
,

Towards New High-Order Operator Splitting

Time-Integration Methods

A dissertation submitted to the

College of Graduate and Postdoctoral Studies

in partial pulfillment of the requirements

for the degree of Doctor of Philosophy

in the Department of Mathematics and Statistics

University of Saskatchewan

Saskatoon

By

Jessica Cervi

©Jessica Cervi, February/2020. All rights reserved.

Permission to Use

In presenting this dissertation in partial fulfillment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this dissertation in any manner, in whole or in part,

for scholarly purposes may be granted by the professor or professors who supervised my dissertation work or,

in their absence, by the Head of the Department or the Dean of the College in which my dissertation work

was done. It is understood that any copying or publication or use of this dissertation or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood that due recognition

shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any

material in my dissertation.

Disclaimer

Reference in this dissertation to any specific commercial products, process, or service by trade name,

trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation,

or favoring by the University of Saskatchewan. The views and opinions of the author expressed herein do

not state or reflect those of the University of Saskatchewan, and shall not be used for advertising or product

endorsement purposes.

Requests for permission to copy or to make other uses of materials in this dissertation in whole or part should

be addressed to:

Head of the Department of Mathematics and Statistics

142 McLean Hall

106 Wiggins Road

University of Saskatchewan

Saskatoon, SK S7N 5E6 Canada

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9 Canada

i

Abstract

Operator splitting (OS) methods represent a powerful strategy to solve an extensive range of mathematical

models in the form of differential equations. They have a long and celebrated history, having been successfully

used for well over half a century to provide efficient numerical solutions to challenging problems. In fact, OS

methods are often the only viable way to solve many problems in practice.

The simplest, and perhaps, most well-known OS methods are Lie–Trotter–Godunov and the Strang–

Marchuk methods. They compute a numerical solution that is first-, and second-order accurate in time,

respectively. OS methods can be derived by imposing order conditions using the Campbell–Baker–Hausdorff

formula. It follows that, by setting the appropriate order conditions, it is possible to derive OS methods

of any desired order. An important observation regarding OS methods with order higher than two is that,

according to the Sheng–Suzuki theorem, at least one of their defining coefficients must be negative. Therefore,

the time integration with OS methods of order higher than two has not been considered suitable to solve

deterministic parabolic problems, because the necessary backward time integration would cause instabilities.

Throughout this thesis, we focus our attention on high-order (i.e., order higher than two) OS methods.

We successfully assess the convergence properties of some higher-order OS methods on diffusion-reaction

problems describing cardiac electrophysiology and on an advection-diffusion-reaction problem describing

chemical combustion. Furthermore, we compare the efficiency performance of higher-order methods to second-

order methods. For all the cases considered, we confirm an improved efficiency performance compared to

methods of lower order.

Next, we observe how, when using OS and Runge–Kutta type methods to advance the time integration, we

can construct a unique extended Butcher tableau with a similar structure to the ones describing Generalized

Additive Runge–Kutta (GARK) methods. We define a combination of methods to be OS-GARK methods.

We apply linear stability analysis to OS-GARK methods; this allows us to conveniently analyze the stability

properties of any combination of OS and Runge–Kutta methods. Doing so, we are able to perform an

eigenvalue analysis to understand and improve numerically unstable solutions.

ii

Acknowledgements

First of all, I want to thank my supervisor, Professor Raymond J. Spiteri, for his continuous support and

deep knowledge throughout the course of this degree. Most of the work presented in this thesis would not

have been possible without his guidance.

It has also been a privilege to have such a distinguished committee. In particular, I want to thank

Professor Higueras, Professor Ko, Professor Patrick, and Professor Szmigielski for their valuable comments

that helped me improve the quality of this thesis. I also appreciate the help and support I received from the

faculty, students, and staff at the Departments of Mathematics and Statistics.

Thanks to my parents, Ombretta and Silvano Cervi, and all my family back home. It has not been easy

being so far from home; probably more so for them than for me. Their continuous support for my education,

sense of encouragement, and wisdom have helped me more than they will ever be able to understand. I will

never be able to express my gratitude with words.

Last, I want to thank you all the friends I have made since I moved here. The list of names would be

to long to write here, but you are all in my mind, always. They showed me love, friendship, and support.

Some have seen the best and worse of me, but none of them has ever stopped supporting me. They always

encouraged me to move forward, one day at a time. I consider myself truly lucky and blessed to have them

in my life.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables v

List of Figures vii

List of Abbreviations viii

1 Introduction 1
1.1 Contributions of the Thesis . 2
1.2 Structure of the Thesis . 3

2 Literature Review of Operator Splitting Methods 4
2.1 Theoretical Background . 4

2.1.1 Positivity Preservation . 7
2.1.2 Treatment of Boundary Conditions . 8

2.2 A Brief History of Operator Splitting Methods . 9
2.2.1 Alternating Implicit Direction Methods . 11
2.2.2 Second-Order Operator Splitting Methods . 13
2.2.3 Higher-Order Operator Splitting Methods . 14
2.2.4 Operator Splitting Methods with Complex Coefficients 23
2.2.5 Operator Splitting Methods used in the Numerical Experiments 27

3 On the Stability of Operator Splitting Methods 28
3.1 Motivation . 28
3.2 A General Result About Stability of Splitting Methods . 31
3.3 Examples . 37
3.4 Order Conditions . 43

4 Numerical Experiments 46
4.1 Cardiac Electrophysiology: Bidomain and Monodomain Models 46

4.1.1 Accuracy . 50
4.1.1.1 1D experiments . 50
4.1.1.2 3D experiments . 51

4.1.2 Efficiency comparison on the Niederer benchmark problem 53
4.2 Advection-Diffusion-Reaction Combustion model . 55
4.3 The Brusselator Problem . 58

5 Conclusions and Future Work 61
5.1 Conclusions . 61
5.2 Future Work . 62

Bibliography 63

iv

List of Tables

2.1 Coefficients α[l]
k , l = 1, 2, k = 1, 2, 3, for the R3 method. 15

2.2 Coefficients α[l]
k l = 1, 2, k = 1, 2, 3, 4, for the Y4 method. 16

2.3 Number of order conditions and free parameters for type NS and S OS methods. 17
2.4 Coefficients α[l]

k , l = 1, 2, k = 1, 2, . . . , 6, for the M4 method. 18
2.5 Coefficients α[l]

k , l = 1, 2, k = 1, 2, . . . , 5, for the DS4 method. 19
2.6 Coefficients α[l]

k , l = 1, 2, k = 1, 2, . . . , 9, for the SS3 method. 20
2.7 Coefficients α[l]

k , l = 1, 2, k = 1, 2, 3, 4, for the BM4 method. 21
2.8 Coefficients α[l]

k , l = 1, 2, k = 1, 2, 3, for the AKS3 method. 23
2.9 Coefficients α[l]

k , l = 1, 2, k = 1, 2, 3, for the C3 method. 24
2.10 Coefficients α[l]

k , l = 1, 2, k = 1, 2, 3, 4, for the CCDV4 method. 25
2.11 Coefficients α[l]

k l = 1, 2, k = 1, 2, 3, for the AKS3C method. 25
2.12 Coefficients α[l]

k l = 1, 2, k = 1, 2, 3, for the AKS3CP method. 26
2.13 Coefficients α[i]

j , l = 1, 2, k = 1, 2, . . . , 5, for the AK4 method. 26
2.14 Summary of OS methods used in the numerical experiments 27

3.1 Coefficients α[i]
j , i, j = 1, 2, 3 for the AK3-2 method. 37

3.2 Coefficients α[i]
j for the G1 method. 41

4.1 Convergence of the SS3 method applied to the monodomain model in one dimension using the
FHN and the TTP epicardial cell models. 51

4.2 Convergence of the AKS3 method applied to the monodomain model in one dimension using
the FHN and the TTP epicardial cell models. 51

4.3 Convergence for the R3 method applied to the monodomain model in one dimension using the
LR1 and the TTP epicardial cell models. 51

4.4 Convergence for the Y4 method applied to the monodomain model in one dimension using the
LR1 and the TTP epicardial cell models. 51

4.5 Convergence for the SS3 method applied to the bidomain model in three dimensions using the
LR1 and the TTP epicardial cell models. 52

4.6 Convergence for the AKS3 method applied to the bidomain model in three dimensions using
the LR1 and the TTP epicardial cell models. 52

4.7 Convergence for the R3 method applied to the bidomain model in three dimensions using the
LR1 and the TTP epicardial cell models. 52

4.8 Convergence for the Y4 method applied to the bidomain model using the LR1 and the TTP
epicardial cell models. 52

4.9 Difference in activation times from P1–P8 and [MRMS]v error between the reference solution
and the solution computed using the SI method for various spatial and temporal resolutions. 54

4.10 Difference in activation times from P1–P8 and [MRMS]v error between the reference solution
and the solution computed using the SS3 method for various spatial and temporal resolutions. 54

4.11 Efficiency comparison between the second- and third-order methods applied to the Niederer
benchmark problem. 55

4.12 Efficiency comparison of the Y4, CCDV4, and AK4 OS methods on the Niederer benchmark
problem. 55

4.13 Convergence of the R3, C3, and AKS3CP methods applied to the ADR problem with the
advection term (δ = 1). 57

4.14 Convergence of the Y4 and CCDV4 methods applied to the ADR problem with the advection
term (δ = 1). 57

v

4.15 Efficiency comparison between the R3, C3, and AKS3CPmethods applied to the ARD combustion
problem without, (δ = 0), and with, (δ = 1), advection term. The table displays the maximum
constant time step that maintained [MRMS]c ≤ 5%. 58

4.16 Efficiency comparison between the Y4 and CCDV4 methods applied to the ARD combustion
problem without, (δ = 0), and with, (δ = 1), advection term. The table displays the maximum
constant time step that maintained [MRMS]c ≤ 5%. 58

vi

List of Figures

2.1 Schematic of a two-stage, 2-additive OS method. The solid lines denote the sub-flows, and the
dashed lines denote the transfer of solution information between sub-flows. 6

2.2 Schematic of the Lie–Trotter–Godunov method. The blue solid line denotes the flow of the
first sub-system, the dashed line denotes the transfer of solution information between sub-flows,
and the red line denotes the flow of the second sub-system. 10

2.3 Schematic of the SM2 OS method. The solid lines denote the sub-flows and the dashed lines
denote the transfer of solution information between sub-flows. 14

4.1 Summary of points over the cuboidal domain at which activation times were evaluated. . . . 53
4.2 Solution of the variable T in the Brusselator problem solved with the combined-SM2 OS for

∆t = 0.25. The reference solution is also plotted. 59
4.3 Solution of the variable C in the Brusselator problem solved with the combined-SM2 OS for

∆t = 0.25. The reference solution is also plotted. 59
4.4 Eigenvalues of the reference solution and stability regions of the combined-SM2 OS when using

Heun’s method on both operators with ∆t = 0.25. 60
4.5 Eigenvalues of the reference solution and stability regions of the SM2 OS when using Heun’s

method on both operators with ∆t = 0.25. 60

vii

List of Abbreviations

OS Operator Splitting

IC Initial Condition

BC Boundary Condition

PDE Partial Differential Equation

CBH Campbell-Baker–Hausdorff

G1 Godunov method

ADI Alternating Direction Implicit

SM2 Strang–Marchuk method

R3 Ruth method

Y4 Yoshida method

RK Runge–Kutta

M4 McLachlan method

DS4 Descombes method

S3 Sornborger method

B4 Blanes method

AKS3 Auzinger–Ketchenson–Suzuki method

C3 Chambers third-order method

C4 Chambers fourth-order method

AKS3C Auzinger–Ketchenson–Suzuki method with complex coefficients

RK Runge–Kutta

SDIRK Singly Diagonal Implicit Runge–Kutta method

ARK Additive Runge–Kutta method

GARK Generalized Additive Runge–Kutta method

ADR Advection-Diffusion-Reaction

BE Backward Euler

FE Forward Euler

ERK3 Explicit third-order Runge–Kutta method

ERK4 Explicit fourth-order Runge–Kutta method

SDIRK2O3 Third-order SDIRK method with two stages

SDIRK3O4 Fourth-order SDIRK method with three stages

viii

1 Introduction

Operator splitting (OS) methods represent a powerful strategy to solve an exceptionally broad range of

mathematical models in the form of differential equations. They have a long and celebrated history, having

been successfully used for well over half a century to provide efficient numerical solutions to challenging

problems, and they remain an active area of research effort; see, e.g., [Yan71, Mar90, HV03, GMS06, GOY16]

and references therein, for thorough expositions of methods and applications. In particular, compelling

applications of OS methods come from diverse areas of science and engineering, including direct numerical

simulation of particulate and free-surface flows [GPH+01], quantum mechanics [BJM02, Tha08], reactive

flows [OB05], real-time simulation of fuel cells [KIFS10], chemotaxis [TSL00, GV02], and cardiac simulations [CS18a,

CS18b, STZ16, ZMSS14], to name only a few. In fact, OS methods are often the only viable way to solve

many problems in practice.

The simplest, first, and, perhaps most well-known OS methods is the Lie–Trotter–Godunov method

[LE70, Tro59, God59]. The Lie–Trotter–Godunov method splits the original problem into two sub-problems,

performs an integration on each operator at each time-step, and computes a numerical solution that approximates

the exact solution to a degree which is first-order accurate. Another well-known OS method is the one

discovered independently by Strang [Str68] and Marchuk [Mar71]. This method was derived based on a

symmetrization principle by carrying out two half steps of the Lie–Trotter–Godunov method with reversed

sequence. The Strang–Marchuk method computes a numerical solution that is second-order accurate.

Although the Lie–Trotter–Godunov and the Strang–Marchuk methods are the most famous splitting

methods, it is possible to derive OS method of any desired order. To do so, it is necessary to impose

order conditions to guarantee the proper order of convergence. Such order conditions can be derived by

approximating the product of the sub-flows of the sub-problems obtained via OS using the Campbell–

Baker–Hausdorff formula to get a series of commutators in powers of the time-step [HLW06]. This way,

the Campbell–Baker–Hausdorff formula can be used to derive order conditions to obtain OS methods of any

order. One important observation is that, when deriving an OS method of order higher than two, at least

one of the defining coefficients that characterize an OS method must be negative. This result was proven

independently by Sheng [She89] and Suzuki [Suz91] in 1989 and 1991, respectively, and, later, by Goldman

and Kaper [GK96], who showed that each operator must have a negative coefficient.

Both the Lie–Trotter–Godunov and the Strang OS methods do not have negative coefficients. For this

reason, these methods are considered stable for solving problems where the differential equation is well-posed

for forward time integration. In fact, the presence of negative coefficients translates into a need for backward

1

time integration, which is unstable for solving deterministic parabolic systems.

Throughout this thesis, we focus our attention on high-order (i.e., order higher than two) OS methods.

We start by assessing the convergence properties of some higher-order OS methods on one- and three-

dimensional reaction-diffusion problems describing cardiac electrophysiology via the bidomain [SLC06] and

monodomain [Tun78] models. In all the problems, expected rates of convergence of high-order OS methods are

successfully demonstrated on different examples with a variety of initial conditions and cell models, including

the Niederer benchmark problem [NKB+11]. Having established the proper order of convergence of high-order

OS methods, we focus our attention on their efficiency performance. Results show that using higher-order

OS methods reduces the CPU time needed to complete the simulations by 20% to 40% depending on the

problem considered. We successfully conduct similar experiments to verify the convergence and the efficiency

of higher-order OS on an advection-diffusion-reaction problem describing chemical combustion [BCP11]. The

expected order of convergence and a better efficiency performance are achieved on the combustion problem

as well.

We observe that such extended Butcher tableaux have a similar structure to the ones describing Generalized

Additive Runge–Kutta (GARK) methods. This observation leads to the conclusion that the combination of

OS and Runge–Kutta methods used for the time integration can be written as a GARK method scaled by

the coefficients of the OS method chosen. We define these methods to be OS-GARK methods.

We study the stability of the OS-GARK method by applying linear stability analysis. Doing so, we derive

a stability function that can be written as the product of the stability functions of the Runge–Kutta methods

used in the integration scaled by the coefficients of the OS methods. With this result, we can conveniently

analyze the stability of any combination of OS and Runge–Kutta methods used.

Being able to plot the stability region results particularly useful in cases where the solution of a split

problem is unstable. In fact, it is sometime possible to understand numerically unstable solutions by obtaining

the eigenvalues of the Jacobian and by verifying whether they are captured by stability region or not. We apply

this stability theory to a variety of problems with stable and unstable solutions, including the combustion

problem and the Brusselator equations [PL68].

1.1 Contributions of the Thesis

1. We assessed the convergence of OS methods with order higher than two on problems describing cardiac

electrophysiology in one and three dimensions using a variety of initial conditions and cell models.

We demonstrated gains in efficiency between 15% and 30% in terms of CPU time of such high-order

methods on the same set of cardiac problems. Similar results were obtained when solving an advection-

diffusion-reaction problem describing chemical combustion.

2. We showed how, by choosing an OS method and Runge–Kutta type integrators, it is possible to

construct an extended Butcher tableau with the same structure as the extended Butcher tableau

2

describing GARK methods. It follows that the time integration performed using an OS method together

with Runge–Kutta integrators can be written as a GARK method with the coefficients scaled by the

coefficients of the OS method. We defined such methods to be OS-GARK methods.

3. We performed a linear stability analysis of OS-GARK methods to show how it is possible to derive a

stability function for OS-GARK methods that can be simplified as the product of the stability functions

of the integrators scaled by the coefficients of the OS method.

4. We used the presented stability theory to justify stable and unstable behaviours in the solution of

various problems, such as the Brusselator problem and a chemical combustion problem.

Results about the convergence and the gains in efficiency of OS methods with order higher than two

can be found in [CS18a]. In [CS18a], we demonstrate that it is possible to obtain stable results

from third-order OS methods applied to the bidomain and monodomain models describing cardiac

electrophysiology. Furthermore, the authors demonstrate the accompanying gains in efficiency obtained

using higher-order OS compared to lower-order methods on a number of illustrative problems.

Further empirical results about the stability of OS of order four are presented in [CS18b]. In [CS18b],

we demonstrate the stability of OS methods of up to order four to solve the bidomain and monodomain

models on several examples arising in the field of cardiovascular modeling.

Finally, empirical results about the efficiency of OS methods of order four were presented in [CS19]. In

[CS19], we compare the performance of fourth-order OS methods with real and complex to solve the

Niederer problem [NKB+11], a well-defined benchmark in cardiac tissue electrophysiology, as well as a

variant with a stiffer cell model.

1.2 Structure of the Thesis

The remainder of this thesis is structured into four chapters. In chapter 2, we present a review of OS methods

from a historical point of view. In chapter 3, we focus on the stability of OS methods. We present the state

of the art regarding the stability of OS methods, our results about the construction of the extended Butcher

tableau and we derive the stability function. In chapter 4, we present numerical experiments demonstrating

the convergence, efficiency, and stability properties of high-order OS methods. Finally, in chapter 5, we

describe our conclusions and possible directions for future work.

3

2 Literature Review of Operator Splitting Methods

This chapter provides the background information associated with the main concepts of OS methods.

In section 2.1, we present the theoretical framework behind OS methods, including the issue of positivity

preservation and the treatment of boundary conditions. In section 2.2, we present a historical review of

OS methods from the first low-order methods to the more recent higher-order ones, including methods with

complex coefficients.

2.1 Theoretical Background

OS methods have a broad range of applications. This can be understood by the fact that they are particularly

useful when discretizing systems that are large, coupled, and non-linear. Simulating such systems typically

poses a number of challenges. In order to cope with such challenges, a well-known classic strategy is divide-

and-conquer. OS methods attempt to decouple the systems under consideration into smaller and simpler

sub-systems that can potentially be solved more readily with specialized techniques.

In this chapter, we present a survey of OS methods from a largely historical perspective. The theory is

illustrated in terms of a basic 2-additive splitting, but it is easily generalizable to N -additively split systems,

and the notation is kept general in order to ease the interpretation to many possible applications.

It is useful to start our discussion about OS methods by presenting their general theoretical framework.

Consider the following Cauchy problem

dy

dt
= A(y) = A[1](y) +A[2](y), y(0) = y0, (2.1)

where the (generally non-linear) operator A(·) has been additively split into two terms A[1](·) and A[2](·)

and y0 is the given initial condition (IC). The exact flow of (2.1) can be written as

φt(y0) = etDId(y0),

where Id(y) = y is the identity operator and D is the Lie derivative of A(·), defined as

D[i] =
∑
j

A[i]
j (y)

∂

∂yj
,

where Aj refers to the “component” j of A(·); see, e.g., [HLW06] for more details.

Having split the operator A into two terms, it is possible to view the original problem as split into two

separate sub-problems
dy[1]

dt
= A[1](y[1]),

dy[2]

dt
= A[2](y[2]), (2.2)

4

that are somehow more desirable to solve. The composition of the associated flows φ[l]
t , l = 1, 2, of the

sub-problems in (2.2) can be written as per the following lemma.

Lemma 2.1.1 (Gröbner 1960 [HLW06]). Let φ[1]
s and φ[2]

t be the flows of the differential equations in (2.2),

respectively. For their composition we then have(
φ

[2]
t ◦ φ[1]

s

)
(y0) = exp(sD[1]) exp(tD[2])Id(y0), (2.3)

where D[1] and D[2] are the Lie derivatives of A[1] and A[2], respectively, and where Id defines the identity.

Unless D[1] and D[2] commute, the composition exp
(
tD[1]) exp(tD[2]

)
is different from exp

(
t(D[1] + D[2])

)
,

which represents the exact flow φt of (2.1). The product of the exponentials in (2.3) can approximate the

exact flow by using the celebrated Campbell–Baker–Hausdorff (CBH) formula [HLW06], which reads

exp
(
tD[1]

)
exp

(
tD[2]

)
= exp

[
t(D[1] + D[2]) +

1

2
t2D12 +

1

12
t3(D112 + D221) + . . .

]
, (2.4)

where

Dkl...mn
.
= [D[k], [D[l], · · · [D[m],D[n]] · · ·]],

and

[D[m],D[n]]
.
= D[m]D[n] −D[n]D[m].

Throughout this thesis, we focus our attention on the class of fractional-step methods; see, e.g., [LeV92].

