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Abstract

Although pure electrochemical techniques can provide substantial knowledge about
electrochemical reaction mechanisms, they lack the ability to provide direct molecular structure
information about the species involved. This inability to extract molecular information can result
in mechanistic ambiguity with respect to the identity of the reaction intermediates. This
information can be obtained by coupling in situ spectroscopic methodologies with

electrochemical techniques. This is known as spectroelectrochemistry.

A particularly problematic area of study with spectroelectrochemical techniques is the analysis of
the mass transport of species within the diffusion layer of the electrode. The visualization of the
diffusion layer surrounding electrodes allows for the unambiguous determination of electrode
processes. However, a high degree of spatial and temporal resolution is needed as the diffusion
layer in a typical electrochemical reaction extends to a thickness of hundreds of microns in tens

of seconds.

While traditional infrared spectroelectrochemical techniques have been valuable for the study of
electrochemical processes, they do not provide the spatial and/or the temporal resolution that is
needed to examine the diffusion layers produced at electrodes. This thesis focuses on the
development of an IR technique that couples synchrotron based IR radiation (SIR) with
electrochemistry, allowing for the concentrations of species present within the diffusion layer of

an electrode to be mapped during an electrochemical reaction.

The reduction of ferricyanide and oxidation of hydroquinone (HQ) are used as test redox systems
to study the ability of SIR to map electrochemical diffusion layers. The resulting diffusion
coefficients of ferricyanide, ferrocyanide, hydroguinone and benzoquinone are extracted using
the IR method developed here and compared to those determined independently by
hydrodynamic linear sweep voltammetry (HLSV). The diffusion coefficients of all species as
determined by SIR diffusion layer mapping will be shown to be consistent with the diffusion
coefficients determined by HLSV. This validates the ability of SIR diffusion layer mapping to

monitor electrochemically generated diffusion layers.
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Chapter 1: Introduction

1.1: Spectroelectrochemistry

Traditionally, electrochemistry involves the measurement of electrical responses such as
current, voltage, charge, and capacity as a function of either time or another electrical variable.
Although such measurements provide powerful kinetic and/or thermodynamic information
concerning chemical processes occurring at electrified interfaces, it has long been recognized
that electrochemical measurements do not carry any direct molecular information.

Consequently, the molecular identity of species must be inferred based on the values measured in
electrochemical experiments. This lack of direct molecular identification of species is a
significant weakness of electrochemical methods. The capability to probe the nature of the redox
and other species on and near the electrode surface would be of great benefit to understanding
electrochemical processes. In order to extract molecular information about the nature of the

species present, electrochemical methods must be coupled with additional analytical techniques.

In principle, spectroscopy is ideal for such purposes as molecular and atomic spectroscopies have
evolved into highly sensitive tools that are employed ubiquitously in analytical laboratories. This
has been recognized in the electrochemical community and electrochemists often use
spectroscopy in order to extract important molecular information about electrochemical
processes. When the coupling of spectroscopy and electrochemistry occurs in-situ it is called
spectroelectrochemistry. However, spectroelectrochemistry is technically very challenging for
the simple reason that experimental conditions that support high-quality electrochemical
measurements are often diametrically opposed to ideal spectroscopy conditions. Nevertheless
there is a diverse range of spectroelectrochemical techniques that employ various spectroscopies
including X-ray absorption(1, 2), nuclear magnetic resonance (NMR)(3-5), UV-Vis(6),
fluorescence(7), Raman(8, 9) and infrared (IR).(10, 11)



1.2: IR Spectroelectrochemistry
Of particular interest here and in other studies has been the coupling of IR techniques
with electrochemistry.(12-14) A major advantage of infrared spectroelectrochemical studies is

its sensitivity to both surface and solution species.

The majority of spectroelectrochemical techniques using IR have focused on two major
methodologies: internal IR reflection and external IR reflection. As discussed above, a major
problem when combining spectroscopy with electrochemistry is technique compatibility. In the
case of IR this is manifested in the need to have an electrolyte (often an aqueous solution) which
strongly absorbs infrared radiation. Decreasing the concentration of electrolyte leads to highly
resistive cells and greatly distorted electrochemical responses. Internal reflection techniques
garnered attention for spectroelectrochemical use due to two main factors. The first is the fact
that internal reflection techniques eliminate the attenuation of the IR beam by the water solvent.
This is accomplished by having the beam impinge from the back side of an IR transparent crystal
that supports the electrode. The second is the ability to incorporate surface enhancement(14),
which drastically decreases the detection limits. These low detection limits have made this
particular technique very attractive for surface sensitive spectroelectrochemical experiments.
These techniques are limited by the fact that the electrode must be made of a thin layer of metal
deposited on a high refractive index IR transparent substrate, limiting the metals and electrode

shapes that can be employed.



a) External Reflection

IR t&sparent A:low

electralytesolution

w
solid electrode |?l

b
) Internal Reflection

electrolyte solution

IRE

Figure 1.1: External reflection spectroscopy (a) and internal reflection spectroscopy (b) optical
geometries. IRE is infrared element, which is a high refractive index IR transparent material.

External IR reflection does not eliminate the absorption by the water solvent and thus requires
the use of thin cavity cells to ensure sufficient signal. It does, however, allow for the use of
preferred electrode shape and structure and can be used to study process occurring on the

surfaces of well-defined single crystal electrodes.(15, 16)

While these techniques have proved to be very robust in providing molecular information about

species present in electrochemical processes, they are limited by the fact that they only probe the



electrode surface as is the case for internal IR reflection techniques or the entire region near the
electrode simultaneously in the case for external IR reflection. Furthermore, for both types of
experimental configurations a large spot size is used resulting in spatially unresolved average
signals over a large area. This makes these techniques unsuitable for studying speciation within

the diffusion layer of the electrochemical interface.

