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ABSTRACT 
 

          With the increasing prevalence of longitudinal nutritional data applications in medical 

science, there is a need for complex statistical models for the identification of dietary patterns in 

the longitudinal set. Advances are constantly being made in our understanding of the 

interpretability and application of statistical methodologies for longitudinal data. However, little 

guidance on these matters is available in most nutritional contexts. One of the most important 

features of longitudinal data is that the observations repeatedly collected over time are correlated 

to each other. This time-varying association among observations, which cannot be obtained solely 

by focusing on cross-sectional data analysis methods, is the main analytic challenge in longitudinal 

studies. This challenge is particularly relevant in the nutritional field, where researchers strive to 

identify useful and understandable dietary patterns from large-scale nutritional data. In nutritional 

epidemiology, dietary patterns are derived using pattern recognition (PR) methods. Generally, 

there are two types of PR methods; supervised and unsupervised. Although many nutritional 

studies applied cross-sectional PR methods to the identification of dietary patterns, however, the 

assumption of these methods might not be suitable for the identification of patterns in longitudinal 

data. Currently, extensions to both supervised and unsupervised cross-sectional PR methods for 

revealing patterns in longitudinal data exist in the literature. However, none of these methods have 

been applied to the identification of dietary patterns where nutritional data collected repeatedly 

over time. Recently, longitudinal principal component analysis (LPCA) and unbiased random 

effects expectation maximization algorithm (RE-EM) tree methods, as a substitute to principal 

component analysis (PCA) and regression tree analysis (RT), for revealing pattens in longitudinal 

studies are developed. This thesis introduces the first application of LPCA and unbiased RE-EM 

tree, as unsupervised and supervised PR methods, respectively, for the analysis of longitudinal 

nutritional data. To illustrate these methods, an analysis of dietary patterns in a representative sub-

sample of the Saskatchewan Bone Mineral Study (BMAS) is presented. Results showed that the 

models presented in this thesis seem feasible and useful for the identification of dietary patterns 

and their trajectories where nutritional data is collected longitudinally. In this sense, this thesis 

assists the nutritional epidemiologists and researchers in understanding the importance, role, and 

meaning of the consideration of time-varying associations in diet. It also introduces new dietary 

pattern analysis methods in longitudinal nutritional studies using LPCA and unbiased RE-EM tree.
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CHAPTER 1  
INTRODUCTION 

 

 

1.1 Motivation 

Many nutritional longitudinal studies have identified dietary patterns using cross-sectional 

statistical methods, including principal component analysis (PCA) and reduced rank regression 

(RRR). Although these methods might perform well in the identification of dietary patterns (DPs) 

in cross-sectional nutritional data, their assumptions may not be sufficient for longitudinal 

nutritional data. These methods do not consider the hypothesis of interdependence between 

observations collected longitudinally, which leads to erroneous conclusions (1). On the other hand, 

dietary intakes are dynamic and are prone to change over time. As a result, for acquiring the 

important information on the changes in dietary intakes over time, investigators require 

considering the within subject change as correlation in their analysis. In this sense, a modeling 

framework capable of finding DPs considering the dependence among observations affects the 

accuracy of the identified DPs and their trajectories. 

 

1.2 Rational and Background Information 

Longitudinal studies occupy a prominent role in biological, epidemiological, and clinical 

research. 

 These studies aim at following a set of same individuals over time, collecting repeated 

observations of the same variables for them. Longitudinal studies provide more sensitive detection 

of associations between predictors and outcome by incorporating within-subject variation. The 
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main goal of longitudinal design is detecting the temporal changes in the observations of the target 

population at both individual and population-level (2). 

Longitudinal and cross-sectional studies share common characteristics of subjects, 

features, and values. However, longitudinal data extends beyond a single time point measurement 

and, as a result; they have an additional attribute time. In a longitudinal design, the occurrence of 

an event at a particular time point may increase or decrease the probability of the occurrence of 

another event in the future. In this context, repeated measurements on the same individuals are 

likely to be correlated, which contrasts with the cross-sectional design. Thus, analysis of 

longitudinal data requires the accommodation of the statistical dependence among the repeated 

observations within individuals (2). 

Nowadays, in all disciplines such as health-related areas of research, there are highly 

complex, heterogeneous, multi- and high- dimensional data collected repeatedly over time. 

Currently, it is common to collect a large number of repeated measurements to model individual’s 

growth pattern over time. These measurements possibly are similar to each other. The 

identification of dynamic patterns of such multi- or high- dimensional data has attracted increasing 

interest in several fields of science, including biological, clinical, brain and nutritional research 

(3–5). . Researchers commonly would like to answer the following question on a set of 

observations (e.g. dietary intakes) they are interested in: what kind of trajectory patterns do these 

set of observations have? For example, given the nutritional intake of individuals repeatedly over 

time, researchers aim at investigating both changes in dietary patterns over time and in their 

relationship with health-related outcomes.  

Diet is an intricate combination of foods and nutrients which has been long recognized as 

one of the important modifiable risk factors in the maintenance and promotion of health over the 
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whole life span (4,6). However, many nutrients and food groups are highly correlated to each other; 

as a result, studying the effect of single nutrient or food groups may not capture the synergistic or 

interactive effects among them (7). To deal with these limitations, a complementary approach that 

better reflects the association of diet with health outcomes and its intricacy in everyday life, which 

is known as the dietary pattern has emerged (7). Dietary patterns, which are widely used in 

nutritional epidemiologic research, can be constructed through investigator defined (or priori 

method) and data-driven methods (7). Data-driven methods can be further divided into two 

separate methods: (1) data-driven, outcome independent or posterior approach; and, (2) data-

driven, outcome dependent or the hybrid approach (7–9). Both outcome dependent (hybrid) and 

outcome independent (posteriori) data-driven approaches, respectively, are exactly the same 

methods as supervised (e.g. regression tree) and unsupervised (e.g. principal component analysis) 

pattern recognition (PR) methods (7).  

Pattern recognition (PR) is referred to as the identification and interpretation of patterns in the 

data. PR is commonly categorized into supervised and unsupervised learning techniques. Pattern 

identification concerning the response variables (labels) is called supervised learning. However, 

predicting a pattern via unsupervised learning does not require labels or response variables. 

Supervised and unsupervised PR techniques including decision trees (DT), random forest (RF), 

cluster analysis (CA) and principal component analysis (PCA), etc. have been widely used for the 

analysis of cross-sectional nutritional data (10). However, dietary patterns identified at a single 

time point cannot capture the change in an individual’s diet over time.  

Recently, nutritional epidemiologists are interested in collecting nutritional data 

longitudinally to better understand the development of diet over life. Dietary intake has indeed 

been reported to develop from early infancy to childhood and from childhood to adulthood (11). 
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Dietary intake throughout life may have a cumulative effect, which means that the impacts of 

current diet might be confounded or influenced by previous intakes (7). Therefore, when it comes 

to the evaluation of diet-disease associations, particularly during adulthood, it is important to 

consider the effect of diet over the whole lifetime. As a result, longitudinal modeling of the change 

in diet as correlation is an effective way of quantifying and describing diet in nutritional 

epidemiological studies, especially if established during childhood.  

In the longitudinal nutritional studies, different approaches have been incorporated for 

determining dietary patterns; however, the approaches are inconsistent. The most popular approach 

of identifying dietary patterns in longitudinal nutritional studies is performing separate PCA (or 

any method other than PCA) at each time point and selecting similar PCs (12–14). However, using 

PCA for the identification of dietary patterns separately at each time point will result in different 

number of principal components (PCs) with different interpretations. As an example, it is possible 

that the first PC at time one has a different meaning from the first PC at time two. 

Another strategy is to create dietary patterns at one of the time points in the study (e.g. at 

baseline) based on, for example, the PCA method. Then, using the derived loadings of that time 

point, corresponding dietary patterns in other time points will be calculated (15–17).  Identification 

of factor scores at a one-time point and using their coefficients for the calculation of corresponding 

factors at the other time points enables researchers to find consistent factors (or PCs) over the 

whole study period, which in turn allows them to track the change in diet. However, the described 

approach seems to be misleading for the exploration of dietary pattern trajectories. The reason is 

that the identified coefficients, through PCA as an example, corresponds to the dietary intakes’ 

information at one specific time points. Broadly speaking, the PCs in PCA are computed by 

decomposing the covariance matrix, which might differ from a one-time point to the others due to 
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the difference in the linear combination of variables. This phenomenon illustrates the fact that 

individuals are likely to change their dietary habits as time progress. 

An alternative strategy for the identification of dietary patterns in longitudinal sets is the 

application of the multiple-time-point method where each observation is considered as a row in 

the data matrix. Therefore, the same person might appear several times in the rows of the matrix. 

In this way, PCA is given by the linear combination of food groups which are common at different 

time points (18–20). However, this approach may lead to inaccuracy of results by ignoring the 

correlated structure of food groups across time; as a result, it might lead to a failure in detecting 

the pattern of change over time. 

Given the above discussion, unlike cross-sectional dietary data, which lacks consideration of 

time, longitudinal dietary data have an extra time feature. In this scenario, traditional pattern 

recognition methods (e.g. PCA, RT) may not be appropriate, as observations in longitudinal data 

are dependent. Thus, dimension reduction or pattern recognition methods for repeated measured 

data are required. To the best of our knowledge, existing studies have not investigated the 

identification of dietary patterns considering the within-subject change in dietary intakes over time 

as correlation.  

In this thesis, first, the application of a newly developed unsupervised PR method known as 

longitudinal principal component analysis (LPCA) to the identification of dietary patterns in a 

longitudinal design is introduced. Then, the application of unbiased regression trees (RE-EM tree) 

for longitudinal and clustered data as a supervised method for identifying dietary patterns is 

explored. In this thesis, unlike LPCA, which extracts dietary patterns based on the linear 

combination of food groups without considering the relationship of food groups with outcome 

variable, the information on total body bone mineral density will be used (TB-BMD) as a labeling 
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or outcome factor to derive dietary patterns applying RE-EM regression tree analysis. The 

introduction to the application of these methods will help non-statistician to understand the behind 

the scenes principles.  

 

1.4 Significance of study 
 

 Dietary pattern analysis has become a popular method in the field of nutritional 

epidemiology from over a decade ago. This is an evolving field for methodologists and nutritional 

epidemiologist exploring and identifying the best approaches that explains the patterns of food 

intake in populations. However, most methods are developed for analyzing cross-sectional data, 

which limits the ability of researchers to use a posterior dietary pattern analyses in longitudinal 

studies. To the best of our knowledge no study presented the application of methodologies suitable 

for the analysis of longitudinal data to the identification of dietary patterns where nutritional data 

collected repeatedly over time. This is the first study that introduces the application of two recently 

developed unsupervised and supervised pattern recognition methods for longitudinal data analysis 

to the identification of dietary patterns. To sum, this study introduces new dietary pattern analysis 

methods in longitudinal studies.  

 

1.5 Objectives 

The purpose of this thesis is to examine the question of whether it is necessary to use 

analysis methods that address the correlated nature of data when identifying dietary patterns 

longitudinally. In addition, to introduce the application of some recently developed pattern 

recognition methods in longitudinal studies. Data from the BMAS study in which children and 
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adolescents aged 8-11 years at baseline (1991-1998) followed for 27 years will be used to address 

the following statistical objectives:  

 

1.5.1 Objective 1 

Introducing the application of longitudinal principal component analysis (LPCA) to the 

problem of identifying dietary patterns and their trajectories as an unsupervised pattern recognition 

method. 

1.5.2 Objective 2 

Introducing the application of unbiased regression trees for longitudinal and clustered data 

(RE-EM tree) as a supervised pattern recognition method to the nutritional data for identifying 

dietary patterns.  

 

1.6 Overview of the Thesis 

This thesis aims at introducing the application of supervised and unsupervised pattern 

recognition techniques to the nutritional data collected longitudinally for the identification of 

dietary patterns and their trajectories. This work has been conducted using a subsample of a 

longitudinal data on dietary intake obtained from the Saskatchewan Bone Mineral Accrual Study 

(BMAS). In chapter 2, a comprehensive literature review on both clinical and statistical points of 

views is presented to capture the current knowledge in the area of the underlying study. In chapter 

3, a detailed background on clinical notation, background on the principals of longitudinal data, 

the details of LPCA, and unbiased RE-EM trees are provided. We proceed to chapter 4 with an 

introduction to the BMAS data as well as a report on the findings of this study. The last chapter, 

chapter 5, concluded the thesis with a short summary and directions for the future research.  
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CHAPTER 2  

            LITERATURE REVIEW 
 

 

In this chapter a broad literature review has been conducted that would address the gaps in 

the area of nutritional epidemiology regarding dietary pattern analysis in longitudinal studies. 

Additionally, a comprehensive literature review is presented in this chapter to provide an in-depth 

background knowledge of the existing methods and their extensions over time in the literature. 

 

2.1 Overview of Dietary Pattern  
 

Traditional epidemiological nutritional research has mainly focused on the effect of 

individual nutrients or a few food groups on health outcomes (21,22). Even though these studies 

have produced valuable evidence, both their methodological and conceptual limitations, have 

necessitated researchers or nutritional epidemiologists’ to instead focus on dietary patterns - which 

are combinations of both foods and nutrients (21). The following practical limitations can explain 

this shift towards dietary patterns. First, individuals typically consume nutrients and foods 

together, which makes it difficult to differentiate the effect of nutrients from those of foods because 

of the high interaction between them (23). Second, the cumulative effect of nutrients or foods in a 

diet-disease relationship model might be too large to be detectable (23). Third, the use of several 

complicated statistical tests to assess the influence of all the nutrients and foods on health outcomes 

may lead to false positive results (52).
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Dietary patterns are now widely used in epidemiologic research and can be identified 

through investigator defined (or priori method) and data-driven methods. Data-driven methods can 

be further divided into two separate methods: a) data-driven, outcome independent or posterior 

approach; and, b) data-driven, outcome dependent or the hybrid approach (7–9). Both data-driven 

and investigator defined methods are built on some evidence, and they can have some degree of 

subjectivity. Supervised (e.g. regression tree) and unsupervised (e.g. principal component 

analysis) pattern recognition (PR) methods are examples of outcome dependent and outcome 

independent data-driven approaches, respectively (7). In the following sections, these patterns are 

described in detail.  

