprenb , v ='¢) ‘sorronb o1y Aq PaUINILI SYMNSOI 1291100 JSIT JO JURI URI[\ = WAL

Y3

(%12'82) 68 || 984 | 20 | OL | IT | €0 | €4 (%92°22) 69 || 926'c | T0 | 19 | OT | 20 | TAT | (%€0°6%) 21 | O1¢ | *"“IdVZdIN

(%2292) €8 || 928 | 20 | 69 | €T | €0 | <. (%91°¢2) 84 || 918c | 10 | ¥4 | 21 | 20 | 0T | (%0°8%) 6%1 | OIE IdVedIN

- e8¢ 10 ¢T | €0 | TO - B 097'T ¢0 | %1 | GC | LO B B o1e oul[eseyq

(%62°12) 99 || L9¢‘T | 20 | 16 | ¥¢ | 90 | 20T | (%92'2¥) IE€T || L09C | TO | €01 | #T | @0 | 16T | (%S¥-9¢) €IT | o1¢ | [622] ngeDoD

(%1L'81) 8¢ || 2281 | 20 |9¢r | 1€ | 20 | 9€T (%2¥'L¥) LVT 1.6 0 | 09 | 80 | 20 | QL (%28°€€) S0T 01¢ [102] SIDVY

(%89°61) 19 || 6S¢‘T | 20 | €91 | ¢¢ | 1T | 1€IT (%01°28) 22T || 1981 | 10 | ¥, | T1 | 20 | 6¢€I (%€z°€e) Tl 01¢ [891] 3IDAD

poszeseld# || Xely 7 N 7 £d 7 o) 7 156 7 wea]y 7 pouesIon# || XeI\ 7 N 7 o) 7 o) 7 1€ 7 wea]y 7 posoxdur#

DO# enbruyday,
duraresexag SuruasIOp JuamuaAoxduuy

SoNb1uUYD9T, UOTIR[NULIOPRY AION{) SUIISTIXH M SSOUDATIRPH AIon) jo uostreduio)) :G°g a[qel,

207

unavailability of authors’ prototype, we re-implement them ourselves using their best performing parameters
(e.g., PRF size = 5-10, reformulation length = 10), and then compare them with ours. We also compare
with RACK [201] in the context of query reformulation due to its highly related nature.

Table 8.5 shows a quantile analysis of the result ranks provided by the existing techniques. If results are
returned closer to the top of the list by a reformulated query than its baseline counterpart, we call it query
improved and vice versa as query worsened. We see that CoCaBu and RACK perform relatively higher than
QECK. CoCaBu improves 36% and worsens 42% of the 310 baseline queries. On the contrary, our technique
improves 48% and worsens 25% of the given queries which are 32% higher and 40% lower respectively than
those of CoCaBu. Furthermore, according to the quantile analyses, the extents of our rank improvement over
the baseline are comparatively higher than the extents of rank worsening which indicates a net benefit of the

reformulation operations.

Summary of RQ,: Our technique outperforms the state-of-the-art approaches on query reformulation, and

it improves 32% more and worsens 40% less queries than those of the state-of-the-art.

Answering RQs—Comparison with Existing Code/Web Search Engines: Although our approach
outperforms the state-of-the-art studies [168, 201] on relevant API suggestion and query reformulation, we
further compare with two popular web search engines — Google, Stack Overflow native search — and one
popular code search engine —GitHub code search. Given the enormous and dynamic index database and
restrictions on the query length or type, a full scale or direct comparison with these search engines is neither
feasible nor fair. We thus investigate whether results returned by these contemporary search engines for
generic queries could be significantly improved or not with the help of our reformulated queries.

Collection of Search Results and Establishment of Ground Truth: We first collect Top-30 results
returned by each search engine for each of the 310 queries. For result collection, we make use of Google’s
custom search API [8] and the native API endpoints provided by Stack Overflow and GitHub. Since our
goal is to find relevant code snippets, we adopt a pragmatic approach in the establishment of ground truth
for this experiment. In particular, we analyse those 30 results semi-automatically, look for ground truth code
segments (i.e., collected in Section 8.3.1) in their contents, and then select Top-10 results as ground truth
search results that contain either the ground truth code or highly similar code. It should be noted that
ground truth code segments and our suggested API classes are taken from two different sources.

Comparison between Initial Search Results and Re-ranked Results with Reformulated Queries:
While the search engines return results mostly for the natural language queries, we further re-rank the results
with our reformulated queries (i.e., generic search keywords + relevant API classes) using lexical similarity
analysis (e.g., cosine similarity [184]). We then evaluate Top-10 results both by each search engine and
by our re-ranking approach against the ground truth search results, and demonstrate the potential of our
reformulations.

From Table 8.6, we see that the re-ranking approach that leverages our reformulated queries improves the

initial search results returned by each of the engines. In particular, the performances are improved in terms

208

Table 8.6: Comparison with Popular Web/Code Search Engines

Technique Hit@10 ‘ MAP@10 ‘ MRR@10 ‘ NDCG@10
Google 100.00% 65.50% 0.80 0.47
NLP2APIgoogie 100.00% 76.73% 0.83 0.61
Stack Overflow 90.65% 59.46% 0.67 0.40
NLP2APIgo 91.29% | 79.95% 0.87 0.67
GitHub 88.06% 53.06% 0.55 0.41
NLP2APIG:igw | 89.03% 70.69% 0.78 0.59

NDCG—Normalized Discounted Cumulative Gain [253]

= —g_ -V -V
= |¥ - _g-v
& | — e —_— g -7
2 *_ ~ z ¥—¥—¥_2_¥ = Y_?_._o—o—o—*,g.:i:#
LETETR0 _ .
@ _g,, oo e e —s— x ¥
© - R T I L
= v R T I e Y z g_ v:::Q”'@"
| . L] o ‘”::9:::9
L] I
o [as] wi
], @[of.v (b)
= T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
K K
¥ Google =% Stack Overflow --*- GitHub

s NLP2APlg,.p. ~9— NLP2APl;, —— NLP2APlgu

Figure 8.8: Comparison between popular web/code search engines and NLP2API in relevant code
segment retrieval using (a) MAP@QK and (b) NDCGQK

of precision and discounted cumulative gain. For example, Google returns search results with 66% precision
and 0.47 NDCG when Top-10 results are considered. Our approach, NLP2API¢ 041, improves the ranking
and achieves a MAP@10 of 77% and a NDCG@10 of 0.61 which are 17% and 30% higher respectively. That
is, although Google performs high as a general purpose web search engine, it might always not be precise
for code search due to the lack of appropriate contexts. Our approach incorporates context into the search
using relevant API names, and delivers more precise code search results. As shown in Table 8.6 and Fig. 8.8,

similar findings were also achieved against GitHub code search and Stack Overflow native search.

Summary of RQj5: Our technique improves upon the result ranking of all three popular search engines
using its reformulated queries. It achieves 17% higher precision and 30% higher NDCG than Google, i.e.,

the best performing search engine.

8.4 Threats to Validity

Threats to internal validity relate to experimental errors and biases. Re-implementation of the existing
techniques could pose a threat. However, we used authors’ implementation of RACK [201] and replicated

Nie et al. [168] and Sirres et al. [229] carefully. We had multiple runs and found their best performances with

209

the authors’ adopted parameters which were finally chosen for comparisons. Thus, threats associated with

the re-implementation might be mitigated.

Our code corpus (Section 8.3.1) contains 4,170 documents including 310 ground truth code segments. It
is limited compared to a real life corpus (e.g., GitHub). However, our corpus might be sufficient enough for
comparing a generic NL query with a reformulated query in code retrieval. Please note that our goal is to
reformulate a query effectively for code search. Besides, we compared with three popular search engines and

demonstrated the potential of our query reformulations.

Threats to external validity relate to generalizability of a technique. Although we experimented with
Java based Q & A threads and tasks, our technique could be adapted easily for other programming languages

given that code segments and API classes are extracted correctly from Stack Overflow.

8.5 Related Work

Relevant API Suggestion: There have been several studies [63, 92, 124, 138, 152, 243] that return relevant
functions, API classes and methods against natural language queries. McMillan et al. [152] employ natural
language processing (NLP), PageRank and spreading activation network (SAN) on a large corpus (e.g.,
FreeBSD), and identify functions relevant to a given query. Although they apply advanced approach for
function ranking (e.g., PageRank), their candidate functions were selected using simple textual similarity
which is subject to vocabulary mismatch issues [83]. On the contrary, we apply pseudo-relevance feedback,
PageRank and TF-IDF for selecting the candidate API classes. Chan et al. [63] apply sophisticated graph
mining techniques and return relevant API elements as a connected sub-graph. However, mining a large
corpus could be very costly. Thung et al. [243] mine API documentations and feature history, and suggest
relevant methods for an incoming feature request. However, this approach is project-specific and does not
overcome the vocabulary mismatch issues. Rahman et al. [201] apply two heuristics derived from keyword-
API co-occurrences in Stack Overflow Q & A threads, and attempt to counteract the vocabulary mismatch
issues during API suggestion. Unfortunately, their approach suffers from low precision due to the adoption
of simple co-occurrences. On the contrary, we (1) exploit query-API co-occurrence using a skip-gram based
probabilistic model (i.e., fastText [54, 156]), and (2) employ pseudo-relevance feedback, Borda count and
PageRank algorithm, and thus, (3) provide a novel solution that partially overcomes the limitations of earlier
approaches. Rahman et al. is the most closely related work to ours in API suggestion. We compare ours
with this work, and the detail comparison can be found in Section 8.3.3. Gvero and Kuncak [92] accept
free-form NL queries, perform natural language processing, statistical language modelling on source code and
suggest relevant method signatures. There exist other works that provide relevant code for natural language
queries [44, 46, 58, 118], test cases [132, 133, 209], structural contexts [107], dependencies [254], and API
class types [240, 264]. On the contrary, we collect relevant API classes for free-form NL queries by mining

crowd generated knowledge stored in Stack Overflow questions and answers.

210

Query Reformulation for Code Search: Several earlier studies [92, 104, 124, 136, 138, 144, 151,
168, 251] reformulate a natural language query to improve the search for relevant code or software artefacts.
Hill et al. [104] expand a natural language query by collecting frequently co-occurring terms in the method
and field signatures. Conversely, we apply a different context (i.e., Q & A pairs) and a more sophisticated
co-occurrence mining (e.g., skip-gram model). Lu et al. [144] expand a search query by using part of speech
(POS) tagging and WordNet synonyms. Lemos et al. [134] combine WordNet and test cases in the query
reformulation. However, WordNet is based on natural language corpora, and existing findings suggest that
it might not be effective for synonym suggestion in software contexts [233]. On the contrary, we use a
software-specific corpus (e.g., programming Q & A site), and more importantly, apply relevant APT classes
to query reformulation. Wang et al. [251] employ relevance feedback from developers to improve code search.
Recently, Nie et al. [168] collect pseudo-relevance feedback from Stack Overflow, and reformulate a natural
language query using Rocchio’s method. However, their suggested terms are natural language terms which
might not be effective enough for code search given the existing evidence [45]. Another contemporary work
[229] simply relies on Lucene to identify appropriate program elements from Stack Overflow answers for query
reformulation. On the contrary, we employ PRF, PageRank, TF-IDF, Borda count and word semantics, and
provide relevant API classes for query reformulation. The above two works are the most closely related to
ours. We compare with them empirically, and the detail comparison can be found in Section 8.3.4. There
exist other studies that search source code [124, 261], project repository [136], and artefact repository [138] by
reformulating natural language queries. There also exist a number of query reformulation techniques [65, 84,
98, 120, 121, 188, 191, 226, 231] for concept/feature/bug/concern location. However, they suggest project-
specific terms (e.g., domain terms [94]) rather than relevant APT classes (like we do) for query reformulations.
Hence, such terms might not be effective enough for code search on a large corpus (i.e., Internet-scale code
search) that contains cross-domain projects.

In short, we meticulously bring together crowd generated knowledge [168], word semantics [54], and several
IR-based approaches to effectively solve a complex Software Engineering problem, i.e., query reformulation for
Internet-scale code search, which was not done by the earlier studies. Our query reformulation technique can

also be employed on top of the existing code/web search engines for improving their code search performances

(i.e., RQ5)

8.6 Summary

Software maintenance costs a significant amount of development time and efforts [88]. Developers often
search for relevant code examples on the Internet [55], and reuse them in various maintenance tasks (e.g.,
new feature addition). As in the local code searches (e.g., concept location, bug location), developers also face
major query construction challenges in the Internet-scale code search. In this chapter, we propose a novel

technique-NLP2API-that accepts a programming task description as a query, reformulates the query with

211

relevant API classes by leveraging query-API semantic distance and by mining crowd knowledge from Stack
Overflow, and then delivers an improved, reformulated query for code search on the web. Experiments using
310 queries report that our technique (1) suggests ground truth API classes with 48% precision and 58%
recall for 82% of the queries, and (2) improves the given search queries significantly through reformulations.
Comparisons with three state-of-the-art techniques and three popular search engines not only validate our
empirical findings but also demonstrate the superiority of our technique.

In future, we plan to further investigate the potential of our skip-gram model constructed from Stack
Overflow corpus. Since this model (a.k.a., word embedding technology) offers a geometric representation
(e.g., vector) for word semantics, more complex semantic analyses could be performed using the geometric
theories. Such analyses might (1) better explain the intent behind a given query for the code search or

oppositely (2) better reveal the specification of a given code segment.

212

CHAPTER 9

CONCLUSION

9.1 Concluding Remarks

Software bugs and failures cost trillions of dollars every year [1, 28] and even lead to deadly accidents (e.g.,
Therac-25 accident!). Finding and fixing these bugs upfront consume about 50% of the development time
and efforts [28, 81, 88]. While software bugs and errors are already hard to tackle, developers also receive
hundreds if not thousands of change requests during software maintenance [81, 88]. Adding new features to
already delivered software systems also claims about 60% of the maintenance costs [88]. Thus, resolving the
bugs and addressing the change requests are two major parts of software maintenance.

The very first challenge of the two maintenance tasks above is to identify the exact locations in the source
code that need to be repaired, modified or enhanced. One needs to find out the exact locations where the
bug should be fixed or the existing feature that should be enhanced. Unfortunately, given million lines of
code and inherent complexities in the modern software systems, identification of such locations is extremely
challenging. Locating the buggy code against a bug report is called bug localization [276]. On the contrary,
locating the target code against a change request is known as concept location [98, 120]. In essence, both
bug localization and concept location are a special type of code search that is performed within a software
system. Besides these specialized searches, developers also search for relevant code examples on the web,
and reuse them in various software maintenance tasks (e.g., implementing new features). This type of code
search is often called as Internet-scale code search [45, 151].

Every search operation above requires a query that reflects the information needs. During maintenance,
software developers attempt to (1) construct search queries from the change requests for concept location, (2)
construct search queries from the bug reports for bug localization, and (3) choose meaningful keywords on
the fly for Internet-scale code search. Unfortunately, even the experienced developers often fail to choose the
right search queries [83, 120, 125, 142]. That is, whether it is bug localization, concept location or Internet-
scale code search, appropriate query construction is a major challenge. Thus, software developers are badly
in need of automated tool supports for query construction during the code search.

