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ABSTRACT

Glacial cycles over the last two million years have successfully altered deep groundwater
flow in the Williston Basin, Canada. Mixing with evaporated paleoseawater has resulted in unique
geochemical signatures in formation waters with spatial and temporal trends, however the timing
of glaciogenic recharge into the Williston Basin and spatial understanding of the flow system is
loosely constrained. | examine timing and effect of glaciogenic recharge by using an integration
of fluid chemistry, stable isotope data, and transport modeling. Results demonstrate that meltwater
arrived at depths of ~600 to 1000 m in the northcentral region of the Williston Basin at two separate
time periods, 75 to 150 ka and 300 ka. Spatial analysis of geochemical data illustrates that
meltwater recharge extended to a continuous recharge belt along the northern margin of the
Williston Basin, greater than previously anticipated. Individual and multi-variate analysis of
isotope and solute geochemistry exhibit trends that contribute to fractionation of §'%0, &%H,
87Sr/88Sr, 5%'C1, and &%'Br, and validates the importance of water origin and variation in mineral
composition on solute concentrations and isotope values. Although overprinting and mixing
interactions may present challenges in geochemical interpretation, the inter-disciplinary approach
used in this research contributes to a greater understanding of how glacial meltwater recharge

altered geochemical landscapes during large-scale salt dissolution in the Williston Basin.
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CHAPTER 1: INTRODUCTION

Major geologic events must ensue for continental-scale groundwater flow systems to be
altered. Glacial cycles over the last two million years were successful in greatly altering these flow
systems by increasing hydraulic heads and recharging subglacial meltwaters to kilometre depths
in permeable formations (Grasby et al., 2000; Person et al., 2007; Mclntosh et al., 2012). From
dilution to complete flushing of remnant paleoevaporated fluids, the hydrogeologic landscape of
sedimentary basins was changed over the last two million years.

Glacial recharge has impacted sedimentary basins across the northern hemisphere as
evidenced by using physical geography and geochemical observations (Boulton et al., 1996;
Grashy et al., 2000) resulting in major changes to loading structures and instabilities in near-
surface formations. In particular, in North America where glacial activity has occurred along mid-
latitudes in the Western Canada Sedimentary Basin and Michigan/Illinois/Appalachian basins
(Grasby et al., 2000; Person et al., 2007; Mcintosh et al., 2012), massive regions of salt dissolution
have resulted in vastly different geochemical signatures and major changes to energy and mineral
resources.

The Williston Basin, located in the Western Canada Sedimentary Basin, is no exception to
the effects of Pleistocene glaciation (Grasby et al., 2000; Person et al., 2007). However, timing of
glaciogenic recharge responsible for flushing evaporated and dissolution of evaporites remain
vaguely constrained. Previous studies highlight the importance of the eastern margin of the
Williston Basin for these recharge events, but evidence suggests there is a similar amount of

recharge occurring along the northern margin as well. Additionally, minimal research has been



done to construct how the hydrostratigraphy in regions across the Williston Basin vary together,
or as separate entities, and how the geochemical variables evolve with glaciogenic flushing and

mineral dissolution.

1.1 Research Hypothesis and Objectives
This thesis examines the timing and extent of glaciogenic recharge and relative effects on
remnant saline fluids in deep, subsurface aquifers of the Williston Basin. This is observed by
simulating meltwater recharge in the last two million years to the Williston Basin, and collecting
mine solute and isotope geochemistry data to understand statistical and qualitative correlations
between selected variables. Specifically, these objectives include:

e Objective 1: simulate 1-D vertical transport in Devonian carbonate aquifers to the
Williston Basin to confirm the ages of glaciogenic-origin groundwater, and map the
transport ages to estimate flow paths and recharge zones along the Williston Basin
margin.

e Objective 2: use bivariate and multivariate analysis to understand the variation in

geochemistry between glaciogenic and brine sources.

1.2 Thesis Organization
This manuscript-style thesis consists of one published research paper (Chapter 2), a
second research chapter (Chapter 3), and summary of observations (Chapter 5). The first
research paper (Chapter 2) analyzes the variability in timing and transport of Pleistocene
meltwater recharge to regional aquifers in the Williston Basin. Following the study conducted in
Chapter 2, questions arose regarding the ability of various geochemical and isotopic tracers to
evolve with different sources of saline fluids (e.g. from salt dissolution or paleoevaporated

seawater). Therefore, the second chapter (Chapter 3) explores the geochemical variation in



solutes and isotope systems between evaporated paleoseawater and glaciogenic sourced
groundwaters in the Williston Basin. The results from Chapter 2 and 3 compliment each other in
identifying trends in solute and isotope chemistry and the driving factors to geochemical changes

in deep, subsurface aquifers of the Williston Basin.



CHAPTER 2: VARIABILITY IN TIMING AND TRANSPORT OF PLEISTOCENE
MELTWATER RECHARGE TO REGIONAL AQUIFERS
Abstract
The impacts of Pleistocene glaciation on groundwater flow systems in sedimentary basins
are widely recognized, but the timing and distribution of subglacial recharge events remain poorly
constrained. We investigate the spatial and temporal variability of recharge events from glaciations
over the last two million years in the Williston Basin, Canada. Integration of fluid chemistry, stable
isotope data, and transport modeling indicate that meltwater arrived at depths of ~600 to 1000 m
in the northcentral region of the Williston Basin at two separate time periods, 75 to 150 ka and
300 ka, which we attribute to permeability differences between stacked aquifer systems. Our
findings indicate that meltwater recharge extended along the northern margin of the Williston
Basin as well as previously identified recharge areas to the east. Given the distance of
measurements from recharge areas, evidence of recharge from the early to mid-Pleistocene appears

to be preserved in the Williston Basin.

2.1 Introduction

Pleistocene glaciation profoundly altered continental-scale groundwater flow systems by
increasing hydraulic heads and recharging fresh subglacial meltwaters to kilometre depths in
underlying sedimentary basins (Grasby et al., 2000; Person et al., 2007; Mclntosh et al., 2012).
Advance and retreat of ice sheets produced multiple subglacial recharge events, which flushed and
diluted remnant saline fluids (MclIntosh et al., 2012) and extensively dissolved evaporites (Grasby

and Chen, 2005; McIntosh and Walter, 2006) in sedimentary basins of North America and Europe
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(Boulton et al., 1994; Kloppmann et al., 2001). The few studies that have attempted to constrain
the timing of subglacial recharge using age tracers (e.g., Mazor and Bosch, 1987; Schlegel et al.,
2011) have been relatively coarse and focus on single aquifer or confined aquifer systems, while
many of these sedimentary basins contain extensive stacked aquifers that were likely recharged
intermittently over the past two million years.

Pleistocene glacial meltwaters are an important fresh groundwater resource in glaciated
continental and coastal regions across the northern hemisphere (Grasby et al., 2000; Edmunds and
Milne, 2001; Person et al., 2007; Person, 2007; Mclintosh et al., 2011). Infiltration and recharge of
meltwaters have implications for long-term radioactive waste and CO; storage (Lemieux et al.,
2008; Lemieux et al., 2011), energy resources via stimulation of microbial methanogenesis in
shales and coalbeds (Martini et al., 2008; Mcintosh et al., 2012), and mineral resources via
dissolution of potash deposits in the Williston Basin (Grasby et al., 2000). Thus, determining the
timing and flowpaths of subglacial recharge is vital for assessing resource sustainability and
understanding the paleohydrogeology of sedimentary basins.

Previous studies have used age tracers like radiocarbon (**C), helium (*He), and krypton
(8*Kr) to constrain the timing of Pleistocene recharge (Mclntosh and Walter, 2006; Cloutier et al.,
2006; Schlegel et al., 2011; Hendry et al., 2013; Gerber et al., 2017). However, radiocarbon dating
is limited to <~50,000 years and existing noble gas data is relatively sparse. As an alternative,
stable isotopes of water (830 and §2H) data are more widely available (Ferguson and Jasechko,
2015; Jasechko, 2019), enabling higher-resolution studies. These data are also effective indicators
of groundwater sources as modern meteoric waters, Pleistocene recharge, and evaporated
paleoseawater typically exhibit distinct 580 and 52H signatures. Previous studies using numerical

models estimated the arrival time of waters with distinct isotopic signatures (e.g., subglacial



meltwater recharge) at specified locations within the Williston Basin (Hendry et al., 2013; Hendry
and Harrington, 2014). The numerical transport modeling solves for the time period(s) which has
passed since the Pleistocene meltwater arrived in the region and, fitted to high-resolution §*20 and
5°H data, can effectively constrain the timing of subglacial meltwater arrival.

The impacts of Pleistocene glaciation on basinal-scale flow systems in the Williston Basin
are widely recognized (Grasby et al., 2000; Person et al., 2007). However, the timing of meltwater
recharge events responsible for flushing evaporated and dissolution of evaporites remain
ambiguous. Evaporated paleoseawater, positioned deep within the Williston Basin, are highly
saline (>350 g L™* TDS) and have elevated 580 and §°H values characteristic of evaporated
paleoseawater (Wittrup and Kyser, 1990). However, recharge of fresh Pleistocene meltwaters, with
low 880 values, along the north to east margins of the Williston Basin flushed evaporated
paleoseawater and generated new salinity via extensive salt dissolution (Wittrup and Kyser, 1990;
Grasby et al., 2000; Grasby and Chen 2005; Tipton, 2018). Using 1-D transport modeling of
5180—depth profiles, Hendry et al. (2013) estimated Pleistocene subglacial recharge for the
Cretaceous Mannville aquifer in southeast Saskatchewan, Canada arrived between 240 and 430 ka.
The variation in arrival times to the Mannville aquifer may be attributed to local and regional
discontinuities between locations, the distance to different recharge areas, and (or) changes in
hydraulic properties (e.g. hydraulic conductivity or porosity).

