
Software Design Change Artifacts Generation

through Software Architectural Change Detection

and Categorisation

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Doctor of Philosophy

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Amit Kumar Mondal

©Amit Kumar Mondal, January/2023. All rights reserved.
Unless otherwise noted, copyright of the material in this thesis belongs to the author.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be given to me and to

the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should be

addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan S7N 5C9

Canada

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

i

Abstract

Software is solely designed, implemented, tested, and inspected by expert people, unlike other engineering

projects where they are mostly implemented by workers (non-experts) after designing by engineers. Researchers

and practitioners have linked software bugs, security holes, problematic integration of changes, complex-to-

understand codebase, unwarranted mental pressure, and so on in software development and maintenance to

inconsistent and complex design and a lack of ways to easily understand what is going on and what to plan in

a software system. The unavailability of proper information and insights needed by the development teams to

make good decisions makes these challenges worse. Therefore, software design documents and other insightful

information extraction are essential to reduce the above mentioned anomalies. Moreover, architectural design

artifacts extraction is required to create the developer’s profile to be available to the market for many crucial

scenarios. To that end, architectural change detection, categorization, and change description generation are

crucial because they are the primary artifacts to trace other software artifacts.

However, it is not feasible for humans to analyze all the changes for a single release for detecting change

and impact because it is time-consuming, laborious, costly, and inconsistent. In this thesis, we conduct six

studies considering the mentioned challenges to automate the architectural change information extraction and

document generation that could potentially assist the development and maintenance teams. In particular, (1)

we detect architectural changes using lightweight techniques leveraging textual and codebase properties, (2)

categorize them considering intelligent perspectives, and (3) generate design change documents by exploiting

precise contexts of components’ relations and change purposes which were previously unexplored. Our

experiment using 4000+ architectural change samples and 200+ design change documents suggests that our

proposed approaches are promising in accuracy and scalability to deploy frequently. Our proposed change

detection approach can detect up to 100% of the architectural change instances (and is very scalable). On the

other hand, our proposed change classifier’s F1 score is 70%, which is promising given the challenges. Finally,

our proposed system can produce descriptive design change artifacts with 75% significance. Since most of

our studies are foundational, our approaches and prepared datasets can be used as baselines for advancing

research in design change information extraction and documentation.

ii

Acknowledgements

First of all, I would like to express my heartiest gratitude to my respected supervisors Dr. Chanchal

K. Roy, Dr. Kevin A. Schneider and Dr. Banani Roy for their constant guidance, advice, encouragement

and extraordinary patience during this thesis work. I would like to give special gratitude to my research

collaborator Sristy Sumana Nath for working with me. Without four of them, this work would have been

impossible.

I would like to thank Dr. Ramakrishna Gokaraju, Dr. Zadia Codabux, Dr. Manishankar Mondal and Dr.

Norihiro Yoshida for their willingness to take part in the advisement and evaluation of my thesis work. I

would also like to thank them for their valuable time, useful suggestions and critical insights. Their comments

helped improve my thesis significantly.

Thanks to all of the members of the Software Research and ISEA Lab with whom I have had the

opportunity to grow as a researcher. In particular, I would like to thank Mohammad Masudur Rahman,

Shamima Yeasmin, Kawsar Wazed Nafi, Debasish Chakroborti, Saikat Mondal, Muhammad Asaduzzaman,

and other lab members.

I am also thankful to Muhammad Mainul Hossain of TechOptions for his support and guidance during my

thesis study.

I am grateful to the Department of Computer Science of the University of Saskatchewan for their generous

financial support through scholarships, awards and bursaries that helped me concentrate more deeply on my

thesis work.

I thank the anonymous reviewers for their valuable comments and suggestions in improving the papers

produced from this thesis.

I would like to thank all of my friends and other staff members of the Department of Computer Science

who have helped me to reach at this stage. In particular, I would like to thank Gwen Lancaster, Shakiba

Jalal, Findley Shopie, Maurine Powell, and Heather Webb.

I also express my deepest love to my wife Joyshree Mallick and my son Adrij Mondal for their sacrifices. I

express my heartiest gratitude to my father Anukul Chandra Mondal and my mother who are the architects

of my life. Their endless sacrifice has made me reach at this stage of my life. My parents, and my wife have

always inspired me in completing my thesis work.

iii

I dedicate this thesis to my father, Anukul Chandra Mondal, whose inspiration helps me to accomplish

every step of my life.

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables ix

List of Figures xi

List of Abbreviations xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 6
1.3 Our Contribution . 8

1.3.1 Architectural Change Detection . 9
1.3.2 Architectural Change Categorization . 10
1.3.3 Design Change Document Generation . 11

1.4 Related Publications . 12
1.5 The Organization of the Dissertation . 13

2 Literature Background 15
2.1 Software Architecture . 15

2.1.1 Documenting Software Architecture . 17
2.1.2 Architecture Views and Abstraction Levels . 18
2.1.3 Primary Elements of Architecture . 18

2.2 Software Architecture Modification . 20
2.2.1 Why Do Changes in Architecture Happen? . 20
2.2.2 Changes in Static Architecture . 22
2.2.3 Metrics as Architectural Changes . 23

2.3 Categorising the Design-impactful Changes . 28
2.3.1 Change types in the development and maintenance tasks 28

2.4 Design Change Artifacts . 29
2.4.1 Steps of Generating Design Change Artifacts . 29

2.5 Software Artifacts for Architectural Change Information Mining 30
2.5.1 Code Properties for Software Change Information Mining 30
2.5.2 Textual Features for Software Change Information Mining 31

2.6 Applications of Architectural Change Detection and Categorization 32

3 Architectural Change Detection from Textual Document 34
3.1 Introduction . 34
3.2 Dataset Collection and Study Design . 37
3.3 Architectural Information Contained in the Development History 38
3.4 Natural Language Model Development . 39
3.5 Architectural Change Message Detection . 41

3.5.1 Change Detection using TF-IDF . 42
3.5.2 Change Detection using Term Graph . 42

v

3.6 Experimental result . 44
3.6.1 Experiment with Change Commits . 44
3.6.2 Experiment with Change Review Documents . 45

3.7 Related Work . 45
3.8 Conclusion . 48

4 Architectural Change Categorization using Discrimination Feature Model 49
4.1 Introduction . 49
4.2 Background . 51

4.2.1 Documenting Software Architecture: . 52
4.3 Dataset Collection and Study Design . 53
4.4 Classification of Architectural Change Messages . 54

4.4.1 Labeled LDA (L-LDA): . 54
4.4.2 Semi-supervised LDA (Semi-LDA): . 55
4.4.3 Discriminative Probabilistic latent semantic analysis (DPLSA): 55

4.5 Experimental Outcome . 55
4.6 Related Work . 57
4.7 Threats to validity . 59
4.8 Conclusion . 60

5 Architectural Change Classification using Concept Tokens 61
5.1 Introduction . 61
5.2 Background . 64
5.3 Dataset Preparation . 65

5.3.1 Architectural Change Commits Filtering . 65
5.3.2 Architectural Change Category Annotation . 66

5.4 Change Classification Challenges . 66
5.4.1 Classification from Source Code . 67
5.4.2 Change Classification from Text . 67

5.5 Our Proposed Classifier: ArchiNet . 69
5.5.1 Concepts Extraction . 69
5.5.2 Training Model Generation . 70
5.5.3 Classification . 70

5.6 Performance Evaluation . 71
5.6.1 Random Forest . 73
5.6.2 RNN-LSTM . 73
5.6.3 Testing with the Golden Set . 77

5.7 Threats to Validity . 80
5.8 Related Work . 81
5.9 Conclusion . 82

6 Architectural Change Instance Detection and Extraction from Code Properties 83
6.1 Introduction . 83
6.2 Motivation and Background . 85
6.3 Dataset Preparation . 87
6.4 Architectural Change Detection . 87

6.4.1 M2M Change Metric . 87
6.4.2 M2M Change Detection Process . 88

6.5 Semantic Slice Generation . 89
6.6 Performance evaluation . 90
6.7 Related Work . 91
6.8 Conclusion and Future Work . 92

7 Architectural Change Categorization leveraging Structural Change Properties of Source
Code 94

vi

7.1 Introduction . 94
7.2 Background . 96

7.2.1 Architectural Change: . 96
7.2.2 Architectural Change Categories: . 97
7.2.3 Important Definitions: . 97

7.3 Dataset Preparation . 98
7.3.1 Golden Set Construction for Experiment: . 98
7.3.2 Change Type Annotation: . 98

7.4 SSC Extraction . 99
7.4.1 Relation Between Change Purposes and SSCs . 100

7.5 SSC properties for Change Categorization . 104
7.5.1 SSC Rule-based Change Type Determination: . 104
7.5.2 SSC Strength-based Change Type Determination: . 104
7.5.3 SSCs As Features for Machine Learning Techniques: 105

7.6 Combined Models for Change Type Determination: SSC and Concept 106
7.6.1 ArchiNet Concept-tokens Expansion: . 106
7.6.2 Concept-tokens and SSCs with ArchiNet: . 106
7.6.3 Concept-tokens and SSCs with Machine Learning: . 107

7.7 Predicting Change Types in NI, AM and archTangled Commits 108
7.7.1 Change Types of archTangled Commits: . 108
7.7.2 Handling NI and AM commits: . 108

7.8 Related work . 109
7.8.1 Software Change Classification using Textual Features 109
7.8.2 Combined Model for Change Classification . 110

7.9 Conclusion . 111

8 DDARTS: A Case Study for Descriptive Design Change Artifacts Generation 112
8.1 Introduction . 112
8.2 Motivation and Background . 116

8.2.1 Motivation . 116
8.2.2 Background . 118

8.3 Related work . 119
8.3.1 Automatic Code Change Document Generation . 119
8.3.2 Automatic Commit Message Generation . 120
8.3.3 Automatic Release Note Generation . 120

8.4 Dataset Collection . 121
8.5 Exploring the Design Change Logs Contents . 122

8.5.1 RQ1: Types of Information Contained in the Descriptive Design Artifacts 122
8.5.2 RQ2: What development artifacts are contributing for documenting the design change

logs . 123
8.6 Descriptive Design Change Summary Generation Model . 124

8.6.1 Phases of Design Change Summary Generation . 124
8.6.2 Main Algorithm . 124
8.6.3 Complete Sentence Generation Rules for generateMsg() 126
8.6.4 Commit Theme Generation . 127

8.7 DDARTS Tool . 128
8.8 Performance Evaluation . 130

8.8.1 Accuracy Metrics . 132
8.8.2 Manual Cross-validation . 133
8.8.3 Scalability . 136

8.9 Limitations and Threats to validity . 137
8.10 Conclusion . 138

9 Conclusion 139

vii

9.1 Concluding Remarks . 139
9.2 Discussions . 140
9.3 Limitations and Future Work . 141

References 144

viii

List of Tables

1.1 Design impactful changes (DIS) in various projects and their description. 5
1.2 Detail comment of a DIS. Underline tokens are the most important info to the developers. . . 6
1.3 Thesis Contribution Overview. 9

2.1 Definition of Software Architecture . 15
2.1 Definition of Software Architecture . 16
2.1 Definition of Software Architecture . 17
2.2 Change operations and code properties considered for change detection. 25
2.3 Software abstraction level supported. 27

3.1 Data samples of the candidate projects for our study (we consider a portion; since manual
inspection of all messages takes significant time). GIT = github.com. 37

3.2 Sample commits that contain the intention of architectural changes 40
3.3 Representational co-occurred terms of architectural change. 41
3.4 Performance of the classifiers using the language model (F1 is calculated from precision (P)

and recall). 45
3.5 Experimental outcome of the Paixao et al. [194] dataset (partial) annotated as architecture

aware (documents are detected from the defined samples containing architectural information,
and we cannot calculate the F1 score as the dataset defines only a portion that are architecture
aware). 46

4.1 Data samples of the candidate projects for our study (we consider a portion; since manual
inspection of all messages takes significant time). GIT = github.com. 53

4.2 Top keywords for various categories of architecture changes for 241 samples. Words are stemmed
with PorterStemmer. 56

4.3 Experimental outcome of various classification techniques compared to change model in [255]. 56
4.4 Precision for individual categories with our approach using the best model. Recall rate is up to

50%. Change model in [255] only does better for Perfective (48%). 57

5.1 Candidate projects for our study (in inspection time). 65
5.2 Training and test samples in the golden set. 66
5.3 Ambiguity of concepts appeared in description. 69
5.4 Strength of words within the concepts C1 and C2. 69
5.5 Performance (%) comparison of ArchiNet (A), Random Forest (RF), and Deep Neural Learning

(DNL). 78
5.6 F1 of ArchiNet with our data and data in [172]. 80

6.1 M2M dataset and change detection performance. 87
6.2 Observation of directory and naming structures . 88
6.3 Information in the semantic slices . 90
6.4 Semantic slice data and performance outcome. 91
6.5 Bias testing outcome. 91

7.1 Total number of samples in each type (nontangled) . 98
7.2 Selected projects and DIS commits (until 2020). 99
7.3 Semantic operations, their presence (% of commits) in different groups of changes and classifi-

cation impacts. 101
7.4 Rank of SSCs based on Pearson correlation analysis w.r.t categories in Weka. 101
7.5 Correlation p−values considering the perfective and corrective categories 102
7.6 Correlation p−values considering the perfective and preventive categories 102
7.7 Correlation p−values considering the perfective and adaptive categories 103

ix

7.8 Number of samples with no ArchiNet tokens. 106
7.9 Performance (F1 scores) of DNL and RF . 107
7.10 Performance for tangled commits . 108

8.1 Design impactful changes (DIS) in various projects and their description. 117
8.2 Detail comment of a DIS. Underline tokens are the most important info to the developers. . . 117
8.3 Projects for studied change logs. 122
8.4 Baseline rules for sentence generation . 127
8.5 Change Log Description Instances . 132
8.6 ROUGEPrecision of two types of summaries . 132
8.7 Cross-validation evaluation questionnaires. 135
8.8 Average scores of the cross-validation measurements and their indications. 137
8.9 Execution time for all phases of DDARTS, 1KLOC = 1000 Lines of code. 137

9.1 Our prepared datasets . 142

x

List of Figures

1.1 Operational phases of design artifacts generation. 2
1.2 Partial release changelogs for DIS of AzureSDK. 3
1.3 Structure of a design change text. 4
1.4 Descriptive changelogs of DIS of AzureSDK. 7
1.5 Example summary from a DIS commit. 8

2.1 Class level architectural change. 20
2.2 High-level architectural change. 21
2.3 Class level architectural changes of Hadoop. 23
2.4 Code changes containing a module-level change. Red color represents deletion (−) and green

color represents additions (+). 24
2.5 Operational phases of design artifacts generation. 30

3.1 Top 24 stemmed terms distribution and significance. 40
3.2 Key-term Graph related to architectural changes (red edge means not an architectural change),

and a snapshot of the Term graph containing 130 terms (stemmed). 42

5.1 Two commits of Hadoop where new components are added, dependency added and deleted. 63
5.2 Basic steps of a Random Forest model (adapted from [212]). 72
5.3 Basic structure of a Recurrent Neural Network (adapted from [6]). 75
5.4 Text processing for classification by a DNL model (adapted from [1]). 75
5.5 F1 score comparison of ArchiNet with the most promising classifiers DPLSA [172], DNL [224],

RF [100]. 78
5.6 Range of Recall (r) and precision (p) rate of all classes . 79
5.7 F1 score for individual projects. 79
5.8 Performance sensitivity of terms. ‘+’ means including all others terms from left. P,R are from

the Adaptive(A) class. 80

6.1 A change that sets the SAS token used to authorize requests sent to an Azure service. Here,
the plus (+) sign with green background indicates addition and the minus (-) sign with a red
background indicates deletions. 86

7.1 Method displaced with content changes . 100
7.2 F1 score of semantic operations centric models. 105
7.3 Range of Recall (r) and Precision (p) rate . 105
7.4 F1 score of ArchiNet, Mix-model with SSC, and Mix-model1 with SSC rules. 107
7.5 Precision rate of tangled commits detection and classification for various threshold values (R). 109

8.1 Descriptive changelogs of DIS of AzureSDK. 118
8.2 Partial release changelogs for DIS of AzureSDK. 118
8.3 Histogram of different types of information contained within a release change logs. 123
8.4 Structure of a design change text. 126
8.5 A Partial Structure of SSC information saved into YAML. Where, connect key indicates new

dependency . 129
8.6 A Partial Structure of a design change commit information for reviewer. 130
8.7 High-level architecture of the DDARRTS tool. 131
8.8 Saved release change logs format. 131
8.9 Abstract reasoning of design artifacts generation. 132
8.10 Samples over the ROUGE1-P scores ranges. 134
8.11 Range of evaluated scores of the evaluation queries. 136

xi

9.1 Relation mapping of our studies. 141

xii

List of Abbreviations

DEVEM Development and Maintenance
DIS Design Impactful Changes
OSS Open source software
API Application programming interface/ 3rd party library
DDARTS Descriptive Design Change Artifcats
SSC Semantic Structural Change Relations
AST Abstract Syntax Tree
SDK Software Development Kit
VCS Version Control System
CV Commercially Valuable
DANS Directory and Naming Structure
DFS Discriminating Feature Selection
ADL Architecture Definition Language
ADDL Architecture Design Definition Language
UML Unified Modeling Language
TD Technical Debt
ACDC Architectural Change Detection and Classification
SACCS Software Architecture Change Characterization Scheme
JDK Java Development Kit
M2M Module to Module
JPMS Java Platform Module System
TR Text retrieval
AM Ambiguous Message
NI Non-informative
TFIDF Term frequency Inverse Document Frequency
DPLSA Discriminating Probabilistic Latent Semantic Analysis
LLDA Labelled LDA
SemiLDA Semi-supervised LDA
RF Random Forest
DNL Deep Neural Learning
RNN Recurrent Neural Network
LSTM Long-short Term Memory

xiii

Chapter 1

Introduction

1.1 Motivation

Our daily life is becoming more dependent on various software applications and autonomous systems, starting

from transportation to healthcare services [70, 117]. At the same time, people all over the world have noticed

that software anomalies are causing problems in various dimensions of their daily life. These include healthcare

systems1, deadly transportation crashes2, private data leaks, disruption of energy supply3, denial of social

networking services4, denial of regular socioeconomic activities5, and so on. However, these anomalies originate

from software bugs, software security holes, problematic integration of changes, complex-to-understand, and so

on [257, 154, 243, 167, 217, 189, 175]. Besides, regulatory inspections by the government authority of internal

software functions are also increasing due to various concerns such as hidden unethical business practices, data

privacy and human values (racial bias) [123, 188]. Sometimes, the software industries require extra time and

manpower (cost) for regular development and maintenance activities, late-life-cycle change, and continuous

integration glitches6 to cope with the rapidly evolving technologies and requirements [52, 17]. Moreover,

software projects are solely designed, implemented, tested, and inspected by expert people, unlike other

engineering projects where the project is mostly implemented by the workers (non-experts) after designing by

the engineers. Therefore, people involved with software projects have different and constant mental pressure

(and cognitive load). In this scenario, analysts, CEOs, and CTOs are also warning of severe problems in

retaining the software/IT workforce in upcoming years (85.2M workers shortage by 2030), which will cause

severe business and economic damage to many developed nations7 8 9. They indicated this problem as the

result of inverse socioeconomic trends where software development and maintenance complexities (cognitive

loads) are increasing, but the psychological interests of people in complex jobs are decreasing10. Researchers

1https://tinyurl.com/yc5aftpy
2https://tinyurl.com/3s4cbc9j
3https://tinyurl.com/4ec89ypf
4https://tinyurl.com/3b5fkn74
5https://tinyurl.com/5n8ate55
6https://tinyurl.com/3b5fkn74
7https://tinyurl.com/32jcbs9w
8https://tinyurl.com/4p8tmtvz
9https://tinyurl.com/yd57f79a

10https://tinyurl.com/48w6tamh

1

Detect Design
Change

Extract Design Relation
Properties

Determine Change
Purpose

Generate Design
Artifacts

Figure 1.1: Operational phases of design artifacts generation.

have linked all the mentioned problems in software development and maintenance to inconsistent and complex

design and a lack of proper ways to easily understand what is going on and what to plan in a software

system (code comprehension). This is due to the fact that there is a significant gap between the information

and insights needed by project managers and developers to make good decisions (with little effort) and that

which is typically available to them [45]. Hence comes the necessity of generating design documents through

architectural change detection and categorization because it is considered the primary artifact to trace other

software artifacts [34].

Design consistency is crucial for both commercial and open-source software (OSS) projects. Because, apart

from the development and maintenance challenges, practitioners and researchers are reporting incremental

performance and security risks1 within the architectural component’s intra and inter dependency relations

[257, 154, 243, 87], elevating the design concerns. In addition to risk reduction, proper design increases

developer productivity (i.e., improved maintainability, portability, and flexibility) [52, 209]. Therefore, in

order to better reflect the software design challenges, the development teams review the architectural design

changes (probably with the motto of “Prevention is better than cure”) either on a regular basis or after

completing certain milestones or releases [227]. That said, software design concerns are captured through

software architecture.

To better cope with the aforementioned challenges, the development and maintenance teams spend

significant efforts on code comprehension, code review, and software documentation [13, 59, 256]. Frequent

software modifications raise the necessity to comprehend it frequently [50]. However, software comprehension

is a human-intensive process, where sufficient knowledge about a software artifact or an entire system is

essential to successfully implement a task through analysis, guessing, and formulation of ideas. Inadequate

and obsolete software documentation creates bottlenecks in this process and negatively affects the entire team

[13]. On the other hand, limited skills or resources and timing constraints compel inadequate documentation

and design change information. Additionally, design impactful (or architectural) changes (DIS) are involved

in wider spectrum of code components and their dependencies [213, 173], despite focusing on a single issue in

such changes. Comprehending their scopes and impacts is more complex for the reviewers [227, 232], elevating

the challenges of proper information extraction for documentation. The fact that 40% of the rejected pull

requests in OSS projects have design issues indicates that special support is required to understand them

1github.com/advisories/GHSA-jfh8-c2jp-5v3q

2

Changes since 4.2.0-beta.6
Bug Fixes

● Ensured that RetryPolicy and HttpLogOptions use a default implementation when creating Key Vault clients if

not set or set to null.

New Features
● KeyVaultCertificateIdentifier can now be used to parse any Key Vault identifier.

Breaking Changes
● Removed service method overloads that take a pollingInterval, since PollerFlux and SyncPoller objects allow for

setting this value directly on them.

Non-Breaking Changes
● Renamed certificateId to sourceId in KeyVaultCertificateIdentifier.

● Added the @ServiceMethod annotation to all public methods that call the Key Vault service in CertificateClient

and CertificateAsyncClient.

Figure 1.2: Partial release changelogs for DIS of AzureSDK.

through proper sources of information compared to the local code changes [232]. Therefore, this thesis focuses

on automatic design change information extraction for that support.

Software architecture can be changed during regular development and maintenance activities – new feature

addition, bug fixing, refactoring, and so on. Williams and Carver linked the causes of architectural changes to

four Lehman’s law of software changes [132] – continuing software change, increasing complexity, continuing

growth, and declining quality. A typical software change may contain local code change or architectural

change or both. Associating and measuring the scopes and impacts of architectural changes are more complex

to track and maintain [227, 232], and elevate the change and maintenance cost and effort across a system’s

lifecycle [247]. In this regard, architectural change management process helps predict what must be changed,

facilitates context for reasoning, specifying, and implementing change, and preserves consistency between

system design and changes [189, 175]. In this process, development and maintenance teams categorize the

changes based on different criteria, such as the causes of the change, the concept of concerns/features, the

location of the change, the size of the code modification, or the potential impact of the change [75, 101, 67]. For

example, causes of architectural changes are [246, 63]: perfective – indicates new requirements and improved

functionality, corrective – addresses flaws, adaptive – occurs for new environment or for imposing new policies,

and preventative – indicates restructuring or redesigning the system. Different categories trigger different

strategies for change management.

Aparts from frequent code review, code comprehension and change management, a development and

maintenance team requires to assess and produce (sometimes frequently or sometimes only on-demand)

various design change information to track and plan software releases considering various perspectives – design

documents, release notes, descriptive change logs, design decision associativity with the relevant or impacted

components, and so on [208, 13, 178]. In this context, empirical findings indicate that more than 85% software

project managers and 60% developers are likely to use architecture documents, component dependencies

information, change type, and other software documents [45]. Furthermore, 40.5% of the major and 14.5%

of the minor software releases contain high-level design change information [33]. These are also valuable

entities for the design reviewers and various stakeholders. Proper generation of these entities requires proper

categorization of changes [33] such as the categorical information Bug Fixes, New Features, and Breaking

3

update the API surface area. InMemoryPM moved to samples.

the API surface area.update InMemoryPM moved to samples.

1 2 4

3

Figure 1.3: Structure of a design change text.

Changes for a release as shown in Fig. 1.2. In addition, a part of the design change information (as shown in

Table 1.2) for the feature improvement commit – ”update the API surface area” is ”InMemoryPM moved to

samples”. This change information indicates architectural components modification in a short descriptive

form. Although it is a short form, it contains very crucial design change information. Its information structure

is summarized in Fig. 1.3. Here, information in 1○ and 2○ indicate the purpose of the change. 2○ indicates

the main theme or parent issue. On the other hand, 3○ indicates the design component and relations, and 4○

indicates the change operations. From this structure, the reviewers and testers can get quick information about

the major components, and they can look into InMemoryPM and Samples modules first without analyzing all

the change code segments. They also get the information that the InMemoryPM component moved into the

samples module without analyzing the code change relations. Thus, a descriptive design change artifact is an

elegant source of quick and crucial design change information that contains (at least) - ”why the design change

has happened,” ”how and what high-level program properties are changed and impacted,” and ”what will be the

probable descriptive summary/logs of that change”. A few of the examples of design change summaries in a

real-world project are discussed later in Figures 1.2 and 1.4. All the examples suggest that the basic phases

of generating such design change information are – change detection, categorization, and aggregation into

natural texts. They are shown in Fig. 1.1. As the steps suggest, it is quite insightful that following these

steps for all the change revisions of a release is almost impossible for humans considering the time, costs and

benefits [33]. Therefore, generating such documents requires efficient approaches.

There are many implicit implications of architecture change detection and categorization (ACDC) in

software evolution support, maintenance support, and fault detection and change propagation [246, 205, 108].

Instead, we discuss three scenarios from real-world cases where architectural change detection and categorization

are essential.

Scenario 1: Adequate Information for Change Comprehension and Review: Since code reviewers are

not the developers of the implemented tasks, they need to extract accurate information considering various

perspectives. However, message description does not contain intended and other information, as shown in

some real-world examples in Table 1.1. Motive in the Description column represents possible motives of the

4

Table 1.1: Design impactful changes (DIS) in various projects and their description.

Serial Description Motive in description Change in Code

1.Aion update p2p logging &
fetch headers based on td

Either new feature or refac-
toring or both. Which part
is design impactful?

Feature improvement

2.Aion some PR changes Does it improve feature or
refactor? Which issue is
linked with this change?

Design restructuring

3.Azure Refactored ADLS set access
control and added builders for
different types

Two tasks, which one im-
pacted the design

Both of them impacted the de-
sign. [Feature improvement
and design refactoring]

4.Azure Storage InputStream and Out-
putStream

Looks like new feature Contents of some classes moved
into new classes. [Improve and
simplify design]

5.webfx Improved Action API Could be a feature or design
improvement

Contents of a class moved into
new class. [Design improve-
ment]

developers. Reviewers or document writers can only get the real motive by discussing with all the involved

developers. Instead, our understanding through code analysis is summarized in Change in Code column

that appears to be inconsistent with the developer’s writing. That said, developers may write a change

task inconsistently. However, meaningless or empty messages make the situation worse [148]. Hence, all

the information in Table 1.2 is valuable for the reviewers (as well as the description of the SSCs (semantic

structural change relations) and modules). Potential information of the design impactful changes may contain

this format (at least) - Actual purpose, Reasoning of change, Design change relations, and Design Change

Activity. An example format is described in Fig. 1.5. Descriptive design changelogs written by the Azure

team are shown in Fig. 1.4 (e.g., A has been flattened to include all properties from C and D classes). Here,

the Breaking Changes are related to the preventive change [63]. Furthermore, a detail comment for reasoning

the change commit is shown in the Change Summary Comment column of Table 1.2. In summary, simplified

and useful information by an automated tool is more useful than manually analyzing several hundreds of

code segments, methods, classes, and modules (as is required for the 3rd sample in Table 1.1). Once the

change purposes and causal relations in the code are extracted, many other design artifacts like these can be

generated.

Scenario 2: Planning for next phase/release activities: Category of changes and associated components

are helpful for planning the next phase of development. For instance, components and features that have

gone through design restructuring in recent times may not be considered for design improvement in the next

phase. In the current phase, components with the new feature can be selected for design simplification in the

next phase. Because, choosing the sub-optimal solution in the initial stages is common in practice. Moreover,

categorical change information is required for decision-making on backporting the changes [54]. However, a

recent study found that refactoring related changes are less delayed than flaw fixing and feature improvement.

Flaw fixing and improvement have higher frequencies (i.e., priority) compared to other changes for backporting

5

Table 1.2: Detail comment of a DIS. Underline tokens are the most important info to the
developers.

Commit Message Change Summary Comment (Partial) SSCs

Updates to event processor
surface area for preview 5
(#6107)

The intent of this change is to update the API surface area
with the following changes:
- Handlers for partition processor methods (event, error, init,
close)
- InMemoryPartitionManager moved to samples
- Event processor takes all params required to build the client
...
- New types for each event type (PartitionEvent, Exception-
Context...
- PartitionManager renamed to EventProcessorStore
- Added fully qualified namespace to store interface
and a getter in EventHubAsyncClient

7

by the development and maintenance team. Thus, change type determination within a completed phase is

crucial here.

Scenario 3: Design document generation: A development and maintenance team wants to generate a

design document for the upcoming release. Parts of the document require extracting the main features

and its associated components. However, without efficient technique, the last two in Table 1.1 could be

falsely processed as feature improvement using description, but originally it was for design simplification.

Fig. 1.4 shows a partial release log for the developers of AzureSDK 4.0.0-preview.4 in the log change1

for corresponding feature level description of the release note2. Which includes the design-related changes.

Such release changelogs are different from usual release notes. A good example that contains change group

information can be found in Azure SDK release logs3, which is shown in Fig. 8.2. Many changelogs, as we

have explored ∼200 instances, contain even more information (Fig. 1.4). Writing such logs requires more

effort and analysis of various information (i.e., all commits, codebase, commit message, issue reports, and

review reports) than writing the commit messages. As many as 17 people (mostly the core architects of a

project) are involved in producing logs for a single release [33]. Consequently, tool support for descriptive

design changelogs (a subset of design change artifacts) is more critical than for commit message generation.

1.2 Problem Statement

Architectural design change information extraction and documentation are important for software compre-

hension and code review. To that end, architectural change revisions need to be detected and categorized.

Lightweight techniques for high-level design change detection in terms of human intervention, the number of

revisions and frequency of usage, and categorizing them properly is challenging [174]. A number of studies

1https://tinyurl.com/4xvh2s8j
2azure.github.io/azure-sdk/releases/2019-10-11/java.html
3https://tinyurl.com/yc2fp3rx

6

4.0.0-preview.4 (2019-10-08)
For details on the Azure SDK for Java (September 2019 preview) release refer to the [release announcement]
- `importCertificate` API has been added to `CertificateClient` and `CertificateAsyncClient`

+ ### Breaking Changes
+ - `Certificate` no longer extends `CertificateProperties`, but instead contains a `CertificateProperties` property named
+ - `IssuerBase` has been renamed to `IssuerProperties`.
+ - `CertificatePolicy` has been flattened to include all properties from `KeyOptions` and derivative classes.

Figure 1.4: Descriptive changelogs of DIS of AzureSDK.

are available for architectural change detection, but they are not feasible to deploy them for many revisions

[24, 245, 253, 65, 29, 69, 12]. Many studies are available for categorizing and generating typical commit

messages [101, 95, 160, 86, 255, 135, 104]. However, categorizing and summarizing the design impactful change

commits are not specifically focused on. According to our systematic literature review [174], architectural

change detection, categorization, and summarization suffer five major limitations as follows:

(a) Experimental Datasets Unavailability: The proposal of automated techniques in recovering,

mining, and analyzing architecture information to generate design change artifacts depends on the experimental

datasets’ quality and quantity. A lack of sufficient datasets affects the deep insights extraction and performance

of the architectural change information analysis [34]. Unfortunately, annotated datasets for high-level

architectural change revisions are unavailable for research. It requires substantial experts human efforts to

annotate a good quantity of samples. Moreover, to ensure the quality of the annotation, more than one

people’s involvement in the dataset analysis is required. This thesis contributes to this area significantly.

(b) Sole Reliance on Coding Properties for Architectural Change Detection: Most of the

existing studies consider either conversion of byte code or other formats of architectural definition coding as

the primary step of architecture change detection [24, 245, 253, 65, 29, 69, 12]. As a result, they are either

heavyweight or require substantial human intervention. Therefore, frequent usage in real-world scenarios and

large-scale empirical studies for architectural change analysis is impaired because a project typically contains

hundreds and thousands of change revisions that continuously increase [150]. However, 88.9% of architecture

information is written by natural language texts whose size does not vary significantly from project to project

[64, 115]. But, no study focused on textual properties for developing lightweight techniques. This thesis

reduces that gap to a greater extent.

(c) Directory and Naming Structure with String Patterns Overlooked for Change Detection:

Existing change detection studies overlooked directory, naming structure properties, and string patterns in

the code change information returned by the diff tool of each codebase revision. As a result, existing studies

that focus on implemented architecture process all the source code of each change revision, and the execution

time is several hours for each revision for extracting the high-level design change [130, 81, 129, 151, 150]. In

this thesis, we study the mentioned properties to detect architectural change revisions and extract component

change relations.

7

1. New method M1 in
DM1 module
2. M1 uses DM2
3. DM1 new import class
of DM2

Commit msg: Add
support for encryption
in authentication

High-level code change info

Feature improvement
* SSC: New method + new cross
module dependency
Summary
* DM1 added a new method M1
having a new module dependency
with DM2 for cryptic authentication

Figure 1.5: Example summary from a DIS commit.

(d) Semantic Tokens (theme) and Change Relations Overlooked for Change Categorization:

Most of the existing studies are typical change commits categorizations that consider traditional text properties

and source code properties [101, 95, 160, 86, 255, 135, 104]. As a result, adapting them for architectural

context can not handle the commit triad (tangled, ambiguous, and non-informative or empty message)

challenges properly. However, they consider neither more intuitive semantic tokens/themes nor semantic

code change relations properties. Such properties need to be explored for commit triad handling in proper

architectural change categorization. This thesis extracts semantic tokens and proposes novel approaches for

architectural change classification leveraging them.

(e) Design Change Summaries are not Specifically Focused: Some excellent studies exist that

automatically generate commit summary descriptions and release notes [44, 144, 112, 239, 148, 178, 120, 33].

However, change summaries and change logs for high-level design changes are not covered by them due to cost,

efforts and substantial experts intervention. Thus, they are not helpful in getting high-level design change

information and impacts. Our study fills this gap to a certain extent.

1.3 Our Contribution

Software design inconsistency and complexity are directly linked to software bugs, cyber-attacks, problematic

integration, and increased cognitive pressure on the developers, which have severe consequences. To reduce

design inconsistency and to make the system easy to understand, changes need to be tracked, reviewed and

documented regularly. Therefore, architectural change detection, categorization, and documentation are

extremely important for consistent and less complex system design. For these tasks, manual and heavyweight

automated techniques are employed, which are costly and can not be deployed frequently. In this thesis, we

tackle the mentioned challenges described in the previous Section 1.2 and significantly advance the research of

design change tracing and document generation. In particular, we conducted six different studies (Table 1.3)

where the first and fourth studies focus on lightweight architectural change detection, the second, third, and

fifth studies handle the architectural change categorization, and the sixth study focuses on automated design

change document generation. Finally, we combine many of these studies to develop a novel tool, namely

DDARTS (Descriptive Design Change Artifacts). This tool helps the development and maintenance team to

8

Table 1.3: Thesis Contribution Overview.

Approach Task Input Output Novel Contribution

S1:ACCOTERM Change detection
Commit message,
developer’s discus-
sion

Architectural
Changes

Co-occurred terms for archi
change

S2: ArchDFM Change classify Commit message Four change types
Four set of keywords for four
change types

S3: ArchiNet Change classify Commit message Four change types
Concept-tokens and their
strength calculation

S4: ArchSlice Change detection
VCS codebase re-
visions

Architectural
Changes, se-
mantic change
relations

Identify challenges of directory
and naming structures of codes

S5: ArchSSC Change classify
Commit message,
codebase revision

Four change types
Several models for handling
message triad

S6: DDARTS
Design documen-
tation

Commit message,
codebase revisions

Design Change
Summaries

Precise change context extrac-
tion and static rules formation

get the architectural change information frequently. The short introduction of these studies is as follows.

1.3.1 Architectural Change Detection

(a) Architectural Change Detection from Textual Descriptions

First, we explore textual descriptions such as change revision (commit) messages and developer discussions

for a task for architectural change detection. Because software codebase size can vary from project to project,

the detection complexities also increase proportionately. In contrast, the range of the textual description for

per change revision is almost constant. However, we first followed the study of Ding et al. [63] where we

investigated the source code and commit messages of three projects (Galaxy, iPlant, and ImageJ) and mailing

threads of two projects (Hibernate and ArgoUML). After that, we reviewed a number of studies related to

architecture documentation and change scheme descriptions [246, 115, 11, 194]. Then we compiled four steps:

(i) keywords extraction, (ii) keywords refinement, (iii) co-occurred terms extraction, and (iv) detection model

development. Through the first three steps, we manually extracted around 130 co-occurred terms that may

represent architectural change related activities. Finally, deploying the TF-IDF and term graph, we proposed

an architectural change commits detection technique with those co-occurred terms. This study contributes to

the research challenges (a) and (b) in Section 1.2.

(b) ArchSlice: Architectural Change Detection and Semantic Change Relations Extraction

from Source Code

In the previous study, we found that architectural change detection leveraging the textual properties is

promising, but it has limitations. Directory and naming structure patterns and diff tool change information

can complement the challenges. During the manual analysis of the changed code of 3,647 commits from 10

9

OSS projects, we noticed that DANS (directory and naming structures) properties play a crucial role in

determining the high-level architectural or design impactful change instances. In this process, we observe

various DANS properties and their variations across the change revision commits of the projects. The list

of these properties (and types) is later discussed in Chapter 6. However, implemented architectural change

instance can be detected in two ways: (i) comparing ASTs from byte code of two consecutive commits and

(ii) processing the provided information by the commit diff tool of the VCS [88, 5]. In the first technique, a

complete codebase for each committed version needs to be compiled into byte code, which mostly requires

manual intervention to resolve 3rd party library dependencies. Moreover, the intensive computation could be

a bottleneck for a normal purpose machine for analyzing changes at the statement levels for large systems.

Usually, each release of a project may contain hundreds of commits. Thus, AST-based techniques might far

exceed the time and efforts (of manual analyses) for architectural change detection. Therefore, we propose to

detect high-level architectural change revisions by processing the DANS properties, codebase, and diff tool

information using the String processing techniques. This study contributes to the research challenges (a) and

(c) in Section 1.2.

1.3.2 Architectural Change Categorization

(c) Architectural Change Categorization using Discriminating Feature Model

We observed that the developers write change category information in almost all the release logs. Therefore,

for descriptive summary generation, it is mandatory to categorize the architectural changes. As soon as the

architectural change revision is detected, it is also required to determine the cause or purpose of the change to

better represent the change knowledge and generate various software documents. To that end, we first explore

the existing techniques for software change classification. In this study, we extracted four discriminating

sets of keywords for four types of architectural changes (perfective, corrective, preventive and correct) from

experimental training data using DPLSA [255]. Then these keywords sets are used for generating prediction

models using LLDA [149], SemiLDA [80], and DPLSA [255]. These models are referred to as discriminating

feature selection models (DFS). However, this is the first study that specifically focused on architectural

change categorization. This study contributes to the research challenges (a) and (d) in Section 1.2.

(d) ArchiNet: A Concept-tokens based approach for Architectural Change Categorization

In the previous study, we observe that many keywords are overlapped among the change categories. Additionally,

tacit variation of intention cannot be captured with the discriminating sets of keywords. To eradicate this

limitation, we explore intuitive text properties. In this study, we define and extract concepts [200] from the

commit messages of all the annotated samples that express the corresponding intention of a task. Even the

top words (such as support) among the defined concepts contain many overlapping words. However, we have

found some patterns in many samples for expressing different concepts when these terms co-occurred with

10

other tokens, which are stop words, code elements, and API/library/framework name. To handle this issue,

we train a model by assigning weights to the concept tokens using a specialized normalized frequency model

from a set of pre-classified commits into four change categories. This is motivated by the core idea of how

the model for a word’s sentiment is generated [21]. These weights represent the strengths of the presence of

the tokens within the concepts of the categories. Finally, the trained model produces a collection of unique

concept tokens, which are then used to predict the change message to an expected category. This study

contributes to the research challenges (a) and (d) in Section 1.2.

(e) Handling the challenges of Architectural Change Categorization leveraging Structural

Change Properties of Source Code

Our previous study is promising for change categorization. However, many commit messages do not contain

concept tokens, and those messages cannot be measured with concept tokens. Therefore, we further enhance

the previous techniques with code properties for handling the message triad (empty, meaningless, and tangled)

for architectural change categorization reliably. Many commit descriptions do not contain previously explored

text properties. But, meaningful source code properties can complement the gap of this issue. The relationships

between code and their architecture knowledge are hard to reveal [34]. The issue is a lack of overview of the

structure of the system, linking to the source code and program file. To improve this scenario in message

triad handling, through manual analysis of the source code of the high-level architectural change samples, we

extract 17 semantic change relations (SSC) from code operations. We have explored various classification

models with these SSCs. Then, we explored various classification models combining these SSCs with concept

tokens. Finally, we have proposed approaches to handle the challenges of commit triad – tangled changes,

ambiguous messages, and non-informative or empty message descriptions. Thus, our proposed models are

promising to apply in real-world applications such as release change logs or release note generation. This

study contributes to the research challenges (a), (c) and (d) in Section 1.2.

1.3.3 Design Change Document Generation

(f) DDARTS: An Automated Approach for Design Change Artifacts Generation

In the aforementioned studies, we have explored several approaches for architectural change detection and

categorization that can be utilized for efficient design change information generation. In this study, we explore

an automated technique to generate architectural change summaries (textual) leveraging the most promising

change detection and classification techniques we have proposed in previous studies. Context-aware descriptive

design change summary (a subset of design change artifacts) generation is a challenging task. To that end,

we consider precise and meaningful contexts based on the SSCs, change purposes, and relevant concepts

related to them for generating the descriptive design change summaries. In this process, we first generate

SSCs and concept tokens mapping models from the training dataset created in the previous study. This

11

mapping model contains separate models for each change group (with weighted ranked words). Then, during

change description and release change logs generation, we determine all the possible change types using the

uniform distribution models proposed in our fifth study. After that, the top-ranked concept tokens of those

SSC mapping models from the relevant categories are included in the number of unique sets (according to

the predicted types). The messages can be generated considering the first 1-3 top-weighted concept tokens.

We also integrate commit theme information using various contextual rules. Moreover, we have defined four

static rules for generating four types of change descriptions. Finally, we developed a tool for the development

and maintenance team for design change information extraction and change log documentation. This study

contributes to the research challenges (a) and (e) in Section 1.2.

1.4 Related Publications

• Amit Kumar Mondal, Chanchal Roy, Banani Roy, and Kevin A. Schneider. “Automatic Components

Separation of Obfuscated Android Applications: An Empirical Study of Design Based Features”, In 34th

IEEE/ACM International Conference on Automated Software Engineering Workshop (ASE 2019), pp.

23-28.

• Amit Kumar Mondal, Banani Roy, and Kevin A. Schneider. “An exploratory study on automatic

architectural change analysis using natural language processing techniques”, In 2019 19th International

Working Conference on Source Code Analysis and Manipulation (SCAM 2019), pp. 62-73.

• Debasish Chakroborti, Banani Roy, Amit Kumar Mondal, Golam Mostaeen, Chanchal K. Roy, Kevin

A. Schneider, and Ralph Deters. “A Data Management Scheme for Micro-Level Modular Computation-

Intensive Programs in Big Data Platforms”, In Data Management and Analysis, Springer, Cham, pp.

135-153.

• Amit Kumar Mondal, Banani Roy, Sristy Sumana Nath, and Kevin A. Schneider. “ArchiNet: A

Concept-token based Approach for Determining Architectural Change Categories”. 33rd International

Conference on Software Engineering and Knowledge Engineering (SEKE 2021), pp. 7-14.

• Amit Kumar Mondal, Chanchal K. Roy, Kevin A. Schneider, Banani Roy, and Sristy Sumana Nath.

