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Abstract

Distributed analytics architectures are often comprised of two elements: a compute engine and a storage
system. Conventional distributed storage systems usually store data in the form of files or key-value pairs.
This abstraction simplifies how the data is accessed and reasoned about by an application developer. How-
ever, the separation of compute and storage systems makes it difficult to optimize costly disk and network
operations. By design the storage system is isolated from the workload and its performance requirements
such as block co-location and replication. Furthermore, optimizing fine-grained data access requests becomes
difficult as the storage layer is hidden away behind such abstractions.

Using a clean slate approach, this thesis proposes a modular distributed analytics system design which is
centered around a unified interface for distributed data objects named the DDO. The interface couples key
mechanisms that utilize storage, memory, and compute resources. This coupling makes it ideal to optimize
data access requests across all memory hierarchy levels, with respect to the workload and its performance
requirements. In addition to the DDO, a complementary DDO controller implementation controls the logical
view of DDOs, their replication, and distribution across the cluster. A proof-of-concept implementation
shows improvement in mean query time by 3-6x on the TPC-H and TPC-DS benchmarks, and more than an

order of magnitude improvement in many cases.
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1 Introduction

1.1 Big Data Analytics

The ubiquity of big data and distributed computing solutions has opened new frontiers for data analytics.
Terabytes of data are being ingested, transformed, and aggregated on a daily basis. As data volumes continue
to grow, becoming more and more difficult to handle using a single powerful machine, the use of distributed
systems is steadily increasing in numerous disciplines. The most notable and widely used distributed platform
is HadoopE occupying roughly 33% of on-premise solutions [5].

MapReduce was created as a simple programming model that offers an easy and scalable way to use the
compute resources of a cluster [I5]. One of the main advantages of a MapReduce-supporting framework is
that it removes the burden of worrying about the intricate details of a distributed computing system. Details
such as synchronization, networking, and fault tolerance are no longer the worry of a distributed application
developer. Instead, the developer can focus on solving the problem at hand and express their solution through
two simple compute primitives: map() and reduce().

A separate, fault-tolerant, distributed file system is often used in combination with MapReduce to make
use of distributed storage and feed data to the compute engine. It soon became very common to have
applications consisting of multiple successive stages of map() and reduce(). Under that architecture, it
meant that the output of every stage needed to be written to the file system and read again at the beginning
of the next stage. It was obvious that these two systems lacked primitives to utilize distributed memory.
Resilient distributed datasets (RDDs) were introduced to solve this problem [43]. The RDD interface offers
an intuitive and easy way to implement even more complex distributed applications. Intermediary results
are often cached automatically by the framework but can also be explicitly cached, if needed. This greatly
speeds up the execution of multistage applications.

The RDD implementation of Apache Spark, coupled with a distributed file system such as the Hadoop
distributed file system (HDFS) [31], is the one of the most commonly deployed big data analytics solutions
today. HDFS provides data to the compute engine. The compute engine tries to optimize tasks and cache
intermediary results, alleviating repetitive and costly file system access. However, there are some inherent
characteristics of a distributed storage pool that make this architecture lack a few key optimizations. The

remainder of this chapter discusses these drawbacks and potential ways to overcome them.

1 Apache Hadoop. https://hadoop.apache.org/. Accessed November 30, 2020


https://hadoop.apache.org/

1.2 Motivation

1.2.1 Cost of Generalization

Most distributed file systems and execution engines are built for general-purpose use and enabling rapid
development of distributed applications. This level of generality can dictate many implementation details
and the overall system behaviour. For example, in HDFS, block allocation and placement is completely
workload-agnostic because no assumptions can be made about the workload at this level of generality. The
performance penalty of this approach can be substantial when compared to more specialized systems which
implement many optimizations for their workloads.

Furthermore, these general-purpose systems, which were built mainly for one-time jobs, are being in-
creasingly used in specialized applications such as data warehousing [I4]. This thesis advocates an approach
that attempts to balance both performance and the amount of development work required to introduce new
distributed applications. The following subsections discuss concrete examples of performance loss due to
generalization and gives some insight on the magnitude of performance loss.

The performance metrics used here are concerned with makespan and resource utilization for a given
workload. Makespan can be defined as the total duration of execution of a workload (e.g. a set of analytical
queries) on the system, including any potential queuing and scheduling delays. Resource utilization for big
data clusters is usually concerned with spatial allocation of resources; e.g. total number of CPU cores. These
two metrics highlight differences in system efficiencies. For example, if a system a is able to finish a given
workload in less time (or using less resources) than a system b, then it can be deduced that system a is more

efficient than system b.

