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ABSTRACT 

 

(1,3;1,4)-β-glucan accumulated in barley (Hordeum vulgare L.) cell walls is an important 

determinant for grain end-use as food, malt, feed or fuel.  As a trait affected by multiple genes 

and the environment, grain (1,3;1,4)-β-glucan concentration qualifies as a quantitative trait.  A 

major QTL on chromosome 7H contains a cellulose synthase like gene HvCslF6, coding for an 

enzyme associated with (1,3;1,4)-β-glucan biosynthesis.  To develop gene based perfect markers, 

HvCslF6 was analyzed to determine allelic variation between CDC Bold, a low (1,3;1,4)-β-

glucan (~ 3.3 %) cultivar and TR251, a high (1,3;1,4)-β-glucan (~ 5.2 %) genotype.  Comparison 

of the CDC Bold and TR251 nucleotide sequences downstream of the ATG start codon in 

HvCslF6 alleles revealed 16 single nucleotide polymorphisms (SNPs) and two indels.  The two 

indels added 16 nucleotides to the first intron of HvCslF6 of CDC Bold and a single SNP in the 

third exon changed alanine 590 codon in the CDC Bold sequence to a threonine codon in TR251 

allele.  Five polymorphic sites were converted into genetic markers and confirmed to select low 

and high (1,3;1,4)-β-glucan lines in a previously characterized CDC Bold / TR251 doubled 

haploid genetic mapping population and a novel F5 recombinant inbred line (RIL) population 

derived from a Merit / H93174006 (4.8 and 5.3 % (1,3;1,4)-β-glucan) cross.  An analysis of 

parental lines of six populations segregating for (1,3;1,4)-β-glucan concentration validated the 

association between the TR251 HvCslF6 haplotype and high (1,3;1,4)-β-glucan concentration in 

populations showing a (1,3;1,4)-β-glucan quantitative trait locus (QTL) on chromosome 7H.  

To further investigate the role of HvCslF6 alleles, 91 lines of the Merit / H93174006 RIL 

grown in two environments were phenotyped for (1,3;1,4)-β-glucan grain concentration, 

cellotriose content (DP3), cellotetraose content (DP4) and cellotriose:cellotetraose (DP3:DP4) 

ratio.  DP3, DP4, (1,3;1,4)-β-glucan and total DP3+DP4 were strongly positively correlated 

(r>0.9) to each other, suggesting no preference for DP3 or DP4 subunit production in high or low 

(1,3;1,4)-β-glucan lines.  DP3:DP4 ratio showed no strong correlation with any other measured 

trait.  Significant effects arising from genotype and environment were associated with grain 

(1,3;1,4)-β-glucan concentration, DP3, DP4 and DP3:DP4 ratio.  Only DP3:DP4 ratio showed a 

significant GxE (genotype by environment) interaction.  Hereditability of grain (1,3;1,4)-β-

glucan concentration was moderate (~ 30 %), DP3 and DP4 had low heritability (> 21 %) and 

DP3:DP4 ratio had moderate heritability (~ 43 %).  Single marker analysis showed an 
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association between marker CSLF6_4105 and (1,3;1,4)-β-glucan fine structure in Vegreville but 

not in Castor, supporting significant GxE interaction in (1,3;1,4)-β-glucan fine structure.  

Association mapping of candidate markers in 119 barley genotypes of diverse origin grown in 

greenhouses showed that on chromosome 7H, marker CSLF6_4105 was associated only with 

(1,3;1,4)-β-glucan concentration, while Bmac273e was associated with both (1,3;1,4)-β-glucan 

concentration and DP3:DP4 ratio.  In addition on chromosome 1H, markers Bmac504 and 

Bmac211 were associated only with DP3:DP4 ratio.  This study suggests that DP3:DP4 ratio is 

strongly affected by genotype and environment. 

To identify new markers with (1,3;1,4)-β-glucan concentration, ninety-four two-row 

spring varieties were genotyped using double digestion Restriction-site Associated DNA 

(ddRAD) sequencing on an Illumina sequencer.  Two bioinformatics pipelines were used to 

discover and call SNPs for association linkage analysis.  SAMtools bioinformatics pipeline 

identified 9,062 markers and UNEAK identified 3,060 markers, 2,311 of which were identical 

between both bioinformatics pipelines.  Both sets of markers showed excellent coverage of the 

genome and distinguished the ninety-four varieties into the same subgroups based on 

geographical region of origin.  Association mapping was performed using TASSEL 3.0 and grain 

(1,3;1,4)-β-glucan concentration was associated with a region on the 5HS telomere by markers 

generated using both UNEAK and SAMtools.  Some putative candidate genes were identified, 

including a UDP-glucosyltransferase, two phosphorylation signaling proteins and two 

transcription factors.  The markers developed and tested in this study can be used in marker 

assisted selection to develop barley genotypes with desired (1,3;1,4)-β-glucan concentration.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Barley (Hordeum vulgare L.) is a member of the Triticeae tribe within the Poaceae 

family and is an important component of global agriculture. After corn, rice and wheat, barley is 

the fourth most important cereal crop worldwide in terms of production, acreage and 

consumption (FAO, 2014).  Barley is produced in diverse environments from the subarctic to the 

sub-tropics. Barley has a shorter growing season, can be grown at higher altitudes, matures 

earlier, requires less heat units and is better adapted to drought than many other cereal crops 

(Harlan, 1979). Barley grows best on light or sandy loam soils and is more tolerant to salinity 

and alkalinity than most other cereals. Barley can use soils low in nitrogen content and tolerate 

soils which are too light or coarse textured for wheat (van Gool and Vernon, 2006). The success 

of artificial selection on barley is evident by its diverse uses in food, feed and industrial 

applications. In North America, roughly 65 % of barley production is used for animal feed, 30 % 

is used in the malting and brewing industry to produce beer and whiskey and two percent is used 

as food for human consumption (Newman and Newman, 2006). 

Barley utilization is influenced by its grain composition. Carbohydrates (starch and non-

starch), proteins and lipids are the major storage components in a grain.  Vitamins, minerals and 

minor compounds such as phenolics and pigments are the minor components present in a barley 

grain (Newman and Newman, 2008). Among the major non-starch carbohydrates accumulated in 

the barley grains is the dietary fiber, (1,3;1,4)-β-glucan, which is an important factor determining 

grain use. Traditionally, barley has been selected for lower concentrations of grain (1,3;1,4)-β-

glucan to meet the requirements of the malt and feed industries. High concentrations of grain 

(1,3;1,4)-β-glucan have a direct, deleterious effect during malting (Swanston et al., 1995). 

Residual (1,3;1,4)-β-glucan leads to highly viscous wort and causes chill haze in bright beer 

(Bamforth, 1982; Wang et al., 2004). High concentrations of (1,3;1,4)-β-glucan are also 

problematic when barley is used as a feed for non-ruminants, especially poultry (Gohl et al., 

1978). 
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Non-starch polysaccharides are major components of dietary fibers. Consumption of 

dietary fiber by humans is associated with reduced incidence of coronary heart disease 

(Anderson, 1995; Pereira et al., 2004).  The Canadian Heart and Stroke Foundation recommends 

a daily intake of 21 - 38 grams of fiber; specifically, soluble fiber, which may help reduce 

cholesterol and blood sugar levels (Ames and Rhymer, 2008). The (1,3;1,4)-β-glucan molecule is 

considered a soluble dietary fiber, as it has unique physical and physiological properties that 

make it a functional, bio-active ingredient of interest in human food products (Cui and Wood, 

2000). Due to its physical propreties, (1,3;1,4)-β-glucan can be used as a thickening agent to 

modify the look and feel of gravies, salad dressings, and ice cream formulations (Wood, 1986) or 

as a replacement for fat to develop calorie-reduced foods (Inglett, 1990). In food systems, high 

viscosity (1,3;1,4)-β-glucan is associated with reduced plasma cholesterol and a better control of 

postprandial serum glucose levels (Lazaridou and Biliaderis, 2007; Wood, 2007; Klopfenstein 

and Hoseney, 1987). In 2006, barley was approved to carry the health claim for reducing the risk 

of cardiovascular disease (FDA news release, 2005). In 2011, human food use for barley 

increased by 21 % over the four year average (Statistics Canada, 2014) suggesting it as an 

important growing market for Canadian barley. In summary, the demand for barley in human 

nutrition in the Western world is increasing due to several health benefits associated with whole 

grains and dietary fiber. Therefore, high grain (1,3;1,4)-β-glucan concentration is desirable for 

barley used as food by humans. 

(1,3;1,4)-β-glucan is a mixed linked glucan polymer made up by β-D-glucopyranosyl 

molecules that can form either β-1,3 or β-1,4 linkages. The β-1,4-linked molecules are 

constituted primarily of non-randomly arranged cellotriose (DP3) and cellotetraose (DP4) units 

which form a polymer with linkage ratios ranging from 2.0:1 to 4.8:1 (Burton et al., 2011; 

Collins et al., 2010; Mikkelsen et al., 2013). The ratio of DP3:DP4 in (1,3;1,4)-β-glucan affect 

the viscosity of (1,3;1,4)-β-glucan, a factor influencing its end use in malting and brewing, feed 

or food applications (Izydorczyk et al., 2000). The (1,3;1,4)-β-glucan concentration in barley 

grain can range from very low (≤1 %) to high concentrations (up to 21 %) but normally varies 

between three to six percent (Munck et al., 2004; Kato et al., 1995; Holtekjølen et al., 2006). 

Similarly, the concentration and DP3:DP4 ratio of (1,3;1,4)-β-glucan show a larger variation in 

barley grain than in other commercially produced cereals (Collins et al., 2010; Wood, 2007).  
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This suggests that ample opportunity exists to genetically alter (1,3;1,4)-β-glucan concentration 

and composition in barley grain to meet the requirements of specific end-users.  

Grain (1,3;1,4)-β-glucan concentration in barley is influenced by both genetic (Powell et 

al. 1985), and environmental factors (Morgan and Riggs, 1981; Perez-Vendrell et al., 1996). The 

trait is inherited in a quantitative manner and can be associated with Quantitative Trait Loci 

(QTLs) located on all the seven barley chromosomes (Han et al., 1995; Baum et al., 2003; 

Islamovic et al., 2013; Molina-Cano et al., 2007). However, at present, no barley chromosomes 

have been associated with (1,3;1,4)-β-glucan structure elements such as DP3:DP4 ratio or 

concentrations of cellotrioses and cellotetroses. 

The study of quantitative traits in crops has rapidly evolved during the last three decades, 

due to progress made in DNA markers technology and their ability to detect genotypic 

differences. Most of the QTL mapping studies use segregating progeny derived from a cross 

between parents with contrasting phenotypes. Various technologies are available to detect QTLs 

on the genome and association mapping via linkage disequilibrium (LD) has shown the potential 

to resolve QTLs to individual (candidate) genes (Oraguzie et al., 2007).  Recently developed 

high-throughput DNA chip technology, diversity array technology (DArT®) and genotype by 

sequencing (GBS) methods have increased the availability of barley markers for marker trait 

association (http://wheat.pw.usda.gov). In this study, two types of mapping populations were 

used to develop and verify functional markers for concentration of grain (1,3;1,4)-β-glucan and 

its structure.  

 

1.2 Objectives 

1) Develop and validate a perfect marker within HvCslF6 for grain (1,3;1,4)-β-glucan; 

2) Determine the heritability of (1,3;1,4)-β-glucan fine structure; 

3) Use association mapping to identify novel markers for (1,3;1,4)-β-glucan concentration in 

barley.  
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CHAPTER 2 

 

REVIEW OF LITERATURE 

 

2.1 Grasses  

Grasses are members of the Poaceae (Gramineae) family of higher plants and include 

agronomically important cereal species such as corn, rice, wheat and barley (Gaut, 2002) that 

supply around 50 % of calories in human diet. In addition, domestic animals are raised on diets 

wholly or partially consisting of grasses and / or cereal grains. All grasses likely evolved from a 

common ancestor, making the Poaceae family monophyletic (Devos, 2005). This family 

includes approximately 10,000 species classified into 700 genera. Four main subfamilies make 

up 90 % of all grasses. The Chloridoideae, which include finger millet and teff, is recognized by 

their C4 anatomy and the structure of their microhairs. The Bambusoideae comprise of the 

woody and herbaceous bamboos, characterized by asymmetrically lobed mesophyll cells. The 

Panicoideae have paired flowers with the upper one generally being hermaphrodite and the lower 

one reduced or staminate. Maize, sorghum, common millet and fox-millet are members of this 

subfamily. Pooideae subfamily was originally shown by Russian cytogeneticist Avdulov to 

contain grasses with a base number of seven chromosomes (x=7), but recent genetic studies have 

included several other grasses (Kellogg, 2001). Wheat, oats, rye and barley along with a number 

of lawn and pasture grasses are members of Pooideae. The Triticeae tribe of Pooideae consists of 

350 to 500 species (Bothmer et al., 1995), among which several important cereal and forage 

crops such as wheat (Triticum spp.), barley (Hordeum vulgare L.), rye (Secale cereale L.) and 

crested wheatgrass (Agropyron cristatum) are included. However, the taxonomic delimitation of 

the tribe is not fully resolved (Barkworth, 1992).  

Within Hordeum four basic haplomes occur: the H haplome in H. vulgare and H. 

bulbolsum, the Xa haplome in H. marinum, the Xu haplome in the H. murinum complex, and the 

I haplome in all other Hordeum species. Beyond division by haplome, success rates of various 

Hordeum species crosses delineate three gene pools. The primary gene pool of H. vulgare subsp. 

vulgare consists of all forms of cultivated barley and the wild progenitor (subsp. spontaneum). 

This pool has no sterility barriers and can exchange genes easily (von Bothmer and Komatsuda, 

2011). Modern barley varieties (Hordeum vulgare subsp. vulgare) are direct descendents of 
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Hordeum vulgare ssp. spontaneum C. Koch. Cultivated barley and H. spontaneum have similar 

plant morphology but the cultivared form has a shatter resistant rachis, broader leaves, larger 

grains, and shorter stems and awns (von Bothmer and Komatsuda, 2011). Modern barley 

(Hordeum vulgare L.) is the result of centuries of artificial selection (Newman and Newman, 

2006). 

Barley was once thought to be composed of a non-homogeneous group of 

morphologically similar but unrelated entities with distinct shattering and spike types due to two 

complementary brittle rachis (Btr) genes (Zohary et al., 2012). The shattering characteristic of H. 

spontaneum is caused by the brittle rachis; spikes disarticulate above each rachis node to form 

wedge-shaped spikelets, which helps seed dispersal in the wild (von Bothmer and Komatsuda, 

2011). A second form of brittle rachis phenotype is the breaking of the rachis leading to 

complete loss of the spike (Kandemir et al., 2000). Disarticulation scars in wild barley are 

smooth, whereas in cultivated barley, threshing produces rough scars on grains broken from 

rachis segments (Tanno and Willcox, 2006). Mutations in two tightly linked genes, Btr1 and 

Btr2, on the 3H chromosome resulted in shatter resistant barley (Azhaguvel et al., 2006). All 

cultivated forms of barley carry the recessive alleles for one or both Btr genes.  

 

2.2 Origin of barley 

Archaeological evidence has shown that barley (Hordeum vulgare L.) was one of the 

earliest cultivated cereal grains, and directions on how to successfully grow barley have been 

found inscribed on clay tablets from ancient Sumer in Lower Mesopotamia dating from 1700 

B.C. (Harlan, 1979). The origin of cultivated barley remains controversial with two separate 

centers of origin proposed (Bothmer and Komatsuda, 2012). Initially, the Fertile Crescent in the 

region occupied presently by portions of Israel, Iran, Iraq, Turkey and Syria (Harlan, 1979) was 

proposed as the sole center of origin, but recent genomic studies have also suggested regions in 

the Far East including Northern India and Tibet as a separate area of origin (Igartua et al., 2013). 

The fact that barley was domesticated not once but twice is a testament to its importance in 

modern agriculture. Energy and nutrients derived from barley directly or indirectly (as livestock 

feed) make up a major portion of daily human diet. 
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2.3 Production and distribution of barley 

Globally, barley is the 12
th

 most important crop in terms of production and the fourth 

ranked cereal after maize, rice and wheat in terms of consumption, harvested area and production 

(FAO, 2014). In 2013, approximately 145 million metric tonnes of barley were produced 

worldwide. In the same year, 10.2 million metric tonnes were produced in Canada, making it the 

fourth largest commercial barley producer in the world after Russia, Germany and France (FAO, 

2014). One reason for the success of barley as a crop worldwide is its ability to grow in diverse 

environments (McIntosh et al., 1993).  

Cultivated barley has the one of the widest ecological ranges among the cereals. As a 

cool climate crop, barley grows best in temperatures between 15 - 30 °C and can tolerate colder 

or warmer temperatures in low humidity environments. Although barley prefers to grow in cool 

climates, it is not particularly winter hardy. Therefore, barley is grown as a summer crop in 

temperate areas and as a winter crop in tropical climates. Barley has a shorter growing season 

than wheat and oats, matures earlier, has evolved to use less heat units than other crops and can 

be grown at higher altitudes than oats and wheat, giving it a wider ecological range than any 

other cereal. Thus, barley can be grown in areas of high altitude such as the steppes of Tibet or 

above the Arctic Circle in Alaska, Finland and Norway. Among the small grain cereals, barley 

has the lowest transpiration rate and requires the least amount of water. Barley is better adapted 

to drought, through high water use efficiency, than many other cereal crops. Barley can tolerate 

annual rainfalls ranging from 190 - 1760 mm but it is susceptible to water-logging and does best 

in areas with annual precipitation of 500 - 1000 mm (van Gool and Vernon, 2006). It also 

responds well in irrigated areas (Harlan, 1979). Barley is not well suited to tropical warm, humid 

environments (Nevo, 1992). Excessive heat after anthesis can reduce grain weight and negatively 

affect malting characteristics (van Gool and Vernon, 2006). Barley does best on light or sandy 

loam soils and can tolerate soils which are too light or coarse textured for wheat. Barley has a 

higher tolerance to salinity and alkalinity than most other cereals. Despite this, barley is 

susceptible to soil acidity and aluminum toxicity and usually thrives on soils with a pH of 7 - 8. 

Malting grade barleys are grown on soils with low nitrogen to obtain optimal protein content 

(van Gool and Vernon, 2006). 
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2.4 Barley types and classifications 

2.4.1 Two-row and six-row types 

Barley is classified by the number of kernel rows in a spike. Two forms are most 

commonly cultivated; two-row and six-row barley. Spikelets are arranged in triplets which 

alternate along the rachis. In H. spontaneum and two-row barley, only the central spikelet is 

fertile and the lateral spikelets are sterile. All three spikelets are fertile in six-row barley. The 

number of fertile spikelets on the ear is controlled by at least five genetic factors: vrs1, vrs2, 

vrs3, vrs4 and int-c (Koppolu et al., 2013); the predominant factor is in most cases the vrs1 locus 

on the 2H chromosome (Powell et al., 1990). The six-rowed spike gene (vrs1) is genetically 

recessive and originates from a mutation in a homeobox gene (HvHox1) containing a leucine 

zipper motif (Komatsuda et al., 2007). The cultivated forms of barley (Hordeum vulgare L.) may 

also include a group of barley lines derived from crosses between two- and six-row barley that 

were previously denoted as H. intermedium (Jui et al., 1997). For full development of the lateral 

spikelets in six-row barley, the additional action of the intermedium gene (int-c) is needed. The 

gene underlying the int-c locus is an ortholog (HvTB1) of the maize domestication gene 

TEOSINTE BRANCHED1 (Ramsay et al., 2011). A combination of recessive alleles in the Vrs1 

allele and dominant int-c allele are needed to complete the shift from two-row to six-row 

cultivars (Gymer, 1978). Fertility and an increase in the size of lateral spikelets are considerably 

enhanced by int-c.a (the dominant int-c allele) in combination with Vrs1vrs1 heterozygotes 

(Lundqvist and Lundqvist, 1987). Haplotype analysis of the vrs1 region indicates that six-row 

varieties have been independently selected from domesticated two-row varieties at least three 

times throughout history (Komatsuda et al., 2007). 

Two-row barley grains are more circular, have higher test and grain weight, and are 

higher in starch and protein than six-row kernels (Tanno and Takeda, 2004; Marquez-Cedillo et 

al., 2001). Two-row genotypes are more lodging resistant and grains have lower amounts of 

(1,3;1,4)-β-glucan compared to six-row varieties (Berry et al., 2006). The higher number of 

kernels per spike in the six-row cultivars makes them attractive for production as yield is 20 - 27 

% higher than in two-row varieties. The increased number of kernels per spike in six-row 

varieties is also associated with a reduced amount of tillering; thus spikes per plant compensate 

for the reduced number of seeds per spike in two-row compared to six-row genotypes (Lundqvist 

et al., 1997; Kirby and Riggs, 1978). 
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2.4.2 Hulled and hulless grain 

A second classification of barley is based on the adherence of the hull to the kernel. Wild 

barley and most cultivated forms are hulled (covered caryopsis) with the palea and lemma firmly 

adhered to the pericarp epidermis at maturity. Hulless varieties have hulls which are easily 

removed during threshing. The hulless or “naked” trait is controlled by a single locus nud (for 

nudum) on chromosome arm 7HL. Positional cloning and analysis of the nud locus has shown 

that the hulless lines have a 17 kb deletion which removes a gene encoding an ethylene response 

factor (ERF) transcription factor (Taketa et al., 2004; 2008). This ERF gene is express 

predominantly on the ventral side of the testa in hulled varieties. An absence of staining by 

Sudan black B in hulless barley has lead to the postulation that the identified ERF family 

transcription factor also control lipid synthesis at the testa (Kakeda et al., 2011). 

 

2.4.3 Market classes 

In Canada, barley is divided into three classes based on end-use: malting, general purpose 

and food. The two principal markets for Canadian barley are malt and animal feed industries. 

The faster fermentation rate of barley compared to other cereals makes it an attractive grain for 

maltsters. Only varieties within the malting barley variety designation list are eligible for the 

malting grades. Malting barley may be covered (hulled) or hulless varieties and are selected for 

uniform germination, production of an extract that is low in protein and low in soluble fiber. 

Two-row barley usually has a lower protein content and higher fermentable sugar content than 

six-row barley and is most commonly used in English style ale and traditional German beer. Six-

row barley is commonly used in American lager style beers, along with adjuncts such as corn 

and rice. If barley cannot be sold at a premium for malting and brewing, it becomes general 

purpose grade routinely destined for livestock feed. Only about 20 percent of malting barley 

production is actually selected for malting each year. The other 80 percent is used general 

purpose grades. General purpose grades can include hulled and hulless barley not selected for 

malting, food or registered feed varieties. Registered malting varieties can be relegated to general 

purpose, but registered feed barley is not considered suitable for malting and brewing and must 

be used for livestock feed. Hulless barley is used primarily for non-ruminant animal feed, but is 

increasingly marketed for human consumption (http://www.agr.gc.ca). Food barley can be any 

barley variety (hulless or hulled) that has been selected for a food market. In the last several 

http://en.wikipedia.org/wiki/Lager
http://en.wikipedia.org/wiki/Adjuncts
http://www.agr.gc.ca/
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years there has been a growing interest from food processors to incorporate barley in food 

products due to the fiber and nutritional composition of the grain. 

Globally, approximately two percent of barley produced is used for food (Baik and 

Ullrich, 2008). Uniform sized, thin-hulled, bright yellow-white, plump, medium hard and clean 

barley is usually selected for food use. Only a few hulless barley genotypes meet these 

requirements with minimal processing. Barley is nutritionally dense with high carbohydrate 

concentrations, high dietary fiber, moderate amounts of protein and is a relatively good source of 

selenium, phosphorous, copper and manganese (Ames et al., 2006). Consumption of barley grain 

products has a positive effect on human health as it reduces transit time of fecal matter by 

increasing bulk and lowering the frequency of hemorrhoids and colon cancer (Tsai et al., 2004). 

Meals containing (1,3;1,4)-β-glucan also slow down absorption of carbohydrates in the gastro 

intestinal tract and stimulate reverse cholesterol transport (Bourdon et al., 1999). Furthermore, it 

has been shown that fermentation of insoluble fiber from barley sources in the large intestine 

produces short-chain fatty acids such as butyric acid which maintain colon health (Behall et al., 

2004). Propionic acid which inhibit HMG-CoA reductase and thereby lowers cholesterol 

biosynthesis in the liver (Erkkila et al., 2005) and acetic acid which provide fuel for liver and 

muscle cells (Liu, 2004) are also produced upon barley fiber consumption. As consumption of 

diets rich in fiber is associated with a reduction in the risk of developing coronary heart disease 

(Anderson, 1995; Pereira et al., 2004), the US Food and Drug Administration (FDA) has allowed 

whole grain barley and barley-containing products to carry a claim that they reduce the risk of 

coronary heart disease (FDA News Release, 2005). This health declaration is largely attributed to 

the (1,3;1,4)-β-glucan content in barley grain. 

 

2.5 Major structural components of barley grain  

The barley kernel can be subdivided into three main components: 1) bran, 2) endosperm 

and 3) embryo. Bran consists of the hull and aleurone layer. On average, 14 % of the kernel 

weight can be attributed to bran. According to the USDA Nutrient Database, bran is low in 

protein (< 3 %) and trace minerals (3 - 5 %) but contains relatively high amounts of B vitamins 

(3 - 6 %) and fiber (4.5 - 15 %). The removal of the hulls from grains causes a relative increase 

of nutrients in the caryopsis due to the reduction in fiber content in the remaining fraction (Table 

2.1) (McGuire and Hockett, 1981; MacGregor and Fincher, 1993, Bhatty and Rossnagel, 1988). 
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The hull is the adhered lemma and palea, which comprises from 9 - 13 % of the grain by weight 

and consists mainly of cellulose, lignin, arabinoxylans, and silica (Henry, 1988). The aleurone 

layer is the outer two or three cell layers of the grain underneath the hull. These cells are thick-

walled and contain lipids, proteins and minerals. The aleurone layer contains unique structures 

called ‘aleurone grains’. These are storage bodies which contain two types of inclusion bodies 

called globoids and crystalloids containing phytin and 8S globulin storage proteins, respectively 

(Gubatz and Shewry, 2011). The cell wall of the aleurone layer is composed mainly of 

arabinoxylans (~ 67 %) and (1,3;1,4)-β-glucan (~ 25 %) (Bacic and Stone, 1981).  

 The endosperm is by far the largest component of a barley kernel constituting 

approximately 83 % of the grain by weight. The endosperm begins at the sub-aleurone layer, 

which comprises the first two to three cell layers beneath the aleurone layer. The subaleurone 

layer cells can be distinguished from the endosperm cells as they are rich in proteins but poor in 

starch granules. Below this layer, the cells have higher numbers of starch granules and less 

protein (Gubatz and Shewry, 2011). The endosperm is composed of carbohydrates (70 - 77 %) 

and proteins (12 - 16 %) with trace amounts of minerals and vitamins (USDA Nutrient database). 

Starch and the cell wall polysaccharides, such as (1,3;1,4)-β-glucan and arabinoxylans are the 

major carbohydrates of the endosperm. The endosperm contains very little raffinose, sucrose or 

monosaccharide sugars. Barley differs from other cereals in that the (1,3;1,4)-β-glucan content of 

the endosperm is similar to that of the grain as a whole (Henry, 1988). 

The embryo (or germ) is located on the dorsal side of the caryopsis near the end attached 

to the rachis. The embryo contains the tissues necessary for new plant growth. The main storage 

proteins in the embryo are the 8S globulin storage proteins (Heck et al., 1993). While starch is 

present in the embryo during development, it is almost completely absent in the mature embryo 

(Duffus and Cochrane, 1993). Raffinose represents up to nine percent of the dry weight of a 

barley embryo while sucrose represents 12 to 15 % on a dry weight basis (Henry, 1988). Oil can 

account for as much as 20 % of the embryo dry weight. Nearly 90 % of the oils found in the 

germ are in the form of triglycerides. 
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Table 2.1. Composition of hulless and hulled barley grain. 

 Hulless Hulled 

Compound Mean* Range* Mean* Range* 

Starch 63.4 60.1 - 75.2 58.2 57.0 - 65.4 

Protein
1
 14.1 12.1 - 16.6 13.7 8.2 - 15.4 

    Alanine     0.47      0.44  

    Arginine     0.64      0.60  

    Cytosine     0.31      0.28  

    Glycine     0.44      0.42  

    Glutamic acid     3.27      2.98  

    Histidine     0.28      0.26  

    Isoleucine     0.46      0.43  

    Lysine     0.41      0.41  

    Methionine     0.28      0.21  

    Phenylalanine     0.73      0.68  

    Proline     1.43      1.32  

    Serine     0.57      0.54  

    Threonine     0.45      0.42  

    Tryptophan     0.23      0.22  

    Tyrosine     0.42      0.37  

    Valine     0.63      0.59  

Sugars 2.9 0.7 - 4.2 3.0 0.5 - 3.3 

Lipids 3.1 2.7 - 3.9 2.2 1.9 - 2.4 

Fiber 13.8 12.6 - 15.6 20.2 18.8 - 22.6 

Ash 2.8 2.3 - 3.5 2.7 2.3 - 3.0 
1
-Kjeldahl method (Nx6.25) 

*-(g / Kg dry weight) 

Source: Adapted from Åman and Newman, 1986; Newman and Newman 2005 
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2.6 Nutrient composition of barley grain 

 2.6.1 Lipids 

Barley grain contains 1 - 3 % lipids depending on the variety (Jacobsen et al., 2005) but 

levels as high as 5.3 % have been reported for some genotypes (Bhatty, 1982). Barley contains 

five major fatty acids, including palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic 

(C18:2), and linolenic (C18:3) acids (Moreau et al., 2007). Linoleic acid is the most abundant 

fatty acid in barley, but the concentrations of the other five major fatty acids varies with 

genotype. In most barley varieties, linoleic acid is followed by palmitic, oleic, linolenic, and 

stearic acids in decreasing amounts. Several other fatty acids are also present, including myristic 

(C14:0), palmitoleic (C16:1), arachidic (C20:0), eicosanoic (C20:1), behenic (C22:0), erucic 

(C22:1), lignoceric (C24:0), and nervonic (C24:1) acids. Neither reduced phytate concentration 

nor environment influences lipid content or composition. However, genotype can significantly 

influence fatty acid profiles and total lipid content in barley grains (Bravi et al., 2012).  

Several factors influence fat composition of barley kernels. Hulless varieties generally 

have about one percent higher lipid concentrations than hulled varieties (Åman et al., 1985). 

Starch composition of the endosperm can affect the lipid concentrations, as lipids in the 

endosperm are present as lysophospholipids in complex with amylose. Therefore, lipids 

concentration increases with higher concentration of amylose in grain starch (Morrison, 1993). 

 

2.6.2 Proteins 

Barley kernel protein concentration is an important quality consideration for malting and 

brewing, food and feed industries. Barley grain protein usually ranges from 6 - 20 % on a dry 

weight basis (Jadhav et al., 1998; Holtekjølen et al., 2008) and is similar to wheat (10 - 15 %), 

but higher than maize (7 - 13 %) (Simmonds, 1978). However, genotype and environment affect 

protein accumulation in barley grain (Aniskov et al., 2008). Hulless barley has on average 1.1 % 

higher protein concentration than hulled barley (Ullrich, 2002). For malting barley, an optimal 

range of 9 - 12 % protein is desired (LaFrance and Watts, 1986).  

The main storage proteins of the Tritceae tribe are prolamins, of which hordein storage 

proteins in barley grain make up 36 - 49 % of the total protein content. In the grain, hordein and 

protein contents are generally strongly influenced by soil nitrogen availability (Kirkman et al., 

1982) as hordeins are relatively high in glutamine and asparagine in addition to proline (Rastogi 
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and Oaks, 1986). The storage proteins in barley are widely characterized as low molecular 

weight (LMW) and high molecular weight (HMW) hordeins. 

LMW proteins are a family of trypsin and α-amylase inhibitors that range in weight from 

16.5 to 22 kDa (Gubatz and Shewry, 2011). LMW hordeins have been referred to as avenin-like 

proteins or A-hordeins based on sequence similarities (Kan et al., 2006) but was originally 

denoted as chloroform methanol (CM) proteins by Aragonillo et al. (1981). Genes encoding the 

CM proteins are located on 2H, 3H, 4H, 6H and 7H chromosomes. CM proteins consist of seven 

major subunits BTAI-CMa, BTAI-CMb, BTAI-CMc, BTAI-CMd, BTAI-CMe, BMAI-1 and 

BDAI-1 which can occur in monomers, dimers or tetramers. Monomeric forms of BMAI-1 and 

BT1-CMe are inhibitors of α-amylase and trypsin while the dimer and tetrameric forms inhibit 

only α-amylase. None of the CM proteins inhibit endogenous barley amylases but are only active 

against amylases from different organisms (Carbonero and Garcia-Olmedo, 1999). 

HMW hordeins range in weight from 35-100 kDa and can be further subdivided into B, 

C, D, γ and γ3 hordeins (Gubatz and Shewry, 2011; Anderson et al., 2013). B-hordeins can 

account for 70 - 80 % of the total hordeins followed by C hordeins at 10 - 20 % (Kaczmarczyk et 

al., 2012). D, γ and γ3 hordeins make up a minor fraction of the storage proteins. D-hordeins are 

found in the central cells of the starchy endosperm while most of the other storage proteins are 

located in the sub-aleurone layer (Gubatz and Shewry, 2011). Loci for the B, C, D and γ hordeins 

are the hor-2 locus on 5HS, hor-1 locus on 5HS, hor-3 locus on 5HL and hor-5 locus on 1HS 

(Shewry, 1993). Hordeins are known to be a causative agent in celiac disease (Sollid, 2000), an 

autoimmune enteropathy leading to damage of the gastrointestinal mucosa (Rallabhandi, 2012). 

Barley, similar to other cereals, is low in essential amino acids including lysine, 

methionine, tryptophan and threonine for animal and human nutrition (Newman and Newman, 

1992). Low lysine levels in cereals are a major concern when balancing nutrition for animal 

feeds (Foster and Prentice, 1987). Protein content can influence mineral content, such as 

calcium, phosphorus iron and copper. 

 

2.6.3 Minerals 

The barley kernel can vary in mineral (ash) content from 2 - 3 % depending on the 

genotype (Liu et al., 1975; Marconi et al., 2000). Whole grain barley contains several important 

macronutrients such as P, K, Mg, and Ca and micronutrients such as Fe, Zn, Mn, and Cu (Table 
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2.2). The majority of the minerals in barley are found in the outer layers of the kernel, aleurone 

and embryo (Liu et al., 2007; Stewart et al., 1988; Ockenden et al., 2004). About 15 - 20 % of 

the Fe is located in the pericarp of the mature barley grain, whereas the endosperm (including the 

aleurone) contains about 70 % and the embryo only 7 - 8 % (Duffus and Rosie, 1976). 

Most of the phosphorus in barley is present as phytate. The phytate molecules serve as mineral 

reserves incorporated into aleurone grains within the aluerone layer. Phytate is a mixed salt of 

phytic acid (myo -inositol - 1,2,3,4,5,6 - hexa kis phosphate) which has become a major focus in 

barley breeding programs. The chelating properties of phytic acid negatively impacts mineral 

bioavailability, as bound cations being less available for absorption by monogastric animals. The 

phosphate groups of phytic acid form negatively charged sites, which can form salts with mineral 

cations, such as K
+
, Mg

2+
, Ca

2+
, Mn

2+
 , Zn

2+
, Ba

2+
, or Fe

2+
 (Lott et al., 2000 ). When the grain is 

used as a major component in diets for human nutrition or animal feed, the high intake of phytic 

acid can result in deficiencies of iron, zinc, magnesium, and / or calcium. 

 

2.6.4 Vitamins and minor compounds 

Cereals are well known sources of vitamins in the human diet. With the exception of 

vitamin A, D, K, B12 and C, barley is a good source of vitamins and choline. Of all the cereals, 

barley contains the highest amounts of fat soluble vitamin E (tocols) with all eight isomers; four 

tocopherols: α-T, β-T, γ-T, δ-T and four tocotrienols: α-T3, β-T3, γ-T3, δ-T3 (Morrison, 1978). 

