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Abstract 

DivIVA plays multifaceted roles in Gram-positive organisms by associating with 

various cell division and non-cell division proteins.  While the interaction of DivIVA with other 

proteins has been studied in many Gram-positive bacteria, no information is available about 

DivIVA- associating proteins in E. faecalis. This research reports a novel DivIVAEf interacting 

protein named EF1025 (encoded by EF1025) (confirmed using Bacterial Two-Hybrid, 

Glutathione S-Transferase pull-down, and co-immunoprecipitation assays) that affects cell 

length and morphology in E. faecalis.  

EF1025 is predominantly conserved in Gram-positive bacteria and contains a conserved 

N-terminal DNA binding Helix-turn-Helix (HTH) domain and two Cystathionine β-Synthase 

(CBS) domains located centrally and at the C-terminus. The protein, EF1025, oligomerizes to 

form a higher-order oligomer and the two CBS domains are responsible for its self-interaction. 

Viable cells were recovered after insertional inactivation or deletion of EF1025 only through 

complementation of EF1025 in trans. These cells were longer than the average length of E. 

faecalis cells and had distorted shapes. Overexpression of EF1025 also resulted in cell 

elongation but had no effect on cell shape. Immuno-staining revealed comparable localization 

patterns of EF1025 and DivIVAEf in the later stages of division in E. faecalis cells. 

The EF1025 homologue in Bacillus subtilis, CcpN, is a transcriptional repressor in 

Bacillus subtilis. In the presence of glucose, CcpN binds to the promoter region of gapB and 

pckA and downregulates their expression. CcpN interacted with DivIVA of B. subtilis in B2H 

and GST-pull down assays. A heterologous interaction between EF1025 and DivIVABs was 

also identified in a GST-pull down assay. Insertional inactivation of ccpN leads to cell 

elongation and growth of cells in straight chains. These findings suggest an additional function 

of CcpN in B. subtilis, therefore, CcpN is a dual function performing protein involved in both 

gluconeogenesis and cell elongation. 

E. faecalis contains homologues of divisome proteins FtsZ, FtsA, FtsK, FtsQ, FtsL, FtsI 

and FtsB, however, the cell division interactome of E. faecalis, by contrast, is not presently 

known. This thesis also presents the unique interactome of E. faecalis divisome proteins (i.e. 

FtsZEf, FtsAEf, FtsQEf, FtsLEf, FtsIEf, FtsWEf, DivIVAEf, and FtsBEf), established using 

Bacterial-two hybrid system. The interaction of FtsA with FtsI, FtsL, and FtsZ, is common 

among E. faecalis, S. pneumoniae and S. aureus cell division interactomes. One unique 
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interaction i.e. FtsZEf-FtsIEf was identified in E. faecalis cell division interactome. While 

studying the divisome interactome of E. faecalis, it was observed that EF1025 is not a part of 

the divisome machinery in E. faecalis as it did not interact with any divisome protein except 

DivIVAEf. 
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Chapter 1. General introduction 

1.1. Genus- Enterococcus 

Enterococci are facultative anaerobic, non-sporulating cocci, firmicute bacteria that 

belong to the low GC branch of Gram-positive bacteria and are commonly found growing in 

hostile conditions (Paulsen et al., 2003; Van Tyne and Gilmore, 2014). In the 19th century, 

Thiercelin described an intestinal saprophytic disease-causing coccus which was termed as 

“enterococcus” (Lebreton et al., 2014). The genus Enterococcus belongs to the 

Enterococcaceae family (Whitman et al., 2003), and includes species found in the 

gastrointestinal (GI) tracts of humans, animals, and insects (Mundt, 1961, 1963). The other 

habitats for enterococci include fermented food and dairy products (Lebreton et al., 2014), as 

well as soil, water and plants as well (Mundt, 1961; Mundt et al., 1962). In the fermentation 

industry, the members of this genus have been reported to play an important role in the ripening 

of food and the production of unique aromas of various cheeses and dry sausages (Franz et al., 

2003; Foulquié Moreno et al., 2006; Hammerum, 2012). Several strains of “enterococcus” 

produce bacteriocin/enterocin, an antimicrobial compound that is widely used in the food 

ripening industry as a food preservative (Vuyst and Vandamme, 1994; Cleveland et al., 2001; 

Yang et al., 2014; Kurushima et al., 2015). Initially, enterococci were classified as group D 

streptococci but later, Streptococcus faecalis and Streptococcus faecium were reclassified as 

Enterococcus faecalis and Enterococcus faecium, respectively (Schleifer and Kilpper-Bälz, 

1984). Although the genus Enterococcus consists of more than 40 ecologically different species 

(Jett et al., 1994; Huycke et al., 1998); approximately 90 per cent of enterococcal human 

infections are caused by two species: E. faecalis and E. faecium (Maki and Agger, 1988; 

Murray, 1990; Hidron et al., 2008).  

1.2. E. faecalis- an important human pathogen 

From a lethal case of endocarditis, MacCallum and Hastings were the first to describe 

a species and its pathogenic capabilities which we now call as E. faecalis (MacCallum and 

Hastings, 1899). E. faecalis is an opportunistic pathogen that among all Gram-positive cocci, 

lives most abundantly in the gastrointestinal tract of healthy humans or animals and is 

commonly associated with hospital-acquired infections (HAIs)/ nosocomial infections 

(Murray, 1990; Sievert et al., 2013). It has been known to cause various infectious diseases, 

including urinary infectious disease, bacteremia, meningitis, infective endocarditis, and 
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neonatal infections (Murray, 1990; Jett et al., 1994). Rare dental diseases such as periodontitis, 

periimplantitis and caries have also been found to involve E. faecalis  (Kouidhi et al., 2011; 

Dahlén et al., 2012; Rams et al., 2013). Recently Al-Ahmad et al., (2009, 2010) showed 

incorporation of E. faecalis from food into the oral biofilms in the human mouth leading to 

dental diseases. They also showed that consumption of cheese can lead to food-borne 

enterococci which can integrate into the oral biofilm (Al-Ahmad et al., 2009, 2010). Larsen et 

al. (2010) and Gelsomino et al. (2002) have reported transmission of E. faecalis of porcine 

origin through food to the human gastrointestinal tract (Gelsomino et al., 2002; Larsen et al., 

2011).  

1.3. Identification of E. faecalis in biological specimens 

The basic morphological and physiological characteristics for identifying E. faecalis 

include being Gram-positive, non-spore forming, spherical or ovoid cells that are arranged 

individually, in pairs, or in short chains (MacCallum and Hastings, 1899). E. faecalis is 

facultatively anaerobic, catalase-negative, fermentative chemoorganotroph that grows 

optimally at 35°C in a broth containing 6.5% NaCl, and bile esculin in the presence of 40% 

bile salts along with a number of amino acids (including Val, Leu, Ile, Ser, Met, Glu, Arg, His 

and Trp) and vitamins like biotin, nicotinic acid, pantothenate, pyridoxine, riboflavin, and folic 

acid (Lebreton et al., 2014).  

1.4. Virulence of E. faecalis 

E. faecalis colonizes both human tissue and medical devices (e.g., central venous 

catheters, endotracheal tubes and Foley catheters) by establishing surface communities 

(biofilms) (Sandoe et al., 2003; Arias-Moliz et al., 2012), which make them difficult to treat. 

Due to their additional ability to form a biofilm, catheter-related urinary tract infections are 

difficult to treat effectively with conventional antibiotics (Mohamed and Huang, 2007). 

Biofilms act as a barrier and prevent absorption and delivery of antibiotics from reaching their 

intended targets (Otto, 2006). The enterococcal surface protein (esp) is a large surface protein 

encoded by an Esp-containing pathogenicity island which aids in adsorption and colonization 

of cells on abiotic surfaces by biofilm formation (Toledo-Arana et al., 2001; Paganelli et al., 

2012). Likewise, aggregation substance (AS), an adhesin of proteinaceous nature, also aids in 

adherence and invasion of host cells and biofilm establishment (Kreft et al., 1992), Another 

important virulence factor is cytolysin (cyl, beta-hemolysin), a plasmid-encoded bacteriocin 
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(Gilmore et al., 1994; Van Tyne et al., 2013). Cytolysin is known to lyse a number of Gram-

positive bacteria using two extracellular proteins i.e. the activator and lytic components (Brock 

et al., 1963; Segarra et al., 1991). Similar to cytolysin, gelatinase (gelE), is an extracellular 

metalloprotease that hydrolyzes gelatin, collagen, and haemoglobin, which in turn furthers 

bacterial adherence and biofilm formation (Kayaoglu and Ørstavik, 2004). Hyaluronidase, a 

degradative enzyme, encoded by the chromosomal hyl gene, depolymerizes the 

mucopolysaccharide moiety of host tissue, thereby facilitating E. faecalis spread (Fisher and 

Phillips, 2009). Other virulence factors include extracellular superoxide (Huycke et al., 1996; 

Huycke and Gilmore, 1997), surface carbohydrates, (Guzmàn et al., 1989) and E. faecalis 

endocarditis antigen A (efaA) (Singh et al., 1998). The presence of these virulence factors 

makes E. faecalis a hypervirulent pathogen and provides a competitive edge to grow in hostile 

environments and resist host defences.  

1.5. Antibiotic resistance in E. faecalis 

The first case of antibiotic resistance in the treatment of enterococcal endocarditis using 

penicillin was reported in the early 1950s (Geraci Joseph E. and Martin William J., 1954). In 

1981, the first β-lactamase-producing E. faecalis isolates were identified in Texas (Murray, 

1990) and today, almost all enterococcal strains show low-levels of susceptibility to penicillin 

and ampicillin and resistance to cephalosporins and all semi-synthetic penicillins (Kristich et 

al., 2014). The first clinical isolate of vancomycin-resistant E. faecalis, strain V583, was 

isolated from the bloodstream of a patient in the United States (Sahm et al., 1989). Ever since, 

enterococcal resistance to vancomycin i.e. Vancomycin-resistant enterococci (VRE), has been 

growing (Gilmore et al., 2013). Outbreaks of VRE have since occurred in England, France and 

the United States (Leclercq et al., 1988; Uttley et al., 1988; Sahm et al., 1989). At that time, 

there was a lack of awareness about the emergence of antibiotic resistance among health-care 

workers, but a recent increase in the prevalence of antibiotic resistance to all antibiotics in E. 

faecalis is worrisome and poses a major setback in treating E. faecalis infections. The majority 

of clinical isolates of E. faecalis today are ampicillin-resistant and continue to carry high-level 

resistance (HLR) to aminoglycosides (e.g. gentamicin and streptomycin), vancomycin, and 

other glycopeptides, providing E. faecalis the status of “multidrug-resistant” (Murray, 2000; 

Kristich et al., 2014).  

The standard treatment protocol for E. faecalis infections involves administration of β-

lactam antibiotics such as the amino-penicillins (e.g. ampicillin) and ureidopenicillins (e.g. 
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piperacillin), along with penicillin G and carbapenems (Kristich et al., 2014). In the cases of β-

lactam allergy, vancomycin is reserved for treatment purposes (Kristich et al., 2014). In certain 

infections such as endocarditis, an association of a β-lactam with an aminoglycoside produces 

efficient bactericidal effects (Moellering and Weinberg, 1971). The usual regimen to treat VRE 

infections involves the administration of high-dose ampicillin, chloramphenicol alone or with 

rifampin (Mekonen et al., 1995; Norris et al., 1995; Murray, 2000). Other VRE treatment 

antibiotics include tetracycline and doxycline (Gransden et al., 1998).  

In addition to possessing specific virulence and resistance genes, E. faecalis is noted 

for incorporating mobile elements into its genome (Manson et al., 2010; Paganelli et al., 2012). 

This capability leads to the distribution and transmission of many genes responsible for 

conferring antibiotic resistance by horizontal gene transfer (Paganelli et al., 2012). Multidrug-

resistant enterococcal genomes consist of more than 25% of mobile elements representing a 

widespread accumulation of drug-resistant elements and virulence factors (Paulsen et al., 

2003). The transfer of vancomycin resistance genes from E. faecalis to methicillin-resistant 

Staphylococcus aureus has been recorded in the late 90s and early 2000 (Willems et al., 2001; 

Palmer et al., 2010).  

Enterococcal infections have become a major health care problem due to increasing 

numbers of multidrug-resistant isolates and difficulties in eradicating biofilms (Flemming and 

Wingender, 2010; Arias and Murray, 2012). The recent emergence of hypervirulent and 

multidrug-resistant E. faecalis strains, therefore, requires an in-depth understanding of the 

enterococcal biology, genetics and underlying factors contributing to the virulence of this 

pathogen (Stinemetz et al., 2017). New therapeutic targets (such as the process of cell division 

or metabolism pathway) and strategies need to be identified to combat enterococcal infections. 

Despite the status of “hypervirulent and multidrug-resistant” that E. faecalis has acquired over 

the past few decades, there have been only a few research studies that have dealt with the 

process of cell division in this pathogen  (Ramirez-Arcos, 2005; Rigden et al., 2008; Stinemetz 

et al., 2017).  

1.6. Division Cell Wall (dcw) Gene Cluster 

Due to evolutionary dynamics, there exist highly conserved gene clusters throughout 

bacterial genomes (Weber et al., 2016), such a cluster for cell division is called the dcw 

(division and cell wall) gene cluster (Ayala et al., 1994; Tamames et al., 2001). The 
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conservation of dcw genes, their regulation and, in general, their cluster structure, are 

remarkably conserved in bacterial groups of similar taxon and cell size (Tamames et al., 2001). 

Since the proteins encoded by the dcw genes are involved in cell division and peptidoglycan 

synthesis, bacterial dcw gene clusters are mostly essential (Boyle and Donachie, 1998; 

Kobayashi et al., 2003). In addition to regulatory mechanisms, their conserved gene order can 

ensure successful synchronization of growth and division (Mingorance et al., 2004). The 

filamentous temperature-sensitive (Fts) phenotype was first described in E. coli when the 

filamentous temperature-sensitive (fts) genes were mutated (Bi and Lutkenhaus, 1991). These 

mutations were found to be restricted to a region, which was later named the dcw cluster (Ayala 

et al., 1994; Vicente and Errington, 1996; Rothfield and Justice, 1997). The dcw genes have 

been studied intensively in model organisms such as B. subtilis and E. coli, but due to numerous 

regulatory features such as protein ratios, internal promoters and transcript stability, their 

regulation is not fully understood (Weber et al., 2016). 

Although the dcw cluster is highly conserved in bacterial species (Pucci et al., 1997), 

the organization of various genes within the dcw cluster varies in different bacterial species as 

found in E. coli, B. subtilis, S. aureus, E. faecalis, S. pyogenes, and S. pneumoniae (Fig. 1.1.) 

(Massidda et al., 1998; Francis et al., 2000; Snyder et al., 2001; Fadda et al., 2003; Ramirez-

Arcos, 2005; Real and Henriques, 2006). Genes like ftsZ and ftsA, are highly conserved 

between Gram-negative and Gram-positive bacteria, as are their position within the dcw 

cluster.  

1.6.1. dcw cluster of B. subtilis 

The first bacterial dcw cluster was deduced in the E. coli which comprises 16 genes (i.e. 

mraZEc, mraWEc, ftsLEc, ftsIEc, murEEc, murFEc, mraYEc, murDEc, ftsWEc, murGEc, murCEc, 

ddlBEc, ftsQEc, ftsAEc, ftsZEc and envAEc) (Ayala et al., 1994; Mingorance et al., 2004). The 

organization of the dcw cluster in B. subtilis, the Gram-positive model organism for studying 

cell division (Harwood, 2007), is similar to that in E. coli, the Gram-negative model organism, 

with respect to 17 different identified genes (mraZBs, mraWBs, ftsLBs, ftsIBs, spoVDBs, murEBs, 

murFBs, mraYBs, murDBs, ftsWBs, murGBs, murBBs, ftsQBs, ylxWBs, ylxXBs, ftsABs and ftsZBs) (Fig. 

1.1) (Mingorance et al., 2004; Real and Henriques, 2006). E. coli mraW is the antagonist of 

mraZEc, a highly conserved transcriptional regulator in most of the bacteria (Eraso et al., 2014). 

The mur genes, including mraYEc and ddlBEc, are essential genes for the synthesis of 

peptidoglycan precursors (Pilhofer et al., 2008). However, the B. subtilis dcw cluster also 
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contains, spoVDBs and spoVEBs, that encode sporulation-specific proteins for endospore cortex 

peptidoglycan synthesis (Daniel et al., 1994).  spoVDBs shares 33% identity with the upstream 

ftsIBs (Daniel et al., 1994; Vicente et al., 2004). The other difference is that there is an internal 

transcription terminator between ftsIBs and spoVDBs. An important cell division protein is 

DivIVABs, encoded by divIVABs which does not belong to the dcw cluster of B. subtilis. 

1.6.2. dcw cluster in other microorganisms 

The Gram-positive bacteria, S. pyogenes and S. pneumoniae have distinctive dcw 

cluster organization (Fig. 1.1) (Massidda et al., 1998). The S. pneumoniae dcw cluster is 

distributed into three separate regions on the chromosome where the first region, dcw1, 

contains eight genes i.e. pbp2bSp, recMSp, ddlSp, murFSp, mutTSp, orf1, ftsASp and ftsZSp. The 

second region contains five genes, murGSp, divIBSp, pyrFSp, and pyrESp, and the third region, 

dcw3, is composed of the yllCSp, yllDSp, pbp2xSp, and mraYSp genes (Massidda et al., 1998). 

Four putative genes are located downstream of ftsZSp (Massidda et al., 1998) and the protein 

encoded by the last gene shares 65% similarity with B. subtilis DivIVA which is involved in 

Gram-positive bacteria cell division (Cha and Stewart, 1997; Edwards and Errington, 1997).  

The dcw cluster of S. pyogenes is distributed in two clusters where dcw1 and dcw2, each 

contains five genes i.e. murGSpy, murDSpy, divIBSpy, ftsASpy and ftsZSpy, and yllCSpy, yllDSpy, 

pbpN-terSpy, pcpC-terSpy, and mraYSpy, respectively. Understanding the role of important 

proteins in the division of cells, however, is essential for understanding bacterial cell division 

initiation and regulation.  
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Figure 1.1. dcw clusters of E. faecalis (Ramirez et al., 2005), N. gonorrhoeae (Francis et al., 

2000), E. coli (Ayala et al., 1994; Mingorance et al., 2004), B. subtilis (Mingorance et al., 2004; 

Real and Henriques, 2006), S. pneumoniae (Vicente et al., 2004), S. pyogenes (Massidda et al., 

1998) and S. aureus (Massidda et al., 1998). Arrows indicate the direction of transcription of 

dcw cluster genes. Transcriptional terminators are indicated as two vertical lines. P- predicted 

promoter region.  
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1.7. Bacterial cell division  

Bacterial cells are critically dependent on their ability to divide for growth, 

development, and reproduction. Cell division is a complex mechanism orchestrated by the 

coordinated interaction of a large number of proteins forming a macromolecular complex 

called the divisome.  Divisome assembly happens in at least two steps (Gamba et al., 2009). 

First, in a spatially and temporally controlled manner, the Z ring is assembled on the 

cytoplasmic membrane between segregated chromosomes using membrane tethering proteins 

(Jensen et al., 2005).  In the second step, to form the complete divisome, other essential and 

non-essential cell division proteins are added to the Z ring depending on the bacterial species 

(Levin et al., 1999; Gueiros-Filho and Losick, 2002; Hamoen et al., 2006; Haeusser et al., 2007; 

Singh et al., 2007; Tavares et al., 2008; Lenarcic et al., 2009; Król et al., 2012; Cleverley et al., 

2014; Taguchi et al., 2019). The process of divisome assembly is followed by the third step 

that involves peptidoglycan (PG) remodelling so that the daughter cells can separate after septal 

cell wall synthesis has initiated (Domínguez-Escobar et al., 2011; Garner et al., 2011). This 

step is very tightly regulated so that cell wall degrading enzymes are only activated at the 

correct place and time (Uehara and Bernhardt, 2011). 

B. subtilis has served as a model organism for studying and understanding the process 

of cell division in Gram-positive bacteria for decades (Pavlendová et al., 2007; Errington and 

Wu, 2017; Barák et al., 2019). E. coli has served the same role for Gram-negative bacteria 

(Lutkenhaus and Du, 2017). The basic elements of the cytokinetic machinery that comprises a 

core of essential components used by many bacteria, were compared in these two species. The 

intensive investigation of these model organisms resulted in the development of many genetic 

tools, techniques and resources specifically for the investigation.   

1.7.1. Divisome assembly in B. subtilis 

In B. subtilis, the divisome assembles in two distinct steps where the first step involves 

FtsZBs-ring assembly along with the recruitment of “early” divisome proteins FtsABs, SepFBs, 

ZapABs and EzrABs in a sequential manner (Wang and Lutkenhaus, 1993; Gueiros-Filho and 

Losick, 2002; Anderson et al., 2004; Jensen et al., 2005; Hamoen et al., 2006; Singh et al., 

2007; Gamba et al., 2009). Cell division starts with the midcell assembly of a contractile ring 

by the central component of the divisome, FtsZBs, a structural and biochemical homologue of 

the eukaryotic tubulin (Anderson et al., 2004; Jensen et al., 2005; Gamba et al., 2009). FtsZBs 
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assembles into proto-filaments that self-interact and form a dynamic circumferential ring (i.e. 

Z-ring) which defines the site of cell division and recruits, directly or indirectly, multiple 

protein components of the divisome (Gamba et al., 2009). FtsZ assembles in vitro in a head to 

tail fashion to form single-stranded protofilaments, which can further assemble into bundles, 

sheets or rings at the Z-ring (Peters et al., 2007; Gamba et al., 2009). This ring undergoes cycles 

of turnover/polymerization, regulated by the binding and hydrolysis of GTP (Bi and 

Lutkenhaus, 1991; Peters et al., 2007).  

The Z-ring is tethered to the membrane by the recruitment of the “early” divisome 

proteins FtsABs or SepFBs which use their amphipathic helices to bind to the cell membrane 

(Fig. 1.2.) (Jensen et al., 2005; Hamoen et al., 2006). FtsABs and SepFBs specifically interact 

with the C-terminal domain of FtsZBs and forms high molecular weight (MW) dynamic 

complexes (Jensen et al., 2005; Ishikawa et al., 2006; Król et al., 2012). Sequentially, the two 

positive regulators i.e. ZapABs and EzrABs then interact with the Z-ring maintaining FtZBs 

polymerization (Levin et al., 1999; Gueiros-Filho and Losick, 2002; Singh et al., 2007; 

Cleverley et al., 2014). ZapABs acts as a promoter of FtsZBs bundling by interacting directly 

with FtsZBs and encouraging both FtsZBs polymerization and lateral connection in vitro, 

producing both single and bundled filaments (Gueiros-Filho and Losick, 2002; Low et al., 

2004). EzrABs anchors the membrane protofilaments and stops protofilament bundle formation 

locally (Haeusser et al., 2007; Land et al., 2014). 

The complex comprised of FtsZBs-FtsABs-SepFBs-ZapABs-EzrABs then recruits the 

‘late’ cell division proteins i.e. FtsWBs, PBP1Bs, PBP2BBs, DivIBBs, DivICBs and FtsLBs, 

DivIVABs and GpsBBs (Fig. 1.2.) (Perry and Edwards, 2004; Tavares et al., 2008; Gamba et al., 

2009; Lenarcic et al., 2009; den Blaauwen, 2018; Taguchi et al., 2019). These proteins do not 

directly interact with FtsZBs and are primarily proteins with major extracellular domains or 

integral membrane proteins (Ishikawa et al., 2006) which includes proteins for septal cell wall 

biosynthesis (FtsWBs, PBP1Bs, PBP2BBs) and scaffolding proteins (DivIBBs, DivICBs and 

FtsLBs) (Ishikawa et al., 2006; Taguchi et al., 2019).  DivIVABs and GpsBBs are recruited in the 

later stages of division in the presence of early and late divisive components (Halbedel and 

Lewis, 2019). Various other regulatory proteins, including MinJBs, MinDBs and MinCBs arrive 

at about the same time or slightly later, depending on the initiation of the membrane or PG 

ingrowth (Gamba et al., 2009).  
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Figure. 1.2. The two-step assembly of the divisome in B. subtilis. Adapted from (Halbedel and 

Lewis, 2019). Early cell division proteins are indicated in white font whereas late proteins are 

in black font.  
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1.7.2. S. pneumoniae divisome assembly 

Streptococcus pneumoniae is an important ovococcal opportunistic Gram-positive 

pathogen that causes a variety of infections including middle ear infections, sinusitis, 

pneumonia, bacteraemia and meningitis (Weiser et al., 2018). S. pneumoniae contains the 

majority of the cell division proteins present in B. subtilis and other Gram-positive bacteria 

(Errington and Wu, 2017). S. pneumoniae contains genes encoding homologues of 

YlmFSp/SepFSp and DivIVASp that are involved in chromosome segregation, cell morphology 

and cell division in various species (Massidda et al., 1998; Fadda et al., 2003, 2007; Flärdh, 

2003; Ramos et al., 2003; Miyagishima et al., 2005; Ramirez-Arcos, 2005; Hamoen et al., 

2006; Ishikawa et al., 2006; Kabeya et al., 2010). Two interdependently operating cell wall 

synthesis machineries are utilized by S. pneumoniae for peripheral growth and cell division 

(Lleo et al., 1990; Massidda et al., 1998; Morlot et al., 2003, 2004; Noirclerc-Savoye et al., 

2005; Le Gouëllec et al., 2008; Zapun et al., 2008). Although an exact order of recruitment of 

cell division proteins to mid cell has not yet been established, fluorescence studies show that 

like B. subtilis, divisome formation in pneumococci occurs in at least two steps (Fadda et al., 

2003; Morlot et al., 2004). 

The cell division initiator proteins FtsZSp and FtsASp localize to mid-cell first (Morlot 

et al., 2003; Lara et al., 2005) followed by the septal markers DivIBSp (FtsQSp), DivICSp 

(FtsBSp), FtsLSp, FtsWSp, PBP2XSp (FtsISp), PBP1aSp (Morlot et al., 2003, 2004b; Noirclerc-

Savoye et al., 2005), and the cell division protein DivIVASp (Fadda et al., 2007; Beilharz et al., 

2012). The exact function of these essential Fts proteins during the initial steps of cell division 

is not known (Mura et al., 2017). Z-ring formation requires about half of the cell cycle before 

septation can occur (Fadda et al., 2007) where FtsZSp and FtsASp self-interact and with each 

other (Lara et al., 2005; Maggi et al., 2008) and with other cell division proteins, including 

ZapASp and EzrASp (Song et al.; Thanassi et al., 2002). SepFSp, a crucial protein required for 

Z-ring stability in B. subtilis (Hamoen et al., 2006; Ishikawa et al., 2006), results in severe 

division defects when inactivated in S. pneumoniae (Massidda et al., 1998; Fadda et al., 2003). 

Maggi et al. (2008) used a bacterial two-hybrid system to study the interaction between various 

divisome proteins. They found that pneumcoccal FtsKSp interacts with itself, FtsZSp, ZapASp, 

FtsQSp and FtsLSp (Maggi et al., 2008). Other cell division proteins, FtsQSp (DivIBSp), FtsBSp 

(DivICSp) and FtsLSp (Buddelmeijer and Beckwith, 2004), form a trimeric complex by 

interacting with each other before this complex is incorporated into the S. pneumoniae 
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divisome (Fig. 1.3.) (Noirclerc-Savoye et al., 2005; Masson et al., 2009). S. pneumoniae FtsW, 

late cell division protein, interacts with FtsQSp (DivIBSp) and FtsLSp (Morlot et al., 2004; Maggi 

et al., 2008). 

 

 

Figure 1.3. Proposed assembly of cell division proteins in S. pneumoniae divisome. Derived 

from the data developed by Fadda et al. (2007) using the bacterial two-hybrid assay.  
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1.8. DivIVA- An important Gram-positive cell division protein 

DivIVA is a highly conserved, “late” cell division protein that is crucial for septum 

determination. Homologues of  B. subtilis DivIVA are present in most Gram-positive bacteria,  

especially in bacterial subgroups such as actinobacteria and the firmicutes interacting with 

different partners and performing a variety of functions (Fadda et al., 2003; Kang et al., 2008; 

Rigden et al., 2008; Donovan et al., 2012; Massidda et al., 2013; Kaval et al., 2014; Bottomley 

et al., 2017; Ni et al., 2018; Halbedel and Lewis, 2019). DivIVA homologues have also been 

reported to be present in extremophiles such as Deinococcus, Synergistaceae, Nitrospira, and 

Deltaproteobacteria species, and few of the Chlorobi/Fibrobacter/Bacteroidetes group 

(Halbedel and Lewis, 2019). Lluch-Senar et al., 2010 reported uncharacterized DivIVA 

homologues from Mycoplasma species (Lluch‐Senar et al., 2010). Although most of the divIVA 

genes from firmicutes are non-essential (Cha and Stewart, 1997; Fadda et al., 2003; Pinho and 

Errington, 2004; Claessen et al., 2008; Halbedel et al., 2012; Fleurie et al., 2014; Rismondo et 

al., 2016; Bottomley et al., 2017), exceptions exist (Ramirez-Arcos, 2005). The divIVA 

homologue in Actinobacteria, also called wag31 in mycobacteria, is essential for cell viability 

and growth (Kang et al., 2008). There are no DivIVA homologues in humans, making DivIVA 

an excellent target for novel antimicrobials (Halbedel and Lewis, 2019). 