To understand how to derive methods belonging to this class, we consider an evolution equation in the form

of (2.1) and define the s-stage method S∆t(y) with fractional steps α =
{(
α

[1]
k , α

[2]
k

)}s
k=1

in a recursive

manner as

S∆t(y) = Sαs∆t ◦ Sαs−1∆t ◦ · · · ◦ Sα1∆t(y), (2.5)

so that

S∆t ≈ φ∆t = exp
(

∆t
(
D[1] + D[2]

))
Id(y),

For convenience of notation, we define a sub-step of the OS method (αk∆t) as

(αk∆t)
.
= eα

[2]
k ∆tD[2]

eα
[1]
k ∆tD[1]

, k = 1, 2, . . . , s, (2.6)

where, for coefficients α[l]
k , the index l runs over the operators and the index k runs over the stages of the

method.

The solution information from the end point of each sub-flow with fractional step α[l]
k is used as the initial

condition for the start of the subsequent sub-flow. An example of a two-stage, two-additive OS method with

positive sub-flows α[l]
k ∆t,

∑2
k=1 α

[l]
k = 1, k, l = 1, 2, to advance the numerical solution from time tn to time

tn+1 = tn +
∑2
k=1 α

[l]
k = tn + ∆t, l = 1, 2 is depicted in Figure 2.1. The solid lines denote sub-flows, and the

dashed lines denote the transfer of solution information between sub-flows.

5

α
[1]
1 ∆t

α
[2]
1 ∆t

α
[2]
2 ∆t

α
[1]
2 ∆t

tn tn+1

Figure 2.1: Schematic of a two-stage, 2-additive OS method. The solid lines denote the sub-flows,
and the dashed lines denote the transfer of solution information between sub-flows.

We further denote the reversal of the default order in which the differential operators D[i], i = 1, 2, are

applied by

(α̌k∆t)
.
= e∆tD

[1]
k e∆tD

[2]
k , k = 1, 2..., s. (2.7)

Defining abscissae

t
[l]
n,k+1 := t

[l]
n,k + α

[l]
k ∆t = tn +

∆t

k∑
j=1

α
[l]
j

 , l = 1, 2, k = 1, 2, . . . , s, (2.8)

for appropriate α[l]
k , an algorithm for a generic OS method applied to (2.2) is given in Algorithm 1, where

it is assumed the sub-system with A[1] is solved first. For the sub-steps that require solving the sub-system

with the operator A[2] first, the order of the solves and the associated indexing and temporary variables are

reversed.

Algorithm 1 One step of an s-stage 2-additive OS for a generic Cauchy problem (2.1) with abscissae given
by (2.8)

Require: α[l]
0 = 0, l = 1, 2; t = tn; y

[1]
n ≈ y(tn).

1: for k = 1 to s do

2: Solve the sub-system

3: ẏ[1] = A[1](y[1]) for t[1]
n,k ≤ t ≤ t

[1]
n,k+1

4: subject to the local IC y[1](t
[1]
n,k) = y

[2]
n,k and the prescribed BCs to obtain y

[1]
n,k+1.

5: Solve the sub-system

6: ẏ[2] = A[2](y[2]) for t[2]
n,k ≤ t ≤ t

[2]
n,k+1

7: subject to the local IC y[2](t
[2]
n,k) = y

[1]
n,k+1 and the prescribed BCs to obtain y

[2]
n,k+1.

8: end for

9: return yn+1 = y
[2]
n,s ≈ y(tn+1).

The two sub-systems solved in Algorithm 1 can be thought of as advancing the first sub-flow Sα1∆t in

(2.5), where we note that components of the sub-flows may not be coincident in time; e.g., α[2]
1 6= α

[1]
1 in

6

Figure 2.1. The subsequent sub-flows in (2.5) can be executed in a similar fashion to complete the integration

to time t = tn+1. Of course, to ensure that the overall OS method attains the desired order p of accuracy in

time, we need to approximate the flows of both sub-systems to at least order p.

2.1.1 Positivity Preservation

In this section, we describe some results regarding positivity preservation on certain classes of problems solved

using OS.

Although the analysis and the treatment of positivity preservation is not studied in any other section of

the thesis, positivity preservation is an important feature in numerous applications, specifically those that

come from computational biology or chemistry, where the state variables may represent population sizes,

densities, absolute temperatures, or concentrations; see, e.g. [EK01, Mur03, Dur10].

Many results are centred on the theme that the composition of positive operators is a positive operator [Kos80].

Therefore, exponential operator splitting methods preserve positivity provided that the defining sub-flows do

so.

An example based on this theme is given in [HKO12]. In this study, the authors consider an inhomogeneous

semi-linear parabolic problem of the form

∂y

∂t
= Ay + f(y), y(0) = y0. (2.9)

Positivity is lost when trying to solve (2.9) by using unconditionally positive Runge–Kutta or multistep

methods (see, [San01, BC78]) of order p > 1. As explained in [HKO12], the situation improves when using

exponential Runge–Kutta or exponential multistep methods. In fact, positivity is lost when using methods

of order p > 2 belonging to these classes. However, none of the these methods preserves positivity for semi-

linear parabolic problem. This issue can be overcome by using exponential operator splitting methods (see

[HKO12, RS11]). In fact, OS methods are used to make direct use of the split sub-flows to help preserve

properties of the exact flow under numerical discretization because they are constructed to preserve the

properties of the exact flow. An immediate consequence of this simple observation is the following result.

Proposition 2.1.2 (Hansen 2012, [HKO12]). If the semigroups e−tA and e−tf generated by A and f are

positive and solved exactly , then the (combined) (see e.g.,[HKO12]) Strang splitting (2.24) preserves the

positivity of the numerical flow.

A stronger result to preserve positivity when using high-order OS was presented in [RS11], where up to

fourth-order accuracy was achieved by splitting the Vlasov–Poisson system using second- and fourth-order

OS methods defined by Strang and Yoshida (see sections 2.2.2 and 2.2.3 of this thesis), and by solving the

sub-flows using a semi-Lagrangian method of the appropriate order and such that the overall system preserves

positivity after each time step.

Despite these results, a general theory about preserving positivity using OS methods is lacking. We

7

encourage the interested reader to refer to the literature (see e.g., [HKO12, San01, BC78, RS11] and references

therein) when dealing with positivity preservation on particular problems.

2.1.2 Treatment of Boundary Conditions

In many applications, the solution of Cauchy problem (2.1) is the result of a method-of-lines discretization of

a partial differential equation (PDE). When applying OS methods in such cases, it is important to consider

the treatment of boundary conditions (BCs). In particular, it is shown in [CGA94] that the conventional way

of imposing BCs at the intermediate stages by using the prescribed value of the boundary data inevitably

reduces the accuracy to first order, independently of the order of accuracy of the difference operator. In

[CGAD95], Carpenter and collaborators presented the simultaneous approximation term (SAT) as a general

technique to impose correct intermediate boundary values for linear PDEs to attain the full order of accuracy.

The SAT technique solves a linear combination of the BCs and the differential equations near the boundary.

However, the approach presented in [CGAD95] was not suitable for non-linear PDEs solved with integrators

of order higher than three. The solution to the non-linear case was given in [AGC96], where Abarbanel,

Gottlieb, and Carpenter presented a variation of the linear SAT method. The idea behind the solution for

the non-linear case comes from the fact that the linear SAT yields intermediate values for the boundary

terms that have the required degree of accuracy. By using a linear combination of such terms computed

with the linear SAT, the authors were able to recover a scheme that attained the required degree of accuracy

for non-linear PDEs. We refer the interested reader to [AGC96] for more details and to [DRFHZ14] for a

comprehensive review about SAT.

In [HV03], Hundsdorfer and Verwer point out that, when solving PDEs using an OS method with order

p > 2, the unavoidable negative time-steps (see subsection 2.2.3) could limit the effectiveness of higher-order

OS methods. In fact, as pointed out also in [Sor07], diffusion or reaction terms could lead to instabilities

when using backward time integration. For this reason, the use of higher-order methods has been focused

on conservative problems where BCs are not relevant such as the Schrödinger equation and Hamiltonian

systems [HV03]. In general, difficulties with OS methods may arise for PDE problems where BCs are physical

conditions for the entire problem and BCs for the sub-steps are missing. So, when taking a step using OS,

these physical conditions may not be obvious, and one may have to reconstruct them for the specific splitting

in consideration; see [HV03] for more details.

Other problems related to OS methods and the treatment of BCs arise when dealing with advection

problems with Dirichlet BCs at the inflow boundary [HV03]. In particular, when using higher-order OS

methods, we necessarily need to take backwards steps (see section 2.2), which require backward-in-time

boundary values at the outflow of the boundary as well [HV03].

More recently, various authors came across the issue of order reduction when applying OS methods

especially in the context of diffusion-reaction PDEs. In 2015, Einkemmer and Ostermann [EO15] considered

the case where the BCs on the domain Ω were time-dependent and of inhomogeneous Dirichlet type. In those

8

cases, the OS procedure does not retain the correct order. To overcome this problem, the authors proposed

to rewrite the problem in such a way that homogeneous boundary conditions can be imposed (see [EO15]).

In the following year, the same authors [EO16] proposed correction for a semi-linear diffusion-reaction

problem with oblique Dirichlet BCs. The approach for this case is similar to the one adopted in [EO15],

where the BCs need to be modified by a time-dependent boundary condition constructed such as to avoid

order reduction (see [EO16]). It is useful to point out that a cheaper construction of this correction was

presented in [BV19].

Despite these results, to the best of our knowledge, a general theory and analysis of BCs for splitting

methods is lacking. As a general rule, the treatment of the boundaries should be as consistent as possible

with the method used on the interior of the domain [HV03].

2.2 A Brief History of Operator Splitting Methods

According to [CHMM78], the first operator splitting method on record was introduced in 1875 by Lie [LE70]

(reprinted 1888) in order to solve (2.1) in the case where A[1] and A[2] are twom×m time-dependent matrices

denoted now with Ā[1] and Ā[2], respectively. From the relation,

e(Ā[2]+Ā[1])t = lim
n→∞

(
eĀ

[2] t
n eĀ

[1] t
n

)n
, (2.10)

Lie suggested the following method to find an approximate solution of (2.1)

yn+1 = e∆tĀ[2]

e∆tĀ[1]

yn, y(0) = y0, n = 0, 1, 2, (2.11)

In 1958, Trotter made the first important contribution to (2.11) by extending the theory to the case where

A[1] and A[2] are unbounded operators as follows: [Tro59]

Theorem 2.2.1 (Trotter). Let H be a Hilbert space, not necessarily separable. If A[1] and A[2] are self-

adjoint operators in H such that A[1] +A[2] is also self-adjoint in H, then (2.10) is satisfied for each t ∈ R

and for each y ∈ H.

Especially for high-dimensional problems, computing the exponential of a matrix can be a non-trivial

operation. Therefore, a matrix-free version of this method is usually used. Such equivalent version of the

method in (2.11) was introduced in 1959 by Godunov [God59] while he was working with non-linear systems

describing gas dynamics.

Godunov obtained a variation of the upwind method in which the local characteristics are not provided

by diagonalizing the Jacobian matrix, but rather by solving a series of Riemann problems forward in time.

In the Godunov method, the evolution from time tn to time tn+1 = tn + ∆t is computed by first assuming a

piecewise constant distribution of the data over the spatial grid. Then, solutions can be found by solving a

sequence of Riemann problems obtained by separating the contributions from the left and right states. The

9

numerical solution to the problem is then obtained by piecing together the contributions from the different

solutions to the Riemann problems [LeV92].

The method, commonly named after Lie–Trotter [Tro59] or Godunov [God59], can be written in the

following way. Starting from (2.2), first solve

dy[1]

dt
= A[1]y[1], y[1](0) = y0,

for t ∈ [0,∆t] to yield an approximate solution y
[1]
∆t. Next, use y

[1]
∆t to compute

dy[2]

dt
= A[2]y[2], y[2](0) = y

[1]
∆t,

for t ∈ [0,∆t] to obtain y
[2]
∆t. According to the notation introduced in (2.6), the Lie–Trotter–Godunov method

can be written as

(α1∆t),

with α1 =
(
α

[1]
1 , α

[2]
1

)
= (1, 1). A schematic of the method is displayed in Figure 2.2.

α
[1]
1 ∆t

α
[2]
1 ∆t

tn tn+1

Figure 2.2: Schematic of the Lie–Trotter–Godunov method. The blue solid line denotes the flow of
the first sub-system, the dashed line denotes the transfer of solution information between sub-flows,
and the red line denotes the flow of the second sub-system.

The Lie–Trotter–Godunov method is perhaps the simplest and most well-known OS method. It computes

an approximation to the exact solution of (2.1) that is first-order accurate in the sense that the local splitting

error L is

L = ‖y(∆t)− y
[2]
∆t‖ = O

(
(∆t)2

)
.

This result can be derived by comparing the Taylor series of the exact solution y(t) with the approximate

solution y
[2]
∆t obtained via OS. We have

y(∆t) = y0 + ∆t
dy

dt

∣∣∣∣
t=0

+
(∆t)2

2

d2y

dt2

∣∣∣∣
t=0

+O
(
(∆t)3

)
.

From (2.1), by applying direct differentiation k times, we have

dky

dtk
=
(
A[1] +A[2]

)k
y,

which, when substituted into the above Taylor series, gives

y(∆t) = y0 + ∆t
(
A[1] +A[2]

)
y0 +

(∆t)2

2

(
A[1] +A[2]

)2

y0 +O
(
(∆t)3

)
.

10

The expansions of the approximate solutions y[1](∆t) and y[2](∆t) are, respectively

y[1](∆t) = y0 + ∆tA[1]y0 +
(∆t)2

2

(
A[1]

)2

y0 +O
(
(∆t)3

)
,

and

y[2](∆t) = y
[1]
∆t + ∆tA[2]y

[1]
∆t +

(∆t)2

2

(
A[2]

)2

y
[1]
∆t +O

(
(∆t)3

)
,

respectively. Inserting the series expansion for y[1](∆t) into the expansion of y[2](∆t), the local splitting

error becomes

y(∆t)− y[2](∆t) =
(∆t)2

2

[
A[1],A[2]

]
y0 +O

(
(∆t)3

)
,

where [A[1],A[2]] = A[1]A[2]−A[2]A[1] is, generally, a non-vanishing commutator. Because the error after one

time step is proportional to (∆t)2, the Lie–Trotter–Godunov OS method is first-order accurate. From now

onwards, we denote the Lie–Trotter–Godunov scheme simply with G1.

Curiously enough, Godunov came up with his method by critically analyzing some suspicious conjectures

in a report by Zhukov [God99] that was made available to him. Later on, Godunov discovered that Lax

published a much more robust version of Zhukov’s report a year before his thesis defense, but he did not read

it until after. Godunov admitted that had he read Lax’s paper a year earlier, the “Godunov Method” would

have never been created [God99].

2.2.1 Alternating Implicit Direction Methods

Other methods that incorporate the OS paradigm are the so-called Alternating Direction Implicit (ADI) type

methods. According to Usadi and Dawson [UD06], ADI methods were first introduced by Rachford, Douglas,

and Peaceman in their founding publications [PR55, DR56] to solve parabolic partial differential equations

in two spatial dimensions. ADI methods are predictor-corrector -type methods, where part of the difference

operator is computed in an initial (predictor) step and another part is computed in a final (correction) step.

In this approach, each individual operator employs a simple tridiagonal matrix. For this reason, ADI methods

are memory-efficient, easy to parallelize, and they have been used in many applications such as astrophysics

[SN92], bioengineering [SWL+15], and economics [IT08].

The first variant of ADI methods that we describe here is the Peaceman–Rachford method. The predictor

step consists of solving (2.1) for a time step ∆t/2 using forward Euler for A[2] and backward Euler for A[1],

i.e., solve

y∆t/2 =

(
I− ∆t

2
A[1]

)−1(
I +

∆t

2
A[2]

)
y0 (2.12)

for y∆t/2, where I is the identity. Then, the roles of the operators are reversed and the corrector step

completes the solution process for a time step by using forward Euler for A[1] and backward Euler for A[2],

thus solving

y∆t =

(
I− ∆t

2
A[2]

)−1(
I +

∆t

2
A[1]

)
y∆t/2 (2.13)

11

for y∆t. Combining (2.12) and (2.13), the Peaceman–Rachford method can be written as an OS scheme SPR
∆t

as

SPR
∆t =

(
I− ∆t

2
A[2]

)−1(
I +

∆t

2
A[1]

)(
I− ∆t

2
A[1]

)−1(
I +

∆t

2
A[2]

)
y0.

In general, the Peaceman–Rachford method is first-order accurate. However, when A[1] and A[2] are linear

and commute, this method becomes second-order accurate [GOY16].

An alternative to the Peaceman–Rachford method is the Douglas–Rachford method [DR56]. With an

approximation y0 being known, the prediction step of the Douglas–Rachford method solves

ŷ∆t =
(

I−∆tA[1]
)−1 (

I + ∆tA[2]
)

y0 (2.14)

for ŷ∆t Next, the correction step completes the integration process solving

y∆t =
(

I−∆tA[2]
)−1 (

y0 + ∆tA[1](ŷ∆t)
)

(2.15)

for y∆t. Combining (2.14) and (2.15), the Douglas–Rachford method can be written as an OS scheme SDR
∆t

as

SDR
∆t =

(
I−∆tA[2]

)−1
[
y0 + ∆tA[1]

((
I−∆tA[1]

)−1 (
I + ∆tA[2]

)
y0

)]
.

The Douglas–Rachford method, even in the case where the operatorsA[1] andA[2] are linear and commute,

is, at best, first-order accurate [LM79]. However, to improve accuracy, a variant of the method based on

the second-order Crank–Nicolson method has been proposed in [DK01]. This alternative method, commonly

referred to as Douglas–Kim method solves

ŷ∆t = y0 + ∆tA[1]

(
ŷ∆t + y0

2

)
+ ∆tA[2] (y0) . (2.16)

Next, it completes the time-step by solving

y∆t = y0 + ∆tA[1]

(
ŷ∆t + y0

2

)
+ ∆tA[2]

(
y∆t + y0

2

)
. (2.17)

Although the Douglas–Kim method is more accurate than other ADI methods in the sense that is second

order accurate, it is also less stable compared to the classical ADI methods [UD06].

Both the Peaceman–Rachford and Douglas–Rachford methods are generalizable to the case where A is

split into more than two operators. The details of such generalization go beyond the scope of this thesis, and,

therefore, they are omitted here. Details can be found in [GW96] and chapter 2 of [GOY16], respectively.

We remark that, unlike in the Peaceman–Rachford method, the roles played by operators A[1] and A[2]

in the Douglas–Rachford method are not interchangeable. This fact is confirmed by numerical experiments

where, for the same ∆t, the convergence rate depends on the choice ofA[1] andA[2] (see chapter 2 in [GOY16]).

As a general rule, it is desirable to take A[2] as the operator with the best continuity and monotonicity

properties [GOY16, Wac13], additionally, many numerical experiments confirm that the Douglas–Rachford

method is more robust and faster when solving problems where one of the operators is non-smooth [GOY16,

Wac13]. This behaviour is consistent with the fact that the Douglas–Rachford method has better stability

12

properties than the Peaceman–Rachford method (see [GOY16] for more details). Like the Lie–Trotter–

Godunov method, both the classic ADI methods are also part of the family of additive operator splitting

methods [GOY16].

2.2.2 Second-Order Operator Splitting Methods

In some situations, first-order operator splitting methods may not be efficient enough to achieve a sufficiently

accurate numerical solution. Accordingly, higher-order methods were sought, and second-order methods were

proposed in the latter half of the twentieth century.

The first second-order operator splitting method that we consider was presented by Lax and Wendroff in

1964 [LW64] to solve the two-dimensional problem

∂y

∂t
= Ā[1] ∂y

∂x1
+ Ā[2] ∂y

∂x2
, y(0) = y0, (2.18)

where t, x1, and x2 denote the derivative with respect to time and along spatial directions x1 and x2,

respectively, and Ā[1] and Ā[2] are symmetric, constant matrices that do not necessarily commute. To

advance the time integration, the authors chose to use a difference method of the form

y∆t = SLW2
∆t y0, (2.19)

where SLW2
∆t is a linear difference operator obtained from the Taylor series in time (see chapter 3 in [Wan18])

y∆t = y0 + ∆t

(
dy

dt

)∣∣∣∣
t=0

+
∆t2

2

(
d2y

dt2

)∣∣∣∣
t=0

+O
(
(∆t)2

)
. (2.20)

By rewriting the time derivatives using (2.18), we can write

∂2y

∂t2
= Ā[1] ∂

2y

∂x1∂t
+ Ā[2] ∂

2y

∂x2∂t
= Ā[1] ∂

2y

∂t∂x1
+ Ā[2] ∂

2y

∂t∂x2
. (2.21)

Inserting (2.18) and (2.21) into (2.20), and retaining the O
(
(∆t)2

)
term, (2.20) becomes

y∆t = y0 + ∆t

(
Ā[1] ∂y0

∂x1
+ Ā[2] ∂y0

∂x2

)
+

(∆t)2

2

(
Ā[1]2 ∂

2y0

∂x2
1

+ (Ā[1]Ā[2] + Ā[2]Ā[1])
∂2y0

∂x1∂x2
+ Ā[2]2 ∂

2y0

∂x2
2

)
.

By approximating the spatial derivatives of y0 using symmetric first- and second-order centred finite differences,

the Lax–Wendroff method can be written as

y∆tij = y0ij +
∆t

2

(
Ā[1] y0ij−1

− y0ij+1

∆x1
+ Ā[2] y0i−1j

− y0i+1j

∆x2

)
+

(∆t)2

2

(
Ā[1]2 y0ij−1

− 2y0ij
+ y0ij+1

∆x2
1

+ Ā[2]2 y0i−1j
− 2y0ij

+ y0i+1j

∆x2
2

+(Ā[1]Ā[2] + Ā[2]Ā[1])
y0j−1,i−1 − y0j−1,i+1 − y0j+1,i−1 + y0j+1,i+1

∆x1∆x2

)
,

where the indices i and j define the grid points in the x1 and x2 directions, respectively. The Lax–Wendroff

method belongs to the class of spatial operator splitting methods; it is second-order accurate and stable if the

13

ratios |λiA[1]|∆t/∆x and |µiA[2]|∆t/∆x, where λi and µi, the eigenvalues derived from the Von Neumann

stability analysis, are reduced by
√

8 [Str68].