Automated support in constructing search queries for local code searches (e.g., concept location, bug

localization, feature location) has been an active research topic for over a decade [64, 65, 84, 95, 98, 104, 109,

Lhttps://bit.ly/2KU9IR2

213

120, 226, 231, 265]. There also exist a number of studies on Internet-scale code search [134, 135, 144, 151,
168, 251, 274] that reformulate a free-form natural language query with more appropriate keywords (e.g.,
relevant APT classes [274]). Unfortunately, the existing literature on query reformulation is far from adequate.

According to our systematic literature review, they suffer from several major limitations as follows.

First, although TF-IDF [114] has been extensively used by the existing literature [98, 120], it suffers from
a major limitation. TF-IDF assumes the notion of term independence [137] and overlooks the semantic or
syntactic dependencies among the terms during their weight calculation [53, 153]. However, such dependencies
are a crucial factor in determining the term semantics or term importance [53, 157, 272]. Thus, TF-IDF might
fail to deliver the appropriate search keywords from the change requests or the bug reports. As a result,
TF-IDF based search queries might perform poorly in localizing the desired concepts or the bugs within the

source code of a software system.

Second, regular texts and source code differ significantly from each other in their syntax, semantics
and structures. While regular texts are rich in vocabulary, source code is poor in vocabulary but rich in
structures or dependencies [102]. TF-IDF has been frequently used for keyword selection from the source
code [84, 96, 98]. Due to term independence assumption, TF-IDF fails to capture the structural aspects of
the code and simply relies on the vocabulary. Thus, it might also not be able to deliver the appropriate

search keywords from the source code documents for search query reformulation.

Third, bug reports could be noisy containing stack traces or poor containing no localization hints (e.g.,
class names) [248]. However, existing studies [130, 167, 207, 220, 230, 249, 276] overlook such a dimension of
report quality, and use almost verbatim texts from the bug report as a search query for bug localization. As
a result, their search query could be either noisy due to excessive structured information (e.g., stack traces)
or poor due to the lack of localization hints. Thus, existing approaches are inherently limited and might not

be able to localize the software bugs when the bug reports are noisy or poor [193, 248, 276].

Fourth, search queries are often expanded with relevant program elements (e.g., API classes, methods)
in Internet-scale code search [45]. Many existing studies [63, 147, 152, 271] rely on the lexical similarity
between a given query and the API documentations of the candidate APIs for relevant API selection. Such
an approach warrants that the given query should be carefully constructed, and the developer should or must
possess a certain level of experience with the target APIs beforehand. Thus, the existing approaches on query
reformulations might not work well if a given query (1) is not carefully constructed or (2) is not lexically

similar to the documentations of a relevant API.

In this thesis, we attempt to overcome the above four challenges (1) by proposing graph-based term
weighting algorithms (e.g., CodeRank [189]) that outperform TF-IDF, (2) by leveraging bug report qual-
ity dynamics and source document structures that were previously overlooked, (3) by harnessing the crowd
knowledge from Stack Overflow which was previously untapped, and (4) by exploiting the semantics of the
given queries and candidate keywords derived from 1.40 million Q&A threads of Stack Overflow, which was

previously unexplored. Our goal was to deliver effective solutions for source code search during

214

software maintenance with automated query reformulations, let it be concept location, bug localiza-

tion or even the Internet-scale code search. In particular, we conduct two studies (Chapters 3, 4) targeting

concept location, two studies (Chapters 5, 6) targeting bug localization, and two more studies (Chapters 7,

8) targeting Internet-scale code search as follows.

(a)

The first study -STRICT (Chapter 3)— accepts a change request as a search query, employs graph-
based term weighting algorithms, query difficulty analysis and machine learning for keyword selection
from the request texts, and then delivers an improved, reformulated search query for concept location.
Experiments using 2,885 change requests suggest that (1) our reformulated queries outperform the
baseline search queries with a significant margin, (2) our graph-based term weighting method is a
better alternative than TF-IDF for keyword selection, and (3) our approach equipped with machine
learning outperforms the state-of-the-art approaches [120, 213] in constructing queries from the change

requests for the concept location task.

The second study —~ACER. (Chapter 4)— accepts a poor search query as input, collects complemen-
tary keywords from the relevant source code documents by employing a graph-based term weighting
method (CodeRank) and by leveraging the source document structures (e.g., method signatures, field
signatures), and then delivers an improved, reformulated search query for concept location. Experi-
ments using 1,675 queries report that our algorithm —CodeRank— that leverages the structural aspects
of source code outperforms the traditional approach (e.g., TF-IDF) in keyword selection. Our query
reformulation approach —ACER~- also outperforms five existing studies [98, 104, 212, 213, 231] including

the state-of-the-art [98] in reformulating the search queries for concept location.

The third study -BLIZZARD (Chapter 5)— accepts a bug report as a search query, employs appropri-
ate methodologies for keyword selection from the report texts based on the report quality (e.g., noisy,
poor), and then delivers an improved, reformulated query for bug localization. Unlike the existing stud-
ies, our approach adopts appropriate methodologies (1) to mitigate the noise from noisy bug reports
and (2) to complement the poor bug reports that lack localization hints. Experiments using 5,139 bug
reports suggest that (1) our reformulated queries outperform the baseline queries significantly, and (2)
our approach outperforms the state-of-the-art studies on IR-based localization [220, 250, 276] and on
query reformulation [191, 212, 213, 231] with significant margins.

The fourth study -BLADER (Chapter 6)— accepts a poor bug report as a search query, identifies
appropriate candidate keywords from the relevant source code by analysing the clustering tendency
between the query and the candidate keywords in terms of their underlying semantics, and then delivers
an improved, reformulated query for the bug localization. Experiments using 1,546 poor bug reports
suggest that (1) our reformulated queries outperform the baseline poor queries with a significant margin,
and (2) our approach, BLADER, outperforms eleven existing studies from literature not only in IR-
based bug localization [192, 220, 250, 268, 276] but also in automated search query reformulation
[188, 191, 192, 212, 213, 231].

215

(e) The fifth study -RACK (Chapter 7)— accepts a free-form query on a programming task, expands the
query with relevant API classes carefully mined from Stack Overflow, and then delivers an improved,
reformulated query for Internet-scale code search. Experiments using 175 free-form search queries re-
port that (1) our reformulated queries outperform the baseline queries significantly, (2) our approach
outperforms three existing studies [168, 243, 274] including the state-of-the-art [243], and (3) our refor-
mulated queries can significantly improve the performance of three traditional web/code search engines

(e.g., Google, GitHub native search, Stack Overflow native search) in the Internet-scale code search.

(f) The sixth study -NLP2API (Chapter 8)— accepts a free-form query on a programming task, expands
the query with relevant API classes that are selected based on query-API semantic distance analy-
sis and crowd knowledge of Stack Overflow, and finally delivers an improved, reformulated query for
Internet-scale code search. Experiments using 310 free-form search queries report that (1) our reformu-
lated queries outperform the baseline free-form queries with a significant margin and (2) our approach
outperforms three existing studies [168, 201, 229] including the state-of-the-art [229] and significantly

improves three traditional web/code search engines in Internet-scale code search.

Given the above studies and their findings in our thesis, we conclude the following: (1) our graph-based
term weighting approach is much more effective than the traditional alternatives (e.g., TF-IDF [98, 120])
for delivering the search keywords from the source code documents, change requests and bug reports (2)
bug report quality is crucial to appropriate query construction for the bug localization, (3) source document
structures can offer multiple feasible options to reformulate a given query, and (4) crowd knowledge and
word semantics derived from Stack Overflow Q&A threads could be the effective means for mitigating the
vocabulary mismatch problems both in local and Internet-scale code searches. Since our proposed approaches
embody these solutions, they have a high potential for improving search queries and thus code searches in
the Software Engineering contexts. Furthermore, each of our conducted studies could be replicated using our

publicly available replication packages (Appendix A).

9.2 Future Work

In this thesis, we deal with different challenges concerning search query reformulations in three different
code search contexts — concept location, bug localization and Internet-scale code search. My PhD works have
produced a total of 21 peer-reviewed publications. Despite these significant number of studies, we believe
that there is still room for further works and many novel dimensions (inspired by this thesis) are yet to be
explored. Based on our experiments, empirical analysis, and qualitative analysis, we present a list of future

research directions on automated query reformulation, software debugging and code search as follows:

216

9.2.1 Promises of Keyword Selection Algorithms in IR-Based Bug Localization

Information Retrieval (IR) has been extensively used in at least 20 Software Engineering tasks including bug
localization [98]. It should be noted that bug localization is a form of local code search where bug reports
are assumed as search queries. A few recent studies [123, 126, 248] have pointed out the potential biases and
limitations of IR-based bug localization. According to them, IR-based localization is only good when the bug
reports contain localization hints (e.g., program entity names). However, they use the whole texts from a
bug report as a search query and overlook the potential of optimal search queries. Mills et al. [159] recently
conduct a large-scale empirical study using Genetic Algorithms and present positive evidence for bug reports
and IR-based localization. They suggest that bug reports often contain sufficient keywords which could return
the buggy source documents at the top-most positions of the result list. In particular, IR-based localization
could succeed 67%—88% of the time even if the bug reports do not contain any localization hints. Thus,
the real challenge is to automatically extract the appropriate search keywords from a given bug report for
bug localization. Term weighting algorithms could play a major role in identifying such keywords. To date,
existing literature adopts two types of term weighting algorithms —frequency-based [98, 120, 212, 213, 231, 232]
and graph-based [187, 189, 191, 192]- for keyword selection in Software Engineering. My PhD thesis has
inspired the graph-based term weighting paradigm, and demonstrated that it is a better choice than the
existing alternatives (e.g., TF-IDF) for keyword selection from the bug reports. However, our in-depth
investigations suggest that the literature might yet not be sufficient enough to always deliver the important
keywords from a bug report. Thus, more sophisticated and efficient term weighting algorithms are warranted

to improve the search queries for IR-based bug localization.

9.2.2 Promises of Genetic Algorithms in IR-Based Bug Localization

Mills et al. [159] demonstrate that Genetic Algorithms (GA) are capable of generating the optimal search
queries from bug reports for IR-based bug localization. They use ground truth to evaluate the fitness of the
candidate search queries. However, in practice, ground truth is not known beforehand during bug localization.
Thus, designing an appropriate fitness function is a major challenge while reformulating queries with Genetic
Algorithms. In particular, given two candidate search queries, the fitness function should be able to identify
the better one without executing them. Several studies [96, 98, 158, 164, 189] make use of query difficulty
metrics (e.g., specificity, coherency [62]) to identify the best one from a list of given queries. However,
these metrics have non-linear relationships with query performance and generally work in collaboration with
machine learning algorithms. Thus, they might not be an ideal choice for the fitness function. In this thesis,
we use TextRank [191], POSRank [191] and WK-Core [50] as proxies to term importance, and demonstrate
their superiority to the traditional alternatives (e.g., TF-IDF). Our preliminary investigation suggests that
they might also have a non-linear relationship with the query performance. Thus, future works should focus

on designing more appropriate fitness functions since Genetic Algorithm has the potential for delivering

217

the optimal search queries from the bug reports [159]. IR-based localization is not yet widely adopted by
the software practitioners due to its limitations [248]. However, we believe that IR-based bug localization
equipped with GA-based optimal queries could be a preferable alternative to the developers as opposed to

ad hoc, costly localization processes.

9.2.3 Improving Term Weighting Algorithms with Useful Term Contexts

Determining importance of a term within a body of texts (e.g., bug report, source document) has long been
recognized as a major challenge [114, 120]. TF-IDF is a term weighting algorithm that has been widely
used both in Information Retrieval and in Software Engineering. It determines the importance of a term
in isolation, and does not consider the contexts (e.g., surrounding terms) of the term. However, a term’s
semantics are often determined by its contexts [157, 272]. Besides, several existing studies demonstrate the
benefits of incorporating contexts in the term weighting algorithms. To date, several contextual data items
such as spatial code proximity [231], positional relevance [192, 232], term co-occurrences [85, 104, 189, 191,
226], syntactic dependencies [191], time-awareness [273], and structural awareness [49, 77, 192] are employed.
My PhD thesis contributes to the literature by studying term co-occurrences, syntactic dependencies, and
structural /hierarchical dependencies among the terms from bug reports [192], change requests [187, 191]
and source code documents [189]. However, these contexts were employed by multiple studies in isolation.
Future studies should investigate how combining these contextual dimensions could benefit the existing term
weighting approaches (e.g., TextRank). While Genetic Algorithms can be employed to optimize their relative
weights, machine learning algorithms could also be used to design even more complex, non-linear relationships

between these contexts and a term’s importance.

9.2.4 Query Worsening Minimization

Automated query reformulation comes with both benefits and costs. Existing studies suggest that automatic
query reformulation might improve the search performance up to 20% [145, 273]. However, several studies
also question the complete automation in query reformulation [104, 172, 228]. Automated reformulations
sometimes might add noise which drifts the query away from its original topic [228]. Thus, we need such
tool supports that maximize the benefits and minimize the costs of automated query reformulations. Haiduc
et al. and colleagues [96, 98] first analyse the quality of search queries in the context of concept location task,
and then automatically reformulate the poor queries only. A few studies [96, 98, 158, 189] including ours
[182, 189] employ query difficulty metrics and machine learning to deliver the best reformulation for a given
query. Despite these attempts, the risk of query worsening due to automated reformulations still remains.
Like earlier studies [74, 85, 104, 251], we believe that human cognitive power could be leveraged in this case.
According to Dietrich et al. [74], human developers might perform well in removing irrelevant terms from
a search query, but perform poorly in adding the new relevant terms. Relevant keywords could be hidden

within thousands of identifier names (e.g., classes, methods) of a system’s codebase. Future works should

218

incorporate the strengths of both human developers and automated tools, and then minimize both (1) the

cognitive burdens on the developer and (2) the costs of inappropriate query reformulations.

9.2.5 Improving Pseudo-Relevance Feedback (PRF)

Collecting relevance feedback on a given query from the developers could be costly and sometimes even
impractical. Hence, several existing studies [98, 188, 189, 231]| including ours [188, 189, 192] employ pseudo-
relevance feedback (PRF) as a feasible alternative during query reformulation. That is, they naively assume
the Top-K documents retrieved by a given query as relevant, and then suggest important keywords from them
for query reformulation. These approaches have been reported to improve over the given queries [98, 145].
However, such a feedback might not help much if the given queries are already very poor [192]. Then the
retrieved documents are likely to be irrelevant. While PRF has been mostly tested in local code searches
(e.g., concept location, bug localization), its effectiveness in the Internet-scale code search is not well studied.
During code search on the Internet, the relevance feedback results are retrieved from thousands of open
source projects which could be noisy and hard to comprehend. Thus, despite a few attempts [111, 151], much
investigations are yet to be done in the area of pseudo-relevance feedback. Future works should focus on
designing such a relevance feedback mechanism that is cheap, light-weight, adaptive to query quality and yet

reliable enough for delivering the appropriate keywords for search query reformulation.