“Semantic Slicing of Architectural Change Commits: Towards Semantic Design Review”, In Proceedings

of the 15th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement

(ESEM 2021), pp. 1-6.

• Amit Kumar Mondal, Banani Roy, Chanchal K. Roy, and Kevin A. Schneider. “Large Scale Image

Registration Utilizing Data-Tunneling in the MapReduce Cluster”, In Proceedings of the International

Conference on Big Data, IoT, and Machine Learning (BIM 2021), pp. 167.

12

• Amit Kumar Mondal, Kevin A. Schneider, Banani Roy, and Chanchal K. Roy. “A survey of software

architectural change detection and categorization techniques”, Journal of System and Software (JSS),

194 pp.

• Amit Kumar Mondal, Banani Roy, Sristy Sumana Nath, Chanchal K. Roy, and Kevin A. Schnei-

der. “DDARTS: An Automated Tool for Descriptive Artifacts Generation of Design Changes”, ACM

Transactions on Software Engineering and Methodology (TOSEM 2023, Under Submission process).

• Amit Kumar Mondal, Kevin A. Schneider, Banani Roy, and Chanchal K. Roy. “A survey of software

architectural change detection and categorization techniques”, 20th IEEE International Conference on

Software Architecture (ICSA 2023 Journal First Track, accepted).

• Amit Kumar Mondal, M. Mainul Hossain, Chanchal K. Roy, Banani Roy and Kevin A. Schneider.

“FSECAM: A Semantic Theme-based Approach for Feature to Muilti-level Architectural Component

Mapping”, Journal of System and Software (JSS 2023, Under Submission process).

1.5 The Organization of the Dissertation

The thesis contains nine chapters in total. To address the challenges of architectural change detection,

categorization, and summarization, we conduct six independent but interrelated studies. The core of this

dissertation starts with a description and discussion of software architecture and changes.

• In Chapter 2, I discuss the basics of software architecture, architecture modification, change categories,

design change artifacts generation steps, and implications of change detection and categorization.

• In Chapter 3, I describe the first study (ACCOTERM) for software architectural change detection

from commit messages and developer’s discussion using text retrieval technique.

• In Chapter 4, I describe the second study that categorize the architectural changes using discriminating

feature model and text classification techniques.

• In Chapter 5, I describe the study of architectural change categorization using concept tokens and

machine learning techniques.

• In Chapter 6, I describe the challenges of developing a lightweight technique for detecting architectural

change revisions from source code properties. Then, I discuss the definition and detection of architectural

semantic change relations from given change information by the diff tool leveraging directory and

naming structure and string patterns.

• In Chapter 7, I describe the architectural change categorization using SSCs and various classification

techniques to handle message triad challenges.

13

• In Chapter 8, I describe the descriptive design change summary generation by forming static rules

embedding concept tokens, SSCs and change classification model.

• In Chapter 9, I conclude my thesis with future research directions.

14

Chapter 2

Literature Background

2.1 Software Architecture

Usually, software architecture is considered the structures of a software system and the process (associated

with different development activities) [229, 84]. It documents the shared understanding of a system design

[78]. This understanding involves how the system is partitioned into components and how the components

interact through interfaces. According to Grady Booch1, a software architecture represents the significant

design decisions that shape a system, where significance is measured by the cost of change. Frequent change

analysis prevents the drifts of software architecture from the original design decisions. However, various other

forms of definition for software architecture are available in the literature [229]. According to Richards and

Ford [207], like much art software architecture can only be understood in context. A list of definitions by the

practitioners is available at Carnegie Mellon University archive2. Instead, we summarize some of the selected

definitions of software architecture which are shown in Table 2.1. The table also indicates the key points of the

definitions. From this summary, we can observe that architecture is about structural construction [56], design

decisions implementation [229], evolution (IEEE-1471) and knowledge sharing [258] mechanisms of a system.

Furthermore, these definitions introduce the importance of reviewing, tracking, and documenting architectural

changes due to the substantial impacts of various dimensions of software development and maintenance.

Table 2.1: Definition of Software Architecture

Author Key point Definition

Andreas

Zwinkau

[258], 2019

Knowledge sharing Software architecture documents the shared understanding of a software

system

1https://tinyurl.com/2bu5fvfu
2https://tinyurl.com/bddft4y6

15

Table 2.1: Definition of Software Architecture

Author Key point Definition

Bodje and

Nasira [184],

2013

Design to optimize Software Architecture helps to shape the design, which is used to com-

municate and collaborate on the implementation of the functional and

non-functional requirements when producing an application while optimiz-

ing common quality attributes.

Clements et

al. [56], 2010

Structure The software architecture of a system is the set of structure needed to reason

about the system, which comprises software elements, relations among them,

and properties of both.

Eoin Woods

[252], 2016

Design decisions Software architecture is the set of design decisions which, if made incorrectly,

may cause your project to be cancelled.

Taylor et al.

[229], 2009

Design decisions A software system’s architecture is the set of principal design decisions

made about the system.

Grady

Booch [258],

2006

Design and change

impact

All architecture is design but not all design is architecture. Architecture

represents the significant design decisions that shape a system, where sig-

nificant is measured by cost of change.

Jansen and

Bosch [109],

2005

Design decisions We do not view a software architecture as a set of components and connec-

tors, but rather as the composition of a set of architectural design decisions.

Jan Bosch

[39]

Design decisions Software architecture is, fundamentally, a composition of architectural

design decisions. These design decisions should be represented as first-class

entities in the software architecture and it should, at least before system

deployment, be possible to add, remove and change architectural design

decisions against limited effort.

Rozanski

and Woods

[211], 2005

Structure The architecture of a software-intensive system is the structure or structures

of the system, which comprise software elements, the externally visible

properties of those elements, and the relationships among them.

Bass et al.

[27], 2003

Structure The software architecture of a program or computing system is the structure

or structures of the system, which comprise software elements, the externally

visible properties of those elements, and the relationships among them.

Kruchten

[126], 2003

Structure and col-

laboration

An architecture is the set of significant decisions about the organization of

a software system, the selection of structural elements and their interfaces

by which the system is composed, together with their behavior as specified in

the collaborations among those elements, the composition of these elements

into progressively larger subsystems, and the architectural style that guides

this organization – these elements and their interfaces, their collaborations,

and their composition.

16

Table 2.1: Definition of Software Architecture

Author Key point Definition

Kari Smolan-

der [218],

2002

Knowledge

metaphors

Four general metaphors for architecture, “architecture as blueprint”, “ar-

chitecture as literature”, “architecture as language”, and “architecture as

decision”

IEEE-1471,

2000

Structure for evolu-

tion

Architecture is the fundamental organization of a system embodied in its

components, their relationships to each other, and to the environment, and

the principles guiding its design and evolution.

SEI, 1994 Structure for evolu-

tion

The structure of the components of a program/system, their interrelation-

ships, and principles and guidelines governing their design and evolution

over time.

Garlan [85],

1993

Structure Software architecture is the organization of a software system as a collection

of components, connections between the components, and constraints on

how the components interact.

2.1.1 Documenting Software Architecture

According to literature [64] and IEEE 1471-2000 standard [11], a software architecture is mostly presented in

the following ways,

Natural Language

Information for documenting architectural elements can be expressed with natural language, which may use

specific technical or domain terms to interpret various aspects of the architectural elements. For example, a

brief architectural document about Hadoop and HDFS 1 is available in a natural language format.

Diagrams

In many cases, architectural information is presented with informal graphical diagrams (boxology). It can

provide an abstract snapshot of the system.

UML (Unified modeling language)

UML model is a notation-based standard language for documenting architecture description. UML mainly

captures the structural aspects of a software.

1https://tinyurl.com/3sshtrch

17

ADL (Architecture description language)

ADL provide formally-specified [64] modeling notations and constraints to describe an architecture with the

help of set of tools. An ADL provides a high level of abstraction that can be read by both human and machine.

It can support automatic generation of parts of software systems [26].

Among the ways mentioned above, natural language is the most significant [64, 115] medium to represent

a system architecture (at least for open source projects). Researchers [64] observe that among 108 open source

projects, 88.9% describe the system architecture using natural language. A software architecture document

is viewed [229] as (i) prescriptive architecture, and (ii) descriptive architecture. Prescriptive architecture

documents what is intended prior to a system being built. It can be documented with the unified modelling

language (UML), the architecture design definition language (ADDL), graphs, or natural language. In contrast,

descriptive architecture captures/ documents what has already been implemented. Note that UML, ADDL,

natural language, and graphs can be used to document either prescriptive or descriptive architecture. A

descriptive architecture is also documented with implementation level entities such as packages.

2.1.2 Architecture Views and Abstraction Levels

A software architecture is viewed [229] as (i) prescriptive architecture, and (ii) descriptive architecture.

Prescriptive architecture documents what is intended prior to a system being built; can be documented with

the unified modelling language (UML), the architecture design definition language (ADDL), graphs, or natural

language. In contrast, descriptive architecture captures/ documents what has already been implemented. A

key point is prescriptive is prior to a system being built and descriptive is after the fact. Note that UML,

ADDL, natural language, and graphs can be used to document either prescriptive or descriptive architecture.

A descriptive architecture is also documented with implementation level entities such as packages. Descriptive

architecture is studied at three abstract levels: high level, intermediate level, and low level. Implementation

level entities such as modules or libraries are considered as a high-level abstraction. Packages, classes, and

program files are regarded as an intermediate-level abstraction. Methods, functions, and procedures are a

low-level abstraction. Low-level abstraction is frequently studied for understanding procedural and legacy

systems. Detecting higher-level abstractions from an implementation is challenging. A change analysis process

can utilize software artefacts from various sources [36, 64, 195]: design and requirement documents, the

codebase, issue trackers, review comments, commit messages, developer discussions and messaging lists.

2.1.3 Primary Elements of Architecture

Literature has discussed architectural aspects from various perspectives. An architectural perspective is a

nonempty set of types of architectural design decisions. Principle architectural elements for describing these

design decisions are components, connectors, configuration, and constraints.

18

Components:

A component is an implementation unit of software that provides a coherent functionality unit [56] as a black

box. For forming a proper architecture, usually, a component should be modular, portable, replaceable, and

reusable set of well-defined functionality [189]. Thus a component reflects the principles of encapsulation,

abstraction, and modularity. From the perspective of architecture, it could be a module, a package, a class, a

code file, or even a cluster of methods.

Module:

A module is a software unit where low-level code components are connected and aggregated for a function/-

common set of functions. Code components within a module are used or connected to other modules. These

modules are building blocks where the interfaces and interchangeability are important for the possibility of

combining them to create modular products that could fulfill various overall functions. Modularity is an early

defined quality property of software architecture [25, 46] . It is considered the high-level abstraction unit

of architecture. However, literature has referred the modules in different ways. In this thesis, we refer to a

module as the cluster of packages or classes or code files (mostly aligned to Java and Kotlin programming)

[35]. Furthermore, a 3rd party library is considered as a module. However, a cluster of code components in

general, also called a module [150].

Connectors:

Connectors are explicit architectural elements that bind components together and act as mediators between

them [84]. It ensures interaction protocol and a communication mechanism between components independent

of their functional behaviours. However, dependency is analogous to a connector. That said, a connector is

used for describing runtime architecture, whereas dependency is used as an alternative for static architecture.

Procedure calls, database access protocols, and client-server protocols are some of the examples of connectors.

Configuration:

In software architecture, a configuration is used to specify connectors, dependencies and access restrictions

among components and modules. A file within a software describing the dependency relations among the

modules is an example of architecture configuration [116]. It may be represented as a graph wherein nodes

represent components and connectors, and edges represent their associations (topology or procedure call).

Constraints:

Constraints or rationale in software architecture documentation express restriction or permission, generality

or particularity, necessity and luxury, and relativeness and absoluteness [198]. They are properties of, and the

19

Class Foo{

 void square()
 {

 }
}

+ int a=2;
+ int b=a*a;

Class Foo{

 void power()
 {

 }
}

+ int a=2;
+ int b=Bar.multi(a,3)

Class Bar{

int multi(int a,
int b){

…..
 }
}

+ import Bar;

a) Local code change (statement added) b) Architectural change (new dependency on Bar class)

‘+’ means additionChange revision 1 Change revision 2

Figure 2.1: Class level architectural change.

relationships among, the architectural elements. However, constraints could be of any type, such as technical,

managerial, economic, or political constraints.

2.2 Software Architecture Modification

Parts/elements of software architecture can be changed during the regular development and maintenance

activities. Two different abstraction level architectural changes are summarized in Figures 2.1 and 2.2. In

Fig. 2.1, the first change (a) is the local change, while the second change (b) is a class-level architectural

change because it added a new dependency from another component. In Fig. 2.2, in later version (2)

of the architecture, a new component called ”Controller” is added and dependency relations changed for

implementing a new functionality for the admin of the ”Managed Server”. In these examples, we can notice

their impacts and increased complexities of reviewing them for flaws and security vulnerabilities compared to

local code change. In the next subsections, I will discuss more about architectural changes.

2.2.1 Why Do Changes in Architecture Happen?

In this section, I briefly discuss various perspectives of architectural change. A few decades ago, change or

evolution of E-type1 software was captured by eight laws [134] by Lehman and Ramil. These laws implicitly

and explicitly cover almost all aspects of software changes and concerns related to them. Four of them can

be related to software architectural change and evolution [246]. These laws are valuable indications of why

software architecture changes.

• Law I, Continuing Change: A software that is used must be continuously adapted else becomes pro-

1Software that mechanize a human or societal activity [133] such as operating systems, business administration software,

inventory management, stock trading, etc.

20

Database

Initial Architecture

Control

Changed Architecture

Frontend
Database Frontend

Server

Database Frontend

Managed Server

Controller

user

user

admin

1

2

Figure 2.2: High-level architectural change.

gressively less satisfactory. Continuing adaptation and evolution is because of the fact that development,

installation and operation of the software change the application and its operational domain within an

organization. This creates a mismatch between the two. Evolution happens both from the feedback and

control maintenance process.

• Law II, Increasing Complexity: As a software is evolved its complexity is increased unless work is

done to maintain or reduce it. From the necessity for adaptation, changes are implemented. That may

cause an increment of interactions and dependencies between the system components in an unstructured

way, ultimately increases system complexity. Change happens to reduce the structural complexity.

• Law VI, Continuing Growth: Functional content of program must be continually increased in its life

time to meet the customer satisfaction. This law is associated with change deriving from a different

source. During the development and upgradation, many functional, behavioural and other attributes

are excluded due to budget, delivery dates, technology and understanding of the application in its

domain. These items cause bottlenecks when the user has to replace automated operations with human

intervention. Hence they also lead to demand for change. As such, the growth of the software codebase

may happen due to the requested functionalities perceived after real-world usage and the integrated

applications into the system for removing bottlenecks and flaws.

• Law VII, Declining Quality: A software product is perceived as a declining of quality unless

rigorously maintained and adapted to a change in an operational environment. The seventh law states

21

that uncertainty related to quality increases with time unless the maintenance activity detects and

rectifies the integration. This law indicates the fact that familiarity breeds contempt. For example,

customers’ perceptions and expectations may change with time and availability of alternative products.

2.2.2 Changes in Static Architecture

Software systems have a static and a dynamic architecture [90]. The static architecture is represented by a

collection of modules that are structured in a module hierarchy during design or implementation time. On

the other hand, the dynamic architecture represents their configurations and actions during the execution

of a system at runtime [90]. That said, changes in static and runtime architecture occur in different ways.

Thus, different strategies are required for managing different changes. Updating operating systems and adding

new features in a running web application are examples of runtime architecture change. Static changes also

cause runtime changes. In this section, we discuss how static (or design-time) architectural change operations

are defined in the literature. There are many ways that architecture views and properties can be modified.

Among them, some common ways in which architecture may be modified after it has been built are [192]:

Common operations: Common change operations of software architecture are the addition of new

components, upgrading existing components (e.g., performance tuning), removal of unnecessary components

(both temporary and permanent). The change operations are also referred to as [246]: kidnapping, splitting

and relocating. Kidnapping is moving an entire module from one subsystem to another. Whereas, splitting

involves dividing a module into two distinct modules. Relocating involves moving functionality from one

module to another.

Configuration change: Software configuration is also a property of software architecture [72]. Configura-

tion may control dependency, access rules and restrictions of both design-time and run-time components [87].

Therefore, change operations include reconfiguration of application architecture (reconnection of components

and connectors) and reconfiguration of system architecture (e.g., modifying the mapping of components to pro-

cessors). Moreover, modifying values of many configuration characteristics is also considered an architectural

change operation.

Source-code layers: Source-code layers are directories, package structures, and location of code files

within the directories [151]. Static changes affect system structure and consist of changes to systems,

subsystems, modules, packages, classes, and relationships. Class hierarchy changes consist of modifications to

the inheritance view. Class signature changes describe alterations to system interfaces.

Design model change: Changes can be made to UML diagrams, and other informal models (such as

component and package diagrams) where each diagram type signifies the nature of the changes [245, 152, 81].

For example, changes in UML diagrams can include the addition or deletion of class attributes, modifying

relationships, and the addition or deletion of classes [152]. The architectural pattern can be changed, such

as layered architecture pattern can be migrated to model-view-controller pattern. Addition, deletion and

migration of design patterns are also architectural changes.

22

Figure 2.3: Class level architectural changes of Hadoop.

Architectural document change: Since architecture is documented with natural language in many

projects, a change in the description of the document also indicates an architectural change [63].

Examples: A dummy change in the class-level architecture is discussed in Fig. 2.3. An example of a

real-world module-level change within a commit of Microsoft AzureSDK is shown in Fig. 2.4. Here, the

azure-storage-blob-cryptography (ASBC) module uses functions from azure-storage-common (ASC) module

for improving a feature. To extract this information, the developers have to search the location of the code

segments, functions, classes and modules in the codebase (perhaps with the IDE). However, the commit

contains modifications of 32 classes with many variations. Hence, the manual process to extract the design

impacted information requires tremendous effort.

2.2.3 Metrics as Architectural Changes

In this thesis, we explore the common change operations, configurations change, source-code layers, and

natural text documents as the metrics for design impactful changes. We study the module/system-level

changes and class and package level changes [174]. Literature has defined many metrics to indicate the

architectural changes at various abstraction levels. srcTracer [93], ID-SD [151], RC [62], NHK [223], CSM

[69], CC [167], CDI [117], DSM [24], MLC [242], and GKD [181] metrics are available for the intermediate

level changes. MoJo [230], MoJoFM [245], HEAT [65], CB [40], C2C [81], A2A [130], and A∆ [110] focused

on the high-level change detection (some of them also consider the intermediate-level change). Detail analysis

of these metrics are discussed in our published article [174]. Many of these metrics considered add, delete,

move, split, update and component renaming. Some leveraged fluctuations in various quantitative values

23

271 + public EncryptedBlobClientBuilder sasToken(String sasToken) {

272 + this.sasTokenCredential = new
SasTokenCredential(Objects.requireNonNull(sasToken,

273 + "’sasToken’ cannot be null."));

274 + this.sharedKeyCredential = null;

275 + this.tokenCredential = null;

276 + return this;

14 -- import com.azure.storage.blob.BaseBlobClientBuilder;

19 -- import com.azure.storage.blob.models.CustomerProvidedKey;

25 import com.azure.storage.blob.BlobUrlParts;

28 -- import com.azure.storage.common.Constants;;

29 + import com.azure.storage.common.Utility;

30 import com.azure.storage.common.credentials.SharedKeyCredential;

31 + import com.azure.storage.common.implementation.credentials.SasTokenCredential

32 + import com.azure.storage.common.implementation.policy.SasTokenCredentialPolicy

33 + import com.azure.storage.common.policy.RequestRetryOptions;

36 + import com.azure.storage.common.policy.SharedKeyCredentialPolicy

New method + new
module dependency

Not a cross module
dependency deletion

Figure 2.4: Code changes containing a module-level change. Red color represents deletion (−) and
green color represents additions (+).

(such as fan-in and fan-out count) as indicative of an architectural change. Some considered updating an

element or changing connection and dependency relation (connectors), and so on. Include-dependency and

symbol-dependency (ID-SD) [151] metric considers the modification of classes and interfaces importing from

different packages. These metrics are extracted by processing the directories, packages, code file inclusion,

component size and numbers, class reference, and procedure call. However, proposed tool for these metrics

are explicitly dependent on other techniques to extract architectural models and clusters (they are arbitrary

and have no formal limit). Only expert intervention can ensure architectural change detection’s accuracy of

these metrics, and analysis of thousands of change versions is almost infeasible. In our research, we focus on

the commits having module/system (higher) level and class level changes. Please note that, a module can be

a sub-system, 3rd party library, and cluster of packages [41]. Overall, the change commits contain additions,

removals, and moves of implementation-level entities from one module to another. This also includes additions

and removals of modules themselves. We consider various rules from many of these metrics as architectural

changes.

Change Operations Considered

From the literature survey, we have extracted the following operations in the design models (such as UML),

architecture view, ADDL and relevant code elements considered to be architectural change: add, delete,

move, split, update and component renaming. The summary of them are presented in Table 2.2. Existing

techniques have considered various combinations (either all or a subset of them) of these operations for

determining architectural changes. Fluctuations in various quantitative values (such as fan-in and fan-out

24

Table 2.2: Change operations and code properties considered for change detection.

Metrics Add Delete Move Other Value Properties

MoJo Y Y Directory, code file

DSM Y Dependency

MoJoFM Y Y Directory, code file

GKD Y Code files, methods

LILO Y Class

RC Y Y Package, class, method

HEAT Y Code model

CDI Y Class, operations, ports

CB Y Module numbers, size

srcTracer Y Y Y Class, method, relations

NHK Y Class, dependency

CSM Y Package

GAR Y Y Metamodels

A2A Y Y Y Directory, code file

C2C Y Y Y Directory, code file

ID-SD Y Y Code file

DM Y Package

QC Y Y Y ADDL properties

MLC Y Directory, ..

CC Y Y Class

25

count) are also indicative of an architectural change. DSM [24], EOC [152], LILO [233], GKD [181], CDI

[117], CB [40], NHK [223], CSM [69], and DM [249] metrics are based on quantitative value. The rest of

the metrics and techniques presented in Table 2.2 directly consider change operations. Quantitative metrics

require fine-tuning of parameter values that may not be versatile. Metrics, their corresponding change

operations, and which properties are used for measuring are presented in Table 2.2. Other column in the

table represents updating an element or changing connection and dependency relation (connectors), and so

on. Co-occurrence of various keywords (TD [172]) within the textual description also indicates architectural

changes (to some extent). However, one surprising finding is that we have found one study (Mae [209]) that

directly considered configuration and constraints for detecting architectural changes, which are the common

elements of documenting software architecture.

From our change operation centric analysis, we see that defining the modification operations is essential

before selecting a change detection technique. We also noticed that the HEAT [65], CDI [117], CB [40],

GAR [29], and DM metrics [129] attempted to define (and a few of them validate) the systematic meanings

of the change operations related to concerns and flaws in the codebase. For example, in HEAT, some

change operations associated with a particular area of the systems are defined as the change in client-server

relationships. A logical definition of the change operations such as this is more understandable by the

development and maintenance team. Other studies have not experimented with or discussed how expressive

or semantic so that the maintenance team can comprehend the two types of change detection metrics.

Software Properties Considered for the Change Detection

We have identified a list of concrete software documentation and codebase properties used for the change

metrics: directory, package, code file inclusion, component size and numbers, class reference, and procedure

call. Mapping of these properties with the associated studies is listed in the Properties column of Table 2.2.

Many of the prescriptive architecture metrics leveraged UML properties, while a few of them utilized the

ADDL properties (HEML and QC). From the properties column, we also notice that most of the detection

techniques consider object-oriented properties. Surprisingly, no study (TD) explored textual properties

within the developer’s discussion for predicting a change task. Although the directory, code file, and method

properties can be used to detect primary architectural changes, little focus has been given to detect meaningful

architectural changes (in terms of modules, components, constraints, and connectors) considering various

architectural views of the non-object-oriented systems. In terms of the descriptive architecture, we feel

concerned in the recent consideration of architectural change instance [167]. In this concern, researchers should

resolve the ambiguity that whether logical change coupling (two local segments from two components are

frequently changing together without direct dependencies) would be appropriate for treating an architectural

change instance or not.

26

Table 2.3: Software abstraction level supported.

Metrics High Medium Low Type Depends Outcome

MoJo Y:cluster,
module

Descriptive Extract cluster 12.8% Q

DSM Y:class,
package,
file

Y Descriptive NM

MoJoFM Y:cluster,
module

Descriptive Extract cluster Highest 65.8%

GKD Y:class,file Y Descriptive NM

LILO Y:class Descriptive NM

RC Y:package,
class

Y Descriptive P,R >85%

HEAT Y:component
view

Descriptive Extract model NM

CDI Y:class Descriptive NM

CB Y:modules,
views

Descriptive 0.80 SC

srcTracer Y:class Y Descriptive Define uml Better than ex-
perts

NHK Y:class Descriptive 0.5 SC

CSM Y:package Descriptive NM

GAR Y:attribute Descriptive P 100, R 92

A2A Y:cluster,
module

Y:package Descriptive Define module
view

NM

C2C Y:cluster Descriptive Extract cluster ARC 56 and
ACDC 31

ID-SD Y:file, class Descriptive NM

DM Y:package Descriptive NA

QC Y:ADDL Prescriptive,
Descriptive

Define and ex-
tract model

.50% efforts

MLC Y:package,
class

Y Descriptive 100% F1 for
DR

CC Y:only class Descriptive NA

27

2.3 Categorising the Design-impactful Changes

In practice, software design decisions and changes are grouped from various perspectives. The grouping is

done by focusing on the requirements, design decisions and concerns, design solutions, development and

maintenance activities, design failings, and so on. Identification of these groups is essential for proper trade-off

analysis to reduce current and future TDs. Lack of proper identification of them caused various TDs in

numerous practical scenarios [234]. Software changes can be grouped [227, 127, 227, 125] based on - (i)

requirements and design decisions – features, decision types, decision cross-relations, concerns, and tactics,

(ii) development and maintenance tasks - change purposes, change impacts, and codebase resources, and

(iii) design failure scenarios. This thesis specifically focuses on grouping architectural changes based on the

development and maintenance activities. Design artifacts mostly document these changes.

2.3.1 Change types in the development and maintenance tasks

Change categories should be defined based on the development and maintenance tasks for better estimating,

planning, and documenting software. Based on the change purposes in the development and maintenance

tasks, change types are grouped as adaptive, preventive, corrective, and perfective. Mostly these are first

defined by Swanson [226]. Some of the examples are shown in Fig. 8.2, where the Breaking Changes is referred

to as the preventive change. The details of the change groups are as follows –

Adaptive – this change could be a reflection [246, 143] of system portability, adapting to a new environment

or a new platform. Adaptive change might also occur for organisational and governmental policy changes.

Corrective – it is the reactive modification of a software product performed after deployment to correct

discovered problems [55]. Specifically, this change refers to defect repair, and the errors in specification, design

and implementation.

Preventive – this type of changes happen to improve file structure or to reduce dependencies between

software modules and components may later impact quality attributes such as understandability, modifiability,

and complexity [170, 246]. In other words, preventive changes happen to improve file structure or to reduce

dependencies between software modules and components. Such changes may later impact quality attributes

such asunderstandability, modifiability and complexity.

Perfective – these are the most common and inherent in development and maintenance activities. These

changes mainly focus on adding new features or requirements changes [226, 246, 63]. Also, these changes

areaimed at improving processing efficiency and enhancing the performance of the software. Thus, these

changes can be both functional and non-functional optimizations.

28

2.4 Design Change Artifacts

Architecture (or design) description must be accurately and traceably linked to its implementation in order

to handle the challenges of developing, maintaining, and evolving a critical software system. We refer to

architectural design artifacts as the collection of one or more design change-related entities - change impacted

components, modification operations, modified dependency relations, purposes of change, associated design

decisions/ features, descriptive change summary, modified design document, design changelogs, design tactics,

descriptive comments for the reviewers, and so on [187, 162, 115]. A few of the artifacts are discussed in the

Motivation section. A design change artifact may contain (at least) - ”why the design change has happened,”

”what high-level program properties are impacted,” and ”what will be the probable descriptive summary/logs of

that change”. These artifacts are needed to be updated if changes happen [162]. These artifacts are valuable

for reverse engineering as well because other software artifacts are linked and belong to them.

2.4.1 Steps of Generating Design Change Artifacts

Main steps (shown in Fig. 2.5) of generating design change artifacts and documents are described as follows.

1. Design Change Detection

During development phases, all change revisions or commits are not design impactful changes. Consequently,

at first, the change revisions (or commits) that contain architectural design changes need to be identified to

include their information in the change document.

2. Important Design Change Information Extraction

After detecting the design impactful change revisions, key change relations of the components (such as modules,

libraries, packages, classes, etc.) are required to be extracted. In many scenarios, that information needs to be

ranked for inclusion purposes because all the relations may not be considered when writing an architectural

design document.

3. Determining and Categorising Change Purposes

Change purposes or change categories are the most fundamental information in the design change logs, release

logs, and design decisions (requirements/issue). Therefore, after detecting the design revisions, they must be

categorized into development and maintenance purposes (such as new feature addition, bug fixing, refactoring,

etc.) for properly writing the design change document.

4. Description Generation

The final phase of the design change document writing is to produce a natural language description combining

the above information of phases 1, 2, and 3. The description may also include a short form of design decisions

29

Detect Design
Change

Extract Design Relation
Properties

Determine Change
Purpose

Generate Design
Artifacts

Figure 2.5: Operational phases of design artifacts generation.

with the modification operations.

2.5 Software Artifacts for Architectural Change Information Min-

ing

2.5.1 Code Properties for Software Change Information Mining

Software codebase is the most reliable source of information as it is the original implemented resource.

Following entities can be leveraged for the architectural change information extraction.

Change Operations

Abstract change operation types such as add, delete, modify, refactoring, etc., can be used for change

information mining [242, 151]. Change in AST, method definition, body and even method location can

represent specific change intentions. Identifiers in the changed code are also crucial for mapping and tracking

requirement information change. The density of changed code can be used for commit classification.

DANS Properties

Following the initial conceptual design and architectural model a software codebase is structured into folders,

sub-folders and files, and this structure is concrete [151]. These entities are the holders of the implemented

software features. Code inside the files consists of identifiers, statements and inclusion of other files by the

location/references. That said, the directory and naming structure (DANS) is a valuable information for

architectural information mining; thus, change intention mining.

Meta Information

For change intention mining and code change summary generation in detail, source code properties such as

project description, configuration files, deployment scripts, and so on can play an influential role [60, 254, 124].

30

Code Comments

Developers write comments in source code in natural language and briefly explain a function of code and what

the code does [34]. Mining source code comments can be useful to analyze architecture-related information.

In many cases, added, deleted, modified, or existing code comments may clarify the original intention to

change a code segment or methods.

Semantic Change Relation

Structural semantic change relations (SSC) represent a meaningful description of relational information of

the architectural change components. In the changed code, it might represent a more logical meaning of

a change [47]. That said, an SSC is a self-explanatory property that at the same time indicates both the

change operation type and direct change impact. For example, the SSC – a new method with cross-module

dependency indicates that in a design change a new method is added that also impacts the dependencies of

two modules. However, such relations are extracted from architectural component dependencies within the

codebase [47]. Finally, they can be embedded with software meta information for mining change intentions.

2.5.2 Textual Features for Software Change Information Mining

Text analysis techniques have proven promising outcome to supporting automated software engineering tasks,

for example, bug triage, program comprehension, traceability links recovery, and software documentation [34].

Some of the promising feature models for architectural change information mining are described here.

Sources of Textual Features

The main sources of textual features in the software development history are – design and requirement

documents, commit messages, issue (features or tasks description) lists, developer discussion and messaging

lists, review comments, code comments, release notes, and so on [13, 227, 195, 33].

Co-occurred Terms

Co-occurred terms are a set of words appearing in a sentence such as “refactor organizational structure” that

might indicate a crucial semantic meaning. Term co-occurrence reflects subtle text organization that can be

described concerning word interactions.

Discriminating Keywords Set

Selecting a set of keywords is promising in software repository mining [255]. Each keyword is treated as a

feature in a text classification model. Discriminating feature/keywords selection (DFS) models can generate a

specific set of keywords representing a specific type of topic [48, 255]. In this model, the vocabulary consists

of the top N words ordered by descending values in the whole collection of topics (or messages). Various

31

distribution models can select top N words [255]. A discriminating set of keywords can be used to mine

software change intentions.

Word Strength

Words and their strengths to specific contexts are extensively used in sentiment mining [8]. Researchers

[8] have been working on assigning numerical scores of a word/token/terms/synset to three opinion-related

properties (such as the objective, positive, and negative) for sentiment detection from the natural language

texts. These three scores are distributed from 0.0 to 1.0, and the totalling score is 1.0. This means that a

term may have nonzero scores for all three categories. This indicates that the corresponding terms have a

certain degree of the three opinion-related properties. A graded score to a term for a certain opinion may

have three interpretations [8]: (i) the terms in the synset are Positive only to a certain degree; (ii) the terms

in the synset are sometimes used in a Positive sense and sometimes not, depending on the context of use;

(iii) a combination of (i) and (ii) is the case. A similar way of score grading and interpretation for certain

words might be possible for the four architectural change intentions (perfective, preventive, adaptive, and

corrective). Word strength mechanism can improve the discriminating keywords models for change grouping.

It prompts experimentation with real-world architectural change data.

Concept Tokens

Concept tokens [200] are the contextual occurrence of words that dominate a sentence to clarify a meaning,

such as {update; API; versioning} indicate adaptive change more confidently within a topic. Similarly, if we

consider a description – ”add support for services down”; the concept tokens {add, support, down} within this

sentence may indicate flaw fixing. However, all the words in this sentence are general tokens. Formally, a

concept is a triple K=(G,M,I) called a formal context. This triple is represented in a cross table consisting of

a set of rows G (called objects such as adaptive), columns M (called attributes such as update, API) and

crosses representing incidence relation I (such as three words co-occurred together). Concept tokens with a

strength assigning strategy to them can be promising for change intention mining.

2.6 Applications of Architectural Change Detection and Catego-

rization

There are many implicit implications of architecture change detection and categorization (ACDC) in software

evolution support, maintenance support, and fault detection and change propagation [246, 205, 108]). Instead,

we discuss some explicit contexts (and mostly regular supportive development and maintenance activities)

where ACDC are essentials.

• Design Review : A typical software design review procedure consists of extraction of requirements,

32

extraction of design and its change, construction of causal relationships, the discovery of potential design

issues, and so on [227]. Proper change information extraction helps to execute these procedures. However,

45% rejected pull requests in OSS projects contain design inconsistency [217]. Moreover, software projects

need to avoid degradation as erosion, drifts as well as architecture pendency [108]. To help eradicate these

challenges, architectural change detection is required to check the differences between the proposed and

implemented design and whether it complies with the design guidelines [227].

• Design Document Generation: More than 60% developers and 85% project managers are likely to use

architecture/design documents [45, 22]. Furthermore, more than 40% major release notes and 15% minor

release notes contains design changes [33]. In such software documents, change category (i.e., new feature

addition, restructuring, etc.) is the fundamental information. There are also pieces of evidence that design

change logs (even with the releases) are also maintained for the development and maintenance teams by

both the industrial and OSS projects1. That said, change detection and categorization are mandatory for

various software change document generation.

• Architecture and Design Decision Recovery : Many projects do not document architecture and design

decision associativity with the components in the initial phases. But later detection and categorizing of

the change revisions are essential to recovering and documenting the software architecture, and design

decisions [109, 83, 214].

• Change Tracing and Change Impact Analysis: Change detection is required for change impact

analysis [19, 246]. Design decisions (i.e., flaw fixing and new features) and corresponding changes can

only be traced through detection and categorizing techniques [214, 32, 93]. Moreover, architecture change

tracing would facilitate on-demand artifacts extraction for code comprehension and other decision-making

purposes because architecture is considered the primary artifact to trace other artifacts [34].

• development and maintenance tasks and Release Planning : Design changes and their categorization

is specially used for release and milestone planning (along with workforce assignment) for the development

and maintenance teams [57]. For example, the component that implemented a new feature in this release

may require design review and restructuring in the near future. At the same time, components that have

gone through restructuring may not be planned for refactoring in the near future. Design change partitions

of the detected change instances and their categories are also helpful for timely and orderly backporting

them [139, 54].

• Developer’s Profile Buildup: Balanced team development and proper workforce utilization are crucial

for a project [145]. Moreover, an organization may require searching for relevant experts to employ for

resolving project design challenges [176]. Finally, mapping categorical architectural change tasks (i.e.,

design refactoring) with the involved developers is crucial for these purposes [30].

1https://tinyurl.com/jby4evdh

33

Chapter 3

Architectural Change Detection from Textual Doc-

ument

In this chapter, we explore textual properties in the developer discussion (for design decisions) and commit

messages for detecting architectural changes. Because the codebase size of the software systems varies project

wise. As a result, the mentioned challenges in Chapter 1 also increase proportionately. In contrast, the range

of the textual description for each change task is almost constant and does not vary significantly. In order to

develop a textual model, we first followed the study of Ding et al. [63] where we investigated the source code

and commit messages of three projects (Galaxy, iPlant, and ImageJ) and mailing threads of two projects

(Hibernate and ArgoUML). After that, we review a number of studies related to architecture documentation

and change scheme descriptions [246, 115, 11, 194]. Then we compiled four steps: (i) keywords extraction,

(ii) keywords refinement, (iii) co-occurred terms extraction, and (iv) detection model development. Through

the first three steps, we manually extracted around 130 co-occurred terms that may represent architectural

change related activities. Finally, deploying the TF-IDF and term graph, we proposed an architectural change

commits detection technique with those co-occurred terms.

In the subsequent sections, we describe our experimental methodologies and insights. Section 3.1 presents

a brief overview and motivation of our study. Section 3.2 presents the dataset collection process. Section

3.3 reports architectural information contained in textual descriptions. Section 3.4 discusses co-occurred

terms extraction. Section 3.5 presents our proposed techniques for architectural change detection. Section 3.6

presents performance results. Section 3.8 concludes our study with future work.

3.1 Introduction

Software architecture is important both in the short and long-term, and it can support fast customization

to help satisfy various stakeholder needs [158]. However, a rigid, static architecture does not address these

challenges effectively [210], and so continuous architecture [103] has become a recently adopted practice

to cope with the evolving nature of software. With the advancement in cloud-cluster processing for Big

Data, continuous architecture1 has become more important [158, 193, 31] than ever to support the analysis,

1Architecture enhancement through refactoring and redesigning to align with the Agile development practices.

34

development, and evolution of software architecture that can accommodate domain specific Big Data technology

[210]. Architecture continuity refers [193] to the ability of a system to change its architecture and maintain the

validity of the goals that determine the architecture. With technological evolution and availability, architecture

continuity directly impacts economic sustainability [193]. Researchers and practitioners investigate [31, 193]

change models and change rules as key tasks for managing change to support architecture continuity.

Extracting reusable models [210], patterns and designs, and understanding the causes and impacts of change

helps practitioners conduct various aspects of continuous architecture such as repairing and redesigning the

software [31], detecting anti-patterns, architecture verification, and training new developers on a project.

Determining the causes and categories of the changes is essential to help practitioners with the aforementioned

design decisions; it also allows researchers to create models to prevent architecture knowledge vaporization

and degeneration [63].

Researchers have been developing architecture change characterization scheme [246, 247] since “it allows

engineers to group changes based on different criteria, e.g. the cause of the change, the type of change,

the location of the change, the size of the code modification or the potential impact of the change”. One of

the benefits of change classification [246] is that engineers can adopt a common solution to address similar

changes hence reducing overall costs compared with addressing each change individually. Architectural change

classification provides extra information about defects which is vital for many tasks such as prioritizing

architecture defects, improvement of the defect prediction, assignment of defects to developers, architecture

defect resolution, and identifying the quality of components. Empirical studies [247, 19] with real-world

projects have shown the effectiveness of this approach. However, most of the available analysis methods are

manual and costly. Consequently, more automated techniques are warranted to speed up the practice.

Architectural message detection and classification techniques are useful for automatically generating an

architectural change summary after each release which is important particularly for open-source-projects.

While changes are easily detected from source code revisions, commits and discussions must be analyzed

to identify the intention and category of changes. Kazman et al. [115] found that the development and

contributing activities of a Big Data framework, HDFS (Hadoop Distributed File System) increased after

adding software architecture documentation. As architecture documentation is increasing more than ever

before, automated approaches can be useful for generating architectural documents efficiently. In addition, a

number of studies are available for the study of architectural evolution, change pattern and knowledge discovery

from source code. For instance, Ahmad et al. [14] proposed methodologies for identifying architectural change

patterns from source code changes using a sub-graph mining technique. To apply or to reuse these patterns

in real-world scenarios, it is necessary to identify the underlying features/behaviours, contexts, and reasons

behind the architectural changes (and their categories). That information can also be extracted efficiently

from developers’ discussions in relevant change activities (such as commits) using an automated technique.

Code-reviewers and developers use natural language descriptions in discussion, commit, and communication

messages when performing architectural change and to support developer awareness of that change [194].

35

Therefore, automatic architectural change analysis techniques would be cost-effective for both knowledge

seekers and knowledge providers, and would help automate architecture level code-review comment generation

[194] by parsing the past change pattern and message history.

In this study, we conducted an exploratory study to investigate whether free-form natural language text

(e.g., communication, commit messages, and so on) can be utilized for automated architectural change analysis.

In doing so, we primarily focused on four research questions to develop the automated approach described as

follows:

RQ1. What types of architectural information can be extracted from the commit and communication

messages that are valuable for software improvement, maintenance, and evolution?

RQ2. What are the most crucial natural language properties for describing the architectural changes

that can be used as distinguishing characteristics to the software architects, reviewers and developers in the

written document?

RQ3. How can we automatically detect architectural change related messages to support a software team

to extract useful knowledge and its application in product development from a large collection of documents?

To answer RQ1 and RQ2, we first manually analyzed a number of published studies [246, 63], commit

messages and developers’ mailing lists rich in architecture change information for five well-known open-source

projects (Galaxy, iPlant DE, Hibernate, ArgoUML, and ImageJ) and then annotated the architectural change

related information. Hence, we handcrafted important keywords or terms (such as restructure, modularize

and so on) adopting the information presented in SACCS [246] and IEEE 1471-2000 [11], and developed a

natural language model to represent architectural details from manually labelled documents. To answer RQ3,

we experimented with TF-IDF and term-graph [36] based techniques for the detection of documents relating

to architectural changes. Term co-occurrence (e.g., a set of words appearing in a sentence such as “refactor

organizational structure”) reflects subtle text organization that can be described concerning word interactions.

A network of connections formed in a term-graph approximates human capability in the process of discourse

understanding [36]. We used this approach to identify architectural change description from discussions.

While our detailed experimental results are discussed in Sections 3.5 and 4.4 and shown in Tables 3.4,

3.5 and 4.3, in summary, our automated approach obtained approximately 74% precision on detection with

Term-Graph and 61% in F1 score for TF-IDF. Overall, our study reveals that automated architectural change

analysis tool would be fruitful only if the developers provide considerable technical details in the commits

messages or so as we have observed within the jvm-core dataset (96% architectural samples are detected). In

summary, this study focused on the following directions:

• A revision study of what pieces of information are contained within the commit messages and discussions

about architectural aspects.

• A natural language model containing 166 keywords and 130 co-occurred terms expressing architectural

changes in commit and discussion messages.

36

Table 3.1: Data samples of the candidate projects for our study (we consider a portion; since
manual inspection of all messages takes significant time). GIT = github.com.

Project Version Tag Total Samples Data source

Galaxy 16.04 1392 530 GIT/galaxyproject

Hibernate(ORM) 4.0.0,4.3.0, 4.3.1 2000 310 GIT/hibernate

ImageJ 2.0.0beta 1155 300 GIT/imagej

iPlant (DE) 1.9.0,1.9.5, 2.6.0 513 250 GIT/cyverse-archive

ArgoUML Mailing list ∼ 37 argouml.tigris.org

• A TF-IDF based technique to detect probable architectural changes.

• A term-graph based versatile method for detecting architectural change messages.

3.2 Dataset Collection and Study Design

We have collected the codebase, commit history, e-mailing lists, and releases of the five popular open-source

projects. Two of the projects, ArgoUML and Hibernate were used in an earlier study [63]. Another three,

Galaxy, iPlant DE, and ImageJ have been widely used for several years for Plant Phenotyping and Genotyping

analysis. Galaxy and iPlant DE are large cloud systems integrating many advanced modules for handling

massive and various types of data, and architecture change management is critical for them. Each of the

projects contains thousands of commits and many releases. The description of the collected project’s artefacts

is presented in Table 6.1.

In this study, we mainly focused on commits and selected overall 1350 commit messages containing more

than two words. We randomly picked the samples from the versions (which have gone through the highest

number of packages/modules changes) of the Galaxy, Hibernate (ORM), iPlant Collaborative, and ImageJ

projects respectively. Moreover, since the closest work [63] experimented with mailing threads, we added 40

mailing threads from Hibernate and 37 from ArgoUML project (we collected ArgoUML data from Ding et al.