In 1968, Strang proposed a second-order variant of the Lie–Trotter–Godunov method also based on a

symmetrization principle. By interchanging the order of A[1] and A[2] and carrying out two half steps with

reversed sequence gives

y∆t =
(
e

∆t
2 A

[1]

e
∆t
2 A

[2]
)(

e
∆t
2 A

[2]

e
∆t
2 A

[1]
)

y0. (2.22)

Following the notation in (2.6) and (2.7), the method is represented by

(α̌2∆t)(α1∆t), (2.23)

for α[l]
k = 1/2 for l, k = 1, 2. A schematic of the SM2 method is given in Figure 2.3.

α
[1]
1 ∆t α

[1]
2 ∆t

α
[2]
1 ∆t α

[2]
2 ∆t

tn tn+1

Figure 2.3: Schematic of the SM2 OS method. The solid lines denote the sub-flows and the dashed
lines denote the transfer of solution information between sub-flows.

We refer to this method, independently proposed by Strang [Str68] and Marchuk [Mar71], as SM2. After

a series expansion, we find the local splitting error to be [HV03]

y∆t − y
[2]
∆t =

∆t3

24

([
A[1],

[
A[1],A[2]

]]
+
[
A[2],

[
A[2],A[1]

]])
y

[2]
∆t
2

+O
(
(∆t)5

)
,

where y
[2]
∆t
2

is the solution computed at t = ∆t/2. Because the error for the SM2 method is proportional to

(∆t)3, this OS method is second-order accurate.

We note that it is common to refer to the modification of (2.22) that combines the half steps into a single

step as the Strang (or Strang–Marchuk) method, i.e.,

SC-SM2
∆t := (∆t/2)(∆̌t)(∆t/2). (2.24)

From now on, we will refer to this scheme as C-SM2. Indeed, (2.22) and (2.24) are equivalent only when

the exact flows of A[1] and A[2] are available; otherwise they ultimately lead to different methods with

correspondingly different accuracy and stability properties (see chapters 3 and 4).

2.2.3 Higher-Order Operator Splitting Methods

Not much theory about OS methods was developed until the 1980s. Some higher-order (p > 2) symplectic

methods were developed in the previous years [MQ02]. However, all of these methods introduced spurious

damping leading to inaccurate results. Therefore, they are not considered in this thesis.

14

The first important higher-order operator splitting method was given by Ruth in 1983 [Rut83], where

the author provided an explicit third-order map to preserve the canonical form of the equation of motion for

Hamiltonian systems

H(x, t) =
pTp

2
+ V (x, t).

The strategy to develop such methods relies essentially on performing canonical transformations (x,p) →

(x1,p1) on the original Hamiltonian, H, to derive initial conditions. Classically, this is done by selecting new

sets of coordinates to derive a new expression for H and by expanding it in Taylor series around t = 0. Ruth

derived consistency conditions by choosing to approximate the new Hamiltonian to a certain order (for more

details, see [Rut83]). Following this approach, Ruth derived first- and second-order methods consistent with

Lie–Trotter–Godunov and SM2, respectively, and proposed a third-order method. This method, denoted

with R3 herein, is defined by the coefficients α[l]
k for l = 1, 2, k = 1, 2, 3, displayed in table 2.1.

k α
[1]
k α

[2]
k

1 7/24 2/3

2 3/4 −2/3

3 −1/24 1

Table 2.1: Coefficients α[l]
k , l = 1, 2, k = 1, 2, 3, for the R3 method.

A noteworthy observation about the coefficients in table 2.1 is that some of them are negative. Although

this may seem to be undesirable, especially for deterministic parabolic differential equations, the necessity of

negative coefficients for OS methods with order higher than two has been proven by various authors between

1989 and 1996. In 1989, Sheng [She89] was solving PDEs by using exponential splitting with a similar

approach as the Lie–Trotter–Godunov method. By expanding in Taylor series and equating coefficients of

S∆t(y) = et(A
[1]+A[2])y,

where S∆t(y) approximates the operator splitting method as a linear combination of products of exponentials

as in (2.5), Sheng showed that, for methods with order p greater than two, at least one of the coefficients

α
[l]
k must be negative. About a year later, Suzuki independently proved the same result [Suz91] by showing

that a third-order decomposition of et(A
[1]+A[2]) is only possible with the use of negative coefficients. In the

literature, the results proven by Sheng and Suzuki are known as Sheng–Suzuki Theorem.

Theorem 2.2.2 (Sheng, Suzuki). If the splitting method (2.5) is of order p ≥ 3 for general A[1] and A[2],

then at least one of the α[l]
k for l = 1, 2, k = 1, 2, . . . , s, is strictly negative.

The proof can be found in [She89, Suz91].

The systematic interest and development of splitting methods by numerical analysts was triggered by

the work of Neri [Ner88], who applied the CBH formula to derive higher-order methods. In 1990, Yoshida

suggested an elegant way to construct higher-order symplectic integrators using the CBH formula. The idea

15

behind the CBH formula is to approximate the exact N -additive flow φt = exp
(
t
∑N
l=1A[l]

)
generalizing

(2.1) by the product of single sub-flows φ[l]
t = exp

(
tA[l]

)
, l = 1, 2, . . . , N . By using the CBH formula (2.4),

Yoshida was able to find coefficients α[l]
k , k = 1, 2, . . . , s, such that

S∆t(y) :=

s∏
k=1

exp
(
α

[1]
k ∆tA[1]

)
exp

(
α

[2]
k ∆tA[2]

)
= exp

(
∆t
(
A[1] +A[2]

))
+O

((
∆t)p+1

))
. (2.25)

To find higher-order OS methods, Yoshida made use of the following lemma.

Lemma 2.2.3 (Yoshida). Let S∆t(y) be an operator of the form (2.25) that has the time reversibility property

S∆t(y)S−∆t(y) = S−∆t(y)S∆t(y) = Id(y).

If we expand S∆t(y) using the CBH formula, then all the coefficients for even powers of ∆t are zero.

Therefore, a method that has a symmetric form, i.e., such that the condition given by Lemma 2.2.3 holds,

is automatically of even order. Having restricted the set of solutions, Yoshida presented various methods up

to order eight [Yos90]. Here, we are interested in a four-stage, fourth-order method, denoted from now on by

Y4. Using (2.24), the Y4 method takes the form of a 3-fold composition

SC-SM2
θ∆t ◦ SC-SM2

(1−2θ)∆t ◦ S
C-SM2
θ∆t ,

where θ = 1/(2 − 3
√

2) is arrived at from repeated application of the CBH formula; see [Yos90] for details.

Following the notation used for the previous methods, the Y4 method can be written as

(α4∆t)(α3∆t)(α2∆t)(α1∆t), (2.26)

where the coefficients α[l]
k for l = 1, 2, k = 1, 2, 3, 4, for the method (2.26) are displayed in table 2.2. The

method proposed by Yoshida is remarkable in the sense that is a four-stage, fourth-order OS method with

real coefficients α[l]
k .

k α
[1]
k α

[2]
k

1 θ/2 θ

2 (1− θ)/2 1− 2θ

3 (1− θ)/2 θ

4 θ/2 0

Table 2.2: Coefficients α[l]
k l = 1, 2, k = 1, 2, 3, 4, for the Y4 method.

In 1995, McLachlan showed how to use Free Lie algebra theory to determine the order conditions that

an OS method needed to attain a particular order. In particular, McLachlan used (2.4) to expand the

composition (2.5) asymptotically as

exp
(
tX1 + t2X2 + . . .

)
,

16

where XP ∈ LP(A[1],A[2]) are the elements of degree P of the Free Lie algebra L generated by A[1] and A[2],

i.e., the vector space spanned by all the commutators of degree P of A[1] and A[2] [McL95]. Upon choosing

a basis for LP(A[1],A[2]), the XP are polynomials of degree P with coefficients α[l]
k . Naturally, if XP = 0 for

P = 1, 2, . . . , p− 1, then a method is of order p. As we have seen, there are numerous ways of deriving order

conditions for OS methods (see e.g., [Yos90, Suz91]). The number of order conditions increases as we look

for higher-order methods. It follows that the number of free parameters also increases, making the search for

the α[l]
k that define a method challenging. To reduce the number of order conditions, a strategy that has been

adopted by various authors (e.g., [Yos90]) over the years consists of choosing methods that have symmetry

properties. In particular, in the framework of Free Lie algebra theory, McLachlan noticed that if s is the

number of stages in the method, then, for a non-symmetric (NS) method, there are 2s + 1 free parameters

α
[l]
k , whereas the number reduces to s + 1 if the method is symmetric (S). The number of order conditions

and parameters for methods up to order p = 6 is given in table 2.3.

Order Type NS Type S

Order Conditions

2 3 2

4 8 4

6 23 10

Free parameters

2s+ 1 s+ 1

Table 2.3: Number of order conditions and free parameters for type NS and S OS methods.

McLachlan, who was working on Hamiltonian systems, derived the order conditions for various OS

methods, symmetric and non-symmetric, up to order eight and determined the methods that minimized

the Hamiltonian truncation error defined in [MA92]. Among all the methods presented in [McL95], we

present a six-stage, fourth-order symmetric method (M4), which, according to our notation, can be written

as

(α6∆t)(α5∆t)(α4∆t)(α3∆t)(α2∆t)(α1∆t).

The coefficients α[l]
k , l = 1, 2, k = 1, 2, . . . , 6, for the M4 method are presented in table 2.4.

In 1996, Goldman and Kaper presented a more precise version of the Sheng–Suzuki Theorem [GK96].

Theorem 2.2.4 (Goldman, Kaper). If p is a positive integer such that p ≥ 3, then for every order-p accurate

in time approximate solution operator of the form (2.5), where s is any finite positive integer,

min
k=0,1,...,s

α
[1]
k < 0 and min

k=0,1,...,s
α

[2]
k < 0.

Additionally, in [GK96], the authors provide the corresponding result for the more general case of an

N-additive OS method. Here, we present a sketch of the proof as presented in [BC05]; a complete version

can be found in [GK96, HLW06].

17

k α
[1]
k α

[2]
k

1 0.0935003487263305760 0.439051727817158558

2 −0.0690943698810950380 −0.136536314071511211

3 0.4755940211547644620 0.394969172508705306

4 α
[1]
3 α

[2]
2

5 α
[1]
2 α

[2]
1

6 α
[1]
1 0

Table 2.4: Coefficients α[l]
k , l = 1, 2, k = 1, 2, . . . , 6, for the M4 method.

Proof. Let (2.5) be an OS method. The first important observation that leads to an elementary proof of

theorem 2.2.4 is that OS methods in the form of (2.5) and first-order (p = 1) composition methods are closely

connected. In fact, an OS method can be written as a composition of composition methods χ∆t = φ
[2]
∆t ◦ φ

[1]
∆t

and their adjoint χ∗∆t = φ
[1]
∆t ◦ φ

[2]
∆t, for some coefficients βk, k = 0, 1, . . . , 2s, in the following way

S∆t = χ∗β2s∆t ◦ χβ2s−1∆t ◦ · · · ◦ χ∗β2∆t ◦ χβ1∆t ◦ χ∗β0∆t

=
(
φ

[1]
β2s∆t ◦ φ

[2]
β2s∆t

)
◦
(
φ

[2]
β2s−1∆t ◦ φ

[1]
β2s−1∆t

)
◦ · · · ◦

(
φ

[2]
β1∆t ◦ φ

[1]
β1∆t

)
◦
(
φ

[2]
β0∆t ◦ φ

[1]
β0∆t

)
= φ

[1]
β2s∆t ◦ φ

[2]
(β2s∆t+β2s−1∆t) ◦ · · · ◦ φ

[1]
(β1∆t+β0∆t) ◦ φ

[2]
β0∆t. (2.27)

If β2s = β0 = 0, then (2.5) and (2.27) are equivalent if

α
[1]
k = β2k−1 + β2k−2, α

[2]
k = β2k + β2k−1, k = 1, 2, . . . , s,

and we can write
s∑
j=1

α
[1]
j =

s∑
j=1

α
[2]
j =

2s∑
j=0

βj = 1. (2.28)

If (2.28) holds, then we say that (2.5) and (2.27) are also consistent.

The next important observation is that for any order p, the order conditions for the coefficients α[1]
k ,

α
[2]
k , k = 1, 2, . . . s, are equivalent to the order conditions for the coefficients βi, i = 1, 2, . . . , 2s (see [McL95]).

Therefore, after repeated applications of the CBH formula, (2.5) can be written as

S∆t = exp

(
∆tf1,1

(
A[1] +A[2]

)
+

∆t2

2
f2,1

[
A[1],A[2]

]
+

∆t3
(
f3,1

12

[
A[1],

[
A[1],A[2]

]]
+ f3,2

[
A[1] +A[2],

1

2

[
A[1],A[2]

]]))
+O

(
(∆t)

4
)
,

where fp,k are homogeneous polynomials of degree p in the variable βi. In particular

f1,1 =

2s∑
i=0

βi, f2,1 =

2s∑
i=0

(−1)i+1β2
i , f3,1 =

2s∑
i=0

β3
i . (2.29)

For a method to be of order p ≥ 3, we require

f3,1 =

2s∑
k=0

β3
k = 0. (2.30)

18

We suppose that more than two βk are non-zero because β3
1 +β3

2 = 0 together with the consistency condition

β1 + β2 = 1 have no real solutions. Then (2.30) can be written as

s∑
k=1

(β3
2k−1 + β3

2k−2) + β3
2s =

s∑
k=1

(β3
2k−1 + β3

2k−2) = 0.

But then, β3
2k−1 + β3

2k−2 must be negative for some k = 0, 1, . . . , s. Because we have sgn(x3 + y3) =

sgn(x+ y), ∀x, y ∈ R, we must have

α
[1]
k = β3

2k−1 + β3
2k−2 < 0.

Similarly, for some 1 ≤ k ≤ s, by writing (2.30) as

s∑
k=1

(β3
2k + β3

2k−1) + β3
0 =

s∑
k=1

(β3
2k + β3

2k−1) = 0,

we get

α
[2]
k = β3

2k + β3
2k−1 < 0,

for some k = 1, 2, . . . , s..

In 1998, Descombes and Schatzman proposed a fourth-order OS method [DS98] based on the SM2 method.

By applying Richardson extrapolation [Ric11] to (2.23), the authors were able to derive a weighted-sequential

(WS) splitting method [DS98, Des01]. Given (2.2), a WS splitting solves a step of the Lie–Trotter–Godunov

splitting first for t ∈ [0,∆t] to obtain y
[2]
∆t. Next, another Lie–Trotter–Godunov splitting is performed by

applying A[1] and A[2] reversed order: The solution at the end of each time step is then obtained by a

weighted sum of solutions

y∆t = θy
[2]
∆t + (1− θ)y[1]

∆t. (2.31)

Following this idea, the method proposed by Descombes and Schatzman, denoted by DS4, reads

4

3
(α̌5∆t)(α4∆t)(α3∆t)− 1

3
(α̌2∆t)(α1∆t),

where the coefficients α[l]
k , l = 1, 2, k = 1, 2, . . . , 5 are presented in table 2.5.

k α
[1]
k α

[2]
k

1 1/2 1/2

2 1/2 1/2

3 1/4 1/2

4 1/2 0

5 1/4 1/2

Table 2.5: Coefficients α[l]
k , l = 1, 2, k = 1, 2, . . . , 5, for the DS4 method.

In 1999, Sornborger and Stewart in [SS99] used different methods to derive order conditions and found

both integer and irrational solutions that minimized the 2-norm of the leading local error coefficients. From

19

the order conditions, the authors derived a number of third- and fourth-order methods [SS99]. In [Sor07],

a specific nine-stage, third-order method is presented and shown to be stable for a simple diffusion-reaction

PDE. This method, denoted from now onwards by SS3, is represented by

(α9∆t)(α̌8∆t)(α̌7∆t)(α̌6∆t)(α̌5∆t)(α4∆t)(α3∆t)(α̌2∆t)(α̌1∆t).

The coefficients α[l]
k , l = 1, 2, k = 1, 2, . . . , 9 for the SS3 method are displayed in table 2.6.

k α
[1]
k α

[2]
k

1 1/6 1/6

2 1/6 1/6

3 1/6 1/6

4 −1/3 −1/3

5 1/6 1/6

6 1/6 1/6

7 1/6 1/6

8 1/6 1/6

9 1/6 1/6

Table 2.6: Coefficients α[l]
k , l = 1, 2, k = 1, 2, . . . , 9, for the SS3 method.

Although our interest is mainly focused on fractional-step operator splitting methods, it is important to

mention the development, in recent years, of a great number of operator splitting methods for various classes

of ordinary differential equations (ODEs). Interest in these methods was driven by the fact that OS methods,

compared to standard integrators, have a number of advantages that can be summarized as follows [BCM08]:

• They are usually easy to implement.

• In general, they are explicit.

• The algorithms are sequential, and the intermediate solution can be stored as a vector.

• Specific OS methods can be chosen based on the structure of the problem.

• Some OS methods preserve structural properties of the exact solution such as symplecticity, phase-space

volume-preservation, and time-symmetry. Therefore, symplectic splitting methods applied to ODEs can

be viewed as a class of geometric integrators.

A few authors provided comprehensive surveys of such methods. In particular, in 2002, McLachlan [MQ02]

underlined how OS methods constitute a general and flexible tool to construct geometric integrators for

conservative systems and classified the best known methods. Description of the classification of these methods

goes beyond the scope of this thesis.

In the same year, Blanes and Moan [BM02] showed how the search of more efficient symplectic methods,

especially for methods with p ≥ 4, was not complete. In particular, the authors focused their search on

partitioned Runge–Kutta (PRK) methods. Given a separable system of the form (2.1), for a time step ∆t,

20

the composition

S =

s∏
k=1

eα
[2]
k ∆tA[2]

eα
[1]
k ∆tA[1]

+O((∆t)p+1),

is a numerical method of order p usually referred in [BM02] as a PRK method. To reduce the set of possible

solutions when determining the coefficients α[l]
k , l = 1, 2, k = 1, 2, . . . , s, the authors only considered

methods of even order where the coefficients have the First Same As Last (FSAL) property. Using this

approach, the number of order conditions for a fourth-order method is only four [BM02]. Here, we consider

a six-stage, fourth-order PRK method proposed in [BM02] that was found using a randomized search and an

optimization algorithm (see [BM02] for more details). The selected method, denoted with “BM4” from now

on, is the one with the lowest global minimizer of the error. The coefficients for the BM4 method are given

in table 2.7.

k α
[1]
k α

[2]
k

1 0.0792036964311957 0.209515106613362

2 0.3531729060497740 −0.143851773179818

3 −0.0420650803577195 1/2− (α
[2]
1 + α

[2]
2)

4 1− 2(α
[1]
1 + α

[1]
2 + α

[1]
3) 0

Table 2.7: Coefficients α[l]
k , l = 1, 2, k = 1, 2, 3, 4, for the BM4 method.

In 2005, Csomós, Faragó, and Havasi proposed to use a WS splitting method rather than the more

conventional sequential splitting methods proposed earlier in the literature [CFH05]. The following theorem

summarizes the results about the accuracy of the WS method based on the splitting error analysis [CFH05].

Theorem 2.2.5 (Csomós, Faragó, Havasi). Assume that the operators A[1] and A[2] do not commute. Then

the WS method (2.31) is

• first order without any condition,

• second order if and only if θ = 1/2. In this case, we call the method Symmetric Weighted Splitting

(SWS).

Furthermore, if Id is the identity, the SWS method is

• third order if
[
A[1] −A[2],

[
A[1],A[2]

]]
(Id) = 0,

• fourth order if
[
A[1] −A[2],

[
A[1],A[2]

]]
is zero on

(
A[1] +A[2]

)
and on Id, and if

[
A[1],A[2]

]2
(Id) = 0.

By considering mainly symplectic methods, Blanes, Casas, and Murua in 2008 published a comprehensive

report [BCM08] on operator splitting methods for ODEs focusing mainly on Runge–Kutta–Nyström methods

for the integration of Hamiltonian systems. Description about this class of methods goes beyond the scope

of this thesis; the interested reader can find more information in [BC05, BCF+13, BM02, BCM08].

We continue our survey of fractional-step operator splitting methods by presenting a family of higher-

order OS methods proposed by Koch, Neuhauser, and Thalhammer in [KNT13] and further analyzed by

21

Auzinger and co-workers in [AH14, AHHK16]. The derivation of the order conditions was based on the

literal formulation that an OS method is of order p if and only if the local error L(∆t) = O
(
(∆t)p+1

)
, and

hence
d

dt
L(0) =

d2

dt2
L(0) = · · · = dp

dtp
L(0) = 0.

After a calculation based on the Leibniz formula for higher derivatives [AHHK16], according to our notation,

the derivatives of order p of L(0) are defined as

dp

dtp
L(0)

∣∣∣∣
∆t=0

=
∑
|q|=p

(
p

q

) 1∏
k=s

qk∑
l=0

(
qk
l

)
A[2]lA[1]qk−l −

(
A[1] +A[2]

)p
where q = (q1, . . . , qs) ∈ Ns0, the set of integers from 0 to s. As explained in [AH14], the above definition

of dp

dtpL(0) defines a minimal set of order conditions that include a linear combination of higher-order

commutators of A[1] and A[2], defining a basis for an appropriate Lie algebra. For example, the order

condition for the Godunov scheme can be derived from (2.2.3) in the following way. Set the order p = 1, the

number of stages s = 1, and q = (0, 1), then we have:

d

dt
L(0)

∣∣∣∣
∆t=0

=

1∑
|q|=1

(
1

q

) 1∏
k=1

qk∑
l=0

(
qk
l

)
A[2]lA[1]qk−l −

(
A[1] +A[2]

)

=

1∑
|q|=1

(
1

q

) 1∏
k=1

[(
α

[1]
k

1

)
A[2]0A[1]1 +

(
α

[2]
k

1

)
A[2]1A[1]0

]
−
(
A[1] +A[2]

)

=

1∑
|q|=1

(
1

q

)[
α

[1]
1 A[1] + α

[2]
1 A[2]

]
−
(
A[1] +A[2]

)
= α

[1]
1 A[1] + α

[2]
1 A[2] −

(
A[1] +A[2]

)
The consistency condition d

dtL(0) = 0 for order p = 1 is then equivalent to α[1]
1 = 1 and α[2]

1 = 1.