1.8.1. DivIVA from B. subtilis 

DivIVABs is a crucial protein in B. subtilis which is involved in the differentiation of 

the cell poles (Edwards and Errington, 1997). DivIVABs localizes at the division site and cell 

poles upon divisome assembly by associating with the Min proteins (Edwards and Errington, 

1997). Although divIVABs is an important gene of B. subtilis, it is not located in the dcw cluster 

(Mingorance et al., 2004; Real and Henriques, 2006). DivIVABs is a small cytoplasmic protein 

that is homologous to eukaryotic cytoskeletal protein, myosin, a protein involved in cytokinesis 

(Edwards et al., 2000; Oliva et al., 2010). The N-terminus of DivIVABs is a highly conserved 

domain connected to the α-helical coiled-coil central and C-terminus region with a linker 

(Edwards et al., 2000; Oliva et al., 2010). DivIVABs self-interacts and oligomerizes using its 

coiled-coil region and utilizes its N-terminal region for interaction with lipid membranes 

(Muchová et al., 2002; Stahlberg et al., 2004; Rigden et al., 2008; Lenarcic et al., 2009; 

Rismondo et al., 2016). The interaction of DivIVABs with membrane uses a hairpin structure 

with conserved exposed basic and hydrophobic residues in the N-terminal protein domain 

(Oliva et al., 2010). DivIVABs oligomers have a high affinity for the negative curvature of the 
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membrane, which occurs in the invaginating division septa in dividing cells (Lenarcic et al., 

2009; Ramamurthi and Losick, 2009; Eswaramoorthy et al., 2014). Once the curvature has 

been generated, DivIVABs localizes to each side of the growing septum preventing the 

contraction of the divisome and division at polar sites in the dividing cell (Eswaramoorthy et 

al., 2011). In non-dividing B. subtilis cells, DivIVABs-GFP concentrated at the hemispheric cell 

poles (Eswaramoorthy et al., 2011). However, in dividing cells, DivIVABs remodelling took 

place and a portion of the DivIVABs molecules remained at the pole, while some protein 

migrated to the new division site (Bach et al., 2014).  

1.8.2. DivIVA interacting partners in B. subtilis 

B. subtilis DivIVA interacts with at least seven different interacting partners (Fig. 1.4.) 

(Perry and Edwards, 2006; Bramkamp et al., 2008; Patrick and Kearns, 2008; Lenarcic et al., 

2009; Briley et al., 2011; dos Santos et al., 2012; Halbedel et al., 2014; Schumacher, 2017; 

Halbedel and Lewis, 2019) utilizing different interacting sites (Halbedel and Lewis, 2019). 

Such a variety of interacting partners confer a variety of functions to DivIVABs in cellular 

processes that includes chromosome segregation (Perry and Edwards, 2006), cell division 

(Bramkamp et al., 2008; Patrick and Kearns, 2008), competence development (Briley et al., 

2011; dos Santos et al., 2012), sporulation (Lenarcic et al., 2009) and protein secretion (SecA) 

(Halbedel et al., 2014).  

DivIVABs acts as a "topological specificity" determinant for MinJ, RacA, and ComN 

for their recruitment to the septum and the cell poles (Ben-Yehuda et al., 2003; Bramkamp et 

al., 2008; dos Santos et al., 2012). With MinJBs, a transmembrane protein, which acts as a 

molecular bridge between DivIVABs and the FtsZ-inhibiting MinCDBs complex, DivIVABs 

interacts to recruit itself and MinCDBs complex at the division site and the cell poles for correct 

cell division (Bramkamp et al., 2008; Patrick and Kearns, 2008). DivIVABs is necessary for 

sporulation where it associates with the DNA binding protein RacABs, acting as a bridge 

between the oriC region and the cell poles, anchoring chromosomes at the poles (Ben-Yehuda 

et al., 2003). Subsequently, DivIVABs and RacABs attract Spo0J and Soj to the chromosome, 

participating in chromosome segregation (Ben-Yehuda et al., 2003; Wu and Errington, 2003). 

The spo0J-soj system determines the orientation and positioning of the chromosome early in 

sporulation (Wu and Errington, 2003). The correct localization of DivIVABs ensures the 

RacABs mediated securing of the chromosome to the distal side of the prespore during 

sporulation (Errington and Wu, 2017). ComNBs, a small protein from B. subtilis has been 
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described as a polarly localized, posttranscriptional regulator of competence gene expression 

(Ogura and Tanaka, 2009). Such a unique localization by ComNBs is achieved by a direct 

interaction with DivIVABs which leads to the accumulation of comEBs (ComN’s target mRNA) 

to septal and polar sites (dos Santos et al., 2012). Although ComNBs is non-essential for the 

polar assembly of the core competency DNA uptake machinery, its delocalization resulted in 

a significant reduction in the efficiency of competencies (dos Santos et al., 2012). DivIVABs 

also binds to MafBs, a protein involved in cell division arrest in competent cells of B. subtilis 

(Briley et al., 2011). This highly conserved protein is synthesized in competent cells under the 

direct control of ComKBs, a transcriptional factor (Briley et al., 2011). A point mutation in 

mafBs inhibits its interaction with DivIVABs and also cell division (Briley et al., 2011). The 

interaction between DivIVABs and SecABs, the secretion ATPase, is important for correct 

localization of DivIVABs during cell division (Halbedel et al., 2014). Mutation in SecABs leads 

to inhibition of sporulation and DivIVABs delocalization (Halbedel et al., 2014). 
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Figure 1.4. DivIVA interacting partners in Bacillus subtilis (Halbedel et al., 2019). 
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1.8.3. DivIVA interacting partners in other bacteria 

The range of DivIVA interacting partners changes from one Gram-positive bacterial 

species to another (Table 1.1). For example, in Listeria monocytogenes, another Gram-positive 

human pathogen, DivIVALm performs three functions that include precise positioning of the 

septum at midcell, assistance in the secretion of autolysins, and enabling swarming motility of 

L. monocytogenes (Kaval et al., 2014); each of these functions are governed by different 

domains of DivIVA (Kaval et al., 2017). In L. monocytogenes, MinC and MinD localizes at 

the cell poles in a DivIVALm-dependent fashion unlike MinJ (Kaval et al., 2014). Other than 

these interacting partners, DivIVALm also interacts with SecA2, the accessory secretion 

ATPase, to assist the secretion of two autolysins p60 (CwhA) and MurA (NamA) (Lenz and 

Portnoy, 2002) through the SecA2-dependent secretion pathway (Kaval et al., 2014). divIVA 

mutants had impaired autolysin secretion levels (Kaval et al., 2014) which lead to cell chaining 

and defective division site selection (Lenz and Portnoy, 2002; Machata et al., 2005).  

The S. pneumoniae homologue of DivIVA is crucial for normal growth by ensuring 

proper septum placement, and chromosome segregation (Fadda et al., 2003; Nováková et al., 

2010). DivIVASp interacts with several divisome proteins from the dcw cluster including 

FtsZSp, FtsASp, ZapASp, FtsKSp, FtsISp, FtsBSp, FtsQSp and FtsWSp (Fadda et al., 2007). A point 

mutation at the N-terminal coiled-coil of DivIVASp (A78T) significantly reduced DivIVA 

interaction with the “late” divisome proteins FtsLSp, FtsQSp, FtsBSp and FtsWSp (Fadda et al., 

2007; Vicente and García-Ovalle, 2007). Other than these cell division proteins, DivIVASp also 

interacted with ParB (Fadda et al., 2007) through ParA that helps in chromosome segregation. 

In Streptococcus suis serotype 2, an important swine pathogen, Ser/Thr kinases (STK) encoded 

by stk, directly phosphorylates DivIVASp (Thr-199) and affects cell growth and division ( 

Nováková et al., 2010a; Ni et al., 2018). DivIVASs is one of the target substrates for STK, which 

when mutated exhibits abnormal growth and asymmetrical division, including lower viability, 

enlarged cell mass (Nováková et al., 2010a; Ni et al., 2018). STK regulates the cell growth and 

virulence of S. suis by phosphorylating targeted substrates that are involved in different 

biological processes (Ni et al., 2018). Similarly in S. pneumoniae, StkP also phosphorylates 

DivIVASp affecting cell division and morphogenesis (Giefing et al., 2008; Nováková et al., 

2010). DivIVA of Corynebacterium glutamicum and Streptomyces coelicolor interacts with 

ParB/Spo0J (Donovan et al., 2012, 2013; Sieger et al., 2013), which binds to chromosomal 

origins of replication via ParA for chromosomal segregation (Mierzejewska and Jagura-

Burdzy, 2012). Additionally in Streptomyces coelicolor, another rod-shaped Gram-positive 
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bacterium, DivIVA is involved in apical growth and control of cell polarity by establishing 

sites for hyphal branching and for cell wall growth (Flärdh, 2010). 

S. aureus also encodes a homologue of DivIVASa, that associates with various divisome 

proteins to ensure cell division and chromosome segregation (Bottomley et al., 2017). A highly 

conserved molecular chaperone, DnaKSa, interacts with and stabilizes DivIVASa in S. aureus 

(Bukau and Walker, 1989; Bottomley et al., 2017). Bottomley et al., 2017 also reported an 

indirect function of DivIVASa in chromosomal segregation by its interaction with the 

chromosome segregation protein, SMC, where these two act collectively to maintain accurate 

chromosome segregation (Bottomley et al., 2017). 

In the rod-shaped bacteria, Mycobacterium smegmatis and M. tuberculosis, DivIVA, 

also called as Wag31, controls cell growth, morphology and cell wall synthesis (Nguyen et al., 

2007; Kang et al., 2008; Meniche et al., 2014). M. tuberculosis Wag31 interacts with the 

penicillin-binding protein, PBP3 (Mukherjee et al., 2009) and ParB (Donovan et al., 2012), and 

wag31 in M. tuberculosis is essential for cell viability (Donovan et al., 2012). Wag31Ms 

interacts with ParA, a member of the mycobacterial chromosome segregation machinery for 

cell separation (Donovan et al., 2012; Ginda et al., 2013).  

In conclusion, DivIVA plays a pivotal function in Gram-positive bacteria by interacting 

with a variety of interacting partners in different genera. A variety of interacting partners confer 

a variety of functions to DivIVA in cellular processes ranging from the synthesis of the cell 

wall (Nguyen et al., 2007; Kang et al., 2008), cell growth (Flärdh, 2010), chromosome 

segregation (Perry and Edwards, 2006; Fadda et al., 2007; Donovan et al., 2012; Bottomley et 

al., 2017), cell division (Bramkamp et al., 2008; Giefing et al., 2008; Patrick and Kearns, 2008; 

Mukherjee et al., 2009; Nováková et al., 2010; Ni et al., 2018), competence development 

(Briley et al., 2011; dos Santos et al., 2012), sporulation (Perry and Edwards, 2006; Lenarcic 

et al., 2009) and protein secretion (Nováková et al., 2010; Halbedel et al., 2012, 2014; Kaval 

et al., 2014; Ni et al., 2018).  
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Table 1.1. DivIVA interacting partners from different Gram-positive bacteria. 

DivIVA homologue from: Interacting partners 

Bacillus subtilis MinJBs (Bramkamp et al., 2008; Patrick and 

Kearns, 2008) 

RacABs (Ben-Yehuda et al., 2003) 

ComNBs (dos Santos et al., 2012) 

MafBs (Briley et al., 2011) 

SecABs (Halbedel et al., 2014) 

Spo0JBs (Perry and Edwards, 2006) 

SpoIIEBs (Eswaramoorthy et al., 2014) 

Streptococcus pneumoniae FtsZSp, FtsASp, ZapASp, FtsKSp and FtsISp, FtsBSp, 

FtsQSp and FtsWSp (Fadda et al., 2007) 

STKSp (Ser/Thr kinases) (Giefing et al., 2008) 

Streptococcus suis STKSs (Ser/Thr kinases) (Nováková et al., 2010) 

Corynebacterium glutamicum ParBCg (Donovan et al., 2013) 

RodACg (Sieger et al., 2013) 

Listeria monocytogenes MinCD (Kaval et al., 2014) 

SecA2 (Kaval et al., 2014) 

Streptomyces coelicolor ParBSc (Donczew et al., 2016) 

S. aureus DnaKSa, FtsZSSa, FtsASa, EzrASa, DivICSa, 

DivIBSa, PBP1Sa and PBP2Sa (Bottomley et al., 

2017) 

Chromosome segregation protein (SMC) 

(Bottomley et al., 2017) 

Mycobacterium smegmatis 

(Wag31) 

ParA (Donovan et al., 2012; Ginda et al., 2013) 

Mycobacterium tuberculosis 

(Wag31) 

PBP3 (Mukherjee et al., 2009)  

ParB (Donovan et al., 2012) 
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1.9. Cell division interactome 

While the gene arrangement in the dcw cluster varies in different bacteria species, key 

cell division proteins are relatively conserved (Pucci et al., 1997). For examples, proteins like 

FtsZ, FtsA, ZipA, FtsQ/DivIB, FtsL, FtsW, FtsB/DivIC, FtsI and FtsK are highly conserved in 

almost all cell-walled Eubacteria (Margolin, 2000; Harry et al., 2006). But additional proteins 

like Min proteins, ZipA, ZapA, EzrA, FtsN or SepF, may or may not be present depending on 

the bacterial species (Margolin, 2000). All these proteins interact with one another to form one 

large multicomponent complex spanning the cytoplasmic membrane. Using in vivo and in vitro 

biochemical techniques such as bacterial two-hybrid (B2H) assay, GST-pull down assay, Co-

immunoprecipitation (Co-IP) and Surface Plasmon Resonance (SPR) cell division protein-

protein interaction networks have been established for only four bacterial species i.e. E. coli 

(Di Lallo et al., 2003; Karimova et al., 2005), N. gonorrhoeae (Zou et al., 2017), S. aureus 

(Steele et al., 2011) and S. pneumoniae (Fadda et al., 2007; Maggi et al., 2008).  

1.9.1. Cell division interactome in Gram-positive bacteria 

Maggi et al. (2008) tested 11 streptococcal cell division proteins for interactions using 

a B2H assay and co-immunoprecipitation from S. pneumoniae. A total of 37 homo- and/or 

hetero-dimeric interactions were observed where each protein interacted with at least two or 

more interacting partners except for PBP1A which had only one interacting partner (Maggi et 

al., 2008). There were 7 unique interactions i.e. FtsASp–FtsKSp, FtsASp–FtsLSp, FtsZSp–FtsWSp, 

FtsZSp–FtsQSp/DivIBSp, FtsZSp–FtsLSp, FtsKSp–FtsWSp, FtsLSp–FtsISp/PBP2XSp, when 

compared with the E. coli interactome (Maggi et al., 2008). Using co-immunoprecipitation, 

seventeen confirmed interactions (i.e. FtsZSp with FtsASp, FtsKSp, FtsQSp, FtsBSp, FtsLSp, and 

FtsWSp; FtsASp with FtsKSp, FtsLSp, and FtsLSp; FtsKSp with FtsQSp, FtsISp, and FtsWSp; FtsQSp 

with FtsLSp, and FtsWSp; FtsBSp-FtsWSp; and FtsLSp with FtsISp, and FtsWSp) were observed 

among nine cell division proteins that included FtsZSp, FtsASp, FtsKSp, DivlBSp, DivlCSp, 

FtsLSp, FtsWSp, and PBP2xSp (Maggi et al., 2008).  

 In S. aureus, the potential interactions between thirteen divisome proteins (i.e. FtsZSa, 

FtsASa, EzrASa, GpsBSa, SepFSa, Pbp1Sa, Pbp2Sa, Pbp3Sa, DivIBSa, DivICSa, FtsLSa, FtsWSa and 

RodASa) were mapped using a B2H assay by Steele et al. (2011). Around 49 homo-and/or 

hetero-dimeric protein interactions were identified and almost all proteins were found to 

interact with multiple interacting partners except for SepFSa and GpsBSa which interacted with 
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only EzrASa (Steele et al., 2011). SepFSa interaction with FtsZSa has been well-studied in B. 

subtilis (Hamoen et al., 2006) but was not observed in S. aureus (Steele et al., 2011). When 

compared with the interactome of S. pneumoniae, following interactions were observed to be 

conserved: FtsASa with FtsZSa, all division-specific PBPs, FtsWSa, DivICSa and FtsLSa; FtsWSa 

with FtsLSa and all division-specific PBPs; DivICSa, DivIBSa and FtsLSa with all division-

specific PBPs; and FtsLSa with DivICSa. EzrASa interacted with all thirteen cell division proteins 

(Fig. 1.5.) (Steele et al., 2011).  
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Figure 1.5. Characterized cell division interactomes from A) S. pneumoniae (Maggi et al., 

2008), and B) S. aureus (Steele et al., 2011).  
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1.9.2. Cell division interactome in Gram-negative bacteria 

Di Lallo et al. (2003) were first to use B2H assay to deduce the cell division interactome 

network in E. coli using 9 divisome proteins (i.e. FtsZEc, FtsAEc, ZipAEc, FtsKEc, FtsQEc, FtsLEc, 

FtsIEc, FtsWEc, and FtsNEc). Karimova et al. (2005) later expanded on this knowledge using 

their own version of a B2H assay i.e. the bacterial adenylate cyclase two-hybrid (BACTH) 

system, which relies on the reconstruction of a cyclic AMP (cAMP) signalling cascade upon 

interaction (Karimova et al., 1998). They reconfirmed all the interactions showed by Di Lallo 

et al. (2003) and included FtsB for testing possible interactions with other cell division proteins. 

Collectively in E. coli, 16 interactions (i.e. FtsZEc with FtsAEc, ZipAEc, FtsKEc; FtsAEc with 

FtsIEc, FtsNEc, FtsQEc; FtsKEc with FtsIEc, FtsQEc; FtsQEc with FtsBEc, FtsLEc, FtsIEc, FtsNEc, 

FtsWEc; FtsBEc with FtsLEc, FtsIEc; FtsLEc with FtsIEc, FtsWEc; FtsIEc with FtsWEc, FtsNEc; and 

FtsWEc with FtsNEc) between ten cell division proteins (i.e. including FtsZEc, FtsAEc, ZipAEc, 

FtsKEc, FtsQEc, FtsBEc, FtsLEc, FtsIEc, FtsWEc, and FtsNEc) were identified (Di Lallo et al., 2003; 

Karimova et al., 2005). Maggi et al. (2008) compared S. pneumoniae interactome with E. coli 

and observed 8 unique interactions that were absent in E. coli interactome which was a 

reflection of distinct cell division mechanisms in these two organisms (Di Lallo et al., 2003; 

Karimova et al., 2005; Maggi et al., 2008). 

Zou et al. (2017) characterized cell division interactome from Neisseria gonorrhoeae, 

another Gram-negative coccal bacterium, using B2H and GST-pull down assays. Nine positive 

interactions (i.e. FtsZNg-FtsANg, FtsZNg-FtsKNg, FtsZNg-FtsWNg, FtsANg-FtsKNg, FtsANg-

FtsQNg, FtsANg-FtsWNg, FtsANg-FtsNNg, FtsINg-FtsWNg, and FtsKNg-FtsNNg) were observed 

among 8 cell division proteins i.e. FtsZNg, FtsANg, ZipANg, FtsKNg, FtsQNg, FtsINg, FtsWNg, and 

FtsNNg, that defined the cell division interactome. FtsANg did not homodimerize or interact with 

FtsZEc but interacted with FtsNNg which is unlike E. coli interactome (Fig. 1.6) (Di Lallo et al., 

2003; Karimova et al., 2005; Zou et al., 2017).  

1.9.3. Conserved cell divisome interactions 

When cell division interactomes from E. coli (Di Lallo et al., 2003; Karimova et al., 

2005), N. gonorrhoeae (Zou et al., 2017), S. aureus (Steele et al., 2011) and  

S. pneumoniae (Fadda et al., 2007; Maggi et al., 2008) were compared, the interaction between 

FtsZ and FtsA was found to be conserved in all four interactomes. The interaction between 

FtsZ and FtsK was positive in E. coli, N. gonorrhoeae, and S. pneumoniae but  

S. aureus was not tested.  
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Figure 1.6. Characterized cell division interactomes from Gram-positive organisms: A) 

Neisseria gonorrhoeae (Zou et al., 2017); B) E. coli (Karimova et al., 2005; Di Lallo et al., 

2003 ).  
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1.10. Cell division in E. faecalis 

1.10.1. E. faecalis Division Cell Wall (dcw) cluster 

Enterococcus faecalis dcw gene cluster was identified first by Pucci et al. (1997) and 

Massidda et al. (1998) reported its resemblance with E. hirae. Ramirez et al. (2005) extended 

the information on the E. faecalis dcw cluster and reported the presence of 16 genes organized 

in four operons (Fig. 1.1). The first operon contains promoter region located upstream of 

mraZEf followed by mraWEf, ftsLEf, ftsIEf, mraYEf, murGEf and ftsQEf, followed by a terminator 

sequence located immediately downstream of ftsQEf (Ramirez-Arcos, 2005). The second 

operon in the dcw cluster contains ftsAEf, ftsZEf, ylmEEf, ylmFEf, ylmGEf, and ylmHEf with the 

promoter sequence located upstream of ftsAEf  (Ramirez-Arcos, 2005).  The third and fourth 

operons contain divIVAEf and ileSEf respectively (Ramirez-Arcos, 2005). All the genes within 

the enterococcal dcw cluster are transcribed in the same direction using four σ70 promoter 

sequence and three predicted ρ-independent transcriptional terminators (Ramirez-Arcos, 

2005). Among all enterococcal dcw cluster genes, only divIVAEf has been studied so far 

(Ramirez-Arcos, 2005; Rigden et al., 2008). Ramirez et al. 2005 also postulated that divIVAEf 

might be co-transcribed with other upstream cell division protein encoding genes. 

1.10.2. DivIVA from E. faecalis 

Unlike the dcw clusters from other Gram-positive bacteria, such as B. subtilis,  

S. pyogenes, S. pneumoniae and S. aureus, divIVEf, is located within the dcw cluster of E. 

faecalis (Ramirez-Arcos, 2005). E. faecalis divIVEf encodes DivIVAEf which comprises 

predominantly of coiled-coil domains, one at the N-terminus, one at the C-terminus, and two 

in the central region of the protein that is responsible for the self-interacting properties of 

DivIVAEf (Rigden et al., 2008). Both, the N-terminal and central coiled-coil regions were 

indispensable for DivIVAEf function (Rigden et al., 2008). An N-terminal point mutation in 

DivIVAEf resulted in aberrant phenotypes, such as irregular shape, aggregation, and 

enlargement, indicating disruption of normal cell division (Rigden et al., 2008). DivIVAEf is 

essential for cell viability and is involved in cell division and chromosome segregation 

(Ramirez-Arcos, 2005), similar to its counterpart in S. pneumoniae (Fadda et al., 2003, 2007). 

divIVA inhibits proper cell division when absent (Ramirez-Arcos, 2005). Its absence leads to 

abnormal cell clusters possessing rounded enlarged cells instead of the characteristic 

ovodiplococcal cells (Ramirez-Arcos, 2005). Overexpression of DivIVAEf in E. coli KJB24 
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resulted in enlarged cells with disrupted cell division (Ramirez-Arcos, 2005). E. faecalis 

DivIVA failed to complement the cell division defects of either  

S. pneumoniae or B. subtilis divIVA mutants, reflecting the variety of DivIVA functions in 

different microorganisms and indicating that DivIVA could be playing a species-specific 

function (Ramirez-Arcos, 2005).  

1.10.3. Discovery of a novel DivIVAEf interacting partner 

To identify novel DivIVAEf interacting proteins in E. faecalis, a Y2H system was used 

to screen an E. faecalis genomic DNA library using DivIVAEf as the bait protein. Fifteen 

positive clones were identified from ~3x104 transformed yeast colonies. Thirteen of the 

positive clones had inserts corresponding to full-length divIVAEf and the remaining two positive 

clones contained a 400bp DNA fragment from an unknown ORF (unpublished data). Upon 

bioinformatic analysis, this 400bp DNA fragment was found to encode a peptide corresponding 

to the C-terminus of the hypothetical protein EF1025 (GenBank accession # NP_814759) in E. 

faecalis. This thesis builds in part upon the characterization of this novel protein.  
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1.11. Hypothesis and objectives  

1.11.1. Background 

The diverse functionality of DivIVA in Gram-positive organisms across species, 

suggests that DivIVA associates with different proteins in different bacterial species 

performing a variety of functions. These DivIVA-associating proteins are not a part of 

divisome and indirectly assist DivIVA in cell growth and division. Although DivIVA 

interacting partners have been reported from many bacterial species, there is a lack of 

information regarding DivIVA-associating proteins in E. faecalis. We have identified a novel 

DivIVAEf interacting protein i.e. EF1025, but its characteristics and the biological function is 

unknown.  

The cell division interactome presents a network of assembly of divisome proteins. The 

cell division interactomes of only E. coli, N. gonorrhoeae, S. aureus and S. pneumoniae have 

been characterized (Di Lallo et al., 2003; Maggi et al., 2008; Steele et al., 2011; Zou et al., 

2017). These interactomes show the existence of multiple unique interactions within the 

divisome proteins that might help in stabilizing the macromolecular complex, divisome (Maggi 

et al., 2008, 2008). The dcw cluster of E. faecalis contains homologues of divisome proteins 

FtsZ, FtsA, FtsK, FtsQ (DivIB), FtsL, FtsI and probably FtsB (DivIC), EzrB and ZapA. The 

cell division interactome of E. faecalis, by contrast, is not presently known.  

1.11.2. Hypothesis  

The hypothesize of this thesis is that EF1025 is a cell division protein in E. faecalis, 

which interacts with DivIVAEf and affects cell division. I also hypothesize that homologues of 

EF1025 may interact with DivIVA from other species. Like other functionally characterized 

DivIVA interacting partners, EF1025 might not also be a part of divisome and will be assisting 

during the process of cell division. 

1.11.3. Objectives 

1. To biochemically, biologically, and functionally characterize EF1025 from E. faecalis by: 

a. Bioinformatically characterizing EF1025, its homologues and domains. 
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b. Researching the interaction of EF1025 and domains present in EF1025 with 

DivIVAEf using GST pull-down assay and re-analyze previous B2H and Co-

immunoprecipitation assay results for this interaction. 

c. Studying the oligomerization properties of EF1025 using size exclusion 

chromatography (SEC), Dynamic light scattering (DLS) and SEC- multi-angle light 

scattering (SEC-MALS) techniques. 

c. Creating an E. faecalis EF1025 deletion mutant and EF1025 overexpressing strain.  

d. Ascertaining the morphological changes in E. faecalis when EF1025 is deleted or 

overexpressed by electron microscopy and atomic force microscopy.  

2. To investigate CcpN, an EF1025 homologue from B. subtilis by: 

a. Ascertaining whether there is an interaction between CcpN and DivIVABs by B2H 

and GST pull-down assays. 

b. Ascertaining the heterologous interaction between EF1025 and DivIVABs by GST 

pull-down assay. 

c. Ascertaining the morphological changes by electron microscopy and atomic force 

microscopy in B. subtilis when ccpN is insertionally inactivated. 

3. To establish a preliminary cell division interactome of E. faecalis by: 

a. Testing E. faecalis cell division protein-protein interactions between FtsZEf, FtsAEf, 

FtsQEf, FtsLEf, FtsIEf, FtsWEf, DivIVAEf, and FtsBEf, using B2H assays and re-analyze 

previous B2H data using statistical methods. 

b. Identifying whether EF1025 interacts with E. faecalis cell division proteins i.e. 

FtsZEf, FtsAEf, FtsQEf, FtsLEf, FtsIEf, FtsWEf, DivIVAEf, and FtsBEf, using B2H assays 

and re-analyze previous B2H data using statistical methods. 
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2.1. Abstract 

DivIVA plays multifaceted roles in Gram-positive organisms through its association with 

various cell division and non-cell division proteins. We report a novel DivIVA interacting 

protein in Enterococcus faecalis, named EF1025 (encoded by EF1025), which is conserved in 

Gram-positive bacteria. The interaction of EF1025 with DivIVAEf was confirmed by Bacterial 

Two-Hybrid, Glutathione S-Transferase pull-down, and co-immunoprecipitation assays. 