[63] since during our data collection and experiment time the history server was down) in our experiment.

We manually annotated these samples (took around 60 working hours per person) which have gone through

different architectural change operations mentioned in Section 4.2 by analyzing the changes in the source code

revisions. Please note that we did not consider a commit as architectural change if the component changes

are only in the web-page (HTML, CSS, JavaScipt) design and test-code modules. We prepared 927 training

samples and 500 test samples primarily. In the subsequent sections, we discuss our methods and findings in

detail.

37

3.3 Architectural Information Contained in the Development His-

tory

Knowing the possible architectural information contained within the discussion messages is important before

developing the automatic technique. Therefore, we explored what benefits developers and practitioners might

get if an automated tool is developed for architectural change mining. We have done the following steps

to find the answer to research question RQ1 (What types of architectural information can be extracted

from the commit and communication messages?). We first followed the study of Ding et al. [63] where

we investigated the source code and commit messages of three projects (Galaxy, iPlant, and ImageJ) and

mailing threads of two projects (Hibernate and ArgoUML). After that, we review a number of studies

[246, 115, 11, 194] related to architecture documentation and change scheme descriptions. In our analysis, we

found that along with the categories for changes presented in the studies [246, 63], there are much more other

valuable architectural related information can be extracted that are briefly described as follows:

• Change Operations: Information of different kinds of change operations can be contained as discussed

earlier [14, 65].

• Contexts and category of changes: Researchers [63] extracted premier reason of changes from messages.

Likewise, context of change request [246] are also discussed in them.

• Micro-architectural change of sub-components: For example, structure of pulsar sub-component with

Galaxy has been changed due to issues.

• Run-time behaviours that might trigger changes: Information that HDFS design changed because of

inconsistencies in run-time behavior is discussed in the mailing lists.

• Integration of API for architectural enhancement: For example, iPlant structure is changed for gin API

addition in the commits.

• Possible impact of technological changes [103].

• Stability of the architecture of a system [23]. Complexity estimation [246] of a system’s structure are

also discussed in the document.

• Developers knowledge-base (such as awareness and how to deal with change) and complexity with the

architecture [194, 103, 51].

• reusable solution, design concept, source code change pattern, and system model [15, 65].

• Various emerging architectural practices [16, 158] such as collaborative analysis for re-architecting for

Quality-of-Service model.

38

The above information provided us the answer of RQ1. This step also helped us defining the co-occurred

terms, e.g., if a commit message in Galaxy contains API integration and if our source code analysis of Galaxy

reveals that corresponding commit performs modification of the API, we define a co-occurred term “API

integration”.

3.4 Natural Language Model Development

Language models which can accurately place distributions over sentences not only determine complexities of

language such as grammatical structure, but also refine a fair amount of information about the knowledge

that a corpora may contain. Intending to answering question RQ2, in our baseline natural language model

development process, we compiled three steps: (i) Keywords extraction, (ii) Keywords refinement, and (iii)

co-occurred terms extraction. These steps are discussed as follows.

Extracting the Primary List of Keywords: Keywords play an important role in mining contextual

information from natural language texts. During reviewing the published works as mentioned in Sections 4.2

and 3.3, we listed the keywords used to or related to the architectural description. After that, we frequently

checked which distinguishing words might have been used to describe architectural changes. We created

a primary list of words that are used and recommended implicitly by recent studies [246, 11]. Finally, we

extended the keywords list by manually scanning the annotated commit messages and mailing threads which

represent actual architectural changes at the codebase. Hence we listed around 166 possible distinguished

keywords. However, these keywords may occur in the other commits and mailing threads which do not

represent architectural changes. Therefore, we need to consider the significance and refine the terms for which

consequence is negative.

Significance Calculation and Refinement: Strength or significance calculation is really important

to verify how keywords influence a certain lexical context; for instance, researchers have been developing a

database, SentiWordNet [8, 21] containing the strength of almost all the English words towards emotions for

sentiment analysis. Motivated by SentiWordNet, to figure out the significance of the listed terms we calculate

the probability of each term being architectural change commit. The probability of a keyterm T ,

P (T) =
AC(T)

C(T)
; Significance θ = P (T)− N(T)

AC(T)
Where AC(T) is the number of architectural change commits that contain term T , and C(T) is the number

of all commits where T is present. Where N(T) is the number of non-architectural change commits that

contain key-term T . To calculate significance (θ) of a key-term we subtract penalty with the probability P (T).

The terms with the positive significance and corresponding P (T) are presented in Fig. 3.1. From the term

significance analysis, we observed many key-terms show negative values mean they are significantly present

in non-architectural commits as well. The full list of our refined key-terms will be available upon request.

Among the 166 extracted terms we found 37 terms of positive significance within the dataset. However, many

terms if they co-occurred in a sentence might have distinguishable significance comparing to non-architectural

39

commits. In the next section, we will figure out the co-occurred terms representing architectural commits.

Figure 3.1: Top 24 stemmed terms distribution and significance.

Table 3.2: Sample commits that contain the intention of architectural changes

Text Key-terms

1 Migrate imagej.ext classes to imagej base package (We leave only ...to avoid an
issue with old versions of the ImageJ updater.) This is part of an effort to make
the ImageJ package structure simpler and easier to understand

migrate classes pack-
age

2 Add interface for objects housed by a UI This UIComponent interface is shared
between InputPanel and InputWidget,and could potentially be useful for other
composition-style UI.. in the future.

add interface objects
UI (not architectural
change)

3 Tweaks to the recent Tool Shed API enhancements, making more RESTful. API enhancements

Co-occurred Terms Extraction: The extracted key-terms can be used with the TF-IDF (Term

Frequency-Inverse Document Frequency) [190] based binary classifier to detect the architectural messages.

We experimented with our significant terms (negative terms as well) for the classification of the messages.

However, the classification threshold varies according to the contexts. Besides, TF-IDF based technique

also have adverse effects on noisy text data. Therefore we look for another unique technique which has the

relative lower bias on the context and the noisy data that affects the accuracy. Key-terms (according to the

context) are being used in many techniques for mining significant information from software artefacts. In

natural language processing, n-gram model [42], the contiguous sequence of n words from a given sample of

text is used to extract special types of representational characteristics of a collection of documents. However,

in this context, contiguous words of n size does not represent (as can be seen in Table 3.2) architectural

information in the most of the cases. After careful analysis, we found some interesting natural language

patterns consisting of two to four words (not necessarily contiguous) in a sentence (many of them are present

in SACCS-Software Architecture Change Characterization Scheme attributes) that express the intention of

the developers about architectural changes; we call them as co-occurred terms. All co-occurred terms should

be present in a sentence to express the architectural change. For example, the terms: make, structure, and

simpler (contained in the sample #1 in Table 3.2) express that the structure of a module has been changed to

40

Table 3.3: Representational co-occurred terms of architectural change.

Co-occurred-terms Weak terms Neutral terms

design improvement visualizations decompose into distributed object free

decouple function repository dependency hierarchy component review approval

enhance process enhance installing dependency processing state runner

infrastructure improvement enhancement displaying adjust logic module

api add merge changes merge job changes

new applications module ui design improvement context dependency resolution

*We have identified 130 co-occurred terms. Presence

of these terms in a sentence most likely to express architectural commits.

make it more simple. Thus, we found ∼ 200 commits express architectural changes explicitly in their messages.

Some of the samples of the commit messages are presented in Table 3.2. We also observe that some sentences

do not mean architectural change even though the co-occurred terms exist along with some other terms (i.e.,

UI, visualization, display). Some co-occurred terms are ambiguous about explicit architectural change. We

classified these co-occurred terms into three types: (i) explicitly represent architectural changes, (ii) weak

terms − most of the cases they do not represent architectural changes but still co-occurred with the keywords,

and (iii) neutral terms − might be contained in both types of messages. Some of these terms are presented in

Table 3.3.

Initially, we considered 927 samples only to prepare a ground truth for the unseen test data of 500 samples.

After a thorough investigation of those samples, we found that two to four terms are enough to represent

architectural change activities in the commit messages for most of the cases. So far we manually extracted

around 130 co-occurred terms that may represent architectural change related activities. Furthermore, with

the key-terms, it is possible to generate a subset of combinations of key-terms into 2-terms, 3-terms, 4-terms,

and so on. However, it is a costly operation to generate and test for the best combinations (in future, we will

work in this direction). In the next phase, we will discuss our experimentation with the extracted co-occurred

terms to auto-detect the architectural commits.

3.5 Architectural Change Message Detection

We explore a few popular text retrieval techniques for architectural change detection leveraging the extracted

co-occurred terms. We develop two detection models and compare their outcomes - (i) Term frequency-inverse

document frequency (TF-IDF), and (ii) Term-graph. Existing studies leverage TF-IDF to categorize bug

reports [221]. Whereas a term graph might provide more control logic for information retrieval within a

41

(a) Sample graph (b) Snapshot generated by matplotlib and networkx
Python libraries

Figure 3.2: Key-term Graph related to architectural changes (red edge means not an architectural
change), and a snapshot of the Term graph containing 130 terms (stemmed).

textual description than TF-IDF.

3.5.1 Change Detection using TF-IDF

Term frequency-inverse document frequency (TF-IDF) represents a statistical model of keyterms within a

document reflecting the significance of an individual word in a collection or corpus [190]. The basic equations

of TF-IDF calculation is presented in Eqn (3.1), (3.2), and (3.3). In this model, the Term-frequency (tf) is

calculated from the relative frequency of a term in document d. The inverse document frequency (idf) is the

measure of how much information a word provides. It is the logarithmically scaled inverse fraction of the

documents that contain the word.

tf − idf = tf ∗ idf (3.1)

tf(t, d) = 0.5 + 0.5 ∗ f(t, d)

max{f(t, d) : tϵd}
(3.2)

idf = log(
N

nt
) + 1 (3.3)

Here, N = total number of documents d in the corpus

nt = total number of documents where the term t appears

f(t, d) = frequency of term t in all documents

The common TF-IDF model has a bias towards longer documents. To handle this, we have employed the

enhanced version of TF-IDF. Here, we used augmented frequency for tf calculation as shown in Eqn (3.2);

and employed smoothing for idf calculation in Eqn (3.3). We consider the total value of TF-IDF of all the

co-occurred terms > 1.50 within a textual description as an architectural change sample. A value greater

than 1.50 means there is the possibility of being more than one term within the texts.

3.5.2 Change Detection using Term Graph

A text graph [36] is effective for numerous applications involving information extraction from natural language

text documents. In our work, we represent the key-terms as a graph (i.e., a term-graph), where vertices

42

Data: CT - Co-occured terms, TD - textual description, E - edge of a graph, N - node of an edge

Result: AC - Architectural Change True or False

begin

AC⇐ False

refTG ⇐ generateTermGraph(CT+NT)

for all sentences (Si) in a TD do

sTG⇐ generateTermGraph(S)

for all edges in refTG do

Search Ns of a E within the shortest path (PN) of sTG

if Eweight is 2 then

Check NT and consider the existence of Ns within the PN, set AC=True

end

if Eweight is 3 then
Check any connected predecessor or successor of E within the PN, set

AC=True

end

if Eweight is 4 then
Check any connected predecessor of predecessors or successor of

successors of E within the PN, set AC=True

end

end

end

If any E of refTG is found in any sTG of TD then AC is True

end

Algorithm 1: Architectural change detection with term graph.

43

correspond to terms, and edges correspond to co-occurrence between the two terms. Specifically, edges are

drawn between vertices if the vertices co-occur within a sentence of a commit message. In this study, we first

generated a base or reference termgraph with all the collected co-occurred terms. A sample term-graph is

shown in Fig. 3.2(a). During scanning all the commit messages, a temporary term graph of each sentence

of a commit message is generated. After that, we searched a path in the temporary graph from each edge

contained in the base graph. If the temporary graph contains a path then that sentence is the candidate

sentence representing an architectural change commit. However, we see many cases where key-terms do not

exactly represent architectural changes such as #2 sample containing UI related terms as shown in Table

3.2. Thus, we did not consider those sentences as decision-making sentences in the commit message. We set

the weight of each edge of a path corresponding to the number of the co-occurred terms that represent the

architectural changes. First, an edge containing two terms is matched in the base graph. Then we check

the weight of the edge and consider the sentence as a candidate if it contains the similar number of terms

corresponding to the weight in the adjacent edges in the base graph. This technique is similar to mining a

sub-graph from the base graph. We construct the term graph with Python NetworkX1 library. We have a

different approach than the traditional usage of the term graph [36]. The algorithm for change detection

with the term graph is shown in Algorithm 1. The generateTermGraph() function generate a term graph by

assigning an edge (E) weight with the length of the words containing in a co-occurred terms (CT) pattern.

The length of the shortest term pattern will replace the weight of an existing edge.

3.6 Experimental result

3.6.1 Experiment with Change Commits

At first, we measure performance with the change commits. A snapshot of the generated term-graph with our

proposed model is presented in Fig. 3.2(b). Here, weight is significant to track the number of nodes of a path

for filtering non-representative commits. The experimental result of the model with our prepared samples is

presented in Table 3.4. Since the F1 score represents both the precision and recall rate, we will highlight it in

most of the discussions [89]. Let’s consider a test set contains a total of 100 samples where 50 are from class A

and 50 are from class B. If a detection model predicts 60 samples as class A (where 20 are from class B), then

the precision rate would be 50/60. Now, if the relevant samples from class A among the predicted samples

are 40 (60-20), then the recall rate is 40/50. Hence, the classification accuracy (a special type of precision) of

the term-graph with our 500 test samples is 64%, and the F1 score is around 60% for the ImageJ project

(recall rate is 59%); whereas these rates are 61% for TF-IDF classifier [190]. Therefore, term-graph produces a

more promising outcome in case of accuracy, and the F1 score is more promising for TF-IDF. For all samples,

precision (P) and F1 are 56.35 % and 56.73% respectively for the best case. Overall, our language model

1https://networkx.org/

44

Table 3.4: Performance of the classifiers using the language model (F1 is calculated from precision
(P) and recall).

Classifier Metric Galaxy iPlant(DE) ImageJ Hibernate Total

TF-IDF
P 50.63% 50% 61.1% 48.1% 54.69%

F1 48.11% 46.83% 60.96% 48% 56.73%

TGraph
P 62.23% 73.3% 64% 26% 56.35%

F1 54.76% 38% 60% 26% 54%

is promising as some commit messages are falsely identified due to the cross natural language effect. The

number of false positive can be reduced, but in that case, essential commits may be skipped.

3.6.2 Experiment with Change Review Documents

Paixao et al. [194] collected a code review dataset of architecturally significant changes in four popular OSS

projects from the Gerrit code review platform. Therefore, we experimented with our proposed techniques

with this dataset to observe how accurately architecturally significant change samples can be retrieved. Our

experimental results for reviewed change samples (∼ 1441) and architectural awareness discussion samples

(∼275) are summarized in Table 3.5. Although the domains are different, the model can detect architectural

change review documents up to 74% (for java-client) recall rate. Likewise, our architectural change model can

detect up to 96% (for jvm-core) architectural awareness discussion from overall review documents. In all the

cases, TF-IDF shows better performance, but TF-IDF requires threshold adjustment that varies contextually.

Although Term-Graph performance is lower than TF-IDF, it is a versatile solution, and term-graph performs

well where details are presented (i.e., F1 for Term-Graph for Galaxy in Table 3.4 is better than TF-IDF). The

detection rate for awareness document in a different context proves the potential of our proposed language

model, and we believe including some contextual properties would increase the detection rate in a significant

way. However, many architectural-change commits that do not contain explicit natural language about the

change may not be detected with this technique. As we have seen with the experimental result of jvm-core

project, when intention of the commits are expressed in a bit of details almost all of them are detected

(96%). Furthermore, once these commits are identified from thousands of them, project manager and software

architects can conduct further analysis in accordance with source-code change patterns and design architectures

for solution modeling, applying or re-using in real world scenarios.

3.7 Related Work

In this section we discuss related work based on different kinds of automated analysis approaches in software

engineering which are discussed in the following.

45

Table 3.5: Experimental outcome of the Paixao et al. [194] dataset (partial) annotated as
architecture aware (documents are detected from the defined samples containing
architectural information, and we cannot calculate the F1 score as the dataset defines
only a portion that are architecture aware).

Type Classifier java-client egit linuxtools jvm-core

#Annotated 184 484 474 299

RReview
TF-IDF 73.6% 72% 60% 52%

TGraph 23.07% 15.02% 17.34% 13%

RAware
TF-IDF 92.5% 89% 78.48% 96%

TGraph 40% 47.2% 32.55% 28.57%

Here, RReview is the percentage detected architectural change reviews.

RAware is the percentage detected where discussion is related to

architectural awareness by the developers (details can be found in [194]).

Software artefacts analysis: Existing studies have focused on architectural evolution and issues during

software development phases in various domains (business, industry, development tools, and so on). An

empirical study [57] with more than 217 developers reports that 58% of them are interested in investigating

architectural evolution but found it difficult to analyze as fully automatic technique is not yet developed.

Numerous techniques and methodologies have been studied for analyzing bug reports [57], code-review

comments [194, 256], usual software change from messages [255, 80], release notes [119, 177, 57, 185], and API

documents [199]. In this study, we focused on to architectural change messages analysis. In the recent time,

continuous architecting practice is being used for dynamic and changing system development [103, 31, 193].

For such a practice, previous activities should require [103] ongoing analysis of a system under development

and re-architecting. More specifically, architectural knowledge gathering is essential [194] for the whole

development team as architectural erosion and changes [74] have a more significant impact on development

costs and efforts. Having said that, before any changes and implementation of a new feature of the system

it is fruitful to extract experience and knowledge-base about changes, impact, and the reason behind the

changes. In order to do that, existing studies [115, 194, 63] focused on manual analysis. In this study, our

objective is to devise an automatic technique for analyzing architectural change related documents.

Search space reduction for software artefacts analysis: Architecture team [186] requires automated

tools support for various aspects such as software framework to aid change summarizing and reviewing. For

developing these tools, an efficient automatic technique is essential. During development and maintenance

life-cycle, a project has thousands of artefacts, and a small subset of them is the point of interest to the

experts for the relevant analysis. Most of the existing analysis studies [194, 63] selected a partial subset,

even from a single project due to painstaking efforts of manual analysis. Therefore reducing the irrelevant

46

information is essential for speeding up the analysis task. With a view to this, a few studies [28, 186] proposed

automatic techniques to reduce search space for software artefacts analysis. A few studies focused on to

the automatic software change and impact analysis from development artefacts. Behnamghader et al. [28]

analyzed the impact of each commit (their dataset contains ∼ 20,000 commits, the size of the whole data of a

project is multiple times of this amount) to the main module of a system as error-proneness. They describe it

as quality evolution analysis of a system. However, an automated technique is essential to cover a wide area

and reduce search space. In another study, Nejati et al. [186] proposed a technique for reducing search space

to analyze change impact from requirement statement and design elements; where requirements and design

information is essential as input into their technique. Unfortunately, no automatic technique is available for

extracting only architectural messages from thousands of datasets. In our study, we proposed a method to

reduce search space for analyzing architectural changes from the commit and communication messages.

Automatic software change analysis: The automation of software engineering problems utilizing

machine learning techniques is increasingly being studied. With source code change, researchers also analyze

developer discussion and communication messages to understand various aspects of software architecture

(e.g., developers awareness of architecture change [194]). A number of studies [64, 194, 63] manually

analyzed commits, discussion messages, and release notes to mine significant information about architecture.

Unfortunately, manual analysis of thousands of documents is time-consuming and not-feasible to replicate

frequently. Nazar et al. [185] stated different techniques for the automatic summarization of software artefacts

from development history; however, they report no method for summarizing architecture. Moreno et al. [177]

proposed an automatic technique for release note generation from change history. Likewise, Klepper et al.

[119] propose a semi-automatic release note generation for different viewers (customers, project managers,

testers, developers). However, both of these works did not include architectural change summary due to lack

of automatic technique. Our proposed architectural messages detection and classification technique are also

useful for generating automatic architectural change summary. Natural language document is an excellent

source of architectural information [64], and an automatic technique would have a significant contribution

in this domain. A proper natural language model can leverage the properties of the texts to automate the

analysis. The architectural information described by the researchers [246, 11, 115, 63] can be exploited to

define architectural change description within the discussion topics. Our study explicitly follows the guidelines

and insight about architectural change characteristics directed by these works. In this study, we identified

a collection of keywords and co-occurred terms describing architectural changes. Term-graph [36] based

techniques are being used for information-retrieval in various domains including software engineering by

defining a textual model. In this study, we also proposed a term-graph [36] based technique for detecting

architectural change documents.

47

3.8 Conclusion

In this study, we explored the feasibility of performing architectural change analysis automatically to reduce

manual analysis efforts. We developed approaches both for architectural change detection using various kinds

of natural language text including review comments. Our experimentation with the TF-IDF and term-graphs

showed that our developed model can detect change related samples moderately (61% F1). Overall, our

empirical study with various projects concludes that an automated architectural change analysis tool would

be fruitful only if the developers provide considerable technical detail in the commits messages and other text

as we observed in the jvm-core dataset (96% architectural samples were detected).

In future, we will extend our study by including more software projects and more sources of information (e.g.,

issue tracking systems), which will allow us to enrich our model with a wide range of key-terms and to develop

a reusable reference textual database (like the prominent ’SentiWordNet’ database for sentiment extraction

from text) for automated architecture change analysis with higher precision and accuracy which would be

helpful for the practitioners in various ways (e.g., for efficiently generating architectural documentation and

artifacts) which in turn support architecture continuity.

Our experiments reveal that the textual description should contain considerable details for detecting

the architectural changes accurately. Moreover, the co-occurred terms should be present in the description.

Therefore, we will explore the lightweight code properties of the software systems in a future study (Chapter

6). However, as soon as the architectural changes are detected, they must be categorized for real-world usage

(as we described in Chapter 1). That said, our next study (i.e., Chapter 4) focuses on change categorization.

48

Chapter 4

Architectural Change Categorization using Discrimi-

nation Feature Model

As soon as the architectural change revision is detected, it is also required to determine the cause or

purpose of the change to better represent the change knowledge and generate various software documents

(such as release notes [178]) along with other things discussed in Section 2.6 in Chapter 2. In this chapter, we

present our study on architectural change classification. We have observed that the developers write change

category information in almost all the release logs (presented in Chapter 1). Therefore, at least for descriptive

summary generation, it is mandatory to categorize the architectural changes. To that end, we first explore

the existing techniques for software change classification. In this study, we extracted four discriminating

sets of keywords for four types of architectural changes (perfective, corrective, preventive and correct) from

experimental training data using DPLSA [255]. Then these keywords sets are used for generating prediction

models using LLDA [149], SemiLDA [80], and DPLSA [255]. These models are referred to as discriminating

feature selection models (DFS). However, this is the first study that specifically focused on architectural

change categorization.

This chapter continues as follows. Section 4.1 presents a brief overview of our study. In Section 4.2

we discuss the background and motivation of architectural change classification. Section 4.3 describes our

dataset preparation. Our explored classification models are presented in Section 4.4. Section 4.5 reports our

experimental outcome and Section 4.7 discusses threats to validity. Section 4.6 discusses related studies and

Section 4.8 concludes the chapter with future direction.

4.1 Introduction

Software architecture can be changed during regular development and maintenance activities – new feature

addition, bug fixing, refactoring, and so on. Williams and Carver linked the causes of architectural changes to

four Lehman’s law of software changes [132] – continuing software change, increasing complexity, continuing

growth, and declining quality. A typical software change may contain local code change or architectural

change or both. However, compared to local code changes, design impactful (or architectural) changes are

involved in the wider spectrum of code components, and dependency among multiple modules/components

[213] despite focusing on a single issue in such changes. As a result, comprehending their scopes and impacts

49

are more complex to the reviewer [227, 232], and elevate the change and maintenance cost and effort across a

system’s lifecycle [247]. Thus, understanding and updating a system’s architecture in elegant ways is crucial

for development and maintenance [82]. In this regard, architectural change management process helps predict

what must be changed, facilitates context for reasoning about, specifying, and implementing change, and

preserves consistency between system design and adaptive as well as evolutionary changes [189, 175].

However, for architectural change management, development teams categorize the changes based on

different criteria, such as the cause of the change, the concept of concerns/features, the location of the change,

the size of the code modification, or the potential impact of the change [75, 101, 67]. For example, causes

of architectural changes are [246, 63]: perfective – indicates new requirements and improved functionality,

corrective – addresses flaws, adaptive – occurs for new environment or for imposing new policies, and

preventative – indicates restructuring or redesigning the system. Different categories trigger different strategies

for change management. Overall, architectural change categorization is important for change characterisation,

design change document generation, design decision recovery, automatic tagging of the change revisions,

development and maintenance tasks planning, and so on.

Textual descriptions written within the commit messages are an excellent source of understanding the

developer’s intention for a change task. Keywords or topic identification within the message is the most widely

used approach for software development history (or commits, issues and bug reports) [57]. Latent semantic

analysis and topic modelling methods are being widely employed for texts and document classification in

various software engineering fields. A number of studies attempted to classify general software changes into

three categories (perfective, adaptive and corrective) [80, 255]. In this study, we investigate how traditional text

classification (TC) algorithms employed in usual commits are feasible for classifying four types of architectural

changes.

Latent semantic analysis and topic modeling methods are being widely employed for texts and document

classification in various software engineering fields. However, a few studies attempted to classify general

software changes into three categories. Fu et al. [80] developed a semi-supervised LDA model from predefined

keywords representative of those changes. Yan et al. [255] proposed a probabilistic semantic model based

technique called DPLSA using discriminative keywords of the three categorical changes. On the other hand,

architectural changes are divided into four categories [63]. Moreover, defined keywords for the three usual

change classes are not enough to categorize the four architectural change classes. While architectural change

is a subset of general changes, no automatic techniques have been studied to categorize the architectural

changes. In our study, we identified a bag-of-words for four architectural change categories and employed

both the topic model-based techniques [37, 202, 80] and latent-semantic analysis based techniques [255] for

the automatic categorization. Thus, we explore the following research questions

RQ1. What is the feasibility of the existing TR-based (text retrieval) approach for the classification of

architectural changes?

RQ2. How new feature models of TR-based approaches are promising for predicting the types of

50

architectural changes?

To answer RQ1 and RQ2, we manually labeled the change documents with one of four types of changes, as

defined in previous studies [63]: perfective, corrective, adaptive, and preventative. Finally, we experimented

with various latent semantic analysis and topic modeling techniques [255, 202, 80] to automatically classify

the documents into one of the four groups using our extracted natural language model. Although precision is

around 72% for only one case for architectural change categorization, the outcome for the random dataset is

insignificant (around 45% F1 score for the best model). Notably, despite the unpromising outcome in general,

our approach performs better for the architectural changes than the automated general software change

analysis technique proposed by Yan et al. [255], which, unlike our approach, did not identify preventative

architectural changes; they only identified three types of changes. Identification of preventive change further

supports practitioners in improving software maintenance. However, to understand the unexpected outcome,

we utilized the subset of annotated data by Ding et al. [63] as a standard to follow. What we have found is

that there are many samples where natural language contains Tacit expression (only deeply rooted in owner’s

head) and does not directly represent the categorical architectural changes as described by previous works

[255, 80] for the general changes. In summary, this study focused on the following directions:

• A benchmark dataset by manually annotating the architectural changes into four categories.

• A list of categorical keywords which have a probabilistic relationship with the four architectural changes.

• A feasibility analysis of a number of text-categorization and classification techniques for architectural

change classification.

4.2 Background

Software architecture is defined as the fundamental concepts or properties of a system in its environment

embodied in its elements, relationships, and in the principles of its design and evolution [107]. Here, elements

are program entities (e.g., modules, packages, classes, objects) at the abstract level. Recent studies defined

many architectural properties as quality attributes through empirical studies. Those are: Coupling [49] -

interconnectivity between two components, Cohesion [49] - intraconnectivity among sub-components within a

group, Dependency [191] - how components are tight together in terms of calling actions/services, Independence

[191] - module-wise independent searching and replacement freely , Design Hierarchy [251] - design decisions on

hierarchical layers of a software, Design Pattern [78] - relationships and interactions between classes or objects,

and other object-oriented properties. These are the important metrics or information that the developers and

the experts specify in their commit and discussion messages.

Architectural change operations: Change classification schemes are used to measure the impact and

risks (qualitatively) inter-related with making specific types of changes. Williams and Carver [246] present an

empirical study for extracting an architectural change schema by analyzing 130 research works. Some other

51

studies [14, 74] also provide information about architectural change activities. In summary, architectural

change represents the following actions.

Adding components: adding a package, module, inheritance with the codebase which changes one of the

properties mentioned in the earlier section among internal components.

Removing components: deleting package, module, inheritance with affecting interdependencies.

Splitting components: splitting means divide or partition a package or module into one or more packages

or modules.

Merging components : aggregating packages, modules, classes into a single one with the changing of one of

the previously discussed properties.

Relocating : altering dependency and hierarchy due to change in position.

Cyclic Dependency : introducing new cross-dependencies among existing components such as importing a

class or inheriting a class.

Changing runtime connection and configuration: updating run-time architecture [246].

The architectural changes may happen for various reasons, and existing studies categorize the changes

[246, 63] into four groups: (1) Perfective changes occur to adjust new behaviour or requirements changes. Also,

these changes are aimed at improving processing efficiency and enhancing the performance of the software.

(2) Corrective changes fix defects (e.g., processing failures) in the system. (3) Adaptive changes direct towards

a new environment or platform or accommodating new standards. (4) Preventative changes mainly focus

on future maintenance by restructuring or re-engineering the system. In our work, we adopted these four

categories of the architectural changes.

4.2.1 Documenting Software Architecture:

According to Kazman et al. [115], documenting software architecture systematically has emergent benefits for

both the members of the project and the outside practitioners. It is valuable to understand how software

architecture is described among practitioners. Ding et al. [64] conducted an empirical study on how to describe

software architecture based on the suggestions of IEEE 1471-2000 [11] standard including ten main architecture

elements: system, mission, environment, stakeholder, concern, model, rationale, view, viewpoint, and library

viewpoint. According to their study, a software architecture is mostly presented in the following ways, Natural

Language: Information of architectural document elements can be expressed with natural language which may

use specific technical or domain terms to interpret various aspects of the architectural elements, Diagrams,

UML (Unified modeling language), ADL (Architecture description language). Among the ways mentioned

above, natural language is the most significant [64, 115] medium to represent a system architecture (at least

for open source projects). Researchers [64] observe that among 108 open source projects, 88.9% describe the

system architecture using natural language. Information of architectural document elements can be expressed

with natural language which may use specific technical or domain terms to interpret various aspects of the

architectural details. IEEE [11] has set up a standard for describing various aspects of software architecture.

52

Table 4.1: Data samples of the candidate projects for our study (we consider a portion; since
manual inspection of all messages takes significant time). GIT = github.com.

Project Version Tag Total Samples Data source

Galaxy 16.04 1392 530 GIT/galaxyproject

Hibernate(ORM) 4.0.0,4.3.0, 4.3.1 2000 310 GIT/hibernate

ImageJ 2.0.0beta 1155 300 GIT/imagej

iPlant (DE) 1.9.0,1.9.5, 2.6.0 513 250 GIT/cyverse-archive

ArgoUML Mailing list ∼ 37 argouml.tigris.org

For example, some of the texts used in the recommendation for describing viewpoints of an architecture are

“...An architectural style, then, defines a family of such systems regarding a pattern of structural organization”,

“..physical communications interconnects and their layering among system components”, and so on.

Information Mining from Message Description: A commit message, discussion, or review comment

is a short description written by the developers or experts, and it is unstructured free format text in most of

the cases. Despite this, there are many salient words which are used by the writers to describe their intentions

relevant to various contexts. The words and mapping their relationship with the contexts is the primary task

for mining significant information. This concept has been explored by the researchers with the text-retrieval

and topic modelling methodologies [36, 37] to bug-report detection, code review generation, release note

generation, and software change analysis. An architectural change message [63] reveals fixing or updating the

architecture due to defect or adding new behaviors. Mapping architectural words with this concept facilitates

to employ text mining techniques for the change analysis. In summary, textual documents are an excellent

source of extracting architectural information. In our study, we attempt to utilize this knowledge-base to

develop a natural language model.

4.3 Dataset Collection and Study Design

We have collected the codebase, commit history, e-mailing lists, and releases of the five popular open-source

projects. Two of the projects, ArgoUML and Hibernate were used in an earlier study [63]. Another three,

Galaxy, iPlant DE, and ImageJ have been widely used for several years for Plant Phenotyping and Genotyping

analysis. Galaxy and iPlant DE are large cloud systems integrating many advanced modules for handling

massive and various types of data, and architecture change management is critical for them. Each of the

projects contains thousands of commits and many releases. The description of the collected project’s artefacts

is presented in Table 6.1.

In this study, we mainly focused on commits and selected overall 1350 commit messages containing more

than two words. We randomly picked the samples from the versions (which have gone through the highest

number of packages/modules changes) of the Galaxy, Hibernate (ORM), iPlant Collaborative, and ImageJ

projects respectively. Moreover, since the closest work [63] experimented with mailing threads, we added 40

53

mailing threads from Hibernate and 37 from ArgoUML project (we collected ArgoUML data from Ding et al.

[63] since during our data collection and experiment time the history server was down) in our experiment.

We manually annotated these samples (took around 60 working hours per person) which have gone through

different architectural change operations mentioned in Section 4.2 by analyzing the changes in the source code

revisions. Please note that we did not consider a commit as architectural change if the component changes

are only in the web-page (HTML, CSS, JavaScipt) design and test-code modules. We prepared 927 training

samples and 500 test samples primarily. In the subsequent sections, we discuss our methods and findings in

detail.

4.4 Classification of Architectural Change Messages

In this section, we discuss in detail about the feasibility of the classification tasks into four groups with the

state-of-the-art natural language models. For measuring the impact and risks associated with making certain

types of changes, experts [247] have been using change classification schemes. We manually analyze and

annotate the architectural change messages and discussion based on the 37 provided discussion threads and

knowledge-base by Ding et al. We are able to categorize 362 samples among 423 architectural changes (within

the 1427 set). Among them, preventive samples are 156, adaptive 26, corrective 69, and perfective are 111.

These also confirm the findings that preventive is the most common change type (with different datasets).

We could not categorize other samples because of little and ambiguous texts (e.g., Creating test for desktop

notifications). We prepare the 241 (from the 927 set as discussed in Section 4.3) samples as the training

set and the rest of the 121 (from the 500 set) samples as the test set. Although various text classification

techniques have been experimented, among them, adaptive classifiers, topic model and probabilistic methods

[141, 203] out-perform other machine learning techniques. Therefore, we adopted the following widely used

techniques: DPLSA [255], L-LDA [202], and semi-LDA [80] to experiment with the auto-classification of the

architectural changes. As no specific features are defined for the four categories beforehand, these classifiers

are well suited for our empirical study, and we expect close proximity to the outcome reported by Yan et al.

[255] for the general change classification.

4.4.1 Labeled LDA (L-LDA):

LDA [37] is an unsupervised generative model that classifies the terms contained in the corpus of documents

into groups which are defined as topics. LDA is being used in software repository mining extensively from

various perspectives. In LDA, prior values α and β are used to compute topic distribution θ. To mitigate the

inference problem of LDA [37], Ramage et al. [202] proposed L-LDA restricting the topics into predefined

keywords. Labeled LDA [202] is the combination of supervised LDA and Multinomial Naive Bayes. Unique

label assignment is essential during the training process of L-LDA. Inference for new messages is made from

the precomputed prior probability ϕ.

54

4.4.2 Semi-supervised LDA (Semi-LDA):

In the semi-supervised LDA model [80], the topic predicting parameters are calculated from the training

samples of the documents, hence changing the unsupervised training process into a semi-supervised fashion.

The training samples influence the generation process of the topic words since they increase the co-occurrence

frequency of the keywords associated with the same category. The inference is made by calculating cosine

similarity of a new message from the pre-computed topic-words assignment. Semi-LDA has the unique

capability to infer ambiguous category into an anonymous one using multiple iterations thus separating from

the labelled class. L-LDA and semi-LDA are almost same except semi-LDA uses multiple iterations to increase

the classification accuracy.

4.4.3 Discriminative Probabilistic latent semantic analysis (DPLSA):

Probabilistic latent semantic analysis (PLSA) [149] is used for topic modelling by generating a probabilistic

model. In PLSA, word-topic distribution ϕ and topic-document distribution θ is initialized by the random

values. Next, these probabilistic parameters are maximized through Expectation-Maximization (EM) algorithm.

However, PLSA has the limitation on making inference about new unseen documents. Yan et al.[255] upgraded

the PLSA [149] in order to overcome the limitation on making inference using discriminative keywords (hence

labelling into classes). They develop a bag of keywords for categorizing software changes into three categories

mentioned earlier. DPLSA used supervised learning with pre-computed values from the training samples,

whereas PLSA was unsupervised for generating K top topics. A new text message is inferred for the intended

class from the θ values computed during the EM step. Although the previous two methods defined the

keywords for three software change types, these keywords should be for four architectural changes, and many

of the keywords for general changes might not represent architectural changes. Therefore, we determined the

top distinguishing words for the four categories of change from the labelled samples (training set). We use the

probability calculation defined by Yan et al.[255]. The probability of the words are calculated as follows:

ϕ(j)
w =

c(w,D(j))

c(D(j))
, θ

(d)
j =

∑
wϵT

c(w, d)P (Td,w = j)∑
j′

∑
wϵT

c(w, d)P (Td,w = j′)

where c(w,D(j)) is the number of times word w occurs in the collection D(j), c(D(j)) is the number of times

all words in the key-terms T occur in the collection D(j). These keywords are also used for the other two

techniques. The top 20 keywords in the training samples are presented in Table 4.2. We observed that many

keywords defined by previous studies are not present in the top 20 lists for architectural change categories.

4.5 Experimental Outcome

We implemented the models with various open source Python libraries. The artifacts are available in [9].

LLDA implementation is based on nltk based lda [3] and parameters are, α = 0.1, β=0.1; SemiLDA is based

55

Table 4.2: Top keywords for various categories of architecture changes for 241 samples. Words are
stemmed with PorterStemmer.

Perfective Corrective Adaptive Preventive

remove move include tem-
plate rename clean un-
used amend properti applic
request contribut multipl
schema easi resourc select
popul explicitli easier

association treatment prop-
erli preliminary evolve mo-
tiv complic mediat revers
engen unabl nearli strongli
specifi issue bug reassign in-
form fix

invers trivial increasingli
util priorit mode anchor ex-
plor altern quickli redefinit
visitor live appreci locat
achiev temporari isol post-
pon exactli

heavili intertwin renam
separ command split clean
exist restructur mani simpli
embed refactor elimin au-
tomat dialect remov intern
attempt represent

Table 4.3: Experimental outcome of various classification techniques compared to change model in
[255].

Classifier Metric DPLSA[255] LLDA[202] SemiLDA[80]

KGC (3C)
P 33% 33% 20%

F1 42% 37% 19%

Our method(4C)
P 34% 33% 34%

F1 30% 45% 34%

KGC is ‘keywords for general changes’; and C is categories.
∗Prior values and iterations have a minor influence on the outcome.

on [7] with parameters α =0.5, β =0.1, and burn in iteration is 20; DPLSA is based on [4]. We tuned the

hyper-parameters with different values but the outcome does not impact much. Our experimental outcome for

all the test samples with DPLSA [255], LLDA [202] and semiLDA [80] is presented in Table 4.3. F1 score [89],

calculated from precision and recall rate, presents the feasibility of a text classification model. At first, we

experimented with the extracted keywords by Yan et al. [255], and the produced F1 score with that approach

for DPLSA, LLDA, and semiLDA are respectively 42%, 37%, and 19%. For four categories of architectural

changes, with our defined keywords, these rates are 30%, 45%, and 34%. The outcome is unexpected as the

most promising technique by Yan et al. [255] reported the lowest F1 score as 73%. The best recall rate among

the experimented algorithms with our proposed model is 70% for LLDA. However, as shown in Table 4.4, for

preventive class, the precision rate is more than 70% with DPLSA (recall is 40%) for our method (while for

perfective class, with keywords by Yan et al., the best precision is 48% and recall is 48%). With both of the

approaches, the classification rate of corrective and adaptive changes are poor. However, DPLSA performs

the best in precision due to: (i) iterations for inference, and (ii) consideration of expectation maximization

during the training step. The experimental outcome reveals that with our extracted keywords for architectural

changes, the precision result (DPLSA) is promising only with the preventive class (overall 45% F1) than with

the previously extracted keywords. Here, the precision rate is important, as low false positive reduces efforts.

However, both the precision and recall rate is inconsistent for all the models which undermine the feasibility

of those models.

Nonetheless, to figure out the reasons behind the unexpected performance of popular text-classifications

56

Table 4.4: Precision for individual categories with our approach using the best model. Recall rate
is up to 50%. Change model in [255] only does better for Perfective (48%).

Perfective Corrective Adaptive Preventive

36% (LLDA) 30% (SemiLDA) 17% (DPLSA) 72% (DPLSA)

methods, we further investigated the labelled samples. We found that there are a few distinguishable keywords

among them which perform poorly if we apply the text-classification techniques on the test set. Also, the

keywords for general change description are not sharply distinguishable for three (excluding preventive)

categories of architectural changes. The Adaptive change category shows the worst performance (less than

20% accuracy) due to a lack of distinguishable text properties. Therefore, from Tables 4.3 and 4.4, it is

deducible that no single algorithm can be selected as a more feasible one (it answers our research question

RQ4). However, we further analyzed the classified samples to determine natural language properties of

interest. More specifically we tried to find an answer to the question: do co-occurrence patterns exist in the

samples? We utilized the subset of annotated data by Ding et al. [63] as a standard to follow. What we have

found is that there are many samples where natural language contains Tacit expression (only in one’s mind)

and does not directly represent the categorical architectural changes as described by previous works [255, 80]

for general changes. Furthermore, we were unable to extract significant common co-occurrence patterns of

the words of the four type changes; which one represents which category is not straightforward and mostly

subjective to human perception. But, as is noticed during the analysis, corrective change messages have some

sort of negativity. A large collection of training samples might improve the classifications significantly.

4.6 Related Work

Textual descriptions are major sources of various architectural information. Most of the change classification

methods focused on natural language processing, text retrieval, and machine learning techniques leveraging

textual properties. The followings are the popular classification methods.

One of the pioneering studies for classifying the causes of code change is conducted by Mockus and

Votta [168] employing direct lexical analysis (word presence and count) into adaptive (Am), perfective (Pm),

corrective (C), inspective (I), and not sure categories. However, adaptive and perfective concepts are different

than Swanson [226] classes (as explained in Section 2.3.1). The authors first extracted discriminative keywords

from the description texts of 20 modification requests for each of the classes. Then, this word list is employed

for classifying where the presence of a keyword is the indicator of a type, but if more than one type of keyword

is present, the type with the most number of keywords in the description is considered. However, if that

measure also has the same value, then it prioritizes perfective and then corrective types. One interesting

finding of this study is that the more restructuring tasks (they call them the perfective tasks) are linked to

the longevity of the commercial products.

57

Hassan et al. [94] followed the work of Mockus and Votta. Their model classifies bug fix (BF), feature

introduction (FI), or general maintenance (GM) types based on the keywords similar to Mockus and Votta

[168]. During the classification process, it first prioritizes the BF class because the keywords for this class are

less ambiguous than those of other classes. Again, the category which can not be classified is separated into

not sure (NS) types; thus, the performance is not indicative of the actual outcome. One key finding of this

study is that there are ambiguities among the senior and less-experienced developers on how they determine a

change type.

Hindle et al. [101] explored the classification of large change commits that impact more than one code file

and other major concerns such as licensing documents. These classes are as follows: implementation – new

requirements, maintenance – maintenance activities, module management – the way the files are named and

organized into modules, legal – related to the license or authorship of the system, quality (non-functional)

source changes – source code that did not affect the functionality of the software, source control system change

– the manner the Source Control System is used by the software project such as branching and meta-program –

files required by the software that are not source code. Many of these classes are the extension of Swanson

[226] maintenance categories. However, since their process is manual, it is difficult to employ this process for

large commits and other projects. Following the manual classification, Hindle et al. propose an auto classifier

[100] using machine learning techniques to categorize the seven large commits. They combined three types

of features: word distribution, author information, and module or file type. Word distribution is calculated

using Bayesian type learning on word frequency. Machine learning techniques employed in their studies are

J48 (decision tree), Naive Bayes, and so on. However, the best model achieved more than 50% accuracy. As

the authors report, the manual annotation for creating a ground truth remains problematic. Overall, the

most valuable outcome of their study is a set of keywords that are later experimented with, modified, and

extended by various studies. Finally, many of the large commits are architectural.

