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ABSTRACT 

 

DNA damage and aberrant DNA damage response (DDR) are significant features of genomic 

instability that are implicated in the pathogenesis of myelodysplastic syndromes (MDS) and 

acute myeloid leukemia (AML).  DEAD-box helicase 41 (DDX41) is a member of helicase 

superfamily 2.  Both germline and somatic mutations of DDX41 have been associated with 

MDS and AML, and missense mutant R525H is the most frequent mutation (67%) found in 

MDS and AML patients.  However, the molecular pathogenesis of DDX41 mutations, such as 

R525H, remains unknown.  Here, I found that DDX41 protein could efficiently unwind 

RNA:DNA hybrid in vitro. This prompted us to investigate the potential role of DDX41 in DDR 

concerning R-loops, one of the significant sources of genome instability.  Examining DDX41 

knockout (KO) cells (HeLa and HT1080) and DDX41 KO cells reconstituted with DDX41-

R525H gene, I found that these cells had prolonged and increased DNA double-strand breaks 

(DSB) induced by ionizing radiation (IR) or bleomycin, a radiomimetic agent, compared to wildtype (WT) 

and DDX41 KO cells reconstituted with DDX41-WT gene, suggesting that DDX41 is crucial 

for DDR.  Using the R-loop specific antibody S9.6, dot blot assays showed increased R-loops 

in DDX41-KO and R525H-expressing cells, deciphering that DDX41 functions as an R-loop 

resolvase.  Furthermore, biochemical assays demonstrated R525H stimulates R-loops 

formation.  Lastly, I found that DDX41 colocalized with the DSB marker γH2AX, R-loop marker 

S9.6, and transcription machinery marker RNA polymerase II,  indicating that DDX41 interacts 

with proteins during transcription and DNA repair.  In conclusion, our results imply that DDX41 

is required for DDR as an R-loop resolvase upon DNA damage, and lack of or impaired DDX41 

results in altered DDR response and pathogenic R-loop accumulation, which ultimately leads to 

genome instability and possibly pathogenesis of MDS and AML. 
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INTRODUCTION 

1.1  Helicases 

Helicases are the ubiquitous enzymes that transduce the chemical energy generated by 

hydrolysis of nucleoside triphosphate (NTP) into an oligonucleotide strand separation and 

displacement activity (Caruthers and McKay, 2002).  Depending on substrates, helicases can 

be classified as DNA or RNA helicases, and based on polarity, are classified as 5′→3′ or 3′→5′ 

helicases (Patel and Picha, 2000).  Helicases are engaged in amost all aspects of nucleic acid 

metabolism, including processes such as repair, replication, transcription, recombination,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Structures of helicase superfamilies.  An illustration of the core helicase domain.  

A blue cylinder represents the N-terminal RecA domain (RecA1), and the C-terminal RecA 

domain (RecA2) is presented as a red cylinder.  Conserved amino acid motifs are coloured 

depending on the helicase function.  Motifs in yellow are implicated in NTP binding/hydrolysis, 

motifs in green are correlated with translocation, and motifs in blue interact with the nucleic 

acid.  Distinct motifs from all the illustrated suferfamilies are highlighted with a red oval.  Motif 

I (Walker A), motif II (Walker B), and arginine finger (R) are conserved throughout all helicase 

superfamilies.  Taken from (Jackson et al., 2014). 
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chromosome segregation, and telomere maintenance (Bernstein et al., 2010; Brosh Jr and Bohr, 

2007; Dillingham, 2011; Jankowsky, 2011).  Helicases have been classified into six major groups, 

i.e., superfamily 1 (SF1)-SF6, based upon conserved amino acid sequence motifs (Singleton et 

al., 2007) (Figure 1).  Among them, only the SF1 and SF2 comprise nine short conserved amino 

acid sequences, named Q, I, Ia, Ib II, III, IV, V, and VI, respectively, and SF2 is the largest group 

among these six superfamilies (Byrd and Raney, 2012; Gorbalenya and Koonin, 1993).  These 

motifs are generally grouped in a section of 200–700 amino acids known as the helicase core 

domain.  The helicase family is also called the DEAD-box (or DEAH or DEXH) protein family, 

because of the sequence of motif II (Asp-Glu-Ala-Asp, DEAD) (Lohman et al., 2008).  

Furthermore, X-ray crystallographic studies demonstrate that the conserved helicase motifs are 

linked with the tertiary structure of helicase proteins, suggesting that they form a significant 

functional domain, coordinating ATP binding and hydrolysis to nucleic acids unwinding 

(Lohman et al., 2008; Singleton et al., 2007). 

 

1.2  DEAD-box helicases 

The DEAD-box helicase is the largest subfamily under superfamily 2 RNA helicases.  The 

DEAD motif, together with a motif I, Q motif, and motif VI, is required for ATP binding and 

hydrolysis (Pause et al., 1994; Pause and Sonenberg, 1992).  Moreover, the DEAD motif, along 

with motif I, is important for magnesium binding.  Motifs Ia and Ib, IV, and V are involved in 

intramolecular arrangement and RNA interaction, necessary for remodelling activity of the 

RNA helicase.  Furthermore, motif III is essential for coupling of ATP hydrolysis to remodeling 

events like unwinding (Parsyan et al., 2011) (Figure 2). 

 

 



 

3 

 

 

Figure 2. Motifs and their potential functions in DEAD-box RNA helicases.  Taken from 

(Parsyan et al., 2011). 

 

Several members of the DEAD-box helicases have drawn the high interest of 

researchers, as each of the individual enzymes from these subfamilies is engaged in several 

processes of RNA metabolism.  For example, Ded1 and p72 engage in transcription and pre-

mRNA splicing (Auboeuf et al., 2002; Liu et al., 2002), Drs1p, Dhr1p, and Dhr2p in ribosomes 

biogenesis (Venema and Tollervey, 1999), Dbp5 in nuclear export (Gatfield et al., 2001), Ded1p 

in translation initiation (Chuang et al., 1997), SKI2 and LGP2 in RNA degradation (Anderson 

and Parker, 1998; Py et al., 1996), and mHel61p in organelle gene expression (Missel et al., 

1997).  Moreover, these helicases are often linked to several diseases, such as malignancy of 

tumor cells and a few human male infertility syndromes (Fuller-Pace, 2013; Lasko, 2013).  

Further, DEAD-box helicases illustrate a large family of proteins that possess a non-

processive and local dissociation activity on dsRNA substrates (Linder, 2006).  This activity is 

primarily utilized in various RNA metabolic processes by eukaryotes.  In these processes, the 

DEAD-box helicases likely act as valuable check-point proteins in the RNA metabolism 

machinery (Linder, 2006). 

 

 

 



 

4 

 

1.3  DDX41 helicase 

DEAD-box helicase 41 (DDX41) is a member of the SF2 family (Figure 3).  DDX41 is 

expressed in a large range of species, from drosophila to plants and mammals.  DDX41 is 

composed of two domains: the N-terminal helicase core domain and the C-terminal Zinc-finger 

like domain.  A nuclear localization signal (NLS) motif is present before the helicase domain.  

These domains further comprise different functional motifs that function in binding and 

hydrolysis of ATP, recognition of nucleic acids, and unwinding DNA/RNA unwinding (Linder 

and Fuller-Pace, 2013).  Mass spectroscopy studies have revealed DDX41 is engaged in the 

second step of splicing where the 5′ and 3′ exon ligation and the release of the  

 

Figure 3. Structure and sequence of human DDX41 protein.  (A) Schematic of DDX41 

protein representing the nuclear localization sequence (NLS, in red), conserved helicase motifs 

(yellow), and zinc finger domain (ZF, green).  (B) The sequence of human DDX41 protein. 
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intronic lariat occur (Agafonov et al., 2011; Bessonov et al., 2008; Jurica et al., 2002).  A siRNA 

screening found that DDX41 functions as an intracellular DNA sensor in myeloid dendritic cells 

(Zhang et al., 2011b).  In contrast to other Pathogen recognition receptors (PRRs, a group of germ 

line-encoded receptors), DDX41 can also recognize bacterial secondary messengers such as 

cyclic-di-GMP (c-di-GMP) or cyclic-di-AMP (c-di-AMP) to activate Type I interferon immune 

response (Parvatiyar et al., 2012).  It has been shown that Bruton’s tyrosine kinase (BTK) 

phosphorylates DDX41 at Tyr414 and activates it, thereby, allowing for recognition of dsDNA 

after viral or bacterial infection (Lee et al., 2015b).  Following ligand recognition, DDX41 binds 

STING (Stimulator of Interferon Genes), and STING subsequently phosphorylates the TANK-

binding protein and interferon regulatory factor 3 (IRF3) and finally induces the production of 

type I interferon (Ishikawa and Barber, 2008; Jiang et al., 2017; Omura et al., 2016; Tanaka and 

Chen, 2012). 

Besides its role in innate immunity, both germline and acquired somatic mutations in 

DDX41 have been associated with myelodysplastic syndrome (MDS) and acute myeloid 

leukemia (AML) (Cardoso et al., 2016; Ding et al., 2012; Fenwarth et al., 2021).  The most 

frequently identified somatic mutation is c.1574G>A, p.R525H (67%), which is mainly 

confined to the highly conserved region of DDX41 ( Quesada et al., 2019; Lewinsohn et al., 

2016; Li et al., 2016b; Polprasert et al., 2015).  Moreover, mutations in DDX41 are also linked 

with acute erythroid leukemia (AEL) (Iacobucci et al., 2019).  DDX41 mutations also lead to 

failure of tumor suppressor function such as aberrant pre-mRNA splicing, RNA processing, and 

cell cycle arrest (Kadono et al., 2016; Lewinsohn et al., 2016; Polprasert et al., 2015; Qin et al., 

2021).  Another study suggested DDX41 mutants may be involved in activation of the DNA 

damage response (DDR), resulting in cell cycle arrest (Peters et al., 2017).  Although DDX41 

is well studied as an essential sensor in the field of the innate immune response, its potential role 

in DDR remains unexplored. 

 

1.4  MDS, AML and DDX41 mutations 

MDS and AML are hematologic diseases prevalent in adults 65 years of age or older (Almeida 

and Ramos, 2016; Ria et al., 2009). MDS is characterized by unsuccessful hematopoiesis and 

peripheral blood cytopenia (a disorder in which the number of blood cells are lower than 

normal), whereas in AML, bone marrow is characterized by the spread of immature myeloid 
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cells. Progression of MDS increases the risk of its evolution into AML (Jiang et al., 2009).  To 

date, eleven genes, namely ANKRD26, ACD, ATG2B, CEBPA, DDX41, ETV6, GATA2, 

RUNX1, SRP72, TERC, and TERT that are indicative of germline heterozygous mutations.  

These mutations have been identified to be associated with familial MDS and AML (Duployez 

et al., 2016; Lee et al., 2015a; Tawana et al., 2018; Tawana and Fitzgibbon, 2016), of which 

DDX41 is the latest (Jahn et al., 2018; Maciejewski et al., 2017). High-throughput sequencing 

of samples from MDS and AML patients has revealed several MDS and AML-related mutations 

(Bejar et al., 2011; Haferlach et al., 2008; Mossner et al., 2016; Papaemmanuil et al., 2013); among 

those, the DDX41-R525H mutation was one of the most recurrent ones (Figure 4).  This R525H 

mutation has been revealed to have a reduction in nucleotide coordination (Li et al., 2016b), 

inhibitory effect on cell cycle progression by repressing E2F (E2F Transcription Factor) 

activity, defect in pre-rRNA processing, and diminished protein synthesis as a consequence of 

ribosomal stress (Kadono et al., 2016). 