 

2.1.1 Priori  

              Priori dietary patterns, hypothesis-oriented methods, or investigator-driven methods are 

specified based on the theoretical nutritional knowledge concerning what constitutes a healthy diet 

(7). Priori dietary patterns as a proxy for dietary diversity are predefined dietary indices or scores 

made up of nutrients, foods or combination of both. These indices are computed by generating 

specific scores based on the given dietary recommendation for the criterion food or nutrient and 

then summing up the overall score, ranked from minimum to maximum. These indices allow for 

comparability among studies and are often called measures of diet quality, because, they give 

answers to the question of “how near the dietary pattern in a defined population agrees with a 

certain set of dietary recommendation.” Mediterranean diet, Oslo health study index, Dietary 

approaches to stop hypertension (DASH), and healthy eating index (HEI) refer to pre-existing 

dietary recommendations for a general or specific population to support a healthy diet for the 

prevention of particular diseases (24–26).  
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2.1.2 Posteriori 

In contrast to the priori dietary patterns, posteriori dietary patterns or exploratory methods 

are not previously specified; they overlook previous knowledge of healthy or non-healthy foods 

and nutrients.  Researchers have to derive these exploratory patterns from collected dietary data 

through questionnaires such as food frequency questionnaires (FFQ) and 24h recall, using 

appropriate statistical methods in a specific population (9). Statistical analysis such as cluster 

analysis (CA), principal component analysis (PCA), and factor analysis (FA) are used mostly for 

this data-driven, outcome independent dietary pattern approach. The application of each statistical 

method depends on the aim of the study. Posteriori dietary patterns do not always introduce dietary 

patterns that can be recognized as unhealthy and healthy patterns (9,26). Section 3.2 discussed the 

application of PCA, as an unsupervised method, to the identification of dietary patterns in 

longitudinal data. 

 

2.1.3 Hybrid  

 Hybrid methods or data-driven, outcome dependent methods are the most recently 

developed methods for extracting dietary patterns which bridge the gap between priori and 

posteriori approaches. They are partially exploratory methods, which are mostly used to describe 

existing eating behaviors related to intermediate or long-term health outcomes in a specific 

population. Reduced rank regression (RRR), partial least squares regression (PLS) and decision 

tree analysis are some examples of statistical analysis techniques used with this approach (8). The 

derived dietary patterns through this method cannot be reproduced in other populations. However, 

this problem can be solved by representing the most informative foods in a dietary pattern that are 

an expansion of less complicated dietary pattern score in which unweighted standardized z scores 

of food groups that have high correlations with each other are summed (27). Section 3.3 provided 
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a literature review on the application of outcome-dependent pattern recognition methods to the 

identification of dietary patterns. 

 

2.2 Principal Component Analysis and Dietary Pattern 
 

Over the last few years, many researchers have devoted their attention to the identification 

of dietary patterns in cross-sectional studies using Principal component analysis (28–32). 

Principal-components analysis (PCA) is the most popular outcome-independent data-driven 

method for extracting dietary patterns from dietary intakes information. PCA linearly combines a 

set of correlated variables into a smaller set of uncorrelated variables known as principal 

components. The following studies present a thorough review of the current literature that have 

studied dietary patterns identified via PCA in longitudinal sets; the approaches used in these 

studies are inconsistent.   

In a study by Borland et al. (18) for tracking the stability of dietary patterns over a 2-year 

period PCA was used to identify dietary patterns at baseline and follow-up. In a Swedish 

Mammography Cohort, in order to evaluate changes in the stability of dietary patterns, FFQ was 

administered at baseline as well as, 4-, 5-, 6- , and 7-years after baseline from 1987 to 1990. In this 

study, dietary patterns were extracted based on the dietary intakes at baseline and the cumulative 

average of dietary intakes at follow-up years using PCA (33).  

The most common method of dietary patterns identification over time to date involves 

evaluating dietary patterns separately at each time point using PCA. These studies (12–14) 

considered factors with the same size of loadings at all-time points irrespective of the magnitude 

of their explained proportion of variance. For example, in a 21-year prospective cohort study by 

Mikkila et al. (34), dietary patterns were extracted separately for each study year via PCA. In this 
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study, for each time point, three principal components were selected. However, after a precise 

scrutinization the third extracted PC was excluded due to its inconsistent contribution across 

measurement points. Northstone et al. identified two consistent dietary patterns including 

“processed” and “traditional”  at each time point based on the order the dietary components were 

extracted, together with their explained proportion of variance and the complete data available 

(12).  

Other studies created dietary patterns at one of the time points in their follow-up (for 

example at baseline) based on PCA (15–17). Then, using the derived loadings of that time point, 

they calculated the corresponding dietary patterns in other time points. In a study by Movassagh 

et al. (16) to identify dietary patterns, PCA was used to compute the factor loadings based on the 

cumulative average of dietary intakes from the first seven years (1991 to 1997) of the study. Then, 

they applied the derived loadings to data at the follow-up.  

Some studies used the method of multiple-time-point application to extract consistent 

dietary patterns across their study time points (18–20). In a study by Andersen et al. (35) PCA was 

used for the identification of dietary patterns. In this study, data on food groups that are collected 

at the age of 9, 18 and 36 months was in a long format. In the long format, each person had 25 

observations on food groups (columns) in three rows for ages 9, 18, 36 months in the matrix. In 

this way, PCA evaluated underlying food patterns that are frequent over different phases. And, the 

assigned score for each observation explained the extent of a person’s adherence to a particular 

dietary pattern at a specific phase. 

Several studies, have extracted dietary patterns with the aim of evaluating diet-health 

outcomes associations longitudinally (36–38). In these studies, the dietary patterns have been 

identified in the same way as the ones described in the previous paragraphs.   
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As can be seen, several studies in the current literature have studied the longitudinal nature 

of dietary patterns derived using PCA; the approaches used in these studies are inconsistent. This 

inconsistency is due to the fact that PCA is not a suitable approach for the analysis of longitudinal 

data where diet changes over time. PCA does not consider the time-varying associations. 

 

2.3 Hybrid Methods and Dietary Pattern 
 

A group of cross-sectional studies has focused on the potential use of machine-learning 

methods in the identification of dietary patterns. The first attempt to incorporate machine-learning 

approaches for revealing dietary patterns was made by Hearty et al. (39). The aim of this study 

was to evaluate the applicability of two supervised data mining techniques including regression 

tree and artificial neural networks (ANNs) in predicting diet quality based on food intakes.  Later, 

in a study by Lazarou et al. (40) dietary patterns were revealed using C4.5 algorithm and PCA. 

Then a comparison has been made between them. The results of this study revealed that C4.5 

algorithm performs better than PCA, which supports the fact that having prior knowledge for 

extracting dietary patterns will improve the classification ability.  

Additionally, in a cross-sectional study by Panaretos et al. (41), dietary patterns were 

identified using reduced ranked regression, PCA, k-nearest-neighbor’s algorithm and random 

forest. Using cardiovascular risk factor as labeling factor for RRR and RF, the results showed that 

k-nearest-neighbor’s algorithm and RF more accurately classified individuals compared to PCA 

and RRR. Biesbroek (42) applied two hybrid methods including RF and RRR and two posteriori 

methods including k-mean cluster analysis (KCA) and PCA in the identification and exploration 

of dietary patterns predictive of cardiovascular risk factors. The authors of this study concluded 

that RRR and RF have advantage over PCA and KCA. No study to date has applied machine-
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learning methods to the analysis of longitudinal nutritional data for the identification of dietary 

patterns. 

To sum, no study up to now applied machine-learning methods to the analysis of 

longitudinal nutritional data for the identification of dietary patterns and their trajectories. 

However, it is important to take into account that none of these used methodologies for the 

identification of dietary patterns in cross-sectional design are suitable for the analysis of 

longitudinal nutritional data.  

However, over the last few years, many researchers have devoted their attention to the 

application of supervised or outcome-dependent pattern recognition methods for the identification 

of dietary patterns. However, this approach of identifying dietary patterns requires having a prior 

knowledge for the identification of patterns. This prior knowledge could be an outcome that diet 

contributed to it. Epidemiologic data suggests that diet is one of the important non-modifiable 

factors that have a strong effect on bone health. Therefore, modifying them may have a positive 

impact on the bone during early and late stages of life (43,44). 

 

2.4 Nutritional Factors and Bone 
 

Diet, nutrients and food group intake, throughout life, can have a potential impact on bone 

health, either positively or negatively. Several mechanisms through which this happens have been 

previously explored, they include, the rate of bone metabolism, homeostasis of calcium and other 

active minerals in the bone, and mainly the structure of bone (45,46).  The impact of nutrients and 

foods have long been known to play a key role in bone mass attainment and on preventing bone 

loss during childhood and adulthood, and consequently a reduction in future fracture risk (47). 

These nutritional factors for healthy bone metabolism vary from micronutrients or minerals, such 
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as calcium, sodium, phosphorous and magnesium; vitamins, such as vitamin A, D, E, K, C, and 

certain vitamins B; to macronutrients, including fatty acids and protein (45). The role of individual 

nutrients including calcium and vitamin D as essential factors for promoting bone health is well 

established (47–50). To ensure healthy bone growth, attainment of peak bone mass and reduction 

in the risk of age-related bone loss, it is sufficient intake of calcium,  a principal component of the 

bone, is essential (51). Approximately 80-90% of bone mineral content contains calcium and 

phosphorous (52). Sources of calcium are natural calcium-rich foods, calcium-fortified foods or 

calcium supplements. Also, dairy products (ex. milk, yogurt, cheese), orange, juices, bread, 

cereals, granola, and fruit juice, are good sources of calcium (52). Whiting et al. in their 

longitudinal study concluded that the need for calcium is greater during two years of peak bone 

accretion (53). Vitamin D acts like steroid hormones. The primary function of vitamin D is 

supplying calcium for bone growth and calcium homeostasis through increasing intestinal 

absorption of calcium (54). It also exists in different tissues such as intestine, kidney, bone, muscle, 

brain, skin, pancreas and immune system tissues for cell differentiation, proliferation and growth 

(55). Sources of vitamin D are limited, and the primary sources are fish and fish liver oils (54), 

however, Vitamin D supplementation and sun exposure can supply the daily requirement (55). 

Vitamin D as an adoptive mechanism affects bone mineral accrual during the time of peak bone 

mineral accrual (56).  Studies on childhood and adult nutrition also focused on the impact of 

specific foods such as dairy products, fruits, and vegetables on bone health (57–59).  

 

2.5 Dietary Patterns and Bone 
 

Recent epidemiological studies are attracted to a more holistic approach to studying the 

effect of overall dietary patterns rather than individual nutrients or food groups on bone health 
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(21,22). Diet is a complex combination of foods and nutrients which has been long recognized as 

important determinants of bone health (60). Dietary patterns approach by studying diet as a whole, 

is developed to cope with the limitations that arise from individual nutrients and food studies by 

identifying potential synergistic, additive effects and correlations between different nutrients and 

foods (23). Moreover, dietary patterns are dependent on the availability of food and cultural habits 

consequently they differ between different populations (61). Determining nutritional patterns in 

various communities and age groups associated with bone health might help to find those common 

combinations of nutrients and food groups that are important for the improvement of bone health 

throughout life (61).  

Studies evaluating the associations between bone health association and dietary patterns in 

different populations and age groups with the same measurements are limited. A scoping review 

by Movassagh et al. (4) reported more of the studies that have examined this association had used 

cross-sectional data. A comparison between adult and elderly population studies in this review 

showed the most reproducible dietary patterns associated with bone health are healthy, western, 

and traditional dietary patterns. However, the majority of these studies used data-driven dietary 

pattern approaches that are not comparable and reproducible across studies, partly due to different 

intake habits in the different populations, the subjectivity of dietary pattern approaches, and 

differences in bone measurements. In this scoping review, the comparison among the limited 

number of studies in children and adolescents that used data-driven dietary patterns led to mixed 

results. Besides, the authors demonstrated that most of the dietary indexes used in the included 

studies were developed primarily with the aim of promoting overall health and they are not bone- 

specific dietary indices (4). Recently, based on the information in literature a bone-specific dietary 
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index, the BMD Diet Score was developed (62). The number of studies that assessed the adherence 

to the BMD Diet Score is limited to one study (62).  

Studies evaluating the effect of dietary patterns on bone health present mixed results. 

Several studies have reported a positive association between bone measurements and a diet high 

in whole grains, fish, fruit and vegetable, and low-fat dairy foods (63–66). In a study on Canadian 

men and women, the results showed that vegetable and fruit, and whole-grain dietary patterns 

lowered the risk of trauma fracture (67). Also, results from a population-based study on Japanese 

farm women showed that a dietary pattern characterized by higher consumption of fruits, 

vegetables, and fish and lower consumption of meat and processed meat has a positive association 

with BMD (68). Similarly, data from cross-sectional Framingham Osteoporosis Cohort Study 

suggest that senior men with a dietary pattern high in fruit, vegetables, cereals and low in red and 

processed meats, candy and soft drinks had higher BMD compared to those identified by other 

dietary patterns (64). Findings from Greek and Japanese women study demonstrated that higher 

consumption of olive oil, fish and low consumption of red meat was related to higher BMD 

(68,69). 

