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Abstract

The storage, retrieval and distribution of data are some critical aspects of big data management. Data

scientists and decision-makers often need to share large datasets and make decisions on archiving or deleting

historical data to cope with resource constraints. As a consequence, there is an urgency of reducing the

storage and transmission requirement.

A potential approach to mitigate such problems is to reduce big datasets into smaller ones, which will not

only lower storage requirements but also allow light load transfer over the network. The high dimensional

data often exhibit high repetitiveness and paradigm across different dimensions. Carefully prepared data by

removing redundancies, along with a machine learning model capable of reconstructing the whole dataset

from its reduced version, can improve the storage scalability, data transfer, and speed up the overall data

management pipeline.

In this thesis, we explore some data reduction strategies for big datasets, while ensuring that the data

can be transferred and used ubiquitously by all stakeholders, i.e., the entire dataset can be reconstructed

with high quality whenever necessary. One of our data reduction strategies follows a straightforward uniform

pattern, which guarantees a minimum of 75% data size reduction. We also propose a novel variance based

reduction technique, which focuses on removing only redundant data and offers additional 1% to 2% deletion

rate. We have adopted various traditional machine learning and deep learning approaches for high-quality

reconstruction. We evaluated our pipelines with big geospatial data and satellite imageries. Among them, our

deep learning approaches have performed very well both quantitatively and qualitatively with the capability

of reconstructing high quality features. We also show how to leverage temporal data for better reconstruction.

For uniform deletion, the reconstruction accuracy observed is as high as 98.75% on an average for spatial

meteorological data (e.g., soil moisture and albedo), and 99.09% for satellite imagery. Pushing the deletion

rate further by following variance based deletion method, the decrease in accuracy remains within 1% for

spatial meteorological data and 7% for satellite imagery.
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Chapter 1

Introduction

In the era of big data, the collection, storage, and retrieval of data is a barrier to the researchers and

decision-makers for fast manipulation and analysis. It is also challenging to work with big data in local

computing machines with limited memory and slow internet access. Therefore, it is important to compress

the big datasets into a smaller one, which will not only reduce storage requirements but also allow light load

transfer. An efficient data compression approach, along with a learning-based model capable of reconstructing

the whole dataset with maximum accuracy can minimize all these challenges and pave the way to smooth

data analytics. In this chapter, the motivation behind this thesis will be explained in detail, followed by

research questions to be answered, and finally, the key contributions.

1.1 Motivation

The revolutionary progress of sensors, IoT technology, and other scientific data-collecting devices, is giving

rise to massive data repositories with high velocity. As a result, data-driven decision making is relying more

on a combination of analytical and visualization techniques [60]. However, any processing on such immense

data demands high-bandwidth, high-capacity storage, and high-performance computational power [70]. Most

often, user quires on such data are executed on the server and the resulting query results (visual plots such

as contour plots, heatmaps, and various statistics) are sent over a network [16]. Sometimes, the user queries

for a data sample, and the sample is analyzed on the client-side. However, both of these techniques have

limitations. While the server-client communication load imposes various limitations on user interactions, the

data sample-based analysis is prone to various sampling artifacts. Data reduction is a common approach

to deal with big data [98], where the main goal is to retain the most informative subset of the data and

identify redundant subset to be discarded. Various forms of data reduction techniques such as outdated data

deletion [101], lossless or lossy compression [74], dimensionality reduction [103], and discretization [51] are

used in practice.

Datasets like geospatial weather data or remote sensing data have high resolution in space, time, and

modality which makes it a challenge to applying conventional analytical and visualization methods. Although,

this type of data is collected every day and at every point in the earth, the spatio-temporal data can be

highly redundant [63]. That is why, such redundancy can be removed without significant loss in quality,

1



Figure 1.1: Data reduction and reconstruction overview.

preserving the structure of the data. Moreover, systematic and aggressive deletion of data allows easier

spatial observation and analysis [42,63].

In this thesis, we explore data reduction techniques coupled with machine learning based reconstruction.

The motivation is to create a reduced dataset along with a machine learning model, which can be used on the

client-side to produce visualizations that closely approximate the server-side (original) visualizations. Since

small changes are not easily detectable by our eyes, for generating a visual picture, it is desirable to reduce

the data in a way that has the least impact on the visual quality once recovered. One can compress the

reduced dataset further by using image compression algorithms [98].

1.2 Research Questions

The main focus of this research is providing a pipeline for data reduction along with a reconstruction method

for both geospatial data, plots, and satellite imagery. Firstly, developing different data deletion strategies that

do not compromise with visualization quality when reconstructed. Secondly, building compact, consistent,

and reliable machine learning based reconstruction models.

The growing rate of data generation requires scalable resources associated with increasing time and cost.

The best way to deal with this problem is to reduce the data in such a way that will have a minimum loss of

information along with a good amount of storage and bandwidth saving. Consequently, our plan is to design

systems that delete data carefully and extensively. The idea for recovery of this deleted data is having a

trained machine learning model in a local machine, capable of reconstructing the deleted data samples from

the available compact dataset.

The thesis aims at answering the following specific research questions:

1. How to reduce data by deleting data samples yet retaining important information for subsequent re-

covery?

2. How to reconstruct missing data with high reconstruction quality?

3. What are the trade-offs behind this whole deletion-reconstruction pipeline?

2



1.2.1 Our approach

We are going to address the above mentioned questions in two steps.

Firstly, we will explore simple and straightforward uniform deletion schemes. We will analyze their

capability in retaining visual information. Secondly, we will further push the deletion rate to the extreme

but by adopting careful tactics that focus on more redundant information. The overall goal is to delete as

much data as possible retaining important information.

We will explore a wide range of machine learning and deep learning models for the reconstruction of the

deleted data. The machine learning algorithms cover Bayesian Ridge regression and shallow neural networks.

For deep learning models, generative adversarial networks are taken into consideration for their notable

performance in generating data distributions that are realistic and similar to the original data. We train

generative models that can recover the full data from the reduced one. This part is mostly inspired by the

advanced and established image processing methods of recovering missing data in two scenarios. The first

one is creating super-resolution images and the second one is inpainting or filling in missing pixels. Our

attempt is to develop these models in such a way that can retrieve the deleted data with high accuracy and

minimum error. We intend to implement our data deletion strategies on two large spatio-temporal datasets,

i.e. Satellite imagery and geospatial plots, in order to implement our data deletion strategies. The results are

evaluated in two forms which are matrix and image for machine learning models. The evaluation metrics are

explained in detail in section 5.1.3. The results are also compared with interpolation and JPEG compression

techniques.

1.3 Contributions

In this paper, we explore data reduction and recovery techniques for geospatial contour plots and satellite

imagery. Therefore, a large body of our work is inspired by various image processing techniques. Our

contributions are as follows:

1. We examine two types of data deletion strategies: uniform deletions (checkerboard and grid pattern),

and uniform deletion followed by a variance based deletion. The uniform deletion achieves a guaranteed

50% (checkerboard) or 75% (grid pattern) data reduction, with a high recovery rate. However, our

variance based deletion technique can further improve the reduction rate over 76% on both weather

datasets and satellite imagery. The quality of the reconstructed images does not decrease over 0.07 for

Structural similarity index (SSIM) and 9.16 for Peak to signal ratio (PSNR). Here SSIM and PSNR

are metrics for measuring the similarity between the original image and the reconstructed image. The

details of the SSIM and PSNR are explained in Chapter 5.

2. For the reconstruction of the removed data, we adopt a wide range of machine learning (Bayesian

Ridge Regression, Shallow Neural Network) and deep learning models (Super-resolution generative
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adversarial, Inpainting network). With 75% data deletion, the models were able to reconstruct both

weather datasets and Satellite imagery with high accuracy (above 98% SSIM and 34dB PSNR). The

visual difference between the original and reconstructed data was the least for deep learning approaches.

Among them, inpainting had outperformed all other methods qualitatively and quantitatively. The

SRGAN and inpainting models are explained in Chapter 4.

3. While using deep learning approaches for reconstruction, we examined two techniques. One is to use

the idea of constructing a higher-resolution image from lower-resolution images. Here we employed

a Super Resolution (Generative Adversarial Neural Network) GAN model [53] together with a data

imputation technique. The other idea is to use image inpainting, i.e., repairing damaged regions in

an image. Traditional image inpainting network [107] often ends up reconstructing missing pixels in a

blurry and imprecise way because of the lack of enough spatial information. Therefore, we modified the

traditional image inpainting network [107] to incorporate information from a temporal or interpolated

data. A temporal data is a plot or image of another timestamp from the same spatial region, and

the interpolated data is a plot obtained by inpainting the image using interpolation. The modified

inpainting network outperformed SRGAN model and had better accuracy and visual quality. To the

best of our knowledge, this is the first data reduction work that uses the concept of temporal data for

recovery in order to deal with resource constraints.

1.4 Chapter Organization

This document is structured as follows.

In Chapter 1, we have explained the motivation of this thesis work. We have explained the research

problem, our approach to answering the research questions, and the outcome we were able to achieve.

In Chapter 2, the related works are explained in two sections. The first one discusses the data deletion

concept and its use in different situations. The second one discusses the reconstruction methods covering

both the spatial and spatio-temporal recovery techniques.

Chapter 3 provides a brief introduction about proposed data deletion strategies along with their justifi-

cation. The data deletion strategies are divided into uniform deletion and variance based deletion.

Chapter 4 describes the reconstruction strategies that we have considered. The reconstruction methods

that are considered are categorized into statistical, machine learning, and deep learning. Statistical methods

include simple and widely used interpolation techniques. Machine learning includes Bayesian ridge regression

and shallow neural network, where both works on features engineered from the data. Deep learning meth-

ods include two types of generative adversarial networks. We have explained the theoretical background,

architectures, and loss functions for each of these reconstruction models.

Chapter 5 illustrates the experimental design of different data deletion and recovery techniques in detail

along with an explanation about the data source and processing of datasets. We have also explained both
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the qualitative and quantitative results from the experiments. We have compared the results from different

data reconstruction models. We have also discussed the advantages of proposed deletion strategies over

conventional compression techniques. The metrics used to compare the results are also discussed in this

chapter.

Finally, Chapter 6 represents the concluding remarks of this research. Then, the main contributions of

this thesis are summarized along with some limitations that can provide the direction of possible future works

revealed as a result of this thesis.

1.5 Declaration

Throughout this document, the term “we” refers to the author and the reader following the theoretical

computer science norm for scientific writing.

I confirm that I have conducted this research and written this document under the supervision of my

advisor Dr. Debajyoti Mondal. Part of the results has been accepted to be published in proceedings of 2020

IEEE International Conference on Big Data (IEEE BigData 2020) [89].
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Chapter 2

Background Literature

In this chapter, the first section will discuss a range of widely used data reduction approaches in different

scenarios. Data reduction is a prime solution towards solving the problem of resource limitation that comes

with big data management. Most of the data deletion process either follows ordinary rules such as redundant

data deletion or uses code designs such as Huffman coding. Only a few examples exist in the literature there

that follow data driven solutions.

In the second section, previously used data reconstruction techniques for spatial datasets and spatio-

temporal datasets will be introduced in two different sections. In each section, statistical and machine

learning methods will be described. There are a considerable number of statistical methods available for

data reconstructions. However, they often rely on local neighborhood based analysis and fail to generate or

recover missing data by understanding the global context. This issue can be solved by leveraging machine

learning methods with having automatic-feature selection procedures.

2.1 Data Reduction Methods

Data reduction is a common approach to deal with big data [98], where the main goal is to remove duplicate,

uninformative, easily retrievable data points from the data that does not compromise with data quality.

Unnecessary Data deletion: There are different states of data that can allow it to be deleted for re-

ducing storage requirement, e.g., outdated data which are no longer required or duplicated data. Growing

information is often handled by either passive or active strategies. In the passive strategy, the data is saved

as backup and not allowed to be deleted until it got completely valueless. In the active strategy, the data

points are immediately deleted when it became obsolete [34].

A technique of optimizing storage utilization is deduplication which allows removing all the duplicates.

Generally, the deduplication process identifies and store unique chunks of data while other chunks are com-

pared with the stored ones and given a reference that points to the matched. However, the building of a

reference counter is space consuming. Przemyslaw et al. [88] proposed a deletion algorithm for scalable and

content-addressable storage with global deduplication that can result in deletion ranging from 5% to 30% by

identifying the requirements of deletion and satisfies them by allowing deduplication while deletion.
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(a) Original Image (b) 30% compression (c) 60% compression (d) 90% compression

Figure 2.1: First row shows example of lossy image compression. Second row shows zoomed in
sections.

Compression: Image compression methods eliminate redundant information from a file, and thus saves

memory space. Usually, there are two forms of compression: lossless and lossy. As the name implies, lossless

compression guarantees 100% restoration after decompression. Two popular lossless compression techniques

are TIFF and PNG [6]. They are used in situations, where the loss of information is not acceptable such as

medical-imaging [85].

On the contrary, lossy compression removes useless or low level information from the file which allows a

decline in storage requirement. The recovered data in lossy compression does match entirely with the original

data. The goal is to keep the recovered image after decompression nearly the same as the original image by

visual comparison. Widely used lossy compression techniques are JPEG and GIF [79].