9.2.6 Promises of PageRank in Term Weighting/Source Code Retrieval

In this thesis, we adapt PageRank algorithm [57] from Information Retrieval domain, and use it in search
query construction for various Software Engineering tasks such as bug localization [192], concept location
[187, 188, 189, 191] and Internet-scale code search [194]. Other studies [141, 152] make use of PageRank
algorithm in the ranking of code examples for Internet-scale code search. PageRank operates on a graph-
based structure, adopts a notion of voting/recommendation, and then identifies the most important nodes
from the graph using recursive score computations (e.g., Equation 4.4) [53, 153]. Since source code is full of
structures, entities, and explicit /implicit dependencies among them, it can be represented as a graph /network.
Thus, unlike traditional TF-IDF, PageRank could be a better choice for keyword selection from the source
code documents. Although we conduct a few studies on this topic [189, 192], further studies are warranted
to better understand the true potential of PageRank algorithm in the contexts of Software Engineering (e.g.,

code example search, developer network analysis).

9.2.7 Word Embedding Technology in Query Reformulation/Code Search

Several existing studies [85, 104, 134, 144] employ English language thesauri such as WordNet [157] to
expand a given query for code search. They generally expand the query with synonyms and semantically

similar/relevant words. However, Sridhara et al. [233] demonstrate that the same word has two different

219

semantics in source code and in regular texts. Thus, English language thesaurus might be neither appropriate
nor sufficient for query expansion intended for source code search. Alternatively, several studies [109, 265,
266, 272] provide software-specific thesauri (e.g., SWordNet [266]) by analysing various software repositories
(e.g., source code, Stack Overflow Q&A threads). Unfortunately, construction of these thesauri is costly, and
their effectiveness in the query reformulation is not yet well tested.

Recently, a few studies [194, 268, 274] including ours [194] make use of word embedding technology
in determining semantic similarity /relevance between any two software specific words. They also leverage
the word embeddings in reformulating queries for source code search, and report positive evidence. Word
embedding technology approximates the semantics of a given word in terms of a high dimensional numeric
vector. Thus, the technology reduces various text understanding tasks (e.g., synonym detection, semantic
distance calculation) into simple algebraic or geometric operations. We thus believe that this technology has
lots to offer not only in query reformulation but also in other text retrieval tasks of Software Engineering.

In our fourth study (Chapter 6), we go beyond semantic distance calculation with word embedding
technology. We construct a large semantic hyperspace, analyse the clustering tendency between a given
query and the candidate keywords in terms of their underlying semantics, and then deliver a high quality
reformulated query for bug localization. In our semantic hyperspace, each embedding vector places its
corresponding word as a single co-ordinate within a high dimensional semantic space. Such a convenient
approximation of word semantics is likely to encourage various geometric theories into the text processing

tasks of Software Engineering (e.g., observed /expected behaviour detection from bug reports [65]).

9.2.8 Promises of Stack Overflow in Query Reformulation/Code Search

Despite existing attempts to use code examples [47] or test cases [133, 209, 234] as search queries, developers
primarily use natural language keywords as queries for code search on the web [44, 45]. Their goal is to describe
a programming task with a few keywords. Unfortunately, these queries often do not work well since they lack
necessary information required for the task. Existing findings [45, 135, 194, 274] suggest that inclusion of
relevant API classes or methods in the query consistently improves the code search performance. Towards this
goal, two of our studies [194, 206] expand a generic NL query with relevant API classes from Stack Overflow.
In particular, we leverage the co-occurrences between query keywords (from question titles) and API classes
(from accepted answers) in Stack Overflow threads, determine the relevance of each API to a given query
(programming task) using three heuristics, and then suggest the relevant API classes for query expansion.
Given our findings [194, 201, 206], we believe that Stack Overflow has lots to offer in Software Engineering.
Stack Overflow could be leveraged to transform a feature request into relevant/required API classes through
machine translation [139, 181]. Such API classes could then be leveraged in implementing the software
feature. Since the Q&A site deals with thousands of API programming issues/bugs and corresponding code
level solutions, they could be leveraged as a starting point for automatically localizing and then solving the

common software bugs in the software systems.

220

9.2.9 Word Embeddings Technology for Bug Understanding/Diagnosis

Chaparro et al. [66] first extract Observed Behaviour (OB), Expected Behaviour (EB) and Steps to Reproduce
(S2R) the bug from hundreds of bug reports, and identify 154 discourse patterns using Grounded Theory
approach. They later make use of OB part as a reduced version of the original query (bug report) for IR-
based bug localization [65] and duplicate bug report detection [67]. Identification of these components and
patterns is a major step forward in the automated bug understanding/diagnosis (e.g., root cause analysis
[162, 256]). While these patterns and components are extracted using Grounded Theory, they could be
further investigated and possibly extended using duplicate bug reports and word embedding technology.
Duplicate bug reports are likely to refer to the same or similar bugs. Thus, they are also likely to share
the underlying semantics, observed behaviour, expected behaviour and even the discourse patterns. Our
fourth study (Chapter 6) constructs a large semantic hyperspace using FastText [54] on the corpus of Stack
Overflow. If words used in the duplicate bug reports are visualized within such a semantic hyperspace with
their corresponding embedding vectors, they might provide further insights about the discourse patterns
above. Since the hyperspace provides a geometric representation for word semantics, such patterns might
even be explained with geometric theories. A solid understanding of such patterns could also encourage novel

tools both for bug understanding/diagnosis and even for bug fixing.

9.2.10 Query Reformulation as a Feasible Choice for Improved Bug Localization

Antoniol et al. [37] first use Vector Space Model (VSM) in traceability link recovery. Zhou et al. [276] later
use rVSM (refined VSM) and incorporate past bug reports in the IR-based bug localization. Saha et al. [220]
make use of structures both from bug reports and from source code documents in localizing the bugs. Wong
et al. [258] boost up bug-proneness score of a source document based on stack trace information in the bug
report. Sisman and Kak [230] and Wen et al. [255] incorporate version control history in the IR-based bug
localization. Finally, Wang and Lo [250] incorporate five major items — past bug reports, structures, stack
traces, version history and author history — from the literature, and outperform the earlier approaches on IR-
based localization. Thus, existing literature often adopts an incremental approach of including more and more
external artifacts in the bug localization. While these artifacts have positive influences on the localization
performance, their inclusion makes the proposed approaches less scalable and less usable unfortunately. Such
limitations might also explain the reluctance of the practitioners in adopting IR-based localization [170, 248].
In this thesis, our studies [187, 188, 189, 191, 192] make effective use of primary resources available to
the practitioners— bug report and source code, employ appropriate query reformulations, and then deliver
reasonably high localization performance at low costs. Thus, we believe that query reformulation could be
an important part of at least 20 IR-based SE tasks including bug localization [192], duplicate bug detection
[67], bug triaging and bug report summarization. Future studies should (1) investigate the impacts of query

reformulations on these tasks and (2) develop more appropriate tool supports for them.

221

1]
2
3]
4
51
6]
7]
8]
9]
[10]
[11]
12]
13]
[14]
15]

[16]

[17]

[18]
[19]

[20]

BIBLIOGRAPHY

Report: Software failure caused $1.7 trillion in financial losses in 2017. URL https://tek.io/2FBN12i.
ACER experimental data. URL https://goo.gl/ZkaNvd.

Borda count. URL https://en.wikipedia.org/wiki/Borda_count.

Software maintenance cost defined. URL https://galorath.com/software-maintenance-costs/.
Theoretical CDF. URL http://stats.stackexchange.com/questions/132652.

Debbugger Source Lookup does not work with variables. URL https://bit.ly/2xz9UQr.
CodeJava. URL http://www.codejava.net.

Google custom search engine. URL https://developers.google.com/custom-search.

Example code snippet. URL https://goo.gl/WSZHiC.

Backend of GitHub search. URL https://bit.1ly/2XwakSj.

Java2s: Java Tutorials, . URL http://java2s.com.

Java Language Grammar, . URL https://github.com/antlr/grammars-v4/tree/master/javas.
JavaDB: Java Code Examples, . URL http://www. javadb. com.

Jsoup: Java HTML Parser. URL http://jsoup.org.

KodeJava: Java Examples. URL http://kodejava.org.

Enterprise search: Market share. URL https://www.datanyze.com/market-share/

enterprise-search.

A systematic literature review of automated query reformulations in source code search. URL https:

//bit.1ly/2JFGWUC.
NLP2API: Replication package. URL https://goo.gl/sJSp2D.
Samurai prefix and suffix list. URL https://hiper.cis.udel.edu/Samurai.

How do i decompress a gzip file in java? URL https://goo.gl/14QkXq.

222

https://tek.io/2FBNl2i
https://goo.gl/ZkaNvd
https://en.wikipedia.org/wiki/Borda_count
https://galorath.com/software-maintenance-costs/
http://stats.stackexchange.com/questions/132652
https://bit.ly/2xz9UQr
http://www.codejava.net
https://developers.google.com/custom-search
https://goo.gl/WSZHiC
https://bit.ly/2XwakSj
http://java2s.com
https://github.com/antlr/grammars-v4/tree/master/java8
http://www.javadb.com
http://jsoup.org
http://kodejava.org
https://www.datanyze.com/market-share/enterprise-search
https://www.datanyze.com/market-share/enterprise-search
https://bit.ly/2JFGWUC
https://bit.ly/2JFGWUC
https://goo.gl/sJSp2D
https://hiper.cis.udel.edu/Samurai
https://goo.gl/14QkXq

[21] Reflections Library. URL https://code.google.com/p/reflections.

[22] Resampling. URL http://www.creative-wisdom.com/teaching/WBI/resampling.shtml.
[23] Stack Exchange Data Explorer. URL http://data.stackexchange.com/stackoverflow.
[24] STRICT: Experimental Data. URL http://homepage.usask.ca/ masud.rahman/strict.
[25] Stop words, 2011. URL https://code.google.com/p/stop-words. Accessed: June 2017.
[26] Java keywords, 2015. URL https://bit.1ly/1Gz0V2B.

[27] Blizzard: Replication package, 2018. URL https://goo.gl/NTUqcK.

[28] Cost of software debugging, 2019. URL https://goo.gl/okoj21.

[29] BLADER-Replication Package, 2019. URL https://goo.gl/tcVKup.

[30] Blizzard-experimental data, 2019. URL https://goo.gl/toCZrs.

[31] Github code search, 2019. URL https://github.com/search.

[32] Apache Lucene Core, 2019. URL https://lucene.apache.org/core.

[33] Polygon area calculation, 2019. URL https://goo.gl/TnXhrP.

[34] Polygon, 2019. URL https://goo.gl/yVW3dR.

[35] Stack Exchange archive, 2019. URL https://archive.org/download/stackexchange.
[36] Word2vec tutorial - the skip-gram model, 2019. URL https://goo.gl/CixenG.

[37] G Antoniol, G Canfora, G Casazza, A De Lucia, and E Merlo. Recovering Traceability Links between
Code and Documentation. TSE, 28(10):970-983, 2002.

[38] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an open bug repository. In Proc. OOPSLA /Eclipse,
pages 35-39, 2005.

[39] J Anvik, L Hiew, and G C Murphy. Who Should Fix This Bug? In Proc. ICSE, pages 361-370, 2006.

[40] A Arif, M M Rahman, and S Y Mukta. Information Retrieval by Modified Term Weighting Method
Using Random Walk Model with Query Term Position Ranking. In Proc. ICSPS, pages 526530, 2009.

[41] B Ashok, J Joy, H Liang, S K Rajamani, G Srinivasa, and V Vangala. DebugAdvisor: A Recommender
System for Debugging. In Proc. ESEC/FSE, pages 373-382, 2009.

[42] A Bacchelli, M Lanza, and R Robbes. Linking e-Mails and Source Code Artifacts. In Proc. ICSE,
pages 375-384, 2010.

223

https://code.google.com/p/reflections
http://www.creative-wisdom.com/teaching/WBI/resampling.shtml
http://data.stackexchange.com/stackoverflow
http://homepage.usask.ca/~masud.rahman/strict
https://code.google.com/p/stop-words
https://bit.ly/1Gz0V2B
https://goo.gl/NTUqcK
https://goo.gl/okoj21
https://goo.gl/tcVKup
https://goo.gl/toCZrs
https://github.com/search
https://lucene.apache.org/core
https://goo.gl/TnXhrP
https://goo.gl/yVW3dR
https://archive.org/download/stackexchange
https://goo.gl/CixemG

[43] A Bachmann and A Bernstein. Software Process Data Quality and Characteristics: A Historical View
on Open and Closed Source Projects. In Proc. IWPSE, pages 119-128, 2009.

[44] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and C. Lopes. Sourcerer: A search
engine for open source code supporting structure-based search. In Proc. OOPSLA-C, pages 681-682,
2006.

[45] S. K. Bajracharya and C. V. Lopes. Analyzing and mining a code search engine usage log. EMSE, 17
(4-5):424-466, 2012.

[46] S. K. Bajracharya, J. Ossher, and C. V. Lopes. Leveraging usage similarity for effective retrieval of
examples in code repositories. In Proc. FSE, pages 157-166, 2010.

[47] V. Balachandran. Query by example in large-scale code repositories. In Proc. SANER, pages 467-476,
2015.

[48] A. Banerjee and R. N. Dave. Validating clusters using the hopkins statistic. In Proc. FUZZ-IEEE,
volume 1, pages 149-153, 2004.

[49] B Bassett and N A Kraft. Structural Information based Term Weighting in Text Retrieval for Feature
Location. In Proc. ICPC, pages 133-141, 2013.

[50] V. Batagelj and M. Zaversnik. Fast algorithms for determining (generalized) core groups in social

networks. Advances in Data Analysis and Classification, 5(2):129-145, 2011.

[51] N Bettenburg, S Just, A Schréter, C Weiss, R Premraj, and T Zimmermann. What Makes a Good
Bug Report? In Proc. FSE, pages 308-318, 2008.

[52] N Bettenburg, R Premraj, T Zimmermann, and S Kim. Extracting Structural Information from Bug

Reports. In Proc. MSR, pages 27-30, 2008.

[53] R Blanco and C Lioma. Graph-based Term Weighting for Information Retrieval. Inf. Retr., 15(1):
54-92, 2012.

[54] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword information.

arXiv preprint arXiw:1607.04606, 2016.

[55] J Brandt, P J Guo, J Lewenstein, M Dontcheva, and S R Klemmer. Two Studies of Opportunistic
Programming: Interleaving Web Foraging, Learning, and Writing Code. In Proc. SIGCHI, pages
1589-1598, 20009.

[56] Leo Breiman. Random forests. Mach. Learn., 45(1):5-32, 2001.

[57] S Brin and L Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine. Comput. Netw.
ISDN Syst., 30(1-7):107-117, 1998.

224

[58] B. A. Campbell and C. Treude. Nlp2code: Code snippet content assist via natural language tasks. In
Proc. ICSME, pages 628-632, 2017.

[59] G Capobianco, A D Lucia, R Oliveto, A Panichella, and S Panichella. Improving IR-based Traceability
Recovery via Noun-Based Indexing of Software Artifacts. JSEP, 25(7):743-762, 2013.