EF1025, which contains a DNA binding domain and two Cystathionine β-Synthase (CBS) 

domains, forms a decamer mediated by the two CBS domains. Viable cells were recovered 

after insertional inactivation or deletion of EF1025 only through complementation of EF1025 

in trans. These cells were longer than the average length of E. faecalis cells and had distorted 

shapes. Overexpression of EF1025 also resulted in cell elongation. Immuno-staining revealed 

comparable localization patterns of EF1025 and DivIVAEf in the later stages of division in E. 

faecalis cells. In summary, EF1025 is a novel DivIVA interacting protein influencing cell 

length and morphology in E. faecalis.  
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2.2. Introduction 

A key protein in Gram-positive bacteria is DivIVA which is implicated in cell division 

and other functions (Cha and Stewart, 1997; Ben-Yehuda et al., 2003; Fadda et al., 2003; Pinho 

and Errington, 2004; Ramirez-Arcos, 2005; Briley et al., 2011; Halbedel and Lewis, 2019). 

DivIVA self-interacts, oligomerizes and associates with a functionally different array of 

proteins in different Gram-positive bacteria (Halbedel and Lewis, 2019). In Bacillus subtilis 

(Bs), DivIVABs functions as a mid-cell determinant by attracting the MinC/MinD protein 

complex to the cell poles, thereby preventing cell division at the polar region (Cha and Stewart, 

1997; Edwards and Errington, 1997; Marston and Errington, 1999; Edwards et al., 2000; 

Karoui and Errington, 2001; Harry and Lewis, 2003). DivIVABs also associates with the DNA 

binding protein RacA, which acts as a bridge between the oriC region and the cell poles, 

anchoring the chromosome at the poles during sporulation (Ben-Yehuda et al., 2003). In 

addition, DivIVABs interacts with Spo0J, participating in chromosome segregation during 

sporulation (Ben-Yehuda et al., 2003; Wu and Errington, 2003; Perry and Edwards, 2006); 

ComN which is involved in competence development (dos Santos et al., 2012); and, with Maf, 

a regulator of cell shape and division (Butler et al., 1993). The interaction between Maf and 

DivIVABs arrests cell division in competent cells (Briley et al., 2011). DivIVA of 

Corynebacterium glutamicum interacts with RodA and ParB, (Donovan et al., 2012; Sieger et 

al., 2013), which binds the origin of replication with ParA, resulting in chromosomal 

segregation (Mierzejewska and Jagura-Burdzy, 2012). DivIVA is involved in apical growth 

and control of cell polarity in Streptomyces coelicolor (Flärdh, 2010), by interacting with ParB 

to co-ordinate chromosomal segregation. (Donczew et al., 2016). DivIVA in S. pneumoniae 

interacts with several proteins implicated in divisome formation, including FtsZ, FtsA, ZapA, 

FtsK and FtsI, FtsB, FtsQ and FtsW (Fadda et al., 2007). These studies highlight the diverse 

functionality of DivIVA in Gram-positive organisms. There is no information regarding 

DivIVA-associating proteins in Enterococcus faecalis (Ef).   

 E. faecalis, an opportunistic, commensal, Gram-positive, ovococcal pathogen is 

recognized for its resistance to multiple antibiotics and for causing hospital-acquired infections 

(Murray, 1990; Cross and Jacobs, 1996; Hidron et al., 2008a, 2008b; Sievert et al., 2013). 

Enterococcal infections are potentially fatal, causing neonatal and wound infections, 

endocarditis, meningitis, and urinary tract infections (Hidron et al., 2008a, 2008b; Torelli et 

al., 2017). Due to its ability to form biofilms, catheter-related urinary tract infections with E. 

faecalis are difficult to treat (Mohamed and Huang, 2007). To formulate new therapeutic agents 



33 

 

and targets for resisting antibiotic resistant E. faecalis infections, a greater understanding of 

enterococcal biology, physiology and genetics is required.  

E. faecalis contains DivIVA (Ramirez-Arcos, 2005). This research describes a novel 

DivIVA-interacting protein, EF1025, which was annotated as a hypothetical protein in E. 

faecalis strain V583 (Paulsen et al., 2003). EF1025, which is conserved in most Gram-positive 

bacteria, contains a DNA binding domain at its N-terminus and two highly conserved 

Cystathionine β-Synthase (CBS) domains at the central and C-terminal regions. Bacterial Two-

Hybrid (B2H), Glutathione S-Transferase (GST) pull-down, and Co-Immunoprecipitation (Co-

IP) assays were used to demonstrate an interaction between EF1025 and DivIVAEf. EF1025 

self-interacts and forms a decamer. It was not possible to obtain viable cells after the deletion 

or insertional inactivation of EF1025 without in trans expression of the gene. These rescued 

cells grew more slowly than wild type E. faecalis.  Scanning electron microscopy (SEM) and 

atomic force microscopy (AFM) revealed cell elongation and aberrant cell shape in rescued 

cells. Cell elongation was also observed in SEM images when EF1025 was overexpressed in 

E. faecalis cells. Using an E. coli model, overexpression of EF1025 in E.coli PB103 resulted 

in filamentation. Immunofluorescence microscopy showed that EF1025 localized comparably 

to DivIVAEf localization during the later stages of cell division. 
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2.3. Materials and methods 

2.3.1. Strains, plasmids and growth conditions 

 Strains and plasmids used in this study are listed in Tables S1 and S2. E. coli XL1-Blue 

or DH5α were used as hosts for cloning. E. coli C41 (DE3) was used to overexpress cloned 

proteins, E. coli PB103 (de Boer et al., 1988) for heterologous overexpression of E. faecalis 

proteins, and E. coli R721 (Di Lallo et al., 2001, 2003) was used for the bacterial-two hybrid 

evaluations. E. coli strains were grown at 37°C in Luria-Bertani (LB) medium (Difco, Detroit, MI) 

and antibiotics were included in the following concentrations as required: ampicillin (Amp) 100 

μg/mL, kanamycin (Kan) 50 μg/mL and erythromycin (Ery) 125 μg/mL. E. faecalis JH2-2 (Jacob 

and Hobbs, 1974), the parental strain, was used for the preparation of genomic DNA. E. faecalis 

was cultured at 37°C without aeration in Brain Heart Infusion (BHI) broth (Difco, Detroit, MI) 

and supplemented with appropriate antibiotics if required (Ramirez-Arcos, 2005; Rigden et al., 

2008). Saccharomyces cerevisiae SFY526, used in yeast two-hybrid (Y2H) assays (Clontech 

Laboratories, Inc., CA), was grown at 30°C for 2-4 days on yeast extract-peptone-dextrose-adenine 

medium (YPDA) or appropriate synthetic dropout media (Yeast Protocols Handbook, Clontech). 

2.3.2. Bioinformatic analysis 

DNA sequences interacting with DivIVAEf,  identified after screening Y2H libraries of  

E. faecalis JH2-2 (Supplementary methods) were blasted against the E. faecalis V583 genome 

(Paulsen et al., 2003) using NCBI BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). A putative 

open reading frame, named EF1025 (GenBank accession number NC_004668), was identified 

from the E. faecalis V583 genome. The upstream sequence of EF1025 (~ 480bp) was analyzed for 

promoter prediction (http://www.fruitfly.org/cgi-bin/seq_tools/promoter.p1) and the deduced 

amino acid sequence of EF1025 was ascertained using ProtParam 

(http://us.expasy.org/tools/protparam.html). Homologues of EF1025 were identified using 

BLASTp (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) against the non-redundant 

protein sequences database. EF1025 was also analyzed by PROSITE (Sigrist et al., 2010) 

(http://ca.expasy.org/cgi-bin/prosite/mydomains) to identify functional domains. Transmembrane 

motifs in EF1025 were predicted using TMbase (http://www.ch.embnet.org/cgi-

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.fruitfly.org/cgi-bin/seq_tools/promoter.p1
http://us.expasy.org/tools/protparam.html
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
http://www.ch.embnet.org/cgi-bin/TMPRED_form_parser
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bin/TMPRED_form_parser) and potential coiled-coil structures were predicted using COILS  

(http://www.ch.embnet.org/software/COILS_form.html).  

2.3.3. EF1025-DivIVA interactions in the Bacterial Two-Hybrid (B2H) assays 

The B2H system of Di Lallo et al. (2001 and 2003) was used to investigate interactions 

between DivIVAEf and EF1025 and its various domains. This particular assay involves a hybrid 

repressor which recognizes a chimeric operator. Potential interacting proteins are cloned at the two 

chimeric regions at the C-terminus of this hybrid repressor. The dimerization of the heterologous 

proteins permits reconstitution of the hybrid repressor which recognizes the chimeric operator and 

downregulates the activity of the downstream reporter gene, lacZ (Di Lallo et al., 2001). Modified 

B2H vectors pcI434-L and pcIp22-L, containing a linker with multiple endonuclease restriction 

sites were used in B2H assays (Table S2A). EF1025, EF1025CBS12 (encoding AA80-209 of 

EF1025) and divIVAEf were PCR-amplified from the E. faecalis JH2-2 using primers EF1025-F/R, 

EF1025C-F/R and CBdivIVA-F/R, respectively (Supplementary Materials, Table S3A) and 

cloned into the modified B2H vectors, resulting in plasmids pdivIVA22, pdivIVA434, 

pEF1025434, p22CBS1CBS2 and p434CBS1CBS2, respectively (Table S2A). These plasmids 

were transformed into E. coli R721 alone or in combination (Di Lallo et al., 2001, 2003; Greco-

Stewart et al., 2007). Freshly transformed single colonies were grown overnight in 4 mL LB 

medium supplemented with Amp 50µg/mL and Kan 30 µg/mL. Cells were diluted 1:100 using 

fresh LB medium containing the same antibiotics and were incubated for ~1 hr (OD600 ~0.1) at 

37°C, followed by the addition of 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). Cells 

were further incubated to mid-log phase (i.e. OD600 ~0.5) at 37°C, harvested, and tested for β-

galactosidase activity, as previously described (Di Lallo et al., 2001). Each experiment was 

performed in triplicate and the average percentage β-galactosidase activity was calculated.   

2.3.4. GST pull-down assays 

To create a GST-DivIVAEf fusion, divIVAEf was PCR-amplified from genomic DNA from 

E. faecalis JH2-2 (see supplementary methods) using primers IVA-5/IVA-11 (Table S3B) 

(Ramirez-Arcos, 2005). The amplicon was cloned into pGEX-2T, generating plasmid pGST-Div 

(Supplementary Materials, Table S2B). EF1025 was PCR-amplified from  E. faecalis JH2-2 DNA 

using primers EF1025F-F/R (Table S3B) and cloned into pET30a(+), resulting in plasmid 

http://www.ch.embnet.org/cgi-bin/TMPRED_form_parser
http://www.ch.embnet.org/software/COILS_form.html
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pETEF1025 (Table S2B). The two CBS domains i.e. CBS1 and CBS2, of EF1025 were PCR-

amplified from E. faecalis JH2-2 DNA using primers EF1025-CF/R and cloned into pET30a(+), 

resulting in plasmid pETEF1025CBS12 (Table S2B and 3B). 

GST-DivIVAEf, 6×His-EF1025, or 6×His-EF1025CBS12 fusions were overexpressed in 

E. coli C41 (DE3)(Ramirez-Arcos, 2005). The GST-DivIVAEf fusion protein was purified using 

GST affinity beads (GST-Bind Kit, Novagen, USA). 6×His-EF1025 or 6×His-EF1025CBS12 

were purified from 200 mL log-phase growth of E. coli C41 by sonication in 5 mL Interaction 

Buffer (IB, 20 mM Tris/HCl pH 7.5, 10% glycerol, 50 mM KCl, 0.5 mM EDTA, 1% Triton X100, 

1 mM DTT). The cell lysate was centrifuged and the supernatant (50 µL) was incubated with 20 

µL GST-DivIVAEf bound beads, pre-equilibrated with IB buffer, at 4°C for 2 hrs. Beads were 

washed with cold IB buffer 3× and the retained protein was eluted using a 40 µL 1×SDS loading 

buffer and heating at 95 C for 10 min. Eluted protein was separated by SDS-PAGE, followed by 

Western blot analysis using anti-6×His monoclonal antibody (Biorad, USA). The same protocol 

was used to study DivIVAEf and EF1025CBS12 interaction. Purified GST protein was used as a 

control and was produced in E. coli C41 (DE3) from plasmid pGEX2T.  

2.3.5. Production of anti-EF1025 polyclonal antibody 

6×His-EF1025 was overexpressed in E. coli C41DE3 from plasmid pETEF1025 (Table 

S2B) and was purified as described previously (Ramirez-Arcos, 2005). Female New Zealand 

White rabbits were injected with ~30 µg/mL purified 6×His-EF1025 in Freund’s adjuvant (Sigma; 

v/v=1:1) at the Animal Core Facility of the Vaccine and Infectious Diseases Organization 

(University of Saskatchewan) with a booster dose on day 21 after the initial injection. Polyclonal 

IgG antibody was purified by affinity purification of antiserum using Protein-A sepharose beads 

(Pharmacia Bioscience; (Ramirez-Arcos, 2005). Antibody specificity was tested by western 

blotting assay using an E. faecalis JH2-2 whole cell protein extract which was prepared by 

sonicating 50 mL of cell culture and resuspending the cells in 2.5 mL of Tris buffer (Fig. S1). 

Previously prepared anti-DivIVAEf (Ramirez-Arcos, 2005) was used as a positive control. 

2.3.6. Co-immunoprecipitation (Co-IP) 

An overnight culture of E. faecalis JH2-2 was diluted 1:100 in BHI broth and incubated 

for 16-20 hrs at 37°C without aeration. 200 mL were centrifuged at 10,000 rpm for 10 minutes and 
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the pellet was re-suspended in 5 mL Co-IP buffer (25 mM HEPES pH7.9, 100 mM NaCl, 5% 

glycerol, 0.5 mM EDTA, 0.1% Triton X100, 1 mM DTT and 0.5 mM PMSF). The suspension was 

sonicated, on ice, 3×, for 30 seconds each, with an interval of 20 seconds. The cell lysate was 

centrifuged under the same conditions (above) and the supernatant was collected for Co-IP assays.  

Protein-A Sepharose beads (Pharmacia Inc., Canada) were cross-linked with 20 µg of 

either anti-DivIVAEf or anti-EF1025 polyclonal antibody in 200 µL PBS as follows: antibody was 

incubated with 50 µL Protein-A Sepharose beads at room temperature (RT) for 1 h. Beads were 

washed with PBS once and then washed twice with 0.2 M sodium borate (pH 9.0). 

Dimethylpimelimdate (Sigma) was added to the beads to a final concentration of 20 mM and 

incubated for 30 min at RT to allow cross-linking. The reaction was stopped by adding 0.2 M 

ethanolamine (final concentration 20 mM) pH8.0 (Sigma) and incubating at RT for 2 hrs. Beads 

were then washed with PBS and stored at 4°C for later use. Prior to Co-IP, 20 µL antibody-bound 

beads were incubated with 10 mg/mL BSA overnight at 4°C to block non-specific binding sites. 

Beads were then equilibrated with Co-IP buffer and subsequently incubated with 200 µL of  

E. faecalis JH2-2 cell extract for 2 hrs at 4°C. After removing the supernatant, beads were washed 

with Co-IP buffer 3× for 10 min each. Proteins retained on the beads were eluted in 80 µL 1×SDS 

loading buffer, separated on 12% SDS-PAGE, and transferred onto a nitrocellulose membrane for 

Western blot assay. Blots were probed with either anti-DivIVAEf or anti-EF1025 polyclonal 

antibody. Beads alone or beads cross-linked with anti-MinCNg polyclonal antibody (Ramirez-

Arcos et al., 2001) were used as negative controls.   

2.3.7. EF1025 self-interaction 

To determine whether EF1025 self-interacts, and to map the sites responsible for  

self-interaction, the predicted functional domains of EF1025 were constructed, in different 

combinations, in Y2H vectors as follows: EF1025CBS12 (AA80-204) carrying CBS1 and CBS2 

domains, NCBS1-EF1025 (AA6-204) containing the N-terminus HTH domain and CBS1 domain, 

CBS2-EF1025 (AA144-204) containing the CBS2 domain, and N-EF1025 (AA6-50) containing 

the N-terminus HTH domain. E. faecalis JH2-2 DNA was used as a template for PCR amplification 

of these fragments. Primers for the amplification of various fragments are described in 

Supplementary Table S3C. These amplicons were cloned into the vectors pGAD424 and pGBT9 

resulting in plasmids pGADEF1025CBS12, pGBDEF1025CBS12, pGADEF1025NCBS1, 
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pGBDEF1025NCBS1, pGADEF1025CBS2, pGBDEF1025CBS2, pGADEF1025-N and 

pGBDEF1025-N, respectively (Table S2C). Each plasmid construct was co-transformed with a 

plasmid expressing full-length EF1025 (e.g. pGADEF1025 or pGBDEF1025) into S. cerevisiae 

SFY526. Transformation efficiencies were calculated by plating 50 µL of diluted transformants 

on separate plates followed by counting the number of colonies produced. Transformants were 

selected on complete synthetic medium lacking leucine and tryptophan (SD-leu-trp) (Clontech). 

Transformation efficiencies were calculated by plating 50 µL of diluted transformants on separate 

plates followed by counting the number of colonies produced. After 3-4 days of incubation at 

30°C, using a colony lift assay (Clontech, CA), cells were screened for blue color development in 

the presence of 5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal, Sigma-Aldrich; St. 

Louis, MS) to study the self-interaction ability of EF1025. Positive clones were further subcultured 

in SD-leu-trp broth and a spectrophotometric assay for β-galactosidase activity, using the substrate 

o-nitrophenyl-β-D-galactopyranoside (Ramirez-Arcos, 2005).  

SEC-MALS, the combination of Size Exclusion Chromatography with Multi-Angle Light 

Scattering analysis (Wyatt Technology, USA), was used to determine the oligomerization state of 

EF1025. Using His-bind resin (Novagen, Canada), 1mg of purified 6×His-EF1025 was loaded 

onto a Superdex 200 column (Biorad) equilibrated with a buffer comprising 50 mM Tris base, 400 

mM NaCl, pH 7.4. A single peak, corresponding to EF1025 eluted by SEC, was detected by the 

MALS detector to estimate molar mass.  

2.3.8. Overexpression of EF1025 in E. faecalis JH2-2 

To overexpress EF1025 in E. faecalis JH2-2, EF1025 was cloned into pMSP3545 

(Supplementary Materials, Table S2). pMSP3545 was first modified by introducing an Amp-

encoding gene that was PCR amplified from pcDNA3.1(+) using primer pairs AmpF/R (Table 

S3D), into pMSP3545 creating pMSP3545A (Table S2D). Linkers LinkA/B (Table S3D), which 

contained restriction sites BamHI and NcoI, were ligated to the  Amp gene amplicon prior to 

ligation in pMSP3545. pMSP3545A was electroporated into electrocompetent E. faecalis JH2-2 

cells using previously described methods (Ramirez-Arcos, 2005) and colonies were selected on 

BHI supplemented with Ery (125 µg/mL), creating E. faecalis MK0.   E. faecalis JH2-2 and  

E. faecalis MK0 served as controls for all electroporation experiments. EF1025 and 80 bp 

upstream which included the predicted promoter sequence was PCR amplified using primers 
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EF1025npF/R, and the amplicon was digested with NcoI and XbaI, purified and subcloned into 

pMSP3545A,  digested with the same enzymes, creating pMSPEF1025A (Table S2D). 

pMSPEF1025A was transformed into E. coli DH5α and transformants were selected for Amp 

resistance. Clones were confirmed for the presence of EF1025 using restriction digestion and PCR 

amplification with primers EF1025npF/R. pMSPEF1025A was electroporated into 

electrocompetent E. faecalis JH2-2 cells creating E. faecalis MK23 (Table S1) using previous 

methods (Ramirez-Arcos, 2005). To ascertain whether EF1025 was expressed from its native 

promoter in pMSPEF1025A, pMSPEF1025-flag was created by fusing a flag-tag encoding 

sequence which was PCR amplified from pcDNA3.1(+) using primers flagF/R (Table S3D). The 

amplicon was ligated in pMSPEF1025A downstream of EF1025 and electroporated into 

electrocompetent E. faecalis JH2-2 cells to create E. faecalis MK24 (Table S1). EF1025 

expression from pMSPEF1025-flag in E. faecalis MK24 was evaluated using an anti-flag 

monoclonal antibody (GenScript, USA) by Western blot analysis. Whole cell extracts of both  

E. faecalis JH2-2, E. faecalis MK23 and E. faecalis MK24 were prepared for these blots. In a 

separate Western blot, an anti-EF1025 antibody was used to compare EF1025 expression levels in 

the same strains.  

2.3.9. Complementation of  EF1025 deletions and insertional mutants in E. faecalis JH2-2 

Clones of insertionally inactivated or deleted EF1025 in E. faecalis JH2-2 could not be 

recovered unless EF1025 was expressed in trans. Therefore, E. faecalis JH2-2 was co-transformed 

both with plasmids expressing EF1025 (i.e. either pMSPEF1025-pro or pMSPEF1025A) and 

plasmid constructs designed to insertionally inactive (i.e. p3ERMEF1025::Kan) or delete (i.e. 

p3ERMΔEF1025::Cat) EF1025.  

To create p3ERMEF1025::Kan, first the N-terminal sequence of EF1025 (AA1-55) was 

PCR-amplified from E. faecalis JH2-2 using primers CBSDPF/CBS55R-Hind (Table S3D). The 

amplicon was digested and ligated to predigested pUC18 resulting in pUCEF1025-N (Table S2D). 

Then, a kanamycin cassette (KanR) was PCR-amplified from pTCV-lac (Table S2D; Poyart and 

Trieu-Cuot, 1997) with primers KanF/R (Table S3D), and the amplicon was inserted into 

pUCEF1025-N at its HindIII/SmaI sites, producing plasmid pUCEF1025-N-Kan (Supplementary 

Materials, Table S2D). The C-terminal sequence of EF1025 (AA56-209) was PCR-amplified from 

E. faecalis JH2-2 with primers CBS55F-SmaI/EF1025-R-BamHI (Table S3D) and the amplicon 
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was inserted into pUCEF1025-N-Kan creating the plasmid pUCEF1025::Kan (Supplementary 

Materials, Table S2D). Finally, pUCEF1025::Kan  was digested with EcoRI and BamHI, yielding 

a fragment containing EF1025-N, KanR and EF1025-C. This fragment was ligated into p3ERM-

H, creating the suicide vector p3ERMEF1025::Kan (Table S2D; Ramirez-Arcos, 2005). This 

plasmid was electroporated into E. faecalis JH2-2 (Ramirez-Arcos, 2005) with selection attempted 

using BHI agar containing Kan 500 µg/mL and incubation at 37°C for 2-3 days. Transformants 

were never obtained after multiple attempts, so p3ERMEF1025::Kan was co-electroporated with 

the shuttle plasmid pMSPEF1025-Pro that expresses wild type EF1025 in trans from its native 

promoter (Table S2D) into E. faecalis JH2-2 to create E. faecalis MJ26 (Table S3C; Ramirez-

Arcos, 2005). Transformants were selected on BHI supplemented with Ery (125 µg/mL) and Kan 

(500 µg/mL). For each electroporation experiment, we used E. faecalis JH2-2 and MK0 as controls 

for growth on BHI supplemented with erythromycin. E. faecalis JH2-2 failed to grow in the 

presence of erythromycin while E. faecalis MK0 grew well. To confirm that transformants 

contained both an insertionally inactivated chromosomal EF1025 as well as EF1025 expressed in 

trans from pMSPEF1025-pro in E. faecalis MJ26, primers mutF/Kan-R, KanF/KanR, EF1025-

Pro/KanR and KanF/CBSDPR were used to amplify chromosomal and plasmid fragments, 

followed by DNA sequencing of all amplified fragments for confirmation of the insertion (Table 

S3D).  

To ensure that phenotypes observed in E. faecalis MJ26 were not caused by polar effects 

of the insertional mutagenesis of EF1025 on the downstream gene, EF1026, qPCR was performed 

to study the expression of both genes (Supplementary Methods).  

A second strategy to inactivate EF1025 in E. faecalis JH2-2 involved the nonpolar deletion 

of chromosomal EF1025 (LeDeaux et al., 1997) by the introduction of the suicide plasmid 

pERMΔEF1025::Cat. Partial overlapping flanking primers ppdkF/R-BamHI (Table S3D) were 

used to amplify 500 bp upstream (includes the native promoter of EF1025) of the start codon of 

EF1025 and 500 bp downstream of the stop codon of EF1025 using primers 1026F/R-EcoRI 

(Table S3D) of E. faecalis JH2-2 DNA. A chloramphenicol cassette was amplified from pLemo 

(NEB) using primers CatF/R (Table S3D). The three fragments were combined by overlap PCR 

amplification (Hussain and Chong, 2016), creating a fragment that contained the chloramphenicol 

cassette flanked by the 500 bp upstream fragment and 500 bp downstream fragment. The resultant 

fragment was purified, digested and ligated into p3ERM-H, creating the suicide vector 
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p3ERMΔEF1025::Cat (Table S2D). As no transformants were recovered after electroporation of 

p3ERMΔEF1025::Cat into E. faecalis JH2-2, this plasmid along with pMSPEF1025A (Table S2D) 

were co-electroporated into E. faecalis JH2-2 (Shepard and Gilmore, 1995) creating E. faecalis 

MK12. Transformants were selected on BHI agar plates containing Chl 5 µg/mL and Ery 125 

µg/mL, incubated at 37°C for 2-3 days. The deletion of EF1025 in E. faecalis MK12 was 

confirmed by PCR-amplification using primers ppdkF/EF26b-R, mutF/EF26b-R, 

ppdkF/EF1025npR, EF1025npF/1026R, CatF/1026R and CatF/R (Table S3C and D) followed by 

DNA sequencing of these amplified fragments (data not shown). E. faecalis JH2-2 did not grow 

at this concentration of chloramphenicol.  As a positive control, p3ERMΔEF1025::Cat was 

electroporated into E.coli DH5α and transformants were selected on LB agar plates containing Chl 

33 µg/mL at after incubation for 24 hrs at 37°C.    

2.3.10. Microscopy 

SU8010 Cold Field Emission Ultra-High-Resolution scanning electron microscope 

(WCVM, University of Saskatchewan, Saskatoon, Saskatchewan) was used to image E. faecalis 

strains JH2-2, MK0, MK12, MJ26, MK23, MK24 (Table S1). Strains were cultured in BHI 

medium with or without appropriate antibiotics, without agitation, at 37°C, either overnight (~20 

hrs) or to stationary phase. Cells were fixed on poly-l-lysine coverslips, dehydrated in ethanol, 

critical point dried, sputter coated with gold and imaged (Ramirez-Arcos et al., 2001). Length 

measurements were performed across the poles of the diplococcal bacteria and the percentage of 

elongated cells was calculated by measuring the lengths of 110-250 cells.  

A Hitachi HT7700 High Contrast High-Resolution Digital Transmission Electron 

Microscope (WCVM, University of Saskatchewan, Saskatoon, Saskatchewan) was used to image 

E. faecalis strains JH2-2 and MJ26 prepared as previously described (Ramirez-Arcos, 2005). 

2.3.11. Immuno-fluorescence microscopy of E. faecalis JH2-2 

To visualize DivIVAEf and EF1025 localization, E. faecalis JH2-2 cells in exponential 

phase were collected and fixed using a procedure modified from Harry and Lewis (2003). One mL 

of cell culture was harvested and the resuspended pellet was fixed with 1 ml fixation buffer (2.5% 

paraformaldehyde, 0.03% glutaradehyde in 30 mM sodium phosphate buffer pH 7.5) for 30 min, 

at RT, then for 2 hrs at 4°C. Cells were washed 3× with 1PBS and resuspended in 200 µL GTE 
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(50 mM glucose, 20 mM Tris-HCl pH 7.5, 10 mM EDTA) to which a freshly prepared lysozyme 

solution (2 mg/mL) was added. This volume was transferred to and fixed on poly-L-lysine coated 

coverslips. Cells attached to the coverslips were blocked with BSA-PBST (3% bovine serum 

albumin [wt/vol] and 0.2% Triton X-100 [vol/vol] in PBS) for 2 hrs at RT. Cells were then 

incubated with either anti-DivIVAEf (1:200) or anti-EF1025 (1:100) in BSA-PBST for 3 hrs at RT. 

After washing with PBST, cells were incubated with a fluorescence-labeled secondary antibody 

(1:500 dilutions in BSA-PBST, goat anti-rabbit Alexa Fluor 488, Invitrogen) for 45 min. Images 

were acquired using U-M655 and U-M665 filters and processed using InVitro 3 and ImagePro 6.0 

software (Media Cybernetics). Each experiment was performed 4× using 2 independent cell 

cultures, and about 300 cells were counted for each immuno-staining. Cells were also stained with 

DAPI (Thermofischer, CA) and were mounted and observed under a 100X oil immersion objective 

using an Olympus BX61 microscope with standard filters. DAPI-stained cells were divided into 

five cell division stages. Stage 1 was defined as a single cell with a central condensed chromosome. 