Lossless compression typically offers a 33% to 60% reduction of size. But depending on the data, lossy

compression can add to this number by 95% [14]. As shown in Fig. 2.1, the more the compression rate, the

poor the quality of the image. This massive amount of reduction is often undesirable. JPEG compression

algorithm has four steps which are RGB to YCbCr color space conversion, Discrete Cosine Transformation,

coefficient quantization, lossless encoding.

Dimensionality Reduction: Curse of Dimensionality causes issues while analyzing and organizing data

with complexity and high dimension [9]. This is addressed by dimensionalty reduction [96] methods which

generate new low dimension features rather than eradicating low level information. This new set of features

are either a low dimensional representation of data or a weighted combination of the existing data. This is

done by applying some projection matrix to the original data. The lower dimensional data is then transformed

back using the basis vectors, which are the principal components of the original data. There are various kinds

of dimensionality reduction techniques depending on the criteria it follows while reducing the dimensions.
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First, the linearity or nonlinearity used in creating new data. Second, the covariance matrix is taken into

consideration so that the new reduced data maximizes the representation capability. Third, the number of

variables considered in reduction methods [15].

Dimensionality reduction is a widely used approach to cope with the data size. Principle component

analysis (PCA) and singular value decomposition (SVD) are often used to reduce the dimension of the data

maintaining the original characteristics of the data while reconstructing [22,64]. Principle component analysis

(PCA) maximizes the variance in low dimension while mapping the high dimensional data. The eigenvectors

and eigenvalues are calculated from the covariance matrix of the data. The eigenvectors are ranked according

to eigenvalues and the projection matrix is constructed from the top k principle components or highest

eigenvalues. This projection matrix transforms the high dimensional data into k lower dimensional new data.

Later on, these eigenvectors with the largest eigenvalues are used to reconstruct the data capturing a large

amount of data variance. t-SNE or t-distributed stochastic neighborhood embedding is also a non-linear

dimensionality reduction algorithm [96]. PCA tries to preserve the global variance of the data whereas,

t-SNE tries to preserve the local variance of a certain point.

Discretization: Discretization is the process of transforming continuous valued data into discrete ones

which help in reducing storage usage. It divides the range of the continuous data into a smaller number

of sub ranges and stores the data as qualitative discrete values. It is always easier to understand the data

in discrete form rather than continuous, as continuity may result in infinite degrees of freedom and also

complex non-linearity. Moreover, the storage requirement also gets reduced. However, there has to be a

balance between the loss of information and the number of sub-ranges to create discrete data as less number

of sub-ranges causes increased loss and vice versa [51]. Example of discretization methods are k-means,

Decision Trees, equal-width discretization [58].

Selection masks: Selection mask is a binary mask composed of zeroes and ones where 1 denotes selected

and vice versa. However, their framework is quite a dependant on the task which is classification. Ohemcke et

al. [69] proposed a learnable selection mask that can automatically select only the relevant part of the input

image using a neural network that does not compromise with the machine learning model’s performance.

2.2 Reconstruction Methods

In this section, we review the literature on the data reconstruction techniques that fill in missing or corrupted

data. Depending on the use of data as features, the recovery techniques are explained in two categories: spatial

and spatio-temporal. In each category, statistical and machine learning methods are explained.
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2.2.1 Spatial Dataset

Statistical Reconstruction Techniques:

Imputation: One of the most common ways to deal with missing data is the deletion of the samples with

missing data. Although this is straightforward and simple to implement, discarding samples with missing

data introduces bias or misrepresentation in the analysis. Rather than completely removing a full sample, a

simple statistical way of reconstructing the missing data is imputation [95]. Imputation refers to replacing

missing data with substituted value or an estimate. Missing data can be replaced with mean, mode, or most

frequent value of the dataset. However, they often do not capture the spatial correlation, as well as introduce

bias in the data. Regression imputation predicts the missing variable depending on the other variables using

a linear equation, as follows:

ŷ = β̂0 + β̂1(x) (2.1)

Here, ŷ is the variable with missing values and x is the known variable, and β̂0 and β̂1 are the regression

coefficients. But this does not have an error term introduced in the estimation. As a result, the estimates

seem to fit perfectly with the data and thus fail to capture the uncertainty. This issue can be addressed by

introducing error term but this causes more error in the estimate than general by adding complexity to the

model [29].

Interpolation: Filling in missing regions of an image based on its surrounding context is considered as

interpolation problem [8]. The most commonly used interpolation methods are the nearest neighborhood

interpolation, bilinear interpolation, cubic convolution interpolation, Krigging Interpolation [41,99].

Optimal interpolation techniques are often used in recovering missing data to preserve visual quality

in geospatial data. Pang et al. [13, 72] compared Shepard’s inverse distance weighting interpolation and

multiquadric interpolation to reconstruct missing geospatial data and integrates different parameters such as

uncertainty into visualization for ensuring accuracy. Details of Shepard’s and multiquadric interpolation is

given in section 4.1. We also examined these approaches in our experimental analysis.

Machine Learning Approaches:

Machine learning models use statistics to learn complex patterns in massive datasets in different tasks such as

classification and regression. One of the simply developed and interpretable machine learning models is the

regression model, which is capable of estimating the relation between dependent and independent variables,

where independent variables are usually features or covariates. To estimate more complex and stupendous

patterns, the regression model often requires intelligent feature engineering by humans which is inconvenient

while working with large multidimensional data. However, in such scenarios, deep learning models designed

to process data incrementally in different layers, are found to be very effective in extracting high level features

or abstract representation from data without human analysis [33]. Especially, autoencoder architectures can
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learn compact data representation similar to PCA, but more effectively. In image compression, a variety of

deep learning models, e.g. convolution neural network [7,54], recurrent neural network [44,93,94], probability

models are deployed [65]. Neuron in artificial intelligence, is a simulation of brain neuron, which takes data

as input and learns from it in order to predict the desired outcome in the output. Neuron typically contains

weights which are adjusted as the learning proceeds in order to model the relation between input and output.

It takes input values as numbers and then multiplies them with weights and adds biases. The weighted

sum is multiplied by the activation function. Usually, artificial neural network (ANN) consists of three

layers, which are the input layer, hidden layer, and output layer. The hidden layer consists of a number

of neurons. A neural network is called deep neural network (DNN) when there are many hidden layers in

it [3]. Recurrent Neural Network (RNN) is a type of neural network that learns temporal behavior of data by

having connections between neurons along the temporal sequence [78]. Autoencoder transforms input data

into a lower dimension and then reconstructs the input back. It is built of two networks which are encoder

and decoder. PCA offers the same type of representation by linear transformation whereas autoencoders can

be both linear and non-linear. More about autoencoders are explained in Section 4.2.3.

Autoencoders are also applied for data compression in different areas [56, 90, 91]. For example, Diao et

al. [23] used a recurrent autoencoder in a distributed system to compress images from a set of distributed

sources. Pan et al. [70] designed autoencoders for 3D time-series data along with a coding and decoding

block to achieve binary representations in a compressed format. Diao et al. [24] explained a distributed image

compression technique based on a group of distributed source by designing a recurrent autoencoder. Chandak

et al. [17] proposed a compressor that is based on a prediction-quantization-entropy coder framework where

they have implied least square and neural network models. Feng et al. [43] designed two separate network

architectures, one of which compresses the data, and the other one reconstructs it. Both of them are optimized

following a unified loss function. Marchetti et al. [63] adopted an adaptive spatial dispersion clustering that

reduces the size of spatial data by creating spatial clusters maximizing spatial correlation keeping the loss

minimum. The goal was to generate new data that can be used for spatial prediction using kriging methods.

Doutsi et al. [27] introduced a neuro-inspired compression mechanism of RGB images that is entirely inspired

by the neuroscience behind the filtering and compression mechanism of the human brain. Their method goes

through a set of steps which are RGB to YCbCr transformation, RIF coefficient shifting, and color channel

downsampling which help greatly in enhancing the results. There are different deep learning architectures

that are capable of dealing with recovering missing information successfully in the domain of image inpainting.

The very first use of convolutional layers in image inpainting was by Xie et al [102]. The results were further

developed and taken to an aesthetic level when generative adversarial networks were incorporated into the

task of image inpainting [75]. Generative adversarial network comprises of two networks which are generator

and discriminator network. The generator generates data while the discriminator tells if the data is original

or generated by the generator model. The generator tries to minimize the loss between the original and its

generated data when the discriminator tries to get better at discriminating by maximizing the loss. This
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loss is adversarial loss. GAN is described in more detail in Section 4.3. GAN was later improved by global

and local wgan network by Yu et al [107]. This model is one of the foundations for this work. Irregular

holes and complex structures are always tricky to fill in. Nazeri et al. [66] proposed a two stage adversarial

network, where the first stage approximates the edges in the missing area and the second one fills in the hole.

There exist many studies that focus more on irregular holes in images and developed models with partial

convolution [57,104,108].

Figure 2.2: (left) Landsat ETM+ SLC off. (right) Image with thick cloud cover (adapted from [112]).

2.2.2 Spatio-Temporal Recovery

Super-resolution is the task of recovering the high resolution image data from low resolution image data [100].

This task is too sensitive to be done by interpolation methods as there needs to be a proper construction

of finer textures. As a result, learning based algorithms are explored in this field, where the transformation

between low and high resolution data is learned. SRCNN is a three layer convolution neural network which

shows better performance than interpolation [25]. Later, a special perceptual loss based GAN model is

proposed, which is capable of bringing finer and more realistic high resolution image data [53].

Spatial information provides complementary information for reconstructing deleted locations. But it

sometimes lags when it comes to complex structures. For instance, if the area inside the black square is

unknown as shown in Fig. 2.3, most of the spatial regions do not offer enough information to construct the

structure, and so cause a failure. To solve this problem, the dataset needs to be extremely rich with such

examples so that the model can learn to reconstruct accurately. In such scenarios, temporal information

at the same location can contribute to the information about the shapes to be reconstructed. We can see

in Fig. 2.4, part of the temporal images are the same in either color or structure. However, there can be

mismatches in color due to time difference, weather as shown in the third row of Fig. 2.4. Formerly, temporal

data has been leveraged to reconstruct unknown information in several studies. For example, satellite images

often have missing information caused by cloud obstacles or sensor failure due to scan line corrector(SLC)

off as shown in Fig. 2.2. All these missing information are best recovered when a combination of spatial

information and temporal or spectral information is used [81].
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Figure 2.3: (left) Original Image. (middle) The black region shows missing pixels. (right) Image
produced by an inpainting algorithm.

Statistical Reconstruction Techniques: The classical method of using temporal data as supplementary

radar information is replacing the positions that are missing with that of the temporal ones. There are

two ways to do this: direct and indirect replacement by temporal data. If there is little difference with the

temporal data then the missing positions can be directly filled with the temporal data. Usually, this scenario

is rare. Therefore, the temporal data needs to undergo some transformation before filling in the missing data.

Since satellite datasets are not aligned, a local linear histogram matching algorithm is often applied to

the temporal data to match the histogram of the missing data. Although this is quite a simple method, it

matches the histogram in the local neighborhood. Therefore, it may become really sensitive. Moreover, due

to the dependency on the local histogram, it fails in generating smaller features such as texture [4, 80].

Regression is another way to transform the temporal data, where the data values work as features. So

Zeng et al. [110] proposed a weighted linear regression model of the temporal data that can help in minimizing

the temporal differences. The regression equation is solved by the least square method. To cope with the

unavailability of proper temporal data, they have incorporated a non-reference based regularization method.

Functional principle component (FCPA) analysis has varied applications in multivariate dimensionality

reduction for time series datasets [45]. This method includes PCA as a step but considers the dimension

order of the multivariate data while creating a low dimensional representation. The time or space order can

not be permuted like PCA. PCA usually captures the overall variance of the data. But time series data are

often too complex to detect the variation. This issue is overcome by FCPA as it can capture the variance

with time [97,109].

Machine Learning Approaches: STS-CNN [112] takes three inputs, which are data with unknown infor-

mation, temporal data (with no unknown information), and data that has its unknown information replaced

by the information using temporal data, as shown in Fig. 2.5. These inputs are fed to a specially designed

convolution neural network that extracts features from all the inputs. Dilated convolution layers are used to

bring features from a wide viewpoint. But these models fail when the temporal data is sparsely spaced [112].

Another work uses convolutional layers to build three separate networks that extract features content-wise,
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(a) Image date 22-09-2001 (b) Image date 23-07-2002 (c) Image date 21-04-2003

Figure 2.4: First row shows three satellite images at the same location in different timestamps.
Second and third row show zoomed in sections.
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Figure 2.5: Explanation of the inputs by Zhang et al. (figure adapted from [112]).

spectral-wise, and texture-wise. The adversarial loss function used to train the network is the mean squared

error between temporal data and the data with missing information [18].

Cheng et al. [19] have proposed a two-step method for reconstructing the missing information of 2D

spatio-temporal data. The reconstruction method incorporates an inverse distance weighting interpolation

method for obtaining some coarse result, followed by another interpolation method for obtaining a fine result

with the help of spatial and temporal information. Finally, the data samples with finely interpolated missing

locations are fed to a neural network model.

Dong et al. [26] trained a DCGAN to generate SST images in an unsupervised way. Later, the trained

generator is used to train the inpainting network, which learns the representation of the original image in a

low dimension with a new loss function.