1.2.2 Distributed Storage for Analytics

Distributed file systems usually offer a hierarchical file and directory namespace, similar to most centralized
storage systems. This abstraction helps build an over-simplified image about the nature of the file system.
In reality, a distributed file system is very complex, and its performance can be unpredictable if not used
carefully. Access times can vary greatly, due to locality differences (block location relative to access location)
as well as node heterogeneity. The file and directory abstraction is intuitive and easy to use. However,
in the case of distributed storage, it obscures important details which are sometimes the main focus of
performance-conscious applications. One of these important details is block locality.

The files are usually split into blocks to be scattered and replicated across nodes for performance and
fault tolerance purposes [I9]. This introduces heterogeneity and puts stringent constraints on what can be
realistically done with these files. Realizing a warehousing system on top of such distributed file systems

must take into account causes of heterogenous access, which can be summarized as follows:

1. The time to read a block depends on the network distance; i.e. access location compared to physical



location (same node, same rack, same cluster, etc.), and

2. The nodes themselves could be heterogenous in terms of compute capacity and I/O bandwidths.

To mitigate the heterogeneity issues, a logical data object (such as a table) needs to be stored across
many files, each roughly equal to the configured block size of the storage system. In the job planning
phase, individual tasks are assigned exactly one input file and each task will be sent to (or generated at)
the node housing the single-block file. This mitigates the first heterogeneity problem. The number of tasks
sent to a node will also depend on its compute and I/O capacity, solving the second heterogeneity problem.
Furthermore, additional metadata might be needed during query planning for optimization purposes as well
as keeping track of the files that comprise the logical data objects and their structure. A lightweight DBMS
(database management system) for metadata and file information could be installed at a central location to
solve this issue [34]. In essence, this is similar to augmenting the namespace metadata using a sub-system.

This seems to work well if all analytical tasks to be executed will need to access one logical data object.
What happens if there is more than one data object involved in an analytical task? This requires some way
to indicate to the file system to co-locate the blocks of different (and seemingly unrelated) files so that we can
create tasks that access more than one file without compromising the solution for locality. A more feasible
option would be to denormalize the data. If the storage system were flexible enough to allow control over
block placement, this would mean more opportunities for workload-specific optimizations.

The separation of file system and execution engines makes it difficult to optimize costly disk and network
operations due to obscured details of both systems. HDFS, for instance, does not allow an application to
specify block placement constraints. As far as the storage system is concerned, it needs to only maintain
a certain number of replicas for each data block. One missing key element is the ability to co-locate data
blocks that make up two or more logical data objects; i.e. co-locating blocks from two or more objects (such
as tables), each having many blocks scattered throughout the cluster.

In addition to denormalizing data, a common solution is to use a caching layer, and hope that its policies
(prefetch and eviction) are intelligent enough to learn the access patterns of the workload. These access
patterns could have been communicated to the file system if the file system were able to give such fine-
grained control over block placement. And even if the caching layer is successful in discovering the access
patterns, relying on a middle layer to optimize away architectural problems may not be the best option.

A warehousing system that uses two independent compute and storage systems is bound to be inefficient
due to the complexity of storage systems and varying needs of many different workloads. Moreover, dis-
tributed warehousing systems that try to offer a logical view of the data, such as Apache Hive, end up using
the hierarchical structure of the file system namespace to store partitioned and bucketed data records [34].
The file and directory namespace is not always capable of efficiently encoding the logical structure of data
objects. Depending on the type of workload and data object, different namespace implementations may be

needed.



1.2.3 Optimal Performance of a Cluster

Most distributed platforms were designed to be general execute engines, providing powerful primitives to
transform and analyze large volumes of data. These engines are well-suited for one-time jobs. However, it is
becoming more common to use these platforms to perform repetitive and somewhat predictable tasks in spe-
cialized applications often involving structured data. For such workloads, there are wasted opportunities for
optimization, such as indexing. These systems operate inefficiently and waste expensive compute resources.

The way these distributed frameworks were originally re-incarnated and improved upon was through
identifying a certain problem and designing a new system that solves that problem. The new system’s
performance is then compared to the previous system to quantify relative improvement without knowledge of
an upper bound. The process is incremental and can require multiple iterations to reach an optimal solution.

