
Machine Learning Approaches for

Faster-than-Nyquist (FTN) Signaling

Detection

A thesis submitted to the

College of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements

for the degree of Master of Science

in the Department of Electrical and Computer Engineering

University of Saskatchewan

Saskatoon

By

Sina Abbasi

©Sina Abbasi, Nov. 2022. All rights reserved.

Unless otherwise noted, copyright of the material in this thesis

belongs to the author.



Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any

copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Requests for permission to copy or to make other uses of materials in this thesis in whole

or part should be addressed to:

Head of the Department of Electrical and Computer Engineering

University of Saskatchewan

57 Campus Drive

Saskatoon, Saskatchewan S7N 5A9

Canada

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

i



Abstract

There will be a significant demand on having a fast and reliable wireless communication

systems in future. Since bandwidth and bit rate are tightly connected to each other, one

approach will be increasing the bandwidth. However, the number of wireless devices are

growing exponentially, and we don’t have infinite bandwidth to allocate. On the other

hand, increasing the bit rate for a given bandwidth, i.e., improving the spectral efficiency

(SE), is another promising approach to have a fast and reliable wireless communication

systems. Faster-than-Nyquist (FTN) is one of the candidates to improve the SE while this

improvement comes at the expense of complexity of removing the introduced inter-symbol

interference (ISI). In this thesis, we propose two algorithms to decrease the computational

complexity regarding removing the ISI in FTN signaling.

In the first main contribution of the thesis, we introduce an equivalent FTN signaling

model based on orthonormal basis pulses to transform the non-orthogonal FTN signaling

transmission to an orthogonal transmission carrying real-number constellations. Then we

propose a deep learning (DL) based algorithm to decrease the computational complexity of

the known list sphere decoding (LSD) algorithm. In essence, the LSD is one of the algo-

rithm that can be used for the detection process of the FTN signaling; however, at huge

computational complexity. Simulation results show the proposed DL-based LSD reduces

computational complexity by orders of magnitude while maintaining close-to-optimal perfor-

mance.

In the second main contribution of the thesis, we view the FTN signaling detection prob-

lem as a classification problem, where the received FTN signaling signal viewed as an un-

labeled class sample that is an element of a set of all potential classes samples. Assuming

receivingN samples, conventional detectors search over anN -dimensional space which is com-

putationally expensive especially for large value of N . However, we propose a low-complexity

classifier (LCC) that performs the classification in Np dimensional space where Np ≪ N . The
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proposed LCC’s ability to balance performance and complexity is demonstrated by simulation

results.
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1.1 Motivation

During past decades a lot of technological breakthroughs happened such as Internet and

cellular phones. Led by these breakthroughs, the need of a stable wireless communication

emerged. Today’s wireless communication is more challenging than ever due to two factors:

first, the exponential growth of wireless devices like smartphones, tablets, computers, drones,

and smart gadgets. Second, the use of heavy real-time data applications on each of these

wireless devices, such as streaming. The reason is each of these heavy data application

wireless devices needs a specific bandwidth to operate on while in reality we do not have

infinite spectral to accommodate all these fast growing devices. Even though the current

rollout of 5G wireless communication systems handles 20 Gbps peak rates for enhanced

multimedia applications; it is anticipated that these applications will eventually grow to

include augmented reality, 3DTV/holographic communications, multi-sense communications,

and/or combinations of these. The peak rates needed by the emerging applications are

predicted to be in the range of a few terabits per second (Tbps), which is more than what

5G systems are capable of. Supporting this demand needs larger bandwidth than what is

currently offered in 5G; these new frequency bands, however, come with very high absorption

[1] which is only useful for short-range (few meters) of communications. Therefore, improving

the spectral efficiency (SE) in limited bandwidth is a promising approach to mitigate this

challenge.

Simply said, the SE is defined as the bit rate for a given bandwidth and is measured by

bit/s/Hz. Therefore, improving the SE means increasing the bit rate for a given bandwidth.

Faster-than-Nyquist (FTN) signaling as a non-orthogonal transmission method is among the

promising candidates to improve SE compared to Nyquist signaling. Nyquist demonstrated

that there is no interference between the samples of the receiver’s matched filter output when

signaling at rates greater than 1/T of T -orthogonal pulses, i.e., pulses that are orthogonal

to an nT shift of themselves for nonzero integer n; this type of signaling is called Nyquist

signaling. On the other hand, FTN signaling sends pulses faster than Nyquist criteria, causing

intersymbol interference (ISI), i.e., each symbol interferes with the others. For example, in
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Figure 1.1: (a) Nyquist signaling T = 1. (b) FTN signaling τT = 0.8.

Fig. 1.1, the red, blue, and green colors represent symbols that are being sent, i.e., +1, -1,

and +1, respectively. The black line is the summation of all these three symbols which is

the actual transmit signal. As can be seen in Nyquist signaling Fig. 1.1.a, the transmit

signal line, i.e., black line, has exactly the same value of actual symbols value, i.e. red

dots, at each nT ; however, in FTN signaling Fig. 1.1.b, the black line has a distance with

red dots at each nτT . This distance is because of the ISI due to FTN signaling. Even

though FTN signaling improves the SE, but this improvement comes at the cost of dealing

with introduced intersymbol interference (ISI). Since removing the introduced ISI has a

exponential computational complexity, in this thesis, we propose two algorithms to decrease

the computational complexity due to FTN signaling.

Recently, deep learning (DL), one of the well-known machine learning (ML) techniques,

has been shown to significantly enhance performance in several fields, including computer

vision and natural language processing [2], [3]. Essentially ML algorithms comes useful when

we are facing with problems without a clear mathematical definition, i.e., model deficit [4]–

[6], or when the problem’s solution has huge computational complexity which is not practical
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in a real-time application, i.e., algorithm deficit [7]–[9].

In the context of FTN signaling as mentioned earlier, we are dealing with significant

computational complexity, either exponential of the transmit block length or exponential of

ISI length, when we want to remove the introduced ISI and to detect the transmitted infor-

mation bits at the receiver by using conventional detection and signal processing algorithms,

e.g., list sphere decoding (LSD). Please note that the LSD is explained in Section 2.2 of this

thesis. Motivated by the aforementioned application of ML, our research objectives in this

thesis are focused on reducing the computational complexity of FTN detectors with the help

of ML algorithms.

1.2 Research Objectives

There are two main objective in this research:

I. Reducing the computational complexity of the LSD algorithm. This part of

thesis introduces a DL based solution to reduce the computational complexity of the

LSD algorithm. We select DL among ML techniques because we can produce enormous

training data sets, which is a great advantage in DL scenario. Additionally, the features

we use as input into the model are quite vast, and many other ML models fail as

the number of features increases due to the curse of dimensionality. Essentially, the

LSD can be used for the FTN signaling detection process; however, at the cost of high

computational complexity. We first present an alternative transmission model for FTN

signaling using orthonormal basis functions to avoid the necessity of having a noise

whitening filter at the receiver. Second, we provide a DL-based list sphere decoding

(DL-LSD) technique that chooses and modifies the original LSD’s initial radius in order

to ensure that a pre-defined NL lattice points are inside the hypersphere. To do this,

a neural network (NN) is trained to provide an approximate initial radius with NL

lattice points. During the testing phase, If there are more than NL lattice points inside

the hypersphere, we keep the NL points that are closest to the received FTN signaling
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vector; however, if the hypersphere has less than NL points, we increase the approximate

initial radius by a value that depends on the standard deviation of the distribution of

the output radii from the training phase. The approximate log-likelihood ratio (LLR)

value is then determined using the NL points for the channel decoder.

II. Low-complexity classification task for FTN signaling detection. In the second

main part of thesis, we look into the use of ML in reducing the detection complexity

of FTN signaling. The FTN signaling detection problem is viewed as a classification

problem, where the received signal is treated as an unlabeled class sample that is a

part of a set of samples from every possible class. The set of all potential class samples,

assuming we employ an off-the-shelf classifier, belongs to an N -dimensional space, where

N is the transmission block length. Given that the detection process has an exponential

relationship with N , an off-the-shelf classifier’s computational cost can be very high,

especially for large values of N . We propose a low-complexity classifier (LCC) to carry

out the classification task in a Np-dimension space, where Np ≪ N , by taking advantage

of the ISI structure of FTN signaling. The proposed LCC consists of two stages: 1) off-

line pre-classification that constructs the labeled classes samples in the Np-dimensional

space and 2) online classification where the detection of the received samples occurs.

The proposed LCC is extended to produce soft-outputs as well. Further reduction of

complexity when in calculating the soft-outputs comes from using the DL-LSD algorithm

(proposed in Chapter 3).

1.3 Organization of the Thesis

This thesis is organized in a manuscript-based style. The obtained results are included in

the form of accepted or under review manuscripts.

The thesis has overall five chapter. The motivation and research objectives are given

in the first chapter. In Chapter 2, a background for Nyquist signaling and FTN signaling

is discussed, and also is ended with a literature review. Chapter 3 introduced the deep

5



learning-based LSD for FTN signaling detection. In Chapter 4, a low complexity classification

approach for FTN signaling detection is proposed. Finally, a summary of the contribution of

thesis and potential future work are given in the Chapter 5.

1.4 References

[1] “Propagation modeling for wireless communications in the terahertz band,” IEEE Com-

munications Magazine, vol. 56, no. 6, pp. 96–101, Jun. 2018 (cit. on p. 2).

[2] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of deep learning

for natural language processing,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 32, no. 2, pp. 604–624, Apr. 2020 (cit. on p. 3).

[3] X. Wu, D. Sahoo, and S. C. Hoi, “Recent advances in deep learning for object detec-

tion,” Neurocomputing, vol. 396, pp. 39–64, Jul. 2020 (cit. on p. 3).

[4] T. J. O’Shea, T. Erpek, and T. C. Clancy, “Physical layer deep learning of encodings

for the MIMO fading channel,” in Proceedings of the IEEE Annual Allerton Conference

on Communication, Control, and Computing (Allerton), Oct. 2017, pp. 76–80 (cit. on

p. 3).