Generally, MDS and AML progression results from elevated levels of oncogenes, 

deactivation of tumor suppressor genes, or a combination of both, which then prompts 

replication stress and genome 

 

 

Figure 4. Summary of DDX41 germline and somatic mutations reported in MDS and AML 

patients.  Nuclear localization signal (NLS, in blue), helicase motifs (yellow), and zinc finger 

(ZF, purple) domains are indicated.  The R525H mutant is highlighted. 
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instability (Haferlach et al., 2008; Halazonetis et al., 2008).  Several studies focus on alterations 

in DNA damage response (DDR) associated with MDS and AML in which DNA double-strand 

breaks (DSBs) are critical DNA damage and genome instability markers (Boehrer et al., 2009; 

Cavelier et al., 2009; Horibe et al., 2007; Kefala et al., 2013).  Several DNA damage response 

genes, such as ATM (Grosjean-Raillard et al., 2009), XPD and XRCC1 (Joshi et al., 2016), BRCC 

(Meyer et al., 2020), and HLTF (Takaoka et al., 2019), have been associated with MDS/AML.  

Some DEAD-box proteins, such as DDX1 (Li et al., 2008; Zhang et al., 2011a) and DDX3 (Sun 

et al., 2013; Szappanos et al., 2018), are also involved in DDR. DNA damage measured by 

γH2AX and 53BP1 (DSB markers) increases through MDS to AML; in addition, there is 

diminished DDR in MDS and AML cell lines and samples of bone marrow (Popp et al., 2017), 

suggesting that dysregulated DDR and DSB might be a potential root of MDS and AML 

pathogenesis. 

 

1.5  DNA damage and repair 

Cells are constantly subjected to DNA damage, generating thousands of DNA lesions per cell 

each day (Ciccia and Elledge, 2010).  A variety of lesions are found in DNA from three leading 

causes.  The first leading cause is environmental agents like ultraviolet radiation, ionizing 

radiation, and several genotoxic chemicals (Ding et al., 2012).  The second leading cause is 

cellular metabolic products, like reactive oxygen species originated from oxidative respiration 

and lipid peroxidation products (Hoeijmakers, 2001) .  Thirdly, some chemical bonds in DNA 

disintegrate under a few physiological conditions, like hydrolysis of nucleotide residues, which 

leaves non-instructive abasic sites; for example, deamination of cytosine is converted to the 

miscoding uracil (Chatterjee and Walker, 2017).  DNA lesions may sometimes also occur due to 

replication errors caused by tautomeric shifts (the "imino" or "enol" form of nucleotides), 

eventually resulting in base-pair mismatching such as an A with a G instead of a T (Tubbs and 

Nussenzweig, 2017) (Figure 5). 

DNA damage response pathways and DNA repair proteins are utilized by the cell to 

repair, remove, or tolerate a variety of DNA lesions, to limit the genomic instability 

(Hoeijmakers, 2001) .  As there are different types of DNA lesions, a single repair process cannot 

mitigate all the classes of DNA damage.  At least five main DDR pathways function in mammals:  

nucleotide-excision repair (NER) removes helix-distorting lesions, base-excision  
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Figure 5. DNA damage and repair mechanisms.  At the top, various DNA damaging agents, 

in the middle, examples of DNA lesions caused by these agents, and at the bottom, associated 

DNA repair mechanisms responsible for the removal of the lesions.  cis-Pt, cisplatin; MMC, 

mitomycin C; (6–4)PP, 6–4 photoproduct; CPD, cyclobutane pyrimidine dimer.  Taken from 

(Hoeijmakers, 2001) . 

 

repair (BER) reverses oxidative base modifications, homologous recombination (HR) and non-

homologous end-joining (NHEJ) are involved in repair and removal of DSBs through distinct 

mechanisms (Lindahl and Wood, 1999), and mismatch repair (MMR) helps in restoring errors 

that occurred during replication (Jiricny, 2006) (Figure 5).  DDR uses signal sensors, transducers, 

and effectors similar to classic signal transduction pathways (Figure 6) (Zhou and Elledge, 2000). 

Unlike signal transduction pathways activated by ligands of receptor kinases, the DDR 

signaling pathway is activated by anomalous DNA structures (Maréchal and Zou, 2013).  The 

DNA damage signaling pathways are mainly accelerated by the transducers such as ATM (ataxia-

telangiectasia mutated), ATR (ATM- and Rad3-Related), and DNA-PK (DNA-dependent protein 

kinase).  Sensors such as the MRN complex (MRE11, RAD50, and NBS1) detect DSBs, then 

recruit and activate ATM at the lesion site (Ryan et al., 2016).  Activated ATM phosphorylates 

several effector proteins, such as CHK2 (Checkpoint kinase 2), H2AX, 53BP1, and p53. 

Phosphorylation of H2AX by ATM and ubiquitination of H2AX  
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by activators, namely RNF8 (Ring Finger Protein 8) and RNF168 E3 ubiquitin ligases, lead to 

the recruitment of DNA repair proteins like BRCA1/pBRCA1 (Turnell and Grand, 2012) 

(Figure 6).  Alternatively, ATR is primarily activated at ssDNA regions first coated by 

the sensor RPA (Replication protein A) (Ball et al., 2005). 

 

Figure 6. The framework of DNA damage response signaling pathways.  Various protein 

complexes acting distinctly as either sensors, transducers, activators, or effectors in ATM, ATR and 

DNA-PK pathways.  The arrows represent the flow of the individual pathways.  Taken from (Turnell 

and Grand, 2012). 

 

Further, ATR is recruited to RPA-coated ssDNA through its interacting protein ATRIP 

(ATR interacting protein) (Namiki and Zou, 2006).  The recruitment of activator TOPBP1 

(Topoisomerase 2 Binding Protein 1) to the ssDNA region is responsible for the ATR activation 

that later phosphorylates effector proteins like CHK1 (Ball et al., 2005).  These effectors 

ultimately result in various cellular responses such as DNA repair, cell cycle arrest, and 

apoptosis.  Unlike the ATM and ATR kinases, DNA-PK is responsible for regulating the NHEJ 

repair pathway (Turnell and Grand, 2012).  Since DDX41 has not been implicated in the DDR, 
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it remains unknown whether DDX41 acts as a DDR sensor, transducer, or effector.  Moreover, 

the mechanism by which DDX41 may potentially produce DDR is an unanswered question. 

 

1.6  R-loops 

R-loops originate during transcription, when nascent RNA exits RNA polymerase, and pairs 

with its complementary DNA template, resulting in RNA:DNA hybrid structure and displaced 

single-stranded DNA (Chakraborty et al., 2018a) (Figure 7).  R-loops are found in many 

organisms where they perform various cellular processes, involving regulation of chromosome 

segregation, replication of bacterial plasmids and mitochondrial genomes (Kabeche et al., 

2018), and accomplishing immunoglobulin class-switch recombination (Aguilera and García-

Muse, 2012).  In mammalian cells, R-loops take up almost 5% of the genome (Ginno et al.,  

 

 

Figure 7. The structure of an R-loop.  ssDNA, single-stranded DNA; RNAP, RNA 

Polymerase.  Taken from (Hamperl and Cimprich, 2014). 

 

2012).  They are abundant at promoter and terminator regions of polyA-dependent genes, which 

implies the potential role of R-loops in the regulation of gene expression (Ginno et al., 2012).  

Further, R-loops are also found in tRNA and rDNA genes, implying their formation through 

transcription involving different RNA Polymerases (Santos-Pereira and Aguilera, 2015). 

Despite the various regulatory role of R-loops, these can also cause a major threat to 

genomic stability if they persists, i.e., generating single-stranded, which can adversely lead to 

stalling or collapsing of replication forks (Basu et al., 2011; Hamperl and Cimprich, 2014; Santos-Pereira 

and Aguilera, 2015) and fatal double-strand DNA breaks by the endonucleases XPF and XPG, 

involved in nucleotide excision repair (NER) pathway. (Sollier et al., 2014).  The R-loops 

formed during transcription are also deciphered to promote the aggravation of DNA damage by 

escalating transcription and replication collisions (TRCs) (Sanchez et al., 2020).  At times but 



 

11 

 

not exclusively, the machinery of transcription and replication processes results in a collision 

and consequently leads to increased DNA breaks as both the processes utilize the same template 

of DNA (Sanchez et al., 2020) (Figure 8).  Persistent R-loop structures and the TRCs lead to genomic 

instability that prompts various cellular fates (Lang et al., 2017) and diseases in humans, 

including neurodegenerative diseases (Chen et al., 2018; Haeusler et al., 2014; Loomis et al., 

2014) and MDS (Chen et al., 2018).  

Figure 8. Pervasive R-loop formation leads to lethal transcription- replication collisions, a 

major threat to genome stability.  RF, Replication fork; RNAP, RNA polymerase II.  Taken 

from (García-Rubio et al., 2018). 

 

Besides transcription, R-loops are widely associated with DSBs to both induce and inhibit 

DNA repair, depending on whether the R-loops formation is transient or persistent.  A study 

shows that in many instances, induction of DSBs leads to R-loops, which then recruit 

transcription-associated homologous recombination repair (TA-HRR) factors such as RAD52 

and XPG (Kato et al., 2019).  Such mechanisms are crucial for protecting genome integrity, 

particularly in transcriptionally active regions.  Alternatively, R-loops also promote DSB 

formation by activating the ATM associated DDR pathway (Sollier and Cimprich, 2015).  Upon 

the extreme R-loop removal, the efficiency of two central DSB repair pathways, HR and NHEJ, 

was reduced (Lu et al., 2018).  This study led researchers to affirm the importance of R-loop 

structures in promoting DSB repair (Ohle et al., 2016; Yasuhara et al., 2018).  Conversely, as 

mentioned above, persistent and excessive R-loops may challenge the DDR pathway by 

forming pathological DSB and hindering DNA repair in different ways.  In one research study, 

overexpression of RNase H1, an enzyme that removes R-loops by explicitly degrading 
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RNA:DNA hybrid (Cerritelli and Crouch, 2009) as well as active ribosomes and anti 

backtracking mechanisms, suppressed DSB accumulation (Dutta et al., 2011), which suggests 

that extension of R-loops is an important cause of DSBs, and in the long run, genome instability 

(Aguilera et al., 2012).  Another consideration is that DSBs formed due to various DNA damage 

sources also induce R-loops, which can trigger both DNA repair or damage depending on 

whether it is moderate and transient or excessive and persistent, respectively (Figure 9).  In the 

former case where R-loops are resolved and DNA is repaired, the process begins with an 

increase in transcription induced at DSB sites (Ohle et al., 2016), leading to a rise in R-loop 

structures.  These structures then recruit DNA repair factors like CSB and carry forward the 

  

Figure 9. Schematic representation of the relationship between double-strand breaks and 

R-loops.  R-loops can be formed as a consequence of DSBs and at situations R-loop formation 

leads to DSBs. In both situations, if excess of either R-loops or DSBs persists due to loss of 

repair proteins and factors, it leads to elevated DNA damage.  CSB, Cockayne syndrome protein 

B.  Modified from (Hegazy et al., 2020). 

 

DDR pathway (Hegazy et al., 2020).  On the other hand, R-loops accumulation and the inability 

Excessive and persistent R-loops

Augmented DSBs and DNA damage

CSB
Rad52

Unknown 

factors
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of repair factors to resolve R-loops results in DNA damage, intensification in DSB, and genome 

instability.  Moreover, another research study has revealed that an increase in R-loop formation 

explains how the mechanism of mutations in splicing factors leads to MDS; in particular, 

mutations in splicing factors SRSF2 and U2AF35 augment R-loop formation at gene promoters 

(Chen et al., 2018). 