To demonstrate inefficiencies in current systems, in an experiment described in Section a highly
specialized and optimized program implementing a single analytical query was found to execute as much as
26 times faster than current state-of-the-art systems. The performance gap shows empirically that current
systems are far from optimal even for simple workloads. This observation is consistent with previous works
comparing the performance of platforms such as Hadoop and Spark against minimalistic implementations
using MPI (message passing interface) [111 25| [28§].

What if we free ourselves from all architectural constraints and implement an optimized version of a
given workload and consider that to be the upper bound of performance? We can then rely on both first
principles thinking and previous knowledge to design a new system that supports an intuitive API (application
programming interface). The goal of such an API is to provide primitives that the larger system can invoke.
A successful system design in this case is one that can use the provided primitives to achieve comparable

performance to the optimized implementation.

1.2.4 Proposed Solution

To address the issues discussed, this thesis proposes a modular system design that differs from current archi-
tectures in two main respects. First, the generalization problem is mitigated by fine-tuning and specializing
system behaviour on a per-workload basis using pluggable modules for workload implementations. Second,
the proposed design enables the coupling of execution mechanisms to establish efficient compute pipelines
spanning across all resources of concern for a given workload. This allows any possible optimizations and/or
coordination between these mechanisms to be implemented behind the scenes.

These two novel changes address all of the problems described throughout this chapter. An analytics
application is now able to specify how its computation and storage may be realized by providing implemen-
tations of system modules that are only utilized for that particular workload. These modules control data
representation, compute logic, serialization, physical query planning, logical view of the data, among others.

The base system manages common functions, for which a single implementation is guaranteed to be suitable



for all workloads. Examples include synchronization, networking, resource management, fault tolerance and
recovery, etc.

The tradeoff of this approach is the substantial development effort required to implement many system
modules. This development effort can only be justified in use cases involving repeated analytical tasks and
long-term data warehousing. For short-term storage and/or one-time jobs, existing systems such as Hadoop

and Spark are more suitable.

1.3 Thesis Statement

This thesis proposes that a modular distributed system design which tightly couples storage, memory, and
compute resources can largely improve the performance of analytical queries on structured big-data when
compared to existing general-purpose frameworks. The resource coupling is achieved through a distributed
data object (DDO) interface which gives the application developer control over key node-local execution
mechanisms. The modular design allows many system components to be specialized and fine-tuned on a
per-workload basis. The core component of the system is a unified storage and execution engine which
manages common functionality such as networking, scheduling, fault tolerance, etc. Using the TPC-H [35]
and TPC-DS [36] benchmarks, this thesis shows that the proposed design can outperform systems such as
SparkSQL and Apache Hive.

1.4 Scope

The goal of this thesis is to lay the foundations of a system design for efficient distributed analytics. This
is achieved through careful examination of both the inefficiencies in current systems and the empirically
established upper bounds of a few select workloads. The process yields a set of requirements for the design.
Most of these requirements could be satisfied by using a modular system design as explained. Furthermore,
a data object design that couples different execution mechanisms allows efficient use of node-local resources.

To demonstrate the benefit of coupled execution mechanisms under a single data object, consider the
example of a list of records indexed by an attribute o and written to a file f. If an analytical task needs
to perform an operation on records having o € r, such that r is a known interval, then the index of «
can be used to physically locate r in f. The storage-controlling mechanism would only read the region
of interest from f. On the other hand, the compute-controlling mechanism can take this information and
skip the “filter” operation which would otherwise have been performed. Hidden internal optimizations and
cooperation between all the different mechanisms allows workload implementers to create efficient compute
pipelines. In comparison, this is not possible using HDFS due to system separation and the fact that the
storage system only deals with entire blocks.

This kind of optimization is not new and has been used before in specialized applications such as relational

databases. In this thesis, the concept has been generalized and brought to distributed systems. The evaluation



done in this thesis only examines structured relational data and SQL (structured query language) workloads.
It is clear, however, that this applies to cases involving any structured data that can be indexed and workloads
that have a tendency to access limited regions of large collections.

The term “structured data” usually refers to data that adheres to a predefined data model, which defines
how the data entries relate to each other and what type of information can be found within each entry; e.g. a
data model may require that a sales record will always have a pointer to an item record, quantity of the sold
item, and the total price. Data models will usually enforce constraints on data records such as having not-null
key fields. Constraints such as these can be used to build record indices to improve the data warehouse’s
performance in extracting ranges of records. This thesis does not investigate the case of semi-structured and
unstructured data. However, similar optimizations may still be applicable and other improvements, such as

block co-location, can result in speed-ups over current distributed storage systems.