The majority of tocopherols are found in the embryo, whereas the tocotrienols are evenly 

dispersed through the grain (Peterson, 1994). Vitamin B1 (thiamine) is found primarily in the 

aleurone and scutellum, B2 (riboflavin) is found in the aleurone and endosperm and B3 (niacin) is 

found mostly in the aleurone layer (Newman and Newman, 2008). Barely contains the highest 

concentration of niacin (B3) of all the major cereal crops. Vitamin B9 (folate) is higher than that 

of both oats and wheat (Anderson et al., 2008).  

A range of phyotchemicals including phenolic acids, flavanoids, and alkyl resorcinols are 

found in barley. The two major phenolic acids found in barley are pro-anthocyanidins and 

anthocyanidins. The pro-anthocyanidins can cause haze formation in beer (Jende-Strid 1993) and 

possess high antioxidant activity and potential health benefits (Beecher, 2004). Anthocyanidins 

occur in the pericarp and aleurone of pigmented grains and can influence barley color making it  
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Table 2.2. Mineral composition of hulled barley (dry matter basis). 

Minearal Mean (g / 100g) Range (g / 100g) 

Calcium 0.05 0.03 - 0.06 

Phosphorus 0.35 0.26 - 0.44 

Potassium 0.47 0.36 - 0.58 

Magnesium 0.14 0.10 - 0.18 

Sodium 0.05 0.01 - 0.08 

Chlorine 0.14 0.11 - 0.18 

Sulfur 0.20 0.16 - 0.24 

Silicon 0.33 0.15 - 0.42 

Copper 6.25x10
-4

 2.0 - 9.0 x10
-4

 

Iron 45.7 x10
-4

 36.0 - 85.0 x10
-4

 

Manganese 19.4 x10
-4

 17.0 - 20.0 x10
-4

 

Zinc 34.4 x10
-4

 19.0 - 35.0 x10
-4

 

Selenium 0.4 x10
-4

 0.2 - 0.5 x10
-4

 

Cobalt 0.7 x10
-5

 0.05 - 0.10 x10
-4

 

Source: Adapted from Newman and Newman, 2008. 
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range from yellow to purple, violet, blue or black (Baik and Ullrich, 2008). The seed coat 

contains small amounts of alkylresorcinols. Alkylresorcinols have been associated with a number 

of biological effects ranging from reducing weight gain in livestock, when consumed in large 

quantities, to antioxidant and anticancer action in human, when consumed in small quantities 

(Ross et al., 2003). 

 

2.6.5 Carbohydrates 

Barley kernels consist of roughly 78 - 83 % carbohydrates on a dry weight basis. Only 2 - 

3.5 % of the carbohydrates are simple sugars or oligosaccharides (Figure 2.1). The majority of 

the carbohydrates are stored in the form of starch granules in the endosperm. The remaining 

polysaccharides are largely found in the cell wall in the form of arabinoxylans, cellulose and 

(1,3;1,4)-β-glucans (Figure 2.2) (MacGregor and Fincher, 1993). 

Monosaccharides such as glucose, fructose, fucose, arabinose, xylose, ribose, 

deoxyribose, galactose and mannose are produced in the grain and incorporated into oligo and 

polysaccharides, glycosides, glycolipids or glycoproteins (Holtekjølen et al., 2008). Free glucose 

makes up 0.1 - 1.4 % of the dry weight of barley and fructose ranges from trace amounts to 0.5 

% (Åman et al., 1985). Most other sugars are rapidly converted or incorporated into larger 

carbohydrates. 

The most abundant disaccharides in barley are sucrose and maltose. Sucrose 

concentrations range from 0.74 - 3.9 % in the mature caryopsis on a dry-weight basis 

(MacGregor and Fincher, 1993; Åman et al., 1985) but can accumulate to as high as seven 

pecrent in waxy cultivars (Batra et al., 1982). The majority of free sucrose is found in the embryo 

(80 %). Sucrose is an important precursor for starch and non-starch polysaccharides such as 

callose, (1,3;1,4)-β-glucan and cellulose. Maltose accumulates in the endosperm as a result of 

starch amylolytic activity and constitutes 0.1 - 0.2 % of grain dry weight (Sopanen and Lauriere, 

1989). The maltose concentration can be higher in waxy genotypes (Nielson et al., 2009) or in 

plants exposed to high temperatures during grain filling (Hogy et al., 2013). 

Oligosaccharides are polymers of 3 - 20 monosaccharides units (Chibbar et al., 2004). 

Raffinose represents 0.16 - 0.80 % dry weight in the kernel (MacGregor and Fincher, 1993; 

Andersen et al., 2005) and is predominantly (80 %) found in the embryo (Andersen et al., 2005) 
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Figure 2.1. Chemical structure of common mono, di and oligosaccharides found in barley. 

Structure database source: http://www.ncbi.nlm.nih.gov/pccompound. 
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Figure 2.2. Chemical structure of select cell wall and starch polysaccharides.  
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Table 2.3. Select vitamins and minor compounds in barley. 

Compound Mean (μg / g) Range (μg / g) 

Total tocol content 55.0 46.2 - 68.8 

Alkylresorcinols 55.0 32 – 103 

Phenolic acids 463 254 – 675 

Thiamin  5.2 4.0 - 6.5 

Riboflavin 1.8 1.2 - 2.9 

Niacin 63.3 46.0 - 80.0 

Pantothenic acid 5.1 2.8 - 8.0 

Biotin (B7) 0.14 0.13 - 0.15 

Sterols 1049 899 – 1153 

Choline 1290 920 – 2200 

Source: Adapted from Newman and Newman, 2006; Andersson et al., 2008) 

  



20 
 

where it plays a role during desiccation and germination (Sreenivasulu et al., 2008). Early 

determinations of fructan concentrations in barley kernels reported 0.019 - 0.97 % per dry weight 

basis (Henry, 1988), but higher concentrations (1.5 - 2.0 %) were obtained in a recent study 

(Hogy et al., 2013). Fructans are oligosaccharides of fructosyl residues which are comprised of 

up to 10 fructosyl units (MacLeod, 1953) and are thought to enhance drought tolerance in barley 

(Janthakahalli, 2004). 

 

2.6.6 Starch 

Monosaccharide polymers of greater than 20 units are called polysaccharides and are 

synthesised for both storage and structural purposes in plants (Chibbar et al., 2004). Starch, being 

the major carbohydrate reserve, is the most extensively studied and economically important 

component of the barley kernel. Grain starch concentrations can be up to 75 % in some hulless 

varieties but normally ranges from 45 - 65 % in barley grain. Protein, non-starch polysaccharides 

and lipid concentrations tend to be low in varieties producing high starch concentrations in the 

endosperm (Newman and McGuire, 1985).  

Amylose and amylopectin are two distinct glucan polymers of which starch is comprised. 

Amylose is a high molecular weight (up to 10
6
 kDa), linear polymer of α-(1-4) linked D-glucose 

units with minimal (> 0.5 %) α-(1,6) linkages forming branch points (BeMiller and Whistler, 

2009; Hung et al., 2008; Takeda et al., 1990). In contrast, amylopectin is highly branched with 

approximately five percent of all linkages made up of α-(1,6) linkages forming branch points. 

Each branch consists of 20 - 30 glucose units making the amylose molecule nearly spherical 

when looked at as a whole (Hizukuri, 1985). Barley cultivars most often contain an amylopectin 

to amylose ratio of 3:1 but certain genotypes diverge greatly from this ratio. The term ‘waxy 

barley’ is used for genotypes with a high amylopectin concentration (95 - 100 %) (Bhatty and 

Rossnagel, 1997), whereas barley genotypes with high amylose concentrations (40 - 70 %) are 

described as ‘amylotype’ (Delcour and Hoseney, 2010). 

 

2.6.7 Dietary fiber 

Dietary fibre consists of a mixture of components with a varying degree of solubility. 

Due to differences in definitions used by countries and research groups, a committee was 

appointed by the American Association of Cereal Chemists International (AACCI) to define 
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fiber. In 2001, the committee defined dietary fibre as “the edible parts of plants or analogous 

carbohydrates that are resistant to digestion and absorption in the human small intestine with 

complete or partial fermentation in the large intestine” (DeVries, 2001). The committee also 

concluded that dietary fibre include polysaccharides, oligosaccharides, lignin and associated 

substances. The most common dietary fibre polysaccharides in cereals are cellulose, 

arabinoxylan, and (1,3;1,4)-β-glucan. 

 

2.7 Cell walls 

The plant cell wall is a complex, composite material made of polysaccharides networks 

and proteins. It is an important structural element providing mechanical support, defining plant 

and tissue morphology. The cell wall is responsible for responding to injury or threat, allowing 

for transport of nutrients and relaying information throughout the plant (Pilling and Hofte, 2003). 

Two major classes of cell walls are present in plants. Dicots and the non-commelinoid monocots 

predominantly have type I cell walls, that contain equal amounts of cellulose and cross-linking 

xyloglucan with minor amounts of arabinoxylans, glucomannans and galacto-glucomannans 

embedded in a pectin matrix of homogalacturonans and rhamnogalacturonon I and II (Yong et 

al., 2005). The cell walls of grasses and commelinoid monocots have type II cell walls that 

contain cellulose microfibrils similar to type I cell walls, but (1,3;1,4)-β-glucan and 

glucuronoarabinoxylans (GAX), and not xyloglucan, are the major tethering molecules. The 

mature cell walls are pectin poor and possess extensive interconnecting networks of 

phenylpropanoids (Yong et al., 2005).  

Cell wall polysaccharides represent roughly ten percent of the total carbohydrate content 

of a barley kernel. The primary polysaccharide in cell walls of a barley kernel is (1,3;1,4)-β-

glucan. Within the endosperm cell wall, (1,3;1,4)-β-glucan accounts for 75 % of the 

polysaccharide content, 20 % is contributed by arabinoxylans and 3 - 4 % cellulose (Fincher and 

Stone, 1986).  

 

2.7.1 Cellulose 

Cellulose is the major structural polysaccharide of plants. It is the major component in 

husk and outer layers of cereal grains but makes up only 3 - 4 % of the total carbohydrates in the 

grain (Henry, 1988). It is an unbranched linear molecule composed of (1,4) linked β-D-glucose 
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residues, which easily associates with itself creating a durable crystal structure. This association 

and its high order make cellulose insoluble and therefore resistant to pathogen and enzymatic 

attacks. 

 

2.7.2 Hemicellulose 

The term "hemicellulose" is a general term applied to the polysaccharide components of 

plant cell walls other than cellulose, or to plant cell walls polysaccharides extractable by dilute 

alkaline solutions. The chemical structures of hemicelluloses consists of long chains of a variety 

of pentoses, hexoses, and their corresponding uronic acids. Pentosan is a general term used for 

hemicellulose and refers to polysaccharides yielding pentoses on hydrolysis. The pentosan 

content of barley grain ranges from 4 - 7 % and is generally derived from cell wall fractions. 

While the outer protective layers of the grain have high concentration of pentosans (Hashimoto 

et al., 1987), the endosperm contains only 22 % of total barley pentosans (Henry, 1987). The 

concentration of barley pentosans vary with the genotype, but are also highly influenced by 

environmental factors (Henry, 1986). 

 

2.7.3 Arabinoxylans and arabinogalactans 

Cereal arabinoxylans (AX) are a heterogeneous group with varying substitution patterns 

and degree of polymerisation (Vinkx and Delcour, 1996). A (1,4)-β-D-xylopyranosyl backbone 

gives this group its name but different substituents can be present depending on the plant tissue. 

The major molecules linked to the AX backbone are α-L-arabinofuranose residues attached by 

(1,3) and / or (1,2) glycosidic linkages.  A second category of minor substituents bound to the 

xylan backbone are uronic acids attached to the C2 atom of the xylose residue (Fincher, 1975). 

The side chain substitutions may produce several combinations of sidegroups (Bengtsson et al., 

1992; Hoffmann et al., 1991; Gruppen et al., 1993) thereby determining the solubility of 

arabinoxylan (Amado and Neukom, 1985). Hulless barley genotypes have a significantly higher 

substitution of arabinose in the AX than hulled grain (Holtekjølen, et al., 2008).  

Arabinogalactans consist of a highly branched structure in which galactopyranosyl units 

are bound through (1,3) and (1,6) glycosidic linkages and are predominantly found in the 

endosperm. Only single arabinose units are β-linked to the galactose chain (Neukom and 

Markwalder, 1975; Amado and Neukom, 1985). The arabinogalactan polymer is covalently 
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bound to a hydroxyproline-rich protein forming an arabinogalactan glycoprotein (Fincher and 

Stone, 1974). 

 

2.8 (1,3;1,4)-β-glucan 

(1,3;1,4)-β-glucan is a linear polymer made up of glucose molecules that form either β-

(1,3) or β-(1,4) linkages. The β-(1,4)-linked molecules are constituted primarily (~ 90 %) of non-

randomly arranged subunits of cellotriose [Degree of Polymerization 3 (DP3)] and cellotetraose 

(DP4). Inclusion of higher MW subunits (DP5+) can account for approximately nine percent of 

(1,3;1,4)-β-glucan content (Lazaridou et al., 2004). The (1,3)-linkages cause irregularities in the 

structure of the molecule, which make the β-glucans partly soluble by preventing close packing 

of the chains (Jadhav et al., 1998; Jiang and Vasanthan, 2000). Reported apparent molecular 

weights (Mw) for barley (1,3;1,4)-β-glucan have a wide range from 1.5×10
5
 to 2.5×10

6
 (Irakli et 

al., 2004; Lazaridou et al., 2003; 2004).  

(1,3;1,4)-β-glucan is rarely found outside of the grass family in the plant kingdom 

(Sørensen et al., 2008). Within the Poales four distinct types of cell wall confirmations based on 

(1,3;1,4)-β-glucan deposition have been recognized (Trethewey et al., 2005). Bromeliaceae, 

Typhaceae and Sparganiaceae families do not accumulate (1,3;1,4)-β-glucan in their cell walls. 

The cyperoid clade comprised of Cyperaceae, Juncaeae and Thurniaceae have trace amounts of 

(1,3;1,4)-β-glucan in cells with non-lignified cell walls. The Restionaceae subclade has low 

concentrations (0.1 % of cell wall content) in non-lignified cell walls. Poaceae subclade, which 

includes L. multiflorum, Zea mays, Avena sativa and Hordeum vulgare have the highest 

concentrations of (1,3;1,4)-β-glucan in their non-lignified cell walls. (1,3;1,4)-β-glucan is 

synthesised abundantly and transiently accumulated in primary cell walls of expanding 

vegetative organs, such as growing leaves, but it is rarely found in mature cells outside of the 

grain (Gibeaut and Carpita 1991; Fincher and Stone, 1986). The mature cell walls of the aleurone 

and starchy endosperm in cereals like barley are unusual in that fully expanded cells contain 

significant quantities of (1,3;1,4)-β-glucan and low levels of cellulose (Bacic and Stone, 1981). 

In barley, (1,3;1,4)-β-glucans are deposited early in endosperm development, near the 

end of cellularization around four days after pollination (DAP). (1,3;1,4)-β-glucan appears along 

already formed and developing anticlinal and periclinal cell walls in early endosperm 

development (Wilson et al., 2006). Deposition occurs after the initial installation of callose and 

http://www.sciencedirect.com/science/article/pii/S0308814604008544#bib24
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cellulose which define the cell wall, but before the other major cell wall components such as 

hetero-(1,4)-β-D-mannan and arabino-(1,4)-β-D-xylan. (1,3;1,4)-β-glucan accumulates 

throughout the endosperm and becomes uniformly distributed by 10 DAP (Wilson et al., 2012). 

At 12 DAP, the endosperm cells closest to the aleurone layer show a marked decrease or 

complete absence of (1,3;1,4)-β-glucan. By 16 DAP, (1,3;1,4)-β-glucan production increases 

until all endosperm cells, including the sub-aleurone cell layers, contain some (1,3;1,4)-β-glucan. 

By 18 DAP, the aleurone cell layers are markedly lower in (1,3;1,4)-β-glucan compared to the 

starchy endosperm, and the starchy endosperm cells contain a uniform amount of (1,3;1,4)-β-

glucan (Wilson et al., 2012). The aleurone layer can have cell walls with approximately 26 % w / 

w (1,3;1,4)-β-glucan and 71 % arabinoxylan, while (1,3;1,4)-β-glucan may account for as much 

as 75 % of total polysaccharides in endosperm cell walls (Fincher and Stone, 1986). The cell 

walls of starchy endosperm do not exhibit secondary cell wall thickening, but can accumulate 

enough (1,3;1,4)-β-glucan to account for up to 18 % of the total glucose content in the grain 

(Burton and Fincher, 2009). (1,3;1,4)-β-glucan concentrations in barley can range from very low 

(≤ 1 %) to up to 21 %, but normally vary between three to six percent (Munck et al., 2004; Kato 

et al., 1995; Holtekjølen et al., 2006). 

 

2.8.1 (1,3;1,4)-β-glucan effects on malt and feed 

Grain and / or wort (1,3;1,4)-β-glucan concentration is often included in the malting 

quality evaluation of barley. Wort is the liquid extracted from the mashing process during the 

brewing of beer or whiskey. High concentrations of (1,3;1,4)-β-glucan in the endosperm cell 

walls have a direct, deleterious effect on malting (Swanston et al., 1995). High accumulation of 

(1,3;1,4)-β-glucan in the cell wall may result in insufficient degradation of cell walls, hampering 

the diffusion of enzymes and kernel reserves needed for germination, therefore decreasing malt 

extract. Residual (1,3;1,4)-β-glucan will also cause highly viscous wort and chill haze in bright 

beer (Bamforth, 1982; Wang et al., 2004). Positive correlations have been found between 

(1,3;1,4)-β-glucan and milling energy requirements, increased pearling time or acid detergent 

fraction (Tohno-Oka et al., 2004; Laido et al., 2009). (1,3;1,4)-β-glucan is also problematic when 

barley is used as a feed for non-ruminants, especially poultry (Gohl et al., 1978). The same 

deleterious effects encountered in malting are thought to reduce nutrient absorption in pigs and 

poultry. 
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2.8.2 (1,3;1,4)-β-glucan and human nutrition 

High (1,3;1,4)-β-glucan content is desirable for barley used as functional, bio-active 

ingredient in human nutrition (Wood and Beer, 1998). The Canadian Heart and Stroke 

Foundation recommend a daily intake of 21 - 38 g of fiber per day. Studies have shown as little 

as 3 g per day of soluble fibers are sufficient to reduce cholesterol and blood glucose levels 

(Ames and Rhymer, 2008). These effects can be acheived with barley (1,3;1,4)-β-glucan 

incorporated into foods to reduce the glycemic response; thus making (1,3;1,4)-β-glucan an 

attractive natural food additive (Cavallero et al., 2002). Consumption of dietary fiber, such as 

(1,3;1,4)-β-glucan, is also associated with a reduction in the risk of developing coronary heart 

disease (Anderson, 1995; Pereira et al., 2004). As mentioned earlier, the US Food and Drug 

Administration (FDA) have allowed whole grain barley and barley-containing products to carry a 

claim that they reduce the risk of coronary heart disease (FDA News Release, 2005).  

The structural features of (1,3;1,4)-β-glucan are important determinants of their physical 

properties and functionality. An increased viscosity of cereal (1,3;1,4)-β-glucan is associated 

with reduced plasma cholesterol and a better control of postprandial serum glucose levels in 

humans (Bhatty, 1999; Klopfenstein and Hoseney, 1987; Lazaridou and Biliaderis, 2007; Wood, 

2007). In addition to physiological effects associated with solution viscosity enhancement, 

(1,3;1,4)-β-glucan have been shown to gel at different rates under selected conditions (Cui and 

Wood, 2000; Lazaridou et al., 2003). For this reason (1,3;1,4)-β-glucan can be utilized as 

thickening agent to modify the texture and appearance of formulated foods (Wood, 1986) or to 

imitate properties of fat to develop calorie reduced food products (Inglett, 1990). Gelling 

properties of purified (1,3;1,4)-β-glucan extracted from lichenase, wheat, barley and oats are 

positively correlated with both high molecular weight and high DP3 content (Lazaridou et al., 

2004). The physical features influencing commercially important gelling properties include 

ratios of β-(1,3), β-(1,4) linkages, presence and the amount of long cellulose-like fragments and 

ratio of cellotriosyl / cellotetraosyl units (Izydorczyk and Biliaderis, 2007). Barley has the 

highest and most varied DP3:DP4 ratios among cereal crops with values ranging from 2.8:1 to 

3.3:1. Rye DP3:DP4 ratios are close to barley (3.0:1 to 3.2:1) and oats have the lowest and least 

divergent DP3:DP4 ratios of 2.1:1 to 2.3:1 (Wood et al., 1994). In extreme cases, ratios ranging 

from 2.1:1 to 4.8:1 have been reported for some barley genotypes (Burton et al., 2011; Collins et 

al., 2010). 
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2.8.3 Starch and (1,3;1,4)-β-glucan 

Starch characteristics have a large influence on (1,3;1,4)-β-glucan content in barley. High 

concentrations of (1,3;1,4)-β-glucan are associated with low-amylose barley genotypes (waxy) 

(Ullrich et al., 1986) showing low or no expression of Granule Bound Starch Synthase I (GBSSI) 

gene [E.C.2.4.1.11]. GBSSI is encoded from the waxy locus located on the short arm of 

chromosome 7H and catalyzes the synthesis of amylose (Kramer and Blander, 1961; Tabata, 

1961; Kleinhofs, 1997; Rohde et al., 1988). Genotypes with null alleles at the waxy locus 

produce starch with an amylopectin content of 90 - 98 % and an amylose content of only 2 - 10 

% (Nagashima and Ishikawa, 1995; Washington et al., 2000). Waxy barley starch grains have 

been shown to be consistently smaller and contained slightly less starch than non-waxy grain 

(Tester and Morrison, 1992). High grain (1,3;1,4)-β-glucan concentrations are accompanied by 

high content of free sugars and phytoglycogens in many mutant genotypes associated with the 

waxy locus in barley (Fujita et al., 1999; Newman and Newman, 1992). Like waxy barley, the 

high amylose barley genotypes also show (1,3;1,4)-β-glucan concentrations above six percent 

(Izydorczyk et al., 2000)  

Mutants with the lys5f and lys5g allele and a pseudo waxy line had reduced starch 

phenotype (Greber et al., 2000). Genotypes with lys5f allele had grain (1,3;1,4)-β-glucan 

concentration as high as 19.8 % compared to 13.3 % for lys5g and 6.5 % for the wild type. 

However, when the total carbohydrate content was compared as a sum of starch and (1,3;1,4)-β-

glucan, the wild type and mutant (lys5f and lys5g) lines had comparable content (Munck et al., 

2004). Similar carbohydrate compensation effect was also observed in a barley true waxy 

genotype 841878 similar to the high lysine barley lines with reduced starch content (Munck et 

al., 2004). These results led Munck et al. (2004) to postulate that genes regulating (1,3;1,4)-β-

glucan synthesis are closely coupled to and compete with those genes that regulate starch 

synthesis in barley developing endosperm. 

A model has been proposed by Islamovic et al. (2013) in which (1,3;1,4)-β-glucan and 

amylose levels are regulated by multiple genes interconnected by glucose availability. This 

model is based on genetic marker data and proposes that Ugp2, CesA2 and CslF6 interact to 

control (1,3;1,4)-β-glucan synthesis. The starch biosynthetic machinery, in particular the amylose 

/ amylopectin production, has a large influence on the production of (1,3;1,4)-β-glucan through 

competition for glucose precursors. Inhibition in GBSSI or Glu-6-P-isomerase activity would 
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block amylose synthesis, while of inhibition of CslF6 would result in low (1,3;1,4)-β-glucan. 

Blockage of either pathway would result in substantial increases in the alternative polysaccharide 

(Figure 2.3). 

 

2.9 (1,3;1,4)-β-glucan synthase  

(1,3;1,4)-β-glucan synthase is one of the few biosynthetic enzymes that can produce in 

vitro glucan polymers identical to those produced in vivo (Buckeridge et al., 2004). These 

experiments require Golgi membranes suggesting (1,3;1,4)-β-glucan synthase is a membrane-

associated enzyme. Barley endosperm (1,3;1,4)-β-glucan synthase is most active at pH 9.0 and 

25 °C and requires more than 2 mM Mg
2+

 for maximum activity. Enzyme activity of barley 

endosperm (1,3;1,4)-β-glucan synthase increases with higher UDP-Glc concentrations but 

decreases at concentrations above 3 mM UDP-Glc. The specific activity of (1,3;1,4)-β-glucan 

synthase in barley endosperm is 200 – 400 pmol / min / mg protein (Tsuchiya et al., 2005). This 

specific activity (1,3;1,4)-β-glucan synthase in the endosperm is much lower than the 4 - 5 nmol / 

min / mg protein observed for barley seedlings at 1 mM UDP-Glc (Becker et al., 1995), 

suggesting that different genetic factors contribute to (1,3;1,4)-β-glucan synthase in these 

respective tissue types. To complicate matters, (1,3;1,4)-β-glucan synthase can be converted to 

callose [(1,3)-β-glucan] synthase (EC 2.4.1.34) in vitro on disruption of an intact plasma 

membrane or Golgi membranes, but this artificial conversion is not thought to be reflective of 

processes in vivo (Buckeridge et al., 2004). 

The activity of (1,3;1,4)-β-glucan synthase in vitro is not always correlated with 

(1,3;1,4)-β-glucan concentrations in the endosperm. Tsuchiya et al. (2005) studied (1,3;1,4)-β-

glucan synthase activity and (1,3;1,4)-β-glucan concentrations in caryopses harvested at 11–22 

days after flowering to determine the relationship between enzyme activity and the amount of 

(1,3;1,4)-β-glucan deposition. It was found that enzyme activity varied between genotypes but 

increased enzyme activity did not always correspond to increased (1,3;1,4)-β-glucan 

concentration in the mature seed.  
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Figure 2.3. Islamovic model of (1,3;1,4)-β-glucan synthesis. Model for the role of carbon 

partitioning of glucose precursors between starch and (1,3;1,4)-β-glucan synthesis (adapted from 

Islamovic et al. 2013). (1,3;1,4)-β-glucan content in the grain as determined by the competitive 

action of amylose and (1,3;1,4)-β-glucan synthesis and degradation. CslF6 and CesA2 work in an 

undefined manner to create (1,3;1,4)-β-glucan. AGP2: glucose-6-phosphate adenyltransferase 2; 

Eng1: endo-1,3-β-glucosidase 1; GBSSI: granule bound starch synthase I; GPI: glucose-6-

phosphate isomerase; SBE: Starch branching enzyme; UGP2: UTP-1-phosphate 

uridyltransferase. 
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2.9.1 Control of (1,3;1,4)-β-glucan synthesis 

Environment has an effect on (1,3;1,4)-β-glucan concentration and fine structure. High 

soil nitrogen and grain protein are positively correlated to (1,3;1,4)-β-glucan content (Güler, 

2003; Hang et al., 2007). Moisture and (1,3;1,4)-β-glucan grain concentrations have been shown 

to be negatively correlated (Morgan and Riggs 1981; Molina-Cano et al., 1995) with drought 

stressed plants have higher concentrations than well watered plants (Perez-Vendrell et al., 1996). 

No evidence exists in barley to suggest environment effects fine structure, but in oats, wet 

environments were associated with higher frequency of DP3 fragments (Doehlert and Simsek, 

2012).  

An analysis of the (1,3;1,4)-β-glucan fine structure of Beach, CDC Dancer and HiFi oat 

varieties grown in six environments showed that genotype and environment are significant in 

determining the fine structure of the polymer (Doehlert and Simsek, 2012). The high (1,3;1,4)-β-

glucan line HiFi had lower DP3 frequency than the other two genotypes leading the authors to 

speculate that increased action of (1,3;1,4)-β-glucan synthase may cause an increased 

competition for substrate causing a reduced frequency of DP3 subunits. Furthermore, wet 

environments were associated with higher frequency of DP3 subunits. It was suggested that 

superior growing conditions might provide more UDP-Glc (uridine diphosphoglucose) substrate 

in the cellular environment resulting in more efficient production of DP3 subunits. In an extreme 

example of environmental control, (1,3;1,4)-β-glucan synthesis is shown to be affected by 

oxygen availability. In submerged rice seedlings both the (1,3;1,4)-β-glucan synthase activity 

and the expression of CslF6 was reduced compared to dryland controls. The reduction in 

(1,3;1,4)-β-glucan synthase activity was partially attributed to oxygen depletion as partial 

recovery of CslF6 expression and (1,3;1,4)-β-glucan synthase activity could be achieved by 

providing bubble aeration (Kimpara et al., 2008).  

Carbon partioning may have an effect on (1,3;1,4)-β-glucan concentrations and fine 

structure. Ullrich et al. (1986) showed that waxy varieties were not only higher in (1,3;1,4)-β-

glucan content but the viscosity of alkali and acid extracted (1,3;1,4)-β-glucan was also higher 

compared to non-waxy barley. Wood et al. (2003) compared covered and naked, long and short 

awn, and waxy and non-waxy barley genotypes. Analysis of the products released from 

(1,3;1,4)-β-glucan by lichenase digestion showed no association with awn length or difference in 

hulled vs. hulless phenotype. In this same study, comparison between waxy and non-waxy barley 
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cultivars show that the waxy phenotype has a significant effect on the (1,3;1,4)-β-glucan fine 

structure by increasing the relative amount of DP3 subunits (Wood et al., 2003). This is 

consistent with the findings of Mikkelson et al. (2013) who investigated DP3:DP4 in lys5f 

mutants of barley. Differences between the lys5f and its wild type Bomi in DP3:DP4 ratios were 

found to be significant. The low starch, high (1,3;1,4)-β-glucan lys5f mutant is enriched in DP3 

subunits, giving the barley a ratio profile ranging from 4.6:1 to 4.8:1, whereas Bomi ranged from 

3.3:1 to 3.6:1 (Mikkelson et al., 2013).  

An early study looking at expression of CslF6 suggested that (1,3;1,4)-β-glucan synthesis 

might be controlled by CslF6 gene expression. High (1,3;1,4)-β-glucan variety Himalaya show 

increased transcription of CslF6 compared to an elite malting variety Sloop, with low (1,3;1,4)-

β-glucan concentration (Burton et al., 2008). More recently studies suggest CslF6 expression 

may play a smaller role than originally suggested. As mentioned earlier, lys5f and lys5g have an 

increased grain (1,3;1,4)-β-glucan content compared to the wild type parent. Lys5g and lys5f 

accumulate high concentrations of (1,3;1,4)-β-glucan during development. Despite this, 

expression levels of CslF6 and CslH were higher in wild type compared to the mutant varieties 

throughout development. These results suggest a sensing and signalling system acting at the cell 

wall to control expression of CslF6 (Christensen and Scheller, 2012). In the most extreme 

example in this study was that of the lys3a mutant. The high lysine mutant lys3a is associated 

with hypermethylation and down regulation of several genes during endosperm development, 

including CslF6. Throughout endosperm development, CslF6 expression was 1000 - fold higher 

in the wild type compared to the lys3a mutant. Despite this near silencing of the CslF6 gene 

(1,3;1,4)-β-glucan concentration was comparable to Bomi until 32 - 50 days after flowering. At 

maturation the lys3a mutant contained four percent (1,3;1,4)-β-glucan concentration whereas the 

parent Bomi contained seven percent (1,3;1,4)-β-glucan concentration (Christensen and Scheller, 

2012).  

 

2.9.2 Models of (1,3;1,4)-β-glucan synthesis 

Non-cellulosic polysaccharides of the plant cell walls are believed to be synthesized in 

the Golgi apparatus. Nascent hemicellulose is transported via Golgi-derived vesicles to the 

plasma membrane where it is deposited into the periplasmic space and eventually incorporated 

into the cell wall. In vitro studies suggest that the (1,3;1,4)-β-glucan synthetic machinery is 
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located within Golgi membranes (Gibeaut and Carpita, 1994). Urbanowicz et al. (2004) 

postulated that (1,3;1,4)-β-glucan synthase in maize (Zea mays) seedlings is localized in the 

Golgi apparatus and consists of two or three separate glycosyltransferases. In vitro synthesis of 

(1,3;1,4)-β-glucan from maize coleoptiles requires Golgi vesicle fractions, UDP-Glc, and either 

Mn
2+

 or Mg
2+

 as cofactors (Meikle et al., 1991; Gibeaut and Carpita 1993; Becker et al., 1995). 

The combined glucan synthase complex possesses an active site on the cytosolic face of the 

Golgi membranes and extrudes the growing glucan chains into the lumen of the Golgi using a 

supply of uridine diphosphoglucose (UDP-Glc) mediated by a Golgi-localized sucrose synthase. 

Light proteolysis using proteinase K and 3-[(3-cholamidopropyl)dimethylammonio]-1-

propanesulfonate (CHAPS) treatment at 0.2 % ( w / v) of cell extract reduces the (1,3;1,4)-β-

glucan synthase activity, (1,3;1,4)-β-glucan molecular mass and also decreases the amount of 

DP3 produced indicating the catalytic site is exposed to the cytosol and embedded in a lipid 

membrane (Urbanowicz et al., 2004). Analysis of products has led to a model suggesting 

multiple sites on the (1,3;1,4)-β-glucan synthase complex synthesizing three β-(1,4) linkages at a 

time, followed by a β-(1,3) linkage under optimal conditions (Buckeridge et al., 1999). If UDP-

Glc concentrations are below a certain threshold and unable to fill the three spaces available, the 

complex will lengthen to the β-(1,4) series and skip the β-(1,3) linkage creating an irregular 

pattern of β-(1,3) and β-(1,4) linkages (Figure 2.4). The proposed mechanisms for (1,3;1,4)-β-

glucan synthesis inherently suggests environment would play a large role in the fine structure of 

(1,3;1,4)-β-glucan (Buckeridge et al., 1999). Recently this model has been called into question 

due to the lack of evidence of accumulation of (1,3;1,4)-β-glucan in Golgi vesicles of developing 

plants (Wilson et al., 2012).  

To account for the lack immunochemical detection of (1,3;1,4)-β-glucan, a two phase 

assembly system has been proposed (Burton et al., 2010). The model proposes that individual 

cellodextrin units are synthesized separately by the cellulose synthase like family of proteins, 

either a CslF or CslH (Figure 2.5). The cellodextrins produced are anchored to recyclable lipids 

or proteins within the Golgi vesicle and transported to the plasma membrane. At the plasma 

membrane an as yet unidentified enzyme, such as a callose synthase, that randomly links the 

(1,4)-β-oligosaccharides with (1,3)-β-linkages creating the full length (1,3;1,4)-β-glucan  
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Figure 2.4. Urbanowicz model of (1,3;1,4)-β-glucan synthesis. (1,3;1,4)-β-glucan is created by 

the action of a complex containing two to three separate enzymes situated in the Golgi 

membrane. The growing (1,3;1,4)-β-glucan chain is extruded into a Golgi vesicle and is then 

transferred to the cell membrane where the full length molecule is then released to incorporate 

into the cell wall (Buckeridge et al., 1999; Urbanowicz et al., 2004). 
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Figure 2.5. Two phase model of (1,3;1,4)-β-glucan synthesis (Burton et al., 2010). Cellodextrin 

molecules are synthesised separately by cellulose synthase like molecules in the Golgi 

membrane. Cellodextrin subunits are attached to phospholipids on the Golgi vesicle and 

transported to the cell membrane where yet unidentified enzyme(s) join the subunits to form 

(1,3;1,4)-β-glucan before being released to become incorporated into the cell wall. 
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molecule. Upon completion the polysaccharide is released into the periplasmic space and 

incorporates into the cell wall. 

 

2.10 Candidate genes for (1,3;1,4)-β-glucan synthesis 

2.10.1 Monocot-unique 23 kDa protein (P23k) 

The P23k gene transcripts increased with increasing photosynthetic activity, thus 

suggesting that it plays a role in sugar metabolism (Oikawa et al., 2007). The P23k protein is 

abundant in vascular bundles and sclerenchyma where secondary wall formation is active in 

barley leaves (Oikawa et al., 2007) and may be involved in cell wall synthesis. Virus induced 

gene silencing of P23k gene leads to abnormal leaf development, decrease in calcofluor staining 

of cell wall polysaccharides and down-regulation CslF6 gene involved in (1,3;1,4)-β-glucan 

synthesis (Oikawa et al., 2009). P23k is not expressed in developing barley grains but a closely 

related protein Jasmonate induced protein-23 (JIP-23) is localized to tissues involved in sugar 

transport in the endosperm (Oikawa et al., 2007). 