Various proteins hold vital positions to resolve R-loop structures, which may otherwise lead 

to secondary pathological structures, mutagenesis, DNA damage-inducing TRCs.  FANCA and 

FANCD2 (Fanconi anemia pathway factors) (Gaillard et al., 2015; Schwab et al., 2015) 

DNA/RNA helicases and various types of RNase H (Kim and Jinks-Robertson, 2012) are some of 

them.  Interestingly, a recent study using zebrafish showed that depletion or mutation of DDX41 

caused the accumulation of R-loops, which triggered the inflammatory signals and caused 

increased production of hematopoietic stem and  progenitor cells (HSPCs) (Weinreb et al., 2021).  

Thus, DDX41 appears as a potential co-transcriptional DDR protein that might resolve R-loops 

and avoid TRCs to maintain genome stability and prevent the occurrence of MDS and AML 

pathogenesis. 

 

2. HYPOTHESIS AND OBJECTIVES 

2.1 Hypothesis 

       DDX41 is required for efficient DNA damage response and R-loop resolution to maintain 

genome stability. 

 

2.2  Objectives 

1. Determine the potential role of DDX41 in DNA damage response. 

 

2. Determine the mechanisms of DDX41 in DNA repair response. 

 

3. Determine co-localization of DDX41 with DNA double-strand break marker, transcription 

machinery, and R-loop in cells using confocal microscopy. 

4. Examine the levels of RNA:DNA hybrid in DDX41 KO cells-reconstituted with DDX41-

WT or DDX41-R525H gene.  
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3. Methods 

3.1 Plasmid DNA 

DDX41 (both full-length) was PCR amplified and cloned into the Hind III and BamH I sites 

of a pAcGFP1-N2 vector (Clontech). All point mutations were generated with a QuikChange 

Site-Directed Mutagenesis Kit (Agilent Technologies). 

For CRISPR-knockout, four sgRNAs used targeting exons 2 and 3 of the human 

DDX41 gene were designed with http://crispr.mit.edu, the pair of DNA oligonucleotides were 

synthesized by IDT, then annealed and ligated into the Bbs I site of pSpCas9(BB)-2A-Puro 

(pX459) vector (#62988, Addgene), as described (Ran et al., 2013). The insert was confirmed 

with Age I and Bbs I digestion.  LentiCRISPR v2 plasmids targeting the DDX41 gene were 

constructed using methods as described (Sanjana et al., 2014).  All plasmids were verified by 

DNA sequencing. 

 

3.2 Cell lines 

HeLa and HT1080 cells (from ATCC) were grown in DMEM supplemented with 10% 

FBS with  penicillin and streptomycin (100 U/mL each, Sigma-Aldrich).  CRISPR DDX41 

knockout HeLa and HT1080 cell lines were generated by Dr. Ravi Shankar Singh (Post-doc) 

in Dr. Yuliang Wu’s lab (University of Saskatchewan); Next, lentivirus overexpression of 

DDX41-WT and DDX41-R525H gene in wildtype and DDX41-KO background cells have also 

been established by Dr. Ravi Shankar Singh; To overexpress both WT and R525H DDX41 in 

DDX41 KO or WT cell lines, DDX41 gene was cloned into Kpn I and Not I sites of the entry 

vector pEN_TTmcs (25755, Addgene), and transferred to the destination vector pSLIK Hygro 

( 25737, Addgene) by the Gateway system .  The lentivirus particles were prepared as 

described above, and the expression of DDX41 was induced by doxycycline 20 ng/mL, 

Invitrogen 

 

3.3 CRISPR knockout 

For both HT1080 and HeLa cells transfection, 1×106 cells were seeded in a 6-well plate 24 h 

before transfection. Two μg of DNA was transfected to each well using Lipofectamine 3000 

(Invitrogen). After 18 h of transfection, the cells were transferred into a 10 cm dish containing 
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5 μg/mL puromycin (Sigma) and maintained in selection medium until clones were visible. 

The clones were picked individually and grown in 6-well plates until confluency, with the 

cells lysed using RIPA buffer (25 mM Tris, pH 7.4; 150 mM NaCl; 0.5% sodium 

deoxycholate; 1% NP-40) with 2 mM phenylmethylsulfonyl fluoride (PMSF) and protease 

inhibitor cocktail (Sigma). The gene KO was confirmed by Western blot analysis, followed by 

PCR amplification of the target segment, and cloning into TOPO-TA vector (Invitrogen) for 

sequencing. 

 

3.4  Reagents 

Table 1. List of reagents, catalog number and suppliers 

Reagents, Cat No. Suppliers Address 

Acrylamide, 0314 AMRESCO North York, Ontario, Canada 

N,N'-Methylenebisacrylamide, 

AC164790250hrp 

Fisher Scientific Madison, Wisconsin, USA 

Adenosine Triphosphate 

(ATP), A1852 

Sigma-Aldrich Oakville, Ontario, Canada 

 

Clarity Max Western ECL 

substrate, 1705062 

Bio-Rad Laboratories, Inc. Mississauga, Ontario, 

Canada 

Agarose，5510UB Gibco Burlington, Ontario, Canada 

Ampicillin, A1593 Sigma-Aldrich Oakville, Ontario, Canada 

Ammonium persulfate (APS), 

A3678 

Sigma-Aldrich Oakville, Ontario, Canada 

Boric acid, SLBC5554V Sigma-Aldrich Oakville, Ontario, Canada 

Bovine serum albumin, A2058 Sigma-Aldrich Oakville, Ontario, Canada 

Bradford protein assay reagent, 

500-0013 

Bio-Rad Hercules, California, USA 

Bromophenol blue, B0126 Sigma-Aldrich Oakville, Ontario, Canada 

Chloramphenicol, 

AC227920250 

Fisher Scientific Madison, Wisconsin, USA 

Dithiothreitol (DDT), 

10197777001 

Sigma-Aldrich Oakville, Ontario, Canada 

Dulbecco's Modified Eagle 

Medium (DMEM), 

SH30022.01 

Sigma-Aldrich Oakville, Ontario, Canada 

EDTA, 17892 Fisher Scientific Madison, Wisconsin, USA 

Fetal Bovine Serum (FBS), 

F6178 

Sigma-Aldrich Oakville, Ontario, Canada 

[γ-32P] ATP, BLU502A Perkin Elmer Boston, MA, USA 

Glycine, BP381-5 Fisher Scientific Madison, Wisconsin, USA 

Glycerol, 123170 Fisher Scientific Madison, Wisconsin, USA 

https://www.fishersci.ca/shop/products/n-n-methylenebisacrylamide-99-biochemistry-electrophoresis-acros-organics-3/ac164790250
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Imidazole, O3196-500 Fisher Scientific Madison, Wisconsin, USA 

Isopropyl β-D-1-

thiogalactopyranoside (IPTG), 

15528019 

Fisher Scientific Madison, Wisconsin, USA 

Kanamycin, 60615 Fisher Scientific Madison, Wisconsin, USA 

Lysogeny Broth (LB) with 

agar, L2897 

Sigma-Aldrich Oakville, Ontario, Canada 

Methanol, 154246 Sigma-Aldrich Oakville, Ontario, Canada 

Magnesium chloride (MgCl2), 

M8266 

Sigma-Aldrich Oakville, Ontario, Canada 

Nickel-NTA Affinity beads, 

70666 

Sigma-Aldrich Oakville, Ontario, Canada 

Non-fat dry milk, 170-6404 Sigma-Aldrich Oakville, Ontario, Canada 

N,N,N',N'-

Tetramethylethylenediamine 

(TEMED), 87689 

Bio-Rad Hercules, California, USA 

 

Penicillin-Streptomycin, 

084M4778V 

Sigma-Aldrich Oakville, Ontario, Canada 

Polyethyleneimine (PEI) 

MAX, 24765 

Polysciences, Inc. Warrington, Pennsylvania 

Phenylmethylsulfonyl fluoride 

(PMSF), P7626 

Sigma-Aldrich Oakville, Ontario, Canada 

Protein standard, 161-0374 Bio-Rad Hercules, California, USA 

Protease inhibitor, 

05892791001 

Roche Mannheim, Germany 

Polyvinylidene difluoride 

membrane (PVDF), 10600023 

Bio-rad Mississauga, Ontario, 

Canada 

Sodium dodecyl sulfate (SDS), 

L3771 

Sigma-Aldrich Oakville, Ontario, Canada 

Sodium chloride (NaCl), S671-

10 

Fisher Scientific Madison, Wisconsin, USA 

Thiamine hydrochloride, 

T4625 

Sigma-Aldrich Oakville, Ontario, Canada 

Tris, 0826 AMRESCO North York, Ontario, Canada 

Tris (2-carboxyethyl) 

phosphine, C4706 

Sigma-Aldrich Oakville, Ontario, Canada 

TritonTMX-100, X100 Sigma-Aldrich Oakville, Ontario, Canada 

Trypsin-EDTA, T4049 Sigma-Aldrich Oakville, Ontario, Canada 

Tryptone, TRP402.205 BioShop Burlington, Ontario, Canada 

TWEEN 20, BP337 Fisher Scientific Madison, Wisconsin, USA 

 

3.5 DNA damage treatments 

An equal number of 2 X 106 WT and DDX41-KO HeLa and HT1080 cells were seeded in a 6-
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well plate using a cell counter and incubated at 37˚C, 5% CO2 for 16 hours in 2 mL of DMEM 

medium.  After 16 hours, DNA damage was induced by exposure to 5 Gy ionizing radiation 

(IR produced by X-Rad225 XL, Precision X-Ray), 10 mM hydroxyurea (HU, VWR cat # 

CAAAA10831-03) for 16 h, 50 J/m2 of UV radiation, or 30 μg/mL of Bm (Bleomycin sulphate, 

Bioshop cat# BLE011.10) for 16 hours. 

 

3.6 Antibodies 

DDX41 mouse antibody (MABF1107) from Sigma-Aldrich was used for certain 

immunofluorescence imaging, and DDX41 rabbit antibody (D3F1Z) from New England 

Biolabs (NEB) was used for both immunofluorescence imaging and immunoblotting, which 

recognizes the N-terminal of DDX41 (98 amino acid of DDX41).  γH2AX (Ser139, 20E3), 

phosphor- BRCA1 (Ser1524, 9009), and 53BP1 antibodies (E7N5D) were from NEB.  S9.6 

antibody was from Kerafast (ENH001).  Double-stranded DNA antibody (ab27156) and RNA 

polymerase II antibody (ab817) were from Abcam.  β-actin-HRP conjugated mouse antibody 

(sc-47778 HRP) was from Santa-Cruz.  Goat anti-rabbit IgG HRP-conjugated (7074) and goat 

anti-mouse IgG HRP-conjugated (7076) secondary antibodies were from NEB.  

Immunofluorescence secondary antibodies, IgG (H+L) highly cross-adsorbed goat anti-rabbit 

Alexa Fluor 488 (A11008) and goat anti-mouse Alexa Fluor 594 (A-11032), were from 

Invitrogen. 

