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Abstract

The Ionospheric Continuous-wave E region Bistatic Experimental Auroral Radar (ICEBEAR)

is an auroral E region radar which has operated from 7 December 2017 until the September

2019. During the first two years of operation, ICEBEAR was only capable of spatially

locating E region scatter and meteor trail targets in range and azimuth. Elevation angles

were not determinable due to its East-West uniform linear receiving antenna array. Measuring

elevation angles of targets when viewing from low elevation angles with radar interferometers

has been a long standing problem. Past high latitude radars have attempted to obtain

elevation angles of E region targets using North-South baselines, but have always resulted in

erroneous elevation angles being measured in the low elevation regime (0◦ to ≈ 30◦ above the

horizon), leaving interesting scientific questions about scatter altitudes in the auroral E region

unanswered. The work entailed in this thesis encompasses the design of the ICEBEAR-3D

system for the acquisition of these important elevation angles.

The receiver antenna array was redesigned using a custom phase error minimization and

stochastic antenna location perturbation technique, which produces phase tolerant receiver

antenna arrays. The resulting 45-baseline sparse non-uniform coplanar T-shaped array was

designed for aperture synthesis radar imaging. Conventional aperture synthesis radar imag-

ing techniques assume point-like incoherent targets and image using a Cartesian basis over a

narrow field of view. These methods are incompatible with horizon pointing E region radars

such as ICEBEAR. Instead, radar targets were imaged using the Suppressed Spherical Wave

Harmonic Transform (Suppressed-SWHT) technique. This imaging method uses precalcu-

lated spherical harmonic coefficient matrices to transform the visibilities to brightness maps

by direct matrix multiplication. The under sampled image domain artefacts (dirty beam)

were suppressed by the products of differing harmonic order brightness maps. From the

images, elevation and azimuth angles of arrival were obtained. Due to the excellent phase

tolerance of ICEBEAR new light was shed on the long standing low elevation angle problem.

This led to the development of the proper phase reference vertical interferometry geometry,

which allowed horizon pointing radar interferometers to unambiguously measure elevation

angles near the horizon. Ultimately resulting in accurate elevation angles from zenith to

horizon.
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û Unit vector

xviii



1 Introduction

The original Ionospheric Continuous-Wave E Region Bistatic Experimental Auroral Radar

(ICEBEAR) was developed at the University of Saskatchewan by Huyghebaert et al. (2019).

It was a radar instrument, operating at 49.5 MHz, that was designed to probe the auroral

E region of the terrestrial ionosphere. First light was 7 December 2017, and it operated on a

campaign basis, unchanged, until the summer of 2019. During the two-year operating period,

the original ICEBEAR instrument collected high quality measurements, meeting its design

goals. However, it was apparent that improvements to the receiving system could be made

that would better leverage the modern Software Defined Radio (SDR) hardware. Starting in

the summer 2019 a new non-uniform receiver antenna array was designed and constructed.

This thesis details the design of that radar receiver antenna array and the complex novel

processing method required to interpret the data collected by the new array.

The two primary functions of a radar are the detection and range estimation of targets

(Nathanson et al., 1991). Additionally, most modern radars have secondary functions to

measure angular locations and Doppler velocities of targets. A radar measures these quanti-

ties by emitting an electromagnetic wave and sensing a returned wave that has either been

reflected or scattered off a target, this is called an echo. A radar is designed with respect

to a specific set of targets so that it can best discriminate target echoes from background

noise. Target characteristics, such as: spatial extent, scattering cross-section, velocity, life-

time, spatial orientation, sensitivity, and expected spatial locations, all inform the radar’s

design. Variables such as radar type (monostatic, multistatic, bistatic, pulsed, continuous-

wave), geolocation, mobility, antenna array pattern, radio hardware, pulse length, encoding,

and others are all used to tune a radar for specific targets. The original ICEBEAR in-

strument studied two broad classes of targets: the primary targets were auroral ionospheric

E region plasma, and the secondary targets were meteor trails. The new design was required

to maintain focus on these targets.

1



The E region forms the base for the large current system surrounding Earth, which is known

as the magnetosphere (Kivelson & Russel, 1995). The terrestrial E region is the ionospheric

plasma layer existing between 90 km and 130 km above the Earths surface (Kelly, 1989).

The depositing of energetic particles into the E region creates plasma waves and instabilities.

By their nature, E region instabilities are turbulent rapidly changing targets, sometimes

changing significantly in mere seconds. Thus, E region radars must collect fine spatial data,

rapidly, and continuously. Radar scattering from E Region plasma instabilities are generally

classified into four types (Haldoupis, 1989). The typical Doppler spectra response of these

four types are illustrated in Figure 1.1. Type I is characterized by narrow spectral width

with a peak Doppler velocity around the ion-acoustic speed, Cs. Type II is characterized by

a broad spectral width with a peak around zero Doppler velocity. Type III is characterized

by a very narrow spectral width with Doppler velocities around Cs

2
. Type IV is characterized

by narrow spectral width with Doppler velocities around 2Cs. Types I and II are observed

at all latitudes, whereas Types III and IV are only observed at high latitudes. Observation

of these four types requires the probing radar waveforms to be perpendicular or very close

to perpendicular to the magnetic field of the Earth or geomagnetic field. For high latitude

auroral and polar observations, this necessitates a radar with a low, close to the horizon,

view.

Figure 1.1: Idealized representation of the four types of commonly observed E re-

gion coherent radar spectra. Cs, the ion acoustic speed at E region altitudes is

≈ 360 m/s. The spectra have either positive or negative mean velocities, although

only the positive velocities are illustrated (Hussey, 1995).
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Meteors are detected by their trails and head echoes. As meteors enter the atmosphere, they

begin to heat up due to friction. The denser atmosphere generates more friction, heating up

the meteor until it typically vaporizes, leaving behind a trail of positive ions and negative

electrons (McKinley, 1961). This ionization creates very long (kilometers long) thin (meters

wide) parabolic trails along the meteor’s trajectory. Scattering off these meteor trails are

further classified as over dense and under dense depending on the density of electrons. The

electron density transition point for classification is typically taken as 1×1014 m−3 (McKinley,

1961). Although the electron density is important for classification of meteor trails, it is the

size of the meteor itself which determines the trail’s characteristics. Typically, meteors about

the size of a grain of sand generate under dense trails and larger meteors with a radius around

5 mm create over dense trails. Meteor trails typically exist on times scale from microseconds

to very rarely several seconds. The altitude of these meteor trails is rather predictable. They

follow a normal distribution starting at 110 km altitude, sharply peaking around 90 km

to 95 km, and ending before 70 km. These altitudes vary slightly depending on season,

solar cycle, time of day, and probing frequency, but are always within ±5 km (McKinley,

1961). Meteor trails have a smaller Doppler shift range (±150 m/s) than E region instabilities

(±1500 m/s) as the neutral atmosphere constrains them. As the E region instabilities were the

primary target, a concession was made and a Doppler resolution corresponding to ± ≈ 30 m/s

velocity was used, which is potentially too coarse for detailed meteor trail studies. Again,

the short lifetime, size, and altitude of the meteor trail targets necessitates a radar with fine

spatial resolution, and fine temporal resolution.

The original ICEBEAR instrument was designed to characterize E region instabilities and

meteor trails at 100 ms temporal resolution and 1.5 km spatial resolution. This was achieved

using a continuous-wave (CW) phase modulation technique. The CW signal necessitated

physical isolation between the transmitting antenna array and receiving antenna array. Con-

sidering the auroral zone under investigation, the transmitter site was placed 240 km South-

West of Saskatoon, SK near Prelate, SK and the receiver site was placed near Saskatoon,

SK. This kept the receiver site, where data accumulates, near the operating institution, the

University of Saskatchewan. The original ICEBEAR transmitter and receiver antenna arrays

were both uniform linear arrays. This design was chosen for its reliability, simplicity, and the

designer’s past experiences (Huyghebaert, 2019). This design, however, limited the original

ICEBEAR instrument to spatially locating targets in only range and azimuth, with some

azimuthal ambiguity.

The altitude of E region coherent scatter types is an unanswered question. Recent work by
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Chau and St-Maurice (2016) and St-Maurice and Chau (2016) have provided evidence and

theoretical explanations for the altitude dependence of the characteristic E region scatter.

They proposed that slow narrow (Type 3) radar echoes originate near the bottom of the

E region, while fast narrow (Type 4) signatures originate near the top. Between these two

extremes, the narrow ion acoustic speed signatures (Type 1) originate at ≈105–110 km al-

titudes, with the approximately zero Doppler broad signatures (Type 2) originating below

this. Given the auroral latitude location of the original ICEBEAR instrument and its impres-

sive performance, it was assessed that ICEBEAR could observe and potentially validate this

theorized altitude dependence, provided the receiver antenna array was redesigned. This,

along with the desire for meteor trail altitudes, motivated the construction of ICEBEAR-

3D, which uses the original ICEBEAR infrastructure, but differs in receiver antenna array

configuration and post-processing analysis to achieve 3-dimensional positioning of targets.

Although differing physics is involved for E region scatter and meteor trail targets; for the

purposes of this thesis, a detailed understanding of these targets is not required. They can

be simply understood as radar targets with varying spatial extents, velocities, time scales,

and elevations.

Three-dimensional radar target locating requires measurement of range, azimuth, and ele-

vation of the returning echoes. Range is obtained by measuring the time of flight of the

transmitted signal. Azimuth angles with the original ICEBEAR instrument are determined

by comparing the phase differences between antennas in the linear array of received echoes.

Phase differences can only be measured within a 2π boundary. Determining the phase is a

convoluted problem when the 2π boundary is exceeded, but necessary to solve to correctly

locate targets. The original ICEBEAR uniform linear receiving array caused targets to be

incorrectly azimuthally located in some cases. Obtaining elevation angles is done in the same

way as azimuth angles, but requires receiving antennas that are orthogonally positioned to

an azimuth measuring array.

Measuring elevation angles with horizon pointing radars such as ICEBEAR is inherently more

complex than non-horizon pointing radars, as the low elevation angle regime is plagued with

multipath ground reflections (Barton, 1974; Kerr, 1951). Past E region observing radars

like ICEBEAR that have attempted to acquire elevation angle measurements in the low

elevation angle regime have seen inconclusive results (Ierkic et al., 1992; Sahr et al., 1991;

Chisham et al., 2021). Often all measurements from 0◦ (horizon) to ≈ 30◦ were rejected, or

a single static constant phase calibration was used with spurious results. This was the case

for Glanz (1971) and Clark (1977). Their meteor trail radar interferometers azimuth and
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elevation angles were verified by a satellite beacon. They found that a 30◦ elevation angle

cutoff was necessary, as results below 30◦ were unreliable. Typically, the explanation given

for valid targets having unreliable elevation angle measurements at low elevation angles is the

unreliability of phase measurements at low elevation angles due to hardware limitations and

multipath interference. These somewhat erroneous calibrations and the hardware limitations

of past radars created the seemingly unreliable phase measurements at low elevation angles,

obfuscating the underlying cause of this long-standing low elevation angle problem. The later

part of this thesis is dedicated to elucidating this problem and proposing a solution.

1.1 Objectives

The focus of this thesis was, initially, the redesign of the original ICEBEAR receiver antenna

array from a uniform linear array to a new formation which would allow for richer and more

accurate data products. The redesign of the receiver antenna array also necessitated the

development of a different target acquisition and processing algorithm, which was apprecia-

bly more involved and complex than conventional ones. This led to the long standing low

elevation issue. The final specific objectives of this thesis were:

1. To determine and implement a method to remove the effects of azimuth aliasing caused

by the inherent 2π phase ambiguity.

2. To determine and implement a method of measuring the altitude of terrestrial auroral

E region instabilities and meteor trails.

3. To elucidate and solve the underlying problem with elevation angles measured in the

low elevation regime when using horizon pointing radar interferometers.

1.2 Outline

The work detailed in the body of this thesis has been published and peer reviewed (Lozinsky

et al., 2022); it will be stated in each chapter when published content is used. This thesis

is outlined as follows. Chapter 2 starts by describing a hypothetical signal as it propagates
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through the ICEBEAR instrument. The signal begins its journey as a binary code sequence

in the transmitter computer and ends as a standard low-level cross-correlation data product.

Through the journey of this hypothetical signal, the necessary background information re-

quired for subsequent chapters is established. Chapter 3 discusses the objectives, constraints,

and techniques applied to designing a non-uniform receiver antenna array. Chapter 4 delves

into radar imaging and introduces the Suppressed Spherical Wave Harmonic Transform tech-

nique. This imaging technique, supported by the excellent phase resolution of ICEBEAR,

elucidated the fundamental problem with elevation measurements where they appear much

larger than expected in the low elevation regime. This problem is addressed in Chapter 5,

and a list of reasonable explanations are purposed and subsequently rejected before a solution

is given. The culmination of the array redesign, imaging, and elevation angle interpretation

resulted in high quality temporal and spatial resolution ICEBEAR-3D data being collected

during meteor showers and active E region periods. Results are presented in Chapter 6, and

the veracity of ICEBEAR-3D is discussed. Chapter 7, concludes the work and presents the

future work to be done.

6



2 ICEBEAR Background

The redesign of ICEBEAR to ICEBEAR-3D is receiver side focused. It is principally about

the engineering design of radar interferometers. However, to understand how the receiver side

of the original ICEBEAR instrument was redesigned for radar interferometry, understanding

of the full ICEBEAR system is required. This chapter briefly explains the unchanged portions

of ICEBEAR hardware, software, and standard operating mode, as these directly constrained

the redesign of the receiver system.

It is convenient to discuss each component of the ICEBEAR radar as it transforms a hypothet-

ical signal from a pseudo-random binary code sequence through to a received cross-correlated

voltage data product also known as a visibility. A block diagram depicting the hypothetical

signal’s propagation path is shown in Figure 2.1. The figure is broken into three core blocks:

transmission, reception, and processing. The transmission block encapsulates the process

of signal generation, converting it into an analog signal, amplifying it, and transmitting.

The handling of a received scattering echoes is described within the reception block. Here,

the signal, which is greatly reduced in power since transmission, is amplified and filtered to

isolate the signal from out of band noise. The now analog signal is converted into discrete

digital voltage quantities and stored on disk. The processing block contains the steps where

the signal is processed to create the ICEBEAR-3D Level 1 data product.

ICEBEAR was a bistatic continuous-wave radar that operated at 49.5 MHz (6.06 m wave-

length, λ). A bistatic radar, as opposed to a monostatic radar, does not utilize a common

antenna for transmission and reception. Typically, for a bistatic radar configuration, the

transmitting and receiving antennas are separated by a considerable distance relative to the

radar wavelength, as was the case for ICEBEAR. The hypothetical signal thus begins at

the transmitter site located near Prelate, SK (50.893◦, −109.403◦), propagates through the

radar hardware and is emitted into the auroral E region. In the E region scattering from

plasma structures or meteor trails may occur generating echoes which propagate towards the

receiver site located near Saskatoon, SK (52.243◦, −106.450◦). At the receiver site the signal
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Figure 2.1: A simplified block diagram showing the ICEBEAR radar signal chain.

The three blocks core blocks separate the signal chain by physical locations. Not

shown are the many operation computers which control the radar and perform data

processing.

is collected as a time series of voltage samples and stored on disk before being transported

via sneaker net to the processing station at the University of Saskatchewan (Huyghebaert,

2019).
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2.1 Transmission

The signal begins as a noise-like pseudo-random noise (PRN) binary sequence. Each bit

of the PRN sequence is represented as a square pulse called a chip, see Figure 2.2. For

Figure 2.2: A binary coded waveform consisting of chips exhibiting two possible

phase states (Richards et al., 2010).

ICEBEAR the length of each chip, τc, is 10 µs and the code sequence is made of N = 10, 000

chips giving a total sequence length of 100 ms. The chip length and the speed of light in

vacuum, c, defines the total radio frequency (RF) propagation path length resolution ∆ρRF

∆ρRF = cτc (2.1)

for ICEBEAR this is 3.0 km. The total RF propagation path ρRF is the length of the path

the signal takes from the transmitter to the scattering target and back to the receiver. The

RF propagation path from the target to the receiver is the slant range ρ. For a monostatic

radar the slant range is ρ = ρRF/2. For a bistatic radar this is more complicated and will be

discussed in Chapter 5, but typically it is very close to the monostatic solution. Therefore, in

general the range resolution, ∆ρ, is 1.5 km. The shorter the chip length the finer the range

resolution will be, however, the chip length also determines the signal’s spread in frequency

as it is inversely proportional to the bandwidth ∆f

∆f =
1

τc
(2.2)

For ICEBEAR, this gives a 100 kHz bandwidth, which lies comfortably within the licensed

160 kHz band allowable by the radio license (Huyghebaert, 2019). The total code length,

100 ms, is also inversely proportional to the Doppler resolution ∆ν

∆ν =
1

Nτc
(2.3)

This gives a Doppler resolution of 10 Hz (≈ 30 m/s) for ICEBEAR.
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Figure 2.3: Normalized auto-correlation response of the standard ICEBEAR PRN

code, showing a −28 dB side lobe suppression. Reproduced from Huyghebaert

(2019)

Whereas the chip length relates to the total RF propagation path length resolution, and the

code length determines the Doppler resolution, it is the PRN code itself which determines

the ambiguity in the measured response. That is to say, it is the choice of bit sequence which

determines ambiguity. A sufficient code requires a thumbtack like auto-correlation response;

discretely peaked with side lobes suppressed and no aliasing (Richards et al., 2010). Codes

that have perfect side lobe suppression are called Barker codes. Only seven known barker

codes exist, the longest being 13 chips, which is not an adequate length for ICEBEAR, as

the code length N is proportional to the energy in the waveform. The PRN code used is

10,000 chips long and is symmetric about the center chip to obtain adequate energy in the

waveform (Huyghebaert, 2019). The auto-correlation of the ICEBEAR PRN code produces

a peak centered about the normalized time delay center, with side lobes suppressed by 1/N .

Figure 2.3 shows the normalized auto-correlation of the code with side lobe suppression of

−28 dB (Huyghebaert, 2019).
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The Doppler resolution aliasing point is

1

2
N∆ν (2.4)

and occurs at ±50 kHz. The total RF propagation path length resolution aliasing point is

N∆ρ (2.5)

and occurs at 30,000 km. ICEBEAR targets of interest are expected to have velocities within

±1.5 km/s (±0.5 kHz), and have a total RF propagation distance less than 3,000 km due

to aspect conditions, scatter altitude, line of sight, and power loss. Thus, no Doppler or RF

propagation path length aliasing is expected to occur.

At this point, the hypothetical signal exists as a 10,000 chip binary signal. Within the

transmitting computer, the code is re-sampled from 100 kHz (10,000 bits at 100 ms) to 800

kHz. This allows for an amplitude modulation to be applied which suppresses the side bands

of the transmitted signal. The signal is then passed from the transmit computer to an Ettus

Instruments X300 software defined radio (SDR) where it is phase-modulated with a 49.5 MHz

carrier wave and converted from a purely digital signal to an analog one using a digital to

analog converter (DAC). This phase modulation is called Binary Phase Shift Keying (BPSK).

ICEBEAR uses global positioning satellites (GPS) for clock synchronization and disciplining

of a 10 MHz pulse per-second (PPS) signal. This PPS conditions SDR to ensure that the

chip lengths are not skewed and gives an accurate measure of transmit time, which is critical

for time of flight measurements that determine range. The fully conditioned signal is then

amplified by a custom three stage high-power amplifiers (HPA) designed by Huyghebaert

(2019). The amplifier provides 57 dBm gain when operated at 49.5 MHz, and suppresses the

second and third side lobe harmonics by at least 26 dB from peak signal power (Huyghebaert

et al., 2019).

Now, the signal exists as a waveform which is ready to be transmitted. It is mathematically

described by

s(t) = A cos (2πft+ ψn[u(t− nτc)− u(t− (n+ 1)τc)]) (2.6)

0 ≤ t ≤ τc, 0 ≤ n ≤ N − 1

where A is the amplitude of the signal, u(t) is the unit step function, ψn is the phase applied

by the nth chip which is either 0 or π for the biphase code used, and f is the carrier wave

frequency at 49.5 MHz. As an example, Figure 2.4 shows a baseband signal and the same
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baseband signal mixed with the carrier wave to produce the phase encoded waveform. This

signal is then transmitted continuously through the transmitter site antenna array.

Figure 2.4: An example of a code sequence at baseband (top) and the same base-

band signal mixed to produce a phase-modulated signal (bottom) (Richards et al.,

2010).

2.2 Antennas and Arrays

An antenna is a transitional device which couples freespace to a transmission line, such as

a coaxial cable, or waveguide (Balanis, 2016). One end of the antenna couples to freespace

with an impedance of

Z0 =

√
µ0

ε0
= 377 Ω (2.7)

where µ0 = 12.566× 10−7 H/m is the permeability of free space, and ε0 = 8.854× 10−12 F/m

is the permittivity of free space. And, the other end to an electrical system, typically with a

characteristic impedance of 50 Ω (Balanis, 2016). The characteristic impedance of a trans-

mission line Z is the ratio between the voltage and current amplitudes of a single propagating
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wave. The general expression for Z is given in terms of the telegrapher’s equation

Z =

√
R + i2πfL

G+ i2πfC
(2.8)

where f is the frequency, R is the resistance, L is the inductance, G is the conductance, and C

is the capacitance (Balanis, 2016). When connecting RF components, impedance matching is

required for maximum power transfer, as mismatches cause power to be reflected. Put simply,

an antenna is a transducer which converts electrical currents moving in metal conductors into

electromagnetic radio waves which propagate through space, or vice versa.

When an antenna transmits a radio wave, such as the hypothetical signal, the power is not

radiated uniformly. The style and orientation of the antenna determines the polarization and

directivity of the radiated power. Directivity D(θ, φ) is the power density in a given direction

(θ, φ) normalized by the average power density in all directions

D(θ, φ) = 4πr2U(θ, φ)

Prad
(2.9)

where r, θ, φ are the spherical coordinates range, azimuth, and elevation, at which the direc-

tivity is evaluated, U(θ, φ) is the power per unit solid angle at that range for some direction,

Prad is the total radiated power from the antenna. All antennas have a nonuniform directivity

as true isotropic radiating antennas do not exist (the closest approximation is the Hertzian

dipole). More complex antennas, such as the Yagi-Uda antennas used with ICEBEAR, are

formations made of a collection of Hertzian dipoles. The simplest Yagi-Uda antenna is con-

structed from two components: a driven element which is essentially a powered Hertzian

dipole, and a reflector placed behind the driven element that reflects radiated power from

the driven element forward and in-phase. Additionally, one or more directing elements can

be placed in front of the driven element to focus the forward power into a narrow beam. The

size, spacing, and lengths of the elements all control the final directivity of the signal as well

as determine the operating frequency band.

A combination of antennas can be used to create an array. Each antenna in the array con-

tributes, much like each element in a Yagi-Uda antenna, to form a combined array directivity

D(θ, φ)array. Arrays allow for more power to be focused in a direction of interest without need-

ing more powerful amplifiers. Array directivity is the combination of the individual antenna
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directivity and the array factor AF (θ, φ). The array directivity D(θ, φ)array is calculated by

D(θ, φ)array = |AF (θ, φ)|2D(θ, φ) (2.10)

where the array factor given by

AF (θ, φ) =
N∑

n=0

M∑

m=n+1

amn exp (−j~k · ~dmn) (2.11)

where ~k is the wave vector of an incident wave, ~dmn is the antenna separation vector be-

tween the mth and nth antennas also known as a baseline, and amn is the complex excitation

weighting the mth and nth antennas (Balanis, 2016). This formula is used to determine what

proportion of the signal’s power is radiated in any direction.

Gain is closely related to directivity, however, gain takes into account the efficiency of the

antenna. The gain of an antenna in a certain direction is the ratio of the intensity in that

direction to the intensity of an equally powered isotropic radiator. The power of the isotropic

radiator in any direction is the total power accepted by the antenna divided by 4π. Gain

does not take into account losses from impedance and polarization mismatches. Therefore,

gain G(θ, φ) is simply

G(θ, φ) =
Prad
Pin
×D(θ, φ) (2.12)

where Prad is the radiated power, Pin is the input power delivered to the antenna, and

D(θ, φ) is either the array or antenna directivity. Gain patterns are readily calculated using

antenna simulation software. The Numerical Electromagnetic Code (NEC) is software which

fully models the gain patterns of antennas and arrays. NEC versions 2.0 and 4.2 are freely

available online, however they have limitations when it comes to properly simulating ground

planes and segments which penetrate ground planes. The latest version, NEC-5, uses a new

numerical method and solves these issues. Gain patterns of ICEBEAR, shown in Figures 2.5

to 2.8 were determined using NEC-5 (Lawrence Livermore National Laboratory, 2020).

The ICEBEAR transmitter array gain pattern is presented in Figure 2.5, it is formed of ten

antennas 15 m above the ground uniformly spaced by 6 m (1λ). Each antenna is orientated

to point 16◦ East of North. It was determined after construction that a large transmitter

array is less critical for ICEBEAR due to the high sensitivity of the receiver electronics.