Although many studies demonstrated a positive association between fruit and vegetables 

dietary patterns and bone factors others found no association (69–71). In a population-based cross-

sectional study of Mediterranean pre- and post-menopausal women, a healthy diet, characterized 

as a diet rich in fruit, vegetables, and olive oil, had no significant effect on BMD or total bone 

body mineral content (TBBMC) (69). Similarly, two co-twin controlled studies of UK and Iran 

showed no significant association between fruit and vegetable dietary patterns with the BMD of 

postmenopausal women (70,71).  
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Conversely, there is abundant evidence showing that a poor diet, characterized as a diet 

with high consumption of processed meat, alcohol, meals low in yogurt, sugar, and confectionery; 

and the western dietary pattern are negatively associated with bone health (65,67,68,70). Data from 

a Japanese women study showed that the Western diet, defined as a diet rich in fat, oil, meats, 

processed meats, was associated with low BMD (68). In another study, among Australian women, 

investigators found that a dietary pattern, consisting of primarily soft drinks, fried potatoes, 

sausages, cereals, processed meats, and vegetable oils, increased the risk of TBBMC (65). A study 

conducted on Iranian menopausal women showed that dietary patterns rich in high-fat dairy 

products, red meats, processed meats, organ meats, non-refined cereals have an adverse effect on 

FN and LS BMD (70).  Conversely, a study by Whittle et al. found that, among young adult 

women, a high intake of nuts, chocolates, red meat and poultry clustered as “Nuts and Meat” 

dietary pattern, is associated with higher FN BMD and FN BMC. Whereas, among adult men, a 

“refined” dietary pattern, described as a diet with high intake of puddings, crisps, chips, 

confectionery, chocolate, and soft drinks, has a negative effect on FN BMC (72). In a study of 

postmenopausal Scottish women, authors found a negative association between processed and 

snack food patterns and FN BMC (65). Similar findings, have also been reported in other 

populations, such as among Canadian men and women, and Iranian women (67,70).  

To sum up, studies that showed a relationship between food groups and bone health 

supports the fact that diet is a modifiable risk factor for bone health. As a result, bone 

measurements could be used as prior knowledge for the identification of dietary patterns in a more 

precise way. It is important to note that, none of these studies identified dietary patterns using 

supervised and unsupervised PR methods suitable for longitudinal data. 
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Beside nutritional factors, sex differences have an impact on bone growth. Hence, when 

analyzing data in terms of nutritional factors and bone measurements the differences in sex should 

be taken into account. In the next section sex differences and bone growth will be discussed in 

detail. 

 

2.6 Sex Differences and Bone Growth 
 

Bone growth as a continuous process is highly regulated and affected by genetic, sex 

differences, and environmental factors. During growth, bone mass, strength, size and mineral 

content increases substantially, and puberty is a landmark of it (73,74). Sex differences affect bone 

mass and density during growth and maturation (75). The maturation time varies systematically in 

boys and girls of the same chronological age due to the wide variation and velocity of individual’s 

growth parameters from one age to another (74). So, sex differences in the pattern of bone mineral 

accrual and skeletal growth should be based on biological age than chronological age (76,77).  

Skeletal and sex maturity, puberty, and age at peak height velocity (PHV) are the three 

common known indicators of biological maturity (78). Age at peak height velocity (PHV) as a 

common maturational landmark refers to the time of maximum linear growth in height during the 

adolescent growth spurt (76,79). It is commonly used as an indicator of biological age for the 

comparison of bone mineral accrual between boys and girls (76). 

Before puberty, boys and girls showed no difference in their bone mass of the axial and 

appendicular skeleton (56). Sex differences in bone mass first are maintained during pubertal 

maturation the time when the secondary sex characteristics are emerging (80). At the begging of 

puberty, girls showed to have more or equal radial skeletal mass (81). During mid-puberty, cross-

sectional studies showed a transient thinner and less dense cortex for boys in comparison to girls 
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at the radius and tibia (82,83). However, after puberty, men tend to attain more bone mass in 

comparison to women (81,84). In a cohort study, following individuals over 2 to 3 years, the result 

showed that boys have more porous cortex compared to girls (85). Studies suggested that micro-

architectural differences during puberty, higher rates of bone turnover, deficits at the cortex and 

greater peak height velocity in boys can be the reason for the higher incidence of fracture and some 

disadvantages during the time of rapid pubertal growth (86,87). Evidence expressed, in adolescent 

females, bone mass attainment reduced quickly after menarche, and no considerable attainment 

occurred in some bone sites after two years (56). 

PBMCV, time of peak bone mineral content, is the dramatic increase in bone mineral 

content (BMC), which measures the amount of calcium and other minerals in bone, is a function 

of maturation (6report). BMC is associated with children’s height and continues to increase until 

the adolescents’ growth spurt (report). The University of Saskatchewan Pediatric Bone Mineral 

Accrual Study (BMAS), a mixed 7-year longitudinal study, demonstrated that PHV occurs in girls 

earlier than boys by a mean year of 1.5 which happened at the same time as of their timing of 

menarche (88). This difference is identified by boys’ extended bone maturation time which 

increases their bone size and cortical thickness (89). Using BMAS data, Bailey et al. showed that 

the PBMCV occurs at after PHV with a time lag of 0.7, at the mean age of 15 years in boys and 

13 years in girls (90).  

 

2.7 Saskatchewan Bone Mineral Accrual study 
 

Saskatchewan Pediatric Bone Mineral Accrual Study (BMAS) is a mixed longitudinal 

study conducted on normally active healthy Canadian children to determine growth patterns, 

timing, and magnitude of bone mineral accrual. BMAS provided investigators with children’s 



21 
 

biological age that allows investigators to control for maturity differences. Biological age aligns 

children based on their age at peak BMC or height velocity instead of their chronological age. A 

detailed description of the BMAS protocol is available in chapter 4.   

The longitudinal and cross-sectional studies published in scientific journals based on BMAS 

data have been designed to identify the relationship between physical activity and bone mineral 

accrual, the difference in bone mineral accrual between boys and girls, muscle-bone growth, 

biological maturity, and the association between nutrition and fat mass or bone. A summary of the 

published work on the exploration of dietary patterns and association of diet and bone based on 

BMAS dataset is presented below.  

Until the year 2017, all the studies on BMAS data evaluated nutrients or food groups 

individually without considering diet as a whole both in cross-sectional and longitudinal design. 

As a result, none of these studies applied dietary pattern analysis approaches. A brief review on 

the objectives of these studies is as the following. 

 Iuliano et al. (91) in 1999 explored total dietary calcium intake with its main dietary sources 

in 226 participants aged 8 to 19 years using food recalls completed up to four times per year during 

the first six years of the BMAS study (1991-1996). Whiting et al. (92) assessed the association of 

different types of low nutrient-dense beverages intake with bone mineral content (BMC) and 

accrual during the two years spanning the time of peak BMC velocity age. Carter et al. in 2001 

(93) analyzed the association of calcium (Ca) intake with bone mineral content (BMC) in 227 

children and adolescents who had bone measurements in the fall of 1993. In 2005, Vatanparast et 

al. (59) investigated the effect of vegetables and fruit intake on TBBMC in 85 boys and 67 girls 

from childhood to late adolescence. The participants of this study were examined during the first 

seven years of BMAS from 1991 to 1997. Mundt et al. (94) in 2006 explored the role of sugar-
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sweetened drink intake and physical activity in the development of total body fat mass (FM). 

Vatanparast et al. (95) in 2007 examined the effect of protein intake on bone mineral mass 

parameters including TBBMC, and total body bone mineral density (TBBMD) of young adults, 

considering calcium intake adequacy. In 2010, Vatanparast et al. (96)  evaluated calcium 

requirements of adolescents from age 9-18 years among 85 boys and 67 girls who participated 

during the first seven years of BMAS based on dietary reference intake’s (DRI) sex-age groups. 

Later in 2017, Movassagh et al. explored the change in dietary patterns (DPs) over 20 years 

from childhood through adolescence and into young adulthood. In this mixed longitudinal study, 

130 participants (53 females) aged 8-15 years at baseline for whom multiple 24-h recalls were 

gathered annually during years 1991 to 1997, 2002 to 2005, and 2010 to 2011 were included. The 

principal component analysis (PCA) was used to derive the dietary patterns at baseline. Then, for 

describing dietary patterns, the factor loadings from baseline were applied to calculate the factor 

scores in all other time points. Generalized estimating equations (GEEs) were used to evaluate the 

stability of dietary patterns over time. The results of this study demonstrated an increasing trend 

in adherence to a healthy dietary pattern characterized as “Vegetarian-style.” 

Movassagh et al. in 2018 assessed the effect of adolescents DPs on adolescents and young 

adult bone measurements. They also explored the change in DPs from adolescence to young 

adulthood. For this longitudinal study, 125 participants (53 females) within the age of peak height 

velocity (PHV) ± 2 years in the first measurement during the years 1991-1993 were considered as 

adolescents. Then 115 participants’ (51 females) follow-up data collected during 2010-2011 were 

considered as adults. Dietary intakes from 24-h multiple recalls were summarized into 25 food 

groups. Then, DPs during adolescence were identified using PCA. Multivariate analysis of 

covariance and multiple linear regression adjusted for age, sex, age of peak height velocity, 
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physical activity, weight, height, and total energy intake were conducted to explore the relationship 

between adolescent DPs and adult’s bone measurement. DPs were tracked using generalized 

estimating equations. This study showed that a healthy DP rich in dark green vegetables, eggs, 

non-refined grains, 100% fruit juice, legumes/ nuts/seeds, added fats, fruits and low-fat milk 

characterized as “Vegetarian-style” during adolescence positively affects bone health.  

Movassagh et al. were the first investigators to identify dietary patterns based on BMAS 

dataset in a longitudinal set. In their studies, dietary patterns were extracted using PCA based on 

the cumulative average of dietary intakes during the first seven years of study (1991 to 1997). 

Then, to identify dietary patterns at the last follow-up, they applied the derived loadings to the data 

at the last follow-up.  

Although Movassagh et al conducted dietary pattern analysis, however they did not identify 

dietary patterns considering the time-varying associations among food groups. This is mainly 

because for non-methodologists there is no introduction available in the literature on how to apply 

longitudinal PR methods to the identification of dietary patterns where nutritional data 

longitudinally collected. As a result, they do prefer to use the common approaches in the literature 

which are developed for the analysis of cross-sectional data. The next two sections provided an 

overview of the extension of PCA and regression tree (RT) methods to the correlated data. 

 

2.8 Statistical Background 

2.8.1 Principal Component Analysis in Longitudinal Data 

Principal component analysis (PCA) is a common method for data analysis and 

exploration. It is a handful of a method for reducing the dimension of data. Pearson and Hotelling 

were the first ones who independently introduced PCA as a dimension reduction technique (97).  



24 
 

Over the past years, many researchers have devoted their attention to making extensions to PCA. 

The first attempts to adopt PCA for longitudinal data were made in the area of functional data 

analysis, where observations are viewed as random curves (98–101). Functional data are inherently 

infinite-dimensional. As a result, incorporating dimension reduction techniques is necessary to 

analyze them. Functional principal component analysis (FPCA) has been broadly explored for a 

single functional variable (98–100). Later, Greven et al. (101) devised longitudinal FPCA 

(LFPCA) for observations measured over more levels of time. LFPCA is similar to the classical 

longitudinal mixed-effects model in which random processes are used rather than random effects 

to incorporate longitudinal correlation. In addition, Jiang and Wang (102) proposed the covariate-

adjusted FPCA where additional variable can be considered in the model. These functional PCA 

methods consider eigenvalues to be fixed, while eigenfunctions vary over time. Moreover, the 

main problem with FPCA approaches is that the covariance function is computed only for one or 

two variables measured at pairs of time points. Zipunnikov et al. (103) presented the longitudinal 

functional principal approach (LFPCA) method to deal with very high dimensional neuroimaging 

data. This approach creates a mixed effects model that decomposes the dynamic behavior of 

repeated observations into a baseline and longitudinal subject specific variability. However, it is 

hard to understand how this massive method works, and how well it reveals pattern in the data. 

Recently, a new pattern recognition method for longitudinal studies known as longitudinal 

principal component analysis (LPCA) has been proposed. LPCA overcomes the above-mentioned 

disadvantages of the prior methods. LPCA  is a multivariate method, easy to understand and 

interpret, and its eigenvalue and eigenfunctions both vary over time (5).  
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2.8.2 Regression Tree in Longitudinal Data 

Tree-based models are typical data mining methods that offer many advantages in 

comparison to parametric methods. Tree-structured models have become popular because of their 

potential for presenting straightforward interpretable predictive models, finding possible 

significant interactions between variables automatically, and offering data visualization. Since the 

time when Morgan and Sonquist (1963) developed the automatic interaction detection (AID) 

algorithm for a univariate outcome (104), a number of other tree-based algorithms such as 

classification and regression tree (CART) (105) and fast algorithm for classification tree (FACT) 

have been introduced (106). CART and FACT have had a great impact on the decision tree field 

because of their pruning technique and variable selection approach. CART is a non-parametric, 

recursive partitioning statistical technique that can be applied for prediction of both categorical 

and continuous (or numerical) outcomes. In comparison to other statistical analysis procedures, 

CART is capable of visualizing the data in the form of a tree diagram. This feature enables CART 

to handle complex data and illustrate the results in the form of tree structures that are 

straightforward to interpret. FACT and its extension, generalized unbiased interaction detection 

and estimation (GUIDE) (107) were developed to decrease the computational cost and bias in 

choosing split variables using statistical tests. These algorithms have had a significant impact on 

tree-based modeling methods since they not only are computationally efficient but also maintain 

model accuracy and interpretability.  

