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ABSTRACT 

This thesis seeks to develop a robust model predictive controller (MPC) for Linear 

Parameter Varying (LPV) systems. LPV models based on input-output display are employed. We 

aim to improve robust MPC methods for LPV systems with an input-output display. This 

improvement will be examined from two perspectives. First, the system must be stable in 

conditions of uncertainty (in signal scheduling or due to disturbance) and perform well in both 

tracking and regulation problems. Secondly, the proposed method should be practical, i.e., it should 

have a reasonable computational load and not be conservative. 

Firstly, an interpolation approach is utilized to minimize the conservativeness of the MPC. 

The controller is calculated as a linear combination of a set of offline predefined control laws. The 

coefficients of these offline controllers are derived from a real-time optimization problem. The 

control gains are determined to ensure stability and increase the terminal set.  

Secondly, in order to test the system's robustness to external disturbances, a free control 

move was added to the control law. Also, a Recurrent Neural Network (RNN) algorithm is applied 

for online optimization, showing that this optimization method has better speed and accuracy than 

traditional algorithms. The proposed controller was compared with two methods (robust MPC and 

MPC with LPV model based on input-output) in reference tracking and disturbance rejection 

scenarios. It was shown that the proposed method works well in both parts. However, two other 

methods could not deal with the disturbance. 

Thirdly, a support vector machine was introduced to identify the input-output LPV model 

to estimate the output. The estimated model was compared with the actual nonlinear system 

outputs, and the identification was shown to be effective. As a consequence, the controller can 

accurately follow the reference.  

Finally, an interpolation-based MPC with free control moves is implemented for a wheeled 

mobile robot in a hospital setting, where an RNN solves the online optimization problem. The 

controller was compared with a robust MPC and MPC-LPV in reference tracking, disturbance 

rejection, online computational load, and region of attraction. The results indicate that our proposed 

method surpasses and can navigate quickly and reliably while avoiding obstacles. 
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CHAPTER 1 

1 INTRODUCTION 

This chapter reviews the basic concepts of MPC and LPV systems and then studies 

research on MPC for LPV systems. In the end, we explain the objectives. 

1.1 Model Predictive Control (MPC) 

This section describes the MPC in detail, its elements, and its different types. In addition, 

we explain the advantages and challenges of this method. Finally, we describe the nonlinear 

MPC.  

1.1.1 Principles  

The primary purpose of MPC design is to calculate a sequence of future system inputs at 

each sampling time to optimize its future behaviour. This optimization is carried out over a specific 

time period and with the system information available at the start of that time period. The algorithm 

used in this controller can be seen in Figure 1.1. 

i. At any sampling time 𝑡, the future system outputs on the horizon 𝑁𝑝 are estimated using 

the system model. To show the predicted output values at the moment 𝑡 +  𝑘 using the 

information up to moment t, we use the following display: 

𝑦(𝑡 + 𝑘|𝑡)                                 𝑘 = 1,… ,𝑁𝑝 (1.1) 

These values will be obtained based on the past values of input and output up to the 

moment 𝑡 as well as the future values of inputs. 

ii. We show the sequence of future input signals as follows: 

𝑢(𝑡 + 𝑘|𝑡)                                 𝑘 = 1, … , 𝑁𝑐    (1.2) 

where 𝑁𝑐 is called the control horizon. In Figure 1.1, 𝑁𝑝 = 𝑁 and 𝑁𝑐 < 𝑁.  
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 Control signals are optimized by a cost function to approximate future outputs to be as 

close to the reference signal 𝑤(𝑡 + 𝑘|𝑡) as possible. A quadratic function of the error between 

the predicted and desired outputs along the prediction horizon is defined. In many cases, this cost 

function also considers the amount of control effort (amplitude or amount of control signal 

changes). There is an explicit solution to the quadratic cost function for an unconstrained linear 

system; otherwise, implicit methods will be used. In most applications, the sequence of control 

inputs is considered to be fixed from a certain point onwards. In fact, the prediction horizon is 

always considered to be greater than or equal to the control horizon. 

 

Figure 1.1: MPC strategy [1] 

iii. Eventually, only the control signal 𝑢(𝑡|𝑡) will be applied to the system, and the rest of the 

calculated control signals will not be used. The value of 𝑦 (𝑡 +  1) is known at the next 

sampling, and step 1 will be repeated with this new value to give a more accurate answer. 

As a result, 𝑢(𝑡 + 1|𝑡 + 1)is calculated that may be different from 𝑢(𝑡 + 1|𝑡) due to new 

information. 

The main structure of MPC is shown in Figure 1.2. The model is used to predict the future 

outputs of the system based on past and present values of outputs and future control actions. These 

actions are determined by the optimizer, considering the cost function (in which the tracking error 

is considered) and the constraints [2]: 
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1. Explicit process model used to predict future system outputs over a prediction horizon. 

2. Calculate future control signals by minimizing a cost function based on the difference 

between the future outputs of the system (derived from the prediction model) and the desired 

values. 

3. Apply the first optimally calculated control signal to the system and repeat the entire 

prediction cycle and optimization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: MPC structure 

1.1.1 Prediction model block 

The process prediction model is presented in Figure 1.2, which is responsible for predicting 

output over the prediction horizon. According to the process model, linear MPC can be divided 

into four categories, as indicated in Table 1.1. 

In the first group, ℎ is the output of the process when the input is an impulse signal. 

Likewise, 𝑠 is the output of the system when the input is a step signal. In transfer function models, 

𝑧−1 is a backward shift operator such that 

𝐴(𝑧−1) = 1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 +⋯+ 𝑎𝑛𝑎𝑧
−𝑛𝑎 

𝐵(𝑧−1) = 𝑏1𝑧
−1 + 𝑏2𝑧

−2 +⋯+ 𝑏𝑛𝑏𝑧
−𝑛𝑏 

(1.3) 

In addition to the models described in Table 1.1, the system can be characterized by 

nonlinear models (principle-based or data-based). One of the conventional principle-based 

nonlinear models is the state-space presentation. Artificial neural networks, support vector 

Constraints 

Future inputs u(t+k) 

Previous inputs u(t-k) and 

outputs y(t-k) 
          Model 

Optimizer 

   Cost 

function

 Future errors  

Reference 

trajectory r(k) 

Predicted 

outputs 

 y(t+k) 
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machines, and fuzzy logic can be employed for data-based classes. A disturbance model can also 

be added to the process model to deal with noise, unmodeled parameters, and model mismatch. 

This model is generally described by 𝑛(𝑘) =
1

1−𝑧−1
𝑒(𝑘), where 𝑒 denotes the error. 

 

Table 1.1: MPC classification according to the prediction model [2] 

form model upside downside 

Impulse response 
𝑦(𝑘) =∑ℎ𝑖

𝑁

𝑖=1

𝑢(𝑘 − 𝑖) 
No previous information 

A process with delay and 

nonminimum phase 

Stable process 

 

Step response 
𝑦(𝑘) = 𝑦0 +∑𝑠𝑖

𝑁

𝑖=1

∆𝑢(𝑘 − 𝑖) 
No previous information 

A process with delay and 

nonminimum phase 

Stable process 

 

Transfer function 𝐴(𝑧−1)𝑦(𝑘) = 𝐵(𝑧−1)𝑢(𝑘) unstable process Previous information 

 

State-space 𝑥(𝑘) = 𝐴𝑥(𝑘 − 1) + 𝐵𝑢(𝑘 − 1) 

𝑦(𝑘) = 𝐶𝑥(𝑘) 

MIMO process Unavailable states 

 

1.1.2 Optimizer block 

The optimizer block determines the optimal control input at a given control horizon. After 

selecting the appropriate process model in the prediction block, the system's future outputs are 

calculated and provided for this block. Inputs of one or more steps ahead (𝑢(𝑘 + 𝑗)) or a fitting of 

them, as stated in (1.4), based on a series of basis functions, are regarded as inputs to the system.  

𝑢(𝑘 + 𝑗) = 𝑟0 + 𝑟1𝐶(𝑘) + 𝑟2𝐶(𝑘)
2 +⋯ (1.4) 

Where 𝐶 are basis functions. Calculating the optimal input sequence is mainly done by 

defining a cost function. Different criteria can be considered, such as the output error, the extent of 

the input and output signals, the input error, and the deviations from the input/output constraints.  

1.1.2.1 Cost function 

The ultimate goal of the cost function is that future states (X) on a given horizon track the 

specific reference signal 𝑊, while minimizing the control effort (∆𝑢) required to do so. The general 

expansion for such an objective function would be as follows: 
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𝐽(𝑁𝑐 , 𝑁𝑝) =∑𝛿(𝑡)[𝑋(𝑘 + 𝑖|𝑡) −𝑊(𝑘 + 𝑖)]2

𝑁𝑝

𝑖=1

+∑𝜆(𝑡)∆𝑢(𝑘 + 𝑖 − 1)2

𝑁𝑐

𝑖=1

 

(1.5) 

In some cases, the second sentence of the above equation (which represents the control 

effort) is overlooked or has a small coefficient relative to the reference signal tracking, resulting in 

an unrestricted (or hardly limited) extent of the control effort signal. The components of the cost 

function are defined as follows: 

• Parameters: 𝑁𝑝 is the prediction horizon, specifying the samples on which the output tracks 

the reference signal, 𝑁𝑐 is the control horizon, and 𝛿(𝑡) and 𝜆(𝑡) are weighting matrixes. 

Various design parameters such as prediction horizons, control horizons, and weight 

matrices in the standard function should be adjusted according to the dynamics and 

behaviour of the system and control objectives. For example, instead of constant values for 

𝛿(𝑡), it can change exponentially like 2𝑁𝑝−𝑖. 

• Reference path 𝑊: One of the benefits of MPC is that if future reference changes are 

known in advance, the system can react before a change occurs in the reference, thus 

eliminating the effects of process response delays. Even if the reference varies, a significant 

improvement in controller performance can be achieved by knowing the moment its value 

changes. The reference path 𝑤 (𝑡 +  𝑘) can differ from the original reference. It can be a 

soft approximation of the current output value 𝑦(𝑡) to a known reference using the first-

order system: 

𝑤(𝑡) = 𝑦(𝑡) 
𝑤(𝑡 + 𝑘) = 𝛼𝑤(𝑡 + 𝑘 − 1) + (1 − 𝛼)𝑟(𝑡 + 𝑁)            𝑘 = 1,… ,𝑁 

(1.6) 

𝛼 is a parameter between 0 and 1, which is an adjustable value that affects the dynamic 

response of the system. Figure 1.3 shows a path in which the reference 𝑟 (𝑡 +  𝑘) is constant and 

plotted for two different values of 𝛼. The small values of this parameter provide fast tracking 

response (𝑤1), and for larger 𝛼, the reference path is 𝑤2,which makes the response smoother. 
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Figure 1.3: Reference path [2] 

•  Constraints: In practice, all systems have limitations, namely the extent and rate of change 

of control signal and output are considered as follows: 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥 

∆𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) − 𝑢(𝑡 − 1) ≤ ∆𝑢𝑚𝑎𝑥 

𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑡) ≤ 𝑦𝑚𝑎𝑥 

(1.7) 

Adding these constraints to the objective function will make the optimization problem more 

complicated than the case without constraints [3]. 

1.1.2 Advantages and disadvantages 

MPC has several advantages over other controllers, as follows: 

• Using this controller usually does not require much control information. The controller is 

straightforward to set up. 

• This controller can control a wide range of systems, from systems with simple dynamics 

to systems with complex structures, long latencies, non-minimum phases, and instability. 

• This controller can be easily used for MIMO systems. 

• Intrinsically introduce a leading path controller to compensate for unmeasured 

disturbances. 

• This controller can be easily generalized to meet system constraints. 
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• It is convenient and effective when the desired future values are specific (robots or batch 

processes) 

However, this controller has some limitations: 

• If the dynamics change during the process, the computational volume increases 

significantly. 

• Applying constraints complicates optimization operations. 

•  The basis of this algorithm is based on an appropriate model of the actual process; the 

difference between the model and process can affect the final accuracy. 

1.1.3 Nonlinear MPC 

In general, industrial processes are nonlinear, but many MPC applications use linear 

models for two reasons; linear modelling is accessible and gives good results in the vicinity of 

operation points. In a linear model with a square cost function, the QP convex optimization 

problem will be simple to solve and has been reviewed in many references. In fact, finding the 

optimal answer in less time than the sampling time is essential because the number of variables is 

high. 

However, linear controllers do not produce good results in dynamic processes where the 

system is highly nonlinear. The law of linear control is not very practical for these processes. In 

many cases, the process is stable in the neighbourhood; therefore, a linear representation will 

suffice. On the other hand, there are some critical circumstances in which this does not happen. For 

example, there are processes for which nonlinear properties are powerful (even in the vicinity of 

stable states), and a linear model is insufficient for closed-loop stability. Moreover, some processes 

experience constant changes (startup, shutdown, etc.) and take a long time away from a steady-

state operating area or even processes that are never in a steady-state condition; As in the case of 

batch processes, where the entire operation is performed in a transient state. The linear control law 

will not be very effective for these processes, so nonlinear controllers will be necessary to improve 

or stabilize performance. The principles of nonlinear predictive control are the same as regular 

predictive control, but they also have several issues: 

Finding nonlinear models from experimental data is an unsolved problem. Nonlinear 

process identification techniques are still inadequate. Using neural networks or the Volterra series 
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does not generally solve the problem. On the other hand, achieving the model from the first 

principles (mass and energy balance) is not always possible. 

• It is a non-convex optimization problem that is much more difficult to solve than the QP 

problem.  

• Issues with local optimization appear, affecting the quality of control, and instability occurs. 

• The optimization time increases, limiting the use of this technique to slow processes. 

• Studying essential issues such as stability and robustness in nonlinear systems is more 

complex.  

Some of these problems are being addressed to some extent, and NMPC is becoming an 

important area of research. Nonlinear models are more complicated to obtain than linear systems, 

and no suitable model exists for nonlinear processes.  

1.2 Linear Parameter Varying (LPV) systems 

In practice, most existing systems are nonlinear, change over time, and operate in a variable 

(non-fixed) operating condition. Researchers are constantly exploring new methods to improve the 

identification and control of nonlinear systems. One standard method is linearizing the system 

around a predetermined working point or path. Although working with these methods is simple 

and has been used in many cases so far, these models have a local functionality (around the work 

point) and do not consider the system's general nature. In other words, in cases where the system 

has nonlinear dynamics or working conditions that are changeable with time, the performance and 

accuracy of these systems are reduced.  

Despite the disadvantages, engineers usually prefer to work with such systems over 

nonlinear systems with many complexities. At the same time, there are many attractive methods 

for optimal and robust control of linear systems. LPV systems have been introduced to consider 

both nonlinear and time-varying properties of systems and to use linear representations. LPV is a 

bridge between linear systems and nonlinear or time-varying systems. These systems try to 

represent nonlinear systems in the form of linear systems with variable parameters. These systems 

allow us to apply linear theories while also considering the nonlinear nature of the system. 

Much research has been done to find the LPV system model in recent years. Generally, 

these methods can be divided into two categories: analytical and experimental methods. The first 

laws of physics, chemistry, thermodynamics, etc., are used to find the model in analytical 
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procedures. This modelling method usually requires deep knowledge of the system and is typically 

time-consuming and costly. Also, these methods are generally not directly applicable for control 

purposes and need modifications or simplifications. The second method obtains the system model 

using the measured input and output data called system identification. This method is more 

automatic than the previous method and therefore requires less time and cost, and at the same time, 

does not require much knowledge of the system. So far, this technique has been used to identify 

different systems, including airplanes, vehicles, wind turbines, servo systems, induction motors, 

Internet servers, CD players, and many others. 

1.2.1 LPV systems representation 

There are many ways to display LPV systems. In these models, the system parameters 

usually depend on the scheduling signal (𝜃), including their nonlinear and time-varying 

properties.  

1.2.1.1 State-space form 

The discrete-time state-space LPV system is as follows: 

𝑥𝑡+1 = 𝐴(𝜃𝑡)𝑥𝑡 + 𝐵(𝜃𝑡)𝑢𝑡 + 𝐺(𝜃𝑡)𝑣𝑡
0 (1.8) 

𝑦𝑡 = C(𝜃𝑡)𝑥𝑡 + 𝐷(𝜃𝑡)𝑢𝑡 + 𝐻(𝜃𝑡)𝑒𝑡
0 (1.9) 

Where 𝑥 is the state variable, 𝑦 is the output, 𝑢 is the input, 𝜃 is the scheduling variable, 

the subset 𝑡 represents time, and 𝑣𝑡
0and 𝑒𝑡

0 are process noises. For most control applications, the 

arrays 𝐴, 𝐵, 𝐶, 𝐷, 𝐺, 𝐻 are defined as a linear combination of basis functions: 

𝐴(𝜃𝑡) = 𝐴0 +∑𝐴𝑖𝜓
[𝑖](𝜃𝑡)

𝑛𝜓

𝑖=1

 

(1.10) 

where 𝜓[𝑖] are finite scalar functions on 𝜃 and  {𝐴𝑖}
𝑛𝜓
𝑖=0

 are fixed matrices of appropriate 

order. In (1.8) and (1.9), two noises are usually equal, and the matrix 𝐻 is often an identity matrix 

(in these cases, the matrix G is traditionally denoted by 𝐾).  

The display of state space can also be written in the form of Fractional Linear 

Representation (LFR) [4]: 

[

𝑥𝑡+1
𝜔𝑡
𝑦𝑡
] = [

𝐴0 𝐵11 𝐵0 𝐺0 0

𝐶11 0 𝐷12 𝐷13 𝐷14
𝐶0 𝐷21 𝐷0 0 𝐻0

]

[
 
 
 
 
𝑥𝑡
𝑧𝑡
𝑢𝑡
𝑣𝑡
0

𝑒𝑡
0]
 
 
 
 

, 𝑧𝑡 = Δ(𝜃𝑡)𝑤𝑡 

(1.11) 
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In this display mode, the scheduling signal is placed in the feedback path, and the rest of 

the system will be LTI. Readers can refer to [3] and [5] for more information about how to find 

matrices 𝐴0, 𝐵11, 𝐵0, 𝐺0, 𝐶11, 𝐷12, 𝐷13, 𝐷14, 𝐶0, 𝐷21, 𝐷0, 𝐻0 . The relations between (1.8) and 

(1.9) with (1.11) can be determined as follows: 

𝐴(𝜃) = 𝐴0 + 𝐵11Δ(𝜃)𝐶11, 𝐵(𝜃) = 𝐵0 + 𝐵11Δ(𝜃)𝐷12, 𝐶(𝜃) = 𝐶0 + 𝐷21Δ(𝜃)𝐶11 

𝐷(𝜃) = 𝐷0 + 𝐷21Δ(𝜃)𝐷12, 𝐺(𝜃) = 𝐺0 + 𝐵11Δ(𝜃)𝐷13, 𝐻(𝜃) = 𝐻0 + 𝐷21Δ(𝜃)𝐷14 

(1.12) 

 

It should also be noted that the signals 𝑢, 𝜃, 𝑥, 𝑦 are equivalent. Some of the particular 

modes of display (1.10) are: 

• Polynomial parameter dependence: 

𝐴(𝜃𝑡) = 𝐴0 +∑𝐴𝑖𝜃𝑡
𝑖

𝑛𝜓

𝑖=1

 

(1.13) 

• Affine parameter dependence: 

 

𝐴(𝜃) = 𝐴0 +∑𝐴𝑖𝜃𝑖

𝑛𝜃

𝑖=1

 

(1.14) 

In this display, 𝜃𝑖 , 𝑖 = 1, … , 𝑛𝜃 means different scheduling signals, and 𝑛𝜃 means the 

number of scheduling signals. 

• Polytopic models: 

 

𝐴(𝜃) =∑𝑎𝑖(𝜃) ∗ 𝐴𝑖

𝑧

𝑖=1

,∑𝑎𝑖(𝜃) = 1, 𝑎𝑖(𝜃) > 0 
(1.15) 

This representation assumes that the scheduling signal is bounded and inside a polytope 

as follows: 

𝜃𝜖 𝐶𝑜{𝑤1, …𝑤𝑧} (1.16) 

where the 𝑤𝑖 are vertex, and the scheduling signal can be overwritten as follows: 

𝜃 =∑𝑎𝑖𝑤𝑖, 𝑎𝑖 ≥ 0,∑𝑎𝑖 = 1

𝑧

𝑖=1

𝑧

𝑖=1

 
(1.17) 

1.2.1.2 Input-Output form 

The Input-Output display is as below [3]: 

𝐴(𝜃𝑡)�̌�𝑡 = 𝐵(𝜃𝑡)𝑢𝑡  
𝐷(𝜃𝑡)𝑣𝑡

0 = 𝐶(𝜃𝑡)𝑒𝑡
0 

(1.18) 
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𝑦𝑡 = �̌�𝑡 + 𝑣𝑡
0 

where 𝑢, 𝑒𝑡
0and 𝑦 are similar to the Equations (1.8) and (1.9), �̌� is noise-free output, 𝑣𝑡

0 is 

additional noise, and matrices 𝐴, 𝐵, 𝐶, 𝐷 are the model descriptive matrices, all of which are 

dependent on 𝜃 and are defined by the following polynomials: 

𝐴(𝜃𝑡) =∑𝑎𝑖(𝜃𝑡)𝑞
−𝑖

𝑛𝑎

𝑖=0

 

(1.19) 

where 𝑛𝑎 is a polynomial degree. The system displayed in the input-output form can be 

written as the equivalent of the Infinite Impulse Response (IIR): 

𝑦𝑡 =∑𝑔𝑖(𝜃𝑡)𝑞
−𝑖

∞

𝑖=0

𝑢𝑡 +∑ℎ𝑖(𝜃𝑡)𝑞
−𝑖𝑒𝑡

0

∞

𝑖=0

 
(1.20) 

An extension of Equation (1.20) would be to extend to bases other than 𝑞−𝑖. A unique 

selection of these basis functions for LTI systems, leading to OBF1 display, has been extended to 

LPV systems [5] and [6]. In the structure of LPV systems based on OBF, the following series 

should be identified: 

𝑦𝑡 =∑∑((𝜔𝑖𝑗(𝜃𝑡)

𝑛𝑔

𝑗=1

𝑛𝑒

𝑖=0

𝜙𝑖𝑗) 𝑞
−𝑖𝑞−𝑗)𝑢𝑡

⏟                    
𝑊(𝜃)

+ 𝑒𝑡
0 

(1.21) 

where 𝜔𝑖𝑗(𝜃) is similar to 𝑎𝑖(𝜃) and 𝜙𝑛𝑔
𝑛𝑒 = {𝜙𝑖𝑗(𝑞)}𝑗=1,…,𝑛𝑔

𝑖=0,…,𝑛𝑒
 is a sequence. The positive 

basis functions used in Equation (1.20) are a particular type of this basis. Thus, Equation (1.21) is 

an extension for Equations (1.20). 

1.3 Research objectives  

The purpose of this dissertation is to address the following problems: 

1) Reduce the conservatism of MPC-LPV-IO controllers.  

2)  Demonstrate the stability of the MPC-LPV-IO controller under bounded disturbances 

while also reducing the computational load of the online optimization problem 

3)  Identification of LPV-IO systems through non-parametric methods. 

4) Employ the developed controllers for a robot. 

 
1 Orthonormal basis function 
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1.4 Research contributions 

The research contributions include the following: 

1) Developed an interpolation-based MPC that reduces conservatism and online computation 

load. 

2) Ensured the stability of the LPV-IO system in the presence of disturbances with ISPs' 

approach. 

3) Used a recurrent neural network to reduce the time required to solve online optimization 

problems. 

4) Utilized MPC control with LPV-IO representation for a wheeled mobile robot. 

5) Improved the robot's performance when facing an object or disturbance regarding speed, 

stability, and conservatism. 

The remainder of this thesis is structured as follows. Chapter 2 reviews the medical robots 

and control techniques for medical mobile robots, along with research on MPC-LPV. Chapter 3 

investigates interpolation-based MPC for LPV systems with scheduling signal uncertainty and 

without external disturbance. Chapter 4 extends the analysis to include the presence of bounded 

disturbances while reducing computational burden using a recursive neural network. Meanwhile, 

a recursive neural network has been used to reduce computations. Both chapters 3 and 4 assume 

that the LPV input-output model exists or is obtained using a polynomial interpolation of several 

scheduling variables. Chapter 5 uses a method based on the support vector machine to find better 

accuracy. Chapter 6 evaluates an interpolation-based MPC with free control moves and RNN for a 

wheeled mobile robot, assessing its effectiveness in reference tracking, obstacle avoidance, 

computational load, and conservatism. Finally, the last chapter summarizes the results and provides 

suggestions for future works. 
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CHAPTER 2 

2 A REVIEW OF CONTROL TECHNIQUES FOR MEDICAL 

WHEELED MOBILE ROBOTS: TOWARDS APPLICATION 

OF RESILIENT MODEL PREDICTIVE CONTROL WITH 

LINEAR PARAMETER VARYING SYSTEMS 

The work presented in this chapter is included in the following paper: 

Hadian, M., & Zhang, W. (2022). A Review of Control Techniques for Medical Wheeled Mobile 

Robot: Towards Application of Resilient Model Predictive Control with Linear Parameter 

Varying Systems. Annual Reviews in Control. Under review. 

 

Abstract 

Mobile medical robots are employed for various medical functions, including surgery, 

cleaning, disinfection, and drug delivery. The demand for precise tracking control of medical robots 

has increased recently. The tracking problem of wheeled mobile robots (WMR) is complicated due 

to nonholonomic constraints, nonlinear dynamics, and uncertainties. This paper reviews popular 

control approaches to cope with these problems, such as feedback linearization control, sliding 

mode control, fuzzy logic control, and vision-based control. We conclude that a combination of 

model-based predictive control (MPC), Linear Parameter Varying (LPV) systems, and resilient 

control would be one of the most promising approaches for WMR in the future. This conclusion 

derives from three main reasons. First, MPC can naturally work with Multiple-Input Multiple-

Output (MIMO) systems with operational constraints. Second, LPV has been shown to be effective 

for modelling nonlinear dynamic behaviours of processes. Third, resilience is the ability to tolerate 

the most severe risks and unfavourable conditions while remaining as close to normal as possible. 
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2.1 Introduction  

Today, the science of robotics is rushing to help surgeons, physicians, nurses, and most 

importantly, patients, and has revolutionized the healthcare system [6-8]. The COVID-19 

pandemic highlighted medical robots' overarching value and resulted in their usage in many 

hospitals and quarantine centers [9-11]. In an epidemic crisis such as COVID-19, which is highly 

contagious, robots may take care of patients or carry out several routine hospital activities to 

mitigate disease outbreaks. A perfect demonstration can be seen in China, where several robots 

cleaned and cooked food in quarantine zones [12, 13]. Medical robots can act as surgeons [9, 14], 

rehabilitation workers [15-17], nurses [18, 19], dentists [20, 21], pharmacists [22], medical 

receptionists [23], and elderly caregivers [24]. They also can help people with autism [25, 26], 

disinfect hospitals [27], enter the human body as a capsule to diagnose and treat diseases [28, 29], 

and carry in-hospital items such as medications, medical records, and food [30-32]. They are 

believed to improve productivity and patient satisfaction and reduce healthcare costs. Meanwhile, 

they do not become sick and can reliably, quickly, and accurately work around the clock.  

Path planning and path tracking are fundamental challenges in medical robotics [33]. Path 

planning algorithms analyze and identify an obstacle-free path for a mobile robot to navigate within 

the environment [34]. Path tracking control, also called trajectory tracking control, is designed for 

a mobile robot to track the reference path precisely. The literature classifies path planning 

algorithms as global or local [35]. Global path planning algorithms, such as the Dijkstra algorithm, 

A* algorithm, and D* algorithm, are limited to static environments with static obstacles. These 

algorithms require the robot to completely understand its surroundings to plan a path [36]. In 

contrast, in local path planning, the path to traverse is constructed offline before the robot navigates 

the environment. It enables the robot to navigate an unexplored environment safely. Local path 

planning techniques allow the robot to build a new path in real-time in response to sensory data. 

This approach enables the robot to navigate an unexplored environment securely.  

As shown in Figure 2.1, local path planning algorithms can be divided into two categories: 

conventional and intelligent techniques. The classical group’s primary downside is its high 

computational cost and inability to adjust to environmental uncertainty; as a result, it is not 

recommended for real-time implementations [37-39]. Intelligent strategies mainly come from 

metaheuristics algorithms such as genetic algorithms [40], particle swarm optimization [41], and 

cuckoo search algorithms [42]. 
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This paper focused on the path tracking control problem of wheeled mobile robots (WMR). 

Figure 2.2 illustrates the mission of a WMR to traverse from location A to location B while 

avoiding obstacles. The tracking control problem of WMR is highly complicated, stemming from 

nonlinear dynamics, nonholonomic constraints, and significant uncertainties. Many control 

techniques have been proposed in the literature to address these issues, such as PID controller [43], 

feedback linearized control [44], sliding mode control [45], resilient control [46], intelligent 

control, vision-based control, and Model Predictive Control (MPC) [47].  There seem to be three 

key problems and potential solutions we could take to alleviate these problems. 

The main problem is the real-world limitations, also known as constraints, which must be 

considered in controller design since it lessens the achievable paths. These constraints include 

speed response, mobility constraints, computational cost, field-of-view constraints, 

maneuverability, and control stability issues [48]. A large body of research on WMR has 

investigated holonomic and nonholonomic constraints. A holonomic constraint restricts the robot’s 

configuration that may be achieved (positional variables), i.e., there are locations that the robot 

cannot navigate. In opposition, a nonholonomic imposes restrictions on the achievable velocities 

of the robot (derivate of positional variables), i.e., some paths or directions are not allowed. In 

contrast to holonomic constraints, nonholonomic constraints are not integrable to provide 

constraints regarding positional variables, so the transformation matrix should be in terms of 

velocities, not positions. According to Brockett’s theorem, no continuous time-invariant feedback 

of state variables can be found that asymptotically stabilizes the non-holonomic system around the 

equilibrium point [48, 49].   

The best solution for meeting constraints would be MPC. The first applications of MPC 

were in process industry control [50] due to slow dynamics. Using MPC in robotics was impossible 

due to the need for fast processors. With the rapid development of fast processors and numerical 

computing algorithms, MPC’s use in semi-fast systems, like mobile robots, has become possible. 

MPC is now used to control various systems [51-53].  
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Figure 2.1: Path planning for WMR 
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Figure 2.2: The trajectory tracking of WMR in a hospital 

Unlike existing control methods, in which the control law is obtained based on the previous 

outputs of the system, the MPC is a model-based optimal method that obtains the control law with 

the prediction of the future outputs of the system [54-56]. How MPC works is similar to how human 

makes a decision. Humans generally plan to achieve the desired conditions and goals in the future 

by making decisions in the present and thinking of far-reaching consequences. MPC structure can 

be seen in Figure 2.3, where the prediction horizon (𝑁𝑝) is a time interval at which the system’s 

future outputs are predicted. The control horizon (𝑁𝑐) is the number of steps that the control input 

sequence calculations are performed. As shown in Figure 2.3, following the reference path is 

carried out using previous inputs-outputs and future estimated outputs. Then, with the help of this 

new information and the reference path and control strategy, a sequence of appropriate inputs over 

the control horizon is calculated. In other words, in MPC, the control signal in the next steps is 

determined as the system’s output reaches the desired output value in the next steps [57, 58]. 



18 

 

 

Figure 2.3: MPC framework 

In this control method, at each time of sampling 𝑘, based on the measurements made up to 

the sample k, the controller predicts the system output for Np samples ahead and generates control 

input over 𝑁𝑐 (𝑁𝑐 ≤ 𝑁𝑝) samples to minimize the predetermined cost function. Also noteworthy is 

that only the first sentence of the control input sequence is applied to the system. Prediction and 

optimization are repeated for the next sample based on the new measurements.  

According to Figure 2.3, the prediction model and cost function are the backbones of an 

MPC. The prediction model estimates the future outputs, usually described by step response, 

impulse response, transfer function, and state space. The cost function, defined as a sequence of 

control inputs and state deviation variables, is minimized to determine an optimal control input 

sequence. The type of the prediction model and cost function parameters are two fundamental 

principles of an MPC to find the optimal control laws. 

The second problem is the nonlinear model of WMR. While influential theories exist in 

linear MPC, some systems are nonlinear and operate under extensive operating conditions, or 

external parameters can fundamentally change the process response [59]. For example, in a two 

wheels mobile robot, the process behaviour's perdition can be complicated, and an inaccurate 

model might cause the controller’s failure in practice. The rationale behind this failure is the 

nonlinear time-varying dynamics of WMR. This means that MPC’s desired performance crucially 

depends on how accurate the model is for coping effectively with mobile robots' nonlinear time-
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varying features. On this account, a nonlinear model predictive controller (NMPC), which can 

predict the robot’s behaviour up to several steps ahead and can optimally control and guide the 

robot, will be developed in several studies [47, 59, 60]. However, a higher level of algorithm 

complexity and excessive computational load in controller design are two main drawbacks of 

NMPC. Furthermore, modelling and output prediction for nonlinear systems are daunting 

compared to linear systems.  

Because of NMPC restrictions, several researchers used linearization around the 

operational point. This method is simple to implement and has been tested in various settings. On 

the downside, linear-oriented MPCs perform well locally and remain valid around the operating 

point, but they perform poorly in other situations and cause instability. Besides, employing linear 

models might reduce prediction accuracy. Despite these flaws, industry experts favour linear 

frameworks over nonlinear ones that might result in excessive complexity. As a result, both linear 

and nonlinear MPC techniques offer advantages and disadvantages. 

The most effective remedy that can be taken to deal with nonlinearities is LPV. MPC based 

on a linear parameter varying (LPV) system is brought to researchers' attention to attain a 

compromise between linear and nonlinear techniques [61-65]. The nonlinear/time-varying aspects 

of the system are taken into account in LPV models, which have a linear representation. By 

portraying nonlinear systems with a linear form with varying parameters, also known as scheduling 

variables, LPVs bridge the gap between linear and nonlinear/time-varying systems [61, 66]. The 

scheduling variables include nonlinear dynamic system characteristics, environmental conditions, 

and operating points. In a nutshell, LPV helps MPC deal with nonlinear/time-varying systems. 

The last challenge is reaching a higher degree of robustness in controller design. The 

capacity to sustain operations amid a crisis is referred to as robustness. Robustness is the ability to 

maintain strength and effectiveness in the face of adversity. The more robust a system, the less 

impacted its performance is by disturbances or environmental changes. Because of parameter 

uncertainties and disturbances, implementing robust MPC approaches, such as min-max MPC [67] 

and Tube-based MPC (TMPC) [68], is unavoidable. Min-max MPC, also known as worst-case 

MPC, solves the optimization problem while considering all conceivable evolutions of 

uncertainties. However, in TMPC, the growth of uncertainty is restricted to a single tube. All robust 

controllers belong to resilient control systems, the most practical policy to mitigate uncertainties. 

Resilience is described as the capacity to restore regular operations after an interruption in a 
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reasonable amount of time. In contrast to robustness, which is proactive, resilience is reactive, 

occurring after an event. Resiliency is assessed by the time a system takes to recover to its original 

performance condition [69]. 

The rest of this paper is organized as follows. The significance and varieties of WMRs in 

healthcare environments will be discussed further in this section 2. Then we look at the different 

control strategies for WMR. Section 4 explains the fundamentals of MPC. This section also 

describes developing an MPC based on an LPV framework. Section 5 reviews research on MPC 

applications for WMR in terms of model, optimization, and stability. The conclusion and future 

works will be the final section.  

 

2.2 Wheeled mobile robots in hospitals  

Robots nowadays have become a handy tool to help medical staff, and their irreplaceable 

role in the medical field is continually growing. As illustrated in the introduction, they have been 

developed for surgery, rehabilitation, nursing, elderly care, and autism therapy. WMRs can be used 

in hospitals and medical centers to hold items, clean rooms, and help people with disabilities. 

Figure 2.4 shows the number of research articles on medical robots according to Scopus 

(documents with “medical” AND “robot” in the title, abstract, and keywords were searched).  