Additionally, the operating radio license constrains maximum transmitting power, allowing

at most for four antennas to operate at once. Thus, the transmitter only utilizes two of
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the ten antennas separated by 18.17 m (3λ) to form a very simple array. Each of the two

antennas excitation is synchronized to form a standard three lobe pattern with maximum

gain direction (boresight) pointing 16◦ East of North and 6◦ above the ground, as indicated

by the dashed black line in Figure 2.5. The top plot is the azimuth slice for boresight, while

the bottom plot is the elevation slice.

By the reciprocity theorem, the above equations governing antenna gain for transmission are

identical for reception (Balanis, 2016). The receiver antenna gain pattern is presented in

Figure 2.6. The new receiver array utilizes aperture synthesis (discussed in Chapter 4) which

combines antenna power entirely digitally, meaning excitation of each antenna is independent.

So, it is the antenna gain pattern rather than the array gain pattern which is important. Each

receiver antenna is a Cushcraft 612-B Super Boomer Yagi-Uda (see Figure 3.3) located 15 m

above the ground and pointed 7◦ East of North. The dashed black line shows the boresight

direction of 6◦ elevation and 7◦ East of North. The top plot is the azimuth slice for boresight,

while the bottom plot is the elevation slice. The red shaded area shows the field of view where

targets of interest under study are expected, this is also the radar imaging field of view (see

Chapter 4).

Since ICEBEAR is a bistatic radar, it is the overlap of the receiver and transmitter gain

patterns which ultimately determines the geographic location where gain is strongest. Fig-

ure 2.7 is the geographic gain transmitter and receiver patterns plotted on a WGS84 Earth

model for a 110 km altitude shell. As ICEBEAR assumes that signal propagation is line

of sight with very little bending due to refraction, the white areas are where a transmitted

signal goes below the horizon. The top part of the figure is the transmitter pattern alone,

and the bottom is the receiver pattern alone. The fanning of lobes of the transmitter view

matches the azimuth slice of Figure 2.5, and likewise the wide beam of the receiver matches

the azimuth slice of Figure 2.6. In each plot at lower latitudes, the lobes split into smaller

lobes. These match the higher elevation lobes seen in their respective elevation slice plots.

The full overlapping geographic gain pattern is presented in Figure 2.8. This plot was cal-

culated by creating a grid of latitude, longitude at 0.1◦ resolution for a constant 110 km

altitude shell. For each grid point, the bearing and heading from the transmitter site to the

grid point and the bearing and heading from the receiver site to the grid point was calculated

on a WGS84 Earth model. Then, using the NEC-5 model, the bearings and headings were

rotated with respect to their site’s boresight. The NEC-5 models were then used as look-up

tables to determine the gain in the direction of every point. The receiver and transmitter
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gains were then summed for each point. Assuming there is no geographic area that produces

more favorable conditions for echo power, it is apparent from Figure 2.8 where targets would

be best detected. Of course, E region scatter has a spatial distribution due to its field-aligned

scattering nature, which means there will be a power bias due to the magnetic field of the

Earth. Meteor trails, however, would be expected to more closely follow Figure 2.8 as they

are uniformly distributed in the geographic region. Provided a suitable scattering target ex-

ists to produce an echo, the brightest regions are where the signal will close the link between

the transmitter antenna array and receiver antennas.

2.3 Reception

After scattering the hypothetical signal is returned as an echo to the receiver antenna array

where it is transduced by the receiving antennas and passed through a bandpass filter (BPF)

to remove frequencies outside the radar band. By this stage the signal is at a considerably

low power, so it is passed through two low noise amplifiers (LNA) adding 56 dB of gain. The

analog signal is then passed into the X300 SDR and several steps are handled digitally by its

field programmable gate array (FPGA). Each X300 SDR has two separate receiver channels

which are connected to separate receiver antenna paths. The SDR samples the signals at

200 Msps with its dual analog to digital converter (ADC), converting the analog signal

to digital in-phase and quadrature (IQ) voltage samples. Again, the X300 SDRs are time

synchronized and 10 MHz pulse per second disciplined via GPS. The digital signal is digitally

mixed with the carrier frequency to obtain the baseband signal, and then lowpass filtered

(LPF) to remove artefacts due to sample aliasing and mixing. The IQ samples are then

decimated to a data rate of 200 kHz before being passed from the X300 SDR to the receiving

site computer. ICEBEAR generates 8 MB/s (28.8 GB/day) of raw IQ voltage sample data

during standard operation. This data is stored on hard disk using the Hierarchical Data

Format version 5 (HDF5) data format. These HDF5 files are referred to as Level 0 data.

The hard drives with Level 0 HDF5 files are physically collected and transferred (sneaker

net) to a processing computer equipped with a graphics processing unit (GPU) located at

the University of Saskatchewan.

System specifications for the signal chain from transmission through reception are summa-

rized in Table 2.1.
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Figure 2.5: Normalized transmitter array gain pattern in dB. (Top) Cross-section

of the horizontal gain pattern at the elevation of the maximum vertical gain. (Bot-

tom) Cross-section of the vertical gain pattern at the azimuth of the maximum

horizontal gain. The dashed black lines indicate the direction of maximum gain

(boresight: 6◦ elevation, 16◦ East of North). The pattern is generated with NEC-5

software (Lawrence Livermore National Laboratory, 2020).
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Figure 2.6: Normalized receiver antenna gain pattern in dB. (Top) Cross-section of

the horizontal gain pattern at the elevation of the maximum vertical gain. (Bottom)

Cross-section of the vertical gain pattern at the azimuth of the maximum horizontal

gain. The dashed black lines indicate the direction of maximum gain (boresight:

6◦ elevation, 7◦ East of North). The red shaded area shows the imaging field of

view. The pattern is generated with NEC-5 software (Lawrence Livermore National

Laboratory, 2020).
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Figure 2.7: (Top) Transmitter array gain pattern, and (Bottom) Receiver antenna

gain pattern at 110 km altitude on a WGS84 Earth model. The white area is where

the Earth occludes a line of sight link.
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Figure 2.8: Superposition of the transmitter array gain pattern and receiver antenna

gain pattern in dB. The link is modeled on a WGS84 Earth model at a constant

110 km altitude. The white area is the region where the Earth occludes a direct

line of sight link. The regions show where the bistatic radar has sufficient gain to

detect targets.
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Table 2.1: System specifications (Huyghebaert, 2019).

Specification @ 49.5 Mhz Value

Receiver location (52.243◦, −106.450◦)
Receiver pointing direction 7◦East of North

Transmitter location (50.893◦, −109.403◦)
Transmitter pointing direction 16◦East of North
Peak transmitter output power 300 W

Transmitter array type Linear (1λ spacing)
Receiver array type Non-uniform planar

Modulation type Binary Phase Shift Keying
Chip length 10 µs
Code length 10,000

Range resolution 1.5 km
Range aliasing 30,000 km

Doppler resolution 10 Hz
Doppler aliasing ± 50 kHz

Sample size 32-bit IQ
Data rate for 10 receivers 8 MB/s

2.4 Processing

The hypothetical signal now exists as digital IQ voltage samples, but it remains mixed with

noise and is indiscernible. The PRN phase encoded signal needs to be recovered from amongst

the noise. This is achieved through matched filtering, which is a form of coherent integration

that finds the Doppler shifted received signal srx(t) amidst the noise by cross-correlating it

with the transmitted stx(t) signal (Huyghebaert, 2019). The cross-correlation will peak at

some time delay which corresponds to the time of flight of the transmitted signal, which in

turn is related to the target range. Specifically, a matched filter is a special case of linear

time-invariant filters where the signal-to-noise ratio (SNR) is maximized for some time delay.

The matched filter response m is described by the equation (Hysell, 2018),

m(τd, ν) =
∫ ∞

−∞
srx(t)s

∗
tx(t− τd)ej2πνtdt+ δ (2.13)

where τd is the time delay, t is time, ν is the Doppler frequency shift at which filtering

occurs, srx(t) is the received baseband signal at time t, s∗tx(t − τd) is the conjugate of the

transmitted signal at offset time τd, and δ represents the combination of sky noise, system

noise and self clutter. The matched filter output m(τd, ν) will be maximum, where τd and ν
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corresponds to the scatter target’s range and Doppler shift. A true matched filter requires

the exact transmitted signal; ICEBEAR does not record the actual transmitted signal, which

does differ from the expected signal, as radio electronics are not perfect. Also, a measure of

the noise floor is required to remove δ, this is not done with ICEBEAR, instead it is assumed

that the mean power of the received signal is equal to the noise power (Huyghebaert, 2019).

These two caveats mean ICEBEAR processing does not use a perfect matched filter, but is

practically close.

Notice that for srx = stx, that
∫∞
−∞ s(t)s

∗(t − τd)ej2πνtdt is a Fourier transform with respect

to ν. Thus, Equation 2.13 can be rewritten as

X (τd, ν) =
∫ ∞

−∞
χ(τd, t)e

j2πνtdt+ δ (2.14)

where χ(τd, t) = s(t)s∗(t− τd) and m(τd, ν) = X (τd, ν) + δ. By taking the square |X (τd, ν)|2
and assuming the target is at τd = 0, ν = 0 this provides the range-Doppler ambiguity

function (Hysell, 2018)

|X (τd, ν)|2 =
∣∣∣∣
∫ ∞

−∞
s(t)s∗(t− τd)ej2πνtdt

∣∣∣∣
2

(2.15)

Using the ICEBEAR PRN code as the signal, Figure 2.9 shows the ICEBEAR ambiguity

function. The response is a zoomed in view of the center, it shows a 1.5 km range and 10 Hz

Doppler resolution as expected.

Although Equation 2.13 is continuous, the real world ICEBEAR radar samples discretely.

Thus, the matched filter processing which decodes the PRN from the received signal is

done differently. First, the signals are decimated in software to 1 kHz to make Fast Fourier

Transforms (FFT) quicker when they are later calculated. Then an array of received complex

voltage samples srx[N + x] is taken with length N + x, where the [ ] brackets denote indices

of the array. For ICEBEAR-3D, x = 2000 and is the number of range bins to calculate, and

N = 10, 000 is again the number of chips. Also, take the conjugate of the transmitted signal

to get s∗tx[N ] with length N = 10, 000. Then perform the outer product srx[N+x]s∗tx[N ]. This

produces the decoded voltages as a function of the effective range and time; the resulting

matrix has the shape of total RF path length bins by time. An FFT is then calculated

across each RF total RF path length row, giving the range-Doppler-intensity (RDI) spectrum

S[ρRF , ν], which has the shape of total RF path length bins (2000) by Doppler bins (100),

for a total of 200,000 bins every 1 s. This is then done for each antenna for every 100 ms

scan. Ten scans are then averaged together to produce a 1 s time resolution RDI spectrum.
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Figure 2.9: A zoomed in view showing the 28 dB isolation between the peak

power and the self-clutter. Illustrating the thumbtack response in rang-Doppler

space (Huyghebaert, 2019).

The RDI spectrums are then cross-correlated between each antenna and auto-correlated at

each 1 s time cadence, generating the cross-spectra and spectra, respectively. The cross-

spectra and spectra are also called — visibilities — and form the fundamental value of the

Level 1 ICEBEAR data product. Visibility values are the final form of the hypothetical

signal, and for a 1 s period is calculated by

Vmn[ρRF , ν] = Sm[ρRF , ν]S∗n[ρRF , ν] (2.16)

where the visibility quantity for the mth and nth antenna pair at RF path length ρRF and

Doppler shift ν is Vmn[ρRF , ν]. The resulting visibilities are complex values that hold the time

difference of arrival of the received signal for each antenna pair, which are used to compute

angles of arrival and coherence lengths. Classically, ICEBEAR instrument’s uniform linear

receiver antenna array this was done using the basic interferometry equation, discussed in

Chapter 3. The design of the ICEBEAR-3D receiver antenna array is discussed next. This

is where ICEBEAR and ICEBEAR-3D become significantly different.
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3 Array Design

Sections 3.1, 3.2, and 3.3 of this chapter contains in part works directly from my contributions

in Lozinsky et al. (2022).1

Receiver array design is considered more of an art than a science amongst experts. The

explosive nature of computing possible receiver array configurations for a given specification

being functionally impossible, the designer often needs to rely upon their best judgement

to narrow the design scope. The design of sparse receiver arrays is inherently similar to

the famous travelling salesman problem where instead of minimizing the distance travelled

by choosing an optimal route, the sparse receiver array designer is optimizing where the

cities (or antennas in this case) are placed (Keto, 1997). There are no known analytical

solution, only heuristic approaches. This chapter describes the procedure used to design

the ICEBEAR-3D receiver antenna array. The discussion begins by outlining the design

considerations for the receiver antenna array — strictly the requirements needed to upgrade

the ICEBEAR system as outlined in Chapter 2 to overcome its limitation. Namely, the critical

design function, obtaining high resolution elevation angles of targets at 49.5 MHz using low

viewing angles, but also removing angle of arrival aliasing, and increasing the instrument’s

phase error tolerance. After the design considerations are laid out, the design methodology,

which is a combination of the Jacobs-Ralston phase error minimization technique and a

custom Random-walk Annealing stochastic optimization algorithm, is explained. Using the

described methodology, a novel sparse receiver antenna array design is given for aperture

synthesis imaging (see Chapter 4).

1Lozinsky, A., Hussey, G., McWilliams, K., Huyghebaert, D., and Galeschuk, D. (2022). ICEBEAR-3D:
A Low Elevation Imaging Radar Using a Non-Uniform Coplanar Receiver Array for E Region Observations,
Radio Science, 57(3). DOI: 10.1029/2021RS007358

24



3.1 Design Considerations

The receiver antenna array redesign is governed by several considerations, which are drawn

from the limitations of the original ICEBEAR uniform linear receiver antenna array. Each

of the design objectives and constraints applied to the ICEBEAR-3D receiver antenna array

reconfiguration are discussed.

3.1.1 Elevation Angles of Arrival

The angle of arrival η of a signal of wavelength λ in the far field can be determined by

measuring the phase difference ψ between two isotropic antennas separated by some distance

d (Thompson, Moran, & Swenson, 2001). The basic geometry for this elementary interferom-

eter is shown in Figure 4.1 and is analogous to the Young’s two-slit interferometer geometry.

The details of basic radio interferometry are given in detail in Section 4.1, but the basic

governing equation is also given here for convenience

ψ =
2π

λ
d cos η (3.1)

Angles of arrival measured with such an interferometer are ambiguous if the separation

distance d is greater than λ/2. This due to the inherent n2π ambiguity that comes with

measuring phase using real world instruments. The equation becomes

ψ =
2π

λ
d cos η + n2π (3.2)

where the n2π ambiguity is responsible for aliasing when determining the angle of arrival

η. All ambiguous angles of arrival derived using this equation will lie in the plane described

by the antenna separation vector or baseline ~d. For any collinear array, such as the original

uniform linear ICEBEAR receiver array, this restricts the angle of arrival measurements

to one dimension projected about the collinear axis. ICEBEAR-3D required non-collinear

baselines.

The direct solution to obtaining elevation angles of arrival is to construct a tall tower and

place antennas at various heights. However, elevation angles determined in this way are

subject to increased complexity due to multipath effects differing greatly for antennas at
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different heights on the tower. This complexity is the result of the cross terms in the cross-

correlation between two antennas no longer being minimal, as the reflection path lengths

cannot be considered equal. The effects of direct and reflected signal paths on the cross-

correlation is a purely geometric relationship. Given a horizontally polarized plane wave

arriving at two antennas with baseline ~d, then the complex voltages are

S1 = Aej(k0ρd1) + AR1e
j(k0ρr1+π) (3.3)

S2 = Aej(k0ρd2) + AR2e
j(k0ρr2+π)

where ρd1 and ρd2 are the direct signal path lengths to antenna 1 and 2, likewise ρr1 and ρr2 are

the reflected signal path lengths, R1 and R2 and the complex ground reflection coefficients for

the signal paths, A is the signal amplitude, and k0 = 2π/λ is the wavenumber. The additional

π phase shift occurs due to the refection of a horizontally polarized wave (Boithias, 1987).

The cross-correlation is

S1S
∗
2 = (Aej(k0ρd1) + AR1e

j(k0ρr1+π))(Ae−j(k0ρd2) + AR2e
−j(k0ρr2+π)) (3.4)

S1S
∗
2 = |A|2(ej(k0[ρd1−ρd2]) +R2e

j(k0[ρd1−ρr2]−π) +R1e
j(k0[ρr1−ρd2]+π) +R1R2e

j(k0[ρr1−ρr2]))

In the case where the towers are all of equal height and the ground reflection conditions can

be considered similar at the reflection points then the following assumptions can be made,

ρd1 − ρd2 ≈ ρr1 − ρr2 = ∆ (3.5)

ρd1 − ρr1 ≈ ρd2 − ρr2

R1 ≈ R2 = R

Then equation 3.4 simplifies to,

S1S
∗
2 = |A|2(ejk0∆ +R(ej(k0[ρd1−ρr2]−π) + ej(k0[ρr1−ρd2]+π)) +R2ejk0∆)

S1S
∗
2 = |A|2ejk0∆(1 +R2) + |A|2R(ej(k0[ρd1−ρr2]−π) + ej(k0[ρr1−ρd2]+π)) (3.6)

For low elevation angles of arrival the reflection angle of incidence η′, also known as grazing

angle, is very small. The reflection coefficient R is related to grazing angle by,

R =
sin η′ −

√
C

sin η′+
√
C

(3.7)
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where C is a complex function dependent on polarization and frequency (Boithias, 1987).

For ICEBEAR which is horizontally polarized C is,

C = ε− cos η′2 − j60σλ (3.8)

where σ is the conductivity and ε is the relative permittivity (Boithias, 1987). In most

cases on Earth, ε and σ depend almost entirely on the surface humidity. For all practical

surface conditions as η′ becomes very small the magnitude of R approaches −1 (Boithias,

1987). Since ICEBEAR operates almost entirely in the low elevation regime (horizon to 20◦)

Equations 3.6 is simplified,

S1S
∗
2 = 2|A|2ejk0∆ − |A|2(ej(k0[ρd1−ρr2]−π) + ej(k0[ρr1−ρd2]+π)) (3.9)

Under these assumptions, the remaining cross terms can be neglected as they contribute very

little, often on the order of system noise, resulting in

S1S
∗
2 = 2|A|2ejk0∆ (3.10)

Thus, Equation 3.10 is equivalent to the result of the cross-correlation between two antennas

in freespace except with double the power due to the exploitation of the reflected multipath

signal. This effect is known as a sea interferometer or Lloyd’s mirror where a pseudo baseline

is generated via the antenna and a virtual image antenna below the reflection plane. However,

hidden here is the phase portion of R = −1 = 1ejπ which becomes π at small grazing

angles, which again inverts the reflected signals phase generating an interferometer fringe

pattern 180◦ out of phase from typical interferometers. Antennas placed at different heights

will not benefit from this effect equally, complicating the acquisition of elevation angles at

low elevation angles. Additionally, a tower sufficiently tall enough to have adequately long

baselines for Very High Frequency (VHF) radars are prohibitively expensive to construct and

maintain.

The simplest method to resolve elevation angles is to construct a set of baselines in a plane

across flat ground with similar ground conditions in all directions. This method is subject

to uncertainties inherent to planar radars, which primarily is having no height displaced

antennas to resolve the above/below ground ambiguity. However, it does benefit from the

fact that if the maximum baseline is much less than the radius of the Earth and the wave-

length is larger than small scale topological changes, there is no significant ground reflection

multipath difference between each antenna. In order to acquire elevation angles of arrival,
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the ICEBEAR-3D design needed to be a planar array with baselines for elevation placed

North-South along the expected angle of arrival direction.

3.1.2 Removal of Angle of Arrival Ambiguities

The determination of angles of arrival using Equation 3.2 requires the correct selection of

n to resolve the ambiguity; otherwise, many indeterminate angles of arrival solutions exist.

The top plot of Figure 3.1 demonstrates the fringe patterns for a 1λ and 2λ baseline inter-

ferometer with the expected angle of arrival at 50◦. There exists many ambiguous solutions

due to the n2π ambiguity. Combining the angle of arrival solutions generated from multiple

unique baselines eliminates potential solutions; repeated baselines only reinforce the various

solutions. The combination of enough unique baselines will unambiguously resolve the angle

of arrival, except for the case where the unique baselines are spatial multiples of one another.

In this case, there will always be an angle of arrival solutions at spatially harmonic intervals.

These other solutions can then be incorrectly selected, resulting in angle of arrival aliasing.

The middle and bottom plots of Figure 3.1 are the normalized summation for a 10 baseline

fringe or interference pattern, where the expected angle of arrival solution is 50◦. The middle

plot corresponds to a uniformly 1λ spaced antenna array with 10 antennas. The solution

is ambiguous as the baselines are spatially harmonic, with only 9 unique baselines and 36

redundant (exactly the same) baselines. However, the maximum amount of unique baselines

given n antennas is n(n − 1)/2. The bottom figure uses all unique baselines at non-integer

spacing to eliminate spatially harmonic solutions from emerging. In the bottom plot only

one solution is found.

The original ICEBEAR receiver antenna array had angle of arrival aliasing as it was limited

by its uniformly 1λ spaced 10 antennas linear array. The uniform spacing limited the number

of unique baselines possible to 9. In order to remove angle of arrival aliasing, the ICEBEAR-

3D design required the condition that all baselines are unique to maximize the available

spatial information and that not all baselines be spatial multiples of one another. This is

most easily achieved by selecting non-integer λ spaced baselines.
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Figure 3.1: Interferometer fringe patterns for various baselines of a target with a 50◦

angle of arrival. (Top) The fringe patterns for a 1λ and 2λ baseline interferometer.

The middle and bottom plot shows a 10 baseline interference pattern. (Middle)

The interference pattern from a uniformly spaced antenna array giving ambiguous

angle of arrival solutions. (Bottom) The interference pattern from a non-integer

non-uniformly spaced antenna array resulting in one angle of arrival solution.

3.1.3 Phase Error Minimization

Phase differences measured at a fine resolution are required for accurate angle of arrival mea-

surements. This is especially true for low elevation angle measurements as phase wrapping

occurs more rapidly due to longer projected baselines, see Equation 3.2. Errors in phase mea-

surements dramatically affect angle of arrival measurements (Jones et al., 1998). Aperture

synthesis combines numerous baselines allowing for small stochastic errors to be suppressed,

while large systematic phase errors are offset with calibrations. Phase errors that fluctuate

over a range greater than the phase measurement accuracy between sampling, however, cause

random variations in measured angles of arrival. These errors are typically caused by physi-

cal issues such as clock drift, poor cable connections, wind loads, and temperature changes.
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These fluctuating phase errors are suppressed by designing the receiver antenna array to be

phase error tolerant. This is done by choosing a pattern of antenna baselines that optimize

for resolving the n2π ambiguity present in Equation 3.2. Therefore, the ICEBEAR-3D design

needed to be phase tolerant so that phase error would not be greater than the estimated X300

SDR’s measurement phase error of ≈ 1.0◦ or cause an angle of arrival error greater than 0.1◦.

3.1.4 Maximize Angular Resolution

Angle of arrival resolution is inversely proportional to the length of the longest baseline for

a given direction ≈ λ/d. Selecting the maximum baseline length possible in the East-West

and North-South direction is required for fine angular resolution. These maximum baseline

lengths, however, cannot be greater than the coherence length of the signals scattered from the

target or the interferometric fringe patterns will have no discernible amplitude. Fine targets

like meteor trails have longer coherence lengths than broad targets like E region scatter.

Unfortunately, the maximum coherence length of E region targets is unknown. Coherence

and coherence length are discussed in more detail in Section 4.2. The longest ICEBEAR

baseline was only 9λ, but land at the receiver site is available for much longer baselines. The

ICEBEAR-3D design needed to select the maximum baseline lengths available to improve

the angular resolution of the radar.

3.1.5 Available Land

Given the outlined objectives, many adequate array solutions were available. However, several

constraints severely limited the design solution space, mainly restrictions on resources and

land. To ensure time-synchronous measurement, the total electrical length of the cables to

each antenna was kept equal at 600 m. Nominally, due to cable routing, this limited the

radius of possible antenna placements from the radio shack to 300 m. Antenna placements

were further restricted within this 300 m radius by physical barriers such as trees, shrubs,

watered areas, and a co-located apiary. The radar shed, along with several other space

physics experiments, also restricted the available land. The property was also adjacent to

arable farmland, which could not have access obstructed. The remaining area that was

available for the design is illustrated in the left image of Figure 3.2, shown as the black

shaded regions.
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Figure 3.2: (Left) ICEBEAR Receiver site North East of Saskatoon showing areas

where antennas are not obstructed by trees, water, buildings, or other experiments.

(Right) The final layout of the receiver antenna array, annotated to show antenna

numbers, buried cables, and suspended cables. Image acquired from Google Maps,

2020.
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3.1.6 Antennas and Radios Available

The antennas available were 12 Cushcraft 612-B Super Boomer Yagi-Uda’s, shown in Fig-

ure 3.3, mounted on Golden Nugget 18” towers at a height of 15 m (Huyghebaert, 2019).