Hattori and Lanza [95] proposed a keyword-based technique for classifying commits into forward engineering,

reengineering, corrective engineering, and management activities. Here, forward engineering activities are

related to the integration of new features and implementation of new requirements. Reengineering activities

are related to refactoring, redesign, and other actions to enhance the quality of the code without adding a new

function. Corrective engineering indicates defects, errors, and bugs in the software. Management activities

are unrelated to codification, such as formatting code and cleaning up and updating documentation. In this

study, first, they group the commits into four based on the number of files affected: tiny, small, medium, and

large. For that, classification is experimented with these groups in separate cases. After that, the authors

curated a list of keywords for each of the categories, and then they predicted a commit based on the keyword

appearance. However, the first keyword in the commit description indicates the relevant change category.

Mauczka et al. [160] presented a word-dictionary based technique to categorize the commit message

into Swanson [226] maintenance categories. They adopted the classifiers presented by Hassan et al. [94] as

bug fixing, feature introduction, or general maintenance changes based on keywords. For that purpose, the

58

authors extracted a set of words for each of the categories and developed a plugin called Subcat. Furthermore,

they created a benchmark dataset annotated by the real-world developers [159]. Additionally, they merged

keywords from the early study of Hindle et al. [101]. However, the most important finding of this study is that

there were ambiguities among developers regarding the explanation of the adaptive and perfective categories.

Ding et al. [63] explored the four causes (adaptive, perfective, corrective, and preventive) of architectural

changes in open-source software. They analyze the communication and discussion messages of the developers

based on the explanation of Williams and Craver [246]. However, their categorization technique is manual.

Fu et al. [80] proposed a semiLDA (semi-supervised) technique by extending LLDA [202] for classifying

the Swanson [226] maintenance categories. The main difference between LDA and semi-supervised LDA is

the generation of the topic. In the semi-supervised LDA model, they added signifier documents to change

the unsupervised training process into a semi-supervised fashion. The signifier documents can influence the

generation process of the words because they can increase the co-occurrence frequency of the keywords which

belong to the same category used by human supervision. However, they used keywords extracted by Mauczka

et al. [160]. Their test set was 50% samples, and they did not employ cross-fold validation. Among the

explored models, SemiLDA achieved 70% F1 score and can determine 80% change message, but the proposed

method can not decide 20% of the messages. Moreover, too brief messages are pruned during the dataset

creation (but did not mention the criteria of being too brief).

Yan et al. [255] presented a Discriminative Probability Latent Semantic Analysis (DPLSA) technique to

classify the Swanson classes. This model initializes the word distributions for different topics using labelled

samples to categorize the change messages. Their proposed technique creates a one-to-one mapping between

the extracted topics and the change classes. However, authors utilized the keywords extracted by Mauczka et

al., and claimed that the multi-category (tangled) classification is improved compared to LLDA, SemiLDA

and Naive Bayes. Moreover, the study also included the not sure (NS) category like Hassan et al. Yet, they

have not tested the DPLSA classifier with the standard cross-fold validation to reduce the over-fitting problem;

only the model was tested with a separate set. Thus, DPLSA’s performance might not be conclusive enough.

4.7 Threats to validity

We identified two kinds of threats (internal and external) to validity for our study discussed as follows.

Internal validity: Natural language analysis is subjected to human bias. However, during manual

analysis, we carefully followed the knowledge-base of previously published studies to annotate our dataset

(along with codebase changes). To reduce the human bias, we cross-verified the annotated samples in between

first two authors separately and resolved some disagreements by a discussion based on provided 37 samples

by Ding et al. [63], and information in Williams and Carver [246]. Additionally, we experimented with the

curated dataset of Paixao et al. [194] for the detection, and partial dataset provided by Ding et al. [63] for

the categorization. The architectural message detection result is better for the dataset of Paixao et al. as well

59

(recall rate is up to 96% despite the projects are from different and unseen contexts). Moreover, the discussion

documents contain a lot of noisy data which are not pure natural language texts (e.g., < xyz@mail.com >,

Job.cancel(), Signed− off − by :, and so on), and to mitigate the threat we remove the words if they do not

contain the pure ASCII letter. This filtering increases the precision rate by around 1.5% on an average. To

check over-fitting problem of the change classification techniques, we employed 4-fold cross-validation. Thus,

we found the better outcome in a tiny portion (as key-words extraction is essential from the training samples,

it is irrelevant here).

External validity: In a study such as this, the generalization of the experimental results to various

domains may pose an external threat. However, the projects we selected cover diverse domains and technologies

(C/C++, Java, Python, Go) and the experimental outcome shows consistent trends for most of the cases.

4.8 Conclusion

In this section, we have presented an exploratory study on the architectural change categorization using

various kinds of natural language messages including commits, emails and review comments of various popular

open-source projects. Our study is the first to specifically categorize the architectural changes into four

predefined types (perfective, preventive, corrective, and adaptive). Here we experimented with the popular

text-classification techniques for the classification of architectural changes and found about 62% precision

for the best case, which is 14% better than the existing software change analysis approach [255]. In general,

for the classification of architectural changes, the outcome for the random dataset is unpromising (around

45% F1 score for the best model). This is due to overlapping keywords in the descriptions of different types

of commit messages and tacit information. In future, we will extend our study by including more software

projects and source code properties, which will allow us to consider more intuitive textual properties.

Our experiments show that the traditional discriminating sets of keywords are not promising for architectural

change categorization. Therefore, more intuitive properties should be explored for efficient change classification.

In the subsequent study (i.e., Chapter 5), we will explore the concept theme of a text and a more promising

classifier leveraging that theme.

60

Chapter 5

Architectural Change Classification using Concept

Tokens

In the previous study (i.e., Chapter 4), we observe that many keywords are overlapped among the

change categories. Additionally, tacit variation of intention cannot be captured with the discriminating

sets of keywords. To eradicate this limitation, we explore intuitive text properties for architectural change

classification. In this study, we define and extract concepts [200] from the commit messages of all the annotated

samples that express the corresponding intention of a task. Even the top words (such as support) among the

defined concepts contain many overlapping words. However, we have found some patterns in many samples

for expressing different concepts when these terms co-occurred with other tokens, which are stop words, code

elements, and API, library, or framework name. To handle this, we train a model by assigning weights to the

concept tokens using a specialized normalized frequency model from a set of pre-classified commits into four

change categories. This is motivated by the core idea of how the model for a word’s sentiment is generated

[21]. These weights represent the strengths while present within the concepts of the categories. Finally, the

trained model produces a collection of unique concept tokens, which are then used to predict the change

message to an expected category.

The chapter continues as follows. Section 5.1 presents a brief overview of our study. In Section 8.2.1

we discuss the background of architectural change detection and classification. Section 5.3 describes our

dataset creation process. Section 5.4 explains the challenges of change classification. Our proposed classifier is

presented in Section 5.5. Section 5.6 reports our experimental outcome and Section 5.7 discusses threats to

validity. Section 5.8 discusses related studies and Section 5.9 concludes the chapter with future direction.

5.1 Introduction

Software architecture is concerned with the partitioning of a software system into parts, with a specific set

of relations among the parts [84]. A meaningful architectural document helps reduce the cognitive load

and maintenance activities of the software development team [107]. Moreover, appropriate architectural

formulation is becoming more critical to circumvent software bloat, scalability, and security backdoors [87].

However, elements of architecture can be changed [130] continuously as code components of a software system

changes to support continuous development and maintenance [172] such as adding new features, restructuring

61

the design models, and fixing flaws. Architectural change can affect many aspects of a software system and,

for this, change analysis is a crucial task. Development team can group architectural changes leveraging

change classification process based on the cause of the change, type of change, location of the change, the size

of the code modification, and impact of change [246, 101]. For example, four major causes of architectural

changes have been defined explicitly in the literature [246, 63, 172]: (i) perfective – adjusting new behaviour,

(ii) preventive – prevent bad design, (iii) corrective – correct discovered problems, and (iv) adaptive – adapting

to new platform.

Grouping causes of change is beneficial for post-release analyses, where design change activities are not

explicitly annotated [63]. Change classification is also required for composing a developer’s profile, building a

balanced team, and handling anomalies in the development process [136]. Furthermore, code review process

involving architectural change is complex than local or atomic change [240], which is dependent on determining

change type. Moreover, an automated technique can be employed to produce design documentation for

every release recording types of structural changes happened and associated components [115]. Automated

architectural change classification technique [246, 194] can be used to develop strategies for implementing

a system change, support continuous architecture, augment DevOps and Model-Driven Engineering tools

[34, 91, 87]. Existing active software projects (even if we consider a tiny portion of the 100 million repositories

in GitHub [2]) could immediately benefit if a structural change classification technique is available to help

develop an architectural versioning schema.

However, while architectural change can be identified from source code change, identifying the design

decision, reason, and categories of changes requires analyzing the development team’s intention. The intention

can be extracted from textual description of the developer’s tasks and discussions [34, 172]. Literature

has focused on classifying typical software changes, architectural design concerns and design solutions

[254, 166, 100]. Yet, supporting architectural change classification is still in its infancy [172, 87], perhaps,

due to lack of benchmark data and requirements of laborious human analysis. Nevertheless, a few of the

studies explored for both manual [63, 194] and semi-automated [172] techniques for classifying architectural

changes. In these studies, a small collection of samples is being experimented where challenges are not

identified properly, which leads to developing infeasible models. Besides, the traditional text classification

techniques [37, 255] might not handle the scenario when keywords are present among multiple concepts within

the description of a task.

To address the shortcomings, we design a benchmark data and propose a text classifier called ArchiNet for

architectural change classification. In particular, we focus on the two research questions:

RQ1: How can source code properties that are independent of the description of project activities

classify the rationale of architectural changes?, and

RQ2: How can we improve text classification to predict the rationale of architectural changes leveraging

commit descriptions?

62

Figure 5.1: Two commits of Hadoop where new components are added, dependency added and
deleted.

To answer RQ1 and RQ2, we collect around 1,133 architectural change instances from 5K commits of five

popular projects (shown in Table 5.1). After extensive analysis of the created dataset, we have successfully

identified the challenges of categorizing the architectural changes both from the source code and the texts.

One of the challenges is that typical operations in the source code do not have a significant number of

distinguishing patterns in various changes, and classification performance is not promising (F1 score is 33%).

A major challenge in the commit description is that multiple concepts are presented, whereas only one or two

concepts indicate the intention. Furthermore, many words are common for expressing the reasons for changes,

such as keyword update is used to describe both perfective and adaptive changes. Such a phenomenon is

not acute in many other text classification tasks [128]. All things considered, we propose a new technique

for classifying the changes from the text where trained keywords from concept analysis of different changes

play a crucial role. The training process of our proposed technique is different from the traditional NLP

training process. For training, we first define the relevant concepts (contextual occurrence of words and tokens

such as {update,API, version} indicate adaptive change more confidently) within each sample. Next, all

tokens’ weights appeared within all the concepts for a relevant change class are calculated. These weights are

distributed among all of the classes leveraging a statistical model. Thus, our technique does not consider

all the words within a description. Finally, a given commit is predicted to one of the four classes using a

probability model from the trained database. Experimental outcome of our classifier with different datasets

shows that the F1 score is around 70% and promising compared to the competing techniques (including deep

learning).

63

5.2 Background

Architectural Change Instance: Studying typical changes from version control systems does not require a

change detection strategy as it provides differences. However, architectural change detection [130, 150], even

from the version control system (diff), is challenging. Some of the widely used change metrics are DSM

[24], MoJo [245], MoJoFM [245], graph kernel structure [181], A2A [130], C2C [150] and include-symbol

dependencies [150]. These metrics are calculated based on the following operations: adding components,

removing components, replacing components, splitting components, merging components, relocating, module

dependency graph, and usage dependency. We focus on intermediate-level architecture for collecting change

samples and employ A2A and include + symbol dependency metrics for change detection. A2A considers

component addition, removal and moves; include+ symbol dependency considers including/removing header

file, program file, importing class, and importing interface. Causes for architectural changes are grouped as

follows.

Adaptive (A) change: This change would be a reflection [246, 143, 226] of system portability, adapting to

a new platform such as commit 1○ in Fig. 5.1. Adaptive change also happen for imposing new organisational

and governmental policies.

Corrective (C) change: A corrective change is the reactive modification of a software product performed

after deployment to correct discovered problems [246]. Specifically, this change refers to defect repair, and the

errors in specification, design and implementation.

Preventive (PV) change: Preventive change [226, 246] refers to actionable means to prevent, retard,

or remediate code decay. In other meanings, preventive changes happen to improve file structure or to

reduce dependencies between software modules and components may later impact quality attributes such as

understandability, modifiability, and complexity.

Perfective (PF) change: Perfective changes are the most common and inherent in development activities.

This change mainly focuses on adjusting new behaviour or requirements changes [226]. Also, these changes are

aimed at improving processing efficiency and enhancing the performance of the software (such as commit 2○

in Fig. 5.1) that is both functional and non-functional optimizations.

This classification is essential to deal with various challenges (discussed in the Introduction) since different

types of change influence them in different ways. Among the change categories, preventive and corrective

changes are directly related to major design debt management. A few of the change types in the two commits

in Hadoop is shown in Fig. 5.1. Commit descriptions simply express their intentions. Commit 1○ is an

adaptive change in 2015 and commit 2○ is a perfective change in 2018. It is noticeable from commit 2○ that

a dependency change between two components (htrace and hdfs) increases performance by reducing CPU

usage, which is also an architectural change. Both of the changes happen almost a decade later of the first

release of Hadoop. Components of the htrace module are at the center of these two changes (commit 1○ and

commit 2○) although the second change occurred after three years of the occurrence of the first change.

64

Table 5.1: Candidate projects for our study (in inspection time).

Project All Archi. Domain Source

Hadoop 22631 266 Distributed Computing gt/apache/hadoop

HibernateORM 9811 261 Object/Relational Mapping gt/hiber../hibernate-orm

LinuxTools 10630 265 C&C++ IDE for Linux gt/eclipse/linuxtools

JavaClient 1477 136 Java bind for Appium Tests gt/appium/java-client

JVMcouchbase 914 205 JVM core for Couchbase

Server

gt/couchbase/couchbase- jvm-

core

Total 45463 1133

Archi: architectural changes in selected 1K commits; gt: github.com

5.3 Dataset Preparation

A few of the studies [63, 172] created datasets for architectural change classification from the development

history. The recent dataset created by Mondal et al. [172] consists of 362 samples of four projects (26 of them

are adaptive). This dataset might be insufficient for detecting some of the text classification challenges such

as various concept tokens including code elements and framework name. Created dataset by Pixao et al. [194]

contains architectural change only for new features and other categories are not annotated (recently they

updated their dataset with fixing issues but not specifically annotated to four groups discussed widely in the

literature [246, 63, 172]). Another dataset is constructed by Ding et al. [63] which is not publicly available

(thanks to the authors for providing us 37 samples). Therefore, we prepare a new dataset containing a large

collection of commits (shown in Table 5.1).

5.3.1 Architectural Change Commits Filtering

We selected five open source projects that are widely experimented in literature for software change and

architectural analysis [166, 130, 115, 194], ensuring a diversity of domains. We also ensure that the projects

are in active development for at least several years. The selected projects are: Hadoop, Hibernate ORM,

Linux Tools, Java Client, and Couchbase JVM Core have 45,463 commits which are infeasible to analyze

manually. Since determining and categorising architectural change instances require huge human efforts, in

our dataset creation process, we restrict primary selection of commit samples into 5K. We randomly choose

1K commits from each of the projects containing more than two words in the messages excluding stop words,

non-alpha words (that contains non-letters such as issue-110) along with the words having Change-Id: or

Signed-off-by: and so on as shown in Fig. 5.1.

We separate the architectural change samples from the primary collection (around 5K) if A2A and

65

Table 5.2: Training and test samples in the golden set.

Split Perfective Corrective Preventive Adaptive Total

Train 425 122 185 68 800

Test 173 49 73 39 333

Total 598 171 258 107 1133

include+ symbol dependency metrics are changed. However, as suggested by the literature [156], we do not

consider system library usage from native (Java, Python) framework for dependency change. In this way, we

get around 1133 samples (distribution of them is shown in Table 5.1) as architecturally changed commits.

5.3.2 Architectural Change Category Annotation

In the next step of our study, we manually label those samples by two authors independently into one of the

four categories described in the existing studies [172, 63]. There are ambiguities in some of the descriptions of

four types of changes. We review most of the relevant papers referred by [246, 63, 172] for more explanation

to resolve the ambiguity (details are discussed in Section 8.2.1).

Our manual annotation process has two iterations. In the first iteration, two of the authors having three

years of average software industry experience, categorized the samples separately. In this step, we get many

samples mismatched in annotation. In the second iteration, we recheck the mismatch samples and resolve

the disagreements by discussion. Total number of samples in each of the annotated categories from the

candidate projects is shown in Table 5.2. The finalization of our dataset took one month of two person-hours,

indicating that manual change analysis is expensive. In the next section, we investigate the automatic change

classification challenges.

5.4 Change Classification Challenges

For examining the challenges of classification, we divide the samples into two parts: training and test sets.

As empirical study [121] suggests that 30% test samples are ideal for real data, we split around 70% of the

architectural commits for training purposes and around 30% for testing purposes with random sampling.

However, we could not extract meaningful concepts (Section 5.4.2) for some of the samples due to lack of

information, and skip those during the training and testing phases. Distribution of change types in the train

and test sets are shown in Table 5.2. Both the train and test sets contain the conflicted samples accordingly.

66

5.4.1 Classification from Source Code

First, we explore classification options leveraging source code operations. Yamauchi et al. [254] cluster

the change commits based on source code modifications: identifiers, method name, and class name into as

many groups dependent on component-requirement relations. Their technique cannot be used for a fixed

number of classes. The clustering basically groups the commits into related components attached to an

implemented functional requirement, not the reason for changes. Therefore, we explore a technique utilizing

the distribution of change operations of the architectural components (static). We examine the abstract

operations (O) occurred in the source code of a commit: import added or deleted, class file added or deleted,

file or package rename, and function added or deleted as properties of change classification since they are

universal and independent of project context.

Considering these properties, we design a classifier using Ci(wO) in (5.1) as described in Section 5.5 to

evaluate how significant the classification is using these operations as metrics and has the following outcome

with 10 fold cross-validation. The best F1 score (among different combinations of the operation types) for

perfective, preventive, corrective, adaptive, and all combined are 0.33, 0.53, 0.08, 0.13, and 0.33 respectively.

F1 for the corrective and adaptive classes are negligible. In summary, source code properties are not promising

for architectural change classification; this answers our RQ1. In the next section, we explore existing change

classification techniques from commits messages.

5.4.2 Change Classification from Text

Explored Models

Next, we examine the explored models of Mondal et al. [172], where the best model produces 39% F1 scores

with our dataset. Following these approaches, we also develop a discriminating feature selection (DFS) model

from the distribution of words in our training dataset. Similar to Mondal et al., our DFS model has many

common keywords in the top list. Considering such overlapping of keywords, existing techniques based on the

DFS model discussed in DPLSA [255], LLDA [202], and SemiLDA [80] predict more false positives since such

a model also considers the words that might be irrelevant to the original intentions. With our new collection,

the best DFS model produces 46% F1 score with precision 45.6% which is similar to the outcome of the best

method in [172]. Our DFS model for the dataset in [172] produces an F1 score of 20% that is significantly

lower than the previous model. In summary, the DFS models are not promising and possibly biased to the

project contexts. Therefore, we focus on a more advanced classifier identifying the challenges within the

textual descriptions. We discuss classifiers from traditional machine learning and neural word embedding

models in Section 5.6.

67

Concept Analysis

As we have a large number of samples, we are able to identify the specific challenges within the message

description. One of the significant challenges present in many commit messages is developers express more

than one concept (contextual occurrence of words) for a single intention. An N-gram model might capture

continuous sequences of n-words involved in such concepts within a sentence [220, 224]. However, in multiple

iterations of our inspection, we find that concept words are scattered among multiple sentences in many

commit descriptions. We also prioritize such scattered words while categorizing the commits. Traditional

text classification techniques do not address this particular scenario (including the n-gram model). We also

attempt to determine the dominating concepts from multiple concept tokens. Lets consider the corrective

change message “adding more support for services down..”; here adding support and down keywords will

influence to predict a category by TF − IDF [190], LLDA, SemiLDA, and DPLSA techniques. Unfortunately,

adding and support keywords will measure more weight to other categories because they are present among

the list of the top keywords. However, if we prioritize the down keyword as the dominating concept, it is

more likely to be a corrective category. We annotated such keywords for the dominating categories.

In the list from Section 5.4.2, some dominating words (such as issue and leak) for this corrective category

are hardly used for others. But, many samples contain negative words which are not meant faults, such as

-“...This changeset moves the responsibility of sending into the locators, which has two benefits:- No Node[]

allocations since nothing needs to be signalled back.- The code doesn’t need to iterate through the list again ...”

is more likely to be a preventive change despite too many negative words. This is significantly an opposite

concept in the sentiment analysis [21], which would treat this as negative for such words. The existing

techniques falsely classify such a description as a corrective one. However, in many samples, when the word

not co-locates with the word working, it indicates flaws in the system. Therefore, we should not skip such

keywords during concept extraction. Furthermore, some code elements are used for assuming a corrective

concept such as NullPointerException and LinkedError. For the adaptive category, the dominating concept

is indicated by mostly multiple words. From the example in Fig. 5.1, we notice that update, and version

form a dominating concept together where domain specific terms (such as htrace, API, library, and so on)

need to be included. Again, these words are present in other categories. We have manually re-analyzed

all the training samples to find such concepts containing the minimal number of words. Overall, there are

ambiguities of concepts (and top keywords) among all the categories. The most ambiguities are found in the

perfective category to define the related concept uniquely with the minimum number of words. While manual

annotation is easier for the perfective categories, defining the dominating concept, as discussed previously, is

the most difficult.

We have seen that a word might indicate different concepts with co-occurring different terms as shown in

Table 5.3. In the next section, we describe our proposed solution based on this finding.

68

Table 5.3: Ambiguity of concepts appeared in description.

Base words Not failure Faults

Not complex

Doesn’t need work, release

Error message −network, −fix

Can’t change

Symbol ‘−’ indicates located before the base word.

5.5 Our Proposed Classifier: ArchiNet

From the empirical observations, it is evident that handling overlapping words among the descriptions is the

key to develop a promising solution. We conjecture that no word should be in the distinguishing list to a

single category. Instead of the logic of the previous techniques, we assign a strength of a word for each of

the categories. For example, for the strength of the words presented in Table 5.4 for different concepts, if

the words add, support, down appear within a text description, then the total value for the category C1 is

0.52 + 0.38 + 0 = 0.90, and the total value for the category C2 is 0.03 + 0 + 1 = 1.03. As 1.03 > 0.90, the

sample would be for the category C2. For simplicity, we explain with weight addition; more complex situations

(with various token strengths) are handled with a probabilistic prediction technique described in Section 5.5.3.

Therefore, this gives more importance to the co-occurrence of the words add and down, and such a solution

might handle the described challenges in a promising way. In our solution, the crucial point is to get the

concept tokens and their weights distribution efficiently, and then predict a class confidently. We describe our

proposed method in three steps.

Table 5.4: Strength of words within the concepts C1 and C2.

Word Strength in C1 Strength in C2

add 0.52 0.03

support 0.38 0

down 0 1

5.5.1 Concepts Extraction

In this stage, we define and extract concepts from the commit messages of all the annotated samples that

express the corresponding intention of a task (as discussed in Section 5.4.2). Even, the top words (such as

support) among the defined concepts contain many overlapping words. However, we have found some patterns

in many samples for expressing different concepts when these terms are co-occurred with other tokens which

are stop words, code elements, and API, library or framework name. Some of the examples are discussed in

69

earlier sections. Before training, natural words are stemmed with PorterStemmer. In the next section, we

discuss our training and weight distribution process from the extracted concept tokens.

5.5.2 Training Model Generation

In this phase, we train a model by assigning weights to the concept tokens using (5.1) from a set of preclassified

commits into four change categories. This is motivated by the core idea of how the model for a word’s

sentiment is generated [8]. These weights represent the strengths while present within the concepts of the

categories. The trained model produces a collection of unique concept tokens denoted by S having weights wi

to the classes Ci:

Ci(wS) ⇒
⋃
tϵS

wi(t)
i∑
1
wi(t)

∪ Ci(wO), S = {tw, tp, ts, ta} (5.1)

wi(tw) =
f(tw)

Ni
, wi(tp) =

F (tp)

Ni
, wi(ts) =

F (ts)

Ni
, (5.2)

wi(ta) =
F (ta)

Ni
, wi(to) =

F (to)

Ni
where O = {to} (5.3)

Here, f(t) frequency of a token t within the concepts S of all samples in a category Ni, and Ci(wO) is the weight

of the tokens defined with source code change operation types (O) associated with S, Ciϵ{PF, PV,C,A}.

wi(t) can be calculated by adopting various metrics such as frequency value or tfidf . A concept S consists

of various types of tokens such as tw is natural words without stop words, tp is some specific stop words

such as negation words, ts is some special code elements such as NullPointerException and LinkedError, ta is

api, library or framework name, and to is code operation types treated as tokens; each of these types has a

collection of tokens. We utilized frequency normalized sum for calculating the probability value. We calculated

the frequency values differently represented by bold F in (5.2) and (5.3): F (tp) considers only inclusive stop

words, F (ts) consider the issue related token parts (such as Exception and Error from the mentioned tokens)

extracted from a code element using camel case parsing, F (ta) is calculated by converting all the api names

into a unique token (AABB in our experiment), and F (to) consider one or more instances of each token in to

as value 1 within a commit. All the values in (5.1) and (5.2) are adjusted when new concepts are defined with

new trained samples. Then, we employ a classifier from these trained weights.

5.5.3 Classification

During the classification phase, the generated models (M) from the training phase (in (5.1)) are used to

evaluate the probability (Pm(C)) that a given class C is associated with the commit m. Only the tokens

identified in the concepts (S) from phase one and tokens as the source code operations (O) in Section 5.4.1

are considered from commit message and code change. The classification score is then defined as follows.

70

Pm(C) =

∑
tϵ(S∪O)∩C

M(w(t))∑
tϵ(S∪O),Ci

M(w(t))
(5.4)

where the numerator is computed as the sum of the token weights (w(t)) of all types that are contained in

C, and the denominator is the sum of the token weights for all types for all classes (Ci). The probabilistic

classifier for a given commit m will assign a higher score Pm(C) to class C that contains several strong

tokens for concept S and operation O. However, if the probabilities Pm(Ci) are same for more than one class,

ArchiNet considers the class which contains the highest weighted word.

5.6 Performance Evaluation

Our created dataset contains both an architectural change set three times larger than that of [172] and a

list of concept-words with strength. Our proposed classifier ArchiNet is designed to handle the overlapping

words and includes various tokens discussed in Section 5.4.2 within the change description. We compare

the performance of ArchiNet based on recall (R) – quantitative correctness of retrieving relevant categories;

precision (P) – the rate of accuracy among the predicted samples, and the F1 score – 2PR/(P +R) calculated

from precision and recall. We have also compared with the published dataset and classifiers [172, 255]. The

performance is also compared with other promising techniques in literature [100, 166, 224, 146] for text

classification. These techniques include RCNN-LSTM the state-of-the-art Deep Neural Learning (DNL),

Naive Bayes (NB), Bag-of-words (BoW) model, Decision Tree (DT), Random Forest (RF), DPLSA, LLDA,

and SemiLDA. Our training model is significantly faster than RF and DNL, but we will not discuss time

complexity since it is less critical if a model is built once for application. We evaluated the performance of

ArchiNet in the following four phases.

71

Figure 5.2: Basic steps of a Random Forest model (adapted from [212]).

72

5.6.1 Random Forest

A decision tree (DT) is a promising classification technique that forms a conditional predictive model by

recursively clustering the training (labeled) data samples into smaller subdivisions satisfying some criteria

from the feature sets at each branch (or node) in the tree [79]. The formed tree has a root node, a set of

internal nodes, and a set of leaf nodes. However, DTs have several advantages over traditional supervised

classification approaches. In particular, DTs are strictly nonparametric and do not assume the distributions of

the features of the input data [79]. In addition, they handle nonlinear relations between features and classes,

missing values, and are capable of handling both numeric and categorical inputs. Finally, decision trees are

widely applied because the classification structure is explicit and easily interpretable. However, enhancement

of the limitations of DT is possible. For example, the Random Forest (RF) is a classification algorithm

consisting of many decision trees [146]. It is an enhancement of the Decision Tree to remove the limitation

of training data sensitivity and accuracy. In the decision tree, small changes to the training samples may

produce quite different tree structures as a prediction model. In sharp contrast to DT, RF is formed based on

bagging and feature randomness when building each individual tree to eradicate the limitation. Bagging is

the combination of bootstrapping and aggregating the votes (as shown in Fig. 5.2). It creates an uncorrelated

forest of trees whose prediction by the committee is more accurate than that of any individual tree. During

the training model generation, it does follow bootstrapping for dataset embedding and then random feature

selection for each tree. Bootstrapping method creates a dataset for a tree with the same sample numbers but

randomly selects samples from the original set, meaning that the same sample may appear more than once.

Finally, the bad predictions may balance out with good predictions by some trees in the Random Forest.

However, random forest is memory-intensive and computation-intensive for large datasets. For splitting the

data into tress, entropy, Gini impurity or information gain can be used.

5.6.2 RNN-LSTM

One of the crucial challenges in text classification is feature extraction. A common textual feature is the

bag-of-words (BoW) model, where unigrams, bigrams, n-grams, or manually crafted patterns are typically

extracted as features (as we have done in the previous study). Several other feature selection methods are

also applied to select more discriminative features, such as frequency, pLSA, LDA, and so on. Yet, these

methods mostly ignore the contextual information or word order in texts and can not properly capture the

semantics of the words. Lai et al. [128] reported that – Although high-order n-grams and more complex

features were designed to capture more contextual information and word orders, they still have the data sparsity

problem. This issue heavily affects text classification accuracy. Recently, the development of pre-trained word

embedding and deep neural networks has been promising for texts processing by solving data sparsity problem

[164, 165, 102]. Here, word embedding is a distributed representation of words and significantly eradicates the

data sparsity problem. In another way, the neural transformation of a token/word is called word embedding

73

and is a real-valued vector [128]. That said, word embedding can be leveraged to measure word relatedness

by using the distance between two embedding vectors. Several researchers reported that pre-trained word

embedding could capture meaningful syntactic and semantic regularities [219]. Among them, the Recurrent

Neural Network (RNN) model processes and transforms a text token by token and stores the semantics of all

the previous text in a fixed-sized hidden layer [224]. The advantage of RNN is the ability to better capture

contextual information. This could be beneficial to capture the semantics of texts in commit messages and

developer discussions. RNN is a subsequent enhancement of neural networks.

74

Figure 5.3: Basic structure of a Recurrent Neural Network (adapted from [6]).

Add support for services down

5 8 3 120 35

E[5] E[8] E[3] E[120] E[35]

Input

TextVector

Embedding

Bidirectional

Dense

Classification

Figure 5.4: Text processing for classification by a DNL model (adapted from [1]).

75

Neural networks, a widely used classification technique, try to mimic the way the human brain develops

classification rules [68]. A neural network can have multiple layers of nodes, with each layer (nodes) receiving

inputs from previous layers and passing outputs to further layers (nodes). The way each layer output becomes

the input for the next layer depends on the calculated weight to that specific link, which depends on the

cost function, and the optimizer focusing on the targeted output for classification. The neural net iterates

for a predetermined number of iterations. After each iteration, the cost function is analyzed to see where

the model could be improved. The optimizing function then alters the internal mechanics of the network,

such as the weights, and the biases, based on the information provided by the cost function until the cost

function is minimized for prediction. When a new sample comes, it considers the features of the sample and

produces predictive values to the classes based on the previously adjusted weights (corresponding to the

features probably) from training samples. However, a recurrent neural networks (RNN), an advancement of

the neural networks, work better for textual data. Because the textual description is a sequence of words

that express an intention [128, 224]. A feed forward neural network with hidden layers of nodes (each node

has some sort of calculated weight that is later used for prediction) can form a decision region from training

data for classification [105]. In contrast to the basic neural network, RNN has feedback loops in the network

layers and hidden states to update already calculated weights while moving forward with the next sequence

of inputs [38, 248]. RNN maintain a hidden state vector to capture a digested representation of the current

context as they scan forward, token by token (as shown in Fig. 5.3). Learned parameters both read out this

vector to predict the score of a token and update this vector upon seeing the next token. These models are

quite effective when trained with sufficient data. However, it has a vanishing/exploding gradient problem

in training. To handle these problems, mechanisms such as ReLU and Gradient clipping techniques are

employed. RNNs are further extended with Long short-term memory networks (LSTM) that can be trained

to selectively ”forget” information from the hidden state [224]. This strategy is essential to consider more

important information during the learning process. Moreover, LSTM can learn the presence of semantic

phrases and sentences that are susceptible to word order. Another crucial property of the LSTM is that it

learns to map an input sentence of variable length into a fixed-dimensional vector. However, we employed the

most advanced bidirectional RNN (in 2020). It reproduces the input forward and backward through the RNN

layers and then aggregates and sum-ups the final output. In addition, the crucial benefit of a bidirectional

RNN is that the information from the beginning of the input may not require to consider for every timestep in

the processing path to affect the output. The basic steps of text processing by this mechanism are summarized

in Fig. 5.4. However, Gradient calculation is crucial for optimizing the weights of a network model. For

gradient calculation, we use cross-entropy (softmax) as the loss function. The purpose of the cross-Entropy is

to take the output probabilities (P) and measure the distance from the expected values.

76

5.6.3 Testing with the Golden Set

We train our proposed method (ArchiNet) and other methods with the training set. Train and test set

partitioning is described in Section 5.4. Then, the classification performance is tested with the test set (from

Table 5.2); comparison of the outcome is presented in Fig. 5.5. Please note that only methods having close

performance are shown here. The most promising method in the baseline work by Mondal et al. is DPLSA,

where discriminating keywords for the individual classes are used as features in a probabilistic model. The

difference in the percentage of F1 score between ArchiNet and DPLSA for all classes is 24 points higher, while

this difference is 35 points higher for the adaptive category. The F1 score of our model for the test data

in [172] is 63% (shown in Table 5.6), which is 18 points higher compared to their best model (45% gain in

performance). We have employed a DNL based text classifier [128, 224] with Google Tensorflow [10]. The

DNL network where encoded words are embedded with the RCNN-LSTM strategy shows a 61% F1 score,

which is 2 points lower than ArchiNet. The configuration of our DNL model has 64 layers, 64 units, epoch

size 10, relu activation function, and cross-entropy as loss function [224].

Furthermore, we adopted the best algorithms suggested by Hindle et al. [100] to classify large change

commits into five categories, and Soliman et al. [220] to classify architectural discussions. We also explore

Naive Bayes (NB), Decision Trees (DT), and Random Forest (RF) [146, 100, 220] for our dataset with the

WEKA [92] tool utilizing word-to-vector features [164]. Among them, the most promising classifiers such as

NB, and DT have less than 55% F1. However, Random Forest (RF), which forms a group of DT s, produces

around 58% F1 score for our dataset. The F1 score produced by our technique for the adaptive category

is much higher than the competing methods. The ranges of precision and recall rate of ArchiNet among

the individual categories are 42.4–77.8% and 64–73.7% respectively, which are more consistent than other

classifiers. Notably, from the graph, we can see that F1 scores of RF and DNL for the perfective category is

higher than ArchiNet, while significantly lower in the adaptive category because many samples from adaptive

might be falsely predicted (high recall rate) into the perfective category (due to lack of handling mechanism

of the overlapped concepts). We also see this pattern in the 10-fold validation phase. In this evaluation

phase, the distribution of P, R, and F1 scores to all the classes with the test sets indicates a better and stable

outcome of ArchiNet with the concept-words.

10-folds Validation

In this phase, we show how our classifier is performing with cross-fold validation since it provides a more

accurate evaluation against the over-fitting problem [100, 166]. However, we experiment with the promising

methods proven in the first phase. We compare the performance of ArchiNet with DNL and RF by 10-fold

cross-validation technique. In 10 iterations, we take 90% samples as the training set, and 10% as the test

set exclusively for each of the iterations [166]. The performance comparison is presented in Table 5.5. The

F1 score of ArchiNet is around 69%, which is 7 points better than the two classifiers. Deep learning with

77

Perfective Preventive Corrective Adaptive Total

20

40

60

80

65 68

58
51

63

37

63

46

16

39

74

60

18

40

58

70
66 66

35

61

F
1
S
co
re

%

ArchiNet DPLSA RF DNL

Figure 5.5: F1 score comparison of ArchiNet with the most promising classifiers DPLSA [172],
DNL [224], RF [100].

Table 5.5: Performance (%) comparison of ArchiNet (A), Random Forest (RF), and Deep Neural
Learning (DNL).

M
e
tr
ic Perfect Correct Prevent Adapt Combined

A
N
et

R
F

D
N
L

A R
F

D
N
L

A
N
et

R
F

D
N
L

A
N
et

R
F

D
N
L

A
N
et

R
F

D
N
L

P 77.5 62.7 77.6 63.4 88 50.3 77.8 91 66.5 42.4 96 40.1 69.1 76 62

R 73.7 99 69 66.25 19 62 63.8 43 62.1 64 25 28 69 67 62.1

F1 76 77 73 63 30 50 70 58 64 51 40 33 69 62.2 62

RCNN-LSTM [128, 224] shows 62% F1 score; RF has a similar outcome as of DNL. F1 scores for some

other classifiers are between 50 to 60% with the word-to-vector [164] features. From the median and range

values in box plots in Fig. 7.3, it is observed that the precision and recall rate of ArchiNet (in the ranges

40.1–77.8% and 63.8–73.7% represented by Ap and Ar) are consistent with all the classes (recall is highly

consistent than others indicated by DNLr and RFr). For the adaptive and corrective categories, the outcome

of ArchiNet is significantly higher. Poor recall rate of RF and DNL (marked with circles in Table 5.5) for the

adaptive category and high recall rate for the perfective category indicates that many samples from adaptive

are falsely retrieved into perfective by both of the classifiers. A similar trend is observed with the corrective

category except for lower precision for DNL. Since RF and DNL do not distinguish and select words based on

concepts/semantics, they produce more unstable outcomes. In summary, our proposed classifier has better

performance for all metrics (F1, P, and R scores) compared to other classifiers because concept-words handle

various influential tokens from a commit message efficiently. This exploration answers the research question

RQ2.

78

Ar DNLr RFr

20

40

60

80

100

Ap DNLp RFp

20

40

60

80

100

Figure 5.6: Range of Recall (r) and precision (p) rate of all classes

Perfective Preventive Corrective Adaptive Total

20

40

60

80 77
69

65

17

69
73 70

49
44

65
72

44
51

62 60

71

49
56

7

61
66 66

54

14

60

A
rc
h
iN

et

Hadoop Hibernate JClient JVM LnxTools

DNL−−64,53,51,59,59

Figure 5.7: F1 score for individual projects.

Project-wise Validation

We also conduct cross-projects validation of our proposed approach. We train the classifier with four projects

and test with the remaining project in each iteration for the five projects. The project-wise outcomes for

both ArchiNet and DNL are presented in Fig 5.7. Combined F1 scores of each of the projects produced by

ArchiNet are better than that of DNL. None of the project’s F1 scores is below 60% for ArchiNet, while the

highest is 69%. The highest precision is 85%, and the recall is 80% (for the perfective and preventive category)

for our method. However, the precision and recall can be low for the adaptive category as can be seen in the

Fig 5.7. On the other hand, the adaptive category’s F1 score reaches 62 for the ArchiNet (whereas 23 for

DNL). Performance of some of the projects is lower than 10-fold validation because of insufficient training

data. Overall, Hadoop’s outcome for both ArchiNet and DNL is the most promising because the commit

messages in Hadoop might contain a less ambiguous explanation compared to other projects.

Sensitivity of Tokens

The performance sensitivity of ArchiNet (for 10-folds) for various token-weights (w(t)) combination (in (5.1)

and (5.2)) is shown in Fig. 5.8. The best performance is shown for the combination {tw, tp, ts, ta} which is

three points (69% F1) better than only considering natural terms (tw) (66% F1). Including API, library, and

framework name (ta) increments the performance by two points as there is more likely to be an adaptive

category for those compared to others. As can be observed from precision and recall in Fig. 5.8, the adaptive

79

tw +tp +ts +ta +to
30

40

50

60

70

31.4
33.5 33.5

42.4

37.5

43
41 41

64 64
66 67 67.2

69
66

S
co

re
%

Precision P(A) Recall R(A) F1 (all)

Figure 5.8: Performance sensitivity of terms. ‘+’ means including all others terms from left. P,R
are from the Adaptive(A) class.

Table 5.6: F1 of ArchiNet with our data and data in [172].

Dataset Perfective Corrective Preventive Adaptive All

Our data 65 58 68 51 63

Data [172] 55 61 80 16 63

category is the most sensitive. However, we notice that combining source-code operations (to) affects the

performance slightly negatively (66% F1, whereas it is 65% with tw); therefore, source code operations are

not promising features for classifying the architectural change.

5.7 Threats to Validity

One of the greatest threats to the validity of our result is that annotating the intention of change is subject to

human bias. To reduce this threat, two of the authors independently annotated, and then conflicts are resolved

by discussion. Any classifier may suffer an over-fitting problem. To overcome this, we experimented with

our classifier with a tenfold cross-validation technique and found a promising result. Another concern of our

classification model is how general it predicts change from different programming languages and cross-projects.

One of our test sets is collected from Mondal et al. [172] that also contains projects of Python language, and

have similar outcome as shown in Table 5.6. A few of the projects such as Hadoop has substantial industrial

participation [115]. Therefore, our study also mitigates generalizability threat to some extent.

Our model can be trained with different metrics. Therefore, for (5.2) in Section 5.5, we also have trained

our model with the TF-IDF metrics. However, the result is not as promising as the direct probability value,

but still shows a better result than DPLSA, LLDA, and SemiLDA. With this metric, the best F1 scores for

the data in [172] are 47% and 51% for our benchmark data. Yan et al. [255] utilized DPLSA for predicting

multiple categories of usual changes (three types). We found only a few of the samples in our data have

80

multiple intentions when architectural changes happened. ArchiNet can handle such scenarios to some extent

as we experiment on that mode; when the predicted sample is in Hit@2 [220, 201] (within the top 2 ranks), the

F1 score is 83.5%. Notably, our proposed classifier is versatile and does not require parameter tuning, unlike

others. Our dataset and trained models are available in github.com/akm523/archinet for further investigation.

5.8 Related Work

Architectural Design Issues and Solutions Classification

Yamauchi et al. [254] proposed a technique considering program identifiers to group the large commits into

related components having relations with the functional requirements. An early approach of committed code

classification was studied for architectural tactics (design solutions such as resource pooling, secure session

management, and so on) [166] based on code identifiers (such as heartbeat) mapped with text description

(heartbeat emitter and receiver) from a set of trained samples, and commits are predicted using a term-

frequency based classifier. Solaiman et al. [220] reported Bayesian Network and Naive Bayes as the best

algorithms to classify architectural discussions related to six ontology classes (such as technology) into three

design steps focusing ambiguous concepts (such as server has different meanings for different cases), concepts

expressing reasons of architectural changes are different than those. However, although these classes were

either subset or irrelevant to architectural changes, they were not specialized in four architectural changes.

In our work, we explore both source code features and concept-token properties to predict the reasons for

architecture changes.

Architectural Change Classification

We are aware of only one study by Mondal et al. [172] to categorize four architectural changes from the text.

Their model was generated by popular discriminating feature selection techniques DPLSA [255], SemiLDA

[80], and LLDA [202] originally proposed [255] for classifying all software changes into three groups, and

none of the techniques could handle the twists and challenges of architectural change classification properly.

Consequently, the outcome of their proposed technique is poor. Another study by Hindel et al. [100] close to

ours explored various machine learning techniques for classifying large commits (commits with many files

changed) into five groups. We also explore the promising classifiers reported by them: Naive Bayes, Decision

Trees, and so on. However, Random Forest (RF), an advanced version of Decision Trees, produces promising

outcomes with our dataset (but 7 points lower F1 than ArchiNet). Recently, word embedding technique

that captures contextual and semantic information with deep learning is being successfully used for software

artifacts analysis and classification [128, 224, 163]. However, due to the overlapping of concept words, deep

learning might not produce the best outcome, which is mostly inexplicable when multiple intentions are

required to extract from a single message. Our proposed classifier ArchiNet handles these concerns considering

other tokens and gains in performance.

81

5.9 Conclusion

In this study, we present a dataset collected from five popular projects and a promising classifier for architectural

change categorization from texts. Our study identifies the challenges of classifying changes from both source

code properties and textual properties. We address those challenges with a concept analysis approach that

indicate the developers’ intentions. Both 10-fold cross-validation and cross-projects validation show that our

technique is promising in all aspects compared to traditional methods (F1 score is 70%). We also explore the

sensitivity of the performance of our classifier for various tokens. Besides, we extract around 237 keywords

(with trained weights for each change category) from the training set. Given the success, many of the text

analysis approaches to support the ten activities of software architecture discussed by Bi et al. [34] might be

enhanced by adopting our proposed technique. In future, we will explore automatic design documentation

generation and architectural versioning schema applying our change classification technique.