 

2.10.2 CesA / Csl superfamily 

The type I polysaccharide synthases, a group of enzymes thought to be responsible for 

plant cell wall biosynthesis, are encoded by members of a large multigene family, the cellulose 

synthase and cellulose synthase-like superfamily (CesA / Csl). This family is divided into several 

subgroups including the Cellulose synthase (CesA) subfamily and Cellulose synthase-like (Csl) 

subfamilies A to J (Richmond and Somerville, 2000; Farrokhi et al., 2006). The protein structure 

is well conserved within the CesA / Csl superfamily. The CesA family of proteins differs from 

the Csl family due to the inclusion of an N-terminal cysteine-rich region that form two zinc-

binding RING-finger domains (Kurek et al., 2002). The latter are predicted to add stability to the 

CesA heterodimer subunits within the cellulose synthase rosette. All members of the superfamily 

contain eight transmembrane domains (TMD), with clusters of two N-terminal and six C-

terminal predicted TMD dividing the protein into three major cytoplasmic domains. The N- 

terminal domain of both the CesA and Csl families include a highly variable region (HVR) 

which is separated from the large central domain by TMD 1 and 2, while TMD 3 to 8 in turn 

separate the central domain from the short C-terminal sequence. The central domain contains the 

catalytically active D,D,D,QxxRW signature characteristic of most glycosyltransferases 
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(Coutinho et al., 2003; Vergara and Carpita, 2001). The central domain is highly conserved with 

the exception of about 70 residues, named the class-specific region (CSR), which differs between 

paralogs but is well conserved between orthologs (Vergara and Carpita, 2001). 

 

2.10.3 Cellulose synthase like (Csl) family 

The Csl family can be subdivided into nine sub-families CslA to CslJ (CslI is omitted to 

avoid confusion). This family of genes is thought to encode proteins involved in the synthesis of 

various non-cellulosic β-linked cell wall polymer backbones. CslF, CslH and CslJ have been 

shown to be excusive to the Poaceae family (Farrokhi et al., 2006). 

 

2.10.3.1 CslF subfamily 

The CslF group of genes are exclusive to the commelinoid monocotyledon group of land 

plants (Burton et al., 2006). The first CslF genes in barley were identified through positional 

cloning of the 2H QTL found in the Steptoe / Morex DH population (Burton et al., 2006). 

Genetic mapping using the Steptoe / Morex doubled haploid population, revealed that a locus on 

chromosome 2H in the interval of ABG019 - ABC162 near the centromere had the largest effect 

on barley grain (1,3;1,4)-β-glucan concentration (Han et al., 1995). A syntenous region in rice 

identified a cluster of rice CslF genes at the barley chromosome 2H locus (Burton et al., 2006). 

Heterologous expression of rice CslF genes in Arabidopsis synthesized (1,3;1,4)-β-glucan in 

these plants which normally do not produce this polysaccharide. Four CslF genes from barley 

were identified in this region. Additional, CslF genes were identified on the barley chromosomes 

1H, 5H, and 7H (Burton et al., 2008). In silico analysis of the Morex genome identified an 

additional three CslF genes (Schreiber et al., 2014); CslF11 on the long arm of 7H, CslF12 in the 

cluster of CslF genes on 2H and CslF13 on the long arm of 2H. CslF13 is predicted to be a 

pseudogene due to a stop codon before the final three transmembrane domains on the C terminal. 

Gene expression studies have shown that of all the CslF genes, CslF6 and CslF9 are the most 

abundantly expressed in the barley developing endosperm (Burton et al., 2008). 

Transgenic experiments have indicated that the degree of solubility of (1,3;1,4)-β-glucan 

may be influenced by genetic factors in cereal grains. Over expression of CslF4 in barley (cv 

Golden Promise) shifted the DP3:DP4 ratio higher (from 2.8:1 to 3.1:1), suggesting CSLF4 is 

preferentially producing cellotriose subunits. Conversely, overexpression of CslF6 in the same 
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genetic background shifted the DP3:DP4 ratio to 2.1:1, indicating CSLF6 is preferentially 

produces cellotetraose subunits (Burton et al., 2011). However, RNAi mediated inhibition of 

TaCslF6 in wheat (Triticum aestivum) did not affect the DP3:DP4 ratio but reduced both the 

molecular weight and total concentration of (1,3;1,4)-β-glucan (Nemeth et al., 2010). 

 

2.10.3.2 CslF6 

Transgenic studies which either overexpress or knock down individual HvCslF genes 

have strengthened the argument that individual genes from this family influence the 

concentration and fine structure of (1,3;1,4)-β-glucan (Burton et al., 2011; Nemeth et al., 2010). 

Overexpression of CslF4 and CslF6 increases (1,3;1,4)-β-glucan deposition but also reduces the 

ratio of DP3:DP4 from 2.8:1 to 2.1:1 in trangenic plants. Screening of a barley Targeting 

Induced Local Lesions in Genomes (TILLING) population identified a (1,3;1,4)-β-glucan-less 

phenotype (Tonooka et al., 2009). Molecular characterization of the (1,3;1,4)-β-glucan-less 

phenotype revealed three C253Y, G638D and G660D changes in the CSLF6 protein (Taketa et 

al., 2012). These mutations are close to the conserved aspartic acid residues, and the authors 

speculate that these amino acid shifts disrupt the nucleotide sugar binding domain. Screening of 

an ethyl methanesulfonate (EMS) mutagenized Harrington barley population identified a mutant 

line m351 with reduced (1,3;1,4)-β-glucan accumulation in the grains. Upon backcrossing the 

mutant line to the Harrington cultivar, genotypes with only 1.4 % grain (1,3,1,4)-β-glucan as 

compared to 5.2 % grain (1,3;1,4)-β-glucan in the parent Harrington were obtained (Hu et al., 

2014). Genetic mapping of the phenotype and sequencing of the CslF6 gene revealed a single 

point mutation causing a substitution of alanine to threonine at position 849. This mutation is 

positioned within the sixth transmembrane domain and was suggested to reduce the protein 

stability (Hu et al., 2014). 

 

2.10.3.3 CslH 

Cellulose synthase like H was identified in barley by expressed sequence tag (EST) 

database mining and subsequently confirmed through sequencing of bacterial artificial 

chromosome (BAC) clones from a Morex barley BAC library (Doblin et al., 2009). CslH maps 

to the short arm of 2H in close proximity to a cluster of CslF genes. The predicted amino acid 

sequence contains the conserved D, D, D, QFKRW motifs within the cytoplasmic domain and 
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six transmembrane domains. CslH expression can be detected at low levels in barley leaf and 

within the developing grain. Transgenic Arabidopsis plants producing a histidine-tagged CSLH 

show that HvCSLH is present in the Golgi but no presence at the plasma membrane could be 

demonstrated. Expression of HvCslH in Arabidopsis also produces low concentrations of 

(1,3;1,4)-β-glucan which accumulate in the cell wall.  

 

2.11 Genetic markers  

(1,3;1,4)-β-glucan concentration is a quantitative trait, suggested to be influenced by the 

additive effects of between three to five genetic factors (Powell et al., 1985), in addition to 

environmental factors (Morgan and Riggs, 1981; Perez-Vendrell et al., 1996). The study of 

quantitative traits in crops has rapidly evolved during the last two decades, due to the propensity 

of molecular markers, which have become useful tools to accelerate crop improvement. Ideally, a 

marker used for genetic mapping corresponds to a specific locus on the genome. Markers can be 

morphological, biochemical or molecular. Reliable morphological markers are usually visible 

(awns, row type, absence of hull, etc.) but restricted in number. Biochemical markers (isozymes 

and proteins) were among the first to be used in genetic diversity studies and to some extent for 

grain quality improvement (Buckler and Thornsberry, 2002). However, biochemical markers 

have several limitations such as being prone to post-translational modifications, are limited in 

number, labour intensive and therefore, rarely used at present for crop improvement. Instead, 

molecular markers (DNA-based markers) have become the pre-dominant marker system for 

genetic analysis and crop improvement. Molecular markers have the advantage over biochemical 

markers in that they are stable and not influenced by environment or life stage of the plant. A 

summary of advantages and disadvantages of a select group of marker systems is summarised in 

Table 2.4. 

 

2.11.1 Simple sequence repeats (SSRs) 

Microsatellites or simple sequence repeats (SSRs) are a class of repetitive sequences 

found in all eukaryotic organisms (Litt and Luty, 1989; Duran et al., 2009). SSRs are short, 

tandem repeats of monomers between 1 - 6 bp long that are thought to have arisen through DNA 

polymerase slippage during DNA replication (Levinson and Gutman, 1987). SSRs can occur as 

perfect repeats without interruption, imperfect repeats which include interruptions by non-repeat  
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nucleotides, compound repeats where two or more SSRs are found adjacent to one another or a 

combination of these three variants (Duran et al., 2009). SSRs are highly polymorphic, abundant 

and co-dominant. The markers are highly reproducible, amenable to automated screening, 

require little DNA for screening and can identify multiple alleles at a single or multiple loci. 

Primers designed for SSRs in one species show a limited degree of transferability between 

related species enabling comparative genomic analysis. 

 

2.11.2 Diversity Array Technology (DArT®) 

High-throughput and low-cost Diversity Array Technology (DArT®) is a microarray 

hybridization based technology that enables simultaneous genotyping of polymorphic loci spread 

over the genome without prior sequence information (http://www.diversityarrays.com; Jaccoud 

et al., 2001; Wenzl et al., 2006). By scoring the presence versus absence of specific DNA 

fragments in samples of genomic DNA digested with specific restriction enzymes, DArT® 

marker analysis can generate whole genome fingerprints rapidly and repeatedly. The markers 

generated are dominant in nature and therefore heterozygotes cannot be identified which is a 

major limitation of this technique. 

 

2.11.3 SNP-based markers 

Single nucleotide polymorphisms (SNPs) are the most abundant molecular markers that 

are widely distributed throughout genomes. SNPs represent a single nucleotide base difference 

between two individuals at a defined position in a DNA fragment. These DNA variants are 

represented by three different categories: transitions (a substitution of a purine for a different 

purine or a pyrimidine for another pyrimidine (C / T or G / A)), transversions (the substitution of 

a pyrimidine for a purine (T / A, C / A, T / G or G / C)) and small insertions / deletions (indels). 

SNPs can in principle be bi, tri or tetra-allelic at any site, but are usually bi-allelic as tri and tetra-

allelic sites are rare (Doveri et al., 2008). SNPs are evolutionarily stable, relatively abundant and 

can be used as direct markers as the sequence information can provide exact information about 

the allele location and possibly function.  SNPs are more prevalent in non-coding regions of a 

genome. Within coding regions SNPs can be either synonymous, not altering amino acid 

sequences in proteins or non-synonymous and therefore altering amino acid sequences (Sunyaev 

et al., 1999). Occasionally, synonymous SNPs lead to modification of mRNA splice sites causing 

http://www.diversityarrays.com/
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phenotypic changes (Richard and Beckman, 1995). The majority of SNP genotyping are based 

on either one or a combination of techniques; allele specific hybridization, invasive cleavage, 

oligonucleotide ligation, primer extension or direct sequencing (Syvänen, 2001). 

 

2.11.3.1 Cleaved Amplified Polymorphic Sequences (CAPS) markers  

Cleaved Amplified Polymorphic Sequences (CAPS) polymorphisms are locus-specific 

oligonucleotide primers produced PCR amplicons which contain SNPs or indels that contain a 

variable site effecting restriction endonuclease recognition site(s) leading to different fragment 

lengths after digestion. The advantage of CAPS markers are their repeatability, co-dominant 

nature, low cost and medium throughput. A major disadvantage of CAPS markers are that 

detailed prior sequence knowledge is needed to design the oligonucleotide primers and to 

identify if a variable restriction site is present within the amplicon. 

 

2.11.3.2 Genotyping-by-sequencing (GBS) 

Barley (Hordeum vulgare L.) is diploid with a large haploid genome of 5.1 gigabases 

(Gb). In 2012, the International Barley Genome Sequencing Consortium (Mayer et al., 2012) 

sequenced 4.98 Gb of the Morex genome and physically mapped 3.90 Gb anchored to a high 

density genetic map of barley. It was found that approximately 84 % of the genome consists of 

either, mobile elements or repeat structures, the majority being long terminal repeat 

retrotransposons. There is reduced repetitive DNA content within the terminal 10 % of the 

physical map of each barley chromosome arm. Gene containing BACs show a depletion of 

retrotransposons. Annotation efforts revealed 24,154 high confidence genes and lead to estimates 

that the entire barley transcriptome consists of 30,400 genes. On average it was estimated that 

there are five genes per Mb. This gene density increases to 13 genes per Mb at the proximal and 

distal ends of the chromosomes (Mayer et al., 2012). When compared to genetic maps, the 

generated physical map reveals reduced recombination frequency at the pericentromeric and 

centromeric regions of the barley chromosomes, a feature that compromises exploitation of 

genetic diversity and negatively impacts genetic studies and plant breeding. 

Significant advancements in DNA sequencing technology during the last decade have 

drastically reduced the cost of DNA sequencing (Delseny et al., 2010). The recently developed 

Next Generation Sequencing (NGS) technology is high throughput, not limited to expressed 

http://www.ncbi.nlm.nih.gov/projects/genome/probe/doc/Glossary.shtml#primer
http://www.ncbi.nlm.nih.gov/projects/genome/probe/doc/TechPCR.shtml
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sequences or prior sequence information and generates data that can be quickly incorporated to 

physical maps (Mammadov et al., 2012). Therefore, SNP discovery using NGS technology offers 

an advantage of needing no prior sequence knowledge and sequencing efficiency for genotypes 

scales directly with genetic diversity (Elshire et al., 2011). Therefore, NGS is being used for 

Genotyping by Sequencing (GBS) to enrich the repertoire of SNP markers for crop 

improvement. 

The major limitation in the utilization of GBS for marker discovery in large, complex 

genomes, such as wheat and barley, is to avoid highly-repetitive sections of the genome and 

ensure that each individual is sampled at similar (homologous) regions (Mammadov et al., 2012; 

Peterson et al., 2012). Early on, it was realised that sequence specificity of restriction 

endonucleases could be used to accomplish both of these goals. GBS targets the genomic 

sequence flanking restriction sites. Using methylation-sensitive restriction enzymes (RE) 

repetitive regions of genomes can be avoided and lower copy regions can be targeted with higher 

efficiency (Elshire et al., 2011). Originally, GBS approach used a single RE to capture the 

genomic regions between restriction sites but the method has been recently modified to 

incorporate a two RE approach termed double digestion Restriction-site Associated DNA 

(ddRAD) sequencing (Poland et al., 2012a). The ddRAD sequencing approach uses one “rare-

cutter” and one “frequent-cutter” enzyme to further reduce genomic complexity allowing for 

libraries with a suitable and uniform complexity which greatly simplifies quantification of the 

library prior to sequencing (Poland et al., 2012b). The ddRAD sequencing method eliminates 

random shearing of the genome and allows for greater size selection. These two features reduce 

duplicate region sampling which reduces by almost 50 % the number of reads needed to produce 

high confidence sampling of a SNP associated with a given RE site. Secondly, region 

representation bias favouring fragments closest to the average size selection increases the 

likelihood of recovering similar genomic regions across all individuals, even those with read 

counts recovery below saturation (Poland et al., 2012b). 

 

2.12 Genetic mapping of quantitative trait loci (QTL) 

A quantitative trait locus (QTL) is a genomic region that contributes to a trait value. QTL 

mapping estimates the genomic regions, the number of regions, their effect on phenotypic 

variation and modes of gene action of individual determinants contributing to the inheritance of a 
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continuously variable trait (Paterson et al., 2002). Three basic criteria are needed for the genetic 

mapping of QTL: 1) reliable phenotype data for the population 2) a population showing 

segregation for the target trait and 3) genetic markers with adequate diversity to represent 

genotypic data for the population. Genetic mapping places molecular genetic markers in linkage 

groups based on their co-segregation in a population. Genotyping of various barley mapping 

populations using genetic markers has resulted in many genetic linkage maps with increasingly 

high precision over the years. Traditionally, genetic maps are prepared by analysing populations 

derived from crosses of genetically and phenotypically diverse parents. Estimating the 

recombination frequency between genetic loci can statistically estimate marker distances, which 

are reported in centi-Morgan (cM) units. Population size, genetic diversity and marker density 

influence map resolution. Genetic maps should not be confused with physical genetic maps 

which represent complete sections of sequenced nucleotides and are measured by nucleotide 

bases (Young, 2001). Recently, a functional physical map consisting of a cumulative length of 

4.98 Gb, representing 96 % of the barley genome was compiled (Mayer et al., 2012). 

 

2.12.1 Determination of (1,3;1,4)-β-glucan 

(1,3;1,4)-β-glucan concentration can be determined by enzymatic means. Samples are 

suspended and hydrolysed in an appropriate buffer and subjected to lichenase digestion. 

Lichenase (EC 3.2.1.73) is a specific, endo-(1,3;1,4)-β-D-glucan 4-glucanhydrolase which 

cleaves β -(1,4) linkages on the reducing end of a 3-O-linked β-D-glucopyranosyl residue in 

(1,3;1,4)-β-glucan. Digestion results in the release of cellotriose to larger cellodextrin subunits. 

An aliquot of the filtered sample containing the cellodextrin subunits is then hydrolysed to 

completion and total glucose is determined in the sample by a colorimetric means (McCleary and 

Codd, 1991). 

Several dyes specifically label (1,3;1,4)-β-glucan. A flourometric evaluation of (1,3;1,4)-

β-glucan concentration using the Carlsberg calcofluor method, developed by Aastrup and 

Jørgersen (1988), is a fast and reliable method. The fluorochrome Calcofluor has been shown to 

create a dye complex formation with (1,4)-β-glucan in the cell wall. The calcofluor (1,3;1,4)-β-

glucan complex has a maximum absorption band at 363 nm and an emission band at 420 nm. 

When used in aqueous solutions derived from flour this can be used to reliably determine 

(1,3;1,4)-β-glucan concentration. Calcoflour staining can also be used during microscopy to 
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visualise (1,3;1,4)-β-glucan within the cell wall. A simple, low-cost and semi-automated method 

for determination of (1,3;1,4)-β-glucan can also be achieved using Congo Red, a dye which 

reacts with high-molecular weight (1,3;1,4)-β-glucan. The Congo Red (1,3;1,4)-β-glucan 

complex can be measured by spectrometer at an absorbance at 545 nm. Congo Red may 

overestimate (1,3;1,4)-β-glucan concentrations as it has been shown to weakly interact with 

starch (Wood and Fulcher, 1983). Aniline Blue can also be used for (1,3;1,4)-β-glucan detection 

though results have shown the specificity for (1,3;1,4)-β-glucan is lower than that for both 

Calcofuor and Congo Red (Wood and Fulcher, 1983). 

A monoclonal antibody generated against (1,3;1,4)-β-glucan-BSA conjugate is specific 

for (1,3;1,4)-β-glucans (Meikle et al., 1994). The antibody shows no cross-reactivity against 

(1,3)-β-glucan and a very weak cross-reactivity against cellopentaose-BSA and (1, 4)-β-

oligoglucosides. The antibody affinity for ligands containing (1,3;1,4)-oligoglucosides is at least 

two orders of magnitude higher than those containing only (1,4)-β-linkages and has no cross-

reactivity against cellulose. The optimum binding epitope consists of at least a hexa-saccharide 

with the structure Glu (1,4) Glu (1,4) Glu (1,3) Glu (1,4) Glu (1,4) Glu (R). Quantitation of 

(1,3;1,4)-β-glucan by a sandwich ELISA gives a near linear response in the range of 1 - 10 ng / 

ml. Due to the specificity of the antibody it is useful in quantifying (1,3;1,4)-β-glucan in 

solutions such as beer or wort but it is most useful in light and electron microscopy to measure 

quality and location of (1,3;1,4)-β-glucan in developing grains (Meikle et al., 1994). 

Wood et al. (1994) were the first to successfully use high-performance anion-exchange 

chromatography with pulsed amperometric detection (HPAEC-PAD) to analyze the 

oligosaccharides from lichenase-hydrolyzed barley (1,3;1,4)-β-glucan. However, the 

quantification of oligosaccharides by HPAEC-PAD is limited by the knowledge of weight 

response factors (Wood et al., 1994). In general, the sensitivity of PAD decreased rapidly from 

DP2 to DP6, while, for higher oligosaccharides (DP 7 − 17), the decrease in the sensitivity of 

PAD is minimal (Timmermans et al., 1994). The measurement error for DP3 / DP4 ratios 

determined by HPAEC-PAD is around ± 10 % (Wood et al., 1994). Despite these drawbacks, 

HPAEC-PAD is the most used technique for oligosaccharide quantification of (1,3;1,4)-β-glucan 

fine structure (Collins et al., 2010). 
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2.12.2 Heritability 

Heritability is the proportion of observed variation in a progeny that is inherited or the 

ratio of variation caused by genetics to total variation (Acquaah, 2007). The phenotypic variance 

(VP) of a trait can be expressed mathematically as follows: 

   VP=VG+VE+VGE 

VG, VE and VGE represent genetic variance, environmental variance and variations caused by 

genotype by environment interactions, respectively. Using this equation we can calculate broad 

sense heritability (h
2
), which is an estimation of heritability on the basis of all genetic effects. 

Broad sense heritability is calculated using total genetic variance and is expressed as follows: 

   h
2
= VG/VP 

Narrow sense heritability can be calculated if additive genetic effects are accounted for. To find 

additive genetic effects genetic variance can be further divided into additive genetic variance 

(VA), dominance variance (VD) and the non-allelic or epistasis variance (VI).  

   VG=VA+VD+VI 

Genetic variances caused by genes are additive components and produce linear additive effects. 

The resemblance of parents to offspring is largely attributed to additive genetic effects. The 

dominance effects on the expression of quantitative characters are generally small compared with 

additive effects and epistatic effects are smaller than additive effects. Epistatic effects are 

generally ignored in calculating heritability. Narrow sense heritability can be expressed as 

follows: 

   h
2
=VA/VP 

 For homozygous individuals broad sense heritability and narrow sense heritability are 

equal to each other. Heritability estimates below 0.30 are considered low, 0.30 - 0.60 are 

considered moderate and estimates above 0.60 are considered high (Ayele, 2011). The methods 

of estimating heritability are based on portioning observed variation of a quantitative character 

into genetically and environmentally controlled components. The common method for estimating 

heritability is variance component method using the analysis of variance and parent-offspring 

regression method. Form analysis of variance (ANOVA), heritability can be estimated as follows 

(Singh et al., 1993):  

  h
2
 = σ

2
G / (σ

2
G + σ

2
GxE + σ

2
e) 

   σ
2

G = (MG – MGxE)/ (bL), 
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    σ
2

GxE = (MGxE – Me)/ b, 

   σ
2
e = Me 

Where: MG is the mean sum of squares (MSS) for genotype; MGxE is the MSS for genotype 

by environment interaction; Me is the MSS error; b represent number of replications and L is the 

number of environments used in the study. Calculation of heritability is an important first step 

genotype selection in various plant breeding approaches and is an important consideration when 

considering genetic mapping. 

 

2.12.3 Single marker analysis 

The simplest form of marker association is single marker analysis based on t-test, 

analysis of variance (ANOVA) and simple linear regression. The advantages of single marker 

analysis are that linkage maps are not required and they can be performed using basic statistical 

software. Either ANOVA or linear regression is most commonly used for single marker 

association. Linear regression can be used because the coefficient of determination (R
2
) 

calculated from the marker can explain the amount of phenotypic variation in the QTL (Collard 

et al., 2005). ANOVA can be used to estimate the phenotypic variation, determine a favorable 

allele and calculate the additive and dominant effects of a marker. The major limitation of single 

marker analysis is the further a QTL is from a marker the more likely it is to be underestimated 

or go undetected entirely (Tanksley, 1993). Other weaknesses include a failure to provide an 

accurate QTL location or recombination frequency between the QTL and the marker (Doerge, 

2002). 

 

2.12.4 Simple interval mapping 

Simple interval mapping (SIM) is an improvement on single marker analysis. SIM uses 

an estimated genetic map as a framework to locate and tests for QTL presence between each pair 

of adjacent markers (Lander and Botstein, 1989). The use of linked markers for analysis is 

statistically more powerful compared to single-point analysis because it compensates for 

recombination between markers and the QTL (Lander and Botstein, 1989; Liu, 1998). At each 

interval the SIM calculates a Logarithm of Odds (LOD) score by computing the likelihood of the 

observed distributions with and without fitting a QTL effect. The LOD scores are plotted along a 

linkage map and those that exceed a threshold significance level indicates the region associated 
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with a QTL. The most likely QTL position is indicated by the peak LOD score in that region. 

SIM uses a model which considers one QTL at a time and therefore can bias identification and 

estimation. When multiple QTLs are located on the same linkage group the additional QTLs can 

also contribute to sampling variance (Lander and Botstein, 1989; Zeng, 1994). 

 

2.12.5 Composite interval mapping 

Composite interval mapping (CIM), described independently by Zeng (1994) and Jansen 

and Stam (1994), was developed to overcome some of the limitations of SIM. The method 

combines interval mapping with multiple regressions as an interval test that attempts to separate 

and isolate individual QTL effects. By controlling genetic variation in other regions of the 

genome, CIM reduces background variation that can effect QTL detection. The analysis software 

incorporates cofactors into the model. These cofactors may be a set of markers that are 

significantly associated with the trait and may be located anywhere in the genome. They are 

typically identified by forward or backward stepwise regression, with user input to determine the 

number of cofactors and other characteristics of the analysis. 

 

2.12.6 Association mapping 

Association mapping (AM) is a natural population-based survey approach that identifies 

trait-marker relationships based on linkage disequilibrium (LD). Originally, AM was used 

extensively to dissect human diseases, and in the last decade has emerged as a powerful tool to 

identify QTLs in plants (Flint-Garcia et al., 2003). LD is caused by non-random association of 

alleles at different loci. The statistical association among a set of loci decays more or less quickly 

depending on the amount of recombination events that have occurred during meiosis (Dawson, 

2000). AM is a cost effective alternative to traditional QTL mapping, in that specific populations 

do not need to be generated. Mapping populations are usually limited in the number of 

recombination events that have occurred. AM can be performed on collections of diverse 

genotypes or within breeding materials, and does not require a prior knowledge of performance. 

Further savings can be achieved by using historical phenotypic datasets to detect marker-trait 

associations (Sneller et al., 2009). Association mapping often uses natural populations of very 

divergent origins to capture the maximum number of ancient recombination events. 
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The resolution of association mapping is determined by linkage disequilibrium (LD) or 

invesrley by the amount of linkage decay. The level of LD is dependent upon the amount and 

distribution of genetic diversity, the mating system, selection regemes and the amount of 

recombination events in the ancestry of the genotypes. High LD can be attributed to inbreeding, 

population structure, admixture, low recombination rate, intense selection pressure (natural or 

artificial) and small population size. LD is usually measured as the difference between the 

observed and the expected frequency of the haplotype (D or D’) but is usually calculated as the 

correlation between a pair of loci (r or frequently r2) (Zhao, et al., 2007). The reason for this is 

|D′| is biased according to sample size (Weiss and Clark, 2002), therefore the squared value of 

the correlation between markers (r2) is favored for association mapping. Within barley reported 

levels of LD vary depending on the genetic material used, the size of the population and the scale 

on which it is studied (whole genome or chromosomal level). 

There are two main strategies in AM. The first one is genome-wide association mapping, 

or genome scan, which surveys genetic variations in the whole genome to detect indications of 

association for various complex traits (Risch and Merikangas 1996). In classic QTL mapping, a 

few hundred markers are usually sufficient for QTL mapping experiments, whereas genome-

wide association studies (GWAS) typically require in the order of tens of thousands of genetic 

markers to achieve adequate coverage (Nordborg and Weigel, 2008). The second strategy is a 

candidate-gene association approach, which relates polymorphisms in selected candidate genes 

that have putative roles in determining phenotypic variation for specific traits (Gore et al., 2009). 

The limitation of this strategy is that candidate-gene studies rely on having predicted the identity 

of the correct gene relative to the phenotype studied. 

Detailed knowledge of phylogenetic relationships of the population structure is required 

to add power to AM and reduce the likelihood of false associations (Hubisz et al., 2000). When 

phylogenetic information is limited, this problem can be overcome by accounting for population 

structure by genetic analysis (Buckler and Thornsberry, 2002). Bayesian clustering approach can 

be used to infer the number of subpopulations (K) and to assign individuals to subpopulations 

based on membership proportion in each subpopulation (Q-matrix). Bayesian clustering operates 

by minimizing the Hardy-Weinberg and linkage disequilibrium that would result if individuals 

from different, randomly-mating populations were incorrectly grouped into a common 

population. Three of the most popular Bayesian based software programs for inferring 
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subpopulations are STRUCTURE (Pritchard et al., 2000; Hubisz et al., 2009), BAPS (Corrander 

et al., 2006) and PARTITION (Dawson and Belkhir, 2001). 

Ordination is another approach used to reveal population structure. Ordination is 

commonly used to reduce complex multi-locus data sets into two or three dimensional scatter 

plots that represent genetic structure spatially, with putative subpopulations forming distinct 

clusters of points. The most common methods used in genetic studies involve Principal 

component analysis (PCA) or principal coordinate analysis (PCoA). PCA transforms a similarity 

matrix, a set of possibly correlated variables, into a smaller number of uncorrelated variables 

called principal components. The first principal component accounts for as much variability in 

the data as possible with each succeeding component accounting for as much of the remaining 

variability as possible. PCoA uses a distance matrix between a set of variables (ie. genetic 

distance) to assign each item a location in a low dimensional space. Much like PCA, the major 

axes of variation are then located within the multidimensional data set. Each successive axis 

explains proportionately less of the total variation, such that when there are distinct groups, the 

first two or three axes will typically reveal most of the separation among them. PCA is used for 

similarities and PCoA for dissimilarities. However, binary measures (such as genetic alleles) are 

distance measures and, therefore PCoA should be used (Zuur et al., 2007).  

 

2.13 (1,3;1,4)-β-glucan QTLs in barley 

Even where grain (1,3;1,4)-β-glucan is measured by similar means in multiple studies, 

large differences due to environmental conditions could mean that the most critical loci for this 

character vary between diverse sites. Due to functional variations or differences in genetic 

mechanisms between the parental genotypes, QTLs associated with quality parameters can vary 

considerably between barley populations (Thomas, 2003). In some cases, QTLs coincide with 

functional genes (Molina-Cano et al., 2007; Islamovic et al., 2013), but in most cases, QTLs are 

located on genomic regions containing no clear candidate genes (Mather et al., 1997; Li et al., 

2008). Some of the malt (1,3;1,4)-β-glucan loci are co-incident with QTL for malt β-glucanase 

activity or other quality parameters and not reflective of (1,3;1,4)-β-glucan synthesis. Despite 

these limitations, all seven barley chromosomes are associated with the (1,3;1,4)-β-glucan 

concentration in either grain or malt (Figure 2.6). 
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QTL and association mapping studies have shown areas on 1H may be involved in regulation of 

(1,3;1,4)-β-glucan accumulation. A meta-analysis of the Morex / Steptoe, Morex / Harrington 

and Harrington / TR306 populations, showed a common major QTL for (1,3;1,4)-β-glucan near 

marker Ica1 (BIN 6) in all three populations (Igartua et al., 2002). Grain (1,3;1,4)-β-glucan 

concentration assessed in a doubled haploid (DH) population, derived from cross between two 

row winter feed variety Nure and two row malting variety Tremois, identified two QTLs for 

(1,3;1,4)-β-glucan on Chromosome 1H in the Bmac0399 - Bmag0211 and Cor1 - Bmag0382 

intervals, respectively (Laido et al., 2009). This region has also been associated with (1,3;1,4)-β-

glucan concentration in barley grain and wort of Steptoe / Morex (Han et al., 1995), Arapiles / 

Franklin, Alexis / Sloop populations (Panozzo et al., 2007), and two association mapping 

populations (Houston et al., 2014; Shu and Rasmussen, 2014). Three genes within this 1H region 

have been identified as likely candidates affecting (1,3;1,4)-β-glucan accumulation. One of the 

proposed causative factors for the QTL is a CslF9 gene, which is highly expressed during early 

grain development (Burton et al., 2008). However, only speculative links to (1,3;1,4)-β-glucan 

production have been made for CslF9. An alternative candidate gene for 1H QTL may be Starch 

Synthase IIIa (SSIIIa), which is involved in starch biosynthesis. Barley containing the amo1 

mutant locus, which affects SSIIIa function, accumulate higher concentrations of (1,3;1,4)-β-

glucan in the endosperm in addition to altered starch structure (Li et al., 2011). A third candidate 

gene for 1H QTL has been proposed based on a syntenic region in rice corresponding to rice 

gene Os05g01020 encoding a histone deacetylase complex (HDAC) protein. The genomic region 

was identified from analysis of the Falcon / Azul mapping population associated with amylose 

content (Islamovic et al., 2013), but the authors speculate this gene also regulates (1,3;1,4)-β-

glucan synthesis through transcriptional repression of targeted genes via histone deacetylation. 

Using a genetic mapping population derived from a cross between Beka and Logan, Molina-

Cano et al. (2007) found a QTL on 1H near the EST marker Ctig8484 (synonym scssr04163) 

positioned at 183 cM. This marker is found in the 5’ UTR region of the UDP-Glc-4 epimerase 1 

(HvUGE1) gene (Moralejo et al., 2004). UGE1 catalyses the inter-conversion of UDP-Gal and 

UDP-Glc. UDP-Glc nucleotide sugars act as activated sugar donors for the biosynthesis of cell 

wall polysaccharides such as (1,3;1,4)-β-glucan. 
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Figure 2.6. Summary of genomic regions associated with barley (1,3;1,4)-β-glucan. QTLs 

associated with both grain and / or wort concentrations. 

  



51 
 

Han et al. (1995) noted that the largest effect on barley grain (1,3;1,4)-β-glucan, in the 

cross Steptoe / Morex, is associated with a locus on chromosome 2H in the interval of ABG019 - 

ABC162 near the centromere. Burton et al. (2008) identified a cluster of four CslF genes in this 

region and speculated that the QTLs seen in the Morex / Steptoe population could be attributed 

to these genes. In an Arta / H. spontaneum mapping population, one QTL on 2H near HVBKASI 

explained 10 % of the phenotypic variation in total (1,3;1,4)-β-glucan (Baum et al., 2003). The 

HVBKASI marker is located in the gene Β-ketoacyl-acyl carrier protein synthase I isoenzyme, 

part of the plant fatty acid synthesis pathway. These synthase proteins catalyze the condensation 

of acetate units to a growing acyl-ACP leading to the synthesis of palmitoyl-ACP (Kauppinen, 

1992). Two QTLs were identified in the VB9524 / ND11231*12 population on chromosome 2H 

(Emebiri et al., 2003). The first was located near the centromere (EBmac0850) and the second 

near the telomere of the long arm (P14M55 - 156). A region near EBmac0684 is also associated 

with wort (1,3;1,4)-β-glucan in the Alexis / Sloop doubled haploid population accounting for 12 

% of the variation (Panozzo et al., 2007). Regions on chromosome 2H have been identified in 

four association mapping studies associated with grain and wort (1,3;1,4)-β-glucan concentration 

(Beattie et al., 2010; Shu and Rasmussen, 2014; Mohammadi et al., 2014; Houston et al., 2014). 

Houston et al. (2014) and Shu and Rasmussen (2014) speculated that the cluster of CslF genes 

were responsible for the differences in (1,3;1,4)-β-glucan content. Mohammadi et al. (2014) 

identified a (1,3;1,4)-β-glucan QTL region closer to the telomere of 2HL in a panel of six-row 

barley. A glucan endo-1,3-β-glucosidase 14 gene was proposed to be the underlying gene at the 

QTL.  