The ability to resolve the spatial distribution of species within the diffusion layer created at the
electrode can give valuable information not only about fundamental aspects and the measured
response (voltage, current), but also other processes occurring within the vicinity of the
electrode. Processes of particular interest are coupled homogenous chemical reactions that occur
within the diffusion layer. Broadly speaking, coupled electrochemical and chemical reactions
fall into two categories: where the electrochemical process precedes the chemical reaction, called
EC reactions (Figure 1.2a) and where the chemical reaction precedes the electrochemical step
called CE reactions (Figure 1.2b).(17) These coupled chemical reactions can have a large effect
on overall electrode kinetics. For example, intermediates in these coupled reactions can absorb
on the electrode surface, passivating it. This is known as electrode poisoning.(18) A spatial and
temporal map of the diffusion space around the electrode provides fundamental information such
as the diffusion coefficients of the redox and other reactive species as well as reaction rates of

the coupled chemical reactions.

a) A+e > B b) A- B
B-C B+e »C

Figure 1.2: EC reaction scheme (a) and CE reaction scheme (b).

1.3: Diffusion

The diffusion of species to and from the electrode plays an integral role in the responses
that are measured and is of great interest for the studies herein. If the rate of electron transfer
between the electrode and the redox-active species is sufficiently fast then the observed current
will be mass-transport controlled. In the absence of convection and electromigration, the only

4



mechanism for mass-transport is diffusion. The concentration of any species under diffusion
control is a function of both space and time. As the current flowing through the cell is defined by
the flux of the redox material at the electrode surface it is apparent that diffusional mass-
transport defines the time-dependent current.

The nature of the diffusion layer produced at an electrode is dependent on the electrode geometry
which in turn causes differences in the recorded electrochemical responses. The focus here will
be the diffusion space around an inlaid band electrode as this is the electrode shape employed in
the present study. Fick’s second law of diffusion provides the diffusion at an inlaid band
electrode(17):

00 zt) _ [0%C0uz0)  0°C0nz 1)

11

ot 0x? 0z? (1)
With the following boundary conditions:

Creactant (%, 2,0) = Creqcrant (1.2)

Coroauct(%,2,0) =0 (1.3)

;l_r)glo C(x,2,t) = Creactant (1.4)

Zh—>n;3 C(x,z,t) = Cleactant (1.5)

C(x,0,t) =0(t>0,x<W) (1.6)

Where Creqcrane 1S the concentration of the reactant redox species present, Cproqyc: 1S the
concentration of product redox species, Cy.qctane 1S the initial concentration of the original redox
species present, z is the distance perpendicular to the electrode surface, x is the distance parallel
to the electrode surface and W is the width of the electrode. The diffusion space is shown in

Figure 1.3.
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Figure 1.3: Diffusion space for an inlaid band electrode (gold) in an insulating material (grey).

At short times, the thickness of the diffusion layer is very small compared to the length scale of
the electrode and the diffusion space grows linearly along the z-direction (perpendicular to the
electrode surface). In this limiting case the resulting current can be approximated using the

Cottrell equation:

1/,
(0 :nFAD 2C (1.7)

nl/ztl/z

Where n is the number of electrons transferred, F is Faraday’s constant, D is the diffusion
coefficient of the original redox species present and C™ is the initial concentration of the original
redox species present. At longer time, diffusion along the x-direction can no longer be ignored,
which results in a diffusion layer that is hemispherical in nature. The current from hemispherical

diffusion around an in-laid band electrode is given by:(17)

2nnFADC*
w - In(64Dt/w?)

i(t) = (1.8)



Where w is the width of the electrode, In is the natural logarithm and all other variables have the
same designation. This shows that the current developed at band electrodes never reaches a

steady-state and is always dependent on time.

The above boundary conditions and resulting solutions to Fick’s equation apply when semi-
infinite conditions exist in the z and x directions. As will be discussed later in this thesis,
diffusion at band electrodes is complicated if the cell volume is small and asymmetrically
restricted. Restricted geometries result in no obtainable analytical solution to Fick’s second law.

Numerical methods are then required for diffusion analysis of complicated cell geometries.

1.4: Thesis Goals

The focus of the work presented in this thesis is the development and verification for the use of
synchrotron infrared radiation (SIR) as a spectroscopic probe for monitoring the spatiotemporal
evolution of diffusion layers created at an electrode surface during an electrochemical reaction.
The thesis aims to verify the hypothesis that SIR provides a powerful and unique means to
accurately map the spatiotemporal evolution of electrochemical diffusion layers.

In order to realize SIR as a probe to monitor these diffusion layers many technical aspects had to
be overcome. In particular a major challenge has been the design of a spectroelectrochemical

cell (SEC) that would allow the IR beam to be placed adjacent to the electrode of interest without
obstructing the beam. To realize this, a divergence from the usual internal and external reflection
IR techniques was required, as transmission of the IR beam through the solution is needed rather

than reflection from the electrode surface is required.

The designed SEC had to also allow for highly reproducible measurements. Infrared
spectroscopy is inherently a low signal to noise technique and requires the co-addition of many
replicate experiments (ensemble averaging). To be effective, every individual measurement in
the ensemble must be highly reproducible such that only the noise and not the signal is degraded
in the co-addition process. In a spectroelectrochemical experiment this amounts to ensuring that
the electrochemical response is invariant over the course of many (several hundred) replicate

measurements.