At ≈ 50 MHz, the Cushcraft antennas have a front-to-back ratio of 30 dB, a forward gain

of 14 dB, and 3 dB azimuthal beamwidth of 40◦. The antennas have a 10.3 m long by

Figure 3.3: Cushcraft 612-B Super Boomer Yagi-Uda’s antenna manufacturer draw-

ings. The antenna is 10.3 m long by 3.0 m wide. At ≈ 50 MHz, has a front-to-back

ratio of 30 dB, a forward gain of 14 dBd, and 3 dB beamwidth of 40◦.

3.0 m wide footprint. Antenna towers must be placed at least 12 m apart along the long

axis and 6 m apart along the short axis so that the antenna elements do not collide during

high winds. Furthermore, the minimum antenna separation distance must be no shorter than

1.5λ or 9 m. This is due to phase errors caused by mutual coupling at antenna separation

distances less than 1.5λ, which in turn leads to an erroneous effect on angle of arrival mea-

surements (Jones et al., 1998). The mutual coupling effect on angle of arrival is worse in

a collinear configuration (antennas placed side-by-side) than an aligned configuration (an-

tennas placed front-to-back), as the reflecting element of the Yagi-Uda’s help to isolate each

antenna. However, at least one baseline in the East-West direction was requested to be

exactly 1.5λ so that ICEBEAR-3D would be able to do a comparison of azimuthal spatial

coherence of meteor trails with the original ICEBEAR. Five X300 SDR transceivers housed

in the radar shed were available, each of which could digitize the signals for two antennas,

allowing for 10 total channels. This limited the number of antennas available for the design

to 10.
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3.2 Design Methodology

The optimal design of receiver antenna arrays is not directly determinable since the cross-

correlation function is not invertible. No method exists by which an exactly specified bright-

ness response (discussed in Chapter 4) can be created analytically. The use of numerical

methods is likewise difficult, as the number of possible antenna configurations within a given

space is explosively exponential with increasing number of antennas. Thus, given a set of

brightness response requirements such as resolution, signal-to-noise ratio, and sampling accu-

racy, a heuristic design approach must be used. The heuristic approach applied to designing

the ICEBEAR-3D receiver array reconfiguration was a combination of the Jacobs-Ralston

procedural phase error minimization antenna location selection method and, Random-walk,

a stochastic optimization method. Given the design objectives and constraints above, this

method focused on maximizing available space to obtain the highest spatial resolution pos-

sible while simultaneously maximizing phase error tolerance. The first subsection describes

placing the outermost antennas of the array. This first step minimizes the solution space by

reducing the number of antennas to consider by four. Next, the Jacobs-Ralston technique is

described and applied to select the inner antenna locations along the principle axes so that

the array is tolerant of phase errors. The technique does not perfectly place every antenna, as

space for antennas becomes tight. Lastly, the Random-walk Annealing technique is defined

and then used as it optimizes the uniformity of the visibility sampling function (described in

Section 4.2). During all design stages, no baselines under 1.5λ were placed, and all baselines

were unique to remove aliasing. As often as possible, antenna positions of the original array

and cable trays were used to reduce construction costs.

3.2.1 Maximum Baselines for a T-Shaped Array

The available land shown in Figure 3.2 lends itself naturally to a T-shaped interferometer

configuration. The first antennas were placed to maximize the angular resolution of the

receiver antenna array. Antenna 0 remained in the same location as the previous linear array

and is used as the origin of the local antenna array coordinate system. For the maximum

East-West baseline, an antenna was placed as far East as available land allowed along the

original ICEBEAR receiver array axis. This maintains the same 7◦ East of North boresight.

The Jacobs-Ralston approach, which is explained next, was then used to determine the

location along the East-West axis of the antenna array that would be the intersection of the
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two axes in the T array. The longest North-South baseline was found by placing an antenna

as far south as possible, aligned perpendicular to the East-West baseline and collinear with

the intersection antenna. Maintaining antenna 0 as the origin, (0.0, 0.0)λ, then antenna

9 was placed (16.15, 0.0)λ away (furthest to the East along the East-West axis of the T),

antenna 7 was unmoved using its existing position at (9.0, 0.0)λ, and antenna 5 was placed

(9.0,−34.0, )λ (furthest South along the North-South axis of the T). These four antennas are

shown in Figure 3.2 as Antennas 0, 9, 7, and 5 respectively. Note that the antenna numbers

indicate bulkhead order at the radio shack, not the design selection order.

3.2.2 Jacobs-Ralston Phase Error Minimization Technique

The next four antennas, 1, 3, 4, 8, and the intersection antenna 7 had their position’s selected

using an iterative phase error minimization technique presented in Jacobs and Ralston (1981).

This technique was designed as a solution to the n2π ambiguity resolution problem, but

has the additional unintended benefit of creating aperture synthesis receiver antenna arrays

that are highly tolerant of phase errors. Given any pair of antennas sufficiently spaced by

a distance d, the Jacobs-Ralston technique locates multiple positions along d that a third

antenna should be placed such that it maximizes the likelihood that the correct n2π ambiguity

is selected.

The Jacobs-Ralston technique begins with analysis of three arbitrary antennas: A1, A2 and

A3. If A1 and A2 are separated by some distance d12 and A3 is placed between them then three

baselines are created. Assuming a planar wave arriving at the array, then from Equation 3.1,

there is a phase difference for each baseline: ψ12, ψ13, and ψ23. Figure 3.4 is a graphical

representation of the three antennas and the three unique baselines generated. Each of the

phase differences ψmn from baselines dmn that is greater than λ/2 will include an ambiguous

n2π term as shown by Equation 3.2. The minimum baseline length dmn for the ICEBEAR-3D

design was 3λ/2. Therefore, the true phase differences, ψ′mn, are written as

ψ′12 = ψ12 + n122π =
2π

λ
d12 cos η + n122π (3.11)

ψ′13 = ψ13 + n132π =
2π

λ
d13 cos η + n132π (3.12)

ψ′23 = ψ23 + n232π =
2π

λ
d23 cos η + n232π (3.13)
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d12

d13 d23A1 A3 A2

Figure 3.4: All baselines generated from the combination of three antennas, A1,

A2, and A3.

Since ψmn is measured between −π ≤ ψmn ≤ π then nmn are integers limited by

ψ′mn
2π

=
2πdmn
2πλ

cos ηmax +
nmn2π

2π

nmn = −dmn
λ

cos ηmin ±
1

2

|nmn| ≤
dmn
λ

cos ηmin +
1

2
(3.14)

where the lowest elevation angle ηmin is 0 radians for ICEBEAR-3D as targets are viewed at

angles down to the horizon. Then after choosing the minimum elevation angle and normal-

izing by 2π, Equations 3.11, 3.12, and 3.13 become

ψ′12

2π
− n12 =

d12

λ
(3.15)

ψ′13

2π
− n13 =

d13

λ
(3.16)

ψ′23

2π
− n23 =

d23

λ
(3.17)

Combining Equation 3.15 and 3.16 and solving for ψ′12

ψ′12

2πd12

− n12

d12

=
ψ′13

2πd13

− n13

d13

d13
ψ′12

2π
− d13n12 = d12

ψ′13

2π
− d12n13
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d12n13 − d13n12 = d12
ψ′13

2π
− d13

ψ′12

2π
(3.18)

and since ψ′mn is limited to ±1/2 this relationship is limited by

|d12n13 − d13n12| ≤
1

2
(d12 + d13) (3.19)

Thus, for any choice of n12 there are a limited number of options for n13. Given all possible

phase measurements for a pair of baselines, a ψ′12 by ψ′13 phase by phase space limited to

±1/2 is definable. An example of this phase by phase space is shown in Figure 3.5. A set

Figure 3.5: Sample phase space generated by ψ′12 and ψ′13 with ±1/2 limits showing

constant n ambiguity lines, n-lines, and an example point P (ψ′12, ψ
′
13) with error

ε (Jacobs & Ralston, 1981) from the nearest n-line.

of phase measurements in this space is defined by a point P (ψ′12, ψ
′
13). Each pair of n12 and

n13 creates diagonal lines within the phase by phase space. These lines of constant phase

are called n-lines. In the absence of any phase measurement error the point P (ψ′12, ψ
′
13)

aligns with one of the n-lines allowing for perfect determination of the ambiguity n12 and

n13. However, real phase values will always have inherent noise, and as such these points,

P (ψ12, ψ13), will not lay on an n-line. The process of selecting the correct n2π ambiguity is as
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simple as selecting the n-line that is closest to P (ψ12, ψ13) where the difference is the error ε.

Although simple in nature, actually determining which constant n-line is closest is non-trivial

when they are narrowly separated. Phase errors which rapidly fluctuate further complicate

this selection process as they cause P (ψ12, ψ13) to drift across the midpoint between two

n-lines. Maximizing the spacing between adjacent n-lines increases the statistical likelihood

of selecting which n-line P (ψ′12, ψ
′
13) is closest. This both resolves ambiguities and allows for

more phase tolerance as larger phase errors must occur before P (ψ′12, ψ
′
13) crosses a midpoint

between n-lines.

The procedure to finding the optimal placement for the third antenna, A3, is determined by

sliding the third antenna between the pair, A1 and A2, so that d13 goes from the minimum

allowable separation distance to d12/2. At each step the separation distance between each

pair of adjacent n-lines is determined, and the minimum separation distance of these pairs is

recorded. These values are then plotted against the baseline distance d13, see Figure 3.6.
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Figure 3.6: Minimum phase line separation (minimum n-line separation) versus

baseline distance of the first and second antennas. This is used to select the position

for a third. In the design of ICEBEAR-3D this plot was used for selecting the

locations of antennas 1, 3, and 7.

The maxima of this function are the phase error minimum locations. The function tends

to have many maxima and minima which oscillate. The function produces a sawtooth like

pattern. This is due to the minimum separation distance increasing as baseline distance
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Figure 3.7: Minimum phase line separation (minimum n-line separation) versus

baseline distance of the first and third antennas. This is used in part, along with

the previous first and second plot, to select the position for a fourth antenna. In the

design of ICEBEAR-3D this plot was used for selecting the locations of antennas

3, and 7.
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Figure 3.8: Minimum phase line separation (minimum n-line separation) versus

baseline distance of the first and fourth antennas. This is used in part with the

previous plots to select the position for a fifth antenna. In the design of ICEBEAR-

3D this plot was used for selecting the locations of antenna 7.
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increases until a point where adjacent n-lines get closer to their opposite partners. Slight

shifts in antenna position due to wind or any other effects that cause fluctuating phase

errors between calibration cycles is tolerated by selecting the antenna positions in regions

with the widest peaks. With this in mind, the antenna location chosen must simultaneously

maintain all unique baseline vectors, be within the acceptable land area, and be optimal

for both baselines d12 and d13. This process is then continued for a fourth antenna, and so

on until all antennas are selected along an axis. The location selected for each subsequent

antenna must correspond to a wide maximum of minimum n-line separation for all possible

baseline pairing. Given only six antenna location needed to be selected by this process, it

was performed manually.

The locations of ICEBEAR-3D antennas 1, 3, and 7 were selected in this manner for the East-

West axis. Antennas 4 and 8 were located likewise for the North-South axis. Figures 3.6

through 3.8 are the minimum separation distance versus baseline distance plots for selecting

Antenna 1, 3, and 7 locations. Antenna 7 was selected at 9λ from Antenna 0, which is

not the optimal location. However, this location aligned with an already existing antenna

and produced the longest possible North-South baseline. The averaged baselines result is

shown in Figure 3.9 and zoomed in on Figure 3.10. The location for Antenna 7 although

not optimal is the best for the land area available and was minimally varying over ±0.08λ

(±0.5 m) baseline distance. The code for the algorithm is given in Appendix A.

3.2.3 Random-walk Annealing Technique

Although the Jacobs-Ralston approach could be expanded to evaluate phase error separation

minimization in 2-dimensions allowing placement within a plane rather than an axis, such

an exhaustive approach was deemed unnecessary. The primary purpose of the remaining

two antennas was suppressing artefacts (the dirty beam of the sampling function convolved

with the true brightness distribution discussed in Chapter 4) in brightness maps. This

was achieved by maximizing the uniformity and coverage of the visibility sampling space

as recommended by Keto (1997), which reduces artefacts inherent to sparse arrays in the

final image. The remaining two antennas were located off-axis by using a rudimentary custom

stochastic method loosely based on simulated annealing affectionately referred to as Random-

walk Annealing.

The method perturbates the location of each antenna of interest within a bounded region.
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Figure 3.9: The average of minimum n-line separation functions for combinations;

first and second, first and third, first and fourth, and third and fourth. This is used

for selecting the position of a fifth antenna along d12. In the design of ICEBEAR-3D

this plot was used for selecting the location of antenna 7.
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Figure 3.10: A zoomed in view of Figure 3.9 showing the region around the 9λ

baseline distance selected for Antenna 7. The baseline selected is not an optimal

peak, but is wide, not greatly varying over ±0.08λ (±0.5 m).
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The distance of each antenna perturbation is individually weighted by wq. The perturba-

tions continue until the following conditions are met: all baselines are unique, all antennas

are spaced greater than 1.5λ, and the sampling space meets the condition of uniformity. Uni-

formity here meaning no point corresponding to an antenna of interest within the sampling

space being within 1 λ radius of another. With each iteration, the antennas of interest which

do not meet the aforementioned conditions are allowed to perturb a greater distance by in-

creasing wq by the elasticity factor eq. Antennas that do meet the aforementioned conditions

have their wq decreased by the dampening factor dq. The selection of eq and dq control the

rate at which the antenna locations stabilize. The algorithm written in Python is given in

Appendix B. The following is the pseudocode for the Random-walk Annealing algorithm

# conditions is a boolean array with length the number of antennas

# positions are antenna (x, y) locations

# weights are per antenna

while any conditions are true:

positions = (random within boundary from

(positions - weights) to (positions + weights ))

baselines = separation distance between each positions combination

for each position in positions:

if position within minimum antenna spacing of another position:

condition = False

for each baseline in baselines made from position:

if baseline not unique:

condition = False

if baseline <= uniformity minimum separation:

condition = False

if condition is False:

weight *= elasticity

else

weights *= dampening

return positions

The remaining two antennas positions were determined by running the Random-walk Anneal-

ing code 1000 times, as this simple method does not ensure the solution is a global minimum.

The elastic and dampening factors were selected by a process of trial and error until values

that produced good results in a reasonable time were found, these values were eq = 2 and

dq = 0.1. All other antennas were made unmovable. Each simulation was allowed to iterate

until a stable solution was found. Evaluation of each simulation was done by comparing the

dirty beams, also called the point-spread function in optics, produced to each other. The se-

lected simulation’s dirty beam is shown in the third panel of Figure 3.11. An ideal dirty beam

has a very narrow main lobe, and the largest amplitude difference between the two highest

lobes also known as the side-lobe level. The designer must strike a balance between these
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two criteria as real world constraints do not allow for a perfect solution. Often one criteria

can be favored over another depending on the use case. For ICEBEAR-3D, the side-lobe

level cutoff was set to −5 dB and the 3 dB elevation lobe width to 1◦. Several simulations

passed these criteria, all of which were equally acceptable. The final choice was the one that

allowed for the least expensive cable tray construction. Although, Random-walk Annealing

is not very sophisticated, it was able to resolve the design problem. It placed antenna 2 at

(12.2,−16.5)λ and antenna 6 at (7.0,−29.3)λ finishing the design.

3.3 Final Array Design

The final ICEBEAR-3D design reconfigured the antennas into a non-uniform sparse coplanar

T-shaped array optimized for robust phase tolerance. Although the receiver antenna array

configuration has changed, processing of the raw IQ samples remains the same as discussed in

Chapter 2. The final design is shown on the right of Figure 3.2. The exact antenna locations

as-built do not exactly match the design specification. Observe that antenna 8 is located

slightly off-axis due to unforeseen obstructions during construction, blocking the original

location. The shifted location has minor effects on the overall capabilities. Figure 3.11 sum-

marizes the as-built locations of each antenna in local coordinates measured from antenna

0 and shows the coverage of the visibility sampling space, which will be discussed in Sec-

tion 4.2, as well as the dirty beam. The array being T-shaped with an asymmetrical visibility

sampling space and different maximal baselines in the North-South versus East-West means

the array does not have exactly the same resolution in all directions. Table 3.1 is a list of the

final as-built antenna positions. Although sparse in some sections, the redesigned receiver

antenna array is one of the possible designs with the most uniformly filled visibility sampling

spaces possible.

The receiver antenna redesign was created within all the constraints. Verifying that the

design met the phase tolerance objective was determined by intentionally introducing error

in the recorded as-built antenna positions to displace the measured angle of arrivals until a

difference from the correct angle of arrival of 0.1◦ was found. This occurs when an antenna

is displaced by about 25 cm, which corresponds to a phase error of 14.86◦, well above the

measured X300 SDR’s measurement phase error of ≈ 1.0◦. The expectation is that the

displacement of antennas due to wind shear, combined with phase drifts between calibration

periods, will not be more than 14.86◦. In any case, the synthesis of a larger aperture by the
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Table 3.1: The final design antenna positions in local coordinates measured from

antenna 0 in units of meters.

Num x(m) x(λ) y(m) y(λ) z(m) z(λ)

0 0.00 0.0 0.00 0.0 0.00 0.00
1 15.10 2.5 0.00 0.0 0.09 0.01
2 73.80 12.2 -99.90 16.4 0.35 0.06
3 24.20 4.0 0.00 0.0 0.22 0.04
4 54.50 9.0 -94.50 15.6 0.68 0.11
5 54.50 9.0 -205.90 34.0 -0.06 0.01
6 42.40 7.0 -177.20 29.3 -1.07 0.18
7 54.50 9.0 0.00 0.0 -0.75 0.12
8 44.20 7.3 -27.30 4.5 -0.53 0.09
9 96.90 9.0 0.00 0.0 -0.41 0.07

combination of antennas suppresses stochastic phase error effects. Aperture synthesis and

radar imaging is discussed next in Chapter 4. The verification of elevation angles as well as

the challenges of a low elevation horizon facing planar array will be discussed in Chapter 5.
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4 Radar Imaging

Sections 4.4, 4.5, and 4.6 of this chapter contains in part works directly from my contributions

in Lozinsky et al. (2022).1

Radar imaging is the process by which a radar illuminates a target, then uses the returned

light to create a picture of the target at the radar’s operating frequencies. The two most

common types of imaging radars are; Synthetic Aperture Radar (SAR) which produces two-

dimensional images by sampling a target from a series of positions using real apertures;

and Inverse Synthetic Aperture Radar (ISAR) which produces two-dimensional or three-

dimensional images by sampling a moving target from a single stationary real aperture. This

can be thought of as either moving your radar about a target or moving a non-changing

target around a radar. ICEBEAR-3D targets both move quickly and change rapidly, making

neither method suitable. However, general radio interferometry theory is suitable.

Radio interferometry has been largely developed and advanced by the radio astronomy com-

munity for the observation of distant celestial objects. The first radio interferometer, however,

was a radar application using an antenna mounted on a sea-cliff overlooking the ocean, known

as the sea-interferometer (Sullivan, 1991). This radar would detect interferometric patterns

in its echoes and was capable of tracking aircraft arriving over the horizon when the sea

surface was calm. The interferometric patterns were generated by the constructive and de-

structive interference between the real antenna and the imaginary reflection antenna below

the sea-surface reflection plane. The Australian team who developed the sea-interferometer

first used it to detect aircraft coming over the horizon during the post World War II period,

but was quickly redirected towards astronomical observation. The instrument eventually led

to the discovery that sunspots emit strong radio waves and the measurement of how spatially

narrow emissions from Cygnus A truly are (Sullivan, 1991). Radio interferometry techniques

1Lozinsky, A., Hussey, G., McWilliams, K., Huyghebaert, D., and Galeschuk, D. (2022). ICEBEAR-3D:
A Low Elevation Imaging Radar Using a Non-Uniform Coplanar Receiver Array for E Region Observations,
Radio Science, 57(3). DOI: 10.1029/2021RS007358
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have advanced within the radio astronomy field, ultimately leading to Very Long Baseline

Interferometry (VLBI), a technique used to image black holes. There are two classes of radio

interferometer: additive and multiplicative. Additive interferometry is just another name

for beam forming, which is the process by which signals from spaced antennas are added

together prior to detecting a target. In multiplicative interferometry, the signals from spaced

antennas are multiplied together to form images. In lay terms, beam forming is like shining

a flashlight into a dark room then determining if the target was inside the beam of light or

not, whereas imaging is like turning on the lights in the room then looking for the target.

ICEBEAR-3D is concerned with multiplicative interferometry, specifically, the application of

Synthesis Aperture Imaging (SAI) for radars. SAI broadly speaking is the process by which

a set of sparsely placed antennas are combined virtually to form a much larger imperfect

aperture. Incident waveforms received by a synthesized aperture are computed into images

at the instrument’s frequency band by way of the Fourier transform relationship. The design

of such sparse arrays for SAI was previously discussed in Chapter 3.

This chapter describes SAI and radar imaging as it applies to ionospheric radars. Specifically,

this chapter focuses on radar imaging foundations and techniques as they apply to ICEBEAR-

3D. This is done by building upon the interferometer basics presented in Chapter 3. The

discussion is guided by an explanation of the principle terms, Visibility and Brightness,

and how they are inexorably tied together by the van Cittert-Zernike theorem (vCZ). The

discussion will then lead to the limitations of the vCZ as a direct imaging algorithm for

low elevation imaging radars and how the Spherical Wave Harmonic Transform (SWHT) is

much better suited. From there the discussion will focus on the SWHT technique, how it

performs, how it was made significantly faster, and how the SWHT was modified into the

Suppressed-SWHT in order to unambiguously resolve target angles of arrival.

4.1 Radio Interferometry

In principle, radio interferometry is no different from optical interferometry, except that the

electromagnetic wavelengths are significantly longer. One may consider a radio interferom-

eter made of two antennas separated by some distance receiving an electromagnetic plane

wave from a point source as a Young’s two-slit experiment, where the antennas are the

slits (Thompson et al., 2001). Take for example a far-field plane wave incident upon a planar

interferometer, as seen in Figure 4.1.
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Figure 4.1: Young’s two-slit geometry for angle of arrival elevation angle η. The

waves on paths ρ1 and ρ2 are from the same source and satisfy the Young’s two-slit

condition ρ1, ρ2 � d. The wave on path ρ1 to antenna A1 travels a distance d cos η

further than the wave on path ρ2 to antenna A2, which corresponds to a phase

difference of ψ = 2π d
λ

cos η as given by Equation 4.4.

The plane wave will arrive at the two antennas with some geometric time delay τg

τg =
d

c
cos η (4.1)

where d is the antenna separation distance (two-slit separation distance), c is the speed

of light in a vacuum, and η is the source direction of the signal, or angle of arrival. The

interferometer’s response generates a fringe pattern with respect to the geometric delay

F = cos

(
2πd

λ
cos η

)
(4.2)

where λ is the wavelength and the fringe spacing is given by,

∆η = λ/d (4.3)

which also defines the angular resolution of the interferometer. In the case of an interferometer

with multiple antennas, the largest separation distance d defines the angular resolution. The

angle of arrival η of the signal can be determined by measuring the phase difference ψ between

the two antennas, separated by distance d (Thompson et al., 2001).

ψ =
2π

λ
d cos η (4.4)

ψ = k0d cos η

where k0 = 2π/λ is the wavenumber. Angles of arrival measured with such an interferometer
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are ambiguous if the separation distance d is greater than λ/2 due to the inherent n2π phase

sampling ambiguity

ψ′ = 2π

λ
d cos η + n2π (4.5)

This n2π ambiguity is responsible for the fringes in optics, which are referred to as grating

lobes in radio applications. With the use of a sufficiently large ensemble of interferometer

pairs, this ambiguity is removed, provided the baseline of each pair is both unique and not

a factor of any other pair. This is the same process described in Figure 3.1 from Chapter 3

where unique samples break down ambiguities.

Generalizing this formula to account for the antennas in 3D space gives

ψ′ = 2π~b · ~k + n2π (4.6)

where ~k is the incident wavevector, and ~b is the wavelength normalized antenna separation

vector or baseline ~b = ~d/λ. Where explicitly, the components ~b = (u, v, w) are found from

the antenna’s locations local coordinates x, y, z as

u =
x1 − x2

λ
, v =

y1 − y2

λ
,w =

z1 − z2

λ
(4.7)

These wavelength normalized spacing coordinates u, v, w are also the spatial frequencies.

They define the sampling function in the visibilty domain used for synthesis aperture imaging.

In application, the phase ψ, which is related to τg, is the phase component of the complex

visibility V , and is used to solve for the angles of arrival of the incident waveform. This

process of combining multiple interferometer baselines is aperture synthesis, it is the process

of converting visibility into brightness.

4.2 Visibility and Brightness

The term visibility, also known as interferometric visibility, interference visibility, or fringe

visibility, originates from optical interferometry with the Michelson interferometer. It is a

mathematical representation of the fringe pattern formed by an interferometer. The definition

of fringe visibility is the ratio between the amplitude of the interference pattern to the sum
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of the powers of the individual waves (Thompson et al., 2001)

V =
intensity of maxima− intensity of minima
intensity of maxima+ intensity of minima

(4.8)

This is a purely real quantity that is normalized to unity. In radio interferometry complex

visibility is used, which was defined by Bracewell (1958) to account for phase allowing imaging

of asymmetric and complicated sources. Complex visibility represents a portion of the Fourier

transform of an observed signal with respect to the baseline direction defined by the spaced

receiving antennas.