1.5 Organization

The rest of the document is organized as follows. Chapter 2 covers the background, presenting important
design considerations and exploring related works in the literature. Chapter 3 presents the DDO interface
and details key design elements of a system that supports DDOs. Chapter 4 discusses a proof-of-concept
implementation: the Relation DDO, a DDO created specifically for relational data warehousing and analytics.
Chapter 5 gives the experimental results and compares with multiple baselines. Finally, Chapter 6 summarizes

the findings of this work and discusses future work.



2 Background and Related Work

This chapter presents the background and some of the most notable related works. Sections[2.1]through[2-4]
present the background material on big data processing. Section briefly discusses resource management.
Shifting focus towards distributed data warehousing in particular, Section discuses notable efforts in this
area. The concept of coupling different resources to allow some optimization or performance improvement
was explored in Section Finally, Section [2.8| concludes the chapter and identifies the main goals to be

realized in this thesis.

2.1 Mainstream Big Data Processing

The origins of almost all modern big data applications can be traced back to two notable works in the
early 2000’s, namely, the Google File System (GFS) [19] and the MapReduce programming paradigm [I5].
However, these two works remained closed-source for a few years until the Hadoop MapReduce and the
Hadoop Distributed File System (HDFS) [3I] open-source implementations became available. In order to
understand how to design an entirely new system, one must understand why these monoliths of big data
remained an industry-standard almost two decades after their inception. It also means that challenging their
design must be approached with care.

It is a few key characteristics of these systems that allow them to remain the cornerstone of big data
processing. Reliability, scalability, and intuitive parallel processing abstractions are some of the most notable.
These systems are fault-tolerant to both persistent and transient data losses. For losses of persistent data,
replicas are often employed to decrease the likelihood of data loss. As for transient data (temporary data
between compute steps), recomputation and checkpointing are often used. Another key characteristic is
scalability. Both Hadoop MapReduce and HDFS were shown to be scalable up to a few thousand nodes in
multi-tenant clusters [37]. Finally, having intuitive parallel processing abstractions is a characteristic that
has led to widespread adoption of MapReduce and later frameworks. Application developers no longer need
to worry about the intricate details of synchronization and networking. By limiting the developer’s concern
to application logic, a wide range of developers from different backgrounds are more likely to collaborate
on processing and analyzing multi-terabyte datasets. Almost all modern distributed computing frameworks

offer some form of high-level parallel processing abstraction, such as Sparkﬂ Stormﬂ and Flinkﬂ to name a

L Apache Spark. https://spark.apache.org/. Accessed November 30, 2020.
2 Apache Storm. https://storm.apache.org/. Accessed November 30, 2020.
3 Apache Flink. https://flink.apache.org/. Accessed November 30, 2020.
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few.

While all of the previous examples were concerned with the key characteristics mentioned, very few have
examined the upper limits of performance and system efficiency. When it comes to measuring performance,
the process is always comparative to previous systems in an attempt to quantify improvement. In most cases,
this is done without full investigation of the reasons why these systems were able to be improved in the first
place. Many works in the literature often identify one of many bottlenecks in current designs and address that
particular bottleneck only, leaving many other architectural inefficiencies. The upper bound of performance
is unknown and incremental improvements seem to be always possible. This thesis advocates an approach
in which an upper bound is first identified and later used to drive the design and development process of
the new architecture. Comparing to the upper bound also gives an estimate of how well the system design
achieves optimal operation and whether it has acceptable overheads. In the following sections, relevant works
from the literature will be examined in more detail to understand important design issues, identify possible

areas of improvement, and note the proven successes of current systems.

2.2 Distributed and Massively Concurrent Programming Models

2.2.1 Beyond MapReduce
Dryad

Dryad is a general purpose execution engine for distributed data-parallel programs [23]. It offers a pro-
gramming model that describes computation and data dependency using directed acyclic graphs (DAGs).
Programs developed for this model are called “vertex programs”. The runtime system can optimize the graph
and distribute computation efficiently as a result of the exposed data dependency. The design is mainly in-
fluenced by GPU shader languages, MapReduce, and parallel databases. The authors argue that the success
of these influential systems comes from the fact that they force the developer to think about data parallelism.
Dryad runtime deals with vertex programs that expose parallelism opportunities through a description of
data dependency. The runtime system can parallelize execution using available resources and cover faults.