Here, we explore the timing of Pleistocene meltwater recharge into a deep, stacked carbonate
aquifer system at different locations within the Williston Basin to gain a more basin-scale
perspective using a combination of high-resolution 50 and §°H data with groundwater transport
modeling. We show that arrival times varied incoherently with spatial location and aquifer position

in the carbonates, but that it consistently occurred within two separate time periods and from areas



along a continuous recharge belt along the north to east margin of the basin. This contributes a
greater understanding of glacial meltwater recharge and flowpaths in the Williston Basin, and also
its relevant applicability to other sedimentary basins impacted by glaciation in the northern

hemisphere.

2.2 Regional Hydrogeology

The Williston Basin is an intracratonic sedimentary basin centered in North Dakota, USA.
The basin extends north into southcentral Saskatchewan and southwest Manitoba in Canada, and
west and south into Montana and South Dakota, respectively, in the USA. The basin is structurally
bound by the Sweetgrass Arch to the west, the Canadian Shield to the north, the Manitoba
Escarpment to the east, and various uplifts in Montana and South Dakota to the south (Kent and
Christopher, 1994) (Figure 2-1). The Williston Basin consists of sedimentary rocks conformably
and unconformably overlain by each other. Middle and upper Devonian (mid-Paleozoic) strata are
composed of stacked aquifers, aquitards, and aquicludes that were deposited during carbonate
transgressive and regressive episodes. These strata include the Prairie Evaporite aquiclude,
Manitoba aquifer, Souris River aquitard, Duperow aquifer, Seward aquitard, Birdbear aquifer, and

Three Forks aquitard (Figure 2-1).
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Figure 2-1: Overview of (a) Western Canada Sedimentary Basin and relevant geologic features
with present—day regional flow directions, (b) cross section for the Williston Basin between A—-A'
with meltwater infiltration and mixing process during glacial impact, and (c) stratigraphic column
of the Williston Basin between B-B’ with the Devonian inset with more detailed geology and

hydrostratigraphy surrounding the aquifers examined in this study.

The Williston Basin has been intermittently overlain by continental ice sheets over the past
two million years (Christiansen and Sauer, 2001). Increases in the hydraulic head associated with
ice sheets and subsequent influx of glacial meltwater into Paleozoic carbonate aquifers
significantly altered groundwater flow patterns in the basin (Grasby et al., 2000). Groundwater
within these carbonate aquifers, which are relatively isolated at-depth between adjacent confining
units of shale and bedrock, retain a distinct geochemical and isotopic signature characteristic of
Pleistocene meltwaters (Grasby and Betcher, 2002; Grasby and Chen, 2005). These characteristics
include 80 and §?H values that plot on the Global Meteoric Water Line (GMWL) but more 0
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and 2H—depleted with respect to modern precipitation. They also exhibit a molar Na:Cl ratio of ~1
and CI:Br ratios ~10 times greater than seawater, indicative of halite and salt dissolution (Grasby
and Betcher, 2000)

Following retreat of the Laurentide Ice Sheet, hydraulic heads in the Williston Basin likely
returned to the present, quasi-equilibrium state (Hitchon, 1969a; Grasby and Chen, 2005).
Present—day regional groundwater flow is from topographic highs in the southwest, including the
Black Hills in South Dakota, to topographic lows near the boundary of the Canadian Shield in the
northeast (Figure 2—-1a). The deepest hydrostratigraphic units of the Williston Basin exhibit little
evidence of meteoric water circulation (Palombi, 2008). Instead, these Na-Cl to Na-Ca-Cl type
waters exhibit characteristics of evaporated paleoseawater including molar Na:Cl ratios < 0.85,
Cl:Br ratios comparable to evaporated seawater, and 530 and §°H values that plot below the
GMWL (Grasby and Betcher, 2002; Grasby and Chen, 2005; Ferguson et al., 2007; Tipton, 2018).
Stagnation of evaporated paleoseawater within deep sedimentary basins is attributed to negative
buoyancy associated with high TDS waters (Bachu and Hitchon, 1996; Palombi, 2008; Ferguson

etal., 2018).
2.3 Methods

2.3.1 Sample collection and analysis
Formation fluids were collected in November 2016 and March 2018 from active seeps over
short time intervals in mine shafts and mine workings at the Vanscoy, Cory, Allan, and Rocanville
potash mines in southcentral Saskatchewan (Figure 2-1). These seeps primarily originated from
the middle to upper Devonian strata from the Birdbear formation (~600 m) to the Prairie formation
(~1100 m), which corresponds to mine level (Table Al). Fluids were collected into clean 250 mL

or 1000 mL HDPE bottles and stored at ambient room temperature until analysis.



Dissolved Cl- and Br— concentrations were determined by ion chromatography in the
Environmental Analytical Laboratory at the Saskatchewan Research Council (Saskatoon, Canada).
The 5'80 and &%H values were determined using CO2—H20 and Ho—H,0 equilibration methods,
respectively, at the Saskatchewan Isotope Laboratory (Saskatoon, Canada) and results are reported
as the relative difference between the 80/'°0 and ?H/*H abundance ratios normalized to Vienna
Standard Mean Ocean Water (VSMOW), expressed in per mille (%o) notation. Accuracies of §°H
and 580 are 2%o and 0.2%o, respectively, but this methodology does not account for the salt effect
in highly saline waters (Sofer and Gat, 1972; Sofer and Gat, 1975; Koehler et al.,
2013). Corrections for the salt effect, which produces discrepancies in measured isotope
compositions in high activity brines as outlined by Sofer and Gat (1972; 1975) and Koehler et al.
(2013), were applied to the 50 and §2H values. Additional data (Cl, Br, $'80, and §%H) is from

Tipton (2018) to increase data coverage.

2.3.2 Model setup

A simplified hydrostratigraphic column (Figure 2-2a) was constructed based on local
geology using GeoHub Saskatchewan (Marsh and Love, 2014) for Prairie Evaporite (mine level)
to surface. Simulation of measured 5'80 data follows a similar procedure as detailed by Hendry et
al. (2013) to develop a diffusion model using the finite element model software CTRAN/W and
SEEP/W (GeoStudio 2018 R2, v. 9.1.1.16749). In this approach, we simulate 1-D vertical
transport from Devonian carbonate aquifers into adjacent aquitards by assigning a step change in
aquifer groundwater concentration when meltwater first arrives in the study site via regional
groundwater flow (Figure 2—2a-b). These models, which used a spacing between nodes of 10 m,
assumes that prior to the arrival of meltwater, the vertical distribution of §'%0 was controlled by

diffusion over tens of millions of years due to presence of relatively low regional groundwater
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flow rates. Therefore, the arrival time of glacial meltwater recharge to the study region before
present day, t = 0 ka, is the simulation period length which best fits observed data (t > 0 ka).

Solute transport is calculated based on:

ac 9%¢c ac
() 3z =Dezz—v3,

@v=4=,

where C is concentration, t is time, De is the effective diffusion coefficient, z is vertical
distance, v is average linear velocity, q is specific discharge, and ne is effective porosity.

We used ne values reported by Hendry et al. (2013) based on laboratory measurements for
the Quaternary glacial till (0.24), Cretaceous shales (0.33), lower Cretaceous sandstones (0.34),
Devonian carbonates (0.10), and the Prairie Evaporite (0.33) based on measurements on core from
a commercial database (IHS Energy, 2017). We used De values of 2.3 x 107° m? s™* for glacial
till, shale and sandstone units (Hendry and Wassenar, 1999), 1.32 x 1071° m? s™* for the Devonian
carbonate aquifers, and 6.0 x 1071t m? s for the Prairie Evaporite (Boudreau, 1996; Boudreau and
Meysman, 2006; Hendry et al., 2009). We increased De to 9 x 1071 m2s™* for the Devonian

carbonate aquifers in the diffusion model set-up (Figure 2-2c).
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conditions, and (b) diffusion-only profile set-up
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constant concentration at each carbonate aquifer.

The initial hydrogeochemical profile,
representing pre-glaciation conditions and (or)
zero recharge, is simulated based on a diffusion-
only transport setting (i.e., v = 0) after Hendry et
al. (2013) between two fixed boundaries (Figure
2-2). Zero pressure was assigned to the top of the
hydrostratigraphic column, and a bottom pressure
head was assigned to the bottom of the column
equivalent to the depth of the Prairie Evaporite
formation (i.e. hydrostatic conditions): (Cory)
1025 m, (Vanscoy) 1025 m, (Allan) 1000 m, and
(Rocanville) 950 m. The 580 values used for the
constant concentrations of the upper and lower
boundaries correspond to minimum and maximum
isotope compositions recorded in the Western
Canada Sedimentary Basin. We defined the upper

boundary, §*80ygper, for surface recharge —22%. to

reflect subglacial meltwater (Grasby and Chen,
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2005; Ferguson et al., 2007; Ferguson and Jasechko, 2015) and the lower fixed boundary, 8*3Ojower
at the Prairie Evaporite as +5%o to represent evaporated paleoseawater (Grasby and Chen, 2005;
Ferguson et al., 2007) (Figure 2—2a). The model simulated diffusive distribution from the upper
to lower boundary for t = 100 million years until it reached steady state. However, the simulation
matched unperturbed §'80 data at t = 25 million years, and we used this profile as the initial
concentration input for subsequent simulations (Figure S1). Next, we simulated vertical
distribution between the aquifers and aquitards following arrival of subglacial meltwater recharge
at the study sites. We performed a transient solute transport simulation of vertical diffusive
transport (Figure 2—2b) over one million years from tintial to trinar. This range covers the time period
examined by Hendry et al. (2013) in their study of a shallower regional aquifer in our study area
and encompasses much of the time where continental ice sheets covered this area of North America
during the Pleistocene Epoch (Ehlers et al., 2008). In this scenario, we maintained the 3*30ypper and
5*801ower Values that defined the upper and lower boundary conditions, and defined the fixed aquifer
concentrations, 8'8Oaquifer, as —17.5%o to reflect an average 5'8Qaquiter Value for our dataset. Lastly,
we increased De to 9 x 1072° m? s* for the Devonian carbonate aquifers to reflect the effect of
increased flow and mixing during a large recharge event. The best fit of meltwater arrival time(s)
for each location were decided based on the qualitative and quantitative results between measured

and simulated 580—depth profiles using root mean squared error (RMSE).
2.4 Results

2.4.1 Geochemical Results
The 580 values tended to be lower within aquifer units than in aquitards (Figure 2-3; Table
A1), with these lower values generally falling on the GMWL (Figure 2—4a). 6%H and 520 values

fell along a mixing trend between the GMWL at a value consistent with a Pleistocene signature
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(Ferguson and Jasechko, 2015) and a brine endmember resembling evaporated seawater (Figure
2-4a). Samples plotting near the GMWL tended to have high molar CI:Br, while values below the

GMWL had low molar CI:Br (Figure 2-4b).