This statement is often a point of confusion, to be abundantly clear visibility is measured with

respect to a wavelength and spatial frequency. For an incident waveform with wavenumber

k0 = 2π/λ a visibility is the complex value sampled at a spatial frequency defined by the

baseline ~b. The baselines are the spatial frequencies the incident signal is sampled at, a map

of this sampling function point in the visibility domain for ICEBEAR-3D is shown in the

center plot of Figure 3.11. Each point is located at some (u, v) point calculated by wavelength

normalized separation vector, or conjugate vector, between the antenna pair (m,n), except

the point at (u = 0, v = 0) which is the 0th baseline formed by an antenna with itself. A

visibility for an antenna pair (m,n) is written as

Vmn(umn, vmn, wmn, k0) (4.9)

Since in imaging it is the baseline vectors ~b that are important rather than the antennas it

is convenient to index the visibilities by the ith baseline (antenna pair)

Vi(~bi, k0) (4.10)

The ensemble of visibilities for a synthesized aperture, as discussed in Chapter 2, are made

of the cross-correlations between every antenna pair and at least one autocorrelation (the

value at u, v, w = (0, 0, 0)). Each visibility in the ensemble has a complex numerical value at

a given coordinate.

Visibilities as given in Chapter 2 were defined by Equation 2.16. The result of that com-

putation was the visibility quantities for 1 s in time at a specific Doppler frequency, range,

and for a specific antenna pair. This means for each and every range-Doppler bin every 1 s

there are 91 visibility values. The 91 visibility values includes all 45 unique pairs (n(n−1)/2

where n = 10 for ICEBEAR-3D), their conjugate pairs, and one antenna auto-correlated.
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Visibilites for a single range-Doppler bin are represented by

Vi(~bi, k0) = Sm(~bi, k0)S∗n(~bi, k0) (4.11)

Where S is the range-Doppler-intensity spectra from Chapter 2 at a specific range and

Doppler indices.

The Weiner-Khinchin theorem states that the Fourier transform of the square of a signal

is equal to the autocorrelation of that signal (Thompson et al., 2001). For the case with

two different signals, the Cross-Correlation theorem states that the Fourier transform of the

product of the first signal and the conjugate of the second is equal to the cross-correlation

of two signals (Thompson et al., 2001). The power density spectrum, or simply the power

spectrum of a waveform, is measured by the cross-correlation of signals from spaced antennas.

In other words, the power spectrum of an incident waveform is the Fourier transform of the

visibility. This is called brightness.

Two-dimensional brightness maps are images at the radar frequency. The term brightness

is used rather than intensity, as brightness includes the antenna receiving array frequency

response and intensity is purely the energy in the incident wave. The Fourier transform that

relates brightness and visibility is the van Cittert-Zernike theorem.

4.3 Van Cittert-Zernike Theorem

Conventional synthesis aperture radar imaging algorithms used in ionospheric physics appli-

cations are often modifications or variations of radio astronomy methods (Hysell, 2018). The

basis of all of them being the van Cittert-Zernike theorem. The theory states that there is

a 2D Cartesian Fourier transform pair between the visibility and brightness assuming the

target source is incoherent, in the far-field, and the whole source lies in a single plane (van

Cittert, 1934; Zernike, 1938). The theorem is stated as

V (u, v, w) =
∫ ∞

−∞

∫ ∞

−∞

B(L,M)√
1− L2 −M2

exp
[
j2π

(
uL+ vM + w

(√
1− L2 −M2 − 1

))]
dLdM

(4.12)

where V (u, v, w) is the visibility at baseline (u, v, w), B(L,M) is the brightness projected

from the celestial sphere to the direction cosine plane (L,M). Figure 4.2 describes the
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Local horizon

Direction Cosine Plane

Celestial Sphere

Figure 4.2: An extended target located at some point on the imaging celestial

sphere, the equator coincides with the local horizon, being projected to the direction

cosines (L,M) plane. The target is distorted by the projection in both azimuth and

elevation. This distortion is exasperated as the elevation angle reaches the horizon.

This is the standard configuration for the derivation of the van Cittert-Zernike

theorem.

geometry for the vCZ. The direction cosines L and M are defined as

L = cos θ sinφ, M = sin θ sinφ (4.13)

and the final direction cosine is defined in terms of L and M as
√

1− L2 −M2. Equation 4.12

does not have the form of a Fourier transform due to the w term. Assuming targets are viewed

over a small angle at zenith where L � 1 and M � 1 and the receiving antennas lie in a

plane such that w = 0 everywhere, then w(
√

1− L2 −M2−1) reduces to 0. This is the most

common case for radio astronomy where the vCZ is used. The vCZ then reduces to

V (u, v) =
∫ ∞

−∞

∫ ∞

−∞
B(L,M) exp(j2π(uL+ vM))dLdM (4.14)

where the normalization term 1/
√

1− L2 −M2 has been absorbed by B(L,M) as it becomes

constant approaching 1 for small zenith angles. A small correction to B(L,M) is needed when

51



the targets being imaged are larger than the receiving antenna beam; this was not the case for

ICEBEAR-3D as targets were not expected to be over 60◦ spatially extended. Equation 4.14

now has the form of a 2D Fourier transform.

Given that the inverse of Equation 4.14 is well known, the problem becomes estimating the

brightness given a discrete set of sparsely sampled visibilities. In the ideal case, the true

brightness map B(L,M) would be perfectly constructed from the Fourier transform of the

ideal visibility function, V (u, v) which would fully samples all spatial frequencies. However,

in the real world this is never the case. Rather, the sampling function F (u, v), which is

defined mostly by the receiver antenna array configurations, determines where V (u, v) is

sampled and subsequently undersampled. The actual measurements made by the radar is

V (u, v)F (u, v). The Fourier transform of F (u, v) is the dirty beam G(L,M). The resulting

images are B(L,M) ∗ G(L,M). All images produced with sparse arrays are the true image

convolved with the dirty beam. The design of the receiver antenna array in Chapter 3 was

concerned with shaping this dirty beam. The dirty beam for ICEBEAR-3D is shown in

the right plot of Figure 3.11, it has a prominent asymmetrical main lobe and less powerful

adjacent side lobes. The convolution of the dirty beam with the real image causes targets to

appear to bleed together or ripple outwards.

Removing the dirty beam is not as simple as deconvoling it from the images, as the true

dirty beam is hard to determine. It is a combination of the radar receiver array layout,

ground reflections, system noise temperature, and many other variables. A strategy used to

determine the dirty beam of a system is to use a known point-like calibration source and

deconvolve the known brightness response that source would make, leaving the exact dirty

beam (Thompson et al., 2001). There is no such calibration source available for ICEBEAR-

3D, although there has been some success using Cygnus-A for calibration (Galeschuk, 2021).

Essentially every method which attempts to deconvolve the dirty beam from images has

the form of a linear inverse problem. They attempt to solve the inverse problem of the vCZ

theorem when the visibility domain is sparsely and irregularly sampled. The two most popular

methods are CLEAN and Max-entropy (Thompson et al., 2001). These methods have been

successful in the ionospheric radar imaging field, but are ill-suited as they assume targets are

point sources, which is a fair assumption for meteor trails, but not for plasma instabilities

of the E-region which are extended source targets. These methods are also computationally

intensive by their nature. ICEBEAR-3D avoids using any deconvolution method, as they are

unnecessary to obtain the required angle of arrival accuracy.
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The issue with assuming the w term is 0 is that it fundamentally limits the imaging radar

to narrow fields of view and zenith facing elevation angles. As at lower elevation angles, say

near the horizon, targets are projected to the imaging plane normal to the zenith direction,

which causes distortions that exasperate the already complex nature of low elevation angle

detection. Figure 4.2 shows how a target at low elevation is distorted when projected unto

the direction cosine plane. This distortion cause an error in target elevation and azimuth

angle of arrival. This error worsens as the elevation angle lowers. In the top of Figure 4.3,

the antennas lie in a plane and the direction cosine plane is tangential to the zenith. A target

arriving between elevation angles θ2 and θ1 has some vertical spatial extent. Assuming the

arc length on the celestial sphere is small, the change in the vertical extent of the target is

found by

L2 − L1 = (θ1 − θ2) sin θ2 (4.15)

where the radius of the celestial sphere and maximum direction cosine L is unitary. As the

target lowers towards the horizon sin θ2 approaches 0, making the target projected into the

direction cosine plane vanish. Azimuthally, the target smears around the projected direction

cosine plane perimeter. This make target locating extremely difficult.

The solution, one may think, would be to redefine the direction cosine plane to be tangential

to the horizon, as shown in the bottom of Figure 4.3. This changes the antennas from lying

in the u, v plane to the u,w plane. However, this new basis then inherits the w problem

previously discussed. As, in this right-handed reference system, the antennas are now in the

same u,w plane with constant v, but now the w positions are not constant, and cannot be

neglected. Methods exist that attempt to resolve the w problem by regriding the baselines

into w layers and solving using the standard vCZ for each layer before recombination. These

are called w-projection and w-stacking (Cornwell & Perley, 1992; Offringa et al., 2014).

Regardless, for ICEBEAR-3D this solution fails as having only 10 antennas provides to

few baselines per w-layer. Additionally, there are non-negligible errors which come with

regridding. ICEBEAR-3D has high phase error tolerance for an instrument of its kind at

±1◦, but the spatial frequencies are sampled irregularly. Regridding the visibility samples

from their (u, v, w) position to a regularized (u, v, w) grid induces artificial quantization error.

Artificial phase errors are especially concerning for ICEBEAR-3D as it operates entirely in the

low-elevation regime, where small phase differences correspond to large elevation differences.

Regridding is not acceptable, as the auroral E region needs to be measured from low elevation

angles to achieve perpendicularity of the radar wave with the magnetic field for scattering.

In most cases, ionospheric E region targets are spatially extended sources that need to be
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Figure 4.3: (Top) A cross-sectional view of the celestial sphere and direction cosine

plane. (Bottom) A cross-sectional view with the phase reference direction mathe-

matical orientated along the horizon, resulting in w plane offset. In both views an

extended target subtended by angles θ1 and θ2 is show projected to the direction

cosine (L,M) plane. In the top figure, there is significant distortion. In the bot-

tom figure, the distortion is minimal as the projection a small angle from the phase

reference direction.
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measured over wide fields of view ±45◦. The maximum field of view available when imaging

with the vCZ at low elevations is restricted by the instrument’s phase tolerance and longest

baseline

δψ = π
θ2
fov

4
bmax (4.16)

where δψ is the instrument phase tolerance, θfov is the angular field of view, and bmax is the

longest baseline length. Subbing in ICEBEAR-3D terms δψ = 1◦ and bmax = 34λ gives a

maximum angular field of view of 1.46◦, which is far too narrow compared to the extended

targets associated with E region scatter. In experimentation with regridding it was found

that target angles of arrival would become unpredictable as the extent of the target increased.

Strategies such as mosaicing are able to create wide field of view images by moving a smaller

field of view about the sky and stitching the resulting images together. This is not an effective

solution for ICEBEAR-3D, as the targets change rapidly over the whole field of view.

ICEBEAR-3D has a very wide field of view requirement, thus the normalization term,

1/
√

1− L2 −M2, cannot be considered constant. Nor can the w terms be neglected en-

tirely, as the array is not perfectly planar due to ground height difference. E region scatter

instabilities are volumetric and cannot be considered as coming from a single plane, which is

another assumptions the vCZ makes. ICEBEAR-3D images targets at low elevation angles

which produces large errors when using the direction cosines since they range from −1 to

+1, and these targets evaluate beyond this region, i.e., the Cartesian transform does not

automatically fulfill the dispersion relation k2 = ω2/c2 Carozzi (2015). E region targets tend

to be spatially extended resulting in spatially coherent targets, which is in opposition of yet

another vCZ assumption. Orientation of the direction cosine plane cannot be adjusted as

there is a limitation of antennas, and regridding methods induce far too much error. In

summary, ICEBEAR-3D has four problems when developing an adequate transform:

1. extended source target,

2. extremely wide field of view,

3. non-planar geometry, and

4. low elevation angles.

All of which the Cartesian basis vCZ is unable to manage. The solution to all four problems

is to re-derive the vCZ in spherical coordinates without assuming a zenith phase reference

position (Carozzi, 2015). This is the Spherical Wave Harmonic Transform.
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4.4 The Spherical Wave Harmonic Transform

Carozzi and Woan (2009) extended the vCZ to non-coplanar arrays and wide fields of view,

then subsequently generalized the relationship between brightness and visibility to any arbi-

trary domain using a special case of the spherical Fourier-Bessel transform (Carozzi, 2015).

This method, known as the Spherical Wave Harmonic Transform (SWHT), allowed: non-

coplanar arrays phased in arbitrary directions, wide fields of view, imaging of extended source

targets, and does not arbitrarily exasperate the low elevation angle problem. The following,

is the formulation presented by Carozzi (2015). The SWHT solution begins by noting that

Equation 4.14 does fulfill the Helmholtz equation in the visibility domain

∇2Vi(~k,~bi) + k2
0Vi(

~k,~bi) = 0 (4.17)

where Vi is the visibility for the ith antenna pair, ~bi is the baseline for that visibility measure-

ment, k is the wave vector and k0 is the wavenumber. The Helmholtz equation is solvable in

spherical coordinates, thus there is a vCZ relation in terms of eigen functions of the spherical

wave equation.

Beginning by applying plane wave decomposition (Jackson, 1999),

e−j
~k·~r = 4π

∞∑

l=0

l∑

m=−l
(−j)lJl(k0r)Ylm(Θ,Φ)Y ∗lm(θ, φ) (4.18)

where now l and m are not the direction cosines, but the Spherical Harmonic Function Y (l,m)

degree l and order m, and Jl(k0r) is the Bessel function of the first kind. Additionally, (r,

θ, φ) visibility spatial frequency coordinates (u, v, w) in spherical coordinates and (Θ,Φ) are

viewing angles to the celestial imaging sphere. Inserting Equation 4.18 into Equation 4.14 and

expanding the brightness distribution into spherical coordinates as well, while also expanding

the visibility distribution into spherical coordinates and using the orthogonality relationship

of spherical harmonics then summing over all antenna pairs i, gives

B(Θ,Φ) =
∞∑

l=0

l∑

m=−l
blmYlm(Θ,Φ) (4.19)

ṽlm(k0) =
2k2

0

π

Q∑

i=1

Vi(k0)Jl(k0ri)Y
∗
lm(θi, φi) (4.20)
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where blm and ṽlm are related to each other by,

blm =
ṽlm

4π(−j)l (4.21)

From Equations 4.21 it is evident that there is a simple proportionality relationship between

the visibility and brightness distribution. Combining Equation 4.21 with Equation 4.19 which

shows the relation between multipole moments and the brightness map, and Equation 4.20

which is the visibility distribution gives

B(Θ,Φ) =
∞∑

l=0

l∑

m=−l
Ylm(Θ,Φ)

k2
0

2π2(−j)l
Q∑

i=1

Vi(k0)Jl(k0ri)Y
∗
lm(θi, φi) (4.22)

The final output brightness B(Θ,Φ), for a given view angle (Θ,Φ) where Θ is the elevation

view angle and Φ is the azimuthal view angle, is determined by transforming the visibility

values Vi, where the summation index i is per interferometer antenna pair, through the

discrete summation of Bessel functions of the first kind Jl, and spherical harmonic functions

Ylm, where l and m are the harmonic order and degree. The baseline vectors ui, vi, wi are

given in spherical coordinates as ri =
√
u2
i + v2

i + w2
i , θi = arctan(

√
u2
i + v2

i /wi), and φi =

arctan(vi/ui) and k0 = 2π/λ is the radar wavenumber. Q is the number of visibility quantities

from the baselines, which is 91 in the case of ICEBEAR-3D. The maximum spherical harmonic

order is determined from Janke and Emde (1945) as the integer evaluation of

lmax = [2πbmax] (4.23)

For the ICEBEAR-3D receiver antenna array reconfiguration, the maximum baseline length is

34λ giving lmax = 213. In practice, it is found that higher harmonic orders will begin to overfit

to noise. The standard practice is to choose the largest harmonic order that corresponds to a

brightness map which does not substantially change from the brightness map of the previous

harmonic order. A harmonic order of lmax = 85 was selected for ICEBEAR-3D.

The performance of the SWHT method versus vCZ was checked by simulating a target from

0◦ to 20◦ elevation in 0.1◦ increments and comparing imaging results. The target simulated

was completely noiseless and perfectly point-like to give the Cartesian based vCZ the best

chance. The comparison showed that for all elevation angles, the SWHT performed better,

by as much as 2.5◦. The results are shown in Figure 4.4. Most real targets are found between

elevation angles 2◦ and 16◦. The Earth occludes the transmitter line of sight below 2◦ for all
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Figure 4.4: Plot of the simulated elevation angle result versus the actual elevation

angle. The dashed line is the expected result, red is the vCZ (Cartesian) result,

and blue is the SWHT (Spherical) result. The figure shows that in the region of

interest 2◦ to 20◦, the SWHT is always more accurate.

but the shortest of links, and above 16◦ targets becomes sparse. At ≈ 30◦ the two methods

converge and provide no difference in results. However, with extended targets, the Cartesian

based vCZ is significantly less performant. The elevation error, which is discussed in detail

in Chapter 5, is not present when using the simulator. The code used to simulate targets

can be found in Appendix C.

4.5 Transform Processing Speed

The 200,000 ICEBEAR-3D range-Doppler bins containing 91 visibility samples each, and

each bin is a possible image ICEBEAR-3D can produce per second. It is not possible to com-

pute 200,000 per second using the standard SWHT without sufficiently powerful computer

hardware. Expanding from Carozzi (2015), the SWHT can be improved to be more com-
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putationally efficient. Since, ICEBEAR-3D is a narrow bandwidth spread spectrum radar

with a constant center frequency, the wavelength and thus the wavenumber k0 only varies by

the Doppler range ±500 Hz, which is essentially constant for the purposes of imaging. This

allows for pre-processing of a set of transform coefficient matrices from Equation 4.22

Ci(Θ,Φ) =
k2

0

2π2(−j)l
∞∑

l=0

l∑

m=−l
Ylm(Θ,Φ)Jl(k0ri)Y

∗
lm(θi, φi) (4.24)

where C is a 3-dimensional matrix made from the set of Ci(Θ,Φ) 2-dimensional matrices from

i = 1→ Q. To clarify, matrix C has the dimensions of the number of Θ angles by Φ angles by

Q baselines. For ICEBEAR-3D the required field of view is ±45◦ azimuth and horizon to 45◦

elevation at 0.1◦ resolution, which fully encompasses the region of interest. Thus, to generate

Ci from Equation 4.24 a matrix is preallocated with the dimensions of azimuth angles by

elevation angles by antenna pairs, then processed up to the lmax. The matrix C, with shape

[900, 450, 91], is stored in memory, incrementally denoted as Cl, for every value of l. This

pre-calculation allows for much quicker image computation by only needing to directly apply

the set of visibility values as a vector to their corresponding coefficient matrices and summing

to make a 2D brightness map at the l harmonic of Cl

Bl(Θ,Φ) =
Q∑

i=1

Ci,l(Θ,Φ)Vi(k0) (4.25)

Bl(Θ,Φ) = Cl · ~V

which is identical to Equation 4.22. Using lmax = 85, this generates the standard SWHT

brightness map. The pre-calculation of C takes considerable time, but as it is unchanging it

reduces transform computation time by a factor of 105. The code to produce the coefficient

matrices Cl is given in Appendix D. The average time to fully process a set of visibilities

into a standard 900x450 pixel (0.1◦ per pixel) image using this method is 30 ms on average

on an Intel Core i7-9700K CPU at 3.60GHz. On an NVidia RTX 2080 GPU this processing

time is reduced by an order of magnitude to 0.26 ms on average.

4.6 The Suppressed-SWHT Method

Dirty beam artefacts introduced by the undersampled visibility domain are suppressible by

deconvolution of the brightness map with the dirty beam (Thompson et al., 2001). Neverthe-
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less, this is impractical for ICEBEAR-3D due to image size and quantity. Several techniques,

Capon, CLEAN, and MaxENT, as previously discussed exist, but these methods typically

require very narrow fields of view, point-like targets, and are computationally intensive. The

Suppressed-SWHT technique, is computationally efficient as it is based on multiple applica-

tions of the SWHT, which is inherently adequate for wide fields of views and extended targets.

Multiplication of brightness maps produced at lower maximum harmonic orders with higher

maximum harmonic order brightness maps suppresses artefacts and noise. The suppressed

brightness map, B′(Θ,Φ), is thus the product of brightness maps of various harmonic order

Bl

B′(Θ,Φ) =
lmax∏

l

Bl(Θ,Φ) (4.26)

Since C is already calculated for all harmonic orders below the selected lmax during the

pre-calculation period, there is no additional pre-processing required to obtain lower har-

monic coefficient matrices provided they have been retained. For ICEBEAR-3D Cl uses

l = 15, 25, 35, 45, 55, 65, 75, 85 as it was found that this limited set is computationally effi-

cient without a loss in angle of arrival accuracy. Thus, Suppressed-SWHT 2D brightness

maps for ICEBEAR-3D are formed from Equation 4.25 and 4.26

B′ =
85∏

l=15,25,35,...

Cl · ~V (4.27)

This makes the Suppressed-SWHT roughly 10x slower than the base SWHT. The GPU im-

plementation however optimizes processing by cleverly expanding all the coefficient matrices

into one large matrix and repeats the visibility vector into a larger coefficient matrix length

matching vector then performing a simple dot product, exploiting the GPU’s strengths. This

produces runtimes of 12 ms on average on an NVidia RTX 2080 GPU.

This suppression comes with a trade-off. Spatial extent information of the target and other

targets of lower power within the same brightness map are likewise suppressed. Even though

spatial extent information is suppressed in the Suppressed-SWHT image, the detection and

location of the extended target is not, in fact it is accurately discernible, and extent infor-

mation is recoverable from measuring the spatial coherence (Huyghebaert et al., 2021). The

suppression of lower power targets is acceptable as it is assumed typically only one target

should exist per brightness map because each brightness map only represents the full field

of view at one specific range bin and one specific Doppler bin (a single range-Doppler bin)

in 1 s. This makes the likelihood of multiple targets with the same velocity and the same

range, which are also spatially incoherent and separate in elevation or azimuth, unliekly.
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An example image processing for a real target seen in one 1.5 km range bin, for one 10 Hz

Doppler bin, over 1 s is shown in Figure 4.5. The top of Figure 4.5 shows the unsuppressed

brightness map B85 with a target at Φ = −15.0◦ azimuth and Θ = 9.8◦ elevation. Artefacts

within the unsuppressed brightness map have brightness values at ≈ 60% the normalized

maximum brightness. These are removed from the bottom image B′ by application of the

Suppressed-SWHT method.

Figure 4.6 shows a simulation where two targets are presented with different powers in the

same range-Doppler bin. This shows multiple targets per brightness map may exist and

are discernible, however the Suppressed-SWHT has eliminated the lower power target. In a

future study the comparison of the Suppressed-SWHT to other synthesis aperture imaging

deconvolutional methods such as Capon’s, CLEAN, and MaxENT, is planned to obtain extent

information and resolve the extremely unlikely situations of multiple targets per brightness

map. The Suppressed-SWHT technique results in a well-defined target for angle of arrival

determination. The simulator used can be found in Appendix C.

ICEBEAR-3D sets the brightness map field of view to ±45◦ azimuth from boresight and 0◦

to 45◦ in elevation at 0.1◦ resolution producing high resolution 900x450 pixel images for each

range-Doppler bin for each second. As such, ICEBEAR-3D obtains a 0.1◦ angular resolution

with a 1.5 km range resolution, giving on average over the typical 300 km to 1100 km slant

ranges a spatial resolution bin of 1.5 km x 1.5 km x 1.5 km.

4.7 Target Acquisition

Target acquisition with an image is a multistep process. All targets are firstly imaged with

a coarse 1◦ resolution Suppressed-SWHT coefficient matrix. The absolute maximum value

point in this image is taken as the true angle of arrival. If the target is located within

the field of view further processing is done, if it is not the angle of arrival is recorded and

flagged as errant. Targets inside the field of view are then processed with the 0.1◦ SWHT and

Suppressed-SWHT coefficient matrices to form B85 and B′ respectively. Then ICEBEAR-3D

uses image processing techniques to find the contour of the target in B85 which encloses

the location of maximum brightness found in B′. From the contour, the location of the

local maximum brightness is found. This location corresponds to the angle of arrival of the

received signal.
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Figure 4.5: (Top) Brightness map B85 containing a target created using the SWHT

method with pre-calculated coefficients up to lmax = 85. The brightness maps

are 900x450 pixels corresponding to a 0.1◦ resolution with azimuth field of view

of ±45◦ and elevation field of view from 0◦ to 45◦. The target is located at Φ =

−15.0◦ azimuth and Θ = 9.8◦ elevation. (Bottom) The same brightness map with

Suppressed-SWHT applied at harmonic steps of 10 from l = 5 to l = 85, resulting

in a well-defined target location with artefacts suppressed.
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Figure 4.6: (Top) Brightness map B85 containing two targets created using the

SWHT method with pre-calculated coefficients up to lmax = 85. The brightness

maps are 900x450 pixels, corresponding to a 0.1◦ resolution with azimuth field of

view of ±45◦ and elevation field of view from 0◦ to 45◦. One target is located at

Φ = −10.0◦ azimuth and Θ = 10.0◦ elevation the other target at 3/4 power is at

Φ = 10.0◦. (Bottom) The same brightness map with Suppressed-SWHT applied

at harmonic steps of 10 from l = 5 to l = 85, resulting in a well-defined target

location with artefacts and the lower power target suppressed.
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The elevation and azimuth angles of arrival found through imaging are with respect to the

receiver antenna array. Using them along with the slant range as the bearing and heading,

the geographic location of targets are determined. With the nascent ICEBEAR-3D imaging

radar using the novel Supressed-SWHT to its first radar targets, it quickly found that there

was an inconsistency in elevation. Elevations were increasing with slant range. This error

could not be explained by any error in imaging, target acquisition, array design, or operations.