[5] Z. Zhao, M. C. Vuran, F. Guo, and S. D. Scott, “Deep-waveform: A learned OFDM

receiver based on deep complex-valued convolutional networks,” IEEE Journal on Se-

lected Areas in Communications, vol. 39, no. 8, pp. 2407–2420, Jun. 2021 (cit. on p. 3).

[6] M. Honkala, D. Korpi, and J. M. Huttunen, “Deeprx: Fully convolutional deep learning

receiver,” IEEE Transactions on Wireless Communications, vol. 20, no. 6, pp. 3925–

3940, Feb. 2021 (cit. on p. 3).

[7] Y. Wang, M. Martonosi, and L.-S. Peh, “A supervised learning approach for routing

optimizations in wireless sensor networks,” in Proceedings of the IEEE, May 2006,

pp. 79–86 (cit. on p. 4).

6



[8] H. Agirman-Tosun, Y. Liu, A. M. Haimovich, et al., “Modulation classification of

MIMO-OFDM signals by independent component analysis and support vector ma-

chines,” in Proceedings of the IEEE, Nov. 2011, pp. 1903–1907 (cit. on p. 4).

[9] G. De Veciana and A. Zakhor, “Neural net-based continuous phase modulation re-

ceivers,” IEEE Transactions of Communication, vol. 40, no. 8, pp. 1396–1408, Aug.

1992 (cit. on p. 4).

7



2 Background and Literature Review

8



Figure 2.1: Basic communication system.

2.1 Communication System

An example of a basic communication system model is illustrated in Fig. 2.1 which mainly

includes three essential parts: transmitter, channel, and receiver. In this study, we focused on

the transmitter and receiver side of a communication system, and an additive white Gaussian

noise (AWGN) channel is considered. First, we explain the concepts of noise and the AWGN

channel, and then we discuss Nyquist signaling and the FTN signaling system model in detail.

2.1.1 Noise and AWGN channel

The physical medium used to carry a signal from a transmitter to a receiver is known as

a communication channel. The atmosphere could serve as the channel in wireless commu-

nication (free space). The essential thing to notice here is that the transmitted signal is

corrupted in a random manner by a variety of possible mechanisms, such as additive thermal

noise generated by electronic devices; man-made noise, and/or fading noise. Additive noise
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is a typical issue in the transmission of signals which is mainly caused by thermal noise. Typ-

ically, electronic components at the receiver generate thermal noise by the thermal motions

of electrons. This type of noise has a Gaussian distribution, and is usually called additive

Gaussian noise [10].

Color is another characteristic of the noise that is being used. The color of the noise

reflects the frequency content in the noise power spectral density. White noise is noise with

a constant power spectral density that is frequency independent. Thermal noise sources are

classified as white noises [11]. Therefore, an AWGN channel is mathematically modeled as a

Gaussian distribution with zero mean and constant variance.

2.1.2 Nyquist Signaling

Transmitter

In the transmitter side, the information bits are going through the channel encoder and

interleaver blocks. Basically, the goal of the channel encoder is adding redundancy to transmit

bits with some sort of algorithms, e.g., convolutional coding, hamming coding, etc, where

in this case the errors caused by noise during transmission can be mitigated at the receiver.

Then, encoded bits pass into the mapping block where the bits are mapped to symbols. A

lot of mapping schemes has being used based on communication system needs, and some

popular ones are: pulse amplitude modulation (PAM), phase-shift keying (PSK), frequency-

shift keying (FSK).

After mapping, for amplitude and phase modulation, the transmit symbols are modulated

with pulse shape h(t). The bandwidth of modulated signal is a function of the bandwidth of

pulse shape h(t); hence, h(t) should be selected in such a way that ISI is not introduced; in

other words, there is no interference between symbols at each T where 1/T is the transmit

symbol rate. This criteria is called Nyquist criterion. There are a couple of candidate pulses

that satisfy the Nyquist criterion, e.g., Raised Cosine pulses [12].
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After the pulse shaping block, the transmit signals are ready to be sent with transmission

rate 1/T based on Nyquist criterion. The following equation shows transmit signal s(t):

s(t) =
∑
n

anh(t− nT ), (2.1)

where an, n = 1, ..., N , are data symbols, and N is pre-defined transmission block size based

on channel encoder structure.

Receiver

The transmit signal goes through the AWGN channel and perturbs by white noise. The

received signal at the receiver is formulated as follow:

r(t) = s(t) + w(t), (2.2)

where w(t) is additive white Gaussian noise (AWGN) with zero mean and variance of σ2.

Then, r(t) passes through a matched filter which is designed to maximize the signal-to-noise

ratio (SNR). The received signal, y(t), after the matched filter, h(t), is formulated as follow:

y(t) = r(t) ∗ h(t), (2.3)

where ∗ defined the convolution operator. Then, y(t) is sampled at the rate 1/T after the

matched filter:

yn = an + wn, (2.4)

where the detection process of transmit symbol an can be achieved on a symbol-by-symbol

basis detection. By detection, we are referring to the process of identifying and recognizing

the transmit symbols, i.e. an, at the receiver side. After the detection block, detected symbols

go into the deinterleaver and channel decoder accordingly to get the information bits.
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Figure 2.2: FTN signaling.

2.1.3 FTN Signaling

Transmitter

As shown in Fig. 2.2, since in FTN signaling we sent the transmit signal faster than Nyquist

rate, i.e., 1/τT . So the transmit signal is formulated as:

s(t) =
∑
n

anh(t− nτT ), (2.5)

Receiver

After matched filter, the received signal is formulated as:

y(t) =
∑
n

ang(t− nτT ) + w̄(t), (2.6)

where g(t) =
∫
h(x)h(x− t)dx and w̄(t) =

∫
w(x)h(x− t)dx. Bedeer et al. has been shown

that w̄(t) is a colored noise and we no longer have white noise [13]. After sampling at rate

12



1/τT the n-th received symbol is:

yn = y(nτT ),

=
∑
n′

an′g(nτT − n′τT ) + w̄(nτT ),

= ang(0) +
∑

n′,n′ ̸=n

an′g((n− n′)τT ) + w̄n, (2.7)

where the first part, i.e., ang(0), is the desired symbol, and second part is due to the ISI, and

last part is the sampled colored noise. We can write the received symbols as a vector as:

y = Ga+ w̄, (2.8)

where G is the ISI matrix, where Gi,j = g((i− j)τT ) represents the ISI between data symbol

i and j, and w̄ is the colored noise with zero-mean and covariance of σ2G. If we define

z = G−1y and η = G−1w̄, we can re-write (2.8) as:

z = a+ η, (2.9)

where the maximum likelihood sequence estimator (MLSE) problem can be formulate as [14]:

argmin
a

(z − a)TG(z − a). (2.10)

Brute force search can solve this MLSE problem at the cost of huge computational complexity

which prevents its real-world implementation.

2.2 List Sphere Decoding

In this section, we discuss one of the main detection algorithm in conventional communication

systems named sphere decoding (SD). Originally, the SD algorithm was proposed by Fincke

et al. [15], to solve the integer least-squares problem. An integer least-squares problem can

be formulated as follow:

â = argmin
a∈D
∥y −Ga∥22, (2.11)
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Figure 2.3: Idea of sphere decoding.

where D is a subset of the integer lattice ZN . In communication systems, this type of least-

squares problem is used to detect the sequence of transmit symbols a when vector y is

received at the receiver. In other words, the SD is trying to find the closest point in the

skewed lattice Ga to the received vector y. For example, in Fig. 2.3 the white points belong

to the skewed lattice and the black point is the received vector where SD is trying to get

the closest white point to the black point within its hypersphere, i.e., blue sphere. The main

goal of SD is to search over all of the lattice points that are contained within a hypersphere

with radius d that is centered on the received vector y. Thus, in contrast to search over

the entire lattice, i.e., brute force search, to obtain the MLSE solution, the search region of

the SD is the set of points inside the hypersphere which results in reduced computational

complexity. Obviously, the closest lattice point inside the hypersphere to vector y is also

the closest lattice point of the entire lattice; then, the solution of the SD algorithm is the

optimal solution of the MLSE.

In the SD algorithm, choosing the initial radius d is challenging; it should be chosen so

that it is neither too huge nor too small. If it is too large, then the number of lattice points

that fall inside the hypersphere will be in the order of entire lattice and the SD algorithm will

have the same complexity as a brute force search solution. On the other hand, if the radius

d is too small, it is possible that there is no lattice point inside the hypersphere. Hassibi et

al. suggested choosing the radius as a scaled variance of the noise [16].

The SD finds all lattice points inside its sphere in the way that a lattice point is inside
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hypersphere centered at y with the radius of d, if and only if:

d2 ≥ ∥y −Ga∥22 (2.12)

By QR factorization of matrix G, i.e. G = QR, we break down the problem in lower

dimension and rewrite (2.12) as:

d2≥ ∥z −Ra∥22

d2≥
N∑
i=1

(
zi −

N∑
j=i

Ri,jaj

)2

, (2.13)

where z = QTy.This is the situation where the upper triangular property of R comes useful.

In the inequality above, the right-hand side (RHS) can be expanded as follows:

d2 ≥ (zN −RN,NaN)
2 + (zN−1 −RN−1,N−1aN−1 −RN−1,NaN)

2 + .... (2.14)

It can be seen that the first term only depends on aN , the second term depends only on aN ,

aN−1, and so on so forth. Then, based on the first term, one of the necessary conditions is

as:

d2 ≥ (zN −RN,NaN)
2 , (2.15)

which after expanding, its equivalent to following constraint for aN :⌈
zN − d

RN,N

⌋
≤ aN ≤

⌊
zN + d

RN,N

⌋
, (2.16)

Of course, (2.16) is not enough to determine all symbols, we need to have such a constraint

for every symbol. For every aN that satisfies (2.16), we define d2N−1 = d2 − (zN −RN,NaN)
2

and then a stronger constraint with looking the first two terms of (2.14) can be driven for

(N − 1)-th symbol, i.e., aN−1:⌈
zN−1 −RN−1,NaN − dN−1

RN,N

⌋
≤ aN−1 ≤

⌊
zN−1 −RN−1,NaN + dN−1

RN,N

⌋
. (2.17)

Similar steps can be taken for aN−2 and so on until a1 to acquire all lattice points belonging

to (2.12).