Likewise, the health robots trend is presented in Figure 2.5 (documents with “health” AND “robot” 

in the title, abstract, and keywords were searched). It is undeniable that medical robots have 

received significant interest in recent decades, and the number of research efforts is constantly 

growing. 
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Figure 2.4: Documents per year for medical robots  

 

Figure 2.5: Documents per year for health robots  

The robots in medical centers and hospitals can be stationary or mobile. Mobile robots are 

a group of medical robots that can move around and are not permanently attached to a place. They 

can be developed and designed according to the operation area, environment, and wheels. Firstly, 

the operation area can be land, air, or sea [70-72]. Land-based mobile robots are classified into 

wheeled and legged robots. The former is widely known for its simplicity in the mechanical 

structure, whereas legged robots are suitable for individual tasks in harsh environments such as 

stairs, rocks, and debris [73, 74]. Mobile robots can also be used with an arm to perform more 
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activities [75]. Second, the environment in which robots traverse should be contemplated in 

designing the controller. The environments can be structural, semi-structural, or non-structural, 

which might be static or dynamic. In a structured case, the path is predetermined, and the location, 

dimensions, size, and material (if required) of existing obstacles are known. The unstructured type 

is an unseen and unknown site, and the robot recognizes it by interacting with the environment. By 

comparison, the robot already knows parts of the space in a semi-structured environment. Lastly, 

regarding the number of wheels (one to six) and types of wheels (standard, castor, Swedish, and 

ball), there might be 17 different configurations for robots [76]. 

Robots need sensors to comprehend the environment and obstacles to determine where to 

go next. Choosing the right sensor based on the applications and operations is one of the most 

critical issues in the design and construction of mobile robots. Conventional sensors used in ground 

mobile robots are touch sensors, wheel encoders, Global Positioning System (GPS), heading 

sensors (including gyroscopes and compasses), Accelerometers, Inertial Measurement Units 

(IMUs), distance sensors, and digital cameras [77]. GPS sensors were hugely popular and 

widespread among robot specialists of all mentioned sensors. However, their applications have 

experienced a sharp decline in recent decades for four reasons. Firstly, they are proven unreliable 

in the indoor workspace of urban areas such as hospitals [78, 79]. Additionally, they lack the quality 

required for high-precision missions and systems with high-speed dynamics. Other drawbacks 

include huge costs and failure in building with intense illumination [80].  

A number of works have shown that this problem can be overcome by using digital cameras. 

This field has gradually broadened as visual servoing or vision-based control. More information 

can be found in section 2.5. The rest of this section will be about mobile robot classification in 

terms of tasks in the hospital, namely object-carrying, cleaning, and service robots. 

2.2.1 Object-carrying robots 

Object-carrying robots could be employed in hospitals, homes, or elsewhere. They can 

deliver medicine, medical equipment, medical records, food, and even lift patients in hospitals. A 

study in a San Diego, USA, hospital reported that shift staff spends more than half of their working 

hours moving equipment or commuting between various hospital rooms and departments [6]. In 

this study, the Helpmate robot (Figure 2.6) moved heavy loads, drugs, food, and laboratory results, 

and it was estimated that just moving the drug by this robot can save around 60 thousand dollars a 
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year. Likewise, Transcar (Figure 2.7) and Nestor [6] robots can be examined for transporting 

medical equipment and records.  

 

Figure 2.6: HelpMate Hospital Robot [6] 

 
Figure 2.7: Transcar robot [6] 

The Moxi robot (Figure 2.8) is an intelligent hospital robot that boosts clinical personnel’s 

productivity [81, 82]. It can become a vital and reliable treatment team member by supporting 

members using social intelligence. The Moxi robot is equipped with a sophisticated arm to carry 

out mundane chores such as picking up medical items and placing them on a tray attached to the 

robot for taking items to specific locations [83]. It also has a monitor that reveals details about the 

missions performed. Another duty of this robot is to distribute medicine quickly to patients so that 

nurses have more time to care for patients. The designers insisted that the robot be friendly and 

welcoming since it is manufactured to function in a demanding environment. The manufacturer 
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describes Moxi’s behaviour as pleasant, as evidenced by the robot’s bright face, made up of an 

LED display with a subtle sound.  

 

Figure 2.8: Moxi robot [81, 82] 

TUG [7, 84] and HOSPI [8], as shown in Figure 2.9, are two robots that currently serve in 

hospitals using GPS systems. They can be controlled by a touchscreen interface and recovers 

energy after each mission to be called for the next mission. TUG is a versatile robot capable of 

carrying shelves, carts, and boxes containing medicine, laboratory samples, and other sensitive 

materials with a load of up to 453 kg. With this robot, fewer workers are expected to carry heavy 

loads, so they are protected from related physical injuries and have more time to monitor patients. 

 

 
 

(a) (b) 

 

Figure 2.9: TUG [84] (a) and HOSPI [8] (b) robots 

The Aircart robot is an intelligent wheelchair that moves slowly, needing low force for 

pushing and pulling, regardless of the user’s weight [85]. This robot brakes sharply and 

automatically in critical situations. The Aircart robot is an enticing choice for those with little 
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mobility. The Ridgeback robot is a medium-sized platform with an omnidirectional propulsion 

system to lift heavy loads easily [86-88]. It can carry even more items than humans, suitable for 

indoor and outdoor applications.  

2.2.2 Cleaning robots 

Cleaning robots can be used to clean hallways, waste disposal, laundry, washroom cleaning, 

and sterilize medical devices and the environment. One may go to the hospital but return home 

with more new illnesses because hospitals are very contaminated. With this in mind, disinfectant 

robots are manufactured to fumigate patients’ rooms independently for a few minutes with UV 

light [89]. The Xenex robot [90] (Figure 2.10) disinfects healthcare environments quickly and 

routinely. According to Westchester Medical Center, Xenex robots reduce Clostridioides difficile 

(an infectious disease) by 70% in the intensive care unit.  

 

Figure 2.10: Xenex robot [90] 

2.2.3 Service robots 

Service robots include nursing, rehabilitation, social, and ambulance robots. Social robots 

are a group of robots that interact with patients, older adults, and kids. By way of illustration, the 

Mabu robot [91] benefits the elderly and the disabled through regular check-ins and signalling their 

medication time (Figure 2.11). It can use AI to make a personalized conversation with a human via 

voice, text, or mobile app. Robin robot [92, 93] is a friendly robot that can express all sorts of 

feelings, interact with children, and participate in conversations with them (Figure 2.12). By 

engaging children in play and conversation, Robin eliminates their feelings of isolation and tension 

during their hospital stay. In addition to robots used to connect with patients, robots can also assist 

in more critical scenarios. For example, ambulance robots, which often can fly, are for individuals 

with acute conditions like a heart attack or respiratory problems [94]. 
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Figure 2.11: Mabu robot [91] 

 

Figure 2.12: Robin robot [92] 

2.3 Control of nonlinear medical robots 

Unmanned Aerial Vehicles (UAV), automobiles, car-like vehicles, and wheeled mobile 

robots are examples of nonholonomic systems [79, 95-98]. The underlying geometry of 

nonholonomic systems makes control design difficult since the constraints are time variables[99]. 

Disturbances and parameter variations are other serious challenges that the controller should be 

met. Several typical solutions for controlling and stabilizing nonholonomic systems have been 

proposed [100-102]. The stabilization problem of nonholonomic WMRs has aroused the interest 

of many academics due to the increasing use of mobile robots and the inherent nonlinearities in 

their dynamics [103]. Because the wheels do not slip, nonholonomic constraints are applied to 
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wheeled mobile robotic systems, limiting their mobility. A controller of a WMR should be 

developed to deal with nonholonomic constraints, nonlinear dynamics, and uncertainties. A brief 

review of nonlinear control approaches has been outlined, including state feedback linearization 

control, sliding mode control, intelligent control, resilient control, vision-based control, and MPC 

for WMR.  

2.3.1 Feedback linearization control 

Feedback Linearization (FBL) is a typical nonlinear control strategy. The fundamental idea 

is to employ state feedback and nonlinear transformation to change a nonlinear system into a fully 

or partially decoupled linear system, allowing linear control strategies to be applied [104]. This 

technique linearizes the nonlinear system across a large operation range by using an appropriate 

nonlinear transformation 𝑧 = 𝑇(𝑥) and a nonlinear state feedback variable v = α(x)+β(x)u. No 

higher-order nonlinear factors are disregarded because the linear approximation is not used; this 

linearization has improved accuracy over classical linearization. Some implementations of FBL for 

WMR have been explored here, including PI-based FBL, MPC-based FBL, robust FBL, state-space 

FBL, and input-output FBL. 

A PI controller for the motion control problem in a WMR is studied, where the dynamic 

model is simplified with a full-state FBL [105]. Experiments were used to validate the model and 

controllers. The robot's experimental trajectories for a circle presented reasonable accuracy. The 

nonlinear trajectory tracking problem for a nonholonomic car-like mobile robot with a constraint 

state is addressed [106]. The state constraint is highlighted in this work compared to previous 

efforts on nonholonomic car-like mobile robots. A nonlinear tracking controller is then achieved 

using the dynamic feedback linearization technique. Simulation findings show that the proposed 

control law is effective for trajectory tracking control. The construction of a control law employing 

the input-output feedback linearization approach to drive a nonholonomic WMR to track a 

particular trajectory when longitudinal and lateral slip exists is shown [44]. The system's 

asymptotical stability is confirmed. The results of the Matlab-Simulink simulation reveal that the 

control law is valid and performs well. An omnidirectional mobile robot is given a hierarchical 

control technique for tracking predetermined paths [107]. Dynamic feedback linearization makes 

up the lower layer. The lower layer's linear model is employed on the upper layer for an MPC-

based trajectory tracking controller. MPC provides accurate predictive actions for particular 

scenarios, such as turning on corners, because the trajectory to be monitored is predetermined. 
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2.3.2 Sliding mode control 

Sliding mode control (SMC) is an algorithm that is inherently robust to parameter changes, 

external disturbances, and uncertainty. SMC plays a vital role when there are large uncertainties in 

nonlinear automobile applications[108]. In cases where the requirement for robustness is critical, 

SMC would be a good solution. Two key issues plague conventional SMC. Firstly, chattering and 

sensitivity to mismatched uncertainties limit its practical applications. From a practical point of 

view, chattering can be devastating and may necessitate a larger amount of energy. Secondly, 

whereas traditional SMC provides asymptotic stability, there is no assurance that it will occur in a 

finite time, especially in the presence of mismatched disturbances. A considerable amount of 

literature has been published to handle mismatched uncertainty and minimize chatterings, such as 

integral SMC, quasi-SMC, and fuzzy-based SMC  [109]. Many concerns, however, remain 

unsolved and remain an open study area. 

Two implementations of conventional SMC for WMR are demonstrated. The first SMC is 

proposed for WMR trajectory tracking while attaining robustness to external disturbances and 

parameter uncertainty [110]. The designed controller showed good trajectory tracking performance 

even with a large upper bound of uncertainty. The second example is an SMC for WMR in polar 

coordinates [101]. The controller stabilizes the position and heading direction asymptotically. In 

contrast to prior research based on kinematics given in polar coordinates, constraints on the 

required linear and angular velocities, as well as the posture of the mobile robot, are removed. As 

a result, arbitrary trajectories like a circle and a straight line can be tracked even with substantial 

initial tracking errors and bounded disturbances. 

 In contrast to the two above examples, recent SMC studies focused on eliminating 

chattering, coping with a group of matched and mismatched uncertainties, and convergence rate. 

For example, an integral sliding mode control (ISMC) is proposed for WMR trajectory tracking 

[111]. The controller is set up to reduce matched disturbances and mismatched ones. The proposed 

controller has two parts: a high-level controller for stabilizing the nominal system and a 

discontinuous controller for assessing trajectory tracking in the presence of disturbances. A WMR 

with two parallel wheels and an intrinsically unstable inverse pendulum is controlled by an ISMC 

[112]. The WMR was underactuated, as it only had one actuator to regulate the wheels' movement 

while balancing the pendulum around the upright position. The proposed controller could eliminate 

the matched uncertainties and reduce the impact of unmatched uncertainties.  The goal of [45] is 
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to develop a near-optimal SMC for continuous-time nonlinear MIMO systems that reduces 

chattering while minimizing the cost function. This research first examines the presence of 

chattering in regular SMC and the quasi-SMC approach. A continuous saturation function in quasi-

SMC substitutes the standard SMC's signum function. Then, integrated reinforcement learning is 

employed to reduce chattering. A fuzzy adaptive sliding mode controller (FASMC) for the 

trajectory tracking problem in the face of uncertainties and disturbances is presented in another 

study [113]. The FASMC ensures the closed-loop system's stability and convergence based on a 

nonlinear dynamic model. Furthermore, the developed controller assures the system's robustness 

against dynamic disturbances and uncertainties, smoothness against chattering phenomena, and 

convergence of optimal velocity and posture errors. 

2.3.3 Intelligent control  

The ideas of fuzzy logic and artificial neural networks are explained in this part, examining 

their applications in WMR. Professor Lotfi Asgarzadeh coined "fuzzy logic" in 1965. He concluded 

that systems cannot imitate the thoughts and ideas of the human mind and cannot think like humans 

since digital logic only has two states for each decision: "True" and "False." On the other hand, 

human thinking has a degree of right or wrong for a choice. In classical set theory, the concept of 

membership shows whether an item belongs to a set. However, in fuzzy logic, the belonging of 

each item to a set has a degree of membership with a value between 0 and 1. An object, for example, 

belongs to set A with a membership of 0.3 and set B with a membership of 0.7. Figure 2.13 

describes the four basic components of a fuzzy logic system: fuzzifier, rules, inference engine, and 

defuzzifier. 

Fuzzifier: This stage turns the inputs into fuzzy information (linguistic variables). The 

numbers and information to be handled will become fuzzy sets and membership functions. As a 

result, the input data from sensors in a control system is updated and ready for fuzzy logic 

processing. 

Rules: This section comprises conditional statements, also called if-then rules that an expert 

specifies to regulate the decisions for a "decision-making system." According to recent fuzzy 

theory developments, altering and eliminating some rules and membership functions is feasible to 

get the greatest results with the fewest rules [114]. 
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Inference engine or intelligence: The degree of compliance of the fuzzy inputs with the 

rule base is assessed in this unit, and fuzzy outputs are generated. Various decisions are made 

dependent on the percentage of compliance. 

Defuzzifier: The outputs of the fuzzy inference engine, which are in the form of fuzzy sets, 

are turned into crisp values in the last phase. At this point, optimal values are selected based on the 

outputs. Typically, this decision will be based on the highest level of compliance. 

Fuzzy logic control is a heuristic technique that readily embeds knowledge and important 

features of human reasoning in designing nonlinear controllers [115, 116]. Qualitative and heuristic 

factors, which cannot be addressed by standard control theory, can be systematically employed 

using fuzzy control concepts for control purposes. Fuzzy logic control does not require a perfect 

mathematical model and copes with imprecise inputs. It can deal with nonlinearity and 

disturbances. Fuzzy logic controllers typically outperform other controllers in complicated, 

nonlinear, or undefined systems when excellent practical knowledge exists. Figure 2.13 depicts a 

fuzzy logic controller for a robot. 

 

Figure 2.13: fuzzy logic controller  

Like the fuzzy logic controller, researchers have expressed great interest in ANN over the 

last decades. ANNs are linked parallel structures that incorporate successive layers of processing 

units, known as neurons, and are inspired by the biological nervous system. Layers of parallel 
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neurons receive inputs and deliver outputs. Multi-Layer Perceptron (MLP) is the most famous type 

of ANN. In an MLP, there are three unique layers: the input layer, which receives the independent 

variables; the hidden layer, which serves as an intermediate layer; and the output layer, which sends 

the dependent variables. The size of the dependent and independent variables determines the 

number of neurons in the input and output layers. A weight, a bias, and an output transfer function 

are applied to each neuron. The learning process correlates the dependent and independent 

variables in the network (a process by which the weights and biases are modified to minimize 

network prediction errors) [117]. 

There are two types of ANN: feedforward and feedback. Feedforward ANNs are networks 

where the response channel is constantly processed forward and never returns to its predecessors' 

neurons. Signals can only transit through a one-way path in this network (from input to output). As 

a result, there is no feedback, which means that each layer's output simply impacts the next layer 

and has no effect on its own. In contrast, at least one return signal in feedback networks is sent 

from one neuron to neurons of the same or previous layers. The consequence is that the neuron's 

output at the present instant is determined by the input at that time and by previous information. 

Some studies on intelligent controllers have been summarized here, including type-1 fuzzy 

controller, adaptive fuzzy controller, type-2 fuzzy controller, fuzzy-PID controller, ANN-based 

PID controller, and Adaptive Neuro-Fuzzy Inference System (ANFIS) controller. 

An adaptive fuzzy controller for trajectory tracking is designed [118]. The fuzzy logic 

system estimates the system uncertainty, including mobile robot parameter change and unknown 

nonlinearities. The Lyapunov stability theory demonstrates the system's stability and the 

convergence of tracking errors. Another study provides a fuzzy adaptive tracking control approach 

for wheeled mobile robots in the presence of unknown slippage, which violates the nonholonomic 

constraint [119]. These disturbances greatly reduce tracking performance and, as a result, should 

be compensated. Kinematics with state-dependent disturbances is derived from the general form 

of slippage in mobile robots. The Fuzzy adaptive observer estimates the state-dependent 

disturbances in kinematics and dynamics. Even when the nonholonomic requirement is violated, 

the controller can ensure that the trajectory tracking errors are finally restricted. The approach can 

be modified suitably for different types of trajectories in the presence of significant initial tracking 

errors and disturbances. 
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Two knowledge-based controllers are presented to solve the challenges of a calculated 

torque nonlinear controller (NC) in trajectory tracking of nonholonomic WMRs [120]. A fuzzy 

nonlinear controller (FNC) is created by substituting the proportional and differential parts of the 

NC with fuzzy functions. Due to the intricate dynamics of the WMR in which the center of mass 

does not correspond with the center of rotation, expert knowledge is extracted using fuzzy 

controllers with rotation angles and driving wheel speeds as input variables. Although the control 

torques are greatly reduced and smoothed, fuzzy tuning of the NC leads to improved tracking 

performance against measurement noises. Second, a fuzzy controller (FC) is created to track the 

WMR's position and orientation perfectly. Simulations are used to demonstrate the better 

performance of the proposed fuzzy controllers over the NCs. 

The design and implementation of tracking and position control in omnidirectional mobile 

robots are discussed utilizing type-2 fuzzy systems [121]. Using a human expert's expertise in 

building a fuzzy rule base, the authors defined a relationship between the inductive voltage, the 

distance of objects in an unknown dynamic environment, and their linear and angular output 

velocities, making a breakthrough. They created a type-2 fuzzy controller and compared it to a 

type-1 fuzzy. The findings validated the omnidirectional robot's ability to navigate an unstructured 

environment with unknown obstacles. 

A fuzzy-PID controller is presented for path tracking of a differential WMR [122], having 

two inputs and three outputs. Inputs are error and error rate, and outputs are PID coefficients. The 

simulation results demonstrate that the fuzzy-PID controller outperforms the traditional PID 

controller. The suggested controller has a higher convergence rate than the traditional PID 

controller for a WMR with any arbitrary initial state. It offers the benefits of quicker response, 

higher stability, and reduced tracking error. An optimal Mamdani-type fuzzy logic controller for 

trajectory tracking of a WMR is developed to deal with parametric and nonparametric uncertainties 

in a robot model [123]. The parameters of membership functions and the PID controller coefficients 

are simultaneously optimized using Random Inertia Weight Particle Swarm Optimization (RNW-

PSO). 

ANN-based PID is designed for a nonholonomic mobile robot's velocity and orientation 

tracking control [43]. The proposed nonlinear PID-based is a great combination of the traditional 

PID controller and a neural network, which has the remarkable capacity to constantly learn online, 

adapt, and deal with nonlinearity. The simulation experiment demonstrates the usefulness of the 
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proposed control algorithm and its improved performance, especially in disturbance rejection. In 

another study, the authors offer a path-planning system for a WMR navigating between fixed and 

moving obstacles [124]. The neural network inputs are the distance from the robot to the obstacles 

and the target. This system employs an ANN as a controller, and it is trained using a modification 

of the backpropagation through time approach that employs potential fields for obstacle avoidance. 

In [125], two ANNs guarantee that the mobile robot moves optimally from its present position to 

a predetermined position. One ANN specifies the position and size of the obstacle, while the other 

creates a continuous path to approach the target quickly and avoid the obstacles.  

An ANFIS controller is presented in this paper for mobile robot navigation and obstacle 

avoidance in unknown static environments [126]. Several sensors, such as ultrasonic and infrared 

sensors, are utilized to identify forward obstacles in their surroundings. The ANFIS controller 

receives obstacle distances from sensors as inputs, and the controller output is a robot steering 

angle. The fundamental goal of this study is to use the ANFIS controller to steer the mobile robot 

across specified environments. Similarly, a Multiple Adaptive Neuro-Fuzzy Inference System 

(MANFIS) control strategy is designed and implemented for mobile robot navigation in various 

two-dimensional environments with static and moving obstacles [127]. Three infrared range 

sensors are installed on the front, left, and right sides of the robot, and they read the static and 

dynamic obstacles in the surroundings. This sensor data information is sent into the MANFIS 

architecture, generating suitable speed control orders for the robot's right and left motors. Two 

advanced ways for directing a non-holonomic mobile robot to travel in a cluttered environment 

with static obstacles are investigated [128]. First, a Fuzzy logic controller (FLC) with trapezoidal 

Membership functions was constructed. Second, the findings acquired from the trapezoidal fuzzy 

controller were optimized using an ANFIS controller.  

A controller structure of a mobile robot that operates on two wheels powered by a dc motor 

is described [98]. For regulating the velocity of a DC engine, we initially considered a PID 

controller, a Fuzzy Logic Controller, and an ANFIS controller. This proposed approach has 

deduced that ANFIS is preferable to Fuzzy and PID regulators because it provides less overshoot 

and a shorter settling time of the output signal. For a two-wheeled differential mobile robot, a smart 

PID optimized by a neural networks-based controller (SNNPIDC) and a PD fuzzy logic controller 

(PDFLC) are constructed [129]. In the first, neural networks are employed to optimize the 

parameters of a PID controller, while in the second, a Mamdani-based fuzzy inference system is 
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used. The objective is to develop control algorithms for safe robot navigation while preventing 

motor damage. In these two control scenarios, the smart robot must complete tasks fast and adapt 

to changing environmental circumstances while maintaining stability and accuracy. 

2.3.4 Resilient Control 

Chris Zhang was the first to establish the notion of resilience [130]. All hazards and 

measures that jeopardize appropriate operation must be considered part of resilient design. Cyber 

and physical security, process efficiency and stability, and process compliance are examples of 

resilient control [131]. A resilient system must identify undesirable events and conditions, respond 

correctly, and quickly recover. Some resilience controls assist with diagnosis, while others aid 

reaction or recovery [132]. According to [133], resilience is the ability to withstand the utmost 

effect of an attack while operating as near to normal as practicable.  

Resilience defines how systems maintain a reasonable level of normality in the face of 

disturbances or threats [134]. The authors first analyzed the interdependencies features in critical 

infrastructure systems and how resilience mitigates related risks. They then introduce the terms 

"agent" and "multi-agent systems" (MAS) to consider the distributed nature of critical 

infrastructure control systems and demonstrate the use of computational intelligence to manage 

policy and coordinate assets in MAS event-based dynamics (management, coordination), and time-

based dynamics (execution). In addition, they analyze the MAS's optimal stabilization and propose 

that graph theory be applied to the MAS's execution layers. Robust control, analysis, recovery, and 

operation of mobile robot networks in time-varying tracking under global positioning attacks are 

studied [135]. Local and global tracking control methods provide redundancy to the mobile robot 

network and keep the intended functionality for improved resilience. The boundedness of the 

formation tracking error and the network's stability under multiple attack types are demonstrated 

using Lyapunov stability analysis.  

WMR path-tracking control has attracted much research due to its wide range of 

applications, such as intelligent wheelchairs and exploration-assistant remote WMR [46]. With the 

rise in remote and autonomous operations/requirements for WMR, IoT devices are increasingly 

being used in the control loop. As a result, false data injection attacks (FDIA) provide interfaces 

for harmful activities. FDIAs have been proven to have devastating repercussions on feedback 

control systems. This work focuses on strengthening the robustness of dynamical observers against 
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FDIA since these attacks target the system measurement process. In particular, we present an 

attack-resistant pruning method to keep compromised channels out of the observer's processing. 

Because vital infrastructure, such as control systems, has been computerized, they now 

interact with information technology to make them vulnerable to malicious attacks [136]. IT 

security emphasizes data correctness, which can be achieved by simple error correction techniques 

like packet re-transmission. On the other hand, control systems prioritize timely and accurate 

delivery of control signals, which can be harmed by delays or re-transmissions. This issue 

necessitates the development of resilient control algorithms that ensure the regular functioning of 

critical infrastructure in the face of malicious attacks and interruptions at both the physical and 

communication layers. A distributed formation control technique in which each agent relies on 

local knowledge and information from one neighbour to perform the group task cooperatively. 

2.3.5 Vision-based control 

Visual-based navigation marks a significant milestone in robotic engineering and has 

revolutionized how we control WMR. Vision is one of the most important senses of humans and 

animals, leading to better environmental comprehension. Likewise, digital cameras are ubiquitous 

for robots to understand and recognize the environment. Robots equipped with cameras can receive 

environmental information and correctly recognize changing circumstances. This information can 

be used as feedback to minimize errors. Some mobile robots are also designed for natural disasters; 

for instance, a rescue robot can find all injured people with a digital camera in case of an 

earthquake. With low prices, computer vision can be a valuable source of information without 

contact with the environment. The visual system is one of the most critical means of 

communication for receiving environmental information. The camera can have a fixed position or 

be mounted on the robot, called the eye-in-hand system [137].  

Vision-based robot control (also known as visual-servoing) is an area of research that uses 

received information from a camera to control the robot [138, 139]. Position-Based Visual 

Servoing (PBVS) and Image-Based Visual Servoing (IBVS) are the two main visual servoing 

techniques, shown in Figure 2.14. In PBVS, the control law is constructed by an error between the 

current pose (position and orientation) and the desired pose in a 3D cartesian coordinate system 

[140]. The object’s current pose should be reconstructed from the image features with respect to 

the robot in each sampling time, prone to camera calibration errors and image noise. IBVS is more 

robust than PBVS since its error is the difference between features (namely straight lines, segments, 
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or points) of the current image and features of the desired image in a 2D plane [141]. Some factors 

severely affect IBVS performance, such as the singularity of the image Jacobian matrix, trapping 

in a local minimum, and the field of view (FOV) constraint violation [142]. Meanwhile, if the error 

between the current and desired feature is large, the loss of the features can occur or increase the 

Jacobian matrix’s online calculation [143].  

 

Figure 2.14: Visual servoing: a) PBVS framework b) IBVS framework 

For a WMR with an onboard camera, a unified tracking and regulating visual servoing 

method is given. The 2-1/2-D visual servoing scheme aids in keeping targets in the camera's field 

of vision [144]. The proposed unified controller exhibits asymptotic stability even in the presence 

of uncertainties in the object model and depth information, as demonstrated by Lyapunov analysis. 

A new vision-based controller is presented for wheeled mobile robots with a fixed 

monocular camera that can accurately execute autonomous navigation in agricultural regions [141]. 

The presence of uncertainties in the parameters of the robot-camera system and external 
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disturbances produced by high driving velocities, sparse plants, and terrain unevenness were 

studied in this research. The researchers then developed a resilient IBVS strategy for robot motion 

stabilization based on the SMC method, even in the face of such imperfections and disturbances. 

They used the Lyapunov stability theory to confirm the overall closed-loop system's stability and 

robustness. 

A virtual-goal-guided rapidly exploring random tree (RRT)-based visual servoing strategy 

for nonholonomic mobile robots is suggested in research work to concurrently meet FOV constraint 

and velocity constraints during mobility toward the target pose [145]. The proposed method is 

divided into two sections: 1) trajectory planning in scaled Euclidean space, and 2) trajectory 

tracking control. 

In another paper, a policy-based deep reinforcement learning (DRL) technique is used to 

investigate the image-based visual servoing (IBVS) topic for mobile robots with visibility 

constraints [146]. The conventional IBVS (C-IBVS) approach and associated feature-loss problems 

are presented first. Then, to overcome the feature-loss problem and enhance servo efficiency, a 

DRL-based IBVS approach is provided. To ensure analytical stability, the designed controller 

inherits the C-IBVS controller formulation. A policy-based DRL algorithm is proposed to design 

an adaptive law for tuning the controller gain in the continuous space, maintaining the feature in 

the camera's field of view while improving servo efficiency. 

Another study examines the fixed-time tracking control issue for a nonholonomic wheeled 

mobile robot using visual servoing [139]. The robot system model with uncalibrated camera 

parameters is initially shown using the pinhole camera model. A tracking error system for the 

mobile robot and the target trajectory is provided. Finally, fixed-time tracking control laws for the 

mobile robot are suggested based on fixed-time control theory and Lyapunov stability analysis, 

allowing the robot to track the reference trajectory in a fixed amount of time. The fixed-time control 

settling time is governed only by the controller parameters and is independent of the system's initial 

conditions. 

2.3.6 Discussions  

The studied control approaches for WMR in the previous section were compared in facing 

nonlinear dynamics, constraints, robustness, and MIMO nature. Five controllers, namely FBL, 

SMC, fuzzy logic controller, ANN controller, and MPC, can be applied for a WMR independently, 

but the other two controllers, i.e., resilient control and vision-based control, are often integrated 
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with other control strategies. In controller design, real-world limitations (FOV and nonholonomic 

constraints) must be considered. MPC, one of the famous controllers for fulfilling input and output 

constraints, gives an adequate solution to this problem.  A tentative conclusion is that MPC is the 

only technique to consider constraints in its design. When confronted with physical or cyber threats, 

MPC might be combined with a resilient strategy to stay steady and safe. Additionally, the LPV 

framework can help MPC be effective for nonlinear systems. The control techniques for WMR are 

briefly reviewed in Table 2.1. 

Table 2.1: a brief review of control approaches for WMR 

Technique Examples  Pros and Cons 

Feedback Linearized Control (FBL) PI-based FBL 

MPC-based FBL 

Robust FBL 

State-space FBL 

Input-output FBL 

It approximates the nonlinear model better than 

classical linearization. 

Linearization is not always possible. 

It is unable to handle constraints and robustness 

independently. 

MIMO systems can only be modelled using state-space 

FBL. 

Sliding Mode Control (SMC) Integral SMC  

Quasi-SMC 

Fuzzy-based SMC   

It can be used for nonlinear systems. 

It can cope with uncertainties. 

The main issue is the chattering effect. 

Considering constraints complicates the controller 

design. 

Fuzzy Logic Control Type-1 fuzzy controller 

Adaptive fuzzy controller 

Type-2 fuzzy controller 

Fuzzy-PID controller 

 

It does not require an accurate model of the system. 

It is suitable for MIMO and nonlinear systems. 

It necessitates in-depth knowledge of the system. 

It is easy to design and implement, especially for 

obstacle avoidance. 

Considering constraints complicates the controller 

design. 

ANN-based Control ANN-PID controller 

ANFIS controller 

It can be used for MIMO and complex nonlinear 

systems. 

It does not need expert knowledge of the system. 

Considering constraints complicates the controller 

design. 

Resilient Control Resilient PID controller 

Resilient MPC 

It is typically used in conjunction with other techniques 

to consider all kinds of uncertainties, especially cyber 

attacks. 
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Vision-based Control  PBVS 

IBVS 

It is typically used with other techniques to help the 

robot better understand its surroundings, especially 

when both dynamic and static obstacles exist. 

MPC Min-max MPC 

Tube-based MPC 

LPV-based MPC 

Explicit MPC 

It can deal with constrained MIMO systems. 

The computation load increases for nonlinear systems. 

 

The first applications of MPC were in process industry control [50] due to slow dynamics. 

Using MPC in robotics was impossible due to the need for fast processors. With the rapid 

development of fast processors and numerical computing algorithms, MPC’s use in semi-fast 

systems, like mobile robots, has become possible. MPC is now used to control various systems 

[51-53]. Figure 2.15 and Figure 2.16 indicate an upward trend in the number of research works 

for MPC for robots and MPC for WMRs, respectively. The search terms were 

( “control” AND “robot” AND “predictive”  OR  “mpc” ) and ( “control” AND “wheeled” 

AND “robot”+  AND “predictive”  OR  “mpc” ). 

 

Figure 2.15: Documents per year for WMR controlled by MPC 
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Figure 2.16: Documents per year for WMR controlled by MPC 

The majority of contemporary MPC-based vehicle navigation techniques use linear 

kinematic models. While several path planning algorithms exist for vehicles with nonholonomic 

kinematics, it is often more difficult to demonstrate stability and robustness. A nonlinear trajectory 

tracking system can be employed to ensure that the real state converges to the nominal state. 

Nonlinear MPC (NMPC) was created to cope with systems with nonlinear dynamics [147]. 

NMPC has two major drawbacks: greater algorithm complexity and an excessive computing 

burden. MPC based on an LPV system is brought to researchers' attention to attain a compromise 

between linear and nonlinear techniques [63, 66, 148]. The nonlinear/time-varying aspects of the 

system are taken into account in LPV models, which have a linear representation. By representing 

nonlinear systems with a linear form with dynamic parameters, also known as scheduling variables, 

LPVs bridge the gap between linear and nonlinear systems [149, 150]. In other words, scheduling 

variables, such as nonlinear dynamic system characteristics, environmental conditions, or 

operational points, might affect the linear model and controller. In brief, LPV helps MPC deal with 

nonlinear/time-varying systems. The principles of MPC, LPV and recent studies are reviewed in 

the next section.  

2.4 Literature review for LPV-based MPC 

The current LPV-based MPC techniques are studied here, including trackable feedback 

controllers, optimized feedback linearization controllers, interpolation-based controllers, 
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predictive dynamics controllers, and tube-based controllers. We also investigate the tracking 

problem for LPV-based MPC techniques. We finally summarized the findings in Table 2.2. 

Computational softness in dynamic programming has been the source of inspiration for 

many studies to find a way to strike a good balance between achievable performance and 

computational complexity [151-153]. On the one hand, there are min-max methods with complex 

calculations and the best possible performance, and on the other hand, there are open-loop methods 

with low computations and poor performance. Tractable feedback methods look for something 

between computational complexity [154] and achievable control performance [155]. 

Concerning MPC, achievable control performance refers to the degree of conservatism. A 

non- conservatism controller will indeed find a solution if there is one. In contrast, a conservatize 

controller only looks for a solution in a particular class and may not find one. In addition, by 

limiting the solution class, the controller may not find the best possible answer, which is not optimal 

(for example, control inputs with more required power consumption). In the following, we will 

examine tractable feedback methods. This study will consider three features: 1) applicability of the 

method for LPV systems, 2) computational features, and 3) ability to include information about 

future changes in scheduling signals. Some methods we will explain in the following sections have 

not been used directly for LPV systems but have been developed for other systems, such as linear 

systems with disturbance, uncertainty, or linear parametrically uncertain (LPU). 

2.4.1 Optimized feedback linearization strategies 

One of the first works in robust MPC that has impressed many researchers is replacing 

nonlinear feedback with a linear, stable square robust feedback strategy. This feedback is calculated 

online to solve linear matrix inequalities (LMIs). Meeting constraints is obtained by finding the 

system state variables within an appropriate level of a square Lyapunov function corresponding to 

the optimized state feedback. This method can be used for systems with parametric uncertainty, 

which can be described as polytopic or with norm bounded. 

This idea [156] has been improved in several ways, such as the quasi-min-max method [61], 

which generalizes polytopic LPV modes in which scheduling signal measurement is available. 

These measurements are extracted by extending the policy [156] with a free control step and 

optimizing the state feedback with dependent parameters. Another generalization, with two 

additional free control steps, has been developed by [157], which considers LPV systems with a 

limited rate of change in the scheduling signal. 
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The degree of freedom in [156] is constant and equal to zero; in [61], it is one, and in [157], 

it is two. These policies are computationally simple but place constraints on the structure of the 

relationship. In addition, small, fixed horizons give us little information about the future of 

scheduling paths. 

Several studies [158, 159] extended the technique of [156] to an optional prediction 

horizon, performed by placing the N control step on the linear state feed. In these methods, similar 

to the [156] process, the end-state feedback is optimized at any time. In [160], this method has been 

extended to LPV systems. 

All of the above methods must be squarely stable, i.e., linear state feedback must correspond 

to the quadratic Lyapunov function. This requirement is simplified in [161], and Lyapunov 

functions are considered with variable parameters. This method has an optional N prediction 

horizon. It suggests possibilities for extracting information about future scheduling paths. 

However, these algorithms suffer from high computational loads that increase exponentially with 

N. it is shown that this exponential growth in LPV systems can be prevented by assuming that the 

uncertainty is limited or taking a small boundary for scheduling variables [162]. 

Another study used parameter-dependent dynamic output feedback (PDDOF) laws to 

explore MPC for a quasi-LPV model with norm-bounded disturbance [163]. In contrast to the 

typical single-step strategy, a periodic approach is used in this article, in which a series of PDDOF 

rules is applied regularly in future projections. This periodic method has significantly bigger 

attraction zones and superior control performance than the single-step technique. The enhanced 

state and output/input convergence, as well as recursive feasibility, are ensured.  

