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ABSTRACT 

 

 After oil spills occur, regulators require adequate information to select best practices to minimize 

impacts on environments and to remediate target freshwater ecosystems. Zooplankton are valuable 

indicators of structure and function of aquatic ecosystems since they play pivotal roles in biochemical 

cycles while stabilizing food webs. Traditional identification of zooplankton can be costly and time-

consuming, while also being difficult to standardize. Compared with classification of individuals by 

identification, based on visual inspection of morphology, metabarcoding of DNA and or RNA has 

promise for cost-effective high-throughput and benchmarkable biomonitoring of zooplankton 

communities. These identification methods were applied in the context of assessing responses of the 

zooplankton community exposed to simulated spills of diluted bitumen (dilbit), with concurrent 

exposure of experimental remediation practices of enhanced monitored natural recovery and shoreline 

cleaner application. The objective of this study was also to apply DNA and RNA metabarcoding of 

zooplankton for ecotoxicological assessment and compare it with traditional morphological 

identification in experimental shoreline enclosures in a boreal lake. Metabarcoding detected 77.4% of 

the morphologically identified boreal zooplankton taxa down to the genus level, with a total of 24 

shared genera. Metabarcoding-based relative abundance of shared genus also served as an acceptable 

proxy for biomass inferred by morphological identification at the genera-level. Overall, both DNA 

and RNA metabarcoding determined significant differences between genera richness between the no 

treatment enclosure and shoreline cleaner application, while morphological identification determined 

no difference. DNA metabarcoding determined overall differences in community composition 

between no treatment and treatments, shoreline cleaner application and enhanced monitored natural 

recovery, while RNA metabarcoding and morphological identification determined differences 

between one or the other. Shoreline cleaner application overall seemed to have the greatest effect on 

zooplankton communities relative to enhanced monitored natural recovery, regardless of zooplankton 

identification method. Both metabarcoding and morphological identification were able to discern the 

differences between the two experimental remediation practices. Metabarcoding of zooplankton can 
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provide informative results for ecotoxicological assessment of remediation practices of dilbit, 

advancing our knowledge of best practices for remediating oil-impacted aquatic ecosystems while 

serving to accelerate the assessment of at-risk freshwater ecosystems.  
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BACKGROUND AND REVIEW OF PERTINENT LITERATURE  
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1.1 Biodiversity 

Biodiversity is substantial for the wellbeing of humans, as it provides invaluable 

functioning to ecosystems and various goods and services to society (Cardinale et al., 2012; 

Díaz et al., 2006). Biodiversity, or biological diversity, is the complex interactions and sum of 

all biotic variations of life on all scales, including genotypes, species, populations, and 

ecosystems (Díaz et al., 2006; Gaston, 2000; Purvis and Hector, 2000).  Global biodiversity 

has been declining in recent decades due to human influence, which along with other marked 

changes in the ecosphere, including biogeochemistry, indicates entrance into a new geological 

epoch termed by some the Anthropocene (Crutzen, 2006; Dirzo et al., 2014; Sax and Gaines, 

2003).  These changes in biodiversity can be attributed, in part, to the continuing destruction 

of habitat, introductions of exotic/invasive species, anthropogenic pollution, and changes in 

climate (Sala et al., 2000; Sax and Gaines, 2003).  Changes in biodiversity and the drivers of 

change are measured by using unique indicators, including the state of biodiversity, pressures 

on biodiversity, and responses of biodiversity (Birk et al., 2012; Butchart et al., 2010; Friberg 

et al., 2011; Zhou et al., 2008).  Since decreases in biodiversity pose risks to functions of and 

services provided by ecosystems, inventorying biodiversity, and estimating rates of change 

are critical for the assessment of ecosystem health and integrity (Bourlat et al., 2013; 

Cardinale et al., 2012; Hooper et al., 2005; Lefcheck et al., 2015).  

 

1.1.1 Ecosystem Function and Services 

Research into the link between biodiversity and ecosystem function is important, to 

better understand how biodiversity impacts ecosystems surged during the 1990s (Cardinale et 

al., 2012; Paquette and Messier, 2011; Schulze and Mooney, 2012). Ecosystem functions 

refer to natural processes of ecosystems, which can include amounts of energy and material 

stocks, flows of energy and materials and variations in those stocks over time (Hébert et al., 

2017). Niche complementarity, the ability of species to co-exist due to different forms of 

resources, has been shown to enhance ecosystem function (Cardinale, 2011; Maherali and 

Klironomos, 2007; Paquette and Messier, 2011). This property is due to how species’ 
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individual functional characteristics can greatly influence ecosystem properties by shaping 

flows of energy and materials (Chapin et al., 1998; Hooper et al., 2005). Cycling of nutrients 

is critical for the viability of ecosystems (DeAngelis et al., 1989; Vanni, 2002).  

A recent study investigated how phytoplankton species richness and class richness 

determined biotransformation of a mixture of 37 structurally diverse pollutants, with a 

positive effect of species richness and class richness on the number of transformed products 

observed (Stravs et al., 2019). This indicates that a more diverse species composition can lead 

to greater biotransformation of toxic pollutants. An increase in richness of algal species can 

also increase efficiencies with which algae can assimilate inorganic resources into standing 

biomass (Cardinale et al., 2011). Past studies have also shown that species diversity dictates 

the resistance of ecosystems to environmental change, including pollution from activities of 

humans (Chapin et al., 1998; Jung et al., 2016; Walker et al., 1999). Species-rich communities 

are also better able to perform multiple ecosystem functions (Lefcheck et al., 2015). 

Species also provide other services, including the case of ecosystem engineers, which 

are defined as organisms directly or indirectly influencing availabilities of resources to other 

species by modifying current or creating new habitats (Jones et al., 1994, 1997; Wright et al., 

2002). Examples of this include freshwater phytoplankton intercepting light leading to 

shallower mixing depths or bioturbation by freshwater protozoa to change properties, such as 

oxygenation, of lake sediment (Jones et al., 1994). 

 

1.1.2 Assessment of Biodiversity 

Spatial analyses of biodiversity typically include measurement of the number of 

species observed or estimated to occur in an area, which is termed species richness (Gaston, 

2000; Gotelli and Colwell, 2001). Species richness is a fundamental measurement of spatial 

patterns, of community and regional diversity of the number of species in an area (Gotelli and 

Colwell, 2001; Whittaker et al., 2001). Species richness is an instinctive and natural index of 

structures of communities that can also provide baselines for restorations of impacted sites 

(Gotelli and Colwell, 2011). The richness of species in local communities can be quantified 
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by alpha (α) diversity, whereas differences in species between or among communities are 

quantified by beta (β) diversity (Whittaker et al., 2001).   

Alpha diversity is a measure of average single-location or single-community 

diversity, and beta diversity is a measure of relative difference in species composition 

between or among communities, with alpha and beta being independent (Jost, 2007, 2010). 

Alpha diversity can be measured by species richness, species evenness, a measure of how 

close in relative abundance species are in a defined area, or a manipulated combination of 

both, which includes the Shannon and Simpson indexes of diversity. The Shannon index of 

diversity estimates the average uncertainty of predicting which species will occur in a random 

subsample from an environment of interest and theoretically can range from zero (0) to 

infinity (Nagendra, 2002; Shannon, 1948).  Simpson index is the probability of two equal 

samples having a different species detected and ranges from 0 to 1 (Nagendra, 2002; 

Simpson, 1949).   

Beta diversity focuses on the turnover of species between sampling units and 

community composition through space or time (Koleff et al., 2003).  Beta diversity represents 

changes in composition of species between two or more local and regional assemblages 

(Koleff et al., 2003). Presence-absence or count data can be used to compute distances or 

differences between or among assemblages of interest. Count data is commonly transformed 

or normalized for community data, especially in the case of microbial community sequence 

data to satisfy the requirements of compositional and sparse data (Barwell et al., 2015; Gloor 

et al., 2017). The Jaccard distance, which uses presence-absence data, is a common metric 

used for computing beta diversity between locations (Jaccard, 1912). A novel approach that 

can take into account both the relative counts or presence-absence of the community 

composition uses phylogenetic information to compute beta diversity between locations or 

assemblages of interest (Lozupone et al., 2011). Overall, when selecting a metric or index for 

beta diversity analysis, care needs to be taken in selecting the proper method for the 

community data being analyzed, as the metric/index can influence the results inferred due to 

the nature of the data itself as well as the assumptions of the metric/index (Anderson et al., 
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2011). These two measurements, namely alpha and beta diversity, have become 

commonplace for characterizing biological diversity.  

  

1.2 Novel Biological Monitoring Techniques 

Aquatic biomonitoring techniques currently include measurements of biodiversity 

and the use of bioindicators. Long-term and large comprehensive data sets are often required 

for describing the status and predicting trends in structures of aquatic ecosystems in a 

changing world (Dodds et al., 2012; Hampton et al., 2013; LaDeau et al., 2017). This form of 

conventional biological monitoring of ecosystems is costly and time-consuming, as discerning 

taxa can be difficult to conduct, and the collection of biological samples can be tedious (Kelly 

et al., 2014). Traditional monitoring can also be invasive to the ecosystem or species under 

study, as it requires active searching and collection that can disrupt the target ecosystem or 

harm the biological organism (e.g., fishnets) (Kelly et al., 2014; Thomsen and Willerslev, 

2015). Finally, the number of taxonomists able to accurately and efficiently identify 

environmental species has been in decline in recent decades (Pearson et al., 2011; Wägele et 

al., 2011). Declining number of taxonomists is of concern, with many species remaining 

undescribed and the benchmarking of taxa identification via conventional morphological 

approaches difficult to standardize. With growing concerns of changes in species assemblages 

due to environmental stressors and declines in biodiversity, more efficient techniques to 

measure these changes are warranted (Barnosky et al., 2011).   

Genomics tools, such as metabarcoding or metagenomics, offer a high-throughput 

method for assessing community dynamics within aquatic ecosystems. DNA Barcodes were 

initially the primary molecular method used for species identification (Hebert et al., 2003). 

Barcodes consist of larger fragments (e.g., 500 bp) and are commonly used by researchers to 

identify taxa to the species-level (Cristescu, 2014). This method, however, was limited to 

screening one organism at a time. Development of metabarcoding has allowed for the high-

throughput identification of organisms within target communities (Ji et al., 2013). This new 

approach did come with its limitations, including PCR biases, database gaps, and data 



 

6 

processing validation, which is an active area of research (Cristescu, 2014). The two methods, 

namely barcoding and metabarcoding, should be treated as complementary methods, with 

barcoding being used to build high-confident public databases to be used with metabarcoding 

approaches (Cristescu, 2014).  

Metabarcoding provides an efficient and data-intensive method of capturing local 

biodiversity through detection of aquatic organisms via next-generation sequencing (Taberlet 

et al., 2012b; Valentini et al., 2016). Metabarcoding is the use of short amplicon sequences to 

detect taxa present in a community (Ji et al., 2013). This is achieved by using specific primers 

for the target community of interest or using universal primers for detection of several taxa 

communities. These standardized primers are used to amplify targeted genes of an organism 

to differentiate taxa (Taberlet et al., 2012b). After short regions (typically 200-450 bp) are 

amplified by polymerase chain reaction (PCR), samples are analyzed by use of next-

generation sequencing. Next-generation sequencing instruments are provided by companies 

and technologies such as Illumina, Oxford Nanopore Technologies, and Pacific Biosciences, 

among others (Goodwin et al., 2016). After samples are sequenced, bioinformatics and data 

processing, including taxonomic annotation, are conducted to elucidate the structure of the 

community from which the sequences were derived. Metabarcoding includes the use of 

community DNA from homogenized tissues or environmental DNA (eDNA) from 

environmental samples (Hajibabaei et al., 2011; Taberlet et al., 2018; Taberlet et al., 2012a).   

 

1.2.1 Environmental DNA and DNA Metabarcoding 

eDNA refers to the complex genetic material released into the environment that can 

be obtained directly from environmental samples without the obvious presence of organisms 

(Creer et al., 2016; Thomsen and Willerslev, 2015). eDNA consists of either exogenous DNA 

or endogenous DNA that can be extracted from environmental samples without direct 

isolation of any target organisms (Taberlet et al., 2012a). The first reference to environmental 

DNA was in 1987 on the idea of extracting microbial DNA from sediments (Ogram et al., 

1987). Since then, the technique has grown in use and applications, especially in the last 
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decade with advances in DNA sequencing techniques (Kelly et al., 2014; Thomsen and 

Willerslev, 2015). Total eDNA refers to intracellular DNA and extracellular DNA that can be 

found in samples from the environment (Barnes and Turner, 2016; Pietramellara et al., 2009). 

Intracellular DNA refers to DNA that originated from living cells or organisms and is usually 

of good quality, whereas extracellular DNA refers to DNA released from cells after death and 

destruction of cell structure, typically being degraded or in small fragments (Creer et al., 

2016). Both types of DNA can be collected from the environment and isolated for DNA 

metabarcoding for species composition analyses.  

Noninvasive eDNA and DNA metabarcoding has been widely applied for 

biomonitoring of bacterial, protist, zooplankton, benthic macroinvertebrate, and fish in 

freshwater ecosystems (Elbrecht and Leese, 2017; Evans and Lamberti, 2018; Hering et al., 

2018; Li et al., 2019; Xie et al., 2018; Yang et al., 2017a). eDNA and DNA metabarcoding 

and morphological identification can be closely related for species detection (Elbrecht and 

Leese, 2017; Evans et al., 2016; Hänfling et al., 2016; Shaw et al., 2016; Yamamoto et al., 

2017; Yang et al., 2017c). Furthermore, results of a recent study showed that using 

presence/absence of morphological benthic invertebrate data sets for ecological monitoring 

came to the same ecological status class 76.6% of the time (Buchner et al., 2019). This 

evidence shows that even with bias in abundance estimates for DNA metabarcoding, its use 

will prove to be extremely valuable for ecosystem health monitoring (Elbrecht and Leese, 

2015). Metabarcoding can also characterize species composition from bulk samples of 

eukaryotes (Ji et al., 2013).   