[60] D Carmel and E Yom-Tov. Estimating the Query Difficulty for Information Retrieval. Morgan &
Claypool, 2010.

[61] D Carmel, E Yom-Tov, A Darlow, and D Pelleg. What Makes a Query Difficult? In Proc. SIGIR,
pages 390-397, 2006.

[62] C Carpineto and G Romano. A Survey of Automatic Query Expansion in Information Retrieval. ACM
Comput. Surv., 44(1):1:1-1:50, 2012.

[63] W Chan, H Cheng, and D Lo. Searching Connected API Subgraph via Text Phrases. In Proc. FSE,
pages 10:1—-10:11, 2012.

[64] O Chaparro and A Marcus. On the Reduction of Verbose Queries in Text Retrieval Based Software
Maintenance. In Proc. ICSE-C, pages 716-718, 2016.

[65] O Chaparro, J M Florez, and A Marcus. Using Observed Behavior to Reformulate Queries during Text
Retrieval-based Bug Localization. In Proc. ICSME, pages 376-387, 2017.

[66] O Chaparro, J Lu, F Zampetti, L Moreno, M Di Penta, A Marcus, G Bavota, and V Ng. Detecting
Missing Information in Bug Descriptions. In Proc. ESEC/FSE, pages 396-407, 2017.

[67] O. Chaparro, J. M. Florez, U. Singh, and A. Marcus. Reformulating queries for duplicate bug report
detection. In Proc. SANER, page 12, 2019.

[68] F Chen and S Kim. Crowd Debugging. In Proc. ESEC/FSE, pages 320-332, 2015.

[69] B. Cleary, C. Exton, J. Buckley, and M. English. An empirical analysis of information retrieval based
concept location techniques in software comprehension. EMSE, 14(1):93-130, 2009.

[70] J Cordeiro, B Antunes, and P Gomes. Context-based Recommendation to Support Problem Solving
in Software Development. In Proc. RSSE, pages 85—89, 2012.

[71] R. F. G. Da Silva, C. K. Roy, M. M. Rahman, K. Schneider, K. Paixdo, and M. Maia. Recommending
comprehensive solutions for programming tasks by mining crowd knowledge. In Proc. ICPC, page 11,

2019.

[72] B Dagenais and M P Robillard. Creating and Evolving Developer Documentation: Understanding the
Decisions of Open Source Contributors. In Proc. FSE, pages 127-136, 2010.

225

[73] B Dagenais and M P Robillard. Recovering Traceability Links between an API and its Learning
Resources. In Proc. ICSE, pages 47-57, 2012.

[74] T. Dietrich, J. Cleland-Huang, and Y. Shin. Learning effective query transformations for enhanced
requirements trace retrieval. In Proc. ASE, pages 586-591, 2013.

[75] B Dit, L Guerrouj, D Poshyvanyk, and G Antoniol. Can Better Identifier Splitting Techniques Help
Feature Location? In Proc. ICPC, pages 11-20, 2011.

[76] M. Duijn, A. Kucera, and A. Bacchelli. Quality questions need quality code: Classifying code fragments
on stack overflow. In Proc. MSR, pages 410-413, 2015.

[77] Brian P. Eddy, Nicholas A. Kraft, and Jeff Gray. Impact of structural weighting on a latent dirichlet
allocation based feature location technique. JSEP, 30(1):€1892, 2018.

[78] F. Ensan, E. Bagheri, and M. Kahani. The application of users’ collective experience for crafting

suitable search engine query recommendations. In Proc. CNSR, pages 148-156, 2007.

[79] E Enslen, E Hill, L Pollock, and K Vijay-Shanker. Mining Source Code to Automatically Split Identifiers
for Software Analysis. In Proc. MSR, pages 71-80, 2009.

[80] S Ercan, Q Stokkink, and A Bacchelli. Automatic Assessments of Code Explanations: Predicting
Answering Times on Stack Overflow. In Proc. MSR, pages 442—445, 2015.

[81] L Favre. Modernizing Software & System Engineering Processes. In Proc. ICSENG, pages 442-447,
2008.

[82] G. Fischer and H. Nieper-Lemke. Helgon: Extending the retrieval by reformulation paradigm. In Proc.
CHI, pages 357-362, 1989.

[83] G W Furnas, T K Landauer, L M Gomez, and S T Dumais. The Vocabulary Problem in Human-system
Communication. Commun. ACM, 30(11):964-971, 1987.

[84] G Gay, S Haiduc, A Marcus, and T Menzies. On the Use of Relevance Feedback in IR-based Concept
Location. In Proc. ICSM, pages 351-360, 2009.

[85] X. Ge, D. C. Shepherd, K. Damevski, and E. Murphy-Hill. Design and evaluation of a multi-
recommendation system for local code search. Journal of Visual Languages and Computing, 39:1 —

9, 2017.

[86] M. Ghafari and H. Moradi. A framework for classifying and comparing source code recommendation

systems. In Proc. SANER, pages 555-556, 2017.

[87] M. Gibiec, A. Czauderna, and J. Cleland-Huang. Towards mining replacement queries for hard-to-

retrieve traces. In Proc. ASE, pages 245254, 2010.

226

[88] R. L. Glass. Frequently forgotten fundamental facts about software engineering. IEEE Software, 18
(3):112-111, 2001.

[89] J Gosling, B Joy, G Steele, and G Bracha. The Java Language Specification: Java SE 7 Edition. 2012.
[90] X. Gu, H. Zhang, and S. Kim. Deep code search. In Proc. ICSE, pages 933-944, 2018.

[91] Z Gu, E T Barr, D Schleck, and Z Su. Reusing Debugging Knowledge via Trace-based Bug Search. In
Proc. OOPSLA, pages 927-942, 2012.

[92] T Gvero and V Kuncak. Interactive Synthesis Using Free-form Queries. In Proc. ICSE, pages 689692,
2015.

[93] S Haiduc. Automatically Detecting the Quality of the Query and its Implications in IR-based Concept
Location. In Proc. ASE, pages 637640, 2011.

[94] S. Haiduc and A. Marcus. On the Use of Domain Terms in Source Code. In Proc. ICPC, pages 113-122,
2008.

[95] S Haiduc and A Marcus. On the Effect of the Query in IR-based Concept Location. In Proc. ICPC,
pages 234-237, jun 2011.

[96] S Haiduc, G Bavota, R Oliveto, A De Lucia, and A Marcus. Automatic Query Performance Assessment
During the Retrieval of Software Artifacts. In Proc. ASE, pages 90-99, 2012.

[97] S Haiduc, G Bavota, R Oliveto, A Marcus, and A De Lucia. Evaluating the Specificity of Text Retrieval
Queries to Support Software Engineering Tasks. In Proc. ICSE, pages 1273-1276, 2012.

[98] S Haiduc, G Bavota, A Marcus, R Oliveto, A De Lucia, and T Menzies. Automatic Query Reformula-
tions for Text Retrieval in Software Engineering. In Proc. ICSE, pages 842-851, 2013.

[99] S Haiduc, G De Rosa, G Bavota, R Oliveto, A De Lucia, and A Marcus. Query Quality Prediction and
Reformulation for Source Code Search: the Refoqus Tool. In Proc. ICSE, pages 1307-1310, 2013.

[100] Z Harris. Mathematical Structures in Language Contents. 1968.

[101] S Hassan, R Mihalcea, and C Banea. Random-Walk Term Weighting for Improved Text Classification.
In Proc. ICSC, pages 242—249, 2007.

[102] V. J. Hellendoorn and P. Devanbu. Are deep neural networks the best choice for modeling source code?

In Proc. ESEC/FSE, pages 763773, 2017.
[103] K. Herzig and A. Zeller. The impact of tangled code changes. In Proc. MSR, pages 121-130, 2013.

[104] E Hill, L Pollock, and K Vijay-Shanker. Automatically Capturing Source Code Context of NL-queries
for Software Maintenance and Reuse. In Proc. ICSE, pages 232—-242, 2009.

227

[105] E Hill, L Pollock, and K Vijay-Shanker. Improving Source Code Search with Natural Language Phrasal
Representations of Method Signatures. In Proc. ASE, pages 524-527, 2011.

[106] E Hill, S Rao, and A Kak. On the Use of Stemming for Concern Location and Bug Localization in
Java. In Proc. SCAM, pages 184-193, 2012.

[107] R Holmes and G C Murphy. Using Structural Context to Recommend Source Code Examples. In Proc.
ICSE, pages 117-125, 2005.

[108] B. Hopkins and J. G. Skellam. A new method for determining the type of distribution of plant indi-
viduals. Annals of Botany, 18(70):213-227, 1954.

[109] M J Howard, S Gupta, L Pollock, and K Vijay-Shanker. Automatically Mining Software-based,
Semantically-Similar Words from Comment-Code Mappings. In Proc. MSR, pages 377-386, 2013.

[110] Q. Huang, Y. Yang, X. Wang, H. Wan, R. Wang, and G. Wu. Query expansion via intent predicting.
IJSEKE, 27(09n10):1591-1601, 2017.

[111] Q. Huang, Y. Yang, X. Zhan, H. Wan, and G. Wu. Query expansion based on statistical learning from
code changes. SPE, 48(7):1333-1351, 2018.

[112] K. Jérvelin and J. Kekéldinen. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf.
Syst., 20(4):422-446, 2002.

[113] Otto Jespersen. The Philosophy of Grammar. 1929.

[114] K. S. Jones. A statistical interpretation of term specificity and its application in retrieval. J. Doc., 28

(1):11-21, 1972.

[115] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759, 2016.

[116] T Kaneishi and T Dohi. Parametric Bootstrapping for Assessing Software Reliability Measures. In
Proc. PRDC, pages 1-9, 2011.

[117] I. Keivanloo and J. Rilling. Internet-scale java source code data set, 2011. URL http://aseg.cs.

concordia.ca/codesearch/#IJaDataSet.

[118] I. Keivanloo, J. Rilling, and Y. Zou. Spotting working code examples. In Proc. ICSE, pages 664-675,
2014.

[119] D. Kelly and J. Teevan. Implicit feedback for inferring user preference: A bibliography. SIGIR Forum,
37(2):18-28, 2003.

228

http://aseg.cs.concordia.ca/codesearch/#IJaDataSet
http://aseg.cs.concordia.ca/codesearch/#IJaDataSet

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

K Kevic and T Fritz. Automatic Search Term Identification for Change Tasks. In Proc. ICSE, pages
468-471, 2014.

K Kevic and T Fritz. A Dictionary to Translate Change Tasks to Source Code. In Proc. MSR, pages
320-323, 2014.

D Kim, Y Tao, S Kim, and A Zeller. Where Should We Fix This Bug? A Two-Phase Recommendation
Model. TSE, 39(11):1597-1610, 2013.

M. Kim and E. Lee. Are information retrieval-based bug localization techniques trustworthy? In Proc.

ICSE, pages 248-249, 2018.

M. Kimmig, M. Monperrus, and M. Mezini. Querying source code with natural language. In Proc.

ASE, pages 376-379, 2011.

Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. An exploratory study of how
developers seek, relate, and collect relevant information during software maintenance tasks. TSE, 32

(12):971-987, 2006.

P. S. Kochhar, Y. Tian, and D. Lo. Potential biases in bug localization: Do they matter? In Proc.
ASE, pages 803-814, 2014.

G. Kumaran and V. R. Carvalho. Reducing long queries using query quality predictors. In Proc. SIGIR,
pages 564-571, 2009.

A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Bug localization with combination of
deep learning and information retrieval. In Proc. ICPC, pages 218-229, 2017.

R. Lapena, J. Font, F. Pérez, and C. Cetina. Improving feature location by transforming the query

from natural language into requirements. In Proc. SPLC, pages 362—-369, 2016.

Tien-Duy B Le, R J Oentaryo, and D Lo. Information Retrieval and Spectrum Based Bug Localization:
Better Together. In Proc. ESEC/FSE, pages 579-590, 2015.

Vu Le, Sumit Gulwani, and Zhendong Su. Smartsynth: Synthesizing smartphone automation scripts

from natural language. In Proc. MobiSys, pages 193-206, 2013.

O. A. L. Lemos, S. K. Bajracharya, J. Ossher, R. S. Morla, P. C. Masiero, P. Baldi, and C. V. Lopes.
Codegenie: Using test-cases to search and reuse source code. In Proc. ASE, pages 525-526, 2007.

O. A. L. Lemos, S. Bajracharya, J. Ossher, P. C. Masiero, and C. Lopes. A test-driven approach to
code search and its application to the reuse of auxiliary functionality. IST, 53(4):294 — 306, 2011.

O. A. L. Lemos, A. C. de Paula, F. C. Zanichelli, and C. V. Lopes. Thesaurus-based automatic query
expansion for interface-driven code search. In Proc. MSR, pages 212-221, 2014.

229

[135] O. A. L. Lemos, A. C. de Paula, H. Sajnani, and C. V. Lopes. Can the use of types and query expansion
help improve large-scale code search? In Proc. SCAM, pages 41-50, 2015.

[136] Z. Li, T. Wang, Y. Zhang, Y. Zhan, and G. Yin. Query reformulation by leveraging crowd wisdom for

scenario-based software search. In Proc. Internetware, pages 36—44, 2016.

[137] J. Lin and G. C. Murray. Assessing the term independence assumption in blind relevance feedback. In

Proc. SIGIR, pages 635—636, 2005.

[138] J. Lin, Y. Liu, J. Guo, J. Cleland-Huang, W. Goss, W. Liu, S. Lohar, N. Monaikul, and A. Rasin. Tiqi:
A natural language interface for querying software project data. In Proc. ASE, pages 973-977, 2017.

[139] Z. Lin, Y. Zou, J. Zhao, and B. Xie. Improving software text retrieval using conceptual knowledge in

source code. In Proc. ASE, pages 123-134, 2017.

[140] M Linares-Vasquez, G Bavota, M Di Penta, R Oliveto, and D Poshyvanyk. How Do API Changes
Trigger Stack Overflow Discussions? A Study on the Android SDK. In Proc. ICPC, pages 83-94, 2014.

[141] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi. Sourcerer: mining and searching
internet-scale software repositories. Data Mining and Knowledge Discovery, 18(2):300-336, 2009.

[142] D Liu, A Marcus, D Poshyvanyk, and V Rajlich. Feature Location via Information Retrieval Based
Filtering of a Single Scenario Execution Trace. In Proc. ASE, pages 234-243, 2007.

[143] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi. UCI source code data sets, 2010. URL http:

//www.ics.uci.edu/"lopes/datasets/.

[144] Meili Lu, X. Sun, S. Wang, D. Lo, and Yucong Duan. Query expansion via wordnet for effective code
search. In Proc. SANER, pages 545-549, 2015.

[145] X Allan Lu and Robert B Keefer. Query expansion / reduction and its impact on retrieval effectiveness.

In Proc. TREC, pages 1-9, 1995.

[146] A. D. Lucia, R. Oliveto, and P. Sgueglia. Incremental approach and user feedbacks: a silver bullet for
traceability recovery. In Proc. ICSM, pages 299-309, 2006.