Spatio-temporal features are widely used to fill in any hole or missing region in video inpainting. Kim et

al. [48] has proposed a recurrent temporal aggregation network that has an autoencoder structure. The input

to the encoder is the reference temporal frames and the output is the extracted features which are summed

with recurrent feedback and fed to the decoder network.

Zeng et al. [111] designed a spatial-temporal transformer network which is trained by an adversarial

network. This network looks for similar frames in both neighboring and distant frames to better build a

complex notion. Aidini et al. [2] proposed tensor based compression by learning a dictionary of the tensor

data based on an Alternating Direction Method of Multipliers. By tensors, they refer to a 4D object with

two spatial axes, one temporal and one spectral axis.

2.3 Summary

In this chapter, we have described related background literature for both data deletion and recovery. Al-

though data deletion has been applied in different fields taking different names, there is no application of

aggressive data deletion in order to solve resource problems associated with geospatial datasets and satellite
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imageries. Therefore, data deletion methods are worth exploring that can preserve important information as

well as guarantees a large amount of deletion. On the other side, there is a wide range of recovery methods

available in different scenarios ranging from basic statistics to deep learning. Statistical methods often fail at

reconstructing high level details. In the field of image processing, there are some promising techniques avail-

able that ensure good quality not only from the numerical aspect but also from the visual aspect. Therefore,

our aim is to explore advanced image processing algorithms along with deep learning approaches to obtain

high quality reconstruction of the deleted data.
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Chapter 3

Data Deletion Strategies

In this chapter, we describe the deletion methods we used in our work. We explore two types of deletion

approaches, which are uniform deletion and variance based deletion. Uniform row-column deletion in grids is

capable of ensuring 75% deletion, whereas a checkerboard deletion ensures 50%. Our variance based deletion

approach improves the deletion rate by over 75% depending on the data variance. The later one also ensures

careful deletion preserving any shape changes in the data or the shape structures in the image. We only focus

on image data for this work.

3.1 Deletion Strategies

3.1.1 Uniform Deletion

Uniform deletion refers to deleting samples following an orderly fashion, which means that deleted samples

have uniform intervals between each other. This concept is also used in systematic sampling [12] where

the first sample is picked randomly and the rest of the samples follow a fixed pattern. But in our uniform

deletion, the first sample position is also fixed. So unlike systematic sampling, the mean and variance are

determinable using ȳ =
∑n

i=1 yi
n and s2 =

∑n
i=1(yi−ȳ)2

n−1 respectively, where n is the number of samples out of

N are kept in the dataset. We examine two types of uniform deletions: Grid and Checkerboard deletion.

Grid Deletion:

Let M be an m × n matrix. If half of the rows and half of the columns are deleted uniformly, then the

total number of data points to be deleted is (m2 + n
2 −

mn
4 ), as shown in Fig. 3.1. This implies a deletion of

three-fourth of the data (e.g., see Fig. 3.1). If we remove the data samples regularly, then it is highly likely

that the removed portion of the dataset is similar to the remaining data in statistical properties, geometrical

structures, and textural components, whereas it also guarantees a 75% reduction of the dataset.

Checkerboard Deletion:

Although uniform deletion results in 75% deletion of data samples, it might cause less accuracy in recon-

struction. To determine the trade-off, we also examined the effect of a low reduction rate. In particular, we
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Figure 3.1: Illustration of grid deletion.

examined a deletion technique based on a checkerboard pattern that deletes half of the data samples, i.e.,

the number of matrix entries get reduced from (m×n) into (m×n)/2 as shown in Fig 3.1, leading to a 50%

data reduction.

3.1.2 Variance Based Deletion

Grid deletion offers quite a large amount of storage savings. However, the reduced data may still have some

areas containing blocks of similar data points, which can be easily removed without reducing reconstruction

accuracy.

Therefore, we propose a novel variance based method for increasing the reduction rate by deleting the

easily retrievable data samples without compromising reconstruction accuracy. This method first deletes

samples in the grid resulting in 75% deletion as in Fig. 3.2(c). Further, following our variance based deletion

method, finds more removable data samples and increases the deletion rate, as shown in Fig. 3.2(d).

We first describe the variance based deletion technique and then provide an estimate of the number of
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(a) Original Image (b) Checkerboard deletion (c) Grid deletion (d) Variance
based deletion

Figure 3.2: Reconstruction results for satellite imagery.

additional data points that this method may detect for further deletion. Before we begin the whole method,

we explain some of the terminologies.

Variance (σ2) is the measure of how far samples vary from its average value, which is defined by the

squared deviation of a random variable from its mean value. The more varied the data, the larger the

variance is. Percentile implies the value under which a given percentage of samples in a data falls. The nth

percentile of data is the value at which n percent of the data is below it. Sample variance, as the name

implies, is the variance of the samples which is denoted by σ̂2. For the variance based deletion, we consider

sample variance where the samples are picked from the neighborhood. For a particular sample, Neighborhood

is the k × k field around it.

We first consider the sampling distribution of sample variances. For each location, we first compute the

sample variance of a local k-neighborhood around that location. Let R be a threshold, which is the percentile

measure of the sample variances. We define a data point to be a candidate for further deletion if its associated

sample variance is less than R (assuming that they are easily recoverable). However, if all these data points

with low neighborhood variance are deleted, then there may not always be enough information preserved to

recover the shape boundaries as shown in Fig. 3.3. Therefore, such a straightforward deletion may not always

be approximated effectively in the reconstruction phase.

To cope with such a problem, we propose a deletion strategy based on the variance of the neighborhood

sample variance. This preserves the shape boundary to an extent that can be better reconstructed using the

reconstruction techniques. For the variance of neighborhood sample variance, we define another threshold Q
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Figure 3.3: (left) Generated image after the grid deletion, from 25% of data points. (middle) One
step variance based deletion. (right) Two step variance based deletion.

which is the percentile measure of the sample variance of the neighborhood sample variances. Our two step

variance based deletion approach deletes every candidate data point, where the variance of the neighborhood

variance is less than Q. In other words, every data point with s2 < R and var(s2) < Q is deleted, where s2

is the neighborhood variance. Mask is a matrix having the same dimension as the original data, which has

zero value indicating deleted positions and one value indicating non-deleted positions of the original data.

Fig. 3.3(right) shows the mask after two step deletion where the deletion rate is lower, but the reconstruction

will be more accurate.

To obtain an estimate of the potential data reduction, consider a normal distribution with mean µ and

standard deviation σ. Then the expectation of sample variance is σ2 [50]. Therefore, by Markov’s inequality,

the probability that the sample variance is smaller than R is

P [s2 ≤ R] ≤
(

1− σ2

R

)
We run a simulation with a normal distribution to examine how the thresholds affect the number of

data points satisfying various threshold conditions. We generate one dimensional normal distribution by

keeping the mean and variance close to that of the datasets that we used in our experiments. We apply

our variance based deletion approach with a range of possible values of k, R, and Q. For one dimensional

data, neighbourhood area k is defined by the k number of data samples on both sides of a particular data

sample. The deletion rates are reported in percentage in Table 3.1. More details of the Table 3.1 is provided

in Appendix B. From the table, we can observe the following:

1. If we delete data samples with higher R and higher Q, the deletion rate is higher. This may remove

important visual information that may not be recovered with high accuracy. Therefore, higher R and

higher Q can be chosen if higher deletion is desired.

2. If data samples that satisfy s2 < R and var(s2) < Q are deleted, then the deletion rate is much lower

than that with s2 < R or var(s2) < Q independently. But, the former ensures precise deletion along
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Table 3.1: An experimental estimate for data reduction with a two step variance based deletion (red
indicates a larger deletion).

Properties

of the distribution
µ, σ = 4.45, 2.93 µ, σ = 4.45, 7

k-Neighb. R Q s2<R V (s2)<Q
s2<R &

V (s2)<Q
s2<R V (s2)<Q

s2<R &

V (s2)<Q

20 0.25 0.2 0.06 0.21 0.2 0.05

40 0.25 0.4 0.11 0.21 0.4 0.120

60 0.25 0.6 0.15 0.21 0.6 0.15

20 0.41 0.2 0.1 0.4 0.2 0.1

40 0.41 0.4 0.16 0.4 0.4 0.1940

60 0.41 0.6 0.24 0.4 0.6 0.28

20 0.6 0.2 0.13 0.6 0.2 0.16

40 0.6 0.4 0.27 0.6 0.4 0.31

3

60

60 0.6 0.6 0.37 0.6 0.6 0.44

20 0.22 0.2 0.03 0.2 0.2 0.08

40 0.22 0.4 0.08 0.2 0.4 0.120

60 0.22 0.6 0.14 0.2 0.6 0.15

20 0.4 0.2 0.04 0.4 0.2 0.13

40 0.4 0.4 0.15 0.4 0.4 0.1940

60 0.4 0.6 0.26 0.4 0.6 0.28

20 0.6 0.2 0.1 0.6 0.2 0.14

40 0.6 0.4 0.23 0.6 0.4 0.25

5

60

60 0.6 0.6 0.38 0.6 0.6 0.4

20 0.2 0.2 0.06 0.2 0.2 0.1

40 0.2 0.4 0.11 0.2 0.4 0.1420

60 0.2 0.6 0.13 0.2 0.6 0.14

20 0.42 0.2 0.1 0.4 0.2 0.13

40 0.42 0.4 0.17 0.4 0.4 0.2240

60 0.42 0.6 0.29 0.4 0.6 0.24

20 0.6 0.2 0.14 0.6 0.2 0.18

40 0.6 0.4 0.28 0.6 0.4 0.3

7

60

60 0.6 0.6 0.42 0.6 0.6 0.37
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the edges when compared with the later two approaches. Fig. 3.3 illustrates a comparison between the

two step deletion and a one step deletion.

3. Even with a cautious threshold choice, i.e., R = 20 and Q = 20, we have 5% data points satisfying the

threshold conditions.

Since we have 25% data points remaining after the grid deletion, Choosing both R and Q as 20, creates a

potential for deleting 1.25% additional data points, and the data reduction rate may increase to 76.25%. As

we are examining all the data points, the time complexity of this algorithm is O(n), where n is the number

of data points and k is a fixed constant.

3.2 Summary

This chapter demonstrates the data deletion methods. The grid deletion is put forward over other deletion

methods as it guarantees a 75% deletion rate that is a considerable number for the reduction of required

resources. It is also able to keep the structure of the objects in the reduced data. Therefore, the reduced data

can easily be used for visual analysis. However, the variance based method pushes the deletion rate beyond

75% and thus makes the overall deletion rate higher. This can greatly influence bigger data sets when a small

amount of deletion saves resources significantly.
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Chapter 4

Reconstruction Methods

A large amount of data deletion may be allowed if a high reconstruction accuracy can be achieved. In this

section, we propose effective reconstruction strategies for good quality reconstruction of the geospatial plots

and Satellite imagery. Firstly, a few interpolation algorithms are inspired by the work of Pang et al. [72],

where they refer to sophisticated interpolation techniques for filling in missing or noisy data points in the

geospatial dataset. Secondly, a regression algorithm is employed which is often capable of outperforming

interpolation [67]. Thirdly, a generative adversarial network (GAN) is applied for the reconstruction task.

Two different types of GANs are adopted, which are SRGAN and GAN based inpainting network.

4.1 Interpolation

Interpolation has been a popular way of filling in the unknown areas of geospatial data. We examined two

extensively used interpolation algorithms, which are capable of modeling complex shapes: modified Shepard’s

inverse distance weighting [83] and Multiquadric interpolation [72].

4.1.1 Modified Shepard’s inverse distance weighting interpolation

Inverse distance weighting (IDW) interpolation determines the unknown points from the weighted average

of the values at known points. The interpolated value u at a given point x is calculated by,

u(x) =



N∑
i=1

wi(x)ui

N∑
i=1

wi(x)

if d(x,xi) 6= 0 for all i,

ui if d(x,xi) = 0 for some i

(4.1)

where wi = (1/d(x,xi))
P is the inverse distance weighting function, u is the interpolated value at x, ui

is the known value at xi, d is the Euclidean distance between xi and x, N is the total number of points, and

P is the power parameter. Intuitively, the greater the distance from the interpolated point, the smaller the

weight or influence is. P also adds great influence on the nearest points. For this experiment, P is chosen

to be 2 [83]. This incorporation of P is known as Shepard’s IDW interpolation. The quality introduced in

the interpolated data by this method is often too high, which means that the interpolation performs well
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only on the available data but will fail in case of unknown and uncertain data like overfitting. Therefore, a

modification is proposed to introduce uncertainty in the data [72].

A modified version of this interpolation method [83] uses only the points in the nearest neighbors in a

sphere having k and thus the weights are modified as follows:

wx =

(
max

(
0,
k − d(x,xk)

kd(x,xk)

))2

(4.2)

Here, d is the Euclidean distance between xi and x. The implication of introducing k-sphere is the data

quality becomes zero out of the sphere. Thus no noise can be added due to samples outside of the k-sphere.

4.1.2 Multiquadric interpolation

Polynomial function is function, which has positive integer powers of an independent variable in its equation.