Stage 2 cells contained segregating chromosome as the cell started to divide. Stage 3 and 4 were 

defined by the presence of two newly replicated cells with segregated chromosome. As the cell 

completed one round of cell division, Stage 5 comprised of two daughter cells with condensed 

DNA in the center. E. faecalis MWMR16 cells were used as a negative control which contains 

point mutations in the coiled-coil region of DivIVAEf (Rigden et al., 2008).   
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2.4. Results 

2.4.1. Identification and in silico analysis of a novel DivIVAEf interacting protein in E. faecalis  

To identify DivIVAEf interacting proteins from E. faecalis, a Y2H system was used to 

screen an E. faecalis genomic DNA library using DivIVAEf as the bait protein (data not shown). 

Positive clones were sequenced and bioinformatic analysis indicated a sequence corresponding to 

the C-terminus of the hypothetical protein EF1025 (GenBank accession # NP_814759) of the  

E. faecalis V583 genome; EF1025 spans nucleotide positions 983760-984389 (Fig. 2.1A). In silico 

analysis of EF1025 indicated that a ribosome binding site (GGAGG) is located at nucleotide 

position (nt) –6 to –10, and a putative promoter at position nt -36 to -87. EF1025 has a 

transcriptional orientation (Fig. 2.1B) similar to the downstream gene EF1026, a hypothetical 

protein with a kinase phosphoprotein phosphatase (PPPase) domain. A predicated terminator 

sequence is located downstream of EF1026. The upstream gene, EF1024, is transcribed in the 

opposite orientation of EF1025 and EF1026 and encodes a putative pyruvate phosphate dikinase 

(PPDK) domain (Fig. 2.1B).  

 EF1025 comprises 209 amino acids (AA), with a molecular weight of ~23kDa and a 

theoretical isoelectric point of 6.75. Domain prediction studies (Fig. 2.1B) showed that EF1025 

contains an N-terminal Helix-turn-Helix (HTH) DNA binding domain (AA 6-50), and two CBS 

domains (i.e. CBS1, AA 80-137 and CBS2, AA 144-204). The CBS1 domain is in the central 

region of EF1025 and CBS2 is located at the C-terminus. EF1025 does not contain any 

transmembrane motifs (suggesting that it is a cytosolic protein), nor does it contain coiled-coil 

regions. 

The EF1025 protein sequence was used as a query in BLASTp against 10000 targeted 

sequences in the non-redundant (nr) protein sequences database (last accessed May 2019). EF1025 

was identified as belonging to the CBS pair superfamily and is conserved predominantly in Gram-

positive bacteria, primarily in Firmicutes, As with EF1025, Gram-positive homologues contain an 

N-terminal HTH domain and two CBS domains located identically. In B. subtilis, the EF1025 

homologue is named CcpN and is involved in the gluconeogenic pathway (Servant et al., 2005).  

  



44 

 

Figure. 2.1. (A) EF1025 position in E. faecalis V583 genome. Transcriptional orientation of genes 

upstream (i.e. EF1024) and downstream (i.e. EF1026 and EF1027) to EF1025 (i.e. EF1025). The 

direction of an arrow within the rectangle indicates the transcriptional orientation of the gene. The 

bent arrow indicates promoter region upstream of EF1025 and vertical line indicates terminator 

region. (B) EF1025 domain prediction. N: N-terminus; C: C-terminus; HTH: Helix-turn-helix 

domain; CBS: Cystathionine-β-Synthase domain. Space in between domains constitutes hinge 

regions. 
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2.4.2. EF1025 oligomerizes and self-interacts 

To determine whether EF1025 self-interacts, fragments comprising different combinations 

of domains of EF1025 were cloned into Y2H vectors and initially tested for interactions using 

colony lift assay (data not shown), followed by a quantitative assay for increased β-galactosidase 

activity. The quantitative assay indicated that EF1025 strongly self-interacts (Fig. 2.2). 

Furthermore, the EF1025CBS12, containing the CBS1 and CBS2 domains, strongly interacted 

with EF1025. Fragments containing the N-terminus HTH domain and the central CBS1 domain 

(i.e. EF1025NCBS1) and fragments EF1025CBS2 (contains CBS2 domain) and EF1025-N (i.e.  

N-terminus HTH domain) showed no interaction with EF1025.  

6×His-EF1025 was found to be a decamer, with an estimated molecular mass of 222 kDa, 

using a combination of Size Exclusion Chromatography (SEC) with Multi-Angle Light Scattering 

(MALS) analysis (Fig. S2). Reduced disulfide linkages did not change the overall molecular 

weight of 6His-EF1025.  
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Figure 2.2. EF1025 self-interacts using CBS1 and CBS2 domains. EF1025 self-interacts in the 

Y2H assay. Bars represent full-length and truncations of EF1025. Amino acid positions are 

indicated on the top. Open bars—predicted domains; closed bars—hinge regions; HTH - helix-

turn-helix domain; CBS –cystathionine-β-synthase; Full-length EF1025 contains 209 amino acids 

(AA1-209); CBS12— EF1025 CBS1 and CBS2 domains together (AA80-204); NCBS1—N-

terminus and CBS1 domain of EF1025 (AA1-131); CBS2—CBS2 domain of EF1025 (AA131-

209); N—N-terminus of EF1025 (AA1-50). ND—Not detectable. The experiment was performed 

three times in triplicate. SD— standard deviation. Miller Units represent β-galactosidase activity. 
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2.4.3. EF1025 interacts with DivIVAEf in vitro and in vivo 

A B2H system was used to confirm preliminary Y2H results showing the interaction of 

EF1025 with DivIVAEf. In this assay, less than 50% residual β-galactosidase activity is indicative 

of positive interaction (Di Lallo et al., 2001; Zou et al., 2017). E. coli R721 cells showed a baseline 

residual β-galactosidase activity of 100%. E. coli R721 transformed, with one of pdivIVA22, 

pdivIVA434, pEF1025434, p434CBS1CBS2, or p22CBS1CBS2, showed residual β-galactosidase 

activities of 78%, 82%, 55%, 66% and 77%, respectively, and served as negative controls. The 

positive control (E. coli R721 cells containing plasmids pdivIVA22 and pdivIVA434), which 

demonstrated the self-interaction of DivIVAEf (Ramirez-Arcos, 2005), displayed 36% residual β-

galactosidase activity. Our results indicated an interaction between DivIVAEf and EF1025 (Fig. 

2.3; pdivIVA434 and p22EF1025 together) with the residual β-galactosidase activity of 21%. The 

two CBS domains together (i.e. p22CBS1CBS2 or p434CBS1CBS2) also interacted with 

DivIVAEf  (pdivIVA434 or pdivIVA22) with 14% residual β-galactosidase activity. 
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Figure 2.3. EF1025 interacts with DivIVAEf. in B2H assay. The β-galactosidase activity was 

expressed in percentage Miller Units (y-axis). The x-axis shows the combination of B2H plasmids 

used in the experiment. Average values were obtained from three independent assays that were 

performed in triplicate. Values of less than 50% indicate a positive interaction. The error bars 

represent 1 standard deviation.  
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The interaction between EF1025 and DivIVAEf was also ascertained using a GST-pull 

down assay. A Western blot using anti-EF1025 antibody revealed that GST-DivIVAEf was pulled 

down by 6His-EF1025 (Fig. 2.4A, Lane 3) or 6His-EF1025CBS12 (Fig. S3, Lane 3). GST did 

not interact with 6His-EF1025 (Fig. 2.4A, Lane 2) or 6His- EF1025-C (Fig. S3, Lane 2).  

The in vitro interaction between EF1025 and DivIVAEf was also determined using a Co-IP 

assay. EF1025 co-precipitated with DivIVAEf using an anti-DivIVAEf antibody (Fig. 2.4B, Lane 

2), and DivIVAEf co-precipitated with EF1025 with anti-EF1025 antibody (Fig. 2.4C, Lane 2). As 

a negative control, anti-MinCNg ( MinC from N. gonorrhoeae) antiserum failed to precipitate 

EF1025 or DivIVAEf (Fig. 4B and C Lane 4).  
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Figure 2.4. Interaction of EF1025 with DivIVAEf. (A) GST pull-down assay. Shown is the Western 

blot probed with anti-6×His (BioRad, CA) monoclonal antibody to check the presence of EF1025. 

Lane 1: supernatant containing overexpressed EF1025 representing 10% input of EF1025; Lane 

2: GST bound beads; Lane 3: GST-DivIVAEf bound beads; Lane 5: Protein ladder. (B)  

Co-immunoprecipitation assay of EF1025. EF1025 was co-precipitated with DivIVAEf using the 

anti-DivIVAEf antibody as bait. The blot was probed with the anti-EF1025 polyclonal antibody. 

Lane 1: E. faecalis extracts representing 10% input in Co-IP assays; Lane 2: anti-DivIVAEf 

antibody bound beads; Lane 3: beads alone; Lane 4: anti-MinCNg antibody bound beads. (C)  

Co-immunoprecipitation assay of DivIVAEf. DivIVAEf with EF1025 using anti-EF1025 antibody 

as bait. The blot was probed with an anti-DivIVAEf polyclonal antibody. Lane 1: E. faecalis 

extracts representing 10% input in Co-IP assays; Lane 2: anti-EF1025 antibody bound beads; Lane 

3: beads alone; Lane 4: anti-MinCNg antibody bound beads. --- indicates the empty lane. 
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2.4.4. In trans complementation of inactivated or deleted EF1025  

 Two strategies were used to inactivate or delete EF1025 in E. faecalis JH2-2. First, we 

attempted to insert a KanR cassette at position nt151 (AA50 and Fig. S4A) of EF1025 using 

p3ERMEF1025::Kan. No transformants were recovered after several attempts.  The second 

strategy, in which an EF1025 deletion mutant would be created by in frame replacement of EF1025 

(p3ERM EF1025::Cat) with a CatR cassette (Fig. S4B) in E. faecalis JH2-2  also failed to produce 

transformant colonies. Expression of EF1025 was rescued by co-transformation with plasmid 

combinations p3ERMEF1025::Kan and pMSPEF1025-pro, and p3ERMΔEF1025::Cat and 

pMSPEF1025A. These rescue strategies were successful, creating transformant strains E. faecalis 

MJ26 and MK12, respectively (Fig. S4C and D). Taken together, the data suggest that EF1025 

may be an essential gene. E. faecalis MJ26 and MK12 grew more slowly than E. faecalis JH2-2 

(Fig. S5). 

 The expression EF1026 in E. faecalis MJ26 was determined by RT-PCR to ascertain that 

the lethal effects of the KanR insertion in EF1025 was not due to polar effects on EF1026. 

Amplified DNA fragments corresponding to the various regions of EF1026 indicated that the gene 

was transcribed (Fig. S6). Expression levels (i.e. ∆CT values) for EF1026 in E. faecalis JH2-2 (i.e. 

16.88 ± 0.13) and E. faecalis MJ26 (i.e. 16.79 ± 0.04) were equal. 

 The phenotypes of E. faecalis MJ26 and MK12 differed from wild type E. faecalis JH2-2. 

SEM of E. faecalis JH2-2 showed cells with symmetrical division at the mid-cell with 

characteristic ovococcal cell morphology (Fig. 2.5A). E. faecalis MJ26 and E. faecalis MK12 cells 

formed elongated cells with distorted cell shapes (Fig. 2.5B and C) which were aggregated, failed 

to segregate (Fig. 2.5B) and had multiple division sites within a single elongated cell (Fig. 2.5C). 

Compared to the length of the wild type E. faecalis JH2-2 cells (1.16 ± 0.14 µm, n=141), 47% of 

E. faecalis MJ26 (1.63  0.29 µm, n=174) and 49% of E. faecalis MK12 (1.74  0.27 µm, n=127) 

cells were significantly (p<0.05) longer (Fig. 2.5D) when measured across the poles. The control 

E. faecalis MK0 (i.e. contains empty plasmid pMSP3545A) had a cell length (1.15  0.18 µm, 

n=165) identical (p<0.05) to E. faecalis JH2-2 (Fig. 2.5D). Transmission electron microscopy 

showed that 10% of E. faecalis MJ26 cells were aggregated (n=273) with abnormal septation, 

resulting in daughter cells of different sizes and shapes (Fig. 2.6B, C and D).  AFM images showed 

larger aggregated cell clusters for E. faecalis MK12 as compared to E. faecalis JH2-2 (Fig. S7).   
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Figure. 2.5. Rescued E. faecalis cells (i.e. E. faecalis MJ26 and MK12) showed compromised cell 

division phenotypes. Scanning electron micrographs showing (A) Normal E. faecalis JH2-2 lancet-

shaped cells; (B) aggregated E. faecalis MJ26 cells with impaired segregation; (C) E. faecalis 

MK12 cells showing impaired cell shape and multiple division sites. White arrow indicates 

aggregated cells that failed to segregate; red arrows indicate cells with distorted cell shape; yellow 

arrows indicate cells with formation of multiple division rings. Bar scale indicated at the bottom 

right corner of each image; (D) Comparison of cell lengths for E. faecalis strains: JH2-2 (n=141), 

MK0 (n=165, harboring pMSPEA), MK12 (n=127) and MJ26 (n=174). E. faecalis strains JH2-2 

and MK0 served as control strains. “n” represents the number of cells counted for each sample; * 

represents  two-tail p value from t-test for each group set (i.e. p <0.05); NS- non-significant. The 

error bars represent 1 standard deviation. 
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Figure 2.6. E. faecalis MJ26 cells showed impaired cell division. Transmission electron 

micrographs showing (A) wild-type E. faecalis JH2-2 lancet-shaped cells; (B, C and D) E. faecalis 

MJ26 cells with aggregated cells that failed to segregate and impaired septation leading to unequal 

daughter cells. Black arrows indicate aggregated cells that failed to segregate; red arrows indicate 

septa formation at random sites within the cells. Bar scale indicated at the bottom right corner of 

each image. 
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2.4.5. Overexpression of EF1025 in E. faecalis and E. coli induces cell elongation 

E. faecalis MK23 was created in which EF1025 is expressed from its native promoter both 

from the chromosome and from pMSPEF1025A. In order to ensure that EF1025 could be 

expressed from its native promoter in trans, E. faecalis MK24 was constructed (contains 

pMSPEF1025-flag) and the protein detected in whole cell extract by Western blot using a 

monoclonal anti-flag antibody (Fig. S8A. Lane 3). Expression of EF1025-flag was not detected in 

E. faecalis JH2-2 or MK23 cell extracts (Fig S8A, Lanes 1 and 2). This confirmed expression of 

an extra chromosomal copy of EF1025 in E. faecalis MK24 when electroporated with 

pMSPEF1025-flag. This shows that E. faecalis MK23 is overexpressing EF1025 due to the 

presence of an extra chromosomal copy of EF1025. When anti-EF1025 antibody was used to 

identify the expression levels of EF1025, the overexpression of EF1025 in E. faecalis MK23 and 

E. faecalis MK24 was observed as determined by densitometric quantification of band intensities, 

as compared to its expression in E. faecalis JH2-2 (Fig. S8B and C).  

SEM analysis showed a statistically significant (p<0.05) increase in cell length (1.37 ± 0.21 

µm, n=202; Fig. 2.7B and C) in E. faecalis MK23 as compared to wild type E. faecalis JH2-2 cells 

(1.16 ± 14 µm, n=141; Fig. 2.7A and C).  

Seventy per cent of cells (63/89) overexpressing EF1025 in E. coli PB103 (i.e. E. coli 

MK23) were filamentous (Fig. S9B) as compared none of the cells being filamentous in controls 

comprising E. coli cells with pUC18 and cells overexpressing prgXEf, a transcriptional regulator 

encoding gene (Christie and Dunny, 1986; Bae et al., 2000) in the same vector.  
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Figure. 2.7. EF1025 overexpression in E. faecalis JH2-2 cells causes cell elongation. Scanning 

electron micrographs showing (A) E. faecalis JH2-2 lancet-shaped cells; (B) E. faecalis MK23 

cells harbouring pMSPEF1025A, showing elongated cell morphology. 3µm bar scale at the bottom 

right corner of each image establishes the comparison in cell length for E. faecalis JH2-2 and 

MK23; and (C) Comparison of cell lengths of E. faecalis strains: JH2-2 (n=141), MK23 (n=202) 

and MK24 (n=226) where “n” represents a number of cells counted for each sample. * represents 

two-tail p value from t-test for each group set (i.e. p <0.05). The error bars represent 1 standard 

deviation. 
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2.4.6. EF1025 localizes at the septum and cell poles in E. faecalis  

Immunofluorescence studies of E. faecalis JH2-2 cells with anti-DivIVAEf or anti-EF1025 

polyclonal antibody were performed to determine their localization patterns during cell division. 

Cell division that entailed 5 stages (273 cells counted for DivIVAEf and 281 for EF1025 

localization). During Stage 1, as the cell started to divide and the chromosome started to segregate, 

DivIVAEf (20.5%, 56/273 cells) localized at the poles and along the length of the cell. In this stage, 

EF1025 (23.1%, 65/273 cells) was dispersed along the inner membrane (Fig. 2.8, Stage 1). In Stage 

2, EF1025 (14.9%, 42/281) localized along the length of the cell in contrast with DivIVAEf (36.7%, 

100/273) that remained localized at the poles and the midcell (Fig. 2.8, Stage 2). At Stage 3, 

EF1025 (36%, 104/281 cells) and DivIVAEf (16.1%, 44/273) localized similarly, i.e. to the cell 

poles and midcell. In Stage 4, as the cells progressed towards completion of cell division, EF1025 

(13.2%, 37/281) and DivIVAEf (16.8%, 46/273) localized as disks and bands along the cell length 

and septum. With one completed round of cell division (i.e. Stage 5), EF1025 (11.7%, 33/281 

cells) was redistributed along the inner membrane before another round of cell division, while 

DivIVAEf (9.9%, 27/73) once again localized as dots at the cell poles of the newly formed daughter 

cells (Fig. 2.8, Stage 5), like Stage 1 cells. The coiled-coil region of DivIVAEf facilitates 

oligomerization and is essential for its biological functioning (Rigden et al., 2008). E. faecalis 

MWMR16 which contains point mutations in the coiled-coil region of DivIVAEf (Rigden et al., 

2008) exhibited loss of DivIVAEf localization at the cell poles and midcell position (Fig. S10). The 

signal was observed to be dispersed all along the membrane. The different stages of cell division 

were missing for E. faecalis MWMR16. 
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Figure 2.8. DivIVAEf and EF1025 localizes similarly in the later stages of cell division in  

E. faecalis JH2-2 cells.  Averaged images and fluorescence intensity traces of E. faecalis JH2-2 

cells grown to mid-exponential phase in BHI broth and dual-stained with DAPI and Alexa-Fluor 

488 as described in the methodology section. Cells were segregated into five division Stages, and 

images from the indicated number of cells (n) were acquired using the InVitro 3 and ImagePro 6.0 

softwares (Media Cybernetics) as described in Methodology. EF1025 localized at the cell poles 

and the septa in E. faecalis JH2-2 cells similar to DivIVAEf localization. Column 1 and 4, nucleoid 

localization from DAPI labelling; Column 2 and 5, DivIVA and EF1025 localization, respectively, 

in immunofluorescence microscopy; Column 3 and 6, merged image of DAPI stained nucleoid 

and fluorescent DivIVA and EF1025, respectively. 
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2.5. Discussion 

In the present study, we investigated a novel DivIVAEf interacting protein, EF1025, from 

E. faecalis. EF1025 belongs to the CBS pair superfamily and is conserved in Firmicutes including 

Bacillus, Streptococcus, Clostridium, Paenibacillus, Staphylococcus, Lactobacillus, Streptomyces 

and Listeria. Surprisingly, EF1025 homologues in the Firmicutes S. pneumoniae, S. pyogenes and 

L. lactis did not belong to the CBS pair superfamily as they contained an N-terminal HTH domain, 

but no CBS domains and their sequence similarities ranged from 40-44%. We also determined 

bioinformatically that EF1025 homologues, with uncharacterized functions and different 

combinations of CBS and HTH domains, may be present in species of the Proteobacteria and 

Euryarcheota such as Vibrio, Campylobacter, Burkholderia, Acinetobacter, Fusobacterium, 

Methanosarcina and Methanoculleus. Proteins containing CBS domains are present in organisms 

ranging from archaea to humans and were originally identified in Methanococcus jannaschii as 

sequence motifs of approximately 60 amino acids (Bateman, 1997). Although several 

crystallographic studies have been carried out on CBS domains from bacteria, their precise 

function remains unexplained (Baykov et al., 2011). It has been postulated that CBS domains may 

act as allosteric “internal inhibitors” of the functional domains of proteins (Aravind and Koonin, 

1999; Biemans-Oldehinkel et al., 2006). Proteins with CBS domains can form dimers through the 

interaction of these domains. For example, TM0935 of Thermotoga maritima self-interacts 

through its two CBS domains forming a dimer (Miller et al., 2004). An Mg2+ transporter from E. 

faecalis, MgtE, also contains two CBS domains but the precise function of these CBS domains 

remains unelucidated (Ragumani et al., 2010). Our experiments show the importance of the two 

CBS domains in EF1025 self-interaction. The absence of one CBS domain resulted in the loss of 

EF1025 self-interaction.  

DivIVA, a topological factor in Gram-positive bacteria, interacts with a variety of proteins 

in various bacteria (Muchová et al., 2002; Halbedel and Lewis, 2019). The range of DivIVA 

interacting partners changes from one genus to another (Kaval and Halbedel, 2012). In Listeria 

monocytogenes (Lm), DivIVALm, performs a variety of functions through its interaction with 

different proteins (i.e. MinCD and SecA2), including precise positioning of the septum at midcell, 

assistance in the secretion of autolysins, enabling swarming motility (Kaval et al., 2014, 2017). In 

Streptococcus suis (Ss) serotype 2, Ser/Thr kinases (STK) directly phosphorylate DivIVASs 

thereby affecting cell growth and division (Nováková et al., 2010). DivIVA from S. aureus (Sa) 
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associates with various divisome proteins (FtsZSa, FtsASa, EzrASa, DivICSa, DivIBSa, PBP1Sa and 

PBP2Sa) to ensure cell division and chromosome segregation (Bottomley et al., 2017). The 

molecular chaperone, DnaK, interacts and stabilizes DivIVASa in S. aureus (Bukau and Walker, 

1989; Bottomley et al., 2017). Bottomley et al., 2017 also reported an indirect function of 

DivIVASa in chromosomal segregation by its interaction with the chromosome segregation protein, 

SMC (Bottomley et al., 2017). In Mycobacterium smegmatis (Ms) and M. tuberculosis (Mt), the 

DivIVA homologue is Wag31 (Nguyen et al., 2007; Kang et al., 2008; Meniche et al., 2014). 

Wag31Mt interacts with the penicillin-binding protein, PBP3 (Mukherjee et al., 2009) as well as 

and ParB (Donovan et al., 2012) and Wag31Ms interacts with ParA (Donovan et al., 2012; Ginda 

et al., 2013). DivIVA from E. faecalis is essential for cell viability and growth, proper cell division 

and chromosome segregation (Ramirez-Arcos, 2005). Rigden et al. (2008) showed that the 

oligomerization of DivIVAEf is mediated by two centrally located coiled coils that are important 

for its proper biological functioning (Rigden et al., 2008). E. faecalis DivIVAEf mutant, E. faecalis 

MWMR16, contained a disrupted coiled coil region, failed to interact with EF1025 in a B2H assay 

due to the loss of a functional coiled-coil region in DivIVAEf (Rigden et al., 2008; Hedlin, 2009). 

Our research addressed the essentiality, localization and function of EF1025 during cell division.  

Immunostaining showed that EF1025 localized in a pattern comparable to DivIVAEf in  

E. faecalis. Previously, Fadda et al 2007 showed DivIVA localization to the mid-cell septa and 

poles in S. pneumoniae using similar methods (Fadda et al., 2007). EF1025 localized laterally 

along the cell length in Stages 1 and 2 and a pattern comparable to DivIVAEf in Stages 3, 4 and 5 

of cell division. This localization progression may assist proper cell segregation required for cell 

division during the later stages of cell division when these two proteins interact. GpsB, an essential 

protein which determines the ellipsoidal shape in S. pneumoniae, localized in a similar but not 

identical manner to FtsZ and is implicated in determining cell shape by septal ring closure (Land 

et al., 2013). There is a possibility that the localization of EF1025 (a cytosolic protein) to the lateral 

cell regions could be facilitated by DivIVAEf association. Different domains of DivIVABs have 

been reported to interact with different partners that are membrane proteins as well as cytosolic 

proteins (Perry and Edwards, 2006; Bramkamp et al., 2008; Patrick and Kearns, 2008; Briley et 

al., 2011; dos Santos et al., 2012; Baarle et al., 2013; Halbedel et al., 2014; Schumacher, 2017; 

Halbedel and Lewis, 2019).  Membrane localization of cytosolic proteins enhances the interaction 



60 

abilities of interacting partners during processes such as cell division which involves multi-protein 

complex formation (Yogurtcu and Johnson, 2018).  

We postulate that EF1025 may be an essential gene since, during our attempts to delete or 

insertionally inactivate the gene, we were never able to recover viable cells. When these strains 

were complemented with EF1025 (i.e. E. faecalis MJ26 and MK12) they grew more slowly with 

a longer log phase as compared to the E. faecalis JH2-2. This most likely occurred because the 

rescue plasmids (i.e. pMSPEF1025-pro and pMSPEF1025A) failed to provide full 

complementation. This failure also led to altered cell shape and length. In S. pneumoniae, depletion 

of GpsB, caused cessation of growth and substantial cell elongation (Chastanet and Carballido-

Lopez, 2012; Land et al., 2013). Based on the localization pattern of EF1025 and the elongated 

and aberrant phenotypes exhibited by E. faecalis MK12 cells, and the similarity of their 

localization patterns, we postulate that EF1025 could be one of the members of the septal 

machinery in E. faecalis, which has an unstudied GpsB homologue.  

An interesting EF1025 homologue (41% identity) in B. subtilis, named CcpN (control 

catabolite protein of gluconeogenic genes), has two CBS domains and an HTH domain (Servant 

et al., 2005). CcpN plays a negative regulatory role in the transcription of the gluconeogenic genes 

gapB (one of the GAPDH-encoding genes) and pckA (encodes PEP carboxykinase), which are 

required in carbon catabolite repression pathways (Licht et al., 2005; Servant et al., 2005; Tännler 

et al., 2008; Licht and Brantl, 2009). Transcription regulation by CcpN has been attributed to its 

HTH domain which binds to the conserved upstream promoter regions of gapB and pckA (Licht et 

al., 2005; Servant et al., 2005; Tännler et al., 2008; Licht and Brantl, 2009). We detected strong 

interactions between CcpN and DivIVABs by B2H and GST-pull down assay (paper in 

preparation). We observed that gapB from B. subtilis shared 48% homology with type I gap from 

E. faecalis while pckA from  B. subtilis and E. faecalis showed 20% homology. E. faecalis was 

observed to have type I and type II gap as two homologues of gapB. Our preliminary sequence 

searches indicate that the conserved upstream promoter sequences from B. subtilis are absent in E. 

faecalis for type I gapB and pckA (unpublished data). This suggests that even though CcpN and 

EF1025 belong to the same superfamily, they possibly regulate the expression of different genes. 

CcpN is not an essential gene in contrast to EF1025 (Servant et al., 2005; Tännler et al., 2008); 

this may be because each protein may regulate different genes.  
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In conclusion, this research presents the first evidence of a DivIVAEf interacting protein, 

EF1025, in E. faecalis that affects cell viability, cell length and shape. Using immunofluorescence, 

we showed that the localization patterns of EF1025 and DivIVAEf during the later stages of cell 

division in E. faecalis were similar. Our inability to insertionally inactivate or delete EF1025 

without in trans complementation of the gene indicates that gene is important for viability. 

Different microscopy methods showed cell elongation, aggregation and impaired cell division in 

complemented cells with a deleted or inactivated chromosomal gene.  
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2.6. Supplemental information 

2.6.1. Strains, plasmids and growth conditions 

Plasmid DNA was purified using Plasmid Mini-prep or Plasmid Midi-prep Kits (Qiagen 

Inc., CA). Reading frame conservation and gene integrity of all plasmids was confirmed by DNA 

sequencing [Core DNA Synthesis and Sequencing Facility, Centre for Research in 

Biopharmaceuticals and Biotechnology, University of Ottawa, (UOCDSSF), the Plant 

Biotechnology Institute (PBI), National Research Council of Canada, Saskatoon, Saskatchewan] 

or Eurofins Canada. Primers (Table S3) were synthesized at the UOCDSSF and Invitrogen 

(Thermo Scientific; Waltham, MA), and were used for PCR and DNA sequencing reactions. PCR 

reactions were carried out using Q5 DNA polymerase (New England BioLabs Ltd., ON, Canada) 

in a Perkin Elmer GenAmp PCR System 9600 Thermocycler (Perkin Elmer, Inc., Woodbridge, 

ON, USA). 