2.4.2 Model Results

The initial profile, describing the pre-glaciation conditions and (or) zero recharge, shows the
best-fit to unperturbed 580 values at 25 million years and deviates greatly from the measured data
after 40 million years (Figure S1). The upper and lower §'0 boundary conditions (—22%o and
+5%o, respectively) provide a reasonable approximation of the estimated and known &80 values
for glacial recharge (Grasby and Chen, 2005; Ferguson et al., 2007; Ferguson and Jasechko, 2015)
and evaporated paleoseawater (Grasby and Chen, 2005; Ferguson et al., 2007). It is evident from
the initial depth profile (Figure 2—-3) that additional transport processes must be imparted on this
stacked aquifer system to closely replicate the observed present-day 20 values by simulating a
diffusion—dominated environment with perturbation by a 8O-depleted source into carbonate
aquifers in the last million years. These results indicate that meltwater arrived non-uniformly into
Devonian stacked aquifers (deepest Manitoba, middle Duperow, and uppermost Birdbear) at given
locations in the Williston Basin (Figure 2—-3b-d). In each simulation, the model demonstrates the
aquitard(s) response to meltwater that was transported from the aquitards (5Qaquiter = 17.5%o0) as
t increases, and eventually creating a best-fit to observed data.

Our diffusion models provide the following arrival times to our study locations: (Cory)
150 ka and 300 ka, (Vanscoy) 75 ka, (Allan) 300 ka, and (Rocanville) 100 ka (Figure 2-3). There
was no detectable shift in §'80 values reflective of glacial meltwaters in the Duperow aquifer at

Rocanville.
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Figure 2-3: §'80—depth profile results for (a) simulation of diffusion into aquitards between

100 ka and 400 ka at Cory with the initial profile included (light grey), and final best-fits of
observed data for (b) Cory, (c¢) Vanscoy, (d) Allan, and (e) Rocanville. B = Birdbear, D =

Duperow, and M = Manitoba aquifers.

These results, displaying perturbation of a freshwater source in carbonate aquifers, are

complemented by §*80 and §?H values that fall along the GMWL (Figure 4a) and higher CI:Br
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values, which indicate halite and salt dissolution (Figure 2—4b). In contrast, formation waters in
the carbonate aquitards plot to the right of the GMWL (Figure 2—4a) and have relatively low CI:Br
values (< 2000; less than seawater) (Figure 2—4b). These brines derived from evaporation of
paleoseawater (i.e., brine endmember in Figure 2—4a) which have been diluted by Pleistocene

meltwaters, as indicated by the linear mixing trend in Figure 2—4a.
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Figure 2—4: (a) 5'80 versus §°H values of formation waters from stacked carbonate aquifers from

the four study sites relative to with the global (black) and local (grey) meteoric water lines, general
evaporation sequence of seawater (grey circle and stars with amount of evaporation) to
form brines, and endmember ranges for the Williston Basin evaporated paleoseawater, present-
day meteoric water, and Pleistocene glacial meltwater. (b) 5180 versus molar CI:Br molar ratios.

2.5 Discussion

The distribution of 6°H and §'®0 values and molar CI:Br found at depth in Devonian
carbonate aquifers in this study are consistent with other studies that have found preserved
Pleistocene age groundwaters in the Williston Basin (Grasby et al., 2000; Ferguson et al., 2007,

Hendry et al., 2013; Ferguson and Jasechko, 2015). The lowest 3'80 values are higher than the

lowest values documented in the region (less than —24%.; Ferguson and Jasechko, 2015), (Figure
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2-4) which likely reflects variability in the isotopic composition of ice sheets both spatially and
temporally during the Pleistocene. However, the Pleistocene endmember (—17.5%o) is similar to
other studies examining mixing between older brines and subglacial recharge (Grasby et al., 2000;
Hendry et al., 2013) and is represented by a large portion of our data (Figure 2-4). The lowest
52H and 580 values are present in the Duperow, Manitoba and Birdbear aquifers at Cory, Vanscoy
and Allan (Figure 2-3), while the aquitards at those sites have higher 6°H and &0 values,
indicating that the aquitards have retained some component of older, paleoevaporated seawater.
At Rocanville, Pleistocene waters appear to have only arrived in the Birdbear and Manitoba
aquifers, but not in the Duperow aquifer. The variability between stratigraphic positions and
geographic locations is likely a function of local heterogeneity in geology and hydraulic properties.

The arrival times of subglacial meltwater to our study locations varied in two groups — a
younger 75 ka to 150 ka and an older 300 ka (Figure 2-3). The arrival times are consistent with
Pleistocene recharge as previously established by others (Grasby et al., 2000; Person et al., 2007;
Mclintosh et al., 2012). These provide minimum estimates of groundwater ages for these waters
and does not account for time required for transport from their recharge areas, which are likely a
few hundred kilometers to the north and northeast. If we account for the transport time from the
recharge areas to our study regions, we expect groundwater recharge events to likely correspond
to glacial events that occurred in the early to mid-Pleistocene (Person et al, 2007). Subglacial
recharge with similar ages is likely preserved in other sedimentary basins that experienced multiple
advances of Pleistocene continental ice sheets. Groundwater flowpaths in the Williston Basin and
previously glaciated regions across the northern hemisphere would have varied substantially
during these multiple advances due to changes in glacial thicknesses, temperatures of basal ice,

and evolving hydrostratigraphy, making reconstruction of past hydrogeologic conditions difficult.
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Modelled arrival times do not reveal a coherent relationship by geographic location, but —
except for Cory — the times are similar between stratigraphic positions. Local variations in
hydraulic properties, such as those associated with dissolution features in the Willison Basin
(Christiansen et al., 1982; Christiansen and Sauer, 2001; Grasby et al., 2000; Tipton, 2018), likely
resulted in the preferential movement of subglacial recharge in our study region and within the
Williston Basin. These variations are also consistent with previous studies that have demonstrated
the role of ice sheets in creating transient and complex flow patterns in sedimentary basins by
effectively reorganizing groundwater flow over the past two million years (Person, 2007; Bense
and Person, 2008). For example, groundwaters at depth in the Illinois Basin show a mixing zone
between evaporated paleoseawater and Pleistocene meltwater dating up to 1.2 Ma (Siegel, 1991,
Mclintosh et al., 2002; Mclintosh and Walter, 2006), while other aquifers in the Illinois Basin and
Michigan Basin record groundwater ages greater than 50 ka (MclIntosh and Walter, 2006).
Additionally, previous studies provide evidence for emplacement of high volumes of Pleistocene-
sourced groundwaters in deep aquifers of the Williston Basin between 135 ka and 430 ka (Hendry,
2013; Schmeling, 2014).

The extent of transport of meltwater recharge into the Williston Basin was previously
approximated to be 300 km from major outcrop zones to the east and northeast in Manitoba
(Grasby et al., 2000). Rocanville has been affected by meltwater influx more recently than study
locations that are westward, demonstrating a lack of an east-west trend in the flowpaths. The lack
of an east-west trend in our modelled arrival times suggests that recharge arriving at Cory,
Vanscoy, and Allan likely occurred from the north near the Paleozoic—Precambrian boundary of
the basin. In Rocanville, low molar CI:Br values (< 2000 molar CI:Br), which are associated with

a paleoevaporated source, and *20-enriched groundwater (Figure 2—4) is opposite to the expected
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trend if meltwater recharged solely from the east and was transported west-southwest. Instead, the
observed salt dissolution across the northern edge of the Williston Basin (Marsh and Love, 2014)
along with higher molar CI:Br values, which result from addition of Cl by dissolution of halite,
and *80—depleted groundwater at Cory, Vanscoy, and Allan (Figure 2—4) suggests a continuous
recharge belt along the northern margin of the Williston Basin from Saskatchewan into Manitoba
(Figure 2-1a). This finding is consistent with observations of widespread salt dissolution and
mixing zones between evaporated paleoseawater and meltwater recharge in the northcentral region
of the basin (Grasby and Chen, 2005; Tipton, 2018; Woroniuk et al., 2018). Esker distribution in
northern Saskatchewan supports this hypothesis by demonstrating a sharp change in permeability
at the boundary of Precambrian and sedimentary rocks (Figure 2—1; Grasby and Chen, 2005) where
high-permeability sedimentary rocks will facilitate enhanced recharge. Anomalous TDS
concentrations and Na:Cl ratios (Tipton, 2018) bolster interpretations of regionally variable flow
paths across the Williston Basin and further illustrates the complexity in stacked carbonate

sequences and subglacial recharge over several million years.

2.6 Conclusion

A combination of high-resolution stable isotope data, 580 and §°H, with groundwater
transport modeling provided a useful dating approach to resolve ambiguity concerning timing of
emplacement of Pleistocene waters at depth into the Williston Basin. This technique allows us to
present a constrained range of groundwater arrival times and an updated view of flowpaths and
paleohydrogeology of the basin. Here, we demonstrate that the arrival times of glacial meltwater
to our study regions were variable — between 75 ka to 150 ka and 300 ka — which emphasizes the
complexity of this aquifer system. The simulations produce best-fits for the same arrival times at

each individual study site, but we did not identify coherent trends between the geographic locations
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as a whole. Our results support previously identified recharge from the east in Manitoba, but we
also determine the likelihood of recharge from the north to form a continuous recharge belt along
the entire north-to-east margin of the Williston Basin.