The challenges of robust output feedback MPC for constrained LPV systems exposed to 

bounded state and measurement disturbances are addressed in this paper [64]. The scheduling 

parameter vector is supposed to be an unmeasurable signal that takes values from a compact set. 

The proposed controller includes an interval observer, which uses available measurements to 

update state estimations, and an interval predictor utilized in the MPC algorithm's prediction phase. 

The MPC method assures recursive feasibility, constraint meeting, and input-to-state stability in 

the terminal set. In addition, this unique approach has low computational complexity and is simple 

to implement (similar to conventional MPC schemes). 

A synthesis technique of dynamic output feedback robust MPC with input saturation is 

examined for LPV systems with uncertain scheduling parameters and bounded disturbance [164]. 
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A key optimization challenge is tackled via convex optimization to lessen the online computing 

burden by pre-specifying controller parameters. The primary optimization issue ensures that the 

estimated state and estimation error converges inside the invariant sets, ensuring recursive 

feasibility and robust stability. 

2.4.2 Interpolation 

In interpolation-based MPC, control signals were derived from interpolation between 

several precalculated control gains. If this strategy is implemented, the online calculation will be 

moderated, and conservatism will be improved through an increased attraction region. The general 

method of interpolation MPC for LPV systems is investigated in [149, 165-167], in which several 

pairs of linear controllers corresponding to an ellipsoidal invariant set are calculated offline. This 

method contrasts with the previous form of "optimized feedback linearization strategies, in which 

the final sets and the corresponding controller were calculated online as part of the optimization. 

The current state variables are measured online, and then the control signal is generated by a 

suitable linear combination of the control inputs of the local controllers. Each controller has a 

control gain and a final set. The advantages of the interpolation method include reducing online 

computing and increasing the stability area. In these methods, the prediction horizon is zero, so 

there is little ability to predict future changes in the scheduling signal. 

The interpolation MPC technique for nonlinear discrete-time systems described by the 

affine LPV model is investigated in this study [168]. The general nonlinear model is turned into 

the quasi-LPV model, which is then used to create the equivalent polytopic LPV model and the 

disturbed Linear time-invariant (LTI) model. An ellipsoidal invariant set based on a finite-horizon 

interpolation MPC technique is suggested. The feasible zone of the presented method is 

substantially more extensive than that of the zero-horizon interpolation MPC algorithm due to the 

finite-horizon approach. 

To cope with constrained nonlinear MIMO systems, an LPV model was supplemented with 

an MPC to decrease computation and conservatism [149]. The LPV-MPC was built in an input-

output architecture that eliminated the need for state measurement. Third, for conservatism, an 

interpolation-based MPC (IMPC) was included, in which control signals were created through 

interpolation between various precalculated control gains. If this method is followed, the online 

calculation will be tempered, and conservatism will improve due to a larger attraction zone. Two 

numerical examples were used to test the efficacy of the suggested strategy extensively. The results 
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demonstrated that the technique performed excellently in setpoint tracking and disturbance 

rejection, but it was also very tractable when online computation and conservatism were taken into 

account. 

2.4.3  Predictive dynamics controller 

LMIs were previously utilized to build a fixed state-feedback law that keeps the state vector 

inside feasible invariant sets. The state feedback law is considered to be constant at each time 

instant. This assumption imposes i) limits on achievable performance, ii) restrictions on the size of 

the allowable set of initial conditions, and iii) significant online computational demands [156]. The 

authors overcome these problems by using invariant sets that capture the system predictions, even 

during transients when the control is not a fixed state-feedback law. A new strategy is proposed in 

this paper that uses a constant state-feedback law but adds extra degrees of freedom by using 

perturbations on the fixed state-feedback law.  

Unlike [156], who used a single quadratic Lyapunov function, [169] used several quadratic 

Lyapunov functions, each corresponding to a vertex of the polytope, to extend the result. To reduce 

conservativeness, [170] used nonlinear parameter-dependent Lyapunov functions. 

Some studies have also been performed to optimize the offline design process [158], 

maximizing the size of the invariable ellipsoidal set, and resulting in a less conservative MPC. 

Other methods have been used to reduce conservatism, whose overall goal is to reduce the 

sensitivity of the closed-loop cost to model uncertainty [171]. In [172], the method [158] is 

modified using polygonal invariable sets instead of ellipsoidal sets. Because the state dimensions 

of the lifted system grow linearly with N, the complexity of the polygonal set in the worst case 

grows exponentially relative to N. In [172], it is shown that this computational complexity can be 

reduced under certain conditions, so that the complexity changes linearly with N. 

An MPC for constrained nonlinear MIMO systems subjected to bounded disturbances was 

developed in another study. This study represents the nonlinear process by an LPV based on 

previous input-output data (LPV-IO). The primary goals of this study are to reduce the online 

computational load of MPC with an LPV-IO model compared to the existing literature and to 

confirm the controller's robustness in the presence of disturbance. A recurrent neural network 

(RNN) solves real-time optimization problems with less online computation for the first goal. A 

new control law is developed with a fixed control gain (K) and a free perturbation (C). Because of 
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a larger possible terminal region and free control moves, the proposed method has a reduced 

conservatism [150]. 

Another study presented output feedback robust MPC for an LPV model with norm-

bounded unknown disturbance by parameterizing the infinite horizon control moves and estimated 

states into one free control move, one free estimated state, and a dynamic output feedback law [63]. 

This model first attempted to use the free control move and free estimated state in the output 

feedback MPC. The procedure was demonstrated to be recursively feasible, and the system state 

was guaranteed to converge to the vicinity of the equilibrium point. 

The MPC technique often assumes that the control action can be determined instantly using 

the system information acquired at each sampling time [63]. However, the capacity of this 

technique to tackle the optimization issue in real-time limits its applicability. An enhanced online 

technique is provided in this study, in which the controller parameters optimized from the previous 

sampling interval are used to compute the current control action, i.e., the control action is executed 

one step ahead. This one-step forward method addresses the optimization issue during the sampling 

interval, implying that the controller and the real system operate concurrently. It is also important 

to note that fully lifted state vectors (including inputs) must be included in the invariable set, 

calculated offline, as part of the controller design. Hence, there is no straightforward method by 

which these algorithms can apply existing knowledge of possible future scheduling paths while the 

system is running. [173-175] explored more recent developments in predictive dynamics 

techniques for LPV systems. 

2.4.4  Tube-based methods 

The tube-based MPC (TMPC) paradigm [176] is based on the idea that processes with 

unknown (but bounded) uncertainty yield a finite range of different trajectories. These trajectories, 

sometimes called "tubes," relate to a specific representation of the uncertainty set. The controller 

must calculate a tube in the tube-based design paradigm so that all potential state trajectories remain 

inside this feature for all possible realizations of the (bounded) disturbances and uncertainties while 

retaining control performance. TMPC reduces dynamic scheduling complexity. These methods 

were initially used to control linear systems with disturbances. Despite the differences in the 

controller form, they all had the same complexity when estimating the future uncertain paths. By 

doing this, the complexity of the predicted paths will no longer grow exponentially. In tube-based 

methods, a range is set for future state variables that can be calculated online or offline. 
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TMPC  techniques have been applied to linear systems with uncertainty [177, 178], where 

predicted paths with uncertainty are estimated using pre-designed multi-criteria versions in these 

works. Because the complexity of these sets is constant over the prediction horizon, the size of the 

overall optimization problem to be solved increases linearly with N. Because of this linear scale 

behaviour, tube-based frameworks can also include information about the future of scheduling 

paths.  

MPC for currently available LPV systems presumes that the scheduling trajectory's future 

behaviour is unknown across the prediction horizon [179]. An anticipative TMPC method for 

polytopic LPV systems with complete state feedback is proposed in this study. Unlike previous 

approaches, the method explicitly considers expected future variations in the scheduling variable; 

its current value is measured precisely, while future values over the prediction horizon are defined 

as a series of sets describing expected deviations from a nominal trajectory. 

For LPV systems with bounded disturbances and noises, this paper presents a solution to 

tube-based output feedback robust MPC (RMPC) [65]. The suggested method combines an offline 

optimization problem to design a look-up table and an online tube-based output feedback RMPC 

with tighter constraints and scaled terminal constraint sets. The proposed online optimization 

problem has a smaller online computational with fewer choice variables and constraints. The 

optimization problem will be recursive, and the controlled LPV system will be stable. 

Another work offered a TMPC for polytopic LPV systems exposed to bounded additive 

disturbances [68]. The suggested technique described future scheduling evolutions by a known 

nominal trajectory and constant uncertainty sets around the nominal signals. 

2.4.5 Tracking 

All of the above techniques focus on stability, and this section investigates the tracking 

problem. Robust MPC tracking methods for LPU systems have been developed [180, 181], and it 

has been shown that offset tracking can be achieved if the uncertainty (corresponding to θ in LPV 

systems) is unchanged over time. In [182], the tracking of piecewise constant reference for LTI 

systems is considered. The exponential convergence of the outputs to the boundary region around 

the reference is ensured using tube-based methods. In [61], MPC is used for nonlinear systems 

modelled as LPVs (a family of linear systems around working points). It is shown that the closed-

loop system is asymptotic stable if the optimization is viable. In [183], nonlinear systems are well-
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modelled LPVs with discrete scheduling signals, and it is proved that if the problem can be 

optimized, the stable closed loop is asymptotic. 

Because of changes in the scheduling signal, offset-free output tracking is often not 

achievable in MPC based on LPV state-space representations [184]. As a result, they attempted to 

ensure a pre-specified tracking error bound that is feasible for all permissible scheduling variable 

changes. A tube-based model predictive controller was constructed to bring the system's state into 

this set in a finite time. Similarly, how to employ quasi-LPV representations to efficiently construct 

Nonlinear MPC for reference tracking in the presence of nonlinear input and state constraints is 

described [62]. Standard QP solvers were employed for the online optimization, making the 

solution highly efficient and practical even for rapid plants. 

Solar collector temperature control is another nonlinear problem described by an LPV 

model and controlled by an MPC [185]. At each instant, two QP are solved: the first considers a 

backward horizon of steps to find a virtual model-process tuning variable that defines the best LTI 

prediction model, taking into account the polytopic system's vertices; the second QP then optimizes 

performance along a forward horizon of steps using this LTI model. 

Table 2.2: A literature review of MPC for LPV systems (SS: state-space, IO: input-output) 

Method Reference System  Model Uncertainty Disturbance Tracking comments 

O
p
tim

ized
 feed

b
ack

 lin
earizatio

n
 strateg

ies 

 

[156] Linear SS Polytopic 

Feedback  

Yes  Constant  No free 

control moves 

[61] Linear SS Polytopic No No One free 

control moves 

No limitation 

on 𝜃 

[157] Linear SS Polytopic No No Two free 

control moves 

limitation on 

𝜃 

[158] Linear SS Polytopic No No N free control 

move 

Ellipsoidal 

invariant set 

[159] Nonlinear SS Polytopic No Constant Constrained 

inputs and 

state 

No limitation 

on 𝜃 
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[160] Nonlinear SS Polytopic No Constant Constrained 

inputs  

limitation on 

∆𝜃 

[161] Linear SS Polytopic No No Less 

conservative 

method 

Parameter-

dependent 

control law 

and Lyapunov 

function 

[162] Linear SS Norm 

bounded  

No No Free 

prediction 

horizon 

The number 

of LMI 

linearly 

increases with 

the prediction 

horizon 

[165] Nonlinear LFR Norm 

bounded  

No Constant limitation on 

∆𝜃 

[164] Linear  SS Polytopic 

Additive  

Yes  No  Input 

saturation  

Dynamic 

output 

feedback  

 [163] Linear  SS Polytopic 

Norm 

bounded 

Yes  No Periodic 

approach 

[64] Linear  SS Polytopic 

Additive  

Yes No Interval 

observer for 

future state 

prediction  In
terp

o
latio

n
  

[186] Linear SS Polytopic No No Nonlinear 

control law (a 

combination 

of 

predetermined 

controllers) to 

lower 

computation 

load 

[187] Linear SS Polytopic No No Variable 

prediction 
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horizon to 

reduce 

computational 

complexity  

[166] Linear SS Polytopic No No Considering 

four 

techniques for 

finding an 

Ellipsoidal 

invariant set 

and state 

feedback gain 

[168] Nonlinear SS Polytopic  

Additive  

Yes No ellipsoidal 

invariant set  

nonlinear 

systems 

[167] Linear  SS Polytopic  

Persistent 

disturbances  

Yes No ellipsoidal 

invariant set  

optimal 

interpolation 

coefficients  

[149] Nonlinear  IO Polytopic  

 

Yes Yes ellipsoidal 

invariant set  

reduced 

conservatism 

degree and 

computation 

load P
red

ictiv
e d

y
n
am

ics  

[172] Linear SS Polytopic No No  

[171] Linear SS Polytopic No No Less 

computation 

Less 

conservative  

[63] Linear  SS Polytopic  Yes No Norm-

bounded 

unknown 

disturbance  

Output 

feedback 

[150] Nonlinear IO Polytopic  

Additive  

Yes Yes Less 

computation 

Robustness  
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[188] Linear SS Multicaptive  No No Less online 

parameters  

[178] Linear SS Multicaptive 

Additive  

Unmeasurable No Increased 

ellipsoidal 

invariant set 

[179] Linear  SS Polytopic  No No Anticipates 

future 

changes in the 

system 

dynamics 

[65] Linear  SS Polytopic 

Additive  

Yes No Scaled 

terminal sets  

Tightened 

constraints  

[68] Linear  SS Polytopic 

Additive  

Yes No future 

scheduling 

evolutions 

largest 

allowable 

disturbance  

T
rack

in
g
  

[180] Linear SS Polytopic No No Constrained 

inputs 

[184] Linear SS Polytopic No Constant  Tube-based 

control 

 

[62] Linear SS Polytopic No Time 

variant 

reference  

Fast tracking 

Nonlinear 

constraints  

[185] Nonlinear  SS Polytopic  Yes  Constant  Two QPs 

Reduced 

computation 

load 

 

2.5 MPC for WMR 

After introducing the principle of MPC and LPV and reviewing the literature on LPV-based 

MPC, we investigate the trajectory tracking problem in WMRs using MPC. This involves 
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examining closed-loop stability, online optimization problem, and modelling. Additionally, we 

highlight the significance of LPV-based MPC for WMR. 

2.5.1 MPC 

Control laws can effectively address the problem of path following or trajectory tracking in 

autonomous devices. However, nonlinear modes and inherent uncertainties (friction, terrain, and 

slippage) pose challenges that can make the path-tracking problem more complex, potentially 

leading to issues in the closed-loop system and requiring significant control signals. The ultimate 

aim is to develop a control law to guide the device along a specific path while considering factors 

such as response speed, accuracy, field of view, mobility constraints, computational costs, energy 

requirements, communication channels, and stability. To this end, various MPC algorithms have 

been developed based on the process description model, noise signal, disturbances, cost function, 

and optimization algorithm. 

According to [189], the MPC problem can be expressed as an online optimal open-loop 

control problem with a finite horizon based on system dynamics and constraints, including states 

and control sequences. If there is no difference between the real system and the intended model 

and there is no disturbance, the input function found at time t = 0 can be used for the system at all 

times t>0. However, due to the difference between the real system and the considered model and 

disturbances, the real system’s behaviour differs from the predicted behaviour. Suppose the 

criterion used is a cost function of the second-order form and a linear model is assumed, and there 

are no constraints on the system. In that case, the explicit solution can be applied online by 

implementing a lookup table (different gains for different operation points) or an explicit function 

of the past inputs, outputs, and path [2]. When nonlinear constraints are present, or the cost function 

does not have a specific form, online real-time optimization methods with numerical techniques 

are often necessary. Although an infinite predictive horizon can guarantee system stability, it is not 

a practical solution for control systems. To ensure the convergence of the optimization problem 

and achieve control signals with smooth transitions, it is common to include a term that penalizes 

the control law. This approach helps to ensure that the control signals remain within a certain range. 

In an NMPC, the model, constraints, and cost function can be nonlinear, bringing new 

problems. Firstly, the identification of an accurate nonlinear model can be demanding. 

Additionally, using nonlinear models/cost functions/constraints makes the optimization problem 

more complicated and might result in a nonconvex optimization problem. The optimization 
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problem might be computationally ineffective, and there is no guarantee of finding a global 

optimum [190]. In short, in real-time control, where the optimum point must be achieved online, 

NMPC experiences difficulty finding optimum control action sequences, dealing with high 

computation load, and finding an accurate model that reliably predicts systems behaviour [2]. 

Regarding WMR, the constraints can be holonomic or nonholonomic. Holonomic 

constraints (related to positions such as x and y) restrict the robots' achievable poses. i.e., there are 

some banned areas where robots cannot enter that area. Nonholonomic constraints (related to 

velocity) do not limit accessible poses but restrict the path that can be followed to reach the 

destination. Dealing with nonholonomic constraints is troublesome and makes controller design 

more complex. According to Brockett’s theorem, no continuous time-invariant feedback of state 

variables can be found asymptotically stabilizes the non-holonomic system around the equilibrium 

point [48, 49]. For the past 20 years, a great deal of research has been conducted into MPC theory 

for non-holonomic systems concerning this theorem. Briefly, MPC research works on non-

holonomic robots can be divided into three categories: 

1. Closed-loop stability 

2. Optimization problem 

3. Model 

2.5.2 Closed-loop stability 

The nonlinear model and nonholonomic constraints make the closed-loop stability of WMR 

challenging. It has been said that moving differential robots cannot be stabilized by a control law 

that does not change over time with feedback [191]. The WMR model is intimately linked to 

stability. Here, the stability problem has been investigated for linear MPC, modified linear MPC, 

and NMPC. In linear cases, asymptotical stability can be guaranteed by designing bounds for the 

cost function and finding the appropriate prediction horizon. So far, linear MPC theory has been 

fully developed [2], and essential issues such as stability have been studied for a broad spectrum 

of systems [192].  Ensuring stability will be more complicated if the nonlinear model depicts the 

WMR behaviour. A terminal cost function is typically added to the cost function in nonlinear 

conditions, corresponding to a terminal region [60]. The problem of finding terminal region 

(offline/online)[59], type of terminal regions (ellipsoidal invariant set/polyhedral invariant set) 

[193, 194], type of cost function (quadratic/nonquadratic) [195], and conservatism [196] are 

usually discussed in the second group (NMPC). Some of the selected studies are as follows: 
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[197] introduced one of the first implementations of NMPC for a WMR. The main idea was 

to use the device motion model and immediately calculate the optimal control sequence to 

minimize the projected motion tracking error. In the presence of an obstacle, the controller deviates 

from the original reference path and creates a new reference path with the help of the information 

derived from sensors. It is also claimed that the control horizon and weight matrix directly affect 

the position and velocity tracking accuracy and obstacle avoidance. 

Concerning finding the terminal region, an MPC has been developed by [198] for tracking 

and regulating a non-holonomic mobile robot. The stability of the control is guaranteed by adding 

a terminal state penalty to the cost function and keeping the final state bounded.  Circle curve 

tracking, eight-shaped curve tracking, and parallel parking line curve tracking have been studied. 

Meanwhile, a suboptimal solution has been provided to reduce computational load. In [199], a non-

holonomic mobile robot’s (four wheels with differential derive) regulation problem is developed 

with an MPC, stabilized by adding a terminal penalty to the cost function and corresponding 

terminal region. A suboptimal solution is regarded due to the computational complexity of the 

nonlinear system. An open-source toolkit software for WMR has been developed in this paper. The 

approach has been assessed for circle trajectory tracking and eight-shaped curve tracking. 

 Regarding the type of terminal region, an ellipsoidal invariant set is suggested by [193] for 

object manipulation of a nonholonomic differential-drive robot. A time-varying MPC controlled 

the robot to deal with the motion constraint that considered the friction between the robot and 

pushed object. In contrast, multiple offline polyhedral invariant sets corresponding to multiple 

controllers were developed to reduce online computation load [194]. The online controller was 

derived from a lookup table of predetermined controllers. In general, terminal constraints can be 

defined in such a way as to ensure asymptotic stability [200]. Many authors have suggested 

modifications in the terminal region [200-203] to reduce the degree of conservatism. [201] 

mentioned that an added terminal region usually ensures the stability of NMPC to the cost function. 

However, finding terminal region increase computation in online applications. The author took the 

effort out of the terminal region's online calculation since the attraction region might degrade in 

offline cases. A wheeled mobile robot's tracking and regulation problem is situationally tackled by 

a modified terminal region obtained from a T-S fuzzy model [202].  The controller has been tested 

in a circle reference trajectory. A randomized algorithm is proposed in [200] to design MPC. 

Making a trade-off between computation and closed-loop performance is the merit of this work. A 
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navigation function is used as the Lyapunov function, and state constraints are added to the cost 

function. 

Next, we looked at studies focused on the cost function. An MPC approach with the LMI 

framework is presented in [204] for the tracking problem of a three-wheeled omnidirectional robot. 

Many convex optimization problems can be formulated as an LMI problem, particularly with 

uncertainties. The LMI problem is also called the worst-case or min-max optimization problem, 

where the upper bound of the cost function should be minimized. Considering input and output 

constraints, an upper bound to a quadratic objective function was defined to ensure stability. The 

control law would be in terms of 𝐹 = 𝑌𝑄−1 instead of 𝑈 = −𝐾𝑥 (for more details, refer to [204]). 

[195] offers a form of MPC based on a nonquadratic cost function to steer a unicycle non-

holonomic robot to the desired position and orientation as follows: 

𝑙 = 𝑞1𝑥
4 + 𝑞2𝑦

2 + 𝑞3𝜃
4 + 𝑟1𝑣

4 + 𝑟2𝜔
4  

Where (𝑥, 𝑦) and 𝜃 are the position and orientation of the robot. 𝑞1, 𝑞2, 𝑞3, 𝑟1, 𝑎𝑛𝑑𝑟2 are the 

weighting matrix of inputs and outputs. The control signal 𝑢 = (𝑣, 𝜔) includes the linear and 

angular speed of the robot. Without considering stabilizing constraints and additional costs, 

asymptotical stability is assured in this paper, which reduces the controller's conservatism rate.  

This paper has been extended by [205] without considering stabilizing the terminal condition. 

Similarly, this study also considered state constraints and a dynamic model in controller design. 

Meanwhile, a technique is designed to find the required length of the prediction horizon with 

sufficient stage cost and region of attraction. 

Finally, we searched conservatism degree in controller design. A tube-based MPC was 

studied by [196], where an observer estimates outputs. The authors designed time-varying tubes to 

reduce conservatism. Meanwhile, computational complexity is moderately reduced due to 

tightened constraints. Likewise, a parameter-dependent control law is constructed for a WMR to 

reduce the degree of conservatism in an MPC. They employed an LPV framework to capture the 

nonlinear dynamics in the robot model. 

2.5.3 Optimization problem 

Various optimization algorithms can be used to solve the optimization problem of MPC for 

WMR regarding computation, cost function (linear, quadratic, nonlinear), and constraints diversity 

(mechanical, visibility). The optimization problem of MPC for WMR is traditionally solved by the 

sub-optimal method [206, 207] and genetic algorithm [103, 208].  
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Finding the global optimum in a standard MPC might be time-consuming. In contrast, a 

suboptimal MPC seeks a suboptimal solution with a lower iteration that declines calculation. A 

wide range of optimization methods for MPC is reviewed [209-212], including interior-point 

methods, active set methods, finite control set MPC, fast update method, and neural network 

methods. However, a few techniques have not been included in these review papers. For example, 

[213] proposed an NMPC for the trajectory tracking of a four-wheeled mobile robot, where the 

nonlinear cost function is online minimized by a conjugate gradient method, and argued that the 

result of this method was better than the steepest descent approach. It has been expressed that the 

optimization time would be less than 30 ms in each sampling time. The cost function consists of 

position error, orientation error, and control action. The same study examined a practical NMPC 

for a two-wheeled moving differential robot while preventing collisions with an obstacle [214]. 

With a time-varying reference path, the applied controller minimizes the cost function with discrete 

nonlinear online optimization using Lagrange multipliers on a predefined predictive horizon. The 

gradient descent method solves the QP problem, and input and output constraints are added to the 

cost function as a penalty term. An NMPC algorithm, based on Hamiltonian, has been proposed 

for online motion planning and obstacle avoidance of autonomous omnidirectional robots [215]. 

The cost function considered tracking error, control signal magnitude, and presence in areas 

including moving obstacles and lanes as a penalty. The ultimate goals of all optimization 

algorithms are to find the global minimum, deal with nonholonomic constraints, consider more 

realistic constraints, and have faster convergence while guaranteeing stability in the presence of an 

obstacle.  

An RNN-based optimization is proposed in several works to reduce computation without 

deteriorating stability regarding the online computational burden. Thanks to global convergence 

and low computational burden, neural network-based optimizations have been applied for linear, 

quadratic [216, 217], nonlinear programming [218, 219], and variational inequality problems [220, 

221]. The RNN has a convincing performance in either MPC or NMPC [222-224], in which 

nonlinear optimization can be converted to quadratic programming. In preliminary research on 

non-holonomic dynamic systems, neural network-based models were suggested to overcome the 

computational burden of prediction and minimization [225-227]. In this class of neural network-

based MPC, the neural network was responsible for predicting the behaviour of WMR with real 

input/output data because they believed a better nonlinear model improves the optimization 
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problem. Others claimed that the first approach might suffer from nonconvex optimization or 

trapping in a local minimum and suggested a dual neural network for the optimization problem 

[228]. In this paper, the authors introduced an RNN approach to solving the real-time optimization 

problem in NMPC, rewritten as a second-order problem of two unknown parameters. A similar 

method has been presented in references [229] and [230].   

Although various approaches have been proposed to solve the MPC’s optimization problem 

along with stability for mobile robots, it is still challenging to design an optimal or near-optimal 

method for tracking in the presence of uncertainties and disturbances. A near-optimal tracking 

control method for a mobile robot based on the receding horizon (RH) dual heuristic programming 

has been introduced [231]. The main feature of this paper was considering uncertainties and 

disturbances in the QP. The authors employed a backpropagation controller to produce the desired 

velocity profile and an RH strategy for converting the infinite optimal control problem into a finite 

one. The closed-loop tracking equations are consecutively updated on each horizon. Another RH-

based strategy is created to trace the reference path to reduce the effects of model errors on guide 

performance [232] by a sequence of control laws determined with Pontryagin’s minimum principle. 

The control laws are designed to rectify path deviations due to the high device velocity when 

entering Mars, where the atmosphere is rarefied with high uncertainty. The nonlinear ordinary 

differential equations are rewritten in nonlinear algebraic equations through the bounded value 

problem (BVP), which lightens the significant computational load. Another example studied by 

[233], where a two-stage nonconvex nonlinear control approach for autonomous devices in the 

outdoor environment to track the road's center lines while preventing collisions with obstacles. The 

external loop creates a barrier-free path with inputs taken based on the device's simplified model, 

and the inner loop is responsible for path tracking. The moving robot's average speed was about 24 

m/s, indicating a highly dynamic system. The recent development on robust MPC for WMR 

concentrated on parameter uncertainty [100], bounded time-varying additive uncertainty [234], and 

fast trajectory tracking in a noisy, uncertain environment [235]. 

2.5.4 Model 

The MPC prediction model can be linear, nonlinear, or simplified to trade-off between 

complexity (computation, optimization) and precision. MPC is widely used for a group of problems 

in which the dynamics of the model under consideration are linear [196, 236]. However, there may 

be inherently nonlinear systems, like non-holonomic systems. Preliminary research assumed that 
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the model must be linearized to predict future behaviours [237]. The control law originated from a 

second-order cost function, which comprised system tracking error and control effort subjected to 

physical constraints. The apparent downside of linear MPC is that the model remains valid only 

around the operating point. Simply put, linear MPC depends on the system's operating point and 

can be used in a neighbourhood of the operating point. 

Many researchers prefer to use modified MPCs with lower computation and trustable 

models. For example, in [238], a term was added to the cost function for obstacle avoidance by 

maximizing the distance between the robot and the obstacle. The cost function also considers the 

constraints as a penalty using the Karush-Kuhn-Tucker (KKT) condition. Some researchers have 

developed linear MPC for omnidirectional mobile robots [239-241] using linear time-varying 

systems and LMI constraints. 

However, some researchers state that MPC is not a careful choice (even the time-varying 

linearized type) for the mobile robot problem due to the robot's uncontrollable linearized equations 

around the working point and the failure of stability hypotheses. They insist that the MMPC 

techniques need further examination [199]. Unlike MPC, the nonlinear controller does not depend 

on the system's operating point. Some consider nonholonomic constraints with a simplified robot 

model for state prediction, while the controller would be applied to real nonlinear WMR. For 

example, in [34], a nonlinear model is simplified by a bicycle model. The model is used in NMPC 

for state prediction. Two different methods of preventing obstacles are compared, and the controller 

is simulated in different scenarios, including static obstacles on restricted roads. Some studies insist 

on using nonlinear models; for example, an NMPC based on Gaussian model training has been 

described [242, 243] to model possible changes in system parameters. ANN is one of the most 

well-known algorithms for WMR modelling [102, 244-246]. For example, in [247], a car-like 

autonomous vehicle is guided by a GPC. A state-space model is used for the prediction of outputs 

without ANN. Noise removal and dealing with non-holonomic constraints are investigated in this 

paper. One of this study’s noticeable features is estimating position by an Extended Kalman Filter 

(EKF) extracting data from two different sensors. This study was improved in [102], where a new 

neural predictive control-based path tracking technique was developed. A multi-layer back-

propagation neural network is used instead of a linear regression estimator to simulate non-linear 

kinematics to adapt the robot to a wide operating range. The neural predictive control for path 

tracking is a neural network-based model-based predictive control that may create output in terms 
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of robot kinematics and the desired path. In a similar work, an MPC is designed based on neural 

approximations to steer a nonholonomic wheel-legged robot in complex environments with 

mechanical model uncertainty and unknown disturbances [248]. Effective ways for dependable 

tracking control should be studied, keeping disturbances in mind in order to ensure the tracking 

performance of wheeled robots in an unpredictable environment. An adaptive MPC is established 

for a self-driving car in which the environment is continuously changing, and robots are subjected 

to a wide range of risks and disturbances [249]. The authors devised a PSO for tuning the MPC 

parameters for external disturbances and changing operating circumstances. ANN and ANFIS were 

used to provide the prediction model of MPC. Classic controllers are ineffective in such vehicles 

due to these characteristics, particularly lateral control. ANFIS-MPC was shown to be smooth yet 

demanding, whereas ANN-MPC proved to be more accurate. Further research will be required to 

focus on optimizing and learning the MPC prediction model under mixed longitudinal and lateral 

control. 

Most notably, LPV, which is thoroughly detailed in section 2.4, is one of the approaches 

that has lately gained considerable interest and has been utilized to offer an accurate model for 

MPC.  

2.6 LPV-based MPC for WMR 

LPV-based MPC can deal with nonholonomic constraints, delays, and nonlinear dynamics 

in WMR. Figure 2.17  and Figure 2.18 are the results for search terms (“control” AND “wheeled” 

AND “robot” AND “LPV”) and (“control” AND “wheeled” AND “robot”+  AND “LPV” AND 

“MPC”), respectively. Because of the novel nature of this research topic, there are few publications 

on the subject, and numerous fields of research are still unexplored. 
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Figure 2.17: Documents per year for LPV control of robots  

 

Figure 2.18: Documents per year for LPV-MPC of robots  

Steering WMR using LPV-MPC is evolving gradually to solve problems of NMPC for 

WMR, namely computation load, conservatism, and stability.  

We first investigated the online computation burden. For example, a cascade control is 

proposed to address the trajectory tracking problem for autonomous vehicles.  The external loop 

solves position control using a novel LPV-MPC approach, and the internal loop dynamically 

controls the vehicle using an LPV-Linear Quadratic Regulator technique designed as an LMI 

problem called [250]. Both strategies use an LPV representation of the vehicle's kinematic and 
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dynamic models. The fundamental contribution of the LPV-MPC approach is its capacity to 

compute solutions that are extremely close to those found by the nonlinear version while greatly 

decreasing the computing cost and permitting the real-time operation. They presented a comparison 

of the NMPC formulation and the LPV-MPC technique to illustrate the potential of the LPV-MPC. 

Another cascade adaptive LPV-MPC technique was implemented for a three-wheeled 

omnidirectional mobile robot, subjected to incremental control input limitations and parameter 

uncertainties [100].  First, the intricate nonlinear dynamic model is converted into an LPV. About 

the control scheme, the outer loop was a kinematic-based control with PD feedback, and the inner 

loop was adaptive linear MPC. The controller was robust to parameter uncertainty, such as changes 

in the payload or ground conditions. The time-consuming parameter identification of the friction 

model is avoided in contrast to earlier investigations. Although the suggested control's stability and 

efficacy have been validated, the controller is dependent on the dynamic model, and parameter 

estimate errors remain. A technique of LPV control based on AI can be explored in the future to 

tackle this problem. 

Concerning conservatism, a study described an MPC strategy for WMRs with various time 

scales and LPV [251]. The scheduling variable is believed to be able to be measured online and 

utilized for feedback. They developed a parameter-dependent control law deriving from a convex 

optimization problem with an LMI structure. The proposed approach minimizes conservatism and 

enhances performance, according to the findings. Likewise, regulating networked constrained 

polytopic LPV systems is discussed in [252]. The communication network is sensitive to latency 

effects, resulting in time-varying delays on both the control and measurement channels. This paper 

proposes a unique LPV adaptation of a recent Receding-Horizon control (RHC) approach for 

polytopic uncertain linear systems. It takes advantage of the availability of the LPV scheduling 

parameter for pre-computing nested families of one-step-ahead controlled ellipsoidal sets that are 

substantially less conservative than their robust counterparts. Finally, simulation results for 

constrained regulation of a mobile robot of the unicycle type demonstrate the efficacy and 

advantages of the suggested control strategy. 

Regarding stability, a new path tracking approach for a nonholonomic mobile robot 

exposed to kinematic disturbances is given using a gain-scheduled control law [253]. Kinematic 

error in the tracking problem obtained the form of LPV with bounded disturbance. The target 

tracking is established for the environment with and without obstacles. The system stability has 
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been confirmed using a Lyapunov function in both structured and unstructured environments. 

Finding a control law for all routes despite linear and angular velocity constraints is the 

fundamental benefit of the proposed strategy. Similarly, a control technique for omnidirectional 

mobile vehicles with a high robustness level is offered [254]. It is demonstrated that the 

accompanying nonlinear control issue may be tractable by translating the complicated nonlinear 

and uncertain model into LPV form. Compared to those nonlinear control approaches, the 

suggested algorithm avoids the complicated designing procedure and minimizes the impacts of 

control constraints in fast dynamic environments. A sampled-data MPC tracking control approach 

is provided for mobile robots, represented as constrained continuous-time LPV systems, 

considering input saturation constraints [255]. The optimization problem is represented in an LMI 

format. A new Lyapunov function was generated to prove the stability in a sampling delay much 

larger than the literature. Finally, a numerical example is provided to show the efficiency of the 

strategy proposed. Another study improved LPV-MPC stability by adding a terminal cost and 

variable weight matrices [256].  Using an event-triggered mechanism, the controller solved a 

consensus problem on a nonholonomic model. The nonlinear dynamics of the nonholonomic model 

are reduced to a linear time-variant model. In order to eliminate offset due to modelling 

simplification, a quadratic cost function is derived by adding terminal state and variable weight 

matrices. Solving a quadratic programming issue yields the control signal for agents. During the 

event-triggered mechanism, a local optimum state controller is integrated with the LPV-MPC. The 

controller only optimizes when the trigger conditions are satisfied to decrease the computational 

burden. 

2.7 Conclusion and future works 

We have provided an extensive review of various strategies linked to the path tracking of 

WMR in hospitals in this research. Robots can transport medicine, medical equipment, medical 

records, food, and even lift patients in hospitals. Nonlinear controllers such as feedback 

linearization and fuzzy logic control have been frequently employed in the literature due to the 

nonlinear dynamics of WMR. Because uncertainties in model parameters and environment are 

unavoidable when the robot operates, sliding mode control, resilient control, and robust MPC have 

garnered much attention. Meanwhile, vision-based control allows robots to know their 

surroundings better, particularly dynamic obstacles. 
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Dealing with constraints is one of the main reasons that the use of MPC to regulate WMR 

has gained so much attention in recent years. However, there are still some unsolved research 

topics. Firstly, some issues of adopting MPC for robotics include ensuring stability and model type. 