In addition to the above-mentioned methods, a number of other extensions to the tree-based 

algorithms including the survival tree (108), quantile regression tree (109), regression impurity 

tree (110), Bayesian tree (111), classification rule with unbiased interaction selection and 

estimation (CRUISE) (112), logistic tree with unbiased selection (LOTUS) (113) have also been 
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developed. However, these methods are applicable to the cross-sectional data. The main objective 

of tree-based techniques is to find significant subgroups in data, which are defined by covariates 

and homogeneous outcomes. In longitudinal data, finding homogeneous subgroups might be 

pertinent to the mean and/or to the covariance structure. Several studies have extended the 

regression tree methodology to the longitudinal data by making some modifications to the split 

function. 

In 1992, Segal published the first classification tree algorithm for continuous longitudinal 

data, which was inherited from CART (114). Zhang, in 1998, extended the CART algorithm to 

multiple binary responses data (115). In 2002, De’Ath developed the multivariate regression tree 

(MRT) by making changes to the CART algorithm (116). Other researchers such as Abdolell et al. 

(117), Hsiao and Shih (118), Eo and Cho (119) and Loh and Zheng (120) also provided extensions 

to the regression tree models. However, these methods are primarily based upon the multivariate 

repeated-measures approach. These methods also share the restriction of not allowing observation-

level (i.e., time-varying) covariates. As a result, these approaches are not capable of dealing with 

the random or subject specific effects of observation-level covariates.   

In 2011, Hajjem et al. (121) used mixed-effects approach and extended the regression tree 

algorithms such as CART to longitudinal and clustered data with unbalanced structure for a 

continuous outcome. The main idea of their mixed-effects regression tree (MERT) algorithm is to 

separate the fixed effects from the random effects. In 2012, Sela and Siminof (122) independently 

developed a similar estimation method called random effects expectation-maximization (RE-EM) 

trees. The main idea of both MERT and RE-EM trees is to use a tree structure for the estimation 

of the fixed effects after removing the random effects part of the model, update the predictions of 

the random effect part, and iterate until achieving convergence within the framework of the 
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expectation-maximization (EM) algorithm. Both methods are designed for continuous response 

data. Both MERT and RE-EM tree, implemented through CART algorithm, are the most common 

regression tree methods. However, CART introduces two critical problems including overfitting 

and being bias towards selection of covariates.  

Although the problem of overfitting in MERT and RE-EM trees could be handled through 

a pruning procedure there is no solution for their bias toward variable selection which affects the 

interpretation of trees. To overcome the mentioned problems introduced by MERT and RE-EM 

trees Fu and Siminof (123) developed a revised version of RE-EM tree known as unbiased RE-

EM tree that overcomes the bias problem using the conditional tree algorithm as a substitute to 

CART algorithm. 

 

2.9 Conclusion 

The above-mentioned research work in the area of nutritional epidemiology have entirely 

ignored the time varying associations among food groups to capture changes in individuals eating 

behavior. It is important to take into account that none of the previously employed methodologies 

is suitable for longitudinal nutritional data analysis. From methodological perspective, it is obvious 

that the development of LPCA, and RE-EM tree methodologies provided researchers with a 

powerful set of tools to address challenging problems raised from analyzing a multi- or high-

dimensional longitudinal data. These methodologies account for the correlated nature of 

longitudinal data. 

Until now not only no study identified dietary patterns considering the time-varying 

associations among food groups but also the application of LPCA and unbiased RE-EM tree have 

not been introduced for the analysis of longitudinal nutritional data. The contribution of this thesis 
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is therefore to introduce the application of LPCA and unbiased RE-EM tree for the first time to 

the identification of dietary patterns and their trajectories in a sub-sample of BMAS data. While 

introducing the application of LPCA will help researchers to identify dietary patterns based on 

linear relationships among them, the introduction to the unbiased RE-EM tree will help researchers 

to understand how to identify dietary patterns with respect to a prior knowledge or an outcome 

variable in longitudinal studies. As discussed above bone measurements could be considered as an 

outcome for discovering patterns in nutritional data so in this thesis one of the bone measurements 

i.e. TB-BMD will be considered as a prior knowledge.
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CHAPTER 3    
STATISTICAL METHODOLOGY 

 

 

This chapter provides the required study background of the pattern recognition methods 

for longitudinal data. To address the scientific question of interest, a brief description of the 

background of recently developed pattern recognition approaches, including longitudinal principal 

component analysis (LPCA) and unbiased RE-EM trees is presented.  

 

3.1 Longitudinal Studies 
 

Longitudinal studies occupy a prominent role in biological, epidemiological, and clinical 

research. These studies aim at following a set of individuals over time, collecting repeated 

observations of the same variables for them. The framework of longitudinal data is described in 

Appendix A. Longitudinal studies provide more sensitive detection of associations between 

predictors and outcomes by incorporating within-subject variation. However, the main goal of 

longitudinal design is detecting the temporal changes in the observations of the target population 

at both individual and population-level (2).  

Longitudinal and cross-sectional studies share common characteristics of subjects, 

features, and values. However, longitudinal data extend beyond a single time point measurement, 

and, as a result, they have an additional attribute known as time. In a longitudinal design, the 

incident of an event at a particular time point may increase or decrease the probability of incident 
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of another event in the future. In this context, repeated measurements on the same individuals are 

likely to be correlated, which contrasts with the cross-sectional design. Thus, analysis of 

longitudinal data requires the accommodation of the statistical dependence among the repeated 

observations within individuals, which enhances the accuracy of the estimation (2). 

Currently, it is common to collect a large number of responses to model individuals' 

evolution patterns. The identification of dynamic patterns of such multi- or high- dimensional data 

has attracted increasing interest in several fields of science, including biological, clinical, brain, 

and nutritional research. Researchers commonly would like to answer the following question on a 

set of observations (e.g., dietary intakes) they are interested in: what kind of trajectory patterns do 

these set of observations have? However, many of these observations are highly correlated to each 

other; as a result, researchers need to capture information on those observations believed in making 

a significant contribution to total data. To discover understandable and valid patterns in a large 

dataset, a complementary approach known as pattern recognition (PR) is widely used by 

researchers (124). 

 

3.2 Pattern Analysis  
 

Pattern recognition (PR) is referred to as the identification and interpretation of patterns in 

large datasets. PR is commonly categorized into supervised and unsupervised learning techniques. 

Pattern identification concerning the response variables (labels) is called supervised learning. On 

the other hand, predicting a pattern via unsupervised learning does not require labels or response 

variables. Unsupervised pattern recognition methods like principal component analysis (PCA) are 

developed to answer the question of what the important underlying factors in accounting for the 

variation in responses reported by individuals are. Although unsupervised PR methods are 
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commonly used to investigate patterns related to health outcomes, they are not designed to extract 

patterns that are predictors of outcome. In other words, they do not capture patterns most related 

to the outcome. To overcome this problem, supervised methods such as decision trees (DT) have 

been developed to answer questions like what combination of variables better explains the most 

variation in response variable. Supervised and unsupervised PR techniques, also known as data-

driven outcome dependent and data-driven outcome independent, respectively, have been 

extensively used for the analysis of cross-sectional data (10,124). However, it is important to note 

that patterns identified at a single time point could not capture the individual’s evolution over time 

(5). 

Longitudinal studies are widely conducted in medical studies as a means of studying the 

evolution of outcome over time, consequently, to examine how this evolution depends on subject-

specific differences. Currently, it is common to collect a large number of variables to model 

individual’s evolution patterns. These variables possibly are very similar to each other. 

Considering an increase interest in collecting multi- or high- dimensional longitudinal data the 

need for the development of pattern recognition (PR) approaches emerged. Currently, existing PR 

methods analyze longitudinal data in a cross-sectional manner; as a result, they are not directly 

applicable to the analysis of longitudinal data, as they do not consider the longitudinal information 

(3,5,123).  

Recently, several PR methods are developed to handle multi- or high- dimensional 

longitudinal data especially in the field of neuroimaging (3,101,125). However, little is known in 

terms of application of such methods in different areas of research. While PR methods are not 

straightforwardly applicable to the longitudinal data, the classical methods in statistics is to analyze 

longitudinal data based on mixed effects model. Importantly, these models are able to capture 
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individual differences in longitudinal data with univariate outcomes based on linear mixed models 

(126). The next section discussed a brief introduction to the background of newly developed 

Longitudinal Principal Component Analysis (LPCA) and unbiased RE-EM tree as an extensions 

of PCA and regression tree (RT) , respectively, for the analysis of high dimensional longitudinal 

data (5,123). 

 

3.3 Longitudinal Principal Component Analysis  
 

Longitudinal principal component analysis (LPCA) is an extension to the principal 

component analysis (PCA) with the aim of data exploration and analysis of longitudinal data. 

LPCA solves the within-cluster correlation problem in longitudinal studies by estimating 

eigenvalues and eigenvectors as time-varying functions. In this chapter, the Principal component 

analysis (PCA) and its extension, longitudinal Principal Component Analysis (LPCA) formulation 

is presented, followed by the application of the LPCA method on the BMAS data.  

  

3.3.1 Principal component analysis  

 

Principal component analysis (PCA) is a widely used technique in multivariate data 

analysis for data exploration, pattern analysis, and dimension reduction (97). PCA is usually 

conducted prior to the application of any statistical procedure to avoid the curse of dimensionality. 

PCA reduces the dimensionality by combining the observations linearly. These linear 

combinations are highlighting the greatest possible variations in the data.  

The framework of PCA is provided elsewhere (97). Briefly, in the multivariate situation 

when data for N individuals is collected for 𝑗 random variables, suppose X be a 𝑗-component 

random vector of 𝑗 random variables and the covariance matrix ∑ is defined as 𝐸(𝑋𝑋′). Let 𝑒𝑘 be 
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a vector of weights with length 𝑗 i.e. 𝑘 = 1,2, … , 𝑗 then the principal components or the new 

variables could be defined as: 

𝜀𝑘 =  ∑ 𝑒𝑘
′ 𝑋

𝑗

𝑘=1

                    𝑓𝑜𝑟  𝑖 = 1 … 𝑁 

𝜀𝑘 is a linear combination of 𝑗 original variables and 𝑒𝑘
′  is a group of orthogonal weights which 

maximizes the variation in the 𝜀𝑘. The variance of this principal component is defined as 𝜆𝑘 =

𝐸(𝜀𝜀′) which equals to 𝜆𝑘 = 𝐸(𝑒𝑘
′ 𝑋𝑋′𝑒𝑘) or 𝜆𝑘 = 𝑒𝑘

′ ∑𝑒𝑘. The maximization problem associated 

with PCA is as follow: 

𝑚𝑎𝑥𝑒𝑘

𝑒𝑘
𝑇∑𝑒𝑘

𝑒𝑘
𝑇𝑒𝑘

  ,         𝑘 = 1, … . . , 𝑗        (1) 

𝑠. 𝑡.       𝑒𝑘
𝑇𝑒𝑘 = 1 𝑎𝑛𝑑 𝑒𝑖

𝑇𝑒𝑘 = 0 , 𝑓𝑜𝑟 𝑖 = 1, … , 𝑘 − 1 

The solution to the objective function (1) could be found through the identification of the eigen- 

decomposition of covariance matrix of the original data. The sample variance-covariance matrix 

is given by: 

Σ = ∑ 𝜆𝑘𝑒𝑘𝑒𝑘
′𝑗

𝑘=1           (2) 

The equation (2) is known as eigen-equation, which is satisfied by a sequence of pairs of 

eigenvalue-eigenvectors (𝜆𝑘𝑒𝑘) where 𝑒𝑘 is orthogonal. 

In the longitudinal setting, it is common to conduct discretized principal component analysis 

(DPCA) that is the decomposing of the eigen-equation (variance-covariance matrix) at each time 

point, separately. However, DPCA may not always results in improved and clear interpretation of 

the eigenvectors due to lack of consideration of the variability of observations over time. To tackle 

the problem of variability of observation over time, recently a new methodology known as 

longitudinal principal component analysis (LPCA) is proposed which considers this within subject 
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variation as correlation (5). In the next section, a quick review of the inference and estimation 

procedure of LPCA will be given. 