The motivation for using SIR as the IR source for diffusion layer mapping is the fact that it can
be focused to diffraction limited spot sizes (~10 pum), while still having substantial photon
throughput. This gives SIR the spatial resolution that is required to probe electrochemical
diffusion layers that are typically in the range of 250 um. To utilize the spatial resolution
capabilities of SIR required the synchronous triggering of time resolved IR measurements with
the onset of the electrochemical reaction. This synchronous triggering needed to be done in such
a way that several hundred replicate measurements could be done without variation in either the
electrochemical or IR response. Details of the extensive method development required to
achieve the synchronous triggering of the electrochemical reaction with the acquisition of IR
data in such a way that the spectroscopic data can be used to monitor the spatial and temporal

evolution of the diffusion layer is described in this body of work.

1.5: Scope of the Thesis

Chapter 2 endeavors to give an overview of the previous techniques that have been
implemented to monitor the evolution of diffusion layers created during electrochemical
processes. This chapter is broken into three sections. The first section discusses electrochemical
methods that have been previously used to examine diffusion layers, in particular scanning
electrochemical microscopy (SECM). Electrochemical methods have revolved around the use of
SECM because it provides the required spatial resolution needed to perform diffusion layer
mapping. A comparison between potentiometric and amperometric measurements used in
SECM will be discussed. The second section will examine optical techniques that have been
successfully implemented to probe diffusion layers. These techniques include UV-Vis
spectroscopy, Raman spectroscopy and fluorescence spectroscopy. The various methods and
specific techniques that are used to implement these different spectroscopies will be discussed.
The advantages and disadvantages of these methods will be considered. The third section
examines X-ray techniques. X-ray methods to probe diffusion layers are the most recent
addition to the available methods for diffusion layer mapping. The first use of scanning
transmission X-ray microscopy, which offers unparalleled spatial resolution, to follow an

electrochemical reaction will be discussed. The work by Peng et al(19) on the development of



confocal micro-X-ray microscopy of diffusion layer mapping will be examined along with

Uematsu et al’s(20) use of energy dispersive X-ray fluorescence microscopy.

Chapter 3 will look at the electrochemical and infrared spectroscopic techniques that were used
to implement diffusion layer mapping via SIR. The theory behind the electrochemical
techniques of cyclic voltammetry, hydrodynamic linear sweep voltammetry and
chronoamperometry will be discussed at the beginning of this chapter. From there the focus will
shift to infrared spectroscopy, with the theoretical foundations of vibrational spectroscopy being
initially laid out. The associated instrumentation used in infrared spectroscopy, in particular the
Michelson interferometer and infrared microscopy will be subsequently examined. The aspects
of the time resolved measurements used here will likewise be examined. The final section will
discuss globar and synchrotron sources of infrared radiation. The goal of this chapter is to give
the reader the required background information needed in order to understand the diffusion layer

mapping technique developed here.

The method and details of the IR measurements used to obtain the diffusion layer maps, along
with the analysis of the measured IR data that results in the final concentration profiles for the
redox species at various distances from the electrodes will be discussed in Chapter 4.
Considerations in the design of a spectroelectrochemical cell (SEC) that allows for the IR beam
to be positioned adjacent to a working electrode will be provided. The various SEC designs will

also be discussed.

This chapter will also look at the use of hydrodynamic linear sweep voltammetry (HLSV) to
independently determine the diffusion coefficients of ferricyanide, ferrocyanide, benzoquinone
(BQ) and hydroquinone (HQ). Additionally, the determination of the molar extinction
coefficients of both BQ and HQ in D20 used in the analysis of the oxidation of HQ data will be
described. Afterward, the technical aspects involved in the diffusion layer mapping will be
discussed in some detail. This discussion will focus on the importance of reproducible
electrochemistry within the SEC. Furthermore, the investigation into the IR beam shape and the
way in which the use of a slightly defocused beam and blade aperture instead of circular aperture
leads to improved spatial resolution will be described.

A treatise of the numerical simulations of the diffusion space that are needed to model the

experimental concentration transients within the SEC will be given. This will include details
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concerning how diffusion coefficients of the redox species are extracted and the comparison of

experimental and simulated concentration versus time curves.

Chapters 5 and 6 will focus on the diffusion layer mapping studies of the two sample redox
systems: the reduction of ferricyanide to ferrocyanide and the oxidation of hydroquinone to
benzoquinone. These two redox couples were used as the test redox cases for diffusion layer
mapping by SIR. The ferri/ferrocyanide redox was the first redox couple to be investigated.
Diffusion layer mapping of the ferri/ferrocyanide redox couple shows that SIR can spatially and
temporally resolve the redox species within the diffusion layer. However, the simulation of the
resulting concentration transients resulted in diffusion coefficients for ferricyanide and
ferrocyanide that were considerably lower than the literature values. The details behind this
discrepancy are discussed at length. The oxidation of HQ was studied using an improved cell

design to test if the discrepancy was systematic.

In Chapter 7 the diffusion coefficients of both the redox couples will be considered in
considerable depth in an effort to reconcile the resulting discrepancy between diffusion
coefficients determined by the diffusion layer mapping here and those previously done by Arvia
et al.(21) It will be shown that the diffusion coefficients determined independently by HLSV
and those determined by diffusion layer mapping are, in fact self-consistent, validating the use of

the SIR methodology to extract quantitative data about the molecular species.