LPV is one of the ways that has been lately employed to overcome this problem. The combination 

of MPC and LPV can be very beneficial for robot tracking problems. Much of the research done is 

based on state-space models. These techniques are difficult because state variables are often not 

measurable, and utilizing an observer makes the design problem more difficult. Hence, one topic 

that needs further attention is using the LPV-IO model. Secondly, a nonparametric LPV 

identification such as ANN and Support Vector Machine (SVM) can improve the model's accuracy. 

Another intriguing issue in trajectory tracking is determining the spots for the robot to begin 

functioning. This problem may be through an interpolation approach that increases the attraction 

region without burdening the online computation load. Finally, resilient control should be further 

investigated, which accounts for all types of physical and cyber constraints and allows the robot to 

recover in a critical and unstable scenario. The reason is that the current literature focuses on 

robustness to uncertainties, including input saturation, parameter changes, network delay, time-

varying delay, bounded disturbance, time-varying disturbance, noises, and faults. Resilient control, 

however, can deal with all uncertainties in a more organized structure and would make a 

breakthrough in regulating WMR. 
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CHAPTER 3 

3 AN INTERPOLATION-BASED MODEL PREDICTIVE 

CONTROLLER FOR INPUT-OUTPUT LINEAR 

PARAMETER VARYING SYSTEMS  

Chapter 3 presents the study for Objective 1. The work presented in this chapter is 

included in the following paper: 

Hadian, M., & Zhang, W., Ramezani, A. (2021). Interpolation-based Model predictive controller 

for input-output linear parameter varying systems. International Journal of Dynamics and 

Control. Published. 

Abstract 

This paper developed a controller for constrained nonlinear MIMO systems, which reduced 

computation and conservatism. Firstly, a linear parameter varying (LPV) model was chosen to 

capture the system's nonlinear/time-variant characteristics with scheduling variables, having less 

complexity than traditional nonlinear models. Secondly, this LPV model was accompanied by a 

model predictive controller (MPC) to deal with constrained MIMO systems. In contrast to 

nonlinear MPC, an LPV-MPC had a linear model in each sampling time, leading to a less 

complicated designing process and a lower online computation load. Moreover, the LPV- MPC 

was constructed in an input-output (IO) configuration not to require the state measurement. Thirdly, 

an interpolation-based MPC (IMPC) was supplemented for the sake of conservatism, where control 

signals were derived from interpolation between several precalculated control gains. If this strategy 

is implemented, the online calculation will be moderated, and conservatism will be improved 

through an increased attraction region. The efficiency of the proposed method was thoroughly 

examined in two numerical examples. The findings showed that the approach performed brilliantly 

in setpoint tracking and disturbance rejection and was deeply tractable considering online 

computation and conservatism. 
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3.1 Introduction 

The model predictive controller (MPC) has been widely adopted in industry and academia 

over the past few decades, including robots, wind and steam turbines, autopilot, metal rolling, 

cement manufacturing, and petrochemical companies [47, 257-259]. The chief reason is that MPC 

is tailored to meet constraints imposed on inputs/outputs. Making a future prediction of the system's 

behaviour plays a pivotal role in MPCs. The more accurate the mathematical model is, the fewer 

errors the MPC will make. A vast number of studies pertaining to linear MPC have been carried 

out for more than half of a century ranging from linear adaptive MPC [260-263] to robust linear 

MPC [156, 264] and intelligent MPC [53, 265-267].   

While influential theories exist in the field of linear MPC, some systems are nonlinear and 

operate under extensive operating conditions, or external parameters can fundamentally change the 

process response [268]. Nonlinear MPC (NMPC) has been developed to deal with systems with 

nonlinear dynamics. A higher level of algorithm complexity and excessive computational load are 

two main drawbacks of NMPC. 

Moreover, modelling and output prediction for nonlinear systems are formidable compared 

to linear systems. Owing to these limitations, some employed linearization around the operating 

point. This strategy can be easily operated and tested successfully in many applications [2]. On the 

downside, linear-oriented MPCs locally work well and remain valid around the operating point, 

resulting in poor performance in certain circumstances and causing instability. Besides, using linear 

models can impair the accuracy of prediction. Despite these imperfections, industry specialists 

prefer linear frameworks to nonlinear ones that might arise sheer complexity. Consequently, both 

linear and nonlinear MPC strategies have upsides and downsides.  

To reach a compromise between linear and nonlinear approaches, MPC based on a linear 

parameter varying (LPV) system is brought to researchers' attention [63, 66, 148, 157]. LPV 

models have a linear representation while taking account of the system's nonlinear/time-varying 

features. LPVs bridge the gap between linear systems and nonlinear/time-varying systems by 

depicting nonlinear systems with a linear form with variable parameters, also called scheduling 

variables [269, 270]. In other words, the linear model and controller can vary according to 

scheduling variables, which can be nonlinear dynamic parameters of the system, environmental 

conditions, or operating points. In short, LPV assists MPC in tackling nonlinear/time-varying 

systems.  
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LPV-MPCs could be divided into two broad classes of state-space and transfer-function 

forms. The overwhelming majority of research on LPV-MPC is constructed from LPV-SS models. 

These models often exacerbate computational complexity and barely model uncertainties well 

[271-273]. Moreover, they assume that state variables are measurable, which is hardly likely in 

practical terms. Input-output models can describe the behaviour of industrial systems more 

appropriately [274]. On these grounds, an LPV-IO-based predictive controller is studied in this 

paper. Only a few MPC have been documented for LPV systems under the I/O formulation [268].  

 In [275], MPC-LPV with SS and IO presentations are compared for a Control Moment 

Gyroscope (CMG). The results showed that the execution time would reduce using the IO 

framework. Another research [28] introduces an MPC with LPV-IO representation, where a 

terminal cost is added to grant stability. The optimization problem of MPC is written in Bilinear 

Matrix Inequality (BMI), which is non-convex and challenging to solve. This approach was 

improved in [276] in order to reduce the complexity level markedly. The authors designed a 

controller based on a Linear Matrix inequality (LMI) convex problem, successfully assessed in an 

ideal continuous stirred tank reactor (CSTR). This work employed offline controllers and terminal 

regions to moderately reduce the online computational burden. However, the controller suffers 

from huge online computational capacity, stemming from solving LMI equations and calculating 

the Markov coefficient of the LPV system [277]. Another weakness of this study is that scheduling 

variables are assumed to be fixed over the prediction horizon with unknown future values [278]. 

Consequently, the controller is highly conservative and computationally ineffective, which 

impedes the real-world application of the current MPCs with LPV-IO presentation [276, 279]. [29] 

sought an extension of [277], where computational complexity was addressed for an MPC with IO 

form. The authors guaranteed stability and setpoint tracking, while the problem of conservatism 

remains unsolved. In addition, some of the assumptions of this work (such as considering 

scheduling variables in terms of outputs ignoring states and inputs, and using an iterative method 

for estimating future scheduling variables) might make the controller even more conservative than 

[276]. For the first time, an IMPC with an LPV-IO structure is developed in this paper to 

accomplish a less conservative and more computationally efficient design. The IMPC framework 

uses a set of offline controllers to increase the area of attraction and bring down the online 

computational cost.  
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The process of finding a control signal in the MPC usually involves an optimization 

problem calculated online, whereby substantial computational resources are required, at the cost of 

MPC's ability to manage constraints. The controller shoulders an excessive computational load 

because the system's dynamics are nonlinear. Accordingly, IMPC is presented in the literature to 

guarantee the fulfillment of constraints with reasonable computations, in which the control signal 

is obtained by interpolating a set of predefined offline signals (𝑢𝑖), which brings high-speed online 

calculations and increases attraction, i.e., IMPC handles online computational load and 

conservatism. IMPC was first introduced by [19-22], in which the authors employed an ellipsoidal 

invariant set to meet stability and recursive feasibility. Later research attempts to enlarge the region 

of attraction (ROA) by replacing the ellipsoidal invariant set with a polyhedral invariant set and 

introducing the Maximal Admissible Set (MAS). A body of studies has been conducted to widen 

ROA or MAS [167, 280]. The chief impediment to the existing IMPC is that they only expand 

ROA/MAS, resulting in a lower conservatism in simple processes. This paper enlarges the terminal 

region of states alongside ROA/MAS, ensuring a less conservative controller. More precisely, the 

offline state feedback controller is designed to use a broader possible terminal region in addition 

to increased ROA/MAS without violating constraints. To the best of our knowledge, this is the first 

time that an efficient IMPC with an LPV-IO model has been developed by adding a terminal region 

in the design step of the control gain. The results showed that the proposed method is noticeably 

more tractable than the traditional ones in the computation load and conservatism degree. 

In summary, this paper seeks a solution for controlling nonlinear multi-input multi-output 

constrained systems with efficient online computation, no observer, massive enough 

initial/terminal region, and satisfactory closed-loop performance. The proposed Interpolation-

based MPC controller with LPV-IO representation and expanded terminal region fulfill all these 

purposes. Similar to [276], the stability is confirmed using terminal cost and region. A larger 

terminal region and increased attraction area bring a less conservative controller. Meanwhile, using 

an interpolation of predefined controllers with the Ackerman formula will improve control 

performance. The paper is organized as follows. The LPV model is described in section II, followed 

by the controller architecture embodying MPC with LPV-IO form and IMPC structure. The case 

studies are explained in detail in section III, where the proposed methodology is examined, and the 

results are discussed. To sum up, the paper's findings are stated in the final section. 
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3.2 Problem formulation  

In this section, the IO and SS configuration of the LPV model is first described. 

Subsequently, the optimization problem of MPC is solved, and control gain, the terminal region, 

and ROA are found. As previously discussed, although most studied MPC-LPV is based on the SS 

form, the IO form is far more desirable since this form only needs inputs and output measurement 

and has a smaller number of coefficients. 

3.2.1 LPV representation 

Assume the following discrete-time MIMO linear parameter-varying (LPV) transfer 

function: 

 

𝐴(𝑝(𝑘), 𝑞−1)𝑦(𝑘) = 𝐵(𝑝(𝑘), 𝑞−1)𝑢(𝑘)  

 

(3.1) 

 

     

This also can be shown as follows: 

𝑦(𝑘) = −∑𝑎𝑖(𝑝(𝑘))

𝑛𝑎

𝑖=1

𝑦(𝑘 − 𝑖) +∑𝑏𝑗(𝑝(𝑘))

𝑛𝑏

𝑗=0

𝑢(𝑘 − 𝑗) 
 

(3.2) 

 

   

Subjected to the following constraints  

𝑢(𝑘) ∈ 𝑈 ≡ {𝑢 ∈ ℝ𝑛𝑢| |𝑢(𝑘)| ≤ 𝑢𝑚𝑎𝑥}           

∆𝑢(𝑘) ∈ 𝑉 ≡ {∆𝑢 ∈ ℝ𝑛𝑢| |∆𝑢(𝑘)| ≤ ∆𝑢𝑚𝑎𝑥}      

𝑦(𝑘) ∈ 𝑌 ≡ {𝑦 ∈ ℝ𝑛𝑦| |𝑦(𝑘)| ≤ 𝑦𝑚𝑎𝑥} 

𝑝(𝑘) ∈ 𝑃 ≡ {𝑝 ∈ ℝ𝑛𝑝| |𝑝(𝑘)| ≤ 𝑝𝑚𝑎𝑥} 

where 𝑦(𝑘) are outputs, 𝑢(𝑘) are inputs, 𝑝(𝑘) are scheduling variables, 𝑞−𝑖 is a backshift 

operator, 𝑛𝑎 is numerator order, 𝑛𝑏 is dominator order, 𝑛𝑢is the number of inputs, 𝑛𝑦 is the number 

of outputs, and 𝑢𝑚𝑎𝑥 , ∆𝑢𝑚𝑎𝑥,and 𝑦𝑚𝑎𝑥 are boundaries.   

The state-space representation of the dynamic model given by the equation is: 

𝑥(𝑘 + 1) =

[
 
 
 
 
 
 
 
 
−𝑎1 … −𝑎𝑛𝑎−1 −𝑎𝑛𝑎 𝑏0 + 𝑏1 … 𝑏𝑛𝑏−1 𝑏𝑛𝑏

𝐼𝑛𝑦 … 0 0         0 … 0 0

⋮
0
0
0
⋮
0

⋱
……
…
⋱
…

⋮
𝐼𝑛𝑦
0
0
⋮
0

⋮
0
0
0
⋮
0

      

⋮
0
𝐼𝑛𝑢
𝐼𝑛𝑢
⋮
0

⋱
……
…
⋱
0

⋮
0
0
0
⋮
𝐼𝑛𝑢

⋮
0
0
0
⋮
0 ]

 
 
 
 
 
 
 
 

⏟                                    
𝐴(𝑝(𝑘))

𝑥(𝑘) +

[
 
 
 
 
 
 
 
𝑏0
0
⋮
0
𝐼𝑛𝑦
0
⋮
0 ]
 
 
 
 
 
 
 

⏟
𝐵(𝑝(𝑘))

𝑢(𝑘) 

 

(3.3) 

where 𝑥(𝑘) = [𝑦(𝑘 − 1)…𝑦(𝑘 − 𝑛𝑎)   𝑢(𝑘 − 1)…𝑢(𝑘 − 𝑛𝑏)]
𝑇 . For the sake of 

simplicity, 𝑝(𝑘) is removed from all coefficients 𝑎𝑖 and 𝑏𝑖. We considered that [𝐴(𝑘)  𝐵(𝑘)] ∈ Ω =
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𝐶𝑜[[𝐴1 𝐵1],⋯ , [𝐴𝑚 𝐵𝑚]], where Ω is the polytope, 𝐶𝑜 is the convex hull, and [𝐴𝑗  𝐵𝑗] are vertices. The 

state variable is a combination of previous inputs and outputs by doing this. The controller uses the 

LPV-IO model to predict outputs and the LPV-SS model for stability provision. Also noteworthy 

is that the stability of the LPV-SS controller grants the equivalent LPV-IO controller stability [281]. 

3.2.2 Controller design 

After introducing the cost function, the predicted outputs will be obtained using the step 

response and the Diophantine equation [2]. This is followed by finding a control signal from a set 

of precomputed control gains to have a larger attraction region. In last, the recursive feasibility and 

asymptotical stability will be proved. The controller aims at minimization of the cost function (J): 

𝐽 =∑𝑒(𝑘 + 𝑖)𝑇
𝑁

𝑖=0

𝑄𝑒(𝑘 + 𝑖) + ∆𝑢(𝑘 + 𝑖 − 1)𝑇𝑅∆𝑢(𝑘 + 𝑖 − 1)
⏟                                    

𝑙(𝑒,𝑢)

+Ψ(𝑘 + 𝑁) 
 

(3.4) 

The first term 𝑙(𝑒, 𝑢) is called stage cost, being in charge of closed-loop achievements, 

where 𝑄 and 𝑅 are positive definite state and input weighting matrixes, and 𝑒 is the error, which is 

the difference between measured outputs (𝑦) and reference (𝑟). The term Ψ(𝑘 + 𝑁)is the terminal 

cost, which can be defined as 𝑥(𝑘 + 𝑁)𝑇𝑄𝑝𝑥(𝑘 + 𝑁).  

3.2.3 The prediction model 

For the prediction of error 𝑒(𝑘 + 𝑗), finding 𝑦(𝑘 + 𝑗) sentences is required, which can be 

calculated from step response or by solving a Diophantine equation.  Given the step response of 

the LPV system (3.2), the future values of outputs over the horizon will be:  

𝑦(𝑘, 𝑝(𝑘)) =∑𝑔𝑖(𝑝(𝑘))∆𝑢(𝑘 − 𝑖, 𝑝(𝑘))

∞

𝑖=1

 

𝑦(𝑘 + 𝑗, 𝑝(𝑘 + 𝑗)) =∑𝑔𝑖(𝑝(𝑘 + 𝑗))∆𝑢(𝑘 + 𝑗 − 𝑖, 𝑝(𝑘))

∞

𝑖=1

+ 𝑑(𝑘 + 𝑗, 𝑝(𝑘)) 

(3.5) 

where 𝑔𝑖 denotes step response, and 𝑑(𝑘 + 𝑗) is a disturbance, which can be derived from 

𝑦(𝑘 + 𝑗) − 𝑟(𝑘 + 𝑗). For a faster prediction, disturbances are assumed to be constant, which can 

be estimated by 𝑦(𝑘) − 𝑟(𝑘). The scheduling variable 𝑝(𝑘) is removed from Equations (3.6) to 

(3.9) for the reasons of simplification. The Equation (3.5) can then be rewritten: 
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𝑦(𝑘 + 𝑗) = (∑𝑔𝑖∆𝑢(𝑘 + 𝑗 − 𝑖)

𝑘

𝑖=1

+ ∑ 𝑔𝑖∆𝑢(𝑘 + 𝑗 − 𝑖)

∞

𝑖=𝑘+1

) + (𝑦(𝑘) − 𝑟(𝑘)) 
 

(3.6) 

Substituting 𝑦(𝑘) = ∑ 𝑔𝑖∆𝑢(𝑘 − 𝑖)
∞
𝑖=1  in Equation (3.6) yields: 

𝑦(𝑘 + 𝑗) =∑𝑔𝑖∆𝑢(𝑘 + 𝑗 − 𝑖)

𝑘

𝑖=1

+

(

 
 
∑ 𝑔𝑖∆𝑢(𝑘 + 𝑗 − 𝑖)

∞

𝑖=𝑘+1

+∑𝑔𝑖∆𝑢(𝑘 − 𝑖)

∞

𝑖=1

− 𝑟(𝑘)
⏟                              

𝑓(𝑘+𝑗) )

 
 

=∑𝑔𝑖∆𝑢(𝑘 + 𝑗 − 𝑖)

𝑘

𝑖=1

+∑(𝑔𝑘+𝑖 − 𝑔𝑖)∆𝑢(𝑘 − 𝑖)

∞

𝑖=1

− 𝑟(𝑘)

=∑𝑔𝑖∆𝑢(𝑘 + 𝑗 − 𝑖)

𝑘

𝑖=1

+ 𝑓(𝑘 + 𝑗) 

 

(3.7) 

Meanwhile, 𝑓(𝑘 + 𝑗) can be abridged on the assumption that the system is asymptotically 

stable and after 𝑁 sampling period 𝑔𝑘+𝑖  equals 𝑔𝑖. 

 𝑓(𝑘 + 𝑗) =∑(𝑔𝑘+𝑖 − 𝑔𝑖)∆𝑢(𝑘 − 𝑖)

𝑁

𝑖=1

− 𝑟(𝑘) 
 

(3.8) 

Using Equation (3.8), the sequence of predicted outputs over the prediction horizon can be 

obtained. 

𝑦(𝑘 + 1) = 𝑔1∆𝑢(𝑘) + 𝑓(𝑘 + 1) 

𝑦(𝑘 + 2) = 𝑔2∆𝑢(𝑘) + 𝑔1∆𝑢(𝑘 + 1) + 𝑓(𝑘 + 2) 

⋮ 

𝑦(𝑘 + 𝑁) =∑𝑔𝑖∆𝑢(𝑘 + 𝑁 − 𝑖)

𝑁

𝑖=1

+ 𝑓(𝑘 + 𝑁) 

 

(3.9) 

In short, the prediction relationship of the output vector is 

 

𝑌(𝑝) = 𝐺(𝑝)𝑈(𝑝) + 𝐹(𝑝) 

 

(3.10) 

where  

  

   (3.11) 
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𝐺 =

[
 
 
 
 
𝑔1 0 … 0
𝑔2
⋮

𝑔𝑁−1

𝑔1
⋮

𝑔𝑁−2

…
⋮
…

0
⋮
𝑔2

𝑔𝑁 𝑔𝑁−1 … 𝑔1]
 
 
 
 

 

𝑌 = [
𝑦(𝑘 + 1)

⋮
𝑦(𝑘 + 𝑁)

], 𝑈 = [
𝑢(𝑘)
⋮

𝑢(𝑘 + 𝑁 − 1)
], 𝐹 = [

𝑓(𝑘 + 1)
⋮

𝑓(𝑘 + 𝑁)
] 

 

If the system is unstable, the outputs cannot be predicted by step response, and the outputs 

will be calculated by Diophantine equations given by: 

 

1 = 𝐸𝑗(𝑞
−1, 𝑝(𝑘))∆𝐴(𝑞−1, 𝑝(𝑘)) + 𝑞−𝑗𝐹𝑗(𝑞

−1, 𝑝(𝑘)) 

 

(3.12) 

By finding polynomials 𝐸𝑗 and 𝐹𝑗 , the output of the process can be predicted. The order of 

𝐸𝑗 and 𝐹𝑗 polynomials are 𝑗 − 1 and 𝑛𝑎. These polynomials can be calculated when one is divided 

by ∆𝐴(𝑞−1, 𝑝(𝑘)), where 𝐸𝑗 is remainder and 𝐹𝑗  is quotient. The Equation (3.1) then is multiplied 

by Δ = 1− 𝑞−1: 

∆𝐴(𝑞−1, 𝑝(𝑘))𝑦(𝑘) = 𝐵(𝑞−1, 𝑝(𝑘))∆𝑢(𝑘) (3.13) 

From Equation (3.12), ∆A can be expressed in terms of 𝐸𝑗 and 𝐹𝑗: 

∆𝐴(𝑞−1, 𝑝(𝑘)) =
1 − 𝑞−𝑗𝐹𝑗(𝑞

−1, 𝑝(𝑘))

𝐸𝑗(𝑞−1, 𝑝(𝑘))
 

           

(3.14) 

By substituting (3.14) in (3.13) and multiplying by 𝑞+𝑗𝐸𝑗(𝑞
−1, 𝑝(𝑘)), we have 

 

(1 − 𝑞−𝑗𝐹𝑗(𝑞
−1, 𝑝(𝑘)))𝑦(𝑘 + 𝑗) = 𝐵(𝑞−1, 𝑝(𝑘))𝐸𝑗(𝑞

−1, 𝑝(𝑘))∆𝑢(𝑘 + 𝑗 − 1) 

 

(3.15) 

Subsequently, one can predict the outputs as follows: 

 

𝑦(𝑘 + 𝑗) = 𝐹𝑗(𝑞
−1, 𝑝(𝑘))𝑦(𝑘) + 𝐵(𝑞−1, 𝑝(𝑘))𝐸𝑗(𝑞

−1, 𝑝(𝑘))∆𝑢(𝑘 + 𝑗 − 1) 

 

(3.16) 

Or 

 

𝑦(𝑘 + 𝑗) = 𝐹𝑗(𝑞
−1, 𝜃(𝑘))𝑦(𝑡) + 𝐺𝑗(𝑞

−1, 𝜃(𝑘))∆𝑢(𝑘 + 𝑗 − 1) 

 

(3.17) 
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It is worth noting that 𝐸𝑗 and 𝐹𝑗 polynomials can be calculated recursively, according to [2]. 

The vectorized form of Equation (3.17) will be 

 

𝑌 = 𝐺𝑈 + 𝐹 

 

(3.18) 

where  

𝐺 = [
𝐺1 0 0
0 ⋱ 0
0 0 𝐺𝑁

] , 𝐹 = [

𝐹1
𝐹2
⋮
𝐹𝑁

] 

3.2.4 Stability  

After output prediction, the asymptotical stabilizing state feedback control can be 

described: 

𝑢 = −𝐾𝑥  

𝑥(𝑘) ∈ 𝑆𝐼 

𝑥(𝑘 + 𝑁) ∈ 𝑆𝑇 

 

(3.19) 

𝑆𝐼 characterizes initial feasibility region, in which 𝑆𝐼 = {𝑥 ∈ 𝑅
𝑛|𝑥 ∈ 𝑋,−𝐾𝑥 ∈ 𝑈}, and 𝑆𝑇 

denotes the terminal feasibility region, 𝑆𝑇 = {𝑥 ∈ 𝑅
𝑛|𝑥(𝑘 + 𝑁)𝑇𝑄𝑝𝑥(𝑘 + 𝑁) <

1

𝛾
}. As previously 

discussed, this method aims to expand 𝑆𝐼 and 𝑆𝑇 to enjoy a progressive controller. The first step is 

to enlarge 𝑆𝐼through a general interpolation MPC. Secondly, the largest possible 𝑆𝑇 that meet the 

constraints will be chosen by minimizing 𝛾 . The control law of IMPC can be described as follows: 

𝑥 =∑𝜆𝑖𝑥𝑖

𝑛

𝑖=1

,∑𝜆𝑖 = 1,

𝑛

𝑖=1

 𝜆𝑖 ≥ 0 

𝑢 = −∑𝑘𝑖𝜆𝑖𝑥𝑖

𝑛

𝑖=1

 

(3.20) 

Where 𝜆𝑖 are coefficients, and 𝑛 is the number of predefined feedback gains 𝑘𝑖 that stem 

from Ackermann's formula as follows: 

𝐾𝑖 = [0 ⋯ 0 1]𝑄𝑐,𝑖
−1𝛼𝑖(𝐴) (3.21) 

where 𝛼𝑖(𝐴) is the characteristic polynomial, and 𝑄𝑐,𝑖 is the controllability matrix. 
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𝛼𝑖(𝐴) = det (𝑆𝐼 − (𝐴𝑖 − 𝐵𝑖𝐾𝑖)) 

𝑄𝑐,𝑖 = [𝐵 𝐴𝐵 𝐴2𝐵 … 𝐴𝑛𝑥−1𝐵  ] 

 

                  
(3.22) 

Lemma1: Taking the state-space model, as stated in Equations (3.3), the proposed general 

IMPC method is recursively feasible. 

Proof: Substituting Equation (3.20) in Equation (3.3) results in: 

𝑥(𝑘 + 1) = (𝐴(𝑘)∑𝜆𝑖𝑥𝑖

𝑛

𝑖=1

) − (𝐵(𝑘)∑𝑘𝑖𝜆𝑖𝑥𝑖

𝑛

𝑖=1

) =∑(𝐴 − 𝐵𝑘𝑖)𝜆𝑖𝑥𝑖

𝑛

𝑖=1

=∑𝑀𝑖𝜆𝑖𝑥𝑖

𝑛

𝑖=1

 

 

(3.23) 

If 𝑥(𝑘) ∈ 𝑆𝐼 , subsequently (𝐴 − 𝐵𝑘𝑖)𝜆𝑖𝑥𝑖 ∈ 𝑆𝐼 , which yields 𝑥(𝑘 + 1) ∈ 𝑆𝐼 . Besides, it 

can easily be shown that −𝐾𝑥 ∈ 𝑈 as below: 

|𝑢| ≤∑𝜆𝑖|𝑘𝑖𝑥𝑖|

𝑛

𝑖=1

≤ (∑𝜆𝑖

𝑛

𝑖=1

)𝑢𝑚𝑎𝑥 ≤ 𝑢𝑚𝑎𝑥 
 

(3.24) 

According to Equation (3.23), the state trajectories are {−𝐾𝑥, 𝐾𝑀𝑖𝑥, 𝐾𝑀𝑖
2𝑥,… }. With this 

in mind, the enhanced feasible invariant set can be determined by Maximal Admissible Set (MAS) 

as: 

𝑠𝑖 = {𝑥|Η𝑖𝑥 ≤ 𝛼} 

𝑆𝐼 = 𝐶𝑜{𝑆1, 𝑆2, … 𝑆𝑛} 

(3.25) 

where Η𝑖 = [𝑀𝑖, 𝑀𝑖
2, … ,𝑀𝑖

𝑛]
𝑇
, 𝑎𝑛𝑑 𝛼 = [1, … , 1]𝑇 

After computing 𝐾𝑖  and proving the recursive feasibility, the stability is required to be 

guaranteed with a Lyapunov function.  

Lemma2:  The system, described in Equation (3.1), is asymptotically stable under the 

interpolated control law (3.20) if there is 𝑄𝑝 = 𝑄𝑝
𝑇 > 0, which implies Equation (3.26). 

𝑀𝑖
𝑇𝑄𝑝𝑖𝑀𝑖 − 𝑄𝑝𝑖 + 𝑄𝑖 + 𝐾𝑖

𝑇𝑅𝑖𝐾𝑖 ≤ 0, 𝑖 = 1, …𝑛 (3.26)  

Proof: Considering 𝑉 = 𝑥(𝑘)𝑇𝑄𝑝𝑥(𝑘) > 0 as the candidate Lyapunov function in order to 

ensure terminal penalty, the controller 𝑢 = −𝐾𝑥 exists, if the equation below satisfies: 

𝑉(𝑥(𝑘 + 1)) − 𝑉(𝑥(𝑘)) < 0, 𝑘 = 0,… , 𝑝 − 1, 𝑥(𝑘) ∈ 𝑆𝑇 

𝑥(𝑘 + 1)𝑇𝑄𝑝𝑥(𝑘 + 1) − 𝑥(𝑘)
𝑇𝑄𝑝𝑥(𝑘) ≤ −𝑥(𝑘)

𝑇𝑄𝑥(𝑘) − 𝑢(𝑘)𝑇𝑅𝑢(𝑘) 

(3.27) 

By substituting 𝑢 = −𝐾𝑥, we get 
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𝑀𝑇𝑄𝑝𝑀− 𝑄𝑝 + 𝑄 + 𝐾
𝑇𝑅𝐾 ≤ 0 

𝑀 = 𝑑𝑖𝑎𝑔(𝑀𝑖) 

(3.28)  

After showing the recursive feasibility and asymptotically stability of the proposed method, 

the terminal region must be determined. While region 𝑆𝑇 is desired to be as large as possible to 

reduce conservatism, increasing this area might cause violating the constraints. As a result, the 

minimum value of 𝛾 that satisfies constraints can be calculated by an optimization problem. It is 

proved that 𝛾 can be derived from the following optimization problem [276]: 

min
𝛾
𝛾 

1

𝛾
𝐴𝑇𝑃

−1𝐴𝑇
𝑇 ≤ 𝐵𝑇𝐵𝑇

𝑇 

(3.29) 

where 𝐴𝑇 = [−𝐼𝑛  𝐾 𝐼𝑛 − 𝐾]
𝑇 , 𝐵𝑇 = [𝑥𝑚𝑎𝑥 − 𝑥𝑠  ∆𝑢𝑚𝑎𝑥  𝑥𝑚𝑎𝑥 − 𝑥𝑠   ∆𝑢𝑚𝑎𝑥]

𝑇 , and 𝑥𝑠  is 

the desired state.  

It is verified that the proposed method with the IO form is asymptotically stable with the 

least possible conservatism through increased initial and final feasible regions. At last, the LPV-

IMPC procedure can be summarized in six steps: 

Step 1:  Identify LPV input-output model 

Step 2: Find 𝐾𝑖 from Equation (3.21).  

Step 3: Adjust the controller parameters, i.e., 𝑄, 𝑃, and 𝑁 

Step 4: Specify 𝑄𝑝 and 𝛾 by solving Equations (3.26) and (3.29). 

Step 5: Solve the constrained quadratic optimization problem to find 𝜆𝑖 and 𝑥𝑖 

min
𝜆𝑖,𝑥𝑖

𝐽 

Subjected to constraints (3.2) and 

𝑥(𝑘) ∈ 𝑆𝐼 

𝑥(𝑘 + 𝑁) ∈ 𝑆𝑇 

Step 6: Implement the control signal to the plant and repeat the procedure 

3.3 Results and discussions  

The proposed method is compared with one of the most current research on MPC-LPV-IO 

[276] in two case studies. Two scenarios are constructed to show the studied procedure's 

functionality in both case studies, including setpoint tracking and disturbance rejection. The 

underlying reason behind the first case study was to underline the proposed method's superiority 
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in reducing conservatism through an increased attraction region while being cost-effective. The 

investigated controller in [276] is confirmed to be asymptotically stable with a large enough 

terminal region using an IO model while suffering from computational complexity and 

conservatism. More specifically, although [276] guaranteed stability with the largest possible 

terminal region, the proposed strategy in this paper increases both terminal and initial region, 

resulting in a more tractable controller. The first example mainly compared two methods in terms 

of tractability (conservatism and computation) in a simple case study, where the control 

performance might be similar (in terms of transient and steady-state factors). The first example was 

a simple MIMO process with two inputs, two outputs, and one scheduling variable. However, in 

stark contrast, the second case study was a complicated large-scale process with 25 state variables, 

five inputs, five outputs, and two scheduling variables. The key objective of the second case study 

was to assess two methods in terms of control performance. Example two aimed to show the sharp 

distinction between the two methods when the computational volume experienced a significant rise 

due to multi-scheduling variables and a larger process size. Moreover, unlike the pre-known LPV-

IO model of the first example, the process needed to be identified with an LPV-IO model in the 

second example. According to the ultimate aim of the two examples, [276] the controller in the 

first example is named terminal region MPC (TRMPC), and in the second example, LPV-IO-MPC. 

3.3.1 Case study 1 

The conservatism and computational load of the two methods were investigated in this 

example. The computation load was measured per second (s), and a criterion was indicated for 

the first time to evaluate progressiveness per percentage. The conservatism rate (CR) is 

calculated by the multiplication of the surface area of the initial feasible region (𝐴𝐼) and the 

surface area of the final feasible region (𝐴𝐹), divided by the square of the total surface area (𝐴𝑇): 

𝐶𝑅 =
𝐴𝐼 ∗ 𝐴𝐹

𝐴𝑇
2 ∗ 100 

(3.30) 

where  𝐴𝑇 can be expressed by (𝑥1𝑚𝑎𝑥 − 𝑥1𝑚𝑖𝑛) ∗ (𝑥2𝑚𝑎𝑥 − 𝑥2𝑚𝑖𝑛). The more the CR is, 

the less conservative the controller is. The first scenario was reference tracking, and the second 

was a detailed assessment of the studied method in terms of bounded disturbance rejection. The 

following LPV-IO model is a good case in point to confirm the proposed method's superiority in 

conservatism rate and computation load (the elapsed time for running the program) [276].  
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𝑎1(𝑝𝑘) = −0.2 + 0.7𝑝(𝑘),      𝑎2(𝑝𝑘) = 0.7 + 0.4𝑝(𝑘) 

       𝑏1(𝑝𝑘) = 1.6 + 2.8𝑝(𝑘),      𝑏2(𝑝𝑘) = 3.4 + 1.2𝑝(𝑘) 

𝑥𝑚𝑎𝑥 = 3, 𝑃 = [0,1] 

(3.31) 

According to the given IO model, the system has one input, one output, and two 

state variables. The proposed system's performance has been compared with [276], 

named (terminal region MPC) TRMPC in Figures 3.1 to 3.3. In this section, the first 

method is LPV-IO-IMPC, and the second is TRMPC. Looking at Figure 3.1, despite 

changes in the scheduling signal, the input and output of both methods track the 

reference. Both systems' transient response is fast enough (rise time of the first and 

second methods were 3.45 and 3.67 seconds, respectively) and experiences low 

oscillations (the overshoot of the first and second methods were 15.30% and 10.44%, 

respectively). In the case of steady-state responses, either has a short settling time (It 

took 12.54s and 13.31s to reach the setpoint for the first and second methods, 

respectively). Figure 3.2 shows how vast the initial feasible region and final feasible 

region were. It is evident that the [276] method is immensely conservative compared to 

the proposed method since the area of the initial feasible region in the proposed method 

(𝑆1) is about six times that of the TRMPC method (𝑆2) (the area of the second method 

is 3.2, and the area of the first method is 14.8). In contrast, both methods' terminal 

feasible region is roughly equal (the former is 2.45, and the latter is 2.32). As stated in 

Equation (3.30), the CR for the first method is 9.67 percent and for the second is 42.39 

percent. Put another way, the current strategy is nearly four times less conservative than 

the previous one. It should also be noted that the time required to run the program (RT) 

in the proposed method is 1.49 seconds, while it is 15.80 seconds in the TRMPC, which 

undermines the applicability of the procedure. Accordingly, both methods were 

asymptotically stable and tracked the given reference, but the proposed method is way 

more feasible because it is considerably less time-consuming and more progressive. In 

the second scenario, the effectiveness of two approaches in the face of disturbance is 

investigated. The mentioned disturbance has affected the process by the amplitude of 

0.1 from 71s to 80s. Turning to Figure 3.3, the most striking feature is that both 

strategies could eliminate the disturbance, albeit the TRMPC eliminated the disturbance 

slowly (the time required to remove the disturbance in the second method was 11 
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seconds and in the first method was 4 seconds). The difference between the two 

methods are numerically summarized in Table 3.1, where 𝑇𝑟 is 100% rise time, 𝑇𝑠 is 2% 

settling time, 𝑃𝑂 is Percentage Overshoot, 𝑒𝑠𝑠 is steady-state error, and 𝑇𝑑 is the time 

required to reject disturbance. 