 

1.2.2 Metabarcoding in Ecotoxicology 

Due to the widely diverse organisms present in ecosystems, the ecological effects of 

toxicants on freshwater ecosystems can be complex to decipher. Anthropogenic disturbances, 

such as the introduction of hydrocarbon contamination, can negatively affect community 

structure and biodiversity (Jung et al., 2016).  DNA metabarcoding has been used to elucidate 

changes in freshwater invertebrate OTUs (Operational Taxonomic Units) between sites 
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impacted by the organophosphate chlorpyrifos and control sites, with strong differences 

observed among the two sample locations (Andújar et al., 2018). Operational Taxonomic 

Units are typically a clustering of sequences within 97% similarity to serve as a replacement 

to the conventional ‘species-level’ identification (Nguyen et al., 2016). Using eDNA 

metabarcoding, researchers deciphered that changes in structures among communities were 

mainly due to nutrient enrichment (Li et al., 2018). Studies have also utilized metabarcoding 

to show differences in zooplankton communities between two different ecosystems for 

biomonitoring purposes (Yang et al., 2017c). These studies detail how metabarcoding can 

offer a novel and predictive method to evaluate effects of pollution on aquatic ecosystems. In 

recent years, the use of eDNA metabarcoding for the assessment of chemical effects on 

biological communities has been considered one of the most important advances in 

ecotoxicology (Zhang et al., 2018b). 

Since it might better represent currently active constituents of a community, RNA 

metabarcoding has been suggested as a useful method for analyses of ecological communities 

(Baldrian et al., 2012). RNA is degraded within cells at a rate that balances energetic costs 

and adaptability to varying environmental conditions (Hui et al., 2014). RNA metabarcoding 

can measure responses of communities at the time of sampling, without the common issue of 

persistence of DNA in the environment, making it potentially advantageous for measuring 

changes in community structure due to exposures to stressors (Cristescu, 2019). RNA 

metabarcoding can detect more significant changes in taxa richness due to treatment relative 

to DNA metabarcoding (Laroche et al., 2017). It has been suggested to use coupled DNA and 

RNA metabarcoding when assessing ecosystems (Laroche et al., 2017; Pochon et al., 2017). 

Coupled DNA and RNA metabarcoding could help eliminate erroneous detections while also 

indicating the presence of active taxa. Paired DNA and RNA metabarcoding could serve as a 

stand-alone assessment of ecosystem status or can be used as a complementary method to 

morphology-based monitoring (Laroche et al., 2018). Morphology approaches provide 

relatively better indications of abundance and biomass, as metabarcoding is still limited in the 

ability to accurately detect the absolute biomass/abundance. Using both methods would give 
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the most insight into the response of the community, however, it has been shown that using 

presence/absence data can suffice for recording the community response, eliminating the 

overall necessity of having “absolute” biomass/abundance data (Buchner et al., 2019). 

 

1.3 Ecological Importance of Zooplankton 

Zooplankton are classified as animal plankters found floating or suspended in the 

water column. Freshwater zooplankton can be mainly classified into three major groups: 

rotifers, cladocerans, and copepods. Rotifers are in the Phylum Rotifera and mainly live 

among aquatic vegetation in the littoral zone of lakes (Sládeček, 1983). Rotifers have been 

considered as indicators of water quality, including toxicity from introduced compounds to 

aquatic systems (Sládeček, 1983). Cladocerans, in the subphylum Crustacea, are commonly 

referred to as “water fleas” and include the well-known genus Daphnia.  Daphnids have been 

shown to suppress blooms of cyanobacteria, which was inferred from the zooplankters' ability 

to maintain greater N:P ratios (Andersen and Hessen, 1991). Due to their availability and 

taxonomic stability, as well as sensitivity to pollution, cladocerans are universally used for 

ecotoxicological assessments (Sarma and Nandini, 2006). Copepods, also in the subphylum 

Crustacea, are important aquatic organisms that are also sensitive indicators of the presence of 

environmental toxicants (Kulkarni et al., 2013). Zooplankton can recycle a large amount of 

nutrients in lake ecosystems, supporting a large fraction of phytoplankton while transferring 

nutrients from deeper waters to the euphotic zone or vice versa during daily vertical 

migrations (Vanni, 2002). Zooplankton communities occupy a central trophic position, 

therefore making them key mediators of energy and material fluxes in ecosystems, providing 

valuable ecosystem functions (Hébert et al., 2016). Community-level analyses provide a 

holistic approach to assessing response of freshwater ecosystems to chemicals perturbations 

(Clements and Newman, 2003). Zooplankton communities can serve as a sensitive indicator 

ecosystem health and the subsequent response to anthropogenic pollution (Xiong et al., 2017; 

Yang and Zhang, 2020; Yang et al., 2017b).  
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1.3.1 Metabarcoding of Zooplankton for Biomonitoring  

Metabarcoding of multiple communities provides a comprehensive view of the status 

of aquatic ecosystems. Significant advances have been made in macroinvertebrate 

metabarcoding as these aquatic organisms are commonly used in biomonitoring of freshwater 

ecosystems (Buss et al., 2015; Curry et al., 2018; Elbrecht et al., 2017; Metcalfe, 1989). 

Macroinvertebrate metabarcoding has been used to assess watershed conditions in boreal 

regions, proving the value of metabarcoding in biomonitoring programs (Emilson et al., 2017; 

Hajibabaei et al., 2019).   

Zooplankton are widely used for biomonitoring of freshwater ecosystems since they 

are ubiquitous, ecologically important and can be sensitive to stressors (Lougheed and Chow-

Fraser, 2002; Marmorek and Korman, 1993; Sládeček, 1983). Zooplankton metabarcoding 

has been used to assess species sensitivity distribution of zooplankton community to ammonia 

(Yang et al., 2017b).  Investigations of zooplankton community variation by water pollution 

have also been conducted utilizing metabarcoding (Xiong et al., 2019; Xiong et al., 2017; 

Yang and Zhang, 2020). Metabarcoding can reveal rare taxon presence in zooplankton tissue 

DNA samples (Lindeque et al., 2013). Metabarcoding, combined with network learning, 

could further provide a network approach to quantify stressor impacts to freshwater 

ecosystems (Bohan et al., 2017; Gray et al., 2014; Vacher et al., 2016). 

 

1.4 Petroleum and Diluted Bitumen in the Aquatic Environment  

1.4.1 Effects of Crude Oil Spills on Aquatic Ecosystems 

Aquatic ecosystems are continuously threatened by the extraction and transport of 

petroleum products. Due to the limited number of studies conducted in freshwater 

ecosystems, a more thorough literature search was done involving marine ecosystems with the 

Deepwater Horizon Oil spill serving as a case study. Between April 20 and July 15, 2010, the 

Deepwater Horizon oil spill released an estimated 3.19-6.24 million barrels of Louisiana 

sweet crude oil into the Gulf of Mexico, while a total of 6.9 million liters of chemical 

dispersants was used to help break up the oil (Barron, 2012; Beyer et al., 2016). Toxicity of 
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the Louisiana sweet crude and COREXIT® EC9500A, an oil dispersant used in the Deepwater 

Horizon oil spill, was assessed on phytoplankton species with decreases in the number of 

sensitive species and an increase in resistant species being observed (Ozhan and Bargu, 

2014). With the 25% CEWAF (Chemically enhanced water accommodated fraction), 

exposure using 63 ppm dispersant, and a total petroleum hydrocarbon concentration of 132.2 

ppm, diatoms were found to have the greatest resistance, whereas dinoflagellates were the 

most sensitive. Nutrient enrichment helped phytoplankton cope with the stressor of 

introduced toxicants, but decreases in biomass of phytoplankton from the Louisiana sweet 

crude exposure still occurred at concentrations as low as 2.6 ppm total petroleum 

hydrocarbons (Ozhan and Bargu, 2014). On July 21st, 2016, a buried pipeline near Maidstone, 

Saskatchewan, spilled approximately 225,000 liters of crude oil into the North Saskatchewan 

River (Yang et al., 2020). Details of the effects of this spill on the river’s ecosystem are 

currently being studied, with a recent study reporting potential impacts on the gut microbiome 

of fish (DeBofsky et al., 2020). 

Using a short-term (2 days) microcosm study, researchers observed that with 

exposure to Deepwater Horizon spill oil, concentrations of 50 μL L−1 caused increases in 

chlorophytes (algae) and cyanobacteria, while the number of cryptophytes, a class of algae 

that have plastids, decreased (Gilde and Pinckney, 2012). An additional mesocosm study 

showed that both dispersants alone and dispersed oil caused reductions in biomass of 

dinoflagellates (algae) and diatoms, with these alterations potentially diverting carbon from 

higher trophic levels due to decreases in biomass of primary producers (Ortmann et al., 2012). 

Researchers have also shown that an acute 48 h exposure to COREXIT 9500A treated crude 

oil was toxic to microzooplankton, zooplankton typically <200 µm, at low concentrations 

(Almeda et al., 2014; Calbet, 2008). It was found that the EC50 ranged from 0.85–2.29 µL L−1 

for oligotrophic ciliates and tintinnids (Order Tintinnida) and 5.69–13.40 µL L−1 for 

heterotrophic dinoflagellates, indicating that dispersed crude oil could cause impacts on 

zooplankton food webs (Almeda et al., 2014). Crude oil has also been shown to be toxic to 

various zooplankton species, with median lethal toxicity seen at 16 h post-exposure of a 
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concentration of 32.4 µL L−1 (Almeda et al., 2014). In a report assessing the impacts of the 

Deepwater Horizon oil spill, it was determined that taking an ecosystem service approach 

would prove to be the most useful method (Council, 2013). Multiple studies have used 

metagenomic and metabarcoding techniques to better understand how microbial communities 

changed because of the Deepwater Horizon oil spill (Beazley et al., 2012; Hazen et al., 2010; 

Kimes et al., 2013; Mason et al., 2014).  

Metabarcoding holds promise for biomonitoring and assessment of oil-contaminated 

sites. Researchers utilized DNA metabarcoding of sediment samples to assess the impacts of 

offshore oil drilling sites on eukaryotic fauna using the 18s rRNA gene. Samples were taken 

adjacent to the Norwegian continental shelf oil-drilling platforms, and the downstream results 

showed that relative abundance of metazoan and non-metazoan taxa was significantly 

correlated to contamination (Lanzén et al., 2016). eDNA and eRNA metabarcoding 

outperformed the traditional morphological-based monitoring in a study to measure the 

biological impacts of offshore oil and gas drilling. This was due to eDNA and eRNA 

providing more information on biota normally excluded from conventional monitoring 

surveys (Laroche et al., 2018). This study also showed that identified indicator taxa were 

specific to site conditions, providing a potential method for identifying a site with known 

contamination using eDNA and eRNA (Laroche et al., 2018). 

 

1.4.2 Diluted Bitumen in Canada 

Canada is the second-largest country in the world with vast and abundant natural 

resources, including the oil-sands region. Oil sands are loose sand deposits that contain high 

molar mass viscous petroleum, typically called bitumen (Masliyah et al., 2004). Large 

deposits of oil-sands, which account for greater than 95% of the bitumen in North America, 

are in Alberta, Canada (Garven, 1989; Hein and Cotterill, 2006). These deposits are separated 

into three regions in Alberta: Peace River, Athabasca (Fort McMurray area), and Cold Lake, 

with the greatest production of bitumen coming from the Athabasca region (Hein and 

Cotterill, 2006).  Due to the current requirement for energy resources reliant on fossil fuels, 
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bitumen may become more in demand, and the extraction of petroleum may increase (Shah et 

al., 2010). Extraction of bitumen from oil sands has increased in past years from an 

equivalence of ∼1 × 105 barrels of oil/day in 1980 to ∼1.6 × 106 barrels/day in 2011, with 

growth likely to slow in upcoming years (Korosi et al., 2016). Bitumen can be recovered from 

these shallow oil sand deposits through surface mining, hot water extraction, and froth 

treatment (Long et al., 2002). Bitumen itself is a dense mixture of semi-solid hydrocarbons of 

a dark brown to black color with trace level metals, heteroatoms (e.g., any atom that is not 

carbon or hydrogen), and organometallic compounds (Strausz et al., 2010). Because oil sands 

are unconsolidated deposits of heavy hydrocarbon bitumen, they require multiple stages of 

processing before being refined (Jiang et al., 2007). 

Bitumen has a high viscosity when at room temperature and must be diluted to be 

transported to refineries to be further processed to produce gasoline, jet fuel, heating oil, or 

diesel fuel (Masliyah et al., 2004). The viscosity of bitumen produced from longer-chain 

hydrocarbons is not conducive to transportation via pipeline. Therefore, to allow 

transportation, the addition of a diluent, such as natural gas condensate, is common (Philibert 

et al., 2016). This diluted bitumen, or dilbit, is a complex petroleum mixture that consists of 

30% diluent and 70% bitumen (Crosby et al., 2013). Dilbit, like crude oil, contains a mixture 

of constituents ranging from lesser molecular mass, more water-soluble, to larger, less soluble 

compounds (King et al., 2017). Dilbit also contains several semi-volatile organic compounds, 

with the most notable being benzene, toluene, ethylbenzene, and xylene (BTEX), with BTEX 

components ranging from 0.8-1.2% by volume of dilbit (Dew et al., 2015). Bitumen itself 

consists of 16-17% saturates, 37% resins, 18-21% asphaltenes, and 25-29% aromatics, with 

some bitumen samples containing up to 38.6% aromatics (Strausz et al., 2010).  

There are multiple compounds in bitumen that have toxic potential. These include 

polycyclic aromatic hydrocarbons (PAHs), metals, and naphthenic acids (Dew et al., 2015) as 

well as the BTEX compounds themselves. In one aromatic fraction alone, nearly 6000 

component molecules were found, ranging in molecular mass from 200 to approximately 800 

Daltons (Strausz et al., 2010). Compounds found in dilbit of toxicological interest are 
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polycyclic aromatic hydrocarbons (PAHs) due to their known source of toxicity to aquatic 

organisms. Polycyclic aromatic hydrocarbons (PAHs) are widespread and prevalent 

environmental pollutants, typically produced by high-temperature reactions, including 

pyrolysis of fossil fuels. (Juhasz and Naidu, 2000; Nikolaou et al., 1984). PAHs are formed 

naturally, as in the case of thermal geologic production and burning of vegetation, but due to 

increased anthropogenic activities in the last century, such as industrial development, 

significant rises can be seen in the natural environment (Juhasz and Naidu, 2000; 

Maliszewska-Kordybach, 1999). PAHs are genotoxic, carcinogenic, and have the capability 

to bioaccumulate in many different freshwater organisms (Newsted and Giesy, 1987; Pelletier 

et al., 1997). The prevalence of these compounds in aquatic environments and their inherent 

toxicity, makes them a reoccurring and consistent problem in freshwater ecosystems and the 

underlying health.  