 

 

3.7 Confocal microscopy 

Cells seeded onto coverslips in a 6-well plate were washed twice with PBS and fixed with 

100% methanol at -20°C for 30 min, then washed with PBS and blocked with blocking buffer 

(1% BSA in PBST, PBS+0.1% Tween 20) at room temperature for 1 h.  The immunostaining 

was performed by incubating cells with primary antibodies (1:100) in blocking buffer 

overnight at 4°C.  After washing with 1 mL of PBS (thrice), the cells were incubated with 

secondary antibodies, Alexa Fluor 488 goat anti-rabbit IgG (1:1000, Invitrogen), and Alexa 

Fluor 594 goat anti-mouse IgG (1:1000, Invitrogen) in blocking buffer for 1 h at room 

temperature.  Cells were then washed with 1 mL of PBS (thrice) and mounted with Prolong 

Diamond antifade reagent containing DAPI (Invitrogen) and cured at room temperature in the 
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dark for 16-20 hours.  Immunofluorescence was performed on a Zeiss LSM 700 META 

inverted Axiovert 200 M laser scan microscope with a Plan-Apochromat 63×/1.4 oil DIC 

objective.  Images were captured with a CCD camera and analyzed using LSM Browser 

software ZEN (Zeiss). 

For GFP tagged proteins, cells were directly fixed with methanol, mounted with 

Prolong Diamond antifade reagent containing DAPI and then observed under an LSM 700 

microscope. 

 

3.8 Western blotting 

Depending on the size of the target protein, proteins were separated on 6, 8, 10, 12, or 15% 

SDS- polyacrylamide gel using Tris-glycine buffer (with 10 % SDS).  After electrophoresis, 

the proteins were transferred to a PVDF membrane (Bio-Rad) using Wet/Tank blotting system  

in the transfer buffer (25 mM Tris, 192 mM glycine, pH 8.3, and 20% methanol) at 100 V for 

3 h at 4°C.  The membrane was incubated with blocking buffer (5% BSA in PBST) for 1 h at 

room temperature.  The membrane was then incubated in the primary antibodies of interest 

(1:1000, prepared with 1% BSA in PBST) at 4°C, for 16 hours.  After washing with 5 mL of 

PBST five times (5 min each), the membrane was incubated with HRP conjugated secondary 

antibody (1:5000, NEB) with 1% BSA in 5 mL of PBST for 1 h at room temperature; then 

washed three times with 5 mL of PBST (5 min each).  The membrane was then treated with 

Clarity Western ECL Substrate (Bio-Rad) and visualized using a ChemiDoc MP Imaging 

System (Bio-Rad). 

 

3.9 Alkaline comet assays 

An alkaline comet assay was performed using a CometAssay kit (R&D systems, cat# 4250-050-

K) according to the manufacturer's instructions. Briefly, 2 x 104 cells/mL were seeded in 6-well 

plates using a cell counter and incubated at 37˚C, 5% CO2 for 16 hours in DMEM medium, and 

treated the next day with bleomycin (30 μg/mL, 16 hours) and collected at different time points, 

post-treatment.  Cells were washed with 1 mL of PBS and centrifuged at 4000 rpm for 5 mins, 

and the pellet was mixed with 50 µL of PBS and 500 µL of molten low-melting-point agarose 

at 37°C.  For the PBS and agarose mixture, 50 µL was applied onto microscope slides that were 
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precoated with agarose and incubated at 4°C for 30 min in the dark (to avoid any further DNA 

damage in the cells).  To unwind the supercoiled DNA, cells were lysed using the CometAssay 

Lysis Solution (from the CometAssay kit) for 1 h at room temperature in the dark and then 

exposed to an alkaline solution (pH >13) for 20 min at room temperature in the dark.  Next, the 

electrophoresis was performed using Horizontal Electrophoresis System from Bio-Rad at 21 

volts for 30 min, where the DNA-strand breaks present in the cells migrate in the direction of 

the anode.  Finally, the slides were washed with water, fixed with 70% ethanol for 15 min, and 

then stained with GelRed (Biotium) for 30 min at room temperature in the dark.  DNA was 

visualized under a confocal microscope (Zeiss LSM 700) at a 20× magnification.  The open-

source software ImageJ (https://imagej.nih.gov/ij) was used to measure the tail length. 

 

3.10 Dot blot assays 

On day 1, cells (5 X 106) were collected and lysed in 1 mL lysis buffer, composed of 500 µL 

2× lysis buffer (0.5% SDS, 40 mM Tris-HCl pH 7.5, 150 mM NaCl, and 5 mM EDTA), 500 µL 

2x TE (100 mM Tris-HCl pH 8, 10 mM EDTA pH 8), and 10 uL of proteinase K (20 mg/ml), 

at 37°C for 16 hours.  Genomic DNA was then extracted using DNeasy Blood & Tissue Kit 

(Cat # 69506, Qiagen) and samples of extracted DNA (~50 µg each) fragmented using a 

restriction enzyme cocktail of 1 µL HindIII (20 U/µL), 1 µL EcoRI (20 U/µL), 2 µL BsrGI (10 

U/µL), 1 µL XbaI (20 U/µL), and 4 µL SspI (5 U/µL, all from NEB) in NEB Buffer 2 (in 300 

µL total) at 37°C for overnight.  On day 3, the mixture was treated with 2 U of RNase III (NEB) 

and 4 U of RNase T1 (Fisher) for 2 h.  The digested fragments were divided into two parts: one 

was treated with 4 U of RNase H for 2 h, and another remained untreated.  The fragmented 

DNA samples were repurified using the DNeasy Blood & Tissue Kit and dissolved in 100 µL 

of 5 mM Tris-HCl pH 8.5. The extracted DNA was quantified using a Nanodrop (Thermo 

Fisher).  Each sample was diluted to 250 ng in 50 µL of TE and was spotted on a nylon 

membrane and crosslinked by UV treatment.  The membrane was blocked with 5% milk in 10 

mL of PBST and incubated with S9.6 antibody (1: 2000 dilution in 3% BSA of PBST) for 16 

hours at 4°C.  The membrane was then washed five times with 10 mL of PBST and incubated 

with secondary antibody (1: 1000 dilution in 3% BSA of PBST) for 1 h, and later the membrane 

was treated with ECL reagent (Bio-Rad) and visualized using a ChemiDoc MP Imaging System 

(Bio-Rad).  The same membrane was stripped with 10 mL of stripping buffer for 15-20 mins 
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(15 mg/mL glycine, 1 mg/mL SDS, and 1% Tween 20, pH 2.2), re-blocked with 10 mL of 5% 

BSA in PBST for 1 hour, and then incubated with dsDNA antibody (1:2000 dilution in 3% BSA 

of PBST) for 1 h and then washed and next incubated with secondary antibody (1: 1000 dilution 

in 3% BSA of PBST) for 1 h. After three times of washing with 10 mL of PBST for 5 minutes 

each, the nylon membrane was visualized by the ChemiDoc MP Imaging System. 

 

3.11 Recombinant proteins 

The plasmid containing pDEST17-DDX41-WT or pDEST17-DDX41-R525H mutant was 

transformed into E. coli Rosetta 2 cells (DE3, EMD Millipore).  The cells were grown at 37°C in 

1 L of LB medium containing 100 μg/mL  of ampicillin and 34 μg/mL of chloramphenicol until 

an OD600 was reached 0.6.  Cells were then induced with 0.3 mM IPTG for 16 hours at 15°C.  

The cells were harvested by centrifugation at 5000 g for 10 min at 4 °C.  The periplasmic 

material was removed from the cells as described (Magnusdottir et al., 2009).  Briefly, the cells 

were suspended in 5 mL/g (cell mass) of hypertonic buffer (50 mM HEPES, pH 7.4, 20% 

sucrose, and 1 mM EDTA) on ice for 30 min and centrifuged at 8000 g for 10 min at 4 °C.  The 

cells were re-suspended in 5 mL/g of cell mass with hypotonic solution (5 mM MgSO4) and 

incubated for 10 min on ice.  Cells were then pelleted by centrifugation at 4000 g for 10 min at 

4 °C and stored at -80 °C until use.  The cells were lysed by sonication in buffer A (50 mM 

HEPES-NaOH, pH 7.0, 300 mM NaCl, 20 mM imidazole, 10% glycerol, 2 mM MgCl2, and 5 

mM β-mercaptoethanol) with a final concentration of 1 mM PMSF and 10μL of 100x protease 

inhibitor (Roche Applied Science) at 4 °C, with 10 short bursts of 10 s at intervals of 10 min.  

The cell debris and inclusion bodies were removed by centrifugation at 45,000 g for 30 min at 4 

°C.  Recombinant His-tagged DDX41 proteins were subjected to a two-step purification 

involving Nickel Affinity beads (Sigma-Aldrich) and a Sephacryl S-300 HR 16/60 gel filtration 

column (GE Healthcare).  The supernatant was applied to the Ni-NTA beads equilibrated with 

buffer A, washed with 10 column volumes (CVs) of buffer   B (50 mM HEPES-NaOH, pH 7.0, 

150 mM NaCl, 10% glycerol, 2 mM MgCl2, a n d  5 mM β-mercaptoethanol) containing 

20 mM imidazole, and proteins were eluted with 5 CVs of buffer C (50 mM HEPES-NaOH, 

pH 7.0, 300 mM NaCl, 10% glycerol, 2 mM MgCl2, 5 mM β-mercaptoethanol, and 500 mM 

imidazole).  The composition of protein fractions were evaluated by SDS-PAGE, and  the 

fractions with high recombinant protein content were pooled and subjected to size-exclusion 
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chromatography on a Sephacryl S-300 HR 16/60 column (GE Healthcare) that was equilibrated 

and eluted with buffer D (50 mM HEPES-NaOH, pH 7.0, 150 mM NaCl, 10% glycerol, 2 mM 

MgCl2, and 1 mM DTT).  The fractions were collected at a flow rate of 0.5 mL/min with the 

same buffer.  The protein composition of each peak was assessed by SDS-PAGE, and the 

fractions of interest were pooled and concentrated. 

All proteins were snap-frozen in liquid nitrogen and stored at -80°C.  Protein 

concentration  was determined by the Bradford method (Bradford, 1976) using bovine serum 

albumin (BSA) as the standard. 

 

3.12 RNA and DNA substrates 

PAGE-purified oligonucleotides were purchased from Integrated DNA Technologies (IDT): 

RNA 30 mer: 5’-GAGCTACCAGCTACCCCGTATGTCAGAGAG-3’ and  

DNA 30 mer comp+15T: 

5’-CTCTCTGACATACGGGGTAGCTGGTAGCTCTTTTTTTTTTTTTTTTTTTTTTTTT-

3’ 

A single oligonucleotide for each substrate was 5′-end-labeled with [γ-32P] ATP (Perkin Elmer) 

at 37°C using T4 polynucleotide kinase (NEB) for 1 h.  Unbound radionucleotides were 

removed by using a G25 chromatography column (GE Healthcare).  For the RNA:DNA hybrid 

substrate, an [γ-32P]ATP-labeled oligonucleotide was annealed to a 2.5-fold excess of the 

unlabeled complementary strands in annealing buffer (10 mM Tris–HCl, pH 7.5, 50 mM NaCl) 

by heating at 95°C for 5 min and then cooling slowly to room temperature.  The annealed 

RNA:DNA substrates were stored at 4°C until used. 