Table 3.1:Comparison of two controllers' performance in case study 1 

Controllers 𝑻𝒓(𝒔) 𝑻𝒔(𝒔) PO (%) 𝑻𝒅(𝒔) RT(s) 𝑨𝑰 𝑨𝑭 CR (%) 

TRMPC 3.67 13.31 10.44 11 15.80 3.2 2.45 42.39 

LPV-IO-

IMPC 

3.45 12.54 15.30 4 1.49 14.8 2.32 9.67 
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Figure 3.1: The first scenario (setpoint tracking): Scheduling variable (green), references (blue), TRMPC 

(Red), and the proposed method (orange) 
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Figure 3.2: Initial and terminal feasible regions under the TRMPC (blue) and the proposed method (dashed-

red) 

 

Figure 3.3:The second scenario: Reference tracking in the presence of disturbance under the TRMPC (red) 

and the proposed method (orange) 
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3.3.2 Case study 2 

3.3.2.1 Process description  

Alkylation of benzene with ethylene, a principal process in the petrochemical industry, 

produces ethylbenzene, widely used as a large-scale benchmark. As shown in Figure 3.4, the 

process studied in this work consists of four continuously stirred tank reactors (CSTRs) and a flash 

tank separator. A detailed description of the process is described in [52, 282]. The process's 

manipulated variables are heat inputs to five vessels shown by Q1, Q2, Q3, Q4, and Q5. The 

temperatures of five vessels 𝑇1, T2, T3, T4, T5 are considered the process outputs. Process outputs' 

dynamic behaviour is set out in detail in Equations 3.32 to 3.36, and all parameters are named in 

Table 3.2.  For more information and fixed-parameter value, refer to [283]. 

Table 3.2: Process variables of the alkylation of benzene process 

𝑪𝑨𝟏, 𝑪𝑩𝟏, 𝑪𝑪𝟏, 𝑪𝑫𝟏 Concentrations of A, B, C, D in CSTR-1 

𝑪𝑨𝟐, 𝑪𝑩𝟐, 𝑪𝑪𝟐, 𝑪𝑫𝟐 Concentrations of A, B, C, D in CSTR-2 

𝑪𝑨𝟑, 𝑪𝑩𝟑, 𝑪𝑪𝟑, 𝑪𝑫𝟑 Concentrations of A, B, C, D in CSTR-3 

𝑪𝑨𝟒, 𝑪𝑩𝟒, 𝑪𝑪𝟒, 𝑪𝑫𝟒 Concentrations of A, B, C, D in Separator 

𝑪𝑨𝟓, 𝑪𝑩𝟓, 𝑪𝑪𝟓, 𝑪𝑫𝟓 Concentrations of A, B, C, D in CSTR-1 

𝑪𝑨𝒓, 𝑪𝑩𝒓, 𝑪𝑪𝒓, 𝑪𝑫𝒓 Concentrations of A, B, C, D in 𝐹𝑟 , 𝐹𝑟1, 𝐹𝑟2 

𝑻𝟏, 𝑻𝟑, 𝑻𝟑, 𝑻𝟒, 𝑻𝟓 Temperatures in each vessel 

𝑻𝒓𝒆𝒇 Reference temperature 

𝑭𝟑, 𝑭𝟓, 𝑭𝟕, 𝑭𝟖, 𝑭𝟗 Effluent flow rates from each vessel 

𝑭𝟏, 𝑭𝟐, 𝑭𝟒, 𝑭𝟔, 𝑭𝟏𝟎 Feed flow rates to each vessel 

𝑭𝒓, 𝑭𝒓𝟏, 𝑭𝒓𝟐 Recycle flow rates 

𝑯𝒗𝒂𝒑𝑨, 𝑯𝒗𝒂𝒑𝑩 , 𝑯𝒗𝒂𝒑𝑪, 𝑯𝒗𝒂𝒑𝑫 Enthalpies of vaporization of A, B, C, D 

𝑯𝑨𝒓𝒆𝒇, 𝑯𝑩𝒓𝒆𝒇, 𝑯𝑪𝒓𝒆𝒇 , 𝑯𝑫𝒓𝒆𝒇 Enthalpies of A, B, C, D at 𝑇𝑟𝑒𝑓  

∆𝑯𝒓𝟏 , ∆𝑯𝒓𝟐 , ∆𝑯𝒓𝟑 Heat of reactions 1, 2 and 3 

𝑽𝟏, 𝑽𝟐, 𝑽𝟑, 𝑽𝟒, 𝑽𝟓 Volume of each vessel 

𝑸𝟏, 𝑸𝟐, 𝑸𝟑, 𝑸𝟒, 𝑸𝟓 External heat/coolant inputs to each vessel 

𝑪𝒑𝑨, 𝑪𝒑𝑩, 𝑪𝒑𝑪, 𝑪𝒑𝑫 Heat capacity of A, B, C, D at liquid phase 

𝜶𝑨, 𝜶𝑩, 𝜶𝑪, 𝜶𝑫 Relative volatilities of A, B, C, D 

𝑪𝑨𝟎, 𝑪𝑩𝟎, 𝑪𝑪𝟎, 𝑪𝑫𝟎 Molar densities of pure A, B, C, D 

𝑻𝑨𝟎, 𝑻𝑩𝟎, 𝑻𝑫𝟎 Feed temperatures of pure A, B, D 

𝒌 Fraction of overhead flow recycled to the reactors 
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Figure 3.4: Flow diagram of alkylation of benzene process [52, 282] 

 

𝑑𝑇1
𝑑𝑡

=
𝑄1 + 𝐹1𝐶𝐴0𝐻𝐴(𝑇𝐴0) + 𝐹2𝐶𝐵0𝐻𝐵(𝑇𝐵0) + ∑ 𝐹𝑟2𝐶𝑖𝑟𝐻𝑖(𝑇4) − 𝐹3𝐶𝑖1𝐻𝑖(𝑇1)

𝐴,𝐵,𝐶,𝐷
𝑖

∑ 𝐶𝑖1
𝐴,𝐵,𝐶,𝐷
𝑖 𝐶𝑝𝑖𝑉1

+
−∆𝐻𝑟1𝑟1(𝑇1, 𝐶𝐴1, 𝐶𝐵1) − ∆𝐻𝑟2𝑟2(𝑇1, 𝐶𝐵1, 𝐶𝐶1)

∑ 𝐶𝑖1
𝐴,𝐵,𝐶,𝐷
𝑖 𝐶𝑝𝑖

 

 

      
 

(3.32) 

 

 

𝑑𝑇2
𝑑𝑡

=
𝑄2 + 𝐹4𝐶𝐵0𝐻𝐵(𝑇𝐵0) + ∑ 𝐹3𝐶𝑖1𝐻𝑖(𝑇1) − 𝐹5𝐶𝑖2𝐻𝑖(𝑇2)

𝐴,𝐵,𝐶,𝐷
𝑖

∑ 𝐶𝑖2
𝐴,𝐵,𝐶,𝐷
𝑖 𝐶𝑝𝑖𝑉2

+
−∆𝐻𝑟1𝑟1(𝑇2, 𝐶𝐴2, 𝐶𝐵2) − ∆𝐻𝑟2𝑟2(𝑇2, 𝐶𝐴2, 𝐶𝐵2)

∑ 𝐶𝑖2
𝐴,𝐵,𝐶,𝐷
𝑖 𝐶𝑝𝑖

 

 

      

 

(3.33) 

 

 

𝑑𝑇3
𝑑𝑡

=
𝑄3 + 𝐹6𝐶𝐵0𝐻𝐵(𝑇𝐵0) + ∑ 𝐹5𝐶𝑖2𝐻𝑖(𝑇2) − 𝐹7𝐶𝑖3𝐻𝑖(𝑇3)

𝐴,𝐵,𝐶,𝐷
𝑖

∑ 𝐶𝑖3
𝐴,𝐵,𝐶,𝐷
𝑖 𝐶𝑝𝑖𝑉3

+
−∆𝐻𝑟3𝑟1(𝑇3, 𝐶𝐴3, 𝐶𝐵3) − ∆𝐻𝑟3𝑟2(𝑇3, 𝐶𝐵3, 𝐶𝐶3)

∑ 𝐶𝑖3
𝐴,𝐵,𝐶,𝐷
𝑖 𝐶𝑝𝑖

 

 

      

 

(3.34) 
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𝑑𝑇4
𝑑𝑡

=
𝑄4 + ∑ 𝐹7𝐶𝑖3𝐻𝑖(𝑇3) + 𝐹9𝐶𝑖5𝐻𝑖(𝑇5)

𝐴,𝐵,𝐶,𝐷
𝑖

∑ 𝐶𝑖4
𝐴,𝐵,𝐶,𝐷
𝑖 𝐶𝑝𝑖𝑉4

+
∑ −𝑀𝑖𝐻𝑖(𝑇4) − 𝐹8𝐶𝑖4𝐻𝑖(𝑇4) − 𝑀𝑖𝐻𝑣𝑎𝑝𝑖
𝐴,𝐵,𝐶,𝐷
𝑖

∑ 𝐶𝑖4
𝐴,𝐵,𝐶,𝐷
𝑖 𝐶𝑝𝑖𝑉4

 

 

    

(3.35) 

  

 

𝑑𝑇5
𝑑𝑡

=
𝑄5 + 𝐹10𝐶𝐷0𝐻𝐷(𝑇𝐷0) + ∑ 𝐹𝑟1𝐶𝑖𝑟𝐻𝑖(𝑇4) − 𝐹9𝐶𝑖5𝐻𝑖(𝑇5)

𝐴,𝐵,𝐶,𝐷
𝑖

∑ 𝐶𝑖5
𝐴,𝐵,𝐶,𝐷
𝑖 𝐶𝑝𝑖𝑉5

+
−∆𝐻𝑟2𝑟2(𝑇5, 𝐶𝐵5, 𝐶𝐶5) − ∆𝐻𝑟3𝑟3(𝑇5, 𝐶𝐴5, 𝐶𝐷5)

∑ 𝐶𝑖5
𝐴,𝐵,𝐶,𝐷
𝑖 𝐶𝑝𝑖

 

 

    

  
(3.36) 

The steady-state value of inputs and outputs and initial conditions are indicated in Table 

3.3. The controller desire to steer the system from this initial condition to a steady-steady states 

condition while satisfying the constraints: 

|𝑄1 − 𝑄1𝑠| < 7.5 × 10
5, |𝑄2 − 𝑄2𝑠| < 5 × 10

5, |𝑄3 − 𝑄3𝑠| < 5 × 10
5 

|𝑄4 − 𝑄4𝑠| < 6 × 10
5, |𝑄5 − 𝑄5𝑠| < 5 × 10

5 

Table 3.3:the steady-state and initial values 

 

 

3.3.2.2 Process identification and control  

In contrast to previous works that developed a nonlinear MPC or noncentralized MPC, the 

MPC setup rests on an LPV model in this paper, having lower complexity and better performance. 

More significantly, Fr, CC0, and CD0 are considered to be time-varying, for the first time, to the 

Steady-state 

temperatures 

of vessels (K) 

𝑻𝟏𝒔 = 𝟒𝟕𝟕. 𝟐𝟒 𝑻𝟐𝒔 = 𝟒𝟕𝟔. 𝟗𝟕 𝑻𝟑𝒔 = 𝟒𝟕𝟑. 𝟒𝟕 𝑻𝟒𝒔 = 𝟒𝟕𝟎. 𝟔𝟎 𝑻𝟓𝒔 = 𝟒𝟕𝟖. 𝟐𝟖 

Steady-state 

inputs (J/K) 

𝑄1𝑠 = −4.4 × 10
6  𝑄2𝑠 = −4.6 × 10

6 𝑄1𝑠 = −4.7 × 10
6 𝑄1𝑠 = 9.2 × 10

6 𝑄1𝑠 = 5.9 × 10
6 

Initial 

temperatures 

of vessels (K) 

𝑇1,0 = 443.02 𝑇2,0 = 437.12 𝑇3,0 = 428.37 𝑇4,0 = 433.15 𝑇5,0 = 457.55 
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best of the author's knowledge. From a practical point of view, these variables are selected to be 

scheduling variables with ±10%  variation around their nominal values. Before applying the 

controller, the LPV-IO framework is required to be identified so that ten levels are defined within 

the range of 90% to 110% of the nominal value for each scheduling variable. The global LPV 

model originates from a polynomial interpolation of ten local LTI models, identified with 500 data 

in each level (operating condition). Each local model has five inputs and five outputs. All 

manipulated inputs are chosen to be pseudorandom binary signals to extract data with a sampling 

time of T = 10 s . Afterward, the LTI models are identified using the MATLAB system 

identification Toolbox with the measured data. After estimating the output using polynomial 

interpolation, we realized that a third-degree interpolation produced a good fit for constructing the 

global LPV-IO model. At the same time, the order of local transfer functions varies from second 

to fifth.  The scheduling variables and the responses from the global LPV-IO model and nonlinear 

model are presented in Figure 3.5 and Figure 3.6, respectively. The figures supplied clearly show 

that the identified LPV model can accurately predict the nonlinear system's behaviour. Moreover, 

the Mean Square Error (MSE) and Akaike's Final Prediction Error (FPE) for the global model were 

0.032 and 0.058 in succession, and for the local LPV models, the range of MSE was between 0.004 

and 0.062, and FPE changed from 0.040 to 0.081. Figure 3.6 and the numerical results show that 

the LPV-IO model is sufficiently reliable to estimate responses. 

In the next step, the performance of the two controllers in respect of setpoint tracking and 

disturbance rejection is investigated, in which a step change at 𝑡 = 1500  s with amplitude 

2 × 10−3  is made in 𝐹1  and  𝐹2  as disturbances. The controller parameters were 𝑁 = 7;  𝑄 =

 2000 ∗ 𝐼5×5, 𝑅 =  10
−7 ∗ 𝐼5×5 . The proposed approach is compared with the LPV controller 

studied in [276] in Figure 3.7, where the red line denotes the references, the dash-dot blue line is 

the proposed method, and the dashed black line is LPV-IO RMPC. Looking firstly at reference 

tracking, the proposed controller reached the setpoint at an acceptable time, while LPV-IO-RMPC 

suffers from large-amplitude oscillations. Although the LPV-IO-MPC has a faster response in some 

outputs, fluctuation might be detrimental. In general, regardless of the speed of response and 

oscillations, two methods followed the setpoints for 𝑇1 to 𝑇5 in the first scenario. 
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Figure 3.5: Scheduling variables from left to right: 𝐅𝐫(Recycle flow rates), 𝐂𝐂𝟎(Molar densities of pure C), 

𝐂𝐃𝟎(Molar densities of pure D) 
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Figure 3.6: Temperatures in five vessels: blue and red lines indicate the original and simulated outputs from 

the LPV model, respectively. 

Concerning disturbance rejection, the studied approach outperforms with removing the 

disturbance in a short time ranging from 110s to 355s for 𝑇1  to 𝑇5 . This method experienced 

insignificant undershoot around the setpoint, unlike other methods. After time 𝑡 = 1500𝑠, when 

the disturbance was applied to the process, the LPV-IO-MPC violated both inputs and outputs 

constraints and became highly unstable. This method diverged when facing a constant disturbance 
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and failed to track the setpoint.  At the same time, the cost function of LPV-IO-MPC is considerably 

more significant than the proposed method's cost function, which is firmly rooted in the utter failure 

of the former in the presence of disturbances. The wasted resources by LPV-IO-MPC 4.53 ∗  108 

times greater than the proposed method, proving that the studied approach is significantly cost-

effective.  

The MSE, 100% rise time (𝑇𝑟), 2% settling time (𝑇𝑠), Percentage Overshoot (PO), steady-

state error (𝑒𝑠𝑠), and time is required to reject disturbance (𝑇𝑑) in different outputs for the two 

methods are reported in Table 3.4. In short, the proposed method had a high speed (rise time, 

settling time, and time required to remove disturbance) and lower MSE and cost. Not surprisingly, 

the MSE of the first method ranged between 4900.11 to 5410.02, and the proposed method's MSE 

changed from 43.68 to 287.90, which implies that using interpolation MPC can reduce the extent 

of the error and improve setpoint tracking. Regarding transient response factors, The LPV-IO-MPC 

had a fairly lower 𝑇𝑟 and more massive PO, varying from 0% to 9.7 %, than IMPC. The proposed 

method had an acceptable range of 𝑇𝑟 with negligible PO. Concerning the steady-state response 

factors, the proposed method for all temperatures had significantly smaller 𝑇𝑠 , ranging from 

186.00s to 418.81s. Meanwhile, the steady-state error of LPV-IO-MPC was enormous, although 

the proposed method reached the exact setpoint, and its error was zero. Taking disturbance removal 

into account, the disturbance can be successfully rejected in a time between 305s to 610s using 

IMPC. It should be mentioned that 𝑇𝑑 has not been presented in Table 3.4 for the first method since 

it failed to remove disturbance. 
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Figure 3.7: the temperatures of vessels and cost function using three studied methods (red line: references, 

the dash-dot blue line: proposed method, the dashed black line: LPV-IO RMPC)  

 

Table 3.4: MSE, rise time, settling time, steady-state error, and disturbance rejection time of all 

temperatures 

Methods Criteria  𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 

 

 

 

LPV-IO-MPC 

MSE 115.02 112.38 91.30 92.30 126.57 

𝑇𝑟(s) 
5334.06 5314.69 5076.86 4900.11 5410.02 

𝑇𝑠(s) 
651.33 763.51 268.00 460.60 312.60 

PO (%) 0.63 6.13 9.70 0 0.31 

𝑒𝑠𝑠  
116.7 8.8 -25.9 190.9 49.9 

𝑇𝑑(s) 
--- --- --- --- --- 

 

 

 

Proposed method 

MSE 158.82 45.72 43.68 248.20 198.4 

𝑇𝑟(s) 254.1 69.57 57.58 287.90 248.2 

𝑇𝑠(s) 262.1 418.81 186.64 295.80 296.60 

PO (%) 0.04 0.80 1.54 0 0.15 
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𝑒𝑠𝑠 
0 0 0 0 0 

𝑇𝑑(s) 506 575 352 610 304 

 

3.4 Conclusion  

This paper interpolated MPC for LPV systems using input-output representation, requiring 

measured state-space variables. This paper's primary purpose was to ensure stability and 

applicability to real-world environments from the computational burden and prudence 

perspective—meanwhile, the method aimed to ensure acceptable transient and steady-state control 

performance. Firstly, the method has been proven to be asymptotically stable and recursive 

feasible. Subsequently, in two examples, the proposed method was compared with one of the up-

to-the-minute research, called LPV-IO-MPC [29]. The first example showed that the proposed 

method markedly declines the computational load, dramatically grows the initial feasible region, 

and keeps the terminal region as large as possible, resulting in a less conservative controller. 

However, the other controller only improves the terminal region and suffers from conservatism 

despite convincing control performance.  The second example pointed out that when the process is 

more complicated, large-scale, and has multiple scheduling variables, the controller's performance 

[276] is undermined in setpoint tracking and can be ruined by a constant disturbance. In contrast, 

the proposed method closely followed the reference and remained stable in the presence of 

disturbance.  
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CHAPTER 4 

4 ROBUST MODEL PREDICTIVE CONTROLLER USING 

RECURRENT NEURAL NETWORKS FOR INPUT-OUTPUT 

LINEAR PARAMETER VARYING SYSTEMS 

Chapter 4 presents the study for Objective 2. The work presented in this chapter is included 

in the following paper: 

Hadian, M., Ramezani, A., & Zhang, W. (2021). Robust Model Predictive Controller Using 

Recurrent Neural Networks for Input–Output Linear Parameter Varying 

Systems. Electronics, 10(13), 1557. Published. 

Abstract 

This paper develops a Model Predictive Controller (MPC) for constrained nonlinear MIMO 

systems subjected to bounded disturbances. A Linear Parameter Varying (LPV) model assists MPC 

in dealing with nonlinear dynamics. While most research on MPC with LPV is established based 

on the state-space framework, some state variables might not be measurable in practice. This study 

represents the nonlinear process by an input-output LPV (LPV-IO) framework. Two primary 

objectives of this study are to reduce online computational load compared to the existing literature 

of MPC with an LPV-IO model and to confirm the robustness of the controller in the presence of 

disturbance. A Recurrent Neural Network (RNN) is employed to solve real-time optimization 

problems efficiently. Regarding robustness, a new control law is developed, which comprises a 

fixed control gain (𝐾) and a free perturbation (𝐶)—the former acts as stabilizing state feedback 

calculated offline with the terminal region. The free control moves (𝐶), on the other hand, are 

determined online to ensure input-state stability in the presence of bounded disturbances. The 

proposed controller is proved to be stable and recursive feasible. The strategy is examined in an 

Alkylation of the Benzene Process and shows outstanding performance in both setpoint tracking 

and disturbance rejection problems. Moreover, the superiority of RNN over three conventional 

optimization algorithms is underlined in terms of MSE, the average time for solving the 

optimization problem, and the value of the cost function. 



90 

 

4.1 Introduction  

Over the past few decades, MPC has attracted a great deal of attention in both industry and 

academia [2, 56, 284, 285]. This considerable prominence of MPC is rooted in several factors, 

including simple generalization to a MIMO system, applicability to non-minimum phase and 

unstable processes, capability to compensate for the delay, and imposing output/input constraints 

[2]. While influential theories exist in MPC for linear systems, some systems are nonlinear and 

operate under large operating conditions, or some external parameters can fundamentally change 

the process response [268]. Nonlinear MPC (NMPC) has been developed to deal with systems with 

nonlinear dynamics. A higher level of algorithm complexity and excessive computational load are 

two main drawbacks of NMPC. 

An LPV framework is established in this paper to mitigate these problems by assisting the 

MPC in modelling dynamic and static nonlinearities [148, 273, 286, 287]. MPC founded on LPV 

has aroused enthusiasm among researchers to ensure practical implementation to bridge the gap 

between linear MPC and NMPC [63, 279, 288] (less complicated than nonlinear models and more 

accurate than linear models). With the help of LPV, MPC can be employed for nonlinear and/or 

time-varying systems [66, 148, 289, 290]. LPV offers MPC a linear model instead of nonlinear 

models, where the scheduling variable denotes nonlinear dynamic parameters, changing 

environmental conditions, and operating points. Also noteworthy is that in an LPV model, current 

values of scheduling variables can be measured or estimated, but the future values are unknown, 

so a robust MPC is required, or the future values can be estimated.  

Most MPC-LPV literature centers on the state-space model, while states might not be 

measurable in many industrial applications. Moreover, using an observer can complicate the 

design. In [275], MPC-LPV with SS and IO presentations are compared for a Control Moment 

Gyroscope (CMG). The results showed that the execution time would reduce when using the IO 

framework. To this end, this paper establishes MPC based on an LPV-IO framework.  

A few MPC have been documented for LPV systems under the I/O formulation, mainly 

focused on stability, computation, and conservatism [268]. One of the initial research on MPC with 

the LPV-IO model can be found at [279], where min-max (worse-case) cost functions are regarded. 

The cost function includes a stage cost for control performance and a terminal cost to grant stability. 

The optimization problem of MPC is written in Bilinear Matrix Inequality (BMI), which can be 

non-convex and challenging. This approach was improved in [276] in order to reduce the 
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complexity level markedly. The authors designed a controller based on a Linear Matrix inequality 

(LMI) convex problem, successfully assessed in an ideal continuous stirred tank reactor (CSTR). 

They also enlarge the terminal region to reduce conservatism moderately. This work employed 

offline controllers and terminal regions to moderately reduce the online computational burden. 

However, the controller still suffers from substantial online computational capacity, stemming 

from solving LMI equations and calculating the Markov coefficient of the LPV system [277]. 

Above all, it is assumed that the future values of scheduling variables can vary inside a convex 

polytope. This assumption is less conservative than a frozen or fixed scheduling variable over the 

prediction horizon, making the optimization problem nonlinear or unreachable [268, 276]. The 

online computational complexity of [276] has been slightly lessened in a sequence of quadratic 

programs. The main drawback of this work lacks provision for recursive feasibility.  

The first novelty of our method is to make the controller, developed in [279], more 

computationally efficient. To the best of our knowledge, for the first time, a computationally 

efficient MPC with an LPV-IO model was presented in this study while keeping the conservatism 

degree as low as reasonably achievable. This paper proposes a recurrent neural network (RNN) to 

deal with the online optimization problem. Thanks to global convergence and low computational 

burden, neural network-based optimizations have been applied to linear, quadratic [216, 217], 

nonlinear programming [218, 219], and variational inequality problems [220, 221]. The RNN is 

pointed out to have a convincing performance in either MPC or NMPC [222-224], in which 

nonlinear optimization can be converted to quadratic programming. The motive behind selecting 

RNN is its promising optimality as well as less complexity, even in real-time nonlinear and large-

scale optimization.  That is why the studied method has been assessed in the Alkylation of the 

Benzene Process, a large-scale nonlinear process with 25 state variables, five inputs, and five 

outputs. 

The second novelty of this paper is to guarantee the robustness of the system when facing 

bounded disturbance. The problem of disturbance rejection has not been studied so far for MPC 

with LPV-IO models. A stabilizing control law based on the input-output measurements is proved 

to ensure the superior closed-loop performance of the controller in the presence of additive 

disturbance. The control law includes a fixed control gain (𝐾) and a free perturbation (𝐶), the 

former designed offline with the largest possible terminal region to reduce conservatism. The free 

control moves are determined online to ensure input-state stability in the presence of bounded 
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disturbances. Adding control moves provide a less conservative framework than those studied in 

[276, 277], where only offline control gain is employed. 

To sum up, the contributions of this method are as follows: 

An RNN-based optimization algorithm is developed to offer global convergence and 

decline the online computational load. 

Free control moves are added to the constant control gain to maintain the closed-loop 

stability when facing bounded disturbances. 

Concerning previous studies for MPC with LPV, the proposed method inherently enjoys a 

shrunken conservatism degree due to finding the larger possible terminal region, using free control 

moves, and the global solution of the optimization problem. 

The rest of the paper is organized as follows. The standard nonlinear model is reformulated 

as an LPV-IO model in Section 2.  The proposed RMPC-LPV structure is developed in Section 3 

and proved to be stable and feasible. The MPC-RNN is presented in section 4. Next, the state-space 

equations, inputs, outputs, and critical parameters of the Alkylation of the Benzene Process are 

wholly outlined in Section 5, followed by a collection of simulations to evaluate the proposed 

control methodology. Key findings are finally summarized in Section 6. 

4.2 Problem statement  

Assume the following discrete-time MIMO linear parameter-varying (LPV) transfer 

function with constraints: 

𝑦(𝑘) = −(∑𝐴𝑖(𝑝(𝑘))

𝑛𝑎

𝑖=1

𝑞−𝑖)𝑦(𝑘) + (∑𝐵𝑗(𝑝(𝑘))

𝑛𝑏

𝑗=0

𝑞−𝑗)𝑢(𝑘) + 𝑑(𝑝(𝑘)) 

(4.1) 

Subject to the following constraints  

𝑢(𝑘) ∈ 𝑈 ≡ {𝑢 ∈ ℝ𝑛𝑢| |𝑢(𝑘)| ≤ 𝑢𝑚𝑎𝑥}           

∆𝑢(𝑘) ∈ 𝑉 ≡ {∆𝑢 ∈ ℝ𝑛𝑢| |∆𝑢(𝑘)| ≤ ∆𝑢𝑚𝑎𝑥}      

𝑦(𝑘) ∈ 𝑌 ≡ {𝑦 ∈ ℝ𝑛𝑦| |𝑦(𝑘)| ≤ 𝑦𝑚𝑎𝑥}   

 

  (4.2) 

where 𝑦(𝑘) are outputs, 𝑢(𝑘) are inputs, 𝑝(𝑘) are scheduling variables, 𝑞−𝑖 is a backshift 

operator, 𝑛𝑎 is the degree of the output polynomial, 𝑛𝑏 is the degree of the input polynomial, 𝑛𝑢 is 

the number of inputs, 𝑛𝑦 is the number of outputs, and 𝑢𝑚𝑎𝑥 , ∆𝑢𝑚𝑎𝑥, and 𝑦𝑚𝑎𝑥 are boundaries. The 

state-space representation of the dynamic model given by Equation (4.1) is [279]: 
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𝑥(𝑘 + 1) =

[
 
 
 
 
 
 
 
−𝑎1 … −𝑎𝑛𝑎−1 −𝑎𝑛𝑎 𝑏0 + 𝑏1 … 𝑏𝑛𝑏−1 𝑏𝑛𝑏

𝐼𝑛𝑦 … 0 0         0 … 0 0

⋮
0
0
0
⋮
0

⋱
……
…
⋱
…

⋮
𝐼𝑛𝑦
0
0
⋮
0

⋮
0
0
0
⋮
0

      

⋮
0
𝐼𝑛𝑢
𝐼𝑛𝑢
⋮
0

⋱
……
…
⋱
0

⋮
0
0
0
⋮
𝐼𝑛𝑢

⋮
0
0
0
⋮
0 ]

 
 
 
 
 
 
 

⏟                                    
𝐴(𝑝(𝑘))

𝑥(𝑘)

+

[
 
 
 
 
 
 
 
𝑏0
0
⋮
0
𝐼𝑛𝑦
0
⋮
0 ]
 
 
 
 
 
 
 

⏟
𝐵(𝑝(𝑘))

𝑢(𝑘) + 𝑑(𝑘) 

 

(4.3) 

where 𝑥(𝑘) = [𝑦(𝑘 − 1)…𝑦(𝑘 − 𝑛𝑎)   𝑢(𝑘 − 1)…𝑢(𝑘 − 𝑛𝑏)]
𝑇. For the sake of 

simplicity, 𝑝(𝑘) is removed from all coefficients 𝑎𝑖 and 𝑏𝑖. The following assumptions are made:  

A1: The parameter-varying matrix are [𝐴(𝑘)  𝐵(𝑘)] ∈ Ω = 𝐶𝑜[[𝐴1 𝐵1],⋯ , [𝐴𝑚 𝐵𝑚]], 

where 𝛺 is the polytope, 𝐶𝑜 is the convex hull, and [𝐴𝑖  𝐵𝑖] are vertices corresponding to 

scheduling variable 𝑝𝑖: 

𝑝 = 𝐶𝑜{𝑝1, … 𝑝𝑚} (4.4) 

A2: The profile of changes in scheduling variables is predetermined from a safety and 

economic point of view with the following upper and lower bounds: 

𝑝 ∈ 𝑃 ≡ {𝑝 ∈ ℝ𝑛𝑝| |𝑝(𝑘)| ≤ 𝑝𝑚𝑎𝑥} (4.5) 

A3: The disturbance is bounded: 

𝑑(𝑘) ∈ 𝐷 ≡ {𝑑 ∈ ℝ𝑛𝑑| |𝑑(𝑘)| ≤ 𝑑𝑚𝑎𝑥}     (4.6) 

A4: The system (4.1) is controllable, i.e., the controllability matrix (M) has a full rank: 

𝑀 = [𝐵 𝐴𝐵 𝐴2𝐵…𝐴𝑛−1𝐵] (4.7) 
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4.3 Robust model predictive controller 

This aims to define a control law that ensures the input-to-state practical stability (ISpS) 

of the system (4.1) with constraints (4.2). The control law is calculated by minimizing the cost 

function at any time instance k: 

𝑉𝑁(𝑥𝑘, 𝑢𝑘, 𝑝𝑘) = ∑[𝑒(𝑘 + 𝑖)𝑇
𝑁

𝑘=0

𝑄𝑒(𝑘 + 𝑖) + ∆𝑢(𝑘 + 𝑖 − 1)𝑇𝑅∆𝑢(𝑘 + 𝑖 − 1)]

+ [𝑥(𝑘 + 𝑁)𝑇𝑄𝑝𝑥(𝑘 + 𝑁)] 

Subject to  

𝑦(𝑘 + 𝑗) = −(∑ 𝐴𝑖
𝑛𝑎
𝑖=1 𝑞−𝑖)𝑦(𝑘 + 𝑗) + (∑ 𝐵𝑖

𝑛𝑏
𝑗=0 𝑞−𝑖)𝑢(𝑘 + 𝑗) + 𝑑(𝑘), j=1,2,…,N-1 

𝑢(𝑘 + 𝑗) ∈ 𝑈 

∆𝑢(𝑘 + 𝑗) ∈ 𝑉 

𝑦(𝑘 + 𝑗) ∈ 𝑌 

𝑥(𝑘 + 𝑁) ∈ 𝑋𝑓 

 

           (4.8) 

where 𝑒 = 𝑟 − 𝑦 is the deviation of output from the reference trajectory, and ∆𝑢 is the 

control increment. 𝑄 and 𝑅 are positive definite state and input weighting matrices being in charge 

of closed-loop achievements, 𝑄𝑝 = 𝑄𝑝
𝑇 > 0  is the terminal penalty matrix being designed to 

ensure stability, and 𝑋𝑓 is the terminal region. The first and second parts of 𝑉𝑁 is named stage cost 

(𝑉𝑠) and terminal cost (𝑉𝑇) respectively. Disturbances are supposed to be fixed over the prediction 

horizon.  

According to [281], a state feedback controller can represent the system's stability with the 

LPV-IO form. The control law (𝑢(𝑘)) is comprised of a fixed state feedback 𝐾 and a free control 

move (𝑐), in which 𝐾 is computed offline, and 𝑐 is obtained from the minimization of (4.8): 

𝑢(𝑘) = −𝐾𝑥(𝑘) + 𝑐(𝑘) (4.9) 

The state-feedback gain accounts for maintaining the final state variable 𝑥(𝑘 + 𝑁) in the 

terminal region while meeting constraints and keeping the controller as less conservative as 

possible. In fact, a constant state feedback controller confirms the stability when there is no 

disturbance. Otherwise, free control moves (𝑐) will be determined online in a min-max problem to 

guarantee the ISpS. Thus, a part of the controller will be calculated offline for conditions that there 
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is not any disturbance, and a part of the controller will be set online to deal with existing 

disturbances or violations of  𝑥(𝑘 + 𝑁) ∈ 𝑋𝑓.  

4.3.1 Offline controller  

In this section, the stability of the system will be represented when 𝑥(𝑘) ∈ 𝑋𝑓 through 

finding control gain 𝐾. After calculating the offline controller, a procedure to specify the terminal 

region is defined. 

Theorem 1: Taking a disturbance-free state-space model of Equations (4.3), there exists a 

control law 𝑢 = −𝐾𝑥 that asymptotically stabilizes the system if 𝑉𝑇 is a positive definite 

Lyapunov function such that  

i. 𝑉𝑇(𝑥(𝑘 + 1)) − 𝑉𝑇(𝑥(𝑘)) < 0 for ∀ 𝑥 ∈ 𝑋𝑓 And ∀ 𝑝 ∈ 𝑃. 

ii. If 𝑥(𝑘) ∈ 𝑋𝑓 then 𝑥(𝑘 + 1) ∈ 𝑋𝑓   

iii. |𝑢| = |𝐾𝑥| ≤ 𝑢𝑚𝑎𝑥  𝑓𝑜𝑟 ∀ 𝑥 ∈ 𝑋𝑓. 