 

3.3.2 Longitudinal principal component analysis  

 

Longitudinal principal component analysis (LPCA) reduces to the algorithm of the 

Estimated Eigen-analysis with Random Effects (EERE) model. The EERE algorithm is as 

following: 

1. Start with initializing the random effects 𝛾𝑖
(0)

, the covariance matrix 𝐷(0), the overall mean 𝜇𝑡
(0)

, 

and 𝑗 × 𝑗 residual covariance 𝑅(0) ; 

2. Iterate the steps below until the convergence, or ‖𝛾𝑖
(𝑙)

−  𝛾𝑖
(𝑙−1)‖ < 𝜖𝛾, where 𝜖𝛾 is a pre-defined 

tolerance level. 

a. Estimate the random effects 𝛾𝑖
(𝑙)

 through the Estimation-Substitution (ES) algorithm bellow:  

𝛾 = 𝑍 (( 1𝑡1𝑡
𝑇) ⨂ 𝐷 + 𝑅)−1(1𝑡

𝑇⨂ 𝐷 )𝑇 

Where 𝑅 = 𝑑𝑖𝑎𝑔(𝑅1, 𝑅2, … , 𝑅𝑡) is a 𝑗𝑡 × 𝑗𝑡 block diagonal matrix, 𝑍 = (𝑦1
𝑜𝑏𝑠 −

(1𝑁 ⨂ 𝜇1
𝑇), 𝑦2

𝑜𝑏𝑠 − (1𝑁 ⨂ 𝜇2
𝑇), … , 𝑦𝑡

𝑜𝑏𝑠 − (1𝑁 ⨂ 𝜇𝑡
𝑇)  is an 𝑁 × 𝑗𝑡 matrix, 𝑦𝑡

𝑜𝑏𝑠 is a 𝑁 × 𝑗 matrix 

of observations at each measurement  point, and 1𝑡 is a t-dimensional vector of ones for 𝑡 = 1, … , 𝑡.  

b. At the l-th step, estimate the parameters 𝐷𝑙 , 𝜇𝑙  and 𝑅𝑙 where: 

�̂�(𝑙) = �̂�(𝑙−1) − (1𝑡
𝑇  ⨂ �̂�(𝑙−1))((1𝑡1𝑡

𝑇) ⨂ �̂�(𝑙−1) + �̂�(𝑙−1))−1(1𝑡
𝑇  ⨂ �̂�(𝑙−1))𝑇; 

�̂�𝑡
𝑙 =

1

𝑁
∑ (𝑦𝑖𝑡

𝑜𝑏𝑠𝑁
𝑖=1 − 𝛾𝑖

(𝑙−1)
); And, 

�̂�𝑡
(𝑙)

=
1

𝑁
∑ (𝑦𝑖𝑡

𝑜𝑏𝑠 − 𝛾𝑖
(𝑙−1)𝑁

𝑖=1 − �̂�𝑡
(𝑙−1)

)(𝑦𝑖𝑡
𝑜𝑏𝑠 − 𝛾𝑖

(𝑙−1)
− �̂�𝑡

(𝑙−1)
)𝑇. 

3. Initialize the eigenvector values as the sample eigenvectors: 𝑒𝑘(𝑡)(0) = �̃�𝑘(𝑡) 

4. Based on the current eigenvectors 𝑒𝑘(𝑡)(𝑚−1)  update the following parameters: 
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a. Update the eigenvalues 𝛼𝑘(𝑡)𝑚 by minimizing the objective function (3): 

∑ (∑
ℎ𝑖𝑡

∗ 𝑇
ℎ𝑖𝑡

∗

𝑁

𝑁
𝑖=1 + 𝜙 ∑ ‖𝑒𝑖(𝑡)𝑇𝑒𝑘(𝑡)‖2

2
𝑖≠𝑗 )𝑡

𝑡=1          (3) 

b. Given 𝛼𝑘
(𝑚)

 update 𝑒𝑘(𝑡)(𝑚) through the Newton-Raphson algorithm 

5. Repeat step 4 until the convergence criteria a or b meet: 

a. ‖𝛼𝑘(𝑡)(𝑚) − 𝛼𝑘(𝑡)(𝑚−1)‖ > 𝜖𝛼, and 𝜖𝛼  is a pre-defined tolerance level, or 

b. ‖(𝑒𝑘(𝑡)(𝑚))(𝑒𝑘(𝑡)(𝑚))𝑇 − (𝑒𝑘(𝑡)(𝑚−1))(𝑒𝑘(𝑡)(𝑚−1))𝑇‖ > 𝜖𝑒 , and 𝜖𝑒is a pre-defined tolerance 

level. 

 

3.3.3 Choosing the number of principal components  

 

A consensus has yet to be reached on the identification of the number of principal 

components (PCs) in the PCA. However, one of the common methods for identifying the number 

of PCs in cross-sectional studies is creating a scree plot by which the number of components could 

be chosen at the elbow of the graph (97). In longitudinal studies, graphing the scree plot at each 

time point will not result in efficient number of PCs; since each time point leads to different 

number of PCs. It is suggested that, first the overall variation in data be calculated over the entire 

study period then the scree plot be analyzed (5). There are other ways of identifying the PCs which 

are explained more elsewhere (5).  

 

3.4 Classification and regression tree 
 

Classification and regression trees (CART) are non-parametric supervised learning 

methods which recursively partition the variable space into 𝑅𝑗 separate regions, 𝑗 = 1,2, … , 𝐽. The 

partitioning can be illustrated by a decision tree. A decision tree is a tree-like structure where the 
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paths from root to leaf illustrates the partitioning rules. The partitions are constructed by binary 

split of the variables’ values; 𝑋 ≤ 𝑐 if 𝑋 is an ordered variable with m different values, and 𝑋 ∈ 𝑆 

if 𝑋 is categorical. Then, the mean or mode of the outcome of the training observations in each 

region is used to make estimation or prediction for observations belonging to the same region. Tree 

models where the outcome variable is discrete are called classification trees. Decision trees where 

the outcome variable is continuous (typically real numbers) are called regression trees (105). 

Below diagram (127) illustrate the basic CART: 

 

Figure 3-1 A classical classification and regression tree framework, adopted from Leo Pekelis 

(http://statweb.stanford.edu/~lpekelis/13_datafest_cart/13_datafest_cart_talk.html#(6)) (127)   
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In this section, a brief background on Regression trees (RTs) is provided. This section 

continued by presenting the details on unbiased RE-EM regression tree as modifications to the RT 

for analyzing longitudinal data. 

 

3.4.1 Unbiased RE-EM regression tree 

 

The detail of unbiased RE-EM tree is described elsewhere (123). Briefly, longitudinal data 

includes a panel of individuals 𝑖 = 1, … , 𝑁  𝑎𝑡 𝑡𝑖𝑚𝑒𝑠  𝑡 = 1, … , 𝑇𝑖 where (𝑖, 𝑡) is a single 

observation for an individual 𝑖 at time 𝑡.  For each subject there is a vector of independent variables, 

𝑥𝑖𝑡 = (𝑥𝑖𝑡1, … , 𝑥𝑖𝑡𝑝)′ where  𝑝 = 1, … , 𝑗 . Let 𝑦𝑖𝑡  be a response variable for subject 𝑖 at time 𝑡,  the 

formula below is a basic formula of longitudinal data: 

𝑦𝑖𝑡 = 𝑍𝑖𝑡𝛼𝑖 + 𝛽1𝑥𝑖𝑡1 + ⋯ + 𝛽𝑝𝑥𝑖𝑡𝑝 + 𝜀𝑖𝑡         

Where 𝛽𝑘  is an unknown vector of population parameters, 𝑥𝑖𝑡𝑝 is the pth covariate for individual 𝑖 

at time 𝑡, 𝜀𝑖𝑡 is an unknown vector of errors for individual 𝑖 at time 𝑡 with the assumption bellow: 

(

𝜀𝑖𝑡

⋮
𝜀𝑖𝑡

) ~ 𝑁 (0, 𝑅𝑖) 

 And, 𝑍𝑖𝑡 is a known design matrix which accounts for the differences between individuals across 

time points, and 𝛼𝑖 is the subject-specific intercept for individual 𝑖, the assumptions for 𝛼𝑖 is as 

following: 

• 𝛼𝑖~𝑁(0, 𝐷) 

• 𝑐𝑜𝑣 (𝛼𝑖, 𝜀𝑖𝑡) = 0 
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• 𝐸(𝑦𝑖𝑡|𝛼𝑖) =  𝛼𝑖 +  𝑥𝑖𝑡𝛽 where 𝑍𝑖 is a matrix of one that is just the intercept varies across 

individuals. Then the model is called mixed model or random-intercept model.  

This linear mixed effect model presented above is based on the theory of best linear unbiased 

prediction (BLUP). And, it assumes a parametric form for the 𝑓 where 𝑓 = 𝑋𝛽 that it might be a 

very restrictive assumption. To overcome this assumption, regression tree tries to estimate 𝑓 

based on the following algorithm: 

1. Start with an initial value for the estimated random effects, �̂� , and set �̂�𝑖 to zero. 

2. Given the target variable 𝑦𝑖𝑡 −  𝑍𝑖𝑡�̂�𝑖 and variables 𝑥𝑖𝑡 = (𝑥𝑖𝑡1, … , 𝑥𝑖𝑡𝑘), 𝑓𝑜𝑟 𝑖 =

1, … , 𝐼 𝑎𝑛𝑑 𝑡 = 1, … , 𝑇𝑖 , approximate f and estimate a regression tree. Build a set of 

indicator variables 𝐼(𝑥𝑖𝑡 ∈ 𝑔𝑝) using this regression tree, where 𝑔𝑝 ranges over the whole 

terminal nodes in the tree. This can be obtained through any tree algorithm. Here, the 

conditional inference tree (ctree) (horthorn et al. 2006) is used. 

3. Estimate the linear mixed effects model, 𝑦𝑖𝑡 =  𝑍𝑖𝑡𝑏𝑖 + ∑ 𝐼(𝑥𝑖𝑡 ∈ 𝑔𝑝)𝜇𝑝 + 𝜀𝑖𝑡𝑝  using 

maximum likelihood (ML) or restricted maximum likelihood (REML). Then, extract �̂� 

from the fitted linear mixed model. 

4. Repeat step 2 and 3 until the estimated �̂�𝑖 converge given the change in the likelihood or 

restricted likelihood chosen to e less than some tolerance value. 

5. Update the predicted response at each terminal node of the tree using the estimated 

population level predicted response �̂�𝑝 gained from the estimated linear mixed effects 

model in 3.
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CHAPTER 4  
APPLICATION to BMAS DATA 

                                             

 

This chapter covers the application of the methodologies, discussed in chapter 3, to the 

nutritional data collected repeatedly over time with the aim of identifying dietary patterns and their 

trajectories. To illustrate the application of these methods, an analysis of dietary patterns and their 

trajectories in a subsample of Saskatchewan Pediatric Bone Mineral Accrual Study (BMAS) data 

is presented. Besides, the problems with the common approaches already exist in the literature for 

the identification of dietary patterns in longitudinal studies is addressed. This chapter starts with 

an introduction to the Saskatchewan Pediatric Bone Mineral Accrual Study (BMAS) data; 

followed by application of the models presented in chapter 3 to the BMAS data.  

 

4.1 Study Population 
 

In this thesis, the real data used to illustrate the application of longitudinal principal component 

analysis (LPCA) and unbiased RE-EM tree methods is a subsample of Saskatchewan Bone Mineral 

Accrual Study (BMAS) dataset. BMAS includes 2109 observations aged ≥8 years measured over 

20 years. In the original BMAS study from 1991 to 1993 with annual measurements, 251 students 

were included, 23 of which were excluded from the study because of incomplete data at baseline. 

Then, 238 participants were followed in the years 1994 (N=197), 1995 (N=101), 1996 (N=165), 
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1997 (N=120), 2002 (N=148), 2003 (N=137), 2004 (N=134), 2005 (N=139), 2010 (N=108), 2011 

(N=76) and 2018 (N=54).  

For the current study, 104 individuals out of 228 BMAS data within the age of peak height 

velocity (PHV) ± 2 years who had dietary information for 25 food group intakes at least in five 

measurements were considered. After this inclusion, the number of participants at each 

measurement changed to 1991 (N=104), 1992 (N=83), 1993 (N=97), 1994  (N=94), 1995 (N=91), 

1996 (N=81), 1997 (N=63), 2002 (N=66), 2003 (N=73), 2004 (N=69), 2005 (N=35), 2010 (N=55), 

2011 (N=46) and 2018 (N=24); information from the year 2018 is excluded for the current study. 

The outcome variable, which used for the clustering of 25 food groups, is the Total body bone 

mineral density (TB-BMD). Both food groups and TB-BMD are continuous variables. A full 

description of the original BMAS dataset is provided in the next section. In the next section the 

original BMAS data is described I more details. 

 

4.1.1 BMAS Data 

The participants of Pediatric Bone Mineral Accrual Study (BMAS), which is a prospective, 

population-based mixed longitudinal study, were recruited from two elementary schools in the city 

of Saskatoon, Saskatchewan. Approximately all the participants were Caucasian, living in a 

middle-class area of Saskatoon. In 1991, 228 students (113 boys and 115 girls) aged 8-14 years 

old were entered the study. In years of 1992 and 1993 a total of 23 new cases were included in the 

study. Therefore, in the original study from 1991 to 1997 a total of 251 students were included, 

from which 230 students (109 boys) had measurements on two or more follow-ups. In 2001, 197 

participants who had not withdrawn from the study were contacted to participate in the follow-up 

measurements in the BMAS study.  In the first follow up study, from 197 participants, 173 
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participated, however, 169 (94 males) participants aged 18.2 to 27.5 years were measured on at 

least one occasion. In the second follow up study conducted between 2009 and 2012, 121 

participants (48 males), aged 24 to 34 years were examined. Moreover, in the third follow-up study 

54 participants (26 males) aged 31 to 40 years were measured. In the original study, children who 

had a history of chronic disease or chronic medication use, medical conditions, allergies or 

medications usage is known to affect bone metabolism, or calcium balance was excluded. 