After the SD algorithm finds all points inside the hypersphere, one can sort the points

based on the closest distance to the vector y and make a list of these points, this type of SD
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is known as list sphere decoding (LSD). The list of these points is being used to produce a

soft output that can be used by the channel decoder. This soft output, which is represented

as a log-likelihood ratio (LLR) value, can be produced by maximizing a posteriori probability

(APP) for a particular bit. The magnitude of the LLR describes the decision’s reliability,

whereas the sign of the LLR shows whether the provided bit is zero or one. The LLR for a

bit xk given the received vector y is written as:

LD (xk | y) = ln
P (xj = 1 | y)
P (xj = 0 | y)

, (2.18)

where xk is the kth bit of N×1 vector x of all bits in one transmit block. Let us assume that

the list of closest points obtained from LSD is defined as L, then we use the Bayes theorem

to re-write (2.18) and approximate it as:

L̃D (xk | y) = (2.19)

LA (xk) + ln

∑
x∈Lk,1

p(y | x) · exp
∑

j∈Jk,x
LA (xj)∑

x∈Lk,0
p(y | x) · exp

∑
j∈Jk,x

LA (xj)
,

where Lk,1 = {x ∈ L | xk = 1}, Lk,0 = {x ∈ L | xk = 0}, and

LA(xj) = ln
P (xj = +1)

P (xj = 0)
, (2.20)

and the likelihood function p(y | x) is given as follow:

p(y | x) =
exp

(
− 1

2σ2 · ∥y −Ga∥2
)

(2πσ2)N
. (2.21)

2.3 Mazo Limit

In (2.5) we have defined the transmit signal in FTN signaling. By considering all possible an

sequences we can generate all possible s(t) values. Lets assume that si(t) and sj(t) are two

of these odds. Then, the least square Euclidean distance between any such pair is defined as

[17]:

d2min =
1

2

∫ ∞

−∞
|si(t)− sj(t)|2dt, i ̸= j. (2.22)
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Regardless of pulse shaping, d2min is always equal to 2 in binary orthogonal transmission.

In 1975, Mazo [18] worked with a binary transmission with sinc pulses, and through his

investigation, he found out an interesting observation that by speeding up sinc pulses with

the acceleration factor of τ , τ ∈ [0.802, 1], the d2min remains equal 2 while we have non-

orthogonal and faster transmission, i.e., 1/0.802 = 25% more bits can be carried, without

losing any bit error rate performance. This is referred to as the Mazo limit.

For many years, Mazo’s achievement went unnoticed, but after 1990, the attention of the

research community surged. The most frequently utilized in applications, root raised cosine

(rRC) pulses, were demonstrated to have the same effect. For example, in binary transmission

using rRC pulses distance remains 2 at τ = 0.703, resulting in a 42% increase in bit density.

Mazo limit is also applicable to non-binary transmission [19] and non-linear modulation [20]

as well where the bandwidth at which the d2min initially drops is always substantially smaller

than the Nyquist bandwidth, resulting in significant bandwidth savings.

Researches around FTN signaling have been extended beyond the Mazo limit with signif-

icant acceleration of transmit symbols but at the cost of computational complexity to detect

the transmit signal. Also in this work, we have considered going beyond the Mazo limit.

2.4 Related Works

Since the thesis is focused on the detection of transmit bits at the receiver in the FTN

signaling system model, we mainly discuss these algorithms in two following categories:

2.4.1 Non-ML FTN Signaling Detectors

Simple detectors perform poorly in terms of bit error rate and fail to detect FTN signals in

severe ISI, i.e., the value of τ is small. Nonetheless, it has been demonstrated that the ISI that

was introduced by the FTN signaling has a trellis structure [21]. Then detectors with trellis

structure can be used as detectors for the received samples in FTN signaling. Among classic
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candidates of the trellis based detectors, we can name the Bahl-Cocke-Jelinek-Raviv (BCJR)

algorithm that can be used to identify transmit sequences in FTN signaling. However, the

number of states in the BCJR algorithm in FTN signaling is in exponential order of ISI length

and then the computational complexity of using BCJR is becoming so expensive. A reduced-

space version of the BCJR with the help of the M-algorithm, where it considers the M best

state of BCJR, has been investigated by Anderson et al. [22]. More recently, an improved

M-BCJR algorithm based on the Ungerboeck observation model was proposed by Li et al.

[23], where trellis states are reserved at each trellis section by considering the effect of future

symbols, and the detection method only exploring a fraction of the original ISI trellis. Both of

these methods provide a flexible balance between performance and computational complexity,

however, they can be computationally expensive especially when ISI length becomes large.

Bedeer et al. proposed a low complexity symbol-by-symbol based estimator for FTN sig-

naling [24]. They proposed a successive symbol-by-symbol sequence estimator with go-backK

sequence estimator (SSSgbKSE), where the estimator of the current symbol information re-

estimates previous K symbols to reduce error propagation due symbol-by-symbol estimation.

Their proposed algorithm has very low complexity and have a close-to-optimal performance

when ISI length is very small, however, in mid or severe ISI it fails to provide satisfactory

performance. Although the work introduce by Kulhandjian et al. [25], could outperform the

SSSgbKSE with probabilistic data association (PDA) algorithms at the cost of a modest in-

crease in computational complexity but the performance was not close to MLSE estimators,

and the severe ISI was not investigated. Bedeer et al., in another study, investigate severe

ISI scenario as well, where they proposed a generalized sphere decoding-based sequence esti-

mation (SDSE) that uses a whitening noise filter after matching filter [13]. Even though the

performance obtained by their approach is the same as the MLSE but it depends on having

an exact whitening noise filter and is limited to binary modulation. However, they proposed

a sub-optimal solution for high order of modulation with the help of semidefinite relaxation

(SDR)-based sequence estimation for M -quadrature-amplitude modulation (QAM) [14] and

M -ary phase shift keying (PSK) [26]. Their approach still requires an impractically large

computational time for modulation orders larger than 16 QAM. Nonetheless, they overcame

this issue in their recent work [27], where a detection algorithm was proposed based on al-
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ternating directions multiplier method (ADMM) for ultra high order of modulation, i.e., up

to 64K-QAM.

Since in FTN signaling the ISI is known, with the help of the channel shortening idea, it

is possible to derive the optimal relationship between the length of the shortened channel and

the performance. Fan et al. aimed to solve a MLSE problem with the shortened ISI channel,

and they came up with a trade-off between performance and computational complexity [28].

However, their work reduces the computational complexity when the ISI is not severe. The

computational complexity of their approach is still exponentially related to the length of

shortened ISI channel, and in mid range or severe ISI the shortened channel will have long

length. Furthermore, a code-based channel shortening scheme was introduced by Li et al.

[29], where a particular type of convolutional codes were used to absorb the channel memory.

Strong concatenated codes can be easily designed based on these convolutional codes. The

designed concatenated code, when combined with FTN signaling, improves the error perfor-

mance. However, in severe ISI case, the memory length will increase which leads to higher

computational complexity, otherwise, without increasing the length of channel memory we

lose performance significantly.

A Gaussian message-passing algorithm based on a factor graph was proposed for an FTN

receiver by Wen et al. [30], where in order to simplify detection, an auto-regressive method

was used to approximate the FTN-specific correlated noise. Their approach can achieve

reduced complexity while causing small performance degradation. A similar message-passing

method based on a factor graph was developed for FTN signaling by Li et al. [31], which

was integrated with space-time multi-mode index modulation and also with non-orthogonal

multiple access (NOMA) [32], where it was demonstrated that the bandwidth efficiency is

further improved compared to conventional NOMA system by exploiting FTN signaling based

on numerical results. Besides, FTN signaling has been applied as a successful paradigm to

improve the spectral efficiency for multi-carrier transmission as well, where Wang et al. [33]

proposed a transceiver that is compatible with the existing orthogonal frequency division

multiplexing (OFDM). We direct the reader to [17] for a description of the most important

FTN signaling detection methods and [34] for a more recent survey.
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2.4.2 ML FTN Signaling Detectors

The applications of ML have been extended to design FTN signaling systems in very few

works. Song et al. proposed in their study an efficient DL-based architecture for FTN re-

ceivers that can replace either the signal detection block or both the signal detection and

channel decoding blocks for uncoded and coded FTN signaling, respectively [35]. Their pro-

posed DL-based FTN receivers showed near optimal performance for non-severe ISI operating

regions. However, their work without considering the training processes still has a greater

number of multiplication operations in comparison to the optimal solution. Even though

there is no gain in terms of computational complexity, but they claimed that their solution

supports parallel implementation and it can reduce the detection delay.

Liu et al. proposed a DL-based sum-product algorithm for FTN signaling that operates

on a modified factor graph and concatenates a neural network function node to the variable

nodes to approximate the optimal error rate performance [36]. The underlying neural net-

work structure, however, is designed particularly for binary transmission, which significantly

restricts its range of use.

It goes without saying that, most of the non-ML detectors in the previous section do

not support parallel implementation. The development of ML technology, the continuous

progress of signal processing chips, and support for parallel implementations enable ML

solutions to have the advantages of having faster training times, better performance as they

allow the algorithm to make more efficient use of available resources which can reduce the

time required to reach a solution, and scalability as they allows the algorithm to make use

of additional resources as needed.
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Abstract

Faster-than-Nyquist (FTN) signaling is a candidate non-orthonormal transmission technique

to improve the spectral efficiency (SE) of future communication systems. However, such

improvements of the SE are at the cost of additional computational complexity to remove

the intentionally introduced intersymbol interference. In this paper, we investigate the use

of deep learning (DL) to reduce the detection complexity of FTN signaling. To eliminate

the need of having a noise whitening filter at the receiver, we first present an equivalent

FTN signaling model based on using a set of orthonormal basis functions and identify its

operation region. Second, we propose a DL-based list sphere decoding (DL-LSD) algorithm

that selects and updates the initial radius of the original LSD to guarantee a pre-defined

number NL of lattice points inside the hypersphere. This is achieved by training a neural

network to output an approximate initial radius that includes NL lattice points. At the

testing phase, if the hypersphere has more than NL lattice points, we keep the NL closest

points to the point corresponding to the received FTN signal; however, if the hypersphere has

less than NL points, we increase the approximate initial radius by a value that depends on the

standard deviation of the distribution of the output radii from the training phase. Then, the

approximate value of the log-likelihood ratio (LLR) is calculated based on the obtained NL

points. Simulation results show that the computational complexity of the proposed DL-LSD

is lower than its counterpart of the original LSD by orders of magnitude.