Proof: Considering 𝑉𝑇 = 𝑥(𝑘)
𝑇𝑄𝑝𝑥(𝑘) > 0 as the candidate Lyapunov function, the 

controller 𝑢 = −𝐾𝑥 exists, if the equation below satisfies: 

𝑉𝑇(𝑥(𝑘 + 1)) − 𝑉𝑇(𝑥(𝑘)) < 0 

𝑥(𝑘 + 1)𝑇𝑄𝑝𝑥(𝑘 + 1) − 𝑥(𝑘)
𝑇𝑄𝑝𝑥(𝑘) ≤ −𝑥(𝑘)

𝑇𝑄𝑥(𝑘) − ∆𝑢(𝑘)𝑇𝑅∆𝑢(𝑘) 

  (4.10) 

It is assumed that there exits a K such that 𝐴 − 𝐵𝐾 is stable for all possible pairs of 

[𝐴(𝑘)  𝐵(𝑘)] ∈ Ω. By substituting ∆𝑢 = −𝐾𝑥, and 𝑥(𝑘 + 1) = (𝐴 − 𝐵𝐾)𝑥(𝑘), it yields  

((𝐴 − 𝐵𝐾)𝑥(𝑘)) 𝑇𝑄𝑝((𝐴 − 𝐵𝐾)𝑥(𝑘)) − 𝑥(𝑘)
𝑇𝑄𝑝𝑥(𝑘)

≤ −𝑥(𝑘)𝑇𝑄𝑥(𝑘) − (−𝐾𝑥(𝑘))
𝑇
𝑅(−𝐾𝑥(𝑘)) 

   (4.11) 

It can be rewritten in a more compact form: 

𝑀𝑇𝑄𝑝𝑀− 𝑄𝑝 + 𝑄 + 𝐾
𝑇𝑅𝐾 ≤ 0 

𝑀 = 𝐴 − 𝐵𝐾 

  (4.12) 

Therefore 𝑉𝑇 is a Lyapunov function, and the stabilizing state-feedback gain 𝐾 can be 

found in (4.12). After showing the controller's stability, the terminal region is required to be 

specified, reducing the conservatism level. The terminal region 𝑋𝑓 is considered to be an 

ellipsoidal invariant set: 

𝑋𝑓 = {𝑥 ∈ 𝑅
𝑛|𝑥(𝑘 + 𝑁)𝑇𝑄𝑝𝑥(𝑘 + 𝑁) < 𝜃}   (4.13) 
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While 𝑋𝑓 is intended to be as broad as possible to reduce conservatism, it might lead to 

extensive control law and violation of input constraints.  The maximum value of 𝛾 can be derived 

from an optimization problem such that input limitations are met: 

max𝜃 

Subject to 

𝑥(𝑘 + 𝑁)𝑇𝑄𝑝𝑥(𝑘 + 𝑁) < 𝜃 

|𝐾𝑥| ≤ 𝑢𝑚𝑎𝑥 

    (4.14) 

In [279], it is proved that 𝛾 can equivalently be derived from the following optimization 

problem: 

min
𝛾
𝜃 

𝜃2𝐴𝑇𝑃
−1𝐴𝑇

𝑇 ≤ 𝐵𝑇𝐵𝑇
𝑇 

   (4.15) 

where 𝐴𝑇 = [−𝐼𝑛  𝐾 𝐼𝑛 − 𝐾]
𝑇 , 𝐵𝑇 = [𝑥𝑚𝑎𝑥 − 𝑥𝑠  ∆𝑢𝑚𝑎𝑥  𝑥𝑚𝑎𝑥 − 𝑥𝑠   ∆𝑢𝑚𝑎𝑥]

𝑇 , and 𝑥𝑠  is 

the desired state.  In this section, an offline state-feedback controller (𝐾) and the corresponding 

terminal region (𝑋𝑓) that stabilize the system are introduced. Unlike [276], where the future profile 

of scheduling variables {𝑝(𝑘 + 1),… , 𝑝(𝑘 + 𝑁)} is assumed to be unknown, in this paper a least-

square algorithm has been used to find scheduling variables over the prediction horizon. This 

means that the controller must not be robust against the possible uncertainties in the scheduling 

variables. For further information about the procedure for predicting the scheduling variables, 

please refer to [278].  

4.3.2 Online controller  

The free control moves will be determined online in case there is a disturbance or the 

condition 𝑥(𝑘) ∈ 𝑋𝑓  does not meet. The online controller steers the states towards 𝑋𝑓 , where 

offline control asymptotically stabilizes the system. Two Theorems are defined here to demonstrate 

the controller validity. Theorem 2 shows that the system remains ISpS when a bounded disturbance 

exists. Subsequently, the recursive feasibility of the system will be proved in Theorem 3. Because 

of additive disturbances, a min-max (worst-case) optimization problem is defined to cope with 

uncertainties. The optimization problem (4.8) can be rewritten considering the bounded 

disturbance: 

min
𝑐(𝑘)

max
𝑑(𝑘)∈𝐷

𝑉𝑁(𝑥(𝑘), 𝑢(𝑘), 𝑝(𝑘), 𝐾, 𝑐(𝑘))  (4.16) 
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𝑦(𝑘 + 𝑗) = −(∑ 𝐴𝑖
𝑛𝑎
𝑖=1 𝑞−𝑖)𝑦(𝑘 + 𝑗) + (∑ 𝐵𝑖

𝑛𝑏
𝑗=1 𝑞−𝑖)𝑢(𝑘 + 𝑗) + 𝑑(𝑘), j=1,2,…,N-1 

𝑢(𝑘 + 𝑗) = −𝐾𝑥(𝑘 + 𝑗) + 𝑐(𝑘 + 𝑗) 

𝑢(𝑘 + 𝑗) ∈ 𝑈 

∆𝑢(𝑘 + 𝑗) ∈ 𝑉 

𝑦(𝑘 + 𝑗) ∈ 𝑌 

𝑑(𝑘 + 𝑗) ∈ 𝐷 

𝑥(𝑘 + 𝑁) ∈ 𝑋𝑓 

The optimal solution to the problem (4.8), subjected to the system (4.1) with constraints 

(4.3), is the sequence [𝑐∗(𝑘) 𝑐∗(𝑘 + 1)… 𝑐∗(𝑘 + 𝑁 − 1)]  corresponding to [𝑢∗(𝑘) 𝑢∗(𝑘 +

1)…𝑢∗(𝑘 + 𝑁 − 1)]. Two theorems are defined in this section; theorem 2 for showing stability 

and theorem 3 for showing recursive feasibility. To being with, a robust positively invariant (RPI) 

set is needed to be defined as below: 

A set 𝑋 is RPI for 𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝑑 with 𝑢 = −𝐾𝑥 if  𝑥 ∈ 𝑋 𝑓𝑜𝑟 ∀ 𝑥+ ∈ 𝑋,𝑑 ∈ 𝐷, 

[𝐴(𝑘)  𝐵(𝑘)] ∈ Ω 

Theorem 2: There exists a sequence of optimal control input (𝑐∗), and 𝛼, 𝛽, 𝛾 𝜆 that 

ensures the ISpS of the system (4.1) with bounded disturbances (4.6) with the following 

assumptions: 

i. |𝑢| = |𝐾𝑥| ≤ 𝑢𝑚𝑎𝑥  𝑓𝑜𝑟 ∀ 𝑥 ∈ 𝑋𝑓. 

ii. 𝑋𝑓 is an RPI set of the system (4.1) with 𝑢 = −𝐾𝑥. 

iii. 𝛼‖𝑥‖𝜆 ≤ ‖𝑃𝑥‖ ≤ 𝛽‖𝑥‖𝜆 𝑓𝑜𝑟 ∀ 𝑥 ∈ 𝑋𝑓 . 

iv. ‖𝑃𝑥+‖ − ‖𝑃𝑥‖ ≤ −(‖𝑄𝑥‖ + ‖𝑅𝑘𝑥‖) + 𝜇‖𝑑‖ for   𝑥 ∈ 𝑋,𝑑 ∈ 𝐷, [𝐴(𝑘)  𝐵(𝑘)] ∈ Ω 

v. ‖𝑄𝑥‖ + ‖𝑅𝑢‖ ≥ 𝛾‖𝑥‖𝜆 𝑓𝑜𝑟 ∀ 𝑥 ∈ 𝑋𝑓 

The underlying causes of these assumptions can be found in [291]. 

Proof: The definition of ISpS for the system (4.1) is 

𝛼1(‖𝑥‖) ≤ 𝑉(𝑥) ≤ 𝛼2(‖𝑥‖) + 𝑠1 

𝑉(𝑥+) − 𝑉(𝑥) ≤ −𝛼3(‖𝑥‖) + 𝛼4(‖𝑑‖) + 𝑠2 

         (4.17) 

where 𝑥+ RPI set in which 𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝑑 with 𝑢 = −𝐾𝑥, and 𝛼1, 𝛼2, and  𝛼3 are 

𝒦∞-function, 𝛼4 is 𝒦-function, and 𝑠1 and 𝑠2 are positive numbers such that 𝑥 ∈ 𝑋, 𝑥+ ∈ 𝑋, and 

𝑑(𝑘) ∈ 𝐷. Also noteworthy is the fact that ISpS is equivalent to ISS for  𝑠1 = 𝑠2 = 0. The 

𝑉𝑁(𝑥) > 0 should be first proved to be bounded so that the Equation (4.17) can be expressed as: 
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𝑉𝑖(𝑥(𝑘 + 𝑖)) = min
𝑐𝑘

max
𝑑(𝑘)∈𝐷

[𝑥(𝑘 + 𝑖)𝑇𝑄𝑥(𝑘 + 𝑖) + 𝑢(𝑘 + 𝑖)𝑇𝑅𝑢(𝑘 + 𝑖)

+ 𝑉𝑖+1(𝑥(𝑘 + 𝑖 + 1))] 

 

   (4.18) 

Equation (4.18) is derived from a mathematical induction technique such that: 

𝑉0(𝑥(𝑘)) = min
𝑐𝑘

max
𝑑(𝑘)∈𝐷

[𝑥(𝑘)𝑇𝑄𝑥(𝑘) + 𝑢(𝑘)𝑇𝑅𝑢(𝑘) + 𝑉1(𝑥(𝑘 + 1))]   

(4.19) 

𝑉1(𝑥(𝑘 + 1)) = min
𝑐𝑘

max
𝑑(𝑘)∈𝐷

[𝑥(𝑘 + 1)𝑇𝑄𝑥(𝑘 + 1) + 𝑢(𝑘 + 1)𝑇𝑅𝑢(𝑘 + 1)

+ 𝑉2(𝑥(𝑘 + 2))] 

 

…  

𝑉𝑁(𝑥(𝑘 + 𝑁)) = 𝑥(𝑘 + 𝑁)
𝑇𝑄𝑝𝑥(𝑘 + 𝑁)  

The Equation (4.10), when the disturbance is regarded to be nonzero, results in: 

𝑥(𝑘 + 1)𝑇𝑄𝑝𝑥(𝑘 + 1) − 𝑥(𝑘)
𝑇𝑄𝑝𝑥(𝑘) ≤ −𝑥(𝑘)

𝑇𝑄𝑥(𝑘) − 𝑢(𝑘)𝑇𝑅𝑢(𝑘) + 𝑑𝑚𝑎𝑥   

(4.20) 

By developing this Equation for the next value of state variables, the following equations 

will be reached: 

𝑥(𝑘 + 2)𝑇𝑄𝑝𝑥(𝑘 + 2) − 𝑥(𝑘)
𝑇𝑄𝑝𝑥(𝑘)

≤ −𝑥(𝑘 + 1)𝑇𝑄𝑥(𝑘 + 1) − 𝑢(𝑘 + 1)𝑇𝑅𝑢(𝑘 + 1) + 𝑑𝑚𝑎𝑥 

 

 

  (4.21) 

…  

𝑥(𝑘 + 𝑁)𝑇𝑄𝑝𝑥(𝑘 + 𝑁) − 𝑥(𝑘)
𝑇𝑄𝑝𝑥(𝑘) ≤ −∑𝑥(𝑘 + 𝑖)𝑇𝑄𝑥(𝑘 + 𝑖) + 𝑢(𝑘 + 𝑖)𝑇𝑅𝑢(𝑘 + 𝑖)

𝑁−1

𝑖=0

+ 𝑑𝑚𝑎𝑥 
 

  

From Equations (4.18) and (4.20), and substituting 𝑢(𝑘) = −𝐾𝑥(𝑘),  the following is 

obtained. 

𝑉𝑁(𝑥(𝑘)) ≤  max
𝑑(𝑘)∈𝐷

[𝑥(𝑘)𝑇𝑄𝑥(𝑘) − 𝑥(𝑘)𝑇𝐾𝑅𝑥(𝑘)] + 𝑥(𝑘 + 1)𝑇𝑄𝑝𝑥(𝑘 + 1)    

(4.22) 

where 𝑉(𝑥𝑘+1) ≤ 𝑥(𝑘 + 𝑁)
𝑇𝑄𝑝𝑥(𝑘 + 𝑁) and therefore 

𝑉𝑁(𝑥) ≤  𝑥(𝑘)
𝑇(𝑄 − 𝐾𝑅 + 𝑄𝑝)𝑥(𝑘) + 𝑑𝑚𝑎𝑥 = (𝑄 − 𝐾𝑅 + 𝑄𝑝)‖𝑥‖ + 𝑑𝑚𝑎𝑥 (4.23) 

It can be concluded that 𝑉𝑁(𝑥) has an upper bound and 𝛼1 = 𝑄 − 𝐾𝑅 + 𝑄𝑝, 𝑠1 = 𝑑𝑚𝑎𝑥 in 

the right-hand side of the first equation of (4.23). The difference between the two sequential 

Lyapunov functions is 
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𝑉(𝑥(𝑘 + 1)) − 𝑉(𝑥(𝑘))

≤ max
𝑑(𝑘)∈𝐷

−[𝑥(𝑘)𝑇𝑄𝑥(𝑘) + 𝑢(𝑘)𝑇𝑅𝑢(𝑘)] +𝑥(𝑘 + 𝑁)𝑇𝑄𝑝𝑥(𝑘 + 𝑁) 

(4.24) 

This can be expressed by 

𝑉(𝑥(𝑘 + 1)) − 𝑉(𝑥(𝑘)) ≤ 𝑥(𝑘)𝑇(−𝑄 + 𝐾𝑅 + 𝑄𝑝)𝑥(𝑘) + 𝑑𝑚𝑎𝑥

= −(𝑄 − 𝐾𝑅 − 𝑄𝑝)‖𝑥‖ + 𝑑𝑚𝑎𝑥 

(4.25) 

Accordingly, the difference in the Lyapunov function is bunded such that 𝛼3 = 𝑄 − 𝐾𝑅 −

𝑄𝑝, 𝑠2 = 𝑑𝑚𝑎𝑥.  It has been proved that the proposed controller is ISpS, and the optimal solution, 

satisfying input, output, and terminal constraints, can derive from a min-max problem (4.16). In 

the next stage, it has been shown that the solution is feasible. 

Theorem 3: Given system (4.1) with constraints (4.2) and bounded disturbance (4.6), the 

closed-loop system is ISpS for 𝑥0 ∈ 𝑥𝑁, and the system is feasible. 

Proof: Suppose that there exists a terminal region, derived from (4.15), and a control gain 

𝐾, calculated by Equation (4.12); then the system is stable and 𝑥0 ∈ 𝑥𝑁 . Consequently, if the 

optimization problem (4.8) is feasible at time instance k, it remains feasible in subsequent 

instances. After finding the optimal 𝐾, 𝑐∗, and the corresponding 𝑢∗ at time instance 𝑘, the system 

of Equation (4.3) at the next instance can be rewritten. 

𝑥(𝑘 + 1) = 𝐴(𝑝(𝑘))𝑥𝑘 + 𝐵(𝑝(𝑘))𝑢𝑘
∗ + 𝑑(𝑘) (4.26) 

And  

𝑥(𝑘 + 2) = 𝐴(𝑝(𝑘 + 1))𝑥1 + 𝐵(𝑝(𝑘 + 1))𝑢0
∗ + 𝑑(𝑘 + 1) (4.27) 

In general, the sequence of system states can be described as follow: 

𝑥(𝑘 + 𝑖 + 1) = 𝐴(𝑝(𝑘 + 𝑖))𝑥𝑘+𝑖 + 𝐵(𝑝(𝑘 + 𝑖))𝑢𝑘+𝑖
∗ + 𝑑(𝑘 + 𝑖)   

(4.28) 

By substituting 𝑢(𝑘) = −𝐾𝑥(𝑘) + 𝑐(𝑘), the Equation (4.28) can be derived: 

𝑥(𝑘 + 𝑖 + 1) = (𝐴(𝑝(𝑘 + 𝑖)) − 𝐵(𝑝(𝑘 + 𝑖))) ∗ 𝑥𝑘+𝑖 + 𝐵(𝑝(𝑘 + 𝑖))𝑐𝑘+𝑖
∗
+ 𝑑(𝑘 + 𝑖)   

(4.29) 

The above equation for 𝑖 = 𝑁 results in 

𝑥(𝑘 + 𝑁 + 1) = (𝐴(𝑝(𝑘 + 𝑁)) − 𝐵(𝑝(𝑘 + 𝑁))) ∗ 𝑥𝑘+𝑁 + 𝐵(𝑝(𝑘 + 𝑁))𝑐𝑘+𝑁
∗

+ 𝑑(𝑘 + 𝑁) 

  

(4.30) 

 

This implies that the optimal solution is feasible since 
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𝑓𝑜𝑟 𝑖 = 0, 𝑋𝑁−1 ∈ 𝑋𝑁 

𝑓𝑜𝑟 𝑖 = 1, 𝑋𝑁−2 ∈ 𝑋𝑁−1 ∈ 𝑋𝑁 

𝑓𝑜𝑟 𝑖 = 𝑁, 𝑋0 ∈ 𝑋𝑁 𝑎𝑛𝑑 𝑥(𝑘 + 𝑁 + 1) ∈  𝑋𝑁 

  

(4.31) 

According to theorems 1 to 3, the developed controller has two components. The first is 

determined offline, which included a control gain 𝐾 and terminal region 𝑋𝑓. When 𝑥 ∈ 𝑋𝑓, the 

offline controller asymptotically stabilizes the system. Otherwise, when there is uncertainty, an 

online controller verifies the ISpS. The online optimization problem is shown to be feasible. In the 

next section, a dynamic neural network is constructed to solve the online optimization problem for 

the first time. 

4.4 Real-time optimization problem using RNN 

The global convergence and low complexity of RNN for optimization of linear models, 

constrained linear models, linear models with uncertainty, and various nonlinear models are 

represented in the literature. In this study, RNN optimizes a real-time QP problem enjoying parallel 

computation. To begin with, the original optimization problem is required to transform into a 

standard form. The input-state relationship of Equation (4.1) can be expressed in the following 

form: 

𝑥(𝑘 + 1) = 𝐴(𝑝(𝑘))𝑥(𝑘) + 𝐵(𝑝(𝑘))𝑢(𝑘) + 𝑑(𝑝(𝑘)) (4.32) 

The vector of predicted outputs, inputs, and disturbance are: 

𝑋(𝑘) = [𝑋(𝑘 + 1)…𝑋(𝑘 + 𝑁)]𝑇 ∈ ℛ𝑚∗𝑁 

𝑈(𝑘) = [𝑢(𝑘)…𝑢(𝑘 + 𝑁 − 1)]𝑇 ∈ ℛ𝑛∗𝑁 

𝐷(𝑘) = [𝑑(𝑘 + 1)…𝑑(𝑘 + 𝑁)]𝑇 ∈ ℛ𝑜∗𝑁 

 

  
(4.33) 

Where 𝑚, 𝑛, and 𝑜 are the number of states, inputs, and disturbances, respectively. The 

predicted states can be easily shown to be in the following form: 

𝑋(𝑘 + 𝑗) = 𝐺(𝑝(𝑘 + 𝑗 − 1))𝑋(𝑘 + 𝑗 − 1) + 𝐹(𝑝(𝑘 + 𝑗 − 1))𝑈(𝑘 + 𝑗 − 1)

+ 𝐷(𝑘 + 𝑗 − 1), 𝑗 = 1,… ,𝑁 

𝐺(𝑝(𝑘)) = [𝐴(𝑝(𝑘)) 𝐴(𝑝(𝑘))
2
… 𝐴(𝑝(𝑘))

𝑁
]𝑇 

𝐹(𝑝(𝑘)) =

[
 
 
 
 

𝐵(𝑝(𝑘))

 𝐴(𝑝(𝑘))𝐵(𝑝(𝑘)) + 𝐵(𝑝(𝑘))

⋮

𝐴(𝑝(𝑘))
𝑁−1

𝐵(𝑝(𝑘)) + ⋯+ 𝐴(𝑝(𝑘))𝐵(𝑝(𝑘)) + 𝐵(𝑝(𝑘))]
 
 
 
 

 

 

        

(4.34) 
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The constraints (4.2) can be represented as: 

−𝑢𝑚𝑎𝑥 ≤ 𝑢(𝑘)  ≤ 𝑢𝑚𝑎𝑥       

   −∆𝑢𝑚𝑎𝑥 ≤ 𝑢(𝑘) − 𝑢(𝑘 − 1)  ≤ ∆𝑢𝑚𝑎𝑥   

−𝑥𝑚𝑎𝑥 ≤ 𝐺𝑢 + 𝐹 + 𝑑 ≤ 𝑥𝑚𝑎𝑥   

 

      
  

(4.35) 

And the optimization problem (4.16) can be written as follows: 

  min
𝑈
𝑋𝑇�̅�𝑋 + 𝑈𝑇𝑅𝑈 =min

𝑈
(𝐺𝑋 + 𝐹𝑈 + 𝐷)𝑇�̅�(𝐺𝑋 + 𝐹𝑈 + 𝐷) + 𝑈𝑇𝑅𝑈 

min
𝑈
𝑈𝑇 ∗ ((𝐹𝑈)𝑇�̅�(𝐹𝑈) + 𝑅) ∗ 𝑈 + (𝐺𝑋 + 𝐹𝑈)𝑇�̅�(𝐺𝑋 + 𝐹𝑈) 

  

(4.36) 

where  

�̅� = [
𝑄 0
0 𝑄𝑝

] 

According to Equations (4.35) and (4.36), the standard form can be expressed as: 

min
𝑣

1

2
𝑣𝑇𝐻𝑣 + 𝑏𝑇𝑣 

Subject to 𝑇𝑣 ≤ 𝑞 

 

(4.37) 

where  

𝐻 = 2 ∗ ((𝐹𝑈)𝑇�̅�(𝐹𝑈) + 𝑅) 

𝑏 = 2 ∗ (𝐺𝑋 + 𝐹𝑈)𝑇�̅�(𝐺𝑋 + 𝐹𝑈) 

𝑇 =

[
 
 
 
 
 
𝐼𝑛∗𝑛
−𝐼𝑛∗𝑛
𝐼𝑛∗𝑛
−𝐼𝑛∗𝑛
𝐺
−𝐺 ]

 
 
 
 
 

, 𝑞 =

[
 
 
 
 
 

𝑢𝑚𝑎𝑥
−𝑢𝑚𝑎𝑥

∆𝑢𝑚𝑎𝑥 + 𝑢(𝑘 − 1)
∆𝑢𝑚𝑎𝑥 − 𝑢(𝑘 − 1)
𝑋𝑚𝑎𝑥 − 𝐹 − 𝑑
−𝑋𝑚𝑎𝑥 + 𝐹 + 𝑑 ]

 
 
 
 
 

 

Remark 1: The vector 𝑞 is unknown since 𝑑 is not measurable, while it can be estimated 

by the difference between the measured output and model output. In [228], a simple model to find 

unknown parameters is proposed.  

Remark 2: In [222, 228], a simplified form of a dual neural network is described to ensure 

a lower computational burden by defining the dual form of the optimization problem (4.37) as: 

• State equation: 

𝑑𝜔

𝑑𝑡
= 𝜆(−𝑇𝐻−1𝑇𝑇𝜔 +𝑀(𝑇𝐻−1𝑇𝑇𝜔 − 𝑇𝐻−1𝑐 − 𝜔) + 𝑇𝐻−1𝑐) 

 

(4.38) 
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Where 𝜔 is the state variable of the network, 𝜆 > 0 adjusts the convergence rate of RNN, 

and 𝑀 is a piecewise linear function as: 

𝑀(𝑧) = {

𝑞𝑚𝑖𝑛                         𝑧 < 𝑞𝑚𝑖𝑛
𝑧                 𝑞𝑚𝑖𝑛 < 𝑧 < 𝑞𝑚𝑎𝑥
𝑞𝑚𝑎𝑥                        𝑧 > 𝑞𝑚𝑎𝑥

  
 

(4.39) 

• Output equation: 

𝑣 = 𝐻−1𝑇𝑇𝜔 − 𝐻−1𝑐 (4.40) 

In the dual form of the optimization problem, constraints are added to the main cost 

function as a penalty term. This means that if 𝑇𝑣 < 𝑞, the cost function decreases by a factor of 

𝛼; otherwise, for 𝑇𝑣 > 𝑞, the cost function is penalized. The single-layer RNN is given in Figure 

4.1. The global convergence of the proposed network is verified in [228]. 

 

Figure 4.1: RNN framework [228] 

Finally, the proposed MPC algorithm can be summarized in the following steps: 

1) The value of 𝑄, 𝑅, 𝜆, 𝑁, 𝑢𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 , 𝑑𝑚𝑎𝑥, 𝑝 and model(𝐴, 𝐵) 

2) Specify 𝐾 using (4.12) and 𝜃 using (4.15). 

3) Repeat the procedure of finding 𝑢(𝑘) by solving Equations (4.38) to (4.40). 

The whole procedure is also depicted in Figure 4.2. 
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Figure 4.2:The proposed approach flowchart 

4.5 Results and discussion 

The performance of the controller in terms of setpoint tracking and disturbance rejection is 

investigated in the Alkylation of Benzene Process. For more information about this process, please 

refer to section 3.3.2.1. The disturbances are considered as a step change at t = 1500 s with an 

amplitude of 2 × 10−3 is made in F1 and F2. The controller parameters were N = 6;  Q =  1000 ∗

I5×5, R =  10
−7 ∗ I5×5and λ = 3.5. All controllers employed in the performed comparison used 

the same parameters. The proposed approach is compared with linear RMPC [236], and the LPV 

controller studied in [276] in Figure 4.3, where the dashed red line denotes the references, the blue 

line is the proposed method, the green line is linear RMPC, and the black line is LPV-IO RMPC. 

Looking firstly at reference tracking, the proposed controller and LPV-RMPC (save T5) reached 

the setpoint at an acceptable time, while LPV-RMPC suffers from large-amplitude oscillations. 

The reason behind the fluctuation in T5 can be found in Equation (4.35), such that CD0 directly 

affect the output, and LRMPC failed to tackle the changes in Molar densities of pure D. In general, 

regardless of rise time, settling time, and overshoot, all three methods followed the setpoints for T1 

to T4. Turning to disturbance rejection, the studied approach outperforms others by removing the 
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disturbance in a short time ranging from 120s to 355s for T1 to T5. After time t=1500s, when the 

disturbance was applied to the process, the LRMPC violated both inputs and outputs constraints, 

especially in T1, although it can overcome the disturbances after a while; on the other hand, LPV-

RMPC became highly unstable.  Regarding the cost function, the wasted resources by LPV-RMPC 

are 5.04 times more than LRMPC and 1.59* 10 greater than that of the proposed method, which 

proved that the studied approach is significantly cost-effective. More importantly, the cost function 

of LRMPC and LPV-RMPC did not converge to zero, so they cannot deal with changes in three 

scheduling variables. The MSE of all three methods for different outputs is reported in Table 4.1. 

Using the proposed method leads to a sharp decline in error compared to other methods, as the 

MSE for LRMPC, LPV-RMPC, and the proposed method were 447.56, 5.09*103, and 43.84, 

respectively. In short, the proposed method had an acceptable speed (rise time, settling time, and 

time required to remove disturbance) and lower MSE and cost. 

Table 4.1:MSE for five vessels temperatures in three studied techniques 

MSE 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 total 

LRMPC 391.40 387.25 346.72 331.76 408.73 347.56 

LPV-RMPC 5.33e+03 5.31e+03 5.07e+03 4.90e+03 5.41e+03 5.09e+03 

Proposed method 67.32 65.30 52.34 60.00 76.45 43.84 
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Figure 4.3: the temperatures of vessels and cost function using three studied methods (dashed red line: 

references, the blue line: proposed method, the green line: linear RMPC, the black line: LPV-IO RMPC) 

 

At the same time, it has been proved that using RNN reduces the average time required for 

computing the control action in each sampling in contrast with NMPC based on Sequential 

Quadratic Programming (SQP), Genetic Algorithm (GA), and Singular Value Decomposition 
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(SVD). These methods' average run-time and MSE are reported in Table 4.2 and Figures 4.4 to 4.6. 

The RNN-based method experienced far less MSE and cost and quickly found the optimal control 

actions. GA ranked second in cost and MSE while slow, resulting in instability and significant 

fluctuation in some simulations. In stark contrast, however, SVD has faster responses, albeit it 

failed to converge the minimum cost function at times and saw monumental errors. SQP, on the 

other side, had a smaller MSE and cost than SVD and solved the optimization problem in a shorter 

time than GA did.  

Table 4.2: A comparison of different optimization algorithms for finding the control signals 

Optimization algorithm MSE Average time Cost  

RNN 43.84 0.033 2.03e+04 

SQP 153.12 0.76 8.04e+06 

GA 76.55 0.81 5.01e+04 

SVD 241.22 0.013 2.05e+08 

 

 

Figure 4.4:MSE of different optimization algorithms 
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Figure 4.5: Average runtime of different optimization algorithms 

 

 

Figure 4.6: Cost function of different optimization algorithms 

4.6 Conclusion 

An RMPC with an LPV-IO model is investigated in this paper, in which an RNN algorithm 

solves the real-time optimization problem. This approach's effectiveness was monitored and 

compared with LRMPC [236] and LPV-RMPC [276] in an Alkylation of Benzene Process, which 

is nonlinear and large scale with three scheduling variables. The proposed method was 

astonishingly successful in both setpoint tracking and disturbance rejection having reasonable rise 
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time, settling time, MSE, and response amplitude. The LRPMC had a similar speed response while 

suffering from adverse oscillation. The LPV-RMPC can partially track the predefined reference 

outputs but fails to remain stable when facing disturbances. 

Meanwhile, four optimization algorithms are utilized to solve the online optimization 

problem of the proposed controller. Results showed that RNN and GA outdid other algorithms in 

error reduction and finding the optimal solution; nonetheless, GA was sluggish and detrimental to 

stability. SVD had the fastest convergence rate with the highest MSE and cost value, and SQP, 

with a stable response, had the worst execution with a great average time and MSE. 
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CHAPTER 5 

5 APPLICATION OF NONLINEAR MODEL PREDICTIVE 

CONTROL FOR AN ANAEROBIC DIGESTION PROCESS 

USING AN INPUT-OUTPUT LPV SYSTEM IDENTIFIED BY 

LS-SVM 

Chapter 5 presents the study for Objective 3. The work presented in this chapter is included 

in the following paper: 

Hadian, M., Zhang, W., & Ghanevati, A. (2022). Application of Nonlinear Model 

Predictive Control for an Anaerobic Digestion Process Using an Input-output LPV System 

Identified by LS-SVM. International Journal of dynamics and control, revised. 

Abstract 

Anaerobic Digestion (AD) process has been widely used as a green source of renewable 

energy for decades to scale back greenhouse gas emissions and conserve the environment. Having 

a nonlinear nature with a dramatic rate of variations in feed composition, designing an effective 

controller for this process has been surrounded by controversy. In this research, an MPC supported 

by a linear parameter varying (LPV) framework has been employed. The LPV model deals with 

the nonlinearities and changes in the parameters of this system. However, identifying the LPV 

model is a knotty problem, and an unsuitable selection of structural dependence and the order of 

coefficients of LPV might lead to closed-loop stability degradation. With this in mind, the LPV 

model's coefficients are identified by a Least Squares Support Vector Machine (LS-SVM) 

approach, where prior knowledge of the type of decadency and order is not required. The proposed 

strategy is tested on a virtual AD plant represented by complex Anaerobic Digestion Model No.1. 

The findings revealed the controller's superior performance in terms of output regulation when 

there are periodic changes in setpoint and the scheduling variable. 
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5.1 Introduction  

Anaerobic digestion (AD) is an efficient biochemical degradation of organic waste, by 

which biogas is produced (a mixture of methane and carbon dioxide) as a green renewable energy 

supply. Other outstanding merits of this process would be reducing environmental pollution 

(caused by organic waste) and supplying nutrient fertilizer [1, 2]. Despite these striking features, 

the AD process consists of four complicated steps involving physicochemical and biological 

processes with highly nonlinear characteristics and uncertain kinetic parameters. Furthermore, the 

AD plants could be overloaded or inhibited by altering the form of input waste, leading to process 

instability. As a result, it is crucial for successful biogas production and keeping the AD stable to 

develop a proper control system [3-6]. Significant efforts have been put forwards in developing 

closed-loop control algorithms for methane production regulation ranging from simple PI [7, 8] to 

nonlinear and optimal ones [9-13].  

The primary motive for selecting the model predictive controller (MPC) is seeking optimal 

control action subjected to input constraints, which is of vital importance from a practical point of 

view. Since predicting the system behaviour multi-step ahead, MPC can handle complex dynamics 

such as systems with a time delay or non-minimum phase and even unstable systems [14]. The 

previous studies of MPC on the AD process utilized the nonlinear model of AM2 or its modified 

version so as to control the produced methane flow rate [11, 13, 15]. The serious repercussion of 

using these nonlinear models is that the optimization problem can be nonconvex or computationally 

inefficient. On the other hand, using linear models is not as accurate as nonlinear models and only 

valid around the operating point. In light of this, an LPV framework is developed in this paper to 

bridge the gap between linear and nonlinear modelling without state estimation. This framework 

can trade off between computational load and the high precision of the model. 

LPV models assist the MPC structure in modelling dynamic and static nonlinearities [16]. 

They straightforwardly identify the process by describing the process's operational knowledge as 

scheduling variables. LPV can model nonlinear dynamics without linearization by offering a linear 

structure, which depends on scheduling variables. In contrast to nonlinear identification methods 

such as nonlinear ARX [17] or neural networks [18], the LPV model with linear structure reduces 

the computational load and computation time. Input-output (IO) and state-space representations 

are two primary forms of LPV systems developed by researchers in the context of MPC.  The 

inspiration for the current work comes from the fact that previous research rests on the assumption 
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that state-space variables are measurable, which is unattainable in practice. Even using an observer 

for estimating variables can deteriorate closed-loop performance [16, 19-21]. That is why an LPV-

IO model is preferred to model the AD process.  

In an LPV model, the coefficients are defined in terms of a function of unknown parameters 

related to the scheduling variable, the so-called basis function ∅(𝜌). The type and order of these 

functions can be challenging. An overwhelming majority of studies find the coefficients of the LPV 

model with parametric identification methods [22-24]. However, this strategy suffers from 

increased bias and variances due to faulty selection of the type of ∅(𝜌) and order of model, 

requiring professional knowledge of the process [25]. In some situations, the number of basic 

functions and their parameters increase to capture the great diversity of nonlinearities and 

uncertainties, resulting in an over-parametrized structure. A nonparametric structure based on a 

support vector machine (SVM) has been proposed to identify the LPV model and tackle the 

difficulties mentioned above. 

SVM was originally a class of supervised learning techniques applied to a broad spectrum 

of fields, including data classification [26], function estimation [27], time series prediction[28], 

speech recognition [29], and disease diagnosis [30]. Thanks to the exceptional merits of SVM, this 

method has also been used to identify nonlinear models in various applications [19, 31]. The least-

square SVM (LS-SVM) method [25, 32] is a variation of the original SVM approach. This method 

can identify the LPV model without prior knowledge of the coefficients' type/order of 

dependencies. In the LPV associated with SVM, parameters are estimated by solving a linear 

optimization problem, having a unique solution and cost-effective computational volume.  

This research's main contribution is regulating methane flow rate with an MPC-LPV 

framework that reduces complexity over nonlinear MPC and increases accuracy over linear MPC. 

Furthermore, the LPV model coefficients are identified by a nonparametric LS-SVM tool for 

simplicity and accuracy compared with parametric LPV models. The proposed LPV_SVM_MPC 

strategy is implemented on Anaerobic Digestion Model No.1 (ADM1), and simulation results 

evaluate its performance. The remainder of the paper is organized as follows. The proposed MPC-

LPV-SVM structure is first developed in Section 2. The AD process is presented in section 3, 

followed by a set of simulations to explore the proposed control methodology's performance. Key 

findings are finally summarized in Section 5. 
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5.2 Proposed strategy  

This section describes the LPV-based predictive control method. First, how to calculate the 

coefficients of the input-output LPV with SVM is explained. This method can reasonably predict 

the behaviour of nonlinear systems without the need to measure state variables. Finally, the cost 

function and how to find the control signal from the constrained optimization problem are 

described. 

5.2.1 Linear parameter varying system 

One of the basic structures of the LPV model in discrete space is called the autoregressive 

model with exogenous input (ARX), which is shown as follows in a single-input and single-output 

mode: 

y(k) = −∑ai(p(k))y(k − i) +

na

i=1

∑bj(p(k))u(k − j) + e(k) 

nb

j=0

 

(5.1) 

Where k denotes the sampling instant, and u and y are input and output signals, respectively. 

𝑝(𝑘) is scheduling variable, and e is white noise. The set of ai and bj statically depend on p(k), 

which means every single coefficient only relies on the amount of 𝑝(𝑘) on that sampling time. One 

might express that the LPV system looks similar to the LTV system, while the coefficients are 

functions of 𝑝(𝑘) instead of time [33]; that is to say, LPV can be an extended version of LTV 

systems. With 𝑝(𝑘) , an LPV model can describe nonlinear and time-varying features of the 

process. 