The arrival times found in this study provide a constraint on the timing of subglacial
recharge. Given the distance of the measurements from where Paleozoic carbonates subcrop
(Figure 2-1), subglacial recharge from the early to mid-Pleistocene appear to be preserved in the
Williston Basin. However, the exact recharge locations and groundwater flow patterns are
unknown and likely varied throughout the Pleistocene Epoch. Subglacial recharge of similar ages
is likely preserved in many glaciated areas of the northern hemisphere. Multiple glacial advances
would have affected groundwater flow patterns in the Williston Basin and other similar
environments. Application of the approach used here, along with improving our understanding of
glacial advances and noble gas sampling, may provide insights into how other environments

evolved during the Pleistocene and shifted to present-day conditions.
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CHAPTER 3: GEOCHEMICAL EVOLUTION OF BRINES IN THE WILLISTON
BASIN, CANADA
Abstract
Mixing between multiple fluid sources has led to distinct geochemical signatures in solute
and isotope geochemistry of formation waters at depth in the Williston Basin, Canada.
Observations of spatial and temporal trends in isotope and solute data identify three groups of
formation waters at four different locations that can be explained by mixing between glaciogenic
meteoric waters and paleoevaporated seawater. Results from this study help constrain groundwater
flow paths and extent of glaciogenic perturbation (i.e., dilution/flushing of remnant saline fluids)
between the four study sites. The results suggest that glaciogenic perturbance is greater from the
northern margin versus from the eastern margin, migrating towards the center of the Willison
Basin. Additionally, results demonstrate that Devonian carbonates formation waters at Allan and
Cory have been the most impacted by meteoric flushing events, while Rocanville has been the

least impacted by the most recent glaciogenic perturbance.

3.1 Introduction

The geochemistry of fresh glaciogenic waters contrasts greatly against paleoevaporated
seawater-derived groundwaters (Grasby et al., 2000; MclIntosh et al., 2012; Birks et al., 2019). Past
studies on formation water geochemistry in the Williston Basin have largely focused on
“fingerprinting” fluids from specific stratigraphic units but lack synthesis of the available
geochemical data and how the geochemical systems are related or evolve during new mineral

interactions or large-scale salt dissolution. Previous studies have reported data for sedimentary
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basins that contributes to the overall knowledge of the hydrogeochemistry of sedimentary basins
— mostly, these studies have used solute composition like Na, CI, and Br, and stable isotopes of
water (Rostron and Holmden, 2000; Jensen et al., 2006; Tipton, 2018). There have been a few
studies to-date that have utilized novel solute isotope tracers to distinguish the sources of salinity
and fluid-rock reactions (Marza et al., 2022; Eggenkamp et al., 1995; Shouakar-Stash, 2008), but
the data is sparse. Thus, pairing these solute isotope tracers with higher-density solute composition
data enhances our knowledge of how these groundwater flow systems are affected by large-scale
salt dissolution and mixing of geochemically distinct water sources related to glaciogenic influx.
This study synthesizes new results of solute and isotope geochemistry in deep groundwater
of the Williston Basin at several different locations (Cory, Vanscoy, Allan, and Rocanville potash
mines) to understand the effect of extensive salt dissolution on the geochemical systems and
improve our understanding of flow paths and fluid evolution in the Williston Basin. This research
demonstrates local and regional variation in solute and isotope geochemistry and shows mixing of
glacial meltwater and remnant paleoevaporated seawater, and salt dissolution. Although
overprinting of basinal fluid signatures by glacial recharge in the last two million years may present
challenges, this study combines multiple geochemical and isotopic tools to contribute to a greater

understanding of the hydrologic landscape of the Williston Basin.

3.2 Regional geology

Details on the hydrogeology of the Williston Basin is outlined extensively in chapter 2,
Figure 2—1. Briefly, the Williston Basin is a sedimentary basin centered in North Dakota, USA.
Deep stacked aquifers, aquitards, and aquicludes are relatively isolated from the surface, which

retains unique geochemical and isotopic signatures in the groundwater that allows us to discern
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major geologic events. In this chapter, the lithology of the Williston Basin is important in
understanding mineral dissolution and water-rock interactions during glacial meltwater recharge.

The Williston Basin is made up of sedimentary rocks: carbonates, evaporites, sandstones,
and shales (figure 2—1). Evaporite deposits are interlayered within the carbonate sequences during
deposition of these sediments. The main evaporite minerals present are sylvite (KCI) and halite
(NaCl), with small amounts of carnallite (KMgClz-6(H20)), anhydrite (CaSOs) and gypsum
(CaS04:2H20); minor evaporite layers may be interbedded in units above the Prairie Evaporite
consisting mostly of anhydrite (Holter, 1969). Potash-bearing Prairie Evaporite units are
intermittent within the Williston Basin and thus the mineral composition strongly controls the

geochemical signature of formation waters and ability of glaciogenic waters to dissolve evaporites.

3.3 Methods

Groundwater samples were collected into clean 250 mL or 1000 mL HDPE bottles from
seeps within mine shafts and mine workings at the Vanscoy, Cory, Allan, and Rocanville potash
mines. Dissolved ion concentrations (CI-, NOs~, F-, Ca*", Mg?*, K*, Na*, SO.*", Br, Li*, Sr*)
were determined by ion chromatography in the Environmental Analytical Laboratory at the
Saskatchewan Research Council (Saskatoon, Canada). The 5'80 and §°H values were determined
using CO2—H20 and H>-H>O equilibration methods, respectively, at the Saskatchewan Isotope
Laboratory (Saskatoon, Canada) and results are reported as the relative difference between the
180/%0 and 2H/*H abundance ratios normalized to Vienna Standard Mean Ocean Water
(VSMOW), expressed in per mille (%o) notation. Accuracies of 8°H and 80 are 2%o and 0.2%,
respectively. Corrections for the salt effect, as outlined by Sofer and Gat (1972; 1975) and Koehler

et al. (2013), were applied to the 5'80 and 5?H values.
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The 87Sr/%Sr values were analyzed at the Saskatchewan Isotope Laboratory (Saskatoon,
Canada) using a Finnigan Triton mass spectrometry instrument in static multi-collection mode,
with instrumental mass fractionation that was corrected for #Sr/%Sr of 0.1194. External precision
of the 87Sr/%Sr measurements performed for these samples was +8 ppm (2c) based on repeated
measurements of NIST SRM 987, with quality control measurements of 0.710263 + 0.000010.

The 8%Cl and 8%'Br values were determined using gas chromatography continuous flow
isotope ratio mass spectrometry (GC—CF—IRMS) in the Environmental Isotope Laboratory at the
University of Waterloo (Waterloo, Canada). §*’Cl and 8%'Br values are reported as the relative
difference between the *’CI/*°Cl and 8Br/"Br abundance ratios normalized to the Standard Mean
Ocean Chloride (SMOC) and Standard Mean Ocean Bromide (SMOB), respectively, expressed in
per mille (%o) notation. Accuracy for both §*’Cl and 8%'Br is 0.1%o.

Results for dissolved ion concentrations, §'80 and §%H, 8'Sr/®Sr, §°'Cl, and 5%'Br may be
found in Table B2.

The data is separated into three groups to better understand how basinal fluids evolve over
time and space: glaciogenic/meteoric (group 1); mixed brine and glaciogenic (group 2); and
paleoevaporated seawater-derived brine (group 3). These groups are defined based on 520 values
(figure 3—2): group 1:2 boundary occurs at 580 = —14%. and group 2:3 boundary is 630 = —5%o.

Variation in solute and isotope geochemistry may be described using multivariate statistical
analyses like Principal Component Analysis (PCA). In short, PCA reduces the dimensionality of
the dataset to understand which variable(s) have the largest influence on the dataset (IMDEX,
2019). Data transformation is performed on the solute geochemistry while isotope chemistry is

already along a normal distribution. While performing PCA, the sample population was reduced
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Principal Component 2 (17.64%)

as a result of fewer samples collected for isotope analysis. PCA was completed via i0GAS

software (v. 7.2.1).

3.4 Results and Discussion

A multivariate analysis of the geochemical data supports that there are two main factors
controlling the geochemistry of deep groundwaters in the Williston Basin: (1) water origin
(glaciogenic or brine), and (2) water-rock interactions (Figure 3—1). While the sample populations
were decreased during PCA, Figure 3—1b demonstrates that solute-and-isotope and solute-only
PCA have similar relationships and, as such, the isotope sample population is sufficient to draw

conclusions.
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Figure 3—1: Principal Component Analysis and correlative analysis (i0GAS version v. 7.2.1,
Table B1) for (a) component 1 and component 2 depicting the relationships between all solute and
isotope variables (nsampies = 15), and (b) component 1 and component 2 for solute variables only

(nsamptes = 60), and (c) covariance matrix of all solute and isotope variables.

The majority of this data is explained by the water origin and glaciogenic waters are
responsible for the majority of salt dissolution, represented by the negative relationship between
CI:Br (molar) ratios and SOa, and 520, CI, M, Br, Sr, Ca, and K (Figure 3—1, Table B1). However,

mineral interactions and mineral composition appear to be an important factor for the novel
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isotopes, observed by a cluster for Na, §*'Cl, and 5%'Br. 8/Sr/®Sr values appear to have mixed

influence with no clear correlation with other solutes or isotope tracers.

3.4.1 General composition of water sources

Solute composition can be directly linked to salinity and water origin (Mclntosh, 2012) and
in deep subsurface settings, the composition of Na, Br, and Cl aids in identifying mixing between
paleo-evaporated sources and a glaciogenic source via salinity structure (Grasby and Chen, 2005;
Tipton, 2018). The sensitive nature of geochemical solutes to mineral precipitation and dissolution
reactions makes it difficult to use Na, Cl, or Br to determine a precise mixing line and (or)
proportions of mixing between different sources; however, these variables are useful in comparing
and contrasting extents of mixing and determining where there has been perturbation and extensive
salt dissolution in deep subsurface settings. In addition to solute composition, 530 and §H are
proven to be valuable in understanding deep subsurface settings altered in the last 1 Ma (Mowat
etal., 2021).