 

1.4.3 Dilbit Spills in Freshwater Ecosystems and Associated Effects 

The nature of dilbit spills is important to understand for choosing proper methods for 

remediation and recovery of freshwater ecosystems, while also understanding the potential 

effects it could have on the target environment. Due to its complex composition, dilbit can be 

unpredictable when it is released into the environment (Dew et al., 2015). Densities of dilbit 

components can range from greater or lesser than water, which makes predicting what will 

occur when it is released into the environment difficult (Crosby et al., 2013). In 2010, a 30-

inch pipeline ruptured near Marshall, Michigan, releasing approximately 843,000 gallons that 

firstly went into Talmadge Creek with subsequent movement into the Kalamazoo River (EPA, 

2013). Because the lower molecular mass compounds in dilbit are more volatile, the dilbit 

became denser after weathering leading to sinking to the sediment within the Kalamazoo 

River. For this reason, a fraction of the spilled dilbit remains unrecovered in sediment 

(Alderman et al., 2018). A simulated open tank experiment under natural environmental 

conditions (e.g., sunlight, wind, rain, seawater temperature, and salinity) was utilized to 

elucidate the behavior and fate of diluted bitumen spilled at sea. The authors found that the 
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products of the natural weathering of Access Western Blend (AWB) dilbit were able to form 

oil-balls that sank in brackish water (<20 practical salinity units) after 7 days (King et al., 

2014). Because freshwater is less dense than brackish water, it will likely take less time for 

dilbit to sink in freshwater ecosystems with similar weathering processes. The fate of dilbit in 

a spill depends on the nature of the spill and location, as a spill into a calm lake or a fast-

turbulent river will have different outcomes. The Kalamazoo River spill was a worst-case 

scenario, in that dilbit was first spilled onto land and then weathered, as it traveled overland to 

Talmadge Creek to become mixed with a river (Dew et al., 2015). With the increasing 

transport of dilbit in pipelines and spills occurring in North America, more information is 

needed on the behavior of this petroleum mixture in the environment. 

Dilbit is acutely toxic to a variety of taxa within aquatic ecosystems, including fish 

(Alderman et al., 2017; Alderman et al., 2018; Alsaadi, 2018; Barron et al., 2018; Madison et 

al., 2015; Madison et al., 2017; Philibert et al., 2016),  zooplankton (Barron et al., 2018; 

Cederwall et al., 2020; Robidoux et al., 2018), and phytoplankton (Cederwall et al., 2020), 

with limited studies involving the two latter taxonomic groups. With a continuing focus on 

zooplankton and macroinvertebrates, weathered-sediment bound dilbit has been shown to 

impair movement and respiration of Hyalella azteca due to the immediate adhering of dilbit 

to the body of the amphipods (order Amphipoda; subphylum Crustacea) (Everitt et al., 2020). 

Ceriodaphnia dubia (order Cladocera)  was shown to be acutely sensitive to Cold Lake Blend 

Water Accommodated Fraction (CLB WAF), with an LC50 = 6.43 g/L; however, no 

mortality was observed with exposure to weathered CLB (Robidoux et al., 2018). LC50 is the 

concentration that will kill 50% of the test organisms with a single exposure. Effects on 

reproduction followed what was observed in lethality, with greater effects with CLB 

(Inhibition Concentration 25% (IC25) < 1.0 g/L) compared to the weathered CLB (IC25  = 

3.99 g/L) for Ceriodaphnia dubia (Robidoux et al., 2018). Involving the same species, 

Ceriodaphnia dubia, a 7-day survival and reproduction assay determined an IC25 of 0.185 

mg/L BTEX and 12.5 µg/L total PAH (tPAH) (Barron et al., 2018). Fresh CLB WAF was 

found to have a 48 LC50 of > 5.86 mg/L for measured BTEX and > 40.0 µg/L tPAH, 
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respectively. Currently, there is a lack of understanding of the overall impacts dilbit exposure 

can have on the entire freshwater ecosystem community.  Recent studies have begun to 

unravel the potential effects dilbit exposure may have on freshwater communities (Black, 

2019; Cederwall et al., 2020). Understanding the effects of oil spills on the entire aquatic 

community assemblages within ecosystems can give greater insight into the potential 

functions and services that could be impacted.  

 

1.4.4 Remediation Practices for Oil-Impacted Aquatic Ecosystems  

Oil spills can cause significant contamination of aquatic ecosystems that can lead to 

long-term negative consequences. Cleanup technology of oil spills is primarily composed of 

two approaches, protective and removal (Vandermeulen and Ross, 1995). Protective methods 

include the use of booms, skimmers, and sorbents to collect residual oil, whereas removal 

methods include sorbents, burning, chemical dispersion, and bioremediation (Vandermeulen 

and Ross, 1995). Remediation methods, including bioremediation, are used to aid in the 

recovery of contaminated ecosystems to restore them to a natural state. Methods of 

remediation can be classified as physical, chemical, thermal or biological (Dave and Ghaly, 

2011). Increasing effectiveness and response time of remediation technologies is of primary 

focus to mitigate environmental damages due to oil spills (Prendergast and Gschwend, 2014). 

Several methods can be commonly employed when remediating petroleum-contaminated 

aquatic ecosystems. The methods can additionally be classified as active or passive methods, 

for example, shoreline cleaner application and enhanced monitored natural recovery, 

respectively.   

 

1.4.5 Impacts of Shoreline Cleaner Application on Aquatic Ecosystems 

Chemical methods of oil spill remediation help change the physical and chemical 

properties of oil (Dave and Ghaly, 2011). One method, shoreline cleaner application (SCA), is 

used to wash oil off impacted shorelines for collection by mechanical means, for example, 

through the use of absorptive pads. This approach uses surface-washing agents (SWA) to 
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enhance separation and removal of oil adhered to solid surfaces (Chen et al., 2019). SCA has 

been shown to have much less of a toxic effect relative to dispersant application; however, its 

use is for primarily different scenarios (Bhattacharyya et al., 2003). SCA helps remove oil 

from shorelines to be collected by use of traditional methods, whereas dispersants help to 

emulsify the oil and thus break up oil sheens to increase biodegradation by microbes 

(Pezeshki et al., 2000; Prince, 2015). SCA is an effective approach with the restoration of 

oiled shorelines and prevention of plant damage (Pezeshki et al., 1995; Teas et al., 1993).  

SCA could be useful in low energy systems, such as isolated lakes, as it can assist 

with the collection of toxic petroleum components from contaminated shorelines. However, 

the effects of use in freshwater ecosystems are not well understood (Hansen et al., 2014; 

Stroski et al., 2019). More research is required to have a complete understanding of the 

ecological risks this remediation method could pose to freshwater ecosystems, with shoreline 

cleaner application currently not allowed in Canadian freshwater ecosystem due to limited 

information of these potential risks. COREXIT® EC9580A, an SWA approved for use in 

United States and marine oil spill response in Canada (Black et al., 2020), has been shown 

previously to be acutely toxic to the pelagic copepod species Acartia tonsa with a 48-h LC50 

of 50.4 ± 4.47 mg/L, and a mysid (order Mysida; subphylum Crustacea), Americamysis bahia, 

with a 48-h LC50 of 32 mg/L (Bi et al., 2020; Fingas, 2013; Hansen et al., 2014). These 

results warrant further investigation of toxicity to additional aquatic taxa and communities.  

 

1.4.6 Impacts of Enhanced Monitored Natural Recovery on Aquatic Ecosystems  

Nutrient enrichment can be an effective method for remediating aquatic ecosystems 

of low activity. Oil bioremediation is the process of microorganisms degrading and 

metabolizing oil constituents to assist in restoring impacted ecosystems (Dave and Ghaly, 

2011). Microbes require additional nutrients to stimulate the biodegradation of petroleum 

constituents, as the biodegradation of oil spills is commonly limited by the bioavailability of 

nutrients (Atlas and Hazen, 2011; Dave and Ghaly, 2011). Nutrient enrichment was utilized, 

along with washing of the shoreline, after the Exxon Valdez oil spill in Prince William Sound, 
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with more than 70 miles of shoreline having this treatment applied (Nauman, 1991). Previous 

research has suggested that degradation of petroleum by microbes can be increased by 

application of fertilizer (Prince et al., 1993). Fertilizers used on a large scale for the Exxon 

Valdez oil spill included Inipol EAP22, an oil adhering oleophilic liquid product, and 

CustomblenTM, a slow-release granular agricultural product (Prince and Bragg, 1997).   

Nutrients are beneficial to oil-degrading microbes because petroleum components, 

more specifically hydrocarbons, provide little output of nitrogen or phosphorus when they 

mineralize (Mendelssohn et al., 2012). Nutrient enrichment, however, can be double-edged 

since increases in nutrient input can disrupt nutrient cycling leading to eutrophication and 

oxygen depletion as well as the formation of ammonia, which can be toxic to aquatic 

organisms (Mendelssohn et al., 2012). Bioremediation of oil-impacted freshwater ecosystems 

is less well understood, likely due to fewer high-magnitude oil-spills in these ecosystems. One 

study determined that there was an increase in biodegradation of oil constituents, particularly 

hydrocarbons, in a simulated freshwater wetland with the addition of nitrate and phosphorus 

(Purandare et al., 1999). Another study determined that while temperature played a major role 

in biodegradation of oil constituents, nitrogen and phosphorus nutrient levels can also limit oil 

biodegradation (Ward and Brock, 1976). There is evidence, however, that long-term nutrient 

enrichment of a freshwater boreal lake has been shown to have negative consequences on the 

biomass of planktonic zooplankton (Malley et al., 1988; Paterson et al., 2011).   

 

1.7 Purpose of Research, Objectives, and Hypotheses 

Zooplankton communities can serve as valuable indicators of ecosystem health and 

can model the potential impacts of stressors on aquatic communities. Identification of 

zooplankton by use of visual taxonomy based on structural morphology by traditional 

methods can be costly and time-consuming, which limits timely and cost-effective assessment 

of ecosystems. Meanwhile, taxonomists with the ability to identify zooplankton accurately 

and effectively by morphology have become fewer. Metabarcoding could serve as a 

complementary method to morphological identification for the rapid and high-throughput 
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identification of environmental zooplankton samples for the assessment of aquatic 

ecosystems. Zooplankton metabarcoding can also be benchmarkable, referring to the 

development and application of replicative and transferable protocols with methods that can 

be effectively used in the lab across the globe.   

The purpose of this research was to benchmark zooplankton metabarcoding in a 

boreal lake using the mitochondrial cytochrome oxidase 1 gene region (COI) and compare it 

to traditional morphological identification. This research also assessed the ability of DNA and 

RNA zooplankton metabarcoding to assess the effects of two different remediation practices, 

enhanced monitored natural recovery (eMNR) and shoreline cleaner application (SCA), of 

experimentally spilled dilbit in boreal shoreline enclosures. The metabarcoding methods were 

compared to the ability of morphological identification to assess the response of the 

zooplankton community to remediation practices. 

 

The specific objectives of this research were: 

1. Compare the zooplankton (phylum Rotifera; orders Calanoida, Cyclopoida, and 

Cladocera) taxonomy profiles derived from the experimental shoreline enclosures as 

determined by DNA metabarcoding, RNA metabarcoding, and morphological 

identification. This includes assessing the presence and absence of family, genus, and 

species, and the relative abundances of the shared taxa within these ranks. 

2. Determine the impact of the different remediation practices, eMNR, and SCA, 

coupled with the simulated dilbit spill on the zooplankton community using changes 

in alpha and beta diversity measurements and compatible statistical analysis.  

3. Compare the ability of the three zooplankton identification methods, RNA and DNA 

metabarcoding and morphological identification, to determine the impacts of eMNR 

and SCA along with spilled dilbit on the zooplankton community in boreal shoreline 

enclosures.  

 

The main hypotheses of this research were: 
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1. Zooplankton can be identified down to the family and genera level using 

metabarcoding. Previous research suggests that zooplankton require barcoding of 

species from the local region to identify down to the species level. The relative 

abundance of zooplankton inferred from metabarcoding will reflect the biomass 

inferred from morphological identification. There will, however, be some disconnect 

as PCR biases and variable organism size will skew the results.  

2. SCA will likely have the greatest acute toxicity on the zooplankton community 

relative to eMNR. This can be inferred from the literature review, as previous studies 

suggest acute toxicity from the SWA, COREXIT® EC9580A (Nalco, Co., Illinois, 

USA).  

3. RNA metabarcoding will be the most sensitive method for measuring species 

richness, or alpha diversity, response to treatments. This can be inferred from 

previous studies as RNA metabarcoding can potentially more closely reflect the 

changes in the active or alive community compared to DNA metabarcoding and 

morphological identification. For assessing changes in beta diversity to treatments, 

DNA metabarcoding will be the most sensitive method as shown by previous studies. 

DNA metabarcoding can potentially detect more taxa relative to RNA metabarcoding 

and morphological identification, as it can commonly detect residual or persistent 

DNA in the environment from a wider range of organisms, relative to the less stable 

RNA or the whole organism for morphological identification. 
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CHAPTER 2 

USING ZOOPLANKTON METABARCODING TO ASSESS THE EFFICACY OF 

DIFFERENT OIL SPILL CLEAN-UP TECHNIQUES IN A BOREAL LAKE 
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PREFACE 

 The objective of chapter 2 is to evaluate the ability of DNA and RNA metabarcoding to 

determine the abundance and presence of the zooplankton community in boreal shoreline 

enclosures, while also assessing the impacts of different remediation practices of spilled 

diluted bitumen on the zooplankton community. Shoreline enclosures in a boreal lake were 

exposed to spilled diluted bitumen with select remediation practices being applied, enhanced 

monitored natural recovery and shoreline cleaner application, while zooplankton was 

collected and identified using morphology or metabarcoding for 3 days pre-exposure and 11 

and 38 days after the simulated spill to meet this objective.  
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2.1 Abstract 

  Regulators require adequate information to select best practices with less ecosystem 

impacts for remediation of freshwater ecosystems after oil spills. Zooplankton are valuable 

indicators of aquatic ecosystem health as they play pivotal roles in biochemical cycles while 

stabilizing food webs. Compared with morphological identification, metabarcoding has 

promise for cost-effective high-throughput, and benchmarkable biomonitoring of zooplankton 

communities. The objective of this study was to apply DNA and RNA metabarcoding of 

zooplankton for ecotoxicological assessment and compare with traditional morphological 

identification in experimental shoreline enclosures in a boreal lake exposed to simulated spills 

of diluted bitumen (dilbit), with experimental remediation practices of enhanced monitored 

natural recovery and shoreline cleaner application. Metabarcoding detected boreal 

zooplankton taxa up to the genera level, with a total of 24 shared genera, and while 

metabarcoding-based relative abundance served as an acceptable proxy for biomass inferred 

by morphological identification. Morphological identification determined zooplankton 

community composition changes due to treatments at 11 days post-spill while metabarcoding 

methods indicated changes in zooplankton richness and communities at 38 days post-spill. 