Radial basis function is a real valued function, which maps the input to a value, which is defined based on the

distance from the input to a fixed center point. Multiquadric interpolation is based on modeling data using

a function [72, 76]. The function, being radial basis function, has advantages over a polynomial function, as

they are capable of capturing complicated shapes in topographical surfaces [20]. Multiquadric interpolation

is defined by sum of weighted radial hyperbolic functions as follows.

fx =

N∑
i=1

αiQ(x, xi) (4.3)

where Q is the radial basis function Q(x, xi) =
√

(x− xi)2 + c2, and c is the parameter that defines

the shape of the interpolation surface, N is the total number of datapoints. The parameter c causes the

interpolation to be flatter. The parameter c is kept 1 [72]. The coefficients αi are calculated by solving a set

of linear equations, representing N interpolation conditions which are:

fxj
=

N∑
i=1

αiQ(xj , xi) (4.4)

4.2 Machine learning Algorithm

We examined two regression models which are described in this section.

4.2.1 Feature engineering

The feature extraction method is based on the concept that nearer available data points are more correlated

with the data to be estimated. On this ground, for every removed data sample, we look for available data

samples in its k×k neighborhood and define this as the feature vector. Here k is varied for 3 and 5 to observe

the effect of an increasing number of input features to the model. Due to removing the data samples in
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Figure 4.1: Feature extraction process for grid deletion. Red area shows the 3 × 3 neighbourhood
where features are searched. White cells denote available ones and grey denotes deleted positions. For
cells such as cell no 10 (highlighted in green), the number of available features is 2 and for cells like
cell no 29 (highlighted in yellow) the number of available features is 4.

grids, for every other data sample, there are less than k × k data samples available in the grid which results

in an imbalanced feature set to be used as shown in Fig. 4.1. However, the regression algorithm takes a

fixed number of features. These problems are dealt with as follows: First, the maximum number of available

features in a k × k neighborhood is assigned as the feature number kw for the regression algorithm. Second,

if any deleted data sample has less than kw number of available samples in the neighborhood, then the rest

of the data samples are imputed using mean values of the available ones. Total number of features for k = 3

is 4 and k = 5 is 6.

To mitigate the effect of noise, a new set of features are introduced for which the available data is passed

through a Gaussian filter with σ standard deviation. Then the same number of features are extracted as

described above and are concatenated with the features extracted from the original data. The values for σ is

taken as 3 and 5, where greater values result in more blurriness in the filtered data.

4.2.2 Bayesian Ridge Regression

Figure 4.2: Illustration of L2 Regularization.
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We start our discussion by explaining Bayes’ theorem. Bayes’ theorem transforms a prior probability into

posterior probability depending on the evidence [11]. Prior refers to the state of the variable before observing

evidence. Posterior is the state of the variable after observing evidence. So the Bayes’ theorem can be stated

as follows:

posterior ∝ likelihood× prior (4.5)

We can adopt this concept to determine any model parameter w. Before observing the data, the initial

assumption about w is called the prior probability distribution P (w). The observation of D is expressed as

the likelihood function or the conditional probability P (D|w). The conditional probability distribution of w

is called the posterior probability, which is P (w|D) given D. According to Bayes’ theorem, the probability

of w after observing D is as follows:

P (w|D) =
P (D|w)P (w)

P (D)
(4.6)

According to frequentist view, the equation for linear regression stands for,

y = wTx + ε (4.7)

where y is the output to be estimated, x are the features, and ε is the error term. The model parameter

w is found in linear regression by minimizing the residual sum of square (RSS) between the known y values

and the estimated ones ŷ.

RSS(w) =
∑
i=1

(yi − ŷ)2 =
∑
i=1

(yi −wTxi)
2 (4.8)

where N is the total number of observation. By minimizing the above solution, the estimate for w

becomes:

ŵ = (xTx)−1xTy (4.9)

In this approach, we only obtain a single estimate for the parameter given the data. In Bayesian regression

method, the probability distribution of the parameters is formulated rather than a single point estimate.

Here, regression is done in probabilistic ways with explicit priors on the parameters [61]. In other words, the

probability distribution of the model parameter is estimated given the features.

The Bayesian regression model starts with same regression equation and assumes that the error ε is

independent and normally distributed with zero mean and σ2 variance. For estimating y out of feature x,

the output y is assumed to have a Gaussian distribution with a mean wx and variance σ2 with conditioned

on x,

p(y|x,w, σ2) = N (y|wx, σ2) (4.10)
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The likelihood of the complete data is as follows:

p(y|x,w, σ2) = (2πσ2)−N/2exp(− 1

2σ2
‖y − xw‖2) (4.11)

The feature set extracted from the neighborhood is collinear in nature. This can cause high variance in the

estimated parameters in a regression model. In order to reduce the variance of the parameters, a regularization

term is added to the loss function that helps in introducing variance to the parameter estimation. If the

added penalty term in a regression model is squared magnitude then it is called ridge regression [11]. The

RSS with squared error term becomes:

RSS(w) =
∑
i=1

(yi −wTxi)
2 + λ‖w‖22 (4.12)

here regularization strength is varied by a hyperparameter λ.

As in Fig. 4.2, the blue contours represent the gradient descent contour plot, where the center point

indicates the zone that has the lowest error. The main goal is to reach the center of the contour. But due

to adding the square terms to the RSS function, there is a constraint introduced under which the RSS is

minimized. The red circular area is the constraint for coefficients in this figure. Intuitively, the coefficients are

slightly shifted towards zero to stabilize the importance of the parameters. As a result, without over-fitting,

the model can perform a regression analysis. Overfitting refers to the situation when the model becomes

too complex by incorporating more parameters compared to the number of samples, which leads to error in

estimating unknown data samples. In Bayesian ridge regression, the prior for the parameters w is given by

a spherical Gaussian with zero mean:

p(w|λ) =

N∏
i=0

N (w|0, λ−1) (4.13)

here λ is a vector of N + 1 hyperparameters. Each parameter is associated with a hyperparameter. So

there is a hierarchical prior, where hyperpriors over λ is defined to be gamma distributions, whose parameters

are chosen such that they are non-informative (very small values) [92].

4.2.3 Fundamentals of Deep Neural Network

Multi layer perceptron: Neural network is built of small blocks called perceptrons, which takes input

values as numbers, multiply them with weights and add biases. The weighted sum is multiplied by an

activation function. The weights emphasize on particular nodes and bias values, and thus help in adjusting

the activation function for optimal result. The activation function helps in mapping the result in between 0

and 1. In Fig. 4.3, x1, x2,..., xn are the inputs. The parameter wi is the weight and b is the bias to be added

with each input which are usually learnable. Finally, applying activation function f to the total weighted

sum of the output y is obtained by,

y = f(
∑
i=1

wixi + b) (4.14)
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Figure 4.3: Illustration for (a) perceptron. (b) a single layer perceptron or shallow neural network.
There are n inputs depending on the features extracted as explained in Section 4.2.4 and there are m
neurons in the hidden layer. For this work m is 100.

The stacked perceptron is called multi layer perceptrons or artificial neural networks. An MLP (Multilayer

Perceptron) consists of one input layer, one or more middle layers referred to as hidden layers, and one final

layer of perceptrons, known as the output layer. Every layer besides the output layer consists of a bias neuron

and is fully linked to the subsequent layer. The multilayer neural network architecture is given in Fig. 4.3.

For each training sample, the inputs are fed to the network and the output of every neuron in each back to

back layer is calculated [52]. This step is called the forward pass, which is as same as predicting the output.

Then the error between the original output and the estimated output is calculated. Additionally, it calculates

the error contribution made by each neuron in the last layer. Then the same error calculation is repeated

for every layer by moving backward until the input layer is reached. This switch pass effectively measures

the error gradient over all neurons’ weights in the system by spreading the gradient in reverse in the system.

This backward pass, which minimizes the error, makes the algorithm named backpropagation algorithm. To

reduce the error, the algorithm adjusts the weights and biases. So, these are called the adjustable parameters.

In a typical deep learning system, there are thousands of weights and biases. Based on the gradient vector,

the weights are adjusted to get a minimum error. These weights need to be carefully initialized to get a

better result. Different hyperparameters greatly influence the training of a neural network model. Gradient

descent, epoch, batch size, activation function are some examples of hyperparameters.

Gradient descent: Gradient descent is an iterative algorithm to minimize the error and find the optimal

results. It detects the minimum point of the error curve. It can make the under-fitted graph to fit easily

with the data. The algorithm takes steps to reach the minimum of the curve in each iteration which is called
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learning rate. The learning rate can not be too small or too large. If learning rate is set to a very small value,

gradient descent can end up finding the local minima. Whereas, larger steps can speed up the convergence, it

can result in long time to reach convergence, as it may bounce back and forth in the convex region [30]. The

steps can be decreased with each iteration to converge slow. There are different kinds of gradient descent,

for example, stochastic gradient descent, RMSprop, adam optimizer, batch gradient descent.

Epoch and batch size: In the case of training a neural network model, a large dataset is used. The model

is trained several times. In each training, the whole dataset is passed forward, and then backpropagation

is done. This one set of forward and backward passes is called one epoch. The neural network is learned

in more than one epoch and in each epoch, the error is minimized using gradient descent. With increasing

epoch or the number of times of training, the accuracy increases. The number of epochs can be increased

until the accuracy of the validation dataset is decreased. As the whole data can not be feed into the network

in one epoch, the data is subdivided into small batches. In one epoch, the model is trained several times

using these batches. Iteration is the number of times required for one epoch to feed the whole dataset. The

required number of iterations is found by dividing data by the batch size.

Activation function: In a neural network, activation function decides whether a node will turn on or not

in a particular layer. This is also called a transfer function. An activation function maps input and response

vector through nonlinear complex functionality. If the activation function f is not included, then the neural

network is a linear regression model. With activation function, a complex network can be built based on the

pattern of the data. Some of the popular activation functions are rectified linear units(ReLU), Hyperbolic

tangent Function (Tanh), and sigmoid. Let x be the input to the activation function. A sigmoid function

can be written as f(x) = 1/(1 + exp(−x)). It ranges the output between 0 and 1. A hyperbolic tangent

function (Tanh) is f(x) = (1 − exp(−2x))/(1 + exp(−2x)). Rectified Linear Units (ReLU) can be defined

as f(x) = max(0, x). ReLU provides zero for all the negative inputs and x for the positive inputs. In spite

of being continuous, it is not differentiable at x = 0. However, in practice, it works very well and has the

advantage of being fast to be computed.

Vanishing gradient problem: Vanishing gradient is a problem encountered in gradient based learning of

deep neural networks, which makes it hard to train or tune the parameters in the first layers. During back

propagation, gradient or derivative is calculated on the output function moving layer by layer from the final

layer to the initial one and the gradients are added to the parameters of the layers. A small gradient means

less update in parameters and vice versa. If the derivative or gradient becomes zero for some reason, then

the weights do not get updated or the model does not learn anything and so accuracy drops. The gradient

can become zero for various reasons. For example, the derivative of the activation function being zero causes

vanishing gradient. In deeper neural networks, vanishing gradient occurs in the earlier layers.
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Figure 4.4: Illustration for (left) ReLu. (middle) Leaky ReLU. (right) Parametric ReLU.

Leaky ReLU and Parametric Relu: Leaky Rectified Linear Units(ReLU) is a modification of ReLU

which does not cancel out all the negative outputs of a layer but multiplies the negative values by a small

value. Parametric ReLU is same as Leaky ReLU but it learns that small value throughout the training.

f(x) =

x if x > 0,

ax if x <= 0

(4.15)

here x is the input to the function and a is the learnable parameter.

Batch Normalization: If the input features for any layer in a neural network lie in different range, then

the weights and biases of that layer change rapidly and thus the training becomes complex and delayed.

Therefore, batch normalization scales and adjusts the input features in the hidden layers so that the input

features can have a fixed mean and variance. It also reduces covariance shift, which is the change in the

distribution of the input features of the hidden layers [39]. Moreover, it solves the problem of vanishing

gradient as normalization shrinks the input range.

Residual connection: Residual connection connects a layer to its earlier ones. As seen in Fig. 4.5, the

residual connection connects the input x to the output of the layer f(x). This is also called skip connection.

This skip connection helps in avoiding the gradient being zero by passing it to the earlier layer as it is.

Autoenocder: Autoencoder is a type of convolution neural network with a hourglass structure. It has two

parts: an encoder and a decoder. The encoder learns a latent space feature representation from its input 2D

data which is transformed back to the original data by the decoder as shown in Fig. 4.5. The latent space

feature representation usually contains all the high level semantic features of the data.

Convolutional layer: A convolutional layer contains kernels or filters whose parameters are learned during

the training procedure. Each filter or kernel convolves with its input image and generates activation map or

output. As shown in Fig. 4.6, the kernel or filter slides over the input, and outputs the value of the activation
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Figure 4.5: Illustration for (a) residual connection. (b) a autoencoder.

Figure 4.6: Illustration for (a) convolution. (b) deconvolution layers.
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Figure 4.7: Receptive field of dilated convolution layer. (left) Standard convolution layer with 3× 3
kernel and 1 dilation rate. The receptive field is 3× 3. (middle) Dilated convolution layer with 3× 3
kernel and 2 dilation rate. The receptive field is 7× 7. (right) Standard convolution layer with 5× 5
kernel and 1 dilation rate. The receptive field is 7× 7.

.

map. The activation map is formed by repeating the same process for all the elements in the input. The

amount of zeros padded around the original input is called padding (P). Stride (S) is the amount by which

the kernel is shifted when sliding across the input. Convolutional layer usually reduces the dimension of the

output.