5.2.2 Identification of input-output model with SVM 

In this part, the LPV model (Equation (5.1)) is formulated by a computationally-efficient 

LS-SVM approach in order to estimate the coefficients based on 𝑁  recorded data 𝒟𝑁 =

{𝑢(𝑘), 𝑝(𝑘), 𝑦(𝑘)}𝑘=1
𝑁 without the need to determine their dependence on 𝑝(𝑘)  [25]. In this 

modelling approach, it is supposed that the dependence of the coefficients of Equation (5.1) upon 

signal 𝑝(𝑘) is undetermined. Therefore, the parameterized model of the system (5.1) is presented 

as follows: 

ℳ𝜔,𝜑: 𝑦(𝑘) =  ∑𝜔𝑖
𝑇𝜙𝑖(𝑝(𝑘))

𝑛𝑔

𝑖=1

𝑥𝑖(𝑘) + 𝑒(𝑘) 

(5.2) 
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In the rest of the paper, 𝜙(𝑝(𝑘)) are indicated by 𝜙(𝑘) for the sake of simplicity. In 

Equation (5.2), 𝜙𝑖: 𝑅 → 𝑅𝑛𝐻  is undefined potentially infinite-dimensional feature map 

corresponding to the 𝑖th parameter vector and 

𝑥𝑖(𝑘) = 𝑦(𝑘 − 𝑖),     𝑖 = 1,… , 𝑛𝑎  (5.3)(a) 

𝑥𝑛𝑎+1+𝑗(𝑘) = 𝑢(𝑘 − 𝑖),     𝑗 = 0, … , 𝑛𝑏 (5.3) (b) 

where  𝑛𝑔 = 𝑛𝑎 + 𝑛𝑏 + 1  and 𝑤𝑖𝜖𝑅
𝑛𝐻 is parameter vector: 

𝜔 = [𝜔1
𝑇 𝜔2  

𝑇 … 𝜔𝑛𝑔
𝑇 ]

𝑇

 
(5.4) 

 

𝜑(𝑘) = [𝜙1
𝑇(𝑝(𝑘))𝑥1(𝑘)  𝜙2

𝑇(𝑝(𝑘))𝑥2(𝑘)…  𝜙𝑛𝑔
𝑇 (𝑝(𝑘))𝑥𝑛𝑔(𝑘)]

𝑇

 
(5.5) 

According to Equations (5.4) and (5.5), Equation (5.2) can be rewritten as follows: 

𝑦(𝑘) = 𝑤𝑇𝜑(𝑘) + 𝑒(𝑘) (5.6) 

The ultimate goal of LS-SVM is the minimization of the following cost function: 

𝐽(𝜔, 𝑒) =  
1

2
∑𝜔𝑖

𝑇

𝑛𝑔

𝑖=1

𝜔𝑖 +
𝛾

2
∑𝑒2(𝑘)

𝑁

𝑘=1

 

(5.7) 

In the above equation, 𝛾 is a positive real number called regularization factor, 𝑒(𝑘) 

indicates the error of the estimated model, and ∑ 𝜔𝑖
𝑇𝑛𝑔

𝑖=1
𝜔𝑖 is account for the unknown 

dependence of LPV model. The ℳ𝑤,𝜑 can be estimated by solving the optimization problem in 

Equation (5.8). 

min
ω,e
  𝐽(𝜔, 𝑒) =  

1

2
∑𝜔𝑖

𝑇

𝑛𝑔

𝑖=1

𝜔𝑖 +
𝛾

2
∑𝑒2(𝑘) 

𝑁

𝑘=1

 

(5.8) 

𝑠. 𝑡.   𝑒(𝑘) = 𝑦(𝑘) −∑𝜔𝑖
𝑇𝜙𝑖(𝑘)

𝑛𝑔

𝑖=1

𝑥𝑖(𝑘) 

The following lagrangian is constructed to solve the constrained optimization problem in 

Equation (5.8). 

ℒ(𝜔, 𝑒, 𝛼) = 𝐽(𝜔, e) −∑𝛼𝑘 (∑𝜔𝑖
𝑇𝜙𝑖(𝑘)

𝑛𝑔

𝑖=1

𝑥𝑖(𝑘) − 𝑦(𝑘))

𝑁

𝑘=1

 

(5.9) 

where 𝛼𝑘𝜖𝑅 denotes lagrangian multipliers, and the optimum solution would be: 
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𝜕ℒ

𝜕𝑒
= 0  →   𝛼𝑘 =  𝛾𝑒(𝑘),   

(5.10)(a) 

𝜕ℒ

𝜕𝜔𝑖
= 0  →   𝜔𝑖 = ∑𝛼𝑘𝜙𝑖(𝑘)

𝑁

𝑘=1

𝑥𝑖(𝑘), 
(5.10)(b) 

𝜕ℒ

𝜕𝛼𝑘
= 0  →   𝑒(𝑘) = 𝑦(𝑘) − ∑𝜔𝑖𝜙𝑖(𝑘)

𝑛𝑔

𝑖=1

𝑥𝑖(𝑘), 

 

(5.10) (c) 

Substituting 5.10(a), 5.10(b), and 5.10(c) in Equation (5.6) yields 

∑(∑𝛼𝑘
𝑇𝑥𝑖(𝑘)𝜙𝑖

𝑇(𝑘)

𝑁

𝑘=1

)
⏟              

𝜔𝑖
𝑇

𝜙𝑖(𝑘)𝑥𝑖(𝑘) +

𝑛𝑔

𝑖=1

𝛾−1𝛼𝑘⏟  
𝑒(𝑘)

       𝑓𝑜𝑟 𝑘𝜖{1, … ,𝑁} 

(5.11) 

By applying this equation for 𝑁  collected data, this equation can be reformulated as a 

compact form of 𝑁 set of equations as below: 

𝑌 = (Ω + 𝛾−1𝐼𝑁)𝛼 (5.12) 

where 𝑌 = [𝑦(1)…𝑦(𝑁)]𝑇, 𝛼 = [𝛼1, 𝛼2, … , 𝛼𝑁]
𝑇𝜖 𝑅𝑁, 𝐼𝑁 is the identity matrix of size 𝑁, 

and Ω is a 𝑁 by 𝑁 matrix of kernel functions whose the (𝑗, 𝑘)-th entry of this matrix is defined in 

Equation 5.13: 

[Ω]𝑗,𝑘 =∑[Ωi]
𝑗,𝑘
𝛼 

𝑛𝑔

𝑖=1

 

(5.13) 

with   

[Ωi]
𝑗,𝑘
= 𝑥𝑖(𝑗)𝜙𝑖

𝑇(𝑗)𝜙𝑖(𝑘)𝑥𝑖(𝑘), 

             = 𝑥𝑖(𝑗)〈𝜙𝑖
𝑇(𝑗), 𝜙𝑖(𝑘)〉𝑥𝑖(𝑘), 

             = 𝑥𝑖(𝑗)(𝐾
𝑖(𝑝(𝑗), 𝑝(𝑘)))𝑥𝑖(𝑘) 

In Equation (5.13),  𝐾𝑖 are positive-definite kernel functions, which derive from the inner 

product of 𝜙
𝑖
𝑇(𝑗)𝜙

𝑖
(𝑘). This strategy is named kernel trick and is capable of identifying 𝑎𝑖     و 𝑏𝑗 with 

a wide range of nonlinear dependencies without any explicit definition of the feature map {𝜙
𝑖
}
𝑖=1

𝑛𝑔 [10, 

11]. Among all kernel functions, the well-known Radial Bases Functions (RBF) are used in this 

study, in which 𝜎 is a hyper-parameter tuned by the user to control the width of RBF. 
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𝐾𝑖(𝑝(𝑗) , 𝑝(𝑘)) = exp (−
(𝑝(𝑗) − 𝑝(𝑘))

2

𝜎𝑖
2 ) , 𝑖 = 1,… , 𝑛𝑔 

(5.14) 

Having kernel functions, the matrix 𝛺 can be computed. 

α = (Ω + 𝛾−1𝐼𝑁)
−1 ∗ 𝑌 (5.15) 

1.1 Model predictive controller  

The cost function of applied MPC is expressed in Equation (5.16) [14]: 

𝐽(𝑁𝑝, 𝑁𝑢) =  ∑δ[�̂�(𝑘 + 𝑗|𝑘) − 𝑦𝑟(𝑘 + 𝑗)]
2

𝑁𝑝

𝑗=1

+ ∑ λ[Δ𝑢(𝑘 + 𝑗|𝑘)]2 

𝑁𝑢−1

𝑗=0

 

(5.16) 

where �̂�(𝑘 + 𝑗|𝑘)  is a j-step ahead prediction of output over the prediction horizon, 

𝑦𝑟(𝑘 + 𝑗) is the future reference trajectory, 𝑁𝑝 and 𝑁𝑢 are the prediction and control horizon and 

δ and λ are weighting factors. The upper and lower bounds on both process input and rate of change 

of input are considered as the system constraints: 

𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢max 

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢 ≤ ∆𝑢max 

(5.17) 

By solving the following optimization problem, at each sampling time, the future control 

increments are calculated: 

min
         Δ𝑢(𝑘|𝑘),Δ𝑢(𝑘 + 1|𝑘)…Δ𝑢(𝑘 + 𝑁𝑢 − 1|𝑘)

𝐽(𝑁𝑝 , 𝑁𝑢)   

𝑠. 𝑡. 𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢max, 

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢 ≤ ∆𝑢max 

(5.18) 

It should be mentioned that only the first element of the computed input vector (Δ𝑢(𝑘|𝑘)) 

is applied to the process at each sampling time. The leading role of the LPV-SVM framework is 

estimating the output signal (�̂�(𝑘 + 𝑗|𝑘)) over the prediction horizon 𝑁𝑃, which is required in the 

MPC setup. With no measurement noise, the SVM-LPV model in Equation (5.2) is written as 

below: 

𝑦(𝑘) =∑𝜔𝑖𝜙𝑖(𝑘)

𝑛𝑔

𝑖=1

𝑥𝑖(𝑘) 

(5.19) 
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Figure 5.1: The flowchart of the proposed controller 
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With 𝜔𝑖𝜙𝑖(𝑘) = ∑ 𝛼(𝑘)𝐾𝑖(𝑝(𝑗), 𝑝(𝑘))𝑥𝑖(𝑗) 
𝑁
𝑗=1 . The values of  𝑛𝑎 and  𝑛𝑏 in Equations 

(5.3) (a) and (5.3)(b) are calculated based on the following performance index during the system 

identification procedure: 

𝐼𝑆𝐸 =  ∑(𝑦(𝑘) − �̂�(𝑘))
2

𝑁

𝑘=1

 
(5.20) 

These values are increased stepwise, and each time the ISE is calculated using Equation 

(5.20). For methane production rate as the process output, the minimum value of ISE was 

obtained, when 𝑛𝑎 = 3, 𝑛𝑏 = 3.  No significant changes in ISE value were observed when the 𝑛𝑎 

were increased higher than 1 and 𝑛𝑏  greater than 2. Hence,  𝑛𝑎 and  𝑛𝑏  were set to 1 and 2 

respectively to reduce the computational load in the MPC algorithm. 

𝑥1(𝑘) = 𝑦(𝑘 − 1), 𝑥2(𝑘) = ∆𝑢(𝑘) 𝑥3(𝑘) = ∆𝑢(𝑘 − 1) 

𝑦(𝑘) = 𝜔1 𝜙1(𝑝(𝑘))𝑦(𝑘 − 1) + 𝜔2 𝜙2(𝑝(𝑘))∆𝑢(𝑘) + 𝜔3 𝜙3(𝑝(𝑘))∆𝑢(𝑘 − 1) 

 

(5.21) 

The following flowchart depicts the procedure to find optimal control signals (Figure 5.1). 

The first step is to identify the LPV-IO model via SVM. To achieve this goal, we first collect 𝑁 

data sets (𝒟𝑁 = {𝑢(𝑘), 𝑝(𝑘), 𝑦(𝑘)}𝑘=1
𝑁 ). Then we specify the necessary parameters related to the 

model (such as 𝑛𝑎, 𝑛𝑏) and SVM (such as 𝜎 and 𝛾). In the next step, we calculate the output 

vector (𝑌) and the kernel matrix (Ω) to find the 𝛼 value. Finally, we find the output value. At the 

lower level, the MPC controls the system with this model. MPC finds the input signal (𝑢(𝑘)) 

value according to the predicted error and the predefined constraints and objective function. This 

input is then applied to the real system, and the system output is sent to the SVM-LPV model 

along with the scheduling signal. This model predicts the output at each sampling time and 

compares it with the reference value to construct the prediction error. 

5.3 Anaerobic digestion process  

The AD process comprises four complex stages, namely: hydrolysis, acidogenesis, 

acetogenesis, and methanogenesis. Complicated biological and physicochemical reactions, which 

occur in this process, make the dynamic modelling of AD a challenging task. A body of research 

was conducted to describe the AD process's dynamic model, such as AM2 [34] and  AM2HN [35]. 

Of all proposed methods, ADM1[36] is recognized as the most comprehensive model, where 
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numerous complex mechanisms of the AD process are regarded. This model has been the standard 

benchmark of various studies, formed of 19 biochemical reactions, 6 acid-base reactions, 3 liquid 

gas transfers, and 35 differential equations, describing the dynamic behaviour of components 

concentration in the process. 

For the uptake of substrate and growth of microorganisms, Monod type kinetics are 

considered, and inhibition effects of inhibitory substances in this process are considered by 

multiplying inhibition functions (𝐼𝑗)  in Monod kinetics [36]: 

𝜌𝑗 =
𝑘𝑚𝑆

𝐾𝑆 + 𝑆
𝑋. 𝐼1. 𝐼2…𝐼𝑛    

(5.22) 

where parameters 𝑘𝑚 and 𝐾𝑆 are maximum uptake rate and half saturation value. 𝑆 and 𝑋 

are dynamic variables corresponding to particulate and substrate concentrations,𝜌𝑗 denotes the jth 

biochemical kinetic rate equation, which is the primary nonlinearity behaviour source in this model, 

and more details are given in [37]. Depending on the inhibition level, the functions 𝐼𝑗 can vary 

between 0 and 1. Material balances of components in the liquid phase (32 state variables) of the 

AD process, which are categorized as particulate substrate, soluble substrate, and acid-base ions, 

are presented in Equations (5.23) to (5.24), respectively: 

𝑑𝑆𝑙𝑖𝑞,𝑖

𝑑𝑡
=
𝑞𝑖𝑛
𝑉𝑙𝑖𝑞

𝑆𝑖𝑛,𝑖 −
𝑞𝑜𝑢𝑡
𝑉𝑙𝑖𝑞

𝑆𝑙𝑖𝑞,𝑖 +∑𝜌𝑗𝜐𝑖,𝑗

19

𝑗=1

    
(5.23) 

𝑖 = 1, … ,12; 𝑗 = 25,26 

𝑑𝑋𝑙𝑖𝑞,𝑖

𝑑𝑡
=
𝑞𝑖𝑛
𝑉𝑙𝑖𝑞

𝑋𝑖𝑛,𝑖 −
𝑞𝑜𝑢𝑡
𝑉𝑙𝑖𝑞

𝑋𝑙𝑖𝑞,𝑖 +∑𝜌𝑗𝜐𝑖,𝑗    

19

𝑗=1

 

(5.24) 

𝑖 = 13,14,… ,24 

𝑑𝑆𝑖
𝑑𝑡

= ∑ 𝜌𝑗𝜐𝑖,𝑗   

𝐴6

𝑗=𝐴1

   

(5.25) 

Where 𝑖 = 27,… ,32  denote 6 acid-base components and 𝐴1 𝑡𝑜 𝐴6  are 6 acid-base 

reactions. 

𝑉𝑙𝑖𝑞, 𝑞𝑖𝑛, 𝑞𝑜𝑢𝑡, 𝑆𝑖𝑛,𝑖, 𝑋𝑖𝑛,𝑖 stand for liquid volume in the reactor, input flow rate, output flow 

rate, soluble concentration in input feed, and input particulate concentration in input feed, 

respectively. 𝜐𝑖,𝑗  denotes rate coefficient of component 𝑖  on process 𝑗. The following equation 
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gives the gas phase mass balances for the produced methane, carbon dioxide, and hydrogen 

concentration: 

𝑑𝑆𝑔𝑎𝑠,𝑖

𝑑𝑡
= −

𝑆𝑔𝑎𝑠,𝑖𝑞𝑔𝑎𝑠

𝑉𝑔𝑎𝑠
+ 𝜌𝑇,𝑖

𝑉𝑙𝑖𝑞

𝑉𝑔𝑎𝑠
   

(5.26) 

where,  𝑆𝑔𝑎𝑠, 𝑞𝑔𝑎𝑠, 𝑉𝑔𝑎𝑠 and 𝜌𝑇,𝑖 denote to 𝑖th component concentration, output biogas flow 

rate, gas volume in the reactor, and gas transfer rate from liquid to the gas phase, respectively. For 

more details about the kinetic equations, input feed concentration, and ADM1 parameters, the 

reader may refer to [37].  This deliberate system is single-input single-output (SISO). The input is 

the feed flow rate (𝑞𝑖𝑛) and the output is methane gas flow rate (𝑞𝑐ℎ4). 

From a chemical composition perspective, organic wastes contain a diversity of substances 

that belong to biodegradable materials: carbohydrates, proteins, and lipids [2]. A change in the 

composition of these materials is an intrinsic feature of the AD process's organic waste feed, which 

can influence the AD process's dynamic behaviour and methane productivity. Waste Activated 

Sludge (WAS), a typical feed of the AD reactors, is considered in this study. The related feed 

composition and parameters are chosen according to [37]. The feed type contains a high protein 

value, and the concentration variation in this component is more than carbohydrate and lipid. 

Therefore, feed protein concentration (𝑋𝑝𝑟,𝑖𝑛  in ADM1) is selected as scheduling variable, i.e. 

𝑝(𝑘) = [𝑋𝑝𝑟,𝑖𝑛]. 

5.4 Results and discussion 

After introducing the proposed MPC setup and describing the AD process in detail, the 

simulation results are thoroughly discussed in this section. Firstly, the model is trained with a 

stepwise scheduling variable, a pseudo-random signal, followed by a test stage to validate the 

model.  Subsequently, the MPC that regulates the actual process with this model is investigated 

when there is a stepwise change in Feed protein concentration. 

5.4.1 System identification  

Providing an accurate model plays a pivotal role in the performance of model-based 

controllers such as MPC. In addition to sufficient accuracy, this model should have minimal 

computational complexity. In this regard, an LPV model is proposed in this paper, whereby less 

computation load is required in MPC optimization problems compared to nonlinear MPC. 

Meanwhile, LPV model coefficients are determined by a nonparametric identification method 
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without prior knowledge of parameter dependency.  Above all, in contrast to nonlinear MPC, where 

a nonconvex optimization problem or failure in finding the optimal solution is potentially viable, 

the proposed controller's optimization problem would be straightforward. System identification is 

performed using the LS-SVM-LPV input-output model structure in Equation 5.19.  

Firstly, data required to identify the model from the ADM1-virtual plant simulated with 

sampling time 𝑇𝑠 = 0.1 days (2.4 hours) (which derives from a good rule of thumb that sampling 

time is 15 times faster than the system output rise time subjected to a step input). In order to obtain 

rich input-output data to identify the LS-SVM-LPV model, the feed flow rate (𝑢(𝑘)) is supposed 

to be a pseudo-random signal, according to Figure 5.2 (a). Turning to Figure 5.2(b), p (k), i.e., the 

feed protein concentration (𝑋𝑝𝑟,𝑖𝑛 in ADM1) experiences step changes in the range of -20% to 

+20% of nominal value (20 𝐾𝑔(𝐶𝑂𝐷)−1) in a specific interval. The output of the process (methane 

gas flow rate) is measured at the specified sampling rate (Figure 5.2(c)). RBF kernel functions in 

Equation (5.14) with hyper-parameters 𝜎1 = 𝜎2 = 𝜎3 = 0.6 are considered to estimate the system 

output  . It should be noted that both the magnitude and the duration of the input signal are randomly 

selected.  

Secondly, the extracted data are needed to be trained by LS-SVM to identify the LPV 

model. Of the 3,000 data obtained for the identification phase, 75% of the data are used to train the 

model and the remaining (25%) for testing. Also noteworthy is that the test and train data were 

normalized before identifying the SVM-LPV model. The regularization parameter (in Equation 

(5.12)) has been tuned to 𝛾 = 5000. Figure 5.3 shows the estimated output of the SVM-LPV model 

in the train and test phases.  The used model shows excellent accuracy in estimating the nonlinear 

output dynamics of the ADM1 model for both the train and test data groups .The estimated output 

by LPV-SVM can reliably predict the actual output in all operational areas. The cross-validation 

of the trained model is investigated in Figure 5.4, where the predicted data are plotted with respect 

to real data. There is a positive correlation between real and estimated data, and data are more 

widely scattered around a straight line. From the information supplied in Figures 5.3 and 5.4, it is 

evident that the output obtained by LS-SVM-LPV can reliably predict the dynamic behaviour of 

the AD process.  
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Figure 5.2:(a) The pseudo random input signal used for system identification. (b) The scheduling variable 

stepwise changes. (c) The output of the AD system 
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Figure 5.3: (a) The identification results for the training data. (b) The identification results for the test 

data. 
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 Figure 5.4: linear regression of predicted values relative to measured values for training and testing data set  
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Two numerical criteria are reported in Table 5.1 to validate the performance of the 

identified model. The NMSE of both train and test data are reasonably small, and R squares are 

just under one. Results show that LPV-SVM provides a reliable model for the controller. 

Table 5.1:Numerical validation of training and test data set  

Identification results  NMSE R 

Train data 0.00042 0.99791 

Test data 0.00050 0.99796 

The following equations calculate the normalized MSE and correlation coefficient:  

𝑁𝑀𝑆𝐸 =
‖𝑦 − �̂�‖2

‖𝑦‖2
 

(5.27) 

 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 

(5.28) 

 

with 

𝑆𝑆𝐸 =∑(𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

   

𝑆𝑆𝑇 =∑(𝑦𝑖 − �̅�)
2

𝑛

𝑖=1

 

�̅� =
1

𝑛
∑ 𝑦

𝑖

𝑛

𝑖=1

 

where ‖𝑦‖ denotes to Euclidian norm of 𝑦, 𝑦 is system output, �̅� is mean of output, �̂� is 

predicted output, and 𝑛 is the number of data.   

5.4.2 LS-SVM-LPV-MPC closed-loop results 

This section examines the proposed controller's functionality in regulation and disturbance 

(feed concentration) rejection by simulation based on the ADM1 model. The prediction horizon 

and the control horizon in this system are set equal to 5 and 3. Also, in the MPC objective function 

(Equation (5.16)), the parameters 𝛿 and 𝜆 are tuned to 1 and 0.05. To avoid sharp control action 

changes and to meet the system input constraints, the upper and lower limits of the constraints in 

Equation (5.17) are selected as follows: 

0 ≤ 𝑢 ≤ 740, 
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 −316 ≤ ∆𝑢 ≤ 316 

The controller's behaviour is evaluated in the nonlinear AD process, modelled by LS-SVM-

LPV, in two scenarios in terms of setpoint tracking and disturbance rejection. In both simulations, 

the scheduling variable is a pulse signal. In contrast to the first simulation's varying setpoint, the 

setpoint was fixed in the second simulation. The setpoint can be seen in Figure 5.5(b). It is chosen 

from a productivity point of view, which means in periods t = 0 to 15 (day) and t = 30 to 45 (day) 

when the scheduling variable increases from the nominal value (20 𝐾𝑔(𝐶𝑂𝐷)−1) to 23 𝐾𝑔(𝐶𝑂𝐷)−1, 

the corresponding  methane productivity of the AD system is increased, and the setpoint reaches a 

maximum of 4000
𝑚3

𝑑
. By doing this, although the setpoint has experienced a stepwise change 

between 2000
𝑚3

𝑑
and 4000

𝑚3

𝑑
 , productivity remained constant.  

Figure 5.5 describes the first scenario results. Figure 5.5(a) (input) and Figure 5.5(c) 

(output) show that the proposed controller has superior performance against the simultaneous 

change in scheduling parameters and the set value. The output can correctly follow the setpoint 

such that there is a minor overshoot, and the response speed is acceptable. Regarding the input, the 

constraints are met, and sharp adverse changes have not been experienced. In the second scenario, 

the controller's performance under operating conditions of sharp change of input protein 

concentration and constant setpoint was also evaluated, the results of which are shown in Figure 

5.6. According to Figure 5.6(b), the concentration of  𝑋𝑝𝑟,𝑖𝑛 in the ADM1 model at t = 0 (day) 

increased from 20 to 24, then decreased from  24 to 16 at t =7 (day), followed by an increase to 24 

at t = 14 (day). As shown in Figures 5.6(a) and 5.6(c), while there was a dramatic change in feed 

concentration, the control remained stable and closely followed the setpoint variation.  The 

controller removed the disturbance quickly without allowing it to ruin the output with high 

amplitudes. 

In addition to Figures 5.5 and 5.6, four numerical measures are reported in Table 5.2 for 

two scenarios, including normalized MSE (NMSE), rise time ( 𝑇𝑟 ), setting time (𝑇𝑠 ), and 

disturbance rejection time (𝑇𝑑 ). Because of three times changes of the setpoint and/or the 

scheduling variable, the average values of  𝑇𝑟, 𝑇𝑠, and 𝑇𝑑 are indicated here. The MSE is less than 

0.0041, which is practically acceptable. Based on the rise time, the process is about three times 

faster in the second scenario than in the first. The setting times of the process in the first and second 

simulations were 1.7167 seconds and 1.55 seconds. It took 0.9033 seconds for the controller to 
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remove the disturbance. In a nutshell, the proposed controller is remarkably fast with an acceptable 

setpoint tracking error and meets the process input's physical limitations.  

Table 5.2: Performance of the proposed controller in terms of normalized MSE, rise time, settling time, and 

disturbance rejection time 

Closed-loop results NMSE 𝑻𝒓 (day) 𝑻𝒔(day) 𝑻𝒅 (day) 

First scenario 0.0041 1.3500 1.7167 --- 

Second Scenario 0.0034 0.4500 1.55 0.9033 
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 Figure 5.5: (a) output. (b) scheduling variable (c). input 



128 

 

 

 

 

 

Figure 5.6: (a) output. (b) scheduling variable (c). input 
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5.5 Conclusion  

This study proposes an MPC improved by LPV-IO for regulating the methane production 

rate in an anaerobic digestion system. A nonparametric LPV model is constructed with an LS-SVM 

strategy to predict the methane production rate based on input-output data before employing the 

model predictive controller structure for output regulation. The identification results showed that 

the LS-SVM-LPV could correctly predict the output of the system. Regarding train and test data, 

NMSE were 0.00042 and 0.00050, and R were 0.99791 and 0.99796. Furthermore, the controller 

results indicated that the designed MPC could regulate the methane production in two scenarios, 

whether when both the stepwise setpoint and scheduling variable changed or when the setpoint was 

unchanged, and the scheduling variable had a sharp variation. The proposed controller proved to 

be sturdy when the process faced a disturbance. The controller was fast enough with a setting time 

and rise time of fewer than two seconds. The tracking error was negligible, with MSE of 0.0041 

and 0.0034 in the first and second tests 
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CHAPTER 6 

6 AN IMPROVED INTERPOLATED MODEL PREDICTIVE 

CONTROL BASED ON RECURRENT NEURAL NETWORKS 

FOR A NONHOLONOMIC DIFFERENTIAL-DRIVE MOBILE 

ROBOT WITH QUASI-LPV REPRESENTATION: 

COMPUTATIONAL COMPLEXITY AND CONSERVATISM 

 

Chapter 6 presents the study for Objective 4. The work presented in this chapter is included 

in the following paper: 

Hadian, M., Zhang, W., & Etesami, D. (2022). An Improved Interpolated Model 

Predictive Control based on Recurrent Neural Networks for a nonholonomic differential-drive 

mobile robot with Quasi-LPV Representation: computational complexity and 

conservatism. International Journal of Robust and Nonlinear Control, under review. 

 

Abstract 

This paper presents an improved Model Predictive Control (MPC) for path tracking of a 

nonholonomic mobile robot with a differential drive. Nonlinear dynamics and nonholonomic 

constraints make the optimization problem of MPC for the robot challenging. Nonlinear dynamics 

of the robots are expressed by a Linear Parameter Varying (LPV), and a Recurrent Neural Network 

(RNN) solves the constrained optimization problem to find the optimal velocities. Moreover, an 

interpolation-based approach has been developed to improve the region of attraction. The 

algorithm's stability also has been guaranteed in the presence of bounded disturbances by adding 

free control moves to the control law. The controller efficiency has been evaluated in two scenarios 

in a hospital setting. The simulation results illustrate that the proposed method performs better than 

nonlinear MPC and standard LPV-based MPC in terms of computational cost, disturbance 

rejection, and region of attraction. 
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6.1 Introduction  

The COVID-19 pandemic highlighted the overarching value of medical robots in hospitals 

and quarantine centers [9-11]. Mobile medical robots are employed for various medical functions, 

including surgery, cleaning, disinfection, and drug delivery [9, 17, 19, 27]. They are believed to 

improve productivity and patient satisfaction and reduce healthcare costs [6]. Meanwhile, they do 

not become sick and can work around the clock reliably, quickly, and accurately.  

Path planning and path tracking are fundamental challenges in mobile medical robotics 

[33]. Path planning algorithms analyze and identify an obstacle-free path for a mobile robot to 

navigate the environment [34]. Path tracking control is designed for a mobile robot to track the 

reference path precisely. This paper focused on the path tracking control of Wheeled Mobile 

Robots (WMR). The tracking problem of WMR is complicated due to nonholonomic constraints, 

nonlinear dynamics, and uncertainties. Many control techniques have been proposed in the 

literature so far, such as PID controller [43], feedback linearized control [44], sliding mode control 

[45], resilient control [46], intelligent control [98], vision-based control [139], and Model 

Predictive Control (MPC) [47].  

The first control difficulty is the real-world limitations, also known as constraints, which 

must be considered in controller design since it lessens the achievable paths. These constraints 

include speed response, mobility constraints, computational cost, field-of-view constraints, 

maneuverability, and control stability issues [48]. These constraints can be holonomic or 

nonholonomic. In contrast to holonomic constraints, nonholonomic constraints are not integrable 

to provide constraints in terms of positional variables, so the transformation matrix should be in 

terms of velocities, not positions. According to Brockett's theorem, no continuous time-invariant 

feedback of state variables can be found that asymptotically stabilizes the nonholonomic system 

around the equilibrium point [48, 49]. Model Predictive Control (MPC) is the most widely accepted 

solution for meeting constraints. 

The second drawback of WMR is its nonlinear model. Several studies have been conducted 

to develop a nonlinear model predictive controller (NMPC). [32, 47, 59, 60]. NMPC, however, 

suffers from excessive computational load. The most effective remedy that can be taken to deal 

with nonlinearities is Linear Parameter Varying (LPV) [150]. Scheduling variables are used to 

describe nonlinear systems in a linear form. By portraying nonlinear systems with a linear form 

with varying parameters, we can bridge the gap between linear and nonlinear/time-varying 
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systems[61, 66]. MPC based on an LPV framework efficiently compromises linear MPC and 

NMPC [61-65].  

Several studies have considered LPV-based MPC for WMR [292]. A new path tracking 

approach with a gain-scheduled control law has been developed for a nonholonomic mobile robot 

exposed to kinematic disturbances  [253]. Kinematic error in the tracking problem is modelled as 

an LPV with bounded disturbance. The reference tracking is established for the environment with 

and without obstacles. The system stability has been confirmed using a Lyapunov function in 

structured and unstructured environments. Similarly, a control technique for omnidirectional 

mobile vehicles with a high robustness level is offered [254]. It is proven that the nonlinear 

controller is tractable by converting the uncertain nonlinear into LPV form. Compared to those 

nonlinear control approaches, the suggested algorithm avoids the complicated design procedure 

and minimizes control constraints' impacts in fast dynamic environments. A sampled-data MPC 

tracking control approach is provided for mobile robots, represented as continuous-time LPV 

systems with input saturation constraints [255]. The optimization problem is represented in an LMI 

format. A new Lyapunov function was generated to prove the stability in a long delay. In [250], it 

has been shown that LPV-based MPC had a lower online computation load than NMPC. They 

proposed a cascade control to address the trajectory tracking problem for autonomous vehicles. 

The external loop solves position control using a novel LPV-MPC approach, and the internal loop 

dynamically controls the vehicle using an LPV-Linear Quadratic Regulator technique designed as 

an LMI problem. Despite computational load reduction, the robustness of the controller when there 

are external disturbances has not been proven. An extension of the controller can be found in [293], 

where a tube-based MPC ensures robust stability. They also used the Zonotope theory to reduce 

the computational cost. In both studies, the proposed controller is designed with the largest possible 

terminal region, but the region of attraction has not been discussed. Similarly, [294] developed a 

cascade framework with an inner kinematic controller and an outer dynamic controller. They 

examined the importance of the kinematic and dynamic model and the effect of the bandwidth on 

closed-loop stability. Some researchers also developed tubed-based MPC with LPV form for WMR 

to suppress the disturbance effect while reducing the computational complexity. In [295] a primal-

dual neural network approach solved the optimization problem, and in [68] some parts of controller 

design were offline to reduce the online computation load, but it can be conservative. A tube-based 

MPC for a lane-keeping system with high speed and highly curvy roads has been developed in 
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[296], where Semi Definite Programming (SQP) and LMI computed the control law. The designed 

controller is computationally efficient, yet highly conservative. The tracking control problem of 

WMR subjected to bounded kinematic disturbance is studied using LPV-based MPC in [253] while 

considering obstacle avoidance. Despite all efforts, three questions remain unanswered: how to use 

Input-Output (IO) LPV model, how to increase the region of attraction, and how to show robustness 

when the robot faces environmental disturbances. 

To the best of our knowledge, all of the research on LPV-MPC for WMR is constructed 

with a state-space (SS) form, and no one has explored using an LPV-MPC with an IO model for 

WMR. The LPV with SS form is computationally intractable and does not accurately describe 

uncertainty [271, 273]. In addition, they use the highly improbable assumption that state variables 

are measurable. Some research has used an observer to estimate the states [297]. For example, 

observers are developed to estimate friction force, linear velocity, and angular velocity [292] and 

to estimate position, orientation, and wheel slip [298]. However, an observer can complicate the 

design and lead to closed-loop instability [276]. On these grounds, an LPV-IO-based MPC is 

studied in this paper. 

Regarding the region of attraction, an interpolation-based MPC (IMPC) was supplemented. 

In an IMPC, control signals are generated by interpolating between several previously calculated 

control gains based on a kinematic model, resulting in a less conservative controller [167]. Some 

researchers employed an ellipsoidal invariant set to meet stability and recursive feasibility [63, 

148]. Later research aims to broaden the region of attraction (ROA) by substituting a polyhedral 

invariant set for the ellipsoidal invariant set and introducing the Maximal Admissible Set (MAS). 

In our previous paper [149], an efficient IMPC with an LPV-IO model was developed by adding a 

terminal region and cost. The results showed that the proposed paper is noticeably more tractable 

than the traditional ones in the computation load and conservatism degree.  

Above all, regarding disturbance rejection, some LPV-MPC studies on WMR relied on 

kinematic models, which are not always realistic when dynamic disturbances occur [299]. Others 

employed a cascade architecture with kinematic and dynamic models [250]. However, the cascade 

controller has certain drawbacks, including additional measurement, additional controller tuning, 

and a three to four times quicker inner loop. Given these disadvantages, working in a fast-paced 

environment with unexpected disturbances might be problematic. Therefore, we included free 

control moves to handle unknown disturbances. The free control moves are calculated online from 
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the MPC optimization problem using the WMR dynamic model. Simply put, our offline controller 

uses a kinematic model, and our online controller uses a dynamic controller. If the robot is 

subjected to external disturbances, the second controller is in charge of transferring the state 

variables into the terminal region, and the first controller is responsible for exponentially 

convergent the robot to the equilibrium point there. The offline controller is fixed and pre-

calculated, whereas the online controller will be determined by solving a min-max optimization 

problem. An RNN will solve the online problem to deal with the nonlinear constrained min-max 

optimization problem. RNN is proven to have global convergence and low computational load 

[218, 223]. 

The main contributions of the paper are summarized as follows: 

1. The controller is designed based on the LPV-IO model, so observer or state measurement 

is unnecessary. The controller relies on input-output measurements. 

2. An interpolation-based strategy is implemented to find a set of offline controllers and 

increase the region of attraction, resulting in a less conservative design. 

3. An RNN efficiently solves the quadratic optimization of MPC to find an online control 

law that removes bounded disturbance and ensures stability. 

4. The control signal consists of two components: free control move, which is estimated 

from a dynamic model, and control gain, which is determined from a kinematic model. 

Asymptotic stability is considered in the first component, and disturbance robustness is 

guaranteed in the second.  

5. The stability of the robot is proven when there are external disturbances  

The rest of this paper is organized as follows. The kinematic and dynamic models and 

LPV forms are explained in section 2. Then we look at the robust IMPC for WMR and convert 

the quadratic optimization problem into RNN. Section 4 shows the simulation and results. The 

conclusions will be the final section. 