Several barley mapping populations have shown QTLs on 3H. Li et al. (2008) showed an 

inconsistent QTL (32 cM) in a TR251 / Bold mapping population, which explained 22.6 % of the 

phenotypic value. Emebiri et al. (2003) showed a QTL at Bmac0067, where the additive allele 

was contributed by ND11231_12. Harrington / TR306 doubled haploid population identified one 

region on chromosome 3H (near marker Ugp2) that affected extract (1,3;1,4)-β-glucan and 

extract viscosity (Mather et al., 1997). In the Falcon / Azul hulless, waxy population, two QTLs 

were found; one near Pilot OPA marker 11_20639 and the other near Pilot OPA marker 

11_20650 (Islamovic et al., 2013). The marker 11_20639 is near a syntenous region in rice in 

close proximity to only UTP-1-phosphate uridyltransferase gene (Ugp2) in barley. The encoded 

enzyme is responsible for synthesis and pyrophosphorolysis of UDP-Glc, the key precursor of 
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(1,3;1,4)-β-glucan and cellulose. The same region has been identified in one association mapping 

study using the Oregon barley Coordinated Agricultural Project populations (Gutiérrez et al., 

2011). A region spanning 55 to 99 cM was associated with grain (1,3;1,4)-β-glucan 

concentration (Houston et al., 2014; Mohammadi et al., 2014). Houston et al. (2014) speculated 

that a family of glycosyl transfrease and glycoside hydrolase enzymes may account for the 

variability of grain (1,3;1,4)-β-glucan concentration explained by this region. 

Three bi-parental studies have reported QTLs on chromosome 4H are associated with 

grain (1,3;1,4)-β-glucan concentration. Wei et al. (2009) reported that bPb-2305 - Bmac0186 

interval of chromosome 4H accounted for 11 % of the total variance in a CM72 / Gairdner 

doubled haploid population. In an Arta / H. spontaneum mapping population, a QTL near 

e32m49 - 06 contributed to 4.3 % of the variation in (1,3;1,4)-β-glucan (Baum et al., 2003). The 

Falcon / Azul population identified three QTLs associated with grain (1,3;1,4)-β-glucan 

concentration in the same genomic region. Glucose-6-phosphate 1-dehydrogenase gene 

(Os03g20300) and endo-1,3-β-glucosidase (Eng1) (Os03g18520) were identified as a putative 

candidate genes present in a syntenous region in the rice genome. Os03g20300 is a rate limiting 

enzyme in the pentose phosphate pathway and may control (1,3;1,4)-β-glucan synthesis through 

carbon partitioning while Eng1 is a (1,3;1,4)-β-glucan hydrolyzing enzyme which may control 

(1,3;1,4)-β-glucan synthesis and degradation (Islamovic et al., 2013). Association mapping 

studies have also shown regions near the telomere of 4HS (Gutiérrez et al., 2011) and the 

centromere (Shu and Rasmussen, 2014; Mohammadi et al., 2014) are associated with grain 

(1,3;1,4)-β-glucan concentration. Shu and Rasmussen (2014) speculated that glucan synthase-

like 3 (EC 2.4.1.34, HvGSL3) may be a putative candidate gene in this chromosomal region. 

Chromosome 5H has been identified as a contributor to variation in wort or grain 

(1,3;1,4)-β-glucan in several genetic mapping populations. Igartua et al. (2002) noted that the 

Harrington / TR306 mapping population had two “hot-spots” at each end of the chromosome, but 

these were contributing to a vast array of phenotypes including kernel plumpness, protein content 

and higher malt extract. In the Dicktoo / Morex population, a QTL for (1,3;1,4)-β-glucan content 

was found in the interval from apAdh-apt59a near the telomere of the short arm of chromosome 

5H (Ozeil et al., 1996). Islamovic et al. (2013) reported a similar QTL in Bin 2 near the OPA 

marker 11_21365 and suggested that CesA2 is a putative candidate gene contributing to 

(1,3;1,4)-β-glucan concentration variation. In the Beka / Logan population, a major QTL, 
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Bmag337 was located near the centromere (Molina-Cano et al., 2007). Emebiri et al. (2003) 

described a similar QTL near XP14M51-203 in this population in association with wort 

(1,3;1,4)-β-glucan content. Five association mapping studies have found marker associations on 

5H for either grain or wort (1,3;1,4)-β-glucan concentration (Beattie et al., 2010; Gutiérrez et al., 

2011; Mohammadi et al., 2014; Houston et al., 2014; Shu and Rasmussen, 2014). A region near 

the telomere of 5HS coincide in two association mapping studies (Shu and Rasmussen, 2014; 

Houston et al., 2014) though neither study identifies a putative candidate gene in this region. 

Houston et al. (2014), Mohammadi et al. (2014) Gutiérrez et al. (2011) and Shu and Rasmussen 

(2014) identify markers in the interval between cM 63.3 and cM 128.7. MLOC_44777 (HvCel3; 

a member of the endo-(1,4)-β-glucanase gene family) and MLOC_65914 (an orthologue to 

AtCslE6) were identified as likely candidate genes affecting grain (1,3;1,4)-β-glucan 

concentration (Houston et al., 2014). Gutiérrez et al. (2011) and Beattie et al. (2010) identify a 

similar region near cM190 on the 5H chromosome in associated with wort (1,3;1,4)-β-glucan 

concentration. 

QTL information on chromosome 6H is the least reported and least consistent. TR251 / 

Bold population had a weak QTL on chromosome 6H that explained 22 % of the variation in 

(1,3;1,4)-β-glucan but this was inconsistent, only appearing in two of three years analysed (Li et 

al., 2008). Mather et al. (1997) and Baum et al. (2003) have both reported weak QTLs near the 

telomere of the short arm of this chromosome. In only one out of six environments studied, a 

strong QTL with an LOD score of 7.3 was found near the marker MK_4313 - 482 (Islamovic et 

al., 2013).  Gutiérrez et al. (2014), Houston et al. (2014) and Shu and Rasmussen (2014) have 

independently identified similar regions (30cM to 75cM) on the 6H chromosome in their 

respective populations using association mapping. The QTLs on chromosome 7H are the most 

consistent and widely reported for their association with (1,3;1,4)-β-glucan in barley. Originally 

described in the Steptoe / Morex mapping population described by Han et al. (1995), a large 

QTL for malt (1,3,1,4)-β-glucan is found in the interval between ABC455 and ABC156D. In this 

population, Steptoe provides the allele responsible for increased (1,3;1,4)-β-glucan. This large 

interval had two peaks: one near Brz and the second near Amy2. While this QTL did show an 

increase in the amount of wort (1,3;1,4)-β-glucan, it did not contribute to the variation found in 

barley grain (1,3;1,4)-β-glucan. In other studies this region has been associated with increased 

grain (1,3;1,4)-β-glucan. Molina-Cano et al. (2007) noted that the most significant QTL for grain 
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(1,3;1,4)-β-glucan was found in 7H near the marker Ctig5200, close to the centromere. Emebiri 

et al. (2003) and Baum et al. (2003) both report significant QTLs near the centromere in their 

populations. A QTL for grain (1,3;1,4)-β-glucan and grain weight in the Derkado / B83-12/21/5 

population was also reported near centromere region of chromosome 7H near the Amy2 locus 

(Igartua et al., 2002). The sex6 locus, which is thought to affect Starch Synthase IIa, is also 

located in this region. Li et al. (2011) showed that plants containing the sex6 mutant locus 

accumulate more (1,3;1,4)-β-glucan the grain. Within our own group we have identified a major 

QTL near the centromere on chromosome 7H (Li et al., 2008). CslF6 has also been shown to be 

in this region (Burton et al., 2008).The nud locus has been associated with (1,3;1,4)-β-glucan 

concentration in barley grain in an association mapping study looking at hulled and hulless two 

row Latvian spring varieties (Mezaka et al., 2011). Recently, AM studies in a panel of 3069 elite 

breeding spring barley lines have also identified two genomic regions associated with grain 

(1,3;1,4)-β-glucan concentration (Mohammadi et al., 2014). The first was present near the 

telomere of 7HS and a second near 83.4 cM. Houston et al. (2014) identified one marker on the 

7H chromosome, SCRI_RS_23061, which was speculated to be near the Sucrose Synthase II 

(HvSuSyII) gene that had been previously suggested as a putative candidate enzyme participating 

in (1,3,1,4)-β-glucan synthesis (Urbanowicz et al., 2004). 

 

2.14 Hypothesis 

The end use of barley grain is greatly influenced by its concentration of (1,3;1,4)-β-

glucan, that is a quantitative trait influenced by both genotype and environment. While a number 

of QTLs have been identified for (1,3;1,4)-β-glucan concentration in grain and wort many of 

these QTL span large areas on the genome making them of limited use in marker assisted 

selection for barley grain improvement. Although, every chromosome in barley has been 

associated with (1,3;1,4)-β-glucan grain or wort concentration but no information exists on the 

heritability or chromosomal regions affecting (1,3;1,4)-β-glucan fine structure. 

Genomic regions near the centromere on 7H play a role in (1,3;1,4)-β-glucan grain 

concentrations and fine structure.  
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CHAPTER 3 

GENETIC MARKERS FOR CslF6 GENE ASSOCOATED WITH (1,3;1,4)-β-GLUCAN 

CONCENTRATION IN BARLEY GRAIN 

 

3.1 Study 1* 

 In this study HvCslF6 was sequenced from two barley lines, five genetic markers were 

developed and validated as significantly associated with (1,3;1,4)-β-glucan concentration in 

barley grain. 
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3.2 Abstract 

The amount of (1,3;1,4)-β-D glucan [(1,3;1,4)-β-glucan] accumulated in barley 

(Hordeum vulgare L.) cell walls is an important consideration for grain end-use. One of the 

major genes responsible for (1,3;1,4)-β-glucan biosynthesis is HvCslF6, which was analyzed in 

this study to determine the allelic variation between low (1,3;1,4)-β-glucan (~ 3.3 %) cultivar 

CDC Bold and high (1,3;1,4)-β-glucan (~ 5.2 %) line TR251.  The CDC Bold HvCslF6 allele 

showed 16 single nucleotide polymorphisms (SNPs) and two indels when genomic region 

downstream of the ATG start codon was compared to TR251 allele.  Both indels added 16 

nucleotides to HvCslF6 first intron of CDC Bold and a single SNP in the third exon altered 

alanine 590 codon in the CDC Bold sequence to a threonine codon in TR251 allele. Genetic 

markers were developed for five polymorphic sites and confirmed useful to select low and high 

(1,3;1,4)-β-glucan lines in a previously characterized CDC Bold / TR251 mapping population 

and a novel F5 recombinant inbred line (RIL) population derived from a Merit / H93174006 (4.8 

and 5.3 % (1,3;1,4)-β-glucan) cross. An analysis of parental lines of six populations segregating 

for (1,3;1,4)-β-glucan concentration validated association between the TR251 HvCslF6 

haplotype and high (1,3;1,4)-β-glucan concentration in populations showing a (1,3;1,4)-β-glucan 

quantitative trait locus (QTL) on chromosome 7H. 

 

3.3 Introduction 

Beta-glucan ((1,3;1,4)-β-glucan) is a mixed linkage polymer [(1,3)-(1,4)-β-D-glucan] 

produced by grasses, bryophytes, certain fungi and algae (Fincher, 2009). The molecules are 

abundant in cell walls of endosperm and aleurone in cereal grains (Gibeaut and Carpita, 1991). 

Barley (Hordeum vulgare) and oat (Avena sativa) grain have a relatively high (1,3;1,4)-β-glucan 

concentration when compared to other cereals (Nemeth et al., 2010).  Normally, three to six 

percent (1,3;1,4)-β-glucan accumulates in barley kernels, but concentrations up to 19.8 % are 

present in certain genotypes (Munck et al., 2004). Barley lines with very low (2.0 %) or no 

(1,3;1,4)-β-glucan also exist (Munck et al., 2004; Tonooka et al., 2009).  The β-1,4-linked 

molecules form cellotriose (DP3) and cellotetraose (DP4) units, which are randomly joined by β-

1,3 bonds producing kinks in the molecule. The DP3:DP4 ratio affects polymer solubility and 
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varies from 1.5 to 4.5 depending on the genotype. The highest content of soluble (1,3;1,4)-β-

glucan is associated with DP3:DP4 ratios in the 1.5 - 2.5 range (Burton et al., 2010). 

The amount of (1,3;1,4)-β-glucan accumulated in grains is a major factor determining 

barley end-use. Low (1,3;1,4)-β-glucan barley is preferred by the feed, malting and brewing 

industries as high (1,3;1,4)-β-glucan concentrations reduce feed conversion and cause filtration 

problems during brewing. For human nutrition, (1,3;1,4)-β-glucan has become a desirable food 

ingredient as it can lower serum low density lipoprotein-cholesterol (Hecker et al., 1998) and 

postprandial glucose levels (Cavallero et al., 2002). Thus, depending on the amount of soluble 

(1,3;1,4)-β-glucan, a barley-rich diet may reduce the risk of developing coronary heart disease or 

type II diabetes (Poppitt et al., 2007). For future development of barley cultivars for feed, 

malting or food purposes, the selection of lines with specific (1,3;1,4)-β-glucan concentration 

and / or composition will benefit from efficient genetic markers for the trait.  

Initial mapping studies of (1,3;1,4)-β-glucan content in barley grain showed that the trait 

is controlled by three to five genetic loci (Powell et al., 1985), but also affected by environmental 

conditions such as drought (Perez-Vendrell et al., 1996). Later genetic mapping studies 

implicated all seven barley chromosomes in (1,3;1,4)-β-glucan accumulation in grain or malt. 

Major quantitative trait loci (QTL) are often reported on chromosomes 1H, 2H, 5H and 7H, less 

frequently on chromosomes 3H and 4H and occasionally on chromosome 6H (Han et al., 1995; 

Mather et al., 1997; Oziel et al., 1996; Panozzo et al., 2007; Li et al., 2008; Wei et al., 2009). The 

7H QTL, first described for malt (1,3;1,4)-β-glucan in the Steptoe / Morex mapping population 

(Han et al., 1995), is the most consistently reported (1,3;1,4)-β-glucan QTL in barley.   

The biosynthesis of β-1,4 linked polymers in plants is catalyzed by enzymes belonging to 

the cellulose synthase A (CesA) / cellulose synthase like (Csl) super-family. Certain CSL 

enzymes are implicated in (1,3;1,4)-β-glucan biogenesis as demonstrated by transgenic 

expression of a rice CSL gene in Arabidopsis, which causes accumulation of (1,3;1,4)-β-glucan 

in leaf cells, which normally are (1,3;1,4)-β-glucan-free (Burton et al., 2006).  A cluster of CSL 

genes underlies the (1,3;1,4)-β-glucan QTL on chromosome 2H in barley and a CslF6 gene 

(HvCslF6) is positioned at the (1,3;1,4)-β-glucan QTL on chromosome 7H (Han et al., 1995; Li 

et al., 2008). The involvement of HvCslF6, HvCslF4 and HvCslH1 in (1,3;1,4)-β-glucan 

synthesis is supported by transgenic expression of the genes in barley (Burton et al., 2011) wheat 

(Nemeth et al., 2010) and Arabidopsis (Doblin et al., 2009). In addition, an EMS-induced 
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mutation in HvCslF6 allele of barley line Nishinohoshia is associated with loss of (1,3;1,4)-β-

glucan production (Tonooka et al., 2009).  Although there is ample evidence for a role for 

HvCslF6 in (1,3;1,4)-β-glucan biosynthesis, the extent of natural genetic variation for this gene 

has not been studied. To obtain an initial assessment of HvCslF6 diversity, we determined the 

DNA sequence of HvCslF6 carried by a low (1,3;1,4)-β-glucan line CDC Bold (3.2 % (1,3;1,4)-

β-glucan) and high (1,3;1,4)-β-glucan line TR251 (5.0 % (1,3;1,4)-β-glucan) to identify 

nucleotide sequence differences that could possibly explain HvCslF6 expression or functional 

differences. Eighteen polymorphic sites were identified within the transcribed region of HvCslF6 

and the two alleles were found to be significantly associated with (1,3;1,4)-β-glucan 

concentration in mapping populations carrying a (1,3;1,4)-β-glucan QTL on chromosome 7H.  

 

3.4 Materials and methods 

3.4.1 Establishment of a Recombinant Inbred Line (RIL) population 

The two-row, spring and malting genotypes Merit and H93174006 were used to produce 

a RIL mapping population of barley. Merit was developed by Busch Agricultural Resources LLC 

(Fort Collins, Co, USA), whereas H93174006 (TR05671) is derived from a H92076F1 x TR238 

cross produced at the Field Crop Development Center, Lacombe, Alberta. The Merit / 

H93174006 population was advanced by single seed descent through the F3 and F4 generations 

in a greenhouse at Lacombe during 2007 and 2008. The F5 seeds from each F4 plant were 

bulked and advanced to produce seeds for F4:6 generation field trials.  

 

3.4.2 Field trial 

One hundred and eighty-four F6 RILs and parental lines Merit and H93174006 were 

planted at Vegreville Alberta, Canada (53 ° 31' N, 112 ° 6' W, 639 m altitude, with the Malmo 

series of an Eluviated Black Chemozem) in 2009. The trial used a randomized complete block 

design with three replicates of each F4:6 RIL and the parent lines.  Weeds were controlled by 

Round-up Weathermax application before seeding and by Achieve 40DG and Buctril M spraying 

later in the growing season.   
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3.4.3 Determination of (1,3;1,4)-β-glucan concentration in grain 

Samples of 10 g grain were milled to flour using an Udy-Mil Cyclone sample grinder 

(UDY Corporation, Fort Collins, CO, USA) equipped with a 0.5 mm sieve. The total (1,3;1,4)-β-

glucan concentration was determined for duplicate 100 mg flour samples using a (1,3;1,4)-β-

glucan (mixed linkage) Kit (Megazyme, Wicklow, Ireland). Predetermined samples of oat (8.8 % 

(1,3;1,4)-β-glucan) and barley flour (4.4 % (1,3;1,4)-β-glucan) were used as internal controls. 

 

3.4.4 Isolation of genomic DNA 

Plants were grown in growth chambers maintained at 20 °C and a 16 - h light period with 

320 mmol m
-2

s
-1

. Leaves were harvested at the 5 - 10 leaf stage, frozen in liquid N2 and stored at 

-80 °C before DNA was extracted and quantified as described (Li et al., 2008).  

 

3.4.5 Production of HvCslF6 contig 

Oligonucleotide primers for amplification of HvCslF6 fragments were designed using 

Primer 3 software (Rozen and Skatetsky, 2000) and the HvCslF6 cDNA sequence of Morex 

(GenBank accession EU267181) as template.  Amplicons were approximately 800 bp long with a 

minimum overlap of 150 bp to facilitate assembly of HvCslF6 contig.  The PCR reactions 

consisted of 100 ng template DNA, 5 pmol of each primer (Table S1), 10 mM Tris–HCl pH 8.3, 

3.5 mM MgCl2, 25 mM KCl, 20 mM dNTP, 1 U of Red Taq Polymerase (Sigma–Aldrich, St. 

Louis, MO, USA) in a total volume of 50 µL. Amplifications were performed using an 

Eppendorf AG Cycler (Eppendorf, Hamburg, Germany) programmed for an initial denaturation 

at 94 °C for 5 min followed by 34 cycles of 30 s denaturation at 94 °C, 20 s annealing at 

optimized temperature and 1 - 4 min extension at 72 °C. In the final cycle, the 72 °C step was 

extended by 2 min. A minimum of three independent PCR reactions were performed per DNA 

fragment. 

An amplicon covering the 3’ end was obtained by genome walking using the Genome 

Walker® Universal Kit according to manufacturer's instructions (Clontech, Mountain View, CA, 

USA). Five barley genomic DNA (2.5–5.0 μg) samples were digested at 37 °C overnight with 

restriction enzymes DraI, EcoRV, PvuII, ScaI and StuI, respectively.  The digested DNA 

samples were purified by phenol / chloroform extractions and ethanol precipitated before being 

ligated to Genome Walker adapters supplied with the kit. Primers for PCR amplification of 
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adapter-ligated fragments were AP1 and AP2 supplied with the kit and HvCslF6-specific 5022-F 

and 5153-F corresponding to nucleotides within the third exon of HvCslF6 (Table S1). 5022-F / 

AP1 were used in the primary PCR, and 5153-F / AP2 were used in the nested PCR. Only 

libraries constructed using DraI and StuI generated identical 2,000 bp products, of which 400 bp 

overlapped with the Morex HvCslF6 cDNA sequence. Primer pairs 5024-F, 5965-R and 5538-F, 

6440-R were designed, which confirmed 1,200 bp of this sequence and extended the 3’ genomic 

sequence by 779 bp. 

Generated PCR products were separated by 1 % (w / v) agarose gel electrophoresis, 

visualized by ethidium bromide staining, excised and purified using Qiaquick gel extraction kit 

(Qiagen, Hilden, Germany). The DNA sequence of each PCR product was determined in forward 

and reverse orientations by Sanger sequencing conducted by DNA Sequencing Facility, Robarts 

Research Institute, London, Ontario, Canada. The DNA sequence of a HvCslF6 fragment was 

considered complete when four of six high quality reads were in consensus. Analysis of 

generated sequences and assembly of HvCslF6 contig was done using the Geneious 5.4.5 

bioinformatics software (Biomatters Ltd; Auckland, New Zealand). 

 

3.4.6 Genotyping 

HvCslF6-specific primers were designed based on the contig sequence determined for 

CDC Bold allele.  The genotyping reactions consisted of 100 ng template DNA, 5 pmol of 

forward and reverse primers, 10 mM Tris–HCl pH 8.3, 3.5 mM MgCl2, 25 mM KCl, 20 mM 

dNTP, 0.5 U of Taq Polymerase (Thermo Fisher Scientific, Waltham, MA, USA) in a total 

volume of 25 µL. Amplifications were done in a Eppendorf AG Cycler (Eppendorf, Hamburg, 

Germany) programmed for an initial denaturation at 94 °C for 5 min followed by 40 cycles of 45 

s denaturation at 94 °C, 20 s annealing at optimized temperature and 20 s extension at 72 °C. 

PCR products were separated by 1 % w / v agarose gel electrophoresis and visualized by 

ethidium bromide staining. For Cleaved Amplified Polymorphic Sequences (CAPS) markers, the 

PCR products were digested with restriction enzyme BglI or MnIl (New England Biolabs, 

Ipswich, MA, USA), respectively, followed by analysis of digestion products by 2 % (w / v) 

agarose gel electrophoresis.  

Genome-wide genotyping of populations were done using simple sequence repeat (SSR) 

markers available in the public domain (Graingenes; www.wheat.pw.usda.gov) and diversity 
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arrays technology (DArT) markers analyzed by Triticarte Pty Ltd. (Canberra, Australia) as 

described (Wenzl et al., 2006). 

 

3.4.7 Genetic mapping 

Significant differences between single alleles were determined using unpaired t-tests.  

The genotype data for mapping populations was analyzed using the Joinmap3 software (van 

Ooijen and Voorrips, 2001).  Recombination frequencies were converted into centiMorgan map 

distances using the Kosambi mapping function.  Genetic markers were assembled into linkage 

groups with the likelihood ratio statistic (LOD) 9.0 and assigned to seven barley chromosomes 

based on previous published microsatellite and DArT marker maps (Li et al., 2008; Wenzl et al., 

2006). The MapQTL5 software (van Ooijen, 2004) was used for non-parametric analysis of 

variance (Kruskal Wallis test) and interval mapping. The significant genome-wide LOD 

threshold at p-value of 0.05 was determined by 1,000 permutation tests. 

 

3.4.8 Protein sequence analysis 

Protein sequences for AtCesA1 and HvCslF and HvCesA families were obtained from the 

publically available NCBI protein database. Sequence alignment was done using the alignment 

function and Blosum62 matrix of Geneious 5.4.5 software (Biomatters Ltd; Auckland, New 

Zealand). Putative phosphorylation sites were searched using the PhosPHat 3.0 (Durek et al., 

2009) and Netphos 2.0 (Blom et al., 1999) applications. A predetermined cut-off score of 0.8 was 

used as it identifies the known phosphorylation sites within the class specific region of AtCesA1 

(Chen et al., 2010).  

 

3.5 Results and discussion 

3.5.1 DNA sequence analysis of two HvCslF6 alleles 

The analysis of HvCslF6 DNA sequence was conducted on the parent lines for the TR251 

/ CDC Bold population, which shows a major QTL for grain (1,3;1,4)-β-glucan concentration on 

chromosome 7H (Li et al., 2008). Alignment of QTL position with mapped position for HvCslF6 

(Burton et al., 2008) showed good agreement (data not shown), which supported HvCslF6 

involvement in TR251 / CDC Bold trait variation.  To generate DNA fragments for HvCslF6, 

overlapping segments of the coding sequences and introns carried by high (1,3;1,4)-β-glucan 
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genotype TR251 and low (1,3;1,4)-β-glucan genotype CDC Bold were generated by PCR. The 3’ 

sequence was obtained by genome walking; however, attempts to generate 5’ sequences covering 

the promoter region were unsuccessful. Amplicons of HvCslF6 were analyzed by DNA 

sequencing and assembled into a 6.4 kb contig for each parent. The contigs stretched from the 

translational start codon to 1,000 bp downstream of the translational stop codon and 

encompassed three exons and two introns as outlined in Figure 3.1A. The DNA and amino acid 

sequences determined for CDC Bold are presented in supplementary Figure S2.  

A DNA sequence alignment of the two HvCslF6 alleles, revealed 16 SNPs and two indels 

(Table 3.1; Figure 3.1A).  An additional SNP was identified within the second exon by alignment 

to HvCslF6 cDNA sequence from Morex (GenBank accession EU267181). The two indels and 

13 of the SNPs were positioned within introns or non-coding regions and none of the 

polymorphic sites affected sequences at exon / intron borders. Both indels were positioned within 

the first intron, which was 16 bp longer for CDC Bold than for TR251 (Figure 3.1B). Four of the 

SNPs within exons were silent, but SNP_4105 in the third exon converted an alanine codon in 

HvCslF6 of CDC Bold and Morex to a threonine codon in the TR251 sequence. The alteration of 

the encoded HvCSLF6 peptide occurred at the 590
th

 amino acid of the 948 residue long protein.  

 

3.5.2 Development of HvCslF6 genetic markers 

The markers CSLF6_1028T and CSLF6_1028G, which uses different forward primers 

(1013-F and 1013G-F) and a common reverse primer (1318-R) were initially developed to target 

SNP_1029 in intron 1 (Figure 3.1B; Table 3.2). The CSLF6_1028T marker specific for CDC 

Bold HvCslF6 allele produces a 306 bp product, whereas the TR251 CSLF6_1028G marker 

gives a 292 product (Table 3.2). To extend the marker analysis to indel_1178 - 1191 and 

SNP_1029, the CSLF6_1028T and CSLF6_1028G markers were converted to CAPS markers by 

utilizing two MnlI restriction sites overlapping the two polymorphic sites (see Figure 3.1B). 

Upon MnlI digestion, the CAPS marker CSLF6_1028T generated 136-bp and 168-bp fragments 

for the CDC Bold allele, whereas 208-bp and 84-bp fragments were produced from the TR251 

marker CSLF6_1028G (Table 3.2). The CSLF6_1028T and CSLF6_1028G CAPS markers were 

routinely used in subsequent screening of allele variants for SNP_1029, indel_1178 - 1191, and 

SNP_1229. A second set of primers (1454-F and 1576-R) was designed to create marker 

CSLF6_1532-1534 for second indel in the first intron (Figure 3.1C; Table 3.2). 
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Table 3.1. Summary of HvCslF6 nucleotide variations.  

Polymorphism
1
 Region Morex

2
 CDC Bold TR251 Amino acid 

change 

SNP_215 Exon 1 G G A  

SNP_453 Intron 1  C A  

SNP_661 Intron 1  G C  

SNP_1029 Intron 1  T G  

Indel_1178-1191 Intron 1  GCCATGAGAAGAG -  

SNP_1229 Intron 1  T C  

Indel_1534-1535 Intron 1  TA -  

SNP_1571 Intron 1  G C  

SNP_2130 Exon 2 A G G  

SNP_2809 Intron 2  T C  

SNP_2999 Intron 2  C T  

SNP_3111 Intron 2  A G  

SNP_3174 Intron 2  C T  

SNP_3205 Intron 2  T C  

SNP_3303 Intron 2  G A  

SNP_4105 Exon 3 G G A A590T 

SNP_4842 Exon 3 T T C  

SNP_5475 Exon 3 C C A  

SNP_6121 3’ 

untranslated  
 T C  

1
 Nucleotide positions refer to xx HvCslF6 DNA sequence (Figure S1). 

2
 cDNA sequence 

EU267181. 

  



 

  

 Figure 3.1. Location of HvCslF6 polymorphism and marker development. A) Schematic illustration of HvCslF6 with exon sequences 

represented by horizontal filled bars and black lines illustrating introns and 3’ untranslated sequences. Vertical lines show locations of 

SNPs and indels identified for CDC Bold and TR251 HvCslF6 (Table 3.1). B) Position of genetic markers developed for HvCslF6 

first intron (Table 3.2). Sequence similarities are represented by dots in the TR251 sequence. SNPs are represented by letters and 

indels are represented by dashes, location of the two diagnostic MnlI restriction site used for CAPS markers are shown. C) Primer 

position for marker CSLF6_1533-1534 D) Position of marker CSLF6_4105 developed for exon 3 with the BglI restriction site 

indicated (Table 3.2).  

6
4
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Table 3.2. Developed genetic markers for HvCslF6. 

Marker Polymorphism 

targeted 

 Tm Enzyme Product sizes 

Forward Reverse CDC Bold TR251 

CSLF6_1028T SNP_1029 1013-F 1318-R 56 °C  306 bp - 

CSLF6_1028G SNP_1029 1013G-F 1318-R 56 °C  - 292 bp 

CAPS 

CSLF6_1028T 

SNP_1029 

Indel_1178-

1191 

SNP_1229 

1013-F 1318-R 56 °C MnlI 136+168 

bp 

- 

CAPS 

CSLF6_1028G 

SNP_1029 

Indel_1178-

1191 

SNP_1229 

1013G-F 1318-R 56 °C MnlI  208+84 

bp 

CSLF6_1532-

1534 

Indel_1534-

1535 

1454-F 1576-R 
57 °C 

 124 bp 122 bp 

CSLF6_4105 SNP_4105 4055-F 4136-R 60 °C BglI 81 bp 55+26 bp 
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Three of the four SNPs found within the coding regions were silent (SNP_215, 

SNP_2130 and SNP_4842) and therefore, unlikely to underlie variation in (1,3;1,4)-β-glucan 

concentration in the CDC Bold / TR251 population. In contrast, SNP_4105 resulting in an 

A590T amino acid variation in HvCSLF6 was considered a potential cause for trait variation. 

The SNP_4105 ablated a BglI restriction site in CDC Bold HvCslF6 allele (Figure 3.1D), which 

was utilized to produce CAPS marker CSLF6_4190 (Table 3.2). Oligonucleotide primers 4055-F 

and 4136-R designed to amplify an 81 bp fragment encompassing SNP_4105 were used in the 

PCR reactions and upon BglI digestion of PCR products generated two fragments of 55 bp and 

26 bp for the TR251 allele, whereas CDC Bold product remained undigested (81 bp).  

The developed CAPS markers CSLF6_1028T, CSLF6_1028G and CSLF6_4190 were used 

for genotyping 190 lines of the CDC Bold x TR251 population, for which (1,3;1,4)-β-glucan 

QTLs are known (Li et al., 2008). None of the analyzed lines showed any recombination 

between the different CSLF6 markers and high (1,3;1,4)-β-glucan lines were preferentially 

associated with the TR251 allele and low (1,3;1,4)-β-glucan lines frequently carried the CDC 

Bold allele (Figure 3.2A). The CSLF6 markers were mapped between Bmac0031 and E32M48.3 

loci on chromosome 7H map constructed for the population (Li et al., 2008). As expected, the 

map location coincided with QTL peak for grain (1,3;1,4)-β-glucan concentration explaining 

39.1 % of (1,3;1,4)-β-glucan variation in the population.  

 

3.5.3 Validation of HvCslF6 markers on new mapping population  

To test the efficacy of developed CSLF6 markers for prediction of high and low (1,3;1,4)-

β-glucan lines, we selected a de-novo mapping population, H93174006 / Merit composed of 186 

RILs for analysis. The lines and parents were grown in three replications at Vegreville in 2009 

and (1,3;1,4)-β-glucan concentration in produced grain was determined. The parental line 

H93174006 consistently showed a higher (1,3;1,4)-β-glucan concentration (5.13 - 5.42 %) than 

Merit (4.63 - 5.14 %) for all three replications.  Among the lines, the (1,3;1,4)-β-glucan 

concentrations ranged from 3.8 % to 7.2 % over the three trials and a significant correlation (p < 

0.001) existed between the replications (Rep1 / Rep2, 0.57; Rep1 / Rep3, 0.40; Rep2 / Rep3, 

0.45). The population demonstrated a near normal distribution (Figure 3.2A), but transgressive  
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Figure 3.2. Association between Ala / Thr 590 variation and (1,3;1,4)-β-glucan concentration in 

grain. A) Frequency distribution of (1,3;1,4)-β-glucan concentration and HvCslF6 haplotypes 

within the TR251 / CDC Bold and B) H93174006 / Merit populations. C) Location of (1,3;1,4)-

β-glucan QTL on chromosome 7H in H93174006 / Merit mapping population.  
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segregation was evident with most lines having either higher or lower (1,3;1,4)-β-glucan 

concentrations than  the parents.  Genotyping of parents using the CSLF6 markers showed that 

the low (1,3;1,4)-β-glucan parent Merit carried the same allelic differences for HvCslF6 as CDC 

Bold, whereas the high (1,3;1,4)-β-glucan parent H93174006 shared HvCslF6 haplotype with 

TR251 (Table 3.3). When the population was split by HvCslF6 allele, a significant difference 

(p<0.001) between (1,3;1,4)-β-glucan concentrations was revealed by a paired t-test.  

To validate the CSLF6 markers on the Merit / H93174006 population, genotyping was 

expanded to 28 SSR markers and 626 DArT markers showing polymorphism between the parent 

lines. The linkage groups assembled from genotype data represented about 70 % of the barley 

genome when aligned to the 2006 DArT marker map (Wenzl et al., 2006). The generated map of 

chromosome 7H showed good representation of markers and covered 115 cM of the 

chromosome with marker order similar to previously published barley maps (Li et al., 2008; 

Wenzl et al., 2006). The CSLF6 markers were mapped between pBp-8110 and Bmac0031 

(Figure 3.2B), which corresponded well to position on CDC Bold / TR251 map. When the 

phenotype and genotype data were tested by a non-parametric analysis of variance (Kruskal-

Wallis test), the highest association between (1,3;1,4)-β-glucan concentration and genotype was 

found for the CSLF6 markers showing K values above 23 (p < 0.001). Similar to the CDC Bold / 

TR251 population, a major QTL for (1,3;1,4)-β-glucan concentration was mapped to the CSLF6 

loci, where a LOD peak of 5.8 was obtained (Figure 3.2B). The 7H QTL accounted for over 13 

% of the trait variation within the population. 

 

3.5.4 Mapping populations with CDC Bold / TR51 polymorphism for HvCslF6 show 

(1,3;1,4)-β-glucan QTL on chromosome 7H  

To determine the universality of the CSLF6 markers, we genotyped parents from six 

mapping populations, for which QTLs for the (1,3;1,4)-β-glucan trait are known. The TR306 / 

Harrington population shows three (1,3;1,4)-β-glucan QTLs, including one on chromosome 7H, 

where the TR306 allele associates with increased grain (1,3;1,4)-β-glucan content (Mather et al., 

1997). The Steptoe / Morex population shows a 7H QTL associated with higher wort (1,3;1,4)-β-

glucan contributed by Steptoe alleles; however high grain (1,3;1,4)-β-glucan content is 

associated with Morex alleles on chromosome 1H and 2H (Han et al., 1995). Alexis / Sloop, 
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Table 3.3. HvCslF6 analysis of barley genotypes used in mapping and expression studies.  