Dilated convolution: Contextual information acts as a high level semantic feature, which can promote

better understanding of the data [75]. One way to get a better context is using bigger kernels in the

convolution layers so that large area gets covered. But this results in more parameters to be trained. This

limitation is addressed by dilated convolution, which has the advantage of covering bigger area than a regular

convolution layer [106]. It is also trained without having any additional learnable parameters. The idea is

inspired by Holschneider et al. [36] and Shensa et al [82]. who incorporate holes for wavelet transformation.

The idea is to insert holes or zeroes between kernel of convolutional layers to enlarge receptive area, and

hence extracting better higher level features. This non-learnable parameter also adds to the computational

cost. Dilation rate is the number of pixel gap between kernels. As shown in Fig. 4.7, when dilation rate is 1,

it is basic convolution with kernel size 3×3. But if the dilation rate is 2, the receptive field increases. In order

to achieve the same receptive area, the kernel size has to be 5 × 5 in regular convolution layer, which will

require 25 parameters to learn. The common convolution layer has a linear correlation with receptive field

which is (2i− 1)× (2i− 1). A dilated convolution has an exponential correlation, e.g. (2i+2− 1)× (2i+2− 1),

while the number of parameters grow linearly [106].

Deconvolutional layer: Deconvolutional layer generates activation map that has higher dimension than

the input. It is used for upsampling. Deconvolutional layer works the same way as convolutional layer by

convolving the kernel with the input. It also has padding and strides. The deconvolutional layer inserts zeros
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between the rows and columns, as shown in Fig. 4.6.

Subpixel convolution layer: Subpixel convolution layer is used for upscaling that uses convolutional

approach along with a phase shift. Using phase shift, the layer shuffles the input of dimension H ×W ×C.r2

to have shape of rH × rW × rC, where r is a fixed integer.

4.2.4 Shallow Neural Network

For this work, a single layer artificial neural network is applied on different input features based on 3 and 5

kernels as explained in Section 4.2.1. The architecture is shown in Fig. 4.3. There are 100 nodes in the layer.

The model optimizes squared loss using stochastic gradient descent algorithm.

4.3 Generative Adversarial Network (GAN)

The problem of recovering deleted data can also be thought of as the problem of generating the data. Hence

we attempted to model the distribution of the deleted data through generative models. Here the model

is trained to learn the data distribution, and the hope is that the output generated based on the learned

data distribution will closely match the original data. Among the generative models, generative adversarial

network (GAN), proposed by Goodfellow [31], has had tremendous success over the other generative models

(Variational Autoencoders [49, 77], Naive Bayes Model [59]). Such an approach has been widely used for

image generation [40], music generation [105], drug design [46]. In the following, we first describe GAN

architecture and then review its training process.

4.3.1 Vanilla GAN

The vanilla GAN is built of two networks: a generator G and a discriminator D. The input to G is a random

variable having a prior distribution either Gaussian or uniform distribution. The task of the generator is

to learn the distribution of the true samples xt and generate fake samples xg which are very similar to

the true samples. Let the mapping function by generator be defined as xg = G(z, θg), where z is the input

random variable, and θg is the parameters of generator model. The discriminator D, being a binary classifier,

differentiates between the fake generated sample and true samples. So the input to D is either xt or xg and

the output is zero or one, indicating true and fake samples, respectively.

The optimization of this model follows the minimax algorithm [21], where the two models compete with

each other to become better at generating and discriminating. The aim of discriminator is to get better

at discriminating between the true samples and generated samples, whereas the generator tries to confuse

the discriminator by generating samples very similar to true samples. In other words, the loss function is

minimized by G but maximized by D similar to a two player minimax algorithm. The loss function is as

follows:
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min
G

max
D

L(G,D) = Ext∼P (xt)(log(Dxt) + Exg∼P (xg)log(1−D(G(z)))) (4.16)

where D(xt) is the probability estimate for real data xt by discriminator, Ext∼P (xt) is the expected value

over all the real data, G(z) is the generator’s output given random variable z, D(G(z)) is the discriminator’s

probability estimate for generator’s output being real, Exg∼P (xg) is the expected value over all random inputs

to the generator. The term min
G

refers to minimization of the function with respect to G. The generator

minimizes the log of the inverse probability predicted by discriminator for its generated data. This helps in

generating good samples that have low probability of being fake. The term max
D

refers to maximization of

the function with respect to D. The discriminator maximizes both the log probability of real images and the

log of the inverse probability for fake images.

The gradient is backpropagated to update the generator parameters θG such that the generator can

generate data that can fool discriminator. Minimizing the above function is equivalent to minimizing the

Jensen-Shanon (JS) divergence [31]. The final outcome of this training process is the samples xg, which

explicitly or implicitly have a probability distribution like true data distribution P (xt). On the contrary,

discriminator will show 50% probabilities of identifying true and generated data which means that generated

data will be indistinguishable from the true ones.

4.3.2 Super-resolution Generative Adversarial Network (SRGAN)

For reconstruction of the deleted data points, we make use of Super-resolution Generative Adversarial Network

(SRGAN) [53]. SRGAN upscales low-resolution images into high-resolution mages. A reduced data of mc ×
n
c ,

where c > 0, dimension is taken as input to the model and the model estimates the m×n shaped data. Here

c is the compression ratio. Given a matrix data, we first remove 75% of the data by grid deletion, and then

(from the remaining data samples) create a contour plot, i.e., every pixel of the contour plot image represents

a data sample. This is issued as the low resolution image input, as shown Fig. 4.8.

The SRGAN architecture consists of generator and discriminator models. The generator is trained to

learn the mapping between deleted data and entire original data, whereas the discriminator is trained to

differentiate between the data generated by generator network and entire original data. The architecture of

the network is shown Fig. 4.8. The architecture endorses the Residual Network (ResNet) [35]. In a regular

feed forward network, each layer feeds into the next layer. But ResNet introduces skip connection in the

network, which connects two layers, that are distant more than one layer from each other. This can mitigate

the problem of having vanishing gradient in very deep networks. It consists of one pre-residual layers, 16

residual blocks, and finally, one subpixel convolutional layers. The residual blocks are identical in structure

each having two convolutional layer followed by batch normalization layer and Parametric ReLU as activation

layer. The subpixel convolutional layer upsamples the data by c factor, which is the compression ratio. The

architecture of the discriminators has eight convolutional layers with batch normalization layers, and Leaky

ReLU as activation layer. Then there are two dense layers and a sigmoid activation function. More details
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Figure 4.8: SRGAN network architecture.

are provided in the Appendix (Table A.1 and Table A.3). SRGAN optimizes a specially designed perceptual

loss function [84], which is capable of maintaining finer details such as texture, content in the reconstructed

full data.

Generator loss is defined as follows:

LG = Lcontent + λLAdversarial (4.17)

here λ is a scaling factor set to 10−3 in this work based on prior research [53]. The content loss includes

not only the mean square error (MSE) loss at pixel level, but also the mean square error at feature level.

For the later part, feature maps are generated from the 19 layer pretrained VGG network [84]. VGG means

Visual Geometry group, which developed a convolutional neural network, which achieved very high accuracy

on ImageNet dataset. The idea of using VGG network is that the trained VGG network is capable of

understanding the features in the images. So by comparing the latent space feature representation for both

high and low resolution image, the model can learn the realistic formation of high resolution image. The

equations for pixel level loss Lmse and feature level loss LV GG are given below:

Lmse =
1

c2mn

cm∑
i=1

cn∑
j=1

(IFi,j −G(ICi,j))
2 (4.18)

LV GG=
1

mx,ynx,y

cmx,y∑
i=1

cnx,y∑
j=1

(φx,y(IFi,j)−φx,y(G(ICi,j)))
2 (4.19)

where ICi,j is the reduced data and IFi,j is the full data, m and n denote the width and height of the

reduced data, respectively. In the VGG network, before yth convolution and before xth max pooling layer,
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φx,y denotes the feature map obtained with dimension mx,y and nx,y. Finally, G denotes the reconstructed

data by the generator model.

The adversarial loss is as follows:

Ladversarial =

N∑
n=1

− log(D(G(IC)) (4.20)

here IC is reduced data, N is the number samples in each batch. D and G denotes the parameters of

their networks. The above equation is minimized by generator by generating full data that are very close

to original full data. Comparing this loss function with the one from vanilla GAN, it is seen that instead of

[1 − log(D(G(MC))], generator is aimed to minimize − log(D(G(MC)). This is to achieve better gradients

and more stable training [53]. In the beginning of the training, the generated data is usually not close to

the true one. A two step training for Super resolution GAN model is applied that ensures a converging loss.

Adam optimizer has been used in both of the steps. In the first step, the generator network is trained with

a MSE based loss only. The trained weights are taken as initialization for the SRGAN network and further

trained with both content and adversarial loss.

4.3.3 Temporal Inpainting

Image inpainting is a task of filling unknown pixels. While inpainting, traditional methods often fail to create

sharp edges or generate enough details, and end up delivering a blurry result. As a result, a two-step network

is proposed by Jiahui et al. [107], where the first network reconstructs the unknown pixels coarsely and

the second network refines the coarse result from the previous network as shown in Fig. 4.9. There are two

discriminators called global and local critics. Global critics looks at the global image and local critic looks

at only the missing locations and assigns how much accurately the model is generating the global and local

image pixels, respectively. As Jiahui et al. uses the work of Iizuka et al. [38], each of two networks (coarse

and fine) has architecture as almost same as that of Iizuka et al.’s. Moreover, this architecture implements

a contextual attention layer, which is capable of successfully borrowing similar and available texture or color

from the surrounding. Motivated by all these effective strategies, we leverage their network as a base for our

reconstruction model.

Jiahui et al.’s model consists of two networks: coarse and refinement network. The input to the coarse

network is input with mask as shown in Fig. 4.9. This network consists of a convolution layers, dilated

convolution layers, up sampling layers and finally more convolution layers. The output is a blurry construction

of pixels in the unknown pixel positions. This coarse result is taken as the input to the refinement network

which is passed through the two pipelines each having contextual layers and dilated convolutional layers

respectively. The coarse network provides a somewhat blurry structure in the unknown position which is

further refined. If instead of blurry reconstruction, the shape information is given, then through refinement

it will be possible to get cleaner shapes and reconstruction. This concept has paved the way to modify their

network in such a way that a better reconstruction can be achieved.
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Figure 4.9: Inpainting network by Jiahui et al. [107].

Our Modification: The original inpainting pipeline fails to reconstruct complex and detailed shape as it

depends on the reconstruction of the coarse result from the first network. If the information of the shape is

provided better in the coarse result, then the second network will be better at producing a polished recon-

struction. Since the geospatial datasets and satellite imagery often have some auxiliary data like temporal or

spectral, we attempted to fill in the deleted points of the input data by any available data of the same place

from any other timestamp (i.e., temporal data) or some data interpolation technique. Therefore, instead of

an image multiplied with mask as input, we feed the image inpainted by temporal data or interpolation as

input to the refinement network. This helps greatly in converging and also building a better reconstruction.

The architecture is shown in Fig. 4.10.

Overview of the architecture: The full architecture consists of one autoencoder network as same as the

‘refinement network’ as shown in Fig. 4.9. The input to the network is the reduced data filled with temporal

or interpolated data and mask. Mask is composed of zeros and ones, where zero denotes the deleted sample

points and one denotes the non deleted ones. There are two encoders connected in parallel. One encoder

is capable of extracting feature from the input image through dilated convolution layers. The second layer

brings features from the available pixels. The two latent space representation is concatenated and fed into

the decoder network. The result obtained from this network is the reconstructed image, which is scored

by global and local critics, and helps in training the network. The layers of the models are of four types:

convolution, dilated convolution, concatenation, and contextual attention.
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Figure 4.10: Recovery network architecture.

In the contextual attention module, 3× 3 patches are extracted from the whole image and are reshaped

as convolutional filters as shown in Fig. 4.11. They are convoluted with each unknown pixels for measuring

cosine similarity which is computed as follows:

sx,y,x′ ,y′ = 〈 kx,y
‖kx,y‖

,
ux′ ,y′

‖ux′ ,y′‖
〉 (4.21)

where sx,y,x′ ,y′ is the similarity metric between known pixel kx,y and unknown pixel ux′ ,y′ . The cosine

similarity for the highest corresponding pixel is directly copied from the surrounding. This helps in retaining

the color of the spatial image. Although the temporal data file of the same place may contain the shapes,

which are almost similar to the deleted file, there might still be visual differences between them, particularly

in color (e.g., satellite images in winter and summer). Contextual attention helps solve this issue by bringing

better color information. The similarity matrix is scaled using a softmax function along each channel:

softmax(p) =
exp(−pi)
N∑
i=1

exp(pi)

, for i = 1, ..., N and p = (p1, ..., pN ) (4.22)

where p is the input vector. The entire output of the function adds up to one so that they can be considered

as probabilities. The output of the softmax layer is scaled and weighed to obtain the patches with higher

attention score. The extracted patches with higher attention score are used for deconvolution. The contextual

layer details is given in Appendix (Table A.4). Intuitively, for an unknown pixel position, this module learns

where to bring the pixel information from among the known pixels.