For this reason, the authors chose to use as a basis the Lyndon (or Lyndon–Shirshov) words over the

alphabet A[1],A[2]. To select optimal methods among those that satisfy the order conditions, the authors

chose to minimize the local error measure (LEM)

LEM :=

lp+1∑
q=1

|λp+1,q|2
1/2

, (2.32)

where the λp+1,q are the coefficients of the Lyndon monomials [AHKK17]. This measure is particularly well

designed and advantageous because it uses precisely the same framework used to set up the order conditions

(see [HLW06, AH14] for more details).

The first higher-order OS method belonging to this class considered here is one proposed by Auzinger

and co-workers in [AHKK17]. This method, denoted in [AHKK17] as “Emb 3/2 AKS” and here simply as

“AKS3”, is third-order accurate, and it is a three-stage method. It is optimal in the sense that it has minimal

LEM among similar methods with the same number of stages. Following our notation, this method can be

written as

(α3∆t)(α2∆t)(α1∆t),

22

where the coefficients α[l]
k for l = 1, 2, k = 1, 2, 3 are displayed in table 2.8. The AKS3 method belongs to

the class of embedded exponential operator operator splitting methods; it is, in fact, the main integrator of a

3(2) embedded pair. Such methods were presented for the first time in [KNT13]. It is also a palindromic

method [AH14] because

α
[2]
k = α

[1]
s+1−k, k = 1, 2, . . . , s.

k α
[1]
k α

[2]
k

1 0.919661523017399857 α
[1]
3

2 −0.187991618799159782 α
[1]
2

3 0.268330095781759925 α
[1]
1

Table 2.8: Coefficients α[l]
k , l = 1, 2, k = 1, 2, 3, for the AKS3 method.

We conclude our review of OS methods by presenting a result by Auzinger, Hoastätter, and Koch [AHK19].

In their work, the authors present a result about generalized splitting methods based on the fact that, in

many applications, the commutator [B, [B,A]] and its exponential are easy to compute see [OMF02, AHK19].

This suggests to consider generalized splitting methods of the form

y∆t = Sy0 = eα
[3]
s ∆t3[B,[B,A]]eα

[2]
s ∆tA[2]

eα
[1]
s ∆tA[1]

. . . eα
[3]
1 ∆t3[B,[B,A]]eα

[2]
1 ∆tA[2]

eα
[1]
1 ∆tA[1]

y0. (2.33)

Based on (2.33), the authors present the following fourth-order scheme [AHK19]

S(∆t) = e
1
6 ∆tA[2]

e
1
2 ∆tA[1]

e
2
3 ∆tA[2] 1

72 ∆t3[B,[B,A]]e
1
2 ∆tA[1]

e
1
6 ∆tA[2]

. (2.34)

The generalization provided by (2.33) allows the coefficients α[2]
k and α

[1]
k , k = 1, 2, . . . , s to be positive

positive even when the OS method is of order p ≥ 3. However, the negative coefficients are necessary for

order p ≥ 5.

Theorem 2.2.6 (Auzinger, Hoastätter, Koch). If S is a generalized splitting method of the form (2.33) of

order p ≥ 5 with real coefficients when applied to an equation (2.2) where the operators A[1] and A[2] satisfy

[B, [B,A]] = 0, then at least one of the coefficients α[1]
k , k = 1, 2, . . . , s, is strictly negative.

A proof of theorem 2.2.6 can be found in [Chi05]

2.2.4 Operator Splitting Methods with Complex Coefficients

As presented in section 2.2.3, many OS methods with high order were developed in the last decade of the

twentieth century. In accordance with the Sheng–Suzuki and the Goldman–Kaper theory, methods with

order higher than two must contain negative coefficients. Historically, for many applications, this may be a

drawback because backward time integration can lead to instabilities. Many authors have also claimed that

higher-order OS methods may also be less efficient because the backward time integration forces movement in

23

the opposite direction to the main integration [Cha03, BCM10, MQ02]. Furthermore, to compensate for the

backward time integration, some of these methods have large forward sub-integrations, which may destabilize

the integration and increase the truncation error [Cha03].

To overcome these problems, in 2003, Chambers showed how to develop higher-order integrators with

smaller coefficients and (potentially) smaller truncation errors [Cha03] than OS methods with real coefficients.

The author achieved this result by deriving OS methods with complex coefficients. Throughout the next

subsection, we present how some of these methods were derived and describe their advantages and drawbacks.

The approach adopted by Chambers is very similar to what numerous authors did to derive OS methods

with real coefficients (see Section 2.2.3). Consider Hamilton’s equations for a system of m bodies

dxi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂xi

, i = 1, 2, . . . ,m,

where x = (x1, x2, . . . , xm), and p = (p1, p2, . . . , pm) are, respectively, the coordinates and momenta of

the bodies and H is the Hamiltonian of the system. Symplectic integrators are often conveniently used for

Hamiltonian systems where H can be split into sub-problems that can be solved separately. For example, if

we split H = H1 +H2, the evolution q after a time step can be expressed as

q(t+ ∆t) = e∆t(H1+H2)q(t),

where, unless H1 and H2 commute, the RHS is approximated using CBH formula (2.4). Following the same

idea used by Yoshida [Yos90] and Forest and Ruth [FR90], Chambers solved order conditions for OS methods

but allowing for complex solutions. This way, Chambers was able to derive third- and fourth-order methods

with complex coefficients. Here, we present a three-stage, third-order method. From now on, we denote

this method with C3. The coefficients α[l]
k , l = 1, 2, j = 1, 2, 3 for the C3 method are presented in table

2.9. There is also a third-order OS method with complex coefficients that is exactly the conjugate of the C3

method. Details can be found in [Cha03].

k α
[1]
k α

[2]
k

1 1
4

(
1 + i√

3

)
1
2

(
1 + i√

3

)
2 1

2
1
2

(
1− i√

3

)
3 1

4

(
1− i√

3

)
0

Table 2.9: Coefficients α[l]
k , l = 1, 2, k = 1, 2, 3, for the C3 method.

In 2009, Castella and collaborators [CCDV09] presented a result about the order of an OS S∆t.

Theorem 2.2.7 (Castella et al.). Let S∆t = φ∆t +O
(
(∆t)p+1

)
. If

s∑
k=1

α
[l]
k = 1, l = 1, 2, . . . , N,

s∑
k=1

α
[l]p+1

k = 0, l = 1, 2, . . . , N,

24

then S∆t approximates φ∆t to order p+ 1, i.e., φ∆t ≈ O
(
(∆t)p+2

)
Moreover, [CCDV09]

Corollary 1. Whenever p is even and the composition is symmetric (i.e., α[l]
s−k+1 = α

[l]
k ,∀k), then S∆t is of

order p+ 2.

Castella and coworkers chose to construct higher-order OS methods as a composition of the SM2 method

by restricting the set of solutions to ones with complex α[l]
k . Additionally, to reduce the computational cost,

they wanted to keep the number of stages low, and, to reduce the size of the time sub-steps, they chose

coefficients small in magnitude. With these constraints in mind, the authors proposed a four-stage, fourth-

order method that we denote here with CCDV4 [CCDV09] . The coefficients for the CCDV4 method are

presented in table 2.10, with ω1 = 1/(2− 21/3e2iπ/3) and ω0 = 1− 2ω1.

k α
[1]
k α

[2]
k

1 ω1/2 ω1

2 (ω0 + ω1)/2 ω0

3 (ω0 + ω1)/2 ω1

4 ω1/2 0

Table 2.10: Coefficients α[l]
k , l = 1, 2, k = 1, 2, 3, 4, for the CCDV4 method.

An interesting characteristic of this method is that it is derived after a three-fold composition of the SM2

method, precisely as the Y4 method described in section 2.2.3 (see [AH14, CCDV09] for more details).

Lastly, we introduce the reader to another family of methods that was discovered by Auzinger and

collaborators using the same strategy as the used to derive the AKS3 method. The authors found a three-

stage, third-order method. According to our notation, this method, denoted with AKS3C from now on, can

be written as

(α3∆t)(α2∆t)(α1∆t),

for coefficients α[l]
k , k = 1, 2, 3, displayed in table 2.11. As for the C3 method, the conjugate of this method

also exists. See [AH14] for more details.

k α
[1]
k α

[2]
k

1 0 1
4 + i

√
3

12

2 1
2 + i

√
3

6
1
2

3 1
2 − i

√
3

6
1
4 − i

√
3

12

Table 2.11: Coefficients α[l]
k l = 1, 2, k = 1, 2, 3, for the AKS3C method.

25

The same authors also found another three-stage, third-order method that has the characteristic of being

palindromic. According to our notation, this method, denoted with AKS3CP from now on, can be written

as

(α3∆t)(α2∆t)(α1∆t),

where the coefficients α[l]
k , k = 1, 2, 3, are displayed is table 2.12.

k α
[1]
k α

[2]
k

1 0.201639688260407656 + i0.105972321241365172 α
[1]
3

2 0.410612900985895537− i0.206043441934939727 α
[1]
2

3 0.387747410753696807 + i0.100071120693574555 α
[1]
1

Table 2.12: Coefficients α[l]
k l = 1, 2, k = 1, 2, 3, for the AKS3CP method.

Another OS method we consider here was proposed by Auzinger, Hofstätter, Ketcheson, and Koch. This

method was derived by minimizing (2.32), and it was presented in [AHKK17]. The method we consider,

denoted in [AHKK17] as “Emb 4/3 A c” and here simply by AK4, is a five-stage, fourth-order method and

belongs to the family of embedded exponential operator splitting methods. It is, in fact, the principal integrator

of a 4(3) pair of methods. Using our notation, the AK4 method can be written as

(α5∆t)(α4∆t)(α3∆t)(α2∆t)(α1∆t),

with coefficients α[i]
j reported in Table 2.13.

j α
[1]
j α

[2]
j

1 0.109525706004194176 - i0.0460468765633518715 α
[1]
5

2 0.229070097527301312 + i0.0110520760987947350 α
[1]
4

3 0.207808170031590079 + i0.0019350400369144765 α
[1]
3

4 0.225474403617092379 + i0.1433526732116915910 α
[1]
2

5 0.228121622819822054 - i0.1102929127840489310 α
[1]
1

Table 2.13: Coefficients α[i]
j , l = 1, 2, k = 1, 2, . . . , 5, for the AK4 method.

As we have seen, in recent years, various authors have come up with splitting methods with complex

coefficients with positive real part. This procedure allows to overcome the order barrier where splitting

methods of order greater than two involve necessarily negative coefficients in the real space. One drawback

of this class of methods is that, in general, splitting methods with complex coefficients are considered about

26

four times more expensive [BCM10] than the corresponding methods with real coefficients, and this generally

makes them uncompetitive in practice. However, one can think that the main application of OS methods

with complex coefficients could be on parabolic PDEs. In fact, according to the theory, higher-order methods

with real coefficients cannot be used because of the necessary backward time integration. However, it has

been shown in [CS18a, CS18b] that higher-order OS methods with real coefficients maintain their order of

accuracy for a certain class of problems such as the bidomain and the monodomain model. Results about

numerical experiments that confirm the proper accuracy and the gains in efficiency of higher-order OS with

real coefficients and how they compare to methods with complex coefficients are presented in chapter 4.

As for the practical implementation of splitting methods with complex coefficients, the general idea

is that the numerical integration has to be carried using complex variables. However, as pointed out in

[Cha03, BCM10], it is claimed that for problems with real solutions, for the output, one should take either

the real part of the variables or their modulus only. In fact, as explained in [BCM10], the authors observed

that removing the imaginary part at each step, i.e., projecting on the real space at each step, the error growth

can be considerably diminished in some cases.

2.2.5 Operator Splitting Methods used in the Numerical Experiments

In this section, we present a concise summary of the OS methods that are used in the numerical experiments

presented in chapters 3 and 4.

OS abbreviation Reference Order Number of Stages Coefficients

SM2 (2.23) 2 2 Real

SS3 table 2.6 3 9 Real

AKS3 table 2.8 3 3 Real

R3 table 2.1 3 3 Real

Y4 table 2.2 4 4 Real

C3 table 2.9 3 3 Complex

AKS3CP table 2.12 3 3 Complex

CCDV4 table 2.10 4 4 Complex

Table 2.14: Summary of OS methods used in the numerical experiments

27

3 On the Stability of Operator Splitting Methods

This chapter treats the stability of OS methods. In section 3.1, we present some results from the literature

regarding the stability of OS methods and we motivate our research. In section 3.2, we describe the connection

between OS and Generalized Additive Runge–Kutta methods, and how to write an extended Butcher tableau

that incorporates such information. Additionally, we present a general result about the stability analysis for

OS methods. In section 3.3, we present some simple examples that describe how to apply the theory described

in section 3.2. Finally, in section 3.4, we show how to apply the order conditions for OS and Runge–Kutta

methods to the extended Butcher tableau.

3.1 Motivation

We begin our journey towards understanding the stability of OS methods by introducing to the concepts of

linear stability analysis, A-stability, and L-stability.

Consider the following test equation

dy

dt
= λy, y(0) = y0, t > 0, (3.1)

where λ is a constant complex scalar. The solution to (3.1), y = eλty0, satisfies

|y(t)| ≤ |y0| ⇐⇒ Re(z) ≤ 0, (3.2)

where Re(z) represents the real part of some complex number z = λ∆t. When we apply a numerical method

to the test equation, if we define the numerical solution after n time steps to be yn, it is possible to define an

amplification factor yn+1 = R(z)yn and a region of absolute stability as that region of the complex z-plane

where

|yn+1| ≤ |yn| n = 0, 1, 2, (3.3)

Based on these definitions, the concept of A-stability can be defined in the following way [AP98].

Definition 1 (A-stability). A method is considered to be A-stable if its absolute stability region contains the

entire left plane, i.e., if a complex value z ∈ C has |R(z)| ≤ 1 whenever Re(z) ≤ 0.

In other words, if a method is A-stable, it is ensured that modes in the numerical solution decay when

the corresponding modes in the original problem decay [RS05].

Another useful concept is regarding the stability of numerical methods is L-stability [AP98].

28

Definition 2 (L-stability). A method is considered to be L-stable if it is A-stable and the condition limz→−∞R(z) =

0 holds.

This ensures that, for an L-stable method, the amplification factor R(z) has the correct asymptotic

behaviour in the limit of large negative z.

Having established the main concepts about linear stability analysis of numerical methods, we summarize

some results about the stability of OS methods presented by various authors.

We start our survey by describing the work of Ropp and Shadid. In [RS05], the authors explored the

stability of first- and second-order OS methods applied to the Brusselator equation [PL68]

∂T

∂t
= D1

∂2T

∂x2
+ a− (b+ 1)T + T 2C, (3.4a)

∂C

∂t
= D2

∂2C

∂x2
+ bT − T 2C, (3.4b)

subject to time-independent Dirichlet boundary conditions T (0, t) = T (1, t) = a, C(0, t) = C(1, t) = b/a,

a = 0.6, b = 2, D1 = D2 = 1/40, ICs T (x, 0) = a+ x(1− x) and C(x, 0) = b/a+ x2(1− x) and for t = [0, 2].

Numerical solutions can be found via OS methods by splitting the diffusion and the reaction terms in system

(3.4) as
∂y

∂t
= A[1]

D (y) +A[2]
R (y), (3.5)

where y = [T,C]T and A[1]
D (y) and A[2]

R (y) are the diffusion and the reaction terms, respectively defined as

A[1]
D (y) =

D1
∂2T
∂x2

D2
∂2C
∂x2

 and A[2]
R (y) =

a− (b+ 1)T + T 2C

bT − T 2C

 . (3.6)

To solve the split system, the authors considered the G1 and the combined-SM2 splitting method described

in section 2.2. In both cases, the authors chose to integrate the reaction term in (3.5) as a system of ODEs

using Heun’s method [RS05]. When using the G1 splitting, the diffusion part is solved using the first-order

Backward Euler (BE) method. Similarly, when using the combined-SM2 splitting, the diffusion part is solved

using the second-order Implicit Midpoint method. By applying linear stability analysis to the split system,

the authors established the following result [RS05]:

Theorem 3.1.1 (Ropp–Shadid, Godunov A-stability). Consider an operator-split time-discretization of

(3.5). Assume that

• A[1]
D +A[2]

R is negative definite;

• A[1]
D is normal with real negative eigenvalues, λi < 0, i = 1, 2, . . . n.

Let υR(∆t) = ||R(∆tAR)||L2 , i.e., the 2-norm of the amplification factor of the reaction term. If the following

holds:

max
i
|RD(∆tλi)| ≤ 1/υR(∆t) for 0 ≤ ∆t ≤ ∆t∗ ≤ ∞, (3.7)

where RD is the amplification factor for the diffusion term and ∆t∗ is the time-step restriction required for

A-stability, then the Godunov OS scheme is A-stable.

29

The proof can be found in [RS05]. The authors also hint at a similar result in the case where the

combined-SM2 splitting is used (see [RS05]).

An even stronger result was derived in the case where the diffusion part is solved using an L-stable Singly

Diagonally Implicit Runge–Kutta (SDIRK) method. In fact, further results in [RS05] confirmed that when

using an L-stable scheme, such as the two-stage, second-order SDIRK (SDIRK2O2), the solution is smooth

and well behaved for all values of ∆t. Additionally, the authors found that when solving the diffusion term

with a method that is not L-stable, a time step restriction ∆t∗ is required to avoid instabilities [RS05] .

In a later publication [RS09], the same authors studied the stability of an advection-diffusion-reaction

(ADR) equation solved with the G1 and the combined-SM2 splittings. In a similar way as in [RS05], the

authors study the stability of the splitting method and derive similar results for A- and L- stability of the

G1 and the combined-SM2 methods for the ADR case.

The results presented in [RS05] and [RS09] provide some insight regarding the stability of the G1 and

the combined-SM2 methods in certain cases. However, they do not provide results regarding the stability of

others OS and time-stepping methods.

More results about the stability of OS methods were further described by Christlieb, Liu, and Xu in

[CLX15]. The authors considered the problem

dy

dt
= A(y) =

N∑
l=1

A[l](y), y(0) = y0. (3.8)

The idea of the work presented in [CLX15] was to write OS methods as additive Runge–Kutta (ARK)

methods. The family of ARK methods belongs to the class of Runge–Kutta methods that can be defined as

[HLW06].

Definition 3 (RK methods). Let bi and aij , i, j = 1, 2, . . . , s̃, be real numbers and let ci =
∑s̃
i=1 aij. One

step of an s̃-stage Runge–Kutta (RK) method is given by

yn+1 = yn + ∆t

s̃∑
i=1

biA(tn + ci∆t, ỹi), (3.9a)

ỹi = yn + ∆t

s̃∑
j=1

aijA(tn + cj∆t, ỹj), i = 1, 2, . . . , s̃. (3.9b)

The coefficients bi, ci, and aij , i, j = 1, 2, . . . , s̃, of a RK method can be written in a table called a

Butcher tableau in the following way

c1 a11 a12 . . . a1s̃

c2 a21 a22 . . . a2s̃

...
...

...
...

...

cs̃ as̃1 as̃2 . . . as̃s̃

b1 b2 . . . bs̃

.

30

We can cast the Butcher tableau in vector/matrix form in the following way

c A

b
,

where, for later convenience of notation, b is intended to be a row vector.

For an IVP in the form of (3.8), when different s̃-stage Runge–Kutta (RK) integrators are applied to each

operator A[l], the entire numerical method is called an additive RK (ARK) method [KC03].

Definition 4 (ARK methods). Let b[l]i and a[l]
ij , i, j = 1, 2, . . . , s̃, l = 1, 2, . . . , N , be real numbers, and let

c
[l]
i =

∑s̃
i=1 a

[l]
ij . One step of an s̃-stage ARK method is given by

yn+1 = yn + ∆t

N∑
l=1

s̃∑
i=1

b
[l]
i A

[l](tn + c
[l]
i ∆t, ỹi), (3.10a)

ỹi = yn + ∆t

N∑
l=1

s̃∑
j=1

a
[l]
ijA

[l](tn + c
[l]
j ∆t, ỹj), i = 1, 2, . . . , s̃, (3.10b)

where b[l]i , c
[l]
j , and a

[l]
ij are the coefficients of the method.

The Butcher tableau for ARK methods can be written as [SG15]

c[1] . . . c[N] A[1] . . . A[N]

b[1] . . . b[N]
, (3.11)

where A[l], l = 1, 2, . . . , N , is the integrator of the operator l. Details about the study presented in [CLX15]

go beyond the scope of this thesis. However, it is important to point out that all the results regarding the

splitting error and the stability of the OS methods considered in [CLX15], again, were formulated based on

on the assumptions that each sub-flow is solved exactly (i.e., no error contributions from the integrators).

However, it is clear that, during the time integration, both the OS and the methods used in the time

integration of the sub-flows introduce errors and potentially contribute to instabilities. It follows, that

neither of these components can be ignored when studying the stability of an OS method or when trying to

design a new method. We present our contribution to these results in the next section.

3.2 A General Result About Stability of Splitting Methods

The first important assumption that leads to establishing a general result for the stability of OS methods is

that we consider Runge–Kutta method (3.9) as integrators used in the time integration of the sub-flows.

An important observation is that the family Generalized Additive Runge–Kutta (GARK) methods defined

in [SG15] can be regarded as a natural generalization of ARK methods (3.10). In fact, GARK methods can

be defined in the following way:

31

Definition 5 (GARK methods). Let b[l]i and a[l]
ij , i, j = 1, 2, . . . , s̃, l = 1, 2, . . . , N , be real numbers, and

let c[l]i =
∑s̃
i=1 a

[l]
ij . One step of a GARK scheme with an N -way partitioning of the right-hand side of (3.8)

stages reads

yn+1 = yn + ∆t

N∑
l=1

s̃[l]∑
i=1

b
[l]
i A

[l](tn + c
[l]
i ∆t, ỹi), (3.12a)

ỹi = yn + ∆t

N∑
l=1

s̃[l]∑
j=1

a
[l]
ijA

[l](tn + c
[l]
j ∆t, ỹj). (3.12b)

In other words, GARK methods generallize the structure of ARK methods by allowing for different stage

values with different components of the right-hand side [SG15]. As described in [SG15], any GARK method

can be written as an ARK method (and vice versa) so that the Butcher tableaux for GARK methods have

the same structure as Butcher tableaux for ARK methods (3.11) (see theorem 2.5 in [SG15]).

With definitions 3 and 5, we are now ready to present a result that describes the connection between the

OS method and the RK integrators chosen to solve a split problem.