Mapping 

population 

7H 

QTL 

Parent SNP_1028 Indel_1176 - 1189 SNP_1228 SNP_4105 

CDC Bold / 

TR251
a
 

Yes TR251
i
 G - C A 

  CDC Bold T GCCATGAGAAGAG T G 

Merit / 

H93174006
b
 

Yes 
H93174006

i
 G - C A 

  Merit T GCCATGAGAAGAG T G 

Steptoe / Morex
c
 Yes Steptoe 

k
 G - C A 

  Morex T GCCATGAGAAGAG T G 

TR306 / 

Harrington
d
 

Yes 
TR306 

k
 G - C A 

  Harrington T GCCATGAGAAGAG T G 

Alexis / Sloop
e
 No Sloop 

k
 T GCCATGAGAAGAG T G 

  Alexis T GCCATGAGAAGAG T G 

Arapiles / 

Franklin
e
 

No 
Franklin 

k
 T GCCATGAGAAGAG T G 

  Arapiles T GCCATGAGAAGAG T G 

CM27 / Gaidner
f
 No Gairdner

i
 T GCCATGAGAAGAG T G 

  CM27 T GCCATGAGAAGAG T G 

Dicktoo / Morex
g
 No Dicktoo

i
 T GCCATGAGAAGAG T G 

  Morex T GCCATGAGAAGAG T G 

Expression 

study
h
 

 
Himalayan

i
 T GCCATGAGAAGAG T G 

  Sloop T GCCATGAGAAGAG T G 

a
 Li et al., 2008; 

b
 current study; 

c
 Han et al., 1995; 

d
 Mather et al., 1997; 

e
 Panozzo et al., 2007; 

f
 Wei et 

al., 2009; 
g
 Ozeil et al., 1996; 

h
 Burton et al., 2008. 

i
 Parent with higher grain β–glucan concentration.  

k
 

Parent with higher wort β–glucan concentration. 
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Arapiles / Franklin (Panozzo et al., 2007), CM27 / Gairdner (Wei et al., 2009), and Dicktoo / 

Morex (Oziel et al., 1996) populations have all revealed QTLs on chromosomes 1H, 2H, 4H and  

5H but not on chromosome 7H. When the parental lines of the various populations were 

genotyped using the CSLF6 markers, we found that parents of populations showing a QTL on 

7H followed a similar pattern to that of TR251 and CDC Bold. Thus, each parent contributing 

towards a higher (1,3;1,4)-β-glucan concentration shared HvCslF6 haplotype with TR251, 

whereas parents with lower (1,3;1,4)-β-glucan showed the CDC Bold haplotype. For the four 

populations which do not display a QTL on chromosome 7H, all parental lines shared HvCslF6 

haplotype with CDC Bold.  

The 7H QTL for the Steptoe / Morex population relates to (1,3;1,4)-β-glucan 

concentration in wort rather than grain, suggested that 7H QTL may have a higher effect on 

(1,3;1,4)-β-glucan solubility in this population. This may be explained by higher HvCslF6 

expression in Steptoe, as high HvCslF6 expression is known to increase soluble (1,3;1,4)-β-

glucan levels in transgenic barley (Burton et al., 2010) and wheat (Nemeth et al., 2010). 

Conversely, RNAi mediated down-regulation of HvCslF6 transcription in wheat significantly 

reduces the hot water extractible (1,3;1,4)-β-glucan (Nemeth et al., 2010). On the other hand 

Morex is an elite malting barley selected for and these differnces may be due to differences in 

beta-glucanase activity in the wort.   

To study if any of CSLF6 markers could be associated with HvCslF6 expression levels, the 

barley lines Sloop and Himalayan were selected for genotyping. The Himalayan line shows 

higher HvCslF6 expression and (1,3;1,4)-β-glucan concentration than Sloop (Burton et al., 

2008). However, genotyping of the Sloop and Himalayan lines did not reveal any polymorphism 

for CSLF6 markers (Table 3.3). Both lines shared the CDC Bold haplotype, which suggest that 

higher level of HvCslF6 expression in Himalayan barley endosperm is not due to any allele 

differences found in this study.  As these polymorphic sites did not explain the differences in 

expression levels seen between Himalayan and Sloop, they were considered less likely to cause 

variation in HvCslF6 expression between TR251 and CDC Bold. A preliminary evaluation of 

HvCslF6 transcript levels has not indicated any major difference in expression levels between 

CDC Bold and TR251 during kernel development (unpublished results). However, further 

studies are needed to validate this initial observation. 
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3.5.5 Canadian barley genotype screening  

 To determine the relative abundance of the HvCslF6 alleles in a wider context, 150 

advanced breeding lines from Alberta Agriculture Food and Rural Development were screened 

using the CSLF6_4190, CSLF6_1028T, CAPS CSLF6_1028T and CAPS CSLF6_1028G 

markers. Only seven lines did not conform to the CDC Bold and TR251 pattern of alleles and 

showed recombination between markers. The majority of lines (76 %) were consistent with the 

CDC Bold haplotype. This over-representation probably reflects strong selection for low 

(1,3;1,4)-β-glucan concentration in the development of malting barleys in Canada. The large 

number of genetic variations within this gene between TR251 and CDC Bold makes it likely that 

other mutations could be present elsewhere in the HvCslF6 gene in this larger barley population.  

 

3.5.6 Putative phosphorylation motif precedes CSLF6_A590T substitution  

HvCslF6 belongs to the CesA / Csl superfamily composed of members with eight predicted 

transmembrane domains, a cytoplasmic CesA domain, three conserved aspartate residues and a 

QxxRW signature motif within the catalytic domain (Chen et al., 2010; Nühse et al., 2004). The 

variant A590T amino acid difference between CDC Bold and TR251 sequences was located 

within the class specific region (Chen et al., 2010), which falls between the second and third 

conserved aspartate residues (Figure 3.3). The corresponding region in Arabidopsis contains two 

functional phosphorylation sites, both of which regulate enzyme activity and are important for 

cell wall development (Nühse et al., 2004) by regulating microfibril development (Chen et al., 

2010). A test for possible phosphorylation sites within the two HvCslF6 variants using PhosPhat 

3.0 indicated seven phosporylation sites with a score > 0.8 for both CDC Bold and TR251 

HvCslF6 variants, whereas 30 sites with a probability score > 0.8 were identified using Netphos 

2.0. One of the high-scoring sites (Y589 PhosPhat3.0 score 1.1; S587 NetPhos2.0 score 0.98) 

was found immediately N-terminal of the A590T substitution site and carried a SHPSPY motif 

(Y589 [A / T]; score = 1.1 [A] score = 1.2 [T]).  In silico analysis of the HvCSLF6 proteins 

showed conservation of this SHPSPYAA site within barley, rice and wheat (data not shown).  

Also, HvCSLF1, 4, 7, 8, and 9 as well as HvCSLH1 were predicted to carry a phosphorylation 

site within this region, although the SHPSPY[T / A]AAA motif was not conserved in the 

paralogous proteins.  Whether differences in HvCSLF6 phosphorylation status caused by A590T. 



 

 

 

Figure 3.3. Alignment of HvCSLF and HvCSLH class specific regions. Top: Position of class specific region in relation to the 

transmembrane domains (TM), conserved aspartic acid residues (DD, DxD, TED) and catalytic domain (QxxRW) in generic CESA / 

CSL proteins. Bottom: Sequence alignment of class specific regions with third conserved aspartic residue as landmark (TED). 

Predicted phosphorylation sites are highlighted with an asterisk. The position of the amino acid variant described in HvCslF6 is 

indicated by a line. 

7
2 
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variation is the underlying cause for 7H (1,3;1,4)-β-glucan QTL remains to be confirmed by 

further studies.                                                                

3.6 Conclusions 

The HvCslF6 allele variants described in this study resulted in the development of six 

markers related to grain (1,3;1,4)-β-glucan concentration (Table 3.2).  The most significant 

allelic variation was SNP_4105 predicted to cause differences in HvCSLF6 phosphorylation 

status which could affect enzymatic activity.  Whether this variation is the underlying cause for 

7H (1,3;1,4)-β-glucan QTL remains to be determined by further studies.  However, this amino 

acid variation could affect the fine structure of (1,3;1,4)-β-glucan, which makes it valuable to 

breeders. Selection for the TR251 HvCslF6 allele may increase the amount of soluble fiber in 

barley making it more desirable to the increasingly health conscious consumer. Equally, a 

malting barley breeder would benefit from CSLF6 markers in being able to select for reduced 

concentration of soluble (1,3;1,4)-β-glucan. 
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CHAPTER 4 

GENOTYPE, ENVIRONMENT AND GxE INTERACTION INFLUENCE (1,3;1,4)-β-

GLUCAN FINE STRUCTURE 

 

4.1 Study 2* 

 In this study, HPAEC-PAD was used to phenotype 91 RIL6 lines produced in two 

environments in order to determine heritability of (1,3;1,4)-β-glucan fine structure and an 

associated genomic region. 
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4.2 Abstract 

Ninety-one RIL5 lines were phenotyped for (1,3;1,4)-β-glucan grain content, cellotriose 

content (DP3), cellotetraose content (DP4) and cellotriose:cellotetraose (DP3:DP4) ratio in two 

environements. DP3, DP4, (1,3;1,4)-β-glucan and total DP3+DP4 were strongly positively 

correlated to each other suggesting no preference for DP3 or DP4 subunit production in high or 

low (1,3;1,4)-β-glucan lines.  DP3:DP4 ratio showed no strong correlation with any other 

measured trait. Significant affects arising from genotype and environment were associated with 

(1,3;1,4)-β-glucan, DP3 and DP4 and DP3:DP4 ratio. Only DP3:DP4 ratio showed a significant 

GxE interaction. Single marker analysis showed an association between marker CSLF6_4105 

and (1,3;1,4)-β-glucan fine structure in Vegreville but not Castor supporting significant GxE 

interaction in (1,3;1,4)-β-glucan fine structure. Association mapping of candidate markers in 119 

barley genotypes of diverse origin grown in greenhouse conditions shows that CSLF6_4105 is 

associated with (1,3;1,4)-β-glucan concentration, Bmac273e is associated with (1,3;1,4)-β-glucan 

concentration and DP3:DP4 ratio and Bmac504 and Bmac211 are associated with DP3:DP4 

ratio. This study suggests that DP3:DP4 ratio is strongly affected by genotype and may be 

influenced by selective breeding. 

 

4.3 Introduction 

(1,3;1,4)-β-glucan is a glucan polymer that accumulates in the cell walls of grasses.  

(1,3;1,4)-β-glucan is a mixed linkage linear polymer made up by β-D-glucopyranosyl molecules 

forming either β-1,3 or β-1,4 linkages. The β-1,4-linked molecules are constituted primarily of 

non-randomly arranged cellotriose (DP3) and cellotetraose (DP4) units present in ratios ranging 

from 2.3:1 to 4.8:1 depending on genotype (Collins et al., 2010). More than 90 % of (1,3;1,4)-β-

glucan consists of DP3 and DP4 subunits joined together by 1,3 linkages and only a small 

percentage are represented by higher order cellodextrin (DP5+) units (Lazaridou et al., 2004; 

Wood and Fulcher, 1983). 

(1,3;1,4)-β-glucan is a desired functional, bio-active ingredient of interest in human 

nutrition (Cui and Wood, 2000). The health benefits of including high viscosity (1,3;1,4)-β-

glucan in human nutrion include reduced plasma cholesterol and a better control of postprandial 

serum glucose levels (Lazaridou and Biliaderis, 2007; Wood, 2007; Bhatty, 1999). DP3:DP4 
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ratios influence the viscosity, gelling properties and rheological behavior of (1,3;1,4)-β-glucan 

(Wood, 2010). The structural features of (1,3;1,4)-β-glucan are important determinants of their 

their physiological responses when they are considered as ingredients in cereal based foods and 

other formulated products (Cui et al., 2000; Lazaridou et al., 2003). 

The fine structure of (1,3;1,4)-β-glucan is influenced both by genetic and environmental 

factors (Wood, 2007; Doehlert and Simsek, 2012). DP3:DP4 ratio differ between grass species; 

barley has the highest and most varied DP3:DP4 ratio ranging from 2.8 - 3.3:1, rye is close to 

barley with 3.0 - 3.2:1 and oats show the lowest and least divergent ratios with a value of 2.1 - 

2.3:1 (Wood, 2007). In oats it was found that wet environments were associated with a higher 

DP3:DP4 ratio (Doehlert and Simsek, 2012). Hulled, hulless, long awn, short awn and low 

amylose (waxy) barley genotypes showed no effect of environment on (1,3;1,4)-β-glucan fine 

structure, but waxy starch phenotype increases the DP3:DP4 ratio (Wood et al., 2003). Over 

expression of Cellulose synthase like F4 (HvCslF4) in Golden Promise increases DP3:DP4 ratio 

from 2.8:1 to 3.1:1 while overexpression of HvCslF6 in the same genetic background decreases 

the DP3:DP4 ratio to 2.1:1 (Burton et al., 2011). RNAi mediated silencing of TaCslF6 in wheat 

(Triticum aestivum) did not affect the DP3:DP4 ratio but reduces both the molecular weight and 

total concentration of grain (1,3;1,4)-β-glucan (Nemeth et al., 2010).  

The main objective of this study was to determine the interaction of environment and 

genotype on (1,3;1,4)-β-glucan fine structure in two row, spring barley genotypes with normal 

starch characteristics. A recombinant inbred line (RIL) population (sixth generation) was grown 

at two locations in Alberta, Canada. The seeds from two biological replicates at each site were 

used to determine (1,3;1,4)-β-glucan grain content and its fine structure. These results suggests 

that DP3, DP4, DP3:DP4 ratio and (1,3;1,4)-β-glucan are significantly affected by genotype and 

environment. 

 

4.4 Materials and methods 

4.4.1 Plant material 

A two-row, spring barley (Hordeum vulgare L.) genotype Merit (Busch Agricultural 

Resources LLC; Fort Collins, Co, USA) and H93174006 (derived from a H92076F1 x TR238 

cross made at the Field Crop Development Center, Lacombe, Alberta, Canada) were crossed to 

produce a F1 hybrid and subsequent RIL population of barley (CDC Lacombe, Alberta, Canada). 
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The Merit / H93174006 population was advanced by single seed descent through the F3 and F4 

generations in a greenhouse at Lacombe during 2007 and 2008. The F5 seeds from each F4 plant 

were bulked and advanced to produce F4:6 seeds for the study. 

A set of 184 F5 RILs and the two parental lines were planted under rain-fed conditions in 

2009 at Vegreville (53 ° 31' N, 112 ° 6' W, 639.3 m altitude), with the Malmo series of an 

eluviated black chemozemic soil, and at Castor (52 ° 8' N, 111 ° 54' W, 807.7 m altitude), with a 

dark brown chemozemic soil, at both locations in Alberta, Canada. The two sites were 

characterized by distinct soil moisture conditions. The average annual precipitation and within 

season rainfall (June to August) from 1977 to 2007 was 340 mm and 172 mm at Castor, 

compared with Vegreville which had 382 mm and 193 mm, respectively (AgroClimatic 

Information Service (ACIS) 2009; Environment Canada 2009). The year of 2009 had higher 

rainfall in Castor (283 mm) compared to Vegreville (275 mm) according to weather stations 

situated at Vegreville and Halkirk (http://agriculture.alberta.ca/acis/alberta-weather-data-

viewer.jsp). Weeds were controlled by Round-up Weathermax application before seeding and by 

Achieve 40DG and Buctril M spraying later in the growing season. Grains were harvested and 

stored at room temperature until used for analysis. 

A total of 119 barley genotypes were grown to assess candidate markers associated with 

(1,3;1,4)-β-glucan grain concentration and DP3:DP4 ratio. The genotypes were grown in the 

University of Saskatchewan greenhouse under a night / day temperature range of 19 - 28 °C with 

an 18 hour photoperiod with an average photosynthetically active radiation of 385 μmol 
-2

s
-1

. 

Each genotype was grown in triplicate. Barley lines were grown over 150 days and harvested at 

maturity. Grains were stored at room temperature until used for analysis. 

 

4.4.2 Determination of (1,3;1,4)-β-glucan grain concentration 

(1,3;1,4)-β-glucan grain concentration was determined on the parents and eighty-nine 

randomly selected RILs from two biological replications in both environments. Grain samples 

(10 g) were milled to flour using an Udy-Mil Cyclone sample grinder (UDY Corporation, Fort 

Collins, CO, USA) equipped with a 0.5 mm sieve. To determine total (1,3;1,4)-β-glucan grain 

concentration, flour samples (100 mg) were subjected to a lichenase digestion similar to the 

AACCI method 32 – 23.01 as described in (1,3;1,4)-β-glucan (mixed linkage) Kit manual 

(Megazyme, Wicklow, Ireland) with minor modifications as follows. Flour (100 mg) was placed 
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in 15 ml screw cap tubes and was wetted with 200 μl of 50 % (v / v) ethanol. 4 ml of 20 mM 

sodium phosphate buffer (pH 6.5) was added to the wetted flour sample. The flour suspension 

was boiled for 5 min with brief vortexing every 60 s to keep the material well suspended and 

allow effective inactivation of native enzymatic activity. The solution was vortexed and allowed 

to equilibrate to 50 °C for 5 min. Lichenase (5 U, 200 μl; Megazyme, Wicklow, Ireland) was 

then added and the solution was incubated at 50 °C with constant shaking for 120 min. 5 ml of 

200 mM sodium acetate (pH 4) was added to stop lichenase digestion. The digested samples 

were centrifuged at 1500 g for 15 min, and the supernatant was collected and filtered through a 

C18 column (Thermos Scientific. Bellefonte, PA, USA). Aliquots of the filtered supernatant 

containing the lichenase digested (1,3;1,4)-β-glucan were saved for determination of (1,3;1,4)-β-

glucan grain concentration and fine structure. The lichenase digest used for (1,3;1,4)-β-glucan 

grain concentration was incubated with beta-glucosidase for 20 min at 50 °C and the released 

glucose concentration was analysed as described (AACC method 32 – 23.01). Barley genotypes 

included in the association mapping panel were ground as described for the RIL population but 

(1,3;1,4)-β-glucan was determined by the calcoflour flow injection method (Aastrup and 

Jørgersen, 1988) using 25 mg of flour. Each sample was analysed in triplicate, and pooled 

averages were used in subsequent statistical analysis. 

 

4.4.3 HPAEC-PAD determination of DP3 and DP4 

Freshly prepared lichenase digested (1,3;1,4)-β-glucan containing filtered supernatant 

was diluted to 1:10 in degassed distilled water before samples were analysed by HPAEC-PAD. 

The filtered, diluted lichenase digest solution were injected into a CarboPac PA1 column using a 

Dionex ICS 5000 system equipped with an auto-sampler (Dionex, Sunnyvale, CA, USA). 

Samples were eluted at 0.8 ml ⁄ min with 200 mM sodium hydroxide for 2 min followed by a 0 to 

250 mM sodium acetate gradient in 200 mM sodium hydroxide over 15 min. The gradient was 

followed by a 10 min flush with 200 mM sodium hydroxide. Sample blanks were included after 

every fifth run to ensure absence of column contamination. (1,3:1,4)-β-gluco-triose (Megazyme, 

Wicklow, Ireland cat. No O-BGTRIB) and (1,3:1,4)-β-gluco-tetraose (Megazyme, Wicklow, 

Ireland cat. No O-BGTETB) were included as controls under the same chromatographic 

conditions and in each set of the two. Each sample was analysed in duplicate and values reported 

are the average value obtained. Standard curves were calculated for each run. Samples of oat and 
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barley flour supplied with the Megazyme β-glucan (mixed linkage) kit were used as internal 

controls. The performance of optimized and accuracy of the method was evaluated by calculating 

the coefficient of determination (R
2
), level of detection (LOD), level of quantification (LOQ) and 

intermediate precision. The suitability of chromatography column was assessed by determining 

peak resolution and peak asymmetry. Calibration curves using five concentrations [7.8, 15.6, 

31.25, 62.5, 125 μM injection (volume 10 µL)] for each standard was prepared to develop a 

regression equation and calculate R
2
. On the basis of calibration curves, LOD and LOQ scores 

were calculated using formulae found in ICH harmonized tripartite guidelines (2005). 

 

4.4.4 Isolation of genomic DNA 

Leaves of each barley plant were harvested at the 5 to 10 leaf stage, frozen in liquid 

nitrogen and stored at -80 °C before DNA was extracted and quantified as described (Li et al., 

2008). Primers used for CSLF6_4015 consisted of a forward primer 4055F - GACGCCTTCG 

TGGACACCATCC and reverse primer 4136R – CTCGTCGGCCACGATCCCCT. The 

genotyping reactions for marker CSLF6_4105 consisted of 100 ng template DNA, 5 pmol of 

forward and reverse primers, 10 mM TriseHCl pH 8.3, 3.5 mM MgCl2, 25 mM KCl, 20 mM 

dNTP, 0.5 U of Taq Polymerase (Thermo Fisher Scientific, Waltham, MA, USA) in a total 

volume of 25 μL. Amplifications were done in an Eppendorf AG Cycler (Eppendorf, Hamburg, 

Germany) programmed for an initial denaturation at 94 °C for 5 min followed by 40 cycles of 45 

s denaturation at 94 °C, 20 s annealing at 60 °C and 20 s extension at 72 °C. PCR products were 

digested with restriction enzyme BglI (New England Biolabs, Ipswich, MA, USA), respectively, 

followed by analysis of digestion products by two percent (w / v) agarose gel electrophoresis. 

 

4.4.5 Statistical analysis 

General linear model (GLM) was applied to calculate analysis of variance (ANOVA) 

using Minitab 16 statistical software (Minitab Inc., State College, PA, USA). Mean sum of 

squares (MSS) from ANOVA was used to calculate broad sense heritability (h
2
) (Singh et al., 

1993), categorized as low (≥ 30 %), moderate (30 to 60 %) and high (≤ 60 %) (Robinson et al., 

1949). Variation due to genetics, environment, GxE interaction and error were calculated by 

dividing the individual components least square by the total adjusted least squares. Correlations 
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were determined using Pearson correlation function.  Single marker association was done by one 

way ANOVA using marker class as the fixed factor and phenotype as response variable. 

 

4.5 Results and discussion 

4.5.1 Plant material and site selection 

The Merit / H93174006 RIL5 population was selected due to the wide range (1,3;1,4)-β-

glucan grain concentration (see below) and normal starch charecteristics. The RIL5 population 

was planted under rain fed conditions in 2009 at Vegreville, and at Castor, both locations in 

Alberta, Canada. The two sites are characterized by distinct soil moisture conditions with the 

Castor site traditionally dryer than the site at Vegreville. However, the year of 2009 had timely 

and higher rainfall in Castor (283 mm) compared to Vegreville (275 mm). 

 

4.5.2 (1,3;1,4)-β-glucan grain concentration 

Grain (1,3;1,4)-β-glucan concentration was consistently higher in H93174006 (5.57 ± 

0.23 %) compared to Merit in the Castor site (4.58 ± 0.02 %). The same trend was seen in 

Vegreville with H93174006 having higher (1,3;1,4)-β-glucan grain concentration (5.34 ± 0.09 

%) than Merit (4.89 ± 0.26 %). Mid parent values across both environments were 5.45 ± 0.21 % 

for H93174006 and 4.78 ± 0.11 % for Merit. In the RILs the (1,3;1,4)-β-glucan values were 

normally distributed across both environments and in all biological replications (Figure 4.1). 

Transgressive segregation was observed in all replications and environments. The widest range 

of (1,3;1,4)-β-glucan concentrations observed was in the Castor environment (4.16 ± 0.10 % to 

6.22 ± 0.01 %; mean 5.11 ± 0.48 %) but the Vegreville (1,3;1,4)-β-glucan concentrations had a 

higher mean value (5.21 ± 0.38 %) but a smaller range (4.40 ± 0.20 % to 6.35 ± 0.23 %). The 

higher (1,3;1,4)-β-glucan grain concentrations found in Vegreville, the dryer environment, was 

expected as a negative correlation between grain (1,3;1,4)-β-glucan concentration and moisture 

has been previously reported (Perez-Vendrell et al., 1996). 
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Figure 4.1. Frequency distribution of (1,3;1,4)-β-glucan of 91 barley RILs. Parental values are 

indicated as M (Merit) and H (H93174006). 
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4.5.3 HPAEC-PAD separation of DP3 and DP4 fractions from lichenase digestion 

HPAEC-PAD analysis of the carbohydrate fractions showed excellent separation of 

several small oligosaccharides released from lichenase digestion. (1,3:1,4)-β-gluco-triose 

standard showed a symmetric peak eluting at 12 min, while the (1,3:1,4)-β-gluco-tetraose 

standard showed a symmetric peak eluting at 13 min (Figure 4.2). To quantify DP3 and DP4 

peaks a serial dilution of the DP3 and DP4 standards was used to identify a range of 

concentrations corresponding to a linear response curve. Standards showed linear response to 

concentrations between 3.9 μM to 125 μM for both DP3 and DP4 with higher concentrations 

showing a nonlinear response. The concentration range showing linear response corresponds to 

0.20 mg / 100 mg to 6.31 mg / 100 mg for DP3 and 0.26 mg / 100 mg to 8.33 mg / 100 mg for 

DP4. Intermediate precision was calculated to be 6.83 % for DP3 and 7.37 % for DP4. The 

quantitation limit (LOQ) was calculated at 0.35 mg / 100 mg for DP3 and 1.08 mg / 100 mg for 

DP4 which is lower than all concentrations determined for the barley lines subjected to lichenase 

digestion (Table 4.1). HPAEC-PAD analysis of the lichenase digest revealed several peaks that 

could be identified as sucrose, raffinose, maltose, (1,3;1,4)-β-gluco-triose and (1,3;1,4)-β-gluco-

tetraose (Figure 4.2). Other peaks were putatively identified as cellopentose, cellohexose and 

higher order cellobiose units. Due to the unavailability of standards and relatively low 

measurable areas at this dilution these peaks were considered uninformative. 

 

4.5.3.1 Cellotriose (DP3) concentrations 

The two parents significantly differed in DP3 concentration in both environments (Figure 

4.3). In the Castor environment DP3 concentration was higher in H93174006 (3.48 ± 0.15 mg / 

100 mg) compared to Merit (3.18 ± 0.04 mg / 100 mg). Vegreville was similar in respect to DP3 

levels with H93174006 having higher DP3 concentration (3.89 ± 0.07 mg /100 mg) than Merit 

(3.46 ± 0.02 mg / 100 mg). Mid parent DP3 concentrations across both environments were 3.68 

± 0.23 mg / 100 mg for H93174006 and 3.32 ± 0.16 mg / 100 mg for Merit. DP3 concentrations 

were normally distributed in both Castor and Vegreville. Mean DP3 concentrations were higher 

for the Vegreville environment compared to Castor (3.58 ± 0.30 mg / 100 mg Vegreville, 3.46 ± 

0.36 mg / 100 mg Castor) but Castor had a wider range of DP3 concentrations (2.81 - 4.31 mg / 

100 mg; Vegreville, 2.62 - 4.17 mg / 100 mg Castor). The DP3 concentrations showed 

transgressive segregation similar to the (1,3;1,4)-β-glucan grain concentration (Figure 4.3). 
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Figure 4.2. HPAEC-PAD chromatograph of treated and untreated barley flour. HPAEC-PAD 

chromatograph showing separation of fructose, sucrose, raffinose, maltose, cellotriose and 

cellotetraose on a lichenase digested sample (Top) and no lichenase control (Bottom).  
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Table 4.1. HPAEC-PAD response to chromatographic conditions. 

Standard tR (min) R
2
 LOD (μM) LOQ (μM) IP (%) PA PR 

DP3 11.82 0.997 1.03 1.99 6.83 1.13 6.86 

DP4 13.07 0.997 3.13 6.02 7.37 1.20 6.86 

N 5 5 5 5 5x5 5 5 

tR retention time, R
2
 coefficient of determination, LOD level of detection, LOQ level of 

quantification, IP intermediate precision, PA peak asymmetry, PR peak resolution.  
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Figure 4.3. Frequency distribution of HPAEC-PAD characterized traits. A) Cellotriose 

concentration B) Cellotetraose concentration C) Cumulative cellotriose and cellotetraose 

concentration D) Cellotriose to cellotetraose ratio.  
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4.5.3.2 Cellotetraose (DP4) concentrations  

DP4 concentraions also showed significant differences between the two parents in both 

environments (Figure 4.3).  The Castor environment showed higher concentrations of DP4 in 

H93174006 (1.57 ± 0.07mg / 100mg) compared to Merit (1.45 ± 0.02 mg / 100 mg). H93174006 

also showed higher levels of DP4 in the Vegreville environment (1.79 ± 0.02 mg / 100 mg) 

compared to Merit (1.60 ± 0.04 mg / 100 mg). Mid parent DP4 concentrations across both 

environments were 1.68 ± 0.03 mg / 100 mg for H93174006 and 1.53 ± 0.02 mg / 100 mg for 

Merit. DP4 concentrations were normally distributed in both the Castor and Vegreville 

environments. The range and mean DP4 concentrations were greater in Vegreville (1.31 ± 0.09 -

2.00 ± 0.06 mg / 100 mg; mean 1.65 ± 0.14 mg / 100 mg) compared to Castor (1.24 ± 0.09 -1.91 

± 0.03 mg / 100 mg; mean 1.59 ± 0.17 mg / 100 mg). 

 

4.5.3.3 Cumulative cellotriose and cellotetraose (DP3+DP4) concentrations 

Cumulative cellotriose and cellotetraose (DP3+DP4) were calculated as the sum of the 

DP3 and DP4. Mid parent cumulative DP3+DP4 concentrations across both environments were 

5.36 ± 0.35 mg / 100 mg for H93174006 and 4.84 ± 0.24 mg / 100mg for Merit. H93174006 had 

higher concentrations of cumulative DP3+DP4 in Castor (5.04 ± 0.22 mg / 100 mg) compared to 

Merit (4.63 ± 0.05 mg / 100 mg). In Vegreville, H93174006 had higher cumulative DP3+DP4 

(5.68 ± 0.24 mg / 100 mg) than that of Merit (5.06 ± 0.46 mg / 100 mg). Vegreville DP3+DP4 

concentrations ranged from 4.11 ± 0.18 - 6.36 ± 0.23 mg / 100 mg and Castor ranged from 3.86 

± 0.25 - 6.09 ± 0.03mg / 100 mg. Mean concentrations of cumulative DP3+DP4 were 

significantly higher in Vegreville (5.22 ± 0.43 mg / 100 mg) compared to Castor (5.05 ± 0.53 mg 

/ 100 mg).  

Means for DP3, DP4, DP3+DP4 and (1,3;1,4)-β-glucan were all significantly higher in 

Vegreville compared to Castor. Castor received more precipitation, earlier, compared to 

Vegreville during the growing season of 2009 making it a more favourable growing 

environment. While no relationship has been previously shown for DP3 or DP4 subunits and 

environment, the results were not unexpected as > 90 % of (1,3;1,4)-β-glucan consists of these 

two subunits (Lazaridou et al., 2004; Wood and Fulcher, 1983). 
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4.5.3.4 DP3:DP4 ratio 

DP3:DP4 ratio was determined by dividing the peak area of DP3 by the peak area of DP4 

and multiplying by a factor of 1.321 which correlates to the molecular weight ratio of (1,3:1,4)-

β-gluco-triose and (1,3:1,4)-β-gluco-tetraose (Burton et al., 2011). Ratios were confirmed by 

comparing calculated values of DP3 divided by DP4 and multiplied by the molecular constant; 

both calculations correlated with an r value greater than 0.99. The parents showed significantly 

different values for DP3:DP4 ratio in Vegreville and Castor with H9317004 having a higher ratio 

(2.90 ± 0.03 and 2.94 ± 0.00, respectively) compared to Merit (2.89 ± 0.01 and 2.92 ± 0.01, 

respectively). DP3:DP4 ratios were higher in Castor (2.89 ± 0.06) compared to Vegreville (2.87 

± 0.07).  The ranges between the environments were similar with 2.69 ± 0.01 – 3.05 ± 0.00 in 

Vegreville and 2.76 ± 0.03 - 3.04 ± 0.00 in Castor. The Vegreville environments show normal 

distribution while the Castor environment is skewed towards higher values (Figure 4.3).  

The higher precipitation environment of Castor was associated with a higher DP3:DP4 

ratio which is similar to finding in oats (Doehlert and Simsek, 2012). In oats it was found that 

moist environments were associated with a higher frequency of DP3 subunits. In vitro studies 

suggest the (1,3;1,4)-β-glucan synthetic machinery is located within Golgi membranes and 

utilizes uridine diphosphoglucose (UDP-Glc) from the cytosol (Gibeaut and Carpita, 1994). In 

vitro synthesis of (1,3;1,4)-β-glucan from maize coleoptiles requires Golgi vesicles, UDP-Glc, 

and either Mn
2+

 or Mg
2+

 as cofactors (Gibeaut and Carpita, 1993; Becker et al., 1995). Analysis 

of in vitro synthesised products has led to a model suggesting three sites on the (1,3;1,4)-β-

glucan complex synthesize three β-(1,4) linkages at a time, followed by a β-(1,3) linkage in 

optimum conditions (Buckeridge et al., 1999). If substrate concentration is below a certain 

threshold and unable to fill the three spaces available, the complex will lengthen the β-(1,4) 

series and skip the β-(1,3) linkage creating an irregular pattern of β-(1,3) and β-(1,4) linkages. 

This proposed mechanisms for (1,3;1,4)-β-glucan synthesis inherently suggests environment 

would play a role in the fine structure of (1,3;1,4)-β-glucan (Buckeridge et al., 1999). Findings in 

this study may support this model. The results indicate that wet, more favorable growing 

conditions in Castor could be associated with higher UDP-Glc concentrations in the cell leading 

to a more favourable environment for DP3 production. Conversely the frequency of DP4 
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subunits may be increased in dry environments due to reduced availability of UDP-Glc in the 

cell. 

 

4.5.4 Correlations 

Pearson correlation was used to analyse the relationship between DP3, DP4, DP3+DP4, 

(1,3;1,4)-β-glucan concentrations and DP3:DP4 ratio averaged across all environments. The 

DP3, DP4 and DP3+DP4 correlated significantly with (1,3;1,4)-β-glucan concentrations 

determined colormetrically (r= 0.658, 0.682 and 0.670; p < 0.001 respectively) (Table 4.2). 

Correlations suggest that as total (1,3;1,4)-β-glucan increases; neither the DP3 nor DP4 subunits 

are preferentially increased. The contribution of higher MW subunits (DP5+) has been shown to 

account for up to approximately nine percent of the content of (1,3;1,4)-β-glucan (Lazaridou et 

al., 2004). Differences in methods used to determine (1,3;1,4)-β-glucan vs individual subunits 

and the exclusion of higher molecular weight subunits may explain differences in values between 

grain (1,3;1,4)-β-glucan concentrations and DP3+DP4 concentrations. Calculated DP3+DP4 

values determined by the HPAEC-PAD method showed values that were slightly higher than 

expected by colormetric evaluation. Both the (1,3:1,4)-β-gluco-triose and (1,3:1,4)-β-gluco-

tetraose standards have a purity of > 95 % which may contribute to a slight overestimation of 

DP3 and DP4 compared to the colormetric evaluation. 

DP3 and DP4 concentrations are positively correlated with DP3+DP4 concentrations (r = 

0.996, 0.985 respectively) suggest that the subunits are not preferentially produced in higher or 

lower (1,3;1,4)-β-glucan lines in this population. These correlations are the same when analysed 

on an environmental or biological replicate basis. DP3 and DP4 are highly correlated to each 

other (r = 0.967); also suggesting that subunit production is not competitive (Table 4.2). DP4 

concentrations and DP3:DP4 ratio are negatively correlated (r = -0.147; p = 0.164). When 

analysed on an environment basis, Castor had significant negative relationships between DP4 

concentrations and DP3:DP4 ratio (r = -0.25, p = 0.02) while Vegreville showed no significant 

relationship (r = -0.08, p = 0.49). This may suggest the efficiency of DP4 subunit production 

affects (1,3;1,4)-β-glucan fine structure in higher rainfall environments. No significant 

correlation is observed for DP3 concentrations and DP3:DP4 ratio when analysed across 

environments (0.09, p = 0.40). These results suggest that (1,3;1,4)-β-glucan fine structure is  
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Table 4.2. Correlations between cellotriose, cellotetraose, cumulative cellotriose and 

cellotetraose, (1,3;1,4)-β-glucan and DP3:DP4 ratio in 91 barley RIL barley. 