3.1 Introduction

There are increasing demands to improve the spectral efficiency (SE) to meet the require-

ments of future communication systems. Faster-than-Nyquist (FTN) signaling is a promising

1The work in this Chapter has been accepted in Proceeding of the IEEE 95th Vehicular Technology
Conference: (VTC2022-Spring).
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candidate technology that can increase the data rate without increasing the transmission

bandwidth [37]. In FTN signaling, the data symbols are transmitted at a rate of 1/(τT ),

τ ≤ 1, when compared to the Nyquist rate of 1/T when using T -orthogonal pulses, and

hence, inter-symbol interference (ISI) is intentionally introduced.

The early contribution of Mazo2 [18] showed that increasing the data rate by accelerating

the sinc pulses carrying binary phase shift keying (BPSK) symbols up to τ = 0.802 will not

deteriorate the asymptotic error rate when compared to Nyquist signaling that operates in

the same bandwidth. However, such improvement of the SE is at the cost of prohibitive (at

Mazo’s time) computational complexity to remove the introduced ISI. In the past decade,

there have been several research works based on conventional signal processing and estimation

theory that detect the transmit data symbols of FTN signaling at reduced computational

complexity, e.g., [13], [24], [25], [38]. We refer the reader to [37] for a summary of key FTN

signaling detection techniques and to [34] for a more recent survey.

Recently, the application of deep learning (DL) to physical layer problems shows promising

results mainly when there is a lack of appropriate mathematical models, i.e., model deficit, or

a lack of low complexity algorithms, i.e., algorithm deficit [39]. Given the fast development

of artificial intelligence chips, it is expected that DL will find more applications in physical

layers problems.

The applications of DL have been extended to design FTN signaling systems in [36],

[40]. In particular, Song et al. proposed an efficient DL-based architecture for FTN receivers

that can replace either the signal detection block or both the signal detection and channel

decoding blocks for uncoded and coded FTN signaling, respectively [40]. Their proposed DL-

based FTN receivers showed near optimal performance for non-severe ISI operating regions.

Liu et al. proposed a DL-based sum-product algorithm for FTN signaling that operates on a

modified factor graph and concatenates a neural network function node to the variable nodes

to approximate the optimal error rate performance [36].

Against the aforementioned literature, in this paper, we investigate the use of DL to reduce

2Mazo’s contribution was an experimental work.
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Figure 3.1: Block diagram of an FTN signaling system.

the detection complexity of FTN signaling. To eliminate the need of having a noise whitening

filter at the receiver, we first present an equivalent transmission model for FTN signaling

with the help of orthonormal basis functions, and we show its operation region. Second, we

propose a DL-based list sphere decoding (DL-LSD) algorithm that selects and updates the

initial radius of the original LSD to guarantee a pre-defined number NL of lattice points inside

the hypersphere. This is achieved by training a neural network to output an approximate

initial radius that includes NL lattice points. During the testing phase, if the hypersphere

has more than NL lattice points, we keep the NL closest points to the point corresponding

to the received FTN signal; however, if the hypersphere has less than NL points, we increase

the approximate initial radius by a value that depends on the standard deviation of the

distribution of the output radii from the training phase. Then, the approximate value of the

log-likelihood ratio (LLR) is calculated based on the NL points. Simulation results show that

the average number of flops of the proposed DL-LSD algorithm is three order and one order

of magnitude lower than its counterpart of the original LSD, with a selection of the initial

radius based on the noise variance, at low and high Eb/N0 values, respectively.

The rest of the paper is organized as follows. In Section 3.2, we present an equivalent

transmission model for FTN signaling based on using a sum of orthonormal basis; while in

Section 3.3 we discuss the proposed DL-LSD algorithm. Simulation results are presented in

Section 3.4, and the paper is concluded in Section 3.5.
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3.2 System Model and Problem Formulation

Figure 1 shows a block diagram of an FTN signaling communication system. At the trans-

mitter side, information bits are encoded, interleaved, and then mapped to data symbols

where each symbol is carried by a unit-energy pulse h(t). The widely used FTN signaling

model expresses the transmit signal s(t) as:

s(t) =
∑
n

anh(t− nτT ), (3.1)

where 0 < τ ≤ 1 is the time acceleration factor, T is the symbol duration, and an, n =

1, ..., N,3 is the binary phase shift keying (BPSK) data symbol with average bit energy Eb.

In our work, we assume that h(t) is a T -orthogonal root raised cosine (rRC) pulse with a

roll-off factor βh. However, such transmission of non-orthogonal pulses in additive white

Gaussian noise (AWGN) will require additional discrete-time whitening filter at the receiver

to process the colored noise samples after the matched filter. Designing an exact causal and

stable discrete-time whitening filter can be challenging at small values of τ [41]. To avoid

using a whitening filter, one possibility is to use models based on the Ungerboeck observation

model that deals directly with the colored noise, e.g. [23]. Another possibility which we adopt

in this work is to use an equivalent FTN signaling model that uses a set of orthonormal basis

function to whiten the noise samples after the matched filter. This model appeared in [42],

[43] but has not received enough attention in the state-of-the-art literature, and it will be

discussed here in detail for completeness of the presentation.

In the equivalent FTN signaling model based on orthonormal basis functions, the T -

orthogonal pulse h(t) is approximated as a sum of τT -orthonormal pulses v(t− nτT ) as:

h(t) ≈
∑
n

hnv(t− nτT ). (3.2)

In Lemma 1, we discuss how to find the constant coefficient hn such that the approximation

in (3.2) is valid.

3N is a pre-defined transmission block size based on channel encoder structure.
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Lemma 1. For a T -orthogonal h(t) pulse, where H(f) = 0, |f | > W and W < 0.5/(τT ), let

a τT -orthonormal pulse v(t) have the Fourier transform:

V (f) =

Co, |f | < W,

0, |f | > 1
τT
−W,

(3.3)

where Co is a constant. Then h(t) may be expressed as h(t) =
∑

n hnv(t− nτT ), where:

hn =
τT

Co

h(nτT ). (3.4)

Proof: see Appendix.

As one can see from Lemma 1, h(t) can be approximated as a sum of τT -orthogonal basis

functions v(t − nτT ) weighted by the scaled samples of h(t) in (3.4), if W < 0.5/(τT ) and

V (f) is constant for |f | < W . For example and as shown in Fig. 3.2 (a), when h(t) is a

T -orthonormal rRC with a roll-off factor βh = 0.35 with a bandwidth W = 0.5(1 + βh)/T ,

it can be represented as a sum of 20 rRC τT -orthonormal pulses, i.e.,
∑20

n=1 hnv(t − nτT ),

with a roll-off factor βv = 0.12 and τ = 0.6, if W < 0.5/(τT ), which yields:

τ <
1

1 + βh

. (3.5)

Hence, the condition in (3.5) defines the operation region of the FTN signaling equivalent

model. On the other hand, in Fig. 3.2 (b), τ = 0.9 does not satisfy (3.5), and hence, the

approximation is not accurate.

Given Lemma 1 and substituting (3.2) in (3.1), the equivalent FTN signaling transmit

signal using the orthonormal basis function is expressed as:

s(t) =
∑
n

bnv(t− nτT ), (3.6)

where bn =
∑

l an−lhl and hl is given in (3.4). Assuming AWGN channel, the received signal

is passed through a filter matched to the orthonormal basis v(t), and for a real and symmetric

v(t), it is given as:

y(t) = (s(t) + w(t)) ∗ v(t), (3.7)
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Figure 3.2: (a) τ = 0.6, (b) τ = 0.9. The solid line is the exact h(t) pulse and the
dashed line is its approximation based on (3.2).

where w(t) is additive white Gaussian noise (AWGN) with zero mean and variance of σ2 and

∗ denotes the convolution. Then, this signal is sampled every τT and is written as:

yn = bn + wn. (3.8)

The received sampled FTN signal can be expressed in a matrix form as: as

y = Ha+w, (3.9)

where a and w are the transmit data symbol and white noise vectors, respectively.

The received vector y needs to be processed by an FTN signaling detector to produce

a soft output that can be used by the channel decoder. This soft output can be obtained

from maximizing a posteriori probability (APP) for a given bit, and it is expressed as a

log-likelihood ratio (LLR) value. The LLR for a bit xk given the received vector y is written

as:

LD (xk | y) = log
P (map(xj) = +1 | y)
P (map(xj) = −1 | y)

, (3.10)
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where xk is the kth bit of N × 1 vector x of all bits in one transmit block. We map the

binary bits of 0 and 1 to −1 and +1, respectively. Assuming that xk, k = 0, ..., N − 1, are

statistically independent, we use the Bayes theorem to re-write (3.10) as [44]:

LD (xk | y) = (3.11)

LA (xk) + ln

∑
x∈Xk,+1 p(y | x) · exp

∑
j∈Jk,x

LA (xj)∑
x∈Xk,−1

p(y | x) · exp
∑

j∈Jk,x
LA (xj)

,

where X is the set of all 2N possible lattice points x, X k,+1 = {x | xk = +1}, X k,−1 = {x |

xk = −1}, Jk,x = {j|j = 0, ..., N − 1, j ̸= k, xj = 1}, and

LA(xj) = ln
P (map(xj) = +1)

P (map(xj) = −1)
, (3.12)

and the likelihood function p(y | x) is given as follow:

p(y | x) =
exp

(
− 1

2σ2 · ∥y −Ha∥2
)

(2πσ2)N
. (3.13)

3.3 Proposed DL-LSD Algorithm

3.3.1 Review of the LSD Algorithm

Calculation of the LLR value for each bit in (3.11) needs to consider the whole possible lattice

points in X , which has the size of 2N of the skewed lattice points. Since for each bit xk we

iterate over all lattice points in X and the calculation inside the exp function takes O(N),

and each transmit block has N bits in total; then, the computational complexity of the LLR

values of one transmit block is at the order of O(2NN2). For example, when the transmission

block has N = 25 symbols; then the set X has 225 N -dimensional points. Accordingly,

calculating the (3.11) for all bits within the transmit block requires 25 × 225 ≈ 2 × 1010

operations.