Theorem 3.2.1. Consider (3.8). Let s be the number of stages in the OS method considered, and let α[l]
k ,

l = 1, 2, . . . , N , k = 1, 2, . . . , s, be the coefficients of the OS method associated with operator l. Let ᾱ be the

vector that contains the coefficients α[l]
k of the OS in the order they are applied during each time step of the

time integration. Denote with ᾱm entry m of said vector. Additionally, let

c
[l]
k A

[l]
k

b
[l]
k

,

l = 1, 2, . . . , N , k = 1, 2, . . . , s, be the Butcher tableau of each s̃[l]
k -stage Runge–Kutta integrator used in the

sub-integration time-stepping. Then, we can construct an extended Butcher tableau with the same structure

as (3.11) that incorporates the coefficients of the Runge–Kutta integrators scaled by the coefficients of the OS

method. The size of the Butcher tableau is S =
∑N
l=1

∑s
k=1 s̃

[l]
k .

Proof. Consider (3.8). We integrate the N split operators with sN different integrators with Butcher tableaux

c
[l]
k A

[l]
k

b
[l]
k

, l = 1, 2, . . . , N, k = 1, 2, . . . , s.

Then the size of the Butcher tableau is S =
∑N
l=1

∑s
k=1 s̃

[l]
k . From ᾱ, fill the first s̃[1]

1 rows of the block with

α
[1]
1 A

[1]
1 . Next, copy α[1]

1 b
[1]
1 in the remaining rows to get

α
[1]
1 A

[1]
1 0 . . . 0 0 . . . 0 . . . 0 . . . 0

α
[1]
1 b

[1]
1 0 . . . 0 0

. . . 0 . . . 0
. . . 0

... 0 . . . 0 0 . . . 0 . . . 0 . . . 0

α
[1]
1 b

[1]
1 0 . . . 0 0 . . . 0 . . . 0 . . . 0

α
[1]
1 b

[1]
1 0 . . . 0 0 . . . 0 . . . 0 . . . 0

32

Next, copy α[2]
1 A

[2]
1 in the second block on the s̃[1]

1 + 1 column starting from the s̃[1]
1 + 1 row. Copy α[2]

1 b
[2]
1

in the remaining rows to get

α
[1]
1 A

[1]
1 0 . . . 0 0 0 . . . 0 . . . 0 . . . 0

α
[1]
1 b

[1]
1 0 . . . 0 0 α

[2]
1 A

[2]
1

. . . 0 . . . 0
. . . 0

... 0 . . . 0
... α

[2]
1 b

[2]
1 . . . 0 . . . 0 . . . 0

α
[1]
1 b

[1]
1 0 . . . 0 0

... . . . 0 . . . 0 . . . 0

α
[1]
1 b

[1]
1 0 . . . 0 0 α

[2]
1 b

[2]
1 . . . 0 . . . 0 . . . 0

α
[1]
1 b

[1]
1 0 . . . 0 0 α

[2]
1 b

[2]
1 0 0 . . . 0 . . . 0

Repeating the process for the remaining stages of the OS method, we obtain the complete extended Butcher

tableau

α
[1]
1 A

[1]
1 0 0 0 . . . 0 . . . 0 0 0

α
[1]
1 b

[1]
1 0 0 0 α

[2]
1 A

[2]
1

... . . . 0 0 0
... 0 α

[1]
2 A

[1]
2

. . .
... 0 α

[2]
1 b

[2]
1

. 0 0 0

α
[1]
1 b

[1]
1 0

... 0 0 0
...

... α
[2]
s A

[2]
s 0 0 . . . 0 0

α
[1]
1 b

[1]
1 0 α

[1]
2 b

[1]
2 0 0 0 α

[1]
2 b

[1]
2

... α
[2]
s b

[2]
s 0 0 . . . 0 α

[N]
s A

[N]
s

α
[1]
1 b

[1]
1 0 α

[1]
2 b

[1]
2 0 0 0 α

[2]
1 b

[2]
1 0 α

[1]
s b

[1]
s 0 0 . . . 0 α

[N]
s b

[N]
s

.

The columns on the left of the tableau are filled with the consistency condition

c
[l]
i =

s∑
j=1

a
[l]
ij , i = 1, 2, . . . , S, l = 1, 2, . . . , N, (3.13)

to obtain
α

[1]
1 c

[1]
1 0 . . . 0∑s

j=1 α
[1]
1 b

[1]
j α

[2]
1 c

[2]
1

... 0
...

...
...

...
...

...
... α

[N]
s a

[N]
s

. . . (3.14)

. . .

α
[1]
1 A

[1]
1 0 0 0 . . . 0 . . . 0 0 0

α
[1]
1 b

[1]
1 0 v 0 α

[2]
1 A

[2]
1

... . . . 0 0 0
... 0 α

[1]
2 A

[1]
2

. . .
... 0 α

[2]
1 b

[2]
1

. 0 0 0

α
[1]
1 b

[1]
1 0

... 0 0 0
...

... α
[2]
s A

[2]
s 0 0 . . . 0 0

α
[1]
1 b

[1]
1 0 α

[1]
2 b

[1]
2 0 0 0 α

[1]
2 b

[1]
2

... α
[2]
s b

[2]
s 0 0 . . . 0 α

[N]
s A

[N]
s

α
[1]
1 b

[1]
1 0 α

[1]
2 b

[1]
2 0 0 0 α

[2]
1 b

[2]
1 0 α

[1]
s b

[1]
s 0 0 . . . 0 α

[N]
s b

[N]
s

. (3.15)

To conclude, we observe that, when solving a system (3.8) by combining an s-stage OS method with various

RK time-stepping methods, the time integration described by (3.15) can be written as GARK method where

the entries have been scaled by the coefficients α[l]
k , l = 1, 2, . . . , N, k = 1, 2, . . . , s of the OS method.

33

For convenience, we show the extended Butcher tableau for a consistent 3-stage, 3-additive OS method.

Note that this tableau has structure

c[1] A[1] c[2] A[2] . . . c[N] A[N]

b[1] b[2] . . . b[N]
. (3.16)

α
[1]
1 c

[1]
1 α

[1]
1 A

[1]
1 0 0 0

α
[1]
1 1 α

[1]
1 1b

[1]
1 0 0 0

α
[1]
1 1 α

[1]
1 1b

[1]
1 0 0 0

α
[1]
1 1 + α

[1]
2 c

[1]
2 α

[1]
1 1b

[1]
1 0 0 α

[1]
2 A

[1]
2 0 0 0

(α
[1]
1 + α

[1]
2)1 α

[1]
1 1b

[1]
1 0 0 α

[1]
2 1b

[1]
2 0 0 0

(α
[1]
1 + α

[1]
2)1 α

[1]
1 1b

[1]
1 0 0 α

[1]
2 1b

[1]
2 0 0 0

(α
[1]
1 + α

[1]
2)1 + α

[1]
3 c

[1]
3 α

[1]
1 1b

[1]
1 0 0 α

[1]
2 1b

[1]
2 0 0 0

(α
[1]
1 + α

[1]
2)1 + α

[1]
3 c

[1]
3 α

[1]
1 1b

[1]
1 0 0 α

[1]
2 1b

[1]
2 0v . . . α

[1]
3 A

[1]
3 0 0

(α
[1]
1 + α

[1]
2 + α

[1]
3)1 α

[1]
1 1b

[1]
1 0 0 α

[1]
2 1b

[1]
2 0 0 α

[1]
3 1b

[1]
3 0 0

(α
[1]
1 + α

[1]
2 + α

[1]
3)1 α

[1]
1 1b

[1]
1 0 0 α

[1]
2 1b

[1]
2 0 0 α

[1]
3 1b

[1]
3 0 0

α
[1]
1 b

[1]
1 0 0 α

[1]
2 b

[1]
2 0 0 α

[1]
3 b

[1]
3 0 0

. . . (3.17)

. . .

0 0 0 0 0 0 0 0 0 0

α
[2]
1 c

[2]
1 0 α

[2]
1 A

[2]
1 0 0

α
[2]
1 1 0 α

[2]
1 1b

[2]
1 0 0 0

α
[2]
1 1 0 α

[2]
1 1b

[2]
1 0 0 0

(α
[1]
1 + α

[1]
2)1 0 α

[2]
1 1b

[2]
1 0 0 α

[2]
2 A

[2]
2 0 0

(α
[1]
1 + α

[1]
2)1 0 α

[2]
1 1b

[2]
1 0 0 α

[2]
2 b

[2]
2 0 0

(α
[1]
1 + α

[1]
2)1 0 α

[2]
1 1b

[2]
1 0 0 α

[2]
2 b

[2]
2 0 0

(α
[1]
1 + α

[1]
2)1 + α

[2]
3 c

[2]
3 0 α

[2]
2 1b

[2]
2 0 0 α

[2]
2 b

[2]
2 α

[2]
3 A

[2]
3 0

(α
[1]
1 + α

[1]
2 + α

[2]
3)1 0 α

[2]
1 1b

[2]
1 0 0 α

[2]
1 b

[2]
2 α

[2]
3 b

[2]
3 0

0 α
[2]
1 1b

[2]
1 0 0 α

[2]
1 b

[2]
2 α

[2]
3 b

[2]
3 0

. . . (3.18)

34

. . .

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

α
[3]
1 c

[3]
1 0 0 α

[3]
1 A

[3]
1 0 0 0

α
[3]
1 1 0 0 α

[3]
1 1b

[3]
1 0 0 0

α
[3]
1 1 0 0 α

[3]
1 1b

[3]
1 0 0

α
[3]
1 1 0 0 α

[3]
1 1b

[3]
1 0 0

α
[3]
1 1 0 0 α

[3]
1 1b

[3]
1 0 . . . α

[3]
2 A

[3]
2 0

α
[3]
1 1 + α

[3]
2 c

[3]
2 0 0 α

[3]
1 1b

[3]
2 0 . . . α

[3]
2 A

[3]
2 0

(α
[3]
1 + α

[3]
2)1 0 0 α

[3]
1 1b

[3]
1 0 . . . α

[3]
2 1b

[3]
2 0

(α
[3]
1 + α

[3]
2)1 + α

[3]
3 c

[3]
3 0 0 α

[2]
1 1b

[3]
1 0 . . . α

[3]
1 1b

[3]
2 α

[3]
3 A

[3]
3

0 0 α
[3]
1 b

[3]
1 0 . . . α

[3]
1 b

[3]
2 α

[3]
3 b

[3]
3

(3.19)

We define a GARK method scaled by the coefficients of the OS method in the following way:

Definition 6 (OS-GARK methods). Consider (3.8) and assume that we advance the time integration by

choosing a combination of OS methods and Runge–Kutta time-stepping methods. Then, one step of an OS-

GARK methods reads

yn+1 = yn + ∆t

s∑
k=1

N∑
l=1

s̃
[l]
k∑
i=1

α
[l]
k b

[l]
i A

[l](tn + c
[l]
i ∆t, ỹi), (3.20a)

ỹi = yn + ∆t

s∑
k=1

N∑
l=1

s̃
[l]
k∑

j=1

α
[l]
k a

[l]
ijA

[l](tn + c
[l]
j ∆t, ỹj). (3.20b)

Having determined the connection between the combination of OS and RK methods used to solve (3.8),

the extended Butcher tableau, and OS-GARK methods, we are now ready to present a general result about

the stability of OS-GARK methods.

Theorem 3.2.2. We apply the OS-GARK method (3.20) to the linear test equation

ẏ =

N∑
l=1

λ[l]y. (3.21)

We define z[l] = ∆tλ[l], B[l] = [α
[l]
1 b

[l]
1 , α

[l]
1 b

[l]
2 , . . . , α

[l]
s b

[l]
s], and A[l] be the lth building block in the extended

Butcher tableau. Additionally, we define the stability function of each RK method used to integrate each

operator A[l], l = 1, 2, . . . , N , to be R
[l]
RK(z[l]). Then, the stability function R(z[1], z[2], . . . , z[l]) of the OS

method is given by

R(z[1], z[2], . . . , z[N]) =

N∏
l=1

s∏
k=1

R
[l]
RK(α

[l]
k z

[l]) = 1 +

(
N∑
l=1

z[l]B[l]

)
·

(
IS×S −

(
N∑
l=1

z[l]A[l]

))−1

·1S×1, (3.22)

where IS×S denotes the S × S identity matrix and 1S×1 represents the S × 1 vector of ones.

35

Proof. Suppose that we consider an s-stage OS method with coefficients ᾱ.

Assume that we apply an RK method (3.9) to the split operator A[1] for t = ᾱ1∆t. Then, after performing

linear stability analysis, by defining the intermediate solution at the end of the sub-step to be y[1], we can

write

y[1] = R
[1]
RK(ᾱ1z

[1])yn, (3.23)

with

R
[1]
RK(ᾱ1z

[1]) = 1 + z[l]B[l] ·
(
IS×S − z[1]A

)−1

· 1S×1. (3.24)

Next, assume that we apply a (potentially different) RK method to the operator A[2] for t = ᾱ2∆t. Then,

after performing linear stability analysis, by defining the intermediate solution at the end of the second

sub-step to be y[2], we can write

y[2] = R
[2]
RK(ᾱ2z

[l])y[1] = R
[1]
RK(α

[1]
1 1z[1])R

[2]
RK(α

[2]
2 z[2])yn, (3.25)

with

R
[2]
RK(α

[2]
2 z[2]) = 1 + z[l]B[2] ·

(
IS×S − z[2]A

)−1

· 1S×1. (3.26)

By repeating this process over all the stages, we can write yn+1 as

yn+1 = RRK(α
[1]
1 z[1])R

[2]
RK(α

[2]
2 z[2]) · · · · ·R[l]

RK(α[l]
s 1z[l])yn (3.27)

=

N∏
l=1

s∏
k=1

R
[l]
RK(α

[l]
k z

[l])yn. (3.28)

Suppose now that we apply the GARK method (3.20) to the test equation (3.21). Then we obtain

yn+1 = yn + ∆t

s∑
k=1

N∑
l=1

s̃
[l]
k∑
i=1

α
[l]
k b

[l]
i λ

[l]ỹi, (3.29a)

ỹi = yn + ∆t

s∑
k=1

N∑
l=1

s̃
[l]
k∑

j=1

α
[l]
k a

[l]
ijλ

[l]ỹj . (3.29b)

By casting (3.29b) in matrix form we can write

Ỹ = yn1S×1 −
N∑
l=1

α
[l]
k z

[l]A[l]Ỹ, (3.30)

where Ỹ = [ỹ1, ỹ2, . . . , ỹs̃[l]k

]T and A[l] is the matrix with entries a[l]
ij in the Butcher tableau of the Runge–Kutta

method applied to operator l. Equation (3.30) implies

Ỹ = yn

(
IS×S −

N∑
l=1

α
[l]
k z

[l]A[l]

)−1

1S×1 (3.31)

Similarly, we can write (3.29a) as

yn+1 = yn +

N∑
l=1

α
[l]
k z

[l]B[l]Ỹ, (3.32)

36

where B̄[l] is the vector with entries b[l]i . Combining (3.31) and (3.33) we can write

yn+1 = yn1S×1 +

N∑
l=1

α
[l]
k z

[l]B[l] ·

(
IS×S −

N∑
l=1

α
[l]
k z

[l]A

)−1

· yn1S×1. (3.33)

Then, the stability function for OS-GARK methods is defined as

R(z[1], z[2], . . . , z[N]) = 1 +

N∑
l=1

α
[l]
k z

[l]B[l] ·

(
IS×S −

N∑
l=1

α
[l]
k z

[l]A

)−1

· 1S×1. (3.34)

3.3 Examples

Having presented the main results about the stability of OS methods, we now describe some simple examples

to illustrate how to apply and interpret theorems 3.2.1 and 3.2.2.

Example 3.3.1 (Construction of the extended Butcher tableau). We now present a simple illustrative

problem and the result regarding the construction of the extended Butcher tableau. Consider the following

problem

ẏ = Ay = A[1]y +A[2]y +A[3]y, y(0) = y0, (3.35)

where the the RHS has been split into three operators. We choose to integrate the system using the three-stage,

second-order AK3-2 OS method (see website reference in [AHKK17]) whose coefficients are given in table 3.1.

@
@
@
@

k

l
α

[1]
k α

[2]
k α

[3]
k

1 1/2 1−
√

2/2
√

2/2

2 0
√

2/2 1−
√

2/2

3 1/2 0 0

Table 3.1: Coefficients α[i]
j , i, j = 1, 2, 3 for the AK3-2 method.

In this case, ᾱ reads

ᾱ = [1/2, 1−
√

2/2,
√

2/2, 0,
√

2/2, 1−
√

2/2, 1/2, 0, 0].

Suppose that, at each stage, we decide to integrate A[1] using the BE, Heun, and FE methods. The tableaux

for these methods read, respectively

1 1

1 ,

0 0 0

1 1 0

1/2 1/2 , and

0 0

1 .

37

Additionally, we choose to integrate A[2] using the FE, Explicit Midpoint Rule, and BE methods. The

tableaux in this case read, respectively

0 0

1

0 0 0

1/2 1/2 0

0 1 , and

1 1

1 .

Finally, we integrate A[3] using the FE, BE, and FE methods. In this case, the tableaux are given by

0 0

1

1 1

1 , and

0 0

1 .

According to theorem 3.2.1, the tableau produced has size 11 and a structure similar to (3.16). Next, we fill

the tableau in the following way. We multiply A
[1]
1 = 1 by ᾱ1 = 1/2 and we copy the result in the first row

and column of the first building block. Next, we copy b
[1]
1 multiplied by ᾱ1 = 1/2 in the remaining rows to

obtain

0 0
1

2
0 0

0 0
1

2
0 . . . 0 0 0 0 0 . . . 0

0 0
1

2
0 . . . 0 0 0 0 0 . . . 0

0 0
1

2
0

. . . 0 0 0 0 0
. . . 0

...
...

1

2
0 . . . 0 0 0 0 0 . . . 0

...
...

...
...

...
...

...
...

...
... . . .

...

1

2
0 0 0 0

· · ·

. . .

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 . . . 0 0

0 0 0 . . . 0 0

0 0 0
. . . 0 0

... 0 0 . . . 0 0

...
...

... . . .
...

...

0 0 0

.

Next, in the second building block, we copy A
[2]
1 multiplied by ᾱ2 = 1−

√
2/2 on the s̃[1]

1 + 1 row starting

from the s̃[1]
1 + 1 = 2 column. We fill the remaining rows with b

[2]
1 multiplied by ᾱ2 = 1 −

√
2/2 in the

38

remaining rows to get

0 0
1

2
0 0

0 0
1

2
0 . . . 0 0 0 0 0 0 . . . 0

0 0
1

2
0

. . . 0 0 0 1−
√

2

2
0

. . . 0

0 0
1

2
0

. . . 0 0 0 1−
√

2

2
0

. . . 0

...
...

1

2
0 . . . 0 0

... 1−
√

2

2
0

... 0

...
...

...
... . . .

...
...

...
...

... . . .
...

1

2
0 0 0 1−

√
2

2
0 0

· · ·

. . .

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 . . . 0 0

0 0 0
. . . 0 0

0 0 0
. . . 0 0

... 0 0
... 0 0

0 0 0 0

.

Next, in the third block, we copy A
[3]
1 multiplied by ᾱ3 =

√
2/2 on the s̃[1]

1 +s̃
[2]
1 +1 row and on the s̃[1]

1 +s̃
[2]
1 +1

column. We fill the remaining rows with b
[3]
1 multiplied by ᾱ3 =

√
2/2 in the remaining rows.

0 0
1

2
0 0

0 0
1

2
0 . . . 0 0 0 0 0 0 . . . 0

0 0
1

2
0

. . . 0 0 0 1−
√

2

2
0

. . . 0

0 0
1

2
0

. . . 0 0 0 1−
√

2

2
0

. . . 0

...
...

1

2
0 . . . 0 0

... 1−
√

2

2
0 . . . 0

...
...

...
... . . .

...
...

...
...

... . . .
...

1

2
0 0 0 1−

√
2

2
0 0

· · ·

39

. . .

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0
... . . . 0 0

0 0 0 0

√
2

2
. . . 0 0

0 0 0 0

√
2

2

. . . 0 0

... 0 0 0

√
2

2
. . . 0 0

... 0 0 0
... . . .

...
...

0

√
2

2
. . . 0 0

.

Repeating the step until we exhaust all the columns in each building block, upon simplification, we get the

complete extended Butcher tableau for this case

1

2
0 0

1

2
0 0

1

2
0 0

1

2
0 0

1

2
1−
√

2

2
0

1

2
0 0 0 0 0 0 0 0 0 0 0 1−

√
2

2
0 0 0 0 0 0 0 0 0

1

2
1−
√

2

2
0

1

2
0 0 0 0 0 0 0 0 0 0 0 1−

√
2

2
0 0 0 0 0 0 0 0 0

1

2
1−
√

2

2

√
2

2

1

2
0 0 0 0 0 0 0 0 0 0 0 1−

√
2

2
0 0 0 0 0 0 0 0 0

1

2
1−
√

2

2

√
2

2

1

2
0 0 0 0 0 0 0 0 0 0 0 1−

√
2

2
0 0 0 0 0 0 0 0 0

1

2
1−
√

2

4

√
2

2

1

2
0 0 0 0 0 0 0 0 0 0 0 1−

√
2

2
0 0 0

√
2

4
0 0 0 0 0

1 1 1
1

2
0 0 0 0 0 0 0 0 0 0 0 1−

√
2

2
0 0 0 0

√
2

2
0 0 0 0

1 1 1
1

2
0 0 0 0 0 0 0 0 0 0 0 1−

√
2

2
0 0 0 0

√
2

2
0 0 0 0

1 1 1
1

2
0 0 0 0 0 0 0

1

2
0 0 0 1−

√
2

2
0 0 0 0

√
2

2
0 0 0 0

1 1 1
1

2
0 0 0 0 0 0 0

1

2
0 0 0 1−

√
2

2
0 0 0 0

√
2

2
0 0 0 0

1

2
0 0 0 0 0 0 0

1

2
0 0 0 1−

√
2

2
0 0 0 0

√
2

2
0 0 0 0

· · ·

40

. . .

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0

√
2

2
0 0 0 0 0 0 0 0

0 0

√
2

2
0 0 0 0 0 0 0 0

0 0

√
2

2
0 0 0 0 0 0 0 0

0 0

√
2

2
0 0 0 0 1−

√
2

2
0 0 0

0 0

√
2

2
0 0 0 0 1−

√
2

2
0 0 0

0 0

√
2

2
0 0 0 0 1−

√
2

2
0 0 0

0 0

√
2

2
0 0 0 0 1−

√
2

2
0 0 0

0 0

√
2

2
0 0 0 0 1−

√
2

2
0 0 0

.