 DP3 DP4 DP3+DP4 Ratio 

DP4 0.967*** -   

DP3+DP4 0.996*** 0.985*** -  

Ratio 0.089
ns

 -0.147
ns

 0.014
 ns

 - 

(1,3;1,4)-β-glucan 0.658*** 0.682*** 0.670*** -0.050
ns 

*** p < 0.001,**p < 0.01 * p < 0.05, 
ns

 p > 0.05  
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affected by environment by a decrease in the frequency of DP4 subunits in higher rainfall 

environment is in accordance with the model proposed by Buckeridge et al. (1999). 

 

4.5.5 Genotype, environment, GxE and heritability 

Genotype and environment show a significant effect for all (1,3;1,4)-β-glucan 

characteristics analysed. Broad sense heritability (h
2
) was calculated for each of the traits studied 

and they ranged from low to moderate values. DP3, DP4, DP3+4 and (1,3;1,4)-β-glucan 

concentrations had similar h
2
 of 24.1 %, 21.3 %, 23.1 % and 30.9 % respectively. DP3:DP4 ratio 

had the highest heritability score at 43.1 %. All values showed a significant effect of 

environment. Only DP3:DP4 showed a significant interaction between genotype and 

environment (Table 4.3). Analysis of variance showed environment explained 68.5 % of the 

variation in DP3 concentration, 73.3 % of the variation in DP4 concentration, 69.6 % of the 

variation in DP3+DP4 content, 49.1 % of the variation in (1,3;1,4)-β-glucan and 46.6 % of the 

variation in DP3:DP4 ratio. Analysis showed genotype is significant for DP3, DP4, DP3+DP4 

and (1,3;1,4)-β-glucan concentration (Table 4.3). This indicates that there is a low to moderate 

genetic influence associated with these characteristics. Environment was also a factor with mean 

values for all characteristics being higher in Castor compared to Vegreville. DP3, DP4 and 

DP3+DP4 have low heritability scores (~ 0.22) indicating they are unlikely to be a direct target 

for modification through breeding. The lower h
2
 of the DP3, DP4 and DP3+DP4 may reflect the 

cumulative effect of environment on the total accumulation of (1,3;1,4)-β-glucan in the cell wall 

as well as the effect of environment on the ratio of DP3:DP4 ratio. 

 

4.5.6 Association of marker CSLF6_4105 by single marker analysis 

DP3:DP4 ratio has a higher heritability than all other measured (1,3;1,4)-β-glucan 

characteristic which suggests a stronger genetic control to maintain the ratio of DP3 to DP4 in 

barley (Table 4.3). Overexpression of CslF6 in barley influences (1,3;1,4)-β-glucan fine structure 

(Burton et al., 2011). It has been previously demonstrated in the Merit / H93174006 population 

(Cory et al., 2012) the marker CSLF6_4105 can explain 13 % of the variation in grain (1,3;1,4)-

β-glucan concentration. Single marker analysis revealed the CSLF6_4105 is associated with 

(1,3;1,4)-β-glucan concentration in both environments attributing to 16.8 % of the variation in 

Vegreville and 8.5 % of the variation in Castor (Table 4.4). DP3:DP4 ratio was also associated  



91 
 

 

 

 

 

 

 

 

 

 

Table 4.3. General linear model results showing the significance of genetics, environment, GxE 

interaction and broad sense heritability of four measured traits. 

Trait Genotype (G) Environment (E) GxE Replication Heritability(h
2
) 

DP3 0.294*** 1.170** 0.137
 ns

 6.90x10
-3ns

 24.1 % 

DP4 6.40x10
-2

*** 0.332** 3.18x10
-2ns

 7.77x10
-3ns

 21.3 % 

DP3+DP4 0.627***
 

2.67** 0.298
ns

 2.14x10
-2ns

 23.1 % 

BG 0.553*** 0.873* 0.198
ns

 1.99x10
-2ns

 30.9 % 

Ratio 1.18x10
-2

*** 9.51x10
-3

* 3.76x10
-3

*** 5.40x10
-3ns

 43.1 % 

*** p < 0.001, * p < 0.05, 
ns

 p > 0.05 

BG - (1,3;1,4)-β-glucan 
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with the CSLF6_4105 marker (2.90 vs 2.85 p = 0.00) in Vegreville explaining 8.9 % of the 

variation but was not significantly associated with DP3:DP4 ratio in Castor. CSLF6_4105 allele 

from Merit is associated with reduced (1,3;1,4)-β-glucan concentration and lower DP3:DP4 ratio 

whereas the allele from H93042007 is associated with increased (1,3;1,4)-β-glucan concentration 

and higher DP3:DP4 ratio. Despite this there is no correlation between (1,3;1,4)-β-glucan and 

DP3:DP4 ratio in the Merit / H93174006 RIL6 population as a whole or when the population is 

split by the CSLF6_4015 marker. 

 

4.5.7 Association mapping 

A panel of 119 diverse two-row spring genotypes were selected to perform association 

mapping. (1,3;1,4)-β-glucan grain content was normally distributed ranging from 6.41 ± 0.60 % 

to 2.89 ± 0.51 % with a mean value of 4.46 ± 0.64 %. DP3:DP4 ratio was also normally 

distributed ranging from 3.28 to 2.43 with a mean value of 2.83 ± 0.17 (Figure 4.4). Similar to 

the RIL population, there was no correlation between (1,3;1,4)-β-glucan and DP3:DP4 ratio 

(0.097, p = 0.296). To further explore the relationship between DP3:DP4 ratio in barley the panel 

of 119 two-row spring genotypes was subject to association mapping using 24 markers. TASSEL 

2.0 was used to perform general linear model for marker association (Table 4.5). The (1,3;1,4)-β-

glucan grain concentration was associated with markers CSLF6_4105 and Bmac273e. The 

CSLF6_4105 marker was previously shown to be a functional marker predicting (1,3;1,4)-β-

glucan grain content (Cory et al., 2012). DP3:DP4 ratio was associated with two different 

genomic regions, Bmac273e on 7H and Bmac504 and Bmac211 on 1H. The region on 1H was 

shown to be a pleiotropic QTL controlling acrospire growth, grain (1,3;1,4)-β-glucan and wort 

viscosity (Laido et al., 2009). A putative candidate gene identified was identified in a syntenous 

region in rice, Os05g01020, which is thought interact with Histone Deacetylase Complex 

(HDAC) and may control chromosome methylation and gene expression (Islamovic et al., 2013). 

 

4.6 Conclusion 

The marker CSLF6_4105 is an indicator of (1,3;1,4)-β-glucan but its utility varies due to 

environment. It seems to be a weak indicator in wet environments. All phenotypes studied are 

significantly influenced by genetics and environment. The results show that DP3:DP4 ratio does 

have a GxE interaction and wetter environments have a higher DP3:DP4 ratio indicating support 
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for the (1,3;1,4)-β-glucan synthesis model proposed by Buckeridge et al. (1999). DP3:DP4 ratio 

is significantly associated with genotype and can be a target for genetic selection. The 

CSLF6_4105 marker is associated with DP3:DP4 ratio in Vegreville but not in Castor. 

CSLF6_4105 has been shown to be a functional marker in a larger association mapping panel 

and regions on 7H and 1H are associated with DP3:DP4 ratio.  
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Figure 4.4. Frequency distribution of barley grain (1,3;1,4)-β-glucan concentration and 

cellotriose to cellotetraose ratio in 119 genotypes used for association mapping. 
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Table 4.4. Single marker analysis of CSLF6_4105 by one way ANOVA. 

Phenotype p value Mean CSLF6_A Mean CSLF6_G R
2 

(%) 

Average DP3 0.064 3.57 3.47 3.81 

Average DP4 0.160 1.64 1.61 2.21 

Average DP3+DP4 0.091 5.22 5.07 3.17 

Average BG 0.000 5.33 5.03 15.85 

Average Ratio 0.02 2.89 2.87 4.98 

Vegreville BG 0.000 5.38 5.07 16.76 

Vegreville Ratio 0.002 2.90 2.85 8.88 

Castor BG 0.005 5.27 4.98 8.51 

Castor Ratio 0.094 2.89 2.88 0.98 

BG- (1,3;1,4)-β-glucan 
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Table 4.5. Candidate marker association by general linear model with grain (1,3;1,4)-β-glucan content 

and DP3:DP4 ratio in 119 barley genotypes. 

Locus Chrom dfM dfE p BG R
2 
BG p Ratio R

2
 Ratio Population 

Bmag504 1H 7 111 0.035 0.124 3.31e-4 0.212 Laido et al., 2009 

Bmag211 1H 5 113 0.034 0.100 1.32e-4 0.197 Laido et al., 2009 

Bmac0350a 1H 7 111 0.781 0.034 0.881 0.026 Panozzo et al., 2007 

Bmac0090 1H 2 116 0.839 0.003 0.392 0.016 Li et al., 2011 

EBmac0501 1H 2 116 0.008 0.079 0.161 0.031 Panozzo et al., 2007 

Bmag0382 1H 3 115 0.204 0.039 0.677 0.013 Laido et al., 2009 

scssr004163 1H 6 112 0.388 0.054 0.395 0.053 Molina-Cano et al., 2007 

EBmac0684 2H 5 113 0.014 0.116 0.225 0.059 Baum et al., 2003 

Ebmac0850 2H 3 115 0.050 0.065 0.545 0.018 Emebiri et al., 2004 

Bmag0749 2H 3 115 0.703 0.012 0.425 0.024 Emebiri et al., 2004 

Bmac0067 3H 6 112 0.572 0.041 0.052 0.104 None 

Bmag0013 3H 9 109 0.209 0.101 0.153 0.111 None 

Bmag0023 3H 1 117 0.298 0.009 0.578 0.003 Mather et al., 1997 

Bmag0603 3H 6 112 0.223 0.070 0.303 0.061 Mather et al., 1997 

Bmac0186 4H 4 114 0.386 0.036 0.055 0.078 Wei et al., 2009 

Bmag0337a 5H 2 116 0.704 0.006 0.099 0.039 Molina-Cano et al., 2007 

Bmag0751 5H 5 113 0.892 0.015 0.171 0.065 Molina-Cano et al., 2007 

HMV14 6H 5 113 0.235 0.058 0.022 0.108 Baum et al., 2003 

Bmag341 7H 4 114 0.025 0.093 0.098 0.066 Li et al., 2008 

Bmac0273a 7H 4 114 0.072 0.072 0.525 0.027 Li et al., 2008 

CSLF6_4105 7H 1 117 2.14E-5 0.144 0.077 0.027 Cory et al., 2012 

Bmag516 7H 7 111 0.004 0.166 0.292 0.072 Molina-Cano et al., 2007 

Bmac0273e 7H 3 115 6.97E-5 0.173 1.27e-4 0.164 Li et al., 2008 

Bmac0156 7H 3 115 0.197 0.040 0.943 0.003 Kim et al., 2011 

dfM – Degrees of freedom model, dfE – Degrees of freedom error, R
2
 - proportion of variance explained 

by the model. 
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CHAPTER 5 

ANALYSIS OF ddRAD SEQUENCING BY TWO BIOINFORMATICS PIPELINES 

REVEAL REGIONS ASSOCIATED WITH BARLEY GRAIN (1,3;1,4)-β-GLUCAN 

CONCENTRATION 

 

5.1 Study 3* 

 In this study double digestion Restriction-site Associated DNA (ddRAD) sequencing was 

performed on 94 barley genotypes and analysed by two bioinformatics pipelines which identified 

several putative candidate genes associated with grain (1,3;1,4)-β-glucan concentration. 
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Cory AT, Irvine CR, Båga M, Chibbar RN. Analysis of ddRAD sequencing by two 

bioinformatics pipelines reveal regions associated with barley grain (1,3;1,4)-β-glucan 

concentration. (to be submitted). 
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5.2 Abstract 

A total of 94 two row spring barley genotypes of diverse origins were genotyped by 

double digestion Restriction-site Associated DNA (ddRAD) sequencing performed using an 

Illumina sequencer. Two bioinformatics pipelines were used to discover and call SNPs. The 

SAMtools bioinformatics pipeline identified 9,062 markers and UNEAK identified 3,060 

markers, 2,311 of which were identical between both bioinformatics pipelines. Both sets of 

markers showed excellent coverage of the genome and could be used to split the ninety-four 

genotypes into two subgroups which could be defined as Canadian and non-Canadian 

germplasm. The generated marker data was used for association mapping performed using 

TASSEL 3.0. Grain (1,3;1,4)-β-glucan content was associated with regions on the 2HS and 5HS 

telomere by markers generated using both UNEAK and SAMtools. Additional marker 

associations were identified on 1H, 2H 4H and 7H by individual datasets. 

 

5.3 Introduction 

In barley (Hordeum vulgare L.), (1,3;1,4)-β-glucan accumulates in the cell wall of the 

endosperm and to a lesser extent in the aleurone layer (Carpita 1984; Gibeaut and Carpita, 1991; 

Fincher and Stone, 1986). The glucan polymer has great influence on the nutritional value, 

functionality and uses of barley. (1,3;1,4)-β-glucan influences the rate of endosperm 

modification during the malting process, the viscosity of wort during brewing and is a major 

factor determining malting potential and brewing yield (Brennan and Cleary, 2005). In contrast 

to malting, high (1,3;1,4)-β-glucan concentrations in grain is desirable for barley used in human 

nutrition, largely due to its acceptance as a functional, bio-active ingredient (Cui and Wood, 

2000). (1,3;1,4)-β-glucan derived from barley can be incorporated into widely consumed foods 

to reduce their glycemic response, making it an attractive natural food additive (Cavallero et al., 

2002). Barley (1,3;1,4)-β-glucan reduce serum cholesterol and modulate the glycemic index in 

hypercholesterolemic and diabetic patients (El Khoury et al., 2012). Due to the proven health 

benefits of (1,3;1,4)-β-glucan consumption the US Food and Drug Administration (FDA) have 

allowed whole grain barley and barley-containing products to carry a claim that they reduce the 

risk of coronary heart disease (FDA News Release, 2005).  

The concentration of (1,3;1,4)-β-glucan in grain is inherited as a quantitative trait, 

influenced by the additive effects of several genetic factors (Powell et al., 1985), but is also 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030205/#B7
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influenced by environment (Morgan and Riggs, 1981; Perez-Vendrell et al., 1996). Normally, 

(1,3;1,4)-β-glucan concentrations in barley can range from zero (Kato et al., 1995) to twenty-one 

percent (Munck et al., 2004) but normally vary between three to six percent (Holtekjølen et al., 

2006). The amount of (1,3;1,4)-β-glucan in grain or wort is controlled by several QTL located on 

all seven barley chromosomes. Thus, QTL can be found on 1H (Han et al., 1995; Igartua et al., 

2002; Molina-Cano et al., 2007), 2H (Han et al., 1995; Li et al., 2008), 3H (Li et al., 2008; 

Islamovic et al., 2013), 4H (Igartua et al., 2002; Wei et al., 2009), 5H (Li et al., 2008; Islamovic 

et al., 2013; Molina-Cano et al., 2007), 6H (Islamovic et al., 2013) and 7H (Igartua et al., 2002; 

Li et al., 2008; Molina-Cano et al., 2007; Cory et al., 2012). However these QTLwere identified 

through bi-parental mapping and are often specific to the population studied. This may be due to 

the limited genetic diversity and limited number of recombination events in bi-parental mapping 

populations that have occurred which severely limits the number of QTL that can be detected, 

making QTL from these crosses of limited value (Flint-Garcia et al., 2003). 

Association mapping (AM) is an emerging alternative to bi-parental mapping to locate a 

wider range of marker associations and therefore genes of interest in the genome. AM is a 

natural population-based approach tha surveys a large amount of genetic diversity for a trait not 

limited to two parents in a bi-parental cross. The method is based on trait-marker relationships 

based on linkage disequilibrium caused by non-random association of alleles at different loci. 

The statistical association among a set of loci will decay more or less quickly depending on the 

amount of recombination events that have occurred during meiosis (Dawson, 2000). By studying 

individuals from a wide variety of genetic backgrounds in which a maximum number of ancient 

meiotic events have occurred, allow for increased mapping resolution. To date, several AM 

studies have analyzed (1,3;1,4)-β-glucan concentrations in barley. Markers associated with 

(1,3;1,4)-β-glucan of grain concentrations have been identified on 1H (Houston et al., 2014; Shu 

and Rasmussen, 2014), 2H (Houston et al., 2014; Mohammadi et al., 2014), 3H (Houston et al., 

2014; Mohammadi et al., 2014), 4H (Mohammadi et al., 2014; Shu and Rasmussen, 2014), 5H 

(Houston et al., 2014; Mohammadi et al., 2014; Shu and Rasmussen, 2014), 6H (Houston et al., 

2014; Mohammadi et al., 2014; Shu and Rasmussen , 2014) and 7H (Houston et al., 2014; 

Mezaka et al., 2011; Mohammadi et al., 2014; Shu and Rasmussen, 2014). Until recently the 

marker system used for AM has been limited to sequences derived from expressed sequence tags 

(EST) through the use of DaRT or Affinity Chip technology. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030205/#B20
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030205/#B48
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030205/#B29
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Next Generation Sequencing (NGS) has allowed the discovery of an increasing number 

of markers at reduced costs to researchers. This technology has the advantages of being high 

throughput, not limited to expressed sequences or prior sequence data, and markers discovered 

may be quickly incorporated into physical maps (Mammadov et al., 2012). SNP discovery using 

NGS technology offers the advantages of needing no prior sequence knowledge and sequencing 

efficiency for genotypes scales directly with genetic diversity (Elshire et al., 2011). The major 

limitation in the utilization of GBS for marker discovery in large, complex genomes such as 

barley, is to avoid highly-repetitive sections of the genome and to ensure marker veracity by 

sampling homologous regions repeatedly in each individual (Mammadov et al., 2012). To reduce 

genomic complexity, a two restriction enzyme approach termed double digestion Restriction-site 

Associated DNA (ddRAD) sequencing uses one “rare-cutter” and one “common-cutter” enzyme 

can be used allowing for libraries with a suitable and uniform complexity prior to sequencing 

(Poland et al., 2012a). Region representation bias favouring fragments closest to the average size 

selection increases the likelihood of recovering similar genomic regions across all individuals 

(Poland et al., 2012b). 

 In this study, we have used a diverse set of 94 two-row spring barley genotypes of 

various backgrounds to perform AM. Coupling NGS with AM for marker discovery allows us to 

identify novel markers associated with grain (1,3;1,4)-β-glucan content not restricted to 

expressed genes or limited by genetic diversity found in bi-parental populations. Two 

bioinformatics pipelines were used to analyse markers produced using ddRAD sequencing: the 

de novo TASSEL pipeline UNEAK and a reference-based analysis using SAMtools (Li et al., 

2009) and bowtie2 (Langmead and Salzberg, 2012). We have compared the marker coverage, 

substructure identification and marker association and found genomic regions on 1H, 2H, 4H 5H 

and 7H associated with grain (1,3;1,4)-β-glucan. 

 

5.4 Materials and methods 

5.4.1 Plant material 

94 two-row barley genotypes were grown in the University of Saskatchewan greenhouse 

under a night / day temperature range of 19-28 °C with an 18 hour photoperiod with an average 

photosynthetically active radiation of 385μmol m
-2

 s
-1

. Each variety was grown in triplicate. 

Barley lines were grown over 150 days and harvested at maturity.  
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5.4.2 (1,3;1,4)-β-glucan determination 

Grain (10 g) was milled to flour using an Udy-Mil Cyclone sample grinder (UDY 

Corporation, Fort Collins, CO, USA) equipped with a 0.5 mm sieve. 25 mg samples of flour 

were used to determine total (1,3;1,4)-β-glucan, by the calcoflour flow injection method (Aastrup 

and Jørgersen, 1988). Each sample was analysed in triplicate, and pooled averages were used in 

subsequent statistical analysis. 

 

5.4.3 DNA extraction 

Leaves were harvested at the 10 leaf stage, frozen in liquid nitrogen and stored at -80 °C 

before DNA was extracted and quantified as described (Li et al., 2008). DNA quality was 

determined using Beckman Coulter DU 800 spectrophotometer (Fullerton, CA, USA) and 

visually inspected for random shearing on one percent agarose gel. DNA was quantified using 

Quant-iT™ PicoGreen® dsDNA assay kit (Invitrogen, Molecular Probes, Eugene, OR, USA) 

using a SpectraMax Gemini XS Flourecence Microplate Reader (Molecular Devices, Sunnyvale, 

CA, USA). Genomic DNA concentrations were normalized to 10ng / µL and subsequently used 

for library preparation. Sequencing libraries were prepared by the Université de Laval, Institut de 

biologie intégrative et des systèmes according to the GBS protocol as per Elshire et al. (2011) 

except for the use of selective primers. Single-end sequencing was performed on a single lane of 

an Illumina Genome Analyzer II (at the McGill University-Génome Québec Innovation Center in 

Montreal, Canada). 

 

5.4.4 Processing of illumina raw sequence read data and SNP calling 

Sequence information for the CslF genes was obtained from EnsemblPlant Hordeum 

vulgare database (Kersey et al., 2014) corresponding to sequences from MLOC_59289: 

HvCslF3, MLOC_74149: HvCslF4, MLOC_57200: HvCslF6, MLOC_52689: HvCslF8, 

MLOC_59237: HvCslF9, MLOC13463: HvCslF10, MLOC_ 19594: HvCslF11, and 

MLOC_7825: HvCslF12. Blast search was used to identify as genomic sequence corresponding 

to HvCslF13. No genomic sequence for HvCslF7 could be identified. 

Perl programing language was used to implement a pipeline for the processing of raw 

Illumina single end reads. Genious R6 (6.1.4) was used to de-multiplex the reads and trim 
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barcodes. Publically available software tools which were subsequently used to process the 

single-end sequence reads. 94 FastQ files were generated and subjected to grooming using 

trimmomatic. Each sequence was groomed using a sliding window of four with a minimum 

quality rating of 20 (Q20). The minimum length of a read to be accepted was 50 nucleotides. The 

publically available, unmasked Hordeum vulgare L. genome (030312v2) was downloaded from 

EnsemblPlants (ftp://ftp.ensemblgenomes.org/pub/plants/release-23/fasta/hordeum_vulgare/dna/) 

on July 1, 2014 (Kersey et al., 2014). The genome was indexed and used as a template for 

alignment of the trimmed and groomed FastQ files. Bowtie2 was used to align the 94 two-row 

barley genotypes to the reference genome to generate SAM files. SAMtools was used to convert 

SAM files to BAM files. The BAM files were then sorted, PCR duplicates were identified and 

removed and the BAM files were indexed. The indexed BAM files were processed using 

SAMtools mpileup to generate a variant call file (VCF file). The raw VCF was filtered using 

VCFtools. Heterozygous calls were masked as missing data and filtered to identify markers with 

a minimum read depth of six, missing data in genotypes of no more than twenty percent, and a 

minor allele frequency greater than five percent. 

The UNEAK TASSEL GBS pipeline was used to call SNPs in tags prior to alignment on 

the reference genome 030312v2 (Mayer et al., 2012; Kersey et al., 2014). Initial filtering was 

used to keep only markers with a minimum read depth of six. Additional filtering was performed 

using the filtering options in TASSEL 3.0. Markers showing heterozygous calls were masked as 

missing data, any data with a minor allele frequency less than five percent and markers with 

more than 20 % missing data were filtered. Using the de novo GBS pipeline, 64 bp tags from 

TASSEL were mapped against the Morex whole-genome shotgun assembly (Mayer et al., 2012) 

using bowtie2. Only markers mapped to one of the barley chromosomes and meeting the filtering 

criteria were used for subsequent analysis. Visualisation of the marker coverage was prepared 

using MapChart 2.2 (Voorrips, 2002).  

 

 

5.4.5 Kinship 

 Kinship calculations were performed using SPAGeDi (Spatial Pattern Analysis of 

Genetic Diversity) software package (Hardy and Vekemans, 2002) using the matrix calculations 

from Ritland (1996) with 10,000 permutations. Markers with a read depth of six, minimum 

ftp://ftp.ensemblgenomes.org/pub/plants/release-23/fasta/hordeum_vulgare/dna/
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missing data of 20 % and a minor allele frequency (MAF) of five percent were used for the 

UNEAK dataset, whereas a subset of the SAMtools dataset representing an MAF of 10 % was 

used for calculations as this showed sufficient coverage and represented a similar number of data 

points to the UNEAK kinship calculations. 

 

5.4.6 Population structure 

Two different methodologies and software packages were employed and compared to 

estimate the number of subgroups in the two-row barley population. For the quantitative 

assessment of the number of groups in the panel, a Bayesian clustering analysis was performed 

using the software package STRUCTURE v2.3.4.that uses multi-locus genotypic data to assign 

individuals to clusters (k) without prior knowledge of their population affinities. The program 

was run with 3,061 markers from the UNEAK pipeline and a subset of 1,089 SNP markers from 

the SAMtools pipeline for k-values 1 to 6 (hypothetical number of subgroups), with 100,000 

burnin iterations followed by 200,000 MCMC (Markov Chain Monte Carlo) iterations with 5 

independent runs for each k. The most probable number of groups was determined by Structure 

Harvester, implementing the Evanno method to determine the most probable number of clusters 

(Earl and vonHoldt, 2012). The largest value of an ad hoc statistic ∆K was used as an indicator 

for the true number of clusters. In a second approach, Principal Coordinate Analysis (PCoA) 

based on the dissimilarity matrix was performed using GenALEx (Peakall and Smouse, 2012) on 

all markers in the respective data sets. The number of principal components to include in the 

linear model was determined by scree plot (Cattell and Vogelmann, 1977). 

 

5.4.7 Association mapping 

Association analysis was conducted using Tassel 3.0 standalone software (Bradbury et 

al., 2007). Analysis was performed using a naive general linear model (GLM), a general linear 

model with substructure correction using a P-matrix or Q-matrix (GLM+P, GLM+Q), a mixed 

linear model with kinship alone mode (MLM+K) and a mixed linear model with P- and Q-matrix 

(MLM+KP, MLM+KQ) using markers from both pipelines. A false discovery rate (FDR; 

Benjamini and Hochberg, 1995) was used for multiple testing correction of the GWAS results. 

To assess the impact of population structure control, cumulative distributions of p-values for all 

models were calculated and compared. 
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5.4.8 Candidate gene identification 

Genes associated with markers were identified using the EnsemblPlant Hordeum vulgare 

L. database release version 23 (Kersey et al., 2014). Marker names correspond to absolute 

positions within the database. A list of genes was compiled from between marker intervals 

surrounding significantly associated genes. Information on unnamed genes was collected 

corresponding to the Gene Ontology database and / or orthologous genes where available. 

 

5.5 Results and discussion 

5.5.1 (1,3;1,4)-β-glucan grain content 

Analysis of mature grain from 94 barley genotypes grown under greenhouse conditions 

was analysed by calcoflour flow injection (Aastrup and Jørgersen, 1988) to determine (1,3;1,4)-

β-glucan concnetraions. Within the population (1,3;1,4)-β-glucan concnetrations ranged from 

2.90 % ± 0.63 % to 6.41 % ± 0.74 % with an average of 4.56 % ± 0.60 %. The frequency 

distribution was observed to follow a normal distribution when plotted as a histogram (Figure 

5.1). When split by origin, the 53 Canadian varieties had an average (1,3;1,4)-β-glucan content 

of 4.62 % ± 0.60 % and the 41 non-Canadian varieties had a slightly lower mean (1,3;1,4)-β-

glucan content of 4.47 % ± 0.71 %. However, analysis using t-test showed the averages were not 

significantly different. 

 

5.5.2 Genetic markers 

Sequencing of the 94 barley genotypes produced 193 million raw reads of which 91 % 

could be separated by barcode; this is within the expected range reported (Mascher et al., 2013). 

After processing and filtering for a minimum read depth of six, the UNEAK pipeline identified 

52,511 markers across all genotypes. 36,748 (69.22 %) of the markers could be positioned on the 

barley reference genome. SAMtools pipeline identified 19,918 markers, all of which are aligned  
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Figure 5.1. Frequency distribution of (1,3;1,4)-β-glucan concentration in 94 two-row barley 

genotypes. 
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to the reference genome. SNPs used for subsequent analysis were filtered for the following 

criteria: 1) heterozygous SNPs were converted to missing data, 2) a minimal read depth of six for 

each SNP, 3) minimal allele frequency above five percent for each marker and 4) no more than 

20 % missing data for each marker. After filtering, 9,062 markers remained from the SAMtools 

pipeline, and 3,192 remained from UNEAK pipeline. Map positions of the markers generated 

from both pipelines were aligned in Microsoft Excel and markers were determined to be in 

common based on the following criteria: i) similar map position, ii) identical nucleotide calls and 

iii) alleles matched for greater than 95 % of all calls. 2,311 markers were common between the 

two bioinformatics programs while 749 were unique to the UNEAK pipeline and 6,751 markers 

were unique to the SAMtools pipeline (Figure 5.2).  

SAMtools bioinformatics pipeline identified over twice the number of high quality markers 

compared to UNEAK. This may be partially due to the initial quality filtering and trimming. 

Within the UNEAK bioinformatics, the initial filtering and trimming reduces the usable 

sequence to 64 bp including the invariable cut site. This effectively reduces the useable sequence 

to 60 bp as compared to a possible 92 bp available using the SAMtools pipeline. Quality control 

parameters would also allow for more sequence information to be used in the SAMtools pipeline. 

SAMtools allows for sequence with a quality score of 20 in a sliding window of 4 and any 

sequence over 50 bp. UNEAK removes any sequence with an N within the 64 base pair trimmed 

read. These two differences could mean that there might be a reduced set of initial reads kept by 

UNEAK compared to SAMtools. More unique markers are generated with UNEAK at a 

minimum read depth of six, therefore this is unlikely to be the cause on its own. UNEAK may 

filter out more reads from individual lines therefore accumulating more reads that fail to meet a 

minimum read depth of 6 and an overall missing marker value under 20 %. Another contributing 

factor to the difference in markers identified could be the initial alignment to the reference 

genome in the SAMtools pipeline. This initial alignment would act as a quality control filter, 

removing DNA sequences which are not present in the barley variety Morex. UNEAK may 

generate more unique reads in individual genotypes which are found in only a small subset of 

varieties but would not pass the missing data filtering criteria. Initially, UNEAK identified 

52,000 markers when filtered for a minimum read depth of six, but after filtering for a minimum 

missing data of less than 20 % only 3,662 loci remain. After filtering for a minimum read depth, 
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Figure 5.2. A schematic illustration to identify loci using two bioinformatics pipelines. 

Processing of raw sequences was done using both UNEAK and SAMtools bioinformatics 

pipelines. At the initial filtering step 52,511 loci were identified in 94 barley genotypes using 

UNEAK, 19,918 were identified using SAMtools bioinformatics. After filtering for minor allele 

frequency (MAF) of five percent, no heterozygous calls and no more than 20 % missing data 

3060 loci were identified using UNEAK, 9062 using SAMtools with 2311 loci identified by both 

bioinformatics pipelines. 
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 MAF greater than five percent and alignment on a reference genome, both pipelines identified 

2,311 identical loci. This is similar to results found by Mascher et al. (2013), who compared data 

generated from a RIL6 population ‘Morex’ and ‘Barke’ on three different sequencing platforms 

and analysed using UNEAK and SAMtools pipelines. The study showed the largest difference in 

identified markers came from the bioinformatics pipeline used.  

Mapchart 2.2 was used to visualize the position of all markers in relation to the reference 

genome. The reference genome consists of seven barley chromosomes generated from 138,000 

whole genome shotgun (WGS) contigs labeled 1 - 7 with sequencing information from an 

additional 355,000 WGS contigs that could be assigned to a chromosome arm. As seen in figures 

5.3 and 5.4, markers are arranged in 7 chromosomes and unanchored 13 chromosomes regions. 

Although higher marker density is seen in the SAMtools dataset compared to UNEAK dataset 

both show similar distribution throughout the genome. Markers are denser towards the telomeres 

and less coverage is found toward the centromere in both datasets (Figure 5.3 and Figure 5.4). 

 

5.5.3 Genetic marker distribution  

Markers are found throughout the genome but they are unevenly distributed (Figure 5.3 

and 5.4). The larger pseudo-molecules show increased marker density near the telomeres and 

reduced marker density near the centromeres. The marker distribution is likely caused by the 

arrangement of the reference genome. The reference genome consists of seven barley 

chromosomes generated from 138,000 whole-genome shotgun (WGS) contigs labeled 1-7 with 

sequencing information from an additional 355,000 WGS contigs that could be assigned to a 

chromosome arm but not to a position on the larger pseudo-molecule (Mayer et al., 2012). 

Markers assigned to the larger pseudo-molecules near the centromere fall on “islands” of 

sequence surrounded by large stretches of non-sequence (Ns). The smaller pseudo-molecules 

may fit into these areas. For example, there is little coverage near the centromere of 7H but good 

coverage on the smaller 7HS pseudo molecule where Amy2 is located. From consensus 

sequences Amy2 would fall within the regions of low marker coverage on the larger 7H 

chromosome.  
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Figure 5.3. Markers generated from the SAMtools bioinformatics pipeline arranged on the 

Hordeum vulgare L. reference genome 030312v2. Indicators on the left represent distance in 

megabase pairs, markers associate with grain (1,3;1,4)-β-glucan content are represented on the 

right by numbers that correspond to Table 5.1.  
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Figure 5.4. Markers generated from the UNEAK bioinformatics pipeline arranged on the 

Hordeum vulgare L. reference genome 030312v2. Indicators on the left represent distance in 

megabase pairs, markers associate with grain (1,3;1,4)-β-glucan content are represented on the 

right by numbers that correspond to Table 5.1. 
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Table 5.1. Marker association by statistical model and dataset. 

Figure legend Model Dataset Chrom Position F -log(p) Df r2(%) 

1 GLM+P UNEAK 1H 4396096 14.87 3.66 87 12.8 

2 MLM+Q UNEAK 1H 19876373 15.21 3.73 91 16.7 

3 MLM+Q UNEAK 1H 50285585 15.66 3.82 92 17.2 

4 MLM+Q UNEAK 2H 79055395 14.6 3.56 77 19.3 

4 MLM+Q SAMtools 2H 80208254 17.31 4.1 82 19.9 

4 MLM+Q UNEAK 2H 80248225 14.75 3.63 91 16.5 

4 MLM+Q SAMtools 2H 80248284 18.15 4.3 93 19.5 

5 GLM+P UNEAK 4H 8111198 15.28 3.73 86 12.5 

5 MLM+Q UNEAK 4H 8111198 14.47 3.58 89 17.4 

5 MLM+Q UNEAK 4H 12157561 14.93 3.65 84 18.6 

5 GLM+P UNEAK 4H 13266457 14.79 3.65 89 12.4 

6 MLM+Q SAMtools 4H 31395904 17.26 4.31 94 18.1 

6 MLM+Q UNEAK 4H 36996981 13.62 3.41 89 14 

7 GLM+P UNEAK 4H 321179812 14.88 3.66 87 12.8 

7 MLM+Q UNEAK 4H 321179812 17.9 4.24 90 19.6 

8 MLM+Q SAMtools 5H 7406056 17.7 4.21 92 18.7 

8 MLM+P SAMtools 5H 7491839 20.1 4.67 93 17.5 

8 MLM+Q SAMtools 5H 7491839 21.78 3.97 93 22.9 

8 GLM+P UNEAK 5H 7557217 20.73 4.73 80 18 

8 MLM+Q UNEAK 5H 7557217 20.68 8.73 84 26 

9 MLM+Q SAMtools 5H 10176328 18.78 4.37 82 22 

10 GLM+P UNEAK 7H 68292885 18.88 4.42 87 15.7 

11 MLM+Q UNEAK 7H 327853389 12.66 3.21 89 14 

11 MLM+Q UNEAK 7H 332149988 12.66 3.21 89 14 

11 MLM+Q UNEAK 7H 343695470 12.66 3.21 89 14 

11 MLM+Q UNEAK 7H 362218969 12.66 3.21 89 14 

11 MLM+Q UNEAK 7H 383576564 12.66 3.21 89 14 

11 MLM+Q UNEAK 7HL 26607213 12.66 3.21 87 14 

Chrom- chromosome, Position- physical position on the physical Morex genome map, 

Df- marker degrees of freedom, r2- coefficient of determination converted to percentage. 
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5.5.4 Population structure 

Population substructure was determined using two different methods; STRUCTURE v 

2.3.4 software, and Principal Coordinate Analysis (PCoA) using GenAlEx 6.5 software. Similar 

results for substructure assignment were found using both STRUCTURE v 2.3.4 and PCoA in 

both datasets. STRUCTURE v 2.3.4 identified two groups (k = 2) which roughly split the 

genotypes into groups from Canadian breeding programs and genotypes from other sources 

(Figure 5.5). This was similar to the stratification found by PCoA (Figure 5.6). PCoA identified 

six principal components.  Scree plot analysis identified the first three principal components as 

non-trivial. Collectively these three components accounted for 67.7 % and 67.4 % of the genetic 

variation using the SAMtools or UNEAK datasets, respectively. Scatter plots of the first two 

principal components show two distinct groups that separate Canadian varieties from more 

diverse varieties (Figure 5.6). The SAMtools data set shows better separation of the two groups, 

which may reflect the larger number of markers used for the calculations. 