Although the concept tokens are promising for change classification from commit messages, in many cases,

it is not possible to capture the concept tokens. In that scenario, code component change relation properties

can be leveraged. Moreover, the message triad (empty, meaningless and tangled) should be handled. In the

subsequent studies, we will explore lightweight techniques to detect and slice such code properties and enhance

change classification, utilizing them.

82

Chapter 6

Architectural Change Instance Detection and Ex-

traction from Code Properties

In a previous chapter (i.e., Chapter 3), we found that architectural change detection leveraging the

textual properties is promising, but it has limitations. Directory and naming structure patterns and diff tool

change information can complement the challenges. In this chapter, we explore code properties for detecting

architectural change and extracting relations considering the challenges of the previous studies. During the

manual analysis of the changed code of 3,647 commits from 10 OSS projects, we noticed that DANS (directory

and naming structures) properties play a crucial role in determining the high-level architectural or design

impactful (DIS) change instances. In this process, we observe various DANS properties and their variations

across the change revision commits of the projects. The list of these properties (and types) is later discussed

in Chapter 6. However, implemented architectural change instance can be detected in two ways: (i) comparing

ASTs from byte code of two consecutive commits and (ii) processing the provided information by the commit

diff tool of the VCS [88, 5]. In the first technique, a complete codebase for each committed version needs to be

compiled into byte code, which mostly requires manual intervention to resolve 3rd party library dependencies.

Moreover, the intensive computation could be a bottleneck for a normal purpose machine for analyzing changes

at the statement levels for large systems. Usually, each release of a project may contain hundreds of commits.

Thus, AST-based techniques might far exceed the manual analysis’s time and efforts for architectural change

detection. Therefore, we propose to detect high-level architectural change revisions by processing the DANS

properties, codebase, and diff tool information using the String processing techniques.

The rest of the chapter is organized as follows. Section 6.1 presents a brief overview of our study. Section

6.2 presents the background and motivating example. Section 6.3 presents the dataset collection process.

Section 6.4 discusses the change detection process. Section 6.5 reports the semantic slice generation process.

Section 6.6 presents performance results. Section 6.7 discusses related work. Section 6.8 concludes our study

with future work.

6.1 Introduction

Software maintenance activities induce the most efforts and costs in a software system’s lifecycle [131].

Understanding and updating a system’s architecture is crucial for software maintenance [82]. As parts of the

83

maintenance activities, development teams review changes [228, 53], and design structure after completing a

certain milestone or release (or in the late-lifecycle) for various reasons such as paying technical debts, fixing

flaws or correcting the design structure [17, 87, 116]. In this review process, requirements and associated

design information extraction, semantic design recovery (concerned with the production of meaning, and how

logic and language are used in designing a software [98]), design summary generation, untangling changes,

and so on are essential tasks [228, 213, 61]. Collectively, we refer to them as design review tasks [228].

For these tasks, architectural change instances are required to be detected and decomposed by the

automated tools to reduce human efforts [131, 14]. In this study, to support the design review tasks, we

propose a lightweight tool for detecting module-level architectural changes and generating semantic slices of

the change instances from source code. We rely on the directory and naming structures (DANS) properties

for developing our tool. Please note that our extracted semantic slices are based on the structural relations

that are mostly different than the slices generated by the existing tools [61, 140, 240, 138, 238]. A structural

semantic slice (SSC) consists of a description of relational information of involved modules, their classes,

methods and connected modules in a change instance, which is easy to understand to a reviewer [140]. With

these SSCs, various layers of abstract design summary generation are possible [113]. For example, a high-level

abstract summary can be automatically generated from such a slice as – The ASBC module defines a sensitive

STC method with new runtime dependency on ASC module for authorizing sensitive service access (underline

texts represent an architectural relation, acronyms are discussed in Section 6.2). Besides, this information is

crucial to feed into other DevOps tools such as design decision recovery [214] and design note generation [172].

In a release or a milestone, the changes that contain architectural instances require special attention from

the development team due to the far-reaching consequences [195, 87]. However, software architectural changes

involve in more than one module or component and are complex to analyze compared to local code changes.

Architectural aspects (design) of a change task are reviewed considering crucial scenarios such as access

rules and restrictions on usage of program entities across the modules. Moreover, design review is essential

when proper architectural formulations are paramount for developing and deploying a system [153, 116, 87].

Researchers are working for supportive tools and techniques for reviewing change commits focusing on atomic

or local changes [61, 240]. However, little or no effort is given to support reviewing architectural change

instances of those projects by slicing the structural relations.

As a preliminary study, here we investigate the SSC generation for Java Platform Module System (JPMS)

based projects (in Java and Kotlin) [35, 153] (where the architectural organization is predominant). JPMS is

introduced to handle coupling and dependency among modules to reduce bloated software, performance issue,

security backdoors, and higher maintenance costs [87, 116] by well-defined modules and access restrictions

among them. However, despite built-in supports for handling JPMS, development and maintenance teams

require tracking a complex knowledge-base of static and run-time architecture and are still error-prone. That

is why supportive review tools are urgently needed.

For our tool, we define an M2M (module to module) metric for high-level architectural change [131, 81]

84

of JPMS based projects following the existing metrics. We identify several observations (Table 6.2) on the

DANS properties of the program entities for detecting architectural change instances based on this metric and

decomposing the SSCs. We extract the DANS properties (such as addition, deletion, moving or shrinking

multiple class imports) based on regular expressions of string matching. Since our tool does not process the

Abstract Syntax Trees (AST) properties, it does not require compiling each version (that requires human

intervention to fix 3rd party library dependencies). Thus, our approach is easy to deploy with the version

control system (VCS) APIs. Preliminary evaluation of our tool with ten open-source projects indicates that

the DANS properties produce highly reliable precision and recall rate (93-100%) for detecting and decomposing

architectural change slices. In summary, the key contributions of this study are:

• We construct a benchmark dataset containing module-level architectural change (M2M) commits and

semantic slices of the changed code for advancing research in this domain.

• We manually explore change commits and identify 16 types of directory and naming structure (DANS)

properties necessary for automatic processing (for any tool) of the architectural change instances from

the source code.

• We develop a lightweight tool using the DANS properties for module-level architectural change detection

and semantic slice generation of the changes based on the special structural relations in the source code.

6.2 Motivation and Background

Background: This section aims to provide an idea of how architecture can be a centrepiece of modern-day

software development and why reviewing architectural relations is crucial. From Java 9, we can define a

concrete module compared to a conceptual module than we could before JPMS. Concrete modules accelerate

containerization of cloud-service based systems more efficiently and securely [116]. JPMS is built for supporting

the following core principals [153]: (i) prevents unwanted coupling between modules, (ii) only exposes well-

defined and stable interfaces to other modules, (iii) provides a reliable configuration of the dependent module,

and (iv) controls reflective access to sensitive internal classes. The Java module system will have a profound

impact on software development. In JPMS, a module is a uniquely named collection of reusable packages

which is defined by a descriptor file called module-info.java having meta-data, including the declaration of

named module [87, 35]. A named module specifies (1) its dependencies of classes and interfaces (entities) on

other modules and should specify (2) which of its entities are exposed to other modules for usage. Some of

the operations provided by JPMS [153] for handling these specifications are:

• requires (R) - express its dependency on the other module.

• provides (P) - provides an implementation of an interface with another class as an implementation class.

• opens/open (O) - gives run-time access and open for use it with reflections. It is used to expose the whole module.

85

14 - import com.azure.storage.blob.BaseBlobClientBuilder;
19 - import com.azure.storage.blob.models.CustomerProvidedKey;

271 + public EncryptedBlobClientBuilder sasToken(String sasToken) {
272 + this.sasTokenCredential = new

SasTokenCredential(Objects.requireNonNull(sasToken,
273 + "’sasToken’ cannot be null."));
274 + this.sharedKeyCredential = null;
275 + this.tokenCredential = null;
276 + return this;

25 import com.azure.storage.blob.BlobUrlParts;
28 + import com.azure.storage.common.Constants;
29 + import com.azure.storage.common.Utility;
30 import com.azure.storage.common.credentials.SharedKeyCredential;
31 + import com.azure.storage.common.implementation.credentials.SasTokenCredential;
32 + import com.azure.storage.common.implementation.policy.SasTokenCredentialPolicy;
33 + import com.azure.storage.common.policy.RequestRetryOptions;
36 + import com.azure.storage.common.policy.SharedKeyCredentialPolicy;

Figure 6.1: A change that sets the SAS token used to authorize requests sent to an Azure service.
Here, the plus (+) sign with green background indicates addition and the minus (-)
sign with a red background indicates deletions.

• uses (U) - instructs run time loading of services.

• transitive (T) - expresses implied dependency for API. It ensures that any module which requires second module

also implicitly requires third module (linked to the second module).

Each of these operations are architectural and have greater implication in terms of both static and run-time

behaviors of a project. We call these operations as module operations (MO).

Motivating Example: In this section, we explain a subset of modifications of EncryptedBlobClientBuilder

(EBCB) class of azure-storage-blob-cryptography (ASBC) module from a commit of the Azure Java SDK

project [58]. The modifications are shown in Fig. 6.1 following the same GUI representation in github.com. In

JPMS projects, usage of module entities has purposeful rules and restrictions due to runtime access of sensitive

parts, dynamic containerization and separation of concerns. If the reviewers want to review architectural

changes to revisit those, they must first identify whether the commit contains such changes. They also need

to extract various other code related information [140, 240].

For example, in Fig. 6.1, a new method called sasToken() is added in lines 271-276. The reviewers have to

figure out which classes and modules are involved with this method and with which it has new dependencies.

Variables in lines 272, 274 and 275 need to be searched in multiple places and compared for references to

find the dependencies. Some of the candidates of those variations are discussed later in Section 6.5. However,

statement 272 uses a newly imported class SasTokenCredential (STC) in line 31. Next, they have to find

which module it belongs to. But, the reviewers cannot determine the module with this GUI interface (or

with the provided information by the VCS API) perfectly; not even if it is from the same module of the

EBCB class such as the BaseBlobClientBuilder class in line 14. For instance, despite being from different

modules, both lines 14 and 29 contain a significant portion of the common structure (com.azure.storage). For

these, they have to search the location of the class in the codebase (perhaps with the IDE). This manual

search returns the directory from where they identify the module, which is the azure-storage-common (ASC)

module in this case (a cross-module). Such an instance is a candidate for revisiting the cross-module rules

and restrictions due to various concerns discussed in the Background section. However, the commit contains

modifications of 32 classes with many variations. Thus, the manual process to extract the crucial code

information is time-consuming, tedious, and error-prone (such as the same class name exists within multiple

modules). Besides, extracting the described information is crucial for many other analytic techniques such as

86

design decision recovery and multiple intentions detection. Consequently, our study contains two steps: (i)

detecting commits containing architectural change instance, and (ii) then slicing those commits.

6.3 Dataset Preparation

We collect and prepare our experimental dataset in various phases. For collecting JPMS based projects, first,

we search commits containing module-info.java in GitHub. Thus, we get almost 200 projects, many of them

are large or small or toy projects. Among them, we selected ten projects of various domains having the highest

number of commits (and multiple modules), excluding native JDK-related projects. We filter out the commits

having structural code change [150, 172] or having modification in module-info.java from all the commits in

the period of July 2017 to July 2020 because of the official release of JPMS in 2017. In this way, we collect a

total of 3,647 commits (Selected column in Table 6.1). In the final phase, we manually determine the commits

having an architectural change instance (M2M). It took around 240 working hours to complete the analysis

of the commits. We found around 2,720 such commits, which are presented in the M2M column in Table 6.1.

We use this dataset for investigating the automated tool development utilizing the DANS properties.

Table 6.1: M2M dataset and change detection performance.

Project Commit Selected M2M P R

HibernateSearch[236] 9504 53 20 1.0 1.0

Aion[18] 4718 1064 863 1.0 0.98

Webfx[244] 3770 778 563 1.0 0.99

Speedment[222] 4483 243 222 0.97 1.0

AzureSDK[76] 15,180 276 244 0.99 1.0

Atrium(Kotlin)[20] 1988 379 210 0.98 1.0

Bach[43] 2114 365 145 0.99 1.0

Vooga[235] 1210 447 416 0.96 1.0

Imgui(Kotlin)[106] 1703 35 34 1.0 1.0

MvvmFX[180] 1100 7 3 NA NA

Total 3647 2720

6.4 Architectural Change Detection

6.4.1 M2M Change Metric

Detecting architectural change is an ongoing research. The most popular metrics for detecting higher level

changes are A∆ [110], A2A [131], MoJoFM [245], and C2C [81]. Adopting these metrics, we define a new

metric for JPMS based projects, which is called the module-to-module (M2M) metric. Our metric is based

on architectural changes at the module (M) level, arguably the higher level. Constraints of the M2M metric

are defined based on A2A (or C2C) and ID-SD (include and symbol dependency) [150] metrics suited for

JPMS. Deleting, adding and moving modules or their respective classes are considered A2A delta operations.

In contrast, ID-SD considers the modification of classes and interfaces importing (for Java and Kotlin) from

87

Table 6.2: Observation of directory and naming structures

SL Type Description

1 Import Code location change appears as deletion and addition

2 Import Shrinking and elaborating multiple imports appears as deletion and addition

3 Import VCS APIs only return the first and last lines as modification of the multiple imports
commented with \ ∗ .. ∗\

4 Import New Java allows importing static method and inner class

5 Import Kotlin offers static method import without any syntax variation

6 Import JPMS config includes both class name and package name

7 Dependent Methods have subsequent relations and contain relative references

8 Directory Both Kotlin and Java modules have uncommon directory structures

9 Directory Directory name of one module could be similar to sub-directory name of another
module

10 Directory Some of the modules have only one root package/directory name

11 Directory Module has submodules

12 Naming Import like directory name such as application.api

13 Naming Similar class name in multiple modules

14 Naming Class and package renaming appears as addition and deletion

15 Naming Class and method name in Kotlin do not have different patterns

16 Naming Module name in module-info.java is different from directory name, and used in
ambiguous ways in import

different modules (representing M(IDSD)), not from the same module. Module operations (MO) (described

in Section 6.2) update within the module-info.java files changes at least the runtime architecture irrespective

of changes within the class files. Consequently, we also consider the modification of them for the M2M metric.

Hence, a module-level architectural change metric M2M may contain any of ∆a2a, M(IDSD) and MO

changes.

6.4.2 M2M Change Detection Process

During the manual analysis of the 3647 commits, we notice that DANS properties play a crucial role in

determining the M2M instances. We observe various properties and their variations across the commits of the

projects. The list of these properties (and types) are presented in Table 6.2. However, the M2M instance can

be detected in two ways: (i) comparing ASTs from byte code of two consecutive commits, and (ii) processing

the provided information by the APIs and libraries of the VCS [88, 5]. In the first technique, a complete

codebase for each committed version needs to be compiled into byte code, which mostly requires manual

intervention to resolve 3rd party library dependencies. Moreover, intensive computation could be a bottleneck

for a normal purpose machine for analyzing changes at the statement levels for large systems. Usually, each

release of a project may contain hundreds of commits. Thus, AST-based techniques might far exceed the

manual analysis’s time and efforts for architectural change detection. Therefore, we aim for a lightweight tool

based on the second technique.

We have extracted code change information in between two consecutive commits by git APIs with the help

of GitPython [88], and PyDriller [5]. It provides string/text of the modified code segments with line numbers,

methods and classes. Among the 2,720 manually extracted M2M commits, we have selected 48 commits (5

88

for each project except mvvmFX) from 10 projects having multiple intentions in the commit description.

These 48 samples are used as so called training samples in our experiment for automated tool development

with the DANS properties. We have manually analyzed all types of changes of those commits and found

that code information returned by the VCS APIs has some non-trivial challenges that might compromise the

detection process’s accuracy. These challenges are described in Table 6.2. Here, we discuss some of them. For

example, for SL8 in the table, we have identified at least three types of directory structures of JPMS modules

where the class files might reside in: ”module name/src/class dir”, ”module name/main/java/class dir”,

and ”module name/src/main/

java/class dir”; but, this information is not included within the class imports as can be seen in Fig. 6.1.

One instance for SL2 is that import aa.1, import aa.2, and import aa.3 can be shrink to import aa.*; and

vice-versa. Another complex challenge is distinguishing between import renaming and new import addition in

SL1. For example, renaming import aa.b.1 to aa.c.1 due to directory renaming is appeared as a deletion and

an addition operation. One example for SL16 is that the similar directory structure ch/tutteli/atrium/core/api

of the module name ch.tutteli.atrium.core.api does not exist up to that commit but used within other module

as import. Comment within the change information also poses challenges, such as commenting as shown

in SL3. We point out some other anomalies in the commits and handle all these concerns using regular

expressions in string processing. We have developed a tool in the Python platform to handle these observations

for the DANS properties.

6.5 Semantic Slice Generation

Based on the DANS properties in Table 6.2, we generate semantic summary (architectural) containing relational

information (SSC) of the changed code snippets presented in Table 6.3. We extract 16 types of change relations

(such as cross-module class used in a newly defined method) involved in architectural change instances. One

of the slices for Fig. 6.1 would be, ASBC:EBCB=>sasToken<- ASC:STC. As discussed in Section 6.2, this

slice represents that it is a M2M instance where EBCB class of ASBC module added sasToken method that

is dependent on the STC class of ASC module. A complex change might contain many such slices of all

the information in Table 6.3. Our extraction process depends on directory processing, module-info.java file

processing, methods processing, and searching within the programs before and after modification with regular

expressions for extracting the DANS properties. Initially, we thought the process would be straight-forward.

The challenges described in the previous section significantly influence the performance of the automated

technique. However, for including a method within a slice, we handle the SL7 in the table as follows (along

with other common concerns such as removing the Java keywords). Let’s consider that class A is involved in

an M2M instance, then following would be the candidates of the search process for a method:

• B <T> objectB = new B<A>(), then objectB is used.

• B objectB = C.getObj(A), then objectB is used.

89

Table 6.3: Information in the semantic slices

Entity Change Relation

1 JPMS>>Direct module/ MO
add, delete, modify

connected jpms+API modules
disconnected jpms+API modules

2 JPMS>>Added class connected jpms+API modules and their classes, con-
textual new methods

3 JPMS>>Deleted class disconnected jpms+API modules and their classes,
contextual deleted methods

4 JPMS>>Modified class Relation information in both # 2 and 3

5 JPMS>>Modified class Not involved in M2M

• B getObj(A), then getObj is used.

• All the cases directly assigned in variables and used in methods.

A few of the challenges are compromised due to better performance since resolving those introduces other

problems (mostly due to static method import) and worsen the outcome. The extracted information is saved

into yaml template so that any tool can read the data for further purposes.

6.6 Performance evaluation

We compare the outcome of M2M detection and slice generation with the manual collection and measure

recall (R) – quantitative correctness of retrieving the change instances, and precision (P) – the accuracy rate

among the predicted change instances [89]. First, we run our tool on all 3,647 samples (except 48) (shown in

Table 6.1) having structural changes; 2,720 of them contain M2M metric. We measure the precision (P) and

recall (R) excluding the 48 training sets. The individual project’s performance result is shown in Table 6.1 (P

and R columns; MvvmFX has no test M2Ms left). In some cases, performance is compromised for the static

import. In the worst case, our tool’s precision rate is 97%, and the recall rate is 96%. The highest number of

incorrect outcomes is for Vooga (12). For many projects, both the P and R are 100%. Therefore, the DANS

property is highly reliable for detecting M2M instances.

For the preliminary investigation of the SSC generation of the M2M instances, we explored the 48 training

samples. First, we manually extracted (and saved into YAML files) all the slices of those commits. Then,

we evaluate the automated technique’s outcome based on the involved entities of a slice with that ground

truth. For instance, the discussed slice in Section 6.5 has five entities/instances. If a module itself modifies

its dependency with other modules and appears within the other two modules, the instance count would be

three; this is true for all other cases. The total number of such instances in each project is shown in Table 6.4;

it also shows the classes that are not involved in M2M (nonM2M). The outcome of the automated tool is also

presented in the P and R columns of Table 6.4. For each project, P is from 93 to 100%, and R is from 97 to

100%. Therefore, the DANS properties are also highly reliable for generating the SSCs and can be extracted

without compiling each version’s code. However, some of the instances are not properly extracted due to SL 3,

90

4, 5 and 7 in Table 6.2. The lowest precision is for Bach. We have investigated that the module directory

structure is unusual for Bach (e.g., the sub-modules are within the src folder of the main module), and solving

those actually decreases the overall performance significantly. The technique produces the most number of

incorrect instances for the AzureSDK (57). The performance is quite general because the investigation is

conducted for ten projects with two language frameworks. Our tool cannot process anonymous inner class

methods since the git API does not provide separate (and structured) information about that.

Table 6.4: Semantic slice data and performance outcome.

Project Commit M2Ms nonM2M P R

Hibernate 5 220 17 0.99 1.0

Aion 5 158 19 1.0 .97

Webfx 5 28 3 0.94 1.0

Speedment 5 278 22 1.0 0.98

AzureSDK 5 949 67 0.95 0.99

Atrium 5 135 36 0.99 0.98

Bach 5 48 2 0.93 1.0

Vooga 5 99 9 1.0 1.0

Imgui 5 52 10 1.0 0.97

MvvmFX 3 96 4 0.98 1.0

Bias Testing: To reduce bias in performance testing for the automated SSC generation, we measure

the outcome of our proposed tool with 16 unseen commits (two samples from each of eight projects). Those

samples are randomly selected, excluding the experimental set (48 commits), and the SSCs are first manually

extracted. Then the detected slices are compared against the manual extracted set. The performance outcome

of our tool is shown in Table 6.5. The lowest precision rate with this dataset is 91%, and the lowest recall

rate is 96%. Therefore, the bias testing also confirms the performance of our tool for semantic change slice

generation.

Table 6.5: Bias testing outcome.

Project Commit M2Ms nonM2M P R

Aion 2 114 9 0.91 1.0

Webfx 2 651 39 0.96 0.98

Speedment 2 124 19 1.0 0.98

AzureSDK 2 79 9 1.0 1.0

Atrium 2 106 6 1.0 1.0

Bach 2 21 4 0.98 0.99

Vooga 2 50 6 1.0 0.96

Imgui 2 418 85 0.98 0.99

6.7 Related Work

Architectural Change Detection and Design Decision Recovery: Software architecture can be defined

into three levels of abstraction according to the convenience of the development team: (i) high-level – where

91

design models or modules are considered, (ii) intermediate level – package, and classes are considered, and (iii)

low level – methods and functions are considered. MoJo [230], MoJoFM [245], A∆ [110], CB [40], C2C [81],

and A2A [131] are focused on high-level change detection. In recent times, a few studies focus on recovering

architectural design from the release history of software [81, 214, 213]. EVA [182] and ARCADE [213] are

excellent tools for recovering a static architecture and detecting changes based on ACDC/MoJo [231] and

ARC [81] techniques. However, these tools are explicitly dependent on other techniques to extract models

and clusters (they are arbitrary and have no formal limit). Only expert intervention can ensure architectural

change detection’s accuracy of these metrics, and analysis of thousands of change versions is almost infeasible.

Moreover, they cannot recover semantic design [98]. We propose a module-level architectural change detection

tool based on the developer’s defined modules and thus more concrete and reliable. Our tool also extract

semantic change relations on the detected change instances. Hence, our tool and benchmark data can be used

to further validate and enhance the existing metrics for architectural change detection (available at [173]).

Change Slicing for Code review: Here, we discuss a few of the most famous works among the

existing studies [61, 140, 240] for slicing the committed code. Dias et al. [61] worked on tangled code change

information slicing at the fine-grain statement level (i.e., one variable is associated with two lines of code, two

files are changed together, the distance between two modified lines in a file, etc.) using AST properties to

separate multiple intentions within a single commit. Later, they attempt to cluster the slices based on the

pair relation, such as two methods are only refactored, two classes within the same package, etc. Li et al.

[140] separate all types of atomic changes with the AST algorithm of a set of related commits in the version

history for commit porting. Wang et al. [240] developed a more intelligent tool for decomposing changed code

within a commit using AST parsing and machine learning. They cluster the code based on the class-level,

method-level, field-level, and statement-level changes. Then they rank those changes considering the number

of referenced variables for the code reviewers. Several studies have been enhancing atomic code change slicing

works [138, 238]. However, these studies do not focus on architectural semantics and relations. Therefore,

decomposing architectural change of a commit would enhance these techniques for reviewing more complex

scenarios for architecture intensive systems. To reduce the gap, we attempt to generate architectural change

slices for design review.

6.8 Conclusion and Future Work

In this study, we present our initial observation on the impact of DANS properties to develop a design

review tool that detects and semantically slices the architectural change instances of a commit. Performance

evaluation with ten open-source projects proves that this process produces reliable outcomes while the

technique is lightweight. We will cover more concerns in the tool, such as extracting indirectly impacted

methods that invoke methods in Table 6.3. We believe that the directory-based challenges that we have

discussed in this study will persist in the AST-based approaches (since AST nodes are generated from the

92

directory structure information). Furthermore, we will evaluate the performance of various types of slices

presented in this table. Semantic change information presented in Table 6.3 can be utilized to generate more

understandable code descriptions [113] and can be mapped with multiple intentions if they exist within a

commit. Our tool would be useful for a number of empirical studies besides assisting design review, such

as the effectiveness measures of the existing design decision recovery approaches, determining architectural

change types, developers profile buildup based on design changes, design debt and change impact analysis,

release note generation, design change versioning scheme, etc. Dataset and the script of the tool are available

for further advancement.

Future Work: Our main objective is to assist in semantic design review. Semantic design recovery and

semantic design summary (for each release or milestone) generations are the essential steps for that. For

that purpose, we plan to investigate concept generation by mapping with the commit description and code

identifiers associated with each of the DANS properties within the change instances with our proposed tool.

Semantic software design is involved in the concept/meaning of software features/requirements associating

design logics (including architecture) and implementation in the programming languages [98]. That is why

semantic slicing is essential for semantic design recovery. The architectural change relations and concept

generation would facilitate to advance of our planned empirical study on semantic design recovery and

summary generation. We also explore separating tangled commits (having M2M) with DANS properties,

which is also required for the efficient design review tool. Moreover, our proposed tool needs to be enhanced

in string pattern matching as we have observed that in some cases, almost identical directory structures

are falsely identified (completely ignoring them reduces the tool performance significantly). To handle this

situation, we will experiment with the Context Triggered Piecewise Hash [122] mechanism.

The experiment shows that our proposed automated techniques are promising that will facilitate the

acceleration of change classification and automated change summary generation. Therefore, in the next study

in Chapter 7, we will utilize these techniques for enhancing change classification.

93

Chapter 7

Architectural Change Categorization leveraging Struc-

tural Change Properties of Source Code

In this chapter, we enhance the previous techniques (i.e., Chapters 5, and 6) for categorizing the architectural

change revisions with code properties for handling the message triad (empty, meaningless, and tangled) reliably.

However, the relationships between code and their architecture knowledge are hard to reveal [34]. The issue is

a lack of overview of the structure of the system, linking to the source code and program file. To improve this

scenario in message triad handling, through manual analysis of the source code of the high-level architectural

change samples, we extract 17 semantic change relations (SSC) from code operations (leveraging the approach

proposed in Chapter 6). We have explored various classification models with these SSCs (as are explored

in Chapters 4 and 5). Then, we explored various classification models combining these SSCs with concept

tokens. Finally, we have proposed approaches to handle the challenges of commit triad – tangled changes,

ambiguous messages, and non-informative or empty message descriptions. Thus, our proposed models are

promising to apply in real-world applications such as release change logs or release note generation.

The rest of the chapter is as follows. Section 7.1 presents a brief overview of our study. Section 7.2

discusses the background of our study. Section 7.3 presents our dataset of study; Section 7.4 presents SSC

extraction; Section 7.5 discusses our proposed technique with SSC; Section 7.6 presents our combined models;

Section 7.7 presents performance evaluation with message triad samples; Section 7.8 discusses related work,;

and Section 7.9 conclude this study.

7.1 Introduction

Software development and maintenance teams conduct various tasks such as bug fixing and feature enhancement

regularly [226]. Source code changes in these activities are integrated into the original codebase of the target

software. In this process, a commit records changes to one or more files in a codebase revision, and a commit

message briefly describes the changes [57]. However, during a commit merging, development and maintenance

teams need to provide some more detailed information about changes in commit messages. This detailed

information can help other developers to understand this change and support other software maintenance tasks,

such as code review, bug triaging, traceability link recovery, and change impact analysis [246]. Hence, these

commit messages, especially those accurate, complete, and labeled, are essential to change comprehension and

94

software maintenance during software evolution. There are two aspects that development and maintenance

teams are usually concerned with for a commit, i.e., what information and why information [206, 216]. The

what information refers to the changes involved in an incremental change, while the why information describes

the motivation and context behind the changes (such as performance improvement or refactoring). According

to the literature, the quality attributes of commit messages can be divided into adequacy, conciseness, and

expressiveness [45].

But in practice, although development and maintenance teams are eager to learn more information from

commit messages regarding these three attributes, some original commit messages generated by developers

are of less use for acquiring useful information from them [239]. Moreover, the development and maintenance

team finds it difficult to capture the source code context effectively from the original commit messages since

they do not meet the demand of adequacy both in what information and why information in most of the

cases. Empirical studies found why information is invaluable to support maintenance work. Lack of it may

result in difficulty in understanding the purpose or motivation of the changed code. To capture the why

aspect properly, a commit change needs to be categorized based on the causes and purposes. Because many

commits messages do not provide enough context to understand it behind a change. This is due to the

fact that developers are reluctant to tag or label the commit. Empirical studies reported that most of the

commits in open source software are not tagged or labeled. According to the literature, labelling change

category is ambiguous even by the developers [168, 99, 80]. Herzig et al. [97] found that the developers

misclassify 33.8% of the bug reports in the issue tracking system. Even the reports that 14% messages are

empty and 10% messages are meaningless [148, 239] indicate that they do not write the messages properly.

Moreover, categorical information is mandatory for writing release notes [178]. Therefore, efficient techniques

to categorize the change commits are important for the development and maintenance team.

That said, automated change categorization can be applied in many tasks – tagging the commits in

the version control systems (VCS), estimating the quality of changes, making decisions for backporting,

characterizing architectural evolution, optimizing development process, forming developer and reviewer

expertise, and so on [246, 172]. According to the existing studies, textual properties (extracted from commit

messages) are the most fruitful for change grouping [171, 94, 101, 160, 104]. Some of the studies also explored

fine-grained level code properties such as change densities to enhance the classification combined with the

commit message. However, many commit messages are empty, non-informative, tangled, and ambiguous

[112, 148, 73, 240]. Most of the studies skipped 20-28% commits from the collected dataset having inappropriate

messages. In the existing approaches, the above-mentioned challenges (as discussed in Table 8.1) remain

inexplicable. For proper DDARTS generation, these contexts should be handled reliably rather than adopting

random guesses.

Source code properties are the most reliable source of information [50]. Meaningful code properties can

fill the gap of natural text descriptions. As can be seen in Fig. 8.2, only the critical and major impactful

information is included in the changelogs. Therefore, it is worthwhile to develop a model with code properties

95

that are not too fine-grained but provide a meaningful way of understanding major perspectives (as described

in the Motivation section). Overall, we explore 17 SSCs of the dataset of module-level architectural change

instances from [173]. The meaning of those SSCs are shown in Table 6.3.

RQ1: How can SSC predict module-level change types? If SSC properties can predict change groups

significantly, then SSC would enhance on-demand design artifacts generation approaches.

RQ2: How SSC properties with the texts are performing for module level change classification? This is

important to know whether SSC has a positive or negative impact when combined with the textual properties.

SSC can be used to generate descriptive change summaries efficiently embedding with texts if SSC enhance

the change grouping.

RQ3: How can SSC resolve issues in non-informative, ambiguous, and tangled description in change

type classification? Research found that around 14% of commit messages in open source projects is empty.

Moreover, there is a significant presence of non-informative and ambiguous descriptions of software artifacts.

Multiple intentions are also included in the messages. Answering this research question will help to employ

code properties for handling them.

In this study, we have annotated and experimented with 2,697 DIS commits from eight open-source

projects [173], which is comparatively a large collection in the context of architectural changes. We enhance an

existing tool [173] and extract total 17 semantic change relations from code changes. We have also extended

the concept tokens list of ArchiNet [171] with the new dataset. 1○ With these SSCs and concept tokens, we

explore various change grouping models considering the challenges. Our experimental outcomes with multiple

configurations prove that SSCs can mitigate the issues of ambiguous, non-informative, and tangled commit

messages in a promising way. SSC properties alone can produce 52% F1 scores, while the combined model

with the concept tokens can extract 86% change categories correctly within the Recall-Hit@2 rank [201].

Overall contribution of this study are:

• Construct a benchmark dataset by annotating into four categories that contains a substantial number of

high-level architectural change samples.

• Experiment the categorization model with SSCs.

• Propose combined models for classification.

• Propose a technique to predict tangled commits.

7.2 Background

7.2.1 Architectural Change:

Software architecture/design may be modified intentionally or unintentionally during the development and

maintenance life-cycles. Software architecture modification is considered as of [192] – configuration change

96

[72, 87], source-code layers (i.e., directories, package structures, and location of code files within the directories)

changes [151], design model change (i.e., UML diagram) [245, 152, 81], architectural document in natural

language [63, 115], and code component change operations (i.e., addition, deletion, moving, and merging

components) [246, 213]. Software architecture is studied at three abstract levels: high level, intermediate

level, and low level. In this study, we focus on the commits having module/system (higher) level changes. A

module can be a sub-system, 3rd party library, and cluster of packages [41]. Overall, the change commits

contain additions, removals, and moves of implementation-level entities from one module to another. This also

includes additions and removals of modules themselves. Moreover, include and symbol dependency changes

[151, 87] are also architectural changes. Our consideration of these metrics as architectural changes are based

on a number of existing studies [47, 81, 130, 213, 151, 245].

7.2.2 Architectural Change Categories:

Architectural changes can be grouped on focusing various perspectives [246, 63, 169]. In this study, we consider

change grouping based on the development and maintenance activities [246]. Adaptive (A): This change is a

reflection [246, 143] of system portability, adapting to a new environment or a new platform. Corrective (Cr):

This change refers to defect repair, and the errors in specification, design and implementation. Preventive

(PV): Preventive change [170, 246] refers to actionable means to prevent, retard, or remediate code decay.

This is related to inappropriate architecture that does not support the changes or abstractions required for

the system. Perfective (PF): Perfective changes are the most common and inherent in development activities.

These changes mainly focus on adding new features or requirements changes [226, 246, 63] including improving

processing efficiency and enhancing the performance of the software.

7.2.3 Important Definitions:

This section presents some definitions related to change commit messages.

• Non-informative (NI): A message is non-informative if no particular information is presented about the

specific reason for the change. Sample 3 in Table 8.1 is an NI message.

• Ambiguous (AM): A message is ambiguous if a long discussion is provided and can have multiple

meanings or code change does not strongly reflect the description. Sample 2 in Table 8.1 is an AM

description.

• Message with multiple concepts (Tangled): A message which has multiple unrelated change information

is called a tangled message. We call a tangled commit as archTangled if it contains multiple intentions

having architectural involvement. Sample 3 in Table 8.1 is an archTangled commit.

• Concept: A set of words that represent a specific meaning collectively. Concept words ”add” and

”support” in a sentence indicate new feature, whereas ”add”, ”support”, and ”down” indicate flaw fixing.

97

Table 7.1: Total number of samples in each type (nontangled)

Perfective Preventive Corrective Adaptive

Commits 996 1155 168 102

7.3 Dataset Preparation

We collect the module-level architectural change commits of Mondal et al. [173]. This dataset are formed

from 10 open source projects, and contain 2,720 architectural change commits. The commits are within the

period from 2017 to until December 2019. However, we exclude two projects not having enough samples to

balanced split (for all four types). Most of the projects are commercially important in various domains. Thus,

our experimental dataset contains 2,697 DIS from eight projects. The Dataset is shown in Table 7.2.

7.3.1 Golden Set Construction for Experiment:

We divide our collected dataset into four parts: (i) samples having tangled commits, (ii) training set with

non-tangled commits, (iii) natural test set, and (iv) test set with NI and AM samples. Unbiased test sample

creation is critical to reducing the biasness. As can be seen from Fig. 7.1, the dataset contains an unbalanced

number of classes. This is problematic with the multi-class classification experiment. Therefore, we also

prepared a dataset with the Stratified random sampling (downsample the majority classes to an almost equal

number of samples from each group) [215]. We consider 168 (size of the corrective class) as the minimum

number of samples as the base size for the preventive and perfective.

7.3.2 Change Type Annotation:

Our collection of change samples is large, considering the manual analysis perspective. This is the most critical

phase of our study since it is subject to human bias and inconsistent description. We annotate the commits

into four groups based on the existing studies [63, 172, 171] as well adopting the knowledge from more than

150 categorical change descriptions of the AzureSDK project (as shown in Fig. 8.2). Some other specific

challenges of annotation are: (i) insufficient, and ambiguous words, (ii) implicit and tacit intention in the

explanation, (iii) different meaning of glosses of terms in software context and natural language, (iv) multiple

intentions in a single message but a few of them are architectural, and (v) noisy, irrelevant and non-separable

text. Two authors independently annotated the samples then resolved the conflicted samples with rigorous

analysis and discussion. We analyze the commit messages, comments related to changed code, issue/feature

tracker, bug tracker, and source code to mitigate the challenges for determining a change intention. For some

samples, we also contacted the developers for clarification (a tiny portion). The dataset creation, annotation

and conflict resolving process take three months per person.

98

Table 7.2: Selected projects and DIS commits (until 2020).

Project All 2017-

2020

DIS Domain

Aion[18] 4718 1064 863 A multi-tier efficient blockchain network

Webfx[244] 3770 778 563 Providing a web port of JavaFx to JavaScript

Speedment[222] 4483 243 222 Creates a Java representation of the data

model from SQL

AzureSDK[76] 15,180 276 244 Azure SDK for java

Atrium(Kotlin)[20] 1988 379 210 Assertion library for Kotlin with support for

JVM, JS and Android

Bach[43] 2114 365 145 Java Shell Builder

Vooga[235] 1210 447 416 Game development engine

Imgui(Kotlin)[106] 1703 35 34 Game engine and 3D application framework

Total 3587 2697

7.4 SSC Extraction

Meaningful properties extraction focusing on the design impacts is a heavyweight process (either requires

human intervention or building each commit). It can even take a few days to process the AST for a single

version of a medium or large-scale project [150], and thus not deployable frequently (a release may contain

hundreds or thousands of commits). Considering the feasibility, we explore the semantic change relations

(SSC) with a lightweight tool proposed by Mondal et al. [173]. It is lightweight because it can extract the

properties by processing directory and naming structure along with the code change information provided by

the VCS APIs without compiling and AST processing. However, the tool has lacked in extracting information

on method and class moving that are important in terms of design impact. Therefore, we extend the tool

with the clone detection technique. We consider the 14 SSCs from the study of Mondal et al [173]. We have

enhanced the tool to detect method moving (MVM), constructors (CMD) and classes (MVC) from one place

to another. For that purpose, we employed the heuristic clone detection technique of CloneWorks [225] tool.

These technique has more than 90% P and R for Type 1 Type 2 clone and thus reliable. However, we get

significantly better outcome with the threshold 0.50 compared to 0.70 for clone detection. For example, 0.70

threshold miss the method move like Fig. 7.1. We found around 99% accuracy within the training set of

Mondal et al. [173]. Git [88] and PyDriller [5] provide moving method as addition and deletion operation.

Those methods can be moved with change or renamed (which is sometimes appear as method overloading).

99

Figure 7.1: Method displaced with content changes

For example, such a moving is shown in Fig. 7.1 of a commit 1. Therefore, we have additional three SSCs

than Mondal et al.

We consider method moving and class moving in the following ways –

• Method location changed in the same class (as shown in Fig. 7.1 of BlobClientBase.java class).

• Method moved from one class to another.

• Class moving–methods of deleted class and added class are same.

• Merging–one class is added from the contents of 2 deleted classes.

• Splitting–2 classes are added from the contents of a deleted class.

• Partial separation of code–methods from a few classes are deleted but mostly appeared in the new classes.

We consider a new class as the moved class if 30% of the methods are clones (better than 50% and 70%).

Because, some constructors having signature of that class can be added in the new class.

7.4.1 Relation Between Change Purposes and SSCs

The presence of the 17 SSCs among the four change groups is shown in Table 7.3. The left side in each

column represents all commits, and the right side represents balanced commits in the training and test sets.

Gray colored cell values represent the highest rank (in some cases, all the closest presence) based on the

percentage of presence. From the table, we observe that most of the highest distributions of delete and

disconnect (dSSCs) relations are for the preventive (PV). Perfective (PF) and adaptive (A) have approximate

distribution patterns (except in some dSSCs). Practitioners can treat these two groups as a single one since

fewer adaptive samples are found in practice as a separate group. Corrective (CR) has mostly MCC and

MCAC SSCs. However, all 17 SSCs are present in the PV group. In contrast, the module config remove

(MMD) is not present in the PF, module config add (MA), delete (MD) and MMD are not present in the

CR group. The MA and MVM are not present in the A category. Surprisingly, class move (MVC) exists

for all the groups. However, MVC and MVM are unexpected operations in the PF group. We investigated

the MVC in the PF category and found some irregularities. For example, VCS APIs return the renaming

of EventProcessorBlobPartitionManagerSample class in commit2 as class add and delete, and our technique

1https://tinyurl.com/2p9sebb2
2https://tinyurl.com/mwjmknve

100

Table 7.3: Semantic operations, their presence (% of commits) in different groups of changes and
classification impacts.

SSC Meaning Perfect Prevent Correct Adapt
Grouping
F1 (Ex-
cluding)

Inclusion
Im-

pact(base
42)

1 MA Module file addition 6 5 4 3 ∼ ∼ 4 4 40 (+)

2 MD Module file deletion ∼ ∼ 3 3 ∼ ∼ ∼ ∼ 39 (+)

3 CA New class addition 37 33 23 21 12 12 47 47 46 (-)

4 CD Class deletion 3 4 16 15 2 1 12 39 (+)

5 MVC Move class 3 4 14 16 1 1 11 10 38 (+)

6 MCNM Modify class+new method+cross
module dependency

18 17 10 9 12 12 25 26 42 (∼)

7 MCDM Modify class+delete method+remove
module dependency

2 1 6 5 1 1 7 7 39 (+)

8 MCNMA Modify class+new method+new lib
connection

21 25 11 18 14 14 22 21 36 (+)

9 MCDMA Modify class+delete
method+removing lib connec-
tion

2 1 6 5 4 1 5 7 39 (+)

10 MVM Move method 2 1 4 3 2 2 ∼ ∼ 39 (+)

11 CMD Modified constructor 4 4 5 5 3 3 5 5 40 (+)

12 MCC Modified class with cross module con-
nection

58 57 50 45 48 48 56 56 37 (+)

13 MCD Modified class, cross module discon-
nection

22 18 51 50 14 14 30 31 32 (+)

14 MCAC Modified class with lib connection 57 68 40 49 54 54 72 71 44.2 (-)

15 MCAD Modified class with lib disconnection 19 22 43 49 22 22 28 29 33 (+)

16 MMC Modified config with cross module con-
nection

11 10 14 13 4 4 20 20 41 (∼)

17 MMD Modified config, cross module discon-
nection

3 6 11 11 ∼ ∼ 5 5 37 (+)

Table 7.4: Rank of SSCs based on Pearson correlation analysis w.r.t categories in Weka.