Example 3.3.2 (Derivation of the stability function). To understand theorem 3.2.2, consider the following

problem

ẏ = Ay = A[1]y +A[2]y y(0) = y0, (3.36)

where the the RHS has been split into two operators. We choose to integrate the system using the G1 OS

method whose coefficients are given by

@
@

@
@

k

l
α

[1]
k α

[2]
k

1 1 1

Table 3.2: Coefficients α[i]
j for the G1 method.

In this case, ᾱ reads

ᾱ = [1, 1].

Suppose that, at each stage, we decide to integrate A[1] using the FE method with tableau

0 0

1 ,

41

and A[2] with the BE method with coefficients

1 1

1 .

Then, the extended Butcher tableau reads

0 0 0 0 0 0

1 1 1 0 0 1

1 0 0 1

.

By applying the extended Butcher tableau to the test equation (3.21), (3.22) becomes

R(z[1], z[2]) = 1 +

z[1]

z[2]

T

·

 1 0

−z[1] 1− z[2]

−1

·

1

1

 . (3.37)

To simplify (3.37), we compute 1 0

−z[1] 1− z[2]

−1

=
1

1− z[2]

1− z[2] 0

z[1] 1

 .

Then, we can (3.37) to obtain the stability function associated with the extended Butcher tableau

R(z[1], z[2]) = 1 +

z[1]

z[2]

T

·

 1 0

z[1]

1−z[2]
1

1−z[2]

 ·
1

1

 = 1 +
(
z[1] + z[1]z[2]

1−z[2] ,
z[2]

1−z[2]

)
·

1

1

 =

= 1 + z[1] +
z[1]z[2]

1− z[2]
+

z[2]

1− z[2]
=

1− z[2] + z[1] − z[2]z[1] + z[1]z[2] + z[2]

1− z[2]
=

1 + z[1]

1− z[2]
(3.38)

To conclude, we apply the FE method to the test equation

ẏ = A[1]y y(0) = y0, (3.39)

to get the stability function for FE

R
[1]
FE(z[1]) = 1 + z[1]. (3.40)

In a similar way, we can apply the BE method to the test equation

ẏ = A[2]y y(0) = y0, (3.41)

to get the stability function of BE

R
[2]
BE(z[2]) =

1

1− z[2]
. (3.42)

We notice that the last term in (3.38) is exactly the product of the (3.40) and (3.42), with z[1] and z[2] scaled

by the coefficients of the G1 OS method as expected from theorem 3.2.2.

42

3.4 Order Conditions

In section 3.2, we have seen how to construct a Butcher tableau that describes the choice of OS method and

RK integrators to advance the time integration for a given problem. Of course, although in most situations

this is not desirable, the order of the OS pOS is not always the same as the order pRK of the RK integrators

chosen. To check the global order of accuracy of the combination of OS and RK methods, we can use the

order conditions for an alternating OS method (2.5), (2.6) and RK methods.

The order condition up to pOS = 3 for OS methods with coefficients α =
{(
α

[1]
k , α

[2]
k

)}
are given by [BC05]

pOS = 1 :

s∑
k=1

α
[1]
k = 1,

s∑
k=1

α
[2]
k = 1, (3.43a)

pOS = 2 :

s∑
i=1

α
[2]
i

(
i∑

k=1

α
[1]
k

)
=

1

2
, (3.43b)

pOS = 3 :

s−1∑
i=1

α
[2]
i

(
s∑

k=i+1

α
[1]
k

)2

=
1

3
,

s∑
i=1

α
[1]
i

(
s∑
k=i

α
[2]
k

)2

=
1

3
. (3.43c)

For an s̃-stage RK method with Butcher tableau

c A

b
,

the order conditions pRK up to order 2 are given by

pRK = 1 :

s̄∑
j=1

bj = 1, (3.44a)

pRK = 2 :

s̄∑
j=1

bjcj =
1

2
. (3.44b)

Having defined the order conditions for OS and RK methods, we are now ready to verify the global order

of convergence of the extended Butcher tableau based on the order of convergence of the OS and RK methods.

Example 3.4.1 (SM2 OS with BE on both operators). When solving

ẏ = A[1]y +A[2]y, y(0) = y0,

using the SM2 OS method and BE on both operators, the extended tableau reads

1/2 0 1/2 0 0 0 0 0 0 0

1/2 1/2 1/2 0 0 0 0 1/2 0 0

1/2 1 1/2 0 0 0 0 1/2 1/2 0

1 1 1/2 0 0 1/2 0 1/2 1/2 0

1/2 0 0 1/2 0 1/2 1/2 0

.

43

Because pOS = 2 and pRK = 1, we expect the overall order of the extended Butcher tableau to be equal to 1.

We can check that by verifying the order condition for the RK method (3.44a) on each building block of the

tableau. For order 1, we have

4∑
j=1

α
[1]
j b

[1]
j =

1

2
+

1

2
= 1

4∑
j=1

α
[2]
j b

[2]
j =

1

2
+

1

2
= 1

For order 2, we need to check condition (3.44b)

4∑
j=1

α
[1]
j b

[1]
j · α

[1]
j c

[1]
j =

1

4
+

1

2
=

3

4
6= 1

2

4∑
j=1

α
[2]
j b

[2]
j · α

[2]
j c

[2]
j =

1

4
+

1

2
=

3

4
6= 1

2

Because the condition for order 2 is not satisfied, the order of convergence of the extended tableau is 1 as

expected.

Example 3.4.2 (SM2 OS with Heun on both operators). When solving

ẏ = A[1]y +A[2]y

using the SM2 OS method and Heun on both operators, the extended tableau reads

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/2 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/2 0 1/4 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/2 1/2 1/4 1/4 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0

1/2 1/2 1/4 1/4 0 0 0 0 0 0 0 0 1/4 1/4 0 0 0 0

1/2 1 1/4 1/4 0 0 0 0 0 0 0 0 1/4 1/4 1/2 0 0 0

1/2 1 1/4 1/4 0 0 0 0 0 0 0 0 1/4 1/4 1/4 1/4 0 0

1 1 1/4 1/4 0 0 0 0 1/2 0 0 0 1/4 1/4 1/4 1/4 0 0

1/4 1/4 0 0 0 0 1/4 1/4 0 0 1/4 1/4 1/4 1/4 0 0

.

Because pOS = 2 and pRK = 2, in this case, we expect the overall order of the extended Butcher tableau to be

equal to 2. We can check that by verifying the order conditions for the RK method (3.44a) and (3.44b) on

44

each building block of the tableau. For order 1, we have

4∑
j=1

α
[1]
j b

[1]
j =

1

4
+

1

4
+

1

4
+

1

4
= 1,

4∑
j=1

α
[2]
j b

[2]
j =

1

4
+

1

4
+

1

4
+

1

4
= 1.

For order 2, we have

4∑
j=1

α
[1]
j b

[1]
j · α

[1]
j c

[1]
j =

1

8
+

1

8
+

1

4
=

1

2
,

4∑
j=1

α
[2]
j b

[2]
j · α

[2]
j c

[2]
j =

1

8
+

1

8
+

1

4
=

1

2
.

Because the condition for overall order equal 2 is satisfied, the order of convergence of the extended tableau

is 2 as expected.

45

4 Numerical Experiments

In this chapter, we report some numerical experiments to assess the accuracy, efficiency, and stability

of some of the OS methods presented in the previous chapters. In section 4.1, we describe results about

the accuracy and the efficiency of higher-order OS methods compared to the second-order SM2 method

on various cardiac electrophysiology problems. In section 4.2, we present results about higher-order OS

methods on an advection-diffusion-reaction problem, and we present some preliminary results that support

the stability theory presented in chapter 3. Finally, in section 4.3, we extend the use of our stability theory to

understand instabilities in the solution of the Brusselator equations, and we compute stable solutions based

on our analysis.

4.1 Cardiac Electrophysiology: Bidomain and Monodomain Models

The heart is a muscular organ that pumps blood to the rest of the body. This pumping function is a process

that is controlled by a complex pattern of electrical activation of approximately billion muscle cells. Because

the myocardial electrical activity is fundamental for the function of the heart, extensive research has been

done to understand the different mechanisms occurring at a cellular, tissue, and organ level [SLC06]. It

follows that the organ-level electrical activity in the heart is the result of billions of small-scale processes

occurring in the cells, yet the knowledge about how these processes interact is limited. For this reason, the

use of mathematical models and computer simulation to reproduce the electrical activity of the heart has

been a promising technique to study the heart and heart diseases.

Mathematically, the electrophysiological behaviour of the heart can be modelled using the bidomain

[Tun78] and the monodomain models [SLC06]. Both are multi-scale reaction-diffusion models that were

developed to overcome the fact that the distance scales used to measure the electrical potentials are large

compared to the length of a single cell [Tun78]. For this reason, the bidomain and monodomain models use a

continuum approach in order to model the large number of cells. The monodomain model is a simplification

of the bidomain model [SLC06]. It is widely used by the research community, but the bidomain model is

generally considered the most accurate and general model of cardiac tissue electrophysiology [GG16].

Because of the high resolutions in time and space required to produce relevant data, the bidomain and

monodomain models are challenging to solve in realistic situations. Accordingly, a common approach to

simulate these models is via OS. Historically, first- and second-order OS methods have been used successfully

in finding solutions for the bidomain and monodomain models; see, e.g., [SLT05], [STZ16], [QG99] and

46

references therein. In this section, we show how to obtain stable solutions to the bidomain and monodomain

models using higher-order OS methods. Additionally, we present the significant accompanying efficiency

gains offered by higher-order methods when compared to lower-order methods.

Before presenting the results of the numerical experiments, we give the mathematical description of the

bidomain and monodomain models. In the bidomain model, it is assumed the heart is divided into two

separate domains: the intracellular domain and the extracellular domain. The two domains are co-located,

but it is assumed that they are separated by the cell membrane. The cell membrane is embedded with small

channels called gap junctions that allow ions to pass directly from one cell to another without entering the

space between the two cells [SLT05].

The bidomain model has become widely accepted as an accurate and general mathematical description for

signal propagation and external stimulation of heart tissue. It couples a system of reaction PDEs on the micro-

scale describing the chemical reactions and flow of ions across the cell membrane of individual myocardial

cells with a system of diffusion PDEs on the macroscale describing the propagation of the electrical activation

through the heart [STZ16].

On a spatial domain Ω ⊂ Rd of dimension d and time interval [t0, tf], the bidomain model may be written

as

∂s

∂t
= f(t, s, v), (4.1a)

χCm
∂v

∂t
+ χIion(t, s, v) = ∇ · (σi∇v) +∇ · (σi∇ue), (4.1b)

0 = ∇ · (σi∇v) +∇ · ((σi + σe)∇ue), (4.1c)

subject to boundary conditions on ∂Ω× [t0, tf] given by

n̂ · (σi∇v + σi∇ue) = 0, (4.1d)

n̂ · (σe∇ue) = 0, (4.1e)

where s = s(t,x) is a vector describing the cellular state at location x ∈ Ω and time t ∈ [t0, tf], v = v(t,x)

is the transmembrane potential, and ue = ue(t,x) is the extracellular potential. The ionic current term

Iion(t, s, v) and the term f(t, s, v) are non-linear terms related to the cell model, and σi and σe are the

intracellular and extracellular conductivities of the heart tissue. Finally, χ is the area of the cell membrane

per unit volume, Cm is the capacitance of the cell membrane per unit area, and n̂ is the outward unit normal

to ∂Ω.

The monodomain model is a simplified version of the bidomain model that describes only the dynamics

of the transmembrane potential v [SLC06]. Under the assumption σe = λσi, where λ is a constant scalar, we

can rewrite (4.1c) as

∇ · (σi∇ue) = − λ

1 + λ
∇ · (σi∇v).

47

Substituting this into (4.1b) together with (4.1a) give the final form of the monodomain model [SLC06]

∂s

∂t
= f(t, s, v), (4.2a)

χCm
∂v

∂t
+ χIion(t, s, v) =

λ

1 + λ
∇ · (σi∇v), (4.2b)

subject to

n̂ · (σi∇v) = 0, (4.2c)

where (4.2c) is derived from (4.1d) and (4.1e) in a similar fashion to (4.2b).

To apply OS to the bidomain model, we write the bidomain model (4.1) as

MẎ = A(Y) = A[1](Y) +A[2](Y), (4.3)

with Y
.
= (sT , v, ue)

T ,

M =


I 0 0

0 1 0

0 0 0

 , (4.4)

A[1](Y) =


f(t,Y)

− 1
Cm

Iion(Y)

0

 and A[2](Y) =


0

1
χCm

(∇ · (σi∇v) +∇ · (σi∇ue))

∇ · (σi∇v) +∇ · ((σi + σe)∇ue)

 . (4.5)

Doing so, we split (4.1b) into a non-linear PDE, involving only the Iion term and no spatial derivatives,

and a linear PDE [STZ16]. Upon spatial discretization, the non-linear PDE forms an ODE sub-system at

each mesh point, and hence we loosely refer to this sub-system as such. Similarly, the discretized linear PDE

system forms a differential-algebraic equation (DAE) sub-system with index one where ue is an algebraic

variable and s and v are differential variables. In a similar fashion to the bidomain model, we write the

monodomain model (4.2) as
∂Y

∂t
= A[1](Y) +A[2](Y),

where Y
.
= (sT , v)T ,

A[1](Y) =

 f(t,Y)

− 1
Cm

Iion(Y)

 , and A[2](Y) =

 0

λ
(1+λ)

1
χCm
∇ · (σi∇v)

 . (4.6)

After spatial discretization, this splitting reduces the non-linear PDE to a set of non-linear ODEs at each

spatial mesh point and a linear PDE.

In this section, we present the numerical experiments that were performed in order to assess the accuracy

and the efficiency of some higher-order OS methods described in chapter 2, when applied to the bidomain and

monodomain models. When applying third-order OS methods to solve the bidomain and the monodomain

models, to ensure the overall integration is third-order accurate in time, we need to approximate the sub-flows

48

of the sub-systems to at least third order in time. For both the bidomain and the monodomain models, we

choose to approximate the flow of A[1] with the ERK3 method defined by the Butcher tableau

0 0 0 0

1/2 1/2 0 0

1 −1 2 0

1/6 2/3 1/6

To approximate the flow of A[2], we use the L-stable, two-stage, third-order singly diagonal Runge–Kutta

method (SDIRK(3,2)) defined by the Butcher tableau

γ γ 0

1− γ 1− 2γ γ

1/2 1/2

with γ = (3 +
√

3)/6 [ARS97].

Similar considerations must be made when solving the bidomain and monodomain models using a fourth-

order splitting. To ensure the overall integration is fourth-order accurate, we approximate the flows of

the ODE and PDE sub-systems using fourth-order integrators. In this case, for both the bidomain and

monodomain models, A[1] is solved using the classic ERK4 method

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1/6 1/3 1/3 1/6

The numerical method used to approximate the flow of A[2] for both system is the A-stable, three-stage,

fourth-order (SDIRK(3,4)) method defined by the Butcher tableau

(1 + γ)/2 (1 + γ)/2 0 0

1/2 −γ/2 (1 + γ)/2 0

(1− γ)/2 1 + γ −(1− 2γ) (1 + γ)/2

1/(6γ2) 1− 1/(3γ2) 1/(6γ2)

with γ = 2√
3

cos
(
π
18

)
[Nor74, Cro78].

A detailed summary of the discretization of A[1] and A[2] with explicit and implicit RK methods can

be found in [TZ15]. All the experiments consist of problems set in one and three spatial dimensions. The

49

experiments also include a variety of different initial conditions and cardiac ionic cell models with a range of

stiffness characteristics.

The Chaste software environment [MAB+13] is used for all the numerical tests. Chaste uses linear finite

elements for the spatial discretization and integrates in time as per the method of lines. The (Chaste default)

method for handling the Iion term in the finite element method uses ionic current interpolation [PMSW11].

To solve the linear systems (4.5) and (4.6) in Chaste, we use a Krylov subspace solver and the conjugate

gradient solver with block Jacobi preconditioner.

Timings were recorded in Chaste 3.4 running in serial on a dual Quad-Core Intel Xeon 2.26GHz with

16GB of RAM running OS X El Capitan 10.11.6 and represent the minimum of ten runs.

4.1.1 Accuracy

We assess the accuracy of the third-order SS3 (table 2.6), ASK3 (table 2.8), and R3 (table 2.1), and fourth-

order Y4 (table 2.2) OS methods described in chapter 2 using the Mixed Root Mean Square (MRMS) error

[MZS12] defined by

[MRMS]w =

√√√√ 1

N

N∑
i=1

(
w̃i − wi
1 + |w̄i|

)2

, (4.7)

where w̃i and wi denote the reference and numerical solution respectively for the quantity w at the space-time

point i. The reference solution is assumed to be accurate enough that it can serve as a proxy for the true

solution. The order of convergence p of the numerical solution was then computed in the standard way as

p =
log([MRMS]v1/[MRMS]v2)

log(∆t1/∆t2)
,

where the subscripts 1 and 2 refer to computations performed using time steps ∆t1 and ∆t2. In the remainder

of the chapter, the MRMS is measured only for the transmembrane potential v; i.e., only [MRMS]v, is used.

This is because usually v is considered the variable of interest and because the error of ue is, in general,

smaller [SLT05, SLC06].

Reference solutions for the tests were generated as follows. The spatial domain was uniformly discretized

into cells of size ∆x = 0.001 mm. We compared solutions computed by the default semi-implicit method [SPVW09]

in Chaste by halving the time step until there were 4 to 6 matching digits between successive approximations.

The final time step that led to a solution with 4 to 6 matching digits was ∆t = 5e−6 ms for the 1D problems

and ∆t = 2.5e−6 ms for the 3D problems. Solutions were then stored from the finest mesh at Ns = 101

equally spaced points in the spatial interval and Nt = 21 equally spaced points in the time interval of the

simulations for a total of N = NsNt space-time points.

4.1.1.1 1D experiments

The monodomain model is simulated in one spatial dimension with two cell models, those of FitzHugh and

Nagumo (FHN) [Fit66] and Ten Tusscher and Panfilov (TTP) for epicardial tissue [tTP06].

50

The FHN model has two cellular state variables and is considered to be non-stiff [SD10], whereas the

TTP model has 19 cellular variables and is considered to be highly stiff [SD10]. We use the following initial

conditions for the variables in each model:

s(0, x) = s0,

v(0, x) = v0 + 100(1− sin(x)),

where s0 and v0 are the default values for s and v according to the definition in CellML [ALN+03] for the

cell model in use. We use the Chaste default parameters χ = 1400/cm, Cm = 1 µF/cm2, and σi = 1.75

mS/cm. For all the reported cases, we set the spatial domain to be (0, 1) cm and the time interval to [0, 40]

ms. We use a regular grid with Ns = 51 points giving a spatial resolution ∆x = 0.02 mm. Convergence of the

third- and fourth-order methods is assessed using different combinations of time steps for both cell models

considered. Results for all the higher-order methods described are reported in Tables 4.1, 4.2, 4.3, and 4.4,

confirming the expected order of convergence.

FHN TTP

∆t (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03896 − 0.04058 −

1.0e−5 0.01245 2.84 0.01358 2.90

8.0e−6 0.00653 2.89 0.00635 3.04

Table 4.1: Convergence of the SS3 method
applied to the monodomain model in one
dimension using the FHN and the TTP
epicardial cell models.

FHN TTP

∆t (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03683 − 0.03946 −

1.0e−5 0.01304 3.20 0.01058 3.24

8.0e−6 0.00787 2.92 0.00528 3.11

Table 4.2: Convergence of the AKS3 method
applied to the monodomain model in one
dimension using the FHN and the TTP
epicardial cell models.

FHN TTP

∆t (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03748 − 0.03699 −

1.0e−5 0.01102 3.01 0.0101 3.20

8.0e−6 0.00571 2.95 0.00512 3.04

Table 4.3: Convergence for the R3 method
applied to the monodomain model in one
dimension using the LR1 and the TTP
epicardial cell models.

FHN TTP

∆t (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03051 − 0.02985 −

1.0e−5 0.00621 3.92 0.00571 4.07

8.0e−6 0.00321 3.96 0.00237 3.94

Table 4.4: Convergence for the Y4 method
applied to the monodomain model in one
dimension using the LR1 and the TTP
epicardial cell models.

4.1.1.2 3D experiments

The convergence of the higher-order OS methods when applied to solve the bidomain model is verified by

considering the cell models of Luo–Rudy Phase I (LR1) [LR91] and TTP for epicardial tissue [tTP06]. The

51

model of LR1 has nine cellular state variables and is considered mildly stiff [SD10]. We use the following

initial conditions for the variables in our model:

s(0, x, y, z) = s0,

v(0, x, y, z) = v0 + 100(1− sin(xyz)),

ue(0, x, y, z) = 0,

where, as before s0 and v0 are the CellML default values for s and v according to the cell model in

use [ALN+03]. We use the (Chaste default) parameter values χ = 1400/cm, Cm = 1 µF/cm2, σi =

diag(σfi , σ
n
i , σ

t
i), σe = diag(σfe , σ

n
e , σ

t
e), with σ

f
i = σni = σti = 1.75 mS/cm and σfe = σne = σte = 7 mS/cm.1

The spatial domain is set to (0, 1) cm×(0, 1) cm×(0, 1) cm, and the time interval to [0, 40] ms. We use a grid

with Ns = 51 equally spaced points per direction resulting in a ∆x = 0.02 cm. The accuracy of the third-

and fourth-order methods when applied to the bidomain model is assessed for all the cell models considered

in this study, and the results are reported in tables 4.5, 4.6, 4.7, and 4.8, confirming the expected order of

convergence for all the schemes.

LR1 TTP

∆t (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03975 − 0.03948 −

1.0e−5 0.01199 2.90 0.01219 2.89

8.0e−6 0.00597 3.12 0.00611 3.09

Table 4.5: Convergence for the SS3 method
applied to the bidomain model in three
dimensions using the LR1 and the TTP
epicardial cell models.

LR1 TTP

∆t (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03751 − 0.03846 −

1.0e−5 0.00995 3.27 0.01145 2.98

8.0e−6 0.00491 2.98 0.00583 3.02

Table 4.6: Convergence for the AKS3
method applied to the bidomain model in
three dimensions using the LR1 and the TTP
epicardial cell models.