[147] F. Lv, H. Zhang, J. Lou, S. Wang, D. Zhang, and J. Zhao. Codehow: Effective code search based on
api understanding and extended boolean model. In Proc. ASE, pages 260-270, 2015.

[148] L Mamykina, B Manoim, M Mittal, G Hripcsak, and B Hartmann. Design Lessons from the Fastest Q
& A Site in the West. In Proc. CHI, pages 2857—2866, 2011.

[149] A Marcus and S Haiduc. Text Retrieval Approaches for Concept Location in Source Code. In Software
Engineering, volume 7171, pages 126-158. 2013.

230

http://www.ics.uci.edu/~lopes/datasets/
http://www.ics.uci.edu/~lopes/datasets/

[150] A Marcus, A Sergeyev, V Rajlich, and J I Maletic. An Information Retrieval Approach to Concept
Location in Source Code. In Proc. WCRE, pages 214-223, 2004.

[151] L. Martie, T. D. LaToza, and A. v. d. Hoek. Codeexchange: Supporting reformulation of internet-scale
code queries in context (t). In Proc. ASE, pages 24-35, 2015.

[152] C McMillan, M Grechanik, D Poshyvanyk, Q Xie, and C Fu. Portfolio: Finding Relevant Functions
and their Usage. In Proc. ICSE, pages 111-120, 2011.

[153] R Mihalcea and P Tarau. TextRank: Bringing Order into Texts. In Proc. EMNLP, pages 404-411,
2004.

[154] R Mihalcea, P Tarau, and E Figa. PageRank on Semantic Networks, with Application to Word Sense
Disambiguation. In Proc. COLING, 2004.

[155] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector

space. CoRR, abs/1301.3781, 2013.

[156] T Mikolov, I Sutskever, K Chen, G S Corrado, and J Dean. Distributed Representations of Words and
Phrases and their Compositionality. In Proc. NIPS, pages 3111-3119, 2013.

[157] George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39-41, 1995.

[158] C. Mills, G. Bavota, S. Haiduc, R. Oliveto, A. Marcus, and A. D. Lucia. Predicting query quality for
applications of text retrieval to software engineering tasks. TOSEM, 26(1):3:1-3:45, 2017.

[159] C. Mills, J. Pantiuchina, E. Parra, G. Bavota, and S. Haiduc. Are bug reports enough for text retrieval-
based bug localization? In Proc. ICSME, pages 381-392, 2018.

. Mondal, M. M. Rahman, an . K. Roy. Embedded Emotion-base assification ot Stack Overtlow
160] A. Mondal, M. M. Rah d C. K. Roy. Embedded E ion-based Classificati f Stack Overfl
Questions Towards the Question Quality Prediction. In Proc. SEKFE, pages 521-526, 2016.

[161] S. Mondal, M. M. Rahman, and C. K. Roy. Can issues reported at stack overflow questions be repro-
duced? an exploratory study. In Proc. MSR, page 11, 2019.

[162] K. Moran, M. Linares-Vasquez, C. Bernal-Céardenas, C. Vendome, and D. Poshyvanyk. Automatically
discovering, reporting and reproducing android application crashes. In Proc. ICST, pages 33—44, 2016.

[163] L. Moreno, J. J. Treadway, A. Marcus, and W. Shen. On the use of stack traces to improve text
retrieval-based bug localization. In Proc. ICSME, pages 151-160, 2014.

[164] L Moreno, G Bavota, S Haiduc, M Di Penta, R Oliveto, B Russo, and A Marcus. Query-based
Configuration of Text Retrieval Solutions for Software Engineering Tasks. In Proc. ESEC/FSE, pages
567-578, 2015.

231

[165] D Mujumdar, M Kallenbach, B Liu, and B Hartmann. Crowdsourcing Suggestions to Programming
Problems for Dynamic Web Development Languages. In Proc. CHI, pages 1525-1530, 2011.

[166] K. Nakasai, M. Tsunoda, and H. Hata. Web search behaviors for software development. In Proc.
CHASE, pages 125-128, 2016.

[167] A T Nguyen, T T Nguyen, J Al-Kofahi, H V Nguyen, and T N Nguyen. A Topic-based Approach for
Narrowing the Search Space of Buggy Files from a Bug Report. In Proc. ASE, pages 263-272, 2011.

[168] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li. Query expansion based on crowd knowledge for code
search. TSC, 9(5):771-783, 2016.

[169] F. J. Ortega, C. Macdonald, J. A. Troyano, and F. Cruz. Spam detection with a content-based random-
walk algorithm. In Proc. SMUC, pages 45-52, 2010.

[170] C Parnin and A Orso. Are Automated Debugging Techniques Actually Helping Programmers? In
Proc. ISSTA, pages 199-209, 2011.

[171] C Parnin and C Treude. Measuring API Documentation on the Web. In Proc. Web2SE, pages 25-30,
2011.

[172] F. Perez, J. Font, L. Arcega, and C. Cetina. Automatic query reformulations for feature location in a

model-based family of software products. Data & Knowledge Engineering, 116:159 — 176, 2018.

[173] N Pingclasai, H Hata, and K i. Matsumoto. Classifying Bug Reports to Bugs and Other Requests
Using Topic Modeling. In Proc. APSEC, volume 2, pages 13-18, 2013.

[174] R. Polikar. Ensemble based systems in decision making. Proc. MCAS, 6(3):21-45, 2006.

[175] L Ponzanelli, A Bacchelli, and M Lanza. Seahawk: Stack Overflow in the IDE. In Proc. ICSE, pages
1295-1298, 2013.

[176] L Ponzanelli, G Bavota, M D Penta, R Oliveto, and M Lanza. Prompter: A Self-Confident Recom-
mender System. In Proc. ICSME, pages 577580, 2014.

[177] L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton. Improving Low Quality Stack
Overflow Post Detection. In Proc. ICSME, pages 541-544, 2014.

[178] D Poshyvanyk and A Marcus. Combining Formal Concept Analysis with Information Retrieval for
Concept Location in Source Code. In Proc. ICPC, pages 37-48, 2007.

[179] D Poshyvanyk, Y G Gueheneuc, A Marcus, G Antoniol, and V Rajlich. Feature Location Using
Probabilistic Ranking of Methods Based on Execution Scenarios and Information Retrieval. T'SE, 33

(6):420-432, 2007.

232

[180] R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.

[181] M. Raghothaman, Y. Wei, and Y. Hamadi. Swim: Synthesizing what i mean: Code search and idiomatic
snippet synthesis. In Proc. ICSE, pages 357-367, 2016.

[182] M. M. Rahman. Supporting code search with context-aware, analytics-driven, effective query reformu-

lation. In Proc. ICSE-C, page 4, 2019.

[183] M. M. Rahman and C. K. Roy. Surfclipse: Context-aware meta-search in the ide. In Proc. ICSME,
pages 617-620, 2014.

[184] M. M. Rahman and C. K. Roy. On the use of context in recommending exception handling code
examples. In Proc. SCAM, pages 285-294, 2014.

[185] M. M. Rahman and C. K. Roy. Recommending relevant sections from a webpage about programming

errors and exceptions. In Proc. CASCON, pages 181-190, 2015.

[186] M. M. Rahman and C. K. Roy. An insight into the unresolved questions at stack overflow. In Proc.
MSR, pages 426-429, 2015.

[187] M M Rahman and C K Roy. TextRank Based Search Term Identification for Software Change Tasks.
In Proc. SANER, pages 540-544, 2015.

[188] M M Rahman and C K Roy. QUICKAR: Automatic Query Reformulation for Concept Location Using
Crowdsourced Knowledge. In Proc. ASE, pages 220-225, 2016.

[189] M M Rahman and C K Roy. Improved Query Reformulation for Concept Location using CodeRank
and Document Structures. In Proc. ASE, pages 428-439, 2017.

[190] M. M. Rahman and C. K. Roy. Impact of continuous integration on code reviews. In Proc. MSR, pages
499-502, 2017.

[191] M M Rahman and C K Roy. STRICT: Information Retrieval Based Search Term Identification for
Concept Location. In Proc. SANER, pages 79-90, 2017.

[192] M. M. Rahman and C. K. Roy. Improving ir-based bug localization with context-aware query reformu-

lation. In Proc. ESEC/FSE, pages 621-632, 2018.

[193] M. M. Rahman and C. K. Roy. Improving bug localization with report quality dynamics and query
reformulation. In Proc. ICSE-C, pages 348-349, 2018.

[194] M. M. Rahman and C. K. Roy. Effective reformulation of query for code search using crowdsourced

knowledge and extra-large data analytics. In Proc. ICSME, pages 516-527, 2018.

233

[195] M. M. Rahman and C. K. Roy. Nlp2api: Query reformulation for code search using crowdsourced
knowledge and extra-large data analytics. In Proc. ICSME, page 714, 2018.

[196] M. M. Rahman and Chanchal K. Roy. An insight into the pull requests of github. In Proc. MSR, pages
364-367.

[197] M. M. Rahman, S. Yeasmin, and C. K. Roy. An ide-based context-aware meta search engine. In Proc.
WCRE, pages 467471, 2013.

[198] M M Rahman, S Yeasmin, and C K Roy. Towards a Context-Aware IDE-Based Meta Search Engine for
Recommendation about Programming Errors and Exceptions. In Proc. CSMR-WCRE, pages 194-203,
2014.

[199] M. M. Rahman, C. K. Roy, and I. Keivanloo. Recommending Insightful Comments for Source Code
using Crowdsourced Knowledge. In Proc. SCAM, pages 81-90, 2015.

[200] M M Rahman, C K Roy, and J Collins. CORRECT: Code Reviewer Recommendation Based on
Cross-Project and Technology Experience. In Proc. ICSE, page to appear, 2016.

[201] M M Rahman, C K Roy, and D Lo. RACK: Automatic API Recommendation using Crowdsourced
Knowledge. In Proc. SANER, pages 349-359, 2016.

[202] M. M. Rahman, C. K. Roy, J Redl, and J. Collins. CORRECT: Code Reviewer Recommendation at
GitHub for Vendasta Technologies. In Proc. ASE, pages 792-797, 2016.

[203] M. M. Rahman, C. K. Roy, and R. G. Kula. Predicting usefulness of code review comments using
textual features and developer experience. In Proc. MSR, pages 215-226, 2017.

[204] M. M. Rahman, C. K. Roy, and D. Lo. Rack: Code search in the ide using crowdsourced knowledge.
In Proc. ICSE-C, pages 51-54, 2017.

[205] M. M. Rahman, J. Barson, S. Paul, J. Kayani, F. A. Lois, S. F. Quezada, C. Parnin, K T. Stolee, and
Baishakhi Ray. Evaluating how developers use general-purpose web-search for code retrieval. In Proc.

MSR, page 10, 2018.

[206] M. M. Rahman, C. K. Roy, and D. Lo. Automatic query reformulation for code search using crowd-
sourced knowledge. EMSE, page 56, 2018.

[207] S Rao and A Kak. Retrieval from Software Libraries for Bug Localization: A Comparative Study of
Generic and Composite Text Models. In Proc. MSR, pages 43-52, 2011.

[208] S Rastkar, G C Murphy, and G Murray. Summarizing Software Artifacts: A Case Study of Bug Reports.
In Proc. ICSE, pages 505-514, 2010.

234

[209] Steven P. Reiss. Semantics-based code search. In Proc. ICSE, pages 243-253, 2009.

[210] M. Revelle, B. Dit, and D. Poshyvanyk. Using data fusion and web mining to support feature location
in software. In Proc. ICPC, pages 14-23, 2010.

[211] P C Rigby and M P Robillard. Discovering Essential Code Elements in Informal Documentation. In
Proc. ICSE, pages 832-841, 2013.

[212] S. E. Robertson. On term selection for query expansion. J. Doc., 46(4):359-364, 1991.

[213] JJ Rocchio. The SMART Retrieval System—Ezperiments in Automatic Document Processing. Prentice-
Hall, Inc.

[214] Lior Rokach. Ensemble-based classifiers. JAIR, 33(1):1-39, 2010.

[215] M. Roldan-Vega, G. Mallet, E. Hill, and J. A. Fails. Conquer: A tool for nl-based query refinement
and contextualizing code search results. In Proc. ICSM, pages 512-515, 2013.

[216] J. Romano, J.D. Kromrey, J. Coraggio, and J. Skowronek. Appropriate statistics for ordinal level data:
Should we really be using t-test and Cohen’sd for evaluating group differences on the NSSE and other

surveys? In Annual meeting of the Florida Association of Institutional Research, pages 1-3, 2006.

[217] F. Rousseau and M. Vazirgiannis. Main core retention on graph-of-words for single-document keyword

extraction. In Proc. ECIR, pages 382-393, 2015.

[218] C K Roy and J R Cordy. NICAD: Accurate Detection of Near-Miss Intentional Clones Using Flexible
Pretty-Printing and Code Normalization. In Proc. ICPC, pages 172-181, 2008.

[219] C. Sadowski, K. T. Stolee, and S. Elbaum. How developers search for code: A case study. In Proc.
ESEC/FSE, pages 191-201, 2015.

[220] R K Saha, M Lease, S Khurshid, and D E Perry. Improving Bug Localization using Structured Infor-
mation Retrieval. In Proc. ASE, pages 345-355, 2013.

[221] R. K. Saha, J. Lawall, S. Khurshid, and D. E. Perry. On the effectiveness of information retrieval based
bug localization for ¢ programs. In Proc. ICSME, pages 161-170, 2014.

[222] G. Salton and C. Buckley. Readings in information retrieval. chapter Improving Retrieval Performance

by Relevance Feedback, pages 355-364. 1997.

[223] A. Satter and K. Sakib. A search log mining based query expansion technique to improve effectiveness

in code search. In Proc. ICCIT, pages 586-591, 2016.

[224] T Savage, M Revelle, and D Poshyvanyk. FLAT3: Feature Location and Textual Tracing Tool. In
Proc. ICSE, pages 255—258, 2010.

235

[225] G Scanniello and A Marcus. Clustering Support for Static Concept Location in Source Code. In Proc.
ICPC, pages 1-10, 2011.

[226] D Shepherd, Z P Fry, E Hill, L Pollock, and K Vijay-Shanker. Using Natural Language Program
Analysis to Locate and Understand Action-Oriented Concerns. In Proc. ASOD, pages 212224, 2007.

[227] Z Shi, J Keung, and Q Song. An Empirical Study of BM25 and BM25F Based Feature Location
Techniques. In Proc. InnoSWDew, pages 106-114, 2014.

[228] A. Shtok, O. Kurland, D. Carmel, F. Raiber, and G. Markovits. Predicting query performance by
query-drift estimation. TOIS, 30(2):11:1-11:35, 2012.

[229] R. Sirres, T. F. Bissyandé, D. Kim, D. Lo, J. Klein, K. Kim, and Y. L. Traon. Augmenting and
structuring user queries to support efficient free-form code search. FMSE, pages 2622-2654, 2018.

[230] B Sisman and A C Kak. Incorporating Version Histories in Information Retrieval Based Bug Localiza-

tion. In Proc. MSR, pages 50-59, 2012.