One can see from (3.13) that the conditional probability p(y | x) has an exponential

relation with the distance of the skew lattice points to y, i.e., ∥y −Ha∥2. That said, to
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reduce the complexity of the calculations of the LLR values in (3.11), we can consider a

pre-defined number of points close to y rather all possible points in X . Finding the closest

number of pre-defined points to y can be obtained by modifying the SD to what is called

the LSD [44]. The LSD finds the first NL closest lattice points in the skew lattice Ha to the

vector y corresponding to the received FTN signaling, and then, forms the candidate list L.

To form the candidate list L, the SD is modified as follows. When a lattice point is found

inside the hypersphere, the initial radius of the hypersphere is not reduced to the distance of

that lattice point; rather, we add this lattice point to our list L. However, if the size of L

became NL + 1, the lattice point with the largest distance to the vector y in L is removed

and the radius is updated to the largest distance to the vector y among all the remaining

NL lattice points in L. At the end and instead of using all the lattice points in X , the LSD

algorithm finds the NL closest points to the vector y that are to be used in the calculations

of the approximate LLR values as follows:

L̃D (xk | y) = (3.14)

L̃A (xk) + ln

∑
x∈Lk,+1 p(y | x) · exp

∑
j∈Jk,x

L̃A (xj)∑
x∈Lk,−1

p(y | x) · exp
∑

j∈Jk,x
L̃A (xj)

,

where Lk,+1 = {x ∈ L | xk = +1}, Lk,−1 = {x ∈ L | xk = −1}. Also, L̃A is obtained similar

to LA but by considering lattice points inside L instead of the whole lattice X .

As can be seen from (3.14), the computational complexity to approximate the LLR value

of each transmit block of symbols reduces to O(NLN
2) because we consider the NL elements

in L instead of whole 2N lattice points. For example, if we consider NL = 32 and N = 25,

the calculation of (3.14) for all bits within the transmit block requires 25 · 252 ≈ 1.5 × 103

operations which is way less than 2× 1010 required to calculate the exact LLRs.

On one hand, selecting the initial radius of the LSD to be of large value will lead to a

comparable complexity to the exhaustive search due to the large number of lattice points

inside the hypersphere. On the other hand, selecting the initial radius to be of small value

may not guarantee to have NL lattice points, and hence, degrade the approximation quality

of the LLR values in (3.14). Hence, it is clear from the previous discussion that the selection
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of the initial radius of the LSD to have NL lattice points is crucial to reduce its tree search

complexity while maintaining an acceptable approximation of the LLR values. That said,

we propose a DL-LSD algorithm to find the proper initial radius that guarantees to have NL

lattice points.

3.3.2 The Training Phase of the Proposed DL-LSD Algorithm

The intuition behind our proposed DL-LSD algorithm is estimating the initial radius to

guarantee a pre-defined number NL of lattice points inside the hypersphere. Similar idea for

estimating the initial radius that guarantees at least one point inside the hypersphere has been

proposed by Mostafa et al. [45]. This radius estimation problem is a non-linear regression

problem, and neural networks (NNs) have shown success in solving such problems [46]. That

said, we propose to use NNs to predict the initial radius that guarantees to include a pre-

defined number NL of lattice points to the received FTN signaling vector y.The training data

are obtained from the implementation of the LSD. Then, we feed the NN with the received

vector y as an input, and we consider the distance of the furthest point in L from y as the

desired radius for training the output of the NN. Therefore, the set of input-output pairs

{y(i), R(i)} is used to train our NN, where R(i) is the largest radius in L(i), and i = 1, ..., S,

where S is the size of training data set. The NN, f , predicts the initial radius R̂ at its output

layer as:

R̂(i) = f(y(i), θ), (3.15)

where θ is the set of all parameters of NN, i.e, weights and biases values. Please note that

the input to the NN y(i) captures the effect of the ISI in H based on 3.9. Since we train the

NN for each value of τ , for which the ISI matrix H will be the same for all training data, we

decided to not feed the NN with H directly.

The first and last layers are the input and output layers, respectively; while the three

middle layers are the hidden layers. The first two hidden layers are recurrent neural network
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(RNN)4 layers with 128 neurons and a simple fully connected layer with 64 neurons is used

as the third hidden layer. Please note that the number of hidden layers and the number of

neurons in each layer has been chosen experimentally. We use the activation function Relu

for all hidden layers and it is defined as Relu(u) = max(0, u). We use the mean square error

(MSE) to evaluate the prediction error of the initial radius, and it is defined as:

L(θ) =
1

|S|

S∑
i=1

(
R(i) − f

(
y(i), θ

))2
, (3.16)

where the desired radius R(i) is output when y(i) is used as an input. An approximation of

(3.16) in each iteration t over one training epoch can obtain as follow:

L̃t(θ) =
1

|St|
∑
i∈St

(
R(i) − f

(
y(i), θ

))2
, (3.17)

where we divide our data set S to B mini-batches, each mini-batch St has a size of |St| =

|S|/B. The complexity of the gradient computation is remarkably reduced when we increase

the number of mini-batches B, while the variance of updating the NN parameter, i.e., θ, still

decreases. Finally, Adam [47] is used as an optimization method for updating θ.

3.3.3 The Testing Phase of the Proposed DL-LSD Algorithm

In the testing phase, the received FTN signaling y is fed to the trained NN, and the NN gives

the estimation of initial radius R̂ that approximately guarantees to have NL lattice points

inside the hypersphere centered at y. Then the LSD algorithm is executed with an initial

radius equal to the obtained initial radius from the NN, i.e., d = R̂. However, there is a

possibility that the d is large enough to include more than NL points at the testing phase.

In this case, we keep only the NL points with the smallest radii from y and discard the extra

points with the largest radii. In case d is not large enough to have at least NL points at the

testing phase, we propose to increase the radius d by a value δd, and then, execute the LSD

algorithm with new radius d+ δd. The selection of δd can be explained with the help of Fig.

4The motivation behind using RNN at the first two layer is the ISI structure of FTN signaling, because
the input data of the NN model is similar to sequential data where RNN is much powerful in exploiting
sequential data.
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Figure 3.3: The histogram of the obtained radii of the training phase for τ = 0.6,
βh = 0.35, βv = 0.12, and Eb/N0 = 8 dB.

3.3 as follows. In Fig. 3.3, we sketch the empirical probability density function (PDF) of all

the obtained radii from the training phase at τ = 0.6, βh = 0.35, βv = 0.12, and Eb/No = 8.

We observe that the empirical PDF can be approximated as a Gaussian distribution with a

standard deviation δd. That said, in case the initial radius d has less than NL, we increase

the radius by δd. The proposed DL-LSD algorithm is summarized at the top of this column.

Finally, the approximate LLR values are calculated according to (3.14), and then passed to

the channel decoder as soft inputs to estimate the transmit data symbols â.

3.4 Simulation Results

In this section, we investigate the performance of the proposed DL-LSD to detect coded

BPSK FTN signaling. We consider a standard convolutional code (7, [171 133]) to encode

the information bits at the transmitter and a Viterbi decoder to decode the approximate soft

outputs of the proposed DL-LSD at the receiver. The roll-off factors βh and βv are set to

0.35 and 0.12, respectively. We consider N = 25 data symbols per block transmission and

an acceleration factor of τ = 0.6 and 0.74. Please note that the choice of these values of τ

meets the condition in (3.5).

The implementation steps of the proposed algorithm are as follows: we first create uniform
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The Proposed DL-LSD Algorithm

Input:H , y, δd, f(. ,θ)

Output: Calculated LLR values

d← f(y,θ) ▷ Estimating radius with NN

while True do

L← LSD(H , y, d) ▷ LSD algorithm returns a list

if |L| < NL then

d = d+ δd ▷ Increasing radius

else

L = L(1 : NL) ▷ Picking first NL closet point to y

break ▷ breaking the while loop

end if

end while

LLR(L) ▷ Calculation of LLR based on (3.14)

random data and then we implemented the LSD algorithm by Hassibi et al. [48] to label our

dataset. Then, we used the Keras library to design the structure of DL-LSD as discussed in

Section 3.3. After saving the trained model, we have implemented the proposed algorithm

based on the provided pseudo code in Section 3.3. This work is totally implemented in the

Python3 environment.

The training of the proposed DL-LSD can be summarized as follows. For Eb/N0 = 4 and

6 dB, we use 800 blocks of random data symbols; while for Eb/N0 = 8 and 10 dB, we use

8000 blocks. For each of the training blocks, the number of random data symbols per block

is set to N = 25. Please note that the low number of blocks used to train the NN at Eb/N0 =

4 and 6 dB is due to the huge computational complexity required to obtain the training data

symbols from the original LSD that selects the initial radius based on the noise variance [48].

Also, since the operating region for our system model is Eb/N0 > 6 dB, where the bit error

rate is less than 10−3, we tried to have a well-trained model with more number of data points.

We experimentally set the learning rate of the Adam optimizer to 0.0001, and the mini-batch

size St is set to 20. We labeled the dataset by implementing the LSD algorithm from Hassibi
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et al. [48], then since the data for the training process are generated uniformly random, we

set the initial state of the learning parameters of the neural network randomly. The early

stopping has been implemented to ensure the model does not fall into over-fitting scenarios.

That being said, the number of neurons in each layer has been chosen experimentally; other

types of neural network structure such as Long short-term memory (LSTM) and simple fully

connected layers without RNN has been tried and compared to the proposed structure, where

all had greater MSE in both testing and validation sets. For hyper-parameter tuning, it is

suggested to try the different numbers of layers and the different numbers of neurons on each

layer. The model is very sensitive to the learning rate of the Adam optimizer we suggest not

changing the learning rate, or alternatively trying different learning decay methods. Also,

it is suggested to change different weight initialization such as He weight initialization we

used the default weight initialization in Keras, i.e., Glorot Uniform; because the model is not

sensitive to the weight initialization.