Experimental results show near linear scaling with increasing number of nodes.

An interesting approach to measuring performance was taken in this study. The running time of a SQL
query running on SQLServer was compared with an equivalent Dryad vertex program that accesses data
and indices the same way as the baseline. This comparison was only viable for the single node case, as
SQLServer does not support distributed execution. The running time of Dryad was largely better than that
of SQLServer. The authors attribute this to the fact that SQLServer supports logging, transactions, and
mutable relations, all of which may hinder its performance when compared to an execution engine free of

these requirements.



Apache Spark

Spark is a general-purpose data processing framework built on top of the RDD abstraction [44]. Implementing
non-trivial logic and/or iterative algorithms in MapReduce would often require multiple successive stages,
each having their map, shuffle and reduce steps. The inputs to map tasks can only be read from the
distributed file system, and outputs of reduce tasks are always written to the file system. Zaharia et al.
proposed a method for caching intermediary results using distributed memory. This approach pipelines
compute stages and avoids writing data to persistent storage.

The RDD abstraction couples both distributed memory and distributed compute resources and offers a
wide variety of compute primitives (including the typical map and reduce primitives) as well as memory
control primitives such as cache. More complex primitives implementing commonly used functionality such
as filter and groupBy are also provided by the RDD. Compared to MapReduce, Spark can be as much as 100
times faster due to its use of distributed memory and overall improved efficiency.

Alongside the low-level RDD API, Spark also offers higher-level APIs (DataFrames and DataSets) and
libraries for a variety of use cases including SQL, stream processing, graph processing, and machine learning.
In the recent years, Spark has undergone many modifications and improvements. The development has
been driven by the community at-large as well as the original creators and individuals from several major

corporationsﬁ

Apache Tez

Tez is a unifying framework for developing distributed data processing engines [29]. Tez is not an execution
engines itself. Instead, it provides a library layer that can be used to build data processing engines of various
concerns. This alleviates the burden of implementing resource negotiation, fault tolerance, task monitoring
and coordination, etc. with every new engine.

The framework offers a DAG API that allows developers to define the computation using a directed
acyclic graph in a manner similar to (and largely inspired by) Dryad. In a Tez DAG, the edges which
represent data dependencies (and also data movement) can be configured to perform broadcast, key-value
based shuffle, one-to-one mapping, or any custom user-defined routing rules. The vertices are composed of
three sub-components: the inputs, the processor, and the outputs. The processor defines the actual code to
be executed. The input and output classes are defined by the incoming and outgoing edges. Tez offers an
abstraction called the vertex manager which allows currently running vertices to reconfigure future vertices
and their payloads (including the processor code). This allows engines running on Tez to adapt their physical
execution plan mid-job and make decisions based on information that is only available during execution.

Evaluating Tez depends on the workload and the engine implementation being run on top of the frame-

work. Performance tests of Hive on Tez using workloads derived from TPC-H [35] and TPC-DS [36] bench-

“https://spark.apache.org/committers.html. Accessed May 11, 2021.
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marks show significant speed-ups compared to Hadoop MapReduce. Pi on Tez was tested on a cluster of
4200 servers at Yahoo!. The performance results showed 1.5 to 2x improvement compared to Pig on Hadoop
MapReduce.

Comparing a typical Spark on YARN distribution and an implementation of Spark on Tez reveals the
importance of fine-grained ephemeral resource allocation in a multi-tenant environment. Tez allocates smaller
and short-lived YARN containers for Tasks while Spark allocates resources to run its VMs (virtual machines)
for the entire duration of the job. While there may be an increased overhead (delays due to resource
negotiation and queueing in YARN) in the approach taken by Tez, the price of having allocated unused

resources may be too great in some multi-tenant use cases.

2.2.2 Actors, Message Passing, and Function Passing

Message passing interface (MPI) has been widely used in high-performance computing applications [32].
Programming complex data processing applications at the transport layer is arguably still a huge effort.
With MapReduce and later systems, there are two main advantages over MPI: high-level data processing
abstractions, and fault tolerance. Many of the current compute engines, which provide those two advantages,
are built on top of MPI themselves. For instance, Spark heavily relies on AkkaEI a message passing library
for Java and Scala.