SSC Worth
value

1 MODIFY DISCONNECT 0.2433

2 MODIFY API DISCONNECT 0.2276

3 CLASS MOVE 0.1764

4 CLASS DELETE 0.1742

5 MODIFY API CONNECT 0.1381

6 CLASS ADD 0.1201

7 MO DISCONNECT 0.1189

8 MODIFY NEW METHOD 0.1069

9 MODIFY NEW API METHOD 0.1064

10 DELETE MO 0.0927

11 MODIFY DELETE METHOD 0.0914

12 MODIFY DELETE API METHOD 0.0835

13 METHOD MOVE 0.0716

14 MODIFY CONNECT 0.0517

15 MO CONNECT 0.0517

16 CONSTRUCTOR MODIFY 0.049

101

Table 7.5: Correlation p−values considering the perfective and corrective categories

SSC p−value

CONSTRUCTOR MODIFY 0.7059

DELETE MO NA

MODIFY DELETE API METHOD 0.9746

MODIFY API DISCONNECT 0.676

MODIFY DISCONNECT 0.3363

MODIFY DELETE METHOD 0.3246

CLASS DELETE 0.2914

MODIFY NEW METHOD 0.2596

NON M2M 0.248

CLASS MOVE 0.1673

MODIFY CONNECT 0.1662

METHOD MOVE 0.1622

MO CONNECT 0.1088

MODIFY API CONNECT 0.0461

MODIFY NEW API METHOD 0.0284

NEW MO 0.022

MO DISCONNECT 0.0018

CLASS ADD 0.0003

Table 7.6: Correlation p−values considering the perfective and preventive categories

SSC p−value

MO CONNECT 0.4895

MO DISCONNECT 0.4431

NEW MO 0.43

CONSTRUCTOR MODIFY 0.3172

MODIFY DELETE API METHOD 0.2277

MODIFY CONNECT 0.1858

NON M2M 0.1689

DELETE MO 0.09

CLASS ADD 0.0875

MODIFY NEW API METHOD 0.0759

MODIFY NEW METHOD 0.0483

METHOD MOVE 0.0276

CLASS DELETE 0.0088

MODIFY DELETE METHOD 0.0087

MODIFY API CONNECT 0.0043

CLASS MOVE 0.0002

MODIFY API DISCONNECT 2.52E-05

MODIFY DISCONNECT 5.23E-07

102

Table 7.7: Correlation p−values considering the perfective and adaptive categories

SSC p−value

CONSTRUCTOR MODIFY 0.9376

DELETE MO NA

METHOD MOVE NA

MODIFY CONNECT 0.7281

NEW MO 0.7249

NON M2M 0.5802

MODIFY API CONNECT 0.49

MODIFY NEW API METHOD 0.3218

MODIFY DELETE API METHOD 0.3135

MODIFY API DISCONNECT 0.3133

MO DISCONNECT 0.3122

MODIFY NEW METHOD 0.2415

CLASS DELETE 0.1454

CLASS MOVE 0.0827

MODIFY DISCONNECT 0.053

MO CONNECT 0.0336

CLASS ADD 0.0131

MODIFY DELETE METHOD 0.0043

detects it as the MVC operation. As for the perfective group, we observe that the design is refactored as

part of the new method, segment, or class addition for implementing a new feature or a feature improvement.

We found at least five such commits in AzureSDK. Therefore, most of these properties directly or indirectly

explain some design decisions and their potential impacts. The impact of each SSC for predicting a group

is shown in the last two columns of Table 7.3. This outcome is based on the ArchiNet [171] strategy (Eqn

(7.1)) that produces 42% F1 with all SSCs. This is an alternative to the principal component [250] and

correlation-coefficient [96] analysis (to avoid broader explanation). We notice that CA and MCAC have

significantly negative outcomes for predicting the change groups. We also got the most significant positive

impacts with MCNMA, MCD, and MCAD for the PF and PV category.

We also analyze the associativity of the SSCs with different categories leveraging the correlation analysis.

The ranking of the SSCs based on Pearson Correlation analysis considering all categories in Weka is shown

in Fig. 7.4. Moreover, the p − values of Pearson correlation analysis of SSCs to pairwise categories are

shown in Tables 7.5, 7.6, and 7.7. These p− values are calculated based on the presence of the SSCs. Our

analysis is based on the hypothesis that the correlation of the SSCs follows different patterns in the pair of

categories. In this context, if the p-value is low (generally less than 0.05), then the pattern of the categories is

statistically significant. The gray color values in these tables indicate a statistically significant difference in the

respective categorical pair. It means that those SSCs can significantly differentiate the respective categories.

However, only a few SSCs are significantly different between the perfective and adaptive categories meaning

distinguishing them would be difficult. Thus, the SSCs provide the most reliable explanation irrespective of

project contexts and textual description.

103

7.5 SSC properties for Change Categorization

7.5.1 SSC Rule-based Change Type Determination:

Multiple SSCs may exist in many change tasks, such as the commit in Table 8.2 has seven types of SSC.

Therefore, co-occurred patterns (or associative occurrence) can indicate more specific information than their

individual presence. Their dependency relations or associations in a task may also be helpful for a proper

summary generation. Therefore, we explore the association rules [137] of SSCs from the training data. We

utilize the support, confidence, and leverage for selecting the highest ranked rules. An association rule is

presented as ⟨⊆ SSCs⟩ ⇒ C. The left side of ⇒ is called antecedents which are one or more operations,

and the right side is called consequent, which is a change class here. For example, in a commit, such a rule

can be ⟨CA,MMC⟩ ⇒ perfective; which means operations CA and MMC mostly occurred together when a

perfective change happened. We mined such rules based on the Apriori algorithm [66] with python Mlxtend

library [204]. We consider the top rules after mining the rules having Confidence> 0.50, Lift ≥ 1, and Support

≥ 0.1. However, rule extraction is problematic for four types at a time using the Mlxtend library. That is

why we extracted association rules based on samples pair strategy – PF + PV and CR +AD. If we consider

all the fours at a time, rules mining for a few remain empty, while for a few, hundreds of rules are generated.

We consider only the top 15 rules. However, in this process, many rules are present among multiple types.

We assign such rules to a relevant change type that has the highest combined values of the SSCs according to

the distribution from Table 6.3. For example, the rule {CD,MA} exists both in the PV and CR categories

but has the highest distribution within the PV, and we remove it from the CR category. Finally, we consider

a total of 40 rules. In this phase, we predict a change type based on the presence of the maximum number of

rules from the 40 rulesets for a relevant type. The F1 scores of the rule-based classification is shown with the

R-SSC graph in Fig. 7.2. Overall, the F1 score is 53% with the test sets, meaning that the SSC properties

are promising for change grouping with association rule mining strategy. Since rule mining requires careful

strategy along with human intervention, we avoid the 10-fold cross-validation evaluation. SSCs rules can

be employed for design artifacts generation- changelogs, design-centric release notes, and design document

recovery.

7.5.2 SSC Strength-based Change Type Determination:

Strength can be measured using TF-IDF [190], but Mondal et al. [171] found significantly lower outcome than

ArchiNet strategy. Therefore, we explore the training and classification strategy of ArchiNet [171] with the

SSCs due to the better performance than DNL and RF. It generates a training model using the normalized

special frequency value fvi of each token. Here, t is replaced with SSCs. In the special frequency (ft), the

value of a token (t) in a commit message with one or multiple presences is always 1.

For token t, fvi =
ft
Ni

, weight wti =
fvi∑4

i=1(fvi)
(7.1)

104

Perfective Preventive Corrective Adaptive Total
0

20

40

60

18

68

21

10

53

34

52

29

11

46
52

71

20

10

52

64
71

0

17

61

F
1
S
co
re

%

R-SSC sscDNL sscArchiNet sscRF

Figure 7.2: F1 score of semantic operations centric models.

Ar DNLr Rr

0

20

40

60

80

Ap DNLp Rp
0

20

40

60

80

Figure 7.3: Range of Recall (r) and Precision (p) rate

Then, a change group is predicted by measuring the maximum value of summation of all token’s weight

(wti) for a relevant class. With this model, the SSC can predict with a 52% F1 score in the best case scenario

(excluding CA and MCAC). More than 50% scores for multi-classes mean that the model produces a more

meaningful outcome than a random guess. This is 19 points (58%) increase than the abstract operations

reported by Mondal et al. [171]. The F1 scores for the individual category are shown with the sscArchiNet

graph in Fig. 7.2. The range of precision rate is 6.2 - 68%, and the recall rate is 25 to 74.4% which are shown

with the Box plot in Fig. 7.3. The SSC model produces the lowest outcome for the adaptive. However, the

accurate change type extraction is 65% (individual type’s range is 28-97%) with the Hit@2 [201] for the Top-2

rank metric. Hit@K is widely used for measuring the significance of suggested information in SE research.

The performance is still lower than the concept tokens but can be used to address some challenges for the

message triad.

7.5.3 SSCs As Features for Machine Learning Techniques:

We also explore the Deep Neural Learning (DNL) [71] and Random Forest (RF) [146] with the SSC features.

We adopt the same configuration of [171]. The classification outcome of DNL and RF with the training and

test set is presented as sscDNL and sscRF graph in Fig. 7.2. F1 scores of sscRF is 61%, but cannot predict

the corrective change. It is 46% for sscDNL, which is lower than the rule-based R-SSC and sscArchiNet

105

Table 7.8: Number of samples with no ArchiNet tokens.

Azure Atrium SpeedM Bach Vooga WebFX Aion Imgui

6 2 10 15 23 16 90 4

strategies. According to the literature, a large scale training dataset might produce better a DNL model [71].

Therefore, SSCs properties are also adaptable to deep learning and machine learning models. The ranges of

precision and recall are mostly similar to other models (except the sscRF).

Message for RQ1: Design impactful changes have various crucial semantic structural change (SSC) properties

at the code level that have good potentials for grouping them with certain explanation. SSC-based models

can produce up to 53% F1 scores.

7.6 Combined Models for Change Type Determination: SSC and

Concept

7.6.1 ArchiNet Concept-tokens Expansion:

Concept extraction from the developer’s description is valuable for understanding a change. It requires a huge

budget and human efforts to experiment all in the field of software development artifacts. However, Mondal

et al. [171] extracted around 237 concept tokens that indicate change intentions. We have employed their

classification model with the concept tokens referred to as ArchiNet for our module-level change dataset. The

ArchiNet has shown significantly better performance than DPLSA [255], LLDA [37], SemiLDA [80], DNL [71],

and RF [146]. However, many commit messages in our dataset do not contain any defined concept tokens

because ArchiNet are extracted from different projects. Project-wise statistics are presented in Table 7.8.

In that cases, no logical classification is possible (predicted weights of all types will be 0) with ArchiNet.

Therefore, we have extended the token list following the concepts in ArchiNet and modified the ArchiNet

model from the training set. Still, we cannot extract any reasonable tokens from 12 commits like sample 3 in

Table 8.1. Within the training set, the number of samples that have no ArchiNet tokens for the perfective,

preventive, and adaptive are 33, 53 and 1, respectively. This result reveals the vacuum of explainability

of the textual techniques for change analysis. Total, we got 56 new tokens with their respective strengths.

Experimental outcomes with this new model are almost similar for the ArchiNet dataset and our dataset

(only one-point variations).

7.6.2 Concept-tokens and SSCs with ArchiNet:

We explore a combined model utilizing the concept tokens of the ArchiNet and the 17 SSCs. The training

model in Eqn (7.1) with concept tokens and SSC is generated separately. Then the classification model

106

Perfective Preventive Corrective Adaptive Total

20

40

60

80

67 68

50

32

6366
73

51

30

65
60

74

53

29

64

F
1
S
co
re

%

ArchiNet SSC+Token SSCRule+Token

Figure 7.4: F1 score of ArchiNet, Mix-model with SSC, and Mix-model1 with SSC rules.

Table 7.9: Performance (F1 scores) of DNL and RF

Classifier Perfective Preventive Corrective Adaptive All

txtRF 72 78.5 37 7 70

ssc+txtRF 72.4 79 37.5 7 70.5

ctDNL 57 59 48 39 66

ssc+ctDNL 59 69 47 38 69

considers the average value of their total predicted strengths for argument maximization for indicating a

change group. If no concept token from the ArchiNet model exists, then the combined model considers the

SSC strength. We found 33 such samples in the test set. However, at least one semantic operation is present

within a change commit. Therefore, this provides an interpretation of change intention to some extent when

there is no informative commit message. We call this combined model semantic operation-centric ArchiNet

(sscArchiNet). The outcome of the combined model is shown in Fig. 7.4. We also explore the combined model

with concept tokens and SSC association rules. The outcome is promising, as shown in Fig. 7.4. sscArchiNet’s

F1 scores are 2 points better than textual technique (rule-based model is 1 point better). However, the Recall

rate range with Hit@2 [201] is 80-91% (total 86%).

7.6.3 Concept-tokens and SSCs with Machine Learning:

We compared the classification performance of DNL and Random Forest (RF) with and without SSC with

concept tokens. The outcomes with the same configuration as of Mondal et al. [171] are shown in Table 7.9.

SSC improves the performance of both of the classifiers.

Takeaway message for RQ2: SSC properties enhance the text-based classification techniques significantly

for change group determination. It also fills the vacuum of the explainability of the most promising textual

approach.

107

Table 7.10: Performance for tangled commits

TModel TangleP Perfective Preventive Corrective Adaptive

R-SSC 54 75 65 50 44

sscANet 60 79 65 63 35

7.7 Predicting Change Types in NI, AM and archTangled Commits

7.7.1 Change Types of archTangled Commits:

In our collected dataset, we found at least 99 commits that have multiple intentions for architectural changes.

As the SSC+tokens with the ArchiNet model shows better performance, we explore it for predicting multiple

types within the archTangled commits. First, we experiment with the range value compared to the highest

measured weight of the four change types from the trained model for deciding multiple types. If V is the

highest measured value among the four classes, then all the classes i with weight (Wm(Ci)) bellow or equal to

the threshold R would be the probable types as follows: V −Wm(Ci) ≤ R. The impact of threshold values (R)

for predicting a tangled commit is shown in Fig. 7.5. The best precision rate reached to 40% when R = 0.5 in

this equation. It indicates that the intelligent threshold value processing mechanism has a good potential for

handling the archTangled commits. We further explore the uniform range values on the normalized outcome.

In this process, we transform the predicted values of the four classes in such a way that the summation of the

strengths of all is 1. Uniform range (Ru) considers the uniform probability of being a type from a calculated

weight among the four classes as 1/4=0.25. If ω is the sum of all classes weights, then we consider all the

classes if it satisfies the following condition:

ω

Wm(Ci)
≥ Ru (7.2)

If we consider the value Ru = 0.25 in Eqn (7.2), then the precision rate of determining a tangled commit is

60% with sscArchiNet. Precision, recall and F1 scores for the all change categories among the 60% tangled

commits are 68, 67.8 and 68%. After normalization, we also consider other threshold values (i.e., 0.15, 0.30,

0.45, etc.) and found not as promising as the uniform value. For sscRule+tokens, the precision rate is 54%.

Precision, recall and F1 scores of the relevant categories among (54%) them are 64, 64.15 and 64%. All the

outcomes are shown in Table 7.10. Therefore, uniform threshold with sscArchiNet shows a promising direction

for change type determination in the tangled commits. We will utilize this model for generating the change

description and changelogs.

7.7.2 Handling NI and AM commits:

We rigorously analyze and define non-informative (NI) and ambiguous (AM) commit messages within the

balanced dataset. Defining NI messages is straightforward. The question is how we define AM messages.

108

.15 .25 .40 .50 .60 .75 .90
10

20

30

40

17

23

32

40

33

22
25

P
re
ci
si
o
n
%

Figure 7.5: Precision rate of tangled commits detection and classification for various threshold
values (R).

Inspired by the recent study of Ezzini et al. [73], we designate a message as the coordination ambiguity if it

contains and, or, also, additionally, &, ?, and multiple sentences with unrelated topics (as shown in Table 8.1).

Existence of and does not always indicate ambiguity such as - Add Mongo and the factory method for it. We

do not include such cases. We designated 33 commit messages as the NI and AM messages. SSC properties

with the ArchiNet strategy alone can produce 42.5% F1 scores (individual classes have a range of 24 to 64%).

SSC with tokens can produce 52% F1 scores (individual classes have a range of 40 to 62%). In comparison,

rules and tokens can produce 49% F1 scores. This outcome is below the average of the normal commit samples

meaning that grouping them is more challenging. Therefore, SSCs and concept tokens combined are promising

for handling the NI and AM messages. This finding is a starting point for experimenting with more robust

techniques with a large collection of samples. For example, the names of the involved modules and classes

and their respective SSCs can be utilized with our models to generate proper messages and change intentions.

7.8 Related work

Here, we discuss the most prominent and relevant studies.

7.8.1 Software Change Classification using Textual Features

A few of the studies specifically focused on grouping architectural changes (class-level) based on the inten-

tions/development and maintenance activities [246]. Mondal et al. [172] explored keywords and abstract

change operations [172, 171]. According to their experiments, the abstract operations (add, delete, modifica-

tions, and renaming) are not promising, whereas concept tokens have good potential for change grouping.

Our study explored more intuitive code change properties and extended the concept tokens for grouping

module-level architectural changes. A handful of studies focused on grouping changes based on large changes

(including non-coding files), concerns and tactics [101, 166, 83], which are aligned with the design impactful

changes but in a different perspective. We believe that the SSC properties can be leveraged to enhance these

techniques. Several studies are available for usual and fine-grained code change classification. Some of them

109

used discriminating set of keywords lists [168, 168, 100, 99, 160, 94, 80, 255, 86]. Most of the techniques that

only consider keywords cannot predict all change commits, also not promising in the context of architectural

changes [172]. The percentages of skipped samples are 20-28% of the experimental datasets. Several studies

also leveraged source code properties along with the keywords (in some cases) [60, 75, 104, 136, 157]). A

handful of studies also explored multipurpose within a change commit [99, 255, 86]. Overall, these studies

have not focused rigorously on handling the message triad – empty, ambiguous and tangled commit messages.

The explored source code properties are mainly abstract operations, method body, roles of the methods, code

change density, size of the added and deleted LOCs, and so on. They are intuitive enough neither in the

context of architectural change grouping nor for descriptive design artifacts generation. Our study explored

models for handling the message triad. Our explored SSC properties are more explicable for change grouping

and DDARTS generation.

7.8.2 Combined Model for Change Classification

Dagpinar and Jhanke [60] explored code and class properties for predicting perfective/adaptive, corrective,

and preventive classes. The number of statements TNOS, Non-inheritance class-method import coupling

NICMIC, Non-inheritance method-method import coupling NIMMIC, and Non-inheritance import coupling

NIIC are the best metrics producing 62 -99.7% R2 values for perfective/adaptive and corrective classes. Most

of the metrics represent architectural properties as discussed in Section 2.2.3. That said, this study can be

treated as the first to use architectural metrics to classify changes. However, the outcome of the preventive

class is not discussed.

Levin and Yehudai [136] utilized Fluri’s [75] taxonomy of 48 source code changes (for example state-

ment delete, statement insert, removed class, additional class, and so on) to classify commits into Mockus

[168] classes. However, they also attempted keyword searching within the commit message, which produced a

poor result. Later, they explored a classification model based on a hybrid classifier (J48, GBM, and RF) that

exploits commit keywords and source code changes (e.g., statement added, method removed, and so on). This

approach can select an alternate model during predicting a class if there is an ambiguity in determining a

type. Finally, the best class’s precision is 56%, recall is 96%, and F1 scores would be 70.7%.

Mariano et al. [157] proposed an improvement of Levin and Yehudai approach to classify commits into

Mockus [168] classes. Particularly, they included three additional features (method change, statement change,

and LOC change) in the classification model for XGBoost (a boosting tree learning algorithm). Hence, the

total number of features is 71: 20 keywords, 48 change types, and additional three features. The best accuracy

(ac) with this technique was 77% with Levin’s [136] dataset. However, precision (how many retrieved samples

are relevant to a particular change type), recall, and F1 scores are not presented, and the overall outcome is

unlikely to be better than [136].

Wang et al. [241] proposed a method to classify large review commit (having more than two patch sets)

into nine categories: bug fix, resource, feature, test, refactor, merge, deprecate, auto, and others. They

110

have employed various types of features for classification: text, developers’ profiles, and change operations.

Additionally, various machine learning classifiers explored by Hindle et al. [101] are experimented with in

this study. However, the specialty of the approach is that the different combinations of features are used for

predicting different groups (achieves 67% F1 score).

Unlike the previously mentioned classification models, Hönel et al. [104] introduced source code density, a

measure of the net size of a commit. The experimental outcome shows it improves the accuracy of automatic

commit classification compared to Levin’s approach. However, code density is the ratio of functional code and

gross size, and functional code is the total code that is executed any how. In comparison, gross code contains

comments, whitespaces, dead code, and so on, along with called code. This density feature is calculated on

each of the change operations (file or statement deletes or add) individually. For all data, the best accuracy is

73%, and Kappa is 0.58. For cross-project, the best accuracy is 71%. However, they did not present precision,

recall, and F1. It is highly likely that the best F1 scores are similar to the baseline study of Levin and Yehudai

[136]. However, they reported that the textual properties produce better outcomes in a few cases.

Untangling Commits: Several studies focused on untangling commits [61, 140, 240, 197, 179]. We also

explore a lightweight model for untangling architectural commits with a more rich set of information. The

model is applied in design artifacts generation, and the outcome is promising.

7.9 Conclusion

In this study, we explore classification models with SSCs and concept-tokens to handle the message triad for

architectural change categorization. In particular, we annotated a large collection of high-level architectural

change commits into four categories. Then, we explore several classification models. Through performance

measurement of them, we found that SSC properties alone can extract change type with 65% Hit@2 accuracy

while the combined model’s accuracy is 86% Hit@2 which are promising outcomes. The combined model also

can handle message triad challenges on a significant scale. That said, our proposed change categorization

approach can be deployed in the real world for various purposes, including design change document generation.

Our proposed change classification technique is stable and reliable. In the next study (i.e., Chapter 8), we

will utilize the change detection and classification techniques and the explored features for generating change

summaries that are useful for change review and developer-centric release logs.

111

Chapter 8

DDARTS: A Case Study for Descriptive Design Change

Artifacts Generation

As a case study, we explore an automated technique to generate architectural change summaries (textual)

leveraging the most promising change detection and classification techniques we have proposed in previous

studies in Chapters 5, 6 and 7. However, context-aware descriptive design change summary (a subset of design

change artifacts) generation is a challenging task [206]. To that end, we consider precise and meaningful

contexts based on the SSCs (in Chapter 6), change purposes (in Chapter 7), and relevant concepts related

to them (in Chapter 5) for generating the descriptive design change summaries. In this process, we first

generate SSCs and concept tokens mapping models from the training dataset created in the previous study

(i.e., Chapter 7). This mapping model contains separate models for each change group (with weighted ranked

words). Then, during change description and release change logs generation, we determine all the possible

change types using the uniform distribution models proposed in our fifth study. Then, the top-ranked concept

tokens of those SSC mapping models from the relevant categories are included in the number of unique sets

(according to the predicted types). The messages can be generated considering the first 1-3 top-weighted

concept tokens. We also integrate commit theme information using various contextual rules. Moreover,

we have defined four static rules for generating four types of change descriptions. Finally, we developed a

tool for the development and maintenance team for design change information extraction and change log

documentation.

The rest of the chapter as follows. Section 8.1 presents a brief overview of our study and Section 8.2 offers

a motivating example. Section 8.3 discusses related work, Section 8.4 presents our dataset of study; Section

8.5 presents change logs analysis; Section 8.6 discusses our proposed technique; Section 8.7 presents our tool;

Section 8.8 presents performance evaluation; Section 8.9 threats to our study; and Section 8.10 conclude this

study.

8.1 Introduction

In recent times, people all over the world have noticed that software anomalies are causing problems in various

dimensions of people’s daily life, such as healthcare systems, deadly transportation crashes, private data leaks,

disruption of energy supply, denial of social networking services, denial of regular socioeconomic activities,

112

and so on. These anomalies originate from software bugs, software security holes, problematic integration of

changes, complex-to-understand, and so on. [257, 154, 243, 167, 217, 189, 175]. Analysts, CEOs, and CTOs

are also warning of severe problems in retaining the software/IT workforce in upcoming years, which will

cause severe business and economic damage to many developed nations. They indicated this as the result of

inverse socioeconomic trends where software development and maintenance complexities (cognitive loads) are

increasing, but the psychological interests of people in complex jobs are decreasing. Researchers have linked

all the mentioned problems in software development and maintenance to inconsistent and complex design and

a lack of proper ways to easily understand what is going on and what to plan in a software system (code

comprehension). This is due to the fact that there is a significant gap between the information and insights

needed by project managers and developers to make good decisions and that which is typically available to

them [45]. Hence comes the necessity of generating descriptive design change documents and artifacts.

Proper documentation is vital for any software project, as it helps stakeholders to use, understand, maintain,

and evolve a system [13]. However, proper documentation is challenging due to insufficient and inadequate

content and obsolete, ambiguous information, and lack of time to write documents [45, 13]. To eradicate

these shortcomings and reduce human efforts, researchers are developing advanced systems that automatically

generate context-aware document considering the usefulness of a task. Despite this, proper documentation

further encounters conceptual and technical challenges related to the collection, inference, interpretation,

selection, and presentation of useful information [45, 13, 33]. Moreover, little focus is given to automatically

generating summarized documents of design impactful changes despite being used by the development and

maintenance teams significantly [13, 33]. On the other hand, software design artifacts can be numerous and

complex. Manually inspecting hundreds of change records to discover what they have in common and prioritize

their importance is not practical. In this regard, intelligent summarization techniques can be employed to

automate these tasks and help managers and developers focus on gathering high-level insights [45, 13].

A development and maintenance team requires to assess and produce (sometimes frequently or sometimes

only on-demand) various design artifacts – design document, release notes, descriptive changelogs, design

decision associativity with the relevant or impacted components [208, 13, 178]. Then again, adequate design

change description is required for code comprehension and code review. However, more than 85% software

project managers and 60% developers are likely to use architecture documents, component dependencies

information, change type, and other software documents [45]. Moreover, 40.5% of the major and 14.5% of

the minor releases contain high-level design change information [33]. As many as 17 people (mostly the core

architects of a project) can be involved in producing logs for a single release [33]. Apart from these, empirical

studies with the major companies revealed that software change document has widespread impacts on project

development and maintenance [13, 44]. These change documents can be of various forms. However, there is a

scarcity of automated tools to support specifically the system design changes.

Empirical studies with hundreds of software developers in major software companies reveal that a tool

should be easy to use, fast, and produce concise output about software analysis document for them [45, 13].

113

However, neither heavyweight nor lightweight design change document generation tools are readily available.

To complement this gap, in this study, we conduct an exploratory study and propose a lightweight approach for

generating design change information of <Actual purpose>:<Reasoning of change>: <Code change relation

information> format. Such descriptions are recently being used by major industrial and open-source projects

[76, 236]. These are also valuable entities for the design reviewers and various stakeholders. However, there is

a clear gap in automated tool supports for producing such rleaselogs [33]. As is discussed in Section 2.4 in

Chapter 2, architectural change detection and categorisation are the integral parts of developing a supportive

tool in this context. Proper generation of these entities requires proper grouping of changes (such as feature

improvement, flaw fixing and refactoring) [33]. An example part of the design change information for the

feature improvement task – ”update the API surface area” is ”InMemoryPM moved to samples”. Thus, a

descriptive design change artifact contains (at least) - ”why the design change has happened”, ”what high-level

program properties are impacted” and ”what will be the probable descriptive summary/logs of that change”.

We collectively referred to them as the descriptive design change artifacts (DDARTS).

The basic steps of design artifacts generation are shown in Fig. 2.5. A few of the examples of DDARTS

in a real-world project are discussed later in Fig. 8.1 and 8.2. As the steps suggest, it is quite insightful

that following these steps for all the commits of a release is almost impossible for humans or infeasible for

heavyweight techniques (such as those that require compiling the codebase for the AST generation [131])

considering the time, costs and benefits [33]. Among other things, proper grouping increase the knowledge

sharing and discoverability weight of the software documentation, which is a crucial factor of the development

and maintenance team’s productivity [13, 77]. Hence, our study also consider the easy-to-understand-the-

purpose knowledge sharing capability from the complex design changes.

A simple example of such an artifact is presented in Fig. 1.5 (crawled from a commit of the Azure SDK).

In this artifact, Feature Improvement presents the actual purpose of the commit. SSC part provides quick

information about the design relation and design impact. The Summary part is crucial for review because

this info will prompt urgent inspection of runtime security implications (given that the DM2 is sensitive and

restrictive) by the experts. Please note that this is fundamentally different from a commit message that the

DeltaDoc [44], ChangeScribe [144] and other existing techniques generate [147, 239, 112, 148], but can be

used as commit messages in some cases. Moreover, these studies did not consider tangled commit message

generation when multiple unrelated changes happen, which is common in practice [61]. In sharp contrast, our

study will seek scalable approaches to provide the information similar to Fig. 1.5 and 8.4 to the development

and maintenance team from the change commits. Overall in this study, we focus on the following research

questions:

RQ1: What types of information are development and maintenance teams documenting in design change

logs for the releases? In real-world development and maintenance activities, DDARTS such as summary

descriptions and changelogs for major changes from the commits are added for the maintainers, reviewers, and

software releases. In this RQ, we explore different types of information contained in the release change logs.

114

RQ2: What development artifacts are contributing to the writing of design change logs In this RQ we

investigate different types of development artifacts such as commit message, issue description and change

operations that are required to write the information extracted in RQ1. So that, automated techniques and

tools can consider and handle them efficiently.

RQ2: How SSC and concept tokens are promising for generating design change summary? In real-world

development and maintenance activities, DDARTS such as summary descriptions and changelogs for major

changes from the commits are added for the maintainers, reviewers, and software releases. In this RQ, we

explore the competence of the SSC properties to generate such design artifacts. Answering this research

question will help the researchers construct a baseline for scalable design artifacts generation tools research.

RQ3: How SSC and concept tokens are promising for generating design release change logs? In real-world

development and maintenance activities, DDARTS such as summary descriptions and changelogs for major

changes from the commits are added for the maintainers, reviewers, and software releases. In this RQ, we

explore the competence of the SSC properties to generate such design artifacts. Answering this research

question will help the researchers construct a baseline for scalable design artifacts generation tools research.

To answer RQ1 and RQ2, we collected around 100 recent release change logs from open-source-software

projects (commercially important) and manually investigated the contents. Following the findings, we proposed

an algorithm to generate descriptive change summaries. To answer RQ3 and RQ4, we propose a lightweight

approach for generating descriptive design changelogs that consider more precise and meaningful contexts

based on the relations among SSCs, concept tokens and change purposes. We consider different static rules

for change commit summary and release logs for natural text description generation considering the textual

contents of the explored change logs. Then we compared the generated words with the contents of 50 change

comments and 100 release change logs instances. The performance measure for these samples with the text

summarizing metric ROUGE [142] (overall 50% precision) reveals that our proposed approach is encouraging

in descriptive design change summary and release change logs generation given the complexities in this domain.

We also conduct subjective cross-validation of the outcomes by the developers. Finally, we developed the

DDARTS tool to generate design change summaries. We also measure the execution time of all the steps for

generating change logs and found it very scalable to frequently use in real-world development and maintenance

activities. As far as we are aware, this is the first study of automated descriptive design change log generation

in contrast with typical commit message and release note generation [148, 239, 178, 120]. Overall contributions

to this study:

• Construct a benchmark dataset to study design change logs generation.

• Extracted what types of information are contained in the developer’s written change logs.

• Proposed a technique for scalable design change artifacts generation.

• Present various performance evaluations for generated change logs.

115

8.2 Motivation and Background

8.2.1 Motivation

Scenario 1: Adequate Information for Change Comprehension and Review: Since code reviewers are not

the developers of the implemented tasks, they need accurate information to extract considering various

perspectives. However, message description does not contain intended and other information, as shown in

some real-world examples in Table 8.1. Motive in the Description column represents possible motives of the

developers. Reviewers or document writers can only get the real motive by discussing with all the involved

developers. Instead, our understanding through code analysis is summarized in Change in Code column

that appears to be inconsistent with the developer’s writing. That said, developers may write a change task

inconsistently. Meaningless or empty messages make the situation worse [148]. Hence, all the information

in Table 8.2 is valuable for the reviewers (as well as the description of the SSCs and modules). However,

potential information of the design impactful changes may contain this format (at least) - Actual purpose,

Reasoning of change, Design change relations, and Design Change Activity. An example format is described

in Fig. 1.5. A few more descriptive design changelogs written by the Azure team are shown in Fig. 8.1 (e.g.,

A has been flattened to include all properties from C and D classes). Here, the Breaking Changes are related

to the preventive change [63]. Furthermore, a detail comment for reasoning the change commit is shown in

the Detail Comment column of Table 8.2. Many of these samples do not follow specific content structures.

Manually writing them requires analyzing all the change revisions of a release (sometimes previous releases).

In summary, simplified and useful information by an automated tool is more useful than manually analyzing

several hundreds of code segments, methods, classes, and modules (as is required for the 3rd sample in Table

8.1). Once the change purpose and causal relations in the code are extracted, many other design artifacts like

these can be generated.

Scenario 2: Design document generation: A DNM team wants to generate a design document for the

upcoming release. A part of the document requires extracting the main features and its associated components.

However, without efficient technique, the last two in table 8.1 could be falsely processed as feature improvement

using description, but originally it was for design simplification. Fig. 8.1 shows a partial release log for the

developers of AzureSDK 4.0.0-preview.4 in the log change1 for corresponding feature level description of the

release note2. Which includes the design-related changes.

Such release changelogs are different from usual releasenotes. A good example that contains change group

information can be found in Azure SDK release logs3, which is shown in Fig. 8.2. Many changelogs, as we

have explored ∼200 instances, contain much more information (as is shown in Fig. 8.1). However, writing

such logs requires much more effort and analysis of various information (i.e., all commits, codebase, commit

1https://tinyurl.com/4xvh2s8j
2azure.github.io/azure-sdk/releases/2019-10-11/java.html
3https://tinyurl.com/yc2fp3rx

116

Table 8.1: Design impactful changes (DIS) in various projects and their description.

Serial Description Motive in description Change in Code

1.Aion update p2p logging &

fetch headers based on td

Either new feature or refactor-

ing or both. Which part is

design impactful?

Feature improvement

2.Aion some PR changes Does it improve feature or

refactor? Which issue is linked

with this change?

Design restructuring

3.Azure Refactored ADLS set access

control and added builders for

different types

Two tasks, which one im-

pacted the design

Both of them impacted the de-

sign, feature improvement and

design refactoring

4.Azure Storage InputStream and Out-

putStream

Looks like new feature Contents of some classes moved

into new classes, improve and

simplify design

5.webfx Improved Action API Could be a feature or design

improvement

Contents of a class moved into

new class, Design improvement

Table 8.2: Detail comment of a DIS. Underline tokens are the most important info to the
developers.

Commit Msg Change Summary Comment (Partial) SSCs

Updates to event proces-

sor surface area for pre-

view 5 (#6107)

The intent of this change is to update the API surface area

with the following changes:

- Handlers for partition processor methods (event, error, init,

close)

- InMemoryPartitionManager moved to samples

- Event processor takes all params required to build the client

...

- New types for each event type (PartitionEvent, Exception-

Context... - PartitionManager renamed to EventProcessor-

Store - Added fully qualified namespace to store interface

and a getter in EventHubAsyncClient

7

117

4.0.0-preview.4 (2019-10-08)
For details on the Azure SDK for Java (September 2019 preview) release refer to the [release announcement]
- `importCertificate` API has been added to `CertificateClient` and `CertificateAsyncClient`

+ ### Breaking Changes
+ - `Certificate` no longer extends `CertificateProperties`, but instead contains a `CertificateProperties` property named
+ - `IssuerBase` has been renamed to `IssuerProperties`.
+ - `CertificatePolicy` has been flattened to include all properties from `KeyOptions` and derivative classes.

Figure 8.1: Descriptive changelogs of DIS of AzureSDK.

Changes since 4.2.0-beta.6
Bug Fixes

● Ensured that RetryPolicy and HttpLogOptions use a default implementation when creating Key Vault clients if

not set or set to null.

New Features
● KeyVaultCertificateIdentifier can now be used to parse any Key Vault identifier.

Breaking Changes
● Removed service method overloads that take a pollingInterval, since PollerFlux and SyncPoller objects allow for

setting this value directly on them.

Non-Breaking Changes
● Renamed certificateId to sourceId in KeyVaultCertificateIdentifier.

● Added the @ServiceMethod annotation to all public methods that call the Key Vault service in CertificateClient

and CertificateAsyncClient.Figure 8.2: Partial release changelogs for DIS of AzureSDK.

message, issue reports, and review reports) than writing the commit messages. As many as 17 people (mostly

the core architects of a project) can be involved in producing logs for a single release [33]. Consequently, tool

support for descriptive design changelogs is more critical than for commit message generation.

8.2.2 Background

Architectural Change: Software architecture/design may be modified intentionally or unintentionally

during the development and maintenance life-cycles. Software architecture modification is considered as of

[192] – configuration change [72, 87], source-code layers (i.e., directories, package structures, and location

of code files within the directories) changes [151], design model change (i.e., UML diagram) [245, 152, 81],

architectural document in natural language [63, 115], and code component change operations (i.e., addition,

deletion, moving, and merging components) [246, 213]. However, software architecture is studied at three

abstract levels: high level, intermediate level, and low level. In this study, we focus on the commits having

module/system (higher) level changes. A module can be a sub-system, 3rd party library, and cluster of packages

[41]. Overall, the change commits having architectural design changes contain additions, removals, and moves

of implementation-level entities from one module to another. This also includes additions and removals

of modules themselves. Moreover, include and symbol dependency changes [151, 87] are also architectural

changes. In summary, our consideration of these metrics as architectural changes are based on a number of

118

existing studies [47, 81, 130, 213, 151, 245].

Architectural Change Type: Architectural changes can be grouped on focusing various perspectives

[246, 63, 169]. In this study, we consider change grouping based on the development and maintenance activities

[246]. They are as follows (details are discussed in Chapter 2):

Adaptive (A): This change is a reflection [246, 143] of system portability, adapting to a new environment

or a new platform. Corrective (Cr): This change refers to defect repair, and the errors in specification, design

and implementation. Preventive (PV): Preventive change [170, 246] refers to actionable means to prevent,

retard, or remediate code decay. This is related to inappropriate architecture that does not support the

changes or abstractions required for the system. Perfective (PF): Perfective changes are the most common

and inherent in development activities. These changes mainly focus on adding new features or requirements

changes [226, 246, 63] including improving processing efficiency and enhancing the performance of the software.

Design Change Artifacts: We refer to design change artifacts as the collection of one or more design

change-related entities - change impacted components, modification operations, modified dependency relations,

purposes of change, associated design decisions/features, descriptive change summary, modified design

document, design changelogs, design tactics, descriptive comments for the reviewers, and so on. A few of the

artifacts are discussed in the Motivation section. These artifacts are valuable for reverse-engineering as well

[50].

8.3 Related work

8.3.1 Automatic Code Change Document Generation

One of the pioneering works for code change description generation is the DeltaDoc tool by Buse and Westley

[44] that generates a lengthy textual message for a large change. Later, a changedescribe tool focusing different

balanced message content was developed by Linares-Vásquez et al. [144]. A few studies also focused on the

automated summary generation of commits. Jiang et al. [114] proposed a lightweight technique to generate

a short phrase for a change commit that is basically a commit message. Likewise, our proposed technique

also generates commit change summary focusing on the high-level design changes. Rastkar and Murphy [206]

proposed a summarization technique to generate concise descriptions of the motivation behind the code change

based on the information present in the related documents. They can locate the most relevant sentences in a

change set to be included in a summary. Although it is a lightweight technique, it does not consider source

code properties and is not elegant when the input contains non-informative and empty descriptions. Similar

to this study, Shen et al. [216] proposed a technique generating Why and What information for commit

messages for code changes by considering methods and textual description. However, the proposed technique

requires providing change type information for generating why info. In contrast, our technique predicts change

type without providing that information. In conclusion, our proposed tool does not replace these studies but

rather complements these studies for design change summary.

119

8.3.2 Automatic Commit Message Generation

Our study is closely related to change message generation. Following the previous studies, Jiang et al. [112]

proposed a neural machine translator to select the most relevant commit message from given code diff

information from a pre-collected ground truth dataset. Later, they enhanced their technique by considering

more semantic code information [111]. Liu et al. [148] proposed a promising technique that considers abstract

syntax tree structure to match the most relevant commit message from the previously collected commit

messages to recommend. Most recently, Wang et al. [239] proposed a neural-machine-translator that considers

code diff information and previously constructed a larger ground truth commit messages to enhance the

contexts (low-frequency word and exposure bias). These studies are excellent for recommending a commit

message but are not applicable to generating design change summaries. However, the Commit message

and our referred design change document have substantially different contents, although a part is extracted

from the commit message if available (otherwise, our technique can also generate a theme for the NI and

empty messages). In addition, these studies did not consider predicting change purposes (i.e., new features or

bug fixing), without which change contexts are not properly captured. Moreover, integrating design change

component relations as described in [173] with these approaches is really complex considering the change

categories. In comparison, we propose a model based on design relation properties extracted with a lightweight

process (code as string properties [173]) and concept tokens that are much more logical and explainable in the

context of design impactful changes (DIS). While our case study is similar to the commit message but a bit

more change description of how design has changed as shown in Table 8.2, which is focused on and adaptable

to two types of summaries – change description and release change logs. Furthermore, our model inherently

includes the predicted change group information within the message, which is required for reasoning a change.

8.3.3 Automatic Release Note Generation

Our work is also related to release note generation. Several excellent studies are available for release note

generation for the users/issues [178, 120, 183, 33]. Some of them generate a broader description (class-level)

of the related classes/files and methods [178]. In sharp contrast, our work focuses on design impactful

(module/system-level) releaselogs, which are neither too short nor too long.

The most promising tool developed for the automatic generation of release notes is ARENA [178]. Unlike

others, this tool generates summaries from source code changes and then purifies them with the description of

other textual information such as issue trackers, commit messages and pull requests. In this approach, code

change revisions are processed by srcML (for Java only). This tool also categorizes the information which

is dependent on the tags. However, it needs to parse AST, which is heavyweight for frequently producing

release notes for large projects. As the authors mentioned, ARENA does not support high-level architectural

change information. Moreover, it generates very lengthy release notes.

Klepper et al. [119] proposed an approach for user-specific release note generation frequently by collecting

120

information from various sources (filtered, grouped, and sorted). In this approach, considering contexts is also

valuable. However, it only automatically collects change and issue descriptions; it does not generate notes

automatically. Thus, it generates very lengthy release notes. As a result, manual intervention is required for

enhancing and tailoring the release notes produced by their approach. One crucial finding in this study is

that not all information is necessary for all audiences (rather, it is chaotic for them).

Nath and Roy [183] proposed a text summarization technique to filter more precise but not lengthy

information for generating release notes. To that end, they deploy the TextRank algorithm with GloVe for

semantic similarity of the commit messages and merge pull-request titles. However, this technique does not

process source code, and cannot handle if the commit messages are empty and meaningless.

However, our work does not replace these studies, rather provides additional supports when integrated

with them, because, 40.5% major and 14.5% minor releases contain system-level design changes [33].

8.4 Dataset Collection

We collected release change logs and change descriptions from two open-source software. In the data collection

phase, we followed some criteria to ensure the standard of the experimental projects – (i) the projects should

have well-defined high-level modules since high-level module extraction is infeasible (took 200 hours to 2 years

according to the project size), (ii) projects are also commercially important, (iii) projects should have at

least 100KLOC, (iv) projects are in a very active phase of development and maintenance in recent times,

and (v) projects must have some releases. Thus, the Azure JavaSDK and Hibernate-search projects are the

best choices that fulfill these criteria. The summary of these projects is presented in Table 8.3. Initially, we

focused on collecting 50 major releases of each of them during the 2021 to 2019 period (prioritize the selection

from the recent releases first, starting from 2021 until we get 50 releases). However, among the 50 change logs,

we found that some of them do not contain much change modification information; instead, they provide links

to change logs. Therefore, for the analysis, we consider the release that contains WHAT, WHY, and HOW

information [44]. We followed the WHAT and WHY concepts described by Buse et al. [44]. Here, WHAT -

explains what happened in the change itself (e.g., “Replaced a warning with an IllegalArgumentException”);

WHY - explains the context why it was made (e.g., “Fixed Bug #14235”); HOW - explains how changed

impacted the components (e.g., “InMemoryPM[class] moved to samples[module]”). Hence, for the Azure

JavaSDK, 39 releases have expected change logs. Then again, for Hibernate-search, we found that 26 release

logs (among the selected 50 release logs) have considerable change modification information. Therefore, our

collection contains around 64 major change releases.

121

Table 8.3: Projects for studied change logs.

Project Commits Size Devs Releases Domain

AzureSDK[76] 15,180 6.2MLOC 472 4000+ Cloud computing and data analytic

services

Hibernate

Search[236]

9504 263KLOC 61 100+ Data extracting and searching library

for cloud platform

8.5 Exploring the Design Change Logs Contents

8.5.1 RQ1: Types of Information Contained in the Descriptive Design Artifacts

We have manually analyzed the collected change logs and extracted types of information contained in change

logs. Collected AzureSDK change logs have 2,618 lines (excluding empty lines) of texts that took 24 hours

(per person) to analyze. While hibernate search has 26 release change logs having a total of 1,085 lines of texts

that took around 16 hours to analyze. In the annotation process, we followed the Java coding convention to

detect class, method, and module elements inside the textual descriptions. Whereas, detecting APIs/libraries

is straightforward. When we complete the manual annotation of types of information contained in each of all

releases, we have found at least 23 types of information. The summarized form and histogram of them are

shown in Fig. 8.3 (for Azure SDK 39 samples). In this collection, the most frequent information is change type,

class, module, methods, and API name. However, we have found an interesting trend that around 33.33%

change logs only contain change type information with the description of operations. They do not mention

the associated feature/issue/design decision with them. However, the mentioned change types information is

bug fixing, feature addition, and feature improvement. Azure SDK team writes breaking changes (refactoring)

and dependency change types, while Hibernate search has a special group of information called tasks which

basically contains documentation, tests refactoring, and other logs.