Yet, it would persist, but only with real targets and never simulated ones, and unlike past

radar the elevations would be tightly packed into a thin layer rather than dispersing with

slant range. This illuminated the long standing problem with radar interferometer elevations

and led to a solution.
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5 Elevation Angles

Section 5.3 of this chapter contains in part works directly from my contributions in Lozinsky

et al. (2022).1

Past radars studying targets at low elevation angles have typically seen elevation angles be-

come erratic, dispersing with slant range, and trending to increase in altitude with increasing

slant range as elevation angles become lower, most notably by Ierkic et al. (1992) and Sahr

et al. (1991). This is the long standing problem of low elevation radar interferometry that

is not unique to just E region radars (White, 1974; Barton, 1974; Kerr, 1951). The poorly

grouped or erratic results leads naturally to the conclusion that there must be phase errors

and/or incorrect calibrations. The phase tolerant design of ICEBEAR-3D allowed for eleva-

tion angles to be measured with consistent accuracy, resolving erratic measurements, keep

elevation angles well grouped into a thin ribbon. The underlying nonphysical trend of targets

rising higher as elevation angles lower is unmistakable.

Figure 5.1 shows ICEBEAR-3D observations of the Geminid meteor shower collected from

12 to 15 December 2020. The radar ran from 00:00 UT to 14:00 UT (6:00 pm to 8:00 am

local time) each day. The period was very geomagnetically quiet (Kp of 0.0 to 1.7) and only

meteor trails were observed. Under these nighttime conditions, there will be no refraction at

the ICEBEAR radar operating frequency of 49.5 MHz. During this period, ICEBEAR-3D

observed ∼ 60, 000 meteor trails, at an average rate of about 1 meteor trail observation every

4 s. It is well known from upward looking radars that meteor trails are observed typically at

altitudes from 70 km to 110 km (McKinley, 1961). The top plot in Figure 5.1 clearly indicates

the expected thickness of ∼ 40 km for meteor trail observations; however, the altitude of

this layer unrealistically increases with increasing slant range, which is nonphysical. This

unmistakable curving upwards, which is not hidden by erratic measurements, sheds new

1Lozinsky, A., Hussey, G., McWilliams, K., Huyghebaert, D., and Galeschuk, D. (2022). ICEBEAR-3D:
A Low Elevation Imaging Radar Using a Non-Uniform Coplanar Receiver Array for E Region Observations,
Radio Science, 57(3). DOI: 10.1029/2021RS007358
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light on the low elevation problem. One can observe that the radius of curvature of this

curve is nearly the radius of the Earth RE. This clearly should not be the case, rather, it

should be a flat layer like the bottom plot of Figure 5.1. This curving upwards is caused

by improper interpretation of the geometry for vertical interferometry. When the proper

geometry for vertical interferometry is applied, then elevation angles — even low elevation

angles — resolve physically and correctly as shown in the bottom plot of Figure 5.1.

The chapter discusses the proper geometry interpretation for vertical interferometry. Inves-

tigation into the long standing low elevation problem is difficult, as literature on this effect

is underreported. The problem is one of common knowledge within the radio signal prop-

agation community, but is typically avoided. In order to verify that the problem was not

an artefact of misconfigured hardware or software, a rigorous validation test was performed.

This validation is first presented to establish confidence in the instrument. Next, a myriad of

alternative explanations and corrections is presented. Ultimately, these alternative solutions

failed to account for the elevation difference between physical and measured. Subsequently,

this chapter focuses on the explanation of the proper geometry interpretation for vertical

interferometry, which leads to the high quality and accurate altitude measurements shown

in Figure 5.1.

5.1 Hardware and Software Validation

Elevation angles are phase and baseline dependent, as these values are related to the propa-

gation difference between a signal arriving at two antennas of an interferometer. The location

of the as built ICEBEAR-3D antennas were confirmed using GPS surveying equipment as

well as a theodolite. The design of the receiver antenna array discussed in Chapter 3 al-

lows for a 25 cm antenna location error. The GPS surveying equipment registered a 50 mm

precision when the measurements were performed during construction in summer 2019. The

antenna locations are accurate, but their heights are less well known. Heights were measured

by adding the height of the tower, which the receiving antenna sits upon, to the ground

height measured by the GPS total station surveyor. There is an unknown amount of height

error, which equates to an unknown amount of error in the w terms. The imaging celestial

sphere is orientated with respect to the antenna locations, and error in the w term acts to

rotate the equatorial plane of the imaging celestial sphere. Although the w offsets measured

are relatively small compared to the signal wavelength, such that the ICEBEAR-3D receiver
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Figure 5.1: ICEBEAR-3D observations of the Geminid meteor shower from

00:00 UTC to 14:00 UTC daily from 12-15 December 2020. This was a geomag-

netically quiet period which observed ∼ 60,000 meteor trails (on average about 1

meteor trail every 4 s). (Top) Altitude of meteor trails calculated using conven-

tional geometry for elevation angle vertical interferometry determination. (Bottom)

Same ICEBEAR-3D data as presented in the top plot, except now the geocentral

geometry for elevation angle vertical interferometry determination, as described in

the text and Figure 5.6, has been taken into account. Now all the meteor trail

observations are between 70 km and 110 km (black dashed lines) as expected, and

do not unrealistically increase in altitude with range.
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antenna array is often considered co-planar, their effect was checked. The w offsets were

checked by fitting a plane to the antenna locations, then elevation and azimuth offsets be-

tween this plane and the equator of the imaging celestial sphere were found. These elevations

and azimuth offsets were found to be minimal, causing no significant change in the results;

also they are constant offsets which cannot account for the growing elevation angle with slant

range, as it is not a simple linear change. Furthermore, artificially setting all w terms to zero

and collecting data from imaged meteor trail targets does not significantly change results.

Therefore, the antenna location measurements are considered accurate.

Signals arriving at the receiver antennas run through lengths of cable and pass several RF

devices. The unique noise signal generated by the celestial body Cygnus A is measurable

with ICEBEAR-3D. Galeschuk (2021) showed that ICEBEAR-3D can track Cygnus A as

it crosses the sky. The unique Cygnus A signal was seen on all antennas, verifying that

each channel was functioning. This total path length, or feedline, is slightly different per

antenna. The phase delay caused by these paths was accounted for by manual calibration.

This reduces the phase error caused by the different paths to less than 1◦, which is well below

the array’s designed 14.86◦ phase measurement error tolerance. This manual calibration is

done using a Vector Network Spectrum Analyzer to measure the magnitude and phase of each

channel from the X300 SDR to the antenna. Then the magnitude and phase are normalized

to Antenna 0 to generate a set of calibrations. The calibrations are then subtracted from the

raw complex IQ voltage samples. The voltage samples for each antenna were compared to

each other to ensure they were realistic quantities.

A chip delay is caused by the X300 SDR clock becoming skewed and undisciplined. When

an X300 SDR loses synchronization, the signals sampled are displaced temporally. This acts

to shift the PRN in time, and this shift is called chip delay. The matched filtering processing

then generates either an early detection when synchronization is forward shifted, or late

detection when reverse shifted (Richards et al., 2010). These early and late detections cause

the targets to appear in the wrong ranges bins, either slightly closer or farther, respectively.

Each X300 SDR has 2 channels, so a chip delay would systematically bias the results of

those two channels, affecting multiple baselines. A 70 ns early chip delay on the farthest two

Southern antennas would be required to lower the measured elevations by 6◦, which would

correct targets at the farthest ranges but over correct closer ranges. The X300 SDRs are

time disciplined by a 10 MHz GPS synchronized reference signal, which prevents chip delay,

and samples at 200 Msps (one sample every 5 ns). Accounting for a 70 ns chip delay did not

remove the elevation error.
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A full receiver side system validation, which includes all hardware and software elements

from the antenna through Level 1 data processing, was performed by checking the closure

relationship. The closure relationship states that the summation of the phases for any three

antennas observing a point source in the far-field will equal zero (Thompson et al., 2001).

Consider antennas A1, A2, and A3 in Figure 5.2, with antenna separation vectors d12, d23,

and d31 forming a triangle. The phase differences between each antenna are then ψ12, ψ23,

and ψ31, and the phase errors on each antenna are ψ1, ψ2, and ψ3. The sum of the phases

ψ123 is the closure angle and is given by

ψ123 = (ψ1 − ψ2 + ψ12) + (ψ2 − ψ3 + ψ23) + (ψ3 − ψ1 + ψ31) (5.1)

ψ123 = ψ12 + ψ23 + ψ31

where the phase errors from each antenna nominally cancel out. Inserting this result into

Equation 3.1, the basic interferometer equation gives

ψ123 =
2π

λ
(~d12 + ~d23 + ~d31) · ~s (5.2)

where ~s is the direction of the incident wave from a point source. For a perfect phase

calibration, the vector summation of the antenna separations forming a triangle must sum to

zero. Therefore, the summation of the phases must also equal zero, regardless of the direction

of ~s. In the real world, however, the closure angle is rarely zero. Yet, a nearly zero result

indicates that the instrument is well calibrated. For ICEBEAR-3D n = 10 antennas there

are n(n−1)(n−2)/6 = 120 unique combinations of three antennas and each antenna appears

(n− 1)(n− 2)/2 = 36 times in the set. Using meteor trail targets, which are point like, the

closure angles were checked for each combination and each closure angle for ICEBEAR-3D

was within ±5◦ of 0◦. With this analysis, hardware and Level 1 processing were eliminated

as potential causes of the elevation problem.

Image processing of data from Level 1 to Level 2 using the Suppressed-SWHT method cou-

ples the azimuth and elevation angles of arrival, as they are both derived from the same

set of visibilites. Any significant errors will cause sporadic results in both elevation and az-

imuth. During the elevation error investigation, it was noted that the targets were correctly

azimuthally located. Notably, systematic software errors such as a 180◦ phase rotation,

−1 error inverting all antenna locations, misaligned coordinates basis, or reversing cross-

correlations, simply rotated the final results azimuthally while causing no elevation changes.

After an extensive code review, these systematic errors were removed and the data was cor-
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Figure 5.2: Closure angle triangle. Antennas A1, A2, and A3 for a triangle with

baseline vectors d12, d23, and d31.

rectly oriented, so the imaging celestial sphere was orientated with 0◦ azimuth pointing 7◦

East of North along the horizon. This eliminated the notion that the elevations were simply

due to a rotated reference frame. Using the simulator described in Chapter 4, simulated tar-

gets with programmable spatial extents and angles of arrival were created. These simulated

targets were processed using the same processing chain real data used. All the simulated

targets were accurately located, and no elevation errors were detected. Simulated targets did

not rise in elevation with increasing slant range. The simulator, however, did not include

a ground plane. To take into account the contribution of the signal which reflects off the

Earth’s surface, the method of images was used to simulate a ground plane. All simulations

were performed again with the simulated ground plane and there was no change, simulated

targets did not show the elevation problem. This was expected, as the result from Equa-

tion 3.10 S1S
∗
2 = 2|A|2ejk0∆, showed that the combination of a direct and reflected was to

only double the power of the signal received. This both validated the software and suggested

that the source of the elevation error was physical, but not due to the radar itself.
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5.2 Alternative Corrections

Completing a thorough check of the radar system, from hardware through software, lead

to the conclusion that elevation error must be occurring due to an unaccounted for physical

effect. The search was exhaustive; however, only the most reasonable alternatives: refraction,

glint, and reflections, are discussed here. Additionally, an empirical correction was attempted.

5.2.1 Refraction

Refraction occurs when electromagnetic waves pass through mediums of differing density.

The plasma of the terrestrial ionosphere causes bending of radio waves, but it is a frequency

dependent process. At 49.5 MHz, straight line propagation is expected at all times except

during high levels of activity where the E region is heavily ionized (Hussey, 1995). A cus-

tom simple ray tracing refraction model (see, Appendix E) was developed that generates a

linear electron density gradient from 80 km to 120 km. The model estimated the index of

refraction n from the electron density Ne using the Appleton-Hartree dispersion relation in

the approximated form

n =

√
1− 81Ne

f 2
(5.3)

where f is the radar frequency (Kivelson & Russel, 1995). The model applied Snell’s law

to simulate the rays bending. The peak electron density was adjusted until the rays were

completely refracted, such that a target at 900 km slant range was detected 80 km higher

than actual. This is the electron density required to explain the amount of elevation bending

observed. This amount of bending occurred at an electron density peak of 30× 1012 m−3 at

115 km altitude, which is the electron density for total internal reflection f = 9
√
Ne, and is

not physical for the terrestrial E region. Figure 5.3 shows simulated rays with elevation angles

8◦, 10◦, and 12◦. The dashed blue lines are the totally reflected rays, while the solid black lines

are direct line of sight rays. Applying a reasonably typical E region electron density peak of

3× 1011 m−3 (Watermann, 1990) at 115 km refracted the rays very little, so little that these

rays coincided with the black direct line of sight lines. The elevation upward curving with

slant range was not caused by refraction, as the elevation problem existed regardless of the

E region electron density, and to get the amount of bending observed required unrealistically

large non-physical electron densities.
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Figure 5.3: Three ray traces with elevation angles of 8◦, 10◦, and 12◦. The shaded

red area shows the lower E region, 80 km to 120 km. The black lines are the straight

line propagation with no refraction; these lines coincide with ray traces from the

ray tracing refraction model with a peak electron density of 3×1011 m−3 at 115 km

altitude. At this typical density, there is no observable bending. The dashed blue

lines use a peak electron density of 30× 1012 m−3 at 115 km altitude. This is the

electron density required for a 49.5 MHz wave to totally reflect. At this density an

80 km altitude difference is visible, which would explain the elevation error, but

this is an unrealistic electron density for the E region.
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5.2.2 Glint

Glint is a fluctuation of the apparent angle of the target caused by coherent scattering off

a complex target. (Richards et al., 2010). These complex targets can be considered as an

ensemble of point scattering targets, which act together to create the echo signal. A spatially

extended target such as E region scatter is spatially coherent across its scattering cross-section

and structured along the magnetic field lines. An incident radar wave striking this complex

target with varied aspect angles causes variations in the orientation of the echo phase fronts,

potentially causing glint. This coherency makes glint very difficult to filter for and remove.

The changing orientation of the echo phase fronts from the extended spatially coherent source

would be imaged as a single target with an erroneous angle of arrival. Regardless, glint is

not likely the cause of the elevation problem, as it is a random process that is a function of

the target rather than the instrument and ICEBEAR-3D observes a well grouped thin layer

for both E region scatter targets and point-like meteor trails which would not cause glint.

5.2.3 Reflection

The Earth’s surface is reflective at 49.5 MHz (Balanis, 2016). If the targets are purely

reflections with no direct propagation path, which is not the case, then the elevation angles

measured are negative. The imaging celestial sphere is normally computed using the upper

hemisphere, but the lower hemisphere returns the same elevation angles, only negative, due

to the reflection symmetry about the equatorial plane ambiguity that is only broken with

longer w baselines. Altitudes are determinable using these negative elevations angles; simply

assume that the targets are below the Earth’s surface and apply Cosine law to determine

distances they are below the surface. Then invert those distance and call that altitude. The

bottom plot of Figure 5.5 from the Gemininds meter shower 12-15 December 2020 shows the

difference between the proper geometry interpretation which use the geocentral angle and

this below the Earth’s surface alternative in red. There is minimal difference except at long

ranges and high altitudes, which is not fully captured in this plot. As discussed in Chapter 3

the total signal received by an antenna is the summation of the direct and reflected signals.

When the reflected signal is considered as a purely specular reflection or the direct path

is significantly more powerful, the elevation determined will be with respect to the signal’s

direct path. This case presented would require the reflected path power to be significantly

larger than the direct path; thus biasing the radar towards the reflected path.
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In reality, the ground reflection plane produces diffuse reflection and is rarely more powerful

than the direct path, except in cases where numerous multipath propagation reflections

coherently sum, like in a parabolic reflector. A diffuse reflection has the effect of broadening

the signal in elevation. They are due to the rough surfaces at the reflection point scattering

the signal. This broadened area is called the glistening surface and is described by the

divergence factor D (Richards et al., 2010).

D ≈
√√√√1 +

2ρ2
rp(ρg − ρrp)

REρg(h− (ρ2
rp/2RE))

(5.4)

where h is the target altitude, RE is the radius of the Earth, ρg is the ground distance

between the receiver and target, and ρrp is the ground distance from the receiver to the

reflection point. For typical ICEBEAR-3D ranges and altitude D ' 1, meaning the reflected

path does not dominate. Consider the example in Figure 5.4, a spatially extended target

is imaged. The direct path arrives at 5◦ and the diffusely reflected path at −5◦, albeit

skewed. The resulting imaged target would be the combination of the direct and reflected

path. This combination skews the elevation angle measured to larger angles. The true target

elevation becomes lower to the horizon at increasing slant range, which stretches the glistening

surface, causing the measured elevations to nonphysically rise. Thus, the combined direct

and reflected combination target’s elevation angle of arrival becomes increasingly ambiguous

and biases upwards. This is unlikely the case as the solution latter presented is quite clear,

however, reflections cannot be completely ruled out.

5.2.4 Empirical Fit

The most direct, albeit least satisfying way to correct the elevation angles, is to simply fit

a curve to the well defined distribution of targets and correct empirically. A simple second

order polynomial was found. It is shown in the top plot of Figure 5.5, and described by

f(ρ) = 8.0×10−4ρ2 +0.07ρ+77.4, where ρ is the slant range. The fit was done during a quiet

geomagnetic period (Kp of 0.0 to 1.7) from 00:00 UT to 14:00 UT (6:00 pm to 8:00 am local

time) each day between 12 and 15 December 2020. The middle plot shows two groupings of

meteor trails. The red grouping is elevation corrected by treating measured elevations as pure

reflection that came from under the ground, while the magenta grouping was corrected using

the fit. Both methods agreed well with the accepted E region layer altitudes, laying between

70 km and 110 km. The bottom plot of Figure 5.5 is the difference of the two alternative
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Figure 5.4: A signal with a direct angle of arrival at 5◦ elevation and a reflected

angle of arrival of −5◦. The assumed specular reflection is shown as the normal

distribution as a solid black line. This matches the direct path. The diffuse reflec-

tion is shown as the dashed blue line. The target angle of arrival detected is the

combination of the direct and reflected signal. The diffuse reflection becomes more

skewed as the grazing angles reduces, which biases the radar to higher altitudes.

methods to the proper geometry for vertical interferometry geocentral angle calculation. The

reflection correction was less effective at further ranges, but was otherwise very close. The fit

correction tends towards lower altitudes and over corrected when compared to the geocentral

interpretation.

The radius of curvature Rc of the fit function f(ρ) = 8.0×10−4ρ2 +0.07ρ+77.4 is determined

using

Rc =
(1 + f ′(ρ)2)3/2

|f ′′(ρ)| (5.5)

At ρ = 77.4 km the radius of curvature Rc is 6314 km. This is very close to the radius of the

Earth RE = 6361 km at 60◦ latitude where the meteor trails used to generate the empirical

fit were detected. There is no place in the processing where the radius of the Earth was used

in determining the target’s elevation angles; it is only used in the altitude determination and

should not appear as the radius of curvature of the fit. This result clearly indicated that

there was a geometric relationship was missing when determining the elevation angles and

computing altitudes using the conventional Cosine law method. An analytical solution that

would match the empirical fit and reflection method without having to fictitiously place the

targets below the Earth’s surface was needed. The remainder of this chapter is that solution.
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Figure 5.5: Demonstration of alternative methods to correct the long standing

elevation problem. (Top) Plot showing a second order polynomial f(ρ) = 8.0 ×
10−4ρ2 +0.07ρ+77.4 fitted to the upward curving elevations. (Middle) Scatter plot

of ≈ 60, 000 meteor trails from 2020 December 12-15, which have been corrected by

the empirical fit and by treating the measured elevation angles as negatives angles

coming from below the Earth’s surface. (Bottom) The difference of the empirical

fit and below surface method to the geocentral proper geometry interpretation for

vertical interferometry.
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5.3 The Proper Geometry for Vertical Interferometry

Although ICEBEAR-3D is a bistatic radar system, the elevation angle geometry is identical

to that of a monostatic radar; it is with respect to the receiver antenna array. The following

applies whether or not the vertical interferometer has a single baseline or multiple baselines.

The conventional approach is to express the elevation geometry as a triangle in a vertical

plane as depicted in the left diagram in Figure 5.6. The sides of the triangle in the vertical

plane consists of the radar receiver slant range ρ, with the other two sides of the triangle,

both measured from the center of the Earth: one, RE, to the antenna array (point Rx) and

the other, RE +h, to the scattering target location (point Sx). The altitude of the scattering

location is h. The angle between the Earth centered sides of the triangle, RE and RE + h,

is the geocentral angle Γ, while the elevation angle α is defined with respect to the tangent

plane the receiving antenna array makes with the surface of the Earth at the antenna array

location and is the measurement of interest.

The normal procedure is to take the phase difference ψ between an antenna pair and apply

the basic interferometer equation, presented in Equation 3.1, to determine the angle of arrival

η. Solving for the angle of arrival term η and ignoring aliasing gives

η = arccos

(
ψλ

2πd

)
(5.6)

η = arccos

(
ψ

k0d

)

With regard to the elevation angle of arrival, this interpretation is not complete. What also

needs to be taken into account is the implicit assumption that the reference phase surface is

a constant phase surface.

The classic Young’s two-slit experiment is planar and the plane is also a constant phase

surface. As the Earth is a curved surface, roughly a sphere, this defines the geometry of

the reference constant phase surface with respect to the center of the Earth, which must be

taken into consideration when determining the elevation angle from vertical interferometry

as is shown in the right diagram of Figure 5.6. The intersection of the vertical elevation angle

plane defined above, with the spherical constant phase reference surface of the Earth is an

arc of a circle and therefore also a constant phase reference. The ends of this arc are defined

by the pierce-points at the surface of the Earth; the first is Rx on the surface of the Earth
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along a line from the center of the Earth to the receiver antenna array, and the second is Px

on the surface of the Earth along a line from the center of the Earth to the scatter altitude

Sx.

Although the tangent plane of the receiver antenna array defines the baseline separations

as described by the Young’s two-slit formulation (Equation 3.1 or 5.6), the chord g joining

the two pierce-points (Rx and Px) defines the phase reference orientation for the measured

phase difference ψ for vertical interferometry elevation angle determination. This geometry

consideration for vertical interferometry is independent of the radar wavelength and antenna

baseline spacing, and is simply applying the implicit requirement in Equation 3.1; that the

proper constant phase reference described by the non-planar curved geometry be taken into

consideration. This complicates the geometry determination for vertical interferometry, as

at different slant ranges and/or different elevation angles moves the pierce-point Px of the

scattering altitude line and therefore changes the orientation of the chord.

As such, the angle η in Equation 5.6, when discussing terrestrial vertical interferometry el-

evation angle measurements, is actually the measurement η = β = α + Γ/2, and η 6= α.

Additionally, the traditional presumption that the constant phase reference is with respect

to the tangent plane is errant, as the constant phase reference is actually with respect to

the chord which is below the tangent plane. As a result, this then adds another Γ/2 when

taking the tangent plane as the constant phase reference. Consequently, Γ, the geocentral

angle defined by the pierce-points Rx and Px with respect to the center of the Earth, must

be subtracted from the elevation angle of arrival value β determined from the basic interfer-

ometer equation, Equation 3.1, plus the presumptive Γ/2 tangent plane reference, to get the

proper elevation angle α with respect to the tangent plane

β = α + Γ/2 + Γ/2

α = β − Γ/2− Γ

α = β − Γ (5.7)

The degree of significance of using the proper elevation angle determination depends on the

radar geometry configuration; however, for any implementation requiring low elevation angle

measurements, say 0◦ to ≈ 30◦, and slant ranges <≈ 0.1RE, the proper determination be-

comes extremely significant. For example, for ICEBEAR-3D with a mean scattering altitude

of 100 km, slant ranges ρ vary from 100 km (α = 90◦; straight up or perpendicular to the
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tangent plane) to ≈ 1100 km (α = 0◦; horizontal or parallel to the tangent plane). For

α = 90◦ → 30◦, Γ = 0◦ → 1.5◦, therefore taking Γ into consideration is small and on the

order of calibration and measurement errors. However, when α = 0◦ (horizontal), Γ ' 10◦

and therefore it is critical that Γ be taken into consideration to determine the proper ele-

vation angle. As otherwise, the elevation angle α would be determined to be 10◦ using the

conventional vertical interferometry geometry interpretation, when in fact it actually should

be 0◦.