Finally, in Chapter 8 the improvements that could be made to the SEC and the methodology that
would result in the ability to study a wider range of electrochemical systems as well as improve
the spatial resolution of this SIR methodology will be discussed. Of particular interest is the use
of this diffusion layer mapping to study EC type reactions. This will be a large focus of the
suggested future work for the further growth of the diffusion layer mapping methodology
developed here.
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Chapter 2: Literature Review

2.1: Introduction

Electrochemists have known for a long time that purely electrochemical techniques
cannot provide molecular information about the species involved in electrochemical process.
Therefore, the nature of the species involved in the electrochemical process must be inferred
based on the resulting electrochemical signal (current, potential, etc.) measured. Furthermore, it
is known that the current produced at the electrode is dependent on the concentration gradient of
the species in the area adjacent to the electrode. Determining the exact concentration of redox
species can be complicated due to the presence of coupled chemical reactions. Electrochemical
analysis can be complicated further by the fact that some of the species can affect the
electrochemical reaction through poisoning of the electrode.(1) Being able to determine the
distribution of the individual species in the area adjacent to the electrode (known as the diffusion
layer) during an electrochemical reaction would allow for the unambiguous determination of the

processes occurring therein.

This chapter will examine existing literature reporting various methods that have been used to

map diffusion layers that are produced at an electrode during electrochemical processes.

2.2: Scanning Electrochemical Microscopy

Scanning electrochemical microscopy (SECM) is a powerful electrochemical technique
developed in the 1980’s that uses a special four electrode setup. Two electrodes serve as the
conventional counter and reference electrodes. The two others act as the probe and working
electrode. In SECM a small probe electrode whose potential/current is controlled/monitored is
placed adjacent to a working electrode (Figure 2.1).(2)
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Probe
Electrode

Working Electrode

Figure 2.1: Scanning electrochemical microscopy setup running in amperometric measurement
mode.

The probe electrode allows for the monitoring of species within the vicinity of the working
electrode. With SECM there are two measurements that are typically done for the mapping of
diffusion layers, potentiometric and amperometric. In potentiometric measurements an
electrochemical reaction is triggered and the potential at the probe electrode is monitored. This
potential is related to the relative amount of redox species present at the probe electrode surface.
In amperometric measurements, like potentiometric measurements an electrochemical reaction at
the working electrode is triggered. However, the probe electrode is set to a potential where the
reverse electrochemical reaction occurs and the current resulting from this reverse reaction is
monitored. The resulting current can be related to the concentration of the species present at the
probe electrode.(2) As seen in Figure 2.1 the probe electrode is placed near the working
electrode, the presence of the probe can restrict diffusion of species to the working electrode
surface. As such care must be taken to use a probe that is of a sufficiently small size so that its
presence does not disrupt the resulting diffusion layer. This clearly represents a disadvantage for
diffusion layer mapping

It was realized by Engstrom and co-workers that if the probe electrode position could be
precisely controlled in the direction normal to the working electrode surface that the diffusion
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produced at the working electrode could be spatially monitored.(3) Engstrom and co-workers’
initial study employed a 10 um probe electrode and analyzed the oxidation of ferrocyanide using
the amperometric measurement method.(3) They were able to improve their method by
employing a carbon fiber probe electrode with a considerably smaller diameter. The use of
smaller working electrodes allowed for faster amperometric measurements as a steady state
current is reached in a shorter amount of time.(4) This improved method allowed for the
accurate measurement of redox species concentrations and time scales between 50 ms and 500
ms. Impressively, they were able to probe the EC reaction of dopamine, where they were able to
follow various species concentrations. This allowed for the differentiation between two

proposed mechanisms for the overall process.(4)

From these initial studies the use of SECM has been adapted to study not only diffusion layers
produced at solid electrodes, but also those produced at polarized liquid-liquid interfaces of two
immiscible fluids.(5) Monitoring the concentrations near the interface, Zhang et al were able to
visualize the ion transport of ferrocenium ions across the interface. The ability to monitor this
transfer allowed the contributions of electron transfer and ion transfer to the overall current
measured to be separated. This decoupling between the current contributed by electron transfer
and that contributed by ion transport is not distinguishable using conventional electrochemical
methods.(5)

Another adaptation of SECM has allowed for the diffusion of oxygen across the air-water
interface with a monolayer of 1-ocatanol present at the interface.(6) This study was able to
monitor the diffusion of oxygen across the interface at varying surface pressures of the 1-octanol,
showing that the ability of oxygen to cross the interface decreased as the surface pressure of the

1-ocatanol monolayer increased.

All of the SECM methods discussed so far have utilized amperometric measurements. These
amperometric measurements may not always be the appropriate choice. This is due to the fact
that some of the species produced at the working electrode may not be redox active or if they are,
the potential at which they are redox active lies outside the potential window of the solvent.
Amperometric measurements can also disrupt the diffusion layer at the working electrode, as the
composition of the solution in the vicinity of the probe electrode is altered from that of the

surrounding solution. This change in composition can disrupt the diffusion of species in the
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local vicinity leading to anomalous currents. This is particularly problematic at small
interelectrode distances as the probe electrode reproduces the initial redox species, providing

positive feedback to the working electrode.