Most of the logs for both projects have information about the modified classes and modules. However,

classes are mentioned in as many as ten instances in a single log. At the same time, the method and API/library

names are frequent. Attribute variable/properties and parameters are also included at a considerable amount,

but their instances are up to three in a single release. However, the change operations are more descriptive for

the Hibernate project logs than the Azure SDK project. These change operations are contained mostly in a

semantic or meaningful way. Overall, the variation of frequent change operations is - removing, refactoring,

deprecation, adding, moving, replacing, renaming, exposing, merging, splitting, usage, including, dependency

update, and so on., for class, module, method, and APIs. However, in some rare instances, change operations

include inheritance, subclass, and superclass. Much non-coding related information is also present in the

logs, as is shown in Fig. 8.3 but not frequent. Moreover, we have observed the major release documents of

122

ch
a
n
g
e
ty
p
e

cl
a
ss

m
o
d
u
le

m
et
h
o
d

a
p
i

d
o
cu

m
en

t
li
n
k

re
fe
re
n
ce

li
n
k

a
tt
ri
b
u
te

va
ri
a
b
le

p
a
ck
a
g
e

va
ri
a
b
le

ty
p
e

is
su
e
n
u
m
b
er

p
a
ra
m
et
er

p
la
tf
o
rm

li
b
ra
ry

so
u
rc
e
li
n
k

fe
a
tu
re

co
n
st
a
n
t

in
te
rf
a
ce
s

co
n
st
ru
ct
o
r

co
n
fi
g
u
ra
ti
o
n

re
tu
rn

ty
p
e

p
re
v
io
u
s
re
le
a
se

fe
a
tu
re

is
su
e
ch
a
n
g
e
o
p

o
n
ly

ch
a
n
g
e
o
p

0

50

100

P
re
se
n
ce

%
AzureSDK Hibernate

Figure 8.3: Histogram of different types of information contained within a release change logs.

Hibernate-search that also write the changed semantic architecture with high-level components description

(presence is 100% for all the major releases). However, one notable difference between Azure and Hibernate

is that Azure also maintains separate logs for each module. However, the release change logs are formally

included in recent years (since 2019) for the Azure SDK releases. It is highly likely that the logs will contain

more formal and understandable implementation change information gradually. In summary, these findings

are helpful in developing automated tools for design change logs for the practitioners and techniques for

automatic extraction of change type information for large-scale empirical study for the researchers.

8.5.2 RQ2: What development artifacts are contributing for documenting the

design change logs

Knowing the sources of information for documenting design change logs is crucial for developing automated

tools. To answer this RQ2, we have subjectively tracked the presented information types in the previous

section. We found that this information is aggregated from commit messages, parent issues, comments on the

parent issue, API documentation, release notes, change logs of each module, change operations, and source

code. We also notice that this information is combined mostly in a short but meaningful way (neither too

long nor too short). In many cases, the commit messages are mostly grouped to change-type information

when aggregating.

123

8.6 Descriptive Design Change Summary Generation Model

8.6.1 Phases of Design Change Summary Generation

The details about the phases of generating design change artifacts are discussed in Section 2.4. Here, we

briefly introduce our strategies in the major phases.

Design Change Revisions Detection: Not all the change revisions or commits contain architectural

changes. That said, the revisions that are not architectural are not the candidates to extract design change

information. Therefore, in the first step, revisions containing architectural change are identified, and then SSCs

are extracted. However, existing studies for detecting high-level architectural changes are heavyweight that

require byte-code generation, human intervention, and high-performance computing, limiting the frequency of

deployment and number of change revisions [150]. Consequently, we deploy our proposed lightweight tool in

Chapter 6 for these purposes.

Change Category Determination: The next crucial step is determining the causes and types of change.

For this step, we deploy our proposed classification model in Chapter 7 that can also handle NI, empty, and

tangled changes.

Textual Description Generation: The final phase is generating natural language description aggregating

and considering the information of the previous phases. In this phase, we employ a rule-based natural language

model for this purpose. However, one of the most challenging tasks in automated change summary generation

is sensing the proper change contexts [44, 144, 112, 148, 239]. To handle this challenge, we attempt to consider

4X17 (68) dimensions of contexts consisting of four change types (i.e., perfective, preventive, corrective, and

adaptive) and 17 semantic structural change relations. In the next subsections, we describe our proposed

technique in detail.

8.6.2 Main Algorithm

An abstract view of reasoning for DDARTS generation is displayed in Fig. 8.9. The promising techniques for

commit message generation consider ground truth words from the training data for a context-aware message

to reduce low-frequency words and exposure bias [239], but such a context is a bit vague. In contrast, we

consider more precise and meaningful contexts based on the SSCs, change purposes, and relevant concepts

related to them for generating DDARTS. Surprisingly, we notice that our collected 100 release logs contain 86

concept tokens (discovered in Chapter 5) with a total of 383 instances, meaning that our extracted tokens are

valuable when embedded in the proper contexts. The details of these phases are shown in Algorithm 2. We

first generate SSC and concept tokens mapping models (STMti) from the training dataset containing a single

change type created in the previous study in Chapter 7. This mapping model contains separate models for

each change group (with weighted ranked words). Then, during change description and changelog generation,

we determine all the possible change types using the uniform distribution models (UModel) deploying the

124

extended ArchiNet strategy presented in Section 7.7.1 in Chapter 7. Then, the top-ranked concept tokens of

those SSC mapping models from the relevant categories are included in the number of unique sets (UTokens)

(according to the predicted types). The messages can be generated considering the top-weighted concept

tokens. In Algorithm 2, STMti, getRankedToken(), and generateMsg() have degree of freedom of enhancement

and customisation options. The generateMsg() function will produce sentences based on a few templates

similar to rules in [44], but a bit different considering the components CCompos and contextual prepositions

[171] selected from the change type (with SSCs), e.g., class A in module DM1 moved to module DM2. In

the next sections, we discuss strategies of generateMsg() function in our proposed algorithm.

Data: TrainDataS - Training data containing single changes, CText - commit message or other texts,

CSSC - sscs in a commit C, CComps - involved components in the commit

Result: SD - Description for all change types in a commit

begin

SD = [] ▷ Store summary for predicted changes

DIS = determineArchiChange(CCR, CCR(i−1)) ▷ If architectural change then returns True

if DIS is True then

CSSC = extractSSC(CCR)

STMti ⇐ getSSCTokenMap(TrainDataS, CSSC)

TChange ⇐ predictChangeType(UModel, CText, CSSC)

for Type Ti in TChange do

Token[SSC] ⇐ getSSCToken(STMti, Ti)

UTokens = set() ▷ unique collection

for SSC in CSSC do

CTokens ⇐ getRankedToken(Range, Token[SSC], SSC)

UTokens.add(CTokens)

end

SD.add(generateMsg(Rule(Ti), UTokens, CComps, Ti,CMTheme))

end

else

Exit

end

end

Algorithm 2: Descriptive design summary generation.

125

update the API surface area. InMemoryPM moved to samples.

the API surface area.update InMemoryPM moved to samples.

1 2 4

3

Figure 8.4: Structure of a design change text.

8.6.3 Complete Sentence Generation Rules for generateMsg()

An example structure of a descriptive change is shown in Fig. 8.4 that contains 1○ purpose token/tokens, 2○

main theme or parent issue, 3○ design components and relations, and 4○ change operations. In this study, our

target is to generate a similar structure. To that end, we employ some rules for generating complete sentence

for change logs for release as follows -

1. Prioritize operations based on the category

2. Reverse stemmed keytokens (KW) + components (CMP) + selected operations (OP) + preposition (P)

+ Pull some parts from the commit message noun phrase (NP).

The closest technique for generating a sentence is found in DELTADOC [44] which generates one sentence for

each modified method in a commit. The sentence rules (mostly consisted of Do and Instead of phrases) are

considered for statement-level changes based on modifications and conditions. Our approach considers 17

properties of architectural change operations and relations in contrast to DELTADOC. Furthermore, they

generate up to ten lines of sentences. However, our target is to generate one sentence that is neither too

short nor too long, focusing on high-level design change. In comparison, as we are focusing on generating

design change logs, we consider a more aligned set of rules for four high-level change types considering four

structural units as described in Fig. 8.4. In this structure, 3○ and 4○ are generated from extracted SSCs, and

their associated modules, classes and methods. These categorical rules are provided in Table 8.4. They are

formed by analyzing about 2,000 sentences of the collected releases (so-called training samples). However,

for the perfective sentence generation, the code change must contain at least ADD or MODIFY related

SSC. The semantic meaning for it should focus on feature addition and improvement context. In contrast,

for the preventive sentence generation, the code change must contain at least REMOVE or MOVE related

SSC. The semantic meaning for it should focus on restructuring or design simplification. On the other hand,

the corrective sentence should focus on the problematic theme. Thus, the phrase organization may vary in

their sentences. In the sentences, the purpose concepts (structure 1○) are generated dynamically using the

126

Table 8.4: Baseline rules for sentence generation

Change Type Must include Sentence Structure
Commit theme

(CMTheme)
Comment

Perfective Add/Modify
KW + SSCop + P + CMP

+ F
ADJ∧NP (F)

Corrective ∼
KW + Problem + P +

SSCop + CMP

ADJ∧NP

(Problem)

Preventive Move/remove
KW + P + SSCop + P +

CMP + P +Special word

ADJ∧Special

word (SW)
SW if exists

Adaptive ∼ Add/modify

KW + P + Adaptive

element + P + CMP+ P +

F

ADJ∧NP

(F)∧Adaptive

element (AE)

API as AE if

not provided

SSC-KW mapping models from a predicted change type. One important thing to note is that the SSC-KW

model is a stemmed words model which must be reverse stemmed for generating a sentence. However, no

automated technique is available to do that. Therefore, we manually reverse stemmed all 293 concept tokens

and maintain a static link between these two sets. In this process, different types of feature-related themes

(structure 2○) can be generated by selecting Noun (N), Noun-phrase (NP), Adjectives (ADJ), and special

words (SW, AE). Placing prepositions (P) should also maintain rules according to the change category. Such

options are summarized in Table 8.4. In the next section, we will discuss the theme generation strategy for

structure 2○.

8.6.4 Commit Theme Generation

We dynamically generate a commit theme (short) from the commit message. A theme consists of a noun

phrase and adjective such as ”for non-blocking I/O”. The algorithm for generating such a theme is shown

in Algorithm 3. Many ways are possible to generate a theme in the algorithm. In this process, we need to

intelligently rank the most relevant words. However, we have observed that those that have the highest length

among the lists of adjectives or noun phrases within a commit message are a bit more likely a better theme.

To extract a theme, we use nltk1 and textblob2 library to generate noun phrases which are not able to extract

for many commit messages. For those cases, the top ranked noun is used.

1https://www.nltk.org/
2https://textblob.readthedocs.io/en/dev/

127

Data: CM - Commit message

Result: CMTheme - Commit Message theme

begin

CM ⇒ Commit message

NP = extractAndRankNounPhrases(CM) ▷ Excluding non-Alpha words

AJ = extractAndRankAdjectives(CM) ▷ Excluding non-Alpha words

if NP is not Empty then

CMTheme = generateTheme(NPTop, AJTop)

else

NN = extractAndRankNouns(CM) ▷ Including non-Alpha words

CMTheme = generateTheme(NNTop, AJTop)

end

end

Algorithm 3: Commit theme generation algorithm.

8.7 DDARTS Tool

Several tools are available to extract, visualize and analyze an implemented architecture of a released version,

for example, EVA [182] and SAIN [82]. However, as far as we are aware, no tool is available to generate

descriptive design artifacts and documentation updates based on all the design change versions contained in a

release. We have developed a desktop tool for generating high-level design artifacts in Python, combining our

proposed approaches. It takes the list of commits for a release from a CSV file and directory of the local branch

of the project git repository. It automatically downloads the complete codebase for a committed version from

the Git repository branch of the project and extracts changed code segments returned by the GitPython

API. Then, the tool compares the two consecutive versions and detects the architectural change version.

DARTS tool can be used and extended with minimal effort by the users. The architecture of our developed

tool is shown in Fig. 8.7. Our tool has three main independent modules: DISDetect, TangledCategory, and

ChangeSummary. The byproducts of each of these modules can also be used for other analysis purposes by

the development and maintenance teams. The modules communicate thorough the input and produced data,

as can be seen in Fig. 8.7, and the tool script can independently be modified. The performance of DDARTS

is primarily dependent on the provided concept tokens model, SSC model, and SSC-Token mapping model for

change-purpose-centric document generation. Therefore, DDARTS performance can be enhanced by replacing

these datasets with the updated model without writing any script. The description of this module’s actions is

described as follows:

128

- module_name:
 - modified_class:
 - class_name:
 _connect:
 - methods:
 method_name>>class_name:
 - module_name:
 - class_name

One element in a list

Modified module

New dependency module
and components

Involved classes and methods

Figure 8.5: A Partial Structure of SSC information saved into YAML. Where, connect key
indicates new dependency

DISDetect

DISDetect module detects the change and produces SSC instances, and saves it to YAML files. This module

is implemented based on the approach described in Chapter 6. YAML files contain the name of involved

modules, classes, and methods. A partial format is shown in Fig. 8.5. This information can be used for many

purposes. We have provided a script for extracting information from the YAML file that can be easily used for

adding new features to the DDARTS tool for design change analysis. DISDetect also produces the abstract

names of the SSCs from the YAML file to easily understand the change relations meaning (as shown in Table

6.3) such as MCNM – Modify class that adds a new method with a new cross-module dependency.

TangledCategory

This module is responsible for determining change purposes using the uniform model. It takes input concept

tokens (from Chapter 5) and SSC models (from Chapter 7), SSCs and commit messages are saved in CSV

format and produces the predicted category. Predicted category information for each commit is stored in the

CSV file that can be later used for many purposes.

ChangeSummary

This module produces change summaries and release logs based on our proposed algorithm described in

Section 8.6. It takes input as the SSC word mapping models (from Chapter 7), SSC, and predicted category.

Summary against each change commit is stored in CSV, and release logs are stored in two text files. A partial

format of this file content is shown in Fig. 8.8. Two variations of this format are produced – (1) one for each

individual module (as is done in the Azure SDK project), and (2) all in general in a single place.

129

Commit Title

(a) Descriptive Summary:

1. Change type information,

2. Short description of change

 3. Change operations Modules, classes, and methods in SSCs

(b) Semantic change relations name

(c) Change components involved in architecture (module, class, methods)

Figure 8.6: A Partial Structure of a design change commit information for reviewer.

Produced Content Structure

Partial structure of the design change summary is summarized in Fig. 8.6. This structure of the document

content also follows experts opining of the written document1. It is constructed keeping in mind following

criteria –

• Convince the development and maintenance team to act a certain way or believe a certain idea

• To spur conversation

• To motivate

• To persuade

These are aligned in the analyzed release logs.

8.8 Performance Evaluation

Consistent and adequate code change summary generation is one of the most challenging tasks [148, 33].

Challenges - redundancy, consistency, sentence ordering, conciseness, adequacy, while constructing summaries

have made this field more difficult [185]. In this section, we conduct a case study of generating design impactful

change comments and changelogs, which are special types of design artifacts (DDARTS). We leverage the

SSCs and concept tokens with the change type prediction models for that purpose. As the experiments

indicate, change group prediction with the SSC+TokenArchiNet is better than DNL, a bit more explainable

since it is based on the strength of being a particular category, lightweight, and flexible to adjust. However,

the recall rate with Hit@2 is 86%, which is an excellent outcome and can provide an option for the documenter

to select from the best two outcomes. We selected ∼50 commits from the balanced training set from the

1https://libguides.tru.ca/c.php?g=193952&p=1276162

130

DISDetect Tangle
Category

Change
Summary

DARTS

Concept
model

Predicted
GroupsSSC

SSC
Model

SSC
Token
Map

Data
Input

Data
Output

Modules

Commits GitHub

Commit ids,
Repository path,
Command

SSCs, Release
Change Summary

Figure 8.7: High-level architecture of the DDARRTS tool.

Change Purpose: Perfective

– 1. (a) Short Description of change ⇔ (b) Change Modules, classes, and methods in SSCs

– 2. (a) Short Description of change ⇔ (b) Change Modules, classes, and methods in SSCs

– n..

Change Purpose: Corrective

– 1. (a) Short Description of change ⇔ (b) Change Modules, classes, and methods in SSCs

– n..

Change Purpose: …

Figure 8.8: Saved release change logs format.

Azure SDK project for the preliminary experiment. Those commits have a good explanation in the parent

issue link other than the commit message of what major changes happened. Such an example is shown in

Table 8.2. However, more than half of the commits of Azure SDK do not have detailed explanations like

them. Summary also requires thematic information from the commit message. Our target is also to include

meaningful themes even if there are empty and meaningless commit messages [148]. We have also collected

the descriptions of the change logs instances of various types of changes (Fig. 8.2) of Azure projects as of

Fig. 8.1. These are the representative formats for changelogs (how changes happened), and half of them are

not precisely the requirements described in the release notes. We make sure that the multiple descriptions

are not completely the same and reach the collection of around ∼100 instances; the statistics of them are

shown in Fig. 8.5. These two types of change descriptions confirm that our approach will be able to produce

reviewer-centric change summaries and release changelogs. We conduct three types of performance analysis of

the DDARTS tool - (i) by summarization metrics, (ii) by human evaluation, and (iii) by execution time. In

131

Table 8.5: Change Log Description Instances

Type→
New

Featur
Bug Fix

Breakin

Change

Minor

Change

Depend

Update

No

Type

#Instance 53 9 29 3 2 9

Group Perfective Correct Prevent ∼ Adaptive ∼

SSC Change purpose Concept tokens

Purpose 1 Summary 1
Purpose 2 Summary 2

Grouped summaries for
all DIS in a Release

Figure 8.9: Abstract reasoning of design artifacts generation.

the next subsections, we present our performance outcomes.

8.8.1 Accuracy Metrics

For testing the performance, we process the comments/logs by removing the stop words (using API) and

code/feature-like components (manually). For example, after cleaning the sentence - ”Fixing event hub

consumer” it would contain only ”Fixing” as ”event hub consumer” is related to component names and

features. We use ROUGE [142] metrics (an advancement of BLEU [148]) for measuring the performance of our

proposed model. ROUGE means Recall-Oriented Understudy for Gisting Evaluation. It is used for evaluating

automatic summarization of texts as well as machine translation. It works by comparing an automatically

produced summary or translation against a set of reference summaries. In this study, our target is to produce

the most relevant words in the initial phase. Therefore, we discuss the performance outcome of our proposed

model based on the precision rate of the ROUGE metric, meaning how much of our system summary is, in

Table 8.6: ROUGEPrecision of two types of summaries

Artifacts Type Perfective Preventive Corrective Adaptive All

Change Desc 22.5 36 15 33 50%

Design release Logs 37 29.5 37 12 42%

132

fact, relevant or needed? Precision is measured as -

number of overlapping words with the reference

total words in system summary
(8.1)

The performance outcome of our algorithm is shown in Table 8.6.

Change Description for Reviewers

The highest precision and F1 measure of ROUGE [142] metrics reached 66% and 55% for the ∼50 samples.

Sample count histogram for various ranges of ROUGE1Precision values for 1-gram is shown in Fig. 8.10.

Around 36 samples are in the 20 to 80% precision range. When we consider all the samples in a change type as

a single doc then the ROUGE1Precision rate are 22.5, 36, 33 and 15% for PF, PV, A, and CR type. Overall

ROUGE1Precision is 50%. Given that sometimes developers write a too short or inconsistent description,

a machine generated description will be moderate and consistent. Therefore, our initial study reveals an

encouraging result of the SSC and change grouping model.

Change Logs for Releases

Shuffling all the generated SDs from Algorithm 2 for all the DIS commits in a release according to similar

change types (Ti) forms the release changelogs for the development and maintenance team. Please note that

these release logs, as shown in Fig. 8.1 and 8.2 are quite different than the usual release notes generated by

the existing studies [178, 120, 183]. We experiment with 100 changelog message instances. We do not include

exact descriptions multiple times, which means it covers a wider range of writing variations. We compared

the generated tokens with the categorical (distribution is shown in Table 8.5) tokens of those changelogs. We

calculated ROUGE scores for four types of changes of all the predicted outcomes from the previous change

samples as a single doc. We compared them with the change categorical logs (all the instances in a category

are considered as a single doc) as shown in Tables 8.5. The ROUGE1Precision rate are 37, 29.5, 12, and 37%

for PF, PV, A, and CR type. Overall 42.2% ROUGE1Precision. This outcome indicates that the concept

tokens are a significant portion of the log messages. Since these results are from the release log instances, our

model is also suitable for release changelogs generation.

Takeaway message for RQ1: SSC properties and change classification models serve as a baseline construction

for various design artifacts generation.

8.8.2 Manual Cross-validation

BLEU [196] and ROGUE [142] metrics consider the number of keywords for measuring precision and recall that

cannot evaluate the semantic meaning and context of the generated summaries. Only humans can understand

the semantics and concepts of a document perfectly. Therefore, we designed a manual cross-validation

measurement to evaluate overall semantics and contexts. In this process, we requested five people (not

involved with this study) having professional software development experience to evaluate the outcomes of

133

0-19 20-39 40-59 60-79 80-100
0

10

20

30

16

23

10

3
0

S
a
m
p
le

co
u
n
t

Figure 8.10: Samples over the ROUGE1-P scores ranges.

our tool with the reference summary samples subjectively. We followed the human cross-validation study by

Liu et al. [147] for generated commit messages but on a small scale. This section is intended to evaluate the

contents of the outcomes of our tool by experienced developers.

Cross-validation Evaluation Design

The involved people for the cross-validation have 3 to 24 years professional software development experience;

and four of them are solely assigned to code review during their development job. We designed the developer’s

evaluation session for the generated contents of DDARTS in such a way that it takes a maximum of 30-35

minutes to complete the evaluation by a single developer. To that end, the study material contains the

followings:

• For commit-wise summary evaluation, we selected five representative commits from Azure SDK (perfective,

preventive, corrective).

• We provide the commit messages and detailed comments written by the developers of the relevant

projects as a reference. Then, we provide the produced summaries of our tool.

• We consider the release azure-resourcemanager-batch-1.0.0 of Azure JavaSDK project as the reference

release log1. This particular release log is considered based on the criteria that it likely contains at

least the first five and last two types of information as presented in the chart of Fig. 8.3. We selected

six commits associated with this release ensuring different types of changes from a release of the (two

perfective, two preventive, one tangled commit and one corrective).

• We did not consider the outcome of DDARTS for selecting the samples for evaluation.

• We provide reference release logs and our tool’s produced change logs for comparison.

• Then asked them to evaluate seven questions on a scale of 0 to 9 as summarized in Table 8.7. These

questionnaires are formed considering various crucial perspectives of the tool. Some of the perspectives

1https://tinyurl.com/jby4evdh

134

Table 8.7: Cross-validation evaluation questionnaires.

Serial Questionnaires Perspectives

EQ1 How helpful of the commit change summary content and structure

in terms of design/architectural change understanding and review?

Information structure

quality

EQ2 How helpful of the release change log content and structure for

design change understanding quickly?

Information structure

quality

EQ3 How module change relations (architectural properties) useful as

the content of design change comment and release logs?

Architectural informa-

tion

EQ4 How elegant of the textual description content focusing the change

context they are representing in general?

Change context

EQ5 How much relevance of meaning of the generated description com-

pared to the example samples that already exist in the projects?

Semantic meaning

EQ6 How much generated sentence keywords are contextual? Semantic context

EQ7 How much intervention/efforts do you need to make the sentences

perfect?

Description quality

are inspired from1 [118, 237].

Evaluation Results Analysis

The average evaluation scores and their subjective indication of all EQs are shown in Table 8.8. The score of

EQ7 indicates that generated sentence is 42% proper ((9-5.2)=3.8) which is aligned with the ROGUE scores.

It also indicate that considerable intervention is required to make the generated sentence more perfect. The

evaluation outcomes of the evaluation queries (EQs) are shown in the box plots [161] in Fig. 8.11. The box

plots summarized the range and median values of the evaluated scales. From the box plot, we observe that

EQ1-EQ6 score ranges do not vary significantly, while EQ7 varies considerably, which may be due to the

experience of the developers. For the overall significance measurement (in %) of the evaluation of the EQs, we

calculate the total average values as follows:

AV Gsig =

∑7
n=1(MEQn)

N
∗ 100

9
(8.2)

Here, AV Gsig is the overall significance in percentage (%), MEQ median value of an EQ, and N is the

number of EQs. We consider the median value because it does not change the meaning if there are outliers;

for example, a few developers scored the highest value of 9, but most of the evaluation values are below 6 for

1https://libguides.tru.ca/c.php?g=193952&p=1276162

135

EQ1 EQ2 EQ3 EQ4 EQ5 EQ6 EQ7

2

4

6

8

10

Figure 8.11: Range of evaluated scores of the evaluation queries.

an EQ. For EQ7, we revere the evaluated score as (9 - VEQ7), meaning that if the efforts are required on 3

points, it reduces 6 points effort. Overall average subjective significance is 75% compared to the substantial

significance which indicates that our tool is promising.

8.8.3 Scalability

One of the major attributes of a good documentation tool is accessibility, meaning documents can be generated

frequently and on-demand with little effort [13]. Another crucial point is the cost of generating such a

document, meaning it can be deployed with low-cost infrastructure frequently [13]. Therefore, to address

these two crucial attributes, we experiment with the scalability of generating design change documents with

a general-purpose computing machine. Users of the DDARTS are only required to input commit ids and

directory or local repository path as is displayed in Fig. 8.7. The databases used are CSV and text files.

The most promising tool available in public for architectural change analysis for the Java projects requires

uploading both all the codebases and compiled bytecodes of all the revisions [182, 213]. That is not the case

for our tools. Therefore our tool is very lightweight. The execution time for all phases of change detection,

change purpose determination, and change logs generation are shown in Fig. 8.9. Speedment is a medium size

project. 243 revisions of the codebase (commits), each having 407KLOC size, requires 35.8 seconds with a 8

cores and 16 GB RAM computer (Core i7-2600, 3.40GHz). AzureSDK is a large project having around 6

million lines of code (MLOC). 276 revisions of the codebase for it requires 136 seconds. This indicates that

the DDARTS is quite scalable that satisfies the accessibility and cost-benefit attributes.

136

Table 8.8: Average scores of the cross-validation measurements and their indications.

Serial Average scores Score indication

EQ1 7.4 Very good

EQ2 7.8 Very good

EQ3 7.2 Very good

EQ4 7.4 Very good change contexts

EQ5 6.8 Good semantic meaning

EQ6 7.6 Very contextual meaning

EQ7 5.2 Considerable intervention

for proper sentence

Table 8.9: Execution time for all phases of DDARTS, 1KLOC = 1000 Lines of code.

Project Revisions Execution time Each Revision Size

Hibernate 52 6.34 seconds ∼ 263 KLOC

Speedment 243 35.8 seconds ∼ 407 KLOC

AzureSDK 276 136 seconds ∼ 6164KLOC (6MLOC)

8.9 Limitations and Threats to validity

Require paraphrasing or ordering the generated words. One major issue in our experiment is proper SSC

extraction. However, 90-100% precision is reported by Mondal et al. [173]. We also check our additional three

SSCs with their train set and found around 100% accuracy, meaning that at least those instances are available.

Although it is infeasible to get the exact number of presence of them, it reduces the threat significantly.

Dataset annotation is biased to human perception. However, two authors annotated independently and,

in some cases, clarification from developers, which mitigates the threats. Another threat remains in the

generalizability of the collected projects. Our collected projects are built with Java and Kotlin. Since the

SSC properties are not context-dependent, mining modules with the existing tools (such as Bunch [155],

MojoFM [245], ACDC, ARC [213], etc. for C/C++) would facilitate the SSC extraction in other coding

platforms. Another threat remains in the quality of change description samples. Since they are written by

the developers, these samples are reliable. Other threats remain the unbalanced collection of change groups.

However, we experimented with the balanced training and test data and found approximate results with 2-5

points variations. Thus, it reduces the unbalanced samples threat. We also experiment with 10-fold cross

validation of sscArchiNet outcomes, which do not vary significantly (4 points fewer). Thus, it reduces the

model over-fitting threats to a certain extent.

137

8.10 Conclusion

In this study, we explored the semantic code change relations (SSC) of the design impactful changes for

generating design change artifacts (for both individual commits and a complete release). In particular, we

prepared a benchmark dataset by manually analyzing around 100 change release logs, 100 log instances, and

50 change comments for experimenting with design change artifacts generation. Then, we extracted various

types of information required by the developers to write such documents so that the researchers could focus

more on the automatic generation of such documents. Given the scarcity of benchmark data, our prepared

dataset will be used to enhance further research in this domain. Furthermore, we have proposed a lightweight

technique for generating descriptive summaries and release change logs of the design changes. Performance

analysis of our technique with the ROUGE metric shows that the change grouping models and SSCs are

promising (50% precision) with the proposed technique. Furthermore, human evaluation of our tool’s outcome

also indicates a very promising result. In addition, our tool’s processing time is scalable with general-purpose

computing. In conclusion, it will be an interesting work to collect and process a large collection of design

change logs and explore the neural machine translator [239] embedding the thematic knowledge from the

commit messages with the SSCs for generating more accurate sentences.

138

Chapter 9

Conclusion

9.1 Concluding Remarks

Design inconsistency and lack of pertinent information about the design of software systems create hurdles in

making decisions and implementing changes. As a result, software bugs are produced, and security backdoors

are created [257, 154, 243, 167, 217, 189, 175]. Development and maintenance teams also suffer various

unnecessary mental pressures. All these things have severe consequences for the economy and people’s daily

life. Proper design documents need to be generated through architectural change detection, categorization,

and change description generation to mitigate these problems. However, many research challenges exist in the

literature for developing automated techniques for these phases (Chapter 1, Section 1.2). According to our

systematic literature review, some of the crucial challenges are as follows:

First, a lack of sufficient datasets affects the deep insights extraction and performance of the architectural

change information analysis [34]. Unfortunately, annotated datasets for high-level architectural change

revisions are unavailable for research. It requires substantial experts human efforts to annotate a good quantity

of samples.

Second, most of the existing studies consider either conversion of byte code or other formats of architectural

definition coding as the primary step of architecture change detection [24, 245, 253, 65, 29, 69, 12]. As a

result, they are either heavyweight or require substantial human intervention. Thus, it a may take several

hours to a few years for extracting a design change [150]. However, 88.9% of architecture information is

written as natural language texts whose size does not vary significantly from project to project [64, 115]. But,

no study focused on textual properties for developing lightweight techniques.

Third, existing change detection studies overlooked directory, naming structure properties, and string

patterns in the code change information returned by the diff tool of each codebase revision for extracting and

coding the design architecture of a system. Existing studies that focus on implemented architecture process

all the source code of each change revision. As a result, the execution time is several hours for each revision

for extracting the high-level design change [130, 81, 129, 151, 150].

Fourth, existing studies are typical change commits categorizations that consider traditional text properties

and source code properties [101, 95, 160, 86, 255, 135, 104]. Consequently, adapting them for architectural

context can not handle the commit triad (tangled, ambiguous, and non-informative or empty message)

139

challenges properly. However, they consider neither more intuitive semantic tokens/themes nor semantic code

change relations properties for commit triad handling in proper architectural change categorization.

Fifth, some excellent studies exist that automatically generate commit summary descriptions and release

notes [44, 144, 112, 239, 148, 178, 120, 33]. However, change summaries and change logs for high-level design

changes are not covered by them due to cost, efforts and substantial experts intervention. Thus they are not

helpful in getting high-level design change information and impacts.

In this thesis, we have proposed several approaches for architectural change detection, categorization,

and documentation. We have explored various textual properties and code change properties from new

perspectives for solving the mentioned challenges. In our first textual approach for architectural change

detection (Chapter 3), we extract key terms and co-occurred terms for expressing architectural changes [172].

Our extracted co-occurred terms and change detection technique leveraging them is lightweight and does

not interact with the codebase. Thus, it can be deployed to large-scale datasets available in the software

repositories (i.e., GitHub, BitBucket, etc.) for empirical studies on architectural change analysis, design review

issues, and concern mining. This study also reveals that the developer’s descriptions (including code review

comments) contain natural language properties that are the indicators of architectural changes to a significant

extent. In another study for architectural change detection (Chapter 6), we found that directory and naming

structure properties of the software codebase can be leveraged for efficient and lightweight detection of the

implemented (descriptive) architecture [173]. However, our exploratory study reveals that for architectural

change categorization (Chapter 4), the discriminating set of keywords is not reliable. In contrast, the concept

tokens present within the commit messages are promising and can be deployed with structural code change

relations (SSC) for determining the change purposes (Chapters 5 and 7). In our final study in Chapter 8, we

have proposed an automated system for various design change document generation using structural code

change relations, change purpose prediction model, and concept tokens. Our case study with the change

summaries and design change logs of the Microsoft Azure SDK project shows encouraging results. Overall,

our proposed approaches in this thesis are readily applicable to develop tools for design change traceability,

features and design component mapping, architectural versioning scheme, decision making on project release

activities, developers profile buildup, code review, change summary for the developers, design document

updating, software documentation, release notes generation, software change analysis, and so on.

9.2 Discussions

The studies of this thesis are conducted in addressing the overall goals of the thesis (discussed in Chapter 1)

and are related as of Fig. 9.1. In this thesis, study 4 is a complementary study of study 1 for architectural

change detection. Furthermore, studies 2, 3, and 5 for change categorization are subsequently enhanced.

While study 5 used the dataset and SSCs of study 4 and concept tokens from study 3. On the other hand,

our final study (6) utilized concept tokens from study 3, SSCs from study 4, and the classification model

140

Textual document Source Code properties
 SSC extraction

41

Discriminating Words Concept tokens Source code properties
Concept tokens

32 5

Architectural Change Detection

Change Categorizing

Descriptive Design Change GenerationDesign Artifacts Generation

Advance

Enhance Enhance

Use tokens, SSCs, classification model

6

Use SSCs

Figure 9.1: Relation mapping of our studies.

from study 5. Another important thing to mention is that most of our studies are foundational to this

particular topic. Moreover, we have created datasets to solve the challenges of architectural change detection,

classification, and summary generation. These datasets are summarized in Table 9.1. We have invested great

efforts in creating them and made them available to the public. With them, we also provide our extracted 130

co-occurred terms (with 166 keywords) that express architectural changes, a set of keywords for four types of

architectural changes, and 293 concept tokens for architectural change categories. That said, the researchers

can start exploring insights and leveraging them without much effort. Thus, these datasets can be used as the

benchmark to advance research in this domain further.

9.3 Limitations and Future Work

Most of the studies in the thesis are explored for the first time in the context of descriptive design change

artifacts generation. Naturally, some challenges remained unresolved. There are many opportunities to

enhance our proposed approaches considering design change traceability, feature, and change mapping, design

change versioning scheme, release management, descriptive change summary generation, code review, and so

on. Following sections discuss some of the limitations of our conducted studies and future works.

1. Our proposed textual technique for determining architectural changes is based on the co-occurred key

terms extraction. Those are extracted from a small dataset and might not cover a broader area because

collecting developer’s discussions that actually triggered architectural changes in the codebase is a

challenging and time-consuming task. Therefore, collecting a larger collection of samples would facilitate

covering key terms for broader contexts and better techniques. Moreover, our explored techniques’

outcome is promising but not excellent (around 61% F1). Another major challenge in textual approaches

is that many samples contain tacit and ambiguous descriptions in the software engineering contexts.

141

Table 9.1: Our prepared datasets

Approach
#

Projects

Project

type
#Samples Data type Available Source

S1:ACCOTERM 5 OSS, CV 1350
Textual messages, ar-

chitectural changes

github.com/akm523/ scam-

renedata

S2: ArchDFM 5 OSS, CV 362
Four architectural

change types

github.com/akm523/ scam-

renedata

S3: ArchiNet 5 OSS, CV 1133
Four architectural

change types

github.com/akm523/

archinet

S4: ArchSlice 10 OSS, CV 3547
Code revision, Archi

Changes

github.com/akm523/ arch-

slice

S5: ArchSSC 8 OSS, CV 2697
Four architectural

change types
tinyurl.com/yjpkws3s

S6: DDARTS 2 OSS, CV 214

Comment summaries,

design change release

logs

tinyurl.com/4w5yd6d6

To that end, concept mining approaches can be explored for developing better techniques since the

developer’s intention is embedded within the natural language text.

2. Our proposed technique for detecting implemented architectural changes using DANS properties covers

high-level changes for the Java and Kotlin projects. However, these DANS properties may vary for

projects developed with other coding platforms, and our tool may not be suitable for them. Therefore,

DANS properties needed to be studied and enhanced for supporting Python, C/C++, and so on.

3. Our SSC extraction technique only considered the high-level concrete modules defined in Java and

Kotlin. But, modules and packages have different structures and conventions for Python, C/C++, and

others. Moreover, SSC cannot be extracted where high-level modules are not defined. However, a few

heavy-weight approaches ([150, 213]) are available to extract approximate high-level modules leveraging

the clustering techniques, and those tools can be extended to extract SSCs.

4. For architectural change categorization, concept tokens are the most promising approach. However, our

extracted concept tokens are from a limited set of change samples from open-source projects, which

might not cover a broader area. Therefore, extracting more concept tokens from a larger collection of

commit messages, including commercial projects, could enhance our model. Moreover, a better natural

language approach with code change concept mining could enhance the change purpose determining

technique.

142

5. In the case study of descriptive design change artifacts, we analyzed a small collection of samples (due to

the scarcity of representative projects) of change summary comments and release logs of design impactful

changes. Therefore, it may not cover a broader context, and some challenges might have been undetected

for generating a proper summary according to the developer’s need. In future, researchers should collect

and analyze more samples covering more OSS and commercial projects.

6. Our preliminary study for design change document generation considered information about change

purposes, semantic change relations, and short commit theme. However, more thematic information

extracted from commit messages, issue descriptions, and code concepts can be leveraged for more proper

change description generation. That said, it will be interesting to develop a neural machine translator

with this information for more accurate description generation.

7. Our developed tool for design change document produces approximate but incomplete sentences for

change description (part a) in Fig. 8.8) for many cases that requires human intervention to make it

perfect before final use. Thus, there are opportunities for further research works to enhance our tool for

more proper and complete sentence generation.

143

References

[1] DNL Text Classification Basic. www.tensorflow.org/text/tutorials/text_classification_rnn.

[2] Github projects:. https://thenextweb.com/news/github-now-hosts-over-100-million-repositories.

[3] Llda program: https://github.com/taskehamano/llda.

[4] Plsa program: https://github.com/laserwave/plsa.

[5] Pydriller: github.com/ishepard/pydriller.

[6] RNN Basic. https://www.analyticsvidhya.com/blog/2022/03/

a-brief-overview-of-recurrent-neural-networks-rnn.

[7] Semilda program: https://github.com/fancyspeed/semi-lda/tree/master/python.

[8] Sentiwordnet: http://sentiwordnet.isti.cnr.it/. June, 2019.

[9] Study artifacts: https://github.com/akm523/scamrenedata. June, 2019.

[10] Tensorflow: www.tensorflow.org/tutorials/text.

[11] Ieee recommended practice for architectural description of software-intensive systems. IEEE Std
1471-2000, pages i–23, 2000.

[12] Amjad AbuHassan and Mohammad Alshayeb. A metrics suite for uml model stability. Software &
Systems Modeling, 18(1):557–583, 2019.

[13] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele Bavota, Michele Lanza,
and David C Shepherd. Software documentation: the practitioners’ perspective. In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE), pages 590–601. IEEE, 2020.

[14] Aakash Ahmad, Pooyan Jamshidi, Muteer Arshad, and Claus Pahl. Graph-based implicit knowledge
discovery from architecture change logs. In Proceedings of the WICSA/ECSA 2012 Companion Volume,
pages 116–123. ACM, 2012.

[15] Aakash Ahmad, Pooyan Jamshidi, and Claus Pahl. Graph-based pattern identification from architecture
change logs. In Proc. of CAiSE, pages 200–213, 2012.

[16] Mamdouh Alenezi. Software architecture quality measurement stability and understandability. IJACSA,
2016.

[17] Nicolli SR Alves, Thiago S Mendes, Manoel G de Mendonça, Rodrigo O Sṕınola, Forrest Shull, and
Carolyn Seaman. Identification and management of technical debt: A systematic mapping study.
Information and Software Technology, 70:100–121, 2016.

[18] Aoin. :github.com/aionnetwork/aion, 2020.

[19] Elvira Maria Arvanitou, Apostolos Ampatzoglou, Konstantinos Tzouvalidis, Alexander Chatzigeorgiou,
Paris Avgeriou, and Ignatios Deligiannis. Assessing change proneness at the architecture level: An
empirical validation. In 2017 24th Asia-Pacific Software Engineering Conference Workshops (APSECW),
pages 98–105. IEEE, 2017.

144

www.tensorflow.org/text/tutorials/text_classification_rnn
https://thenextweb.com/news/github-now-hosts-over-100-million-repositories
https://www.analyticsvidhya.com/blog/2022/03/a-brief-overview-of-recurrent-neural-networks-rnn
https://www.analyticsvidhya.com/blog/2022/03/a-brief-overview-of-recurrent-neural-networks-rnn

[20] Atrium. : github.com/robstoll/atrium, 2020.

[21] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. Sentiwordnet 3.0: an enhanced lexical
resource for sentiment analysis and opinion mining. In Proceedings of the Seventh conference on
International Language Resources and Evaluation, volume 10, pages 2200–2204, 2010.

[22] Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, M. Little, Paulo Merson, Robert
Nord, and Judith Stafford. Documenting Software Architectures: Views and Beyond. Addison-Wesley
Professional, second edition, 2010.

[23] Rami Bahsoon and Wolfgang Emmerich. Architectural stability. In Proc. of OTM, pages 304–315, 2009.

[24] Carliss Young Baldwin and Kim B Clark. Design rules: The power of modularity, volume 1. MIT press,
2000.

[25] Carliss Young Baldwin, Kim B Clark, Kim B Clark, et al. Design rules: The power of modularity,
volume 1. MIT press, 2000.

[26] Olivier Barais, Anne Françoise Le Meur, Laurence Duchien, and Julia Lawall. Software architecture
evolution. In Software Evolution, pages 233–262. Springer, 2008.

[27] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice. Addison-Wesley
Professional, 2003.

[28] Pooyan Behnamghader, Reem Alfayez, Kamonphop Srisopha, and Barry Boehm. Towards better
understanding of software quality evolution through commit-impact analysis. In Proc. of QRS, pages
251–262, 2017.

[29] Ameni ben Fadhel, Marouane Kessentini, Philip Langer, and Manuel Wimmer. Search-based detection
of high-level model changes. In 2012 28th IEEE International Conference on Software Maintenance
(ICSM), pages 212–221. IEEE, 2012.

[30] Gunnar R Bergersen, Dag IK Sjøberg, and Tore Dyb̊a. Construction and validation of an instrument
for measuring programming skill. IEEE Transactions on Software Engineering, 40(12):1163–1184, 2014.

[31] Marcello M Bersani, Francesco Marconi, Damian A Tamburri, Pooyan Jamshidi, and Andrea Nodari.
Continuous architecting of stream-based systems. In Proc. of WICSA, pages 146–151. IEEE, 2016.

[32] Manoj Bhat, Klym Shumaiev, Uwe Hohenstein, Andreas Biesdorf, and Florian Matthes. The evolution
of architectural decision making as a key focus area of software architecture research: A semi-systematic
literature study. In 2020 IEEE International Conference on Software Architecture (ICSA), pages 69–80.
IEEE, 2020.

[33] T. Bi, X. Xia, D. Lo, J. Grundy, and T. Zimmermann. An empirical study of release note production
and usage in practice. IEEE Transactions on Software Engineering, pages 1–1, 2020.

[34] Tingting Bi, Peng Liang, Antony Tang, and Chen Yang. A systematic mapping study on text analysis
techniques in software architecture. Journal of Systems and Software, 144:533–558, 2018.

[35] Nate Black. Nicolai parlog on java 9 modules. IEEE Software, (3):101–104, 2018.

[36] Roi Blanco and Christina Lioma. Graph-based term weighting for information retrieval. IR, pages
54–92, 2012.

[37] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine
Learning research, 3:993–1022, 2003.

[38] Mikael Boden. A guide to recurrent neural networks and backpropagation. the Dallas project, 2(2):1–10,
2002.

145

[39] Jan Bosch. Software architecture: The next step. In European Workshop on Software Architecture,
pages 194–199. Springer, 2004.

[40] Eric Bouwers, Jose Pedro Correia, Arie van Deursen, and Joost Visser. Quantifying the analyzability of
software architectures. In 2011 Ninth Working IEEE/IFIP Conference on Software Architecture, pages
83–92. IEEE, 2011.

[41] Ivan T Bowman, Richard C Holt, and Neil V Brewster. Linux as a case study: Its extracted software
architecture. In Proceedings of the 1999 International Conference on Software Engineering (IEEE Cat.
No. 99CB37002), pages 555–563. IEEE, 1999.

[42] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai.
Class-based n-gram models of natural language. Comput. Linguist., 18(4):467–479, December 1992.

[43] Bach-Java Shell Builder. : github.com/sormuras/bach, 2020.