2.6.2. Cloning and screening an E. faecalis genomic DNA library by Y2H assay 

An E. faecalis JH2-2 genomic DNA library was created in the Y2H system (Clontech) 

using the vector pGAD424 of the Clontech Matchmaker GAL4 Two-Hybrid System (Clontech) 

(Table S2C). E. faecalis JH2-2 genomic DNA was prepared using the Wizard Genomic DNA 

Purification Kit according to the manufacturer’s instructions (Promega, Madison, WI USA). 

Approximately 10 µg genomic DNA was partially digested with Sau3AI and size-fractionated by 

agarose gel electrophoresis. DNA fragments ranging between 0.2- to 1.5-kb were excised from the 

gel and purified using PCR Purification Kit (Qiagen). Purified DNA fragments were then ligated 

to pre-cleaved BamHI-pGAD424. The ligation mixture was transformed into E. coli DH5α 

competent cells and transformants were selected on LB plates supplemented with Amp 100 µg/ml 

(LB-Amp). Colonies were harvested by washing the plates with LB-Amp broth. Approximately 

1×105 colonies were collected in 50 ml LB-Amp broth which was incubated at 37°C for 2 hrs, 

followed by centrifugation to collect pelleted cells. Plasmid DNA was purified using Midi-prep 

Kit (Qiagen) and was named pGAD424-Lib (Table S2C). Colony counts were estimated by 

serially diluting an aliquot of the cell suspension in LB-Amp broth.  

To determine the ratio of colonies harbouring a plasmid with an inserted DNA fragment 

and sizes of the inserts, 30 individual colonies were randomly selected from the original library 
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and were sub-cultured on LB-Amp broth. Plasmid DNA was purified and double digested with 

EcoRI/BglII followed by electrophoresis on 1% agarose gels. 77% (23/30) of the recombinant 

clones carried inserts of sizes ranging between ~350 bp to ~2 kb. To determine the quality of the 

library, an aliquot of the purified library plasmid DNA (pGAD424-Lib) or the parental vector 

pGAD424 DNA was digested with SnaBI/PstI. The digested library DNA (pGAD424-Lib) 

exhibited DNA fragments of various sizes that were bigger than 1.5 kb, indicating that the majority 

of the library plasmid DNA carried inserts (data not shown).  

To screen the library, the previously constructed plasmid pSRBD-Div was used to express 

the bait protein, DivIVAEf (Table S2C; (Ramirez-Arcos 2005)). Plasmids pSRBD-Div and 

pGAD424-Lib were co-transformed into S. cerevisiae SFY526 according to the manufacturer’s 

instructions (Clontech). Transformants were selected on complete synthetic medium lacking 

leucine and tryptophan (SD-leu-trp) (Clontech). After 3-4 days of incubation at 30°C, blue-

coloured clones were screened in the presence of 5-Bromo4-chloro-3-indolyl-β-D-

galactopyranoside (X-Gal, Sigma-Aldrich; St. Louis, MS) by a colony–lift filter assay (Clontech). 

Positive clones were streaked on SD-leu-trp medium plates (Clontech). A spectrophotometric 

assay for β-galactosidase activity, using the substrate o-nitrophenyl β-D-galactopyranoside (ONPG 

liquid assays), was performed to confirm the results of the colony-lift assay (Ramirez-Arcos, 

2005). Transformation efficiency was monitored by plating 50 µL of diluted transformants on  

SD-leu-trp medium plates followed by counting the number of colonies produced.  

In a positive clone, pGAD424-Lib plasmid was separated from a pSRBD-Div by sub-

culturing the yeast cells of the positive clone in SD-leu-trp broth for 2-4 days at 30°C. Cells were 

harvested by centrifugation and the cell pellet was re-suspended in 250 μL of Qiagen buffer P1 

(Qiagen plasmid mini-prep kit) with 10 μL glass beads (Sigma), followed by vigorous vortexing 

for 3 min. P2 buffer (250 µL, Qiagen) was added to the lysate, and plasmid DNA was purified. To 

isolate plasmid pGAD424-Lib, the aforementioned purified plasmid DNA was transformed into 

E. coli DH5α cells and the resulting E. coli colonies were examined for plasmid content in a 

cracking assay (Ramirez-Arcos, 2005). The size of released supercoiled plasmid DNA was 

determined by electrophoresis on 1 % agarose gels. The difference in the size of pSRBD-Div  

(6.2 kb) and pGAD424-Lib (≥6.6 kb) allowed easier separation from each other. The plasmid of 

interest (i.e. pGAD424-Lib) was then purified from E. coli transformants and analyzed by 

restriction endonuclease digestion with EcoRI/PstI. Purified plasmid DNA was sequenced at the 
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UOCDSSF using primers AD424F and AD424R (Supplementary Materials, Table S3C) to 

generate DNA sequences of the inserts in pGAD424-Lib for bioinformatic identification of the 

discovered genes.  

2.6.3. Reverse transcriptase PCR (RT-PCR)/qPCR 

Total RNA from E. faecalis JH2-2 and MJ26 was isolated using the Qiagen RNeasy Total 

RNA kit (Qiagen) for RT-PCR assay which was performed as previously described (Fadda et al., 

2003). cDNA was created from total isolated RNA by incubating ~0.1 µg RNA, 0.5 unit reverse 

transcriptase (Promega) and 2 µl random primer mix at 42°C for 30 min. This cDNA was used to 

amplify EF1026 from JH2-2 and MJ26 using primers EF26aF/R, EF26bF/R (Table S3E). The 

housekeeping gene, gdh (encoding glucose dehydrogenase) was used as a positive control and was 

PCR amplified using primers HKaF/R, HKbF/R (Table S3E). PCR amplification of genomic DNA 

using primers EF26aF/R served as a positive control whereas PCR amplification of total RNA 

using primers EF26aF/R served as a negative control. PCR products were separated by 

electrophoresis on 1.5% agarose gel for further analysis. For qPCR, cDNA from E. faecalis JH2-

2 was used to create standards using primers EF26aF/R (Table S3E) and was used to identify 

EF1026 levels in E. faecalis MJ26. Each reaction was performed in triplicate and contained 2X 

SYBR-Green master mix (Cat # 4472912, Life Technologies Inc.), 0.25 µL of each primer  

(10 µM), 1 µL of DNA (50 ng/µL), and 3.5 µL PCR-grade water in a total 10 µL reaction volume.  

2.6.4. Expression of EF1025 in E. coli PB103 

To express EF1025 in E. coli PB103, EF1025 was PCR-amplified from E. faecalis JH2-2 

and cloned into pUC18 (Amersham), resulting in plasmid pUCHisEF1025 (Table S2F). For 

controls, prgX, a transcriptional regulator of itself and PrgB (cell wall aggregation substance)  

(Bhatty et al., 2015; Bae et al., 2000), was PCR-amplified from pSR-X (Table S2F; Bae et al., 

2000; Rigden et al., 2008) and cloned into pUC18, resulting in plasmid pUCHisPrgx, which 

encodes 6×His tagged PrgX (Table S2F). Each plasmid was individually transformed into E. coli 

PB103 and transformants were selected on LB medium supplemented with Amp100 creating 

strains E. coli PB MK23 and E. coli PB MK25, respectively (Table S1). Expression of  

6×His-EF1025 or 6×His-PrgX was determined by Western blot assays using anti-6×His 

monoclonal antibodies (Biorad).  
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2.6.5. Atomic force microscopy 

For atomic force microscopy, cell suspensions from overnight grown cultures of E. faecalis 

were deposited onto Cell-Tak (LifeTechnologies) coated coverslips for 30 min, fixed with 

formalin, and air-dried prior to AFM imaging (Bhat et al., 2015). Samples were imaged with 

silicon nitride cantilevers (HYDRA6R-200NG; Nanosensors, Neuchatel, Switzerland) with 

calibrated spring constants ranging from 0.03 to 0.062 N/m. QI™ images and force curves (JPK 

software) at each pixel of a 128×128 raster scan were collected using a Z-length of 0.926 um and 

a scan rate of 95 um/s. Surface roughness was calculated according to Bhat et al. (2015) from 

multiple 200 x 200 nm squares along the centre of the cell from QI™ height images for at least 10 

cells each from three biological replicates. 

The morphology of E. coli PB103 harboring pUCHisEF1025 was ascertained using an 

Olympus BX61 microscope (Olympus Canada Inc.), as described previously (Ramirez-Arcos et 

al., 2001). At least 30 fields were examined each containing a minimum of 40 cells. 

2.6.6. Statistical analysis 

All studies were conducted in triplicates and GraphPad Prism was used for statistical 

analysis unless otherwise indicated. The results were reported as mean ± standard deviation (SD), 

differences assessed using a two-tailed unpaired t-test and ANOVA for which p < 0.05 was 

considered statistically significant. 
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Table S1. Bacterial strains used in the study. 
 

Strains Relevant characteristics Resources or references 

E. coli XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB lacIqZ_M15Tn10 

(Tetr)] 

Strategene 

E. coli DH5α endA1 hsdr17 (rk
-mk

+) supE44 thi-1 recA1 gyrA96 relA1 (argF-lacZYA) U169 

deoR [ø80d lac (lacZ) M15) 

Gibco-BRL 

E. coli C41 (DE3) FˉompT hsdSB (rB-mB-) gal dcm Δ(srl-recA) 306::Tn10 (tetR) (DE3) Miroux et al., 1996 

E. coli PB103 dadR1 trpE61 trpA62 tna-5 purB+ de Boer et al., 1988 

E. coli R721 71/18 glpT::O-P434/P22lacZ Di Lallo et al., 2001, 

2003 

E. faecalis JH2-2 RifR, FusR; plasmid free Jacob & Hobbs, 1974  

S. cerevisiae SFY526 MATa ura3-52 his3-200 ade2-101 lys2-801 trp1-901 leu2-3 112 canr gal4-542 

gal80-538 URA3::GAL1UAS- GAL1TATA –lacZ 

Clontech Laboratories, 

CA 

E. faecalis MK0 E. faecalis JH2-2 carrying pMSP3545A This study 

E. faecalis MK23 E. faecalis JH2-2 carrying pMSPEF1025A (PEF1025-EF1025) for expressing 

EF1025 in trans under its native promoter. EryR (125 µg/mL) 

This study 

E. faecalis MK24 E. faecalis JH2-2 carrying pMSPEF1025-flag (PEF1025-EF1025-flag) for 

expressing EF1025-flag in trans under its native promoter. EryR (125 µg/mL) 

This study 

E. faecalis MJ26 Derived from E. faecalis JH2-2 with insertionally inactivated EF1025 

(EF1025::kanR). E. faecalis MJ26 carried pMSPEF1025-Pro (PEF1025-EF1025) for 

expressing EF1025 in trans under its native promoter. KanR (500 µg/mL) and EryR 

(125 µg/mL) 

This study 

E. faecalis MK12 Derived from E. faecalis JH2-2 with deletion of EF1025 (ΔEF1025::catR). E. 

faecalis MK12 carried pMSPEF1025A (PEF1025-EF1025) for expressing EF1025 

in trans under its native promoter. CatR (5 µg/mL) and EryR (125 µg/mL). 

This study 

E. coli PB MK23 

 

Derived from E. coli PB103 for overexpressing EF1025 using pUCHisEF1025. 

AmpR (100 µg/mL) 

This Study  

E. coli PB MK25 Derived from E. coli PB103 for overexpressing prgX using pUCHisPrgx. AmpR 

(100 µg/mL). 

This Study 
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Table S2. Plasmids used in this study 

Plasmid Relevant characteristics Sources or references 

(A) Plasmids for bacterial two-hybrid assays  

pcI434 KanR, bacterial two-hybrid vector Di Lallo  et al., 2001 

pcIp22 AmpR, bacterial two-hybrid vector  Di Lallo  et al., 2001 

pcIp22-L pcIP22 derivative carrying a linker with multiple cloning sites  This study 

pcI434-L pcI434 derivative carrying a linker with multiple cloning sites This study 

pdivIVA22 pcIP22 derivative carrying E. faecalis divIVA This study 

pdivIVA434 pcI434 derivative carrying E. faecalis divIVA This study 

pEF1025434 pcIP434L derivative carrying EF1025   This study 

p22CBS1CBS2 pcIP22L derivative carrying EF1025 fragment coding AA80-204 This study 

p434CBS1CBS2 pcI434L derivative carrying EF1025 fragment coding AA80-204 This study 

(B) Plasmids for GST pull-down assays and 6×His tagged protein expression  

pGEX-2T AmpR Plac::gst Amersham Bioscience 

pGST-Div AmpR Plac::gst, GST-DivIVAEf  This study 

pET30a(+) KanR PT7::6xhis Novagen 

pETEF1025 KanR PT7, 6xHis-EF1025 This study 

pETEF1025CBS12 KanR PT7, 6xHis-EF1025 with CBS1 and CBS2 domains This study 

(C) Plasmids for EF1025 self-interaction studies  
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pGAD424 AmpR PADH1::gal4 (AD) Clonetech, CA 

pGBT9 AmpR PADH1::gal4 (DBD) Clonetech, CA 

pGADEF1025CBS12 AmpR PADH1::gal4 (AD), AD-EF1025 with CBS1 and CBS2 domains (AA80-204) This study 

pGBDEF1025CBS12 AmpR PADH1::gal4 (DBD), DBD- EF1025 with CBS1 and CBS2 domains (AA80-

204) 

This study 

pGADEF1025NCBS1 AmpR PADH1::gal4 (AD), AD-EF1025 with N-terminal and CBS1 domains (AA1-

137) 

This study 

pGBDEF1025NCBS1 AmpR PADH1::gal4 (DBD), DBD-EF1025 with N-terminal and CBS1 domains 

(AA1-137) 

This study 

pGADEF1025CBS2 AmpR PADH1::gal4 (AD), AD-EF1025 with CBS2 domain (AA137-204) This study  

pGBDEF1025CBS2 AmpR PADH1::gal4 (DBD), DBD- EF1025 with CBS2 domain (AA137-204) This study 

pGADEF1025-N AmpR PADH1::gal4 (AD), AD-EF1025 with N-terminal domain (AA1-50) This study 

pGBDEF1025-N AmpR PADH1::gal4 (DBD), DBD- EF1025 with N-terminal domain (AA1-50) This study 

pGADEF1025 AmpR PADH1::gal4 (AD), AD-EF1025 (AA1-209) This study 

pGBDEF1025 AmpR PADH1::gal4 (DBD), DBD-EF1025 (AA1-209) This study 

pSRBD-Div AmpR PADH1::gal4 (DBD), DBD-DivIVAEf (Ramirez-Arcos, 2005) 

pGAD424-Lib E.faecalis genomic DNA library constructed in pGAD424 vector This study 

(D) Plasmids for construction of an EF1025 insertion or deletion strain and plasmids to overexpress EF1025 in E. faecalis JH2-2 

pMSP3545  EryR PnisA::nisA Callegan  et al., 1999 
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pcDNA3.1(+) AmpR NeoR,  Plac, PSV40 and PT7::flag Invitrogen 

pMSP3545A  EryR, AmpR, PnisA::nisA This study 

pMSPEF1025A EryR,  AmpR PEF1025::EF1025 for  EF1025expression under its native promoter This study 

pMSPEF1025-flag EryR,  AmpR PEF1025::EF1025 for EF1025 expression under its native promoter with 

flag tag on C-terminus 

This study 

pMSPEF1025-pro EryR Pmljd::mljd1 for EF1025 expression under its native promoter This study 

p3ERMEF1025::Kan p3ERM ΔHindIII, EF1025::Kan This study 

p3ERMΔEF1025::Cat p3ERM ΔHindIII, ΔEF1025::Cat This study 

pUC18 AmpR Plac::lacZ Amersham Biosciences 

pUCEF1025-N N-terminus of EF1025 ligated in pUC18 This study 

pTCV-lac KanR::lacZ Poyart & Trieu-Cuot, 1997 

pUCEF1025-N-Kan N-EF1025 (5’)-kanR This study 

pUCEF1025::Kan EF1025::kanR  This study 

pLEMO CatR, PT7, pACYC184 derivative carrying lysY New England Biolabs 

(E) Plasmids for heterologous expression of EF1025 in E. coli  

pUCHisEF1025 AmpR Plac, 6xHis-EF1025 This study 

pSR-X AmpR Plac, PrgX This study 

pUCHisPrgx AmpR Plac, 6xHis-Prgx This study 
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Table S3. Primers used in this study 

Primer Sequence (5’ to 3’) 

(A) Primers for B2H experiments 

EF1025-F GCGTCGAC TTATCTGTTTTGTGCG   

EF1025-R GCGGATCCCTACGTAATATAGGTTAAAATTTTCGT 

EF1025C-F GCGTCGACGGAGATCATGAGTCCACCA                         

EF1025C-R GCGGATCCCTACGTAATATAGGTTAAAATTTTCGT    

CBdivIVA-F GCGTCGACTATGGCATTAAC                                             

CBdivIVA-R GCGGATCCCTATTTTGATTC        

(B) Primers for GST pull-down assays 

IVA-5 GCGCGGATCCATGGCATTAACTCCATTAGA   

IVA-11 GCGCGAATTCTTACTATTTTGATTCTTCTTCAA 

EF1025F-F           CGCTTAAGTTATCTGTTTTGTGCG                                    

EF1025F-R   CGGGATCCATGAAATTAAGTAAACG                            

EF1025-CF          CGCGGATCCCCACCATTGATGGTTGCCCAAGAC      

EF1025-CR          GCCCTCGAGCCCTTATCTGTTTTGTGCGGCTTC            

(C) Primers for EF1025 self-interaction studies and other Y2H assays 

AD424F ACCACTACAATGGATGAT                                                 
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(D) Primers for construction of an EF1025 knockout strain and plasmids to overexpress EF1025 in E. faecalis JH2-2 

AmpF GGAGTCTAGAGCTACCATGGATCCGTGCGCGGAACCCCTATTTG 

AmpR GAACGAGATCTGTCTGACGCTCAGTGGAACG 

LinkA GGTGTCAACGATATCCTCC 

LinkB AATTGGAGGATATCGTTGACACCTTC 

EF1025npF GAGCCCATGGCGTGACCTCCGTTTAATATGTG 

EF1025npR GGGTCTAGATTAAGCTCCCTTATCTGTTTTGTG 

CBSDPF GCCGGAATTCATGAAATTAAGTAAACG AC                  

CBS55-R-Hind CCCAAGCTTAACTTTCGGACTTGC                                

AD424R ACAGTTGAAGTGAACTTG C                                        

CBSDPF GCCGGAATTCATGAAATTAAGTAAACG AC                  

CBSDPR2 AAACTGCAGTTATCTGTTTTGCGGC                                

CBSAA80F CGGGATCCATGAGTCCACCAT TG                                   

CBSAA137R AAACTGCAGTTAATTTAAAGAGGC                                 

CBSAA137F CGGAATTCAATACAAATATTGATGGC                            

DEORR AAACTGCAGTTAAACTTTCGGACTTGC                          

AD424F ACCACTACAATGGATGAT                                                 

AD424R ACAGTTGAAGTGAACTTG C                                        
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KanF CCCAAGCTTGTGGTTTCAAAATCG       

KanR TCCCCCGGGTTAGGTACTAAAACA          

CBS55-F-Sma TCCCCCGGGGCAAGTCCGAAAGTTG    

EF1025-R-BamHI CGGGATCCTTATCTGTTTTGTGCGGC    

Mut-F CTCTTTACCTTCATTGTGTG                                            

ProF AACTGCAGCAAAATTTCTGATTGTAAGTG 

CBSDPR AAACTGCAGTTATCTGTTTTGCGGC                                

ppdKF GAGGGATCCAGCACCGCTGCGAACGGAAACTAAG                             

ppdKR CCAGTGATTTTTTTCTCCATCATTTCCTCCTCAATTCCTC 

1026F GAGTGGCAGGGCGGGGCGTAAGGGAGCTTAATTATGAAAAAAGAG                             

1026R GAGGAATTCTACATACTGACTGGCGTCTTTGAGG 

CatF GAGGAATTGAGGAGGAAATGATGGAGAAAAAAATCACTGGATATAC                               

CatR CTTTTTTCATAATTAAGCTCCCTTACGCCCCGCCCTGCCACTC                                                                                                                                                                                                             

FlagF GATCTTTATAATCACCGTCATGGTCTTTGTAGTCG 

FlagR GAGATCTAGACTACTTGTCATCGTCATCCTTG 

(E) Primers used for RT-PCR 

    EF25aF CGCATTTCGGACATACTAGC 

    EF25aR TTGGGCAACCATCAATGGTG 
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    EF26aF TCAAGCGAAAGCCGGAGTAG 

    EF26aR ACTGACTGGCGTCTTTGAGG   

    EF26bF CAGTCGGTTGGCTTCCTTAG 

    EF26bR CACTGGGATGCCATACTTCG 

    HKaF TGGTGCAGCTACGGGTTTAG   

    HKaR CTTTAGGCAGCTCACCGACA 

    HKbF CTGGTGCAGCTACGGGTTTA 

    HKbR GCTCACCGACATAGTCAGCA 

(F) Primers used for the construction of plasmids to express EF1025 in E. coli PB103 

  HisEF1025F3 CGGAATTCGCACCATCATCATCATCATATGAA             

  EF1025-R-BH CGGGATCCTTATCTGTTTTGTGCGGC                               

  HisPrgxF2 CGGAATTCGCACCATCATCATCATCATATGAC             

  PrgxR2 GCTCTAGATTAGTTTAAGATAGGTTC 
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Figure S1. Western blot exhibiting specificity of anti-DivIVAEf and anti-EF1025 antibody for 

DivIVAEf and EF1025. An E. faecalis whole cell lysate was probed with anti-DivIVAEf (Lanes  

1-4), and anti-EF1025 (Lanes 5-8). A protein ladder confirmed the presence of protein bands of 

sizes corresponding to DivIVAEf (40 kDa) or EF1025 (27 kDa).  
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Figure S2. Light scattering (LS) data and measured molar mass for EF1025 by SEC-MALS. 

Separated by SEC and detected using the μDAWN and UT-rEX (red) detected with the Wyatt 

TREOS and Optilab T-rEX (blue). The plot shows the chromatograms as a function of elution 

time. The average molecular weight calculated was 222 kDa for the complex. Black line shows 

the aggregation profile of the protein. 
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Figure S3. EF1025CBS12 interacts with DivIVAEf in GST pull-down assay. Shown is a Western 

blot probed with an anti-6xHis EF1025 monoclonal antibody. Lane 1: Protein Ladder; Lane 2: 

GST bound beads; Lane 3: GST-DivIVAEf bound beads; Lane 5: E. faecalis extracts representing 

10% input of EF1025CBS12.  
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Figure S4. PCR Confirmation for creation of E faecalis MJ26 and E faecalis MK12. (A) Schematic 

presentation of genomic insertional inactivation of EF1025 in E. faecalis. A kanR cassette was 

inserted at the nt151 position of mljd1. Arrows indicated primers used for PCR amplification to 

confirm KanR insertion in the E. faecalis genomic DNA; (B) Schematic presentation of deletion 

of EF1025 in E. faecalis. (C) PCR confirmation of insertional mutation. PCR was performed on 

E. faecalis MJ26 genomic DNA using primer pairs Mut-F/Kan-R (Lane 1- 1300 bp),  

Kan-F/Kan-R (Lane 2- 930 bp), Pro-F/Kan-R (Lane 3- 1500 bp), Kan-F/CBSDPR (Lane 4- 1409 

bp) and CBSDPF/CBSDPR (Lane 5- 1560 bp and 630 bp). M: 1kb plus DNA ladder. Presence of 

wild type EF1025 was due to the presence of co-transformed plasmid pMSPEF1025-Pro (Lane 5). 

Lane 6: cropped lane from same gel with amplified wild type EF1025; (D) PCR confirmation of 

EF1025 deletion using primer pairs ppdKF/EF26b-R (Lane 2- 1780 bp), mutF/EF26b-R  

(Lane 3- 1480 bp), catF/1026R (Lane 4- 1280 bp).   
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Figure S5. E. faecalis MJ26 and MK12 grew slower than E. faecalis JH2-2 cells. Viability curve 

of E. faecalis MJ26 cells. Growth was measured by OD at 600nm and normalised for each sample. 

E. faecalis MJ26 cells were subcultured on BHI containing appropriate antibiotics. Samples were 

withdrawn for plating every 2 hours. X- axis: Viable counts (CFU/ml), Y- axis- time (hours). X 

marked line- E. faecalis MK12; Open triangle line- E. faecalis JH2-2; Closed triangle line- E. 

faecalis MJ26. The error bars represent 1 standard deviation.  
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Figure S6. Figure S6. RT-PCR of EF1026 in E. faecalis JH-2-2 and MJ26 showing absence of 

polar effect. PCR amplified products corresponding to EF1026 from JH-2-2 and MJ26. Lanes 1 

and 2: EF_1026 from E. faecalis JH-2-2, Lanes 3 and 4: gdh from E. faecalis JH-2-2, Lane 5: 

negative control E. faecalis JH-2-2 with no reverse transcriptase; Lanes 6 and 7: EF_1026 from  

E. faecalis MJ26, Lanes 8 and 9: gdh from E. faecalis MJ26, Lane 10: negative control from  

E. faecalis MJ26 with no reverse transcriptase. gdh- glucose dehydrogenase (housekeeping gene).  
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Figure S7. E. faecalis MK12 cells exhibit larger aggregates than JH2-2. Representative AFM error 

images of E. faecalis JH2-2 (A) and E. faecalis MK12 (B) collected in QI mode with a resolution 

of 128128 pixels per image. Both JH2-2 and MK12 form relatively frequent cell aggregates that 

are larger for MK12. Since these clusters had irregular shapes and cell numbers, sizes could not 

be accurately estimated. Bar scale (5 µm) indicated at the bottom right corner of each image. 
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Figure S8. Shown are (A) Western blot probed with anti-Flag antibody to detect the presence of 

EF1025-flag in E. faecalis MK24. (B) Representative Western blot probed with anti-EF1025 to 

detect the presence of EF1025. Whole cell extract from: Lane 1: E. faecalis JH2-2; Lane 2:  

E. faecalis MK23; and Lane 3: E. faecalis MK24. (C) Densitometric quantification of band 

intensities corresponding to EF1025 from strains E. faecalis JH2-2, E. faecalis MK23, and  

E. faecalis MK24. 
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Figure S9. Overexpression of EF1025 in E. coli PB103 leads to severe cell elongation. Phase 

contrast microscopy of E. coli PB103 cells. (A) E. coli PB103 cells; (B) filamentous E. coli PB 

MK23 (>15 µm) cells transformed with pUCHisEF1025, and (C) E. coli PB MK25 overexpressing 

prgXEf. Scale bars represent 25 μm; n=89.   
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Figure S10. DivIVAEf exhibited loss of localization at the cell poles and midcell position in  

E. faecalis MWMR16 cells.  Averaged images and fluorescence intensity traces of E. faecalis 

MWMR16 cells grown to mid-exponential phase in BHI broth and dual-stained with DAPI and 

Alexa-Fluor 488 as described in the methodology section and images were acquired using the 

InVitro 3 and ImagePro 6.0 softwares (Media Cybernetics) as described in Methodology. 

DivIVAEf with coiled-coil disrupted region localized along the cell membrane.  
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3.1. Abstract 

CcpN is a transcriptional repressor in Bacillus subtilis that binds to the promoter region of 

gapB and pckA, downregulating their expression in the presence of glucose. CcpN also represses 

sr1, which encodes a small non-coding regulatory RNA that suppresses the arginine biosynthesis 

gene cluster. CcpN has homologues in other Gram-positive bacteria including Enterococcus 

faecalis. We report the interaction of CcpN with DivIVA of B. subtilis as determined using 

Bacterial two-hybrid and GST pull-down assays. Insertional inactivation of CcpN leads to cell 

elongation and formation of straight chains of cells. These findings suggest that CcpN is a 

moonlighting protein involved in both gluconeogenesis and cell elongation.   
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3.2. Introduction 

DivIVA is a highly conserved cell division protein in Gram-positive bacteria which interacts 

with a variety of different proteins in various species (Cha and Stewart, 1997; Fadda et al., 2003; 

Pinho and Errington, 2004; Ramirez-Arcos, 2005). In Bacillus subtilis (Bs), DivIVA (DivIVABs) 

acts as a temporal regulator for FtsZ-inhibiting MinCD proteins, restricting their activity to the 

cell's polar and septal areas and prevents cell division in the chromosome-free areas near the poles 

as well as in the vicinity of the active Z-ring (Cha and Stewart, 1997; Edwards and Errington, 

1997; Marston et al., 1998; Marston and Errington, 1999; Edwards et al., 2000; Karoui and 

Errington, 2001; Harry and Lewis, 2003). DivIVABs is also involved in the segregation of 

chromosomes during sporulation by positioning the oriC region of the chromosome to the cell 

poles through its association with RacA, which acts as a bridge between the oriC region and the 

cell poles (Thomaides et al., 2001; Ben-Yehuda et al., 2003). DivIVABs also binds to Maf, a protein 

involved in cell division arrest in competent cells (Briley et al., 2011). As well, DivIVA is involved 

in apical growth and cell polarity control by establishing hyphal branching sites and cell wall 

growth both in  B. subtilis (Flärdh, 2010) as well as Streptomyces coelicolor (Flärdh, 2003). In  

S. pneumoniae, DivIVA interacts with several divisome proteins including FtsZ, FtsA, ZapA, 

FtsK, FtsI, FtsB, FtsQ and FtsW (Fadda et al., 2007). We recently reported that DivIVA from  

E. faecalis interacts with a newly reported protein, EF1025, and affects cell length (Sharma et al., 

2020). 