To solve this problem many groups have used potentiometric measurements and have coupled
them with ion selective membranes. Potentiometric measurements prevent the disruption of the
diffusion layer and the ion selective membranes allows only the ion of interest to be probed. lon
selective potentiometric SECM analysis of diffusion layers have been applied to selectively
monitor NH4*, K*, Zn?* and H" ions.(7-9) While these measurements eliminate the problems of
the amperometric measurements, they do suffer from two major drawbacks. The first being the
technical difficulty in producing the ion selective probe electrode at sufficiently small size such
that it does not interfere with diffusion to the working electrode. The other is the difficulty in
determining the interelectrode distance between the working electrode and the probe electrode.
In amperometric measurements the measured current at the probe along with the known
diffusion coefficients of the redox species are used to determine the interelectrode distance.
These potentiometric measurements do not have access to this method of determination of the
interelectrode distance as the resistance of the ion selective membrane is too large to allow
accurate determination. Bard et al produced a probe tip that consisted of an ion selective
membrane electrode and a silver/silver chloride electrode typically used as a reference electrode

for the determination of interelectrode distance.(7)

Momotenko et al have used a variation on SECM called scanning ion conductance microscopy
(SICM), where a change in the conductance of the solution is used to probe the presence of ions
in the diffusion layer. SICM avoids the technical problems of producing a probe electrode as it
only requires a glass capillary to be pulled to a sufficiently small diameter, typically ~10 um.(10)
This is simple compared to the capillary pulling, silanization and deposition of the ion selective
membrane that is needed to produce ion selective electrodes.(7) The fact that SICM measures a
change in conductance means that it does not provide any selectivity. Thus, the resulting
conductance change is proportional to the total change of ions within the tip and not just the ions
of interest. This greatly complicates the analysis of the distribution of the species of interest, but

can be simplified if no supporting electrolyte is present.
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Amatore and co-workers have extensively studied the use of SECM to map diffusion layers.
These studies focus on the comparison of potentiometric and amperometric methods to
effectively probe the concentration of species with the diffusion layers generated at electrodes.
These studies examined the oxidation of ferrocyanide and the reduction of
tetracyanoquinodimethane (TCNQ).(11, 12) The motivation for using TCNQ is its interesting
electrochemical behavior. TCNQ can be first reduced to TCNQ®" and subsequently to TCNQ?,
however TCNQ and TCNQ? readily conproportionate to form two TCNQ® molecules. This
added homogenous reaction complicates the distribution of species within the diffusion layer,

making it a very interesting system.

Both potentiometric and amperometric measurements have been shown to be capable of
monitoring the speciation of molecules within the diffusion layer for the oxidation of
ferrocyanide and the reduction of TCNQ.(11, 12) Both methods have independently shown that
in the case where the potential at the working electrode is set to trigger the second reduction of
TCNQ, the diffusion layer is split into two regions: an inner diffusion layer and an outer
diffusion layer. In the inner diffusion layer close to the electrode, only TCNQ® and TCNQ?*
exist. In the outer region of the diffusion layer only TCNQ and TCNQ*" exist. At the
intersection of these two layers there is a small overlap of both TCNQ and TCNQ? where they
react to form TCNQ*". As such TCNQ® reaches its maximum concentration at this point.(11,
12) It is clear that both measurement types are capable of monitoring distribution of species
within the diffusion layer, but both techniques suffer from drawbacks. In the case of
potentiometric detection the main problem is the fact that it only produces ratios of the
concentrations and additional information is needed to extract precise concentrations.
Potentiometric measurements also suffer from the fact that the measurement times are on a
length scale such that only steady state diffusion at the working electrode can be probed, so

transient processes cannot be studied.(11)

In the case of amperometric measurements, the reverse reaction at the probe electrode disrupts
the diffusion layer of the working electrode, which can lead to artificially high currents as
discussed above. Amperometric measurements also require that both species in the redox couple
be redox active.(12) However, the current amperometric measurements are directly related to

species concentration and the measurement times are short enough that transient processes can
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be observed. These features make amperometric measurements more attractive than

potentiometric measurements and became the focus of further studies.(12)

Amatore and co-workers noticed during potentiometric measurements that the current would
deviate from the expected result, particularly at longer times when the diffusion layer extended
into solution beyond 60-70 um.(12) Similar behavior was also seen by Engrstrom in his initial
work using amperometric measurements. Engstrom suggested that this deviation could arise
from three factors; the recycling of redox species between the probe and working electrode,
shielding of the working electrode from the probe electrode, preventing diffusion of species to
the electrode and natural convection.(4) Natural convection is the microscopic movement of
solution in a macroscopically still solution. This fluid movement is difficult to characterize as it
arises from sources that are not easily quantified, such as vibrations, air current and thermal
gradients. Amatore and co-workers were able to eliminate the first two causes for the current
deviation proposed by Engstrom and attributed the deviation solely to natural convection. To
account for natural convection Amatore developed a model that incorporates the effect of
enhanced mass transport with an apparent diffusion coefficient. This apparent diffusion
coefficient increases with increased distance from the electrode to account for the presence of
natural convection.(13) The incorporation of this apparent diffusion coefficient has been used to

successfully model diffusion layers out to several hundred microns.(13-15)

It is clear that SECM techniques offer a powerful set of methods to spatially resolve the
distribution of species within the diffusion layer, but they do suffer drawbacks. In the case of ion
selective membrane electrodes, it is technically demanding to produce electrodes of a sufficiently
small size and there are issues with determining the interelectrode distance. SICM lacks
molecular specificity as the measurement takes into account the change in the overall ion
concentration and not just the ion of interest. Amatore and co-workers have highlighted the
issues with potentiometric measurements in that they only produce concentration ratios and
cannot study transient processes. For amperometric measurements problems arise from
disruption of the diffusion layer of the working electrode as well as the fact that in order to be

detected, the species must be redox active.
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2.3: UV-Vis

Initial studies of diffusion layers produced at electrodes using UV-Vis spectroscopy
involved imaging the interference pattern produced by a refractive index gradient at the electrode
during an electrochemical reaction.(16-18) This method does provide an effective means of
monitoring the deposition or corrosion of metals(19, 20), but the resulting interference pattern
produced by the refractive index gradient is a product of the overall concentration change at the
electrode and thus this method like SICM does not provide specificity. If the redox species also
doubles as the electrolyte species then the interference pattern is produced purely from the
species of interest.(19, 20) Also, in order to produce sufficient refractive index gradients a
concentration in the molar range of the redox species must be used instead of the millimolar
range typically employed in electrochemical studies.