 

3.13  Helicase assays 

Helicase assay reaction mixtures (20 μL) comprised 40 mM Tris (pH 8.0), 0.5 mM MgCl2, 15 

mM NaCl, 0.01% Nonidet P-40, 0.1 mM DTT, 1 mg/mL BSA, an equimolar mixture of 2 mM 

ATP and MgCl2, 0.5 nM of RNA:DNA substrate, and the indicated concentrations of DDX41 

protein.  Helicase reactions were initiated by adding DDX41 protein and then incubated at 

37 °C for 15 min.  Reactions were quenched with the addition of 20 μL of 2× Stop buffer (17.5 
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mM EDTA, 0.3% SDS, 12.5% glycerol, 0.02% bromphenol blue, and 0.02% xylene cyanol).  

A 10-fold excess of unlabeled oligonucleotide (cold oligo that has the same sequence as the [γ-

32P]ATP labelled strand) was included in the quench to prevent reannealing.  The products of 

the helicase reactions were resolved on nondenaturing 15% (19:1 acrylamide: bisacrylamide) 

polyacrylamide gels.  32P-radiolabeled DNA or RNA species in polyacrylamide gels were 

visualized using Phosphor-Imager Typhoon FLA 7000 (GE Healthcare). 

 

3.14 Strand annealing assays 

A 20ul reaction was carried out with 0.5 nM of RNA:DNA hybrid substrate.  The substrate was 

first denatured at 100°C for 5 min and then incubated with 0 to 3 μM of DDX41 protein at 37˚C 

for 15 min with or without 2 mM ATP in the helicase assay buffer (see above).  After incubation, 

the reaction was stopped by addition of 20 μL of 2×Stop buffer (17.5 mM EDTA, 0.3% SDS, 

12.5% glycerol, 0.02% bromophenol blue, and 0.02% xylene cyanol).  The mixture was resolved 

on 15% native PAGE gel for 2 h at 180 V.  The resolved radiolabeled species were visualized 

using the Phosphor-Imager Typhoon FLA 7000. 

 

4.  RESULTS 

4.1 DDX41 forms foci upon IR exposure 

To investigate the potential role of DDX41 in DNA damage response, I examined the ability of 

both endogenous (Figure 10) and exogenously expressed (Figure 11) (tagged with GFP) 

DDX41, to form foci in response to IR (ionizing radiation, 2 Gy) in HT1080 cells.  In this work 

I largely address biological DNA damage and evaluated by measuring the foci yields.  These 

subnuclear foci are formed upon various DNA damage related response factors, which accumulate 

explicitly at damaged sites, are spotted as distinct spots in nuclei (Rothkamm et al., 2015). IR directly 

affects DNA structure by inducing DNA breaks, particularly DSBs (Cannan and Pederson, 2016).  

DDX41 foci formation appeared after IR treatment, and the number of foci per cell increased 

over 4 h, i.e., an average of 5 at 0.5 h to 35 at 4 h of IR treatment (Figure 10B and D).  In this 

experiment, IgG (Figure 10A) and γH2AX (Figure 10C) were used as negative and positive 

controls, respectively.  As expected, no foci were formed in the IgG panel throughout the time 

before and after DNA damage, (Figure 10A and D) whereas γH2AX foci peaked 2 h after IR 
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treatment (Figure 10A and D).  Next, I performed confocal imaging of exogenous DDX41 over 

4 h after IR treatment to check any IR-induced foci formed.  Here, Bloom helicase, which is a 

well-known DNA repair protein (Patel et al., 2017), was used as a positive control (Figure 

11D).  GFP vector (Figure 11B) and DDX41-K9A (Figure 11C) mutant (only localizes in the 

cytoplasm) acted as negative controls.  I found that there was a 2-fold increase in the number 

of DDX41 foci from 0.5 h to 4 h (Figure 11 A and E).  There was no foci formation observed 

in cells harbouring the  GFP vector and DDX41-K9A. To elaborate, GFP vector was found both 

in cytoplasm and nucleus, without any specific localization and foci formation.  Additionally, 

DDX41-K9A was predominantly localized in the cytoplasm and did not result in any IR-

induced foci.  Furthermore, Bloom helicase showed increased in foci over time, at 0 h the foci 

were minimal (i.e., 2 at an average), whereas it gradually increased to 6 times (relative to 0 h) 

by 4 h of IR treatment.  Hence, these results suggest a possible role of DDX41 in DDR. 

 
Figure 10. IR induced foci formation of DDX41 in HT1080 cells.  Immunofluorescence of 

(A) IgG (negative control), (B) DDX41, and (C) γH2AX (positive control), over time course 

of 0, 0.5, 1, 2, and 4 h after exposure to ionizing radiation in HT1080 cells. Nuclear DNA was 

counterstained with DAPI.  (D) Quantitative analysis of foci from 100 cells shown in panels 

A-C in three biological replicates ±SD. 
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Figure 11. IR induced foci formation of DDX41-GFP in HT1080 cells.  

Immunofluorescence of (A) GFP-DDX41-WT, (B) GFP vector (negative control), (C) GFP-

DDX41-K9A (mutant, negative control), (D) GFP-Bloom (positive control), over time course 

of 0, 0.5, 1, 2, and 4 h in HT1080 cells after exposure to 2 Gy of ionizing radiation.  Nuclear 

DNA was counterstained with DAPI.  (E) Quantitative analysis of foci from 100 cells shown 

in panels A-D in three biological replicates ±SD.  

 

4.2 DDX41 is involved in the DNA damage response pathway  

To confirm the role of DDX41 in DDR and DNA repair, I performed immunoblotting to 

visualize some DDR related proteins (γH2AX, 53BP1, p-CHK2, p-BRCA1, p-ATM, and p-P53) 

in both wildtype (WT) and DDX41-KO cell lines before and after treatment with IR (Figure 

12A) or HU (Figure 12B) DNA damage for a time course of 24 h.  Besides IR, I also included 

hydroxyurea (HU), which is used to model DNA damage by depleting the cells of dNTPs and resulting 

in stalled replication forks (Gottmann et al., 2010). I found that the levels of DNA damage proteins, 

γH2AX and 53BP1, was increased from 0.5 h to 4 h in WT cells, whereas in DDX41-KO cell line 
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Figure 12. Altered protein levels are linked to DNA damage response in DDX41 KO.  (A 

and B) Immunoblot analysis of DDR protein levels in WT and DDX41 KO HT1080 cells after 

IR (A, 5 Gy) and HU (B,10 mM) treatment. β actin serves as a loading control.  (C) Confocal 

images of γH2AX foci in WT and DDX41-KO cells after 5 Gy IR treatment, and collected at 

different time points i.e., at 15 min (1/4, 0.25 h), 1, 2, 4, 8, 24 h.  (D) Quantification data of foci 

from 100 cells shown in panel C in three biological replicates ±SD.  M, marker; UT, untreated; 

WT, wildtype; DDX41-KO, DDX41-knockout. 

 

the γH2AX and 53BP1 level was comparatively higher and prolonged up to 24 h (Figure 12A 

and B).  Additionally, the phosphorylation of DNA repair signaling protein, BRCA1 to 

pBRCA1 (Ser1524, DNA damage-induced phosphorylation site on BRCA1) was delayed and 

diminished in DDX41-KO cells.  To elaborate, the damaged DNA repair process indicated by 

phosphorylation of BRCA1 initiated within 0.5 h after the DNA damage in WT cells, but the 

phospho-levels of BRCA1 were weak and appeared later around 8 h in the KO cell lines.  

Hence, this data bolstered my hypothesis of DDX41 functioning in the DNA damage response 

pathway. 
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I further verified these results by confocal imaging.  I found that IR-induced γ-H2AX 

protein foci were observed up to 24 h in DDX41-KO cells, compared to 4 h in WT cells 

(Figure 12C and D), indicating that delayed or impaired DSB repair maybe related to DDX41 

loss.  To investigate the time at which DNA damage is resolved, I increased the investigation 

time to 72 h.  I observed that the DNA damage indicated by γ-H2AX and 53BP1 levels was not 

resolved until 24 h after treatment in KO cells.  In contrast, the DNA damage dissipated after 

4 h in WT cells, suggesting that damaged DNA was repaired earlier in the presence of DDX41 

(Figure 13).  These data suggested DDX41 is required for DNA damage repair, and loss of 

DDX41 results in impaired and delayed DNA damage responses. 

 

 

 

Figure 13. Prolonged DNA damage in DDX41 KO cells.  Western blots showing protein 

levels of 53BP1 and γ-H2AX in WT and DDX41-KO HT1080 cells at different time points, 

i.e., at 0.25, 0.5, 1, 2, 4, 8, 24, 32, 64, and 72 h, after IR treatment.  M, marker; UT, untreated; 

WT, wildtype; DDX41-KO, DDX41-knockout. 

 

4.3 Increased DNA damage in DDX41-knockout cells 

To verify the results above, I treated cells with additional DNA damage treatments, including 

IR, HU, and UV.  UV radiation causes two classes of DNA lesions: cyclobutane pyrimidine 

dimers and 6-4 photoproducts (Kemp and Sancar, 2012).  Immunoblots of WT and  

DDX41-/- HT1080 (Figure 14) and HeLa (Figure 15) cell lines after IR (Figure 14A and 

15A), UV (Figure 14B and 15B), or HU (Figure 14C and 15C) were performed to examine 

the DDR-related protein levels up to 72 h post-treatment.  In agreement with the results 

described above, I found γH2AX and 53BP1 levels were increased and prolonged in both 

HT1080 and HeLa DDX41-KO cells compared to the wild-type parental lines.  Levels of  
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Figure 14. Impaired DNA damage response in DDX41-knockout HT1080 cells.  Western 

blot assays of DDR-related proteins in WT and DDX41-/- HT1080 cell lines after (A) IR (5 

Gy), (B) UV (50J/m2), and (C) HU (10 mM for overnight) treatment at various time points 

(UT, 0.25, 0.5, 1, 2, 4, 8, 24, 32, 64, and 72 h) in three biological replicates.  β-actin serves as 

a loading control.   
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Figure 15. Impaired DNA damage response in DDX41-knockout HeLa cells.  Western blot 

assays of DDR-related proteins in WT and DDX41-/- HeLa cell lines after (A) IR (5 Gy), (B) UV 

(50J/m2), and (C) HU (10 mM for overnight) treatment at various time points (UT, 0.25, 0.5, 1, 2, 

4, 8, 24, 32, 64, and 72 h) in three biological replicates.  β-actin serves as a loading control. 
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53BP1 was majorly mirrored by the levels of pBRCA1 for a period of 1-4 h in WT cells 

compared to 24-64 h in KO cells, suggesting the significance of DDX41 in early DNA 

damage repair.  Taken together, these results implied the crucial role of DDX41 in DDR and 

DSB repair. 