Shoreline cleaner application overall seemed to have the largest impact on zooplankton 

communities relative to enhanced monitored natural recovery, regardless of zooplankton 

identification method. Both metabarcoding and morphological identification were able to 

discern the differences between the two experimental remediation practices. Metabarcoding 

of zooplankton can provide informative results for ecotoxicological assessment of 

remediation practices of dilbit, advancing our knowledge of best practices for remediating oil-

impacted aquatic ecosystems while serving to accelerate the assessment of at-risk freshwater 

ecosystems. 
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2.2 Introduction 

Aquatic ecosystems are continuously threatened by global activities of extraction and 

transport of oil, especially in cases of accidental oil spills (Atlas and Hazen, 2011; Beyer et 

al., 2016). Diluted bitumen (dilbit) is a complex petroleum mixture produced by the dilution 

of bitumen, a viscous heavy oil, by diluents to form a mixture that is transportable through 

pipeline and rail but toxic to aquatic organisms (Barron et al., 2018; Dew et al., 2015; 

Madison et al., 2015). Bitumen extracted from the Athabasca Oil Sands region in Alberta is 

diluted to form dilbit and transported across North America, leading to potential risks of spills 

occurring via pipeline or rail. North America has seen several large pipeline oil spills, 

including a 2010 spill of dilbit affecting the Kalamazoo River in Michigan (USA) and in 2016 

where crude oil spilled into the North Saskatchewan River, Saskatchewan (Canada) (Dew et 

al., 2015; Yang et al., 2020). Several practices have been developed to help restore oil 

impacted marine aquatic ecosystems (Dave and Ghaly, 2011). These include active processes, 

such as shoreline cleaner application, and passive natural attenuation, such as nutrient 

enrichment application; however, the effects of these different oil remediation practices on 

boreal freshwater ecosystems of low energy needs to be better understood.  

Shoreline cleaner application can be an effective strategy for shoreline remediation of oil 

spills in marine ecosystems. Cleaners wash oil from surfaces to be collected by traditional 

methods, whereas dispersants promote dispersion of petroleum components (Pezeshki et al., 

2000; Prince, 2015). Cleaners have been shown to be an effective strategy for cleaning oiled 

shorelines, including prevention of plant damage (Pezeshki et al., 1995; Teas et al., 1993). 

Shoreline cleaner toxicity to various aquatic organisms, however, requires more information 

(Barron et al., 2020; Chen et al., 2019). Its potential use effects in freshwater ecosystems, let 

alone boreal ecosystems, is not well understood (Bhattacharyya et al., 2003; Hansen et al., 

2014). A previous study has determined enhanced toxicity of oil exposure with the addition of 

shoreline cleaner, COREXIT® 9580, but it was to a lesser extent relative to the addition of a 

dispersant (Bhattacharyya et al., 2003). Shoreline cleaner application is currently not allowed 
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to be used in freshwater ecosystems in Canada, as more investigation would be required prior 

to approval. 

Nutrient enrichment is used to stimulate hydrocarbon-degrading microorganisms to 

break down oil-residue (Atlas and Hazen, 2011; Prince, 1993). Nutrient enrichment is an 

effective approach (Bragg et al., 1994), but it may cause eutrophication of the aquatic system 

leading to harmful algae bloom formation and expanding water hypoxia (Pretty et al., 2003; 

Watson et al., 2016). Long-term nutrient enrichment in a Precambrian Shield lake has been 

shown to have negative consequences on the biomass of planktonic zooplankton (Malley et 

al., 1988; Paterson et al., 2011). The remediation practice that has the least effect on aquatic 

organisms has yet to be determined in-situ in a boreal freshwater ecosystem of low energy. 

Processes of wave energy to help break up oil into smaller droplets or remobilization of 

settled oil for optimal biodegradation is minimized in low energy environments, therefore 

efficacy and effects of these remediation practices needs to be better understood (Carls et al., 

2001; Fitzpatrick et al., 2015).  

Since zooplankton can respond quickly to altering environmental conditions and are 

sensitive to aquatic pollution, they are widely used as indicators of the status and trends of 

aquatic ecosystems (Parmar et al., 2016; Schindler, 1987). Zooplankton play pivotal roles in 

freshwater ecosystems by recycling nutrients (Steinberg et al., 2008) while also occupying 

central trophic positions, making them mediators of energy and material fluxes in ecosystems 

(Giering et al., 2019). Traditional, visual identification of zooplankton based on morphology 

can be costly and time-consuming (Pan et al., 2008; Wheeler et al., 2004).  Furthermore, it is 

difficult to standardize and requires individuals with taxonomical expertise, a collective skill 

that has declined in recent decades (Hopkins and Freckleton, 2002; Thomsen et al., 2012).  

Application of the emerging technology of metabarcoding has been suggested for describing 

communities of zooplankton (Yang et al., 2017d). DNA metabarcoding can provide robust 

reproducible identification of taxa during ecological assessments (Valentini et al., 2016), but 

DNA based metabarcoding cannot distinguish whether organisms are dead or alive (Pochon et 

al., 2017), which should be of importance when tracking rapid changes of communities under 



 

26 

environmental stressors. RNA metabarcoding may serve as a useful measure in this regard, as 

it can reflect the active community upon sampling (Baldrian et al., 2012).  RNA is broken 

down within individual organism cells at a rate that balances energetic costs and adaptability 

to varying environmental conditions (Hui et al., 2014).  

This study assessed the ability of zooplankton metabarcoding to provide data 

comparable to that produced by using morphology-based identification. We also compared 

the ecotoxicological effects on the zooplankton community of two different methods for oil-

spill remediation, a shoreline cleaner and nutrient enhancement using shoreline mesocosms.  

The study was conducted in the summer of 2019 in a boreal lake and specific objectives were 

to: 1) compare the relative abundances or biomass of zooplankton taxa in communities as 

determined by the use of DNA or RNA metabarcoding and morphologically identified 

taxonomic (morph-taxa) techniques; 2) determine and compare ecotoxicological effects of 

remediation practices on zooplankton communities in mesocosms; 3) compare the 

performance of the three zooplankton identification methods (DNA metabarcoding, RNA 

metabarcoding, and morphological taxonomy) to elucidate the effects of oil-spill remediation 

practices. 

 

2.3 Materials and Methods 

2.3.1 Experimental Design 

The experiment was conducted at the IISD Experimental Lakes Area (IISD-ELA), an 

area that contains 58 boreal lakes located in northwestern Ontario, Canada that have been set 

aside for whole-ecosystem experimentation (49°41´45.0” N, 93°46´03.4” W) (Kidd et al., 

2007; Schindler et al., 1996). In June 2019, seven mesocosms (enclosures of 15 x 5 m) were 

established along the shoreline of Lake 260 at the IISD-ELA in a wetland habitat type. On 

June 21st, 2019, after enclosure construction and baseline measurement completed, six 

randomly selected enclosures were treated with model spills of dilbit (mean applications = 

1300 g/enclosure) applied to the surface of the water approximately 50cm from the shore. 

One enclosure remained untreated to serve as a reference.   
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The oil was allowed to interact with the shoreline soil, sediment and vegetation for 4 

days to conservatively simulate spill response times, after which any oil remaining on the 

surface of the water was removed using pre-weighed oleophilic absorbent pads. Additionally, 

each enclosure, including the reference, was rinsed with 1200-L of water pumped from the 

interior of the enclosure over the oiled sections of the confined shoreline to mimic oil spill 

clean-up procedures typically used following a spill. Water was pumped under low pressure 

and returned to the interior of each enclosure. Any additional oil dislodged by flushing was 

also captured using absorptive pads.   

Enclosures treated with dilbit were then randomly selected to receive one of two 

different remediation treatments to determine their effectiveness for promoting the longer-

term recovery from residual oil contamination. The first method, enhanced monitored natural 

recovery (eMNR; n = 3), included addition of nutrients designed to promote the 

decomposition of remaining oil products. The second method consisted of active cleaning of 

the shoreline by use of the oil surface cleaning agent COREXIT® EC9580A (Nalco, Co., 

Illinois, USA) (SCA; n = 3) (Fig. B.1; Appendix B). One shoreline enclosure remained 

untreated serving as the reference (REF; n = 1).   

 

2.3.2 Collection of Zooplankton 

Triplicate 20-L water samples for DNA and RNA metabarcoding were collected 

consecutively from each experimental enclosure three days before the simulated spill of 

bitumen, and then 11 and 38 days after the spill (Fig. B.1). Pre-installed tubing, with a funnel 

on the end inundated within the enclosure, was used to collect representative zooplankton 

samples without disturbing the water surface. Zooplankton were enriched by two-step 

filtering by use of a pump with an in-line 53 µm mesh filter and washed off with 

NanopureTM water (Thermo Fisher Scientific, USA) for final enrichment with a 5 µm 

Durapore® PVDF membrane filter (Millipore, Germany). Samples were preserved in 

LifeGuard Solution (Qiagen, Germany) and stored at -80 °C before extraction of nucleic acid. 

To avoid cross-contamination, use of filter pumps specified for each treatment, single-use 
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filter-units, changing of gloves at each enclosure, and strict protocols were enforced. 

Equipment was also decontaminated between each replicate using 15% bleach and 70% 

ethanol, while field blanks were collected frequently during sampling. Field blanks consisted 

of an opened, decontaminated 500 mL NalgeneTM bottle (Thermo Fisher Scientific, USA) 

containing NanopureTM water during the period of sampling, for each treatment.   

Samples of zooplankton for morphological identification were collected simultaneously 

with one 60-liter water sample being collected using the same protocol for metabarcoding 

collection, minus the final enrichment step. Taxonomic identification was conducted 

following procedures detailed previously (Paterson et al., 2010). Briefly, identification of 

zooplankton was completed using the taxonomic key of Balcer et al. 1984, as well as several 

other guides to North America’s freshwater zooplankton (Balcer et al., 1984; Brandlova et al., 

1972; Smith and Fernando, 1978; Witty, 2004). Biomass was determined using length-weight 

regression based on historic zooplankton weights (Schindler and Novén, 1971) and regression 

equations (Lawrence et al., 1987; Malley et al., 1989) obtained from IISD-ELA lakes. 

 

2.3.3 Co-isolation of DNA and RNA, PCR amplification, and Next-Generation Sequencing 

(NGS) 

Zooplankton were thawed on ice and pelleted by centrifugation (8000 x g for 5 min.). 

LifeGuard Solution was removed with a sterile pipette. DNA and RNA were co-isolated by 

use of AllPrep DNA/RNA Mini Kit (Qiagen, Germany) following the manual. DNA 

contamination of extracted RNA were digested with RNase-Free DNase (Qiagen, Germany). 

The extracted DNA and RNA were measured and checked for quality using Qubit 4 

Fluorometer (Thermo Fisher Scientific, USA) and purity by use of NanoDrop 

Spectrophotometers, respectively (Thermo Fisher Scientific, USA). One extraction blank was 

conducted at each batch for quality control (QC). Concentration of DNA and RNA from 

extraction blanks were less than the limit of detection. Complementary DNA (cDNA) was 

synthesized using SuperScript IV Reverse Transcriptase (Invitrogen, CA, USA) along with 

ezDNase to remove residual DNA.   
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PCR amplification was performed on normalized cDNA and DNA samples (10 ng/µL) 

using unique dual tagged primers targeting a 313 bp region of the cytochrome oxidase subunit 

region 1 (COI) using the primers mICOIintF 

(GGWACWGGWTGAACWGTWTAYCCYCC) and jgHCO2198R 

(TAAACTTCAGGGTGACCAAAAAATCA) with a “touchdown” cycle program (Leray et 

al., 2013; Yang et al., 2017a). To minimize potential bias during amplification, PCR was 

performed in triplicate using Platinum Taq Hot Start II High-Fidelity DNA Polymerase 

(Invitrogen, USA), with plate set-up containing multiple PCR blanks for QC.  PCR products 

were checked with agarose gel electrophoresis and purified using the QIAquick PCR 

Purification kit (Qiagen, Germany). No bands of blanks for extraction and PCR were 

observed visually.  Construction of the sequencing library and next-generation sequencing by 

use of Illumina chemistry were performed as described previously (DeBofsky et al., 2020).  

Sequencing data can be accessed at https://doi.org/10.20383/101.0313.  

 

2.3.4 Bioinformatics 

Raw reads were demultiplexed based on dual tags of both forward and reverse primers 

for each sample, with sequences of the forward and reverse primers being removed thereafter. 

Paired-end sequences were merged using VSEARCH (version 2.14.2), after filtering out 

lesser quality (ee > 1.0), chimeras, and shorter length (< 300 bp) sequences (Rognes et al., 

2016).  Zero-radius operational taxonomic units (ZOTUs) were generated using Unoise3, with 

a minimum frequency of 5 (Edgar, 2016) and their open reading frames (ORF) were searched 

via NCBI ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/). Pseudogenes and short open 

reading frames (< 300 bp) were discarded, with features occurring in only one sample 

subsequently removed. 

To gain confidence in identifying species and genera referred to jointly as taxa, features 

were classified using several steps. BOLD was used to assign features using a percent 

similarity of greater than or equal to 98%, 95%, and 90% for species, genera, and family-level 

annotation, respectively (Ratnasingham and Hebert, 2007). Independently, taxonomical 
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annotations were by use of an in-house curated database for zooplankton plus six barcoded 

taxa (e.g., Diaphanosoma birgei, Epischura lacustris, Daphnia mendotae, Leptodiaptomus 

minutus, Holopedium glacialis, and Diacyclops thomasi; Xie and Giesy, Unpublished) with 

VSEARCH (percent identity = 0.98; query coverage = 0.8) being used to taxonomically 

assign ZOTUs (Bolyen et al., 2019). Taxonomic identification output from BOLD and 

VSEARCH were combined according to consensus, with lowest-level identification 

superseding. Unidentified sequences or annotations at a higher-level than family, underwent 

megablast searching, by use of the NCBI Nucleotide Blast Tool using the standard nucleotide 

database (https://blast.ncbi.nlm.nih.gov/Blast.cgi), returning up to 100 hits per query sequence 

(e-value = 1e-20, percent identity = 99%, and word size = 24). Taxonomy was assigned to the 

best attainable level by use of the lowest common ancestor (LCA) implemented using 

MEGANv6 (Default settings except for min score = 150, top percent = 2), with the highest 

assignable level allowed being genera.  