McCreery and co-workers developed a method based on absorption spectroscopy to monitor
species in a diffusion layer rather than the previous methods based on interference.(21) In these
studies a micron sized beam that was positioned at various distances from the electrode surface
within the diffusion layer and the resulting absorbance was detected by a photomultiplier tube
(PMT). This was achieved by using light from a laser source, micron width slits and a micro
positioner to direct the beam parallel to the electrode surface.(21) In these initial studies
McCreery and co-workers were able to follow the concentration changes of the cation radical of
N,N,N', N'-tetramehtylparaphenylenediamine during its production at the electrode, but the
resulting concentrations did not show agreement with those predicted for a diffusion limited
process via Fick’s second law. This deviation was particularly pronounced at distances less than
50 pm and greater than 200 um from the electrode. This method was improved by using a cell
design with smaller slits as well as better alignment of the beam. Nevertheless, large deviations
still appeared at 20 um from the electrode and the overall concentration changes still did not
agree well with those predicted by a diffusion limited electrode reaction. It was found that this
deviation was systematic as similar results were found when the solvent and redox couple were
changed.(22)

Suspecting that diffraction/refraction effects of light were causing the deviation, simulation of
the absorbance data was done when the slit was placed at the electrode surface. Various slit

widths were used to account for the larger volume that would be interrogated due to these
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effects. It was found that the absorbance corresponded to a slit width of ~ 25 um, which is
significantly larger than the 3 um slits used. This indicates that a larger volume is probed than
that selected by the slits.(22) These diffraction/refraction effects will be particularly problematic
at positions close to the electrode, but should be negligible at larger distances. As such, the

deviation at larger distances was attributed to natural convection.

From these studies, McCreery and co-workers recognized that the electrode size must be reduced
in order to limit these effects. The new cell employed a radical new design. The electrode in the
new design had a thickness of 15 um (compared to the 500 pum used in the older design) and a
photodiode array was utilized instead of a PMT. In this configuration a wider collimated beam is
passed by the electrode. It is then magnified and imaged by the photodiode array, resulting in
each pixel of photodiode interrogating a 1.25 um segment of the beam and allowing for the
entire diffusion layer to be imaged simultaneously.(23, 24) This design resulted in significantly
better agreement between the resulting concentration changes and those predicted by theory.
This agreement also extended over a greater range with agreement being seen as close as 8 um
away from the electrode. At closer distances the diffraction/refraction effects are present and

result in deviation.

The ability of the photodiode array to image the entire diffusion layer simultaneously was used
to image the change of absorbance of trianisylamine (TAA) during a cyclic voltammogram (CV).
Select points on the CV curve were probed, showing the changes in the TAA absorbance as the
potential was varied.(24) This indicates that concentrations of redox species can be followed

during dynamic processes.

To enhance the capabilities of the UV-Vis absorbance spectroelectrochemical method they
developed, McCreery and co-workers opted to use a xenon lamp instead of a laser. The xenon
lamp continuum source allowed for multiple species to be observed. This ability to monitor
multiple species does come at the cost of spatial resolution and also a decrease in temporal

resolution as the xenon arc lamp’s lower power requires longer acquisition times.(25)

Efforts have been made to probe the diffusion layers around electrodes of various shapes via this
UV-Vis method. These studies have focused on the diffusion layers produced at cylindrical and
hemispherical electrodes.(26, 27) The analysis of diffusion layers at these electrodes is

complicated by the fact that the beam will interrogate a gradient of concentrations as it passes
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through the diffusion layer produced at these electrodes as depicted in Figure 2.2. The analysis of
the resulting absorbance requires that each of the different concentrations the beam interrogates

as it passes through the diffusion layer to be accounted for.

Normalized

UV-Vis Concentration
0.9650
0.8680

Beam

06740
05770

L [{/g

Electrode

0.4800
0.3830
0.2860
0.1890
0.09200
0.00S000

Figure 2.2: UV-Vis beam passing through the diffusion layer of a cylindrical electrode.

The analysis of the diffusion layers at spherical and cylindrical electrodes show a much greater
deviation between predicted and experimental concentrations. Studies by Wu et al, a lateral
movement of the diffusion layers around a cylindrical electrode was noticed. This movement
varied in the time of onset as well as in magnitude and direction between each individual
experiment.(26) It was found that smaller diameter electrodes resulted in greater movement and
faster onset, with the onset being noticed in as little as 100 ms after triggering the
electrochemical reaction at a cylindrical electrode of 12 um diameter.(26) Using larger diameter
electrodes, placing the cell and components on a vibration isolation table along with waiting 5 to
10 minutes after stirring the solution to ensure quiescence was found to increase the stability of
the diffusion layer. This increase in stability was not very reproducible with deviations still seen
at short times.(26) Wu et al attributed this lateral movement to the presence of natural
convention within the solution, which is enhanced in the case of cylindrical electrodes, because
unlike planar electrodes there is no large surface surrounding the electrode that impedes fluid

movement.(26) Interestingly, Posdorfer et al did not observe this large movement of fluid at
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cylindrical electrodes nor did they see it in their studies of diffusion layers at hemispherical
electrode. However, this could be due to the fact that the diameter of the cylindrical electrode
they used was much larger.(27) It is possible that the larger electrode impedes fluid motion in
the vicinity of the electrode leading to a more stable system.