LR1 TTP

∆t (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03799 − 0.03699 −

1.0e−5 0.01012 3.21 0.01184 2.90

8.0e−6 0.00495 3.19 0.00578 3.20

Table 4.7: Convergence for the R3 method
applied to the bidomain model in three
dimensions using the LR1 and the TTP
epicardial cell models.

LR1 TTP

∆t (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03147 − 0.03004 −

1.0e−5 0.00571 4.20 0.00583 4.04

8.0e−6 0.00234 3.99 0.00242 3.97

Table 4.8: Convergence for the Y4 method
applied to the bidomain model using the LR1
and the TTP epicardial cell models.

1It can be observed that because the conductivity tensors are proportional in this example, the bidomain model considered
can in theory be written as a monodomain model. It is nevertheless solved numerically as a bidomain model. Accordingly, this
observation has no bearing on the convergence rates reported.

52

4.1.2 Efficiency comparison on the Niederer benchmark problem

A well-known benchmark problem in the field of cardiovascular modelling appears in the study by Niederer

et al. [NKB+11], in which various cardiac tissue electrophysiology simulation codes were used to solve a

standardized benchmark problem by evaluating convergence properties in space and time. In this section, we

briefly present the benchmark problem and the performance results that were obtained for the SS3, AKS3,

and R3 third-order and Y4, CCDV4 (table 2.10), and AK4 (table 2.13) fourth-order OS methods.

The Niederer benchmark problem is defined over a cuboidal domain of dimension 20 mm × 7 mm × 3

mm as shown in figure 4.1, with all boundaries assumed to have no-flux boundary conditions and a stimulus

delivered from one corner of the domain [NKB+11]. The ventricular fibre microstructure and orientation are

modelled using anisotropic tensors. The cardiac electrical activation was modelled using the monodomain

model (4.2) coupled with the TTP cell model for epicardial tissue [tTP06]. The final time for the simulation

was set to 40 ms. A complete list of the initial values for the state variables can be found in [NKB+11].

The Niederer benchmark problem was solved by various research groups using different codes and the results

compared using an “N -version” code evaluation [HR94, NKB+11]. In [NKB+11], the analysis was presented

in a quantitative way by looking at the differences in activation times T 8
1 between the corners labelled P1

and P8 in the domain; see figure 4.1. The analysis was performed in this way because activation times at

various points are commonly evaluated in experiments, and hence they provide a practical way to extract

information about the spatial and temporal errors in codes.

y

z

x

P7
P5

P3P1

P6

P2 P4

P8

Figure 4.1: Summary of points over the cuboidal domain at which activation times were evaluated.

The reference solution for the Niederer benchmark problem was generated in Nektar++ [CMAC+15], a

spectral/hp element code, using the following protocol. The spatial domain was uniformly discretized into

cells of size ∆x = 0.01 mm for a total of Nx = 420, 000 spatial points. The solution of the PDE system

(4.2b) was then expressed in terms of polynomials of degree 11 via the spectral/hp element method on each

cell. The Strang–Marchuk operator-splitting method together with the forward Euler method for (4.2a) and

the second-order IMEX Gear method [EB08] for (4.2b) were used for the temporal discretization to obtain

first-order accurate solutions. Seven solutions were then generated using time step sizes according to the

sequence ∆tj = 2j · 10−2 ms, j = 1, 0, . . . ,−5, at which point a precision of two matching decimal places was

reached between successive approximations at all shared space-time points for the two finest discretizations.

53

Richardson extrapolation [Ric11] was then used to generate an eighth-order solution that had converged to

six matching decimal places. This solution is used as the reference solution in our experiments.

As per [NKB+11], we first look at the difference in activation times T 8
1 from P1–P8 between the reference

solution and the numerical solutions. T 8
1 ≈ 38 ms for the reference solution. Numerical solutions are

generated using the the Chaste default first-order semi-implicit (SI) method [SPVW09] and the SS3 method

with ERK3 and SDIRK(3,2) as integrators. The differences ∆T 8
1 in computed T 8

1 between the reference

solution and the numerical solution computed using the SI and the SS3 schemes are summarized in tables 4.9

and 4.10, respectively. The spatial and temporal resolutions considered were chosen to match those considered

in [NKB+11] to evaluate the various software packages used in the study. The difference in activation times

between the reference and the numerical solution is smaller when using the third-order OS method, meaning

the higher-order method appears to be more accurate than the lower-order method by this measure [CS18a].

∆t = 0.05 ms ∆t = 0.01 ms ∆t = 0.005 ms

∆T 8
1 [MRMS]v ∆T 8

1 [MRMS]v ∆T 8
1 [MRMS]v

∆x = 0.5 mm 0.1912 0.1512 0.1657 0.1343 0.1575 0.1175

∆x = 0.2 mm 0.1535 0.1195 0.1178 0.1078 0.1291 0.0969

∆x = 0.1 mm 0.1294 0.1057 0.0843 0.0833 0.1057 0.0772

Table 4.9: Difference in activation times from P1–P8 and [MRMS]v error between the reference
solution and the solution computed using the SI method for various spatial and temporal resolutions.

∆t = 0.05 ms ∆t = 0.01 ms ∆t = 0.005 ms

∆T 8
1 [MRMS]v ∆T 8

1 [MRMS]v ∆T 8
1 [MRMS]v

∆x = 0.5 mm 0.1763 0.1216 0.1486 0.1047 0.1256 0.0862

∆x = 0.2 mm 0.1445 0.1045 0.1085 0.0818 0.0916 0.0719

∆x = 0.1 mm 0.1122 0.0864 0.0867 0.0638 0.0781 0.0579

Table 4.10: Difference in activation times from P1–P8 and [MRMS]v error between the reference
solution and the solution computed using the SS3 method for various spatial and temporal resolutions.

To provide context to the way errors have been measured in this thesis, tables 4.9 and 4.10 also display

the [MRMS]v errors between the reference and the numerical solutions computed for the SI and the SS3

methods, respectively. We observe that all the solutions computed with the temporal and spatial resolutions

used in [NKB+11] have an [MRMS]v in excess of 5%.

Finally, we look at the efficiency of the SS3, AKS3, and R3 third-order and the Y4, CCDV4, and AK4

fourth-order OS methods described in chapter 2 when applied to the Niederer benchmark problem using

Chaste with ∆x = 0.1 mm. In a similar way as before, the efficiency of a scheme is assessed by determining

(to one significant figure) the maximum constant time step size that yielded a numerical solution that

approximately satisfied, but did not exceed, a 5% MRMS error tolerance for the transmembrane potential v.

54

In table 4.11, we report the maximum time step size for the second-order SM2 method and the third-order

SS3, AKS3, and R3 methods. Table 4.11 also shows the actual MRMS error and the computational times,

from which we notice that the third-order methods can use larger time steps than the second-order method

while meeting the 5% MRMS error tolerance. This leads to SS3 and AKS3 being over 20% and 30% more

efficient than SM2, respectively. Again, the AKS3 method is more efficient than the SS3 method by over

10%.

SM2 SS3 AKS3 R3

∆t (ms) [MRMS]v Time (s) ∆t (ms) [MRMS]v Time (s) ∆t (ms) [MRMS]v Time (s) ∆t (ms) [MRMS]v Time (s)

3e−3 0.049 1031.32 1e−2 0.046 1132.27 7e−3 0.045 992.27 9e−3 0.047 612.89

Table 4.11: Efficiency comparison between the second- and third-order methods applied to the
Niederer benchmark problem.

From the results in table 4.11 and 4.12, we notice that the R3 method is the most efficient OS method

among all the OS methods considered in this study. In particular, when using the TTP cell model as in the

original Niederer benchmark, the R3 method appears to between 15% and 25% more efficient than AKS3 and

Y4, and between 50% and 60% more efficient than the methods with complex coefficients. For this problem,

the methods with complex coefficients are not able to take a significantly larger step size for the accuracy

requested. The additional expense per step associated with complex arithmetic alone then leads to their

underperformance.

Y4 CCDV4 AK4

∆t (ms) [MRMS[v Time (s) ∆t (ms) [MRMS]v Time (s) ∆t (ms) [MRMS]v Time (s)

8e−2 0.048 830.32 9e−2 0.049 1957.85 8e−2 0.048 2036.82

Table 4.12: Efficiency comparison of the Y4, CCDV4, and AK4 OS methods on the Niederer
benchmark problem.

4.2 Advection-Diffusion-Reaction Combustion model

Another set of experiments was conducted on an advection-diffusion-reaction (ADR) model describing the

combustion of a chemical quantity c. In this section, we confirm the convergence rates of methods with

complex coefficients and compare their performance with the R3 and Y4 methods. We show that, indeed, the

methods with complex coefficients can take a larger stable step size while meeting a given accuracy criterion;

however, their performance is generally not competitive on hardware that does not optimize for complex

arithmetic.

Combustion simulations can be difficult to perform because they involve many coupled PDEs that describe

the interactions between burning agents and the conservation of energy, mass, and momentum [EM11]. A

simplified, one-dimensional version of a combustion model was presented in [BCP11], where the combustion

55

process is represented by the single PDE

∂c

∂t
=
[
1 + U0 sin

(πx
L

)](γ
β

∂2c

∂x2
− δ ∂c

∂x

)
+ f(c), (4.9)

where x ∈ [10, 50], c = c(x, t) is the mass fraction of the reacted products, U0 ∈ [0, 1] is a parameter that

controls density and velocity changes of the fluid domain, L = 1 is the length scale of the velocity field, the

parameters γ = 0.1 and β = 1 represent the average diffusivities, and δ = 0, 1 is a parameter that allows the

advection to be switched off and on.

For our experiments, following [BCP11], we evaluate the model setting U0 = 0 and by using the Fisher–

Kolmogorov–Petrovskii–Piskunov (FKPP) ignition reaction type

fFKPP(c) = ωc(1− c),

where ω = 0.1 represents the rate of reaction. The boundary conditions are periodic, and the initial condition

is given as

c(x, 0) = exp

[
− (x− x0)2

σ0

]
,

with x0 = 20.5 and σ0 = 10. In all the experiments described below, we use N = 2000 uniformly

distributed spatial points. The spatial discretization is performed using and first- and second-order central

finite differences to discretize the first- and second-order derivatives in (4.9), respectively.

To assess the accuracy of some of the third- and fourth-order OS methods described in chapter 2, we use

the MRMS defined in (4.7) using 2000 points in space and 30 points in time. The reference solution for this

set of experiments is assumed to be accurate enough that it can serve as a proxy for the true solution. The

order of convergence of the numerical solution p was then computed again in the standard way as per (4.7).

Reference solutions for the combustion problem were generated for decreasing tolerances until the numerical

solution had converged to six matching decimal digits using a constant time step size of ∆t = 5e− 5 and the

ERK4 on the spatially discretized version of (4.9).

For the first set of experiments, we set δ = 1, A[1](c) =
(
γ
β
∂2c
∂x2 − δ ∂c∂x

)
, and A[2](c) = fFKPP(c). The final

time is set at tf = 15 s.

Convergence of the third- and fourth-order methods is assessed using different combinations of time steps.

To ensure the overall accuracy of OS methods with order p ≥ 3, we need to approximate the flows of both

sub-systems to at least third order in time. We choose to do so by integrating A[1](c) using the ERK3 method

and by approximating the flow of A[2](c) using the SDIRK(2,3) method. At order four, we choose to integrate

A[1](c) using the ERK4 method and by approximating the flow of A[2](c) using the SDIRK(3,4) method.

Results for the R3, C3, and AKS3CP (table 2.12) methods are reported in table 4.13, and those for the

Y4 and CCDV4 methods are reported in table 4.14. The expected orders of convergence are confirmed for

all the methods considered.

Next, we present the relative efficiency results by comparing the methods with complex coefficients against

the R3 and Y4 methods, the most OS efficient methods with real coefficients. In particular, the Y4 OS method

56

R3 C3 AKS3CP

∆t (ms) [MRMS]c p [MRMS]c p [MRMS]c p

1.5e−5 0.02578 − 0.03457 − 0.02876 −

1.0e−5 0.00736 3.24 0.01059 2.93 0.00762 3.24

8.0e−6 0.00992 2.84 0.00543 2.95 0.00397 2.92

Table 4.13: Convergence of the R3, C3, and AKS3CP methods applied to the ADR problem with
the advection term (δ = 1).

Y4 CCDV4

∆t (ms) [MRMS]c p [MRMS]c p

1.5e−5 0.03956 − 0.03952 −

1.0e−5 0.00766 4.05 0.00812 3.90

8.0e−6 0.00295 4.27 0.00317 4.19

Table 4.14: Convergence of the Y4 and CCDV4 methods applied to the ADR problem with the
advection term (δ = 1).

appears to be more efficient than the R3 method on this particular set of problems. We solve the same set of

problems described above. In this case, we consider (4.9) in both cases where δ = 0 and δ = 1. We compared

the CPU times obtained from using the maximum constant time step (correct to within 1e−3 ms) that yielded

a numerical solution that did not exceed a 5% MRMS error tolerance for c. In the case where ∆t was not

commensurate with the time intervals on which the reference solution was stored, we calculated the MRMSc

error using interpolated values from a Hermite polynomial spline of the appropriate order. Efficiency results

for the third- and fourth-order methods with complex coefficients considered in this study are reported in

tables 4.15 and 4.16, respectively. In all except one of the cases, we observe that OS methods with complex

coefficients can use a larger time step than the methods they are compared to while attaining a [MRMS]c
that does not exceed 5%. However, the increase in step size does not lead to reduced CPU times, which

appear to be much larger than the ones for the R3 and Y4 methods. This can be explained by the fact

that on a standard computer, complex arithmetic normally takes approximately four times the number of

flops as real arithmetic. The computational cost of complex arithmetic can be made comparable to that of

real arithmetic by making use of an FPGA device [CS15]. In such an environment, methods with complex

coefficients would outperform those with real coefficients due to the increased acceptable step sizes. Such an

investigation, however, is beyond the scope of this thesis.

57

R3 C3 AKS3CP

∆t (ms) [MRMS]c Time (s) ∆t (ms) [MRMS]c Time (s) ∆t (ms) [MRMS]c Time (s)

δ = 0 3.5e−3 0.0481 125.12 5.5e−3 0.0484 298.38 5.0e−3 0.0491 312.28

δ = 1 2.5e−3 0.0493 138.43 4.0e−3 0.0489 407.52 4.0e−3 0.0486 361.82

Table 4.15: Efficiency comparison between the R3, C3, and AKS3CP methods applied to the ARD
combustion problem without, (δ = 0), and with, (δ = 1), advection term. The table displays the
maximum constant time step that maintained [MRMS]c ≤ 5%.

Y4 CCDV4

∆t (ms) [MRMS]c Time (s) ∆t (ms) [MRMS]c Time (s)

δ = 0 4.0e−3 0.0492 96.71 5.0e−3 0.0494 409.54

δ = 1 4.0e−3 0.0496 123.72 4.0e−3 0.0489 488.36

Table 4.16: Efficiency comparison between the Y4 and CCDV4 methods applied to the ARD
combustion problem without, (δ = 0), and with, (δ = 1), advection term. The table displays the
maximum constant time step that maintained [MRMS]c ≤ 5%.

4.3 The Brusselator Problem

As explained in chapter 3, in [RS05], the authors explored the stability of the G1 and the combined-SM2

OS methods applied the Brusselator equations introduced in [PL68]. The Brusselator equations are used to

model chemical dynamics and are given by (3.4).

Solutions can be found numerically by splitting (3.4) as (3.5). In [RS05], the authors solved (3.4) via OS.

When using the G1 OS method, the authors obtained stable solutions over the entire ∆t range considered

(∆t = 0.01, 0.05, 0.1, 0.25). However, when using the combined-SM2 method, the authors found that the

solution did not converge unless the time step was chosen to be sufficiently small (see [RS05] for more

details).

Here, we reproduce and improve some results reported in [RS05]. We compute the reference solution using

the parabolic and elliptic Matlab solver pdepe until there were 4 to 6 matching digits between successive

approximations. Following the experiments in [RS05], we compute numerical solutions to (3.4) by using

the G1 OS method and by integrating both the diffusion and the reaction terms using the backward Euler

method. The numerical solution showed good convergence over the entire ∆t range considered. In the

next set of experiments, we solve (3.5) by using the combined-SM2 splitting paired with Heun’s method to

approximate the flow of both operators. As in [RS05], the solution obtained in this case showed instabilities

for ∆t. Figures 4.2 and 4.3 display the unstable solutions computed with the combined-SM2 splitting and

∆t = 0.25 for the variables T and C, respectively, compared to the reference solution.

To understand and improve such oscillatory behaviours, we analyze the stability region for the case

where the problem is solved using the combined-SM2 OS paired with Heun’s method. Figure 4.4 shows

58

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Variable T

Solution with OS

Reference Solution

Figure 4.2: Solution of the variable T in the Brusselator problem solved with the combined-SM2 OS
for ∆t = 0.25. The reference solution is also plotted.

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7
Variable C

Solution with OS

Reference Solution

Figure 4.3: Solution of the variable C in the Brusselator problem solved with the combined-SM2 OS
for ∆t = 0.25. The reference solution is also plotted.

59

the eigenvalues of the reference solution and stability regions of the combined-SM2 OS when using Heun’s

method on both operators. We observe that not all the eigenvalues are captured by the stability region of

the combined-SM2 OS and Heun’s methods and, therefore, the solution is unstable for this time step.

We are able to eliminate the instabilities in the solution by using the SM2 OS method paired with Heun’s

method to integrate both operators. Figure 4.5 shows the stability region and the eigenvalues of the reference

solution for this case. As shown, for the same ∆t as in the previous experiment, now all the eigenvalues are

captured by the stability region resulting in a stable numerical solution.

Figure 4.4: Eigenvalues of the reference solution and stability regions of the combined-SM2 OS when
using Heun’s method on both operators with ∆t = 0.25.

Figure 4.5: Eigenvalues of the reference solution and stability regions of the SM2 OS when using
Heun’s method on both operators with ∆t = 0.25.

60

5 Conclusions and Future Work

5.1 Conclusions

Operator splitting methods represent a powerful strategy to solve a broad range of problems involving

the solution of differential equations. Accordingly, the understanding of their properties is of paramount

importance. In this thesis, we analyzed the accuracy, stability, and efficiency of various OS methods, focusing,

in particular, on methods with order higher than two.

We studied the accuracy of some third- and fourth-order methods present in the literature on various

problems describing cardiac electrophysiology and chemical combustion. In all our experiments, we showed

the correct order of convergence for all the methods considered.

Having determined the proper order of accuracy for each method, we compared the efficiency performance

of the higher-order methods compared to the “state-of-the-art” second-order SM2 methods. We showed that,

despite the higher number of stages defining the higher-order OS methods, methods with order higher than

two were able to take a larger time steps than second-order methods while attaining the same accuracy.

This resulted in more efficient performance. In particular, we found that third-order methods can be 20%

to 30% more efficient than the SM2 method when solving both cardiac electrophysiology problems and

problems describing chemical combustion. We also considered the performance of OS methods with complex

coefficients. In particular, we found that, although methods with complex coefficients are in some cases able

to take a larger time step than methods with real coefficients of the same order, they are outperformed by

OS methods with real coefficients due to the expense of complex arithmetic.

We observed that, when using OS methods together with Runge–Kutta type methods to advance the

time integration, it is possible to construct an extended Butcher tableau that has the same structure as the

ones defining Generalized Additive Runge–Kutta (GARK) methods. We defined this new class of methods

to be OS-GARK methods. We applied linear stability analysis to OS-GARK methods and derived a stability

function that can be simplified as the product of the stability functions of the Runge–Kutta methods used

in the integration scaled by the coefficients of the OS methods.

Being able to analyze and plot the stability region is useful when trying to understand unstable numerical

solutions. In fact, using an eigenvalue analysis, we were able to determine whether the stability region was

capturing all the eigenvalues or not, resulting in stable or unstable numerical solutions. We assessed the

validity of our stability analysis on various problems including the combustion problem and the Brusselator

equations.

61

5.2 Future Work

In this thesis, we studied the accuracy, efficiency, and stability of higher-order OS methods and demonstrated

their advantages over second-order methods on some classes of problems.

In principle, by solving the optimization problem by increasing the number of degrees of freedom and by

adding order conditions to obtain an OS methods of desired order p, it is possible to solve for an OS method

of any order. We leave the search for new OS methods for future work.

Because the stability function and, therefore, the shape of the stability region of OS-GARK methods

depend on the coefficients of the OS method, we propose that it would be possible to derive coefficients of an

OS method by maximizing the area of the stability region. This translates into solving a global optimization

problem that has the area of the stability region as objective function, the coefficients of the new OS methods

as degrees of freedom, and the order conditions as constraints.

Additionally, we must specify that, when solving the optimization problem to derive new OS methods,

the objective function, the degrees of freedom, and the constraints could be set to be only dependent on

the coefficients of the new OS methods. In other words, it is possible to optimize the area of the stability

region for pre-determined Runge–Kutta integrators chosen to advance the time integration. This choice can

be made to simplify the complexity of the optimization algorithm. In fact, the number of degrees of freedom

and order conditions rapidly increases when allowing for various integrators of the desired order. Of course,

the algorithm can be improved by not choosing a priori the Runge–Kutta integrators, but this comes at the

expense of increasing the computational cost of the algorithm. We leave the implementation of the simplified

and the improved version of the optimization algorithm that includes the coefficients of the Runge–Kutta

methods as degrees of freedom and their order conditions as constraints for future work.

62

Bibliography

[AGC96] S. Abarbanel, D. Gottlieb, and M. H. Carpenter. On the removal of boundary errors caused by

Runge–Kutta integration of nonlinear partial differential equations. SIAM Journal on Scientific

Computing, 17(3):777–782, 1996.

[AH14] W. Auzinger and W. Herfort. Local error structures and order conditions in terms of Lie

elements for exponential splitting schemes. Opuscula Mathematica, 34(2):243–255, 2014.

[AHHK16] W. Auzinger, W. Herfort, H. Hofstätter, and O. Koch. Setup of Order Conditions for

Splitting Methods. In Computer Algebra in Scientific Computing: 18th International Workshop,

CASC 2016, Bucharest, Romania, September 19–23, 2016, Proceedings, pages 30–42. Springer

International Publishing, 2016.

[AHK19] W. Auzinger, H. Hofstätter, and O. Koch. Non-existence of generalized splitting methods with

positive coefficients of order higher than four. Applied Mathematics Letters, 97:48–52, 2019.