In genome wide association studies, population structure has been considered an 

important cause of spurious associations and an explanation of failure to replicate significant 

predictions, making statistical methods accounting for population structure essential to validate 

standard association tests (Balding, 2006). Factors including geographic localization, breeding 

patterns and selective breeding based on agronomically significant traits during crop 

improvement may lead to strong population structure and familial relatedness within plant 

populations in association mapping studies (Atwell et al., 2010). In the present study, population 

structure was demonstrated primarily due to division by geographical origin. Both PCoA and the 

Bayesian cluster analysis by STRUCTURE v 2.3.4 have identified one main subdivision of this 

population based on geographical origin. Stratification of samples divides Canadian genotypes 

from those from other regions of the world. This may reflect the specific selection pressure due 

to preferences among Canadian breeders or the specific environmental pressures present in 

Canada. However, two notable exceptions to the groupings are Canadian Thorpe and 

M98135002. A closer investigation of the pedigree of M98135002 shows that this variety is 

derived from a Japanese (Kanto Nijo) and Mexican (Arupo / K8755 // Mora) barley genotype. 

Canadian Thorpe was one of the first barley varieties to be registered in Canada and is originally 

a selection from the UK Thorpe variety. Three Ethiopian landraces, CIho4961, CI3124 and 

CI9819, were a distinct subgroup in both datasets indicating their common country of origin. The 
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Figure 5.5. Subpopulation assignment of 94 two-row barley genotypes. Analysis using the 

linkage ancestry model with correlated allele frequencies in STRUCTURE 2.3.4. Each bar 

represents an individual, the proportion of genomic membership is in each subpopulation is 

represented by different degrees of shading within the bar. 
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Figure 5.6. Scatter plot of 94 two row barley genotypes based on the first two principal 

coordinate principal coordinate analysis (PCoA) axes. A) SAMtools dataset B) UNEAK dataset. 

The percentage of variance explained by each axis is indicated. Canadian varieties are indicated 

by squares and other varieties are represented by triangles. 
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The population stratification found in this study is similar to results of other studies. Tondelli et 

al. (2013) demonstrated population substructure in a two row European barley panel based on 

old vs. modern barley varieties. Comarand et al. (2009) showed a strong influence of row 

number and geographical location in a study of 192 barley accessions from the Mediterranean 

basin, while Beattie et al. (2010), working with 91 two-row varieties, identified stratification due 

to breeding program. 

 

5.5.5 Marker associations 

To decrease the likelihood of false associations and still maintain a strong prediction 

power, an optimization of the model is essential. Naïve, Q, PCoA, Kinship (K), Q+Kinship 

(Q+K), and PCoA+Kinship (PCoA+K) were performed and interpreted based on the fitting plot 

(observed against expected probability, PP-plot; Figure 5.7). Correction for substructure using Q-

matrix was the least effective in both data sets. Incorporation of a P-matrix decreased the amount 

of skew more significantly than the Q-matrix, but kinship and P-matrix reduced the skew the 

most. The UNEAK data set, the PK model skewed results below expected limits. Quintile-

Quintile (QQ) plot showed the actual association results below the expected, indicating over-

fitting. 

Using the method of Benjamini and Hochberg (1995), a false discovery rate (FDR) was 

used to adjust for multiple testing when determining significant marker-trait associations. A FDR 

of 0.10 was selected instead of the normal 0.05 to account for the fact that each marker does not 

constitute an independent test as many of the markers are found within linkage blocks in both 

datasets. With the SAMtools and UNEAK data sets, the P+K model showed only one and no 

markers associated with (1,3;1,4)-β-glucan concentration, respectively. Investigation of both the 

PP-plot and the QQ-plot showed the UNEAK P+K model was over-fit, with all points falling 

below the expected values in both graphs. The UNEAK dataset analysed with P-matrix without 

kinship was the least skewed but not over-fit. The P-matrix model using the UNEAK dataset 

identified six associated markers in five separate genomic regions. Both data sets identified the 

same chromosomal region associated with (1,3;1,4)-β-glucan concentration in barley. Both 

datasets identified markers on the telomere of chromosome 5H. These markers were unique to 

their respective datasets but fell within 0.65 Mbp of each other according to positioning on the 

reference genome. MLM+Q showed similar regions associated with grain (1-3,1-4)-β-glucan  
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Figure 5.7. Cumulative distribution of P values for six linear mixed-models differing in 

population structure control method. A naïve model with no substructure control is compared to 

statistical models correcting for kinship (K) and structure determined by principal coordinate 

analysis (P) or STRUCTURE (Q).  
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concentration in both datasets with regions in 2H, 4H, and 5H. MLM+Q using the UNEAK 

pipeline dataset also identified regions on 1H and 7H. These regions were identified by the 

SAMtools dataset but failed to pass the FDR post hoc test due to the larger number of null 

hypotheses. A list of genes identified within near markers on 1H, 2H, 4H, 5H, and 7H can be 

seen in the appendix. 

Both data sets identified the same chromosomal region associated with (1,3;1,4)-β-glucan 

content in barley near the telomere of 5H. Within the SAMtools marker dataset, marker 

5_7491839 was identified as significant in all statistical models except for GLM+P which 

showed a marker, 5_10176328, as significantly associated. Within the UNEAK marker dataset, 

an independent marker, 5_7557217, was seen as significant.  These markers are in a similar 

region on 5H as that described by Houston et al. (2014), Shu and Rasmussen (2014) and 

Islamovic et al. (2013). Marker 5_7491839 explained 17.5 % of the variation in the population 

when using the SAMtools dataset and marker 5_7557217 explained 18.0 % of the variability 

when using the UNEAK marker dataset. These markers are unique to their respective datasets 

but fall within 0.65Mbp of each other according to positioning on the reference genome. Within 

this region only one gene can be identified, MLOC_21074; this is an uncharacterized gene which 

encodes a 64 amino acid protein. A second likely candidate is the uncharacterized gene 

MLOC_2781. This gene is 75 % similar to the rice gene Os12g0630500, an alpha-amylase / 

trypsin inhibitor. This gene may be of particular interest as this region of 5H has been associated 

with both (1,3;1,4)-β-glucan and amylose (Shu and Rasmussen, 2014). 

The UNEAK GLM+P identified five other significant markers. The marker 1_4396096 

on 1H is found in a similar region to that described by Laido et al. (2009) and Shu and 

Rasmussen (2014). Laido et al. (2009) commented that the region was a pleiotropic QTL 

controlling acrospires growth, grain (1,3;1,4)-β-glucan and wort viscosity. Islamovic et al. (2013) 

identified a gene in a syntenous region in rice, Os05g01020, putatively involved in Histone 

Deacetylase Complex (HDAC) associated with amylose content in the Falcon / Azul population. 

The marker identified in this study is located near a cluster of genes. A promising candidate is 

the uncharacterized gene MLOC_76007. According to the Gene Ontology database this gene 

may have protein dimerization abilities and may participate in methyl transfer. Another likely 

candidate is a putative C2H2 zinc finger protein, MLOC_37432. This class of protein has been 

shown to be transcription factors controlling gene expression in all eukaryotic organisms (Wolfe 
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et al., 2000). Three markers on 4H were found associated with grain (1,3;1,4)-β-glucan 

concentration.  Two markers (4_8111198 and 4_13266457) near the end of 4HS encompass a 

large cluster of genes including MLOC_3791, a putative acid phosphatase protein coding gene. 

Phosphorylation has been shown to regulate cellulose β-glucan synthesis in Arabidopsis (Chen et 

al., 2010; Taylor, 2007), pea (Ray, 1973), tobacco (Kaida et al., 2009) and corn (Paliyath and 

Poovaiah, 1988).  

One marker (4_321179812) on 4HL was found in a similar region to a QTL found by 

Wei et al. (2009). The nearest gene is MLOC_21017, a hypothetical gene encoding a 912 amino 

acid similar to at5g01310, an APRATAXIN-LIKE, APTX a basic helix-loop-helix transcriptional 

factor that is involved in regulation of xylan synthesis (TAIR: The Arabidopsis Information 

Resource).  The final marker is 7_68292885 near MLOC_76756, a hypothetical protein of 110 

amino acids orthologous to the Rhodanese / Cell cycle control phosphatase superfamily in 

Arabidopsis which are involved in cell wall biosynthesis based on reviewed computational 

evidence listed in TAIR. A second gene in this region is MLOC_73315 an uncharacterised gene 

displaying a UDP-glucuronosyl / UDP-glucosyltransferase domain. UDP-Glc is the main 

building block for cellulose and (1,3;1,4)-β-glucan and the involvement of a UDP 

glucosyltransferase has been postulated as a subunit in the (1,3;1,4)-β-glucan synthase complex 

(Urbanowicz et al., 2004). 

MLM+Q model using the SAMtools dataset showed three regions associated with grain 

(1,3;1,4)-β-glucan content (Figure 5.3). The telomere of 5HS was significantly associated with 

(1,3;1,4)-β-glucan content at marker 5_7491839 accounting for 22.9 % of the variation. 4HS also 

had a marker (4_31395904) with significant association which falls within a cluster of three 

genes. Of these three genes MLOC_53722, a putative serine / threonine-protein kinase is the 

most likely to affect cell wall biosynthesis. Two markers on 2H (2_80208254 and 2_80248284) 

were found to be associated and accounted for 19.9 % and 19.4 % of the variation respectively. 

These markers are found in the middle of 2HS in a region previously associated with (1,3;1,4)-β-

glucan content by Baum et al. (2003). MLOC_56623 is a potential candidate gene found in this 

region. This gene encodes a putative protein containing a target SNARE coiled-coil domain 

which is involved in vesicle transport. In vitro evidence suggests that the (1,3;1,4)-β-glucan 

synthase complex assembles the (1,3;1,4)-β-glucan in the Golgi vesicles where it is then shuttled 

to the plasma membrane to be released into the cell wall (Urbanowicz et al., 2004). 
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The MLM+Q model using the UNEAK dataset identified 15 associated markers in five 

different regions (Figure 5.4). As with all other models the region on 5H was represented by 

marker 5_7557217; accounting for 25.2 % of the variation. Regions on 4H were found to be 

associated with the same markers found to be significant by the GLM+P model. Marker 

2_79055395 and 2_80248225 were found associated in a similar region to those found in the 

SAMtools dataset. A region near the centromere on 7H was also identified as significantly 

associated with (1,3;1,4)-β-glucan content. This region is the most commonly reported genomic 

area associated with (1,3;1,4)-β-glucan content. It contains genes such as Amy2 and CslF6. Six 

different markers were found to be significant in this region. Each marker had a similar R
2
 

explaining 14 % of the variation in (1,3;1,4)-β-glucan content results are summarised in Table 

5.1. 

 

5.5.6 Sequence information from CslF gene family 

The cellulose synthase F family of genes has been shown to be important for (1,3;1,4)-β-

glucan synthesis (Burton et al., 2006; Tonooka et al., 2009). To explore these genes in greater 

detail FastA files containing the groomed reads associated with each individual line were 

converted to databases and blasted against the genomic sequence information for CslF3, 4, 6, 8, 

9, 10, 11, 12 and 13 (Figure 5.8). CslF3, 10 and 12 showed no sequence coverage. CslF4 

revealed three areas with sequence coverage. The second exon had sequence information for 74 

bp in 80 of the genotypes studied. This sequence information falls within the second 

transmembrane domain and is likely to be highly conserved. Two other sites in the third exon 

were also observed. The first was 72 bp region from five genotypes and the second was a 94 bp 

region within the third transmembrane domain starting at L630 found in 73 genotypes studied. 

CslF6 had coverage in two areas, in all varieties, covering 116 bp in the first intron and 172 bp in 

the third intron. The sequence coverage in the first intron starts from nucleotide 690 after the 

transcriptional start site and encompasses an area in which only two sequence variants in a single 

genotype have been reported in OUT329, a hulless six-row barley genotype from Turkey (Taketa 

et al., 2012). The area covered in the third intron falls in a highly conserved domain 

encompassing the catalytic site and the third transmembrane domain. No polymorphisms were 

identified in these regions within the 94 genotypes in this study. CslF8 has sequence coverage 

for 168 bp in all lines in the promoter region. CslF9 displayed one region with sequence  
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Figure 5.8. Schematic representation of nine HvCslF genes. RNA coding regions are represented 

by blue squares. Non-coding regions are represented by lines. Red squares indicate areas where 

sequence information was obtained through ddRAD sequencing. Numbers beside the red blocks 

indicate the number of genotypes in which a minimum of sequence information with a minimum 

read depth of six was achieved. SNP variant (G2:66C) is denoted as a ratio of each SNP variant. 
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coverage in the third intron starting at the sequence encoding G742 in 40 genotypes. This region 

is likely highly conserved as it is part of the sixth transmembrane domain in CslF9. CslF11 had 

sequence coverage across 157 bp in the third intron. This area covers the catalytic domain and 

part of the third transmembrane domain. CslF13 had three areas of coverage. Five genotypes had 

sequence coverage in the promoter. The hooded forage barley “Stockford” had 180 bp of 

sequence from the first exon. CslF13 was the only gene in this group that displayed a variant 

SNP call within the sequence information gathered. 72 bp was sequenced from 68 individuals in 

an area corresponding to the first transmembrane domain. The SNP identified would cause an 

amino acid shift from alanine to glutamine at position 236. The combination of filters used on 

our dataset would have excluded this SNP from our analysis. 

 

5.6 Conclusion 

NGS technology is a powerful tool that has vast potential for association genetics. Large 

differences were observed in the number of markers identified by the SAMtools and UNEAK 

bioinformatics pipelines but much of the downstream analysis showed a high level of 

convergence. Despite the differences between bioinformatics pipelines two distinct 

subpopulations can be determined. Large differences in the number of markers identified were 

caused by the different bioinformatics pipeline used but many of the associations were similar 

between the datasets. All statistical models identify a region on the telomere of 5H that is 

associated with (1,3;1,4)-β-glucan grain concentration. Other candidate genes identified include 

two putative transcription factors, MLOC_37432 and MLOC_21017, and two putative 

phosphatase signalling proteins MLOC_3791 and MLOC_53722, which may be involved in cell 

wall biosynthetic regulation. MLOC_56623 a putative tSNARE domain containing protein 

involved in vesicle transport and MLOC_73315 an uncharacterised gene displaying a UDP-

glucuronosyl / UDP-glucosyltransferase domain. 
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CHAPTER 6 

DISCUSSION 

6.1 General discussion 

In terms of production, barley is the fourth most important cereal grain after maize, rice 

and wheat (FAO, 2014). Barley is a rich source of dietary fiber and an increasingly important 

cereal in human nutrition. One of the major reasons for the renewed popularity of barley in 

human nutrition is the United States Food and Drug Administration decision that foods 

containing soluble fiber from barley can be labeled with a health claim related to reducing blood 

cholesterol in humans (FDA, 2006). The major soluble fiber in barley grains is (1,3;1,4)-β-

glucan, a mixed linkage polymer made up of repeated units of cellotrioses and cellotetraoses and 

with very small amounts of higher polymers cellopentoses, cellohexoses or higher orders of 

glucans.  The composition of barley (1,3;1,4)-β-glucan is also very important as it influences its 

viscosity in solutions, a major determinant of the human health benefits associated with barley.   

Barley (1,3;1,4)-β-glucan concentration is a quantitative trait, influenced by 

environmental (Morgan and Riggs, 1981; Perez-Vendrell et al., 1996) and genetic factors 

(Powell et al., 1985). The possibilities of in-depth study of quantitative traits in crops has 

evolved rapidly during the last decade due to significant advances in DNA sequencing 

technologies and identification of new molecular markers to detect genotypic differences. 

Interestingly, barley grain (1,3;1,4)-β-glucan concentration has been associated with Quantitative 

Trait Loci (QTLs) located on all the seven barley grain chromosomes (Han et al., 1995; Baum et 

al., 2003; Islamovic et al., 2013; Molina-Cano et al., 2007), but no genetic regions have been 

associated with (1,3;1,4)-β-glucan structure elements such as DP3:DP4 ratio or concentrations of 

cellotrioses (DP3) and cellotetroses (DP4). The work presented in this thesis was based on the 

hypothesis that “Genomic regions near the centromere on 7H play a role in (1,3;1,4)-β-glucan 

grain concentrations and fine structure”. To test this hypothesis the work was performed as 

three objectives (Section 1.3).  
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6.2 Development and validation of HvCslF6 markers for grain (1,3;1,4)-β-glucan 

concentration in barley 

Genetic mapping of a doubled haploid population developed from a cross between CDC 

Bold and TR251 identified a major QTL on chromosome 7H, that explained up to 39 % of the 

variation for grain (1,3;1,4)-β-glucan concentration (Li et al., 2008). The QTL on chromosome 

7H contained a cellulose synthase like gene, HvCslF6, for which parental alleles were analyzed 

by DNA sequencing. Nucleotide sequence comparison of 6.4 kb HvCslF6 contigs derived from 

CDC Bold and TR251 revealed 16 SNPs and two indels within the transcribed region. Two 

indels and 12 of the SNPs were positioned within introns or noncoding regions, three of the 

SNPs within the exons were silent, but SNP-4105 in the third exon converted an alanine codon in 

HvCslF6 of CDC Bold to a threonine codon in the TR251 sequence (Chapter 3). Screening of the 

parents of six independent mapping populations showed that populations with a QTL on 7H for 

grain or wort (1,3;1,4)-β-glucan concentration had haplotypes identical to TR251 or CDC Bold. 

Through an association mapping study of 119 barley genotypes it was confirmed that 

CSLF6_4105 TR251 allele was associated with high and CDC Bold allele with low grain 

(1,3;1,4)-β-glucan concentration (Chapter 4, Table 4.5). 

 

6.3 Determination of the heritability of (1,3;1,4)-β-glucan fine structure 

An HPAEC-PAD based method was optimized to study the fine structure (DP3:DP4) of 

barley (1,3;1,4)-β-glucan (Chapter 4). The analysis of grain produced by 91 lines of a Merit / 

H93174006 RIL6 population grown in two different environments indicated DP3:DP4 ratios in 

(1,3;1,4)-β-glucan were moderately heritable and significantly affected by genotype, 

environment and GxE interactions. Single marker analysis by ANOVA showed that the 

CSLF6_4105 marker was significantly associated with both (1,3;1,4)-β-glucan concentration and 

DP3:DP4 ratio. The effectiveness of the marker differed between the two growth environments, 

where a stronger association between alleles at 7H QTL and (1,3;1,4)-β-glucan properties was 

noted for grains produced in the drier environment. An environmental impact on the strength of 

the 7H QTL for (1,3;1,4)-β-glucan concentration is also present for the TR251 / CDC Bold 

population (Li et al., 2008). To further analyze the impact of CSLF6_4105 marker on (1,3;1,4)-

β-glucan concentration and fine structure, an association mapping panel of 119 barley genotypes 

were phenotyped and subjected to a general linear model (GLM) analysis. The results indicated 
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that CSLF6_4105 is significantly associated with (1,3;1,4)-β-glucan concentration but not its fine 

structure. However, (1,3;1,4)-β-glucan fine structure could be associated with a CSLF6_4105 

linked region on chromosomes 7H and an additional marker on chromosome 1H (Chapter 4, 

Table 4.5). 

 

6.4 Implications of results on the control of (1,3;1,4)-β-glucan synthesis 

Buckeridge et al. (1999) proposed a model where multiple sites on the (1,3;1,4)-β-glucan 

synthase complex synthesize three β-(1,4) linkages at a time, followed by a β-(1,3) linkage in 

optimum conditions or longer cellodextrin units if the cellular UDP-Glc concentration is less 

than a certain threshold (Figure 2.4). Unfortunately, Buckridge et al. (1999) was unable to show 

that varying the amount of substrate produced the same effect in vivo leading the authors to 

speculate the involvement of other regulating factors. Recently, it has been shown that the 

environment plays a role in determining DP3:DP4 ratios in (1,3;1,4)-β-glucan produced in field 

grown oats (Doehlert and Simsek, 2012) and barley (Chapter 4). 

The cellulose synthase like gene CslF6 has been extensively studied for its role in barley 

(1,3;1,4)-β-glucan synthesis. A high CslF expression correlates with a relatively high (1,3;1,4)-β-

glucan concentration in barley grains of genotype Himalaya and a low CslF6 expression is seen 

in the elite malting barley variety Sloop producing low (1,3;1,4)-β-glucan concentration in grain 

(Burton et al., 2008). In contrast, high lysine mutants such as lys5f and lys5g with relatively high 

grain (1,3;1,4)-β-glucan concentrations show reduced CslF6 expression when compared to their 

wild type parent Bomi with low grain (1,3;1,4)-β-glucan content (Christensen and Scheller, 

2012). In the lys5g mutant, reduced CslF6 expression is accompanied by low (1,3;1,4)-β-glucan 

synthase activity at 20 days after pollination as compared to Bomi, but the (1,3;1,4)-β-glucan 

synthase activity in the lys5f mutant is unaffected despite low CslF6 expression. These 

inconsistencies between CslF6 expression and (1,3;1,4)-β-glucan production levels may be due 

to post-transcriptional or epigenetic regulation of genes involved in (1,3;1,4)-β-glucan 

biosynthesis such as CslF6. An argument for the latter was provided from a study by Christensen 

and Scheller (2012) indicating possible methylation of region surrounding CslF6 in high lysine 

lys3a genotype showing an extreme suppression of CslF6 expression (1/1000
th

 of wild type).  

Despite CslF6 down-regulation in the lys3a mutant, the (1,3;1,4)-β-glucan concentration is 

relatively high throughout endosperm development. Thus, additional factors acting at the post-
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transcriptional level may boost CSLF6 activity levels in lys3a mutant to allow efficient (1,3;1,4)-

β-glucan production. It would be interesting to test if such regulation involves the putative 

phosphorylation site (A590T) on CSLF6 identified for the TR251 line. 

Transgenic overexpression of CslF6 leads to increases grain (1,3;1,4)-β-glucan content and 

lower DP3:DP4 ratio (Burton et al., 2011). In the lys5g mutant with low CslF6 expression, the 

DP3:DP4 ratios is higher in comparison to its parent Carlsberg II (Mikkelsen et al., 2013; 

Christensen and Scheller, 2012). In this context it may be reasonable to assume that higher CslF6 

expression increases the amount of active CSLF6 creating a correlation between high (1,3;1,4)-β-

glucan concentrations and low DP3:DP4 ratios. This may also be consistent with a model 

suggested by Urbanowicz et al. (2004; Figure 2.4.), where an increase in CSLF6 proteins 

intensifies the competition for UDP-Glc substrate molecules and reduces their relative 

concentration favoring the production of longer cellodextrin subunits. However, the results 

presented in Chapter 4 do not seem to support this model as the more active CslF6 allele of 

TR251 produces higher DP3:DP4 ratio in suboptimal environments than the less active CslF6 

allele of CDC Bold (Chapter 4, Table 4.4). However, the apparent discrepancy between previous 

reports and this study could be caused by differences in enzyme characteristics. Assuming 

TR251 CSLF6 590T enzyme has a higher affinity for UDP-Glc than the CSLF6 590A isoform, 

the difference would lead to a higher DP3:DP4 ratio in CSLF6 590T lines as compared to CSLF6 

590A lines when grown under conditions with reduced concentration of free UDP-glucose. In 

barley grown at Vegreville, approximately 8.9 % of the variation could be explained by the 

CSLF6_4105 marker as the mean ratio for the CSLF6 590T allele was significantly higher than 

for the CSLF6 590A allele. According to this hypothesis, the CSLF6 590T enzyme may have a 

higher specific activity for substrate than the CSLF6 590A isoform. 

Phosphorylation has been shown to regulate β-glucan synthesis in Arabidopsis (Chen et al., 

2010; Taylor, 2007), pea (Ray, 1973), tobacco (Kaida et al., 2009) and corn (Paliyath and 

Poovaiah, 1988). Mutation studies of AtCesA1 have shown that mimicking constitutive 

phosphorylation of serine residues within the class specific domain increases cellulose 

production (Chen et al., 2010). Putative phosphorylation sites are also present on barley CSLF6 

as suggested by bioinformatics analysis using NetPhos 2.0 and PhosPhat 3.0 software. One site 

of particular interest is located immediately N terminal of the variant A590T site (Chapter 3). If 

functional, threonine at this putative phosphorylation site may either enhance or mimic 
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phosphorylation, resulting in higher (1,3;1,4)-β-glucan synthesis. The sequence of the 

SHPSPY[T/A]A motif suggests it may be recognized by a Pro-directed kinase and more 

specifically a mitogen-activated protein (MAP) kinase. Pro-directed kinases have a stringent 

requirement for a proline in the n+1 position N terminal to the phosphorylation site and MAP 

kinases have a preference for an additional proline within the recognition motif (Pinna and 

Ruzzene, 1996). MAP kinases also require a D domain N terminal to the phosphorylation site 

and the domain should contain a LxL motif located 3–5 amino acids downstream from a region 

containing several basic residues (Sharrocks et al., 2000). The CSLF6 protein carries a putative 

D domain (KGKHGFLPL) 18 amino acids N terminal to the SHPSPYAA motif. Both the 

SHPSPYAA and LXL motifs are well conserved among CSLF6 variants of wheat (Triticum 

aestivum), rice (Oryza sativa), oats (Avena sativa) and Brachypodium supporting these elements 

have an important function. Whether differences in HvCSLF6 phosphorylation status caused by 

A590T variation is the underlying cause for 7H (1,3;1,4)-β-glucan QTL remains to be confirmed 

by further studies. 

It is interesting to note that a recent association mapping study by Houston et al. (2014) did 

not find an association with CslF6 gene. This may have been due to several factors including the 

structure of the population used in the study. The authors acknowledge that an attempt to 

associate a SNP in the third exon of CslF6 may have been hampered by the selection against this 

allele in elite malting barley leading to an under representation of the TR251 allele in the 

association mapping panel studied. Another reason could be the effect of environment on the 

QTL associated with the CslF6 marker. It was found in the second study (Chapter 4) and Li et al. 

(2008) that the 7H QTL is affected by environment. Since Houston et al. (2014) grew the 

population under glasshouse conditions it is likely that the effect caused by the allelic differences 

are not applicable in a low stress environment. The second study of 119 genotypes grown in 

greenhouse conditions (Chapter 4) using GLM, CSLF6_4105 marker was found to be associated 

grain (1,3;1,4)-β-glucan concentration. But when a panel of 94 barley genotypes were 

investigated, corrected for population structure and a higher FDR, no significant association 

could be detected between CSLF_4105 marker and (1,3;1,4)-β-glucan concentration. In an 

extreme example of environmental control, OsCslF6 expression and (1,3;1,4)-β-glucan synthase 

activity is reduced in rice seedlings grown submerged compared to dry growing conditions 
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(Kimpara et al., 2008). It would be interesting to investigate the effect of drought stress on 

HvCslF6 expression and (1,3;1,4)-β-glucan synthase activity in barley. 

 

6.5 Association mapping to identify novel markers for (1,3;1,4)-β-glucan concentration in 

barley  

In the association mapping study, ddRAD was used to genotype a population of 94 two-

row spring genotypes to find novel markers associated with (1,3;1,4)-β-glucan concentration. 

The bioinformatics pipeline used created large differences in the number of markers detected, 

nevertheless the downstream results were similar. Both datasets could be used to distinguish 

substructure within this population which predicted two groups that could be roughly categorized 

as Canadian varieties and non-Canadian varieties. Statistical models integrating kinship matrix 

and / or substructure matrix generated through the Bayesian algorithm STRUCTURE v 2.3.4 or 

ordination analysis by PCoA lead to different markers associations (Table 5.1). Despite these 

differences a number of chromosomal regions were found to be associated regardless of the 

dataset or statistical model used. The region on 5H is of particular interest as it was identified by 

three different statistical models and both datasets (Chapter 5; Table 5.1) and has been 

previously identified in an association mapping study and a bi-parental genetic mapping 

population (Shu and Rasmussen, 2014; Islamovic et al., 2013). Islamovic et al. (2013) identified 

a syntenous region in rice near Os03g59340 (OsCesA2) whereas Shu and Rusmussen (2014) 

made no predictions of putative candidate genes in this specific genomic region. It is unlikely 

that HvCesA2 is the gene responsible for this QTL as it is located on the opposite telomere on 5H 

in barley according to current physical map (Mayer et al., 2012) and genetic map of Burton et al. 

(2004). From the EnsemblPlant annotated database (version 23), one putative uncharacterized 

gene (MLOC_21074) was found in this region of the 5H telomere. A Pfam search showed that 

MLOC_21074 contains a zf-RVT domain which is a zinc binding domain commonly found in 

reverse transcriptases. This most likely suggests that this gene as a transposable element but the 

significance is entirely unknown. 

Christensen and Scheller (2012) suggested that there is a sensing mechanism at the cell 

wall which monitors the amount of (1,3;1,4)-β-glucan and influences HvCslF6 expression. Two 

transcription factors were identified as candidate genes for (1,3;1,4)-β-glucan in the AM study 

(Chapter 4). MLOC_21017 is an aparataxin related basic helix loop helix protein gene located at 
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QTL on chromosome 4H and MLOC_37432 is a C2H2 zinc finger domain protein gene 

positioned at QTL on chromosome 1H, both of which are likely involved in transcription 

repression. Christensen and Scheller (2012) have shown transcriptional repression of CslF6 by 

the lys3a mutation decreases the concentration of (1,3;1,4)-β-glucan in barley grains and 

postulated that signals from the cell wall can influence CslF6 expression. Recently it has been 

suggested that CslF6 transcription levels do differ between TR251 and CDC Bold but no 

causative agent could be found within the gene or promoter (Professor Diane Mather, University 

of Adelaide, Australia, personal conversation). Transcriptional regulation of CslF6 is likely to 

play a role in (1,3;1,4)-β-glucan synthesis but it would probably be controlled by a trans acting 

element such as a transcription factor or by epigenetic factors. 

UDP-Glu is known to be the substrate required for cellulose, callose and (1,3;1,4)-β-

glucan. MLOC_73315 is an uncharacterised gene at the QTL on chromosome 7H (Chapter 5) 

displaying a UDP-glucuronosyl / UDP-glucosyltransferase domain. This protein may have a role 

in production of UDP-Glc, which is the main building block for cellulose, callose and (1,3;1,4)-

β-glucan biosynthesis. The inclusion of a UDP-glucosyltransferase as a subunit of (1,3;1,4)-β-

glucan synthase complex has been proposed by Urbanowicz et al. (2004).  

As mentioned earlier, phosphorylation is emerging as a major control mechanism in cell 

wall biosynthesis. From the AM study, two putative phosphorylation signalling genes were 

identified that could encode proteins with signalling functions. One candidate gene of interest is 

MLOC_3791, a predicted acid phosphatase gene. Transgenic overexpression of purple acid 

phosphatase 12 (NtPap12) increase cellulose and callose synthesis in tobacco cells (Kaida et al., 

2009). In this regard MLOC_3791 may play a similar role in (1,3;1,4)-β-glucan synthesis, 

though additional studies will be needed to confirm this speculation. The second putative 

signaling gene was located near MLOC_53722, annotated as a putative serine / threonine-protein 

kinase gene. Pfam blast search reveals several domains within this protein including a bulb-type 

lectin domain, ATP binding site and an S-receptor-like serine / threonine-protein kinase domain. 

This predicted 839 amino acid protein contains two possible transmembrane domains one near 

the N-terminal from amino acid 2 - 24 and a second at amino acids 451 - 486 (Cao et al., 2006).  

S-receptor-like serine / threonine-protein kinase proteins respond to external signals and have 

been shown be involved in wound response in some plants (Pastuglia et al., 1997; 2002).  
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The results of association mapping study in chapter 5 suggest an extra layer of control of 

(1,3;1,4)-β-glucan synthesis in the barley grain. Increasing evidence has shown that 

phosphorylation of enzymes participating starch biosynthesis (Genberger, 2011) and production 

and degradation of various glucan polymers of the cell wall (Chen et al., 2010; Taylor, 2007). 

One example of the role of phosphorylation of CESA was recently demonstrated for the 

elongating internode of maize (Zhang et al., 2014). Microarray data shows that there is a 

disparity between CesA and Csl activity and accumulation of cellulose and hemicellulose 

products (Zhang et al., 2014). When a global correlation analysis was applied to secondary cell 

wall ZmCesA genes it was noted that two genes encoding protein kinases (Q653F8 and Q75V63) 

are highly correlated with cell wall biosynthesis. While cell wall biosynthesis may be grossly 

controlled by gene expression, increasing evidence suggests that control of the biosynthetic 

machinery is occurring at the post translation level (Zhang et al., 2014; Chen et al., 2010; Taylor, 

2007; Christensen and Scheller, 2012). 

Despite common marker systems and diverse barley genotypes studied, no common allele 

explaining a majority of the variance in (1,3;1,4)-β-glucan concentration in barley have been 

found. In association mapping the statistical association among a set of loci will decay more or 

less quickly depending on the amount of recombination events that have occurred during meiosis 

(Dawson, 2000). By studying individuals from a wide variety of genetic backgrounds a higher 

number of ancient meiotic events can be assumed to have occurred, allowing for greater mapping 

resolution. The advantage of association mapping is that as genetic diversity increases in the 

population the amount of ancient meiotic events also increases leading to ever increasing 

mapping resolution. The disadvantage of association mapping is that as the amount of genetic 

diversity may increase the number of alleles affecting the trait in question could also potentially 

increase, leading to a reduction in the amount of variation explained by each allele. This is a 

common theme in human medicine of “common disease, many rare variants” (Ingvarsson and 

Street, 2010). Genetic variants causing diseases should be expected to be associated with negative 

selection pressure which, by its very nature, would remove any common variants from the 

population. In this sense grain (1,3;1,4)-β-glucan concentration may be looked at through the 

lens of human disease association mapping. Intensive selection pressure against grain (1,3;1,4)-

β-glucan concentration in malting breeding programs may have had a similar effect. This may be  
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Figure 6.1. An updated summary of genomic regions associated with barley (1,3;1,4)-β-glucan 

grain or wort concentrations. 
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why there has been no “common variant” found in association mapping panels when mapping 

grain (1,3;1,4)-β-glucan concentration (Figure 6.1). 

  

6.6 Future directions 

Recently, Houston et al. (2014) have identified a marker associated with (1,3;1,4)-β-glucan 

that is predicted to be near HvCslF9 but has not identified an underlying reason for the variation 

caused by this marker. Direct sequencing of HvCslF9 from Morex and Steptoe may be able to 

identify a causative mutation and lead to a functional marker within this gene or rule it out as a 

possible candidate. 