The advancement of imaging and optics technology has allowed the seminal work by McCreery
on diffusion layer mapping using UV-Vis absorption spectroscopy to be adapted to a variety of
systems of interest. Olbrich-Stock et al have used this method to monitor the growth of diffusion
layers during the electropolymerization of thiophene.(28) Ruiz and co-workers have used it to
look at ion transfer across polarized liquid-liquid interfaces as well as the deposition of platinum
nanoparticles at polarized liquid-liquid interfaces.(29, 30) It has even been adapted for use with
optical microscopy in order to follow the diffusion of protons across An ion-selective

membrane.(31)

UV-Vis absorption spectroelectrochemistry has been developed into a powerful technique for the
study of diffusion in electrochemical reactions. It offers a major advantage over SECM methods
in that it is non-invasive, therefore it does not disrupt the evolving diffusion layer at the
electrode. In UV-Vis absorbance spectroscopy, however the absorption bands in solution are
quite broad, which can lead to difficulty in identifying the species present and knowing their

concentrations accurately if there is significant overlap of the signals.

2.4: Raman

Studies of electrochemically generated diffusion layers using Raman spectroscopy have
centered around the use of confocal microscopy in order to provide the spatial resolution needed
to monitor the evolution of a diffusion layer produced at an electrode. The first attempt to
monitor diffusion layers was by Ozeki et al, who used Raman microscopy. In these studies the
microscope was used to place the focal point of the laser at various distances from the electrode
surface and to monitor the resulting Raman signal during an electrochemical reaction. While this
method did show a change in concentration of the electroactive species, that change was not as
expected; a strong signal was still seen when the focal point was set beyond the electrode
surface.(32) They attribute these recorded signals to reflection of the laser from the electrode

and into solution, with the recorded signal arising due to this reflected beam. This indicates that
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the spatial resolution of this method is quite poor, resulting in averaging of the Raman signal

over Iarge areas.

Through the use of confocal Raman microscopy the resolution is greatly enhanced as it allows
for a select volume to be interrogated. Amatore and co-workers successfully utilized the spatial
resolution capabilities of confocal Raman microscopy to monitor the distribution of TCNQ*"
during the reduction of TCNQ.(33, 34) This method like SECM was able to monitor the
distribution of TCNQ®" within the diffusion layer and show that when the potential was set to the
second reduction of TCNQ, that the diffusion layer was segregated into two segments as
described above. However, unlike SECM this method could only probe the presence of TCNQ*",
as a laser source was used so that it exhibited Resonant Raman Effect in order to produce enough
signal to be monitored at the millimolar concentrations used. As a result, the concentrations of
TCNQ and TCNQ? had to be determined by using conservation of fluxes, which can be an issue,
as the diffusion coefficients must be known. They also encountered a problem with the accurate
positioning of confocal volume due to the changes in the refractive index of the solution that
occur at the electrode during an electrochemical reaction. This effect is more pronounced as the
length of solution that the beam passes through increases. At a path length of 170 um the
vertical resolution was found to be 4 um and around 10 um for a 1 mm path length.(33) Despite
these issues, Amatore and co-workers were able to monitor the distribution of TCNQ, TCNQ*"

and TCNQ? with excellent agreement to those that are predicted from Fick’s second law.

Confocal Raman microscopy has also been used to monitor the electrodeposition of copper. This
work unlike the work by Amatore did not require the movement of the confocal volume to
monitor the diffusion layer. Instead, the volume was positioned just beyond the electrode and
the composition within the volume recorded as the electrode grew during the deposition.(35)
Through this analysis Texier et al were able to break the deposition into three phases. An initial
slow growth stage, a fast growth phase and finally a relaxation phase. They were also able to
observe the adsorption of H and elucidate its role in the electrodeposition process.(35)

The use of Raman spectroscopy has not received as much attention for monitoring diffusion
layers as either SECM or UV-Vis spectroscopy, mainly because of the fact that the signals
produced by the analytes at concentrations typically used in electrochemical experiments would

be too small.
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2.5: Fluorescence

Similar to Raman spectroscopy, some fluorescence techniques have taken advantage of
the spatial resolution of confocal microscopy to monitor diffusion layers. These studies have
used fluorescence to monitor the pH profiles produced at electrodes during an electrochemical

reactions that involves coupled proton transfer. (Figure 2.3)

OH 0]

e + 2¢” + 2H"

OH @)

Figure 2.3: Example of an electrochemical reaction that involves coupled proton transfer.

Oxidation of hydroquinone to benzoquinone.

The growth of the pH gradient was monitored using a pH sensitive fluorophore whose
fluorescence intensity varied as a function of pH.(36-39) Unwin and co-workers have used this
method to examine the pH gradients produced at disk electrodes during the reduction of
benzoquinone and the reduction of water. They also implemented it to look at pH gradients of
water reduction at ring electrodes.(36, 37) During their analysis of the reduction of water at disk
and ring electrodes they simulated the resulting pH profile and found that good agreement could
be obtained by incorporating natural convection using the method developed by Amatore.(37)
Unwin extended this work to monitor the diffusion of organic acids across a lipid bilayer.(38)
The visualization of the pH gradient in this work allowed the transport of various organic acids
across the lipid membrane to be monitored and the resulting permeation coefficient of each of
the acids to be determined.(38)