The EF1025 homologue in B. subtilis is CcpN, a transcriptional regulator of gluconeogenic 

genes (Servant et al., 2005). While the majority of genes involved in carbon catabolite repression 

are regulated by CcpA-dependent catabolite control, three genes, gapB, pckA and sr1, are 

downregulated by CcpN in the presence of glucose (Licht et al., 2005; Servant et al., 2005). During 

glycolysis, gapB and pckA, enzymes which are involved in gluconeogenesis (i.e. NADPH-

dependent glyceraldehyde-3-P dehydrogenase, and PEP carboxykinase) are repressed (Servant et 

al., 2005). The other gene repressed by CcpN is sr1, which encodes a small non-coding regulatory 

RNA that inhibits the translation of ahrC (Licht et al., 2005).  ahrC encodes a transcriptional 

regulator that activates arginine catabolism in rocABC and rocDEF operon and suppresses the 

arginine biosynthesis gene cluster (Heidrich et al., 2006, 2007). CcpN in B. subtilis controls central 
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carbon fluxes; and disruption of CcpN led to mutant growth phenotype caused by ATP dissipation 

via extensive futile cycling (Tännler et al., 2008).  

The DivIVAEf interacting protein, EF1025, from Enterococcus faecalis, shares 41% 

homology with CcpN from B. subtilis (Sharma et al., 2020). EF1025 is essential for cell viability 

and affects the cell length and shape of E. faecalis. Because the EF1025/CcpN protein is highly 

conserved in Gram-positive bacteria, we hypothesized that CcpN would also interact with 

DivIVABs. We report a unique interaction between CcpN and DivIVA from B. subtilis, using 

bacterial-two hybrid and GST-pull down assays. A heterologous interaction was also determined 

between EF1025 and DivIVABs in a GST-pull down assay. Insertional inactivation of ccpN leads 

to cell elongation and changes in cell surface roughness in B. subtilis, suggesting a possible 

function for CcpN during the cell elongation process. Our research expands the knowledge of 

DivIVABs interacting partners and highlights a dual function for CcpN in B. subtilis.  
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3.3. Materials and methods: 

3.3.1. Strains and growth conditions 

Bacterial strains and plasmids used in this study are shown in Table 3.1. E. coli XL1-Blue 

or DH5α were used for cloning, E. coli C41 (DE3) was used to overexpress cloned proteins and 

E. coli R721 was the host (Di Lallo et al., 2001, 2003) for bacterial-two hybrid assays. B. subtilis 

168 genomic DNA was used to amplify ccpN and divIVA to create constructs for B2H and GST 

pull-down assays. E. coli and B. subtilis strains were grown in Luria-Bertani (LB) broth (Difco, 

Franklin Lakes, NJ, USA) at 37°C and the following antibiotics (Sigma, CA) were added to the 

medium as required: ampicillin, kanamycin, erythromycin and chloramphenicol. 

3.3.2. Bioinformatic analysis 

The EF1025 homologue in B. subtilis, CcpN, was identified using BLASTp 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) against the non-redundant protein 

sequences database for which the EF1025 protein sequence was used as a query. The deduced 

amino acid sequence was analyzed using the ProtParam tool 

(http://us.expasy.org/tools/protparam.html).  The CcpN sequence was also analyzed by PROSITE 

(Sigrist et al., 2010) (https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) to identify 

functional domains. Transmembrane motifs were predicted using the TMbase program 

(https://embnet.vital-it.ch/software/TMPRED_form.html) and potential coiled-coil structures in 

CcpN were predicted using the COILS program 

(http://www.ch.embnet.org/software/COILS_form.html).  

  

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
http://us.expasy.org/tools/protparam.html
https://www.ncbi.nlm.nih.gov/Structure/
https://embnet.vital-it.ch/software/TMPRED_form.html
http://www.ch.embnet.org/software/COILS_form.html
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Table 3.1. Bacterial strains used in the study. 

Strains Relevant characteristics Resources or 

References 

Escherichia coli XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 

relA1 lac [F´ proAB lacIqZ_M15Tn10 

(Tetr)] 

Strategene 

E. coli DH5α endA1 hsdr17 (rk
-mk

+) supE44 thi-1 recA1 

gyrA96 relA1 (argF-lacZYA) U169 

deoR [ø80d lac (lacZ) M15) 

Gibco-BRL 

E. coli C41 (DE3) FˉompT hsdSB (rB-mB-) gal dcm Δ(srl-

recA) 306::Tn10 (tetR) (DE3) 

Miroux et al., 1996 

E. coli R721 71/18 glpT::O-P434/P22lacZ Di Lallo et al., 

2001, 2003 

E. coli pETEF1025 E. coli C41 (DE3) with pETEF1025 for 

6×His-EF1025 overexpression  

 Sharma et al., 

(2020) 

B. subtilis 168 trpC2; plasmid free B. subtilis Genetic 

Stock Center 

(BGSC) 

B. subtilis KS1685 trpC2 ccpN’:: pMUTIN4 This study 

B. subtilis GM1620 trpC2 ccpN’:: pMUTIN2 Servant et al., 2005 

B. subtilis PS1622 trpC2amyE’::PgapB::lacZ-cat 

ccpN’::pEC23 

Servant et al., 2005 

B. subtilis PS1649 trpC2 amyE’::PpckA::lacZ-cat Servant et al., 2005 

 

  



91 

3.3.3. CcpN-DivIVA interactions in the Bacterial Two-Hybrid assays (B2H) 

The B2H system of Di Lallo et al. (2001) was employed to investigate interactions between 

CcpN and DivIVABs. To facilitate cloning, B2H vectors pcI434 and pcIp22 (Di Lallo et al., 2001) 

were modified by inserting a linker containing multiple endonuclease restriction sites, resulting in 

plasmids pcI434-L and pcIp22-L (Table 3.2). ccpN and divIVABs were PCR-amplified from  

B. subtilis 168 using primers CcpNF/CcpNR and DivIVABsF/DivIVABsR, respectively (Table 3.3). 

Amplicons were cloned into the B2H vectors pcI434-L and pcIp22-L, resulting in plasmids 

pcIp22CcpN, pcI434CcpN, pcIp22divIVA and pcI434divIVA (Table 3.2). B2H plasmids were 

transformed into E. coli R721 either singly or in combination. B2H assays were modified (Di Lallo 

et al. 2001, 2003) as follows: freshly transformed single colonies of E. coli R721 cells, harbouring 

different combinations of plasmids pcIp22CcpN, pcI434CcpN, pcIp22divIVA and pcI434divIVA, 

were grown overnight in 4 mL LB medium supplemented with Chl 30 µg/ml, Amp 50 µg/ml and 

Kan 25 µg/ml. Cells were diluted 1:100 in fresh LB medium containing the same antibiotics for 

~1 hour (OD600 ~0.1) at 34°C, followed by the addition of 0.1 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG). Cells were further cultured to mid-log phase (OD600=~0.5) at 

34°C, harvested, and tested for β-galactosidase activity as previously described (Di Lallo et al., 

2001). E. coli R721 cells were used as the baseline control for the calculation of the percentage 

residual β-galactosidase activity (Table 3.1). A value of less than 50% residual β-galactosidase 

activity as compared to the E. coli R721 cells, was defined as positive for protein interactions. 

Each experiment was performed in triplicate, and an average of the percentage residual β-

galactosidase activity and the standard deviation was determined.  
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Table 3.2. Plasmids used in the study. 

Plasmids Relevant Characteristics Resources/References 

pcI434 KanR, bacterial two-hybrid vector Di Lallo et al., 2001 

pcIp22 AmpR, bacterial two-hybrid vector Di Lallo et al., 2001 

pcIp22-L pcIP22 derivative carrying a linker with 

multiple cloning sites 

Sharma et al., (2020) 

pcI434-L pcI434 derivative carrying a linker with 

multiple cloning sites 

Sharma et al., (2020) 

pcIp22CcpN pcIP22 derivative carrying the B. subtilis 

ccpN gene 

This study 

pcIp434CcpN pcI434 derivative carrying the B. subtilis 

ccpN gene 

This study 

pcI22divIVA pcIP22 derivative carrying the B. subtilis 

divIVA gene 

This study 

pcI434divIVA pcI434 derivative carrying the B. subtilis 

divIVA gene 

This study 

pGEX-2T AmpR Plac::gst Amersham Bioscience 

pGST-Div AmpR Plac::gst, GST-DivIVABs This study 

pET30a(+) KanR PT7::6xhis Novagen 

pETCcpN KanR PT7, 6×His-CcpN This study 

pMUTIN4 Integration vector EmR, AmpR, LacZ B. subtilis Genetic 

Stock Center (BGSC) 

pMUTccpN Integration vector EmR, AmpR, 

LacZ::ccpN 

This study 
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Table 3.3. Primers used in the study. 

Primer name Sequence 5’ to 3’ 

CcpNF GCGGTCGACT GTGAGTACGATCGAACTAAA 

CcpNR GCCCGGATCCA TTATAGGATTTCATTTTCAG 

DivIVBsF GAGGGATCCTATGCCATTAACGCCAAATGATATTC 

DivIVBsR GCGAGATCTTTTATTCCTTTTCCTCAAATACAGCGTC 

BsDivIVF GAGGGATCCATGCCATTAACGCCAAATGATATTC 

BsDivIVR GCGCTCGAGTTATTCCTTTTCCTCAAATACAGCGTC 

BsCcpNF GCGCCATATGAGTACGATCGAACTAAATAAAC 

BsCcpNR GCGCGGATCCTAGGATTTCATTTTCAGATAAACTGAC 

KOCcpN-F GCGCGAATTCGTGAGTACGATCGAACTAAATAAAC 

KOCcpN120 GCGCGAATTCGCGCCCGGATTTAGCCATAC 

KOCcpN-R GCGCGGATCCTTATAGGATTTCATTTTCAGATAAACTGAC 

KOCcpN318 GCGCGGATCCTTATTCTAAAAACATGGTGCAAATCGCATC  

EryF CGGGTCAGCACTTTACTATTG 

EryR GGACCTACCTCATAGACAAG 

LacZR TTATTTTTGACACCAGACC 
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3.3.4. GST pull-down assays 

To create a GST-DivIVABs fusion, divIVABs was PCR-amplified from B. subtilis 168 using 

primers BsDivIVF/BsDivIVR (Table 3.3). The amplicon was cloned into the GST vector pGEX-

2T, generating plasmid pGST-Div (Table 3.2). ccpN was PCR-amplified using primers 

BsCcpNF/BsCcpNR (Table 3.3B) and cloned into the 6His tag vector pET30a(+), resulting in 

plasmid pETCcpN (Table 3.2). GST-DivIVABs or 6His-CcpN fusions were overexpressed in  

E. coli C41 (DE3) as described in Rigden et al. (2008). GST-DivIVBs was purified and bound to 

GST affinity beads according to the manufacturer’s instructions (GST-Bind Kit, Novagen, USA). 

Soluble 6His-CcpN was extracted from 200 mL log-phase growth cells of E. coli C41 by 

sonication in 5 ml Interaction Buffer (IB, 20 mM Tris/HCl pH 7.5, 10% glycerol, 50 mM KCl,  

0.5 mM EDTA, 1% Triton X100, 1 mM DTT). The cell lysate was centrifuged and the supernatant 

(50µl) was incubated with 20 µL GST-DivIVABs bound beads pre-equilibrated with IB buffer, at 

4°C for 2 hours. Beads were washed with cold IB buffer three times. Protein retained on the beads 

was eluted using 40 µL 1SDS loading buffer and heating at 95°C for 10 min. Eluted protein was 

separated by SDS-PAGE, followed by Western blot analysis using anti-6His and anti-GST 

monoclonal antibody (Genscript, USA) at a concentration of 0.3 µg/mL. Purified GST protein was 

used as a control and was produced in E. coli C41 (DE3) from plasmid pGEX2T, as previously 

described (Zou et al., 2017).  

To study the heterologous interaction between EF1025 and DivIVABs, pGST-Div was 

overexpressed in E. coli C41 (DE3)(Ramirez-Arcos, 2005) (Table 3.1 and 3.2B). The GST-

DivIVABs fusion protein was purified using GST affinity beads (GST-Bind Kit, Novagen, USA) 

and was used to study its interaction with 6His-EF1025, which was purified from E. coli 

pETEF1025, as previously described (Sharma et al., 2020). SDS-PAGE and Western blot were 

developed formed as described previously (Ramirez-Arcos, 2005; Rigden et al., 2008). 

Monoclonal anti-GST antibody was used for detecting GST-DivIVAEf (Genscript, USA) at 0.3 

µg/mL. The 6His tagged proteins were probed with anti-6His monoclonal antibodies (0.25 

µg/mL) according to the manufacturer’s instructions (Genscript, USA). 
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3.3.5. Insertional inactivation of ccpN  

B. subtilis ccpN was disrupted by insertional mutagenesis by constructing an integration 

plasmid as follows: a 120 bp fragment of the N-terminal coding sequence of ccpN was PCR-

amplified from B. subtilis 168 using primers KOCcpN-F/KOCcpN120 (Table 3.3). A fragment 

from the C-terminal was amplified using primers KOCcpN-R/KOCcpN318 (Table 3.3). These 

amplicons were digested with BamHI and EcoRI and ligated to predigested pMUTIN4 resulting 

in pMUTccpN (Table 3.2). pMUTccpN carried the N-terminal and C-terminal fragments of ccpN 

flanking either end of the LacZ and PSpec of pMUTIN4. pMUTccpN was transformed into 

competent E. coli DH5α and selected for ampicillin resistance. pMUTccpN was electroporated 

into electrocompetent B. subtilis 168 cells creating B. subtilis KS1685 and cells were selected for 

erythromycin resistance (Bron and Venema, 1972), creating B. subtilis KS1685. Correct clones 

were confirmed using PCR amplification of the upstream and downstream regions of pMUTIN4  

using primer sets LacZR/KOCcpN-R, KOCcpN-F/EryF, KOCcpN-F/LacZR, and EryF/KOCcpN-

R to ensure the integration of pMUTIN4 into B. subtilis 168 genome (Table 3.3).  

3.3.6. Microscopy 

A SU8010 Cold Field Emission Ultra-High-Resolution scanning electron microscope 

(SEM) (WCVM, University of Saskatchewan, Saskatoon, Saskatchewan) was used to image  

B. subtilis strains 168, KS1685 (this study), GM1620, PS1622 and PS1649 (Dr. Stephane 

Aymerich, Director, Micalis Institute, Paris, kindly provided B. subtilis strains GM1620, PS1622 

and PS1649, Table 3.1). Cells were cultured in LB medium with or without appropriate antibiotics, 

without agitation at 37°C either overnight (~20 h) or to stationary phase. Cells were fixed on  

poly-L-lysine coverslips, sequentially dehydrated in ethanol, critical point dried, sputter coated 

with gold and imaged (Ramirez-Arcos et al., 2001). The percentage of elongated cells were 

calculated measuring the length of 90-105 cells.  

For atomic force microscopy (AFM), coverslips were coated with Cell-Tak 

(LifeTechnologies) to which cell suspensions from overnight cultures were deposited. Cells were 

fixed with formalin, air dried (Bhat et al., 2015) and imaged with silicon nitride cantilevers 

(HYDRA6R-200NG; Nanosensors, Neuchatel, Switzerland) with calibrated spring constants 

ranging from 0.03 to 0.062 N/m. QI™ images were collected (Z-length = 0.926 um; scan rate = 
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95 um/s; 128  128 pixel raster scan) and generated force curves (JPK software) at each pixel 

(Sharma et al., 2020). Height, length and surface roughness were calculated from QI™ height 

images according to Bhat et al. (2015), the latter from multiple squares (200 × 200 nm) along the 

centre of at least 10 cells each from 3 biological replicates. 

3.3.7. Statistical analysis 

AFM and SEM studies were conducted in triplicate and analyzed using Microsoft Excel or 

Graph Pad Prism respectively unless otherwise indicated. The results were reported as mean ± 

standard deviation (SD), differences assessed using a two-tailed unpaired t-test and ANOVA for 

which p < 0.05 was considered statistically significant.   
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3.4. Results 

3.4.1. Bioinformatics analysis 

CcpN, a protein comprising 212 amino acids (AA) with an estimated molecular weight of 

~24 kDa and a theoretical isoelectric point of 6.97, contains no transmembrane motifs or coiled-

coil regions. CcpN contains an N-terminal helix-turn-helix (HTH) DNA binding domain (AA 11-

60), and two Cystathionine β-Synthase (CBS) domains (i.e. CBS1, AA 82-148 and CBS2, AA 

155-206). The CBS1 domain is centrally located whereas the CBS2 domain is located at the  

C-terminus of CcpN. 

3.4.2. CcpN interacts with DivIVA in vitro and in vivo 

CcpN shares 41 % homology with EF1025 from E. faecalis. Since EF1025 interacts with 

DivIVAEf, and because many firmicutes have homologues of this protein, we investigated whether 

such an interaction is unique to E. faecalis. In the B2H system used to assess the interaction 

between CcpN and DivIVABs, less than 50% residual β-galactosidase activity is considered as a 

positive interaction (Di Lallo et al., 2001, 2003). A positive interaction was observed between 

DivIVA and CcpN (Fig. 3.1, 32%) when E.coli R721 cells harbouring plasmids pdivIVA22 and 

pCcpN434 together (Table 3.2) were measured for residual β-galactosidase activity. The reverse 

combination of these plasmids i.e.  pCcpN22 and pdivIVA434 together also resulted in a positive 

interaction (24%). As a positive control, FtsA and FtsZ proteins from Neisseria gonorrheae were 

measured for residual β-galactosidase activity (28%). E. coli R721 cells (Table 3.1) served as a 

control baseline β-galactosidase activity control.  

The in vitro interaction between CcpN and DivIVABs was ascertained by GST-pull down 

assay, in which 6His-CcpN was pulled down by GST-DivIVABs (45 kDa). GST alone acted as a 

negative control and did not interact with 6His-CcpN (Fig. 3.2A, Lane 3). A Western blot using 

monoclonal anti-His antibody revealed the presence of a 25 kDa band corresponding to  

6His-CcpN (Fig. 3.2A, Lane 5).  

In a heterologous interaction, the in vitro interaction between EF1025 and DivIVABs was 

ascertained by GST-pull down assay in which 6×His-EF1025 was pulled down by GST-DivIVABs 

(45 kDa). GST alone acted as a negative control and did not interact with 6His-EF1025 (Fig. 
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3.2B, Lane 3). A Western blot using an anti-EF1025 antibody (Sharma et al., 2020) revealed the 

presence of a 25 kDa band corresponding to 6His-EF1025 (Fig. 3.2B, Lane 5).  
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Figure 3.1. CcpN interacts with DivIVABs in B2H assay. The β-galactosidase activity was 

expressed in Miller Units (y-axis). The x-axis shows the combination of B2H plasmids used and 

the percentage Miller Units. Average values were obtained from three independent assays in 

triplicate. Values of less than 50% indicate a positive interaction. The error bars represent 1 

standard deviation.  
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Figure 3.2. DivIVABs interacts with CcpN and EF1025 in GST pull-down assay. (A) Western blot 

probed with anti-6His and anti-GST monoclonal antibody. Lane 1: overexpressed and purified 

CcpN (25 kDa); Lane 2 and 4: empty; Lane 3: GST (25 kDa); Lane 5: pulled down GST-DivIVABs 

(45 kDa)  along with CcpN (25 kDa); Lane 6: Protein ladder. (B) Western blot probed with anti-

6HisEF1025 polyclonal antibody and anti-GST monoclonal antibody. Lane 1: overexpressed 

6His-EF1025 (25 kDa) containing supernatant representing 10% input; Lane 2 and 4: empty; 

Lane 3: GST (25 kDa); Lane 5: pulled down GST-DivIVABs (45 kDa) bound beads along with 

6His-EF1025 (25 kDa); Lane 6: Protein ladder. 
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3.4.3. ccpN insertional inactivation leads to cell elongation 

Insertional inactivation of EF1025 in E. faecalis affects cell length and cell septation, 

phenotypes (Levin et al., 1992; Varley and Stewart, 1992; Abhayawardhane and Stewart, 1995; 

Chung et al., 2004). We proposed that disruption of ccpN could also produce a similar phenotype 

in B. subtilis. ccpN was insertionally inactivated by introducing an erythromycin cassette using the 

plasmid pMUTIN4 in B. subtilis KS1685 (Tables 3.1 and 3.2). Using scanning electron 

microscopy (SEM), B. subtilis KS1685 cells were compared with wild type B. subtilis 168 cells. 

B. subtilis 168 cells showed rod-shaped cells with normal division (Fig. 3.3A). B. subtilis KS1685 

cells were elongated and grew in straight chains of connected cells (Fig. 3.3C). These cells failed 

to segregate and detach distinctively from one another (Fig. 3.3D). We compared the morphology 

of B. subtilis KS1685 cells with B. subtilis GM1620 and PS1622 strains developed by Servant et 

al., 2005 (Fig. 3.3E and 3.3F) which contain ccpN disrupted by pMUTIN2 through single/multiple 

integration events (Table 3.1). B. subtilis GM1620 and PS1622 cells were also elongated and failed 

to segregate. Another control strain i.e. B. subtilis PS1649 (Table 3.1), developed by Servant et 

al., 2005, containing disrupted pckA, exhibited rod-shaped cells with a normal division like  

B. subtilis 168 (Fig. 3.3B). 

The lengths of wild type B. subtilis 168 cells (2.6 ± 0.94 µm, n= 102), B. subtilis KS1685 

(6.16  1.2 µm, n= 92), B. subtilis GM1620 (6.67  2.13 µm, n= 92) and PS1622 (6.88  2.51 µm, 

n= 97) cells were compared. B. subtilis KS1685 (6.161.2 µm, n=92), B. subtilis GM1620 

(6.672.13 µm, n=92) and PS1622 (6.882.51 µm, n=97) strains with ccpN disruption were 

significantly (p < 0.05) longer (Fig. 3.4) as determined by SEM. Control strain, B. subtilis PS1649 

(Table 3.1), had a cell length (2.51  0.54 µm, n= 97) similar (p > 0.05) to wild type B. subtilis 

168 cells (2.6 ± 0.94 µm, n= 102) (Fig. 3.3B and 3.4).  

Analysis of the cells by AFM showed that wthe cell length of B. subtilis 168 (3.08 ± 0.56 

µm) was similar (p= 0.36) to that of PS 1649 (3.24 ± 0.74 µm). These lengths were statistically 

different (p < 0.05) from B. subtilis KS 1685 (4.71 ± 0.58 µm), PS 1622 (4.05 ± 0.39 µm) and GM 

1620 (5.33 ± 0.86 µm) cells which were longer (Fig. 3.5).  The cell heights measured by AFM for 

B. subtilis 168 (0.36 ± 0.044 µm), PS 1649 (0.36 ± 0.01 µm) and GM 1620 (0.038 ± 0.048 µm) 
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were statistically identical but were statistically different (p < 0.05) from both B. subtilis KS 1685 

(0.31 ± 0.01 µm) and B subtilis PS 1622 (0.32 ± 0.01 µm).  
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Figure 3.3. Insertional inactivation of ccpN leads to cell elongation and failed segregation in  

B. subtilis KS 1685 (this study), PS 1622 and GM1620. Scanning electron micrographs showing 

(A) Normal B. subtilis 168 cells; (B) B. subtilis PS 1649 cell exhibiting normal cell length and 

morphology; (C and D) B. subtilis KS 1685 cells; (E and F) B. subtilis PS 1622 and GM 1620 

cells, respectively, showing elongated cells with impaired segregation. White arrow indicates 

failed segregation in rod-shaped cells. Bar scale indicated at the bottom right corner of each image.  
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Figure 3.4. Comparison of cell lengths for B. subtilis strains: 168 (n= 102), PS 1649 (n= 97), KS 

1685 (n= 92), PS 1622 (n= 97) and GM 1620 (n= 92). B. subtilis strains 168 and PS 1649 served 

as control strains. “n” represents the number of cells counted for each sample; * represents two-

tail p value from t-test for each group set (p < 0.05); NS- non-significant. The error bars represent 

1 standard deviation. 
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Figure 3.5. B. subtilis KS1685 cells exhibited cell elongation. Representative AFM images of (A) 

B. subtilis 168; (B) B. subtilis PS1649; (C) B. subtilis KS1685; (D) B. subtilis GM1620; (E)  

B. subtilis PS1622 collected in QI mode with a resolution of 128×128 pixels per image. Bar scale 

(1 µm) indicated at the bottom right corner of each image; and (F) Comparison of cell lengths for 

B. subtilis strains: 168 (n= 43), PS 1649 (n= 43), KS 1685 (n= 32), PS 1622 (n= 34) and GM 1620 

(n= 37). All data was analyzed by t-test where * indicates p < 0.05; NS- non-significant. The error 

bars represent 1 standard deviation. 
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3.5. Discussion 

Studies of protein-protein interactions between various proteins have been mostly studied 

using two-hybrid systems or other biochemical methods like GST-pull down and Co-

immunoprecipitation (Ishikawa et al., 2006). The in vivo Bacterial two-hybrid assay shows a novel 

interaction between CcpN and DivIVA in B. subtilis. This interaction was confirmed using an in 

vitro GST pull-down assay. We also observed a positive heterologous interaction between EF1025, 

a CcpN homologue in E. faecalis, and DivIVABs. These data suggest that the interaction between 

DivIVA and CcpN homologues is probably conserved among Gram-positive microorganisms. 

EF1025 interacts with DivIVAEf and affects cell length and shape (Sharma et al., 2020). The two 

CBS domains of EF1025 independently interacted with EF1025 in B2H and GST pull-down 

assays. While the function of the HTH domain of CcpN in gluconeogenesis has been previously 

discussed by Servant et al. (2005), the function of the two CBS domains in CcpN remains to be 

answered.  

We investigated whether CcpN in B. subtilis might play a similar role as its homologue, 

EF1025 in E. faecalis (Sharma et al., 2020). CcpN affects the cell length in B. subtilis (Servant, Le 

Coq and Aymerich 2005; Sharma et al., 2020). B. subtilis 1685 cells containing disrupted ccpN 

were significantly longer than the wild-type B. subtilis 168 cells. We observed the same degree of 

elongation in B. subtilis GM1620 and PS1622. B. subtilis PS1649, with disrupted pckA (one of the 

genes regulated by CcpN), showed no change in cell length and behaved like the wild-type  

B. subtilis 168 cells. This shows that the cell elongation phenotype is exclusive to the strains 

containing a disruption of ccpN expression, and that ccpN is involved in determining cell length 

in B. subtilis. Interestingly, unlike EF1025, disruption of ccpN proved to be non-essential.  

B. subtilis cells have a distinctive elongated cylindrical tube morphology with 

hemispherical poles. Growth occurs through elongation along the cell's long axis with division 

occurring when a cell doubles in length (Errington and Wu, 2017). In B. subtilis, cell shape is 

determined and maintained by the action of “cytoskeletal” proteins of the MreB family such as 

MreB, Mbl, MreBH and RodA that are structurally and biochemically related to eukaryotic actins 

(Henriques et al., 1998; Carballido-Lopez, 2006). A degree of remodelling or active movement of 

the filaments occurs during cell elongation (Carballido-López and Errington, 2003; Defeu Soufo 

and Graumann, 2004). B. subtilis cells with mutations in mreB exhibited enhanced diameter and 
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grew in “straight rows” (Carballido-Lopez, 2006). MreB associates with elongation-specific 

peptidoglycan-synthesizing complexes that include MreC, MreD, RodA, Penicillin Binding 

Proteins (PBPs), and peptidoglycan hydrolases (Carballido-López and Formstone, 2007; White et 

al., 2010). CcpN may be another member of the category of proteins that determine cell length in 

B. subtilis. The cells were longer and failed to segregate in the ccpN mutants B. subtilis 1685, 

GM1620 and PS1622, in which cells remained closely attached to one another and grew in straight 

rows. Taken together, these results suggest that CcpN affects cell length and enables timely cell 

segregation in B. subtilis. This also suggests that CcpN has two different functions in the cell i.e. 

controlling cell length and expression of gapB and pckA in the presence or absence of glucose 

(Servant et al., 2005). 