6.2 Modelling  

This section describes the kinematic and dynamic model of a typical WMR. 

6.2.1 Kinematic model 

The nonholonomic robot's kinematic model is defined as: 
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{

�̇�(𝑡) = 𝑣(𝑡) cos(𝜃(𝑡))

�̇�(𝑡) = 𝑣 (t) sin(𝜃(𝑡))

�̇�(𝑡) = 𝜔(𝑡)                  

 

 

 

(6.1) 

Where 𝑥, 𝑦, and 𝜃 are the position and orientation of the robot, 𝑣 is linear velocity, and 𝜔 

is the angular velocity. A trajectory tracking problem assumes that the pose of the robot (𝑥, 𝑦, 𝜃) 

should converge to the pose of the virtual reference robot (𝑥𝑟 , 𝑦𝑟 , 𝜃𝑟). The virtual reference path is 

defined as: 

{

�̇�𝑟(𝑡) = 𝑣𝑟(𝑡) cos(𝜃𝑟(𝑡))

�̇�𝑟(𝑡) = 𝑣𝑟 (t) sin(𝜃𝑟(𝑡))

�̇�𝑟(𝑡) = 𝜔𝑟(𝑡)                  

 

 

 

(6.2) 

The error vector [𝑥𝑒  𝑦𝑒  𝜃𝑒]is the difference between real-time pose and reference pose 

[𝑥 − 𝑥𝑟   𝑦 − 𝑦𝑟  𝜃 − 𝜃𝑟]. The errors, however, are stated in terms of the global inertial frame and 

should be transformed into the robot's local frame as follows: 

[

𝑥𝑒
𝑦𝑒
 𝜃𝑒
] = [

cos(𝜃(𝑡)) sin(𝜃(𝑡)) 0

− sin(𝜃(𝑡)) cos(𝜃(𝑡)) 0
0 0 0

] [

𝑥 − 𝑥𝑟
𝑦 − 𝑦𝑟
 𝜃 − 𝜃𝑟

] 

 

 

(6.3) 

The rear wheels have nonholonomic constraints, which must be considered before 

generating the error model: 

�̇� sin(𝜃) = �̇� cos(𝜃) (6.4) 

Then, the kinematic error model has been constructed from 1 to 4: 

�̇�𝑒(𝑡) = 𝜔(𝑡)𝑦𝑒(𝑡) + 𝑣𝑟(𝑡) cos(𝜃𝑒(𝑡)) − 𝑣(𝑡)

�̇�𝑒(𝑡) = −𝜔(𝑡)𝑥𝑒(𝑡) + 𝑣𝑟 (t) sin(𝜃𝑒(𝑡))    

�̇�𝑒(𝑡) = 𝜔𝑟(𝑡) − 𝜔(𝑡)                 

 

 

 

(6.5) 

 

6.2.2 Dynamic model 

The Lagrangian dynamic equation of the WMR is defined as [300]: 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� = 𝐸𝜏 − 𝐴𝑇(𝑞)𝜆 (6.6) 

where 𝑞 = [𝑥 𝑦 𝜃] is the state vector, 𝜆 = [𝜆1 𝜆2 𝜆3]
𝑇 is the vector of constraint forces, 

𝐸 = [02×3 𝐼2×2]
𝑇  is the input matrix, 𝜏 = [𝜏𝑟 𝜏𝑙]

𝑇 are the torques of the wheels (inputs), 𝐶 is the 

Coriolis and centripetal forces, and 𝑀 is the inertia matrix. 
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𝐶(𝑞, �̇�) =

[
 
 
 
 0 0 𝑚𝑑�̇�𝑐𝑜𝑠(𝜃) 0 0

0 0 𝑚𝑑�̇�𝑠𝑖𝑛(𝜃) 0 0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0]
 
 
 
 

 

𝑀(𝑞) =

[
 
 
 
 

𝑚               0  𝑚𝑑𝑠𝑖𝑛(𝜃) 0 0

0               𝑚 −𝑚𝑑𝑐𝑜𝑠(𝜃) 0 0

𝑚𝑑𝑠𝑖𝑛(𝜃)

0

0

−𝑚𝑑𝑐𝑜𝑠(𝜃)

0

0

𝐼

0

0

0
𝐼𝑤
0

0
0

𝐼𝑤]
 
 
 
 

 

𝑚 = 𝑚𝑐 + 2𝑚𝑤 

𝐼 = 𝐼𝑐 + 2𝑚𝑤(𝑑
2 + 𝑏2) + 2𝐼𝑚 +𝑚𝑐𝑑

2 

where 𝑚𝑤 is the mass of a wheel and rotor together, 𝑚𝑐 is the mass of the robot, 𝐼𝑐 and 𝐼𝑤 

are the inertias of the rotor and wheels, 𝐼𝑤 is the inertia related to the plane of the wheel. 

6.2.3 LPV models 

For the kinematic model, the scheduling variables are chosen to be [𝜔 𝑣𝑟  𝜃𝑒] and the 

kinematic-LPV model can be written as: 

�̇�(𝑡) = 𝐴(𝑝𝑘(𝑡))𝑒(𝑡) + 𝐵𝑢(𝑡) − 𝐵𝑢𝑟(𝑡) 

𝐴 = [

0 𝜔 0

−𝜔 0 𝑣𝑟 ∗
 sin(𝜃𝑒)

𝜃𝑒
0 0 0

] 

𝐵 = [
−1 0
0 0
0 −1

] 

(6.7) 

Where 𝑒 is the state error  [𝑥𝑒  𝑦𝑒  𝜃𝑒]
𝑇, 𝑝𝑘 is the scheduling variable, u is the control 

input [𝑣 𝑤]𝑇 and 𝑢𝑟 is the reference input [𝑣𝑟 cos(𝜃𝑒)  𝜔𝑟]
𝑇. 

For the dynamic model, the scheduling variables are chosen to be [𝜔𝑟 𝑣𝑟], and dynamic 

model can be written as: 

�̈� = 𝑀(𝑞)−1(𝐸𝜏 − 𝐴𝑇(𝑞)𝜆 − 𝐶(𝑞, �̇�)�̇�) (6.8) 

It then can be converted into an LPV form as: 

�̇�𝑑 = [
1 0
0 −𝑀−1𝐶

] 𝑥𝑑 + [
0

𝑀−1𝐸
] 𝑢 − 𝐴𝑇𝜆  (6.9) 

where 𝑥𝑑 = [𝑞  �̇�]
𝑇 and 𝑢 = 𝜏. 



137 

 

6.3 Controller design 

In this section, we first show how an LPV-SS model can be converted into an LPV-IO. 

We then define the cost function and develop the kinematic and dynamic controllers. Finally, we 

expressed the optimization problem in terms of RNN. Assume the following discrete-time MIMO 

linear parameter-varying (LPV) transfer function: 

𝑦(𝑘) = −∑𝑎𝑖(𝑝(𝑘))

𝑛𝑎

𝑖=1

𝑦(𝑘 − 𝑖) +∑𝑏𝑗(𝑝(𝑘))

𝑛𝑏

𝑗=1

𝑢(𝑘 − 𝑗) 

 

(6.10) 

Subjected to the following constraints  

𝑢(𝑘) ∈ 𝑈 ≡ {𝑢 ∈ ℝ𝑛𝑢| |𝑢(𝑘)| ≤ 𝑢𝑚𝑎𝑥}           

∆𝑢(𝑘) ∈ 𝑉 ≡ {∆𝑢 ∈ ℝ𝑛𝑢| |∆𝑢(𝑘)| ≤ ∆𝑢𝑚𝑎𝑥}      

𝑦(𝑘) ∈ 𝑌 ≡ {𝑦 ∈ ℝ𝑛𝑦| |𝑦(𝑘)| ≤ 𝑦𝑚𝑎𝑥} 

𝑝(𝑘) ∈ 𝑃 ≡ {𝑝 ∈ ℝ𝑛𝑝| |𝑝(𝑘)| ≤ 𝑝𝑚𝑎𝑥} 

where 𝑦(𝑘) are outputs, 𝑢(𝑘) are inputs, 𝑝(𝑘) are scheduling variables, 𝑞−𝑖 is a backshift 

operator, 𝑛𝑎 is numerator order, 𝑛𝑏 is dominator order, 𝑛𝑢is the number of inputs, 𝑛𝑦 is the number 

of outputs, and 𝑢𝑚𝑎𝑥 , ∆𝑢𝑚𝑎𝑥 , and 𝑦𝑚𝑎𝑥  are boundaries. The state-space representation of the 

dynamic model given by the equation   is: 

𝑥(𝑘 + 1) =

[
 
 
 
 
 
 
 
 
−𝑎1 … −𝑎𝑛𝑎−1 −𝑎𝑛𝑎 𝑏0 + 𝑏1 … 𝑏𝑛𝑏−1 𝑏𝑛𝑏

𝐼𝑛𝑦 … 0 0         0 … 0 0

⋮
0
0
0
⋮
0

⋱
……
…
⋱
…

⋮
𝐼𝑛𝑦
0
0
⋮
0

⋮
0
0
0
⋮
0

      

⋮
0
𝐼𝑛𝑢
𝐼𝑛𝑢
⋮
0

⋱
……
…
⋱
0

⋮
0
0
0
⋮
𝐼𝑛𝑢

⋮
0
0
0
⋮
0 ]

 
 
 
 
 
 
 
 

⏟                                    
𝐴(𝑝(𝑘))

𝑥(𝑘) +

[
 
 
 
 
 
 
 
𝑏0
0
⋮
0
𝐼𝑛𝑦
0
⋮
0 ]
 
 
 
 
 
 
 

⏟
𝐵(𝑝(𝑘))

𝑢(𝑘) 

 

(6.11) 

where 𝑥(𝑘) = [𝑦(𝑘 − 1)…𝑦(𝑘 − 𝑛𝑎)   𝑢(𝑘 − 1)…𝑢(𝑘 − 𝑛𝑏)]
𝑇 . For the sake of 

simplicity, 𝑝(𝑘) is removed from all coefficients 𝑎𝑖 and 𝑏𝑖. We considered that [𝐴(𝑘)  𝐵(𝑘)] ∈ Ω =

𝐶𝑜[[𝐴1 𝐵1],⋯ , [𝐴𝑚 𝐵𝑚]], where Ω is the polytope, 𝐶𝑜 is the convex hull, and [𝐴𝑗  𝐵𝑗] are vertices. The 

state variable is a combination of previous inputs and outputs by doing this. The controller uses the 

LPV-IO model to predict outputs and the LPV-SS model for stability provision. Also noteworthy 

is that the stability of the LPV-SS controller grants the equivalent LPV-IO controller stability [281]. 
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6.3.1 The prediction model 

Finding 𝑦(𝑘 + 𝑗) sentences are required to predict the error 𝑒(𝑘 + 𝑗). The future outputs 

can be calculated from a step response or by solving the Diophantine equation. Given the step 

response of the LPV system (6.10), the future values of outputs over the horizon will be:  

𝑦(𝑘, 𝑝(𝑘)) =∑𝑔𝑖(𝑝(𝑘))∆𝑢(𝑘 − 𝑖, 𝑝(𝑘))

∞

𝑖=1

 

𝑦(𝑘 + 𝑗, 𝑝(𝑘 + 𝑗)) =∑𝑔𝑖(𝑝(𝑘 + 𝑗))∆𝑢(𝑘 + 𝑗 − 𝑖, 𝑝(𝑘))

∞

𝑖=1

+ 𝑑(𝑘 + 𝑗, 𝑝(𝑘)) 

 

(6.12) 

where 𝑔𝑖 denotes step response, and 𝑑(𝑘 + 𝑗) is a disturbance, which can be derived from 

𝑦(𝑘 + 𝑗) − 𝑟(𝑘 + 𝑗). For a faster prediction, disturbances are assumed to be constant, which can 

be estimated by 𝑦(𝑘) − 𝑟(𝑘). The scheduling variable 𝑝(𝑘) is removed from the next equations 

for the reasons of simplification. The Equation (6.12) can then be rewritten: 

𝑦(𝑘 + 𝑗) = (∑𝑔𝑖∆𝑢(𝑘 + 𝑗 − 𝑖)

𝑘

𝑖=1

+ ∑ 𝑔𝑖∆𝑢(𝑘 + 𝑗 − 𝑖)

∞

𝑖=𝑘+1

) + (𝑦(𝑘) − 𝑟(𝑘)) 
 

(6.13) 

Substituting 𝑦(𝑘) = ∑ 𝑔𝑖∆𝑢(𝑘 − 𝑖)
∞
𝑖=1  in Equation (6.13) yields: 

𝑦(𝑘 + 𝑗) =∑𝑔𝑖∆𝑢(𝑘 + 𝑗 − 𝑖)

𝑘

𝑖=1

+∑(𝑔𝑘+𝑖 − 𝑔𝑖)∆𝑢(𝑘 − 𝑖)

∞

𝑖=1

− 𝑟(𝑘)

=∑𝑔𝑖∆𝑢(𝑘 + 𝑗 − 𝑖)

𝑘

𝑖=1

+ 𝑓(𝑘 + 𝑗) 

 

(6.14) 

Meanwhile, 𝑓(𝑘 + 𝑗) can be abridged on the assumption that the system is asymptotically 

stable and after 𝑁 sampling period 𝑔𝑘+𝑖  equals 𝑔𝑖. 

 𝑓(𝑘 + 𝑗) =∑(𝑔𝑘+𝑖 − 𝑔𝑖)∆𝑢(𝑘 − 𝑖)

𝑁

𝑖=1

− 𝑟(𝑘) 

 

(6.15) 

The prediction relationship of the output vector is 

𝑌(𝑝) = 𝐺(𝑝)𝑈(𝑝) + 𝐹(𝑝)  

(6.16) 

where  
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𝐺 =

[
 
 
 
 
𝑔1 0 … 0
𝑔2
⋮

𝑔𝑁−1

𝑔1
⋮

𝑔𝑁−2

…
⋮
…

0
⋮
𝑔2

𝑔𝑁 𝑔𝑁−1 … 𝑔1]
 
 
 
 

 

𝑌 = [
𝑦(𝑘 + 1)

⋮
𝑦(𝑘 + 𝑁)

], 𝑈 = [
𝑢(𝑘)
⋮

𝑢(𝑘 + 𝑁 − 1)
], 𝐹 = [

𝑓(𝑘 + 1)
⋮

𝑓(𝑘 + 𝑁)
] 

 

 

(6.17) 

6.3.2 Cost function 

After finding the predicted outputs, the cost function should be defined to find optimal 

control signals. The controller aims to minimization of the cost function (𝐽): 

𝐽 = ∑ 𝑒(𝑘 + 𝑖)𝑇
𝑁−1

𝑖=0

𝑄𝑒(𝑘 + 𝑖) + ∆𝑢(𝑘 + 𝑖 − 1)𝑇𝑅∆𝑢(𝑘 + 𝑖 − 1)
⏟                                      

𝑙(𝑒,𝑢)

+Ψ(𝑘 + 𝑁) 
 

(6.18) 

The first term 𝑙(𝑒, 𝑢), is called stage cost, being in charge of closed-loop stability, where 𝑄 

and 𝑅 are positive definite state and input weighting matrixes, and 𝑒 is the error, which is the 

difference between measured outputs (𝑦) and reference (𝑟). The term Ψ(𝑘 + 𝑁)is the terminal cost, 

which can be defined as 𝑥(𝑘 + 𝑁)𝑇𝑄𝑝𝑥(𝑘 + 𝑁).  

According to [281], a state feedback controller can represent the system's stability with the 

LPV-IO form. The control law (𝑢(𝑘)) is comprised of a fixed state feedback 𝐾 and a free control 

move (𝑐), in which 𝐾 is computed offline, and 𝑐 is obtained from the minimization of (6.18): 

𝑢(𝑘) = −𝐾𝑥(𝑘) + 𝑐(𝑘) (6.19) 

The state-feedback gain accounts for maintaining the final state variable 𝑥(𝑘 + 𝑁) in the 

terminal region while meeting constraints and keeping the controller as less conservative as 

possible. In fact, a constant state feedback controller confirms the stability when there is no 

disturbance. Otherwise, free control moves (𝑐) will be determined online in a min-max problem to 

guarantee the Input State practical stability (ISpS). Thus, a part of the controller will be calculated 

offline for conditions that there is not any disturbance, and a part of the controller will be set online 

to deal with existing disturbances or violations of  𝑥(𝑘 + 𝑁) ∈ 𝑋𝑓.  

6.3.3 Kinematic controller 

After output prediction and defining cost function, the asymptotical stabilizing state 

feedback control can be described: 
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𝑢 = −𝐾𝑥  

𝑥(𝑘) ∈ 𝑆𝐼 

𝑥(𝑘 + 𝑁) ∈ 𝑆𝑇 

 

(6.20) 

𝑆𝐼 characterizes the initial feasibility region, in which 𝑆𝐼 = {𝑥 ∈ 𝑅
𝑛|𝑥 ∈ 𝑋,−𝐾𝑥 ∈ 𝑈}, and 

𝑆𝑇  denotes the terminal feasibility region,  𝑆𝑇 = {𝑥 ∈ 𝑅
𝑛|𝑥(𝑘 + 𝑁)𝑇𝑄𝑝𝑥(𝑘 + 𝑁) <

1

𝛾
}  . As 

previously discussed, this paper aims to expand 𝑆𝐼 and 𝑆𝑇 to enjoy a progressive controller. The 

first step is to enlarge 𝑆𝐼through a general interpolation MPC. Secondly, the largest possible 𝑆𝑇 

that meet the constraints will be chosen by minimizing 𝛾  . The control law of IMPC can be 

described as: 

𝑥 =∑𝜆𝑖𝑥𝑖

𝑛

𝑖=1

,∑𝜆𝑖 = 1,

𝑛

𝑖=1

 𝜆𝑖 ≥ 0 

𝑢 = −∑𝑘𝑖𝜆𝑖𝑥𝑖

𝑛

𝑖=1

 

 

(6.21) 

where 𝑛  is the number of predefined feedback gains 𝑘𝑖  that stem from Ackermann's 

formula as follows: 

𝐾𝑖 = [0 ⋯ 0 1]𝑄𝑐,𝑖
−1𝛼𝑖(𝐴) (6.22) 

where 𝛼𝑖(𝐴) is the characteristic polynomial, and 𝑄𝑐,𝑖 is the controllability matrix. 

 

𝛼𝑖(𝐴) = det(𝑆𝐼 − (𝐴𝑖 − 𝐵𝑖𝐾𝑖)) = det (𝑆𝐼 −𝑀𝑖) 

𝑄𝑐,𝑖 = [𝐵 𝐴𝐵 𝐴2𝐵 … 𝐴𝑛𝑥−1𝐵  ] 

 

                 

                 (6.23) 

Taking the state-space model, as stated in Equations (6.11), the proposed general IMPC 

method is recursively feasible [149]. According to Equation   (6.23), the state trajectories are 

{−𝐾𝑥, 𝐾𝑀𝑖𝑥, 𝐾𝑀𝑖
2𝑥, … }. With this in mind, the enhanced feasible invariant set can be determined 

by Maximal Admissible Set (MAS) as: 

𝑠𝑖 = {𝑥|Η𝑖𝑥 ≤ 𝛼} 

SI=Co{s1,…,sn} 

 

(6.24) 

where Η𝑖 = [𝑀𝑖, 𝑀𝑖
2, … ,𝑀𝑖

𝑛]
𝑇
, 𝑎𝑛𝑑 𝛼 = [1, … , 1]𝑇 

The system, described in Equation (6.10), is asymptotically stable under the interpolated 

control law (6.21) if there is 𝑄𝑝 = 𝑄𝑝
𝑇 > 0 that implies Equation (6.25)[149]. 
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𝑀𝑖
𝑇𝑄𝑝𝑖𝑀𝑖 −𝑄𝑝𝑖 + 𝑄𝑖 + 𝐾𝑖

𝑇𝑅𝑖𝐾𝑖 ≤ 0, 𝑖 = 1,…𝑛 (6.25) 

After showing the proposed method's recursive feasibility and asymptotic stability, the 

terminal region must be determined. While region 𝑆𝑇 is desired to be as large as possible to 

reduce conservatism, increasing this area might cause violating the constraints. As a result, the 

minimum value of 𝛾 that satisfies constraints  

(6.10) can be calculated by an optimization problem. It is proven that 𝛾 can be derived 

from the following optimization problem [276]: 

min
𝛾
𝛾 

1

𝛾
𝐴𝑇𝑃

−1𝐴𝑇
𝑇 ≤ 𝐵𝑇𝐵𝑇

𝑇 

(6.26) 

where 𝐴𝑇 = [−𝐼𝑛  𝐾 𝐼𝑛 − 𝐾]
𝑇 , 𝐵𝑇 = [𝑥𝑚𝑎𝑥 − 𝑥𝑠  ∆𝑢𝑚𝑎𝑥  𝑥𝑚𝑎𝑥 − 𝑥𝑠   ∆𝑢𝑚𝑎𝑥]

𝑇 , and 𝑥𝑠  is 

the desired state.  

6.3.4 Dynamic controller  

The free control moves will be determined online in case there is a disturbance or the 

condition 𝑥(𝑘) ∈ 𝑋𝑓  does not meet. The online controller steers the states towards 𝑋𝑓 , where 

offline control asymptotically stabilizes the system. Two Theorems are defined here to demonstrate 

the controller validity[150]. The first showed that the system remains ISpS when there is a bounded 

disturbance. The second showed that the system is recursively stable. Because of additive 

disturbances, a min-max (worst-case) optimization problem is defined to cope with uncertainties. 

The optimization problem (6.18) can be rewritten considering the bounded disturbance: 

min
𝑐(𝑘)

max
𝑑(𝑘)∈𝐷

𝑉𝑁(𝑥(𝑘), 𝑢(𝑘), 𝑝(𝑘), 𝐾, 𝑐(𝑘)) 

𝑦(𝑘 + 𝑗) = −(∑ 𝐴𝑖
𝑛𝑎
𝑖=1 𝑞−𝑖)𝑦(𝑘 + 𝑗) + (∑ 𝐵𝑖

𝑛𝑏
𝑗=1 𝑞−𝑖)𝑢(𝑘 + 𝑗) + 𝑑(𝑘), j=1,2,…,N-1 

𝑢(𝑘 + 𝑗) = −𝐾𝑥(𝑘 + 𝑗) + 𝑐(𝑘 + 𝑗) 

𝑢(𝑘 + 𝑗) ∈ 𝑈 

∆𝑢(𝑘 + 𝑗) ∈ 𝑉 

𝑦(𝑘 + 𝑗) ∈ 𝑌 

𝑑(𝑘 + 𝑗) ∈ 𝐷 

𝑥(𝑘 + 𝑁) ∈ 𝑋𝑓 

(6.27) 

The optimal solution to the problem (6.27), subjected to the system (6.10), is the sequence 

[𝑐∗(𝑘) 𝑐∗(𝑘 + 1)… 𝑐∗(𝑘 + 𝑁 − 1)] corresponding to [𝑢∗(𝑘) 𝑢∗(𝑘 + 1)…𝑢∗(𝑘 + 𝑁 − 1)]. [150] 
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provided two theorems for showing this optimization problem's stability and recursive feasibility. 

The designed controller has two components. The first is determined offline using the kinematic 

mode, which includes a control gain 𝐾 and terminal region 𝑋𝑓. When 𝑥 ∈ 𝑋𝑓, the offline controller 

asymptotically stabilizes the system. Otherwise, an online controller verifies the ISpS using a 

dynamic model when there is uncertainty. The online optimization problem is shown to be feasible. 

A dynamic neural network is constructed in the next section to solve the online optimization 

problem. 

6.3.5 RNN 

In this study, RNN optimizes a real-time QP problem enjoying parallel computation. To 

begin with, the original optimization problem is required to transform into a standard form [150].  

𝑋(𝑘 + 𝑗) = 𝐺(𝑝(𝑘 + 𝑗 − 1))𝑋(𝑘 + 𝑗 − 1) + 𝐹(𝑝(𝑘 + 𝑗 − 1))𝑈(𝑘 + 𝑗 − 1) + 𝐷(𝑘 + 𝑗 − 1), 𝑗 = 1,… , 𝑁 

𝐺(𝑝(𝑘)) = [𝐴(𝑝(𝑘)) 𝐴(𝑝(𝑘))
2
… 𝐴(𝑝(𝑘))

𝑁
]𝑇 

𝐹(𝑝(𝑘)) =

[
 
 
 
 

𝐵(𝑝(𝑘))

 𝐴(𝑝(𝑘))𝐵(𝑝(𝑘)) + 𝐵(𝑝(𝑘))

⋮

𝐴(𝑝(𝑘))
𝑁−1

𝐵(𝑝(𝑘)) + ⋯+ 𝐴(𝑝(𝑘))𝐵(𝑝(𝑘)) + 𝐵(𝑝(𝑘))]
 
 
 
 

 

 

     

(6.28) 

And the optimization problem (6.27) can be written as follows: 

  min
𝑈
𝑋𝑇�̅�𝑋 + 𝑈𝑇𝑅𝑈 =min

𝑈
(𝐺𝑋 + 𝐹𝑈 + 𝐷)𝑇�̅�(𝐺𝑋 + 𝐹𝑈 + 𝐷) + 𝑈𝑇𝑅𝑈 

min
𝑈
𝑈𝑇 ∗ ((𝐹𝑈)𝑇�̅�(𝐹𝑈) + 𝑅) ∗ 𝑈 + (𝐺𝑋 + 𝐹𝑈)𝑇�̅�(𝐺𝑋 + 𝐹𝑈) 

 

     

(6.29) 

where  

�̅� = [
𝑄 0
0 𝑄𝑝

] 

According to Equations (6.28) and (6.29), the standard form can be expressed as: 

min
𝑣

1

2
𝑣𝑇𝐻𝑣 + 𝑏𝑇𝑣 

Subject to 𝑇𝑣 ≤ 𝑞 

 

     

(6.30) 

where  

𝐻 = 2 ∗ ((𝐹𝑈)𝑇�̅�(𝐹𝑈) + 𝑅) 

𝑏 = 2 ∗ (𝐺𝑋 + 𝐹𝑈)𝑇�̅�(𝐺𝑋 + 𝐹𝑈) 



143 

 

𝑇 =

[
 
 
 
 
 
𝐼𝑛∗𝑛
−𝐼𝑛∗𝑛
𝐼𝑛∗𝑛
−𝐼𝑛∗𝑛
𝐺
−𝐺 ]

 
 
 
 
 

, 𝑞 =

[
 
 
 
 
 

𝑢𝑚𝑎𝑥
−𝑢𝑚𝑎𝑥

∆𝑢𝑚𝑎𝑥 + 𝑢(𝑘 − 1)
∆𝑢𝑚𝑎𝑥 − 𝑢(𝑘 − 1)
𝑋𝑚𝑎𝑥 − 𝐹 − 𝑑
−𝑋𝑚𝑎𝑥 + 𝐹 + 𝑑 ]

 
 
 
 
 

 

In [222, 228], a simplified form of a dual neural network is described to ensure a lower 

computational burden by defining the dual form of the optimization problem (6.30) as: 

• State equation: 

𝑑𝜔

𝑑𝑡
= 𝜆(−𝑇𝐻−1𝑇𝑇𝜔 +𝑀(𝑇𝐻−1𝑇𝑇𝜔 − 𝑇𝐻−1𝑐 − 𝜔) + 𝑇𝐻−1𝑐) 

 

(6.31) 

Where 𝜔 is the state variable of the network, 𝜆 > 0 adjusts the convergence rate of RNN, 

and 𝑀 is a piecewise linear function as: 

𝑀(𝑧) = {

𝑞𝑚𝑖𝑛                         𝑧 < 𝑞𝑚𝑖𝑛
𝑧                 𝑞𝑚𝑖𝑛 < 𝑧 < 𝑞𝑚𝑎𝑥
𝑞𝑚𝑎𝑥                        𝑧 > 𝑞𝑚𝑎𝑥

  
(6.32) 

• Output equation: 

𝑣 = 𝐻−1𝑇𝑇𝜔 − 𝐻−1𝑐 (6.33) 

In the dual form of the optimization problem, constraints are added to the main cost 

function as a penalty term. This means that if 𝑇𝑣 < 𝑞, the cost function decreases by a factor of 

𝛼; otherwise, for 𝑇𝑣 > 𝑞, the cost function is penalized. The global convergence of the proposed 

network is verified in [228]. 

6.4 Results and discussion 

In this section, the performance of the proposed controller has been validated in two 

scenarios: 1) trajectory tracking and 2) disturbance rejection. The developed controller is compared 

with two previous controllers for WMR in the literature (NMPC and LPV-MPC [250])in a hospital 

environment with static obstacles. Firstly, we examine the closed-loop stability of these controllers 

in terms of response speed, convergence, and robustness when facing disturbances. Secondly, the 

tractability of controllers (online computation time and region of attraction) is examined. A 

waypoint path planning approach has been utilized in all simulations to generate a route between 

two points. The controller parameters are listed in Table 6.1. 

 

 

 



144 

 

Table 6.1: The designed controller parameters 

Parameters Values 

Q 3*diag(1 1 2) 

R 1 *diag(8 3) 

Sampling time  0.1 

𝒖𝒎𝒂𝒙 𝑣𝑚𝑎𝑥 = [−12 12] 𝑚𝑚/𝑠 , 𝜔𝑚𝑎𝑥 = [−10 10]𝑑𝑒𝑔/𝑠 

∆𝒖𝒎𝒂𝒙 [-0.5 0.5] 

N 15 

𝜽𝒆 [-0.1 0.1] 

 

6.4.1 Scenario 1: trajectory tracking  

 This scenario has no disturbance, and the robot must follow a random path between certain 

fixed locations. Choosing a shorter path that avoids abrupt changes in velocities and passes through 

the designated locations is preferable. The hospital's map has several rooms and hallways, and the 

black areas show where the walls are. Figure 6.1 demonstrates that all techniques successfully pass 

through all points. While there are minor discrepancies in the pathways in certain places, 

particularly in the third room, none of the techniques exhibit excessive fluctuations or divergence. 

Figure 6.2 demonstrates that all three approaches adhered to the maximum speed limit; 

Nevertheless, it should be noted that the NMPC and LPV-MPC methods displayed substantial 

speed change rates in certain regions, causing instances where the robot came to a halt in several 

simulations. 
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Figure 6.1: Simulation results of proposed control, NMPC, and LPV-MPC in the first scenario  



146 

 

 

Figure 6.2: Linear and Angular velocities of the proposed controller, NMPC, and LPV-MPC in the first 

scenario 

6.4.2 Scenario 2: disturbance rejection 

A disturbance signal from 0 to 2 in 20 seconds and from 2 to 0 in 25 seconds has been 

applied to both speed inputs to evaluate the controllers' robustness. According to Figure 6.3, the 

proposed method is the only one that can retain its stability in the presence of disturbance while 

also passing through all spots with adequate speed and precision. The LPV-MPC technique is 

terminated at the third point because the robot has collided with a wall or has become unstable. 

Although the NMPC technique traverses all the spots, it is not particularly precise, and the path has 

significant shifts and sometimes crashes with the walls. At the end of the route, this strategy also 

achieves marginal stability. Figure 6.4 depicts two approaches (LPV-MPC and NMPC) in which 

the robot pauses after a certain period of time and does not continue to stay on the path. 

Furthermore, the speed variations in these two approaches are abrupt and harsh. The proposed 

technique includes logical adjustments and takes into account the speed constraints. 
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Figure 6.3: Simulation results of proposed control, NMPC, and LPV-MPC in the second scenario 
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Figure 6.4: Linear and Angular velocities of the proposed controller, NMPC, and LPV-MPC in the second 

scenario 

6.4.3 Tractability  

Improved tractability is one of the primary strengths of the proposed approach, which is 

discussed from two viewpoints in this section: 1) online computational load; 2) region of attraction. 

Figure 6.5 shows the region of attraction for three controllers. It is evident that the controller created 

in this research clearly has the largest surface and has successfully increased the potential starting 

place for the robot. NMPC was ranked second because the robot model was not simplified 

compared to the LPV-MPC. Because of the conversion of a nonlinear model into an LPV model 

with a fixed controller, the method of [250] has the smallest region of attraction. A preliminary 

conclusion is that interpolating predetermined control gains can expand the initial feasible region 

(about two times bigger than NMPC and five times bigger than LPV-MPC). In addition, the 

proposed controller is less conservative because it finds the maximal final region using equation 

6.26. This indicates that, in comparison to previous controllers, the proposed controller not only 

maximizes the terminal region but also has a significantly larger region of attraction. 
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Figure 6.5: Region of attraction for the proposed controller, NMPC, and LPV-MPC 

We also studied the average elapsed time per iteration in Table 6.2. The NMPC is the 

slowest controller since solving a nonlinear optimization problem is time-consuming and 

challenging. Although the proposed solution must solve a min-max optimization problem to find 

the optimal control laws, it is four times faster than LPV-MPC. The reason behind this rapid 

response is that some calculation has been done offline, and the online problem has been solved 

with RNN, which is far more efficient than the GUROBI method [250]. 

Table 6.2:The online elapsed time per iteration for three studied controllers 

Controller Elapsed time (ms) 

Proposed approach 0.0071 

NMPC 3.8 

LPV-MPC 0.029 

  

6.5 Conclusions 

A nonlinear model predictive controller has been proposed in this paper, where an LPV 

framework describes the nonlinear nonholonomic model of the robot. The online optimization 
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problem is solved with a neural network strategy to ameliorate computational complexity. An 

interpolation technique was also added to increase the region of attraction. The controller is 

compared with an NMPC and LPV-MPC regarding controller performance and traceability. All 

controllers perform well in a hospital environment where there are no disturbances. When a 

bounded disturbance was applied to the velocities of the robot, the NMPC and LPV-MPC became 

unstable or followed the reference inefficiently. In contrast, our method maintained the robot's 

stability without harsh velocities changes. Above all, our controller is less conservative than NMPC 

and LPV-MPC, i.e., it has a bigger region of attraction with a lower online computational load. 
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CHAPTER 7 

7 CONCLUSIONS AND FUTURE WORKS  

In this thesis, we first discussed the various medical robots, followed by the controllers 

utilized for wheeled robots. The combination of MPC and LPV for controlling wheeled robots in 

the hospital environment is suitable due to the robot's nonlinear dynamics and nonholonomic 

constraints. However, MPC-LPV techniques in the literature had some fundamental issues: 1) 

heavy computation load; 2) low attraction region; 3) robustness. We theoretically proved that MPC-

LPV could be improved to address these problems. We then tested the proposed controller for a 

robot in a hospital setting. 

In Chapter 3, we interpolated a series of MPC controllers for LPV systems with input-

output representation. The findings indicated that the suggested strategy significantly reduces the 

computational burden, considerably increases the initial feasible zone, and retains the terminal 

region as big as possible, resulting in a less conservative controller. The suggested technique is 

shown to closely follow the reference and remain stable in the presence of disturbance even when 

the process is more intricate, large-scale, and involves various scheduling variables,  

Chapter 4 examines an RMPC with an LPV-IO model, and the real-time optimization 

problem is solved using an RNN algorithm. With suitable rising time, settling time, MSE, and 

response amplitude, the suggested technique successfully succeeded in both setpoint tracking and 

disturbance rejection. Meanwhile, four optimization techniques are compared to handle the 

suggested controller's online optimization problem. RNN outperformed GA, SVD, and SQP in 

speed, MSE, and cost value. 

Chapter 5 uses an LS-SVM technique to build a nonparametric LPV model before utilizing 

the MPC. The identification results demonstrated that the LS-SVM-LPV could properly forecast 

the system output. When the process encountered a disturbance, the proposed controller proved 

robust. With a settling time and a rising time of fewer than two seconds, the controller was quick 

enough. 
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Chapter 6 suggests an improved MPC-LPV for a nonlinear nonholonomic robot model. The 

online optimization problem is handled using a neural network technique to reduce computational 

complexity. An interpolation approach was also used to expand the region of attraction. The 

controller function well in a hospital setting, with or without disturbances. Our solution maintained 

the robot's stability while avoiding abrupt velocity changes. Above all, our controller is less 

conservative than existing controllers, with a larger zone of attraction and a lower online computing 

burden. 

Path planning is one of the topics that might be addressed in the controller's next design. 

Furthermore, because physicians, nurses, and personnel are always moving about in the hospital 

setting, multiple moving obstacles can be included in the simulations. It is also possible to think 

about the issue of adding an arm robot to a wheeled robot; in this scenario, both the wheeled robot 

and the arm robot need to be controlled. The suggested controller's application to leader-follower 

robot navigation is an intriguing subject. Regarding the controller, deep learning techniques can 

improve the estimation of scheduling variables over the prediction horizon to find a more reliable 

controller. 
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