ZOTUs that remained unassigned or that were nontarget taxa, with target taxa being 

Phylum Rotifera or select orders in Subphylum Crustacea (Orders Calanoida, Cyclopoida, and 

Cladocera), were removed (See Table A.1 for sequence read counts). Replicate samples for 

each enclosure taken for metabarcoding at each time point were merged before downstream 

analyses. Singleton taxa and taxa found to occur in only one sample were subsequently 

removed. After collapsing features to the taxa-level for data analyses, unassigned sequences 

were removed and samples were rarefied to 9985 sequences per sample to avoid bias 

introduced by uneven sequencing depth (Weiss et al., 2017). Rarefied read count data and raw 

morphological abundance and biomass data can be found in the supporting information for 

family, genera, and species-level (Table F.1-F.3). Further details on MiSeq sequencing output 

can be found in appendix. Bioinformatics was conducted under QIIME2 (version 2020.2) and 

R environment (version 4.0.0) (Team, 2013).   
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2.3.5 Statistics 

All statistics and graphics were performed in the R environment (version 4.0.0) by use of 

the Vegan package (version 2.5.6) (Oksanen et al., 2007) unless otherwise stated. Venn 

diagrams were applied to present the agreement and difference among identification methods.  

Spearman rank correlation was used to determine relationships between loge-transformed 

biomass and loge-transformed relative abundance for shared genera between morphological 

identification and DNA/RNA metabarcoding. Relative abundance refers to rarefied 

metabarcoding count data. Differences in genera richness between treatments at each time 

point were estimated by use of ANOVA, as sample size was not sufficient for interpretation, 

with Welch’s t-test used to test between treatments SCA and eMNR. A random intercept 

model using packages lme4 and lmer Test was used to discern differences in richness between 

treatment groups while controlling for the effects of time (e.g., -3, 11 and 38 days), with 

differences for least squares means of respective treatments used for post-hoc testing (Bates et 

al., 2014; Kuznetsova et al., 2017). Differences in genera richness over time for each 

remediation practice (e.g., eMNR and SCA) was tested using ANOVA. Principal Coordinates 

Analysis (PCoA) was performed on genera-level count data to visualize β-diversities of 

zooplankton communities, with function envfit used to project genera with high correlation 

with sample ordination as vectors (p < 0.01; 9999 permutations). Treatment group differences 

of β-diversities within each time point were tested using adonis2 (PERMANOVA; 9999 

permutations), with a pairwise test being conducted on complete distance matrix, including all 

samples for each identification method, testing differences between treatments while 

controlling for the effects of time (Martinez Arbizu, 2017). 

 

2.4 Results 

2.4.1 Validation of zooplankton metabarcoding with morphologically identified taxonomy 

(morph-taxa) 

Metabarcoding inferred zooplankton taxonomy was consistent with morphological 

identification at the family and genera-level. The agreement between mb-taxa (taxa identified 
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by both DNA and RNA metabarcoding) with morph-taxa decreased from 89.5% at family 

level (Fig. 2.1A), to 77.4% at genus level (Fig. 2.1B), to 30.0% at species level (Fig. 2.1C). 

Portion of shared taxa between mb-taxa with morph-taxa decreased from almost 100% at 

family level (Fig. 2.1D), to 98.9% at genus level (Fig. 2.1E), to 38.0% at species level (Fig. 

2.1F). Within classified species, relative abundances (average ± standard deviation (SD)) of 

Keratella cochlearis and Mesocyclops edax determined by metabarcoding (K. cochlearis: 

18.6 ± 22.0 %, M. edax: 0.0323 ± 0.0720 %) were much different from those identified by 

morphology (K. cochlearis: 0.512 ± 0.820, M. edax: 25.0 ± 18.3 %). Rare zooplankton genera 

inferred from morphological identification, for instance, Lepadella (Lepadellidae), 

Macrocyclops, Microcyclops, Monostyla, Diacyclops, and Gastropus were mis-detected by 

metabarcoding. Fourteen species were detected by morphological identification but not 

metabarcoding, specifically, Bosmina longirostris, Chydorus sphaericus, Diacyclops thomasi, 

Diaphanosoma birgei, Keratella crassa, Keratella serrulata, Keratella taurocephala, 

Kellicottia longispina, Macrocyclops albidus, Microcyclops rubellus, Polyarthra vulgaris, 

Trichocerca cylindrica, Tropocyclops extensus, and Trichotria tetractis. Within those, eight 

species, Diacyclops thomasi, Kellicottia longispina, Keratella crassa, Keratella taurocephala, 

Microcyclops rubellus, Tropocyclops extensus, Trichocera cylindrica, and Keratella serrulate 

were not found to be represented in the GenBank database (searched 2020-07-21). DNA and 

RNA metabarcoding revealed similar profiles of zooplankton communities (Fig. 2.1 and C.1). 

Mismatched taxa between DNA and RNA metabarcoding were rare (relative abundances < 

0.01%). 
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Fig. 2.1 Comparison of zooplankton metabarcoding with morph-taxa. (A) Shared families 

among identification methods; (B) Relative abundance of shared families; (C) Shared genera 

among identification methods; (D) Relative abundance of shared genera; (E) Shared species 

among identification methods; (F) Relative abundances of shared species. Unclassified 

species were filtered out, with relative abundance being adjusted accordingly. 

 

Metabarcoding based relative abundance of shared genera of Rotifera and Arthropoda 

phyla revealed the distribution of morphology-based densities. Relative abundances (loge-

transformed) of shared genera for both phyla’s Rotifera and Arthropoda had similar trends 

with that of morphology-based densities (loge-transformed). For Arthropoda genera, both 

DNA and RNA metabarcoding based relative abundances (loge-transformed) of zooplankton 

were significantly correlated with loge-transformed biomass (Spearman rank correlation, 
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Fig.2.2B, r = 0.66, p = 0.013; Fig. 2.2C, r = 0.60, p = 0.028). For Rotifera, both DNA (Fig. 

2.2B, r = 0.52, p = 0.11) and RNA (Fig. 2.2C, r = 0.52, p = 0.13) metabarcoding based 

relative abundances were moderately correlated with Rotifera biomass, although the level of 

significance was marginal. Significant correlations between DNA and RNA metabarcoding of 

shared Arthropoda and Rotifera genera showed that the two methods gave similar estimates 

for relative abundances of target taxa (Fig. 2.2A, r ≥ 0.93, p ≤ 3.1e-06). 

 

Fig. 2.2 Correlations of shared genera of the loge-transformed metabarcoding relative 

abundance data and loge-transformed morphology biomass using Spearman rank correlation. 

Blue text indicates phylum Arthropoda and red text indicates phylum Rotifera. 

 

2.4.2 Zooplankton metabarcoding revealed effects of remediation practices on communities 

of zooplankton 

SCA and eMNR caused two different outcomes on zooplankton genera richness in the 

enclosures over time. No significant differences were observed among enclosures prior to the 

application of oil spill and cleaning practices (Fig. 2.3, T-test, p ≥ 0.425) and day 11 post-

spill (Fig. 2.3, T-test, p ≥ 0.570). At day 38 post-spill, DNA metabarcoding showed an 

increase in zooplankton genera richness for eMNR relative to SCA (Fig. 2.3A, T-test, p = 

0.0357) while for RNA metabarcoding, observed genera richness in SCA declined 

significantly relative to eMNR (Fig. 2.3B, T-test, p = 0.0478). For remediation practices, for 

instance, eMNR and SCA, genera richness for eMNR increased over time for DNA 

metabarcoding (Fig. 2.3A, ANOVA, p = 0.026), while genera richness of SCA practice 

decreased for RNA metabarcoding over time (Fig. 2.3B, ANOVA, p = 0.00418). Shannon 
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diversity of zooplankton genera had similar trends as genera richness for DNA and RNA 

metabarcoding (Fig. D.1). The random intercept model and corresponding computed least 

square means determined differences for REF vs SCA (Table G.1, p = 0.00968) and eMNR vs 

SCA (Table G.1, p = 0.0129) for DNA metabarcoding, while difference was determined for 

REF vs. SCA (Table G.1, p = 0.00203) and REF vs eMNR (Table G.1, p = 0.0473) for RNA 

metabarcoding.  

 

Fig. 2.3 Observed zooplankton genera richness over time for (A) DNA and (B) RNA 

metabarcoding. Treatment groups consisted of enhanced monitored natural recovery (eMNR; 

n = 3), shoreline cleaner application (SCA; n = 3), and reference (REF; n = 1). ANOVA was 

computed between remediation practices at each time point of interest with Welch’s t-test 

used to test observed genera richness between treatments eMNR and SCA. Dashed line 

represents beginning of simulated dilbit spill and treatment trend is represented by local 

polynomial regression. 

 

Differences in structures of zooplankton communities between SCA and eMNR at 38 

days post-spill was greater than that of day 11 post-spill. Results for PERMANOVA based on 

DNA and RNA metabarcoding showed that treatments did not differ significantly at 11 days 

post-spill (Fig. 2.4B, C, p ≥ 0.171). Reference was more closely related to SCA relative to 

eMNR for both DNA and RNA metabarcoding according to PCoA plots at day 11 post-spill, 

with Keratella being significantly correlated with eMNR sample ordination (Fig. 2.4A, B). At 
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38 days post-spill, PERMANOVA for DNA and RNA metabarcoding were significant (Fig. 

2.4C, p ≤ 0.0429). PCoA plot for DNA and RNA metabarcoding indicated strong clustering 

for SCA whereas eMNR was more variable in its community composition (Fig. 2.4C, D). 

From sample position on the PCoA plots at 38 days post-spil1, reference seemed more closely 

related to eMNR relative to SCA, with Kertella being significantly correlated with SCA 

sample location (Fig. 2.4C, D). Pairwise comparison between all samples, blocking the effect 

of time, determined differences for REF vs eMNR (Table G.2, p = 0.173) and REF vs SCA 

(Table G.2, p = 0.0174) for DNA metabarcoding, while difference was determined for 

treatment combination REF vs SCA (Table G.2, p = 0.0142) for RNA metabarcoding.  

 

Fig. 2.4 PCoA plots between treatment groups for genera-based matrix. (A) DNA 

metabarcoding at 11-days post-exposure; (B) RNA metabarcoding at 11-days post-exposure; 

(C) DNA metabarcoding at 38-day post-exposure; (D) RNA metabarcoding at 38-days post-

exposure. Treatment groups consisted of enhanced monitored natural recovery (eMNR; n = 

3), shoreline cleaner application (SCA; n = 3), and reference (REF; n =1). Associated 
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PERMANOVA statistic is shown on the respective plots. Genera plotted inferred to be highly 

correlated with sample ordination (p < 0.01). 

 

2.4.3 Performance to distinguish ecological effects of remediation practices 

Morphological identification differed from metabarcoding in the ability to determine 

ecotoxicological effects of remediation practices. No statistical differences were observed 

among remediation practices for genera richness based on morphology. A trend towards 

lesser richness was observed for SCA on day 11 relative to eMNR (Fig 2.5A, T-test, p = 

0.183). Morphological identification indicated that zooplankton richness increased for SCA 

on day 38 (Fig 2.5A, T-test, p = 0.519). The random intercept model and corresponding 

computed least squares means determined no differences between treatment groups (Table 

G.1, p ≥ 0.114). Based on morphometry, treatment groups differed at 11-days post-exposure 

for community composition (Fig. 2.5B, PERMANOVA, p = 0.0143). Treatment groups did 

not differ in centroid position at day 38 (Fig. 2.5C, PERMANOVA, p = 0.486), with eMNR 

being closer in distance to reference at relative to SCA, indicating a stronger relationship 

between the two communities at day 38 (Fig. 2.5C). Pairwise comparison of the distance 

matrix based on all samples, blocking the effect of time, determined differences for REF vs 

eMNR (Table G.2, p = 0.047). 
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Fig. 2.5 Observed zooplankton genera richness for treatments over time and β-diversity 

analyses of selected time points, (B) 11-days post-exposure and (C) 38-days post-exposure, 

for morphological identification. Treatments consisted of enhanced monitored natural 

recovery (eMNR; n = 3), shoreline cleaner application (SCA; n = 3), and reference (REF; n = 

1). ANOVA was computed between treatment groups, with Welch’s t-test used to test 

observed genera richness between treatments eMNR and SCA. Dashed line represents 

beginning of simulated dilbit spill and treatment trend is represented by local polynomial 

regression. Associated PERMANOVA statistics are shown on the respective plots PCoA 

plots. Genera plotted inferred to be highly correlated with sample ordination (p < 0.01). 

 

2.5 Discussion 

2.5.1 Overall agreement between metabarcoding and morphological identification 

Zooplankton taxonomy as determined by metabarcoding was analogous to morph-

taxa at the family- and genera-levels. Overall, similar trends in the responses of zooplankton 
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communities to differing remediation practices were observed, even with differences existing 

between the profiles of relative abundances of zooplankton among methods of identification. 

Metabarcoding of zooplankton has previously been shown to effectively capture spatial and 

temporal trends determined by morphological identification, even when differences existed in 

community profiles of zooplankton between the two methods (Abad et al., 2016). 

Furthermore, monitoring of macroinvertebrates in boreal stream ecosystems by use of DNA 

metabarcoding was consistent with results based on morphological metrics at family and 

genera level (Emilson et al., 2017). Abundant zooplankton genera, Keratella, Bosmina, 

Leptodiaptomus, Mesocyclops, and Polyarthra, detected with metabarcoding were consistent 

with results of previous papers examining other local boreal lakes as well as the lake used in 

this study (Drouin et al., 2009; Kidd et al., 2014). Abundant zooplankton genera, Keratella, 

Bosmina, Polyarthra, Asplanchna, and Diaphanosoma additionally had global comparability 

with a boreal lake in Finland (Arvola et al., 1996). Metabarcoding provides a high throughput 

method for analyzing various ecological communities but has yet to be optimized for 

zooplankton communities in boreal ecosystems.   

Use of DNA and RNA metabarcoding, or present and active taxa, respectively, 

resulted in similarly measured zooplankton communities; however, they differed from morph-

taxa in species composition, with only six shared species. Different taxonomic levels can be 

used to assess the status of aquatic ecosystems and classifying individuals to the level of 

family, with 17 shared families, or genera level, with 24 shared genera, was shown to be 

somewhat sufficient for comparing the two identification methods: metabarcoding and 

morphological identification. Relative abundances as determined by use of metabarcoding 

could be an acceptable proxy for biomass of zooplankton inferred from morphological 

identification at genera level. Results of previous studies have shown that eDNA/DNA copies 

can be correlated with organism biomass (Elbrecht and Leese, 2015; Takahara et al., 2012; 

Yang et al., 2017c). Taxa richness is a useful metric to measure temporal dynamics of 

zooplankton communities. Even with the relatively great discrepancy between taxonomic 

compositions at the species level between zooplankton identification methods, comparatively 
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similar temporal changes in genera richness were detected, although differences did exist 

(Fig. E.1). Mitochondrial COI has been shown previously to be a valuable metabarcoding 

marker for zooplankton biodiversity assessment (Clarke et al., 2017). 