Participants themselves or their parents signed a written consent form. Table 4-1 demonstrates the 

frequency of subjects stratified by their age and sex, who had bone scans at each test.  
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Table 4-1 Age and gender distribution of BMAS from 1991 to 2018 

 years 

Age 1991 1992 1993 1994 1995 1996 1997 1998 2002 2003 2004 2005 2010 2011 2017 2018 Male Total 

Sequence (2) (4) (6) (8) (10) (12) (14) (16) (24) (26) (28) (30) (40) (42) (52) (54) (Female)  

8 3 (7) 5 (10) 0 (2)              8 (19) 27 

9 12 (16) 3 (10) 5 (9) 0 (2)             20 (37) 57 

10 17 (14) 9 (17) 3 (11) 5 (10) 0 (2)            34 (54) 88 

11 17 (13) 19 (15) 11 (18) 3 (9) 5 (10) 0 (2)           55 (67) 122 

12 19 (18) 17 (12) 19 (14) 13 (14) 3 (10) 5 (10) 0 (2)          76 (80) 156 

13 20 (23) 21 (17) 16 (12) 15 (15) 12 (14) 3 (10) 5 (7)          92 (98) 190 

14 19 (15) 14 (19) 19 (15) 12 (11) 13 (15) 10 (12) 3 (9) 0 (2)         90 (98) 188 

15 5 (15) 19 (15) 14 (20) 14 (15) 12 (11) 10 (16) 7 (8) 0 (5)         81 (105) 186 

16  3 (8) 18 (14) 13 (13) 13 (14) 10 (7) 9 (11)          66 (67) 133 

17   3 (7) 13 (11) 14 (12) 12 (13) 9 (5)  0 (2)        51 (50) 101 

18    3 (6) 12 (8) 13 (12) 8 (10)  3 (3) 0 (2)       39 (41) 80 

19     3 (5) 7 (6) 7 (8)  4 (13) 3 (2) 0 (2)      24 (36) 60 

20      3 (4) 5 (3)  6 (13) 2 (12) 5 (4)      21 (36) 57 

21       2 (2)  6 (9) 5 (7) 2 (9) 0 (2)     15 (29) 44 

22         12 (9) 6 (11) 6 (10) 4 (7)     28 (37) 65 

23         8 (10) 10 (8) 7 (9) 3 (7)     28 (34) 62 

24         14 (13) 9 (12) 10 (7) 7 (11) 0 (2)    40 (45) 85 

25         8 (6) 11 (13) 8 (14) 5 (12) 1 (1)    33 (46) 79 

26         3 (5) 9 (6) 10 (11) 7 (8) 1 (8) 1 (1)   31 (39) 70 

27         1 (0) 4 (5) 9 (5) 12 (11) 2 (4) 1 (3)   29 (28) 57 

28           3 (3) 11 (14) 8 (8) 3 (8)   25 (33) 58 

29            9 (5) 7 (10) 4 (3)   20 (18) 38 

30            2 (2) 4 (5) 6 (4)   12 (11) 23 

31             9 (11) 2 (4) 0 (1)  11 (16) 27 

32             4 (8) 12 (7) 3(2) 0 (1) 19 (16) 37 

33             5 (7) 5 (7) 0 (2) 0 (0) 10 (16) 26 

34             1 (0) 5 (3) 2 (0) 2 (2) 10 (5) 15 

35              1 (1) 3 (2) 2 (1) 6 (4) 10 

36               2 (1) 1 (1) 3 (2) 5 

37               1 (4) 2 (1) 3 (5) 8 

38               0 (4) 3 (1) 3 (5) 8 

39               1 (2) 3 (2) 4 (4) 8 

40               0 (1) 1 (0) 1 (1) 2 

Male 

(Female) 

112 

(121) 

110 

(123) 

108 

(122) 

91 

(106) 

87 

(101) 

73  

(92) 

55  

(65) 

0  

(7) 

65  

(83) 

59  

(78) 

60 

 (74) 

60 

 (79) 

42 

 (64) 

40  

(36) 

12  

(19) 

14  

(9) 

902 (1148)  

Total 223 233 230 197 188 165 120 7 148 137 134 139 108 76 31 23  2109 

BMAS, Bone Mineral Accrual Study 
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4.1.2 Measurements of BMAS Study 

 In BMAS study many variables including bone measurements, nutritional factors, physical 

activity, body composition and anthropometrics, biomarkers and socio-demographic factors is 

collected. However, among them for the objectives of this thesis total bone mineral content 

(TBBMD), nutritional and socio-demographic factors are considered. Table 4-2 illustrate the 

variables of interest of the current study measured in BMAS. 

 

4.1.3 Bone Measurements 

Throughout the first seven years of the study, DXA using the Hologic 2000 QDR (Hologic, 

Inc., Waltham, MA, U.S.A.) was used to estimate bone measurements such as total body bone 

mineral content (TB BMC), poster-anterior lumbar spine (LS (L1-L4) BMC), and the femoral neck 

bone mineral content (FN BMC), annually. For minimizing the measurement related variability, 

Table 4-2 Description of BMAS measurements 

 
Study Follow-up Tool/measurement method  Variable 

Bone 

measurements 
BMAS 

1991-1997: 

113 boys and 115 girls DXA 

 

DXA measures: TB BMD 
 

2002-2005; 

94 boys and 75 girls 

2009-2011; 

48 boys and 73 girls 
DXA  

Nutrition BMAS 

1991-1997: 

113 boys and 115 girls 

24-hour recall 

 All data on nutrients (macro and 

micro) and food groups and food 

items 

2002-2005;  

94 boys and 75 girls 

2009-2011; 

48 boys and 73 girls 

Socio-

demographics 
BMAS 

1991-1997: 

113 boys and 115 girls 

Questionnaire Sex, age 
2002-2005; 

94 boys and 75 girls 

2009-2011; 

48 boys and 73 girls 
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the same operator conducted DXA scans, and the same person analyzed all the scans during the 

original (7-years) and follow-up studies. For all bone scans, array mode with using enhanced 

global software version 7.10 for analysis was used. Software version 5.67 A was used to analyze 

the total body scan. In vivo, the coefficient of variation of TB, LS and FN scans (0.60, 0.61 and 

0.91, respectively) were comparable to the values from other studies that employed the QDR 2000 

in the array mode. During the first follow up study years 2002-2005 the same measurements with 

DXA were measured. 

 

4.1.4 Dietary Intake 

In the original study, whenever bone scans were done at hospitals, at both participation 

schools and hospital setting, dietary intake information was collected using the administering 24-

hour dietary recall at least three times per year during the first three years of the study and at least 

two times per year after that. For data collection on 24h dietary recall all days of the week, except 

Friday and Saturday, were included. A trained interviewer recorded the verbally provided 

information from children of grades 2 and 3, but for other participants the 24 h recall was self-

administered. For this purpose, a training session on food portion sizes was administered at the 

beginning of the study for children before filling the 24 h recall questionnaire. Additionally, 

display boards of life-size pictures of portion sizes and foods were showed at each administration 

of 24-hour recall to help subjects make accurate estimates of their dietary intake. The coded dietary 

information derived from 24-hour recalls for nutritional content was analyzed using NUTS, 

nutritional assessment software (version 3.7 Quilchena Consulting Ltd., Victoria, BC), which used 

the 1988 Canadian Nutrient File information. This software stratified each food according to 

servings from the 1982 Canada’s Food Guide, which, except for the names and recommended 
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servings of the food groups and graphics to illustrate the Guide, was similar to the current version 

of Food Guide. For foods labeled as “other foods,” two separate groups were used: fats and oils, 

and sweets and desserts. Nutrient supplement use was included in nutrient intake data when 

supplement use was considered consistent, that is at least two-thirds of the time. The same 

individual checked and coded all the forms and analyzed dietary intake data. The intake of food 

and nutrients from consecutive 24-hour recalls were averaged for each year of study to obtain the 

usual intake of subjects. 

For the first follow-up study from 2002 to 2005, two 24-hour recalls at the time of bone 

scans and one through phone interview were obtained and they averaged to represent a usual intake 

of BMAS young adults.  Food intake was analyzed by Food Processor (version 8.0, ESHA 

Research Inc, Salem OR) that contained food from the 1997 Canadian Nutrient File. Dietary intake 

of BMAS adults was assessed using two 24-hour recalls conducted at the time of pQCT scanning 

during the second (2010-2011) and last (2017-2018) follow-up study and data were analyzed using 

Food Processor (Version 10.0, ESHA Research) that included foods from the 2007 Canadian 

Nutrient File.  To include in dietary pattern analysis, in the first step quantities of all consumed 

foods and beverages were converted into grams per day then all items were categorized into 25 

predefined non overlapping food groups manually regarding similar nutrient or culinary 

consumption of them (Table 4-3). 

 

4.1.5 Anthropometrics 

Trained staff following standard protocols collected weight and height examinations. Before 

weight measurement participants were asked to wear light clothes and remove their shoes and 
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Table 4-3 Food groups utilized for identifying dietary patterns using principal component analysis at each time points of the study 

Food Groups Food Items 

Dark green vegetables Asparagus, green beans, broccoli, lettuce, green pepper, seaweed, spinach, mixed greens, snow peas 

Eggs Eggs 

Non-refined grains Whole grains and partially whole grains (60%) mostly cereals, mixed granola/ grain bar, cracker, oat flakes, 

wheat germ, whole wheat bread, puffed wheat, brown and wild rice, popcorn, barley 

Fruit juice 100% 
Apple juice, limeade, apple, lemon, orange juice canned or bottled, unsweetened cranberry 

Legumes, nuts, and seeds Beans (black, kidney, lima, navy, small white, soy), chickpeas, hummus, tofu, brazil nuts, coconut, 

almond, hazelnuts, cashew, peanuts, mixed nuts, pecans, peanut butter, sunflower seeds 

Added fats Butter, margarine, vegetable oil, cooking oil, mayonnaise (salad dressing, miracle whip), coconut milk, 
dream whip, olive oil, pesto, meatless bacon bits 

Fruits All fresh and dried fruits, canned fruits (not sweetened), avocado, olives 

Low-fat milk 1%, skim, rice beverage, soy beverage 

Fruit drinks Fruit juice (sweetened), fruit drinks, iced tea 

Refined grains Refined cereals, white bread, white rice, refined pasta, noodles, pop corns, ice cream cone, pie crust, 

pizza pop, pizza pocket 

Cream Sour cream, cream (10%, whipped or low fat) 

Poultry Chicken and Turkey 

Processed meats Burger patties (beef, ham, chicken, etc.), sausages, bacon, canned meat (beef, ham, pork, chicken, 

turkey), dry ribs, fried chicken, nugget 

High-fat milk 2%, whole, or almond milk 

Tomato Tomato (fresh, raw, cooked, canned), ketchup, clamato juice, tomato juice, pasta sauce, pizza sauce, 

salsa, spaghetti sauce, tomato sauce 

Red meat 
Beef, ham, pork, bison (ground, loin, rib, steak, stew, fried, pot roast, balls, loaf, chop) 

Cheese All kind of cheese 

Yogurt Yogurt (plain, vanilla, or fruit) 

Desserts and sweets 
Sweet baked products, milk desserts, jelly, chocolate, sugar, jam, syrups, honey, and candies 

Fish and seafood Fish, Shrimp, lobster, mussels, pickerel, prawns, scallops 

Dressing, sauces, gravy 
Gravy, dressing, Caesar, French, ranch, Italian, 1000 island, Alfredo, blue cheese, chip chip, Greek, 

honey garlic, white sauce, sandwich spread, tartar, teen, sundried tomato 

Vegetables, others Carrots, snap beans, cabbage, cauliflower, celery, cucumber, garlic, mushroom, pepper, squash, bean 

sprouts, beets, onion, eggplant, radish, zucchini, potato, green peas, corn, sweet potato, and soups 

Chips and fries Potato chips, fries, corn chips, nacho, hash brown 

Soft drinks Soft drinks (sugar-sweetened or diet) 

Others 
Salt, spices, seasoning, additive, pickles (dill, beet), low fat sauces (mustard, hot, soy, teriyaki), vinegar 
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jewelry, then it was measured to the nearest 0.01 kg on a SECA electronic scale at original and 

first follow-up study, and using a calibrated mechanical scale at the second follow-up study. 

And, height in standing condition was measured to the nearest 0.1 cm by a wall-mounted 

stadiometer. For height measurement, the participants were asked breath in and to stand barefoot, 

keep their hands by their sides and their heels touching the wall. To eliminate human error, a 

second-time measurement was taken then the average of the first and second measurements was 

recorded.  

 

4.1.6 Ethical Approval 

For the original BMAS and consequent follow-up studies (Bio # 88-102) (128), ethical approvals 

were granted through the University of Saskatchewan and Royal University Hospital Advisory 

Committee on Ethics in Human Experimentation. 

 

4.2 Statistical analysis 

 All the analysis was conducted using SPSS version 26 (SPSS, Chicago, IL, USA) and R 

version 6.1 for windows (2019 The R foundation for statistical computing). The data management 

and descriptive analysis were conducted using SPSS software. All continuous variables are 

illustrated as means and standard deviations, and the differences were evaluated using t-test. 

Categorical variables are illustrated as frequency and percentages and were compared using Chi-

square test. For comparing the differences P-values lower than 0.05 were considered as statistically 

significant threshold. The trend in the mean of four food groups is illustrated and a test for trend 

is computed based on generalized estimating equation (GEE) method. And, the trend in 

individual’s consumption is illustrated using spaghetti plot.  Principal component analysis was 
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conducted separately at each measurement and first two identified principal components (PC) at 

each measurement were selected. Then the correlation of first and second PC among measurements 

were computed, separately. Also, the correlation among food groups measured at each 

measurement were computed. Correlograms1 were used to illustrate the Pearson correlations (129). 

For the analysis of LPCA, we had to modify the primary codes which was available through 

request from the author (5). The primary R codes were appropriate for the time when the 

longitudinal data is balanced. So, the codes were modified in a way that it could handle unbalanced 

longitudinal data. Number of principal components to be created were identified using scree plot. 

Heatmaps were created to illustrate the changes over time among different variables. The number 

of iterations were considered 350 and the threshold were considered as 0.0001. Dendrogram2 was 

used to classify the food groups score over time. 