The data presented shows widespread values of Cl, Br, and Na observed in the Williston
Basin (Figure 3—2). Formation waters that originated from highly evaporated seawater, past halite
saturation/precipitation) are enriched in Na, Cl and Br, with CI:Br values less than seawater (~650)
and Na:Cl <0.85 (Connolly et al., 1990) (Figure 3—2c¢,d). In contrast, glaciogenic waters have
relatively low Br concentrations, and high CI:Br ratios from dissolution of halite, which does not
contain appreciable Br. Glaciogenic waters that have dissolved mostly halite salt will also exhibit
molar Na:Cl ~ 1. Formation waters in this study have Na:Cl values > 1 with CI:Br ratios mostly
<500 (figure 3—2d), maybe a result of the glaciogenic groundwaters being relatively fresh with

low amounts of halite dissolution.
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580 values range between —19.6%o and +1.8%o, following along the GMWL and to the right,
along the evaporation and mixing trend with remnant evaporated paleoseawater-derived brines,
respectively. Cory data displays the most glaciogenic signature (5380 = —19.6%o), as well as the
most remnant brine signature of 530 = +1.8%o. Allan has the largest percent (84%) of 580 values
indicative of glaciogenic waters (8'0 < —14%.) while Rocanville has the greatest percentage of
5180 values (30%) falling within the range of remnant evaporated paleoseawater-derived brines
(8180 > —5%o, Figure 3—2a). In comparison, Allan only has 4% of its §*80 values classified as
evaporated paleoseawater, and Rocanville only has 19% classified as glaciogenic. Mixed waters,
where —14%o < 5180 < —5%o, accounts for approximately 32% of all §'80 values (Appendix B).
These three fluid types — brine, mixed, and glaciogenic — are generally consistent with molar
Cl:Br values where there is clear synchronicity between glaciogenic waters which are 80—
depleted with the highest molar CI:Br value of ~6000 (median=670), versus evaporated
paleoseawater which are '®0-enriched which have a maximum molar CI:Br value of 1900
(median = 230).

Regionally, groundwater fluid samples collected from Devonian carbonates at Allan and
Cory are the most impacted by a glaciogenic source, evidenced by a high proportion of data within
glaciogenic range (830 < —14%o) and molar CI:Br values greater than seawater. This suggests that
groundwaters at Allan and Cory have been affected more by glacial recharge than Vanscoy or
Lanigan groundwaters, which have strong preservation of both glaciogenic and paleoevaporated
waters, and (or) Rocanville groundwaters where there is minor glaciogenic perturbation based on
Na, Cl, Br, and §'80 data. These observations may be explained by multiple scenarios, including:
(1) lack of extensive glacial flushing in the area of Rocanville and the center of the basin in

comparison to Allan or Cory, (2) Rocanville groundwaters have not been perturbed and flushed as
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recently as other locations, or (3) Rocanville did not experience as much salt dissolution due to

local and regional salt discontinuity. Our results identify flow paths throughout the Williston

Basin, concluding that there has likely been a greater flushing towards the center of the Williston
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Figure 3—2: Geochemical results for all available data, attributed by water origin (color) and mine
(shape) for: (a) 580 versus 52H values relative to the global (black) and local (grey) meteoric

water lines, (b) 5180 versus CI:Br values, (c) molar Br versus Cl with the seawater evaporation

trajectory, and (d) CI:Br values versus molar Na:Cl values.

Basin along the north to northeast in comparison to the eastern margin. The east-northeastern

margin experienced glacial meltwater recharge; however it is possible that it has not been as
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extensively flushed into the center of the basin. These observations have also been identified via
solute composition and hydraulic head maps in Tipton (2018) and 1-D profile modeling (Mowat
et al., 2021), and they are likely a function of differences in permeability at a regional level

resulting in differences in timing and intensity of salt dissolution.

3.4.2 Strontium Isotopes (8/Sr/8éSr)

87Sr/%Sr signatures are well-described in the literature throughout geologic history
(McArthur et al., 2012) and, although very deep subsurface paleoevaporated brines may
experience 8’Sr/Sr overprinting by migration and (or) mixing interaction, a general trend
between water—origin and mixing reactions has been observed in 8Sr/®Sr values in sedimentary
basins which experienced glacial recharge and salt dissolution (McNultt et al., 1987; Connolly et
al., 1990; Birks et al., 2019; Marza et al., 2022). Particularly, groundwater that is distinctly
different from the paleoevaporated brine source geochemistry and surrounding host rocks is clear
evidence that there has been a long fluid migration to the present location. Chaudhuri and Clauer
(1993) identify fluid migration and dilution as a main source of radiogenic signatures in
sedimentary basins as a result of water—rock interactions with marine carbonate and sulfate
minerals during the fluid transport process, such as the fluid pathways glaciogenic waters have
taken in the Williston Basin.

Results from this study indicate that evaporated paleoseawater are less radiogenic with lower
87Sr/%Sr values (median = 0.7083, maximum = 0.7084), while glaciogenic sources are more
radiogenic with higher &Sr/2Sr values (median = 0.7087, maximum = 0.7088) because of water-
rock interactions. Due to lower data density, evaluating &Sr/2°Sr signatures at a stratigraphic level

proves to be difficult — however, observed correlative analysis between solute variables and
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87Sr/®Sr values demonstrates that molar Cl:Br values and SO4 are reasonable options for
comparing glaciogenic and evaporated paleoseawater.

Table 1: Minimum, maximum, and median values of 8’Sr/%Sr for glaciogenic waters, mixed, and

paleoseawater.

87Sr/80Sr
Glaciogenic | Mixed | Paleoseawater
Nsamples 9 5 2

Minimum | 0.70813 0.70806 | 0.70811
Maximum | 0.70881 0.70818 | 0.70844
Median 0.70865 0.70810 | 0.70828

87Sr/8®Sr versus molar CI:Br ratios demonstrate a positive relationship until approximately
CI:Br ~ 1500 where 87Sr/%®Sr values reach a maximum of 0.7078 while there is still a steady
increase in molar Cl:Br. Group 1 locations with the most radiogenic 8Sr/2°Sr values (Cory, Allan)
also have the greatest salt dissolution with high molar CI:Br values indicating intensive water-rock
interactions and dissolution of low-evaporitic sulfate-rich salts (anhydrite, gypsum; high SO4
concentrations). The Rocanville sample (Figure 3—3a, 3—3b) is the least radiogenic where the
effects of salt dissolution also appear lowest based on solute geochemistry. These results suggest
that relatively radiogenic Sr is being released to formation waters during dissolution of Ca-bearing
evaporites.

Maximum &Sr/®%Sr values for the suite of Devonian carbonates in the Williston Basin is
0.7082 (McArthur et al., 2012) which agrees with the evaporated paleoseawater values in this
study (Figure 3—3). However, many of the glaciogenic group 1 samples — expected to be more
radiogenic — have low 87Sr/%®Sr, evidence that a glaciogenic source dissolving radiogenic minerals

is not the only factor in estimating 8’Sr/%®Sr values. Principal component analysis verifies that there
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Figure 3—3: Geochemical results attributed by water origin (color) and mine (shape) for 8’Sr/8Sr
versus (a) 820, (b) CI/Br, (c) Br, (d) SOs, (e) Na, and (f) Sr.

is no single variable that can explain 8Sr/28Sr ratios (Figure 3—1), and that 8Sr/%Sr is dependent

on both water origin and intensity of salt dissolution and water-rock interactions.

3.4.3 Chlorine and Bromine Isotopes (6°’CI and 6% Br)

The data for 5°'C1 and 5%!Br reveal synonymous patterns between water types: glaciogenic

waters exhibit a large range in values (—0.155 < 8%'Cl < 0.352 and 0.157 < §%!Br < 1.649) while

evaporated paleoseawaters have less variance in values (—0.096 <&%Cl<0.052 and

0.685 < 561Br < 1.069) (Table 1).
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8%Cl 581Br

Glaciogenic | Mixed | Paleoseawater | Glaciogenic | Mixed | Paleoseawater
Nsamples 24 6 2 24 6 2
Minimum -0.155 -0.323 -0.096 0.157 0.236 0.685
Maximum 0.352 0.219 0.200 1.649 0.968 1.069
Median 0.062 -0.125 0.052 0.529 0.392 0.877

Table 2: Minimum, maximum, and median values of §%'Cl and &%'Br for glaciogenic waters,

mixed, and paleoseawater.

It is challenging to conclude trends between locations due to low sample density; however,
there is a notable negative and positive correlation between water origin versus §°’C1 and §5!Br
values, respectively. The main correlations based on water origin (groups 1-3) between §*'Cl and
581Br isotopes with other variables based on PCA include: §3’Cl versus molar CI:Br, Cl, §%'Br, and
SO4, and &%Br versus K. Principal component analysis indicates that halite dissolution is the
driving factor controlling 5°’Cl and 8%'Br values: there is a positive correlation with Na, and a
positive correlation with molar Cl:Br due to these variables being largely dependent on the extent
of salt dissolution and (or) variation of halite that is being dissolved (e.g. where Br has been
substituted into the mineral lattice in the latest stages of mineral precipitation (McCaffrey et al.,
1987)) (Figure 3—1, Figure 3—4).

5%"ClI values and molar CI:Br ratios have the strongest affinity together until Cl:Br ~ 4000,
and then the trend reverses. The point of inflection for molar CI:Br values indicates the dissolution
of the most concentrated halite (e.g. dissolution of halite which formed in the latest stages of
mineral precipitation and contain Br), Mg-salts, and K-salts (Figure 3—4b, Figure 3—2c). The
influence of water origin is highlighted here, as glaciogenic groundwater will have the greatest

ability to dissolve salts while paleoevaporated brines may already be at (or near) saturation; in this
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case, it is positively supported by a weak negative relationship between 580 and §%Cl (Figure
3—1, Figure 3—4g).

The values of 5%'Br suggest that they are dependent on water origin, although there is no
correlation observed between 8%!Br and the rest of the variables. The strongest correlation is
between 881Br and K, while there is a weak correlation between 88'Br and 880 where there is a
general increase of 8% Br based on water origin (Figure 3—4g, 4h).