Many proteins, called “moonlighting proteins” perform multiple, apparently unrelated, 

functions that have not resulted from gene fusions, RNA splicing, or pleiotropic impacts, and they 

are found throughout the evolutionary tree (Jeffery, 1999). By using only one polypeptide chain, 

moonlighting proteins govern different functions and interacting partners possibly due to the minor 

differences in amino acid sequence (Jeffery, 2016). For example, CbtA (formerly known as YeeV) 

of E. coli alters cell shape by inhibiting both cell division and cell elongation. CbtA is the toxin 

component of the CbtA/CbeA chromosomal toxin-antitoxin system in E. coli that targets both FtsZ 

and MreB. CbtA interacts independently with FtsZ and MreB affecting cell shape (Heller et al., 

2017) by a simultaneously blocking cell division and cell elongation pathways. Both of these 

interactions are functionally important, independently contributing both to toxicity and cell-shape 

disturbances (Heller et al., 2017). 

Very often two protein species with a high degree of amino acid sequence identity share 

the same function.  However, there have been many cases reported in which two proteins have 

different functions resulting from subtle differences in amino acid sequence (Jeffery, 2016). 

EF1025 and CcpN share 41% homology at the protein level, and both contain one N-terminal 

helix-turn-helix domain and two CBS domains, one located centrally and the other at the  

C-terminus. Since CBS domains in EF1025 are responsible for interaction with DivIVAEf, we 

propose that different domains of CcpN may govern different cellular functions. The disparate 

cellular functions, namely gluconeogenesis and determination of cell shape, could be attributable 

to different domains of CcpN (Servant et al. 2005). Here we report another novel function of CcpN 
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from B. subtilis. CcpN interacts with DivIVABs like its homologue, EF1025 from E. faecalis. ccpN 

is a non-essential gene for cell viability but it regulates cell length and the ability to segregate after 

successful division.   
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4.1. Abstract 

Bacterial cell division, an essential process, is orchestrated by the coordinated interaction 

of key cell division proteins forming a macromolecular complex called the divisome, spanning the 

cytoplasmic membrane during cell division. Key cell division proteins like FtsZ, FtsA, 

FtsQ/DivIB, FtsL, FtsW, FtsB/DivIC, FtsI and FtsK are relatively conserved. Using in vivo and in 

vitro, biochemical techniques cell division protein-protein interaction networks have been 

established for only four bacterial species i.e. E. coli, N. gonorrhoeae, S. aureus and S. 

pneumoniae. E. faecalis contains homologues of divisome proteins FtsZ, FtsA, FtsK, FtsQ, FtsL, 

FtsI and FtsB, however, the cell division interactome of E. faecalis, by contrast, is not presently 

known. In this research article, we are reporting the unique interactome of E. faecalis divisome 

proteins (i.e. FtsZEf, FtsAEf, FtsQEf, FtsLEf, FtsIEf, FtsWEf, DivIVAEf, and FtsBEf), established using 

Bacterial-two hybrid system. We also used EF1025, a DivIVAEf interacting protein, to test for 

potential interactions with E. faecalis divisome proteins. EF1025 did not interact with any 

divisome protein except DivIVAEf. 
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4.2. Introduction 

Bacterial cells are critically dependent for growth, development, and reproduction on their 

ability to divide. Cell division is a complex mechanism orchestrated at the division site by a multi-

protein macromolecular complex called the divisome (Margolin, 2000; Gamba et al., 2009). The 

genes encoding these proteins are located in a highly conserved cluster known as “division cell 

wall (dcw)” cluster (Ayala et al., 1994; Tamames et al., 2001). The proteins encoded by the dcw 

genes are involved in cell division and peptidoglycan synthesis and are mostly essential for cell 

division (Boyle and Donachie, 1998; Kobayashi et al., 2003). Although the organization of various 

genes within the dcw cluster varies in different bacterial species as found in E. coli, B. subtilis, 

Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis, and S. pneumoniae (Fig. 

1.1; Massidda et al., 1998; Francis et al., 2000; Snyder et al., 2001; Fadda et al., 2003; Ramirez-

Arcos, 2005; Real and Henriques, 2006), the proteins involved in the process of cell division are 

comparatively conserved (Lutkenhaus et al., 2012; Haeusser and Margolin, 2016). 

The context of the divisome varies in different bacteria. For example, in B. subtilis, 

divisome assembly follows a concerted or cooperative mode, because most divisome proteins are 

interdependent for septal localization (Gamba et al., 2004). Over 13 proteins form the core 

divisome (i.e. FtsZBs, FtsABs, SepFBs, ZapABs, EzrABs, GpsBBs, FtsLBs, FtsBBs, FtsQBs, FtsWBs, 

PBP1Bs, PBP2BBs and DivIVABs) in B. subtilis (Gamba et al., 2009; Halbedel and Lewis, 2019). 

FtsZBs assembles forming single-stranded protofilaments at the mid-cell where it is tethered to the 

membrane by the “early” divisome proteins FtsABs or SepFBs (Jensen et al., 2005; Hamoen et al., 

2006; Peters et al., 2007; Gamba et al., 2009). Sequentially, ZapABs and EzrABs then interact with 

the Z-ring facilitating FtZBs polymerization (Levin et al., 1999; Gueiros-Filho and Losick, 2002; 

Singh et al., 2007; Cleverley et al., 2014). The complex comprised of FtsZBs-FtsABs-SepFBs-

ZapABs-EzrABs then recruits the ‘late’ cell division proteins i.e. FtsWBs, PBP1Bs, PBP2BBs, 

DivIBBs, DivICBs and FtsLBs, DivIVABs and GpsBBs (Perry and Edwards, 2004; Tavares et al., 

2008; Gamba et al., 2009; Lenarcic et al., 2009; den Blaauwen, 2018; Taguchi et al., 2019). These 

proteins do not directly interact with FtsZBs and are mainly cytosolic proteins or membrane 

proteins (Ishikawa et al., 2006). In E. coli, over 10 proteins (FtsZEc, FtsAEc, FtsLEc, FtsWEc, FtsBEc, 

ZipAEc, FtsIEc, FtsKEc, FtsQEc, and FtsNEc) constitute the core divisome because of their 

essentiality during the process of cell division (Haeusser and Margolin, 2016). In E. coli, “early” 

divisome proteins (FtsZEc, FtsAEc and ZipAEc) locate to the septum forming a dynamic ring 
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structure, called as the proto-ring, at an early stage in cell division which acts as an assembly stage 

for the remaining proteins (Erickson et al., 2010; Rico et al., 2013; Ortiz et al., 2016). This is 

followed by the recruitment of the “late” proteins (FtsKEc, FtsQEc, FtsLEc, FtsBEc, FtsWEc, FtsIEc 

and FtsNEc) that are involved in remodelling of the peptidoglycan layer and chromosome 

segregation (Aarsman et al., 2005).  

Using in vivo and in vitro, biochemical techniques such as bacterial two-hybrid (B2H) 

assay, GST-pull down assay, Co-immunoprecipitation (Co-IP) and Surface Plasmon Resonance 

(SPR), cell division protein-protein interaction networks have been established for four bacterial 

species i.e. E. coli (Di Lallo et al., 2003; Karimova et al., 2005), N. gonorrhoeae (Zou et al., 2017), 

S. aureus (Steele et al., 2011) and S. pneumoniae (Fadda et al., 2007; Maggi et al., 2008). In Gram-

negative E. coli, sixteen interactions between ten cell division proteins (i.e. including FtsZEc, 

FtsAEc, ZipAEc, FtsKEc, FtsQEc, FtsBEc, FtsLEc, FtsIEc, FtsWEc, and FtsNEc) were identified (Di 

Lallo et al., 2003; Karimova et al., 2005). Zou et al. (2017) characterized nine interactions among 

eight cell division proteins i.e. FtsZNg, FtsANg, ZipANg, FtsKNg, FtsQNg, FtsINg, FtsWNg, and FtsNNg, 

from Neisseria gonorrhoeae that defined the cell division interactome.  

Using two different approaches i.e. bacterial two-hybrid (B2H) system and  

co-immunoprecipitation (Co-IP), a total of 37 homo and/or hetero-dimeric interactions were 

observed among nine S. pneumoniae cell division proteins that included FtsZSp, FtsASp, FtsKSp, 

DivlBSp, DivlCSp, FtsLSp, FtsWSp, and PBP2xSp (Maggi et al., 2008).  In a B2H assay, Fadda et al. 

(2007) showed that DivIVASp interacts with several divisome proteins, including FtsZSp, FtsASp, 

ZapASp, FtsKSp, FtsISp, FtsBSp, FtsQSp and FtsWSp in S. pneumoniae (Fadda et al., 2007). Using 

the same method, Steele et al. (2011) reported around 49 homo-and/or hetero-dimeric protein 

interactions between thirteen divisome proteins (i.e. FtsZSa, FtsASa, EzrASa, GpsBSa, SepFSa, 

Pbp1Sa, Pbp2Sa, Pbp3Sa, DivIBSa, DivICSa, FtsLSa, FtsWSa and RodASa) in S. aureus.   

The E. faecalis dcw cluster contains homologues of divisome proteins FtsZ, FtsA, FtsK, 

FtsQ (DivIB), FtsL, FtsI and probably FtsB (DivIC), EzrA and ZapA (Pucci et al., 1997; Duez et 

al., 1998; Massidda et al., 1998) but the interaction network for these cell division proteins in  

E. faecalis, by contrast, is not presently known. To investigate the network of cell divisome 

proteins that forms a divisome in E. faecalis, protein-protein interactions between eight E. faecalis 

divisome proteins were studied using a B2H assay. Sixteen homo/hetero-dimer interactions were 
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identified among E. faecalis divisome proteins that included FtsZEf, FtsAEf, FtsQEf, FtsLEf, FtsIEf, 

FtsWEf, DivIVAEf, and FtsBEf. EF1025, a DivIVAEf interacting protein, failed to interact with any 

divisome protein members, therefore, is not a part of E. faecalis divisome. B2H assay results reflect 

the existence of unique interactome for E. faecalis when compared with interactomes from E. coli, 

N. gonorrhoeae, S. aureus, and S. pneumoniae.  
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4.3. Materials and methods 

4.3.1. Strains, plasmids and growth conditions 

Bacterial strains and plasmids used in this study are listed in Table 4.1. E. coli DH5α was 

used for cloning and E. coli R721 for B2H assays (Di Lallo et al., 2001). E. coli DH5α and E. coli 

R721 were grown at 37 °C in Luria-Bertani (LB) medium (BD Difco™, Sparks, MD) with 

appropriate antibiotics in the following concentrations as required: ampicillin (Amp) 50 μg/mL, 

kanamycin (Kan) 30 μg/mL and chloramphenicol (Chl) 33 μg/mL, for 6-8 hours. During B2H 

assays, E. coli R721 was grown in LB medium for the duration required and incubated at 34°C, as 

previously described (Di Lallo et al., 2001). E. faecalis JH2-2 (Jacob and Hobbs, 1974), was used 

for the preparation of genomic DNA and was cultured at 37°C without aeration in Brain Heart 

Infusion (BHI) broth (Difco, Detroit, MI). Genomic DNA was prepared from E. faecalis JH2-2 

using QIAamp DNA Mini Kit as per manufacturer instructions (Qiagen, CA). 
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Table 4.1. Bacterial strains used in the study.  

Strain Relevant Genotype Source 

Escherichia coli XL1 Blue hsdR17, supE44, recA1, endA1, gyrA46, thi 

relA1, lac/F’ [proAB+, lacIq, 

lacZDM15::Tn10(Tetr)] 

Stratagene 

Escherichia coli R721 71/18 glpT :: O-P434/P22 lacZ 

 

Di Lallo et. al. 

2001 

Enterococcus faecalis JH2-2 wild type, RifR, FusR 

 

Jacob & Hobbs, 

1974 
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4.3.2. Divisome protein interactions in the Bacterial Two-Hybrid assays (B2H) 

The B2H system (Di Lallo et al., 2001) was employed to investigate potential interactions 

between eight different E. faecalis divisome proteins i.e. FtsZEf, FtsAEf, FtsQEf, FtsLEf, FtsBEf, 

FtsIEf, DivIVAEf, and FtsWEf. EF1025, a DivIVAEf -interacting protein, was also tested for its 

potential interactions with E. faecalis divisome proteins. The B2H and a quantitative  

β-galactosidase activity assay were performed as previously described (Miller and Lee, 1984; Di 

Lallo et al., 2003). To facilitate cloning, modified B2H vectors pcI434-L and pcIp22-L (Di Lallo 

et al., 2001; Zou et al., 2017) that contained linkers were used. ftsA, ftsZ, ftsQ, ftsI, ftsW, ftsB, 

divIVA, EF1025 and ftsL were PCR amplified from E. faecalis JH2-2 genomic DNA using primer 

pairs A1/2, Z1/2, Q1/2, I1/2, W1/2, B1/2, D1/2, EF10251/2, and L1/2 (Table 4.3). Amplicons were 

cloned into the B2H vectors pcI434-L and pcIp22-L, respectively, resulting in plasmids  

pcIp22-A, pcIp22-Z, pcIp22-Q, pcIp22-I, pcIp22-W, pcIp22-B, pcIp22-D, pcIp22-E1025,  

pcIp22-L, pcI434-A, pcI434-Z, pcI434-Q, pcI434-I, pcI434-W, pcI434-B, pcI434-D,  

pcI434-E1025 and pcI434-L (Table 4.2). These plasmids were transformed into E. coli R721 either 

singly or in combination for B2H assays (Di Lallo et al., 2001, 2003; Greco-Stewart et al., 2007). 

Freshly transformed single colonies of E. coli R721 cells, harbouring different combinations of 

plasmids, were grown overnight in 4 mL of LB medium containing appropriate antibiotics. Cells 

were then diluted at 1:50 in fresh LB medium supplemented with the same antibiotics and 

incubated for ~1 hr at 34°C, followed by the addition of 0.1 mM isopropyl  

β-D-1-thiogalactopyranoside (IPTG). At mid-log phase (OD600= 0.6), cells were centrifuged and 

tested for β-galactosidase activity as previously described (Di Lallo et al., 2001).  

  



117 

Table 4.2. Plasmids used in the study. 

Plasmid Genotype Source 

pCIp22L pCIp22 derivative carrying a linker (Di Lallo et al., 2001; Zou et al., 2017)  

pCI434L pCI434 derivative carrying a linker (Di Lallo et al., 2001; Zou et al., 2017)  

pcIp22-Z pCIp22L derivative carrying ftsZ This study 

pcI434-Z pCI434L derivative carrying ftsZ This study 

pcIp22-W pCIp22L derivative carrying ftsW This study 

pcI434-W pCI434L derivative carrying ftsW This study 

pcIp22-Q pCIp22L derivative carrying ftsQ This study 

pcI434-Q pCI434L derivative carrying ftsQ This study 

pcIp22-L pCIp22L derivative carrying ftsL This study 

pcI434-L pCI434L derivative carrying ftsL This study 

pcIp22-I pCIp22L derivative carrying ftsI This study 

pcI434-I pCI434L derivative carrying ftsI This study 

pcIp22-A pCIp22L derivative carrying ftsA This study 

pcI434-A pCI434L derivative carrying ftsA This study 

pcIp22-D pCIp22L derivative carrying divIVA This study 

pcI434-D pCI434L derivative carrying divIVA This study 

pcI434-B pCI434L derivative carrying ftsB This study 

pcIp22-B pCIp22L derivative carrying ftsB This study 

pcIp22-EF1025 pCIp22L derivative carrying EF1025 This study 

pcI434-EF1025 pCI434L derivative carrying EF1025 This study 
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Table 4.3. Primers used in the study. 

Primer Sequence (5’-3’)1 Restriction 

Endonuclease site 

A1 GGCAGATCTCATGGCAAAAACAGGAATG BglII 

A2 CCGGATCCTTAGTCGAAAATGTTCGAGA BamHI 

L1 GCGGGTCGACGATGGCTGAATTGAAGAAAGT SalI 

L2 GCGGGATCCTTATTTAAACAGTCCTAACATT BamHI 

Q1 GCCGTCGACAGTGTGGAAGATTAGTAACGA SalI 

Q2 CGGGATCCTTATTCTGCTTGTTGCACTTC BamHI 

I1 GCCCGTCGACCATGATGAAAAGACATAAAT SalI 

I2 CCCAGATCTTTATTCTGTGCCTTCTAAAG BglII 

Z1 GCGCGTCGACCATGGAATTTTCATTAGAC SalI 

Z2 CGGGATCCTTATCGTTTTCTGCGGAAAA BamHI 

W1 GCCCGTCGACCTTGCCAAACAAAGTAAAGAAAC SalI 

W2 GCGGGATCCTTATTGGTTCTGTTCTAAAGATA BamHI 

B1 GCCGTCGACCATGGGAAAGAATGAAAAAAACTC SalI 

B2 GCGGGATCCTTATTCAGCTGAAGACTTAGTTGTT BamHI 

D1 GCGTCGACTATGGCATTAAC SalI 

D2 GCGGATCCCTATTTTGATTC BamHI 

EF10251 GCGTCGAC TTATCTGTTTTGTGCG   SalI 

EF10252 GCGGATCCCTACGTAATATAGGTTAAAATTTTCG BamHI 
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E. coli R721 cells with no plasmid were used as the baseline control for β-galactosidase 

production while E. coli R721 with single plasmid transformants served as a negative control for 

the calculation of the percentage residual β-galactosidase activity (Table 4.1). A percentage 

decrease in residual β-galactosidase activity was compared to the E. coli R721 cells, where a value 

of less than 50% was defined as positive for protein interactions. B2H studies were conducted in 

triplicate and analyzed using Graph Pad Prism respectively and an average of the percentage 

residual β-galactosidase activity and the standard deviation was determined.   
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4.4. Results  

4.4.1. E. faecalis divisome protein interactions 

The B2H assay (Di Lallo et al., 2001), was used to detect pairwise interactions between the 

proteins (FtsZEf, FtsAEf, FtsQEf, FtsLEf, FtsIEf, FtsWEf, DivIVAEf, and FtsBEf) from E. faecalis 

whose homologues have been reported to be implicated in divisome formation in S. pneumoniae, 

B. subtilis and S. aureus (Fadda et al., 2007; Maggi et al., 2008; Gamba et al., 2009; Steele et al., 

2011; Halbedel and Lewis, 2019). EF1025, a DivIVAEf interacting protein from E. faecalis, was 

also tested for potential interactions with E. faecalis divisome proteins.  

We identified twelve homo/hetero-dimer interactions among seven divisome proteins 

including FtsZEf, FtsAEf, FtsQEf, FtsLEf, FtsIEf, FtsWEf, and FtsBEf. Proteins like FtsZEf, FtsQEf, 

FtsWEf, and FtsBEf were identified to homo-dimerize by displaying lower than 50% residual  

β-galactosidase activity which indicated a positive interaction (Table 4.4). The self-interaction of 

FtsZEf served as a positive control in all B2H assays. Strong interaction was observed between 

FtsZEf -FtsAEf (30%), FtsZEf -FtsLEf (37%), FtsZEf-FtsIEf (41.6%), FtsWEf-FtsAEf (35.5%), FtsWEf-

FtsIEf (42.1%), FtsBEf-FtsQEf (43.9%), and FtsBEf-FtsLEf (42%) while FtsIEf-FtsAEf displayed 

relatively weaker interaction i.e. 47.2% residual β-galactosidase activity. The interaction between 

FtsBEf and FtsWEf showed borderline (i.e. 50.9%) residual β-galactosidase activity.  
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Table 4.4. Interactions between seven cell division proteins from E. faecalis as determined by B2H 

assay. The β-galactosidase activity was expressed in percentage Miller Units. Average values were 

obtained from three independent assays in triplicates. Values of less than 50% indicate a positive 

interaction (indicated in a closed box). FtsZEf self-interaction was used as a positive control. The 

data are the mean values of averages of percentage β-galactosidase activity.  
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4.4.2. DivIVAEf interaction with E. faecalis divisome proteins  

DivIVAEf was interpreted to interact with FtsZEf (47%), FtsQEf (47%), and FtsWEf (39%) 

by displaying less than 50% residual β-galactosidase activity (Table 4.5). No interaction was 

observed between DivIVAEf-FtsAEf, DivIVAEf-FtsLEf, DivIVAEf-FtsIEf, and DivIVAEf-FtsBEf as 

the residual β-galactosidase activity was observed to be higher than 50%. DivIVAEf also interacted 

with EF1025, as is shown previously (Chapter 2).  
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Table 4.5. DivIVAEf interaction with other divisome proteins from E. faecalis as determined by 

B2H assays. The data are the averages of at least three independent assays in triplicates. Average 

values of less than 50% indicate a positive interaction- indicated in closed boxes. 
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4.4.3. EF1025 interaction with E. faecalis divisome proteins 

 EF1025 is a previously reported DivIVAEf associating protein (Chapter 2) that affects cell 

length and shape in E. faecalis. To characterise whether EF1025 was a part of the divisome in  

E. faecalis or not, potential divisome interacting partners were identified in a B2H assay. EF1025 

failed to interact with FtsZEf, FtsQEf, FtsAEf, FtsLEf, FtsWEf, FtsIEf, or FtsBEf. However, EF1025 

showed positive interaction with DivIVAEf (44%) in the B2H assay, consistent with previous 

reports (Table 4.6; Chapter 2). 
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Table 4.6. Interaction of EF1025 with divisome proteins from E. faecalis as determined by B2H 

assay. The data are the averages of at least three independent assays in triplicates. Average values 

of less than 50% indicate a positive interaction- indicated in a box. 

 

  



126 

4.5. Discussion 

Studying protein-protein interactions (PPIs) is important since identifying interaction 

partners for a protein can help in identifying its function (Rao et al., 2014). This has led to the 

development of interactomes for various cellular processes such as cell division. Techniques like 

Yeast-two hybrid (Y2H), GST (Glutathione S-transferase)-pull down, Co-immunoprecipitation 

(Co-IP), B2H, immunofluorescence microscopy (IFM), Surface Plasmon Resonance (SPR), and 

green fluorescent protein (GFP) fluorescence microscopy have been widely used to study binary 

PPIs and deduce cell division protein interactions (Harry et al., 1995; Ma et al., 1996; Karimova 

et al., 1998; Di Lallo et al., 2001; Fadda et al., 2007; Maggi et al., 2008; Rigden et al., 2008; Zou 

et al., 2017). Results from this study show for the first time, using B2H analysis, the presence of 

various interactions in the E. faecalis divisome proteins.  

In total, 16 homo/hetero-dimer interactions were observed in proteins including FtsZEf, 

FtsAEf, FtsQEf, FtsLEf, FtsIEf, FtsWEf, DivIVAEf, and FtsBEf where many divisome members like 

FtsZEf, FtsAEf, FtsLEf, and DivIVAEf had multiple interacting partners (Fig. 4.1). This indicates 

that multiple interactions tend to stabilize the multi-protein divisome complex during cell division. 

The interactions between FtsA and FtsZ, and FtsA and FtsI, are conserved not only in Gram-

positive organisms like S. pneumoniae and S. aureus but in E. coli, a Gram-negative organism, as 

well (Karimova et al., 1998; Di Lallo et al., 2003; Maggi et al., 2008; Steele et al., 2011). This 

reflects the presence of a generic basic bacterial division multi-protein complex that is formed at 

the midcell. The homodimerization property of FtsZ, FtsB, FtsQ, and DivIVA has been reported 

in S. pneumoniae, and S. aureus also (Fadda et al., 2007; Maggi et al., 2008; Steele et al., 2011). 

Besides these, FtsA, FtsK, FtsL, and FtsL have been reported to homodimerize in S. pneumoniae, 

and S. aureus also (Fadda et al., 2007; Maggi et al., 2008; Steele et al., 2011). E. coli cell division 

interactome studies revealed homodimerization properties of FtsZEc, FtsAEc, FtsBEc, FtsQEc, 

FtsKEc, and FtsLEc (Karimova et al., 1998; Di Lallo et al., 2003). Surprisingly, FtsAEf was not found 

to self-interact in this study. DivIVA is a highly conserved, “late” cell division protein that is 

crucial for septum determination. Homologues of  B. subtilis DivIVA are present in most Gram-

positive bacteria,  interacting with different partners and performing a variety of functions (Fadda 

et al., 2003; Kang et al., 2008; Rigden et al., 2008; Donovan et al., 2012; Massidda et al., 2013; 

Kaval et al., 2014; Bottomley et al., 2017; Ni et al., 2018; Halbedel and Lewis, 2019). Of all the 
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functionally characterized DivIVA interacting proteins, none is a divisome member. We observed 

similar findings since EF1025 failed to interact with any other E. faecalis divisome proteins except 

DivIVAEf.  

When compared with cell division interactomes from Gram-negative bacteria, E. faecalis 

interactome shared four interactions i.e. FtsA-FtsI, FtsA-FtsZ, FtsB-FtsL and FtsB-FtsQ with  

E. coli divisome interactome (Karimova et al., 1998; Di Lallo et al., 2003), whereas Neisseria 

gonorrhoeae shared only one interaction between FtsA and FtsW (Zou et al., 2017). E. faecalis 

divisome interactome shared more number of key interactions with S. pneumoniae, and S. aureus, 

such as FtsZ-FtsA, FtsA-FtsL and FtsA-FtsI (Figure 4.1; Maggi et al., 2008; Steele et al., 2014). 

In comparison to S. pneumoniae interactome, the interaction of FtsZ with DivIVA and FtsL, and 

DivIVA interaction with FtsW and FtsQ are conserved (Fadda et al., 2007; Maggi et al., 2008). 

However, interactions like FtsA-FtsW, FtsL-FtsB, and FtsB-FtsQ were absent in S. pneumoniae 

but existed in S. aureus and E. faecalis (Maggi et al., 2008; Steele et al., 2011). Only one unique 

interaction i.e. FtsZEf-FtsIEf was identified in E. faecalis cell division interactome. This shows that 

although E. faecalis is a Gram-positive organism like S. pneumoniae and S. aureus, its interactome 

is unique.  

B2H is a powerful genetic technique that studies a more integrated network of overlapping 

interactions in contrast to the genetic experiments that explain sequential recruitment of proteins 

during divisome assembly (Rowlett and Margolin, 2015). Nonetheless, like any two-hybrid assay, 

B2H is also prone to false positives and negatives. Therefore, B2H is often paired with other 

rigorous methods like Co-IP and GST-pull down assay (Maggi et al., 2008; Zou et al., 2017). Di 

Lallo et al. (2003) were the first to use B2H assay to deduce the cell division interactome network 

in E. coli using nine divisome proteins (i.e. FtsZEc, FtsAEc, ZipAEc, FtsKEc, FtsQEc, FtsLEc, FtsIEc, 

FtsWEc, and FtsNEc). Karimova et al. (2005) later on expanded on this knowledge using their own 

version of a B2H assay i.e. the bacterial adenylate cyclase two-hybrid (BACTH) system, which 

relies on the reconstruction of a cyclic AMP (cAMP) signalling cascade upon interaction 

(Karimova et al., 1998). They reconfirmed all the interactions showed by Di Lallo et al. (2003) 

and included FtsB for testing possible interactions with other cell division proteins. Collectively 

in E. coli, sixteen interactions between ten cell division proteins (i.e. including FtsZEc, FtsAEc, 

ZipAEc, FtsKEc, FtsQEc, FtsBEc, FtsLEc, FtsIEc, FtsWEc, and FtsNEc) were identified (Di Lallo et al., 

2003; Karimova et al., 2005). Maggi et al. (2008) used B2H assay to test interactions between 
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eleven S. pneumoniae division proteins and reconfirmed nine interactions i.e. FtsA–FtsK, FtsA–

FtsL, FtsZ–FtsW, FtsZ–FtsQ/DivIB, FtsZ–FtsL, FtsK–FtsW, FtsL–PBP2x, FtsZ–FtsB/DivIC and 

FtsW–FtsB/DivIC using Co-IP assay.  

Co-IP is an excellent technique to study multi-protein complexes formed during cell 

division (Mackay et al., 2007). When coupled with mass spectrometry (MS), accurate detection of 

the complex components can be determined. However, producing an antibody against each protein 

in question with no cross-reactivity can be very expensive and time-consuming. Another robust 

technique to study co-complexes is tandem affinity purification-mass spectrometry (TAP-MS) 

which allows specific tagging and subsequent purification of the protein of interest along with its 

interacting partners (Berggård et al., 2007). TAP-MS can not only identify direct interaction but 

also indirect interactions between various proteins under the native conditions of the cell (Kaiser 

et al., 2008). Real-time imaging can also be performed to study the interaction of two cell division 

proteins using bimolecular fluorescence complementation (BIFC) (Pazos et al., 2013). BIFC relies 

on expressing the N-terminal and C-terminal fragments of a fluorescent protein which is non-

fluorescent but fluoresces when brought together through PPI (Hu et al., 2002). Such imaging can 

also be performed using Forster resonance energy transfer (FRET) which depends on the transfer 

of energy from a donor fluorophore to receptor fluorophore when they are in proximity (between 

1 and 8 nm), measured increase or decrease in donor emission reflects an interaction between two 

proteins (Sourjik and Berg, 2002). 