With the proper geometry applied to vertical interferometry, the ICEBEAR-3D meteor trail

observations of the Geminid meteor shower now fall in the expected altitude range of 70 km to

110 km at all slant ranges, as shown in the bottom plot of Figure 5.1. Proper implementation

of vertical interferometry geometry does not just apply to E region radars, but any radar

observing finite ranges up to≈ 10RE, for example aircraft tracking radars, ionospheric physics

radars, satellite tracking radars, etc. using interferometry. The application of the proper

geometry for vertical interferometry for other radars is discussed in Appendix F.

The above discussion applies to any situation where the constant phase reference cannot

be represented by strictly planar geometry, such as vertical interferometry. For horizon-

tal or azimuthal interferometry (East-West for ICEBEAR-3D) the constant phase reference

surface corresponds simply to a plane only. Therefore, the basic interferometer equation,

Equation 3.1, is directly applicable, where η would be azimuth angle of arrival, which is de-

termined directly from the phase difference ψ. Even if the planar surface needs to be defined

as the plane containing the constant phase chord from vertical interferometry, the projection

to the tangent plane does not modify the horizontal interferometry azimuth angle. Likewise,

if a sphere is the defining constant phase surface, the projection onto the tangent plane of

the azimuth angle is unchanged.

5.3.1 Geocentral Angle Γ Determination

Determination of the geocentral angle Γ involves transcendental functions and therefore does

not have a closed-form solution and must be solved using numerical techniques. As just

discussed, Γ is needed for proper determination of the elevation angle α. Following is the

geocentral angle Γ derivation based on Figures 5.6 and 5.7. From Figure 5.6

g = 2RE sin
Γ

2
(5.8)
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Figure 5.7: Proper geometry for elevation angle α determination, taking the con-

stant phase reference chord of length g (line/chord Rx–Px) from Figure 5.6, into

account. The scatter altitude is not realistic for E region radar observations, but

has been enhanced for illustration purposes.

and

ε =
π

2
+

Γ

2
(5.9)

therefore

χ = π − β − ε (5.10)

= π −
(
α +

Γ

2

)
−
(
π

2
+

Γ

2

)

=
π

2
− α− Γ

From Figure 5.7 and the law of sines

ρ

sin ε
=

g

sinχ

ρ

sin
(
π
2

+ Γ
2

) =
2RE sin Γ

2

sin
(
π
2
− α− Γ

)

ρ

RE

=
sin Γ

cos (α + 3Γ/2)
=

sin Γ

cos
(
β + Γ

2

) (5.11)

where RE, the radius of the Earth, is constant and known and ρ and β are radar measured

quantities, the slant range and improper angle of arrival output. Clearly, Equation 5.11 does

not have a closed-form solution for the geocentral angle Γ and must be solved numerically.

This equation is valid for all elevation angles from completely horizontal at α = 0◦ to com-

pletely vertical at α = 90◦ with respect to the tangent plane. However, although Γ depends
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on the actual altitude geometry for a given radar implementation, it is markedly most signif-

icant for low elevation angles at finite slant ranges with ρ < ≈0.1RE, which corresponds to

altitudes h up to ≈ 1000 km. For other conditions, Γ can be small and need not necessarily

explicitly be taken into consideration. For all ICEBEAR-3D observations, the geocentral an-

gle Γ is numerically calculated from the transcendental equations, Equation 5.11. However,

a very good approximation for α < 30◦ determinations is (in radians)

Γ ' ρ

RE

(5.12)

Interestingly, this approximation works reasonably well for altitudes up to 1000 km, where

Γ values are larger, being within 3–5◦ of the true value.

For E region altitude geometry with elevation angles α of 90◦ to 30◦, not accounting for Γ

introduces errors of 0◦ to ∼ 1.5◦. These errors are typical on the order of phase calibration

and measurement accuracies, therefore application of the conventional geometry for elevation

angle determination works sufficiently well. Note that zenith viewing meteor radars only use

observations from α = 00◦) down to α = 60◦–70◦ due to concerns with spurious lower eleva-

tion angle measurements. For lower elevation angles the importance of taking the geocentral

angle Γ into consideration becomes extremely significant: for elevation angles of 20◦ to 0◦

(horizontal), not taking Γ into consideration introduces substantial errors into the elevation

angle determination of 2.3◦ to 10.1◦, at E region altitudes. Most crucially, not taking Γ

into account makes calibrating for low elevation angle measurements for horizontally viewing

radars intractable. See Appendix F for the role of Γ for all types of radars.

5.3.2 Bistatic Slant Range Determination

The slant range ρ from receiver to target for a monostatic pulsed radar configuration is

directly measured, whereas the slant range for a bistatic radar, such as ICEBEAR-3D, must

be determined from the total RF propagation distance ρRF . From Figure 5.8 and the law of

cosines

(ρRF − ρ)2 = ρ2
D + ρ2 − 2ρDρ cosκ (5.13)

Solving for the slant range ρ

ρ =
ρ2
RF − ρ2

D

2(ρRF − ρD cosκ)
(5.14)
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where ρ is the bistatic slant range from the Rx antenna array to scattering location Sx, ρRF

is the measured total RF propagation distance from Tx to Sx to Rx, ρD is the distance

between the Rx and Tx locations, which are fixed and known, and κ is the angle between the

measured slant range ρ direction, unit vector ûρ, and known value ρD direction, unit vector

ûD. The value for κ can be determined from the measured and known values using the dot

product

ûρ · ûD = ||ûρ|| · ||ûD|| cosκ = cosκ (5.15)

D

Tx

~ks ρ

κ

Sx

Rx

R− ρ

ε
2

ε
2

ûρ

ûD
~k = ~kTx

~kRx

Figure 5.8: Bistatic geometry forms a triangle from Tx, Sx, and Rx locations. From

this geometry the slant range ρ with respect to the receiver antenna array Rx can

be determined.

Finally, the direction of the scattering medium wavevector ~ks is in the bisector direction

between the incident (or transmitted) radar wavevector ~kTx = ~k = 2π/λ k̂ and the received

radar wavevector ~kRx as shown in Figure 5.8. The scattering medium wavelength λs of the

scattering medium detected by a bistatic radar configuration is given by Lovberg and Griem

(1971)

λs =
λ

2 cos (ε/2)
(5.16)

where λ is the radar wavelength, which is λ = 6.06 m for ICEBEAR-3D, and ε is the angle

between the transmitted ~k and received ~kRx radar wavevectors. Expressing Equation 5.16 in

wavevectors

ks = 2k cos (ε/2) (5.17)

The final elevation angles and slant ranges for ICEBEAR-3D were determined by application
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of iterative numerical relaxation to solve the transcendental equation, Equation 5.11. The

relaxation method is initialized using the measured elevation angle β, total RF propagation

length ρRF , and an assumed Γ = 0.1◦. Then ρ is solved for using Equations 5.14 and 5.15,

the results are used to find a new Γ, then iterates. The iterations continue until the slant

range ρ is relaxed to an error of 10−5 km. Typically, this takes 5—6 iterations. The code

is fully realized using a WGS84 Earth model and is given in Appendix G. The final output

produced is target geolocation in latitude, longitude, and altitude, along with the bistatic

velocity vector.

With the reliable and accurate geolocation of targets, the second and thirds goals of this

thesis have been achieved. A method of measuring the altitude of terrestrial auroral E region

instabilities and meteor trails has successfully been implemented, and a solution to the un-

derlying problem with elevation angles measured in the low elevation regime has been given.

The next chapter demonstrates the geolocated ICEBEAR-3D data and validates its veracity.
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6 ICEBEAR-3D Results

The work of the previous chapters culminate in physical measurements of E region scatter

and meteor trails that are distributed both spatially and temporally with unprecedented

resolution. ICEBEAR-3D scans are 1 s temporally comprised of 1 (typically a meteor trail)

to ≈ 12, 000 (active E region) targets, depending on E region and meteor trail activity. The

location of each target is determined at 1.5 km range resolution and 0.1◦ angular resolution.

This locates targets in spatial bins roughly 1.5 km by 1.5 km by 1.5 km, depending on the

slant range. Doppler velocity is measured at 10 Hz (≈ 30 m/s) resolution along the bistatic

vector. The final data product produced by synthesis aperture imaging is the location of the

target in azimuth, elevation, and range, and in geographic coordinates.

This chapter relates the distribution of spatial locations of targets collected by ICEBEAR-

3D to expected locations. As the azimuth, elevation, and slant ranges are converted to

geographic coordiantes, validation was performed on the latitude, longitude, and altitudes

measurements. The latitude and longitude locations of several million targets were compared

to the modeled link gain, discussed in Chapter 2. Elevation angles and slant ranges that were

determined by application of the proper geometry for vertical interferometry are validated

by comparing the altitudes of meteor trails detected to well established meteor trail altitude

distributions. The validation leads to an error in altitudes of targets in the far west lobe of

the radar’s field of view. This error is discussed. Then several examples of the ICEBEAR-3D

Level 2 1 s data products are shown.
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6.1 Validation by Data

In the previous chapters, each stage of development of ICEBEAR-3D was validated through

isolated measurement or simulation. The accuracy of the complete integrated system was

validated using real measured data. The final ICEBEAR-3D Suppressed-SWHT imaging

data product is the geographic coordinates of targets. The latitude, longitude, and altitude

accuracy were validated by use of E region scatter for latitude and longitude and meteor trail

echoes for altitude.

In Chapter 2 the link gain, Figure 2.8, was discussed. This plot showed the regions in latitude

and longitude at 110 km altitude that the link between the transmitter and receiver would be

powerful enough to detect echoes. Assuming echoes in this region are not biased, Figure 2.8

is the theoretical map of where the radar expects to locate echoes in longitude and latitude.

A histogram of ' 19.5 million E region scattering target locations is shown in Figure 6.1.

The histogram was generated from 177 days across all seasons of low to moderate E region

activity in 2020 and 2021. The histogram illustrates the locations where echoes with sufficient

power are typically located. The histogram and the theoretical link gain each show the same

five prominent areas, which are separated into three distinct lobes. Figure 6.2 overlays the

histogram of real data with a contour of the theoretical link gain model at the E region

scatter peak altitude of 107 km (Hussey, 1995). Qualitatively, the data aligns extremely well

with the link gain model. At a 3 dB link gain minimum and 3 dB SNR cutoff, the model

encapsulates 98.8% of all targets. The normalized counts of the histogram and normalized

gain of the link model are fairly strongly positively correlated, with a correlation coefficient

of 0.83. The primary difference being, the close slant range data missing in the histogram,

but this is due to the practice of cutting all data less than 300 km slant range to remove

self-clutter.

The altitude validation was performed using the meteor trail altitude distribution from the

Geminid meteor shower from 12–15 December 2020. Application of the proper geometry

for vertical interferometry gives a meteor trail altitude distribution which precisely matches

the distributions and peak altitudes measured by various zenith looking radars. Regardless

of the radars latitude or operating frequency, meteor trails are detected between 70 km

and 110 km with a peak altitude around 90 km to 105 km (Hocking, Fuller, & Vandepeer,

2001; Holdsworth & Reid, 2004; Holdsworth, Reid, & Cervera, 2004; Lee, Jee, Kim, & Song,

2018; Chau et al., 2019). This altitude peak varies with solar cycle, time of year, time of
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Figure 6.1: Histogram of real target echo locations from ICEBEAR-3D from 177

days of low to moderate E region activity. The data was collected from 3 March

2020 to 31 March 2021. A 3 dB threshold is applied to remove extraneous noise,

leaving 19,466,466 data points. The histogram has a latitude and longitude bin

size of 0.25◦ by 0.25◦. There are three distinct lobes, with the east most and center

lobes subdivided into two lobes. The formation matches the theoretical locations

of the link gain model.
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Figure 6.2: A contour plot of the theoretical link gain model at 107 km with coarse

levels of 10 dB, 20 dB, and 30 dB overlaid on the results shown in Figure 6.1. The

contours outline the areas where echoes are more likely to be powerful enough to

be detected. The contours link gain and background histogram have a correlation

coefficient of 0.83 indicating they are strongly positively correlated.
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Geminids Meteor Trail Distribution
December 12-15, 2020

Total Targets 133495
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Figure 6.3: Altitude histogram of meteor trails from the Geminids meteor shower

from 12–15 December 2020, showing a peak altitude of 93.0 km distributed between

70 km to 110 km. The west lobe (red) has been removed from the center and east

lobe (blue). The data has a 1.0 dB cutoff SNR.

day, and radar operating frequency. The ICEBEAR-3D altitude distribution results for the

2020 Geminid meteor shower are shown in Figure 6.3. The black line shows the altitude

distribution for all lobes. The blue line isolates the west lobe (red) from the center and east

lobe. This is done to reject the west lobe data as it is errant, being lower in altitude than

echoes from the center and east lobes. The west lobe discrepancy will be discussed in the

next section; here only the center and east lobe data is used for comparisons. The measured

meteor trail distribution and peak altitude agree exceedingly well with the aforementioned

radar studies. In direct comparison, Sugar et al. (2010) found that nonspecular meteor trail

altitude distributions peak between 93 km and 105 km (with standard deviation of 3.8 km to

4.6 km), the variance in peak altitude depending on short trails versus long trails and time

of day. These meteor trails peak is at 93.0 km with a standard deviation of 4.77 km.

The altitude distribution shown in Figure 6.4 is a typical ICEBEAR-3D altitude distribu-

tion of E region ionospheric scatter during a geomagnetically active period after the proper
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Figure 6.4: Altitude histogram of E region echoes from 19 December 2019, four

days after the 2019 Geminids meteor shower. This plot shows a typical E region

scatter observation altitude distribution. The peak altitude of the center and east

lobes (blue) is 106.5 km. The smaller, lower altitude distribution peak corresponds

to the west lobe (red). The data has a 1.0 dB cutoff SNR.

geometry for vertical interferometry is applied. This event was recorded from 00:00 UT to

14:00 UT 19 December 2019. The distribution peak altitude is 106.5 km (standard deviation

of 4.28 km), agreeing with the expected E region peak between 105 km to 110 km (Hussey,

1995). The altitude distribution shown in Figure 6.5 is a period from 00:00 UT to 14:00 UT

20 March 2021. This period was very active, ICEBEAR-3D measured 38 times as many

records as 19 December 2019 in the same time period. Here echoes from the bottom of the

E region dominate, biasing the altitude distribution peak to 103.5 km (standard deviation of

7.53 km). This peak is possibly dominated by the slow broad echoes (Type 2) that spread

across the whole field of view. These altitude distributions generated from the proper ge-

ometry for vertical interferometry all align with expected altitudes; in particular, the meteor

trail echoes altitude distributions agree extremely well with both observation and theory.
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Figure 6.5: Altitude histogram of E region echoes from 20 March 2021 during an

active day. The day is dominated by the slow broad echoes (Type 2). The peak

altitude determined by the center and east lobes (blue) is 103.5 km. The west lobe

(red), although numerous, is errant and biased lower than what E region physics

would suggest. The data has a 1.0 dB cutoff SNR.

6.2 West lobe Anomaly

As plainly seen in Figures 6.3, 6.4, and 6.5, the altitude distribution of the western lobe is

characteristically lower than the eastern or center lobes. By separating the western lobe into

1◦ azimuth slices it becomes apparent that the altitude distribution peak is not smoothly

dropping across the lobe. Rather, there appears to be a local minimum. This indicates that

there is not a systematic computation error causing the western lobe to be errant, but a

physical one. Upon inspection of the area around the receiver antenna array, one can clearly

see that the field of view in the direction of the western lobe, and only the western lobe, is

occluded by a dense patch of trees. In particular, the azimuth angle of arrival which produces

the lowest altitudes, −23◦ from boresight, was directly aligned with a row of dense brush.

Considering the radar signal wavelength is ≈ 6 m and the receiver antenna array is placed in
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a relatively flat region of the Canadian prairies, it was assumed that the ground plane around

ICEBEAR-3D was nearly symmetrical in all directions. To a ≈ 6 m wave, minor topological

variations like those of arable land are neglectable as the signal will penetrate the ground by

≈ 1 m before reflecting due to the skin effect (Boithias, 1987). However, buried structures

such as large boulders, tree roots, metal fences, etc. potentially break this assumption.

From Equation 3.4, it was shown that provided the ground plane is similar at the points

of reflection for the reflecting rays for two antennas, such that the reflection coefficients are

equal, that the received magnitude is doubled. The phase is unmodified, as only the total

phase difference between the two antennas matters. In the western lobe direction, the points

of reflection for reflected rays along the vertical interferometry baselines will vary as one

scans azimuthally between water, arable farmland, and trees with dense root structures. For

example, for a North-South antenna pair will, the front antenna will have reflection points

on arable farmland, whereas the rear antenna’s reflection point may lay in a forested area.

Since the reflection coefficients for these two antennas would not be equal, the cross terms

in Equation 3.4 cannot be neglected and the relationship from Equation 3.6 would no longer

hold. The cross terms would contribute a phase error, which when propagated through the

synthesis aperture imaging stages results in erroneously low altitudes being detected in the

western lobe.

Although it is expected that this multipath interference from differing ground planes causes

the anomalously low altitudes in the western lobe, this requires further investigation and is

beyond the scope of this thesis. Currently, ICEBEAR-3D studies only use altitudes from the

center and eastern lobes.

6.3 Examples of ICEBEAR-3D Data Products

Following are several examples of typical ICEBEAR-3D 1 s data products. Figure 6.6 demon-

strates the ability to isolate multiple scattering volumes within the radar field of view. Fig-

ure 6.7 demonstrates the ability to study the evolution of E region plasma physics in great

detail, both temporally and spatially.

In Figure 6.6 the left and top plots show altitude cross-sections of three distinct scattering

volumes from 2 February 2021 at 5:53:48 UT. The altitudes range from 80 km to 130 km. The
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velocity of each scattering volume is distributed in altitude: the near white (≈ 0 m/s) volume

(Type 2) being lower altitude than the faster light blue (Type 1) and dark blue (Type 4)

volumes. The right plot of Figure 6.6 shows the three distinct scattering volumes distributed

in latitude and longitude. Also shown are the transmitter (Tx) and receiver (Rx) locations.
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Figure 6.6: A 1 s ICEBEAR-3D data product from 2 February 2021 at 5:53:48 UT.

The left plot presents a latitude versus altitude perspective, the top plot is a longi-

tude versus altitude perspective, while the right plot is a ‘birds-eye view’ in latitude

and longitude. The color indicates the magnitude and direction of the Doppler ve-

locity in m/s as measured along the bistatic vector. Observable are three distinct

scattering volumes showing decidedly different velocities towards and away from

the radar. The plot is comprised of 822 individually observed targets. A 1 dB SNR

cutoff was applied. Figure from (Lozinsky et al., 2022).
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Figure 6.7 is from an event on 31 March 2020 between 3:19:20 UT and 3:24:10 UT. Here,

ICEBEAR-3D observed a scattering volume with a measured velocity near 500 m/s (blue)

towards the radar, which formed earlier to the east before travelling westward and disappear-

ing. The blue scattering volume was well defined and localized throughout the entire period.

As the volume travelled westward it passed through two transmitter antenna array directivity

nulls within the bistatic radar antenna field of view. The white (0 m/s) scattering volume

is continuous across the latitude-longitude view, the empty regions at (57.0◦, −108.5◦) and

(56.5◦, −104.5◦) correspond to the nulls in the transmitter antenna array directivity.

The spatial geolocation of targets, meteor trails and E region scatter, align with both the

theoretical locations and locations expected by past radar observations. This was confirmed

using many millions of points over several years. The altitudes of meteor trails specifically,

were used to validate the difficult to find elevation angles. The two 1 s snapshots examples

provided demonstrate the wide range of E region targets capturable by ICEBEAR-3D simul-

taneously. These results would not be possible if the three goals set at the outset of this

thesis were not achieved.
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Figure 6.7: A 1 s ICEBEAR-3D data product from 31 March 2020 at 3:22:33 UT.

The left plot presents a latitude versus altitude perspective, the top plot is a longi-

tude versus altitude perspective, while the right plot is a ‘birds-eye view’ in latitude

and longitude. The color indicates the magnitude and direction of the Doppler

velocity in m/s as measured along the bistatic vector. Observable is a distinct scat-

tering volume, which is narrow and long with a velocity near 500 m/s (light blue).

This distinct scattering volume formed at 3:19:20 UT and traveled westward until

3:24:10 UT; presented herein is the middle evolution of this scattering volume. The

plot is comprised of 1561 individually observed targets. A 1 dB SNR cutoff was

applied. Figure from (Lozinsky et al., 2022).
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7 Conclusion

At the outset of this thesis, the original task was a straight forward and seemingly simple

goal — redesign the receiver antenna array to get elevation angles. However, this task is

neither simple nor straight forward. The scope of the project quickly expanded to include

not only antenna array design, but radar imaging, elevation angle determination, software

development, and data product management. This is because obtaining radar elevation angles

within the low elevation regime is exceedingly complex. After a thorough literature review,

it was clear that although trying to obtain elevation angles with a 49.5 MHz radar at viewing

angles near the horizon has been attempted in the past, it has never been done successfully.

Until now. ICEBEAR-3D is the foremost coherent auroral ionospheric E region radar. It is

the first instrument to use the Suppressed Spherical Wave Harmonic Transform (Suppressed-

SWHT), and the first instrument to apply the Spherical Wave Harmonic Transform (SWHT).

It is the first radar to acquire accurate 1.5 km resolution altitude measurements of the auroral

E region.

Each of the goals outlined at the outset of this thesis have been accomplished.

1. To determine and implement a method to remove the effects of azimuth

aliasing caused by the inherent 2π phase ambiguity

Azimuth angles of the original ICEBEAR, with its linear uniformly spaced receiver antenna

array, were affected by n2π aliasing. In Chapter 3 this goal was achieved by the radar

receiver antenna array design, which used all unique and non-harmonic baselines to remove

aliasing. The redesign was performed using a combination of the Jacobs-Ralston technique

and Random-walk Annealing technique. The resulting array had a phase error tolerance of

±14.86◦. This keeps results consistent even as the receiver antenna array phase calibration

drifts. Construction of the new receiver antenna array design was completed in the summer

of 2019 and has been operating since.
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2. To determine and implement a method of measuring the altitude of terrestrial

auroral E region instabilities and meteor trails

The new receiver antenna array used baselines placed in the North-South direction and

exploited the ground plane reflection to gather phase difference information related to target

elevations. The complex receiver antenna array with all unique baselines required more

complex methods to process voltage samples into useful measurements than the original

ICEBEAR. The imaging method used was the Suppressed-SWHT, introduced in Chapter 4.

The Suppressed-SWHT was selected as it solved all the problems associated with imaging

auroral E region scatter, namely: extended source targets, extremely wide fields of view,

non-planar geometry, and low elevation angles. The Suppressed-SWHT used pre-cached

coefficient matrices and GPU processing to rapidly image upto 200,000 images per second.

Targets within each image were located with an image processing algorithm. The result is

target acquisition in 3D at 1.5 km x 1.5 km x 1.5 km spatial resolution. Evidence provided in

Chapter 6 shows clearly that the goal of acquiring accurate altitudes of both E region scatter

and meteor trails has been accomplished.

3. To elucidate and solve the underlying problem with elevation angles measured

in the low elevation regime when using horizon pointing radar interferometers

Elevation angles measured in the low elevation regime are often conflated with phase errors.

ICEBEAR-3D observers an unmistakable rising of elevations with slant range, that is com-

mon across all radars operating in the low elevation regime. This long standing problem is

poorly recorded in literature, but well known in application. All alternative corrections and

explanations were exhausted attempting to solve this problem for ICEBEAR-3D. Due to the

excellent phase tolerance and resolution of ICEBEAR-3D the underlying dependency on the

geocentral angle Γ was elucidated. This led to the development of the proper geometry for

vertical interferometry interpretation, which uses the geocentral angle to adjust the phase

reference plane to the chord which connects the receiver antenna array location to the target-

Earth pierce point. This geometry accounts for the apparent excessive angle measurement

β, which is naturally measured by an interferometer when measuring phase differences be-

tween antennas at differing phase references on a curved measuring surface such as the Earth.

The proper interpretation geometry for vertical interferometry is a potential and compelling

solution to the long standing low elevation angle regime problem.
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7.1 Future Work

The work detailed within this thesis has readied ICEBEAR-3D for further development.

Taking this future development into a consideration, careful diligence was taken to design

the data products so that they would be easily usable. Considerable time and effort was spent

conforming the data products to Common Data Format (CDF) standards (Liu, 2022). This

means the packaged HDF5 data files are user complete; no additional supplementary material

is needed, all necessary information is contained within the data product’s metadata.