Overall, there is little known about the effects on §*’C1 and 88 Br when mixing groundwater
sources, although some research has hypothesized the possible patterns relate to isotope
fractionation in paleo-evaporated sources. Literature states that during large scale evaporation and
mineral precipitation, 53'Cl, 5%!Br, and relative molar CI:Br values are recorded in halite and other
Cl and Br rich minerals (McCaffrey et al., 1987; Eggenkamp et al., 1995; Shouakar-Stash, 2008;
Stotler et al., 2010), and the remnant paleoevaporated groundwater will exhibit enriched §*’Cl and
581Br values. During glacial meltwater perturbation and major halite salt dissolution, 3’Cl-depleted
and 88'Br-depleted signatures preserved in halite will be recorded in the glaciogenic and mixed
groundwater. The Williston Basin is host to extensive evaporative minerals beyond halite,
therefore knowledge of water origin is helpful to understand the effects on 8%'Cl and &%'Br

geochemistry.
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Figure 3—4: Geochemical results attributed by water origin (color) and mine (shape) for 53'Cl
versus (a) §'80, (b) CI/Br, (c) %Br, (d) Na, (e) Cl, and (f) SO4, and 5%!Br versus (g) 50, (h)
Cl/Br, (i) Na, (j) K, (k) CI, and (1) SOa.
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3.5 Conclusions

A combination of new isotope and solute geochemistry of formation waters in the Williston
Basin helps inform the differences between glaciogenic and evaporated paleoseawater-derived
waters at depth. Although mixing and water—rock interactions can present challenges by modifying
fluid chemistry and obscuring sources, this study combines multiple tracers to better understand
novel isotope fractionation processes. The results support a continuous recharge belt along the
north-to-eastern margins of the Williston Basin (Mowat et al., 2021), and shows that strong glacial
recharge signatures are preserved deep into the Williston Basin.

Comparing isotope systems to solute and stable isotope geochemistry informs trends that
contribute to fractionation of 8Sr/®Sr, §3'C1, and 5%'Br. Results show the importance of variation
in salt and mineral composition on the concentrations and values of molar CI:Br, §*’Cl, and §%'Br,
or the sensitivity of &Sr/®®Sr values to overprinting and water-rock interaction processes. A
combination of statistical and correlative analysis tools established the variation in geochemistry
between glaciogenic and brine sources. Application of this multi-tracer approach using large
datasets and data mining for other sedimentary basins may provide further insights into the

signatures of novel isotope tracers and the mixing and evolution of multiple water sources.
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CHAPTER 4: CONCLUSION

Glacial recharge has impacted sedimentary basins across the northern hemisphere and the
Williston Basin in the Western Canada Sedimentary Basin is no exception. Massive regions of salt
dissolution along the northeast to east margin of the Williston Basin has resulted in vastly different
geochemical signatures of formation waters and major changes to energy and mineral resources
including oil, gas, and potash potential.

This thesis examined the effects of glaciogenic recharge to deep subsurface aquifers in the
Williston Basin and approximated the age of recharge perturbations using an interdisciplinary
approach between geochemistry, geology, and computational modeling. Here, we conclude that
glaciogenic recharge occurred during two separate time periods, 75 to 150 ka and 300 ka, to the
northcentral regions of the Williston Basin. Spatial reconstruction between observed trends in the
Williston Basin indicated that there was a much larger impact by subglacial recharge along the
north to northeast margin than previously anticipated.

Geochemistry in this deep, isolated aquifer system of the Williston Basin is differentiated
into two categories: glaciogenic recharge and paleoevaporated brines. Strong trends are observed
for Molar Cl:Br, §*20, and &%H values, and moderate trends are observed for &Sr/%Sr, §°’Cl, and
581Br values despite a smaller sample density and less literature to describe the trends. Qualitative
tools, like statistical and correlative analysis, and quantitative tools were used to discern the main
influences to brine geochemistry in the data set: water-rock interactions and water origin. In

conclusion, this study provided new insights into the timing and variability in recharge of
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glaciogenic waters and the geochemical variation in solutes and isotope systems between
paleoevaporated and glaciogenic sourced groundwaters in the Williston Basin.

In anticipation of further research, additional samples should be collected to increase the
data density for solute geochemistry, prioritizing additional sampling for novel isotopes included
in this study to more rigorously constrain the isotope fractionation, mixing, and water-rock
interactions influencing these variables. Sample collection and analysis for noble gases (*He and
81Kr) would also be useful to help better constrain the residence time of groundwaters and timing

of subglacial recharge.
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APPENDIX A

Table Al: Compilation of data.

Formation/ Aquifer/

Source Mine Group Aquitard Depth (m BG) 5180
This study Allan Bearpaw 76 -17.4
This study Allan Bearpaw 76 -18.6
Jensen et al. (2006) Allan Cret. Shales 98 -18.3
Jensen et al. (2006) Allan Cret. Shales 104 -18.1
Nutrien internal database Allan Cret. Shales 122 -17.5
Wittrup and Kyser (1990) Allan Cret. Shales 122 -17.5
Jensen et al. (2006) Allan Cret. Shales 149 -17.2
Wittrup and Kyser (1990) Allan Cret. Shales 158 -17.4
Nutrien internal database Allan Cret. Shales 159 -17
Jensen et al. (2006) Allan Cret. Shales 183 -17.4
Jensen et al. (2006) Allan Cret. Shales 290 -15.7
Jensen et al. (2006) Allan Cret. Shales 332 -15
Wittrup and Kyser (1990) Allan Cret. Shales 341 -13.4
Jensen et al. (2006) Allan Cret. Shales 378 -15.6
Jensen et al. (2006) Allan Watrous 610 -10.4
Nutrien internal database Allan Watrous 610 -18.1
Wittrup and Kyser (1990) Allan Birdbear 655 -17.4
This study Allan Birdbear 669 -17.5
This study Allan Birdbear 669 -18.7
This study Allan Birdbear 672 -17.1
This study Allan Birdbear 672 -18.2
Jensen et al. (2006) Allan Duperow  Seward 681 -18.3
Jensen et al. (2006) Allan Duperow  Seward 683 -18.4
Jensen et al. (2006) Allan Duperow  Seward 683 -18.6
Jensen et al. (2006) Allan Duperow  Seward 683 -18.6
Wittrup and Kyser (1990) Allan Duperow  Seward 683 -18
This study Allan Duperow Seward 685 -17.1
Jensen et al. (2006) Allan Duperow  Seward 698 -11.7
Wittrup and Kyser (1990) Allan Duperow Seward 701 -18.1
Wittrup and Kyser (1990) Allan Duperow  Seward 707 -18.3
Wittrup and Kyser (1990) Allan Duperow Seward 713 -17.6
Wittrup and Kyser (1990) Allan Duperow  Seward 726 -16.9
Jensen et al. (2006) Allan Duperow  Duperow 734 -17.6
Jensen et al. (2006) Allan Duperow  Duperow 747 -18.1
Jensen et al. (2006) Allan Duperow  Duperow 772 -18
Wittrup and Kyser (1990) Allan Duperow  Duperow 774 -18
Jensen et al. (2006) Allan Duperow  Duperow 786 -14.5
Jensen et al. (2006) Allan Souris River  Souris 813 -10.6
Wittrup and Kyser (1990) Allan Souris River  Souris 823 -14.9
This study Allan Souris River  Souris 823 -16
This study Allan Souris River  Souris 824 -15.3
This study Allan Souris River  Souris 839 -15.1
This study Allan Souris River  Souris 839 -17.2
Wittrup and Kyser (1990) Allan Souris River  Souris 841 -10.4
Jensen et al. (2006) Allan Souris River  Souris 843 -14.9
Jensen et al. (2006) Allan Souris River  Souris 847 -15.2
Jensen et al. (2006) Allan Souris River  Souris 850 -14.6
Nutrien internal database Allan Souris River  Souris 854 -15
Wittrup and Kyser (1990) Allan Souris River  Souris 860 -15.1
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Wittrup and Kyser (1990) Rocanville Duperow  Seward 744 -5.9 -86 130000 84000 992
Jensen et al. (2006) Rocanville Souris River  Souris 771 -7 -72.8 131987 77271 163
Wittrup and Kyser (1990) Rocanville Souris River  Souris 774 -6.6 -84 144900 102000 750
Wittrup and Kyser (1990) Rocanville Souris River  Souris 777 -5.5 -80 136000 130000 880
Wittrup and Kyser (1990) Rocanville Souris River  Souris 77 -6.4 -74 142400 72100 720
This study Rocanville Duperow Duperow 780 -3.6 -70.3 165000 92900 356
Jensen et al. (2006) Rocanville Souris River  Souris 792 -2.9 -58.6 140646 77243 185
Wittrup and Kyser (1990) Rocanville Souris River  Souris 792 -1.9 -74 157000 99000 1120
Jensen et al. (2006) Rocanville Dawson Bay 878 -2.3 -46.3 187092 111345 267
Jensen et al. (2006) Rocanville Dawson Bay 878 -2.4 -45.1 190709 113057 259
Wittrup and Kyser (1990) Rocanville Dawson Bay 878 -2.1 -68 186000 118000 2110
Jensen et al. (2006) Rocanville Dawson Bay 884 -29 -50.4 186902 111553 261
Wittrup and Kyser (1990) Rocanville Dawson Bay 884 -1.4 -60 227000 135000 2160
Wittrup and Kyser (1990) Rocanville Dawson Bay 884 -1.9 -49 201500 108000 1190
Wittrup and Kyser (1990) Rocanville Dawson Bay 887 -1.9 -66 200600 150000 2000
Wittrup and Kyser (1990) Rocanville Dawson Bay 890 -1.4 -59 199000 143000 2200
This study Vanscoy Cret. Shales 396 15 1228 197000 91500 702
This study Vanscoy Duperow Seward 625 -18.7 -136 44400 24400 21
This study vanscoy Souris River ~ Souris 796 -18.7 41352 53200 36000 42
This study Vanscoy Souris River  Souris 929 -17.8 1289 52500 32400 40
This study vanscoy Souris River  Souris 941 -14.7 1053 311000 77900 1550
This study Vanscoy Souris River ~ Souris 946 3.4 61.6 351000 6400 5570
This study vanscoy Souris River ~ Souris 961 -15.2 -108.6 232000 76700 1240
Table A2: Model setup parameters.