[44] Raymond PL Buse and Westley R Weimer. Automatically documenting program changes. In Proceedings
of the IEEE/ACM international conference on Automated software engineering, pages 33–42, 2010.

[45] Raymond PL Buse and Thomas Zimmermann. Information needs for software development analytics.
In 2012 34th International Conference on Software Engineering (ICSE), pages 987–996. IEEE, 2012.

[46] Yuanfang Cai and Kevin J. Sullivan. Modularity analysis of logical design models. In Proc. of ASE,
pages 91–102, 2006.

[47] Yuanfang Cai and Kevin J Sullivan. Modularity analysis of logical design models. In 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE’06), pages 91–102. IEEE, 2006.

[48] William M Campbell and Fred S Richardson. Discriminative keyword selection using support vector
machines. In NIPS, pages 209–216. Citeseer, 2007.

[49] Ivan Candela, Gabriele Bavota, Barbara Russo, and Rocco Oliveto. Using cohesion and coupling for
software remodularization: Is it enough? TOSEM, 25(3):24, 2016.

[50] Gerardo Canfora, Massimiliano Di Penta, and Luigi Cerulo. Achievements and challenges in software
reverse engineering. Communications of the ACM, 54(4):142–151, 2011.

[51] Rafael Capilla, Anton Jansen, Antony Tang, Paris Avgeriou, and Muhammad Ali Babar. 10 years of
software architecture knowledge management: Practice and future. JSS, pages 191 – 205, 2016.

[52] Jeromy Carriere, Rick Kazman, and Ipek Ozkaya. A cost-benefit framework for making architectural
decisions in a business context. In 2010 ACM/IEEE 32nd International Conference on Software
Engineering, volume 2, pages 149–157. IEEE, 2010.

[53] Maria Caulo, Bin Lin, Gabriele Bavota, Giuseppe Scanniello, and Michele Lanza. Knowledge transfer in
modern code review. In Proceedings of the 28th International Conference on Program Comprehension,
pages 230–240, 2020.

[54] Debasish Chakroborti, Kevin A Schneider, and Chanchal K Roy. Backports: Change types, challenges
and strategies. In International Conference on Program Comprehension, 2022.

[55] Ned Chapin, Joanne E Hale, Khaled Md Khan, Juan F Ramil, and Wui-Gee Tan. Types of software
evolution and software maintenance. Journal of software maintenance and evolution: Research and
Practice, 13(1):3–30, 2001.

[56] Paul Clements, David Garlan, Reed Little, Robert Nord, and Judith Stafford. Documenting software
architectures: views and beyond. In 25th International Conference on Software Engineering, 2003.
Proceedings., pages 740–741. IEEE, 2003.

[57] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey. Software history under the lens: A study on why
and how developers examine it. In Proc. of the 2015 ICSME, pages 1–10, 2015.

146

[58] Azure SDK commit. : ..azure-sdk-for-java/commit/ 7da63b6374005efe6dadbfb4e46f956e64e535a0, 2020.

[59] Bas Cornelissen, Andy Zaidman, Arie Van Deursen, Leon Moonen, and Rainer Koschke. A systematic
survey of program comprehension through dynamic analysis. IEEE Transactions on Software Engineering,
35(5):684–702, 2009.

[60] Melis Dagpinar and Jens H Jahnke. Predicting maintainability with object-oriented metrics-an empirical
comparison. In 10th Working Conference on Reverse Engineering, 2003. WCRE 2003. Proceedings.,
pages 155–155. IEEE Computer Society, 2003.

[61] Mart́ın Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane Ducasse. Untangling
fine-grained code changes. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pages 341–350. IEEE, 2015.

[62] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Automated detection of refactorings in
evolving components. In European conference on object-oriented programming, pages 404–428. Springer,
2006.

[63] Wei Ding, Peng Liang, Antony Tang, and Hans Van Vliet. Causes of architecture changes: An empirical
study through the communication in oss mailing lists. In SEKE, pages 403–408, 2015.

[64] Wei Ding, Peng Liang, Antony Tang, Hans Van Vliet, and Mojtaba Shahin. How do open source
communities document software architecture: An exploratory survey. In 19th International conference
on engineering of complex computer systems, pages 136–145, 2014.

[65] Xinyi Dong and Michael W Godfrey. Identifying architectural change patterns in object-oriented systems.
In 2008 16th IEEE International Conference on Program Comprehension, pages 33–42. IEEE, 2008.

[66] Jugendra Dongre, Gend Lai Prajapati, and SV Tokekar. The role of apriori algorithm for finding
the association rules in data mining. In 2014 International Conference on Issues and Challenges in
Intelligent Computing Techniques (ICICT), pages 657–660. IEEE, 2014.

[67] Natalia Dragan, Michael L Collard, Maen Hammad, and Jonathan I Maletic. Using stereotypes to help
characterize commits. In 2011 27th IEEE International Conference on Software Maintenance (ICSM),
pages 520–523. IEEE, 2011.

[68] Stephan Dreiseitl and Lucila Ohno-Machado. Logistic regression and artificial neural network classifica-
tion models: a methodology review. Journal of biomedical informatics, 35(5-6):352–359, 2002.

[69] Darko Durisic, Martin Nilsson, Miroslaw Staron, and Jörgen Hansson. Measuring the impact of changes
to the complexity and coupling properties of automotive software systems. Journal of Systems and
Software, 86(5):1275–1293, 2013.

[70] Darko Durisic, Miroslaw Staron, and Martin Nilsson. Measuring the size of changes in automotive
software systems and their impact on product quality. In Proceedings of the 12th International Conference
on Product Focused Software Development and Process Improvement, pages 10–13, 2011.

[71] Fatih Ertam and Galip Aydın. Data classification with deep learning using tensorflow. In 2017
International Conference on Computer Science and Engineering (UBMK), pages 755–758. IEEE, 2017.

[72] Jacky Estublier, David Leblang, André van der Hoek, Reidar Conradi, Geoffrey Clemm, Walter
Tichy, and Darcy Wiborg-Weber. Impact of software engineering research on the practice of software
configuration management. ACM Transactions on Software Engineering and Methodology (TOSEM),
14(4):383–430, 2005.

[73] Saad Ezzini, Sallam Abualhaija, Chetan Arora, Mehrdad Sabetzadeh, and Lionel C Briand. Using
domain-specific corpora for improved handling of ambiguity in requirements. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pages 1485–1497. IEEE, 2021.

147

[74] B. Fluri, E. Giger, and H. C. Gall. Discovering patterns of change types. In Proc. of ASE, pages
463–466, 2008.

[75] Beat Fluri and Harald C Gall. Classifying change types for qualifying change couplings. In 14th IEEE
International Conference on Program Comprehension (ICPC’06), pages 35–45. IEEE, 2006.

[76] Azure SDK for Java. : github.com/azure/azure-sdk-for-java, 2020.

[77] Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas Zimmermann, Brian Houck, and
Jenna Butler. The space of developer productivity: There’s more to it than you think. Queue, 19(1):20–48,
2021.

[78] M. Fowler. Design-who needs an architect? IEEE Software, pages 11–13, 2003.

[79] Mark A Friedl and Carla E Brodley. Decision tree classification of land cover from remotely sensed
data. Remote sensing of environment, 61(3):399–409, 1997.

[80] Ying Fu, Meng Yan, Xiaohong Zhang, Ling Xu, Dan Yang, and Jeffrey D Kymer. Automated classification
of software change messages by semi-supervised latent dirichlet allocation. IST, 57:369–377, 2015.

[81] Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. A comparative analysis of software architecture
recovery techniques. In 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 486–496. IEEE, 2013.

[82] Joshua Garcia, Mehdi Mirakhorli, Lu Xiao, Yutong Zhao, Ibrahim Mujhid, Khoi Pham, Ahmet Okutan,
Sam Malek, Rick Kazman, Yuanfang Cai, et al. Constructing a shared infrastructure for software
architecture analysis and maintenance. In 2021 IEEE 18th International Conference on Software
Architecture (ICSA), pages 150–161. IEEE, 2021.

[83] Joshua Garcia, Daniel Popescu, Chris Mattmann, Nenad Medvidovic, and Yuanfang Cai. Enhancing
architectural recovery using concerns. In 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), pages 552–555. IEEE, 2011.

[84] David Garlan, Felix Bachmann, James Ivers, Judith Stafford, Len Bass, Paul Clements, and Paulo
Merson. Documenting Software Architectures: Views and Beyond. Addison-Wesley Professional, 2nd
edition, 2010.

[85] David Garlan and Mary Shaw. An introduction to software architecture. Technical report, Pittsburgh,
PA, USA, 1994.

[86] Sirine Gharbi, Mohamed Wiem Mkaouer, Ilyes Jenhani, and Montassar Ben Messaoud. On the
classification of software change messages using multi-label active learning. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, pages 1760–1767, 2019.

[87] Negar Ghorbani, Joshua Garcia, and Sam Malek. Detection and repair of architectural inconsistencies
in java. In Proceedings of the 41st International Conference on Software Engineering, pages 560–571.
IEEE Press, 2019.

[88] GitPython. gitpython.readthedocs.io/en/stable, 2020.

[89] Cyril Goutte and Eric Gaussier. A probabilistic interpretation of precision, recall and f-score, with
implication for evaluation. In Proc. of ECIR, pages 345–359. Springer, 2005.

[90] John Grundy and John Hosking. High-level static and dynamic visualisation of software architectures.
In Proceeding 2000 IEEE International Symposium on Visual Languages, pages 5–12. IEEE, 2000.

[91] Philipp Haindl and Reinhold Plösch. Towards continuous quality: Measuring and evaluating feature-
dependent non-functional requirements in devops. In 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C), pages 91–94. IEEE, 2019.

148

[92] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H Witten.
The weka data mining software: an update. ACM SIGKDD explorations newsletter, 11(1):10–18, 2009.

[93] Maen Hammad, Michael L Collard, and Jonathan I Maletic. Automatically identifying changes
that impact code-to-design traceability. In 2009 IEEE 17th International Conference on Program
Comprehension, pages 20–29. IEEE, 2009.

[94] Ahmed E Hassan. Automated classification of change messages in open source projects. In Proceedings
of the 2008 ACM symposium on Applied computing, pages 837–841, 2008.

[95] Lile P Hattori and Michele Lanza. On the nature of commits. In 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering-Workshops, pages 63–71. IEEE, 2008.

[96] Larry V Hedges. Distribution theory for glass’s estimator of effect size and related estimators. journal
of Educational Statistics, 6(2):107–128, 1981.

[97] Kim Herzig, Sascha Just, and Andreas Zeller. It’s not a bug, it’s a feature: how misclassification impacts
bug prediction. In 2013 35th International Conference on Software Engineering (ICSE), pages 392–401.
IEEE, 2013.

[98] Eben Hewitt. Semantic Software Design: A New Theory and Practical Guide for Modern Architects.
O’Reilly Media, 2019.

[99] Abram Hindle, Neil A Ernst, Michael W Godfrey, and John Mylopoulos. Automated topic naming to
support cross-project analysis of software maintenance activities. In Proceedings of the 8th Working
Conference on Mining Software Repositories, pages 163–172, 2011.

[100] Abram Hindle, Daniel M German, Michael W Godfrey, and Richard C Holt. Automatic classication of
large changes into maintenance categories. In 2009 IEEE 17th International Conference on Program
Comprehension, pages 30–39. IEEE, 2009.

[101] Abram Hindle, Daniel M German, and Ric Holt. What do large commits tell us? a taxonomical study
of large commits. In Proceedings of the 2008 international working conference on Mining software
repositories, pages 99–108, 2008.

[102] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

[103] Benedikt Holmes and Ana Nicolaescu. Continuous architecting: Just another buzzword? Full-scale
Software Engineering, page 1, 2017.

[104] Sebastian Hönel, Morgan Ericsson, Welf Löwe, and Anna Wingkvist. Using source code density to
improve the accuracy of automatic commit classification into maintenance activities. Journal of Systems
and Software, page 110673, 2020.

[105] Guang-Bin Huang, Yan-Qiu Chen, and Haroon A Babri. Classification ability of single hidden layer
feedforward neural networks. IEEE transactions on neural networks, 11(3):799–801, 2000.

[106] ImGui. : github.com/kotlin-graphics/imgui, 2020.

[107] May I.S.O. Systems and software engineering–architecture description. Technical report, ISO/IEC/IEEE
42010, 2011.

[108] P. Jamshidi, M. Ghafari, A. Ahmad, and C. Pahl. A framework for classifying and comparing architecture-
centric software evolution research. In Proceedings of the 2013 17th European Conference on Software
Maintenance and Reengineering, pages 305–314, 2013.

[109] Anton Jansen and Jan Bosch. Software architecture as a set of architectural design decisions. In
Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture, pages 109–120, 2005.

149

[110] Anton Jansen, Jan Bosch, and Paris Avgeriou. Documenting after the fact: Recovering architectural
design decisions. Journal of Systems and Software, 81(4):536–557, 2008.

[111] Shuyao Jiang. Boosting neural commit message generation with code semantic analysis. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 1280–1282.
IEEE, 2019.

[112] Siyuan Jiang, Ameer Armaly, and Collin McMillan. Automatically generating commit messages from
diffs using neural machine translation. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 135–146. IEEE, 2017.

[113] Siyuan Jiang and Collin McMillan. Towards automatic generation of short summaries of commits. In
2017 IEEE/ACM 25th International Conference on Program Comprehension (ICPC), pages 320–323.
IEEE, 2017.

[114] Siyuan Jiang and Collin McMillan. Towards automatic generation of short summaries of commits. In
2017 IEEE/ACM 25th International Conference on Program Comprehension (ICPC), pages 320–323.
IEEE, 2017.

[115] Rick Kazman, Dennis Goldenson, Ira Monarch, William Nichols, and Giuseppe Valetto. Evaluating the
effects of architectural documentation: A case study of a large scale open source project. Transactions
on SE, pages 220–260, 2016.

[116] Stefan Kehrer, Florian Riebandt, and Wolfgang Blochinger. Container-based module isolation for cloud
services. In 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE),
pages 177–17709. IEEE, 2019.

[117] Safoora Shakil Khan, Phil Greenwood, Alessandro Garcia, and Awais Rashid. On the impact of evolving
requirements-architecture dependencies: An exploratory study. In International Conference on Advanced
Information Systems Engineering, pages 243–257. Springer, 2008.

[118] Mark Kishlansky et al. How to read a document. Sources of the West: Readings in Western Civilization,
1991.

[119] Sebastian Klepper, Stephan Krusche, and Bernd Bruegge. Semi-automatic generation of audience-specific
release notes. In Proc. of CSED, pages 19–22, 2016.

[120] Sebastian Klepper, Stephan Krusche, and Bernd Brügge. Semi-automatic generation of audience-specific
release notes. In CSED@ICSE, 2016.

[121] Kristjan Korjus, Martin N Hebart, and Raul Vicente. An efficient data partitioning to improve
classification performance while keeping parameters interpretable. PloS one, 11(8):e0161788, 2016.

[122] Jesse Kornblum. Identifying almost identical files using context triggered piecewise hashing. Digital
investigation, 3:91–97, 2006.

[123] Oleksandr Kosenkov, Michael Unterkalmsteiner, Daniel Mendez, and Davide Fucci. Vision for an
artefact-based approach to regulatory requirements engineering. In Proceedings of the 15th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM), pages 1–6,
2021.

[124] Patrick Kreutzer, Georg Dotzler, Matthias Ring, Bjoern M Eskofier, and Michael Philippsen. Auto-
matic clustering of code changes. In 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR), pages 61–72. IEEE, 2016.

[125] Philippe Kruchten. An ontology of architectural design decisions in software intensive systems. In 2nd
Groningen workshop on software variability, pages 54–61. Citeseer, 2004.

[126] Philippe Kruchten. The rational unified process: an introduction. Addison-Wesley Professional, 2004.

150

[127] Zijad Kurtanović and Walid Maalej. Automatically classifying functional and non-functional require-
ments using supervised machine learning. In 2017 IEEE 25th International Requirements Engineering
Conference (RE), pages 490–495. Ieee, 2017.

[128] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional neural networks for text
classification. In Twenty-ninth AAAI conference on artificial intelligence, 2015.

[129] Duc Le and Nenad Medvidovic. Architectural-based speculative analysis to predict bugs in a software
system. In Proceedings of the 38th International Conference on Software Engineering Companion, pages
807–810, 2016.

[130] Duc Minh Le, Pooyan Behnamghader, Joshua Garcia, Daniel Link, Arman Shahbazian, and Nenad
Medvidovic. An empirical study of architectural change in open-source software systems. In 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories, pages 235–245. IEEE, 2015.

[131] Duc Minh Le, Pooyan Behnamghader, Joshua Garcia, Daniel Link, Arman Shahbazian, and Nenad
Medvidovic. An empirical study of architectural change in open-source software systems. In 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories, pages 235–245. IEEE, 2015.

[132] Manny M Lehman. Laws of software evolution revisited. In European Workshop on Software Process
Technology, pages 108–124. Springer, 1996.

[133] Meir M Lehman. Programs, life cycles, and laws of software evolution. Proceedings of the IEEE,
68(9):1060–1076, 1980.

[134] Meir M Lehman and Juan F Ramil. Software evolution and software evolution processes. Annals of
Software Engineering, 14(1-4):275–309, 2002.

[135] Stanislav Levin and Amiram Yehudai. Using temporal and semantic developer-level information to
predict maintenance activity profiles. In 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 463–467. IEEE, 2016.

[136] Stanislav Levin and Amiram Yehudai. Boosting automatic commit classification into maintenance
activities by utilizing source code changes. In Proceedings of the 13th International Conference on
Predictive Models and Data Analytics in Software Engineering, pages 97–106, 2017.

[137] Wenmin Li, Jiawei Han, and Jian Pei. Cmar: Accurate and efficient classification based on multiple
class-association rules. In Proceedings 2001 IEEE international conference on data mining, pages
369–376. IEEE, 2001.

[138] Yi Li, Chenguang Zhu, Milos Gligoric, Julia Rubin, and Marsha Chechik. Precise semantic history
slicing through dynamic delta refinement. Automated Software Engineering, 26(4):757–793, 2019.

[139] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. Semantic slicing of software version histories.
IEEE Transactions on Software Engineering, 44(2):182–201, 2017.

[140] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. Semantic slicing of software version histories.
IEEE Transactions on Software Engineering, 44(2):182–201, 2017.

[141] Yong H Li and Anil K Jain. Classification of text documents. The Computer Journal, 41(8):537–546,
1998.

[142] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pages 74–81, 2004.

[143] I-H Lin and David A Gustafson. Classifying software maintenance. In Proceedings. Conference on
Software Maintenance, 1988., pages 241–247. IEEE, 1988.

[144] Mario Linares-Vásquez, Luis Fernando Cortés-Coy, Jairo Aponte, and Denys Poshyvanyk. Changescribe:
A tool for automatically generating commit messages. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 2, pages 709–712. IEEE, 2015.

151

[145] Kurt R Linberg. Software developer perceptions about software project failure: a case study. Journal of
Systems and Software, 49(2-3):177–192, 1999.

[146] Dimitris Liparas, Yaakov HaCohen-Kerner, Anastasia Moumtzidou, Stefanos Vrochidis, and Ioannis
Kompatsiaris. News articles classification using random forests and weighted multimodal features. In
Information Retrieval Facility Conference, pages 63–75. Springer, 2014.

[147] Qin Liu, Zihe Liu, Hongming Zhu, Hongfei Fan, Bowen Du, and Yu Qian. Generating commit messages
from diffs using pointer-generator network. In 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR), pages 299–309. IEEE, 2019.

[148] Shangqing Liu, Cuiyun Gao, Sen Chen, Nie Lun Yiu, and Yang Liu. Atom: Commit message generation
based on abstract syntax tree and hybrid ranking. IEEE Transactions on Software Engineering, 2020.

[149] Yue Lu, Qiaozhu Mei, and ChengXiang Zhai. Investigating task performance of probabilistic topic
models: an empirical study of plsa and lda. IR, pages 178–203, 2011.

[150] Thibaud Lutellier, Devin Chollak, Joshua Garcia, Lin Tan, Derek Rayside, Nenad Medvidovic, and
Robert Kroeger. Comparing software architecture recovery techniques using accurate dependencies. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, volume 2, pages 69–78.
IEEE, 2015.

[151] Thibaud Lutellier, Devin Chollak, Joshua Garcia, Lin Tan, Derek Rayside, Nenad Medvidovic, and
Robert Kroeger. Comparing software architecture recovery techniques using accurate dependencies. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, volume 2, pages 69–78.
IEEE, 2015.

[152] Haohai Ma, Weizhong Shao, Lu Zhang, Zhiyi Ma, and Yanbing Jiang. Applying oo metrics to assess
uml meta-models. In International Conference on the Unified Modeling Language, pages 12–26. Springer,
2004.

[153] Sander Mak and Paul Bakker. Java 9 Modularity: Patterns and Practices for Developing Maintainable
Applications. ” O’Reilly Media, Inc.”, 2017.

[154] Pratyusa K Manadhata and Jeannette M Wing. An attack surface metric. IEEE Transactions on
Software Engineering, 37(03):371–386, 2011.

[155] Spiros Mancoridis, Brian S Mitchell, Yihfarn Chen, and Emden R Gansner. Bunch: A clustering tool
for the recovery and maintenance of software system structures. In Proceedings IEEE International
Conference on Software Maintenance-1999 (ICSM’99).’Software Maintenance for Business Change’(Cat.
No. 99CB36360), pages 50–59. IEEE, 1999.

[156] Spiros Mancoridis, Brian S Mitchell, Chris Rorres, Y Chen, and Emden R Gansner. Using automatic
clustering to produce high-level system organizations of source code. In Proceedings. 6th International
Workshop on Program Comprehension. IWPC’98 (Cat. No. 98TB100242), pages 45–52. IEEE, 1998.

[157] Richard VR Mariano, Geanderson E dos Santos, Markos V de Almeida, and Wladmir C Brandão.
Feature changes in source code for commit classification into maintenance activities. In 2019 18th IEEE
International Conference On Machine Learning And Applications (ICMLA), pages 515–518. IEEE, 2019.

[158] Antonio Martini and Jan Bosch. A multiple case study of continuous architecting in large agile companies:
current gaps and the caffea framework. In 13th Working IEEE/IFIP Conference on Software Architecture
(WICSA), pages 1–10, 2016.

[159] Andreas Mauczka, Florian Brosch, Christian Schanes, and Thomas Grechenig. Dataset of developer-
labeled commit messages. In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
pages 490–493. IEEE, 2015.

152

[160] Andreas Mauczka, Markus Huber, Christian Schanes, Wolfgang Schramm, Mario Bernhart, and Thomas
Grechenig. Tracing your maintenance work–a cross-project validation of an automated classification
dictionary for commit messages. In International Conference on Fundamental Approaches to Software
Engineering, pages 301–315. Springer, 2012.

[161] Robert McGill, John W Tukey, and Wayne A Larsen. Variations of box plots. The american statistician,
32(1):12–16, 1978.

[162] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving software architecture descriptions of critical
systems. Computer, 43(5):42–48, 2010.

[163] Ronaldo Messina and Jerome Louradour. Segmentation-free handwritten chinese text recognition with
lstm-rnn. In 2015 13th International Conference on Document Analysis and Recognition (ICDAR),
pages 171–175. IEEE, 2015.

[164] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781, 2013.

[165] Tomáš Mikolov et al. Statistical language models based on neural networks. Presentation at Google,
Mountain View, 2nd April, 80(26), 2012.

[166] Mehdi Mirakhorli, Yonghee Shin, Jane Cleland-Huang, and Murat Cinar. A tactic-centric approach
for automating traceability of quality concerns. In 2012 34th International Conference on Software
Engineering (ICSE), pages 639–649. IEEE, 2012.

[167] Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, and Qiong Feng. Architecture anti-patterns: Au-
tomatically detectable violations of design principles. IEEE Transactions on Software Engineering,
2019.

[168] Audris Mockus and Lawrence G Votta. Identifying reasons for software changes using historic databases.
In International Conference on Software Maintenance, pages 120–130, 2000.

[169] Audris Mockus and Lawrence G. Votta. Identifying reasons for software changes using historic databases.
In Proceedings of the International Conference on Software Maintenance, pages 120–130, 2000.

[170] Parastoo Mohagheghi and Reidar Conradi. An empirical study of software change: origin, acceptance
rate, and functionality vs. quality attributes. In Proceedings. 2004 International Symposium on Empirical
Software Engineering, 2004. ISESE’04., pages 7–16. IEEE, 2004.

[171] Amit Kumar Mondal, Banani Roy, Sristy Sumana Nath, and Kevin A Schneider. A concept-token
based approach for determining architectural change categories. In Proceedings of the 33rd International
Conference on Software Engineering & Knowledge Engineering, pages 7–14, 2021.

[172] Amit Kumar Mondal, Banani Roy, and Kevin A Schneider. An exploratory study on automatic
architectural change analysis using natural language processing techniques. In 2019 19th International
Working Conference on Source Code Analysis and Manipulation (SCAM), pages 62–73. IEEE.

[173] Amit Kumar Mondal, Chanchal K Roy, Kevin A Schneider, Banani Roy, and Sristy Sumana Nath.
Semantic slicing of architectural change commits: Towards semantic design review. In Proceedings of
the 15th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 1–6, 2021.

[174] Amit Kumar Mondal, Kevin A Schneider, Banani Roy, and Chanchal K Roy. A survey of software
architectural change detection and categorization techniques. Journal of System and Software (Under
Revision), 2022.

[175] David Monschein, Manar Mazkatli, Robert Heinrich, and Anne Koziolek. Enabling consistency between
software artefacts for software adaption and evolution. In 2021 IEEE 18th International Conference on
Software Architecture (ICSA), pages 1–12. IEEE, 2021.

153

[176] Joao Eduardo Montandon, Luciana Lourdes Silva, and Marco Tulio Valente. Identifying experts
in software libraries and frameworks among github users. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pages 276–287. IEEE, 2019.

[177] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian Marcus, and Gerardo
Canfora. Automatic generation of release notes. In Proc. of FSE, pages 484–495, 2014.

[178] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian Marcus, and Gerardo
Canfora. Arena: An approach for the automated generation of release notes. IEEE Transactions on
Software Engineering, 43:106–127, 2017.

[179] Ward Muylaert and Coen De Roover. Untangling composite commits using program slicing. In 2018
IEEE 18th International Working Conference on Source Code Analysis and Manipulation (SCAM),
pages 193–202. IEEE, 2018.

[180] MvvmFX. : github.com/sialcasa/mvvmfx, 2020.

[181] Taiga Nakamura and Victor R Basili. Metrics of software architecture changes based on structural
distance. In 11th IEEE International Software Metrics Symposium (METRICS’05), pages 24–24. IEEE,
2005.

[182] Daye Nam, Youn Kyu Lee, and Nenad Medvidovic. Eva: A tool for visualizing software architectural
evolution. In Proceedings of the 40th International Conference on Software Engineering: Companion
Proceeedings, pages 53–56, 2018.

[183] Sristy Sumana Nath and Banani Roy. Towards automatically generating release notes using extrac-
tive summarization technique. In International Conference on Software Engineering & Knowledge
Engineering, SEKE 2021. Proceedings., pages 241–248, 2021.

[184] BODJE N’Kauh Nathan-Regis and NASIRA GM. Software architecture at the glance——to make a
long story short.

[185] Najam Nazar, Yan Hu, and He Jiang. Summarizing software artifacts: A literature review. JCST, pages
883–909, 2016.

[186] Shiva Nejati, Mehrdad Sabetzadeh, Chetan Arora, Lionel C Briand, and Felix Mandoux. Automated
change impact analysis between sysml models of requirements and design. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages 242–253,
2016.

[187] Mat́ıas Nicoletti, J Andrés Diaz-Pace, and Silvia Schiaffino. Towards software architecture documents
matching stakeholders’ interests. In International Conference on Advances in New Technologies,
Interactive Interfaces, and Communicability, pages 176–185. Springer, 2011.

[188] Arif Nurwidyantoro, Mojtaba Shahin, Michel Chaudron, Waqar Hussain, Harsha Perera, Rifat Ara Shams,
and Jon Whittle. Towards a human values dashboard for software development: An exploratory study.
In Proceedings of the 15th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), pages 1–12, 2021.

[189] Peyman Oreizy, Nenad Medvidovic, and Richard N Taylor. Architecture-based runtime software
evolution. In Proceedings of the 20th international conference on Software engineering, pages 177–186.
IEEE, 1998.

[190] Ksenia Oskina. Text classification in the domain of applied linguistics as part of a pre-editing module
for machine translation systems. In International Conference on Speech and Computer, pages 691–698,
2016.

[191] Tosin Daniel Oyetoyan, Daniela S. Cruzes, and Reidar Conradi. A study of cyclic dependencies on
defect profile of software components. JSS, pages 3162 – 3182, 2013.

154

[192] Ipek Ozkaya, Peter Wallin, and Jakob Axelsson. Architecture knowledge management during system
evolution: observations from practitioners. In Proceedings of the 2010 ICSE Workshop on Sharing and
Reusing Architectural Knowledge, pages 52–59, 2010.

[193] Claus Pahl, Pooyan Jamshidi, and Danny Weyns. Cloud architecture continuity: Change models and
change rules for sustainable cloud software architectures. JSOFTW-EVOL, page e1849, 2017.

[194] Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and Mark Harman. Are
developers aware of the architectural impact of their changes? In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, pages 95–105, 2017.

[195] Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and Mark Harman. The
impact of code review on architectural changes. IEEE Transactions on Software Engineering, 2019.

[196] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for
Computational Linguistics, pages 311–318, 2002.

[197] Profir-Petru Pârt,achi, Santanu Kumar Dash, Miltiadis Allamanis, and Earl T Barr. Flexeme: Untangling
commits using lexical flows. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pages 63–74, 2020.

[198] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software architecture. ACM
SIGSOFT Software engineering notes, pages 40–52, 1992.

[199] Marco Piccioni, Carlo A. Furia, and Bertrand Meyer. An empirical study of api usability. In ESEM,
2013.

[200] Jonas Poelmans, Dmitry I Ignatov, Sergei O Kuznetsov, and Guido Dedene. Formal concept analysis in
knowledge processing: A survey on applications. Expert systems with applications, 40(16):6538–6560,
2013.

[201] Mohammad Masudur Rahman and Chanchal K Roy. Improving ir-based bug localization with context-
aware query reformulation. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pages 621–632.
ACM, 2018.

[202] Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D Manning. Labeled lda: A supervised
topic model for credit attribution in multi-labeled corpora. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing, pages 248–256, 2009.

[203] Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D. Manning. Labeled lda: A supervised
topic model for credit attribution in multi-labeled corpora. In Proc. of EMNLP, pages 248–256, 2009.

[204] Sebastian Raschka. Mlxtend: Providing machine learning and data science utilities and extensions to
python’s scientific computing stack. Journal of open source software, 3(24):638, 2018.

[205] Ghulam Rasool and Nancy Fazal. Evolution prediction and process support of oss studies: a systematic
mapping. Arabian Journal for Science and Engineering, 42(8):3465–3502, 2017.

[206] Sarah Rastkar and Gail C Murphy. Why did this code change? In 2013 35th International Conference
on Software Engineering (ICSE), pages 1193–1196. IEEE, 2013.

[207] Mark Richards and Neal Ford. Fundamentals of Software Architecture: An Engineering Approach.
O’Reilly, 2020.

[208] Martin P Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar Chaparro, Neil Ernst,
Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza, Mario Linares-Vásquez, et al. On-demand
developer documentation. In 2017 IEEE International conference on software maintenance and evolution
(ICSME), pages 479–483. IEEE, 2017.

155

[209] Roshanak Roshandel, André Van Der Hoek, Marija Mikic-Rakic, and Nenad Medvidovic. Mae—a
system model and environment for managing architectural evolution. ACM Transactions on Software
Engineering and Methodology (TOSEM), 13(2):240–276, 2004.

[210] Banani Roy, Amit Kumar Mondal, Chanchal K Roy, Kevin A Schneider, and Kawser Wazed. Towards a
reference architecture for cloud-based plant genotyping and phenotyping analysis frameworks. In Proc.
of ICSA, pages 41–50, 2017.

[211] Nick Rozanski and Eóin Woods. Software systems architecture: working with stakeholders using
viewpoints and perspectives. Addison-Wesley, 2012.

[212] Jessica M Rudd et al. An empirical study of downstream analysis effects of model pre-processing choices.
Open journal of statistics, 10(5):735–809, 2020.

[213] Marcelo Schmitt Laser, Nenad Medvidovic, Duc Minh Le, and Joshua Garcia. Arcade: an extensible
workbench for architecture recovery, change, and decay evaluation. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 1546–1550, 2020.

[214] Arman Shahbazian, Youn Kyu Lee, Duc Le, Yuriy Brun, and Nenad Medvidovic. Recovering architectural
design decisions. In 2018 IEEE International Conference on Software Architecture (ICSA), pages 95–9509.
IEEE, 2018.

[215] Gaganpreet Sharma. Pros and cons of different sampling techniques. International journal of applied
research, 3(7):749–752, 2017.

[216] Jinfeng Shen, Xiaobing Sun, Bin Li, Hui Yang, and Jiajun Hu. On automatic summarization of what
and why information in source code changes. In 2016 IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC), volume 1, pages 103–112. IEEE, 2016.

[217] Marcelino Campos Oliveira Silva, Marco Tulio Valente, and Ricardo Terra. Does technical debt lead to
the rejection of pull requests? In in 12th Brazilian Symposium on Information Systems on Brazilian
Symposium on Information Systems: Information Systems in the Cloud Computing Era, pages 248–254,
2016.

[218] Kari Smolander. Four metaphors of architecture in software organizations: finding out the meaning of
architecture in practice. In Proceedings International Symposium on Empirical Software Engineering,
pages 211–221. IEEE, 2002.

[219] Richard Socher, Eric Huang, Jeffrey Pennin, Christopher D Manning, and Andrew Ng. Dynamic
pooling and unfolding recursive autoencoders for paraphrase detection. Advances in neural information
processing systems, 24, 2011.

[220] Mohamed Soliman, Amr Rekaby Salama, Matthias Galster, Olaf Zimmermann, and Matthias Riebisch.
Improving the search for architecture knowledge in online developer communities. In 2018 IEEE
International Conference on Software Architecture (ICSA), pages 186–18609. IEEE, 2018.

[221] Kalyanasundaram Somasundaram and Gail C Murphy. Automatic categorization of bug reports using
latent dirichlet allocation. In Proceedings of the 5th India software engineering conference, pages 125–130,
2012.

[222] Speedment. : github.com/speedment/speedment, 2020.

[223] Maximilian Steff and Barbara Russo. Measuring architectural change for defect estimation and localiza-
tion. In 2011 International Symposium on Empirical Software Engineering and Measurement, pages
225–234. IEEE, 2011.

[224] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104–3112, 2014.

156

[225] Jeffrey Svajlenko and Chanchal K Roy. Cloneworks: A fast and flexible large-scale near-miss clone
detection tool. In Proceedings of the 39th International Conference on Software Engineering Companion,
pages 177–179. IEEE Press, 2017.

[226] E Burton Swanson. The dimensions of maintenance. In Proceedings of the 2nd international conference
on Software engineering, pages 492–497. IEEE Computer Society Press, 1976.

[227] Antony Tang and Man F Lau. Software architecture review by association. Journal of systems and
software, 88:87–101, 2014.

[228] Antony Tang and Man F Lau. Software architecture review by association. Journal of systems and
software, 88:87–101, 2014.

[229] Richard N Taylor, Nenad Medvidovic, and Eric Dashofy. Software Architecture: Foundations, Theory,
and Practice. Wiley, 2009.

[230] Vassilios Tzerpos and Richard C Holt. Mojo: A distance metric for software clusterings. In Sixth
Working Conference on Reverse Engineering (Cat. No. PR00303), pages 187–193. IEEE, 1999.

[231] Vassilios Tzerpos and Richard C Holt. Accd: an algorithm for comprehension-driven clustering. In
Proceedings Seventh Working Conference on Reverse Engineering, pages 258–267. IEEE, 2000.

[232] Anderson Uchôa, Caio Barbosa, Daniel Coutinho, Willian Oizumi, Wesley KG Assunçao, Silvia Regina
Vergilio, Juliana Alves Pereira, Anderson Oliveira, and Alessandro Garcia. Predicting design impactful
changes in modern code review: A large-scale empirical study. In 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR), pages 471–482. IEEE, 2021.

[233] Rajesh Vasa, J-G Schneider, Clinton Woodward, and Andrew Cain. Detecting structural changes in
object oriented software systems. In 2005 International Symposium on Empirical Software Engineering,
2005., pages 8–pp. IEEE, 2005.

[234] Roberto Verdecchia, Philippe Kruchten, Patricia Lago, and Ivano Malavolta. Building and evaluating a
theory of architectural technical debt in software-intensive systems. Journal of Systems and Software,
176:110925, 2021.

[235] Vooga. : github.com/anna-dwish/vooga, 2020.

[236] Vooga. Hibernate search: github.com/hibernate/hibernate-search, 2020.

[237] Rob Waller. What makes a good document. The criteria we use. Technical paper, 2, 2011.

[238] Dong Wang, Yuki Ueda, Raula Gaikovina Kula, Takashi Ishio, and Kenichi Matsumoto. Can we
benchmark code review studies? a systematic mapping study of methodology, dataset, and metric.
Journal of Systems and Software, page 111009, 2021.

[239] Haoye Wang, Xin Xia, David Lo, Qiang He, Xinyu Wang, and John Grundy. Context-aware retrieval-
based deep commit message generation. ACM Transactions on Software Engineering and Methodology
(TOSEM), 30(4):1–30, 2021.

[240] Min Wang, Zeqi Lin, Yanzhen Zou, and Bing Xie. Cora: decomposing and describing tangled code
changes for reviewer. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 1050–1061. IEEE, 2019.

[241] Song Wang, Chetan Bansal, Nachiappan Nagappan, and Adithya Abraham Philip. Leveraging change
intents for characterizing and identifying large-review-effort changes. In Proceedings of the Fifteenth
International Conference on Predictive Models and Data Analytics in Software Engineering, pages 46–55,
2019.

[242] Tong Wang, Dongdong Wang, Ying Zhou, and Bixin Li. Software multiple-level change detection
based on two-step mpat matching. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 4–14. IEEE, 2019.

157

[243] Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng, Yijian Wu, and Yang
Liu. An empirical study of usages, updates and risks of thirdparty libraries in java projects. In 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME), pages 35–45. IEEE,
2020.

[244] Webfx. : github.com/webfx-project/webfx, 2020.

[245] Zhihua Wen and Vassilios Tzerpos. An effectiveness measure for software clustering algorithms. In
Proceedings. 12th IEEE International Workshop on Program Comprehension, 2004., pages 194–203.
IEEE, 2004.

[246] Byron J. Williams and Jeffrey C. Carver. Characterizing software architecture changes: A systematic
review. Information and Software Technology, pages 31–51, 2010.

[247] Byron J Williams and Jeffrey C Carver. Examination of the software architecture change characterization
scheme using three empirical studies. ESE, 19(3):419–464, 2014.

[248] Ronald J Williams and David Zipser. Gradient-based learning algorithms for recurrent. Backpropagation:
Theory, architectures, and applications, 433:17, 1995.

[249] Manuel Wimmer, Nathalie Moreno, and Antonio Vallecillo. Viewpoint co-evolution through coarse-
grained changes and coupled transformations. In International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation, pages 336–352. Springer, 2012.

[250] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics and
intelligent laboratory systems, 2(1-3):37–52, 1987.

[251] S. Wong, Y. Cai, G. Valetto, G. Simeonov, and K. Sethi. Design rule hierarchies and parallelism in
software development tasks. In Proc. of ASE, page 197, 2009.

[252] Eoin Woods. Harnessing the power of architectural design principles. IEEE Software, 33(4):15–17, 2016.

[253] Zhenchang Xing and Eleni Stroulia. Differencing logical uml models. Automated Software Engineering,
14(2):215–259, 2007.

[254] Kenji Yamauchi, Jiachen Yang, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto. Clustering commits
for understanding the intents of implementation. In 2014 IEEE International Conference on Software
Maintenance and Evolution, pages 406–410. IEEE, 2014.

[255] Meng Yan, Ying Fu, Xiaohong Zhang, Dan Yang, Ling Xu, and Jeffrey D Kymer. Automatically
classifying software changes via discriminative topic model: Supporting multi-category and cross-project.
Journal of Systems and Software, pages 296–308, 2016.

[256] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. Automatically recommending peer
reviewers in modern code review. Transactions on SE, pages 530–543, 2016.

[257] Su Zhang, Xinwen Zhang, Xinming Ou, Liqun Chen, Nigel Edwards, and Jing Jin. Assessing attack
surface with componentbased package dependency. In International Conference on Network and System
Security, pages 405–417. Springer, 2015.

[258] Andreas Zwinkau. Definitions of software architecture, 2019.
beza1e1.tuxen.de/definitionssoftwarearchitecture.html.

158

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Problem Statement
	Our Contribution
	Architectural Change Detection
	Architectural Change Categorization
	Design Change Document Generation

	Related Publications
	The Organization of the Dissertation

	Literature Background
	Software Architecture
	Documenting Software Architecture
	Architecture Views and Abstraction Levels
	Primary Elements of Architecture

	Software Architecture Modification
	Why Do Changes in Architecture Happen?
	Changes in Static Architecture
	Metrics as Architectural Changes

	Categorising the Design-impactful Changes
	Change types in the development and maintenance tasks

	Design Change Artifacts
	Steps of Generating Design Change Artifacts

	Software Artifacts for Architectural Change Information Mining
	Code Properties for Software Change Information Mining
	Textual Features for Software Change Information Mining

	Applications of Architectural Change Detection and Categorization

	Architectural Change Detection from Textual Document
	Introduction
	Dataset Collection and Study Design
	Architectural Information Contained in the Development History
	Natural Language Model Development
	Architectural Change Message Detection
	Change Detection using TF-IDF
	Change Detection using Term Graph

	Experimental result
	Experiment with Change Commits
	Experiment with Change Review Documents

	Related Work
	Conclusion

	Architectural Change Categorization using Discrimination Feature Model
	Introduction
	Background
	Documenting Software Architecture:

	Dataset Collection and Study Design
	Classification of Architectural Change Messages
	Labeled LDA (L-LDA):
	Semi-supervised LDA (Semi-LDA):
	Discriminative Probabilistic latent semantic analysis (DPLSA):

	Experimental Outcome
	Related Work
	Threats to validity
	Conclusion

	Architectural Change Classification using Concept Tokens
	Introduction
	Background
	Dataset Preparation
	Architectural Change Commits Filtering
	Architectural Change Category Annotation

	Change Classification Challenges
	 Classification from Source Code
	Change Classification from Text

	Our Proposed Classifier: ArchiNet
	Concepts Extraction
	Training Model Generation
	Classification

	Performance Evaluation
	Random Forest
	RNN-LSTM
	Testing with the Golden Set

	Threats to Validity
	Related Work
	Conclusion

	Architectural Change Instance Detection and Extraction from Code Properties
	Introduction
	Motivation and Background
	Dataset Preparation
	Architectural Change Detection
	M2M Change Metric
	M2M Change Detection Process

	Semantic Slice Generation
	Performance evaluation
	Related Work
	Conclusion and Future Work

	Architectural Change Categorization leveraging Structural Change Properties of Source Code
	Introduction
	Background
	Architectural Change:
	Architectural Change Categories:
	Important Definitions:

	Dataset Preparation
	Golden Set Construction for Experiment:
	Change Type Annotation:

	SSC Extraction
	Relation Between Change Purposes and SSCs

	SSC properties for Change Categorization
	SSC Rule-based Change Type Determination:
	SSC Strength-based Change Type Determination:
	SSCs As Features for Machine Learning Techniques:

	Combined Models for Change Type Determination: SSC and Concept
	ArchiNet Concept-tokens Expansion:
	Concept-tokens and SSCs with ArchiNet:
	Concept-tokens and SSCs with Machine Learning:

	Predicting Change Types in NI, AM and archTangled Commits
	Change Types of archTangled Commits:
	Handling NI and AM commits:

	Related work
	Software Change Classification using Textual Features
	Combined Model for Change Classification

	Conclusion

	DDARTS: A Case Study for Descriptive Design Change Artifacts Generation
	Introduction
	Motivation and Background
	Motivation
	Background

	Related work
	Automatic Code Change Document Generation
	Automatic Commit Message Generation
	Automatic Release Note Generation

	Dataset Collection
	Exploring the Design Change Logs Contents
	RQ1: Types of Information Contained in the Descriptive Design Artifacts
	RQ2: What development artifacts are contributing for documenting the design change logs

	Descriptive Design Change Summary Generation Model
	Phases of Design Change Summary Generation
	Main Algorithm
	Complete Sentence Generation Rules for generateMsg()
	Commit Theme Generation

	DDARTS Tool
	Performance Evaluation
	Accuracy Metrics
	Manual Cross-validation
	Scalability

	Limitations and Threats to validity
	Conclusion

	Conclusion
	Concluding Remarks
	Discussions
	Limitations and Future Work

	References