Global and Local Critics: The GAN network is based on the concept of Wasserstein distance. So it

follows the concept of WGAN-GP [5]. Hence, the discriminators here are called critics as they no longer just

differentiate between true and generated image, rather provide a score or measure of how close the generated

data is to the true data. The global critic takes the whole generated data which has a shape of 256 × 256

as input and local critic takes only the reconstructed data as input which has a shape of 128× 128. WGAN

computes the Wasserstein distance W (Pt, Pg) between true samples Pt and generated samples Pg. Using the
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Figure 4.11: Illustration for contextual attention layer.

Kantorovich-Rubinstein duality, the loss function is as follows:

min
G

max
D∈D

L(G,D) = Ext∼P (xt)(log(Dx) + Exg∼P (xg)D(G(z))) (4.23)

where D is the set of 1-Lipschitz functions and Pg is the distribution of the generated data for xg = G(xt).

Minimizing this function with respect to generator results is equivalent to minimizing wasserstein distance

between Pt and Pg [32].

4.4 Summary

In this section, we have described the recovery methods. Interpolation methods, Bayesian ridge regression,

and a shallow neural network are chosen from traditional machine learning methods. Among them, the

shallow neural network worked better on the features extracted from the neighbourhood. Finally, two types

of GAN model are taken into consideration, which are SRGAN and GAN based inpainting. SRGAN takes

reduced data as input and generates full data. We observed that directly adopting traditional inpainting

method produces blurry output as it attempts to collect perceptual information from another pixels which

are not consecutive due to grid deletion. We have modified the traditional inpainting network, where the

input to inpainting network is the masked image initially filled with temporal data or data interpolation which

helps the model fill in the unknown positions with better color and shapes of objects. The performance of

these models are explained in Chapter 5.
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Chapter 5

Experimental setups & Results

In this chapter, we first describe the datasets used for the experiments. We then describe the dataset

source, acquisition process, and preprocessing. Afterward, we review the modes that we use for running the

results, the evaluation metrics. Finally, we discuss the experimental results.

5.1 Experimental Setups

5.1.1 Dataset Description

We performed experiments on a weather dataset [86] and a satellite dataset created from USGS satellite data

archive [1].

Weather Dataset: The Weather Research & Forecast (WRF) dataset ranges from the year 2008 till 2015

(8 years) [55]. Each data file consists of hourly data for a single day over 699 latitude and 639 longitude

points of western Canada. Each day is stored as a NetCDF file (approx. 1.3 GB) containing 10 million

(10,719,864) samples, each sample having around 36 weather parameters.

For our experiment, we have picked data of soil moisture and albedo parameters for January of the years

2013 to 2015. We have chosen the variables, soil moisture, and albedo, as they are often used in meteorological

research. Soil moisture is a variable that measures the water held in land surface [73]. Albedo measures the

amount of radiation reflected by the earth’s surface [71]. First, CSV files are extracted from the netCDF

files. For temporal inpainting, we make pairs of these data files. Each temporal pair is selected randomly

among the available files. The maximum temporal distance between the pairs is 3 years with no file repeated.

Later, patches are cropped out from them and the temporal order is maintained. We used a perceptual

color map [68] for generating the contour plots from the weather datasets. Since both SRGAN and image

inpainting based architectures consider perceptual loss function while reconstructing an image, the choice

for the color map is an important determining factor for the reconstruction performances. The workflow is

shown in Fig. 5.1.

Satellite Dataset: We used 10 images captured by Landsat Thematic Mapper satellite which are of

1720 × 2040 × 6 dimensions [1]. We also collected 10 more temporal images, of the same area, which has a
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Figure 5.1: Workflow for weather data extraction

Figure 5.2: Workflow for satellite data extraction.

temporal difference of a maximum of 3 years. For our experiment, we consider red, green, and blue channels

only. The temporal pairs have a registration error, which is corrected using ArcGIS Pro software. Then, we

cropped 256 × 256 tiles out of these big images. The timestamp difference of temporal images is not more

than 3 years. The steps are illustrated in Fig. 5.2.

5.1.2 Line of work

Machine Learning: The traditional machine learning algorithms are applied to the dataset obtained after

a grid deletion. So the first step is to apply grid deletion to input matrix data as shown in Fig. 5.3. Later,

features are extracted for each of the deleted samples. In order to validate the model training, the dataset

is split into train and test set using a commonly used 80-20 ratio. Then these features are fed into the

machine learning models, i.e., Bayesian ridge regression and shallow neural network. We have considered

Bayesian ridge regression as the baseline approach. The results are analyzed in two ways. First, the MSE,

MAE, R2score are calculated between the original matrix and the reconstructed matrix. Second, contour

plots and images are generated from weather and satellite matrix data, respectively. The generated images

from reconstructed matrix data are compared with that from original matrix data using MSE, SSIM, and

PSNR. The naming convention for this pipeline is modelName Kx σy. BR stands for Bayesian Regression,

SNN stands for shallow neural network, k stands for the number of kernels and σ is the standard deviation

of Gaussian filter, which was applied to the image for feature extraction.

SRGAN: The first step is to reduce the data dimension following the data deletion strategies namely,

checkerboard, grid, and variance based deletion which will result in 256 × 128, 128 × 128, and 128 × 128

shaped data, respectively. From the reduced data, contour plots for weather and color images for satellite
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data are created. Similar to the machine learning model, a train-test split is done on the image data sets.

The training set is fed to the generator model and then the model is trained with only MSE loss. After the

training of the generator model, the weights are used as initialization, and the whole GAN model is trained.

Finally, the test image data sets are used to test the model performance by using the same image evaluation

metrics. The output of this model is full resolution data which has a shape of 256. The pipeline is explained

in Fig. 5.3.

Inpainting: For the inpainting model, it is necessary to have a mask. The mask is of the same shape as

the whole data, containing zeros and ones where zero represents missing pixels and one represents available

pixels. Both input and output shape is always 256× 256. The training of the model is done in one stage. we

examined two approaches to generate a better intermediate coarse image in the image inpainting model. One

that fills the missing data points from temporal data, i.e., another image of the same location from a different

timestamp. We trained and tested this model with images filled in by temporal data and the notation for this

approach is Temp Inpainting. Since temporal data may not always be available, we also tested the models

with interpolated data, using a simple interpolation (Navier–Stokes interpolation [10]) and the notation for

this pipeline is Temp Inpainting-Interp. We trained another model with inputs interpolated in the unknown

positions. We tested this model with interpolated values in the unknown positions. The notation for this

approach is Interp Inpainting.

Variance based deletion: For Variance based deletion, all the reconstruction steps are the same. After

applying grid based deletion and then the variance based deletion, the unknown positions due to variance

based are filled using interpolation.

Technical details: We have trained our deep learning models1 with TensorFlow 1.14, CUDNN version

10.0, CUDA version 10.0 on a machine of Tesla V100 GPU. The SRGAN and inpainting network took 48

hours and 72 hours, respectively, for training.

5.1.3 Evaluation Metrics

For quantitative comparison of the reconstructed images, we consider the commonly used evaluation met-

rics such as Structural Similarity Index (SSIM), Signal to Noise Ratio (PSNR), and Mean Squared Error

(MSE) [37]. For MAE and MSE, lower values are expected, but for the coefficient of determination, a higher

value is expected. The reconstructed matrices were evaluated by MSE, Correlation of coefficient, and finally,

mean absolute error (MAE). For SSIM and PSNR, larger values are expected but, for MSE, a lower value is

expected. The definition of the evaluation metrics are given as follows:

1The codes are available at https://github.com/jat923/Data-Reduction-and-Deep-Learning-Based-Recovery-for-

Geospatial-Visualization-and-Satellite-Imagery.git
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Figure 5.3: Illustration of the steps for running experiments for (a) machine learning, (b) SRGAN,
and (c) Inpainting model.

Mean Squared Error (MSE): The most simple yet important measure is mean squared error. For

images, MSE is defined for a pixel to pixel squared error. Likewise, for matrix data, MSE is the squared

error between each original and reconstructed or predicted data point. The lower the value, the better is the

prediction. Zero means no error between original and reconstructed or predicted data point.

MSE =
1

WH

W∑
i=1

H∑
j=1

(yij − xij)2 (5.1)

Here, y is the original data and x is the recovered data.

Peak signal to noise ratio (PSNR): PSNR is denoted by,

PSNR = 10 · log10

v2

MSE
(5.2)

Here, v is the maximum value of the image pixels. A higher PSNR value indicates better picture quality.

For image analysis, MSE provides a measure of error or noise. By contrast, PSNR is a denoised form of

measure. However, both of the metrics fail in terms of assessing blurry results that lack details [53].

Structural similarity index (SSIM): SSIM quality measure is built as a combination of luminance,

contrast and structure comparison [114].

SSIM(x, y) = l(x, y)α, c(x, y)β , s(x, y)γ , (5.3)
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Table 5.1: Matrix reconstruction performance comparison for different strategies (green indicates a
better performance when comparing the models).

Soil moisture Albedo Satellite
Model

r2 MSE MAE r2 MSE MAE r2 MSE MAE

BRk3 0.6746 0.018 0.047 0.5635 0.0141 0.0548 0.8743 0.0007 0.0157

BRk5 0.6655 0.0185 0.0496 0.5754 0.014 0.0559 0.8423 0.0009 0.018

SNNk3 0.6728 0.0182 0.0459 0.594 0.0129 0.0499 0.8806 0.0007 0.0152

SNNk5 0.6746 0.018 0.0471 0.5901 0.0133 0.0533 0.8463 0.0009 0.0176

BR k3 σ3 0.6757 0.0179 0.0503 0.5976 0.0131 0.0531 0.8636 0.00084 0.01654

BR k3 σ5 0.6699 0.0183 0.0512 0.5925 0.0132 0.0535 0.8616 0.0008 0.01666

BR k5 σ3 0.6686 0.0183 0.0493 0.5893 0.0134 0.0528 0.8495 0.0009 0.01762

BR k5 σ5 0.6686 0.0183 0.0493 0.5893 0.0134 0.0528 0.8495 0.0009 0.01762

SNN k3 σ3 0.6832 0.0174 0.0489 0.5929 0.0133 0.0529 0.8804 0.0007 0.0152

SNN k3 σ5 0.6802 0.0176 0.0491 0.5929 0.0132 0.0521 0.8675 0.0007 0.01607

SNN k5 σ3 0.6794 0.0177 0.0457 0.6062 0.0126 0.0522 0.84091 0.0009 0.01818

SNN k5 σ5 0.6798 0.0177 0.0461 0.6031 0.0127 0.0515 0.8552 0.00088 0.017

Multiquadrics 0.7599 0.0131 0.0313 0.6888 0.0093 0.0334 0.8642 0.0012 0.0246

Shepard’s IDW 0.6681 0.0183 0.0429 0.6544 0.0131 0.0476 0.8838 0.0007 0.015

where

l(x, y) =
2µxmuy + C1

µx2µy2 + C1
(5.4)

c(x, y) =
2σxσy + C2

σx2sigmay
2 + C2

(5.5)

s(x, y) =
σxy + C3

σxsigmay + C3
(5.6)

Here, µx,µx,σx,σy and σxy are mean, standard deviation and covariance of two images. The parameters α,

β, and γ are greater than zero in value which assign importance to each of the components. The parameters

C1, C2, and C3 are constants. SSIM is capable in capturing local luminance and structure. SSIM ranges

from 0 to 1, where 1 means perfect match between original and predicted image.

Mean absolute Error(MAE): Mean absolute error is a regression loss which computes mean absolute

error between the original and predicted data. This is also l1 norm loss. Lower values are expected for MAE.

The equation for this metric is as follows:

MAE =
1

WH

W∑
i=1

H∑
j=1

|xij − yij | (5.7)
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Table 5.2: Image reconstruction performance comparison for different strategies (green indicates a
better performance when comparing the models).

Soil Moisture Albedo Satellite
Model

SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR MSE

BR k3 0.936 20.7321 0.0092 0.8834 22.6564 0.0165 0.9258 31.6418 0.0007

BR k5 0.9279 20.2007 0.0109 0.9095 22.9651 0.0057 0.9028 30.5271 0.0009

SNN k3 0.9013 17.0922 0.0307 0.9167 19.6284 0.0047 0.9287 31.9299 0.0007

SNN k5 0.9315 20.3008 0.0107 0.9152 22.6419 0.0049 0.907 30.7819 0.0009

BR k3 σ3 0.9357 22.2356 0.0067 0.9152 25.7043 0.0048 0.918 31.1368 0.0008

BR k3 σ5 0.9342 22.1387 0.0069 0.9143 25.6998 0.0048 0.918 31.13685 0.00086

BR k5 σ3 0.9352 22.1735 0.0068 0.9137 25.4581 0.0051 0.907 30.765 0.0009

BR k5 σ5 0.9352 22.1735 0.0068 0.9137 25.4581 0.0051 0.907 30.765 0.907

SNN k3 σ3 0.9401 22.2931 0.0068 0.8803 22.5949 0.0222 0.9289 31.8697 0.0007

SNN k3 σ5 0.9396 22.1966 0.0069 0.9081 24.6087 0.0086 0.9252 31.5693 0.00077

SNN k5 σ3 0.9385 22.0968 0.0079 0.9177 25.8642 0.0047 0.9051 30.64278 0.00096

SNN k5 σ5 0.9372 21.7887 0.0092 0.9194 26.0814 0.0042 0.91032 31.0012 0.0008

Multiquadrics 0.912 18.4844 0.0181 0.8894 22.8652 0.0149 0.8894 22.8652 0.0149

Shepard’s IDW 0.9373 22.6212 0.0061 0.9188 26.9014 0.0046 0.8783 28.3589 0.0014

SRGAN 0.8943 25.6858 0.0029 0.8242 24.324 0.00433 0.7952 20.1861 0.0208

Temp Inpainting 0.9948 41.5267 0.00007 0.977 34.5616 0.0004 0.981 39.5178 0.0001

Temp Inpainting-Interp 0.9949 41.7165 0.00007 0.9801 35.1465 0.0004 0.9909 41.9608 0.000008

Interp Inpainting 0.9931 40.0353 0.0001 0.9801 35.1465 0.0003 0.9919 42.1174 0.000079

Coefficient of determination: The coefficient of determination or R2 score denotes the variance. It is a

measure of correlation. The greater the value, the better the results. Best possible score is 1.0 [28].