[AHKK17] W. Auzinger, H. Hofstätter, D. Ketcheson, and O. Koch. Practical splitting methods for the

adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes

and pairs of schemes. BIT Numerical Mathematics, 57(1):55–74, 2017.

[ALN+03] C. A. Autumn, C. M. Lloyd, P. F. Nielsen, D. P. Bullivant, D. P. Nickerson, and P. J. Hunter. An

overview of CellML 1.1, a biological model description language. Simulation, 79(12):740–747,

2003.

[AP98] U. M Ascher and L. R. Petzold. Computer methods for ordinary differential equations and

differential-algebraic equations, volume 61. SIAM, 1998.

[ARS97] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri. Implicit-explicit Runge–Kutta Methods for Time-

dependent Partial Differential Equations. Applied Numerical Mathematics, 25(2-3):151–167,

1997.

[BC78] C. Bolley and M. Crouzeix. Conservation de la positivité lors de la discrétisation des problèmes

d’évolution paraboliques. RAIRO. Analyse numérique, 12(3):237–245, 1978.

[BC05] S. Blanes and F. Casas. On the necessity of negative coefficients for operator splitting schemes

of order higher than two. Applied Numerical Mathematics, 54(1):23–37, 2005.

63

[BCF+13] S. Blanes, F. Casas, A. Farres, J. Laskar, J. Makazaga, and A. Murua. New families

of symplectic splitting methods for numerical integration in dynamical astronomy. Applied

Numerical Mathematics, 68:58–72, 2013.

[BCM08] S. Blanes, F. Casas, and A. Murua. Splitting and composition methods in the numerical

integration of differential equations. arXiv preprint :0812.0377, 2008.

[BCM10] S. Blanes, F. Casas, and A. Murua. Splitting methods with complex coefficients. SeMA Journal,

50(1):47–60, 2010.

[BCP11] F. Bianco, S. Chibbaro, and R. Prudh́omme. Etude dúne équation de convection-réaction-

diffusion en écoulement compressible. arXiv preprint 1104.1052, 2011.

[BJM02] W. Bao, S. Jin, and P. A. Markowich. On time-splitting spectral approximations for the

Schrödinger equation in the semiclassical regime. Journal of Computational Physics, 175(2):487–

524, 2002.

[BM02] S. Blanes and P. C. Moan. Practical Symplectic Partitioned Runge–Kutta and Runge–Kutta–

Nyström Methods. Journal of Computational and Applied Mathematics, 142(2):313–330, 2002.

[BV19] G. Bertoli and G. Vilmart. Strang splitting method for semilinear parabolic problems with

inhomogeneous boundary conditions: a correction based on the flow of the nonlinearity. arXiv

preprint 1904.08826, 2019.

[CCDV09] F. Castella, P. Chartier, S. Descombes, and G. Vilmart. Splitting methods with complex times

for parabolic equations. BIT Numerical Mathematics, 49(3):487–508, 2009.

[CFH05] P. Csomós, I. Faragó, and Á Havasi. Weighted sequential splittings and their analysis.

Computers & Mathematics with Applications, 50(7):1017–1031, 2005.

[CGA94] M. H. Carpenter, D. Gottlieb, and S. Abarbanel. Time-stable boundary conditions for finite-

difference schemes solving hyperbolic systems: methodology and application to high-order

compact schemes. Journal of Computational Physics, 111(2):220–236, 1994.

[CGAD95] M. H. Carpenter, D. Gottlieb, S. Abarbanel, and W. Don. The theoretical accuracy of Runge–

Kutta time discretizations for the initial boundary value problem: a study of the boundary

error. SIAM Journal on Scientific Computing, 16(6):1241–1252, 1995.

[Cha03] J.E. Chambers. Symplectic integrators with complex time steps. The Astronomical Journal,

126(2):1119, 2003.

[Chi05] S. A. Chin. Structure of positive decompositions of exponential operators. Physical Review E,

71(1):016703, 2005.

64

[CHMM78] A. Chorin, T. Hughes, M. McCracken, and J. Marsden. Product formulas and numerical

algorithms. Communications on Pure and Applied Mathematics, 31(2):205–256, 1978.

[CLX15] A. J Christlieb, Y. Liu, and Z. Xu. High order operator splitting methods based on an integral

deferred correction framework. Journal of Computational Physics, 294:224–242, 2015.

[CMAC+15] C. D. Cantwell, D. Moxey, A. Bolis A. Comerford, G. Rocco, G. Mengaldo, D. De Grazia,

S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson,

B. Nelson, P. Vos, C. Biotto, R.M. Kirby, and S. J. Sherwin. Nektar++: An open-source

spectral/hp element framework . Computer Physics Communications, 192:205–219, 2015.

[Cro78] M. Crouzeix. Sur l’approximation des équations différentielles opérationelles linéaires par des

méthodes de Runge–Kutta. PhD thesis, Université Paris, 1978.

[CS15] M. Czyżak and R. Smyk. FPGA computation of magnitude of complex numbers using modified

CORDIC algorithm. Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki

Gdańskiej, 2015.

[CS18a] J. Cervi and R. J. Spiteri. High-order operator splitting for the bidomain and monodomain

models. SIAM Journal on Scientific Computing, 40(2):A769–A786, 2018.

[CS18b] J. Cervi and R. J. Spiteri. High-order operator-splitting methods for the bidomain and

monodomain models. In Mathematical and Numerical Modeling of the Cardiovascular System

and Applications, pages 23–40. Springer, 2018.

[CS19] J. Cervi and R. J Spiteri. A comparison of fourth-order operator splitting methods for cardiac

simulations. Applied Numerical Mathematics, 145:227–235, 2019.

[Des01] S. Descombes. Convergence of a Splitting Method of High Order for Reaction-Diffusion Systems.

Mathematics of Computation, 70(236):1481–1501, 2001.

[DK01] J. Douglas and S. Kim. Improved accuracy for locally one-dimensional methods for parabolic

equations. Mathematical Models and Methods in Applied Sciences, 11(09):1563–1579, 2001.

[DR56] J. Douglas and H. H. Rachford. On the numerical solution of heat conduction problems in two

and three space variables. Transactions of the American mathematical Society, 82(2):421–439,

1956.

[DRFHZ14] D. C. Del Rey Fernández, J. E. Hicken, and D. W. Zingg. Review of summation-by-

parts operators with simultaneous approximation terms for the numerical solution of partial

differential equations. Computers & Fluids, 95:171 – 196, 2014.

65

[DS98] S. Descombes and M. Schatzman. On Richardson extrapolation of Strang formula for reaction-

diffusion equations. Equations aux Dérivées Partielles et Applications, articles dédiés à Jacques-

Louis Lions, 1998.

[Dur10] D. R. Durran. Numerical methods for fluid dynamics, volume 32 of Texts in Applied

Mathematics. Springer, New York, second edition, 2010.

[EB08] M. Ethier and Y. Bourgault. Semi-implicit time-discretization schemes for the bidomain model.

SIAM Journal on Numerical Analysis, 46(5):2443–2468, 2008.

[EK01] L. Edelstein-Keshet. Mathematical models of swarming and social aggregation. In Proceedings

of the 2001 International Symposium on Nonlinear Theory and Its Applications, Miyagi, Japan,

pages 1–7, 2001.

[EM11] T. Echekki and E. Mastorakos. Turbulent combustion: concepts, governing equations and

modeling strategies. In Turbulent Combustion Modeling, pages 19–39. Springer, 2011.

[EO15] L. Einkemmer and A. Ostermann. Overcoming order reduction in diffusion-reaction splitting.

part 1: Dirichlet boundary conditions. SIAM Journal on Scientific Computing, 37(3):A1577–

A1592, 2015.

[EO16] L. Einkemmer and A. Ostermann. Overcoming order reduction in diffusion-reaction splitting.

part 2: Oblique boundary conditions. SIAM Journal on Scientific Computing, 38(6):A3741–

A3757, 2016.

[Fit66] R. FitzHugh. Mathematical models of excitation and propagation in nerve. Biological

Engineering, McGraw-Hill Book Co, pages 1–85, 1966.

[FR90] E. Forest and R. D. Ruth. Fourth-order symplectic integration. Physica D: Nonlinear

Phenomena, 43(1):105 – 117, 1990.

[GG16] L. Geraldo-Giorda. Nonlinear Dynamics in Biological Systems. Springer International

Publishing, 2016.

[GK96] G. Goldman and T. J. Kaper. Nth-order operator splitting schemes and nonreversible systems.

SIAM Journal on Numerical Analysis, 33(1):349–367, 1996.

[GMS06] J. L. Guermond, P. Minev, and J. Shen. An overview of projection methods for incompressible

flows. Comput. Methods Appl. Mech. Engrg., 195(44-47):6011–6045, 2006.

[God59] S. K. Godunov. A difference method for numerical calculation of discontinuous solutions of the

equations of hydrodynamics. Matematicheskii Sbornik, 89(3):271–306, 1959.

66

[God99] S. K. Godunov. Reminiscences about difference schemes. Journal of Computational Physics,

153(1):6–25, 1999.

[GOY16] R. Glowinski, S. J. Osher, and W. Yin, editors. Splitting methods in communication, imaging,

science, and engineering. Scientific Computation. Springer, Cham, 2016.

[GPH+01] R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Périaux. A fictitious domain

approach to the direct numerical simulation of incompressible viscous flow past moving rigid

bodies: application to particulate flow. Journal of Computational Physics, 169(2):363–426,

2001.

[GV02] A. Gerisch and J. G. Verwer. Operator splitting and approximate factorization for taxis-

diffusion-reaction models. Applied Numerical Mathematics, 42(1-3):159–176, 2002. Ninth

Seminar on Numerical Solution of Differential and Differential-Algebraic Equations (Halle,

2000).

[GW96] C. Gao and Y. Wang. A general formulation of peaceman and rachford adi method for the n-

dimensional heat diffusion equation. International communications in heat and mass transfer,

23(6):845–854, 1996.

[HKO12] E. Hansen, F. Kramer, and A. Ostermann. A second-order positivity preserving scheme for

semilinear parabolic problems. Applied Numerical Mathematics, 62(10):1428–1435, 2012.

[HLW06] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration: structure-preserving

algorithms for ordinary differential equations, volume 31. Springer Science & Business Media,

2006.

[HR94] L. Hatton and A. Roberts. How Accurate is Scientific Software? IEEE Transactions in Software

Engineering, 20(10):785–797, 1994.

[HV03] W. Hundsdorfer and J. G. Verwer. Numerical solution of time-dependent advection-diffusion-

reaction equations, volume 33. Springer-Verlag, Berlin, 2003.

[IT08] S. Ikonen and J. Toivanen. Efficient numerical methods for pricing american options under

stochastic volatility. Numerical Methods for Partial Differential Equations: An International

Journal, 24(1):104–126, 2008.

[KC03] C. A. Kennedy and M. H. Carpenter. Additive Runge–Kutta schemes for convection–diffusion–

reaction equations. Applied Numerical Mathematics, 44(1-2):139–181, 2003.

[KIFS10] Á. Kriston, G. Inzelt, I. Faragó, and T. Szabó. Simulation of the transient behavior of fuel

cells by using operator splitting techniques for real-time applications. Computers & Chemical

Engineering, 34(3):339 – 348, 2010.

67

[KNT13] O. Koch, C. Neuhauser, and M. Thalhammer. Embedded exponential operator splitting methods

for the time integration of nonlinear evolution equations. Applied Numerical Mathematics,

63:14–24, 2013.

[Kos80] Y. Kosaku. Functional analysis, volume 6. Springer-Verlag, Berlin New York, 1980.

[Kut01] W. Kutta. Beitrag zur naherungsweisen integration totaler differentialgleichungen. Z. Math.

Phys., 46:435–453, 1901.

[LE70] S. Lie and F. Engel. Theorie der transformationsgruppen (Vol I). American Society, Providence,

1970.

[LeV92] R. J. LeVeque. Numerical methods for conservation laws. Birkhauser, Basel, 1992.

[LM79] P. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM

Journal on Numerical Analysis, 16(6):964–979, 1979.

[LR91] C. H. Luo and Y. Rudy. A model of the ventricular cardiac action potential. depolarization,

repolarization, and their interaction. Circulation Research, 68(6):1501–1526, 1991.

[LW64] P. D. Lax and B. Wendroff. Difference schemes for hyperbolic equations with high order of

accuracy. Communications on Pure and Applied Mathematics, 17(3):381–398, 1964.

[MA92] R. I. McLachlan and P. Atela. The accuracy of symplectic integrators. Nonlinearity, 5(2):541–

562, 1992.

[MAB+13] G. R. Mirams, C. J. Arthurs, M. O. Bernabeu, R. Bordas, J. Cooper, A. Corrias, Y. Davit,

S. Dunn, A. G. Fletcher, D. G Harvey, et al. Chaste: An open source C++ library for

computational physiology and biology. PLoS Comput. Biol., 9(3), 2013.

[Mar71] G. I. Marchuk. On the theory of the splitting-up method. In Numerical Solution of Partial

Differential Equations-II, pages 469 – 500. Academic Press, 1971.

[Mar90] G. I. Marchuk. Splitting and alternating direction methods. In Handbook of Numerical Analysis,

Vol. I, Handb. Numer. Anal., I, pages 197–462. North-Holland, Amsterdam, 1990.

[McL95] R. I. McLachlan. On the numerical integration of ordinary differential equations by symmetric

composition methods. SIAM Journal on Scientific Computing, 16(1):151–168, 1995.

[MQ02] R. I. McLachlan and G. R. W. Quispel. Splitting methods. Acta Numerica, 11:341–434, 2002.

[Mur03] J. D. Murray. Mathematical biology. II, volume 18 of Interdisciplinary Applied Mathematics.

Springer-Verlag, New York, third edition, 2003.

68

[MZS12] M. E. Marsh, S. Ziaratgahi, and R. J. Spiteri. The Secrets to the Success of the Rush–Larsen

Method and its Generalizations. IEEE Transactions on Biomedical Engineering, 59(9):2506–

2515, 2012.

[Ner88] F. Neri. Lie Algebras and Canonical Integration. Technical report, Department of Physics,

University of Maryland, 1988.

[NKB+11] S. A. Niederer, E. Kerfoot, A. P. Benson, M. O. Bernabeu, O. Bernus, C. Bradley, E. M.

Cherry, R. Clayton, F. H. Fenton, A. Gary, et al. Verification of cardiac tissue electrophysiology

simulators using an N-version benchmark. Philosophical Transactions of the Royal Society A,

369(1954):4331–4351, 2011.

[Nor74] S. P. Norsett. Semi explicit Runge–Kutta methods. Matematisk Institut, Universitet I, 1974.

[OB05] E. S. Oran and J. P. Boris. Numerical Simulation of Reactive Flow. Cambridge University

Press, 2005.

[OMF02] I. P. Omelyan, I. M. Mryglod, and R. Folk. Construction of high-order force-gradient algorithms

for integration of motion in classical and quantum systems. Physical Review E, 66(2):026701,

2002.

[PL68] I. Prigogine and R. Lefever. Symmetry breaking instabilities in dissipative systems. ii. The

Journal of Chemical Physics, 48(4):1695–1700, 1968.

[PMSW11] P. Pathmanathan, G. R. Mirams, J. Southern, and J. P. Whiteley. The significant effect of

the choice of ionic current integration method in cardiac electro-physiological simulations.

International Journal for Numerical Methods in Biomedical Engineering, 27(11):1751–1770,

2011.

[PR55] D. W. Peaceman and H. H. Rachford. The numerical solution of parabolic and elliptic differential

equations. Journal of the Society for industrial and Applied Mathematics, 3(1):28–41, 1955.

[QG99] Z. Qu and A. Garfinkel. An advanced algorithm for solving partial differential equation in

cardiac conduction. IEEE Transactions on Biomedical Engineering, 46(9):1166–1168, 1999.

[Ric11] L. F. Richardson. The approximate arithmetical solution by finite differences of physical

problems involving differential equations, with an application to the stresses in a masonry dam.

Philosophical Transactions of the Royal Society A, 210(459-470):307–357, 1911.

[RS05] D. L. Ropp and J. N. Shadid. Stability of operator splitting methods for systems with indefinite

operators: reaction-diffusion systems. Journal of Computational Physics, 203(2):449–466, 2005.

69

[RS09] D. L. Ropp and J. N. Shadid. Stability of operator splitting methods for systems with

indefinite operators: Advection–diffusion–reaction systems. Journal of Computational Physics,

228(9):3508–3516, 2009.

[RS11] J. A. Rossmanith and D. C. Seal. A positivity-preserving high-order semi-Lagrangian

discontinuous Galerkin scheme for the Vlasov–Poisson equations. Journal of Computational

Physics, 230(16):6203–6232, 2011.

[Rut83] R. D. Ruth. A canonical integration technique. IEEE Transactions on Nuclear Science, 30:2669–

2671, 1983.

[San01] A. Sandu. Positive numerical integration methods for chemical kinetic systems. Journal of

Computational Physics, 170(2):589–602, 2001.

[SD10] R. J. Spiteri and R. C. Dean. Stiffness analysis of cardiac electrophysiological models. Annals

of Biomedical Engineering, 38(12):3592–3604, 2010.

[SG15] A. Sandu and M. Günther. A generalized-structure approach to additive runge–kutta methods.

SIAM Journal on Numerical Analysis, 53(1):17–42, 2015.

[She89] Q. Sheng. Solving linear partial differential equations by exponential splitting. IMA Journal of

Numerical Analysis, 9:199–212, 1989.

[SLC06] J. Sundnes, G. T. Lines, and X. Cai. Computing the Electrical Activity in the Heart. Springer,

2006.

[SLT05] J. Sundnes, G. T. Lines, and A. Tveito. An operator splitting method for solving the bidomain

equations coupled to a volume conductor model for the torso. Mathematical Biosciences,

194(2):233–248, 2005.

[SN92] J. M. Stone and M. L. Norman. ZEUS-2D: A radiation magnetohydrodynamics code for

astrophysical flows in two space dimensions. I – The hydrodynamic algorithms and tests. The

Astrophysical Journal Supplement Series, 80:753–790, 1992.

[Sor07] A. T. Sornborger. Higher-order operator splitting methods for deterministic parabolic equations.

International Journal of Computer Mathematics, 84(6):887–893, 2007.

[SPVW09] J. A. Southern, G. Plank, E. J. Vigmond, and J. P. Whiteley. Solving the coupled system

improves computational efficiency of the bidomain equations. IEEE Transactions on Biomedical

Engineering, 56(10):2404–2412, 2009.

[SS99] A. T. Sornborger and E. D. Stewart. Higher-order methods for simulations on quantum

computers. Physical Review A, 60(3):765–789, 1999.

70

[Str68] G. Strang. On the construction and comparison of difference schemes. SIAM Journal on

Numerical Analysis, 5(3):506–517, 1968.

[STZ16] R. J. Spiteri and S. Torabi Ziaratgahi. Operator splitting for the bidomain model revisited.

Journal of Computational and Applied Mathematics, 296:550–563, 2016.

[Suz91] M. Suzuki. Solving linear partial differential equations by exponential splitting. IMA Journal

of Numerical Analysis, 9:400–407, 1991.

[SWL+15] L. Sun, Z. Wu, J. Liu, L. Xiao, and Z. Wei. Supervised spectral–spatial hyperspectral image

classification with weighted markov random fields. IEEE Transactions on Geoscience and

Remote Sensing, 53(3):1490–1503, 2015.

[Tha08] M. Thalhammer. High-order exponential operator splitting methods for time-dependent

Schrödinger equations. SIAM Journal on Numerical Analysis, 46(4):2022–2038, 2008.

[Tro59] H. F. Trotter. On the product of semi-groups of operators. Proceedings of the American

Mathematical Society, 10(4):545–551, 1959.

[TSL00] R. Tyson, L. G. Stern, and R. J. LeVeque. Fractional step methods applied to a chemotaxis

model. J. Math. Biol., 41(5):455–475, 2000.

[tTP06] K. H. ten Tusscher and A. V. Panfilov. Alternans and spiral breakup in a human

ventricular tissue model. American Journal of Physiology - Heart and Circulatory Physiology,

291(3):H1088–H1100, 2006.

[Tun78] L. Tung. A bi-domain model for describing ischemic myocardial d-c potentials. PhD thesis,

Massachusetts Institute of Technology, 1978.

[TZ15] S. Torabi Ziaratgahi. Efficient Numerical Methods for Heart Simulation. PhD thesis, University

of Saskatchewan, Canada, 2015.

[UD06] A. Usadi and C. Dawson. 50 Years of ADI Methods: Celebrating the Contributions of Jim

Douglas, Don Peaceman, and Henry Rachford. SIAM News, 39(2), 03 2006.

[Wac13] E. Wachspress. The ADI model problem. Springer, 2013.

[Wan18] J. Wang. Operator Splitting Method and Its Applications in Quantitative Finance. PhD thesis,

State University of New York at Stony Brook, 2018.

[Yan71] N. N. Yanenko. The method of fractional steps. The solution of problems of mathematical physics

in several variables. Springer-Verlag, New York-Heidelberg, 1971. Translated from the Russian

by T. Cheron. English translation edited by M. Holt.

71

[Yos90] H. Yoshida. Construction of higher order symplectic integrators. Physics Letters A, 150(5):262–

268, 1990.

[ZMSS14] S. T. Ziaratgahi, M. E. Marsh, J. Sundnes, and R. J. Spiteri. Stable time integration suppresses

unphysical oscillations in the bidomain model. Frontiers in Physics, 2:1–9, 2014.

72

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Contributions of the Thesis
	Structure of the Thesis

	Literature Review of Operator Splitting Methods
	Theoretical Background
	Positivity Preservation
	Treatment of Boundary Conditions

	A Brief History of Operator Splitting Methods
	Alternating Implicit Direction Methods
	Second-Order Operator Splitting Methods
	Higher-Order Operator Splitting Methods
	Operator Splitting Methods with Complex Coefficients
	Operator Splitting Methods used in the Numerical Experiments

	On the Stability of Operator Splitting Methods
	Motivation
	A General Result About Stability of Splitting Methods
	Examples
	Order Conditions

	Numerical Experiments
	Cardiac Electrophysiology: Bidomain and Monodomain Models
	Accuracy
	1D experiments
	3D experiments

	Efficiency comparison on the Niederer benchmark problem

	Advection-Diffusion-Reaction Combustion model
	The Brusselator Problem

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