As discussed earlier, the aim of the proposed DL-LSD algorithm is to select a number of

lattice points NL to approximate the calculations of the LLR value of each bit in (3.14) with-

out deteriorating the error rate performance. Comparisons of the performance of the sphere

decoding with other low complexity FTN signaling detection techniques can be found in [13],

[27]. To strike a balance between the computational complexity and the BER performance,

we plot in Fig. 3.4 the BER performance for different values of NL at τ = 0.6. As can be

seen, the value of NL = 32 shows negligible BER loss when compared to NL = 128, while

significantly reduces the complexity of calculating (3.14). Hence, we adopt the value of NL

to be 32 in the rest of the simulation results.

Fig. 3.5 depicts the average number of lattice points inside the hypersphere of both the

original-LSD and proposed DL-LSD versus Eb/N0 for τ = 0.6. Please note that the average

number of lattice points is calculated based on averaging the results of 10 transmit blocks.

As can be seen, the average number of lattice points obtained by the proposed DL-LSD

algorithm is close to the target value of NL = 32, and more importantly, is insensitive to the

noise power. This is in contrast to the original-LSD where the initial radius is set based on the

noise variance [48], and hence, can have a large number of lattice points inside hypersphere
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Figure 3.4: BER as a function of Eb/N0 at τ = 0.6 for different values of NL.

at low Eb/N0. Since the complexity of the tree search exponentially increases with increasing

the number of lattice points inside the hypersphere, the proposed DL-LSD is expected to

have a reduced complexity when compared to the original-LSD.

To quantify the reduction of the computational complexity of the proposed DL-LSD

algorithm with respect to the original-LSD, in Fig. 3.6 we plot the ratio of the number of

floating point operations (flops) of the proposed DL-LSD to the number of flops in original-

LSD as a function of Eb/N0 for τ = 0.6. A flop serves as a basic unit of computation, and

it denotes one addition, subtraction, multiplication, or division of floating point numbers.

To have a fair complexity comparison, both DL-LSD and the original-LSD use the same

implementation of the LSD algorithm but they are different only in the selection of the initial

radius (the proposed DL-LSD algorithm estimates the initial radius from the trained NN,

while the original-LSD estimates the initial radius based on the noise variance as introduced

by Hassibi et al. [48]). As one can see, the proposed DL-LSD algorithm has more than three

orders of magnitude lower number of flops when compared to the original-LSD algorithm for

low values of Eb/N0. For high values of Eb/N0, the proposed algorithm achieves an order of
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Figure 3.5: Comparison of the average number of lattice points inside the hypersphere
of the proposed DL-LSD algorithm and the original-LSD at τ = 0.6.

magnitude lower number of flops.

In Fig. 3.7, we depict the BER of the uncoded and coded FTN signaling as a function

of Eb/N0 for different values of τ . As one can see, for the uncoded transmission at τ = 0.74,

the BER approaches its counterpart of Nyquist signaling which represents 35% in the SE at

no increase in Eb/No. Decreasing the value of τ will results in an improvement in the SE but

at the cost of increasing Eb/No. For the coded transmission, the proposed DL-LSD showed

approximately savings of 1.5 dB in Eb/No when compared to the uncoded results at both

τ = 0.74 and 0.6 at BER of 10−4.

3.5 Conclusion

FTN signaling can improve the SE without increasing the transmission bandwidth, and hence,

it is a promising technology for future communication systems. In this paper, we presented

an equivalent transmission model for FTN signaling that uses a set of orthonormal basis
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Figure 3.6: Comparison of the average number of flops of the proposed DL-LSD
algorithm and the original-LSD at τ = 0.6.

functions to eliminate the need to design a noise whitening filter at the receiver. We then

proposed a DL-LSD algorithm to learn and update an approximate initial radius to include

a certain number of points NL inside the hypersphere. In case the initial radius has less than

NL points, we increase the approximate initial radius by a value that depends on the standard

deviation of the distribution of the output radii from the training phase. Simulation results

showed that the average number of flops of the proposed DL-LSD algorithm is three order

and one order of magnitude lower than its counterpart of the original LSD, with a selection

of the initial radius based on the noise variance, at low and high Eb/N0 values, respectively.

Appendix

Proof of Lemma 1

The proof was introduced by Anderson et al. [43], and it is included here for completeness

of the presentation. We define the discrete-time Fourier transform Hs(fd) =
∑

n hne
−j2πfdn,
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Figure 3.7: Coded and uncoded BER performance for different values of τ .

where {hn} is the sampled sequence of h(t) every τT . From the properties of the Fourier

transform we know that Hs(f) = 1
τT

∑
nH(f − n

τT
), where H(f) is the continuous-time

Fourier transform of h(t), hence:

H(f) = τTHs(f)

= τT
∑
n

h(nτT )e−j2πfnτT , |f | ≤ 1

τT
−W. (3.18)

At the same time, from the definition of inverse continues-time Fourier transform we have

h(t) ≜
∫
H(f)ej2πftdf . Considering the fact that V (f) is constant over the support of H(f),

i.e., |f | < W . Then, we can multiply V (f) inside the integral and divide by the constant C0

outside of the integral to have:

h(t) =
1

C0

∫
H(f)V (f)ej2πftdf. (3.19)
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Since V (f) = 0 for |f | ≥ 1
τT
−W , substituting (3.18) into (3.19) results in:

h(t) =
1

C0

∫ [
τT
∑
n

h(nτT )e−j2πfnτT

]
V (f)ej2πftdf

=
∑
n

[
τTh(nτT )

C0

] ∫
V (f)ej2πf(t−nτT )df

=
∑
n

hnv(t− nτT ), (3.20)

where hn = τT
C0
h(nτT ) which concludes the proof. ■
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Abstract

Faster-than-Nyquist (FTN) signaling can improve the spectral efficiency (SE); however, at the

expense of high computational complexity to remove the introduced intersymbol interference

(ISI). Motivated by the recent success of machine learning (ML) in physical layer (PHY)

problems, in this chapter we investigate the use of ML in reducing the detection complexity of

FTN signaling. In particular, we view the FTN signaling detection problem as a classification

task, where the received signal is considered as an unlabeled class sample that belongs to

a set of all possible classes samples. If we use an off-shelf classifier, then the set of all

possible classes samples belongs to an N -dimensional space, where N is the transmission

block length, which has a huge computational complexity. We propose a low-complexity

classifier (LCC) that exploits the ISI structure of FTN signaling to perform the classification

task in Np ≪ N -dimension space. The proposed LCC consists of two stages: 1) offline pre-

classification that constructs the labeled classes samples in the Np-dimensional space and 2)

online classification where the detection of the received samples occurs. The proposed LCC

is extended to produce soft-outputs as well. Simulation results show the effectiveness of the

proposed LCC in balancing performance and complexity.

4.1 Introduction

Improving the spectral efficiency (SE) is one of the main goals of next generation commu-

nication systems. Faster-than-Nyquist (FTN) signaling is one of the promising solutions to

improve the SE, and this is achieved by increasing the data rate beyond the rate of con-

ventional Nyquist communication systems while using the same transmission bandwidth.

Essentially in FTN signaling, the transmit data symbols are sent at a rate of 1/(τT ), τ ≤ 1,

which is faster than the Nyquist rate of 1/T . Such improvements in the SE come at the

1The work in this Chapter is under review in IEEE Communication Letters journal.
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expense of inter-symbol interference (ISI) between the transmit symbols that requires extra

processing at the transmitter and/or the receiver to achieve acceptable performance.

One of the early studies on FTN signaling was in 1975 [18] when Mazo in his experimental

work proved that if we set the acceleration parameter τ between 0.802 ≤ τ ≤ 1, we maintain

the same asymptotic error rate as the Nyquist signaling using the same bandwidth. However,

this is at the cost of considerable computational complexity to compensate for the introduced

ISI. Several works have been done, especially in the past decade, to reduce the detection

complexity of FTN signaling. For instance, the works [13], [22], [24], [49] are focused on

utilizing conventional estimation theory and signal processing methods for detecting FTN

signaling.

Machine learning (ML) techniques have shown tremendous improvements in various do-

mains, such as computer vision and natural language processing. Recently, there has been

increasing interest in applying ML techniques in signal processing, and physical layer (PHY)

problems [50]. In the context of FTN signaling, the work of Song et al. [40], and Abbasi

and Bedeers [51], successfully reduced the detection complexity of FTN signaling receivers.

Song et al. proposed two different deep learning (DL)-based architectures for FTN signaling

receivers [40]. Abbasi and Bedeer proposed a DL-based algorithm [51], to approximate the

initial radius of the list sphere decoding algorithm to detect FTN signaling. The proposed

DL-based list sphere decoding (DL-LSD) considerably reduces the detection complexity when

compared to the list sphere decoding.

Motivated by the recent success of ML in PHY problems, in this chapter we investigate

the use of ML in reducing the detection complexity of FTN signaling. In particular, we view

the FTN signaling detection problem as a classification task, where the received signal is

considered as an unlabeled class sample that belongs to a set of all possible classes samples.

If we use an off-shelf classifier, then the set of all possible classes samples belongs to an N -

dimensional space, where N is the transmission block length, which has a huge computational

complexity. We propose a low-complexity classifier (LCC) that exploits the ISI structure of

FTN signaling to perform the classification task in Np ≪ N -dimension space. The proposed

LCC consists of two stages: 1) offline pre-classification that constructs the labeled classes
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samples in the Np-dimensional space and 2) online classification where the detection of the

received samples occurs. The proposed LCC is extended to produce soft-outputs as well.

Simulation results show the effectiveness of the proposed LCC in balancing the performance

and complexity.

The rest of the chapter is organized as follows. In Section 4.2, we present the system

model of FTN signaling. In Section 4.3, we discuss the proposed LCC, and its computational

complexity analysis is introduced in Section 4.4. Simulation results are presented in Section

4.5, and in Section 4.6 we conclude the chapter.

We use calligraphic bold uppercase letters, e.g. A, for sets, bold uppercase letters, e.g.

A, for matrices, bold lowercase letters, e.g. a, for vectors and ai for pointing the ith element

of vector a. In addition, we use a(i) to specify the elements of the vector a that are centered

at the ith element.