R2(x, y) = 1−

W∑
i=1

H∑
j=1

(yij − x̄)2

W∑
i=1

H∑
j=1

(yij − x̂ij)2

(5.8)

where, x̂ is the predicted value, x̄ is the mean value of all x.

5.2 Results

We evaluate the data deletion and reconstruction strategies on 3 different datasets including soil moisture,

albedo, and Landsat satellite imagery.
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5.2.1 Reconstruction for Grid Deletion

Table 5.1 shows the matrix reconstruction results by traditional machine learning algorithms. On the other

hand, table 5.2 reports the evaluation metrics for the reconstructed visualizations by all the techniques we

explained in Section 4.

Matrix: For matrix data reconstruction (Table 5.1), a different pattern for weather and satellite datasets

is observed. For the weather dataset, multiquadrics interpolation seems to perform better in terms of all

the evaluation metric. However, among regression models, SNN k5 σ5 has lower error terms (both MSE and

MAE) and a higher R2 score. It is also observed that without additional features generated from the filtering,

the initial four rows mostly fall into the light red zone in case of weather data. But, for satellite data, all

the algorithms with features extracted from the 3× 3 neighborhood falls into the green zone. The probable

reason can be the presence of more diverse sizes and shapes in the satellite dataset than the weather dataset.

With increased neighborhood, the features become more complex to model. Therefore, the performance is

worsened for 5 × 5 neighborhood. Similarly, Shepard’s IDW falls into the green zone, which implies that

distance weighting has an impact on the satellite dataset.

For weather data, SNN k5 σ5 performs better than all other regression models in terms of all the

evaluation metrics. But, for satellite imagery, all the regression models with features extracted from

3× 3 neighborhood show high performance for all the evaluation metrics.

Image: Among the machine learning models, SNN k3 σ3 performs better than the others for almost all

datasets concerning all the evaluation metrics for image data as shown in Table 5.2. One exception is that

SRGAN shows better performance in terms of PSNR and MSE for soil moisture data. Inpainting models,

trained using both temporal and interpolated data shows better performance than all other methods. Even

after grid deletion, there are enough available pixels in the surrounding for interpolation to fill in the deleted

ones. there are slight differences in evaluation metrics among the inpainting models. The performance of

these models is better because the inpainting GAN model is capable of generating high level features from

input data and also recovering it. Moreover, the input being filled in, makes it easier for the model to

reconstruct high quality data. As SRGAN upscales the low dimensional input space to high dimensional, the

performance seems to be worse than inpainting networks.

Although these metrics are widely used for comparing image generation performances, they have some

limitations in describing a method’s visual quality [62, 107]. Therefore, the images need a further visual

comparison.

For both weather data and satellite imagery, Temp Inpainting-Interp outperforms all other algorithms

in terms of all the evaluation metrics and datasets.

45



Table 5.3: Performance comparison of deletion-reconstruction trade-offs (green indicates a better
performance when comparing deletion techniques).

Model SRGAN Image Inpainting

Deletion

strategy

Deletion

rate
Dataset

Mean
90th

Percentile

SSIM PSNR MSE SSIM PSNR MSE

Checkerboard 50% 50% 0.9241 27.4201 0.002 0.9977 45.143 0.00003

Grid 75% 75% 0.8943 25.6858 0.0029 0.9949 41.7165 0.00007Soil moisture

Variance based 76% 77% 0.8677 24.194 0.004 0.9948 41.5267 0.00006

Checkerboard 50% 50% 0.8586 26.2088 0.0027 0.9909 39.1696 0.0001

Grid 75% 75% 0.8242 24.324 0.00433 0.9801 35.1465 0.0004Albedo

Variance based 77% 80% 0.8743 25.9852 0.003 0.9801 35.1465 0.0003

Checkerboard 50% 50% 0.8262 21.0037 0.0157 0.9912 42.43858 0.00007

Grid 75% 75% 0.7952 20.1861 0.0208 0.9909 41.9608 0.000008Satellite

Variance based 76% 77% 0.8956 27.6901 0.0023 0.9298 32.7498 0.0005

5.2.2 Visual Comparison

We compare the visual quality of the generated images for different methods. Fig. 5.5 and 5.6 illustrate some

example outputs generated by various methods for the weather and satellite data.

From Table 5.2, we can see that multiquadric and Shepard’s interpolation performed quite well compared

to other methods. But their visual quality is not pleasing (e.g., see Fig. 5.4). For instance, comparing with the

original image, we can see color mismatch in the results of multiquadric interpolation for the weather dataset.

Both regression and Shepard’s interpolation shows blurry reconstruction for all the datasets. However,

Shepard’s interpolation has better recovery than SSN k5 σ5 for the weather dataset.

We have used interpolation to fill in the unknown positions. Fig. 5.7 shows the failure of interpolation

methods and the significant improvement obtained by our model Temp Inpainting-Interp can do. As shown

in this Fig. 5.7, the interpolated result generates a blurry image. This blurry image is upgraded by the

inpainting model which is visually quite close to the original image.

The images generated by SNN and SRGAN are quite blurry compared to the original images. The

images generated by the inpainting network show sharp edge boundaries (less blurriness) and better

visual quality than that of SRGAN.
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(a) Original image (b) SNN k3 σ3 (c) Multiquadrics
interpolation

(d) Shepards’
interpolation

(e) Original Image (f) SNN k5 σ5 (g) Multiquadric
interpolation

(h) Shepards’
interpolation

Figure 5.4: Reconstruction results for matrix data after grid deletion. One can find the reconstruction
problems by examining the annotated rectangles.
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(a) Original Image (b) Baseline
(SNN k3 σ3)

(c) SRGAN (d) Inpainting

Figure 5.5: Reconstruction results for weather dataset after grid deletion. The smaller square region
is zoomed in and shown inside the larger square.
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(a) Original Image (b) Baseline
(SNN k3 σ3)

(c) SRGAN (d) Inpainting

Figure 5.6: Reconstruction results for satellite imagery after grid deletion. The smaller square region
is zoomed in and shown inside the larger square.
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Figure 5.7: (left) Original image. (middle) Interpolated image (75%). (right) Reconstructed image.

5.2.3 Deletion-reconstruction trade-offs

Table 5.3 reports recovery performance for all the deletion methods. Following a checkerboard deletion,

if the deletion rate is decreased (50%), the performance metrics do not improve significantly. We further

investigate the additional deletion rate (higher than 75%) achieved through variance based deletion. The

additional deletion rate varies based on the variance of the data. Both for soil moisture and satellite imagery,

the variance based method increases deletion rate to 76% on an average. In some cases the deletion rate can

reach over 77% (e.g., see Table 5.3). Since patterns and shapes that appear in satellite imagery are diverse,

the overall deletion rate is lower than that of the weather dataset. The reconstruction accuracy is presumed

to be lower in variance based deletion.

As shown in Table 5.2, the interpolation based approach outperformed the temporal data based recovery.

This is because we only used small thresholds (i.e., R and Q equal to 20 and 10 percentiles, respectively) in

our variance based deletion, which helps to keep the size of the deleted regions small. However, with larger

thresholds when large regions containing prominent shapes get deleted, the interpolation cannot recover the

shapes and the temporal data based model (or a model similar to [112]) performs better. However, the

temporal model based approach requires retaining additional temporal data, yielding a low data reduction

rate. Since we aimed for a high construction accuracy and large deletion rate, we suggest to use low thresholds

for the variance base deletion, and thus the interpolation based technique appears to be a better choice for

our problem domain. Fig. 5.8 shows the reconstruction result for variance based deletion using inpainting

method. The recovered pixels on the grid are visually close to the original ones. The variance based deleted

areas are also reconstructed well for the above mentioned reasons. As shown in Fig. 5.9, visual quality for

reconstruction of grid deletion and checkerboard deletion is almost same.

The checkerboard deletion (50% deletion) improves the reconstruction accuracy only slightly when

compared with the reconstruction performance over a grid deletion (75% deletion). For an additional

deletion rate of 1% for soil moisture data, the reconstruction performance for image inpainting does
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(a) Original image. (b) Variance based masked image. (c) Reconstructed image using in-
painting.

Figure 5.8: Reconstruction results using inpainting model after variance based deletion.
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Table 5.4: Performance comparison of lossy compression and grid deletion (green indicates a better
performance).

Model Image Inpainting
Dataset

mean 90th Percentile SSIM PSNR MSE

75% 75% 0.9949 41.7165 0.00007
Soil Moisture

75% compression by JPEG 0.8549 24.6065 0.0037

75% 75% 0.9801 35.1465 0.0004
Albedo

75% compression by JPEG 0.8685 28.2629 0.002

75% 75% 0.9909 41.9608 0.000008
satellite

75% compression by JPEG 0.8658 27.7016 0.0024

not seem to decrease noticeably. For satellite imagery, the decrease in SSIM and PSNR remains within

0.07 and 9.16, which indicates a high variance in the satellite imagery.

5.2.4 Lossy Compression

Since we are examining image based deletion and reconstruction, another viable option is to examine lossy

image compression. We examined a lossy image compression [98], where the data files are stored in jpeg

format with a size reduction of 70%. For reconstructing, we adopt our inpainting network. The observed

SSIM, PSNR, MSE are as follows: 0.8549, 24.6065, 0.0037 in case of the compressed soil moisture data,.

This is a significant decrease in reconstruction performance in comparison with our inpainting method

(while reconstructing from 75% deletion): 0.9948, 0.4152, and 0.00007. This is because lossy compression

approximates all the data points. On the other hand, with our data deletion strategies, about 25% of the

original data samples are always preserved. The visual quality is also poor due to this reason as shown in

Fig. 5.9(top right). Hence, our deletion approaches seem to have more advantages over lossy compression

when retaining some original data is preferred. A similar pattern is shown for other datasets in Table 5.4.

The lossy compression based inpainting performs poorly compared to the interpolation based inpaint-

ing.

5.2.5 Other reduction methods

In the original SRGAN work, the images are filtered with a Gaussian filter and downsampled by a factor of

4 [53]. They followed a traditional bicubic downsampling approach, which generates a downsampled image

using cubic spline or polynomial technique [47]. Here, this approach modifies all the pixels of reduced image.

Such traditional downsampling methods change the pixel value and provide only a modified sample instead of
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Figure 5.9: (top left) Original image. Reconstruction using inpainting from (top right) lossy com-
pression, (bottom left) checkerboard deletion (75%), and (bottom right) grid deletion.

a true sample of the data. Similarly, the downsampled and lower level representation at the encoder output

of the autoencoder architecture, are not suitable for data reduction. In the low dimensional representation,

encoder does not keep any true data values [90].

5.3 Summary

In this chapter, we explained the experimental setup, datasets, evaluation metrics, and discussed the findings

from the experiments. Among the deletion methods, grid deletion seems to be safe for visualization as it

seems to have a considerable amount of reconstruction accuracy. It was seen that by decreasing the deletion

rate to 50%, one can improve the accuracy only slightly. The variance based deletion has the advantage of

having more than 75% deletion with visual and quantitative loss of information. Therefore, we suggest that,

if the focus is to reconstruct matrix data with both good visual and quantitative quality, then SNN k5 σ5
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should be chosen for weather dataset and SNN k3 σ3 for satellite imagery. On the other hand, for high

quality image reconstruction, if temporal data is available, then Temp Inpainting model should be used, as it

guarantees to recover complex shape and proper color. The unavailability of temporal data can be handled

with either Temp Inpainting-Interp or Interp Inpainting, as both shows comparable performance.
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Chapter 6

Conclusion

6.1 Summary

In this work, we introduce a novel data reduction and recovery workflow that may improve the conventional

compression approaches. Our deletion strategies show, for visualization purposes, one can aggressively reduce

the geospatial plots and satellite imagery using uniform deletion (75% data points) and achieve a high

reconstruction rate from the remaining 25% data points. We proposed a novel variance based technique that

allows to further improve the deletion rate without compromising much with the reconstruction accuracy.

For all the deletion strategies, we examine a diverse set of machine learning techniques and adopt two deep

learning models (SRGAN and image inpainting) for high-quality reconstruction. Our experimental results

on different real-life datasets reveal that a reconstruction accuracy as high as 98.75% for geospatial data and

99.09% for satellite imagery can be achieved through an image inpainting method. We believe our approach

will inspire further deep learning based research on data deletion and reconstruction for solving the problem

of storage and transfer issues in big data management.