 

2.5.2 Potential reasons for discrepancy between zooplankton identification methods 

Several underlying factors could have affected results inferred from metabarcoding 

when comparing to morphological identification. Some boreal freshwater zooplankton species 

are not yet barcoded and represented in public databases, explaining the number of species 

not detected by metabarcoding. To better determine taxonomic composition through next-

generation sequencing, more representative taxa of typical watersheds should be barcoded 

(Yang et al., 2017d). Some of the species missed by metabarcoding were included in the in-

house curated database (e.g., Diacyclops thomasi). This seems to indicate that even in local 

watersheds, zooplankton can have sequence divergence and adequate number of individuals 

need to be barcoded in order to accurately detect at the species-level. Naming conventions of 

zooplankton, which can be highly variable, can also lead to differences in the species detected 

due to database limitations of the corresponding metadata (Visco et al., 2015), including 

Keratella cochlearis. a species complex that morphological taxonomy has not been fully 

worked out. More examples of variable naming conventions or validation of morphological 

identification consensus include Trichotria tetractis (e.g. Dinocharis tetractis), Chydorus 

sphaericus, Diacyclops thomasi (e.g. Diacyclops/Cyclops bicuspidatus thomasi), Polyarthra 

vulgaris (e.g. Polyarthra trigla), Kellicottia longispina (e.g. Anuraea longispina or Notholca 

longispina), Bosmina longirostris, Trichocerca (e.g. Acanthodactylus, Coelopus, Diurella, 

Mastigocerca, Monocerca, Rattulus, or Vaginaria), Tropocyclops extensus (e.g. Tropocyclops 

prasinus mexicanus), Keratella crassa (e.g. Keratella cochlearis), Microcyclops rubellus (e.g. 

Microcyclops varicans rubellus), and Diaphanosoma birgei (e.g. Diaphanosoma 

leuchtenbergianum or D. brachyurum). Metabarcoding can potentially detect taxa not from 

target habitat (e.g. pelagic) due to residual DNA, and possibly RNA, adhered to the 

zooplankton tissue and within the gut or adhered to algae likely collected by the 53 µm mesh 
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filter used, leading to differences in species composition relative to morphological 

identification (Barnes et al.; Siegenthaler et al., 2019). This could explain the greater 

detection of zooplankton not primarily planktonic but associated with surfaces or sediments 

via metabarcoding methods (e.g., Eurycercus, Macrothrix, Eucyclops, Ilyocryptus, and 

Chydorus). 

Relative abundance of detected taxa also varied between identification methods. One 

reason for the discrepancy of differential portions between methods is zooplankton species 

could have shed DNA, in the form of exoskeleton or sloughed tissue, at variable rates into the 

water column or differ in target gene copies within individuals, resulting in potential biases of 

relative abundance (Harvey et al., 2017; Sassoubre et al., 2016). Total DNA amounts of 

zooplankton could have also influenced the inferred relative abundance. Taxa within 

zooplankton communities can have various life-histories, with rotifers and cladocerans being 

opportunistic and other plankters, such as copepods, exhibiting longer life cycles and fewer 

generations (Allan, 1976). This variability could have direct impacts on the inferred activity 

of select taxa (Blazewicz et al., 2013), while differences in zooplankton habitat preference 

could impact the suggested presence upon collection (Leduc et al., 2019). RNA “production” 

could also vary according to the life-history and biology of the target zooplankton genera, 

influencing the relative detection and abundance. Zooplankton DNA and RNA could also 

have been extracted with varying levels of recovery for different taxa, potentially affecting 

relative abundances inferred (Liu et al., 2019). Biases in PCR and body-size have been shown 

to impact inference of species presence and relative abundances in target ecosystems, 

affecting total species detected and their relative portions in zooplankton communities 

(Elbrecht and Leese, 2015; Gibson et al., 2014; Harvey et al., 2017; Polz and Cavanaugh, 

1998).   

Comparing to biomasses of genera determined by morph-taxa, results of 

metabarcoding indicated that genera in the phylum Rotifera had greater relative abundances 

compared to genera in the phylum Arthropoda. Traditional morphological estimates for 

biomasses of genera within the phylum Rotifera may not be representative due to too large of 
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filter mesh utilized when collecting in the field (Chick et al., 2010), or due to small sizes. 

Differences in life history of the two phyla could also have impacts on inferred biomass.  

However, additional reasons could be due to sampling, extraction, and PCR steps within the 

metabarcoding pipeline.  

 

2.5.3 DNA and RNA metabarcoding: advantages and disadvantages for ecotoxicological 

assessment    

Metabarcoding-based genera richness can be a sensitive method to measure the 

ecotoxicological response of communities to environmental disturbances. SCA had the 

greatest negative impact on richness of the zooplankton community based on both DNA and 

RNA metabarcoding. COREXIT® EC9580A has been shown to be acutely toxic to pelagic 

copepod species Acartia tonsa, and a mysid, Americamysis bahia, with a 48-h LC50 of 50.4 ± 

4.47 mg/L and 32 mg/L, respectively (Bi et al., 2020; Fingas, 2013; Hansen et al., 2014).  

Nutrient enrichment has been found to increase richness of zooplankton, due primarily to 

increases in rotifer species (Azevêdo et al., 2015),  which can be seen with increases in total 

dissolved phosphorus at 38 days post-spill for eMNR (Table B.2). Too large of an increase in 

primary productivity, however, can lead to an overall decrease in zooplankton species 

richness (Dodson et al., 2000). Since RNA metabarcoding can measure response of 

communities at the time of sampling, without the common issue of persistence of DNA in the 

environment (Cristescu, 2019) or identification of nonviable zooplankton (Zetsche and 

Meysman, 2012), it could be advantageous for measuring changes in community structure 

due to exposures to stressors. Results of previous studies have shown that RNA can decipher 

more significant changes in taxa richness due to treatment relative to DNA metabarcoding 

(Laroche et al., 2017).  RNA metabarcoding could be influenced by the variability in 

production due to life-history traits of different zooplankton genera. The variability of the 

enclosures at day -3 could have also impacted inferred differences between treatments for 

RNA metabarcoding.  
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Monitoring changes in community composition is a powerful method to measure 

effects of environmental stressors. Over time, SCA seemed to have an overall negative effect 

on the composition of the zooplankton community at the genera level as measured with 

metabarcoding techniques (Parsons et al., 1984), which could explain the greater distance 

between SCA and REF at day 38, relative to eMNR, and the closer clustering of the SCA 

samples for RNA metabarcoding. Due to the variable tolerance of zooplankton taxa to 

nutrient enrichment, eMNR could have had contrasting magnitudes of effects on zooplankton 

communities over time (Yang et al., 2017b). With variable zooplankton communities in 

enclosures at day -3, greater dispersion between eMNR treated enclosures over time could 

occur (Strecker and Arnott, 2005). Overall, DNA metabarcoding, relative to RNA 

metabarcoding, may be more reliable for assessing treatment effects on community 

composition (Laroche et al., 2017), which was observed in the current study with a larger 

magnitude of differences in zooplankton community composition between remediation 

practices for DNA metabarcoding.   

DNA metabarcoding can commonly be the result of legacy contamination in the 

ecosystem, as DNA is typically more stable and persistent than RNA in the environment 

(Cristescu, 2019). RNA metabarcoding can act as an effective method to depict responses of 

active communities (Baldrian et al., 2012), however, variation in activities of organisms and 

life history can generate taxonomic biases as well as PCR artifacts formed from cDNA 

synthesis (Blazewicz et al., 2013; Brandt et al., 2020; Houseley and Tollervey, 2010). It has 

been suggested to use both DNA and RNA metabarcoding when assessing ecosystems for 

these reasons, among others (Laroche et al., 2017; Pochon et al., 2017). Coupled DNA and 

RNA metabarcoding could serve as a stand-alone assessment of ecosystem status or can be 

used as a complementary method to morphology-based monitoring (Laroche et al., 2018).  
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2.5.4 Comparison of metabarcoding and morphological identification for ecotoxicological 

assessment of remediation practices of oil spills 

Metabarcoding methods overall were more sensitive relative to morphology in 

measuring changes in genera richness caused by various remediation practices. There are 

however limitations in the statistical power of statistical tests conducted, due to small sample 

sizes. Alpha diversity as determined by metabarcoding has been shown to be consistent with 

that calculated from taxa defined by morphology, although typically more sensitive to spatial 

or environmental differences (Frontalini et al., 2020; Mauffrey et al., 2020). Regardless of 

identification method, SCA seemed to have the largest negative impact on richness of the 

zooplankton community over time. Morph-genera community composition shifted 

significantly on day 11, however, on day 38 no difference was seen between treatment 

groups, which disagreed with metabarcoding methods. A previous study determined that 

zooplankton metabarcoding can be a more sensitive method for analyzing community 

composition differences relative to morphology, which was seen at 38 days post-spill (Yang 

et al., 2017c).  

 

2.6 Conclusions 

This study revealed that identification of zooplankton based on ZOTUs from 

metabarcoding and morphological identification were relatively consistent in their ability to 

identify the presence of each zooplankter to the genera-level and detect changes in 

zooplankton communities over time due to remediation practices. Metabarcoding could be 

more sensitive relative to morphological identification for detecting changes in zooplankton 

genera richness over time due to remediation practices. There were limitations in inferences 

of results when comparing between methods due to small sample sizes, including having only 

one reference enclosure and variability of enclosures at day -3. For the metabarcoding 

methods, DNA metabarcoding was the most sensitive in detecting changes in zooplankton 

community composition due to remediation practices. For all identification methods, SCA 

had the greatest impact on zooplankton genera richness relative to eMNR and REF. β-
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diversity analyses showed that both shoreline cleaner application and nutrient enrichment can 

cause changes in zooplankton community composition. Overall, as shown by both α- and β-

diversity analyses, while surfactants can release stranded petroleum constituents of dilbit from 

shoreline substrates to be mechanically removed, shoreline cleaner application has the 

greatest, acute effect on the zooplankton community.   
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3.1 Project Focus and Objectives  

 Current rates of ecosystem change and the rise of anthropogenic impacts on aquatic 

ecosystems warrants next-generation methods to assess these effects and the resulting 

ecological health more quickly and efficiently. A recently developed method, metabarcoding, 

has been developed along with the overall increase in capabilities for next generation 

sequencing to assess community composition of organisms from nucleic acids collected from 

an ecosystem. This toolset is launching many new possibilities for adding in metabarcoding 

methods to current biomonitoring programs and using these methods for assessing the 

ecotoxicological impacts from chemical stressors. Oil spills have been a recurring problem 

worldwide, with the use of petroleum products only expected to increase.  Furthermore, the 

impacts of the remediation practices utilized to help recover an impacted freshwater 

ecosystem are not well understood in-situ. Unique to Canada, diluted bitumen (dilbit) is a 

complex petroleum mixture with potential to impact low-energy freshwater ecosystems, with 

the resulting outcomes not well understood, including the use of remediation practices in 

these settings after a spill would occur. 

The focus of this project was to utilize DNA and RNA metabarcoding to assess the 

response of the zooplankton community to two currently used remediation practices, 

shoreline cleaner application (SCA), and enhanced monitored natural recovery (eMNR), of a 

simulated dilbit spill in a boreal lake. Metabarcoding methods were also compared to 

traditional morphological identification to assess the ability to detect zooplankton taxa and 

measure the response of ecotoxicological impact on the zooplankton community. The first 

objective was to compare the detection and the relative abundances of zooplankton taxa in 

communities as determined using DNA and RNA metabarcoding or using morphologically 

identified taxonomic techniques. The second objective was to determine and compare the 

ecotoxicological effects of remediation practices on zooplankton communities in shoreline 

enclosures. The final objective was to compare the performance of the three zooplankton 

identification methods (DNA metabarcoding, RNA metabarcoding, and morphological 

taxonomy) to elucidate the effects of oil-spill remediation practices. This research aimed to 
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benchmark the use of zooplankton metabarcoding in a freshwater boreal ecosystem to assess 

the response of the zooplankton community to ecotoxicological impact.  

 

3.2 Summary of Findings 

This study used DNA and RNA metabarcoding and morphological identification of 

zooplankton to determine the response of the community to different oil-spill remediation 

practices. This study also compared the different identification methods in their ability to 

detect zooplankton taxa and measure the response of the community to ecotoxicological 

effects. Overall, SCA coupled with dilbit exposure had the greatest impact on the zooplankton 

community relative to nutrient enrichment. DNA and RNA metabarcoding was able to detect 

zooplankton taxa up to the genus and family-level when compared to morphological 

identification, however several genera were missed by metabarcoding methods and variability 

in relative abundance was inferred. Metabarcoding methods could be more sensitive overall 

compared to morphological identification for measuring the zooplankton community's acute 

response to the ecotoxicological effects due to the coupled oil-spill and remediation practices. 

 

3.2.1 Acute toxicity of shoreline cleaner application (SCA) and enhanced monitored natural 

recovery (eMNR) 

 Changes in zooplankton community composition were observed during both remediation 

practices, eMNR and SCA. However, SCA had the greatest effects on the zooplankton 

community, which can be observed for both alpha and beta diversity index analysis with 

statistical tests utilized. It has been previously shown that SCA and the corresponding SWA 

used in this study (e.g., COREXIT® 9580A) can be acutely toxic to pelagic invertebrates (Bi 

et al., 2020; Fingas, 2013; Hansen et al., 2014). Ecosystem-level experimentation was 

required to gain a greater understanding of the potential effects posed by SWA at the 

community level in-situ. A recent study conducted in outdoors mesocosms determined 100% 

immobility of water striders (Metrobates sp.) to COREXIT® 9580A application within 

freshwater microcosms (Black et al., 2020).   
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The use of chemicals to treat petroleum spills can be argued to have a greater 

negative impact relative to the benefits gained due to the inherent toxicity of these 

anthropogenic compounds (e.g., COREXIT® 9580). Development of green chemicals or 

solvents is of priority to reduce the use of hazardous products while still attaining the same 

performance (Capello et al., 2007). These green chemicals or solvents can serve as a 

replacement to the conventional toxic solvents used in shoreline washing agent products 

historically (Chen et al., 2019). These emerging green solvents are commonly derived from 

plants, animals, and microorganisms. An example of a green solvent includes CytoSol®, a 

solvent composed of vegetable oil methyl esters and bioremediation agents (von Wedel, 

2000). Several different plant oils have been tested for use as an SWA, including vegetable 

oil, peanut oil, and sunflower oil (Chen et al., 2019). The use of green solvents can assist in 

the reduction of energy consumption while also accelerating the biodegradation of 

contaminants due to natural biodegradability (Chen et al., 2019). 