Depth (m BG)*
Stratigraphy Cory Vanscoy Allan Rocanville n De**
Glacial Till 0 0 0 0 0.24 2.3E-10
Shales 11 11 11 11 0.33 2.3E-10
Mannville 485 485 485 375 0.34 2.3E-10
Three Forks 550 550 560 490 0.1 1.32E-10
Birdbear 590 590 635 530 0.15 9E-10
Seward 625 625 680 550 0.1 1.32E-10
Duperow 675 675 730 625 0.15 9E-10
Souris River 800 800 785 700 0.1 1.32E-10
Manitoba 910 910 875 775 0.15 9E-10
Evaporite 1025 1025 1100 950 0.33 0

*Depths from Marsh and Love (2014).
**De = 1.32E-10 for Three Forks to Manitoba in initial profile.

52



APPENDIX B

Table B1-1: PCA Plots Fig 3-1a

PCA Report: Transform None, Scaling true (15 rows)

Summary Count
PCA Report: Transform None, Scaling true (15 rows)

Summary Count
Rows 15
Columns 13

87/86Sr  81Br di180 Cl/Br LOCI ppm Na ppm K ppm LCa ppm Mg ppm Br ppm SO4 ppn Sr_ppm_LOG
37CI 1 0.03208 0.7092 -0.1224 0.5955 -0.2843 0.4313 -0.5761 -0.462 -0.4004 -0.4925 0.4441 -0.4421
87/86Sr 0.03208 1 -0.2123 -0.5453 0.45 -0.8541 -0.4104 -0.5073 -0.6435 -0.6949 -0.7085 0.6094 -0.6491
81Br 0.7092  -0.2123 1 0.4957 0.1678 0.06798 0.2228 -0.2709 -0.0907 0.00512 -0.0609 0.08357 -0.0351
d180 -0.1224  -0.5453 0.4957 1 -05928 0.6732 -0.108 0.5957 0.6331 0.7115 0.6955 -0.6568 0.6935
Cl/Br_LOG 0.5955 0.45 0.1678 -0.5928 1 -0.6463 0.4348 -0.7759 -0.8773 -0.8704 -0.9159 0.8361 -0.8755
Cl_ppm_LOG -0.2843  -0.8541 0.06798 0.6732 -0.6463 1 0.01811 0.8015 0.8602 0.862 0.8982 -0.8669 0.8787
Na_ppm_LOG 0.4313  -0.4104 0.2228 -0.108 0.4348 0.01811 1 -0.2453 -0.3344 -0.2516 -0.2409 0.2995 -0.3391
K_ppm_LOG -0.5761 -0.5073 -0.2709 0.5957 -0.7759 0.8015 -0.2453 1 0.8641 0.8532 0.8685 -0.8904 0.8758
Ca_ppm_LOG -0.462  -0.6435 -0.0907 0.6331 -0.8773 0.8602 -0.3344 0.8641 1 09824 0.9578 -0.9744 0.9949
Mg_ppm_LOG -0.4004 -0.6949 0.00512 0.7115 -0.8704 0.862 -0.2516 0.8532 0.9824 1 0.9547 -0.9593 0.9861
Br_ppm_LOG -0.4925 -0.7085 -0.0609 0.6955 -0.9159 0.8982 -0.2409 0.8685 0.9578 0.9547 1 -0.9375 0.9664
SO4_ppm_LOG 0.4441 0.6094 0.08357 -0.6568 0.8361 -0.8669 0.2995 -0.8904 -0.9744 -0.9593 -0.9375 1 -0.9782
Sr_ppm_LOG -0.4421  -0.6491 -0.0351 0.6935 -0.8755 0.8787 -0.3391 0.8758 0.9949 0.9861 0.9664 -0.9782 1
Scaled Coordinates PC1 PC2
37CI 0.5011 0.7323
87/86Sr 0.6828  -0.5532
81Br 0.06734 0.8429
d180 -0.7193 0.4146
Cl/Br LOG 0.8926 0.2234
Cl ppm LOG -0.8989 0.2756
Na ppm LOG 0.2729 0.6394
K ppm LOG -0.9049  -0.1648
Ca ppm LOG -0.98 -0.03904
Mg ppm LOG -0.979 0.06815
Br ppm LOG -0.9869 0.0163
SO4 ppm LOG 0.9693 0.02262
Sr ppm LOG -0.989 5.32E-04

Table B1-2: PCA Plots Fig 3-1b

PCA Report: Transform None, Scaling true (60 rows)

Summary Count
PCA Report: Transform None, Scaling true (60 rows)

Summary Count

Rows 60

Columns 10

Correlation d180 ClI/Br_LOG Cl_ppm_L Na_ppm_ K_ppm_LtCa_ppm_ Mg_ppm_ Br_ppm_L SO4_ppm Sr_ppm_LOG
d180 1 -0.8271 0.6679 -0.1608 0.6332 0.8129 0.8117 0.8094 -0.732  0.8406
Cl/Br_LOG -0.8271 1 -0.7462 0.07167 -0.6671 -0.9164 -0.9078 -0.9497 0.8811 -0.9266
Cl_ppm_LOG 0.6679 -0.7462 1 03514 0.7718 0.8699 0.8607 0.9171 -0.8429 0.8661
Na_ppm_LOG -0.1608 0.07167 0.3514 1 -0.02045 -0.01708 0.013 0.1224 -0.05561 -0.04832
K_ppm_LOG 0.6332 -0.6671  0.7718 -0.02045 1 08037 0.7682 0.7625 -0.7176 0.7859
Ca_ppm_LOG 0.8129 -0.9164 0.8699 -0.01708 0.8037 1 09763 0.9578 -0.9246 0.9906
Mg_ppm_LOG 0.8117 -0.9078  0.8607 0.013 0.7682 0.9763 1 09484 -0.8779 0.9683
Br_ppm_LOG 0.8094 -0.9497 09171 0.1224 0.7625 0.9578 0.9484 1 -0.924  0.9622
SO4_ppm_LOG -0.732 0.8811 -0.8429 -0.05561 -0.7176 -0.9246 -0.8779 -0.924 1 -0.9401
Sr_ppm_LOG 0.8406 -0.9266 0.8661 -0.04832 0.7859 0.9906 0.9683 0.9622 -0.9401 1
Scaled Coordinates PC1 PC2

d180 0.8491 -0.248

Cl/Br_LOG -0.9353 0.1298

Cl_ppm_LOG 0.9017  0.3574

Na_ppm_LOG 0.03182 0.9855

K_ppm_LOG 0.8201 -0.01026

Ca_ppm_LOG 9.86E-01  -0.0432

Mg_ppm_LOG 9.71E-01 -0.01996

Br_ppm_LOG 9.84E-01  0.09043

SO4_ppm_LOG -9.38E-01 -0.03742

Sr_ppm_LOG 9.89E-01 -0.07612

53



Title: Hydrogeochemical evolution of aroundwaters in the Williston Basin, Canada
B

Aopendix

Table B2: Comilation of data.

ource

Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data
Oriainal data
Original data

Nutrien internal database

D

AS16-01
AS18-01
VPO-1300VBT

5C LAN OBS2 WELL SWAB 032620
804

€S16-05
cs18-03

VPO-PANELY
VPO-3604-5
VM18-01
VM18-02
VM18-04
AM18-01
AM18-02
AM18-03
AM16-01
AM16-02
AM17-01
3305
2314
3344
2315
2316
2313
2317
2318
2312
3326
3327
3343
2319
3328
3329
3342
2320
2309
2310
2311
3341
2308
3330
3331
3340
2307
2321
2306
2305
3339
2304
3332
2322
2323
2324
3338
3337
3333
2303
3334
2302
2301
3336

3335
CSBR 02325

ASBR 02-312

Mine

Allan
Allan
Vanscov
Lanioan
Corv
Vanscov
Allan
Allan
Allan
Allan
Allan
Lanioan
Lanigan
Corv
Corv
Corv

Corv
Rocanville
ansen

Depth
mBG

7%
76
396
490
623
625
669
669
672
672
685
694
694
701
705
706
707
780
785
796
806
821
821
823
824
a33
839
839
880
916
916
916
916
99
941
946
961

32700
29200
31400
30900

165000
101000
53200
134000
177000
105000
202000
233000
116000
103000
204000
200000
224000
192000
235000
210000
52500
311000
351000
232000
125000
431000
277000
338000
361000
352000
320000
306000
350000
362000
362000
356000
327000
196000
424000
215000
358000
167000
360000
347000
405000
355000
336000
339000
05
3021
2764
3181
4529
3078
8784
9519
12364
15542
24916
24819
37863
16845
25213
26803
42714
as4g2
44363
43532
27458
113177
28584
28348
26874
62219
61739
63816
47510
153325
139802
110098
184797
102092
190769
140537
183311
167620
195319
207984
296602
348725
310760
318746
304.86585
700
1067
3020.83129
2763.72094
3180.8323

4528.86047
530
3978.21900

8784.31075
9518.97168

14790
12363.54387

Na

maL*

2170
2170
91500
17600
17300
24400
28200
27800
26900
28800
34200
20000
91100
16100
16800
16100
17800
2000
52300
36000
69000
95900
46300
117000
116000
34700
109000
108000
92500
52500
46000
44000
43800
32400
77900
6400
76700
69600
2300
18400
6100
6800
5800
14000
14500
6230
5680
6040
5580
8080
92800
2200
95200
5300
84200
5600
6000
5200
7400
7200
6270
1111
2015
1902
1959
2689
2494
5396
5712
7948
8857
15996
14990
22193
16845
15520
16757
27391
27219
27348
27459
16940
66035
17250
16980
16875
38283
36858
38493
24280
51474
56956
34890
107056
111132
111667
53624
86260
75078
100579
52233
9844
4508
6986

6947
1110.83996

1520

1080
2014.58082
1902.26266
1050.20176

2689.0407
2280
2493.62377
5395.96514
5712.04391
6250

4907
7948.36876

K

maL*
10
8
4150
200

337
851
898

1030
1060

456
2290
2280
2340
2300
1100

1070
1060
1080
2730
2470
2960

Ca

maL*

62

57
14400
1080
1650
2000
1900
1800
1800
2000
2100
1470
4100
1580
1510
1450
1670
2690
2790
2400
5000
3070
2560
5660
5600
20900

6200
18400
51800
46200
50100
41600

28200
129000
28200
3290
182000
94700
125000
131000
130000
99100
99300
101000
128000
125000
137000
124000
14000
188000
12400
123000
11200
125000
122000

126000

873
1470
1430

1500
1630

683
1890
1870
1890
1880
1450

1540
1500
1480
2140
1960
2210
1830

26800
18500
20100
6560
6260
6510
22000
19900
10300
8790
43700

118000

124000

124000

248

2

Mg
maL?