6.2 Contributions

Our main contributions are as follows:

1. A simple and easy-to-implement grid based data deletion strategy has been proposed. This deletion

scheme provides an assurance of 75% data deletion. In addition to the 75% deletion rate, a novel

reduction method based on variance is proposed, which guarantees additional 1% to 2% deletion rate.

This further reduction does not compromise with the visual quality as well as maintaining accuracy

comparable to that of 75% deletion with a decrease not more than 1% for spatial meteorological data

and 7% for satellite imagery.

2. We have adopted GAN models for the recovery of the deleted data. There are two types of reconstruction

models implemented. The first one is SRGAN that reconstructs the data from lower dimensional shape.

The second one is the inpainting based recovery model. The maximum accuracy (SSIM) achieved was

above 99% for the weather dataset and 98.1% for the satellite dataset by inpainting method which is a

modification the work by Jihui et al [107].
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Table 6.1: Performance comparison for places dataset

Model Name SSIM PSNR MSE

SRGAN 0.9013 26.8061 0.0027

Image Inpainting 0.99 42.8321 0.00004

3. We also examined deletion-reconstruction trade off. Lowering the deletion rate from 75% does not

have a significant impact on the evaluation metrics, which makes the grid deletion an optimal choice

of deletion strategy. The variance based deletion increases the deletion rate more than 75% without

losing important detail. The inpainting model is also able to reconstruct the deleted data by variance

based deletion method with high accuracy 98.5% (average) for weather data and 92.98% for satellite

imagery.

6.3 Limitation

In this section, we discuss some of the limitations of this work.

6.3.1 Data limitation

We run our experiments only on a meteorological dataset and satellite imagery. The analysis for other

datasets could provide us more insights into generalizability.

Our work focuses on image data retrieval and leveraged the deep learning architectures used for image

super resolution and image inpainting. However, they could not be applied directly to raw matrix data.

All the inputs of these networks are of three channels and the way of processing an image is different from

processing a matrix, especially for the weather dataset. Inpainting networks that work directly on the matrix

can be an interesting avenue to explore.

We have chosen the Places365 dataset to make sure that our grid deletion pipeline works for the benchmark

image dataset as well [113]. Table 6.1 shows the performance comparison for the places dataset. As we can

see, the inpainting network trained with interpolated inputs seems to outperform SRGAN network. The

visual comparison is shown in Fig. 6.1. We can also see that reconstruction by the inpainting model is better

than SRGAN. This observation is consistent with all other findings.

6.3.2 Color map problem

As mentioned in Section 5.1.1, we have used a perceptual color map for generating the contour plots. When

we used a red, green, and blue color map, the result for SRGAN worsened. This indicates the impact of the

color map on the reconstruction. Moreover, different color maps may suit different weather variables. This

observation requires further in depth analysis.
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(a) Original Image (b) SRGAN (c) Inpainting

Figure 6.1: Reconstruction results for places dataset after grid deletion.
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(a) Original Image (b) Low dimensional
image after grid
deletion(75%)

(c) Variance based
deletion (2.5%) on low
dimensional image

(d) Overall deletion
(77.51% )

(e) Original Image (f) Variance based
deletion (15.50%)

(g) Overall deletion
after adding
grid deletion (78.88% )

Figure 6.2: (first row) Illustration of steps for grid deletion and then variance based deletion. (second
row) Illustration of steps for variance based deletion and then grid deletion for low variance data.

6.3.3 Grid+variance vs variance+grid deletion

In our variance based deletion, we first deleted the data samples in a grid then applied the variance based

deletion on it. We also alter the sequence by applying variance based deletion first and then grid deletion.

Fig. 6.2 and 6.3 shows the comparison of altering the sequence. As we can see, applying variance based

deletion first provides 15.50% deletion which is bigger than applying the variance based deletion later. It

would be interesting to investigate whether this observation can be leveraged to obtain a better deletion-

reconstruction trade off.

6.3.4 Evaluation metrics

We adopted widely used evaluation metrics, e.g. PSNR, SSIM, MSE, MAE. These metrics are capable of

showing a quantitative comparison. However, image reconstruction requires a better perceptual comparison

by a human. A probable metric can be Mean opinion score (MOS) [53, 87]. Opinion score is defined by the

value, assigned to a performance of a system, according to a predefined scale by a subject from his point of

view. The mean opinion score is the average of all these values.
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(a) Original Image (b) Low dimensional
image after grid
deletion(75%)

(c) Variance based
deletion (0.13%) on low
dimensional image

(d) Overall deletion
(75.13% )

(e) Original Image (f) Variance based
deletion (64.39%)

(g) Overall deletion
adding grid
deletion (75.16% )

Figure 6.3: (first row) Illustration of steps for grid deletion and then variance based deletion. (second
row) Illustration of steps for variance based deletion and then grid deletion for high variance data.

6.4 Future Work

In this research, we proposed data deletion approaches, which allow the user to store the reduced version of

the data with low storage space and transfer it to a local machine with low bandwidth. We also presented

trained models that can recover image data with high accuracy that can be used for visual analysis. As

mentioned in Section 6.3, there are a few limitations that point to the following future works. The following

are some directions for future research.

1. The deep learning models are performing well on the image form of data. Can a recovery model be

built that can leverage both matrix and image data (Fig.6.4)?

2. The current loss for SRGAN is based on JS-divergence, which makes it difficult to optimize. Can we

improve SRGAN performance by implementing a WGAN-GP loss?

3. A temporal based data deletion strategy can be implemented. For this, a sequential model can be

developed that understands the pattern between temporal interval and thus will be able to select

indices to be deleted. This may eliminate the necessity of temporal dependency.

4. The mask generated by variance based deletion is random. Can partial convolutions be implemented in
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(a)

(b)

Figure 6.4: Illustration of (a) A recovery model that can leverage both matrix and image data, (b)
Auto selected mask.

the network to deal with the randomness and eliminate the necessity of interpolation as a preprocessing

step and also achieve high accuracy?

5. Can a mask, indicating the samples to be deleted, be designed using deep learning architecture like an

auto selection of mask (Fig. 6.4)?

6. An autoencoder based model can be used for both deletion and reconstruction. In traditional autoen-

coders, the encoded data is a representation and completely differs from the original data samples.

Along with the error term between the input of encoder and output of the decoder, a new loss function

can be incorporated based on the error term between the lower dimensional representation and lower

dimensional data obtained by the deletion method. Consequently, the lower dimensional representation

may have less loss of information.

7. The deletion is done on red, green, and blue channels of satellite data. It may be possible to examine

other spectral channels. Currently, the reconstruction model is not able to work on any other channel

than the above mentioned ones. So designing a reconstruction model that can work regardless of the

specified channel would be interesting.
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Appendix A

Details of the model architectures explained in Sec-

tion 4

Table A.1: Details about generator architecture for SRGAN for Fig. 4.8.

Layer Name Layer Type Arguments

Pre-residual block
Input Layer Input Shape: 128, 128, 3
Conv 1 Conv A: Parametric ReLU, P: same, K: 9, O: 64

16 Residual Blocks

Conv Res 1 Conv A: Parametric ReLU, P: same, K: 9, O: 64
Batch Norm 1 BatchNorm Momentum=0.8
Conv Res 2 Conv A: None, P: same, K: 3, O: 64
Batch Norm 2 BatchNorm Momentum=0.8
Res Connection 1 Add() Input to Conv Res 1 and output of Batch Norm 2

Post-residual block

Conv 2 Conv A: Parametric ReLU, P: same, K: 3, O: 64
Res Connection 2 Add() Input to Residual Block and output of Conv 2
UpSampling2D 1 Up Sampling Factor: 2
Conv 3 Conv A: Parametric ReLU, P: same, K: 3, O: 256

Output layer Conv 4 Conv A: tanh, P: same, K: 9 O: 3

Table A.2: Details about recovery network architecture for inpainting network without contextual
layer for Fig. 4.10.

Layer Name Layer Type Arguments
Input Convolution Shape: 256, 256, 3
Conv 1 Convolution K: 5, S: 1, O: 32
Conv 2 Convolution K: 3, S: 2, O: 64
Conv 3 Convolution K: 3, S: 1, O: 64
Conv 4 Convolution K: 3, S: 2, O: 128
Conv 5 Convolution K: 3, S: 1, O: 128
Conv 6 Convolution K: 3, S: 1, O: 128
Dilated conv 1 Dilated Convolution K: 3, D: 2, S: 1, O: 128
Dilated conv 1 Dilated Convolution K: 3, D: 4, S: 1, O: 128
Dilated conv 1 Dilated Convolution K: 3, D: 8, S: 1, O: 128
Dilated conv 1 Dilated Convolution K: 3, D: 16, S: 1, O: 128
Conv 7 Convolution K: 3, S: 1, O: 128
Conv 8 Convolution K: 3, S: 1, O: 128
Conv 9 Convolution K: 3, S: 1, O: 64
Conv 10 Convolution K: 3, S: 1, O: 64
Conv 11 Convolution K: 3, S: 1, O: 32
Conv 12 Convolution K: 3, S: 1, O: 16
Output Convolution K: 3, S: 1, O: 3
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Table A.3: Details about discriminator architecture for SRGAN for Fig. 4.8.

Layer Name Layer Type Arguments
Input Input Shape: 256, 256, 3
Conv 1 Conv P: same, k: 3, O: 64, S: 1
Activation layer 1 Activation Leaky ReLU, alpha=0.2
Conv 2 Conv P: same, k: 3, O: 64, S: 2
Activation layer 2 Activation Leaky ReLU, alpha=0.2
Batch Norm 1 BatchNorm Momentum=0.8
Conv 3 Conv P: same, k: 3, O: 128, S: 1
Activation layer 3 Activation Leaky ReLU, alpha=0.2
Batch Norm 2 BatchNorm Momentum=0.8
Conv 4 Conv P: same, k: 3, O: 128, S: 2
Activation layer 4 Activation Leaky ReLU, alpha=0.2
Batch Norm 3 BatchNorm Momentum=0.8
Conv 5 Conv P: same, k: 3, O: 256, S: 1
Activation layer 5 Activation Leaky ReLU, alpha=0.2
Batch Norm 4 BatchNorm Momentum=0.8
Conv 6 Conv P: same, k: 3, O: 256, S: 2
Activation layer 6 Activation Leaky ReLU, alpha=0.2
Batch Norm 5 BatchNorm Momentum=0.8
Conv 7 Conv P: same, k: 3, O: 512, S: 1
Activation layer 7 Activation Leaky ReLU, alpha=0.2
Batch Norm 6 BatchNorm Momentum=0.8
Conv 8 Conv P: same, k: 3, O: 512, S: 2
Activation layer 8 Activation Leaky ReLU, alpha=0.2
Batch Norm 7 BatchNorm Momentum=0.8
Dense 2 Dense Neuron: 1024
Activation layer 9 Activation Leaky ReLU, alpha=0.2
Dense 3 Dense Neuron: 1, Activation: Sigmoid
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Table A.4: Layer description of contextual attention pipeline for Fig. 4.10.

Layer Name Layer Type Arguments
Input Convolution Shape: 256, 256, 3
Context conv 1 Convolution K: 5, S: 1, O: 32
Context conv 2 Convolution K: 3, S: 2, O: 64
Context conv 3 Convolution K: 3, S: 1, O: 64
Context conv 4 Convolution K: 3, S: 2, O: 128
Context conv 5 Convolution K: 3, S: 1, O: 128
Context conv 6 Convolution K: 3, S: 1, O: 128
Contextual layer Conv, Conv, Softmax, Deconv K: 3, D: 2, S: 1, O: 128
Context conv 7 Convolution K: 3, S: 1, O: 128
Context conv 8 Convolution K: 3, S: 1, O: 128
Concat Concat Context conv 8 and Conv 6 of main autoencoder network

Table A.5: Details about local critic architecture for inpainting network for Fig. 4.10.

Layer Name Layer Type Arguments
Input Convolution Shape: 256, 256, 3
Conv 1 Convolution K: 5, S: 2, O: 64
Conv 2 Convolution K: 5, S: 2, O: 128
Conv 3 Convolution K: 5, S: 2, O: 256
Conv 4 Convolution K: 3, S: 2, O: 512
Output Fully connected 1

Table A.6: Details about global critic architecture for inpainting network for Fig. 4.10.

Layer Name Layer Type Arguments
Input Convolution Shape: 256, 256, 3
Conv 1 Convolution K: 5, S: 2, O: 64
Conv 2 Convolution K: 5, S: 2, O: 128
Conv 3 Convolution K: 5, S: 2, O: 256
Conv 4 Convolution K: 3, S: 2, O: 256
Output Fully connected 1
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Appendix B

Implementation details of Table. 3.1

We generated one dimensional normal distribution with the python code numpy.default rng().normal(loc,
scale, size). Here, loc is the mean of the distribution, scale is the standard deviation and size is the output
shape of the data. The code generates the data samples with given mean and standard deviations. We
had generated one dimensional normal distribution with two sets of mean and standard deviations: one is
mean, standard deviation = 4.45, 7 and the other one is mean, standard deviation = 4.45, 2.93. Size of the
generated data was kept one dimensional with the value 100. We scaled the values between zero and one.
The mean and standard deviation were kept close to that of the datasets that we used in our experiments.
We applied our variance based deletion approach with a range of possible values of k, R, and Q. For one
dimensional data, neighbourhood area k is defined by the k number of data samples on both sides of a
particular data sample.
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