ICEBEAR-3D has shown significant improvement over its predecessor, ICEBEAR, yet there

remains much work to be done. The future engineering projects for ICEBEAR-3D are listed

below, ordered from most readily doable in the short term to most challenging long term

projects.

Auto-calibration

Accurate and timely phase and magnitude calibration of the 10 receiver channels is required

to maintain radar performance. Manual calibrations using a vector network analyzer are

currently irregularly performed, typically once or twice per year. A calibration that could

be performed once per month or even daily would dramatically improve the confidence in

the data. Galeschuk (2021) purposed a calibration method that used the celestial radio

source Cygnus A as it passes through the ICEBEAR-3D field of view. The method had

good results, but was occasionally unable to generate calibrations for some baselines. The

Cygnus A calibration used the known location of a radio source to compute the expected

phase response of the receiver antenna array and compared it to the response measured. This

technique is in principle similar to determining the closure angle, as discussed in Section 6.1.

A phase calibration is determinable by averaging the closure angles of many meteor trail

echoes in a given day. The process is simple; given a meteor trail echo, which is a point like

target, find all closure angles for each combination of three channels. Then for each channel

sum the closure angles for each combination the channel appears and divide by the number

of appearances. For ICEBEAR-3D which has n = 10 channels there is n(n− 1)(n− 2)/6 =

120 three channel combinations where each antenna appears (n − 1)(n − 2)/2 = 36 times.

This process is then repeated for several meteor trail echoes in a given day and the result
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Figure 7.1: Phase calibration correction per channel for each day of year 2020. The

shaded green area is the phase error tolerance margin. Antennas 6 and 7 become

out of tolerance after 17 June 2020.

per channel is averaged. This final averaged value is the offset required from the current

calibration to return the closure angles to zero, causing the array to be properly calibrated.

In Figure 7.1 the closure angle autocalibration has been performed for every recorded day

in 2020. The plot shows the phase calibration correction required per channel as the year

progresses. The shaded green area is the zone in which the phase calibration is within design

tolerance (±14.86◦) and no noticeable angle of arrival deflections are measured. Sometime

around 2020 June 17 the channels for antennas 6 and 7 moved out of tolerance. This is

reflected in the summary data for days after this point, where noise is far more prevalent.

What remains to be done is validation, daily implementation, and adding the magnitude

calibration, which can be calculated similarly using the magnitude closure relationship given

in Thompson et al. (2001). Validation is done by finding the calibration correction for a given

day, then manually calibrating the next day and comparing the results.

1λ Transmitter Baseline

The three beam pattern seen in the ICEBEAR-3D data histogram shown in Chapter 6 and

link gain maps in Chapter 2 are due to the two transmitter antennas having a 3λ separation.

This three beam pattern leaves nulls within the field of view. When viewing animations

of the 1 s data, mapped streams of targets will disappear in the nulls. This effect can be

removed by operating the transmitter antennas with a 1λ separation. This would create one
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Figure 7.2: Superposition of a 1λ two antenna separation transmitter array gain

pattern and receiver antenna gain pattern in dB. The link is modeled on a WGS84

Earth model at a constant 110 km altitude. The white area is the region where

the Earth occludes a direct line of sight link. The regions show where the bistatic

radar has sufficient gain to sense targets.

larger central lobe, narrowing the field of view slightly, while removing the nulls. Figure 7.2

illustrates what the resulting link gain map would look like. The results from Figure 6.2

show that the theoretical and observed match well in the 3λ separation case, indicating that

the data collected with a 1λ transmitter configuration would also match the theory.

σ Cross-sectional Area

A target’s received power Prx is given by the radar range equation (Richards et al., 2010)

Prx =

[
PtxGtxGrxλ

2

(4π)3r2
txr2

rx

]
σ (7.1)
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where Ptx is the transmitted power, Gtx is the gain due to the transmitter antenna array,

Grx is the receiver antenna gain, λ is the radar wavelength, rtx is the distance between the

transmitter and scatter location, rrx is the distance between the receiver and scatter location,

and σ is the echo cross-section area. The goal is to measure the echo signal strength due to

the cross-sectional area σ. This is a relative measurement. For a monostatic radar, removing

system contribution is unnecessary, as the radio propagation to and from the target follow

the same path. Meaning Gtx = Grx and rtx = rrx, so the parts within the square brackets

of Equation 7.1 is only a function of total range and easily accounted for. The bistatic

case is more complicated as the part within the square brackets becomes a function of the

RF propagation path ellipse, and angle of arrival (since gain is not equal in all directions).

The link gain map calculation generated from NEC models of the transmitter and receiver

antenna arrays gives the value of GtxGrx. Ptx is known (59 dBm (Huyghebaert et al., 2019))

as well as λ, rtx, and rrx from the geocentral calculation. Thus, all system components of

the received power can be removed and the power due to σ is calculable. It is suggested that

this be attempted and possibly added to regular processing.

Doppler Spectra

The Doppler spectra of a target is a useful parameter for studying the physics of the E region,

as well as classifying scatter into the Types mentioned in Chapter 1. The nature of ICEBEAR

Level 1 data processing, as discussed in Section 2.4, produces discrete Doppler. A Doppler

spectra for each target is not directly obtainable. A method of producing Doppler spectra

by using the Doppler values of many adjacent targets around the target of interest and

fitting a Gaussian has been attempted by other ICEBEAR researchers, specifically Devin

Huyghbaert. This method produces uncharacteristically narrow spectra. This method and

others to generate Doppler spectras should be explored and become a part of the regular

processing chain.

Dropped Samples

The Ettus Instruments X300 SDRs have a quirk which has as yet not been patched by the

manufacturers. This quirk is known as a dropped sample. It occurs when a X300 SDR detects

a dropped packet and then fills the buffer with zeros. A dropped sample occurs roughly once
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every 15 minutes, making the data for the few seconds around it unusable. A dropped packet

is caused by: network hardware failure, the PCIe bus on the operating computer being unable

to sustain the throughput, a CPU governor or power management being misconfigured, or

data frame size errors. When the operating computer receives a dropped sample message,

it replaces the voltage values in the buffer with 1 + 0j. When these voltage samples are

processed, they appear as targets that fill every range-Doppler bin and seem to come from

a specific direction. Currently, these dropped samples are filtered at several stages, but the

filters are not completely effective. The dropped samples need to be removed at the source

by fixing the issue with the X300 SDRs and operating computer.

Interference

There are interference sources that affect the radar irregularly. Their sources are difficult

to locate due to their intermittent behavior. The current best analysis for one interference

source is that it originates from somewhere around the Dundurn, SK, military base and

ammunition depot. The other source is not well understood and appears to cause a very low

SNR responses in random range-Doppler bins across long periods of time. These interference

sources, and other, need further investigations.

Deconvolution Method for Multiple Targets per range-Doppler Bin

As briefly mentioned in Chapter 4, the current Suppressed-SWHT imaging solution is limited

to assuming only one target exists per range-Doppler bin. This however is not necessarily a

safe assumption. ICEBEAR-3D using the unsuppressed SWHT is capable of detecting and

isolating multiple targets per range-Doppler bin, provided the targets are spatially separated

by more than the Rayleigh criterion limit θ ≈ 1.22/bmax, which is about 30 km for targets in

the ICEBEAR-3D field of view.

An example of multiple targets in a single image was shown in Figure 4.6. In this image there

are clearly two targets, but there are also many other artefacts caused by the dirty beam.

The Suppressed-SWHT is a way to suppress the dirty beam effects, but it also removes

other targets. Removing the dirty beam artefacts is usually done with a deconvolutional

method. A modified Cotton-Schwab CLEAN algorithm is a likely candidate as it works with
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ungridded points, uses the full phase equation, and includes the w-term when computing

residuals (Schwab, 1984). Alternatively, a CLEAN like approach using the Suppressed-SWHT

should be attempted.

Selection Algorithm

Application of a deconvolution method would necessitate the development of a new selection

algorithm as the current algorithm, described in Section 4.7, assumes a single target per

image. The current method uses the OpenCV image processing library to determine the

contours around a target (Bradski, 2000). These contours can be found around multiple

targets and a bounding box placed around each. Then the maximum points inside each

bounding box can be used to determine the target’s angles of arrival. Additionally, the

algorithm would also likely need to take into account the mean and maximum brightness

points across the dirty image in order to discern real and false targets.

Comparison of Imaging Methods

In Chapter 4 the SWHT imaging method was discussed. The imaging method was compared

to the direct vCZ theorem. Not discussed in this thesis are the attempts to image using

the w-stacking, w-projection, regridded direct FFT, fit lookup table, or MUSIC methods.

These attempts had varying degrees of success, and development with them was halted once

the SWHT showed significant promise over them. However, these methods and many more

newer methods should all be attempted and compared to the Suppressed-SWHT. These

comparisons have begun with the development of the pyIRIS (Python Interferometric Radar

Imaging Suite) by Adam Lozinsky and Devin Huyghebaert.

Optimized Suppressed-SWHT

The product of spherical harmonics is equivalent to the summation of a high order spherical

harmonic with residuals (S. A. Holmes, 2002). The Suppressed-SWHT suppresses the dirty

beam by using the product of lower coefficient matrices with higher order ones, where a

coefficient matrix Cl is the sum of many spherical harmonics, as discussed in Chapter 4.
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This means the products in the Suppressed-SWHT are effectively generating many high

order spherical harmonics and many residuals from all the cross terms. For example, take

the product of C1 and C2

C1C2 = (Y0,0+Y1,−1+Y1,0+Y1,1)(Y0,0+Y1,−1+Y1,0+Y1,1+Y2,−2+Y2,−1+Y2,0+Y2,1+Y2,2) (7.2)

which has many repeated cross terms. The high order spherical harmonics found provide a

better imaging fit. The residuals, however, are lower order spherical harmonics which have

already been accounted. This effectively biases, or windows, the image by the lower order

spherical harmonics, which fixate on the single strongest source in the image. There should

exist a way to compute specific higher order spherical harmonics and subtract away the

residuals to form a precise Suppressed-SWHT coefficient matrix with a designed window.

This coefficient matrix would be collapsed, making image processing less memory intensive

and quicker.

More Receiver Antennas

The discussions in Chapter 3 showed that resolving power of the receiver antenna array was

limited by the number of antennas available. Every additional antenna added to the receiver

antenna array will dramatically improve performance, provided it is placed in areas off axis

that creates all unique baselines. Currently, the ICEBEAR transmitter site has 10 antennas,

but only 2 are used. Each X300 SDR has two channels, so the transmitter site has 5 SDRs.

One X300 SDR and two antennas could be moved to the receiver antenna array at little

cost. This would bring the total unique baselines to 132 from 45, a three times increase of

baselines. This would have a profound effect on the radars image quality and tolerance, at

the expense of more data storage and processing.

Multistatic Configuration

As just mentioned, the transmitter site nominally only requires 2 antennas and 1 X300 SDR.

If 1 X300 SDR and two antennas are moved to the receiver site, and 2 X300 SDRs and 4

antennas are kept at the transmitter site for redundancy, that leaves 2 spare X300 SDRs and

4 spare antennas. The spare equipment and respective cabling and HPAs could be moved to

another transmitter site. An optimal location would be near Lipton, SK. A transmitter site
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there would be equal distance from the Bakker receiver site as the Prelate transmitter site is

currently. Lipton, SK is also at the same latitude as Prelate, SK, thus keeping the propagation

characteristics similar. The second transmitter site would transmit an orthogonal CW PRN

code to Prelate. The additional transmitter site would give a second bistatic radar vector

per target. This allows for 2D velocity vectors to be found. The second transmitter would

also fill in the field of view more completely.

Although ICEBEAR-3D could be improved by the previously discussed topics, it is operating

extremely well. It reliably produces a higher spatial resolution data product than initially

thought possible. The quality of the ICEBEAR-3D data product has already led to three

publications (Lozinsky et al., 2022; Huyghebaert et al., 2021; Ivarsen et al., 2022). With

more upcoming publications including: Adapting Statistical Methods from Cosmology to

study the Distribution of Farley-Buneman Scattering Centers in the Auroral Region (Ivarsen

and Lozinsky, et al.); What E-region radar echo rates can tell us about Ionospheric Plasma

Turbulence (Ivarsen, et al.); and three more untitled working articles which I have collabo-

rated on.

And, many more to come...
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Appendix A

Jacobs Ralston Algorithm

The Jacobs-Ralston phase error minimization technique for a linear array written in Python.

# Author: Adam Lozinsky

# Date: June 17, 2019

# Name: Jacobs Ralston

# Description: Use ’Ambiguity Resolution in Interferometry

# (Jacobs ,. Ralston , 1981) ’ to determine the

# best antenna spacing in a crossed configuration.

import numpy as np

class JacobsRalston:

def __init__(self , antennas , end , iterations , step =0.001 , minsep =1.5):

"""

For two antennas (antenna and end) this algorithm determines to optimal

phase error minimization point to place a third antenna between the

first two. This is then repeated as for as many (iterations) as

required. A final average optimal point can be found. This process

should be repeated for all possible combination of antennas along

a linear array. Qualitative analysis must be used in conjunction.

Parameters

----------

antennas : float np.array

[a1 , a2 , ...] the first antenna and any assumed or required

antenna locations (<= iterations) in [lambda] from a1.

end : float

the last antenna location in [lambda] from a1.

iterations : int

number of antennas to place between a1 and end.

step : float

step size of the calculation , default = 0.1* lambda.

minsep : float

minimum distance two antennas can be placed in [lambda ].

"""

self.antennas = antennas

self.end = end

self.x = np.arange(antennas [0] + minsep , end - minsep , step)

self.y = np.ones(( iterations , self.x.shape [0]))

self.step = step

self.minsep = minsep

self.iterations = iterations

self.run()
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self.y_total = np.sum(self.y, axis =0) / len(self.y)

self.antennas = np.append(self.antennas , self.end)

def run(self):

for i in range(self.iterations ):

self.y[i, :], pos = self.find_position(self.antennas[i], self.end)

if i <= self.antennas.shape [0]:

self.antennas = np.append(self.antennas , pos)

return

def find_position(self , x1 , x2):

""" Find the next position for the antenna in the linear array. """

x = np.arange(x1 + self.minsep , x2 - self.minsep , self.step)

y = np.zeros_like(x)

n1 = self.modulo_integer(np.abs(x2 - x1) / 2, np.pi / 2)

for i in range(len(x)):

n2 = self.modulo_integer(x[i], np.pi / 2)

y[i] = 1 + self.find_lmin(np.abs(x2 - x1) / 2, x[i], n1, n2)

idx = np.argmax(y)

y = self.pad_like(y, self.x, value =1.0)

return y, x[idx]

@staticmethod

def pad_like(arr , ref , value =0.0, mode=’before ’):

"""Pad the array either before or after with any value."""

"""Pad array given a reference """

pad = np.ones_like(ref) * value

if mode is ’before ’:

pad[ref.shape [0] - arr.shape [0]:] = arr

elif mode is ’after ’:

pad[:arr.shape [0]] = arr

return pad

@staticmethod

def modulo_integer(d, theta_max ):

""" Find the largest n (Jacobs and Ralston , 1981). """

nmax = int(np.abs(d * np.sin(theta_max) + 0.5))

n = np.arange(-nmax , nmax , 1, dtype=’int’)

return n

@staticmethod

def find_lmin(d1 , d2 , n1 , n2):

""" Find the smallest l (Jacobs and Ralston , 1981). """

y = np.zeros((len(n1), len(n2)))

for i in range(len(n1)):

for j in range(len(n2)):

y[i, j] = d1 / d2 * n2[j] - n1[i]

y = np.sort(y.flatten ())

lmin = np.min((y[1::] - y[0: -1]) / ((1 + (d1 / d2) ** 2) ** 0.5))

return lmin
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Appendix B

Random-walk Annealing Algorithm

The Random-walk Annealing algorithm written in Python.

# Author: Adam Lozinsky

# Date: June 18, 2019

# Name: Random -walk Annealing

# Description: Generates optimal antenna array designs based on

# perturbed realeaux triangles (Keto , 1997).

import numpy as np

class RandomWalkAnnealing:

def __init__(self , antennas , wavelength , boundary , weights=np.array ([]),

elasticity =2.0, dampening =0.1, uniformity =0.89 , minsep =1.5,

limit =10000):

"""

Random -walk Annealing is a simulated annealing like antenna array

optimization algorithm. It attempts to find optimal array patterns

where; the arrays are bounded , have minimal closure distance to

avoid mutual coupling effects , desire all unique baselines , and

uniformity of the uv-plane.

Parameters

----------

antennas : float np.array

[[x1 , y1], [x2 , y2], ...] positions of the antennas in local

coordinates [meters ].

wavelength : float

array centered wavelength.

boundary : float np.array

[[xmin , xmax], [ymin , ymax]] the bounded region the antennas can

be placed within.

weights : float np.array

[[w1 , w1], [w2 , w2], ...] the same shape as antennas , this holds

the initial weights each antenna can be perturbed by.

Set this to 0.0 to keep an antenna from ever moving.

elasticity : float

the amount of energy to add to an antennas if it is not

placed well , w *= e.

dampening : float

the amount to reduce an antennas energy by if finds a

local or global minima , w *= d.

uniformity : float

the maximum allowable distance two visibility points

(location not value) can be next to each other.

111



minsep : float

the minimum distance two antenna can be placed next to

each other in units of lambda.

limit : int

maximum number of iteration to preform per simulation.

"""

if not weights:

self.weights = np.ones_like(antennas) * 2.0

self.num_antennas = len(antennas)

self.unique_baselines = int(

self.num_antennas * (self.num_antennas - 1) / 2)

self.antennas = antennas

self.baselines = np.zeros((self.unique_baselines , 2))

self.order = np.zeros_like(self.baselines , dtype=int)

self.wavelength = wavelength

self.boundary_min = np.ones_like(antennas) * boundary[0, :]

self.boundary_max = np.ones_like(antennas) * boundary[1, :]

self.weights_maximum = np.abs(self.boundary_min - self.boundary_max)

self.condition = np.ones_like(antennas , dtype=np.bool)

self.elasticity = elasticity

self.dampening = dampening

self.uniformity = uniformity

self.minsep = minsep

self.limit = limit

self.flag = True

self.run()

def run(self):

count = 0

while self.flag and (count < self.limit ):

print(f"\rsimulating iteration :\t{count :05d}/{ self.limit}", end=’’)

count += 1

self.perturbate ()

self.evaluate ()

self.weighting ()

self.baselines = np.concatenate ((self.baselines , -1 * self.baselines),

axis =0)

print(’\tdone ’)

return

def perturbate(self):

pmax = np.where(self.antennas + self.weights > self.boundary_max ,

self.boundary_max ,

self.antennas - self.weights)

pmin = np.where(self.antennas - self.weights < self.boundary_min ,

self.boundary_min ,

self.antennas + self.weights)

self.antennas = np.random.uniform(pmin , pmax)

return

def evaluate(self):

self.condition *= False

count = 0
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for i in range(self.num_antennas ):

for j in range(i + 1, self.num_antennas ):

self.baselines[count , :] = (self.antennas[i, :] -

self.antennas[j, :]) / self.wavelength

self.order[count , :] = np.array([i, j])

# Check for minimal separation

d = np.sqrt(self.baselines[count , 0] ** 2 + self.baselines[

count , 1] ** 2)

if d <= self.minsep:

self.condition[i, :] = np.array([True , True])

self.condition[j, :] = np.array([True , True])

count += 1

rounded_baselines = np.copy(np.round(self.baselines , decimals =2))

for m in range(len(self.baselines )):

# Check for uniqueness

if (rounded_baselines[m, :] in rounded_baselines [:m, :]) or \

(rounded_baselines[m, :] in rounded_baselines[m + 1:, :]):

self.condition[self.order[m, 0], :] = np.array([True , True])

self.condition[self.order[m, 1], :] = np.array([True , True])

for n in range(m + 1, len(self.baselines )):

# Check for uniformity

d = np.sqrt(

np.sum((self.baselines[m, :] - self.baselines[n, :]) ** 2))

if d < self.uniformity:

self.condition[self.order[m, 0], :] = np.array([True , True])

self.condition[self.order[m, 1], :] = np.array([True , True])

self.condition[self.order[n, 0], :] = np.array([True , True])

self.condition[self.order[n, 1], :] = np.array([True , True])

if not np.alltrue(self.condition ):

self.flag = False

def weighting(self):

self.weights = np.where(self.condition , self.weights * self.elasticity ,

self.weights * self.dampening)

self.weights = np.where(

self.antennas + self.weights > self.boundary_max ,

self.weights_maximum , self.weights)

self.weights = np.where(

self.antennas - self.weights < self.boundary_min ,

self.weights_maximum , self.weights)

return
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Appendix C

Target Simulator

The ICEBEAR target simulator written in Python.

import matplotlib.pyplot as plt

import numpy as np

from scipy.integrate import dblquad

import multiprocessing as mp

from icebear import swht

import icebear.utils as utils

def _real_pre_integrate(theta , phi , u_in , v_in , w_in , \

theta_mean , theta_spread , phi_mean , phi_spread ):

return 2 * np.real(np.exp(-(theta - theta_mean) ** 2 /

(2.0 * theta_spread * theta_spread )) *

np.exp(-(phi - phi_mean) ** 2 /

(2.0 * phi_spread * phi_spread )) * np.cos(phi) *

np.exp(-2.0j * np.pi * ((u_in * np.sin(theta) * np.cos(phi)) +

(v_in * np.cos(theta) * np.cos(phi)) + (w_in * np.sin(phi )))))

def _imag_pre_integrate(theta , phi , u_in , v_in , w_in , \

theta_mean , theta_spread , phi_mean , phi_spread ):

return 2 * np.imag(np.exp(-(theta - theta_mean) ** 2 /

(2.0 * theta_spread * theta_spread )) *

np.exp(-(phi - phi_mean) ** 2 /

(2.0 * phi_spread * phi_spread )) * np.cos(phi) *

np.exp(-2.0j * np.pi * ((u_in * np.sin(theta) * np.cos(phi)) +

(v_in * np.cos(theta) * np.cos(phi)) + (w_in * np.sin(phi )))))

def _visibility_calculation(x, u_in1 , v_in1 , w_in1 , \

theta_mean , theta_spread , \

phi_mean , phi_spread , output ):

real_vis = dblquad(_real_pre_integrate , -np.pi / 2, np.pi / 2, \

lambda phi: -np.pi , lambda phi: np.pi ,

args=(u_in1 , v_in1 , w_in1 , \

theta_mean , theta_spread , phi_mean , phi_spread ))[0]

imag_vis = dblquad(_imag_pre_integrate , -np.pi / 2, np.pi / 2, \

lambda phi: -np.pi , lambda phi: np.pi ,

args=(u_in1 , v_in1 , w_in1 , \

theta_mean , theta_spread , phi_mean , phi_spread ))[0]

output.put((x, real_vis + imag_vis * 1.0j))
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def simulate(config , azimuth , elevation , azimuth_extent , elevation_extent ):

"""

Parameters

----------

config : Class Object

Config class instantiation.

azimuth : float np.array

Azimuth angles of simulated targets.

elevation : float np.array

Elevation angles of simulated target.

azimuth_extent : float np.array

Azimuth spatial extents of simulated targets.

elevation_extent : float np.array

Elevation spatial extents of simulated targets.

Returns

-------

brightness : float np.array

Brightness map using the Suppressed -SWHT.

swht_brightness : float np.array

Brightness map using the SWHT.

"""

print(’simulation start:’)

print("Number of processors: ", mp.cpu_count ())

print(f’\t-input azimuth {azimuth} deg x {azimuth_extent} deg’)

print(f’\t-input elevation {elevation} deg x {elevation_extent} deg’)

idx_length = len(azimuth)

wavelength = 299792458 / config.center_freq

x = config.rx_ant_coords [0, :]

y = config.rx_ant_coords [1, :]

z = config.rx_ant_coords [2, :]

# Simulate positional errors

err = 0.0

x[7] += err

y[7] += err

z[7] += err

u, v, w = utils.baselines(x, y, z, wavelength)

azimuth = np.deg2rad(azimuth)

elevation = np.deg2rad(elevation)

azimuth_extent = np.deg2rad(azimuth_extent)

elevation_extent = np.deg2rad(elevation_extent)

visibility_dist = np.zeros ((int(len(u)/2), idx_length , idx_length ,

idx_length , idx_length), dtype=np.complex64)

# Instantiate multi -core processing

output = mp.Queue ()

pool = mp.Pool(mp.cpu_count () - 2)

# Loop process to allow for multiple targets in an image.

# Typically only one target is used.

for idx in range(idx_length ):

processes = [mp.Process(target=_visibility_calculation ,
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args=(x, u[x], v[x], w[x],

azimuth[idx], azimuth_extent[idx],

elevation[idx], elevation_extent[idx],

output )) for x in range(int(len(u)/2))]

for p in processes:

p.start()

for p in processes:

p.join()

# Get process results from the output queue

visibility_dist_temp = [output.get() for p in processes]

visibility_dist_temp.sort()

visibility_dist [:, idx , idx , idx , idx] = \

[r[1] for r in visibility_dist_temp]

# for p in processes:

# p.close ()

visibility = np.array(visibility_dist)

for i in range(len(azimuth )):

visibility [:, i, i, i, i] = visibility [:, i, i, i, i] /

np.abs(visibility [0, i, i, i, i])

visibility = np.sum(visibility_dist , axis=(1, 2, 3, 4))

visibility = np.append(np.conjugate(visibility), visibility)

coeffs = swht.unpackage_coeffs(config.swht_coeffs , int(config.lmax))

coeffs2 = np.copy(coeffs)

brightness = swht.swht_py(visibility , coeffs)

for i in range(15, 85, 10):

coeffs = .swht.unpackage_coeffs(config.swht_coeffs , i)

brightness *= swht.swht_py(visibility , coeffs)

brightness = swht.brightness_cutoff(brightness , threshold =0.0)

# Find the target center point

cx, cy, cx_extent , cy_extent , area = swht.centroid_center(brightness)

mx, my, _ = swht.max_center(brightness)

mx = mx * config.resolution - config.fov[0, 0] + config.fov_center [0]

my = my * config.resolution - config.fov[1, 0] + config.fov_center [1]

cx = cx * config.resolution - config.fov[0, 0] + config.fov_center [0]

cy = cy * config.resolution - config.fov[1, 0] + config.fov_center [1]

cx_extent *= config.resolution

cy_extent *= config.resolution

print(f’\t-result azimuth {cx} deg x {cx_extent} deg -- max {mx}’)

print(f’\t-result elevation {cy} deg x {cy_extent} deg -- max {my}’)

if len(azimuth) == 0:

if np.allclose ([azimuth , elevation , azimuth_extent , elevation_extent],

[cx , cy , cx_extent , cy_extent], atol =1):

print(’\t-result matches input within error (10e-1)’)

swht_brightness = swht.swht_py(visibility , coeffs2)

swht_brightness = swht.brightness_cutoff(swht_brightness , threshold =0.0)

return brightness , swht_brightness
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Appendix D

Spherical Wave Harmonic Coefficient Matrices

Spherical Wave Harmonic Transform coefficient matrix computation written in Python.