4.2 System Model and Problem Formulation

4.2.1 FTN Signaling Model

We consider the transmission of a block of size N data symbol, an, n = 1, ..., N, that are

carried by a unit-energy pulse h(t). The conventional FTN signaling model formulates the

transmit signal s(t) as:

s(t) =
∑
n

anh(t− nτT ), (4.1)

where 0 < τ ≤ 1 is the time acceleration parameter, and τT is the symbol duration. In

this chapter, we adopt an equivalent FTN signaling model based on the orthonormal basis

functions [43], [51]. In the equivalent FTN signaling model, the T -orthogonal pulse h(t) is

approximated by the sum of multiple τT -orthonormal pulses as:

h(t) ≈
∑
n

hnv(t− nτT ), (4.2)
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where hn is a scaled sample of h(t) at τT that is given as [43], [51]:

hn =
√
τTh(nτT ). (4.3)

Substituting (4.2) and (4.3) into (4.1) gives us following equivalent expression for the transmit

FTN signal:

s(t) =
∑
n

bnv(t− nτT ), (4.4)

where bn =
∑

l an−lhl. For a root-raised cosine pulse h(t), its roll-off factor βh must satisfy

τ < 1/(1+βh) for the equivalent model to hold [51]. The received signal after passing through

a filter matched to v(t) and sampling at every τT is written as:

yn = bn + wn, (4.5)

where wn is the sampled white Gaussian noise with zero mean and σ2 variance. The matrix

expression of (4.5) is written as:

y = Ha+w, (4.6)

where the vector [h−j, ..., h−2, h−1, h0, h1, h2, ..., hN−j−1] is the jth row, 0 ≤ j ≤ N − 1, of the

matrix H .

4.2.2 FTN detection as a Classification Problem

One of ML’s main types of tasks is the supervised learning, which includes two main cate-

gories: regression and classification problems. In regression problems, the task is to predict

a continuous value; while in classification problems, the goal is to assign a new unlabeled

data sample to one of the existing classes. For example, a binary classification problem is

illustrated in Fig. 4.1 where each data sample is expressed by two features, i.e., u1 and u2.

The known labeled samples belong to two classes circle and cross, while the square represents

a new unlabeled data sample. The goal of any classification algorithm is to assign the proper

label for the unlabeled data.
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Figure 4.1: An example of binary classification problem.

For FTN signaling system model, the set of all possible data symbol blocks is defined as

M = {m1,m2, ...,m2N}, where mi, i = 1, ..., N , is a N × 1 vector representing one of the

possible odds for the transmit vector a. We define S = {s1, s2, ..., s2N} to be the set of all

possible points in a skew lattice, where si = g(mi) = Hmi and g(.) is an injective function.

In the context of classification, each si is a different class and we have 2N different classes

in total. Given the received vector y, a classifier is defined as a function f(.) such that:

y
f(.)−−→ sk

g(.)−−→mk, k ∈ {1, 2, ..., 2N}. (4.7)

In other words, the classifier f(.) partitions S into the 2N different classes such that s1 ∩

s2 ∩ ... ∩ s2N = ϕ and s1 ∪ s2 ∪ ... ∪ s2N = S. Consequently, since g(.) is an injective

function, f(g(.)) also partitions M into the 2N possible transmit block of symbols of size N .

Therefore, the received vector y can be detected and assigned to one of the elements in M.
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4.2.3 Soft Output

Soft output from the FTN detection process is needed to be used by the channel decoder.

The maximizing a posteriori probability (APP) for a given bit can be applied to achieve

the soft-outputs, and generally is expressed as a log-likelihood ratio (LLR) value. Given the

received vector y, the LLR value for a bit xk is obtained by:

LD (xk | y) = log
P (xk = 1 | y)
P (xk = 0 | y)

, (4.8)

where xk is the kth element of vector x = map(a), which the map is the modulation mapping

function symbols to bits. Assuming that xk, k = 0, ..., N − 1, are statistically independent,

we use the Bayes theorem to re-write (4.8) as [51]:

LD (xk | y) = (4.9)

LA (xk) + ln

∑
x∈Xk,1

p(y | x) · exp
∑

j∈Jk,x
LA (xj)∑

x∈Xk,0
p(y | x) · exp

∑
j∈Jk,x

LA (xj)
,

where X = map(M) is the set of all 2N possible bits x which map is the mapping function

from symbols to bits, X k,1 = {x | xk = 1}, X k,0 = {x | xk = 0}, Jk,x = {j|j = 0, ..., N −

1, j ̸= k}, and

LA(xj) = ln
P (xj = 1)

P (xj = 0)
, (4.10)

and the likelihood function p(y | x) is given as follow:

p(y | x) =
exp

(
− 1

2σ2 · ∥y −Ha∥2
)

(2πσ2)N
. (4.11)

4.3 Proposed Low Complexity Classification of FTN

Signaling

As discussed earlier, the number of classes in the conventional classification problem is 2N ,

and hence, one of the biggest hindrances for such a conventional classification problem is
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the huge computational complexity, especially for long transmit block of data symbols, i.e.,

N = 1000. In the following, we propose a LCC that exploits the inherent structure of FTN

signaling to reduce the classification computational complexity. To show the intuition behind

the proposed LCC, we provide the following examples.

— Example 1 : Let us assume a noise free transmission of N transmit symbols, where

each symbol is affected only by ISI from one past and one upcoming symbol, i.e., yi =∑1
ℓ=−1 ai−ℓhℓ and h−1 = 0.3, h0 = 0.8, h1 = 0.3. At the receiver, let us intentionally ignore

the ISI and detect each symbol independent from the adjacent symbols. One can show

that for all the possible values of the transmit data symbols, the possible values of yi ∈

{−1.4,−0.8,−0.2, 0.2, 0.8, 1.4}. These values of yi are plotted on the horizontal axis in Fig.

4.2, where the cross and circle points represent the values of yi corresponding to ai = 1 and

ai = −1, respectively. If we consider the classification objective to be the nearest distance,

then the dashed line in Fig. 4.2 shows the boundary between the two different classes, where

the first class has the samples 0.2, 0.8, and 1.4 while the second class has the samples -0.2,

-0.8, and -1.4. Then, the closest distance d between the two different classes samples is

0.2 + 0.2 = 0.4. In the presence of the noise, the received sample yi will deviate from these

classes samples depending on the noise power, and the classifier detects the transmit symbol

based on the closest distance to the two different classes’ samples.

— Example 2 : The detection of a transmit symbol by observing just one sample of the

received vector y, as discussed in Example 1, comes with significant performance degra-

dation, and this is as each transmit symbol experiences ISI from other adjacent symbols.

In Example 2, we re-consider the transmission scheme of Example 1, but the detection is

done differently. In particular, we detect one symbol by jointly considering an upcoming

sample in addition to the current sample, i.e., yi, yi+1. Let us consider Fig. 4.3, where

the horizontal axis represents yi and the vertical axis represents yi+1. Similar to Example

1, cross and circle points correspond to ai = 1 and ai = −1; respectively, the dashed line

shows the classification boundary. The closest distance between the two classes samples is

d =
√

(0.2 + 0.2)2 + (0.2 + 0.2)2 = 0.57 which is greater than its counterpart in Example 1.

Therefore, a distance-based classifier benefits from observing more samples which leads
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Figure 4.2: The class samples of Example 1.

to distance expansion between different classes [52]. Similarly, if we increase the number

of observations to 3, i.e., considering yi−1, yi, and yi+1, for the detection process of ai, the

distance d becomes d =
√

(0.2 + 0.2)2 + (0.2 + 0.2)2 + (0.2 + 0.2)2 = 0.69, which is larger

than the distances in Examples 1 and 2. That said, we extend this idea by observing Np

samples centered at yi during detection process of the transmit symbol ai for FTN signaling

detection. This will increase the distance between the classes samples and eventually will

improve the detection performance.

4.3.1 Offline Pre-Classification Process

As mentioned earlier, we define Np as the number of samples we observe for detecting one

transmit symbol. This is equivalent to the classification process happening in Np-dimensional

space. Recall that yi =
∑

ℓ hℓaℓ−i, and hence, to generate the exact values of all the classes

samples yi we need to consider an infinite length of ISI due to FTN signaling. However,

this will significantly increase the number of classes samples in a way that some classes
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Figure 4.3: The class samples of Example 2.

samples are very close to each other due to the very small values of the tails of the ISI. That

said, to reduce the offline pre-classification complexity, we select the dominant coefficients

of the ISI Nt. Please note that this does not mean that the actual transmission of the

FTN signaling is generated with only Nt ISI coefficients; however, it is generated with the

full ISI coefficients. Therefore, to calculate all possible choices of the observation vector

with a size of Np, we have to have all possible Np + Nt − 1 consecutive transmit symbols,

i.e. a′
i = [ai−(Np+Nt−1)/2, ..., ai−1, ai, ai+1, ..., ai+(Np+Nt−1)/2]

T. Then, we define the set of all

possible choices of data symbols a′ as M′ = {m′
1,m

′
2, ...,m

′
2Np+Nt−1} where each m′

k is

a (Np + Nt − 1) × 1 vector from one possible choice of a′
i. Subsequently, the set of classes

samples in this Np dimensional space is S′ = {s′1, s′2, ..., s′2Np+Nt−1}, where half of them

belong to one class and the half belong to the other class, i.e, ai = 1 or ai = −1.

4.3.2 Online Classification Process

After generating the labeled classes samples in the pre-classification process and given the

received vector y, we pick the Np samples centered around the ith sample, i.e., the unla-
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beled observation class sample o(i) = [yi−Np/2, ..., yi−1, yi, yi+1, ..., yi+Np/2]
T, to detect the ith

transmit symbol ai. In the presence of noise, the unlabeled observation class sample o(i) is

nothing but an element in the set S′ that is perturbed by noise. Hence, the LCC is defined

as the function f(.) such that:

yi −→ o(i) f(.)−−→ Cj, j ∈ {−1, 1}, (4.12)

where C−1 = {m′
k|ai = −1} and C1 = {m′

k|ai = 1} are the two partitions representing the

classes that the ith transmit symbol is -1 or 1, respectively.

4.3.3 Modified Soft Output

In (4.9), we calculate the soft output for each bit xi based on likelihood function p(y|x)

because the detection process happened once based on receiving the vector y. However,

in the proposed LCC, the detection process happens separately for each transmit symbol.