Nutrient enrichment is used to stimulate hydrocarbon-degrading microorganisms and 

can be an effective approach in remediating oil-contaminated shorelines and aquatic 

ecosystems, which was the purpose of implementing enhanced monitored natural recovery as 

a remediation practice (Atlas and Hazen, 2011; Bragg et al., 1994; Prince, 1993). Excess 

nutrients in aquatic ecosystems, however, can lead to eutrophication, with harmful algae 

bloom formation and expanding water hypoxia arising (Pretty et al., 2003; Watson et al., 

2016). Long-term nutrient enrichment in a boreal lake of low-energy has been shown to 

negatively impact the biomass of planktonic zooplankton (Malley et al., 1988; Paterson et al., 

2011). Nutrient enrichment can lead to a rise in the richness of rotifer species, sometimes 

leading to an overall increase in zooplankton richness (Azevêdo et al., 2015). Too large of an 

increase in primary productivity can, however, lead to decreases in zooplankton species 

richness (Dodson et al., 2000). 
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3.2.2 Zooplankton community measurement via DNA, RNA metabarcoding and 

morphological identification 

DNA and RNA metabarcoding were able to detect zooplankton up to the family and 

genus-level. Family and genus-level identification can be employed for the biomonitoring of 

macroinvertebrates and zooplankton (Emilson et al., 2017; Machado et al., 2015). At the 

species-level, many taxa were misidentified by both methods, which can be quite common if 

databases have not been curated for the local region of the taxonomic group of study (Schenk 

et al., 2020; Yang et al., 2017d). Two different barcode regions could be used, such as 

coupled 18S rRNA and COI metabarcoding, to help increase identification of zooplankton 

species (Zhang et al., 2018a). For this experiment, we wanted to compare metabarcoding to 

morphological identification using a single primer to save money and time, as using a single 

primer can be a common practice in DNA metabarcoding biomonitoring studies. Adding in an 

additional primer can lead to greater difficulties with interpreting metabarcoding data output 

and lead to complications when inferring relative abundance and presence of target taxa. 

Naming conventions of zooplankton can also lead to differences in the shared species 

detected due to database limitations of the corresponding metadata, as naming conventions of 

taxa can be variable (Visco et al., 2015). Metabarcoding can also detect non-target taxa from 

residual DNA, and possibly RNA, adhered to organisms or on non-target collected algae, 

leading to differences in species composition (Barnes et al.; Siegenthaler et al., 2019). PCR 

bias has been shown to influence detection of species and the inferred relative abundance, 

affecting total shared zooplankton species between methods and the relative portions 

(Elbrecht and Leese, 2015; Gibson et al., 2014; Harvey et al., 2017; Polz and Cavanaugh, 

1998).   

Relative abundances of zooplankton determined by metabarcoding was an acceptable 

proxy for biomass inferred from morphological identification at the genera-level. Previous 

studies have shown that eDNA/DNA copies can be correlated with organism biomass 

(Elbrecht and Leese, 2015; Takahara et al., 2012; Yang et al., 2017c). Relative abundance of 

detected species, however, varied between identification methods.  Zooplankton species could 
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have shed DNA at variable rates into the water column or differ in target gene copies within 

individuals, resulting in biases of relative abundance (Harvey et al., 2017; Sassoubre et al., 

2016). Life-history variability of zooplankton could impact the inferred activity of select taxa 

or the relative abundance inferred from RNA metabarcoding (Blazewicz et al., 2013), while 

differences in zooplankton habitat preference could influence presence upon collection 

(Leduc et al., 2019). Zooplankton DNA and RNA may have been additionally extracted with 

varying levels of recovery for different taxa, leading to biases in inferred relative abundance 

(Liu et al., 2019).   

Comparing biomasses of genera determined by morph-taxa with metabarcoding 

relative abundance, phylum Rotifera had greater relative abundances compared to genera in 

the phylum Arthropoda relative to what was inferred from biomasses. Traditional estimates 

for the biomass of genera within phylum Rotifera may not be representative due to too large a 

size of filter mesh utilized during collection (Chick et al., 2010) or due to small sizes. 

Differences in the life history of the two phyla, Rotifera and Arthropoda, could have impacted 

inferred biomass, with additional reasons due to sampling, extraction, and PCR within the 

metabarcoding pipeline. Finally, it should be noted that the zooplankton communities had 

high genetic variability for each assigned specific taxon using the COI gene. This was 

observed when looking at the number of ZOTUs assigned to each respective species. The 

concept of species has been evolving, especially in the context of amplicon sequencing, with 

intragenomic heterogeneity causing issues with inferences of diversity (Janda and Abbott, 

2007; Sun et al., 2013). This can lead to inherent differences between comparisons made 

between morphological and genetic assessments, as genomics continues to resolve how we 

classify taxonomy and help assist in deciphering species complexes. Bioinformatics methods 

and databases will need to be continuously updated to consider new information gained from 

this area of research. 

 



 

52 

3.3.3 Comparison of zooplankton identification methods to measure ecotoxicological effects 

Different zooplankton identification methods were used to determine the 

ecotoxicological effects of the two different remediation practices. RNA metabarcoding has 

the potential to measure the response of the active zooplankton community at the time of 

sampling, without the issue of DNA persistence in the environment (Cristescu, 2019) or 

identification of nonviable zooplankton (Zetsche and Meysman, 2012). RNA metabarcoding 

could be advantageous for measuring changes in community structure due to exposures to 

stressors, especially in the case of changes in taxa richness (Laroche et al., 2017). DNA 

metabarcoding may be more reliable for assessing treatment effects on community 

composition relative to RNA metabarcoding (Laroche et al., 2017), which was observed in 

the current study. One of the reasons for this outcome is DNA metabarcoding can commonly 

be the result of legacy nucleic acid contamination in the ecosystem due to the greater stability 

of DNA in the environment (Cristescu, 2019), leading to more taxa detected driving 

differences in communities measured in different habitats or settings. 

Even though RNA metabarcoding can be effective at depicting responses of the 

active community (Baldrian et al., 2012), variation in organism activity and life history can 

generate taxonomic biases, with cDNA synthesis adding to the biases due to artifacts 

generated during the procedure (Blazewicz et al., 2013; Brandt et al., 2020; Houseley and 

Tollervey, 2010). cDNA synthesis using reverse transcriptase, unlike PCR with DNA 

polymerase, does not undergo proofread during the procedure. DNA and RNA metabarcoding 

have been suggested to be both performed when assessing ecosystems (Laroche et al., 2017; 

Pochon et al., 2017). Previous studies have indicated that metabarcoding could serve as a 

stand-alone biomonitoring tool or as a complementary method to morphology-based 

monitoring (Laroche et al., 2018); however from this study we determined that differences 

can exist between the identification approaches and the monitoring conclusions made. 

Metabarcoding methods, overall, could be more sensitive relative to morphology in 

measuring changes in genera richness caused by various remediation practices. Alpha 

diversity, as determined by metabarcoding, is consistent with morphology-based alpha 
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diversity but can be more sensitive to spatial or environmental differences (Frontalini et al., 

2020; Mauffrey et al., 2020). SCA for all methods had the largest negative impact, seen as 

declines, on richness of the zooplankton community. Morph-taxa community composition 

shifted significantly on day 11, but no difference was determined on day 38, which disagreed 

with metabarcoding methods. Zooplankton metabarcoding can be more sensitive for 

analyzing community composition differences relative to morphology-based identification, 

which was determined at 38 days post-spill (Yang et al., 2017c).  

 

3.3 Recommendations for Future Work 

Metabarcoding of ecological communities will serve as a valuable tool for assessing at-

risk ecosystems and for development of timely and efficient methods for determination of 

potential ecotoxicological effects. There are many areas for improvement with this newly 

developed method. First, more research on the best sampling and collection methods should 

take place. This will allow the use of standardized protocols when collecting in the field. In 

the case of tissue metabarcoding, the same sampling effort can result in greater detection of 

non-indigenous species for metabarcoding approaches relative conventional sampling 

methods (Zaiko et al., 2015). Environmental DNA metabarcoding sampling effort can be 

more tricky, as the ecology of the eDNA will need to be accounted for (Deiner et al., 2016); 

however, in the case of zooplankton, tissue metabarcoding could be the best method as more 

quality DNA is obtained and better inference of the community dynamics could be detected.  

Second, research in the use of coupled RNA and DNA metabarcoding should continue to 

occur, as the relationship between the nucleic acids needs to be explored in a metabarcoding 

context. It has been shown that eRNA can have a similar decay rate as eDNA, with greater 

stability in the environment than was expected (Wood et al., 2020); however, in most lines of 

thought eRNA degrades more rapidly than eDNA in the environment. Using tissue DNA and 

RNA could avoid the issue of the stability of the nucleic acids in the environment, but more 

information on the fluxes of these nucleic acids in response to life-history changes and 

stressors needs to be accounted for. Overall, RNA could serve as a useful and valuable 



 

54 

method for aquatic biomonitoring and biodiversity assessment (Laroche et al., 2017), with 

limitations due to the natural fluxes of RNA within organisms. Third, the development of 

PCR-free methods, better primers, or improved correction methods can help deal with the 

issues of PCR biases (Leese et al., 2021; Liu et al., 2016; McLaren et al., 2019).  

Fourth, the ecology of eDNA and eRNA will have to be continued to be researched. 

Many ecologists are currently working in this area, as this information is crucial to the 

benchmarking of eDNA/eRNA and tissue DNA/RNA metabarcoding within government 

monitoring programs. The similarities and differences in what tissue DNA and RNA 

metabarcoding measure will also need to be researched further, as eRNA and RNA 

metabarcoding are a relatively new idea in terms of biomonitoring and ecological response to 

stressors. Finally, databases of target communities need to be continuously improved and 

updated with more curated species to allow the accurate identification of molecular sequences 

(Ruppert et al., 2019). Large limitations still exist in enabling accurate identification of 

metabarcoding data to the species level, as indicated by this study. For taxonomic groups not 

well annotated, such as freshwater nematode communities, the disconnect can be just as great 

(Schenk et al., 2020). More effort will need to be put into taxonomically classifying taxa via 

traditional methods and building comprehensive databases using the corresponding genomic 

data.  

 Oil spills will continue to have impacts on aquatic ecosystems as petroleum is continued 

to be extracted, transported, and consumed. Ecosystem studies help provide necessary 

information on the potential impacts of these anthropogenic stressors on aquatic ecosystems 

in a relevant context. More research needs to be done to better understand the underlying 

drivers and the long-term impacts of oil spills on freshwater ecosystems (Black et al., 2020; 

Cederwall et al., 2020), as this study determined the relatively acute response of the 

zooplankton community to remediation practices coupled with a simulated dilbit spill. 

Additional research on the most effective and least disruptive remediation practices of oil-

spills needs to be conducted. The impacts of these remediation practices on oil-spills have not 

been previously examined in boreal lakes of low-energy. In the case of SWAs, more research 
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needs to be conducted in order to fully assess these compounds prior to use in freshwater 

ecosystems (Black et al., 2020; Stroski et al., 2019). Alternative methods for remediating oil-

contaminated freshwater ecosystems needs to be closely examined to provide best methods to 

regulators and spill-responders. Science and technology are continuously evolving and more 

efficient and less invasive methods for remediation oil-spills are likely to arise. Research in 

this area will allow the selection of the best remediation practice and approach for the 

problem at hand.  

 

3.4 Conclusion 

 This thesis research was conducted to examine the potential value of zooplankton 

metabarcoding to assess the impacts of different remediation efforts of a simulated oil spill. 

The results demonstrated that metabarcoding could detect zooplankton up to the genera-level 

and can serve as an acceptable proxy for the biomass of zooplankton at the genus-level. 

Zooplankton metabarcoding could also be the more sensitive method for the detection of the 

impacts of the different remediation practices of oil-spills relative to morphological 

identification. This thesis also shows the differences between using DNA and RNA 

metabarcoding for the assessment of ecological communities’ response to stressors. While 

metabarcoding can be a powerful approach, it still requires substantial effort to benchmark the 

method, including building a comprehensive taxonomic database. SCA coupled with the 

simulated dilbit spill was shown to have the greatest overall impact on the zooplankton 

community. This suggests that the use of the SWA COREXIT® EC9580A, while effective, 

can have acute negative effects on the zooplankton community. Overall, this research 

highlights the ability of zooplankton metabarcoding to assess the impacts of acute 

environmental stressors and the short-term impacts of different remediation practices of 

simulated oil-spills.  
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APPENDICES 

 

Appendix A: MiSeq sequencing output 

Metabarcoding consisted of a total of 1,637,206 sequences after demultiplexing from the two 

MiSeq runs, with run 1 having 698,592 and run 2 having 938,614 sequences. Technical 

replicates had sequence counts of 8798 ± 6914 (mean ± standard deviation (SD)), while 

blanks had sequence counts of 322.4 ± 455 (mean ± SD) prior to merging of the two libraries, 

with some samples being re-sequenced on run 2. After denoising and merging technical 

replicates, a total of 1,301,361 sequences were assigned to target metazoan (Phylum Rotifer 

and Orders Calanoida, Cyclopoida, and Cladocera) to at least the family level, with merged 

technical replicates having sequence counts of 30984.8 ± 18821.9 (mean ± SD) (Table S1). 

After collapsing features to the taxa-level and removing unassigned taxa or taxa occurring in 

only one sample, samples were rarefied to equal read depths of 9985 (Figure S2).  
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Appendix A: MiSeq sequencing output 

Table A.1: Resulting annotated sequence read output post-denoising and ORF correction. 

Non-target indicates non-metazoan sequence reads, metazoan indicates all sequence reads 

assigned to metazoan, and target indicates zooplankton annotated sequence reads. 