# Author: Adam Lozinsky

# Date: November 5, 2019

# Name: SWHT Coeffs

# Description: Generates the SWHT pre -calculated coeffs for caching

import numpy as np

import scipy.special as special

import time

import common.utils as utils

import h5py

import cv2

try:

import cupy as cp

except:

print(’no cupy’)

def generate_coeffs(config , fov=np.array ([[0, 360], [0, 90]]) , resolution =1.0,

lmax =85):

"""

Makes an array containing all the factors that do not change with

Visibility values. This array can then be saved to quickly create

Brightness values given changing Visibilities. The array is then

stored as a HDF5 file.

Parameters

----------

config : Class Object

Config class instantiation.

fov : float np.array

[[start , stop], [start , stop]] azimuth , elevation angles

within 0 to 360 and 0 to 180 degrees.

resolution : float

Angular resolution in degree per pixel.

lmax : int

The maximum harmonic degree.

Returns

-------

None

Notes
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-----

The array file must contain:

wavelength : float

Radar signal wavelength in meters.

u : float np.array

East -West baseline coordinate divided by wavelength.

v : float np.array

North -South baseline coordinate divided by wavelength.

w : float np.array

Altitude baseline coordinate divided by wavelength.

"""

array_name = config.radar_config

wavelength = 299792458 / config.center_freq

date_created = config.date_created

u, v, w = utils.baselines(config.rx_ant_coords [0, :],

config.rx_ant_coords [1, :],

config.rx_ant_coords [2, :],

wavelength)

if config.check_attr(’fov’):

fov = config.fov

if config.check_attr(’resolution ’):

resolution = config.resolution

if config.check_attr(’lmax’):

lmax = config.lmax

ko = 2 * np.pi / wavelength

az_step = int(np.abs(fov[0, 0] - fov[0, 1]) / resolution)

el_step = int(np.abs(fov[1, 0] - fov[1, 1]) / resolution)

r, t, p = utils.uvw_to_rtp(u, v, w)

r *= wavelength # Since r, t, p was converted from u, v, w we

# need the * wavelength back to match SWHT algorithm

az = np.deg2rad(np.linspace(fov[0, 0], fov[0, 1], az_step ))

el = np.deg2rad(np.linspace(fov[1, 0], fov[1, 1], el_step ))

setting_name = f"{int(np.round(np.abs(fov[0, 0] - fov[0, 1]))):03d}az_" \

f"{int(np.round(np.abs(fov[1, 0] - fov[1, 1]))):03d}el_" \

f"{str(resolution ). replace(’.’, ’’)}res_" \

f"{lmax}lmax"

filename = f"swhtcoeffs_{array_name}_{date_created [0]:04d}_" \

f"{date_created [1]:02d}_{date_created [2]:02d}_" \

f"{setting_name }.h5"

print(f"Calculating SWHT coeffs:")

print(f"\t-filename: {filename}")

print(f"\t-configuration: {array_name}")

print(f"\t-azimuth: {fov[0, 0]} - {fov[0, 1]}")

print(f"\t-elevation: {fov[1, 0]} - {fov[1, 1]}")

print(f"\t-resolution: {resolution}")

print(f"\t-degree: {lmax}")

print(f"\t-wavelength: {wavelength}")

create_coeffs(filename , date_created , array_name , fov , resolution , lmax ,

wavelength , np.array ([u, v, w]))

calculate_coeffs(filename , az , el , ko , r, t, p, lmax)
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return filename

def create_coeffs(filename , date_created , array_name , fov , resolution , lmax ,

wavelength , baselines ):

"""

Generates a HDF5 file to save the metadata and coeffs ndarrays.

"""

f = h5py.File(filename , ’w’)

f.create_dataset(’radar_config ’, data=np.array(array_name , dtype=’S’))

f.create_dataset(’date_created ’, data=date_created)

f.create_dataset(’fov’, data=fov)

f.create_dataset(’resolution ’, data=resolution)

f.create_dataset(’lmax’, data=lmax)

f.create_dataset(’wavelength ’, data=wavelength)

f.create_dataset(’baselines ’, data=baselines)

f.create_group(’coeffs ’)

f.close ()

return None

def append_coeffs(filename , l, coeffs ):

"""

Appends the HDF5 file with a new coeffs ndarray.

"""

f = h5py.File(filename , ’a’)

f.create_dataset(f’coeffs /{l:02d}’, data=coeffs)

f.close ()

return None

def calculate_coeffs(filename , az , el , ko , r, t, p, lmax =85):

"""

Computes the coeff matrix for each harmonic order and degree

Parameters

----------

filename : string

Filename and path to the HDF5 file the calculated

coefficients are to be appended.

az : float np.array

An array of azimuth angles in radians to calculate

coefficients for.

el : float np.array

An array of elevation angles in radians to calculate

coefficients for.

lmax : int

The maximum harmonic degree.

ko : float

Radar signal wave number , ko = 2pi/wavelength.
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r : float np.array

Radius baseline coordinate divided by wavelength.

t : float np.array

Theta (elevation) baseline coordinate.

p : float np.array

Phi (azimuthal) baseline coordinate.

Returns

-------

None

Notes

-----

Maximum harmonic degree is Lmax = 85. Above this scipy crashes due

to an overflow error. The potential fix is to scale the initial Pmm

of the recursion by 10^280 sin^m (theta), and then rescale

everything back at the end.

Holmes , S. A., and W. E. Featherstone , A unified approach to the

Clenshaw summation and the recursive computation of very high degree

and order normalised associated Legendre functions ,

J. Geodesy , 76, 279- 299, doi :10.1007/ s00190 -002-0216 -2 , 2002.

"""

start_time = time.time()

AZ, EL = np.meshgrid(az, el)

coeffs = np.zeros ((len(el), len(az), len(r)), dtype=np.complex128)

if lmax <= 85:

for l in range(lmax + 1):

for m in range(-l, l + 1):

coeffs += ko ** 2 / (2 * np.pi ** 2 * np.round((-1j) ** l)) * \

np.repeat(

special.sph_harm(m, l, AZ , EL)[:, :, np.newaxis],

len(r), axis =2) * \

np.repeat(np.repeat(special.spherical_jn(l, ko * r) * \

np.conjugate(

special.sph_harm(m, l, p, t)) \

[np.newaxis , np.newaxis , :],

AZ.shape[0], axis=0), AZ.shape[1],axis =1)

print(f"\tharmonic degree (l) = {l:02d}/{ lmax :02d},"

f" order (m) = {m:02d}/{l:02d}\r")

if l in [5, 15, 25, 35, 45, 55, 65, 75, 85]:

append_coeffs(filename , l, coeffs)

elif lmax > 85:

try:

import pyshtools as pysh

except ImportError:

print(f’Error: lmax = {lmax} -- values over 85 requires PySHTOOLS ’

f’https :// github.com/SHTOOLS try pip install pyshtools ’)

exit()

print(

f’\twarning: lmax values over 85 generate massive ’
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f’files only 1/10th frames will be stored , evenly distributed ’)

ylm_pysh = np.vectorize(pysh.expand.spharm_lm)

for l in range(lmax + 1):

for m in range(-l, l + 1):

coeffs += ko ** 2 / (2 * np.pi ** 2 * np.round((-1j) ** l)) * \

np.repeat(

ylm_pysh(l, m, EL, AZ, normalization=’ortho ’,

csphase=-1, kind=’complex ’,

degrees=False)[

:, :, np.newaxis], len(r), axis =2) * \

np.repeat(np.repeat(special.spherical_jn(l, ko * r) * \

np.conjugate(ylm_pysh(l, m, t, p,

normalization=’ortho’,

csphase=-1,

kind=’complex ’,

degrees=False)) \

[np.newaxis , np.newaxis , :],

AZ.shape [0], axis=0), AZ.shape[1], axis =1)

print(f"\tharmonic degree (l) = {l:02d}/{ lmax :02d},"

f" order (m) = {m:02d}/{l:02d}\r")

if l == 85:

append_coeffs(filename , l, coeffs)

if l == int(lmax * 0.1):

append_coeffs(filename , l, coeffs)

if l == int(lmax * 0.2):

append_coeffs(filename , l, coeffs)

if l == int(lmax * 0.3):

append_coeffs(filename , l, coeffs)

if l == int(lmax * 0.4):

append_coeffs(filename , l, coeffs)

if l == int(lmax * 0.5):

append_coeffs(filename , l, coeffs)

if l == int(lmax * 0.6):

append_coeffs(filename , l, coeffs)

if l == int(lmax * 0.7):

append_coeffs(filename , l, coeffs)

if l == int(lmax * 0.8):

append_coeffs(filename , l, coeffs)

if l == int(lmax * 0.9):

append_coeffs(filename , l, coeffs)

append_coeffs(filename , l, coeffs)

print(f"Complete time: \t{time.time() - start_time}")

return None
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Appendix E

Ray Tracing Refraction Model

Ray tracing refraction model for a linear electron density E region written in Python.

import numpy as np

import matplotlib.pyplot as plt

def ray_trace(angle_of_arrival , ground_distance , frequency , step):

ranges = np.arange(0, ground_distance , step)

theta = angle_of_arrival

n1 = 1.0

altitudes = np.array ([])

height = 0.0

for s in range(len(ranges )):

if (height < 80) or (height > 120):

height = height + 2 * (6378.1 + height) *

np.sin(step / 6378.1 / 2) * np.tan(theta)

elif height >= 80:

height = height + 2 * (6378.1 + height) *

np.sin(step / 6378.1 / 2) * np.tan(theta)

n2 = refractive_index(height , frequency)

theta = snells_law(n2, n1, theta)

n1 = n2

altitudes = np.append(altitudes , height)

return ranges , altitudes

def refractive_index(altitude , frequency ):

N = density_model(altitude)

return np.sqrt (1 -(81*N)/ frequency **2)

def density_model(altitude ):

# Watermann (1990) says peak is 3.1x10^11 m^-3 at 115 km

peak = 5e12

a = 115

b = 6e6

m = (peak - b) / (a-80)

return (altitude - 80) * m + b

def snells_law(n1 , n2 , theta1 ):

return np.arcsin(n1/n2 * np.sin(theta1 ))
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Appendix F

The Role of Γ in All Types of Radar Observa-

tions

This appendix contains work directly from my contributions in Lozinsky et al. (2022).1

The impact of the geocentral angle Γ on proper elevation angle α determination using vertical
interferometry on a curved surface such as the Earth depends significantly on the magnitude
of the slant range ρ. This influences how significant Γ is in proper determination of α.
Variation of values of slant range ρ can be used to define three general regimes:

1. Regime I: 0 < h < ≈0.1RE (≈1000 km)

2. Regime II: ≈0.1RE < h < 10RE

3. Regime III: h > 10RE →∞

Example target altitudes for Regime I for 10 km, 100 km, and 1000 km are presented in
Table F.1 and Figure F.1 and includes E region altitudes as already discussed for ICEBEAR-
3D. In this regime low elevation angles are significantly affected, for example, with Γ values
of 3.2◦, 10.1◦, and 30.2◦ at altitudes of 10 km, 100 km, and 1000 km respectively for true
α = 0◦ values. The value of Γ does not become < 1◦, and therefore around typical calibration
and measurement errors, until the true value of α reaches 6◦, 45◦, and 82◦ at the respective
altitudes. As already presented and discussed, clearly not properly accounting for the geo-
central angle Γ in the geometry for vertical interferometry at finite slant ranges introduces
significant error.

Regime III represents target observations at very high altitudes (> 105 km)/slant ranges
out to infinity. In this regime of h > ≈10RE km → ∞, ρ ' (RE + h) ' h and χ → 0◦,
then from Equation 5.10 α = π/2 − Γ. Therefore, there is a fixed phase difference between
the elevation angle α and the geocentral angle Γ such that sinα = sin (π/2− Γ) = cos Γ
or cosα = cos (π/2− Γ) = sin Γ. Albeit, for such vertical interferometer implementations,

1Lozinsky, A., Hussey, G., McWilliams, K., Huyghebaert, D., and Galeschuk, D. (2022). ICEBEAR-3D:
A Low Elevation Imaging Radar Using a Non-Uniform Coplanar Receiver Array for E Region Observations,
Radio Science, 57(3). DOI: 10.1029/2021RS007358
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Table F.1: Actual elevation angle α and corresponding geocentral angle Γ, incorrect

conventional elevation angle αC , and slant range ρ for measurements of vertical

interferometry targets at altitudes of 10 km, 100 km, and 1000 km. Targets can be

aircraft, plasma instabilities, meteor trails, beacons, etc.

α Alt. h = 10 km Alt. h = 100 km Alt. h = 1000 km
Γ αC ρ Γ αC ρ Γ αC ρ

(◦) (◦) (◦) (km) (◦) (◦) (km) (◦) (◦) (km)

0 3.21 3.21 357.1 10.09 10.09 1133.2 30.19 30.19 3707.0
2 1.78 3.78 198.3 8.28 10.28 932.5 28.25 30.25 3491.3
4 1.13 5.13 125.7 6.84 10.84 772.8 26.43 30.43 3289.2
6 0.80 6.80 89.7 5.72 11.72 648.5 24.73 30.73 3100.4
8 0.62 8.62 69.2 4.85 12.85 552.2 23.14 31.14 2924.9
10 0.50 10.50 56.2 4.17 14.17 477.4 21.66 31.66 2762.3
20 0.25 20.25 29.1 2.31 22.31 277.1 15.69 35.69 2121.0
30 0.16 30.16 20.0 1.50 31.50 195.6 11.54 41.54 1702.2
45 0.09 45.09 14.1 0.88 45.88 140.4 7.33 52.33 1329.1
60 0.05 60.05 11.5 0.51 60.51 115.2 4.39 64.39 1129.7
90 0.00 90.00 10.0 0.00 90.00 100.0 0.00 90.00 1000.0

calibrations should account for the geocentral angle Γ and it need not be explicitly taken into
account for these extremely high altitude/large slant range/ ∞ observations.

Regime II represents the intermediate case between Regimes I and III and is presented, with
an example altitude of h = 104 km, in Table F.2 and by the red dotted line in Figure F.1. Here
the geocentral angle Γ has a significant impact on proper elevation angle α determination at
all elevation angles α.
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Figure F.1: The geocentral angle Γ (top) and the normalized slant range (bottom)

versus the elevation angle α for varying target altitudes. Presented are the three

regimes: I up to 0.1RE; II for 0.1RE to 10RE; and III for 10RE to ∞, showing the

impact of the geocentral angle Γ on proper elevation angle α determination using

vertical interferometry. Note that the normalized range is 35.7 at α = 0◦ at an

altitude of h = 10 km.
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Table F.2: Same as Table F.1 but for target altitudes of 10,000 km, 100,000 km,

and ∞.

α Alt. h = 104 km Alt. h = 105 km Alt. ∞ km
Γ αC ρ Γ αC ρ Γ αC ρ

(◦) (◦) (◦) (km) (◦) (◦) (km) (◦) (◦) (km)

0 67.10 67.10 15,080 86.57 86.57 106,200 90.0 90.0 ∞
2 65.11 67.11 14,860 84.57 86.57 106,000 88.0 90.0 ∞
4 63.16 67.16 14,640 82.57 86.57 105,700 86.0 90.0 ∞
6 61.23 67.23 14,430 80.59 86.59 105,600 84.0 90.0 ∞
8 59.33 67.33 14,220 78.60 86.60 105,300 82.0 90.0 ∞
10 57.46 67.46 14,020 76.62 86.62 105,100 80.0 90.0 ∞
20 48.55 68.55 13,060 66.77 86.77 104,000 70.0 90.0 ∞
30 40.30 70.30 12,230 57.03 87.03 103,000 60.0 90.0 ∞
45 29.03 74.03 11,230 42.57 87.57 101,800 45.0 90.0 ∞
60 18.78 78.78 10,540 28.28 88.28 100,800 30.0 90.0 ∞
90 0.00 90.00 10,000 0.00 90.00 100,000 0.0 90.0 ∞
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Appendix G

Relaxation Geocentral Angle

The relaxation numerical method coupled with the geodesy calculation for determination of
the geocentral angle written in Python.

import numpy as np

import sys

try:

import cupy as xp

CUDA = True

except ModuleNotFoundError:

import numpy as xp

CUDA = False

import h5py

import pymap3d as pm

import icebear.utils as utils

import matplotlib.pyplot as plt

import icebear.imaging.clustering as cl

import datetime

from dateutil.tz import tzutc

import pandas

def map_target(tx , rx , az , el , rf , dop , wavelength ):

"""

Find the scatter location given tx location , rx location , total

rf distance , and target angle -of -arrival using the ’WGS84’ Earth model.

Also determines the bistatic velocity vector and bistatic

radar wavelength.

Parameters

----------

tx : float np.array

[latitude , longitude , altitude] of tx array in degrees

and kilometers

rx : float np.array

[latitude , longitude , altitude] of rx array in degrees

and kilometers

az : float np.array

angle -of -arrival azimuth in degrees

el : float np.array

angle -of -arrival elevation in degrees

rf : float np.array

total rf path distance rf = c * tau in kilometers

dop : float np.array

doppler shift in hertz

wavelength : float
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radar signal center wavelength

Returns

-------

sx : float np.array

[latitude , longitude , altitude] of scatter in degrees

and kilometers

sa : float np.array

[azimuth , elevation , slant range] of scatter in degrees

and kilometers

sv : float np.array

[azimuth , elevation , velocity] the bistatic Doppler velocity

vector in degrees and kilometers. Coordinates given in the

scattering targets local frame (azimuth from North , elevation up

from the plane normal to zenith ,

Doppler [Hz] * lambda /(2 cos(e/2)))

Notes

-----

tx : transmitter location

rx : receiver location

sx : scatter location

gx : geometric center of Earth , origin

u_rt : unit vector rx to tx

u_rs : unit vector rx to sx

u_gt : unit vector gx to tx

u_gr : unit vector gx to rx

u_gs : unit vector gx to sx

"""

# Initialize output arrays

sx = np.zeros((3, len(rf)), dtype=float)

sa = np.zeros((3, len(rf)), dtype=float)

sv = np.zeros((3, len(rf)), dtype=float)

# Setup variables in correct units for pymap3d

rf = rf * 1.0e3

az = np.where(az < 0.0, az + 360.0, az)

az = np.deg2rad(az)

el = np.deg2rad(np.abs(el))

# Determine the slant range , r

bx1 , by1 , bz1 = pm.geodetic2ecef(rx[0], rx[1], rx[2], \

ell=pm.Ellipsoid("wgs84"), deg=True)

v_gr = np.array([bx1 , by1 , bz1])

bx2 , by2 , bz2 = pm.geodetic2ecef(tx[0], tx[1], tx[2], \

ell=pm.Ellipsoid("wgs84"), deg=True)

v_gt = np.array([bx2 , by2 , bz2])

raz , rel , b = pm.ecef2aer(bx2 , by2 , bz2 , rx[0], rx[1], rx[2], \

ell=pm.Ellipsoid("wgs84"), deg=True)

u_rt = np.array([np.sin(np.deg2rad(raz)) * np.cos(np.deg2rad(rel)),

np.cos(np.deg2rad(raz)) * np.cos(np.deg2rad(rel)),

np.sin(np.deg2rad(rel ))])

el -= relaxation_elevation(el , rf , az , b, u_rt)
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u_rs = np.array([np.sin(az) * np.cos(el), \

np.cos(az) * np.cos(el), np.sin(el)])

r = (rf ** 2 - b ** 2) / (2 * (rf - b * np.dot(u_rt , u_rs )))

# WGS84 Model for lat , long , alt

sx[:, :] = pm.aer2geodetic(np.rad2deg(az), np.rad2deg(el), np.abs(r),

np.repeat(np.rad2deg(rx[0]), len(az)),

np.repeat(np.rad2deg(rx[1]), len(az)),

np.repeat(rx[2], len(az)),

ell=pm.Ellipsoid("wgs84"), deg=True)

# Determine the bistatic Doppler velocity vector

x, y, z = pm.geodetic2ecef(sx[0, :], sx[1, :], sx[2, :],

ell=pm.Ellipsoid(’wgs84’), deg=True)

v_gs = np.array([x, y, z])

v_bi = (-1 * v_gs.T + v_gt / 2.0 + v_gr / 2.0).T

u_bi = v_bi / np.linalg.norm(v_bi , axis =0)

v_sr = (v_gr - v_gs.T).T

u_sr = v_sr / np.linalg.norm(v_sr , axis =0)

radar_wavelength = wavelength / \

np.abs (2.0 * np.einsum(’ij ,ij ->j’, u_sr , u_bi))

# 1 for positive , -1 for negative , and 0 for zero

doppler_sign = np.where(dop >= 0, 1, -1)

vaz , vel , _ = pm.ecef2aer(doppler_sign * u_bi[0, :] + x,

doppler_sign * u_bi[1, :] + y,

doppler_sign * u_bi[2, :] + z,

sx[0, :], sx[1, :], sx[2, :],

ell=pm.Ellipsoid("wgs84"), deg=True)

# Convert back to conventional units

sx[2, :] /= 1.0e3

az = np.rad2deg(az)

el = np.rad2deg(el)

sa[:, :] = np.array([az , el , r / 1.0e3])

sv[:, :] = np.array([vaz , vel , dop * radar_wavelength ])

return sx, sa, sv

def relaxation_elevation(beta , rf_distance , azimuth , \

bistatic_distance , bistatic_vector ):

"""

Due to the bistatic nature of ICEBEAR the problem of solving

range and elevation is transcendental. This relaxation method applies

numerical relaxation to derive a solution. Usually 2-3 iterations.

Parameters

----------

beta : float np.array

Measured elevation angle in radians

rf_distance : float np.array

Total rf propagation distance in kilometers

azimuth : float np.array

Measured azimuth angle in radians
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bistatic_distance : float

The distance separating the transmitter and receiver in kilometers

bistatic_vector : float np.array

Unit vector from the receiver to the transmitter

Returns

-------

m : float np.array

Relaxed angle gamma in radians

"""

n = 3

radius_of_earth = 6378.0 e3

err = np.deg2rad (1.0)

target = np.deg2rad (0.1)

m = np.zeros ((3, len(beta )))

m[1, :] = 0.1

v = np.array(

[np.sin(azimuth) * np.cos(beta - m[1, :]), np.cos(azimuth) * \

np.cos(beta - m[1, :]), np.sin(beta - m[1, :])])

r = (rf_distance ** 2 - bistatic_distance ** 2) / (

2 * (rf_distance - bistatic_distance * \

(np.dot(bistatic_vector , v))))

m[2, :] = 1 / (radius_of_earth / r + np.sin(beta) / 2)

while np.nanmean(err) > target:

m[0, :] = m[1, :]

m[1, :] = m[2, :]

v = np.array ([np.sin(azimuth) * np.cos(beta - m[1, :]), \

np.cos(azimuth) * \

np.cos(beta - m[1, :]), \

np.sin(beta - m[1, :])])

r = (rf_distance ** 2 - bistatic_distance ** 2) / (

2 * (rf_distance - bistatic_distance * \

(np.dot(bistatic_vector , v))))

m[2, :] = 1 / (radius_of_earth / r + np.sin(beta) / 2)

err = np.abs((m[1, :] - m[2, :]) ** 2 / \

(2 * m[1, :] - m[0, :] - m[2, :]))

n += 1

m[2, :] = np.where(err >= target , np.nan , m[2, :])

return m[2, :]
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