19400
17700
21400
23500
22700
17300
17400
33200
22200
22300
23200
16800

4350
13000

4200
24500

3000
22100
23200
22700
23800

1%
495
557

650
695
323
699
688
691
692
806

761

Br

maL?
15.4
100
702
138
673
206

o1
53.06824

so*

maLt

<2

630
4000
4900
5100
5000
5500
5200
6400
5000
5500
1700
5000
4700
4600
4800

1290
4560
4920

5010
5370
2268
6000
4770
6060
6150
5220

5220
5070
5190
5820
4710
5670

258
273

1803

9.9
261
255
108

0841

7.85

26.1
313
28

319
313
328
36.7
366
36.8
36.4

3

335
337
33.4

412
413
88.2

459
353
397
138
150
144
390
407
402
191
1070
4030

3660
3900

10.16

Fe

maL?
<0.005
01
0.1
014
<0.05
<0.05
<0.05
0.06
028

0

maL?
027
028

Mn

maL?

Na/CI

molar
0967200574
0.904463239
0.71628817
0.907766998
0.901337214
0.847500117
0866319922
0.896911949
0.910832285
0.935043442
0847946851
0.876234286
0798249435
0759205863
0.887277239
0.790731679
0888371123
0868289762
0798570431
104357527
0794103669
0.835561174
0.680024567
0.893238437
0767776789
0461322244
0.8709678
0.816444182
0713254709
0361446643
0369478791
0288747162
0321653089
0.951740646
0.386286899
0.028119382
0509847495
0858681561
0.00822969
0.102440329
0.027832104
002904923
0.025410794
0.06747004
0.073076794
0.027450668
0024197621
0.025731273
0.024172252
0.038106277
0730171395
0.011639037
0.682850568
0.022831043
0777550367
0.023980348
0.026665804
0.019800731
0032146691
0.03304655
0028523365
61736
1.02859
1.06118
0.94971
09156
0.96683
0.94732
0.92537
0.99133
0.87882
0.99004
09314
0.9039
1.54212
0.94926
0.96412
0.98891
0.94364
0.95066
0.97273
09514
0.89978
0.93065
0.92371
0.96834
0.94886
0.92064
0.93019
0.7881
051772
062827
0.48473
0.89338
0.89217
0.90268
058842
0.72567
0.69073
0.86517
0.38729
0.05118
0.02033
0.03467
0.03361
5.61903
3.3061
1.56091
1.02844
1.06143
0.94985
8.93036
0.91564
663403
0.96663
0.94728
0.92538
9.44927
051164
0.99141

CI/Br

molar

506.373428
83.39062985
632.4768646
488.3235081
991.2704885
4857706593
650.2344856

5854.98253
1120.404626

2166.714222
1416.674793
1778.784493
3543.234922
658.1008356
3024.330097
3180.020316
1044.508688
1724.499102
2827.882144

1103.71268
1813.285194
2868.473754
1418.279635
1798.409548
3504560619
1271.881742
1492.777158

551.051542
189.7937521
1810584748

189.158282
201.4034763
2958.113559
452.2142264
142.0258677
421.6788606
1367.507577
118.4619692
163.4300585
141.0712357

146 598575
131.3473318
152.1553287
139.8910846
136.4758274
134.6320855
138.5188272

639.2835863
156.4012344
7375451651
153.6877502
610.0238812
144.8871947
1453650628
1491485828
132.4667693
137.9375357
125.0472133
34370462
486.33802
47919273
512.00574
537.23494
527.38939
791.89545
794.50
525.77346
1251.02043
3119.76116
3290.4166
3710.24608
1898.26373
2841.25399
2876.6011
4011.20199
3580.48455
3703.16167
4088.01903
2812.9483
510156828
2928.30192
2662.11439
2884.22109
3595.62134
3760.74076
3508.01347
95605425
347.30051
452.70057
362.03673
1160.15495
1284.67984
123550381
304.44882
473.24912
501.03726
1043.15194
196.13159
132.37264
1205455
129.70206
130.85428
300.04669
177.54942
601.20137
479.46141
494.35689
515.75269
24.93267
534.40573
37.32858
530.53925
808.08517
800.51739
30.24838
366.30455
525.07797

&%

% VSMOW
-17.37047135
1856681800
1421773348

-17.19774981

-18.4282269
-16.81353722
17.85512517
-16.74737161

-15.14736801
-17.16031522
-16.70168413
1826718719
-16.41172853
-2.662282657
-16.89070364

183

-14.78206191

-16.72715879

148696271
-14.25269369
-10.94084977
-14.04305491
-16.18698R1A
-9.818307904
12.04304222
-9.042011851

-14.16101915
7.4
142
4132301094

147
-5.993760509
-11.07629929
-7.636584412
-5.075172907
4818441442
4586997638

-10.0454219
-8.951701818
8194858483

-5.260851406
-14.25105011
1221442219
171

76

17
-7.621984611
-7.100269454
8265772723
-4.927966842

475797625

197
183
-19
181
172
174
157
15
156
-16
172
174
-10.4
162
174
173
183
184
-186
186
173
17
17.4
173
176
176
-18.1
18
145
k3
106
101
149
152
146
116
-10.1

-18.33802
-19.01658
1813171
175
1720322
7

1737188
-15.73995
-14.99524
134
165
-15.5832

&H
% VSMOW
-135.7153608
1346707162
-119.3305025

-120.9813183
1352

-134.1205367
Bt

-121.9502056
-130.670869
-131.4758792
-134.98736
-128.9502817
-68.20788327
-123.2224765
13421543091
-120.5044195

-121.5264947
122.6395276
-108.2928676
-102.6669958
-119.2204502
116.7752589
-98.07015744
-88.27464706
-96.78989041

-97.78564361
128.0001277
-100.3267296
4465303576
-103.3541127
-81.92200555
-87.68021193
6234627751

-46.2778436
-47.3064346
-48.87918123
-66.44793788
-63.18600502
-51.12083664

-36.26580961
-120.6475194
9552255051

-42.24066186

483
-153.95776
-150
144
-140.58384
-149.18754
-138.92015
129
-133.18736
-136

-135.22005
-121.2623
-118.53145

129
-120.47252

&%0corrected
% VSMOW
-17.40663158
1859399164
-15.00246372

-14.39000218
-18.66788797
1751220077
-18.73920431
-17.11507783
-18.17468576
-17.12744436

-16.05467308
-17.32593809
-16.87757247
-18.43653538
-16.59666186
-3.505894735
-17.43766561
-18.69618417
-15.47122812

-17.23160439
-15.99501926
-15.34684862
1104365559
-15.08950681
1721729609
-10.61631732
1204146415
-0.000455655

-14.14821825
1776292569
-14.69224495
-3.358494726
-15.21101175
-6.704780679
-10.30176757
7135672302
-4.332352085
-4.039579089
-3.805508683
-0.519897343
-8.419531797
7143321388

-4.639734232
-15.0516359
1165903277
-17.92347985
-6.756A95433
-17.74698072
-6.836785704
-6.297389029
30:
-4.138343952
-3.936428524

&Heorrected

%ho VSMOW
1357585354
1347210732
-122.8395275

1216258331
135.0829325
-134.9925487
5300571
-134.2681896
-136.3650186
-132.1983792

13!

-123.8839666
-131.3017699
-132.1000745
5801942
-129.6257875
-70.28484878
-124.5247377
-135.2371449

-122.345333

13

-123.284608
-125.0404646

-110.654903
-106.8604173
-121.7214119
119.1783029
-102.8728857
-97.09071433
-104.9650501

-105.1420512

-128.946025
-105.3019221
6157045516
-108.5636666
-B3.68714888

-106.613872
7604541685
-62.97680925
6459469727
-66.00158399
-80.00418731
-76.92008152
-66.88955102

620545722
-124.183084
114.602674

-126.3918249
-66.0390464

-127.0604453

-67.67747522

-60.98124038

71.89712642

-50.25212347

3.7506562

FIsriesr

SRM 987
0.708365
0.708808
0.708653
0.70864

0.708662

0708721

0708712
0708112

0708128

0.708184
0708153

0.708061
0.708101
0708101

0708439

0708114

0.70818
0.708964
0708377
0.708435
0708322

0.7084
0708623

0708594
0.708458

FIsrsr st

Stdv #2se
0.000009
0.000014
0000012
0.000009

0.00001

0.00001

0.00001
0.000011

0.000008

0.00001
0.00001

0.000012
0.000012
0.000012

0.00001

0.000011
0.000005
0.000011
0.000012
0.000014
0.000008

0.00001
0.000011

0.00001
0.00001

&7cl
% SMOC
0.100071894
0.352162037
0154901522

-0.13578389
0241183978
-0.098717973
0.00135466
0021082119
0133133156
0.078614818

0152499583
0341645479
0075889325
0.196508839
0206041484
0199821168
0.002960873
0061712119
0.406131838

0.19484738
0038124473
-0.12802464
0219047944
0032131622
004899062
0124915586
-0.014099612
-0.322907665
-0.35610562
-0.0792797
0341700262
0.047137315
-0.096053008
-0.105217253
0206439677
-0.24243814
0033763183
-0.035011012
0042637827
-0.223634992
-0.319259675
-0.262250906
-0.144728546
-0.086392279
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