[231] B Sisman and A C Kak. Assisting Code Search with Automatic Query Reformulation for Bug Local-
ization. In Proc. MSR, pages 309-318, 2013.

[232] B. Sisman, S. A. Akbar, and A. C. Kak. Exploiting spatial code proximity and order for improved
source code retrieval for bug localization. JSEP, 29(1):e1805, 2017.

[233] G Sridhara, E Hill, L Pollock, and K Vijay-Shanker. Identifying Word Relations in Software: A
Comparative Study of Semantic Similarity Tools. In Proc. ICPC, pages 123-132, 2008.

[234] K. T. Stolee, S. Elbaum, and M. B. Dwyer. Code search with input/output queries: Generalizing,
ranking, and assessment. JSS, 116(C):35-48, 2016.

[235] J. Svajlenko and C. K. Roy. Fast, scalable and user-guided clone detection. In Proc. ICSE-C, pages
352-353, 2018.

[236] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia. Towards a big data curated
benchmark of inter-project code clones. In Proc. ICSME, pages 476-480, 2014.

[237] M Tan, L Tan, S Dara, and C Mayeux. Online Defect Prediction for Imbalanced Data. In Proc. ICSE,
volume 2, pages 99-108, 2015.

[238] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin. Learning sentiment-specific word embedding
for twitter sentiment classification. In Proc. ACL, pages 1555-1565, 2014.

[239] P Thongtanunam, R G Kula, N Yoshida, H Iida, and K Matsumoto. Who Should Review My Code?
In Proc. SANER, pages 141-150, 2015.

236

[240] S Thummalapenta and T Xie. Parseweb: A Programmer Assistant for Reusing Open Source Code on

the Web. In Proc. ASE, pages 204213, 2007.
[241] F Thung, D Lo, and L Jiang. Automatic Defect Categorization. In Proc. WCRE, pages 205-214, 2012.

[242] F Thung, D Lo, and J Lawall. Automated Library Recommendation. In Proc. WCRE, pages 182-191,
2013.

[243] F Thung, S Wang, D Lo, and J Lawall. Automatic Recommendation of API Methods from Feature
Requests. In Proc. ASE, pages 290-300, 2013.

[244] K Toutanova, D Klein, C D Manning, and Y Singer. Feature-Rich Part-of-Speech Tagging with a
Cyclic Dependency Network. In Proc. HLT-NAACL, pages 252-259, 2003.

[245] Y. Uneno, O. Mizuno, and E. H. Choi. Using a distributed representation of words in localizing relevant

files for bug reports. In Proc. QRS, pages 183-190, 2016.

[246] C Vassallo, S Panichella, M Di Penta, and G Canfora. CODES: Mining Source Code Descriptions from
Developers Discussions. In Proc. ICPC, pages 106-109, 2014.

[247] T Vessey. Expertise in Debugging Computer Programs: An Analysis of the Content of Verbal Protocols.
TSMC, 16(5):621-637, 1986.

[248] Q Wang, C Parnin, and A Orso. Evaluating the Usefulness of IR-based Fault Localization Techniques.
In Proc. ISSTA, pages 1-11, 2015.

[249] S Wang and D Lo. Version History, Similar Report, and Structure: Putting Them Together for Improved
Bug Localization. In Proc. ICPC, pages 53—-63, 2014.

[250] S. Wang and D. Lo. Amalgam-+: Composing rich information sources for accurate bug localization.

JSEP, 28(10):921-942, 2016.

[251] S. Wang, D. Lo, and L. Jiang. Active code search: Incorporating user feedback to improve code search

relevance. In Proc. ASE, pages 677-682, 2014.

[252] S. Wang, D. Lo, and L. Jiang. Autoquery: automatic construction of dependency queries for code

search. ASE, 23(3):393-425, Sep 2016.

[253] Y. Wang, L. Wang, Y. Li, D. He, and T. Liu. A theoretical analysis of NDCG type ranking measures.
In Proc. COLT, pages 25-54, 2013.

[254] F W Warr and M P Robillard. Suade: Topology-Based Searches for Software Investigation. In Proc.
ICSE, pages 780-783, 2007.

237

[255] M Wen, R Wu, and S C Cheung. Locus: Locating bugs from software changes. In Proc. ASE, pages
262-273, 2016.

[256] M. White, M. Linares-Vasquez, P. Johnson, C. Bernal-Cardenas, and D. Poshyvanyk. Generating
reproducible and replayable bug reports from android application crashes. In Proc. ICPC, pages 48-59,
2015.

[257] L A Wilson. Using Ontology Fragments in Concept Location. In Proc. ICSM, pages 1-2, 2010.

[258] C P Wong, Y Xiong, H Zhang, D Hao, L Zhang, and H Mei. Boosting Bug-Report-Oriented Fault
Localization with Segmentation and Stack-Trace Analysis. In Proc. ICSME, pages 181-190, 2014.

[259] E Wong, J Yang, and L Tan. AutoComment: Mining Question and Answer sites for Automatic
Comment Generation. In Proc. ASE, pages 562-567, 2013.

[260] R. Wu, H. Zhang, S. Kim, and S. Cheung. Relink: Recovering links between bugs and changes. In
Proc. ESEC/FSE, pages 15-25, 2011.

[261] M. Wursch, G. Ghezzi, G. Reif, and H. C. Gall. Supporting developers with natural language queries.
In Proc. ICSE, pages 165-174, 2010.

[262] X. Xia, L. Bao, D. Lo, and S. Li. “automated debugging considered harmful" considered harmful:
A user study revisiting the usefulness of spectra-based fault localization techniques with professionals

using real bugs from large systems. In Proc. ICSME, pages 267-278, 2016.

[263] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing. What do developers search for on
the web? EMSE, 22(6):3149-3185, 2017.

[264] T Xie and J Pei. MAPO: Mining API Usages from Open Source Repositories. In Proc. MSR, pages
54-57, 2006.

[265] J Yang and L Tan. Inferring Semantically Related Words from Software Context. In Proc. MSR, pages
161-170, 2012.

[266] J. Yang and L. Tan. Swordnet: Inferring semantically related words from software context. EMSE, 19
(6):1856-1886, 2014.

[267] J. Yao, B. Cui, L. Hua, and Y. Huang. Keyword Query Reformulation on Structured Data. In Proc.
ICDE, pages 953964, 2012.

[268] X Ye, H Shen, X Ma, R Bunescu, and C Liu. From Word Embeddings to Document Similarities for
Improved Information Retrieval in Software Engineering. In Proc. ICSE, pages 404-415, 2016.

[269] Xin Ye, Razvan Bunescu, and Chang Liu. Learning to rank relevant files for bug reports using domain

knowledge. In Proc. FSE, pages 689-699, 2014.

238

[270] K C Youm, J Ahn, J Kim, and E Lee. Bug Localization Based on Code Change Histories and Bug
Reports. In Proc. APSEC, pages 190-197, 2015.

[271] H. Yu, W. Song, and T. Mine. Apibook: An effective approach for finding apis. In Proc. Internetware,
pages 45-53, 2016.

[272] T Yuan, D Lo, and J Lawall. Automated Construction of a Software-Specific Word Similarity Database.
In Proc. CSMR-WCRE, pages 44-53, 2014.

[273] S. Zamani, S. Peck Lee, R. Shokripour, and J. Anvik. A noun-based approach to feature location using
time-aware term-weighting. IST, 56(8):991 — 1011, 2014.

[274] F. Zhang, H. Niu, I. Keivanloo, and Y. Zou. Expanding queries for code search using semantically

related api class-names. TSE, 44(11):1070-1082, 2018.

[275] Y. Zhang, W. Zhang, J. Pei, X. Lin, Q. Lin, and A. Li. Consensus-based ranking of multivalued objects:
A generalized borda count approach. TKDE, 26(1):83-96, 2014.

[276] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be fixed? more accurate information retrieval-
based bug localization based on bug reports. In Proc. ICSE, pages 1424, 2012.

[277] Y Zhou, Y Tong, R Gu, and H Gall. Combining Text Mining and Data Mining for Bug Report
Classification. In Proc. ICSME, pages 311-320, 2014.

[278] T Zimmermann, N Nagappan, and A Zeller. Predicting Bugs from History. In Software Evolution,
pages 69-88. Springer, 2008.

239

APPENDIX A

REPLICATION PACKAGES

A.1 STRICT

It accepts a change request as a query, identifies suitable keywords from the request texts using graph-based
term weighting algorithms, and then delivers an improved, reformulated query for concept location.

e Project website: http://www.usask.ca/~mor543/strict
e GitHub repository: https://github.com/masud-technope/STRICT-Replication-Package

A.2 ACER

It accepts a given query as input, identifies complementary keywords from the relevant source code docu-
ments (retrieved by the query) using a graph-based term weighting method, and then delivers an improved,
reformulated search query for concept location.

e Project website: http://www.usask.ca/~mor543/acer

e GitHub repository: https://github.com/masud-technope/ACER-Replication-Package-ASE2017

A.3 BLIZZARD

It accepts a bug report as a query, employs appropriate methodologies or algorithms for keyword selection
from the report texts based on the quality of report (e.g., noisy, poor), and then delivers an improved,
reformulated search query for bug localization.

e Project website: http://www.usask.ca/~mor543/blizzard

e GitHub repository: https://github.com/masud-technope/BLIZZARD-Replication-Package-ESEC-
FSE2018

e ACM archive: https://dl.acm.org/citation.cfm?id=3277001

A.4 BLADER

It accepts a poor bug report as a query, identifies complementary keywords from the relevant source code
documents based on the clustering tendency between the query and the candidate keywords, and then delivers
an improved, reformulated search query for the bug localization.

e GitHub repository: https://github.com/masud-technope/ BLADER-ICSE2019-Replication-Package

A.5 RACK

It accepts a free-form search query on a programming task, expands the query with relevant API classes that
are carefully mined from the crowd generated knowledge of Stack Overflow Q&A site, and then delivers an
improved, reformulated query for Internet-scale code search.

e Project website: http://www.usask.ca/~mor543/rack
e GitHub repository: https://github.com/masud-technope/RACK-Replication-Package
e Tool demonstration: https://youtu.be/50Fbx8g5eXk

240

http://www.usask.ca/~mor543/strict
https://github.com/masud-technope/STRICT-Replication-Package
http://www.usask.ca/~mor543/acer
https://github.com/masud-technope/ACER-Replication-Package-ASE2017
http://www.usask.ca/~mor543/blizzard
https://github.com/masud-technope/BLIZZARD-Replication-Package-ESEC-FSE2018
https://github.com/masud-technope/BLIZZARD-Replication-Package-ESEC-FSE2018
https://dl.acm.org/citation.cfm?id=3277001
https://github.com/masud-technope/BLADER-ICSE2019-Replication-Package
http://www.usask.ca/~mor543/rack
https://github.com/masud-technope/RACK-Replication-Package
https://youtu.be/50Fbx8g5eXk

A.6 NLP2API

It accepts a free-form search query on a programming task, expands the query with relevant API classes
that are carefully collected based on query-API semantic distance analysis, and the delivers an improved,
reformulated query for Internet-scale code search.

e Project website: http://www.usask.ca/~mor543/nlp2api
e GitHub repository: https://github.com/masud-technope/NLP2API-Replication-Package

A.7 Other PhD Projects

e Other completed PhD projects & associated materials

241

http://www.usask.ca/~mor543/nlp2api
https://github.com/masud-technope/NLP2API-Replication-Package
http://www.usask.ca/~mor543/tools

APPENDIX B

BUGDOCTOR

We present six studies — STRICT (Chapter 3), ACER (Chapter 4), BLIZZARD (Chapter 5), BLADER
(Chapter 6), RACK (Chapter 7) and NLP2API (Chapter 8)— that support the software developers in various
code searches with automated query reformulations. Although each of these studies has produced individual
tool with command line user interfaces, we further combine them, and package them into a single Eclipse
IDE plug-in namely BugDoctor. The plug-in can be downloaded, installed and easily integrated into the
developer’s work environment (e.g., IDE). In this appendix, we present the download link and several use
case scenarios (e.g., concept location, bug localization, Internet-scale code search) of our developed tool.

B.1 Download

The Eclipse plug-in and its dependencies can be downloaded from the BugDoctor website. Please consult
with the README file for detailed installation guidelines. An overview on BugDoctor can also be found at
YouTube: https://www.youtube.com/watch?v=RPMBroKtxks.

B.2 Configuration Setup

Once the plug-in is installed successfully, the default configurations (Fig. B.1) should be modified. The
configuration window can be found here: Window > Preferences >Ant > BugDoctor

& Preferences O x

type filter text BugDoctor Ko A

General
Ant Plug-in Home: FiMyWaorks\ Thesis Works\PhOThesisTool

El:agjzdor Stopword Directory: FAMyWorks\Thesis Works\PhDThesisTool\pp-dati Change

Help Sarnurai Directory: FAMyWaoarks\ Thesis Works\PhDThesisTool\samura

Install/Update 1
Java POS Model Directory: FAMyWorks\Thesis Works\PhDThesisTool\models

Change

Change

Change

Maven
Model Editor
Mylyn Ground Truth Directory, F:\MyWorks' Thesis Works\PhDThesisTool\goldset
Comph

Selected Project: eclipse.jdt.debug - Change

Change

Plug-in Development
Run/Debug

SWTBot Preferences
Team

Validation

XML

Restore Defaults Apply

':?;' |[_‘. 1)) @;‘ @:‘ 2 Apply and Close Cancel

Figure B.1: Setting up custom configurations for BugDoctor

242

http://homepage.usask.ca/~masud.rahman/bugdoctor/
https://www.youtube.com/watch?v=RPMBr0Ktxks

B.3 Enabling BugDoctor in the IDE

& EclipseRCPWS - Eclipse IDE (a)
File Edit Mawvigate Search Project Run * BugDoctor Window Help
N | rg » Enable BugDoctor '. v Q@
Mew ¥
Go Into
Show In Alt+5Shift+W »
[E Copy Ctrl+C
5= Copy Qualified Mame
[[5 Paste Ctrl+V
W Delete Delete
Remove from Context Ctrl+Alt+5Shift+Down
Build Path ¥
Refactor Alt+5hift+T >
i Import..
5 Export..
Refresh F5

Close Project

Close Unrelated Projects

Q@ Coverage As »
{J FRunAs ¥
75;.’; Debug As > (b)
Restore from Local History...
‘ BugDoctor » . Enable BugDoctor
Team >
Compare With ¥
Plug-in Tools >
Configure ¥
Source ¥
¥| Validate
Properties Alt+Enter

Figure B.2: Enabling BugDoctor with (a) main menu option and (b) context menu option

B.4 BugDoctor User Interfaces

BugDoctor has three different windows: BugDoctor Dashboard (Fig. B.3), BugDoctor Utility Dashboard
(Fig. B.4), and Relevant Code Example Dashboard (Fig. B.5)

243

[oued sinsox

pIess apo)) (p) pue ‘oued uonemuiioipl L1eng) () ‘pued j1oder Sng (q) ‘teued uonnoexe A1end) () :preoquse lowosng :g'g 2InSig