 

4.4 DDX41 co-localizes with DNA double-strand break marker γH2AX 

To further investigate whether DDX41 is directly involved in DDR, I used confocal imaging to 

determine if DDX41 and γH2AX co-localize following DNA damage.  Because the IR machine 

used in above experiments was out of order for later experiments, I used bleomycin (Bm) to 

generate DSB. Bleomycin is a radiomimetic agent that causes DNA strand breaks, such as DSB 

(Chen et al., 2008).  Intriguingly, I observed colocalization of DDX41 (green) and γH2AX (red), 

ranging from 0.5 h to 2-4 h in both HT1080 (Figure 16A and B) and HeLa (Figure 16D and 

E) cell lines after Bm (30 μg/ml, overnight) treatment.  Additionally, the colocalization 

experiment also confirmed that Bm-induced γH2AX foci were higher and prolonged (up to 24 

h) in DDX41 KO cells than WT cells (Figure 16A, B, D, and E).  On average, 10-12 foci/cell 

were persistent in KO cell lines, whereas 1-2 foci/cell were detectable in WT cells after 24 h of 

DNA damage treatment (Figure 16C and F).  Collectively, these results suggested that DDX41 

might colocalize at DSB sites and participate in the DNA repair process along with other 

proteins and factors in the DNA-insulted cells. 
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Figure 16. DDX41 colocalizes with γH2AX upon DNA insult.  (A and D) 

Immunofluorescence staining of WT and DDX41-/- (A) HT1080 and (D) HeLa cells with 

γH2AX (red), DDX41 (green), and DAPI (blue) at various time points (0, 0.5, 1, 2, 4, and 24 h) 

after Bm (30 μg/mL, overnight) treatment in three biological replicates.  Quantitative analysis 

of the percentage colocalization of γH2AX and DDX41 after Bm treatment in HT1080 (B) and 

HeLa (E) cells.  Quantitative analysis of the number of γH2AX foci after Bm treatment in 

HT1080 (C) and HeLa (F) cells. The number of cells analyzed per channel are 100.  Error bars 

indicate mean ± SD of cells per channel. UT, untreated; Bm, bleomycin. 
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4.5 Comet assay validates higher and prolonged DNA damage in DDX41-KO 

cells 

Next, I performed an alkaline comet assay to measure the DNA breaks formed in cells 

expressing or lacking DDX41 (Langie et al., 2015).  Here, I estimated the amount of migrated 

DNA, revealed by the tail length indicating the extent of DNA damage in the cells (Figure 17).  

The untreated cells of both WT and DDX41-KO did not show any migration.  However, 

DDX41-KO cells displayed higher migration than WT cells over 4 h after Bm treatment.  In 

addition, this migration extended up  

 

Figure 17. Alkaline comet assay showing higher and prolonged DNA migration in DDX41-

KO HT1080 cells.  (A) Staining DNA in WT and DDX41-/- cells at various time points 

(0/untreated, 0.5, 1, 2, 4, and 24 h) after Bm (30 μg/ml, overnight) treatment in three biological 

replicates  (B) Quantitative analysis of tail length (µm) (indicative of the damaged DNA) of 

the cells shown in panel A.  Migration of comet tails of random 50 cells were measured by 

ImageJ program.  Error bars indicate mean ± SD of cells per channel. UT, untreated; Bm, 

bleomycin. 
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to 24 h in KO cells, whereas this was resolved after 4 h of DNA damage in the WT cells (Figure 

17A and B).  The analysis of the tail length for WT cells demonstrates approximately 40-80% 

of the relative DNA migration, whereas, in DDX41-KO, this range grew to 80-100% over the 

time course after the Bm treatment.  Moreover, after 24 hr of the DNA insult, the damaged 

DNA was recovered in the WT cells, i.e., the DNA migration was negligible, around 13%.  In 

contrast, the DDX41-KO still showed significant unrecovered DNA damage, revealed by 

around 40% of the tail length (Figure 17B).  Hence, the results of the alkaline comet assays 

were consistent with my previous Western blot and immunofluorescence results and confirmed 

that greater and persistent DNA damage occurs in DDX41 KO cells. 

 

4.6 DDX41 promotes RNA:DNA hybrid clearance 

Preliminary data in Dr. Wu’s lab has shown that DDX41 protein binds and unwinds RNA:DNA 

hybrids in vitro, a part of the R-loop structure.  Based on this, I wanted to determine the role of 

DDX41 in R-loop formation in cells.  To address this, I performed dot blot assays for various 

time points (i.e., 0.25, 0.5, 1, 2, and 4 h) after DNA damage treatment in WT and DDX41-KO 

HT1080 cells.  I used three different DNA damages, i.e., UV, HU, and Bm, and deciphered the 

levels of R-loops by dot blotting.  To determine the R-loop structures in the cells and on the 

membrane, the antibody S9.6 was used. S9.6 is a gold standard antibody that is used to 

specifically detect RNA:DNA hybrids (Smolka et al., 2021). RNase H was used to degrade the 

RNA molecules in the RNA:DNA hybrid, serving as a negative control in the experiment.  

Furthermore, dsDNA was used as a loading control.  As expected, RNase H degraded all R-loops 

in our samples.  DDX41-KO cells treated with Bm (Figure 18A), UV (Figure 18B), or HU 

(Figure 18C) exhibited higher and prolonged R-loop structures, when compared to the wild type 

that resolves.  To elaborate, upon Bm, UV, and HU treatment, both HT1080 WT and DDX41-

KO cells exhibited R-loop formation.  Here, in both the cell lines R-loops began to appear early 

in 0.25 h and increased by 0.5 h after the treatment.  The WT cells resolved these hybrid 

structures within 1 h, on the other hand, in DDX41-KO cells these hybrids increased and 

accumulated up to 2 h and started delayed resolving at 4 h (Figure 18A).  These results led me 

to conclude that DDX41 contributes to resolve R-loops. 
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Figure 18. Dot blot assays showing increased and prolonged RNA:DNA hybrids in DDX41-

KO cells.  Dot blot assays using S9.6 antibody to detect R-loops in HT1080 (WT and DDX41-

KO) cells at different time points (UT, 0.25, 0.5, 1, 2, and 4 h) after Bm (30 μg/mL, 16 h, A), UV 

(50 J/m2, B), and HU (10 mM for 16 h, C) treatments in three biological replicates.  dsDNA 

antibody was used as a loading control.  UT, untreated. 

 

4.7 Purification of DDX41-WT and DDX41-R525H mutant proteins 

To investigate the molecular pathogenesis of patient mutation R525H, I expressed and purified 
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(Figure 19A- C) and DDX41-R525H (Figure 19-F) were purified to near homogeneity using 

size-exclusion chromatography on a Sephacryl S-300 HR 16/60 column.  According to the 

molecular weight standards used to calibrate the size exclusion column, the molecular mass of 

the major peak, peak 2, was close to the monomeric form of DDX41 (69.8 kDa), while  
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Figure 19. Purification of DDX41 proteins.  (A and D) SDS-PAGE analysis of the eluted 

DDX41-WT (A) and DDX41-R525H (D) fractions from a Ni-NTA column.  M, marker.  Eluted 

fractions 4-20 are shown.  (B and E) Chromatographic profiles of recombinant DDX41-WT 

(B) and DDX41-R525H (E) proteins eluted from a Sephacryl S-300 HR column.  Four peaks 

are indicated. (C and F) SDS-PAGE analysis of the peaks shown in B and E. 

 

peak 1 was in the void volume, likely aggregated form of the DDX41 proteins and peaks 3 and 

4 were probably degraded fractions.  Thus, I collected the monomer fractions of both DDX41 

variants for the subsequent biochemical assays. 

 

4.8 R525H protein has reduced unwinding activity but retains normal 

strand annealing activity 

With the two purified proteins above, I wanted to check if DDX41 unwinds RNA:DNA hybrid,  

which mirrors the R-loop structure.  I performed the helicase assay of both WT and R525H 

Elution fractions

M   E4    E6   E8  E10  E12  E14  E16  E18  E20

15

10

kDa

75

50

250

150
100

37

A

WT

M Peak 1       Peak 2         Peak 3   Peak 4

WT

Peak 1

Peak 2

Peak 3

Peak 4

B

C

D

E

F

Elution fractions

M   E4    E6   E8  E10  E12  E14  E16  E18  E20

15
10

kDa

75

50

250

150

100

37

R525H

M    Peak 1     Peak 2        Peak 3   Peak 4

R525H

0 50 100 150 200

0

10

20

30

40

50

m
A

U

Fraction Volume (ml)

Peak 1

Peak 2

Peak 3

Peak 4

0 50 100 150 200

0

10

20

30

40

50

60

m
A

U

Fraction Volume (mL)

15

10

kDa

75

50

250

150
100

37

15

10

kDa

75

50

250

150
100

37

Figure 13. Purification of DDX41 proteins. (A and D) SDS-PAGE analysis of the eluted DDX41-WT (A) and DDX41-R525H (D) 

fractions from a Ni-NTA column. M, marker. Eluted fractions 4-20 are shown. (B and E) Chromatographic profiles of recombinant 

DDX41-WT (B) and DDX41-R525H (E) proteins eluted from a Sephacryl S-300 HR column. Four peaks are indicated. (C and F) SDS-

PAGE analysis of the peaks shown in B and E.
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mutant proteins.  Compared with the DDX41-WT, a significant decrease in the unwinding 

activity was observed in the mutant (Figure 20A), indicating the mutant reduced its  

 

 

Figure 20. Helicase and annealing activities of DDX41-WT and R525H mutant proteins 

on RNA: DNA hybrids.  (A) A representative image of helicase reactions performed by 

incubating 0.5 nM of 3’ tail 30-mer RNA and 45-mer complementary DNA hybrid substrate 

with increasing protein concentration (0.09, 0.18, 0.37, 0.75, 1.5, 3.0 μM) at 37 °C for 15 min.  

(B and C) Representative images of strand annealing assays performed by incubating 0.5 nM 

of P- labelled 30-mer RNA and 0.5 nM of unlabeled 45-mer complementary DNA with 

increasing protein concentration (0.09, 0.18, 0.37, 0.75, 1.5, 3.0 μM) at 37 °C for 15 min, 

without ATP (B) and with ATP (C).  DNA is represented with a black line and RNA with a grey 

line. NE, no enzyme; No cold, no unlabeled complementary strand; Filled triangle, heat-

denatured substrate control. 
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helicase activity.  Further, I compared strand annealing activities of both WT and mutant, and 

no significant difference was found (Figure 20B).  Interestingly, when the same annealing assay 

reaction (shown in Figure B) was performed in the presence of ATP, WT unwound the 

RNA:DNA hybrid, whereas R525H failed to do so.  Hence, there were accumulated RNA:DNA 

hybrids in the mutant reactions (Figure 20C).  So, I found DDX41-WT efficiently performs 

both helicase and annealing activity whereas DDX41-R525H mutant has reduced helicase 

activity but retained annealing activity.  To elaborate, in the presence of ATP, R525H showed 

significantly high strand annealing when compared to WT; whereas, although WT exhibited 

annealing activity but simultaneously it unwound the RNA:DNA hybrid formed after the 

annealing process.  This led us to conclude that WT binds to the RNA:DNA hybrid structures 

in the R-loops and then resolves the structure for further DDR processing.  In summary, these 

data suggested that DDX41-WT resolves RNA:DNA hybrids, whereas R525H tends to 

accumulate it. 

 

4.9 DDX41 co-localizes with R-loops 

Since DDX41 negatively regulates R-loops formation, next, I wanted to investigate whether 

DDX41 directly interacts with R-loop structures, i.e., colocalizes with RNA:DNA hybrids.  