Haller and Odersky developed an actor implementation in Scala that aims to unify both thread-based
and event-based actors [20]. The implementation relies heavily on Scala’s extensibility and rich feature set;
in particular, partial functions and advanced pattern matching capabilities. Compared to SALSAE] a Java-
based actor language, the throughput of this implementation was found to be 20 times higher. This allows for
performant implementations of massively concurrent systems on the mainstream JVM (Java virtual machine)
platform.

Miller et al. proposed a model for distributed functional programming called “function passing” [27].
The model allows sending function closures to nodes where corresponding data resides. The model can be
seen as a generalization of many modern execution engines such as Spark. Data is stored in containers
called silos which have handles—called SiloRefs—to allow the programmer to access the data within them.
SiloRefs can point to either local or remote silos, and even silos which have not yet been materialized. The
serializable function closures operating on SiloRefs are called spores. A spore is made up of two serializable
parts: a header and a body. The header carries state data while the body contains code that performs some
computation. Fault recovery is realized in this model by associating silos with lineage DAGs. Any lost silos
can be recovered by reapplying the transformations in the lineage DAG. The repeated computation must

begin from input silos originating from reliable storage. An implementation of this system in Scala was

5 Apache Pig. https://pig.apache.org/. Accessed April 15, 2021.
6 Akka. https://akka.io/. Accessed May 4th, 2021.
TSALSA. https://wcl.cs.rpi.edu/salsa/. Accessed April 7, 2021.
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developed and miniature examples of Spark RDDs and the MBrace frameworkﬁ were tested.

2.3 Reliability

An ideal distributed system appears to its users as a single logical entity; i.e. the distribution is hidden
from the users of the system [33]. However, partial failures are quite common in distributed systems. A
fault-tolerant design can continue to operate efficiently while automatically trying to recover failed nodes.
The single entity view of the system isolates the user from the internal partial failures the system may have.
The goal is often achieved by using redundancy.

Node failures can be transient or permanent. A transient failure is a failure which can occur due to bugs in
the system implementation, bugs in libraries, spurious hardware behaviour, etc. and can be mostly recovered
from automatically by restarting the process and/or node. Permanent failures are usually triggered by a
failing or misbehaving hardware components. This failure can be catastrophic leading to node unavailability,
or it could greatly impact the performance of a node rendering it largely unavailable; e.g a failed drive in
a RAID (redundant array of inexpensive disks) unit, or firmware updates causing hardware to misbehave.
Permanent failures are assumed to be handled by the system administrator. In both cases, there is a
measurable mean-time-between-failures (MTBF) for different classes of nodes which can be used to model
the system and calculate the overall rate of failure.

The system design proposed in this work is mainly concerned with performance. There is no particular
effort done to improve the reliability of a distributed big data system. In this section, a selection of fault-
tolerant designs will be briefly examined.

Ghemawat et al. first proposed a method for sharding and replicating files into fixed-size data blocks [19].
Data nodes are considered to be unreliable commodity machines having fairly limited compute and storages
resources. A more reliable and highly available name node keeps track of all data blocks in the cluster and
makes decisions using global information. The name node is usually a more reliable, more powerful machine.
However, the name node remains a single point of failure and a potential bottleneck. Shvachko et al. reused
the same architecture in the open-source HDFS [31]. Shvachko et al. have shown that the system can have
a secondary name node that is mostly dormant and is only activated in the event the primary name node is
unavailable. During its normal operation, the secondary name node mirrors the operation log of the primary
name node to keep track of all blocks, but does not make any decisions or instruct data nodes to take any
action.

The design of GFS and HDFS proved to be reliable and fault-tolerant, albeit some concerns (such as the
total number of files/directories) that may exist. The reliability of the entire cluster depends on one or two
special nodes. The architecture is also not applicable to clusters not having a performant, reliable node to

be trusted as name node/master.

8MBrace. http://mbrace.io/} Accessed April 15, 2021.

11


http://mbrace.io/

Behera et al. studied the concept of failure prediction and proactive migration to avoid recomputation [7].
In addition to periodic checkpointing, the system uses a failure prediction model to assess the possibility of an
imminent failure and predict lead time to failure. If the predicted lead time to failure is sufficient to perform
a live migration, the computation is migrated to one of a set of reserved idle nodes. The failed node should
then be restored and added to the set of reserved nodes. Moreover, local burst buffers are used to improve
checkpoint performance. Burst buffers allow fast checkpointing which are later written asynchronously to
reliable distributed storage. Results show that checkpoint time was reduced by = 30%-82% due to the use
of burst buffers. The use of failure prediction and migration reduced the recomputation time by ~ 51%-56%
for applications with large checkpoint sizes and ~ 13%-85% for applications with small checkpoint sizes. As
most modern systems use recomputation to recover from task failures [23], 27 29] [43], this approach may

prove to be a valuable addition to big data processing systems.