 

Total Reads Non-target Reads Metazoan Reads Target Reads 

1,552,241 57458 1494783 1301361 
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Appendix A: MiSeq sequencing output 

 

Figure A.1: Rarefaction curve of number of detected taxa for each sample. The vertical line 

indicates the rarefied read depth of 9885. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

83 

Appendix B: Experimental shoreline enclosure descriptions 

Beginning in April 2019, when water temperatures had warmed enough to allow work to 

begin (>8°C), enclosures (15 X 5m) (Curry Industries, Winnipeg) were deployed in Lake 260 

shorelines of organic wetland type sediment. The enclosures' consisted of a polystyrene foam 

floatation collar encased in a polyvinyl shell. The floatation collar suspended an impermeable 

polypropylene curtain that extended to the bottom of the lake, where it was sealed to the 

aquatic and terrestrial sediment/soil using a double row of sandbags. A total of six enclosures 

were treated with oil in shoreline areas of organic/wetland sediments. One enclosure, not 

treated with oil, was included to serve as a reference (a total of seven enclosures). Water 

depth measurements were obtained at 1m intervals from the shoreline to determine slope of 

the lake bottom and estimate enclosure volumes (28,500 ± 1650L). Enclosures were assigned 

to a given treatment, or to reference designations, randomly. Table S1 indicates the specific 

locations for each enclosure. 
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Appendix B: Experimental shoreline enclosure descriptions 

 

Figure B.1: Aerial photo of experimental design used in comparing metabarcoding and 

traditional morphological identification of zooplankton in assessing the ecotoxicological 

effects of two remediation practices – enhanced monitored natural recovery (eMNR) using 

the addition of nitrogen and phosphorous, and a shoreline cleaner, COREXIT EC9580A 

(SCA) – relative to a reference enclosure (REF). Diluted bitumen was applied to enclosures 

on June 21st, with the selected remediation practices being applied on June 25th. Unlabeled 

enclosures are not part of this select experiment.  
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Appendix B: Experimental shoreline enclosure descriptions 

 

Enclosure Treatment Latitude GPS 

Latitude 

Longitude GPS 

Longitude 

wR1 REF N 49.69983 W 93.76760 

wEMNR1 eMNR N 49.69994 W 93.76750 

wSC1 SCA N 49.69997 W 93.76740 

wSC2 SCA N 49.70000 W 93.76730 

wEMNR2 eMNR N 49.70000 W 93.76721 

wEMNR3 eMNR N 49.70041 W 93.76715 

wSC3 SCA N 49.70048 W 93.76711 

Table B.1: Experimental shoreline enclosure locations within Lake 260. 
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Appendix B: Experimental shoreline enclosure descriptions 

 

Date 

Total Dissolved Phosphorus Chlorophyll a 

REF 
eMNR 

(avg. ± SD) 

SCA 

(avg. ± SD) 
REF 

eMNR 

(avg. ± SD) 

SCA 

(avg. ± SD) 

6/18/2019 

(Day -6) 
6.00 6.03 ± 1.10 5.80 ± 0.889 4.10 3.83 ± 0.953 4.05 ± 1.27 

7/02/2019 

(Day 11) 
6.80 6.87 ± 1.66 6.60 ± 0.458 2.60 3.60 ± 1.16 4.57 ± 1.38 

7/29/2019 

(Day 38) 
4.90 6.27 ± 1.10 4.60 ± 0.794 1.43 1.92 ± 0.0874 3.68 ± 1.65 

Table B.2: Total dissolved phosphorus and chlorophyll a measurement for treatments 

(average ± SD) over time points sampled. Day -6 was used as pre-spill measurement. 

Treatment groups consisted of enhanced monitored natural recovery (eMNR), shoreline 

cleaner application (SCA), and reference (REF).   
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Appendix C: Shared taxa relative abundance between DNA and RNA metabarcoding. 

 

Figure C.1: Shared taxa between DNA metabarcoding and RNA metabarcoding at (A) genus 

level and (B) species level. Unclassified species were filtered out.  
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Appendix D: Shannon diversity for identification methods between remediation 

practices  

ANOVA was used to estimate differences between Shannon diversity of treatments at each 

time point, as sample size was not sufficient for interpretation, with a student’s t-test used to 

test for differences between eMNR and SCA. No differences in Shannon diversity were seen 

between treatment groups, eMNR and SCA, at day -3 (Fig. S4, T-test p ≥ 0.598). Welch’s t-

test was significant at day 11 for morphological identification (Fig S4, T-test, p = 0.0356).  

SCA and eMNR differed significantly for DNA and RNA metabarcoding at day 38 (Fig. S4, 

T-test, p ≤ 0.0457).  
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Appendix D: Shannon diversity for identification methods between remediation practices 

 

 

Figure D.1: Zooplankton Shannon diversity for treatments over time for each zooplankton 

identification methods applied. Treatment groups consisted of enhanced monitored natural 

recovery (eMNR; n =3), shoreline cleaner application (SCA; n = 3), and reference (REF; n 

=1). ANOVA was used to estimate differences between treatment diversity at each time point, 

with a Welch’s t-test being used to test between eMNR and SCA. Dashed line represents 

beginning of simulated dilbit spill and treatment trend is represented by local polynomial 

regression.  
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Appendix E: Temporal zooplankton taxa richness between identification methods 

Differences in taxa richness between identification methods at each time point were tested by 

use of Kruskal-Wallis (KW) with Dunn’s Kruskal-Wallis multiple comparison with p-values 

adjusted with the Holm method for post-hoc testing. No difference was observed between 

identification methods at days -3 (Fig. S5, Kruskal-Wallis, p = 0.0740), however, significant 

differences were observed at day 11 and 38 post-spill (Fig. S5, Kruskal-Wallis, p ≤ 0.0191). 

At day 11 post-spill, DNA and RNA metabarcoding were found to have a greater richness 

relative to morphological identification (Fig. S5, Dunn’s test, p ≤ 0.0185), while at day 38 

post-spill, DNA metabarcoding was found to have a greater zooplankton richness than RNA 

metabarcoding (Fig. S5, Dunn’s test, p = 0.0147). 
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Appendix E: Temporal zooplankton taxa richness between identification methods 

 

 

Figure E.1: Overall genera richness over time for zooplankton identification methods. 

Kruskal-Wallis was computed between identification methods at each sampling time point.  

Identification methods consisted of morphological identification (Morphology), DNA 

metabarcoding (DNA), and RNA metabarcoding (RNA) with sample size n = 7 for each 

method. Lowercase letters indicated significance level of α < 0.05 inferred from Dunn’s 

Kruskal-Wallis multiple comparison with p-values adjusted with the Holm method. Dashed 

line represents beginning of simulated dilbit spill and treatment trend is represented by local 

polynomial regression.
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Appendix F: Resulting count data from metabarcoding and morphological identification. 

Table F.1: Family-level rarefied (9885) metabarcoding count data and raw morphological 

abundance and biomass data summed for each identification method. 

 

Family DNA 

Metabarcoding 

RNA 

Metabarcoding 

Morphological 

Abundance 

Morphological 

Biomass 

Asplanchnidae 12274 12578 1.944 0.02527 

Bosminidae 10165 10408 1597.7 264.8 

Brachionidae 123956 147648 3772.8 51.89 

Chydoridae 2416 1044 20.77 12.46 

Collothecidae 3 7 0.5556 0.03056 

Cyclopidae 41467 15635 125.89 121.91 

Cyprididae 2 0 0 0 

Daphniidae 34 13 5.277 5.635 

Diaptomidae 7248 7500 30.51 41.014 

Euchlanidae 2 0 0.3162 0.009486 

Eurycercidae 21 12 0.3299 0.6597 

Gastropodidae 20 53 1.994 0.03408 

Lecanidae 131 102 4.541 0.14212 

Lepadellidae 0 0 0.1325 0.0006630 

Macrothricidae 917 413 3.475 3.377 

Notommatidae 34 20 0 0 

Sididae 1429 1708 14.44 22.33 

Synchaetidae 3079 5595 8.497 0.3292 

Temoridae 1850 2098 4.335 9.367 

Trichocercidae 1051 1298 0.2792 0.01954 

Trichotriidae 1486 1450 0.2406 0.007219 
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Appendix F: Resulting sequence reads and count data from metabarcoding and 

morphological identification. 

Table F.2: Genera-level rarefied (9885) metabarcoding count data and raw morphological 

abundance and biomass data summed for each identification method. 

 

Genus 
 

DNA 

Metabarcoding 

RNA 

Metabarcoding 

Morphological 

Abundance 

Morphological 

Biomass 

Alona 32 14 0 0 

Alonella 182 152 0 0 

Ascomorpha 20 53 0.4529 0.006341 

Asplanchna 12274 12578 1.944 0.02527 

Bosmina 10165 10408 1597.7 264.8 

Brachionus 23934 21300 0 0 

Ceriodaphnia 23 3 5.127 5.127 

Chydorus 2176 869 20.77 12.46 

Collotheca 3 7 0.5556 0.03056 

Cyclops 41274 15598 0 0 

Cyrtonia 2 0 0 0 

Daphnia 2 10 0.1500 0.5087 

Diacyclops 0 0 7.062 4.772 

Diaphanosoma 1075 852 13.98 15.41 

Disparalona 26 9 0 0 

Epischura 1850 2098 4.335 9.367 

Euchlanis 2 0 0.3162 0.009486 

Eucyclops 10 2 3.064 3.999 

Eurycercus 21 12 0.3299 0.6597 

Gastropus 0 0 1.541 0.02774 

Ilyocryptus 732 324 1.582 3.1630 

Kellicottia 956 2362 2.096 0.03144 

Keratella 98530 123168 3770.7 51.86 

Lecane 131 102 1.961 0.06472 

Lepadella 0 0 0.1325 0.0006630 

Leptodiaptomus 7248 7500 30.51 41.014 

Macrocyclops 0 0 0.2480 1.171 
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Macrochaetus 0 6 0 0 

Macrothrix 111 27 1.894 0.2143 

Mesocyclops 106 28 83.79 102.1 

Microcyclops 0 0 0.2817 0.3934 

Monostyla 0 0 2.580 0.07739 

Mytilina 13 30 0 0 

Notommata 34 20 0 0 

Ophryoxus 74 62 0 0 

Plationus 20 6 0 0 

Platyias 503 782 0 0 

Ploesoma 928 1961 7.307 0.2923 

Polyarthra 1742 1230 1.191 0.03691 

Sida 354 856 0.4615 6.923 

Simocephalus 9 0 0 0 

Synchaeta 409 2404 0 0 

Trichocerca 1051 1298 0.2792 0.01954 

Trichotria 1486 1444 0.2406 0.007219 

Tropocyclops 77 7 31.45 9.421 
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Appendix F: Resulting sequence reads and count data from metabarcoding and 

morphological identification. 

Table F.3: Species-level rarefied metabarcoding count data and raw morphological abundance 

and biomass data summed for each identification method. Note, due to taxa not assigned to 

species-level being filtered out, the read counts do not equal to the rarefied depth of 9885. 

 

Species DNA 

Metabarcoding 

RNA 

Metabarcoding 

Morphological 

Abundance 

Morphological 

Biomass 

Alonella exigua 167 117 0 0 

Ascomorpha 

ovalis 

4 7 0 0 

Bosmina freyi 1429 134 0 0 

Bosmina liederi 8736 10274 0 0 

Bosmina 

longirostris 

0 0 1597.7 264.8 

Chydorus 

sphaericus 

0 0 20.77 12.46 

Collotheca 

campanulata 

3 7 0 0 

Daphnia 

mendotae 

2 10 0.1500 0.5087 

Diacyclops 

thomasi 

0 0 7.0618 4.772 

Diaphanosoma 

birgei 

0 0 13.98 15.41 

Disparalona 

acutirostris 

26 9 0 0 

Epischura 

lacustris 

1850 2098 4.335 9.367 

Eurycercus 

longirostris 

21 12 0 0 

Kellicottia 

longispina 

0 0 2.0962 0.0314 
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Keratella 

cochlearis 

39751 37656 201.06 2.011 

Keratella crassa 0 0 28.920 0.2892 

Keratella 

serrulata 

0 0 1.5176 0.01518 

Keratella 

taurocephala 

0 0 3539.16 49.55 

Leptodiaptomus 

minutus 

7231 7500 30.508 41.01 

Macrocyclops 

albidus 

0 0 0.2480 1.171 

Mesocyclops 

edax 

106 28 83.79 102.1 

Microcyclops 

rubellus 

0 0 0.2651 0.3686 

Ophryoxus 

gracilis 

74 62 0 0 

Ploesoma 

hudsoni 

12 12 0 0 

Polyarthra 

dolichoptera 

1407 1026 0 0 

Polyarthra 

vulgaris 

0 0 1.1905 0.03691 

Sida crystallina 354 856 0.4615 6.923 

Simocephalus 

serrulatus 

9 0 0 0 

Trichocerca 

cylindrica 

0 0 0.2792 0.01954 

Trichotria 

tetractis 

0 0 0.2406 0.007219 

Tropocyclops 

extensus 

0 0 31.449 9.4214 

Tropocyclops 

prasinus 

77 7 0 0 
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Appendix G: Resulting statistical output from pairwise comparisons. 

Table G.1: Resulting t-test statistics from pairwise comparison of computed least square 

means for treatments based on random intercept model. Treatment groups consisted of 

enhanced monitored natural recovery (eMNR), shoreline cleaner application (SCA), and 

reference (REF).   

 
Comparison Estimate Std. Error df t value Pr(>|t|) 

DNA 

Metabarcoding 

REF - eMNR 1.67 1.74 16 0.958 0.353 

REF - SCA 5.11 1.74 16 2.94 0.00968 

eMNR - SCA 3.44 1.59 16 2.80 0.0129 

RNA 

Metabarcoding 

REF - eMNR 3.89 1.81 16 2.15 0.0473 

REF - SCA 6.67 1.81 16 3.69 0.00203 

eMNR - SCA 2.78 1.28 16 2.17 0.0613 

Morphological 

identification 

REF - eMNR 1.78 2.06 16 0.864 0.401 

REF - SCA 3.44 2.06 16 1.67 0.114 

eMNR - SCA 2.67 1.46 16 1.15 0.269 
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Appendix G: Resulting statistical output from pairwise comparisons. 

Table G.2: Pairwise comparison between treatment groups based on total distance matrix for all 

samples, while blocking the effects of time. Treatment groups consisted of enhanced monitored 

natural recovery (eMNR), shoreline cleaner application (SCA), and reference (REF). 

Comparison 
  

DNA  

Metabarcoding 

RNA  

Metabarcoding 

Morphological  

Identification 

DF 
F- 

Statistic 
R2 Pr(>F) 

F- 

Statistic 
R2 Pr(>F) 

F- 

Statistic 
R2 Pr(>F) 

REF -eMNR 1,10 2.91 0.226 0.0173 1.58 0.136 0.0974 2.01 0.168 0.0478 

REF - SCA 1,10 4.13 0.292 0.0174 2.16 0.178 0.0142 1.96 0.164 0.0796 

eMNR - SCA 1,16 1.10 0.0642 0.203 0.979 0.0576 0.267 0.568 0.0343 0.498 

 