Recent studies have shed new light on the possible location, orientation and action of 

CSLF6. (Kim et al., article in press). Transgenic expression of CslF6 from the model grass 

species Brachypodium distachyonin was performed in two heterologous systems, tobacco 

epidermal cells and the yeast Pichia pastoris. YFP-tagged BdCSLF6 shows localization to the 

Golgi apparatus similar to localization of CSLH1 by Dolbin et al. (2009). Subsequent analysis 

using anti-(1,3;1,4)-β-glucan immunogold labeling identifies (1,3;1,4)-β-glucan in the cell wall 

and Golgi apparatus of transformed tobacco cells. Topological studies using proteinase 

treatments indicate that the catalytic site is exposed to the cytosol and the protein contains an 

even number of transmembrane domains similar to the model proposed by Urbanowicz et al. 

(2004). Unlike the Urbanowicz model, the authors argue that BdCSLF6 alone can produce a full 

length (1,3;1,4)-β-glucan since heterologous expression of BdCSLF6 in Pichia resulted in a the 

production of (1,3;1,4)-β-glucan. The authors also argue that the evolutionary distance between 

yeast and plants makes it unlikely that a yeast glucosyltranferase would work with a plant 

CSLF6 protein. 

The strongest direct evidence of the involvement of CslF6 in (1,3;1,4)-β-glucan synthesis 

in barley has come from mutations affecting the protein (Tonooka et al., 2009; Taketa et al., 

2012; Hu et al., 2014). Point mutations near the conserved aspartic acid residues and in the 

transmembrane domain have shown a drastic effect on the amount of (1,3;1,4)-β-glucan 

accumulated in the cell. On the other hand, constitutive expression of CslF suggest that the 

proteins may not act alone as high (1,3;1,4)-β-glucan concentration is not always obtained. 

Heterologous expression of rice CslF genes in Arabidopsis results in the synthesis of (1,3;1,4)-β-

glucan preferentially in epidermal cells (Burton et al., 2006) and overexpression of CslF in 
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barley results in non-uniform deposition of (1,3;1,4)-β-glucan (Burton et al., 2011). This might 

suggests that CslF6 is one component of a larger protein complex responsible for the synthesis of 

(1,3;1,4)-β-glucan in grain. Synthesis of large glucose polysaccharides such as starch and 

cellulose involve highly controlled and large protein complexes (Chen et al., 2010; Tetlow and 

Emes, 2014). Analysis of the CesA / Csl superfamily show that the CLSF and CESA proteins are 

very closely related sharing a greater amount of homology compared to almost all other Csl 

genes. CESA proteins in plants have been shown to function as CESA homo-oligomers stabilised 

by the class specific regions (CSR) and plant specific regions (PSR) in the cytosolic regions of 

the protein (Sethaphong et al., 2014). Furthermore, the chimeric protein analysis shows that the 

C-terminal domains including the CSR and PSR confer specificity as to their specific protein 

partners (Wang et al., 2006). The CslF family of proteins may have a similar system of function 

coupling with other Csl proteins or other glucosyltransferases to form a functional (1,3;1,4)-β-

glucan synthesis apparatus. Considering (1,3;1,4)-β-glucan can be produced in Arabidopsis and 

tobacco, plants which do not create (1,3;1,4)-β-glucan, the partnering protein may be either 

highly evolutionarily conserved throughout plants or the CSLF core synthase may not be highly 

selective and weakly active in the absence of partners. 

Overexpression of CslF6 in barley using a constitutive promoter did result in three to four 

fold higher (1,3;1,4)-β-glucan concentration accumulation in the leaves. However, despite higher 

transcription levels in the grain there was no appreciable increase in grain (1,3;1,4)-β-glucan 

concentration. Interestingly, constitutive expression of CslF4, which is naturally found at 

moderate levels in the leaves did not increase the leaf (1,3;1,4)-β-glucan concentration, but did 

have a drastic effect in the grain (Burton et al., 2006). These results do suggest some level of 

control of at the post-transcriptional level in these respective tissues. It would be interesting to 

investigate the role of phosphorylation and sugar signalling as possible feedback mechanisms on 

enzyme activity and gene expression. While QTL analysis does point towards the involvement of 

the CSLF proteins only this thesis has offered a possible explanation of how natural genetic 

variation in CslF6 may influence (1,3;1,4)-β-glucan synthesis in vivo. A possible 

phosphorylation site influenced by a second messenger system seems likely but remains 

unconfirmed. Biochemical analysis looking at the differences in enzymatic activity between the 

CSLF 590T and CSLF6 590A protein could prove our hypothesis that this amino acid shift 

causes differences in (1,3;1,4)-β-glucan synthesis.  
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APPENDIX 

Figure S1. Alignment of nucleotide sequence for HvCslF6 from barley CDC Bold and TR251. 

Start codon is highlighted in red. 
 
CDCBold         NNCGTAAAGGAGAGTGAGTGCGTGCATTGAGGACGACGGCCATGGCGCCAGCGGTGGCCG 60 

TR251           ************************************************************ 60 

                 

CDCBold         GAGGGGGCCGCGTGCGGAGCAATGAGCCGGTTGCTGCTGCTGCCGCCGCGCCGGCGGCCA 120 

TR251           ************************************************************ 120 

                 

CDCBold         GCGGCAAGCCCTGCGTGTGCGGCTTCCAGGTTTGCGCCTGCACGGGGTCGGCCGCGGTGG 180 

TR251           ************************************************************ 180 

                 

CDCBold         CCTCCGCCGCCTCGTCGCTGGACATGGACATCGTGGCCATGGGGCAGATCGGCGCCGTCA 240 

TR251           **********************************A************************* 240 

                 

CDCBold         ACGACGAGAGCTGGGTGGGCGTGGAGCTCGGCGAAGATGGCGAGACCGACGAAAGCGGTG 300 

TR251           ************************************************************ 300 

                 

CDCBold         CCGCCGTTGACGACCGCCCCGTATTCCGCACCGAGAAGATCAAGGGTGTCCTCCTCCACC 360 

TR251           ************************************************************ 360 

                 

CDCBold         CCTACCGGTACGTCCTGCTCCCACAACTAAACAGAAACTCCCTATATCTGCGTCACACTC 420 

TR251           ************************************************************ 420 

                 

CDCBold         AACAATTAATCCAACTAAGTCTCTCTACTACTCTAGTATTTATTTTTACTCTCTATCTGC 480 

TR251           ********************************A*************************** 480 

                 

CDCBold         ACAACAAGCGCTACTACAATTAACCCAACAAGCACCACGCCAGGTTGACAGTCAGGATAA 540 

TR251           ************************************************************ 540 

                 

CDCBold         TTTGATCTTGACCGGAGTAAGTACTAGTACTAGGTCGGTGTTAATCAGAGTAATTATTGC 600 

TR251           ************************************************************ 600 

                 

CDCBold         ACTAGTTAATTAAAATTTGAGTAATCCGAGACAGGTGCACGTTAGGGCCGGGCCAATGAT 660 

TR251           ************************************************************ 660 

                 

CDCBold         GGCTCGAATCCACCCAAAATAGCGCGTCCCGGTGTGGGCTGTCGGCTCGGTGCTTCTTCC 720 

TR251           C*********************************************************** 720 

                 

CDCBold         TTCCATTTTACTAGTCGCAGTCACTGCAGCTTGGGCCCACGGGAGGGGACGTTAGCCGTT 780 

TR251           ************************************************************ 780 

                 

CDCBold         GGGCCTGCCTGGCAGGTGGGCCCCGGTGGCCACCCTGGCGGCTCATAAATCCTTGCTACT 840 

TR251           ************************************************************ 840 

                 

CDCBold         TTGGAGCTGTAATGGACGCTCTGCAATAGCAATAGGAATCCGAGGTGAAACGACGACAGT 900 

TR251           ************************************************************ 900 

                 

CDCBold         GGGCATGGCATGGCTTGCATGTGAATCCAAGCCACATCATTAAAAGCATCCTCCCTGGGC 960 

TR251           ************************************************************ 960 

                 

CDCBold         ACGTCGCGGTGAGAAAGTTGGATAAACTTTTGGGGGTTCGGACAAGATGAGAAAAAGCAA 1020 

TR251           ************************************************************ 1020 

                 

CDCBold         GTAACATGTCCCTTTTTTGGCACCGAAGAAATCCTATGTACGGCGAGTTTTTTCTGCATC 1080 

TR251           ********G*************************************************** 1080 

                 

CDCBold         TAGTTATGGGTAGATGTACGTTAGTTTTTGTTGAGCGTTTTATGTGCTACATATATGGAG 1140 

TR251           ************************************************************ 1140 
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CDCBold         AAAAAGAGAAAAATATTATCATGTCATGTCATGCCATGCCATGAGAAGGAGGAGAAGAAA 1200 

TR251           **************************************--------------******** 1186 

                 

CDCBold         AAGAAGTGTTGCCACCGCTCGAATGCCTTTTTTTTCTTTCGGAAGGATGCGTGAGTCATG 1260 

TR251           ****************************C******************************* 1246 

                 

CDCBold         TTGGCACCGAGAAAAGCCATATTAAAGTGGCAGAGTTACAACTCAGAATAAATGCGGGTG 1320 

TR251           ************************************************************ 1306 

                 

CDCBold         TTACAAAAACACTAGGATATGTGAAGGGCACTCGGCACAACACTTTAAGACTACACAATT 1380 

TR251           ************************************************************ 1366 

                 

CDCBold         GAAAAAGTGTACTCTCTGTATCTAAATAATTATAATTGAAAAGAATTAATCTATATATGA 1440 

TR251           ************************************************************ 1426 

                 

CDCBold         AAGTAGTAATGATTAGCGGTAGAAGGTTCCAACGACTTTTTTGGCGCCAATAGCAAGAAG 1500 

TR251           ************************************************************ 1486 

                 

CDCBold         AAAGAAAAAGAAAAAAATCTTTACTGTACAGTATAACGAGAAAAGAGGCCCATTAATAGA 1560 

TR251           *********************************--************************* 1544 

                 

CDCBold         GCAACGAATCGAGCGGCACCACCTCTGGCGGTCACGTCCATGCCCTCGCACGACGGATGA 1620 

TR251           **********C************************************************* 1604 

                 

CDCBold         GGCCCGGGGGGTCCTACTGACAGCCGAAGCATGTCGGTGCTCAAACACGGCGCCGTTTGC 1680 

TR251           ************************************************************ 1664 

                 

CDCBold         TGCCAAGTGTGCCAGCTCGCACTCATTGACTTGCCAGCTCTCTCCTTGGTTGTCAATGAG 1740 

TR251           ************************************************************ 1724 

                 

CDCBold         AACATGATGCCTTTTGGCATTTGCAAACTTATTAAAACTAGCTGTCGTCCGATAGGGAAA 1800 

TR251           ************************************************************ 1784 

                 

CDCBold         AGAAAAGAAAAGAAAAGAATAAGAAAAAAAGGACAAAGAGAAAAGATGAACATGGCGCAT 1860 

TR251           ************************************************************ 1844 

                 

CDCBold         GTTCCCTCCAATAATTGCAGGCACCAACACTGGGTCGATTAATCCAACAACAATATTTTA 1920 

TR251           ************************************************************ 1904 

                 

CDCBold         CTATACCAGACGAGAGTACAGTAGTCGGGTGATGATGGACTGTAACTGACTGAGTATGAA 1980 

TR251           ************************************************************ 1964 

                 

CDCBold         TGACTGTAATGCAGGGTGCTGATTTTCGTTCGTCTGATCGCCTTCACGCTGTTCGTGATC 2040 

TR251           ************************************************************ 2024 

                 

CDCBold         TGGCGTATCTCCCACAAGAACCCAGACGCGATGTGGCTGTGGGTGACATCCATCTGCGGC 2100 

TR251           ************************************************************ 2084 

                 

CDCBold         GAGTTCTGGTTCGGTTTCTCGTGGCTGCTGGATCAGCTGCCCAAGCTGAACCCCATCAAC 2160 

TR251           ************************************************************ 2144 

                 

CDCBold         CGCGTGCCGGACCTGGCGGTGCTGCGGCAGCGCTTCGACCGCCCCGACGGCACCTCCACG 2220 

TR251           ************************************************************ 2204 

                 

CDCBold         CTCCCGGGGCTGGACATCTTCGTCACCACGGCCGACCCCATCAAGGAGCCCATCCTCTCC 2280 

TR251           ************************************************************ 2264 

                 

CDCBold         ACCGCCAACTCGGTGCTCTCCATCCTGGCCGCCGACTACCCCGTGGACCGCAACACATGC 2340 

TR251           ************************************************************ 2324 

                 

CDCBold         TACGTCTCCGACGACAGTGGCATGCTGCTCACCTACGAGGCCCTGGCAGAGTCCTCCAAG 2400 

TR251           ************************************************************ 2384 
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CDCBold         TTCGCCACGCTCTGGGTGCCCTTCTGCCGCAAGCACGGGATCGAGCCCAGGGGTCCGGAG 2460 

TR251           ************************************************************ 2444 

                 

CDCBold         AGCTACTTCGAGCTCAAGTCACACCCTTACATGGGGAGAGCCCAGGACGAGTTCGTCAAC 2520 

TR251           ************************************************************ 2504 

                 

CDCBold         GACCGCCGCCGCGTTCGCAAGGAGTACGACGAGTTCAAGGCCAGGATCAACAGCCTGGAG 2580 

TR251           ************************************************************ 2564 

                 

CDCBold         CATGACATCAAGCAGCGCAACGACGGGTACAACGCCGCCATTGCCCACAGCCAAGGCGTG 2640 

TR251           ************************************************************ 2624 

                 

CDCBold         CCCCGGCCCACCTGGATGGCGGACGGCACCCAGTGGGAGGGCACATGGGTCGACGCCTCC 2700 

TR251           ************************************************************ 2684 

                 

CDCBold         GAGAACCACCGCAGGGGCGACCACGCCGGCATCGTACTGGTCAGTATCCATCCATCTTTC 2760 

TR251           ************************************************************ 2744 

                 

CDCBold         TGCTGCTTATATTACTCTTAGGTTACTCTTATCGTCTCTTTCCTATACTGTACATGCATG 2820 

TR251           ************************************************C*********** 2804 

                 

CDCBold         CATGCTGCTATTCTTGGAATCGTGGTTGGTTACTACTCCACCATGCAAAAATAACAAGAA 2880 

TR251           ************************************************************ 2864 

         

CDCBold         GAGGAATCTTGGTTAGTTAGGGCCTCGTTGTTATATTAGTGGCCATCTGATGTGATGCCT 2940 

TR251           ************************************************************ 2924 

                 

CDCBold         GCCGGCTGTGCCCATCCATATCCATGGAAGATTTCGACAGAATCGACGTGGTGATAGTCG 3000 

TR251           **********************************************************T* 2984 

                 

CDCBold         AGAGTGCAACCACCACCCAGAGCCAGCCAAGCACATGCATGCTTCTCTTCTCGTCTCGTC 3060 

TR251           ************************************************************ 3044 

                 

CDCBold         GTGTGGCCAGCAGCGCATTCATGCTATTGCTGTGACGAGGGAGGAATGGTAGTTGGGGTG 3120 

TR251           **************************************************G********* 3104 

                 

CDCBold         GTCCTTTCCCCCCGACAGCACTACAGCCTCCACTTTATGACCCATTTAATTCACCGGCCC 3180 

TR251           *****************************************************T****** 3164 

                 

CDCBold         TGCTTTGTTGTAACCGCCTTCTCATCTCAATCAATCATTCATTCATTCATAAGTTTACTC 3240 

TR251           ************************C*********************************** 3224 

                 

CDCBold         ACTCTTTGTTACTACTCGAACCACTAATCAGGAAGGAGTAGGAGTAATGCAGATTTACTA 3300 

TR251           ************************************************************ 3284 

                 

CDCBold         TTGACAGTTAAAGGAGTAAAAAGAAGGAAGCACAATTACAGAACCTTGTTTTTTTTTACT 3360 

TR251           **A********************************************************* 3344 

                 

CDCBold         ACTGTACGTAAGGTGTAAGAATGGAGTGCTGACAGAGAATGGATGCAGGTGCTGCTGAAC 3420 

TR251           ************************************************************ 3404 

                 

CDCBold         CACCCGAGCCACCGCCGGCAGACGGGCCCGCCGGCGAGCGCTGACAACCCACTGGACTTG 3480 

TR251           ************************************************************ 3464 

                 

CDCBold         AGCGGCGTGGATGTGCGTCTCCCCATGCTGGTGTACGTGTCCCGTGAGAAGCGCCCCGGG 3540 

TR251           ************************************************************ 3524 

                 

CDCBold         CACGACCACCAGAAGAAGGCCGGTGCCATGAACGCGCTTACCCGCGCCTCGGCGCTGCTC 3600 

TR251           ************************************************************ 3584 

                 

CDCBold         TCCAACTCCCCCTTCATCCTCAACCTCGACTGCGATCATTACATCAACAACTCCCAGGCC 3660 

TR251           ************************************************************ 3644 
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CDCBold         CTTCGCGCCGGCATCTGCTTCATGGTGGGACGGGACAGCGACACGGTTGCCTTCGTCCAG 3720 

TR251           ************************************************************ 3704 

                 

CDCBold         TTCCCGCAGCGCTTCGAGGGCGTCGACCCCACCGACCTCTACGCCAACCACAACCGCATC 3780 

TR251           ************************************************************ 3764 

                 

CDCBold         TTCTTCGACGGCACCCTCCGTGCCCTGGACGGCATGCAGGGCCCCATCTACGTCGGCACT 3840 

TR251           ************************************************************ 3824 

                 

CDCBold         GGGTGTCTCTTCCGCCGCATCACCGTCTACGGCTTCGACCCGCCGAGGATCAACGTCGGC 3900 

TR251           ************************************************************ 3884 

                 

CDCBold         GGTCCCTGCTTCCCCAGGCTCGCCGGGCTCTTCGCCAAGACCAAGTACGAGAAGCCCGGG 3960 

TR251           ************************************************************ 3944 

                 

CDCBold         CTCGAGATGACCACGGCCAAGGCCAAGGCCGCGCCCGTGCCCGCCAAGGGTAAGCACGGC 4020 

TR251           ************************************************************ 4004 

                 

CDCBold         TTCTTGCCACTGCCCAAGAAGACGTACGGCAAGTCGGACGCCTTCGTGGACACCATCCCG 4080 

TR251           ************************************************************ 4064 

                 

CDCBold         CGCGCGTCGCACCCGTCGCCCTACGCCGCGGCGGCTGAGGGGATCGTGGCCGACGAGGCG 4140 

TR251           ************************A*********************************** 4124 

                 

CDCBold         ACCATCGTCGAGGCGGTGAACGTGACGGCCGCCGCGTTCGAGAAGAAGACCGGCTGGGGC 4200 

TR251           ************************************************************ 4184 

                 

CDCBold         AAAGAGATCGGCTGGGTGTACGACACCGTCACGGAGGACGTGGTCACCGGCTACCGGATG 4260 

TR251           ************************************************************ 4244 

                 

CDCBold         CATATCAAGGGGTGGCGGTCACGCTACTGCTCCATCTACCCACACGCCTTCATCGGCACC 4320 

TR251           ************************************************************ 4304 

                 

CDCBold         GCCCCCATCAACCTCACGGAGAGGCTCTTCCAGGTGCTCCGCTGGTCCACGGGATCCCTC 4380 

TR251           ************************************************************ 4364 

                 

CDCBold         GAGATCTTCTTCTCCAAGAACAACCCGCTCTTCGGCAGCACATACCTCCACCCGCTGCAG 4440 

TR251           ************************************************************ 4424 

                 

CDCBold         CGCGTCGCCTACATCAACATCACCACTTACCCCTTCACCGCCATCTTCCTCATCTTCTAC 4500 

TR251           ************************************************************ 4484 

                 

CDCBold         ACCACCGTGCCGGCGCTATCCTTCGTCACCGGCCACTTCATCGTGCAGCGCCCGACCACC 4560 

TR251           ************************************************************ 4544 

                 

CDCBold         ATGTTCTACGTCTACCTGGGCATCGTGCTATCCACGCTGCTCGTCATCGCCGTGCTGGAG 4620 

TR251           ************************************************************ 4604 

                 

CDCBold         GTCAAGTGGGCCGGGGTCACAGTCTTCGAGTGGTTCAGGAACGGCCAGTTCTGGATGACA 4680 

TR251           ************************************************************ 4664 

                 

CDCBold         GCAAGTTGCTCCGCCTACCTCGCCGCCGTCTGCCAGGTGCTGACCAAGGTGATATTCCGG 4740 

TR251           ************************************************************ 4724 

                 

CDCBold         CGGGACATCTCCTTCAAGCTCACATCCAAGCTACCCTCGGGAGACGAGAAGAAGGACCCC 4800 

TR251           ************************************************************ 4784 

                 

CDCBold         TACGCCGACCTCTACGTGGTGCGCTGGACGCCGCTCATGATTACACCCATCATCATCATC 4860 

TR251           *****************************************C****************** 4844 

                 

CDCBold         TTCGTCAACATCATCGGATCCGCCGTGGCCTTCGCCAAGGTTCTCGACGGCGAGTGGACG 4920 

TR251           ************************************************************ 4904 
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CDCBold         CACTGGCTCAAGGTCGCCGGCGGCGTCTTCTTCAACTTCTGGGTGCTCTTCCACCTCTAC 4980 

TR251           ************************************************************ 4964 

                 

CDCBold         CCCTTCGCCAAGGGCATCCTGGGGAAGCACGGAAAGACGCCAGTCGTGGTGCTCGTCTGG 5040 

TR251           ************************************************************ 5024 

                 

CDCBold         TGGGCATTCACCTTCGTCATCACCGCCGTGCTCTACATCAACATCCCCCACATGCATACC 5100 

TR251           ************************************************************ 5084 

                 

CDCBold         TCGGGAGGCAAGCACACAACGGTGCATGGTCACCATGGCAAGAAGTTGGTCGACACAGGG 5160 

TR251           ************************************************************ 5144 

                 

CDCBold         CTCTATGGCTGGCTCCATTGATGACTTTGCCCGGACAAGACGACCTGAGACAAGAAACAA 5220 

TR251           ************************************************************ 5204 

                 

CDCBold         CTCATCCACTCAACAGTCAGTGCATGCATCCATCTCATCGAGAAGCAGAGCCCGCCAAAG 5280 

TR251           ************************************************************ 5264 

                 

CDCBold         TTTGAATTTTTTAATTTTTTTTCTTCACTTTTTTGCCCGTTTCTTTTTAGTTTTGTCCAG 5340 

TR251           ************************************************************ 5324 

                 

CDCBold         AAAAAAGATGGTGTTGATTTGATTTAGTTTATAATTACCTGTGGTAATTAATTATGTACT 5400 

TR251           ************************************************************ 5384 

                 

CDCBold         TAATTATACATTCCGCGAACAACAAGGGAGACAGACGACTTACGGGGTACTGGCTCGGGT 5460 

TR251           ************************************************************ 5444 

                 

CDCBold         GGTAAGAGCTTGCACTGTACTGTACATGCTCGACGATGTATAGAGATGCACAGAGGAGAG 5520 

TR251           **************A********************************************* 5504 

                 

CDCBold         GATGGGAGTGCTGGGACCGTGGGGTGGACGGCGGTATTCTTTTAGTATTATATATGGAAA 5580 

TR251           ************************************************************ 5564 

                 

CDCBold         CAATAAATTTAATTTCATTAATTCGTTCATGTGTTCACCTGTGGCCAATGACTTCATTTT 5640 

TR251           ************************************************************ 5624 

                 

CDCBold         TTTTGTCAGGGAATCTACTTATAGTAGTACTACTTATTTGTTATTACTTCGTCCAAAAAT 5700 

TR251           ************************************************************ 5684 

                 

CDCBold         AAGTATATTTACCCACTAATTGCTTGACAGTGTTTATTCCTTCGCCAAAATTAATGATTA 5760 

TR251           ************************************************************ 5744 

                 

CDCBold         AAATAGCTTGACAGTAGTGCGGGACTAGTCAGTCATGACGATTGAGCCGAGCATGTTCTC 5820 

TR251           ************************************************************ 5804 

                 

CDCBold         TTCATTATGTTTCCGGAACTTTATTCTGTCCCACTATGTATTACCGAATATTTGACTCGT 5880 

TR251           ************************************************************ 5864 

                 

CDCBold         AAAAAGCTGCAAGCCATGTGATCGATCTGCAGTTGCACTGTAAATGTTCATGATCTACTT 5940 

TR251           ************************************************************ 5924 

                 

CDCBold         TCATCGTGGACGTTGGAGTTGGACCGTATACTCCGCACCTCTTTTACAGAAAAACCACCA 6000 

TR251           ************************************************************ 5984 

                 

CDCBold         TCTATCATGGTATAATTCTTGTCGTGTTCCTATGACTTTCTTCAACCAAGACCCTTTTAC 6060 

TR251           TCTATCATGGTATAATTCTTGTCGTGTTCCTATGACTTTCTTCAACCAAGACCCTTTTAC 6044 

                ************************************************************ 

 

CDCBold         ATCAACTAAAAATGTAATACGGGATGAAACCACCATCTATCGGGGAACGGTCGGTGGAAC 6120 

TR251           ATCAACTAAAAATGTAATACGGGATGAAACCACCATCTATCGGGGAACGGTCGGTGGAAC 6104 

                ************************************************************ 

 

CDCBold         TAGCATATCGAGGAGACTTGTCGTCTCATTGAAAAGATGAATCTACAGGAGGATGCGGAA 6180 
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TR251           C*********************************************************** 6164 

                 

CDCBold         GATGATCTTGTGTGGGAAGAGGAATTAGACGTGGAGGAAATCAAGCCAAAGTGGCTGGTG 6240 

TR251           ************************************************************ 6224 

                 

CDCBold         ATCGGGCGTCTTTTGGCGCAGAAATCCTTCACTAACAGCACGCTGATTGCACACATGAAA 6300 

TR251           ************************************************************ 6284 

                 

CDCBold         GCTACTTGGAATCCAGCACGAACAATGGTGTGGATGAGGATCAACGCCAACCTATTCACC 6360 

TR251           ************************************************************ 6344 

                 

CDCBold         ATCGAATTCAATTGCCTTGGAGACTGGAACAAAGCAATGCATGAGGGCCCATGGGATTTT 6420 

TR251           ************************************************************ 6404 

                 

CDCBold         CGTGGTCTCGCGCTAATCCTGACACAATATGATGGATTCTCCGAACCTGAGAAAGTCAAA 6480 

TR251           **********************-------------------------------------- 6426 

                                                       

 

CDCBold         CTCGATAGGTTAGAAACTTGGTGCCAAATTCATAGGCTCCCTGATGGGAGTACCAGCCTG 6540 

TR251           ------------------------------------------------------------ 
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Figure S2. Alignment of amino acid sequence for HvCSLF6 from barley CDC Bold and TR251  
 

 

CDC Bold        MAPAVAGGGRVRSNEPVAAAAAAPAASGKPCVCGFQVCACTGSAAVASAASSLDMDIVAM 60 

TR251           ************************************************************ 60                 

 

CDC Bold        GQIGAVNDESWVGVELGEDGETDESGAAVDDRPVFRTEKIKGVLLHPYRVLIFVRLIAFT 120 

TR251           ************************************************************ 120 

 

CDC Bold        LFVIWRISHKNPDAMWLWVTSICGEFWFGFSWLLDQLPKLNPINRVPDLAVLRQRFDRPD 180 

TR251           ************************************************************ 180 

 

CDC Bold        GTSTLPGLDIFVTTADPIKEPILSTANSVLSILAADYPVDRNTCYVSDDSGMLLTYEALA 240 

TR251           ************************************************************ 240 

 

CDC Bold        ESSKFATLWVPFCRKHGIEPRGPESYFELKSHPYMGRAQDEFVNDRRRVRKEYDEFKARI 300 

TR251           ************************************************************ 300 

 

CDC Bold        NSLEHDIKQRNDGYNAAIAHSQGVPRPTWMADGTQWEGTWVDASENHRRGDHAGIVLVLL 360 

TR251           ************************************************************ 360 

 

CDC Bold        NHPSHRRQTGPPASADNPLDLSGVDVRLPMLVYVSREKRPGHDHQKKAGAMNALTRASAL 420 

TR251           ************************************************************ 420 

 

CDC Bold        LSNSPFILNLDCDHYINNSQALRAGICFMVGRDSDTVAFVQFPQRFEGVDPTDLYANHNR 480 

TR251           ************************************************************ 480 

 

CDC Bold        IFFDGTLRALDGMQGPIYVGTGCLFRRITVYGFDPPRINVGGPCFPRLAGLFAKTKYEKP 540 

TR251           ************************************************************ 540 

                

CDC Bold        GLEMTTAKAKAAPVPAKGKHGFLPLPKKTYGKSDAFVDTIPRASHPSPYAAAAEGIVADE 600 

TR251           *************************************************T********** 600 

                 

CDC Bold        ATIVEAVNVTAAAFEKKTGWGKEIGWVYDTVTEDVVTGYRMHIKGWRSRYCSIYPHAFIG 660 

TR251           ************************************************************ 660 

 

CDC Bold        TAPINLTERLFQVLRWSTGSLEIFFSKNNPLFGSTYLHPLQRVAYINITTYPFTAIFLIF 720 

TR251           ************************************************************ 720 

 

CDC Bold        YTTVPALSFVTGHFIVQRPTTMFYVYLGIVLSTLLVIAVLEVKWAGVTVFEWFRNGQFWM 780 

TR251           ************************************************************ 780 

 

CDC Bold        TASCSAYLAAVCQVLTKVIFRRDISFKLTSKLPSGDEKKDPYADLYVVRWTPLMITPIII 840 

TR251           ************************************************************ 840 

 

CDC Bold        IFVNIIGSAVAFAKVLDGEWTHWLKVAGGVFFNFWVLFHLYPFAKGILGKHGKTPVVVLV 900 

TR251           ************************************************************ 900 

                 

CDC Bold        WWAFTFVITAVLYINIPHMHTSGGKHTTVHGHHGKKLVDTGLYGWLH 947 

TR251           *********************************************** 947 

                  



166 
 

 

Supplementary Table 1. Genes within intervals Ensembl Genome Release 23 

 

Putative Genes 

 

Description 

1H:4,296,096 - 4,496,069 

MLOC_19284 Defense response 

MLOC_74537 Nuclear inhibitor of protein phosphatase 1 

MLOC_44678 Oxidation-reduction process, 12-oxophytodienoate reductase 1 

MLOC_37184 Actin nucleation, Formin-like protein 14 

MLOC_44602 Vacuolar ATP synthase proteolipid subunit 

MLOC_37432 Putative zinc finger protein 

MLOC_76007 Methylation, 5-pentadecatrienyl resorcinol O-methyltransferase 

MLOC_50847 Defence resonse, Defensin 

MLOC_81200 Structural constituent of ribosome 

MLOC_26623 Uncharacterized 

MLOC_923 Uncharacterized 

MLOC_64274 Protein binding, WD repeat-containing protein 

   2H-79055395 - 80248284 

MLOC_57325 Microtubule based movement, Kinesin-like protein 

MLOC_56621 Histone H3-T11 phosphorylation, gene silencing, haspin 

MLOC_56623 NPSN13, Plant SNARE 13, involved in membrane fusion  

MLOC_20146 Xylulose metabolic process, xylulokinase activity,  

MLOC_10665 Uncharacterised 

MLOC_61562 Oxidation-reduction process 

   4H: 8111198 to 13266457 

MLOC_14146 Uncharacterized 

MLOC_36702 Uncharacterized 

MLOC_62785 Heat shock protein 

MLOC_59382 Uncharacterized 

MLOC_53218 Protein phosphorylation, embryo sac development 

MLOC_4231 Uncharacterized 

MLOC_66158 Uncharacterized 

MLOC_57855 Nucleobase-ascorbate transporter LPE1 

MLOC_6266 Nucleic acid binding, RNA-binding region RNP-1 

MLOC_10096 Putative thioesterase family protein 

MLOC_5212 Pentatricopeptide, putative, expressed 

MLOC_10935 Golgi organization, Costars family protein 

MLOC_10938 Positive regulation of Rab GTPase activity,  

MLOC_55179 Glutamine amidotransferase class-I family protein 

MLOC_55180 CHCH domain containing protein 

MLOC_75098 Response to stress, oxidation-reduction process 
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MLOC_79660 Regulation of transcription, DNA-templated 

MLOC_36424 Gene silencing by RNA, hydrolase activity, acting on ester bonds 

MLOC_56677 Transferase activity, transferring glycosyl groups 

MLOC_56679  Uncharacterized 

MLOC_51353 Putative CXC domain protein  

MLOC_64337 tRNA aminoacylation for protein translation, Lysine 

MLOC_58755 Cellular cation homeostasis 

MLOC_51725 Acute-phase response protein 

MLOC_63148 Uncharacterized 

MLOC_63149 Uncharacterized 

MLOC_11551 Uncharacterized 

MLOC_63465 Transferase activity, transferring glycosyl group, Exostosin-2 

MLOC_62203 Uncharacterized 

MLOC_78576 Protein binding,  

MLOC_15805 Uncharacterized 

MLOC_7897 Expressed protein; Putative glycine rich protein 

MLOC_37911 Pentose-phosphate shunt, abscisic acid biosynthetic process 

MLOC_52290 Phosphorylation, kinase activity, Isoamylase N-terminal domain 

MLOC_3791 Acid phosphatase activity 

MLOC_11464 Uncharacterized 

MLOC_55029 LOXB, fatty acid biosynthesis , oxylipin biosynthetic process 

MLOC_54031 LOX1.1, fatty acid metabolic process, oxidation-reduction process 

MLOC_5268 Hydrolase activity, acting on carbon-nitrogen (but not peptide)  

MLOC_5269 Protein, metal ion binding, Zinc finger CCCH domain 

MLOC_52027 Protein binding 

MLOC_4717 DNA-dependent DNA replication, Cell division cycle protein 

MLOC_70449 Protein import into nucleus, transcription coactivator activity 

MLOC_19267 Uncharacterized 

MLOC_15209 Meiotic chromosome segregation 

MLOC_19176 Protein yippee-like 

MLOC_15467 PURA, purine nucleotide biosynthetic process 

MLOC_74132 Cell wall macromolecule catabolic process, LysM domain  

MLOC_63077 Oxidation-reduction process, UDP-glucose 6-dehydrogenase 

MLOC_53797 Unidimensional cell growth, ion transmembrane transport  

MLOC_53798 Proteolysis involved in cellular protein catabolic process,  

MLOC_53799 Uncharacterized 

MLOC_80258 Uncharacterized 

MLOC_2842  ERS1B, phosphorelay signal transduction system 

MLOC_76806 Uncharacterized 

   4H near 31395904  

 MLOC_53722 Putative receptor protein kinase ZmPK1 

MLOC_53721 Ribosomal RNA small subunit methyltransferase E  

http://plants.ensembl.org/Hordeum_vulgare/Transcript/Summary?db=core;g=MLOC_56679;r=4:8111198-13266457;t=MLOC_56679.6
http://plants.ensembl.org/Hordeum_vulgare/Transcript/Summary?db=core;g=MLOC_2842;r=4:8111198-13266457;t=MLOC_2842.2
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MLOC_49818 Uncharacterized 

   4H near 321179812 

 MLOC_21017 APRATAXIN-LIKE, APTX  

   5H-7491839 to 10176328 

MLOC_21074 Uncharacterized 

MLOC_42238 Uncharacterized 

MLOC_3994 Uncharacterized 

MLOC_2781 OS12G0630500 

MLOC_20378 OS12G0628600 

MLOC_76989 Terpene synthase activity, magnesium ion binding 

MLOC_59480 Terpene synthase activity 

MLOC_75397 Uncharacterized 

MLOC_50740 Uncharacterized 

MLOC_60894 Putative bZIP transcription factor superfamily protein  

MLOC_60893 Anaphase-promoting complex subunit 

MLOC_71885 RNA methylation 

MLOC_71887 Lipid metabolic process 

   Genes near 7H-68292885 

MLOC_76756 Rhodanese / Cell cycle control phosphatase superfamily  

MLOC_73315 Transferase activity, transferring glycosyl groups 

MLOC_36826 CXP;2-2, second-messenger-mediated signaling 

MLOC_75506 Zinc ion binding 

MLOC_12686 Transmembrane transport 

MLOC_62371 Uncharacterized 

MLOC_67897 Protein catabolic process, nucleoside-triphosphatase activity 

 