Therefore, the likelihood probability changes from p(y|x) to p(o(i)|x) for the ith symbol.

Please note that p(y|x) in (4.11) is based on the Euclidean distance and the p(o(i)|x) is

nothing but projecting the N -dimensional y into the Np-dimensional vector o(i). Since

N ≫ Np this replacement comes with an error when compared to the exact value of the LLR

based on (4.9). To quantify this error, we re-write (4.5) as:

yi =
∑

l<i−Np/2

ai−lhl +
∑

i−Np/2≤l≤i+Np/2

ai−lhl

+
∑

l>i+Np/2

ai−lhl + wi, (4.13)

where the second term of the right hand side is exactly the ith element of vector o(i), i.e.

o
(i)
i =

∑
i−Np/2≤l≤i+Np/2

ai−lhl. Then, the error ϵ is defined as:

ϵ =
∑

l<i−Np/2

ai−lhl +
∑

l>i+Np/2

ai−lhl. (4.14)

Please note that, since the tails of h(t) has very small values, ϵ is also small. Similarly, the

other elements of o(i) is calculated, and we can approximate (4.9) by replacing p(o(i)|x) to
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Figure 4.4: Illustration of the proposed LCC.

p(y|x). Therefor, the approximate LLR value for i-th symbol is as:

L̃D

(
xi | o(i)

)
= (4.15)

LA (xi) + ln

∑
x∈X ′

i,1
p(o(i) | x) · exp

∑
j∈Ji,x

LA (xj)∑
x∈X ′

i,0
p(o(i) | x) · exp

∑
j∈Ji,x

LA (xj)
,

where X ′ = map(M′). Further reduction in the computational complexity comes from

reducing the search space in the lattice X ′ where we only consider a pre-defined NL number

of closest lattice points, L, to the vector o(i) and exclude the rest from X ′. The results of

the Abbasi et al. [51] showed that such approximated LLR values is very close to the exact

values of LLR. The proposed LCC is depicted visually in Fig. 4.4.

4.4 Computational Complexity Analysis

As can be seen in Fig. 4.4, the first stage of the online process of the proposed LCC to detect

the ith sample is to identify o(i) samples which have constant computational complexity.
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The second step requires identifying a radius that includes NL closest points to o(i) from a

pre-trained offline DL-LSD which has a negligible online complexity. To calculate the hard

outputs in the third step, one requires a complexity of O(NLNp); this is as we calculate

the minimum distance from o(i) to NL points in Np-dimension space. To calculate the soft

outputs in the third step, one requires a complexity of O(N2
LNp). That said, the total online

computational complexity of the proposed LCC to detect N samples is O(NNLNp) and

O(NN2
LNp) for the hard and soft outputs, respectively.

4.5 Simulation Results

In this section, we evaluate the performance of the proposed LCC algorithm in detecting

BPSK FTN signaling. We consider the pulse shapes h(t) and v(t) to be root raised cosine with

roll-off factors 0.35 and 0.12, respectively. We set N = 1000 data symbols per transmission

block, and we employ a standard convolutional code (7, [171 133]) at the transmitter side

and a Viterbi decoder to decode the approximated soft outputs of the proposed LCC at

the receiver. Following [51], we set NL = 8 as there is negligible, i.e. 0.2 dB, performance

degradation when compared to the case of NL = 128. For the classification task, we use the

distance-based K-nearest neighbor (KNN) classifier, with K = 1.

The implementation steps of the proposed algorithm are as follows: As a first step, using

the selected Np we generate S′ based on Subsection 4.3.1. Then, we fit the KNN by S′ as

a training set. After saving the KNN model, from the testing phase, we use o(i) for each

transmit block as discussed in detail in Subsection 4.3.2 for the KNN model to classify. After

classification, we implemented the (4.15) to calculate the soft output. All the implementation

has been done in a Python3 environment, and we used the KNN classifier from the sci-kit-

learn library [53].

It was demonstrated earlier through Examples 1 and 2 that increasing the number of

observations Np eventually increases the distance between the classes samples. To select a

proper value of Np that strikes a balance between performance and complexity, Fig. 4.5 plots
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Figure 4.5: The distance d between the classes samples as a function of Np.

the closest distance d between the two different classes samples as a function of Np. As can be

seen, increasing the value of Np initially increases the distance between the classes samples,

and hence, improves the detection performance; however, such improvement is reduced at

high values of Np. Please note that at high values of Np, the proposed LCC will suffer from

the curse of dimensionality. That said, we choose the value of Np to be 13 or 15 through the

rest of the simulations.

To study the effect of Nt on the BER performance, in Fig. 4.6 we plot the BER of the

proposed LCC at Nt = 3 and 5 and the DL-LSD [51] at τ = 0.6 and Np = 13. As one can

see, selecting Nt = 3 will significantly deteriorate the BER performance. However, increasing

the value of Nt to 5 results in a BER performance that is close to the optimal BER obtained

from the DL-LSD.

In Fig. 4.7, we plot the BER performance at τ = 0.5 (and Nt = 7) and 0.6 (and Nt = 5)

for the proposed LCC at Np = 13 and 15 and the DL-LSD [51]. At τ = 0.5 and BER of

3 × 10−4, the difference in Eb/No when Np = 15 and Np = 13 and the optimal performance

of the DL-LSD is around 0.8 dB and 1 dB, respectively. At τ = 0.6 and BER of 10−4, the
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Figure 4.6: BER performance of the proposed LCC algorithm at Nt = 3 and 5, and
the DL-LSD algorithm.

penalty in Eb/Np reduces to 0.4 dB and 0.8 dB, respectively.

Fig. 4.8 depicts the coded BER performance of the proposed LCC at Np = 13 and the

DL-LSD [51] at τ = 0.6. As can be seen, at BER of 10−4 there is about 0.5 dB between the

proposed LCC algorithm with Np = 13 and the DL-LSD with Np = N ; however, at the cost

of huge reduction in the computational complexity.

4.6 Conclusion

FTN signaling is a promising technique in future communication systems since it improves

the SE without changing the transmission bandwidth. In this chapter, we proposed the

LCC algorithm that exploits the ISI structure of FTN signaling to perform the classification

task in Np ≪ N -dimension space. The proposed LCC algorithm reduced the computational

complexity in both coded and uncoded scenarios by removing the exponential part related

to N and replacing it with a small number, i.e., Np+Nt− 1. However, such an improvement
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Figure 4.7: BER performance of the proposed LCC algorithm (at Np = 13 and 15)
and the DL-LSD (at Np = N) [51] at τ = 0.6 and 0.5.

comes with degradation in BER performance where for example simulation results showed

that at τ = 0.6 and BER of 10−4 there is 0.4 dB penalty in comparison to the optimal

solution.
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5.1 Summary

Improving the SE emerge as an important factor for future wireless communication systems.

FTN signaling is a promising nominee to address this goal. However, FTN signaling consumes

a lot of computational resources; hence, we aimed to come up with new algorithms to address

this issue. In this thesis we proposed two different DL/ML based algorithms to decrease the

high computational complexity regarding the detection process of FTN signaling.

In the first contribution, we looked at the well-known LSD algorithm for the detection

of the received samples in FTN signaling. In fact, the computational complexity of LSD

is directly correlated with its initial radius. To address the computational complexity issue

of using LSD algorithms, we proposed a DL-LSD algorithm that learns and update an ap-

proximate initial radius to include a pre-defined number of points NL inside of hypersphere.

Essentially, the DL-LSD predicts a initial radius and searches the hypersphere to find points

within this radius. If total founded points are less than NL simply we increase the initial

radius by the standard deviation of the distribution of predicted radius in training phase,

and we proceed the search over hypersphere aging with new initial radius. Simulation results

showed that number of flops of the proposed DL-LSD algorithm is three order and one order

of magnitude lower than original LSD at low and high values of Eb/No, respectively.

In the second contribution, we investigated the complexity issue when we have long trans-

mission blocks, i.e. N ≫ 1000. Basically, even the proposed DL-LSD in first contribution can

be computationally complex when we operate the search over N -dimensional hypersphere.

The proposed LCC algorithm exploits the ISI structure of FTN signaling to perform the

detection task in Np ≪ N -dimension space. The proposed LCC algorithm reduced the com-

putational complexity in both coded and uncoded scenarios by removing the exponential part

related to N and replacing it with a small number, i.e., Np + Nt − 1. Beside, by using the

DL-LSD in coded scenario we reduced the computational complexity further to O(N2
pNL) to

even remove the exponential part related to Np. However, such improvements come with a

slight degradation in the BER performance where for example simulation results showed that

at τ = 0.6 and BER of 10−4 there is 0.4 dB penalty in comparison to the optimal solution.
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5.2 Suggestion for Future Studies

• All studies presented in this thesis are conducted in AWGN channel. As a further

development of the first contribution, one can extend it into the time-variant channel

situation as well. In this regard, the basic idea will be feeding not only the received

vector but the channel matrix information as input to the neural network. Moreover,

since the training process will be huge in this case, and the time-variant channels can

vary quickly, one can employ the incremental learning techniques, i.e., online learning,

instead of traditional learning techniques. In incremental learning, the model effectively

can adopt in new changes in the recent stream of data, which is more likely to occur

in practical situations.

• Another aspect of extending the first contribution is considering the situation where

the value of τ is unknown. One can use the mean and standard deviation calculated

for radii during training phase of different τ , e.g., τ = 0.3, 0.5, 0.7. Then, in testing

mode, received signal will be given to each trained model of τ . Simply by comparing

the calculated radii of each model of τ with calculated mean value of radii from training

process we can estimate the range of operating τ .

• As a further development of the second contribution, the calculated schema in training

process can be shrunk by a small trade-off with bit error performance. In this scenario,

it is valuable to find this trade-off threshold because we may be able decrease the

complexity in half but losing performance in small amount. As an example to make

this point clear, one can look at Fig. 4.3 on Chapter 4, where we can remove four each

red and blue points that are far from boundary line while maintaining same boundary

line and not losing performance and decreasing half of the computational complexity.

In general, in higher dimensional space this might come with slight loss in performance,

which can also be studied as a new factor for balancing performance and complexity.
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