(p)

ssausnopidsng fmug ABBng

()

ERTERETEN] piomiay paissbbng

(@)

|apoD ABBNg yosess Yo |

spaomiay i1y paps [| AsanD axei @

_ spiomAay Aanp 3sabbng 8-

(e)

yaueas psay]

_?_0:0 puedx3 @ 7 7 apo) ABBng yaleass m _ 7

_ :spiomhiay

_ uoday Bng e uadp _

auoN :qibng bBngspiplasdios :josloid

sajd wex3 apo?) JuessRy e Ao so1zegbng * ﬁ 57 1033006ng * Bngag £ sjosuod &

244

Tomota opo)) () pue ‘pued uorsuedxe L1ong) (q) ‘Pued uonniexe A1enb 2y uo1Ise33INs [y (©) :preoquse L111) I01wodsng :f g 2In3rg

[gam 33 uo uone3o| 33uNos [euibug)]

< >

(@)

uer3Ry A IvdA oA S50 1dY

' sajduiex3 9poD y-doy mous

(@) [Ren sz o

yaseag sy] anpug asp)
amv O =]

| 8poD jueAsieY Yosesg T || sidV JueA9RY 199 () __

7 :spiomhay

sajdwex3 2po7) JuenafEy e 57 Ao Jogpogbng *. syse] &

245

Iamata 9po)) (q) pue ‘sejdurexe opod juess[al 3-dof, (€) :preoquse(] o[dwrexy opo)) :G g 9INI1 g

(a) (e)

dueraRy ssep) |dy A2

246

F 57 sajdwex3 apo7 juesaay e; o 1e300gbng * 10pogbng * Bngag £ 2josue)

B.5 Loading an Issue Report (e.g., Change Request, Bug Report)

AT oy) utgum j1odor o) matA (g) pue ‘groder o1y asoor) (g) ‘woling oy Y1) (1) :110dol onsst ue jo Suipeor] :9°g 9InSig

ssausnoladsng

[

[~ o [~ £645 | Aweuayy
< > A -
- : EEEC R e D) VOOIEQLOHIL =5
WRWNIOQ ¥RL WY 90° L2-90-LLOZ L [E —
WEWNSO0 WL Y 90° L2-90-LL0Z £40% [5]
sunpig (=]
wewneq¥EL WY 30 L2-90-LI0Z £g9¢ 5] —_—_—
i
WRWAOQ PRL WY 80° L2-90-LLOT £e9s 2])
WAWR0Q ¥R A L0 PE-LL-SLOZ A speojumoq 4
juswnyog p=E] WV 8056 L£-90-LLOE arer [SRLn3og m_
WRWNZO0PR] WY G0 (7-90-L 0T 158t [dopsag il
wawndoq ¥Rl Y 80° L2-90-LL0Z gest [spalgp e 12
LUUN20N 1631 Y aneC 4 7-on-1 1 n? e [E —_
v 3 ady PaIpaw 3teg suey Jet e
0 O -:= 13p|0y Ay « aauebup
o Bngapiplasdipa yuesg QA Bngapiplasdipa « podasBng ¢ poopsisyigyd » [
™ vadp &

L4 >

e e e L bl |

104 payey

BY N A 25NEDAQ "S2|QELENA JO SANJEA SU) 335 ||IIS OS|E UED |
alely

i uaLng 20 o) wbu ob pue adei) YIRS Y} Ul SSLLEY 12835
abbngag ayi w s we | ‘suaddey vondsixa pajsedxaun ue y
ul B3E1) ¥IE1S B Yum dn Buipus weyp Jeipuey yanw, Sy} pu |
Yy wBnesun Aue yoied o} sabibngaq au |j8] s1 sa0p SIYT JBUAA
0 {3 Uy

YRy

Ajuo ains ayew pue ‘play 1Xa) syl w _agemony], adf) ‘wopng
5 uondaox3 BAET PRY., S/M8I 8U1 U0 HN2 ‘mEw _suodyeaig.
| aup o} ob s1 (jlam sB Jppen, w sy pip [} asdije] w buibbngap
WE | uaym op sheme | sBuiyy aug jo aug)

<)s0d=

1s0d Jswog asd)ag ve woug

-~

ys 196Bngaq 120 - £595 bng

' spiomAay Aienp }sabbing &

v laoxe ybnesun yses

_ :spiombay

@ podey Bng e usdo §

€595 :@ibng Bngapriplasdipa

WREIGIE]

| 12 soi3006ng .’_ sedwexg spod wessy @) A so1o0abng M el

247

ith BugDoctor

10n wi

B.6 Concept Locat

BugDoctor accepts a change request as a search query, improves it with either query reduction (Fig. B.7) or

query expansion B.9), and then finds out the code that needs to be changed.

symsa1 0T-doT, oy2 uryim 1dedouod pajeso] (g) pue ‘yoress apo)) (L) ‘A1enb peonpay (9-G)
‘u0175933NS PIOMADY] (F-¢) ‘A1onb woAld -o'1 ‘9sonbor o3ueyd ® ued() (g-1) :uononper £1enb ym uoneso 1deouoy) :x g 2an3i g

" ASILITOSUCDSIRILAOEISEARL <« I
S3TngTenuey & . = poweysq yne@p eyl 1Y LS| Ayp))
§153LSaTgeTIRATEDOT jsyuey ‘anbiuyos) 1eeib e ey spunos JeyL.,

20UDID, smojjoy sE sem 1sod sig) 03 esuodsel @
JOUPEITIUL csodps
asuajsTIUoTideoxdiybnesunuopuadsng <uubs yesfiu woy sw Burpejod
FINSOYISOLINDL 3ybneoun [] sheme od o iu......ﬁm?.uﬁ
dobn ; By ul 2594y st Juiodyeaiq , sigemoly) JyBneaun, sy} ;eBBngag
SUOTH qeararc 266 [ayy Japun weiboxd eaer e un | awn Aasg
s3segsjuTodyesIgosTH , bngeqa [] “indyeaiq Syl 23(2p 1asu |
Tdurjusaguotideoxs | |oa [‘194 pajey
esen3serIar bng [J 10U SBY WA AW 25NB23q “SIIGEUBA JO SIN[EA AU 335 |INS OS[E UED |

el

uoT3IoVUOTIdeOXAPPY yojea [d au ul aul| wuaLna ey o wybu of pue asen yoEls ey} Ul sewWEY Ja|es|
utbnTgbutysune E JTneysp A ues | pue ‘aBBnqaq sy ui NS _._.“_u ,m.mm.__»&m_._ uondasxa pajaadxsun ue)
5dAL T TEISUINAXSOO sTqemoIys A *8josua) sy} ui 83k yoElS € Y dn Buipua uey) sapuey yonw, sup puy |
1 w: ﬁ HMM&Hﬁ“M “ wu oy saiqemouy) ybnesun Aue ya ngag ayy |2} S1 S0P S JEYAN

HO ¥ ue
Adgdydog @ soexy [PRy
qutodyesaguojdsoxgeaep uotjdsoxs [A sl :Em..“ﬂ.? Ao .mn_._._m HEW pue a1 8yj ul 3|qemoy], wnhurw_:aE.ﬁ
Juindyeaig uondeax3 BABL ppy,, SMaWA 81} U0 Y22 ‘mei sjuindyesig,
S]S8LIs)ORILeuTT ener A s4ab66ngag a1 01 06 51 (jom Se I Ui S PP |) 2sdip3g i BuiBingap
uotsuejxgborergedijuorjdeoxappy 3ybneoun [WE | uaym op sheme | sBuiyy syl Jo auQ)
S]UR]SUODSBOUSIBIBIITALT 3sod [A <1500,
3seljusaguoTideoxyg xebbngeq A “1sod Jewiog asdia3 ue woly
v ssusnopidsng fau3 ABBng 2dues3Ey promfay pagsabibing oxa JyBnesun ymea pjnoys JabBngaq :yoQ - g5s Bng

N
|apoD ABBng youess Yo | spromfay iy paps [| Ason aen @ Amv ﬂugggw.*._
S
yeas sy]

U21eD INEJAP J|qeMOoIYL o&_* @uco..aosa eAer Wbneaun 1sod Jab6ngag 7 spiomfey

g

£696 :qibng bBngapiplasdipe :josloid

57 Joizaghing *_u.!@..

248

jou 1dedouo)y (g) pue ‘yoress opo)) (f) ‘A1onb ourpseq e se o111 110do1 Jo UOIARS (¢-T)

E

$359IsUTejUo)a0INo§AIO}0aITd
% s3}saLIsuTejuo)soInes}Tneyadq

§31S9LIaUTejU0Ne0INoSISpPTod
§3S3LIUTEJUODS0INOSIATYD IV BUISFXT
%! Tajnduooyjedscanoseaer
%! s3}saLIsuTejuopaninosaoeds)Iom

e

- resmorgIieuTejuc)enIinosIsuTejuosyjedsseTn
s3}selIsurejuopeninogijosloig
qegdnyoosainoseaer
JuedrorjaegdnyooTsoInoseser
% bBorergdnyooTsoanoseaer

.ama ajebsTaquoTieINbTIUCOUDUNETEAE M DEIFSAY

%88 Ioj3osaTadnyjooTaoInogeAe
_|E s359LdN{00 T80 INOSSATULTY
%68 s3sardmjooTe0Inos
s3sardnjooTeoInosAIo}08ITa

83 Tnspej Puojny
s3seasbeueyaued [TR}RQ
S3S9UOT}EDOTeDINOS
sisaLeTqeTieayjedsseoioaload
Ayw3 ABBng

o—

-

ssausnoidsng

ERITEETEN] puomday paysabling

\apoD ABBNg youeas Y9

spromiay Iy aps] AdanD ayem °

yaueas @3y]

symser OT-dOT, oY) UNIA PajRIO]

:A1omb durfeseq Yym uoryesoy 3deduo) :8'¢g 2anSi g

(pW) 70£L81212002 PIing asdijo3
“82UN0S 3YJ puy JOUUED 3 Y} SLUIB[D

[ins sebBngap syl 1ng “adA) ayy Joj 5)y s2nos syl Buiuieiuod anyde ay)

0 sjuiod aIym S|GELEA B} PR122}Rs |

‘(saigeuen ppy <

pasuenpy)

dnyoo|

2UN0S J0) S3|QEURA 1I8[95 0S[2 UBD | mo_u__u dnyoo] aunog _mmm._.-nmn ayru

(@)

Sa|qeLRA IIM }I0M Jou saop dnyjooT] ainog Jabbnggaq|

spiomAay Kienp yseBBns B:

NMJ Sa|geUEA YyM YIOM 10U S30p dnyoo] aaunog Jafinggag | ‘SPiomAay

Ausnp puedsa () [spod _\...W.J iees Yo |

@ podey Bng e uado

e

oLLke :@iBng Bngapiplasdioa noafoid

57 sopogbng M| wseL

249

popuedxy (¢-f) ‘uorsuedxo A1ond) (g-g) ‘A1onb uoa1s e se o)1) 110de1 Jo uoIOPG (1) :

synsax 07-dog, oy} umm pajenol jdeouo)) (L) pue ‘ypress apo)) (9) ‘Aronb
uotsuedxo A1onb ym uoryeoof 1deouo)) :6°g oan3rg

B TT3INdny{ooTe0INoSeARr
H UOTFEDOTa0INOSIATYDTY
H SsjuejsucpUOTIRINDETIUCDHYDSUNETEARL T
H I9SMOTHISUTE]UODSOINOSISUTEJUOD}EdSSETD
o IsuTejuossLInogISUTEJUCOYjedsSseTD

808 o3 TnspejTwo3 Ny eael [

%08 qezdmiooTenInoseaer Jop @

E §31S8LI8UTE]U0D8DIN0OSISPTod yaed [A

|E sebessenIsyoune wsTqozd [A

_ E aejnduopyjedeoinoseaer @ Bngep [A]

_ E borergdnyooTasoanosener 3583 [A

E.. S3S9I9UTEIUCHSOINOSSATYD IV BUISY X younet [A

E. IOJEDOTIOINOSTEAED dnxooT [A]

%58 ad4s [

.un.u“w LdmjooTa0anosATo309ITq a0anos [

48] sTTanbngageaer seTqeTIea [A

H— sysardnyjooTasInogIes HTom [A

i E yooTEdnyjooTesoanos dnyooT [4

i \E ajebaTequoTieanbrJucoHyouUNeTEAR ORI} SAY a0anos [

| E s3serdnyjooTeciInos asbbnqgeq [A

5 ssausnonidsng Ayw3 ABBng auera|ay puomAay pazsaBbing
‘apoD ABBng youeas Y9 spiowiay iy #2ps [Asanp axen @ @

yue3s sy]

() FOELELZIZO0Z Ping asdya3

“82UN0S BYj PUY JOUUED 3y JEY) SWIED

|Ins sebBngap auy 1ng “adA) ayy 1oy 3jy aunos syl Buwieluod anyaue sy)

0} sjuiod Yailm BIQELEA B) PBIIBIES |

(s3IqeueA PPY <

paduerpy)

dnyoo|

22In0S 10} S8|gEURA 128(85 0S| ued | Gojeip dnyoo aaunog sebBngag ayl u|

53|21 IRA LIIM }10M 10U 30 dNYooT] a2INog Jabbngqa @a:.m
spiomAay Aisnp 1seBBns 8-

—
@ fuanp puedx3 @ _ 3pod ‘ w — yaseag g __._En_ wiigosd Bngap 3593 youne| dnyoo| wnb@ sajqeuea yiom drjooT a2unog sabbnggag | ‘SPIomAay

podey Bng e uado

OLLLE

:qibng bBngapplasdioa :joaloig

52 sopogbing | ey [

250

ith BugDoctor

1011 Wi

B.7 Bug Localizat

BugDoctor accepts a bug report as a search query, improves it with either query reduction (Fig. B.10) or

query expansion, and then finds out the buggy code that needs to be fixed.