For conducting the analysis of unbiased RE-EM tree, the R codes were available from a 

link introduced by authors (http://people.stern.nyu.edu/jsimonof/unbiasedREEM/). Additionally, 

REEMtree package was used (https://cran.r-project.org/web/packages/REEMtree/index.html). 

The leave-one-out cross-validation was incorporated into the R codes. To identify dietary patterns, 

the decision tree was graphed, and the most important food groups were selected for each sex 

separately. However, not all food groups that were selected with unbiased RE-EM tree contributed 

to the classification of dietary patterns because one of the drawbacks of all regression trees is that 

they might overfit the data. So, for the definition of dietary patterns, first the data set were classified 

based on categorizes that unbiased RE-EM tree selected. Then, the mean of food groups in each 

category were computed and dietary patterns were defined based on the food groups contributed 

to the highest mean in the categories. The categories with almost same values were merged. 

 
1 An image of correlation statistics 
2 A diagram that shows the hierarchical clustering 
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4.3 Descriptive Results 
 

In this study, 104 participants (58 males) with a mean age of 12.05 ± 1.62 and age range 

of 8-16 years at baseline were followed for 20 years; participants represented approximately 46% 

of the total sample and had the food group intakes information in at least 5 of 13 study time points. 

Totally 957 observations were considered for the analysis. Table 4.4 demonstrates the distribution 

of age and sex among different time points, for those who were included in this study and had their 

dietary information at least at five time points.  Because the number of individuals who had dietary 

information in the last time point, years 2017 and 2018, was small (N= 27), the information from 

this time point is excluded for this study. Since this study aims at describing why and how to apply 

pattern recognition methods in the longitudinal nutritional studies rather than discussing the 

clinical results, removing the last time point will not have any effect on it. However, in order to 

show that this sub-sample is representative, a comparison between the sub-sample BMAS data 

used in this thesis with the excluded BMAS data in terms of their baseline characteristics is made. 

Table 4-4 Age and sex distribution among different time points, Saskatchewan Bone Mineral Accrual Study, 

1991-2011 

 N 
Age 

Mean (SD) 

Age 

Min-Max 

Boys 

N (%) 

1991 104 12.01 (1.62) 8-16 58 (55.8) 

1992 83 12.93 (1.72) 9-16 44 (53.0) 

1993 97 13.56 (1.89) 9-17 54 (55.7) 

1994 94 14.58 (1.90) 10-18 51 (54.3) 

1995 91 15.59 (1.92) 11-19 47 (51.6) 

1996 81 16.48 (1.94) 12-20 41 (50.6) 

1997 63 17.25 (1.99) 13-21 33 (52.4) 

2002 66 22.87 (1.92) 19-27 41 (62.1) 

2003 73 23.88 (1.92) 20-27 40 (54.8) 

2004 69 24.94 (1.87) 21-28 37 (53.6) 

2005 35 26.32 (1.82) 22-29 21 (60.0) 

2010 55 29.85 (2.05) 26-34 29 (52.7) 

2011 46 31.36 (1.95) 28-34 26 (56.5) 

Total 957 12.05 (1.62) 8-34  522 (54.5) 

SD, Standard Deviation; N, number of individuals 



50 
 

 Table 4.5 illustrated the baseline characteristics of those who were included in the study to 

those who were not included. There was no significant difference between these two groups 

regarding age, sex, height, weight and TBBMD. 

Table 4-5 Comparison of differences in the baseline characteristics of those who were included to those 

who were not, Saskatchewan Bone Mineral Accrual Study, 1991 
 Included 

N=104 

Excluded 

N=124 
P-value 

Age (y) 11.6 ± 1.8 11.5 ± 3.8 0.869 

Height (m2) 151.8 ± 13.3 152.4 ± 13.1 0.693 

Weight (Kg) 43.0 ± 12.4 45.0 ± 14.6 0.264 

TBBMD 0.9 ± 0.1 0.9 ± 0.1 0.770 

Male 58 (55.8) 54 (43.5) 0.066 

TBBMD, Total body bone mineral density. 
1Values are expressed as mean ± SD or as N (%)   

2 P<0.05 is considered statistically significant 

 

 

The baseline characteristics of those who participated in the last measurement (year 2011) 

compared to those who did not are illustrated in Table 4-6; there were no clinically significant 

differences between these two groups regarding age, sex, biological age, height, weight and 

TBBMD.  

Table 4-6 Comparison of baseline characteristic of study participants who completed vs. not completed the last 

measurement (2011), Saskatchewan Bone Mineral Accrual Study, 1991 

 Complete 

N=56 

Loss to follow 

N=46 P-value 

Age (y) 11.8 ± 1.6 12.3 ± 1.6 0.120 

Height (m2) 158.4 ± 11.7 161.3 ± 11.6 0.221 

Weight (Kg) 43.2 ± 11.5 46.9 ± 12.2 0.108 

TBBMD 0.9 ± 0.1 0.9 ± 0.1 0.157 

Male 32 (55.2) 26 (56.5) 0.891 

TBBMD, Total body bone mineral density. 
1Values are expressed as mean ± SD or as N (%) 

2 P<0.05 is considered statistically significant 
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Results from table 4.5 and table 4.6 showed that this study sample could be a representative 

of the whole sample. Figure 4-1 shows the average food consumed by individuals for four food 

groups, Dark green vegetables, Eggs, Red meat, and Desserts and sweets. We noticed that 

individuals tend to have an irregular trend in Desserts and sweets (P=0.562) which is not 

significant, while they tend to have a relatively increasing trend in Dark green vegetables 

(P<0.001), and Eggs (P<0.001). The trend in red meat (0.019) was almost stable at first but after 

the year 2003 it started to increase.  

Figure 4-1 Mean levels of Dark green vegetables, Eggs, Red meat, and Desserts and sweets, across different time points of BMAS; 

The values of food groups are in grams 
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) 

(g
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) 
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Figure 4-2 illustrates that selected food groups consumed by individuals present different 

patterns over time.  

 This longitudinal nutritional data exhibits interesting features. However, results from the 

graphs 4-1 and 4-2 support the fact that analyzing this data is challenging due to the variability, 

number of food groups, and time-varying nature of the data. The variation in the food groups 

consumption can be due to the several intrinsic factors, such as changing diet due to the illness, 

immigration and transforming to the healthier diet, etc. In fact, capturing the transition in diet is 

essential in understanding the disease-diet associations. In the next section the current methods for 

the identification of dietary patterns and their trajectories will be discussed.  

Figure 4-2 The spaghetti plot of Dark green vegetables, Eggs, Red meat, Desserts and sweets, Fruit Juice, and Poultry’s change overtime by 

subject in BMAS; The values of food groups are in grams 
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4.4 Problem with Common Methods 
 

It is essential to investigate the problems with the common methods for the analysis of 

longitudinal nutritional data in the literature. This aids nutritional epidemiologist and researchers 

to better understand why they need to use longitudinal statistical methods for the analysis of 

nutritional data that is collected repeatedly over time. The most popular method of identifying 

dietary patterns in longitudinal studies is to perform separate PCA at each time point and selecting 

similar PCs. Figure 4-3 shows the correlograms for the correlation matrices of first two PCs 

between different study time points; PCs, derived from performing separate PCA at each time 

point. 

 

Figure 4-3 Pearson correlation of first two PCs between measurements; PCs, derived from performing separate 

PCA at each time point; the color and size of the figures represents the correlation value, colors change by the values 

and size changes by the magnitude 
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Figure 4-4 shows the correlograms for the correlation matrices among several selected food 

groups.  

 

Figure 4-4 Pearson correlation between food groups at the years 1991, 1996 and 2011 ; Capture association among 

food groups over time; The values of food groups are in grams the color and size of the figures represents the 

correlation value, colors change by the values and size changes by the magnitude 
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The most popular method of identifying dietary patterns in longitudinal studies is performing 

separate PCA at each time point and selecting similar PCs. In this dataset, performing PCA at 

different time points resulted in different number of PCs (data not shown). Additionally, results 

from figure 4-3 showed that the magnitude among the pairwise correlations for PCs changes as 

time progresses. Also, loadings from the most important two PCs, PC1 and PC2, at each time point 

are not correlated highly to their peer at another time points or they are not correlated to each other 

among different time point with the same value. For example, the correlation between PC1 at time 

1 and PC1 at time 5 is small and it is almost -0.2. Additionally, the correlation between PC1 at 

time 1 and PC1 at time 5 (r=-0.2) is different from correlation from PC1 at time 1 and PC1 at time 

12 (r=0.6). Therefore, performing separate PCA at each time point will result in different PCs with 

different interpretations, which will prevent researchers from tracking the patterns of diet over 

time. 

Another common method for the identification of dietary patterns in longitudinal studies is to 

perform PCA at one of the time points of the study and applying the loadings from that time point 

to the data at another one. Results from figure 4-4 describes the fact that individuals are likely to 

change their dietary habits over time. As a result, applying loadings derived by PCA at one time 

point to the data at other time points is an inefficient method. Which will prevent researchers from 

identifying trajectories over time in a reliable way. To address these problems, in the following 

sections the application of LPCA, and unbiased RE-EM tree methods for the identification of 

dietary patterns and their trajectories in longitudinal studies is presented. 
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4.5 Application of LPCA 
 

In this section the application of longitudinal principal component analysis (LPCA) as an 

extension to PCA for the analysis of longitudinal nutritional data is illustrated. Similar to PCA, 

LPCA could be considered as a data-driven outcome-independent approach. The point on the scree 

plot (Fig 4-5) where the slope of the curve leveling off shows the number of principal components 

that should be created which is two. 

 

Figure 4-5 Scree plot obtained using principal component analysis of 25 food groups to derive dietary  

patterns of BMAS participants over 20 years, the red dot presents the number of principal components 

     

Results from implementing the Estimated Eigenanalysis with Random Effects (EERE) or 

LPCA approach indicated that the two derived PCs are very similar to each other in terms of 

categorizing the variables (Fig 4-6 & 4-7). However, as it is apparent the scores differ. Therefore, 

here the results from first EERE is interpreted.  
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Figure 4-6 First Eigenvector obtained from Estimated Eigenanalysis with random effects EERE analysis; colors indicates the 

value of the eigenvector’s scores 
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Figure 4-7  Second Eigenvector obtained from Estimated Eigenanalysis with random effects EERE analysis; colors 

indicates the value of the eigenvector’s scores 
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 Based on the first eigenvector (EERE) we can see the most change in high-fat milk, fruit 

drinks, soft drinks and fruit juice 100%. For example, the change in the scores value as it is 

apparent in the Figure 4-6 suggest that intake of high-fat milk, fruit drinks and soft drinks shifts 

from positive values (1991-1996) to the negative values (1997-2007) then again, they shifts toward 

positive values. Changes in low fat milk is inconsistent. However, after the year 2002 it shifted 

toward negative values. Fruit juice shifted relatively from negative values to positive values. Other 

food groups seem to have a similar change that is not noticeable. Based on these colors the change 

in food groups is noticeable, however, for a precise identification of food groups with the same 

trend over time dendrograms were used. 

Dendrogram was used to cluster the food groups with the same evolution pattern over time 

in the same categories. Based on the dendrogram the clusters could be considered as high-fat milk, 

high sugar (Fruit drinks and soft drinks), low-fat milk, Fruit juice 100% and mixed dietary patterns. 

Additionally, results indicate that individuals are attached mostly to their diet developed during 

childhood. The loadings of this method also could be used for the prediction purposes which is not 

the objective of the current study. For extracting PCs obtained from LPCA in dataset, like cross-

sectional PCA approach, one can first standardized the food groups then multiply the standardized 

values by the eigenvector scores. 

  

4.6 Application of Unbiased RE-EM tree 
 

In this section the application of unbiased RE-EM tree is illustrated as an extension to the 

regression tree (RT) for the identification of dietary patterns where nutritional data collected 

repeatedly over time. Similar to RT, unbiased RE-EM tree is a data-driven outcome-dependent 

approach for dietary pattern analysis. Unbiased RE-EM tree considers ….. Based on unbiased RE-
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EM tree illustrated in figure 4-8, the following food groups selected as important contributors to 

the TB-BMD development: Dark green vegetables, creams, and poultry for girls, and, Dark green 

vegetables, red meat, soft drinks, Eggs, and tomato for boys. This unbiased Re-EM tree resulted 

in 11 nodes based on the combination of these food groups. For example, participants in the 3rd 

group are girls who are classified based on low consumption of dark green vegetables (≤27.03 gr), 

and high consumption of creams (>10.57 gr). And, the combination which resulted in the 6th node 

includes males with dark green vegetables consumption more than 12.4 grams, tomato 

consumption more than 18.4 grams and again tomato consumption more than 131.5 grams. As it 

is apparent in the figure 4-8 most of nodes almost have similar values. Additionally, not all 25 food 

groups that are considered as important variables contributed to the definition of dietary pattern categories 

with unbiased RE-EM tree. Totally, because regression trees might result in overfitting so based on the 

identified food groups through unbiased RE-EM tree the primary dataset were classified into 11 categories 

(or nodes). Then, these nodes were used to classify the original dataset and the mean intake of 25 food 

groups were computed in each of the 11 clusters separately (Fig 4-9).  Finally, nodes were combined based 

on their similarity in mean intake of food groups to extract the dietary patterns. The emerged dietary patterns 

were donated names subjectively regarding food groups with higher mean intake.
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Figure 4-8 Tree structure estimated by the unbiased RE-EM tree method for the BMAS data with 25 food groups as variables, and TBBMD as response variable; all the 

numbers used for splitting the tree are in grams 
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Based on the mean scores of food groups in each node, figure 4-9 presents that node 1 and 

10 could be combined and considered as “low-fat milk”, nodes 2,4,6,7, and 8  as “Mixed” and 

nodes 3,5, and 9 as “ high-sugar”, and node 11 as “High-fat milk” dietary patterns. Table A.1 in 

Appendix A summarizes the values of food groups in each node. Interestingly, results illustrate 

that individuals are attached to healthy diet more than other food groups as the change in healthy 

food groups is not noticeable, this is exactly the results from regression tree which was not helpful 

in the definition of dietary patterns and identification of change in diet. 