Here, I used RNase H again to specifically degrade RNA:DNA hybrids.  I treated WT (Figure 

21A) and DDX41-KO cells (Figure 21B) with Bm to observe S9.6-foci formation and 

colocalization in WT cells (if any) at 1 h.  Intriguingly, I found that DDX41 colocalized with 

R-loops/S9.6 in the absence of RNase H (Figure 21A and D), indicating its direct interaction 

with R-loops in the nucleus.  Moreover, the number of S9.6-foci was higher in KO cells (average 

10 foci/cell) than in WT cells (4 foci/cell) after 1 h of Bm treatment (Figure 21B and C).  There 

is prominent S9.6 signal in nucleoli and cytoplasm that presumably largely originates from 

ribosomal RNA (Smolka et al., 2021).  Strikingly, these results correspond with our in vitro 

(Figure 20) and dot blot data (Figure 18).  Therefore, I conclude that DDX41 colocalizes with 

R-loops and resolves the formation. 
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Figure 21. DDX41 colocalizes with R-loops upon DNA insult.  Immunofluorescence staining 

of WT (A) and DDX41-KO (B) HT1080 cells at 1 h after Bm (30 μg/mL, 16 h) treatment, with 

and without RNase H treatment in three biological replicates.  (C) Quantitative analysis of the 

percentage colocalization of S9.6 and DDX41 shown in panel A.  (D) Quantitative analysis of 

S9.6 foci in WT and DDX41-KO HT1080 cells without or with Bm treatment (16 h post 30 

μg/mL).  The number of cells analyzed are 100 per channel.  Error bars indicate mean ± SD of 

cells per channel. UT, untreated; Bm, bleomycin. 

 

 

4.10 DDX41 colocalizes with transcriptional machinery 

Because R-loops are frequently formed during transcription (Belotserkovskii et al., 2018), I 

used RNA polymerase II antibody and performed confocal imaging to investigate whether 
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DDX41 colocalizes with the transcriptional machinery and if there is any difference in 

colocalization before and after DNA damage. There was no colocalization between DDX41 and 

RNA Pol II in the absence of DNA damage.  After the bleomycin treatment, around 70 % of 

DDX41 colocalized with RNA pol II at 1 h, furthermore, there was 1.5 times increase in RNA 

Pol II in HT1080 cells (Figure 22).  Possibly, upon the bleomycin treatment, RNA Pol II 

accumulated at the DSB sites due to halted passage at the lesion site, where DDX41 is recruited 

to resolve R-loops. 

Besides DDX41’s potential role in DSB-induced R-loops metabolism, I wanted to know 

whether transcription-replication collisions cause the increased DSBs in DDX41 

 

 

Figure 22. DDX41 colocalizes with RNA Pol II upon bleomycin treatment.  

Immunofluorescence staining of HT1080 cells after bleomycin (30 μg/mL, overnight) treatment 

in three biological replicates and quantitative analysis of percentage colocalization of RNA Pol 

II and DDX41 shown in panel A. The number of cells analyzed are 100 per channel.  Error bars 

indicate mean ± SD of cells per channel. UT, untreated. 
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depletion cells.  I have sent our WT and DDX41-KO cell lines to Dr. Peter Sterling’s lab at 

UBC, who will measure the transcription–replication collision events as PLA (Proximity 

Ligation Assay) signals between PCNA (Proliferating cell nuclear antigen, for replication) 

and RNA Pol II (transcription). 

 

4.11 Patient mutant R525H exhibits diminished DDR and increased 

DNA damage when   reconstituted in wildtype or DDX41 KO cells 

To explore the potential cellular pathogenesis of the R525H mutant, I overexpressed the 

DDX41-WT or DDX41-R525H genes in both WT and DDX41-KO HT1080 cell lines.  After 

Bm, UV, and HU treatment, I examined the relative abundance of the DDR-related proteins 

and R-loops status by Western and dot blotting respectively.  Like the Western blot results of 

DDX41-KO HT1080 cells (Figure 12), both WT and DDX41 KO backgrounds overexpressing 

the R525H mutant showed significantly higher γH2AX and 53BP1 levels along with delayed 

and diminished DNA repair levels, indicated by pBRCA1 protein level after Bm (Figure 23A), 

UV (Figure 23B) and HU (Figure 23C) treatment.  DSB, indicated by γH2AX and 53BP1 

levels, was resolved within 2-4 h after the DNA damage in WT overexpression cell lines, but it 

took 8-24 h in DDX41-R252H overexpressing cells, both in WT and DDX41 KO cell 

background.  Moreover, the phosphorylation of BRCA1 protein was earlier, around 1-2 h, in 

WT overexpressed cells than in DDX41-R525H overexpressed cells, i.e., around 4-8 h after the 

DNA damage. 

In addition, dot blot assays also showed that R525H had elevated and persistent 

RNA:DNA hybrid levels (until 4 h) when compared to WT (until 0.5-1 h) after Bm (Figure 

24A and 25A), UV (Figure 24B and 25B), or HU (Figure 24C and 25C) treatment in DDX41-

KO (Figure 24) and WT (Figure 25) cell background.  Thus, I concluded that the patient 

mutant R525H dysregulates DDR and DNA repair pathways, which may explain the 

underlying pathogenesis in MDS and AML patients that harbor the R525H mutation. 
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Figure 23. Overexpression of the R525H mutant exhibits prolonged DNA damage and 

diminishes repair.  Western blot assays of some DDR proteins in DDX41-WT or DDX41- 

R525H overexpressed WT and DDX41-KO HT1080 cell lines after Bm (30 µg/mL for 16 h, A), 

UV (50 J/m2, B), and HU (10 mM, 16 h, C) at various time points (0.5, 1, 2, 4, 8, and 24 h) in 

three biological replicates.  β-actin serves as a loading control.  UT, untreated. 
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Figure 24. Overexpression of the R525H mutant perturbs RNA:DNA hybrids in DDX41- 

KO HT1080 cells.  Dot blot assay of HT1080 DDX41-KO cells and DDX41-KO cells expressing 

DDX41-WT or DDX41-R525H genes at different time points (UT, 0.25, 0.5, 1, 2, and 4 h) after 

Bm (30 μg/mL, 16 h, A), UV (50J/m2, B), and HU (10 mM, 16 h, C) treatments in three biological 

replicates.  S9.6 antibody was used to detect R-loops and dsDNA antibody as a loading control.  

UT, untreated. 
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Figure 25. Overexpression of the R525H mutant perturbs RNA:DNA hybrids in WT 

HT1080 cells.  Dot blot assay of HT1080 WT cells and WT cells expressing DDX41-WT or 

DDX41-R525H genes at different time points (UT, 0.25, 0.5, 1, 2, and 4 h) after Bm (30 μg/mL, 

16 h, A), UV (50J/m2, B), and HU (10 mM for 16 h, C) treatments in three biological replicates.  

S9.6 antibody was used to detect R-loops and dsDNA antibody as a loading control.  UT, 

untreated. 
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5  DISCUSSION 

5.1 DDX41 is an emerging DDR-associated protein 

DDX41 is well known for its role as a host intracellular DNA sensor against DNA virus 

infection (Zhang et al., 2011c).  Both germline and acquired somatic mutations of DDX41 

stimulate the development of MDS and AML (Abou Dalle et  al .,  2020; Cardoso et  al. ,  

2016; Ding et al . ,  2012; Hosono, 2019; Saygin and Godley, 2021) .  To investigate 

the possible mechanism involved in the pathogenesis of MDS/AML, extensive research has 

been taking place, and now the attention has been driven to DNA damage and alteration of the 

DDR, which are critical features of deregulation of genomic stability (Boehrer et al., 2009; 

Cavelier et al., 2009; Kefala et al., 2013; Popp et al., 2017; Satoh et al., 2012).  DEAD-box 

proteins, such as DDX1 (Li et al., 2008; Zhang et al., 2011a) and DDX3 (Sun et al., 2013; 

Szappanos et al., 2018), which have well-known functions in the innate immune response, are 

also intriguingly involved in DDR.  On the other hand, several DDR genes, such as ATM 

(Grosjean-Raillard et al., 2009), XPD and XRCC1 (Joshi et al., 2016),  BRCC (Meyer et al., 

2020), and HLTF (Takaoka et al., 2019) have been associated with MDS/AML.   

DEAD-box helicases are usually involved in RNA metabolism, such as mRNA splicing, 

translation initiation, ribosome biogenesis, and RNA degradation (Valentini and Linder, 2021); 

however, so far more than a dozen of DEAD-box helicases has been identified in DNA repair.  

They are DDX1 (Kim et al., 2020; Li et al., 2016a), DDX3 (Chan et al., 2019), DDX5 (Kim et 

al., 2020), DDX6 (Bergkessel and Reese, 2004), DDX11 (Abe et al., 2018; Guo et al., 2015; 

Shah et al., 2013), DDX17 (Adamson et al., 2012; Koo et al., 2015; Li et al., 2016b), DDX19 

(Hodroj et al., 2017), DDX21 (Kim et al., 2020), DDX23 (Sridhara et al., 2017), DDX47 

(Okamoto et al., 2019), DDX54 (Milek et al., 2017) , DDX56 (Kouyama et al., 2019), DDX58 

(Malachin et al., 2017; Ranoa et al., 2016), and DHX9 (Chakraborty et al., 2018b; Cristini et 

al., 2018; Kim et al., 2020).  To briefly mention, DDX5, also known as p68, localizes in DNA 

damage sites (Kahlina et al., 2004).  DHX9, also known as RNA helicase A, is associated 

directly with DNA repair marker γ-H2AX after actinomycin D treatment in HeLa cells (Mischo 

et al., 2011; Mischo et al., 2005).  DDX1 is found to facilitate the removal of RNA and 

homologous recombination at DSBs (Li et al., 2016a).  Biomedical and genetic approaches have 

identified several other DEAD-box helicases, though their exact roles in DDR remain under 
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further investigation. 

The potential role of DDX41 in DDR is just emerging.  Recently, in a zebrafish model, a 

study revealed the importance of DDX41 in erythropoiesis regulation as deficiency and 

mutations in DDX41 exhibits ATM- and ATR-mediated cell arrest triggered by DNA damage, 

genomic stress, and misexpression and alternative splicing of genes related to cell cycle 

(Weinreb et al., 2020). My data provide evidence that DDX41 is another DEAD-box protein 

that functions in DDR: it assists DNA repair by resolving R-loop structures and precludes 

genome instability. 

 

5.2  DDX41 is required to facilitate DNA repair  

My work shows that with the loss of DDX41, the DNA damage measured by γ- H2AX and 

53BP1 levels becomes extensive and longer in duration; in addition, the DNA repair signalling 

(phosphorylation of BRCA1 tO pBRCA1) was diminished and occurred much later compared 

to wildtype cells.  The DNA damage-induced γ-H2AX foci formation is a critical and primary 

cellular response to DSB, and the number of γ-H2AX foci decreases as DSBs are repaired 

(Redon et al., 2009).  In our confocal imaging studies, γ-H2AX foci were resolved over the time 

course of 4 h after various types of DNA damage in wild type cells, whereas in DDX41 

knockout cells these foci persisted until 24 h.  DDX1 is recruited to the DNA damage sites, 

early at 30 min upon IR exposure and much later after 24 h of UV and cisplatin treatments, thus 

facilitating double strand break repair (Li et al., 2008).  An alkaline comet assay was performed 

to assess the lesions that particularly signifies DSB.  Intriguingly, the alkaline comet assays 

bolstered our Western blots and immunofluorescence results, i.e., the tail moment indicated by 

the damaged DNA migrated in the alkaline comet assay was longer in DDX41-KO (24 h) than 

WT cells (4 h). 