2.4 Scalability

The ability to handle growing volumes of data and increasing numbers of users is one of the main design
concerns of big data systems. Bondi’s definition of load scalability puts focus on two main aspects: (1) man-
aging shared resources, and (2) efficient resource consumption [9]. Assuming optimal resource management
and allocation, efficient resource consumption is only dependent on the efficiency of the compute and stor-
age frameworks. As hardware continues to evolve, the design requirements of these frameworks and certain
bottlenecks of concern are changing as a result. This section investigates the scalability of common system

designs, identifies problems in current systems, and speculates possible solutions.

2.4.1 Compute Efficiency

Bakratsas et al. performed an empirical study to evaluate the performance of HDFS and MapReduce on solid
state drives (SSDs) [6]. The purpose of the study was to find whether upgrading servers to use SSDs rather
than hard disk drives (HDDs) would have a significant impact on the performance of a graph processing
application using Hadoop MapReduce and HDFS. For TestDFSIO, an HDFS throughput benchmark, the
results perfectly reflect the throughput difference between SSDs and HDDs. However, the graph processing
workload saw minimal improvement even for map tasks which are only dependent on the I/O throughput of
HDFS and the compute throughput. Bakratsas et al. also noticed an increased variance in task times in the
SSD case.

It can be argued that the main bottleneck found by Bakratsas et al. was due to overheads imposed by
the Java implementation of Hadoop. Shaffer et al. confirmed this in an earlier study [30]. In particular, they

noted three problems that hinder the performance of the Hadoop architecture:

1. Software design bottlenecks due to inefficient compute pipelines. Compute and I/O invocations

are serialized, resulting in scheduling delays. Instead, asynchronous I/O operations could have been
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implemented to improve I/O and CPU utilization,

2. JVM architecture limitations due to missing native filesystem features which can be used to improve

performance, and

3. Native filesystem behaviour assumptions which exist in the implementation of HDFS despite the

fact that the JVM architecture was chosen for portability.

Many popular big data systems currently operate using JVM bytecode, including Spark, Hadoop, Tez, and
HBase. With increasing I/O speeds, the need for more efficient compute pipelines is starting to be an issue
of concern in big data systems. This may shift the attention towards developing new engines written using
more performant languages like C. Drocco et al. make an argument for modern distributed programming
in C++ [I7]. They demonstrate strongly scalable implementations of distributed STL (standard template
library) containers. While this approach to distributed systems has only been largely used in production scale
closed-source software, the need to leverage the performance offered by new I/O technologies may prompt

bringing this implementation philosophy to the world of open-source big data.

2.4.2 Replica Setup

The centralized name node of HDFS keeps namespace and block placement information at a central location
(with an optional secondary backup) which greatly simplifies the design, but can lead to scalability issues,
or at least certain scalability concerns. Furthermore, HDF'S replicates blocks using a replication pipeline,
starting at the primary replica. Once the pipeline is initiated, each node receives the data block, verifies the
checksum, then passes the data block down the link to the next node. This can lead to long replica setup
delays [40].

To reduce the replica setup delays in HDFS, Zhang et al. propose an asynchronous multi-pipeline data
transfer method in an improved version of HDFS which they call SMARTH [45]. A SMARTH client only
waits for the first data node to receive the block. After that, the client initializes a new pipeline to other
nodes to send the next block. Each of the pipelines is kept open until the data is transferred successfully
to all nodes. Moreover, SMARTH’s name node monitors each data node’s performance (network and disk
I/O bandwidths), and ranks the data nodes in real time. This information is used to ensure that the first
data node in a pipeline is the fastest. HDFS is known for its lack of heterogeneity awareness and usually
any effort to address this design problem can improve performance in heterogenous environments. Sources
of heterogeneity can include differences in hardware, resource contention in virtualized environments, or
bandwidth limitations between different server racks. Experiments show that SMARTH can speed up data
upload by 27-245%, depending on cluster configuration and bandwidth heterogeneity.
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2.4.3 Centralized vs. Decentralized Catalogs

In both the GFS and HDF'S, the name node needs to keep all block information in memory. For every file,
directory, and block, there needs to be an in-memory record [19, BI]. The GFS implementation uses 64-byte
records while the HDF'S implementation uses 100-byte records. It can be argued that the system scalability is
limited by the amount of memory available at the name node. In practice, however, this limitation is usually
not a concern if the system houses a reasonable number of large files.