Figure 4-9 Mean score of food groups in each node separately, means are rescaled by dividing each 

mean value in a node to the total mean value in the node 



63 
 

In order to identify the stability of the dietary patterns over time a sequence plot was 

graphed. Examining the cluster membership over time using sequence plot showed that, while 

children do change their diet, they are more likely to continue following the same dietary pattern 

as they did at an earlier age; about half of the children continued to follow the same pattern at a 

later age. This helps to quantify the extent to which dietary patterns are formed in childhood and 

continued into adulthood (Fig 4-10). The next important step in supervised method for the 

identification of dietary patterns is to identify the prediction ability of these derived patterns for 

bone development over time which is not described in here as the aim of this thesis is showing 

how to identify patterns more accurately based on a labeling factor.  

Figure 4-10 Sequence index plot illustrating changes in cluster membership over time for each individual 



64 
 

 

CHAPTER 5  
DISCUSSION 

 

 

An essential aspect of data analysis is to realize when a model for the analysis of correlated 

data is sufficient, and when an independent model is appropriate for data analysis. Many nutritional 

longitudinal studies have identified dietary patterns using cross-sectional statistical methods, 

including principal component analysis (PCA) and classification and regression trees (CART). 

Although these methods perform well in the identification of dietary patterns (DPs) in cross-

sectional nutritional data, their assumptions may not be reasonable for the identification of dietary 

patterns in longitudinal nutritional data. This thesis motivated by the analytical challenges 

encountered in identifying dietary patterns in longitudinal data, introduced the application of 

LPCA and unbiased RE-EM tree methods to a representative sub-sample of Saskatchewan Bone 

Mineral Study (BMAS) for the identification of dietary patterns. 

Although, cross-sectional pattern recognition (PR) methods such as PCA are widely 

applied to the identification of dietary patterns in longitudinal nutritional studies, the application 

of PR methods suitable for the analysis of longitudinal data remained scarce. For longitudinal 

nutritional data, the application of traditional cross-sectional PR methods is not adequate; in 

particular, the change in diet over time necessitates the consideration of statistical dependence
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 arising from the same individuals measured repeatedly over time. Results from several cross-

sectional PR approaches to dietary pattern analysis in longitudinal studies are not considered in 

longitudinal studies are not considered the time-varying association among food groups 

(12,15,16), as a results studies applied the same cross-sectional PR method (e.g. PCA) in different 

ways to their data. To overcome the instability of the analysis approach of longitudinal nutritional 

data, which restricts the comparisons among studies, methods suitable for the analysis of 

longitudinal nutritional data should be considered. The LPCA and unbiased RE-EM tree represent 

extensions of PCA and regression tree (RT) to multi- or high-dimensional correlated data. 

The example to describe the importance of considering time-varying associations among 

individuals, centered on scrutinizing the common approaches for the identification of dietary 

patterns in our longitudinal study of BMAS sample. Conducting separate PCA, as one of the 

popular cross-sectional PR methods, at each time point of BMAS data yielded in different number 

of principal components (PCs) with different interpretations. Additionally, results from the 

correlation analysis among different time points with respect to the first two PCs showed that the 

correlation between loadings not only is not high among most of the time points but also is not the 

same for all time points. For example, the correlation of first PC between years 1991 and 1993 is 

different from the correlation of first PC between years 1991 and 1995 (Fig 4-3).  It is important 

to note that the correlation of first PC between years 1991 and 1993 (~ -0.75) is almost high but 

the correlation of first PC between years 1991 and 1995 (~ -0.2) is not high. Therefore, there is a 

chance that the first PC at year 1991 has a different meaning from the first PC at year 1995. In this 

sense, it is possible that studies arbitrarily select PCs with almost similar loadings at all-time points 

ignoring the proportion of variance explained by PCs. This arbitrarily selection of PCs leads to 
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losing important information by removing the most important PCs that explain the highest 

percentage of total variability at a specific time point in data. 

            Another common approach for identifying dietary patterns and their trajectories in the 

literature is to perform PCA (or other methods) at one of the time points of the study and applying 

the loadings from that time point to the data at another one (15,16). However, results from the 

correlation analysis between food groups at each time point separately showed that the correlation 

between food groups changes from one time point to the other. As an example, the correlation 

between Added fats and fruits is around -0.2, -0.1, 0.1, 0.6 at years 1991, 1996, 2005, and 2011 

which shows different amount of food consumption over time. As a result, applying the loadings 

derived from PCA at one time point to the data at other time points will not discover the true 

contribution of food groups to the PCs because PCA creates PCs based on the linear combination 

of food groups. In this thesis, problems of applying cross-sectional PR methods to the 

identification of dietary patterns in longitudinal studies were assessed using PCA. However, it is 

expected that the application of regression tree to the longitudinal data for the identification of 

dietary patterns lead to the same problems. 

In sum, these approaches did not considered the time-varying associations among 

individual’s food consumption to handle large-dimensional nutritional data. Other approaches 

including cluster analysis (CA) and reduced rank regression (RRR) are also applied to the 

longitudinal data for the identification of dietary patterns in the literature, however, these 

approaches share the same problems defined by illustrating the application of PCA to the BMAS 

data. 

In this thesis, the simplicity in the computation and interpretation of results from the 

application of the LPCA and RE-EM to the BMAS sample showed that these methods could 
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provide a better solution than their comparable cross-sectional approaches available in the 

literature. This superiority resides in the fundamental differences in the concepts behind these 

methods that is LPCA and RE-EM tree are considering the time-varying associations among food 

groups. Beside the incorporation of longitudinal information, the main benefit of these PR methods 

for the analysis of longitudinal data is the accurate estimation and simple interpretation of the 

emerged patterns. The results of the application of LPCA and unbiased RE-EM tree irrespective 

of their methodological differences were almost similar. The results showed that while BMAS 

participants do change their diet, they are more likely to continue following the same dietary 

patterns as they did at an earlier age. More interestingly, both methods identifies relatively the 

same dietary patterns including mixed, high-sugar, low-fat milk and high-fat milk dietary patterns. 

Moreover, based on both methods the variation in healthy food groups were not noticeable. A main 

explanation for the similarity in the identified dietary patterns based on the two different approach 

may be associated with the correlation among food groups. However, future work is required to 

compare these two methods in terms of their prediction ability. 

In concluding, the findings of this study suggest that application of LPCA and RE-EM tree 

to the longitudinal data for the identification of dietary patterns and their trajectories represents 

progress. Additionally, it is important to emphasize that identifying patterns in longitudinal 

nutritional data using these methods is not computationally as expensive as identifying patterns 

using cross-sectional PR methods. By introducing the application of these methods as an 

alternative to the cross-sectional approaches, this thesis is expected to assist the nutritional 

epidemiologists and researchers to become more familiar with the application of appropriate 

methods to the identification of dietary patterns and their trajectories in longitudinal design. 
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This thesis marked the first application of the LPCA and unbiased RE-EM tree methods, 

as a substitute to the PCA and RT, to the identification of dietary patterns and their meaningful 

dynamic changes in longitudinal studies. Additionally, this thesis for the first time discussed the 

problems associated with the application of cross-sectional PR methods to the identification of 

dietary patterns in longitudinal studies. However, this study had some limitation. The main 

limitation of this study was the small sample size because of which a separate analysis for females 

and males could not be conducted based on LPCA method.  Additionally, due to the small sample 

size a comparison could not be made between this study and other studies in terms of the identified 

dietary patterns because the results could not be generalized. Only one 24-hour recall was collected 

each year for BMAS participants at study years after 1997 which might misrepresent the usual 

intake of the BMAS participant and affects the final results. Finally, BMAS participants were a 

grab sample of Caucasian people which means that the participants were drawn from the available 

population. Therefore, the results of this study could not be generalized to the whole population. 

  Even though this study showed that using LPCA and unbiased RE-EM tree is 

computationally cheap, this is not to say that these methods are the only existing methods in the 

literature for extracting patterns in longitudinal studies. Future work requires the application of 

other pattern recognition methods suitable for the analysis of longitudinal nutritional data such as 

mixed effect random forest for correlated data (121). Methodologists also should pay more 

attention to the area of pattern recognition in longitudinal studies in terms of both developing 

efficient methods and introducing their application.  

Finally yet importantly, this study showed the importance of considering time-varying 

associations among food groups in longitudinal studies and the application of two PR methods for 

the analysis of longitudinal data, but no comparison is made between the methods in terms of their 
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prediction ability. Future studies should be made to compare these methods to each other and to 

the other methods appropriate for this kind of data. In future studies, it is also suggested to apply 

these methods to data with larger sample size and make clinical comparisons among studies in 

terms of the derived dietary patterns using methods discussed in this thesis. Unfortunately, the task 

of analyzing data with longitudinal PR methods has not been greatly facilitated because software’s 

are not widely available. 
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APPENDIX. A 

 

Table A.1 Mean score of food groups in each node separately, means are rescaled by dividing each mean value in a node to the total value in the 

node 

 Node1 

(N=29) 

Node2 

(N=74) 

Node3 

(N=27) 

Node4 

(N=296) 

Node5 

(N=19) 

Node6 

(N=108) 

Node7 

(N=74) 

Node8 

(N=50) 

Node9 

(N=58) 

Node10 

(N=9) 

Node11 

(N=184) 

High fat milk 0.0398 0.0746 0.0950 0.1115 0.0864 0.0752 0.0821 0.1085 0.0813 0.0881 0.2082 

Low fat milk 0.1303 0.1297 0.0857 0.1406 0.0725 0.1129 0.1545 0.0924 0.0680 0.1411 0.1465 

Refined grains 0.0963 0.0902 0.0975 0.0963 0.0977 0.0977 0.0888 0.0991 0.0614 0.1261 0.1240 

Soft drinks 0.1177 0.1719 0.2203 0.1977 0.1824 0.2047 0.1588 0.1696 0.3682 0.0812 0.1087 

Fruit Juice 0.0246 0.0702 0.0511 0.0696 0.0342 0.0588 0.0852 0.0815 0.0426 0.1685 0.0656 

Fruit drinks 0.0427 0.0897 0.1487 0.1078 0.1341 0.0960 0.0711 0.0946 0.1711 0.0218 0.0474 

Desserts and sweets 0.0789 0.0238 0.0165 0.0380 0.0324 0.0276 0.0366 0.0244 0.0339 0.0472 0.0454 

Nonrefined grains 0.0373 0.0341 0.0323 0.0261 0.0358 0.0410 0.0386 0.0232 0.0205 0.0216 0.0407 

Fruits 0.0569 0.0470 0.0335 0.0428 0.0327 0.0350 0.0461 0.0407 0.0205 0.0279 0.0322 

Cheese 0.0253 0.0292 0.0237 0.0230 0.0193 0.0216 0.0211 0.0203 0.0147 0.0395 0.0251 

Red meat 0.0101 0.0269 0.0402 0.0222 0.0291 0.0291 0.0384 0.0967 0.0129 0.0242 0.0219 

Tomato 0.0433 0.0267 0.0270 0.0232 0.0836 0.0294 0.0021 0.0234 0.0176 0.0301 0.0200 

Processed meats 0.0086 0.0138 0.0101 0.0085 0.0148 0.0151 0.0224 0.0178 0.0113 0.0256 0.0183 

Chips and fries 0.0128 0.0247 0.0089 0.0181 0.0148 0.0147 0.0139 0.0186 0.0260 0.0114 0.0165 

Vegetables and others 0.0668 0.0301 0.0200 0.0194 0.0164 0.0259 0.0301 0.0129 0.0109 0.0135 0.0158 

Poltury 0.0782 0.0060 0.0166 0.0135 0.0094 0.0279 0.0209 0.0105 0.0118 0.0329 0.0134 

Others 0.0067 0.0042 0.0094 0.0040 0.0062 0.0095 0.0093 0.0061 0.0039 0.0033 0.0085 

Yogurt 0.0188 0.0201 0.0162 0.0082 0.0112 0.0114 0.0091 0.0017 0.0046 0.0000 0.0081 

Legumes, nuts and seeds 0.0097 0.0049 0.0086 0.0055 0.0120 0.0069 0.0093 0.0200 0.0044 0.0054 0.0077 

Dressing, sauces and gravy 0.0108 0.0140 0.0014 0.0045 0.0127 0.0067 0.0103 0.0076 0.0042 0.0000 0.0072 

Fish and seafood 0.0120 0.0100 0.0000 0.0044 0.0116 0.0057 0.0103 0.0085 0.0018 0.0150 0.0069 

Added fats 0.0069 0.0077 0.0083 0.0050 0.0076 0.0065 0.0050 0.0048 0.0025 0.0038 0.0054 

Eggs 0.0147 0.0118 0.0041 0.0062 0.0127 0.0106 0.0073 0.0136 0.0038 0.0690 0.0036 

Creams 0.0041 0.0018 0.0203 0.0003 0.0011 0.0028 0.0009 0.0025 0.0010 0.0026 0.0015 

Dark green vegetables 0.0468 0.0371 0.0047 0.0033 0.0292 0.0276 0.0277 0.0010 0.0009 0.0002 0.0014 

All the values are the ration of the mean of each food intake to the total mean in a specific node; all values are in grams 