Surxy 8nq 10j ssAeuy (6) pue ‘ynsox jsowrdo) oY) se sse[d A33nq poziedo] (8) pue ‘yoress opoy) (1) ‘Arenb peonpey (9-¢)
‘u015983NSs pIoMADY (F-¢) ‘Aronb uoatd ‘o1 ‘910der 8nq ® ued() (g-T1) :uoronper Arenb yam uoryezieso] Sng :01°g °In3ig

-~ ‘.AACSnnar.u_._mvuw.u:ﬂu:t:quuﬁ..&u:au:ﬁ&.za:m
S3J04sTL Ised

Iqeadq

£{(()anTeA3uII=E anTeARATITUTd)anTRAMOU)ySnd
IJUF L ased

fyesaq

£((()antenBuoiaB sntesaatiTutsd)anTemau)ysnd
iBuor L @sen

£yesaq

£({{)aneAreoT4358 anTepaaTapuTd)anTesmauysnd
t3R0T4 L Ised

Tyeadq
= f((()entenstanogsaB-antensatasutad)antesmau)ysnd
~ * 137qnRop L Ised s >
%t | 1 (pradhiadhis) wapms - ‘(00w / SI) | Z @sdyo3 Buisn we |
E. fanTeA (IATEASATITUTIIRARLT) = SATRASATATOTSD SATEASATITT densc] (agg-enel peany) Jun peaiy) Bue| eel je
E } (NTEAATITSTIRASCT JODURISUT INTRA) 3 nenesgjun| gpesiy) uonenjeny subua jse ens Bngap [ewsyuy jpl-asdipa Bio
5 f{)anTendod = anTen anfeARseCT *
E } wotadesxaauod swoayd (Jaanaaxa proa syrand (er3)zgs sa30e peaiy| uoyenjeny suibua jse [ers Bngap jewsiul jpl asdijze Bio
0 PTIIanod a 2
E I S . . '
@ (samsocomuopionssr s - Jop-peaiy] suibua‘jse jeas Bngap |ewau 1pl-asdins m..q“
i m o B uoTjenyeagunt |4 I peany] |grjuonenjeAgun peaiy] jar japow-a100 Bngap [ewaul pl-asdijpa Bio
| = < peaIuz @ e
% TUOTSUSITP = UOTSUSWTOL eqnoexe A HUDNEN[EAZS | spealy | uonenjesd sulbuaise jeas Bngep eweiu) 1pl-esdioe Bio
E. q!a...&_ﬂx-n = swepadilaseny 18
H. pradAiadia uaﬁ”nu_uﬂuﬂﬂ unx [el 1sjeudssqu)einexe 1axdiew suibuaise esa Bngep jeweunipl-asdipe fio
FE. } (34035 aup ‘uopsusetp aup “smensdflaseq Bupuis tpradiiaddy Jup)ised oypged o uorjenteag [¥
E. s ;. ssaooe A 3 enel jsegeinoexa 1se]) suoionisul 1se |ens Bingep [ewsun ipl esdips fio 1e
57 enefisey faman sopoging i ey ye-enel anjepjariBumgor anepiar [epow ai0o Bngap feusaqu ipl esdijoa Bio 1
E == i _ e * _ * Wl_ buyays @ uondaaxuaiodny Bue| exel
E s3serdmjooTe0InogIer s[qeuunyuotjenyead [A 0 YOWISI
0| s[qeuUmyUOTIENTEAT peeayruotienTeas A - nﬂmmom _m__msoow Eﬂhﬁm%ﬁ%ﬁmmmm
CaT) pesIyLIar enteaTar A LL-LE Lae4 021 ¥ J L] >..w__._m2mo"
| %19 sutbuguoTjenTeATT burajysoy A asdijpa auy) ul pabbo) Joua Buimoljop ay1 136 | ajgeuea e Aeidsip Jo 1oadsul o)
_| E PERIYLEAEL] uoTjdeoxgIejurod TINN A) Any | uaym ospy|
.|E @ e 5 07 STqe °q PTNOYs — fng & fdws si gey sajqeuen sy uonedde ue Bngap o) Builn usypp
Ssusnopidng A3 ABBng 23uer3pY piomfay paysabbng ||\, LJInu, 1582 01 3jqe aq pnoys — yeaLE Bng
7800585:2-3@ spaomiay Iy paps (A | Auenp el @ @ spiomAsy fuanp 3sabBng :8: @
8 yeas sy [
T
h.-...ﬂ puedx3 (1) _ apo) ABBng yauees Y9 _ _m_ peaJy] uonenieas aneaIdr Buugo) Eﬁ w v._mE_on___:z [Inu 1se3 0] Bjqe aq pinoys — Bng | SPiomiay
g’
@ yodey Bng e uedo /e9Le :Qibng Bngspiplasdips :josfoid
oo 52 Jsey2ogbng M | suseL

251

B.8 Code Example Search with BugDoctor

BugDoctor accepts a programming task description as a search query, improves it using relevant APT classes,

and then delivers the relevant code examples that implement the given task.

sordurexo opod -doT, 10] UoINg oY) Y1) (6) PUe ‘qom
9T} UO UOI1ed0[9p0d TeuISLi() (8) ‘O[durexo opod poaslIdy (1) ‘yoiess ojdurexs apoy) (9) ‘Areonb pepuedxy (¢-f) ‘uorsedsns
IdV 2uess[oy (g-g) ‘Aronb woald “o'1 ‘yseq Surumwrerdord ueArr) (1) :uorsuedxe A1enb yim yoress o[durexs spo)) :II°g 2In3Lg

° J7E0Rg > @ounos jeuibug
< >

Isysjer []

dew [
sjuswsTH [A
urajjed [A
3stTheIIv []
aTTd [
uot3deoxzoI []

JususTH [A
@ dnosp [A
Jusumood [A

S5B1D |dY

() 2aEIsUsgpUY T TMURDS

{

{
@ Z{yurT ‘sweusTonpow) and’ SHUTT
![olTatids = SweusTnpow HUTIAS
f{w s2u ,)aTtrds- [Tl3t1ds = Tatrds []Hutaag
2, 2Topow - ,)aTtTde" () a®=23 yUuTT = 2aTTde []BurIag
} ((ux=3aed)suresuoo- ()3¥X=231 JuTrl) IFT
} (azodazsInTTeFas=33TUun @ HUTT JUSW=TE) IoJF
HUTT-T2pow:2,) 10272 saTnsa1suTiual = 270d2I3InTTRI2S222TUN SIUSUSTT
C/bxorayoede sprIng//: 5daay,) aosuuco dnosp = sarnsaxsutijual ausumoog
} uotadooxigl smoayul (ui=aaed Huriag)azodaygazedaid proa ojearad FURAI|Y A vdA

@ sajdwex3 apo) y-dol moys @ fanp puedx3 @ Iy ¥2Rs]

EEEEEEE&IEE—:E

il
B s .
Kl

Youeag @53y] qnHuo 3sn A

@ 8poJ jueAs|ay Yyoleag T SIdV JUeA3|3Y 19D 0 7 “ meEmEm_m_ waned uawsa|3 dnosr juawnaoq eael jwiy asied 7 'splomfay

@ -
H =

@ ¢BAB[Ul JAILH 9sJied 0} MOH

sajdwieng apo) juessiy @) 53 M sorogbng i orsey 2

252

Tomota ojdurexoe opo)) (g) pue ‘sejdurexo opoo 3-dof, (1) :sojdurexs opoo juesdy :gIg oIn3Tg

£ >

AT mUoLmoamury aogTo Y
:I¥n =2seq se =2sIed 01 ITQRUn,) UOTAd20XIRa[TEdI=JSURIL MU MOIY]
1 (2 uwotadsoxgxeaufsIdn) uyojeo {
{{saIns=21) <bUTIAS>IASTTARIIYV M2U UInj}ad
{

Ll

:{ueaT2) ppe-E3TNEaI
} ((uesTo)xurT=a1qeadsooysT) IT
2 (a=2b1ea ‘ITdnaseq)yUTIUETD = UeaT2 buTtIag
} (Trou =; 3=biea) It
‘{uF2IU,) T330JUTT = 3367xe3 SUTIIg
m___k
ToSge YaTM TE3p =M O ‘S3TI0ID3ITP S350T J3IYISqe UL »
km___
} (SYUTT : JUTT IUSWSTH) 20T
! {)<butIas>a3cysed mau = s3TnsaI <buTrtIas»a3g
fulF2ayle,) 309728 00p = SYUIT SIUSW=TI
!{TIn=aseq ‘au=quoon)asied-dnosp = DO0p AUIWNDOJ
f{ug-TJan, ‘weaIqs)bUTIACO1 STTINOI = U23uU0d EUTIAg
ruotadumsse J/
Tumsse ST STYL "HUTIas 2 Uit 3Ieas ‘IaTses Durtbbngsp 2xew o3 /7
:{TInaseq) TN MSU = IYNSseq I¥n
} &1q

v 138 weazisandul ‘TInIseq DurIiag)asTI=sTti=sied <OUTIIS>ISTT D13E3s o1Tqnd

3dueAIPRY

JusumMooq
QUSWSTH SIUSUsSTH
quUsSWSTH SIUSUSTH

sSquUsSusTH

qusuweTH sSjuswusTd dnosp jusumnooq
JUSWSTH SIUSWSTH

uIsqied JUSWSTH S1UswsTH jusumoog dnosp
JusumMooq

dnosp quswe s SIUSWSTH JUSUNDOQ
ursliled

dnosp qusweTd S1USWSTH JUSUNDOQ
qusweTH SjususTd jusumoog dnosp

55213 |dy A=)

=

ﬁ% sajdwexg apo3 juenajy eg fupan so120g6ng M syser Z

253

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Problem Statement
	Our Contribution
	Concept Location
	Bug Localization
	Internet-scale Code Search

	Related Publications
	Outline of the Thesis

	Background
	Automated Query Reformulation
	Types of Query Reformulation
	Query Expansion
	Query Reduction
	Query Replacement

	Working Contexts of Query Reformulation
	Local Code Search
	Internet-Scale Code Search

	Steps of Automated Query Reformulation
	Query Feedback Collection
	Candidate Keyword Selection
	Reformulation of a Search Query

	Term Weighting
	TF-IDF
	TextRank & POSRank

	Implications of Automated Query Reformulation
	Benefits of Query Reformulation
	Costs of Query Reformulation

	Word Embeddings
	Cosine Similarity
	Summary

	Search Query Reformulation for Concept Location using Graph-Based Term Weighting
	Introduction
	Motivating Example
	STRICT: Automated Search Query Suggestion from a Change Request for Concept Location
	Data Collection
	Text Preprocessing
	Text Graph Development
	TextRank (TR) Calculation
	POSRank (POSR) Calculation
	Weighted K-Core Calculation
	Term Ranking and Candidate Query Selection
	Best Query Suggestion with Machine Learning
	A Working Example

	Experiment
	Experimental Dataset
	Search Engine
	Performance Metrics
	Evaluation of STRICT
	Comparison with Existing Techniques
	Evaluation of Working Prototype

	Threats to Validity
	Related Work
	Search Query Suggestion & Reformulation
	Code Search Algorithm

	Summary

	Search Query Reformulation for Concept Location using CodeRank and Source Document Structures
	Introduction
	ACER: Automated Query Reformulation with CodeRank and Document Structures for Concept Location
	Pseudo-relevance Feedback
	Source Token Selection for Query Reformulation
	Source Code Preprocessing
	Source Term Graph Development
	CodeRank Calculation
	Suggestion of the Best Query Reformulation

	Experiment
	Experimental Dataset
	Corpus Indexing & Source Code Search
	Performance Metrics
	Evaluation of ACER and CodeRank
	Comparison with Existing Approaches

	Threats to Validity
	Related Work
	Summary

	Search Query Reformulation for Bug Localization using Report Quality Dynamics & Graph-Based Term Weighting
	Introduction
	BLIZZARD: Automated Query Suggestion using Report Quality Dynamics and Term Weighting for Bug Localization
	Bug Report Classification
	Query Reformulation
	Bug Localization

	Experiment
	Experimental Dataset
	Performance Metrics
	Experimental Results
	Comparison with Existing Techniques

	Threats to Validity
	Related Work
	Summary

	Search Query Reformulation for Bug Localization using Word Semantics & Clustering Tendency Analysis
	Introduction
	Motivating Example
	BLADER: Automated Query Reformulation using Word Semantics & Clustering Tendency Analysis for Bug Localization
	Construction of a Semantic Hyperspace from Stack Overflow Q&A Threads
	Automated Search Query Reformulation with Semantic Hyperspace, Clustering Tendency & Machine Learning
	Bug Localization

	Experiment
	Experimental Dataset
	Performance Metrics
	Evaluation of BLADER
	Comparison with Existing Techniques

	Threats to Validity
	Related Work
	Summary

	Search Query Reformulation for Internet-scale Code Search using Crowdsourced Knowledge
	Introduction
	Exploratory Study
	Data Collection
	API Class Name Extraction
	Answering RQ1: Use of APIs in the accepted answers of Stack Overflow
	Answering RQ2: Coverage of API classes in the accepted answers from Stack Overflow Q & A site
	Answering RQ3: Presence of code search keywords in the title of questions from Stack Overflow

	RACK: Automated Query Reformulation for Internet-scale Code Search using Crowdsourced Knowledge
	Construction of NL Token-API Mapping Database
	API Relevance Ranking & Reformulation of the NL-Query

	Experiment
	Experimental Dataset
	Performance Metrics
	Evaluation Scenarios
	Statistical Significance Tests
	Matching of Suggested APIs with Goldset APIs
	Answering RQ4: How does the proposed technique perform in suggesting relevant APIs for a code search query?
	Answering RQ5: How effective are the proposed heuristics–KAC, KPAC and KKC– in capturing the relevant API classes for a query?
	Answering RQ6: Does an appropriate subset of the query keywords perform better than the whole query in retrieving the relevant API classes?
	Answering RQ7: How do the heuristic weights (i.e., ,) and threshold settings (i.e., ,) influence the performance of our technique?
	Answering RQ8: Can RACK outperform the state-of-the-art techniques in suggesting relevant API classes for a given set of queries?
	Answering RQ9: Can RACK significantly improve the natural language queries in terms of relevant code retrieval performance?
	Answering RQ10: Can RACK outperform the state-of-the-art techniques in improving the natural language queries intended for code search?
	Answering RQ11: How does RACK perform compared to the popular web search engines and code search engines?

	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Construct Validity
	Threats to Statistical Conclusion Validity

	Related Work
	API Recommendation
	API Usage Pattern Recommendation
	Query Reformulation for Code Search
	Crowdsourced Knowledge Mining

	Summary

	Search Query Reformulation for Internet-scale Code Search using Word Semantics
	Introduction
	NLP2API: Automated Query Reformulation using Word Semantics & Crowd Knowledge for Internet-scale Code Search
	Development of Candidate API Lists
	Borda Score Calculation
	Query-API Semantic Proximity Analysis
	API Class Relevance Ranking & Query Reformulation

	Experiment
	Experimental Dataset
	Performance Metrics
	Evaluation of NLP2API: Relevant API Class Suggestion
	Evaluation of NLP2API: Query Reformulation

	Threats to Validity
	Related Work-.1cm
	Summary

	Conclusion
	Concluding Remarks
	Future Work
	Promises of Keyword Selection Algorithms in IR-Based Bug Localization
	Promises of Genetic Algorithms in IR-Based Bug Localization
	Improving Term Weighting Algorithms with Useful Term Contexts
	Query Worsening Minimization
	Improving Pseudo-Relevance Feedback (PRF)
	Promises of PageRank in Term Weighting/Source Code Retrieval
	Word Embedding Technology in Query Reformulation/Code Search
	Promises of Stack Overflow in Query Reformulation/Code Search
	Word Embeddings Technology for Bug Understanding/Diagnosis
	Query Reformulation as a Feasible Choice for Improved Bug Localization

	Replication Packages
	STRICT
	ACER
	BLIZZARD
	BLADER
	RACK
	NLP2API
	Other PhD Projects

	BugDoctor
	Download
	Configuration Setup
	Enabling BugDoctor in the IDE
	BugDoctor User Interfaces
	Loading an Issue Report (e.g., Change Request, Bug Report)
	Concept Location with BugDoctor
	Bug Localization with BugDoctor
	Code Example Search with BugDoctor