In use cases which involve a large number of small files, the files are often grouped together in larger
archive files, such as the Hadoop Archive formatﬂ This adds an extra layer of complexity and latency
required to look up a file. Other works proposed solutions for handling small files in HDFS with varying
degrees of success [22] 26, [39).

Al-Kiswany et al. proposed a key-value storage system called NICFE that uses software-defined networking
(SDN) to utilize network resources efficiently [2]. In NICE, the records are scattered across a virtual hashing
ring of nodes that is mapped to a physical ring of nodes using software-defined networking. The mapping is
maintained by a special node called the metadata node. The metadata node uses the OpenFlow standarﬂ
to configure SDN rules at the switches. Replication is performed using network-level multicast groups.
Multicasting also has the benefit of eliminating replica setup delays entirely. The separation of virtual and
physical rings offers flexibility to scale the system easily for different size physical rings. Moreover, the
performance requirements of the metadata node are much less than that of the name node of HDFS, since it

is only concerned with updating routing rules when needed.

2.5 Resource Management

The system design proposed in this work should support multiple concurrent users. The hardware resources
that this system uses may also be a part of a shared resource pool used by other users who may not use the
system. This section reviews some of the mainstream and highly scalable resource management solutions in
order to integrate with existing mainstream resource managers as well as support multitenancy within the
system.

YARN is a shared-cluster resource manager [37]. It consists of a per-cluster resource manager, a set of
running application masters (one for each application), and many node managers. The application masters
send one or more requests describing the number of containers, resources per container, locality preferences,
and request priority. The resource manger tries to schedule and find an optimal set of nodes to fulfil the
application master’s request. The resource manager is not concerned with per-application local optimizations.
This burden is left to the application master itself. Once resources are allocated, the resource manager replies

to the application master with leases for nodes. Resources can also be revoked in a graceful manner via

9https://hadoop.apache.org/docs/current/hadoop-archives/HadoopArchives.htmll Accessed January 29, 2021.
1O0https://opennetworking.org/software-defined-standards/specifications/. Accessed January 21, 2021.
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preemption. YARN was implemented as a successor to the Hadoop 1.x JobTracker which was only limited
to MapReduce jobs. In a large-scale deployment on a 2500 machine cluster, YARN’s peak number of daily
jobs was almost double that of Hadoop 1.x. Average CPU utilization also increased from 20% (3.2/16 cores)
to almost 37.5% with peaks up to 62.5%. Furthermore, YARN has many pluggable scheduler and resource
calculator implementations which allow flexible reconfiguration for a variety of use cases.

Mesos is a fine-grained decentralized scheduler which uses a novel abstraction called resource offers to
achieve decentralized near-optimal resource management [2I]. Hindman et al. argue that optimal resource
scheduling in a shared cluster is a difficult problem to solve due to the amount of jobs and tasks in a cluster
of a few thousand nodes. The scheduling policies of individual computing frameworks are also continuously
evolving, making the design requirements for a global resource manager unclear. Mesos takes a different
approach by offering resources to frameworks based on organizational policies (such as fair scheduling) and
the frameworks would accept only the resources they need for a given job. It was found that this approach,
albeit seemingly naive, is in fact near-optimal in practice. Mesos consists of a per-cluster master process and
a per-node slave daemon, similar to YARN’s resource manager and node manager. Frameworks using Mesos
would need to implement a scheduler and an executor. The scheduler registers with the master to accept
resource offers while the ezecutors are the actual processes launched on the slave nodes. The evaluation done
compares Mesos with static partitioning only. However, it was found that the resource offers abstraction
resulted in near-optimal data locality for the individual frameworks.

Hindman et al. note that at the time of writing, YARN was still in development and not many details
were available. Both studies confirm that a decentralized approach to fine-grained resource management is
sufficient even in a cluster of thousands of nodes. Nearly a decade later, these two approaches remain industry
standards when it comes to cluster resource management.

In a more demanding setting, a robust resource manager called Borg was developed at Google [3§]. Borg
is mainly a cluster resource manager but can be considered as a cluster operating system. Borg manages
collections of no