The DDR factor 53BP1 marks the DNA damage site after γ-H2AX recruitment and 

regulates the choice between HR and NHEJ DNA repair pathways (Bunting et al., 2010; 

Chapman et al., 2013).  Similarly, pBRCA1 chooses between HR and NHEJ repair pathways 

by deciding on various unified factors (Biehs et al., 2017).  Interestingly, when 53BP1 and 

pBRCA1 localize collectively on the damage site, they promote for HR-mediated repair.  Our 

Western blot results show the levels of 53BP1 and pBRCA1 largely mirrored each other, 

suggesting that DDX41 might be involved in HR-mediated DNA repair.  Hence, the persistent and 
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higher DNA damage and delayed DNA repair protein levels in DDX41-knockout cells reflect 

the importance of DDX41 in DSB repair. 

 

5.3  DDX41 resolves R-loops 

The novel function of DDX41 in relation to R-loop structures is just emerging. Using zebrafish, 

it was found excess R-loop structures formed in DDX41 mutant animals, which deterred the 

equilibrium of hemogenic endothelium, hematopoietic stem and progenitor cells required for 

cellular fitness (Weinreb et al., 2021).  Another research revealed DDX41 depletion leads to 

replication stress, DNA damage, inflammatory signaling and accumulation of R-loop structures, 

whereas this accumulation is opposed in the presence of DDX41 through unwinding RNA:DNA 

hybrids at gene promoter  (Mosler et al., 2021).  Correspondingly, our results showed that DDX41 

protein unwinds RNA:DNA hybrids in vitro, suggesting its function in removing and regulating R-

loops.  I also performed in vitro annealing assays using DDX41-WT and R525H mutant 

proteins and deciphered that both could anneal the RNA: DNA hybrids without any significant 

difference.  Excitingly, a significant difference was observed when this annealing assay was 

performed in the presence of ATP, whereas the DDX41 mutant showed accumulation of R-loop 

structures and WT was able to unwind the RNA:DNA hybrids.  Herein, I concluded that DDX41 

is required for resolving and regulating R-loops. 

Compelling evidence has implicated several other DEAD-box proteins in the suppressing 

co-transcriptional R-loop structures, including DDX19, DDX21, DDX23, and DDX47.  In 2017, 

DDX19 was discovered to utilize its helicase activity to resolve R-loops in vitro (Hodroj et al., 

2017).  In a similar study, the phosphorylation of DDX23 by a serine/arginine protein kinase 2 

(SRPK2) was found to initiate a signal transduction cascade to help DDX23 resolve R-loops 

(Sridhara et al., 2017).  Also, DDX21 was discovered to cooperate with SIRT7 to resolve R-loops 

and safeguard genome stability (Song et al., 2017).  In 2018, DDX47 was added to the list as it 

interacts with Fanconi anemia protein, FANCD2, during mild replication stress to decrease the 

number of R-loops by reducing transcription–replication collisions (Okamoto et al., 2019).  In 

2019, DDX21, together with H3K27me3 demethylase JMJD3, was shown to resolve aberrant R-

loops (Argaud et al., 2019).  In 2020, DDX5 was reported to promote homologous recombination 

repair by acting as an R-loop-resolvase at the sites of DSBs in U2OS- 265 and DRGFP cells (Yu 

et al., 2020).  Thus, a fundamental question is why do cells need so many R-loop helicases, even 
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in the same DEAD-box family?  One possibility is that various DEAD-box helicases act distinctly 

on R-loops based on (1) type of R-loop, (2) different genome sites, and 3) cell or tissue-specific.  

Nevertheless, further studies are required. 

 

5.4  DDX41: a potential co-transcriptional suppressor of transcription 

replication conflicts 

Transcription-replication collisions (TRCs), formed due to unresolved R-loop  structures, are 

another threat to genomic stability.  Many reports suggest that some well-identified DNA repair 

proteins like BRCA1 and FANCD2 function as R-loop resolvases at the TRC locations, but the 

mechanism is still not explored well (Bhatia et al., 2014; Domínguez-Sánchez et al., 2011; 

Schwab et al., 2015).  In my project, I anticipate that the absence of DDX41 (or in the presence 

of R525H mutant) might result in higher TRCs due to R-loop accumulation in the cells.  

Studies in this field have revealed the R-loop resolving helicase, Senataxin, moves along with 

the replication fork to promote the progression through RNA polymerase II transcribed genes 

(Alzu et al., 2012; Mischo et al., 2011; Skourti-Stathaki et al., 2011).  Also,  the  DEAD-box 

hel icase  DDX39B is implicated in inhibiting R-loop accumulation during transcription and 

suppressing transcription-replication conflicts upon DNA damage (Pérez-Calero et al., 2020).  

To date, I have found the colocalization of DDX41 and RNA polymerase II, suggesting 

DDX41 might interact with the transcription machinery to help it release from the DSB-prone 

sites and maintain the genome integrity from pathological R-loop accumulation.  Further, 

ongoing proximal ligation assays (PLA) will give me direct evidence, measuring the collision 

events between replication and transcriptional machinery, i.e., PCNA and RNA Pol II, 

respectively, in WT and DDX41 KO cells after DNA insult. 

 

5.5  Prospective molecular pathogenesis of MDS and AML R525H mutation  

My study suggests that in the absence of DDX41, cells display elevated DSBs and delayed and 

diminished pBRCA1 activation.  My work also identifies that DDX41 is a pivotal R-loop 

resolvase that facilitates the repair of DSBs.  By performing dot blots after different DNA 

damage, I observed increased and accumulated R-loop structures in DDX41-R525H mutated 

cells, and significantly lower R-loops in the cells with the presence of DDX41-WT.  Parallel to 
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my findings, another DEAD-box helicase, DDX5, is overexpressed in acute myeloid leukemia, 

counteracting DSB-related DNA deletions and repair defects by resolving persistent R-loops 

(Yu et al., 2020).  My working model (Figure 26) supplements the exciting possibility of  

 

Figure 26.  A proposed model of the role of DDX41 in co-transcriptional resolution of R-

loops to maintain genome stability.  RNAP, RNA polymerase; DSB, Double-strand breaks; 

WT, Wildtype; CSB, Cockayne syndrome protein B. Modified from (Hamperl and Cimprich, 

2014; Hegazy et al., 2020). 

 

DEAD-box helicases associated with R-loop and other aberrant structures.  The model 

illustrates that DDX41-WT co-transcriptionally resolves any unwanted R-loop structure during 

transcription (Figure 26, left), whereas DDX41-R525H mutant fails to do that, hence, accumulates 

R-loops. The accumulation of R-loops results in transcription-replication collisions, DSBs, 

genome instability, and possibly MDS and AML. Similarly, another DEAD-box helicase, 

DDX39B, was recently determined to co-transcriptionally remove the pathological R-loop 

structures as its overexpression leads to hybrid suppression and restraining of the R-loop 

accumulation (Pérez-Calero et al., 2020).  Alternatively (Figure 26, right), DSBs are formed 
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as a consequence of DNA damage (from any source) in the cells, and there is a tendency of R-

loop accumulation at the site (Cristini et al., 2019).  DDX41-WT and other DNA repair proteins 

like RAD52 and CSB resolve R-loops, whereas DDX41-R525H mutant fails, resulting in 

delayed DNA repair and possible MDS/AML.  Correspondingly, DDX21 collaborates with 

SIRT7 to check any R-loop formation and maintain genome integrity (Song et al., 2017).  

Describing the collaboration above, both SIRT7 and DDX21 are related to Pol I and Pol II. In 

the wild type cells, DDX21-related hypoacetylation/deacetylation which is needed for 

unwinding of co-transcriptional R loops is maintained, where SIRT7-KO cells results in 

impaired helicase activity due to hyperacetylation of DDX21, resulting in stalled activity of Pol 

I and Pol II, R loop accumulation, and eventually DNA damage.  Many other DEAD-box 

helicases such as DHX9, DDX5, DDX1, and DDX21 interact with ATAD5, a PCNA unloader, 

to diminish RNA:DNA hybrids under both standard and replication stress conditions (Kim et al., 

2020). 

It is exciting to apply this model of DDX41 to the pathogenesis of MDS and AML; however, 

additional pathways and clinical studies on how these pathways interplay and influence each 

other should be investigated to make the pathogenesis effect evident.  Our work opens a window 

that illustrates how DDX41 associated regulation of DNA damage response pathway and R-

loop formation are interlinked and possibly applicable to MDS and AML pathologies and other 

diseases. 

 

6  CONCLUSIONS AND FUTURE WORK 
6.1 Conclusions 

DDX41 mutations are associated with hematologic malignancies, including MDS and AML; 

however, the molecular pathogenesis is unknown.  Since dysfunction of DNA damage and 

repair is one of the molecular pathogenesis of MDS and AML, I explored the potential role of 

DDX41 in DNA repair.  Using HT1080 and HeLa DDX41 KO cell lines, I found DDX41-

depelition leads to increased DNA damage, indicated by increased and prolonged DNA double 

strand breaks and increased comet tail formation.  Further, I found there were increased R-

loops in DDX41 KO cells after DNA insult.  DDX41 protein resolves R-loops in vitro, but the 

MDS and AML patient mutant R525H marginally unwinds R-loop structures.  DDX41 co-
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localized with DSB marker γ-H2AX and R-loop marker S9.6.  When overexpressed in DDX41 

KO or wildtype cell lines, R525H-expressing cells had significantly more R-loops than WT-

expressing cells.  Taken together, my results suggest DDX41 utilizes its unwinding activities to 

resolve R-loops at the DSB sites, which is critically important for DSB repair and genome 

stability, and dysregulation of this pathway might lead to MDS/AML. 

Even though if the confocal microscope is perfectly tuned it is not adequate to ascertain 

whether two proteins tagged with fluorescent molecules are colocalizing. Therefore, more 

specific techniques like pull down assay and proximity ligation assay must be used for future 

studies that readily discriminate over specific antibodies or probes targeting different proteins. 

 

6.2  Future work 

To confirm the correlation of DNA damage and DDR with DDX41, I will investigate the 

colocalization of DDX41 with 53BP1, another DSB marker, since both γ-H2AX and 53BP1 can 

be visualized as foci at the sites of DSB by confocal microscopy (Rothkamm et al., 2015).  

Further, our Western blots and dot blots showed there were elevated γ-H2AX and R-loop levels 

in R525H-expressed cell lines; additional immunofluorescence experiments will yield perceptive 

information about whether R525H mutation has a direct localization defect.  Hence, the 

colocalization of GFP-tagged DDX41-WT and GFP-tagged DDX41-R525H with DSB marker 

γH2AX/53BP1 could be examined and compared to produce further details on whether and how 

mutations in DDX41 alter the DDR pathway, particularly the initial steps of DNA damage 

responses. 

  Although various experiments led us to conclude the importance of DDX41 in DSB 

repair by resolving R-loops, whether DDX41 assists in the HR repair pathway remains unknown.  

To address this, I-SceI endonuclease that generates a DSB in the cassette of the dysfunctional 

GFP gene fragment in DR-GFP U2OS cell line (Gunn and Stark, 2012) can be used to compare 

HR efficiency in WT and siRNA DDX41 knockdown cell lines.  This DSB formed by I-SceI can 

be repaired via HR and the downstream GFP can be used as the readout to measure HR efficacy.  

Lastly, the investigation of transcription and replication collisions (TRCs) status in WT vs. 

DDX41-KO cell lines, DDX41-WT vs. DDX41-R525H-expressed cell lines using proximity 

ligation assay (collaborating with Dr. Peter Stirling at UBC) could also be informative to 

interpret the potential role of DDX41 in the molecular pathogenesis of MDS/AML. 
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