In conclusion, the first cell division interactome of E. faecalis using B2H assay has been 

produced. In comparison with the published interactomes from E. coli (Karimova et al., 1998; Di 

Lallo et al., 2003), S. aureus (Steele et al., 2011), and S. pneumoniae (Fadda et al., 2007; Maggi et 

al., 2008), the interaction pair FtsA-FtsZ and FtsA-FtsI, was conserved. We observed only one 

unique interaction pair i.e. FtsZ-FtsI, which indicates that E. faecalis divisome requires different 

stabilizing members during the process of cell division. Future work needs to focus on confirming 

these interactions using a GST-pull down or Co-IP assay. 
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Figure 4.1. Cell division interactome of (A) E. faecalis, (B) S. pneumoniae (Fadda et al., 2007; 

Maggi et al., 2008), (C) S. aureus (Steele et al., 2011), (D) N. gonorrhoeae (Zou et al., 2017), (E) 

E. coli (Di Lallo et al., 2003; Karimova et al., 2005). Red lines- conserved interaction; Dotted 

black lines- conserved interaction between E. faecalis and S. pneumoniae interactomes; Yellow 

solid line- conserved interaction between E. faecalis and S. aureus; Green dotted line- unique 

interaction; Curved arrows show self-interaction of proteins in E. faecalis. Presented interactome 

for S. pneumoniae is a compilation of original interactomes reported by Fadda et al. (2007) and 

Maggi et al. (2008). 
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Chapter 5. General conclusion and future considerations 

E. faecalis, well known for its multiple antibiotic resistance, is responsible for 70% of the 

hospital-acquired enterococcal infections worldwide (Cross and Jacobs, 1996; Hidron et al., 

2008a). Due to its additional ability to form a biofilm, catheter-related urinary tract infections are 

difficult to treat with conventional antibiotics (Mohamed and Huang, 2007). All these added 

characteristics render Enterococci as an increasingly difficult problem for society with available 

therapeutic agents in the market today. New therapeutic targets and strategies are needed to combat 

enterococcal infections that ask for an in-depth understanding of enterococcal physiology and 

genetics.  

B. subtilis served as a model organism for studying and understanding the process of cell 

division in Gram-positive bacteria for decades, and E. coli served the same role to Gram-negative 

bacteria. Researchers kept studying model organisms frequently for their convenience and made 

advancement in acquiring knowledge rapidly which resulted in the development of genetic tools, 

techniques and resources specifically for these organisms (Russell et al., 2017). As a result, 

studying model organisms surpassed studying non-model systems with time. Although major 

model organisms come with their convenience to study, aren’t necessarily the best systems for all 

possible questions.  

I present the first information about a DivIVAEf interacting protein, EF1025, in E. faecalis, 

which is predominantly conserved in Gram-positive bacteria and affects cell length and shape. The 

interaction between DivIVAEf and EF1025 was ascertained using in vivo and in vitro techniques. 

It was not possible to obtain viable cells after the deletion or insertional inactivation of EF1025 

without in trans expression of the gene. SEM and TEM images of the rescued cells displayed cell 

elongation and aberrant cell shape. My second study expanded the knowledge of the EF1025 

homologue, CcpN, in B. subtilis. This research suggests that the interaction between DivIVA and 

CcpN homologues could be highly conserved among Gram-positive microorganisms. CcpN 

interacted with DivIVABs in B2H and GST-pull down assays and insertional inactivation of ccpN 

resulted in cell elongation.  Finally, my third study reported the existence of a unique cell division 

interactome in E. faecalis. It also showed that EF1025 does not belong to E. faecalis divisome. 
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These findings collectively enhance knowledge of EF1025, a DivIVAEf interacting protein, in  

E. faecalis, thereby contributing to the overall understanding of this pathogen. 

5.1. EF1025 is a DivIVAEf interacting protein from E. faecalis 

Initially, DivIVA was proposed as the topological marker in B. subtilis where it was 

described as the replacement for MinE, a protein which provides the localization cues for targeting 

the MinCD complex to the cell poles (Cha and Stewart, 1997; Rowlett and Margolin, 2013). 

DivIVABs functions as a mid-cell determinant by attracting the MinC/MinD complex to the cell 

poles, therefore preventing cell division at the polar region (Cha and Stewart, 1997; Edwards et 

al., 2000; Edwards and Errington, 1997; Harry and Lewis, 2003; Karoui and Errington, 2001; 

Marston and Errington, 1999). DivIVABs was reported also to interact with sporulation proteins 

like RacA, Spo0J, and Soj (Ben-Yehuda et al., 2003; Wu and Errington, 2003). DivIVA interacts 

with different proteins in different Gram-positive bacterial species performing a wide variety of 

functions including synthesis of the cell wall (Nguyen et al., 2007; Kang et al., 2008), cell growth 

(Flärdh, 2010), chromosome segregation (Perry and Edwards, 2006; Fadda et al., 2007; Donovan 

et al., 2012; Bottomley et al., 2017), cell division (Bramkamp et al., 2008; Giefing et al., 2008; 

Patrick and Kearns, 2008; Mukherjee et al., 2009; Nováková et al., 2010; Ni et al., 2018), 

competence development (Briley et al., 2011; dos Santos et al., 2012), sporulation (Perry and 

Edwards, 2006; Lenarcic et al., 2009) and protein secretion (Nováková et al., 2010; Halbedel et 

al., 2012, 2014; Kaval et al., 2014; Ni et al., 2018). While there is a great deal of information about 

DivIVA interacting proteins in B. subtilis, S. pneumoniae, S. suis, S. aureus, L. monocytogenes, C. 

glutamicum, M. tuberculosis, M. smegmatis and S. coelicolor, there is no information available 

regarding DivIVA-associating proteins in E. faecalis.   

EF1025 was found to affect cell length and shape of E. faecalis cells. The rod-shape of  

B. subtilis is determined and maintained by the action of “cytoskeletal” proteins of the MreB family 

i.e. MreB, MreC and MreD, that are also involved in cell elongation (Wachi et al. 1987; Levin et 

al. 1992; Varley and Stewart 1992; Abhayawardhane and Stewart 1995). Mutations in mreB 

exhibit enhanced diameter and grew in a straight row (Carballido-Lopez, 2006). MreC and MreD 

play important functions in lateral wall growth in B. subtilis and its depletion leads to slower 

growth (Leaver and Errington, 2005). MreB associates with elongation-specific peptidoglycan 
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(PG)-synthesizing complexes that include the morphogenetic determinants, MreC and MreD, 

flippase RodA, Penicillin Binding Proteins (PBPs), and peptidoglycan hydrolases (Carballido-

López and Formstone, 2007; White et al., 2010). The other interacting partners included GpsB, a 

major PG synthesis regulator, and translation initiation factor EF-Tu (Soufo et al., 2010; Cleverley 

et al., 2019). Ovococcal species like S. pneumoniae, L. lactis, and E. faecalis do not produce MreB 

homologue but encodes MreC and MreD (Land and Winkler, 2011). MreC and MreD localized at 

the equator and septa of the dividing S. pneumoniae and their depletion results in cell rounding 

and lysis (Land and Winkler, 2011). The association of MreC and MreD with other possible 

members of the elongation machinery in S. pneumoniae is yet to be studied. E. faecalis also 

contains homologues of MreC and MreD, GpsB, RodA and various PBPs (unpublished work). 

Future work needs to focus on testing the interaction of EF1025 with these members of elongation-

specific machinery in E. faecalis to achieve a better understanding of how cell elongation happens 

in this organism. 

5.2. EF1025 homologue in B. subtilis, CcpN, also interacts with DivIVABs 

 EF1025 is predominantly conserved in Gram-positive bacterial species. The EF1025 

homologue in B. subtilis, CcpN, is a transcriptional regulator of gluconeogenic genes (Servant et 

al., 2005). EF1025 and CcpN share 41% homology and belongs to the CBS superfamily by 

possessing an HTH domain at N-terminal and two CBS domains at the central and C-terminal. 

CcpN has been extensively studied for its function in the downregulation of gapB, pckA and sr1 

in the presence of glucose (Licht et al., 2005; Servant et al., 2005). I report another interacting 

partner of DivIVABs and an additional novel function of CcpN in B. subtilis. 

 B2H and GST-pull down assays showed that CcpN interacted with DivIVABs. Surprisingly, 

EF1025 also interacted with DivIVABs in a heterologous interaction. Such an observation shows 

that the interaction between DivIVA and EF1025 homologues might be highly conserved among 

Gram-positive microorganisms and are not species-specific. It would be interesting to study if such 

conserved interaction is due to the presence of the HTH and CBS domains among all EF1025 

homologues or just the two CBS domains at the central and C-terminus. CcpN has been reported 

to utilize its HTH domain to bind to the conserved upstream promoter regions of gapB and pckA 



133 

for transcriptional regulation (Licht et al., 2005; Servant et al., 2005; Tännler et al., 2008; Licht 

and Brantl, 2009), but no research has focused on CBS domains in CcpN. 

Insertional inactivation of ccpN was not lethal to B. subtilis (i.e. Bs 1685) in contrast to 

EF1025 insertional inactivation of deletion in E. faecalis. B. subtilis 1685 cells were longer when 

observed using SEM or AFM. The strains developed by Servant et al. (2005) to study the effects 

of ccpN disruption in the transcription of gapB and pckA also reflected similar cell elongation. No 

elongation was observed in the control strain B. subtilis PS1649 with a disrupted pckA. This 

showed that the cell elongation phenotype was exclusive to the strains containing a disruption of 

ccpN expression. These strains also showed failed segregation and were observed to form long 

chains with closely attached cells. The failure to segregate was also observed in E. faecalis rescued 

cells (i.e. E. faecalis MJ26) with a complemented copy of EF1025. This shows that these 

phenotypes are specific to a function that might be played by CcpN in B. subtilis, and EF1025 in 

E. faecalis.  

5.3. E. faecalis cell division interactome is unique 

 Bacterial divisomes are dynamic hyperstructures whose assembly is mediated by multiple 

protein interactions that exist between various cell division proteins (de Boer, 2010; Lutkenhaus 

et al., 2012; Egan and Vollmer, 2013). Using techniques like Y2H, GST-pull down, Co-IP, B2H, 

immunofluorescence microscopy (IFM), Surface Plasmon Resonance (SPR), and green 

fluorescent protein (GFP) fluorescence microscopy, binary protein-protein interactions among 

various cell division proteins have been studied (Harry et al., 1995; Ma et al., 1996; Karimova et 

al., 1998; Di Lallo et al., 2001; Fadda et al., 2007; Maggi et al., 2008; Rigden et al., 2008; Zou et 

al., 2017). This has lead to the development of cell division networks/interactomes for E. coli 

(Karimova et al., 1998; Di Lallo et al., 2003), N. gonorrhoeae (Zou et al., 2017), S. aureus (Steele 

et al., 2011), and S. pneumoniae (Fadda et al., 2007; Maggi et al., 2008).  

 Using B2H assay, protein-protein interactions among eight essential divisome proteins i.e. 

FtsZEf, FtsAEf, FtsQEf, FtsLEf, FtsIEf, FtsWEf, DivIVAEf, and FtsBEf, were tested to establish the 

very first cell division interactome of E. faecalis. The interaction between FtsZ and FtsA, and FtsA 

and FtsI was conserved when compared with interactomes from E. coli, S. aureus, and  

S. pneumoniae. However, E. faecalis and N. gonorrhoeae shared only interaction i.e. FtsZ-FtsA. 
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Proteins like FtsZEf, FtsQEf, FtsBEf, FtsWEf, and DivIVAEf exhibited self-interaction. FtsZ has been 

reported to self-interact from all FtsZ homologue containing bacterial species. The self-interaction 

ability of FtsQ and FtsB has been reported from E. coli, S. aureus, and S. pneumoniae (Karimova 

et al., 1998; Maggi et al., 2008; Steele et al., 2011), but is absent for FtsW. S. pneumoniae and  

E. faecalis DivIVA has been also reported to self-interact but no such information is available for 

DivIVASa (Fadda et al., 2003; Ramirez-Arcos, 2005; Rigden et al., 2008). Surprisingly, the self-

interaction of FtsAEf was absent but have been reported for FtsA from E. coli, S. aureus, and S. 

pneumoniae (Karimova et al., 1998; Di Lallo et al., 2001; Maggi et al., 2008; Steele et al., 2011).  

Using Co-IP, Buddelmeijer and Beckwin (2004) showed the formation of a trimeric 

complex by three membrane proteins i.e. FtsQ, FtsL, and FtsB, in E. coli and B. subtilis before 

their migration to the midcell position (Buddelmeijer and Beckwith, 2004). In E. faecalis, a 

positive interaction was observed between FtsQEf-FtsBEf, and FtsBEf-FtsLEf but no interaction 

between FtsQEf and FtsLEf was observed. This could be because the interaction between FtsQEf 

and FtsLEf is dependent on a stable interaction between FtsBEf with either FtsQEf or FtsLEf. This 

observation was in line with Steele et al. (2011) where similar interactions were observed in  

S. aureus. Future studies can focus on investigating such ternary protein complexes using Co-IP, 

TAP-MS and bacterial three-hybrid systems. The interactome observed for E. faecalis cell 

divisome proteins was very different from E. coli cell division interactome. However, the  

E. faecalis divisome interactome exhibited a blend of conserved interactions among S. pneumoniae 

and S. aureus cell division proteins with only one unique interaction between FtsZEf and FtsIEf. 

This study also showed that EF1025 is not a member of the E. faecalis divisome. This reflects that 

the majority of the DivIVA interacting partners from various bacterial species are not a part of the 

divisome. DivIVASp has been reported to interact with FtsZSp, FtsQSp, and FtsWSp, however, the 

precise function of such interactions is yet to be explained (Fadda et al., 2007). To further validate 

this interactome more efficient and sensitive methods like GST-pull down, Co-IP, and SPR assays, 

need to be employed.  

5.4. Limitations of this research 

This research does not include the specific function of the distinct domains of EF1025 i.e. HTH 

domain and CBS domains. Although, the two CBS domains together interacted with DivIVAEf 
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and are responsible for the self-interaction property of EF1025, the precise function of CBS 

domains in EF1025 is unknown. EF1025 homologue in B. subtilis, CcpN, is a transcriptional 

regulator which utilizes its HTH domain to bind to the conserved upstream promoter regions of 

gapB and pckA (Licht et al., 2005; Servant et al., 2005; Tännler et al., 2008; Licht and Brantl, 

2009). Preliminary bioinformatic searches have shown that the conserved upstream promoter 

sequences from B. subtilis are absent for its homologues in E. faecalis (i.e. type I gapB and pckA). 

This might reflect that EF1025 might be regulating the expression of a different set of genes. Thus, 

it is necessary to investigate the function of the HTH domain in E. faecalis. Future studies should 

also include studying the effects of ccpN overexpression on B. subtilis cell morphology. The cell 

division interactome of E. faecalis included eight divisome proteins (i.e. FtsZEf, FtsAEf, FtsQEf, 

FtsLEf, FtsIEf, FtsWEf, DivIVAEf, and FtsBEf )  but did not include other divisome protein 

homologues of FtsK, EzrA and ZapA that are present in E. faecalis. Potential interactions of the 

E. faecalis FtsK, EzrA and ZapA with other divisome proteins can be examined using B2H and 

GST-pull down assay to obtain a complete divisome interactome for E. faecalis. 
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Appendix 

A. Ascertaining the interaction between EF1025 and DivIVAEf using steady-state anisotropy 

and Surface Plasmon Resonance (SPR) assay. 

The interaction between EF1025 and DivIVAEf was ascertained using B2H, GST-pull 

down and co-immunoprecipitation previously in Chapter 2. These assays were qualitative and did 

not permit the quantification of these protein interactions in the micro- and nanomolar 

concentration range (James and Jameson, 2014; Douzi, 2017).  To understand the binding affinities 

and association/dissociation kinetics of the protein complexes formed when EF1025 interacted 

with DivIVAEf, steady-state anisotropy and SPR was used. In steady-state anisotropy,  

Material and methods 

His-EF1025 or GST-DivIVAEf fusions were overexpressed in E. coli BL21 cells and 

purified to homogeneity as described in Chapter 2. His-DivIVAEf (Rigden et al., 2008) was 

overexpressed in E. coli C41 cells and purified to homogeneity as previously described (Rigden et 

al., 2008). GST-tag was removed from GST-DivIVAEf by digestion with Thrombin (Thermofisher, 

CA) and was used for steady state anisotropy fluorescence measurement experiment which 

measures any change in the intensity of fluorescence of a fluorophore-labeled protein when it 

interacts with the unlabelled protein.  

A steady-state rotational anisotropy experiment was performed to test the interaction 

between DivIVAEf and EF1025. EF1025 was labelled with Flourscein EX dye as per manufacturer 

instructions (Thermofischer, CA) and titrated against unlabeled His-DivIVAEf in a QuantaMaster 

QM-4 spectrofluorometer (Photon Technology International, USA) with a dual emission channel 

to collect data and calculate anisotropy. The sample was excited with vertically polarized light at 

495 nm (6 nm band pass). Vertical and horizontal emissions were measured at 520 nm (6 nm band 

pass) to calculate the change in anisotropy. Flourscein labelled EF1025 was found to be highly 

unstable so DivIVAEf without GST-tag was labelled with Flourscein EX dye and titrated against 

unlabeled His-EF1025 to observe a change in anisotropy. 

For SPR spectrometry, purified His-EF1025 and GST-DivIVAEf were used to test for 

potential protein-protein interactions using a Bio-Rad XPR36 (Bio-Rad Laboratories, CA) 

instrument with ProteOnTM HTE and GLC sensor Chips (Bio-Rad Laboratories, CA). For HTE 
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chip: chip surface was regenerated (0.5% SDS, 50 mM NaOH, 100 mM HCl and 300 mM EDTA), 

activated (500 μM of NiSO4) and immobilized with His-EF1025 as ligand molecule at a 

concentration of 100 nM. This chip was then flooded with a one-fold dilution of analyte protein 

(GST-DivIVAEf) in PBST buffer (PBS buffer with Tween-20 i.e. 137 mM NaCl, 2.7 mM KCl, 10 

mM Na2HPO4, 1.8 mM KH2PO4, 0.1% BSA, 0.05% Tween-20, pH 7.9), followed by an injection 

of PBST buffer. A reference channel flowed with only PBST buffer, and a chip surface 

immobilized with His-EF1025 flowed with GST in PBST served as negative controls. For the GLC 

sensor chip: immobilization step was performed using an anti-GST antibody (Genscrpit, USA) 

which was then coupled to DivIVAEf and was flooded with analyte protein (i.e. His-EF1025) for 

binding experiments. Each experiment was performed in triplicates and titrated with 10-12 

dilutions of the unlabelled protein. 

All SPR data were analyzed with ProteOn Manager™ (Bio-Rad Laboratories) to test the 

binding affinity of these two proteins and calculate any change in the response Units (RU) due to 

the interaction between ligand and analyte molecule. The raw signal detected by the machine for 

was first subtracted from the signal from interspot that did not have immobilized proteins (EF1025 

or DivIVAEf) and then from the reference channel. Then, the signal was subtracted with the RU 

signal with running buffer and ligand immobilized on the chip.   

Results and discussion 

A change in anisotropy was observed when unlabeled EF1025 was titrated against 

unlabeled DivIVAEf but a saturation stage could not be achieved. During the experiment, the initial 

change in anisotropy was slow but data points were scattered (data not shown). A small change in 

anisotropy was observed when the anisotropy for an unbound fraction (no GST-DivIVAEf) was 

subtracted from bound fraction (with GST-DivIVAEf) (Fig. A.1). A similar observation was made 

when labelled DivIVAEf was titrated with EF1025, therefore, a change in anisotropy was calculated 

for the bound and unbound fractions of EF1025. An interaction between DivIVAEf, a decamer 

(Ramirez et al., 2008) and EF1025, a decamer (this study) might collectively be forming a massive 

complex. Such a small change in total anisotropy could have been due to the breakdown of one 

decamer into monomeric units which might be associating with each other. Weak binding between 

DivIVAEf and EF1025 could have caused the monomeric units to reassemble therefore a lack of 

an equilibrium stage. Such a breakdown and re-assemblage will maintain a total change in 
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anisotropy of the complex as constant. Although a change in anisotropy was detected, labelled 

EF1025 was observed to be unstable during titration.  

In SPR, the sensorgram for EF1025 binding to DivIVAEf indicated nonspecific binding of 

EF1025 to the interspot/empty regions when HTE or the GLC sensor chip was used (Fig. A.2). To 

minimize nonspecific binding of EF1025 to the chip surface, various concentrations of bovine 

serum albumin (BSA), Arginine, and Glutathione S-transferase (GST) were used in the running 

buffer. A small decrease in non-specific interactions was observed, however, after comparing with 

reference channels, the interaction was inconclusive due to the presence of non-specific 

interactions. This indicated that SPR was not a suitable technique to study this interaction.  
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Figure A.1. Binding affinities of EF1025 and DivIVAEf. (A) DivIVAEf was used as a substrate 

where EF1025 was fluorescently labelled. A change in anisotropy occurred when titrated with 

increasing concentrations of EF1025. The unbound fraction indicates anisotropy recorded for 

fluorescently labelled EF1025 without the substrate (i.e. DivIVAEf). B. EF1025 was used as a 

substrate where DivIVAEf was fluorescently labelled. A comparatively lower change in anisotropy 

was observed when titrated with the substrate. Values are an average from three independent 

experiments.  
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A. 

  

B.  

 

Figure A.2. SPR measurement for studying the interaction of EF1025 with DivIVAEf using a GLC 

chip. 10uM GST tagged DivIVAEf (ligand) was immobilized and flooded with 22uM of His-

EF1025 (analyte). A. Response units recorded for “Reference” channel without immobilized GST 

tagged DivIVAEf. B. Response unit recorded for “Test” channel flooded with His-EF1025. The 

reference channel and test channel recorded similar RU for the interaction.  
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B. Generation of a plasmid construct where the control the expression of EF1025 is under a 

Nisin inducible promoter using the vector pMSP3545 and transform it into E. faecalis JH2-

2 cells to study the effect of EF1025 expression on E. faecalis morphology. 

 Previously showed that insertional inactivation or deletion of EF1025 resulted in the loss 

of viability of E. faecalis unless the gene was complemented by in trans EF1025 expression. To 

control the expression of EF1025 in E. faecalis using the plasmid pMSP3545, which utilizes a 

nisin-controlled expression (NICE) system due to the presence of nisR and nisK, and a nisin 

inducible promoter (Pnis) (Bryan et al., 2000). The products of nisR and nisK constitute a regulator 

which allow transcription from Pnis in the presence of nisin. pMSP3545 has an erythromycin 

marker and can replicate in E. coli as well as in E. faecalis. 

Materials and methods 

To clone EF1025 under the control of Pnis, EF1025 was PCR amplified using primer pair 

EF1025npF/R (Chapter 2- Table S3D) from E. faecalis genomic DNA and was digested with NcoI 

and XbaI restriction enzymes. pMSP3545 was digested using NcoI and XbaI restriction enzymes. 

Digested EF1025 and pMSP3545 were ligated and electroporated into electrocompetent  

E. faecalis JH2-2 cells as previously described (Ramirez-Arcos, 2005), creating the strain  

E. faecalis NIE1. Transformants were selected on LB plates supplemented with erythromycin 150 

µg/mL. Transformed colonies were isolated and tested for the presence of EF1025 downstream of 

Pnis using primer pair EF1025npF/PnisA (Chapter 2- Table S3D and AATCTATGTTACTAAA) 

followed by DNA sequencing.  

To express EF1025 in E. faecalis NIE1, E. faecalis NIE1 was grown in five tubes for 8-10 

hrs, each containing 10 ml of BHI broth with nisin in the concentration range of 0 ng/mL to 25 

ng/mL. To identify EF1025 expression levels, cells from each tube were centrifuged and lysed in 

5 mL of PBS buffer containing 0.1mg/mL of lysozyme (Sigma, CA). An added step of sonication 

was performed to ensure cell lysis. Cell lysate containing a known amount of total cell protein was 

loaded on a 12% SDS-PAGE for separation followed by Western blotting using anti-EF1025 

antibody as described previously (Ramirez-Arcos, 2005). Nisin inducible overexpression was also 

tested at concentration range 50 ng/mL and 100 ng/mL.  
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Results and discussion 

 Cloning was successful as confirmed by DNA sequencing. However, western blotting 

revealed no change in the expression levels of EF1025 when induced with the highest 

concentration of nisin (i.e. 25 ng/mL; Fig. B.1). All samples (induced or non-induced) showed a 

band corresponding to EF1025 of equal intensity when blotted with the anti-EF1025 antibody. 

Due to unknown reasons, Pnis was observed to have a leaky expression of EF1025. At higher 

concentrations of nisin (>50 ng/mL), precipitated cell aggregates at the bottom of the growth 

medium were observed.  
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Figure B.1. Western blot probed with the anti-EF1025 antibody showing expression of EF1025 in 

E. faecalis NIE1 when induced with nisin. Lane 1- Protein ladder; Lane 2- non-induced E. faecalis 

NIE1 showing a 25 kDa band; Lane 3-7: samples induced with nisin at concentrations 5 ng/mL, 

10 ng/mL, 15 ng/mL, 20 ng/mL and 25 ng/mL. 20 kDa band is a non-specific band. 
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C. Ascertaining the interaction between CcpN and DivIVA from B. subtilis using Surface 

Plasmon Resonance (SPR) assay. 

In Chapter 3, the interaction between CcpN and DivIVABs was ascertained using B2H and 

GST-pull down. I was interested in understanding the quantitative aspects of this interaction, 

therefore, SPR was used to quantify the binding affinities and association/dissociation kinetics of 

the protein complexes formed when CcpN interacted with DivIVABs.  

Materials and method: 

GST-DivIVABs or 6His-CcpN fusions were overexpressed in E. coli C41 (DE3) and 

purified to homogeneity as described previously in Chapter 3.  A fraction of purified GST-tagged 

DivIVABs was also subjected to Thrombin cleavage to remove GST-tag for SPR experiment. 

Potential interaction between His-CcpN and DivIVABs was examined by SPR using the Reichert 

2SPR instrument with Gold plain sensor chips having HTE and GLC sensor coating (Reichert 

Technologies). HTE chip surface was regenerated (0.5% SDS, 50 mM NaOH, 100 mM HCl and 

300 mM EDTA), activated (500 μM of NiSO4) and immobilized with 10 µM of DivIVABs as ligand 

molecule. This immobilized chip was then flooded with 22 µM of analyte protein (His-CcpN) at a 

flow rate of 30 μl/min in PBST buffer (PBS buffer with Tween-20 i.e. 137 mM NaCl, 2.7 mM 

KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, 0.1% BSA, 0.05% Tween-20, pH 7.9), followed by an 

injection of PBST buffer. A reference channel flowed with only PBST buffer, and a chip surface 

immobilized with DivIVABs flowed with GST in PBST served as negative controls. For GLC 

sensor chip, immobilization step was performed using anti-GST antibody which was then flooded 

with 50 µM GST-DivIVAEf and was then flooded with 22 µM of analyte protein (i.e. His-CcpN) 

for binding experiments. 

The sensorgram (i.e. a representation of the response unit versus time) was produced using 

SPR data that was analyzed with ProteOn Manager™ (Bio-Rad Laboratories) as previously 

discussed.   

Results and discussion: 

The sensorgram for CcpN binding to DivIVABs indicated a positive interaction when the 

HTE chip was used, although an equilibrium stage was absent (Fig. C.1). To improve the 

sensorgram, higher concentration of CcpN (25 µM and above) was used which resulted in the loss 
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of interaction. When a high flow rate (i.e. 30 μl/min) and a low concentration (i.e. 22 µM) of CcpN 

was used, this interaction was restored. A reduction in flow rate for the analyte protein 15 μl/min 

also resulted in the loss of this interaction. Interaction processes usually dominate more at higher 

flow rates, since mass transport is faster (Karlsson and Fält, 1997). The loss of interaction at higher 

concentrations of His-CcpN could be due to the aggregation of CcpN since CcpN was found to 

precipitate at higher concentrations (>2 mg/mL) during purification protocol. No interaction was 

observed when the GLC chip was used. Such third-party interaction showed very high non-specific 

binding to the chip surface as was noticed in Appendix A.1. 
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Figure C.1. SPR measurement for DivIVABs and CcpN interaction after subtracting reference 

channel RUs from Test channel. 10 µM DivIVABs (ligand) was immobilized and flooded with 22 

µM of His-CcpN (analyte). Red line- “Reference” channel with no immobilized DivIVABs; Black 

line- test channel with captured His-CcpN. Response unit recorded for “Test” channel after 

subtracting RUs from the reference channel. Test channel shows the change in RUs, hence a 

positive interaction. 

 

 