Leenheer et al have taken advantage of this method to monitor the effectiveness of water
splitting catalysts.(39) They show that under galvanostatic conditions (constant current) that an

increase in electrode area results in a much larger area of pH change. They were also able to
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examine the catalytic ability of various metals for water splitting, as well as the effects of
electropolishing the electrodes. They prepared parallel electrodes consisting of nickel, platinum,
silver and gold. The pH gradient around the electrodes was monitored before and after
electropolishing. The conditioning consisted of cycling the potential to a point where the metal
surface was oxidized to remove surface contaminates. Before electropolishing, silver and
platinum show activity for water reduction, with no activity for nickel and gold. After
electropolishing the platinum electrode showed a large increase in activity, the gold electrode
showed some activity, but the silver and nickel electrodes showed no activity. This decrease in
the silver activity is due to the fact that the oxidation caused dissolution of the silver
electrode.(39)

Leenheer et al discuss the fact that the switch from low fluorescence intensity to high
fluorescence of the fluorophore only occurs over a narrow pH range. Only if the pH change
spans the values where the fluorophore alters its fluorescence intensity can the profiles be
monitored. This requires that the initial pH of the solution be selected so that the change in pH
occurs over the narrow range such that fluorescence intensity varies.(39)

Another related method that utilizes fluorescence confocal microscopy is
electrochemiluminescence (ECL). The main difference between ECL and fluorescence confocal
microscopy is that the resulting fluorescence is a result of the ECL reaction in solution. The
studies by Amatore et al use the ECL to map the reaction between Ru(bpy)s* and Ru(bpy)s®* that
produce two Ru(bpy)s?*, with one being in an excited state that fluoresces.(40) By following this
fluorescence they were able to monitor the spatial distribution of this reaction at various
distances from the electrode. However, this is not very useful as only the reaction can be

followed and not the entire diffusion layer.

Zhang and co-workers have developed a fluorescence technique that does not utilize confocal
microscopy to provide spatial resolution for monitoring diffusion layers. Their fluorescence-
enabled electrochemical microscopy (FEEM) method couples the electrochemical reaction with
the electrochemical production of the fluorophore via a bipolar electrode, shown in Figure 2.4.
Using this setup they have been able to correlate the intensity of the fluorescence produced on
one side of the bipolar electrode to the electrochemical reaction on the other side of the
electrode.(41)
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Figure 2.4: Coupling of an electrochemical reaction and electrochemical production of an active

fluorophore via a bipolar electrode as used in FEEM. O is the oxidized species, R is the reduced
species, S is the inactive form of the fluorophore and F is the active form of fluorophore.

To implement this for diffusion layer mapping they used an array of bipolar electrodes in an
insulator that separates two solutions. One side contains only the precursor to the fluorophore
and the other side contains the redox species for the electrochemical reaction of interest. Similar
to SECM, a small electrode is placed adjacent to the bipolar electrode array and the
electrochemical reaction is triggered at the same time the bipolar electrode is polarized. The
reverse electrochemical reaction happens at the bipolar electrode on the side containing the redox
species and the production of the fluorophore is produced on the other side (Figure 2.5). In this
setup the fluorescence produced can be related to the concentration of the redox species at the
bipolar electrode. Furthermore, by adjusting the distance between the bipolar array and the

electrode, the diffusion layer around the electrode can be mapped.(42)
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Figure 2.5: FEEM setup used to monitor diffusion layers.

Oja et al were able to monitor the concentration during the reduction of ferrocyanide at a small
10 um diameter carbon fiber electrode. The use of the bipolar electrode array also allowed
discrimination between the diffusion layers produced by two 10 um diameter carbon fiber

electrodes that were placed 147 um apart and were at slightly different distances to the array.(42)

This method suffers from the problem of disruption of the diffusion layer at the working
electrode, similar to the case of SECM. This arises at distances between the electrode and the
array of less than 20 um as the large bipolar electrode array impedes diffusion of ferrocyanide to
the electrode. Beyond 20 um there does not appear to be any interference from the array on the
diffusion to the electrode.(42)

The final fluorescence method that will be discussed has been developed by Amatore et al,
where they use an optical fiber bundle to trigger and monitor the fluorescence of diffusing
species at an electrode.(43) In this method the optical fiber bundle is placed on a large 3 mm
diameter disk electrode, with the individual 3-4 um optical fibers in the bundle providing the
needed spatial resolution to monitor the diffusing species during the electrochemical reaction. In
this study the fluorescent Ru(bpy)s?* is oxidized to the non-fluorescent Ru(bpy)s>*. Unlike
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fluorescence confocal microscopy or FEEM this method is used for the direct observation of the
redox species, which allows for much easier determination of the concentrations of the redox

species as the fluorescence is directly related to the concentrations of the redox species.

Through this method, Amatore et al were able to follow the production of the Ru(bpy)s** and the
consumption of Ru(bpy)s?*, with the concentration profiles showing good agreement to those
predicted by Fick’s second law beyond 7 pum from the electrode surface.(43) In order to get this
good agreement, optical fibers with low numerical aperture (NA) and high concentrations of
Ru(bpy)s®* were needed. This was required because each optical fiber probes a cone of volume
and at high NA and low concentrations the cones of two adjacent optical fibers overlap, leading
to an artificially large signal. Decreasing the NA decreases the angle of acceptance of the cone
and the increased concentration of Ru(bpy)s?* decreases the depth into solution that is

interrogated, which eliminates the overlap as shown in Figure 2.6.(43)

This method is advantageous compared to the two previous methods in that it allows for the
direct observation of the redox species, but unlike the previous methods it does require one of the
redox species to be fluorescent. Large electrodes are also needed as the placement of the optical
fiber bundle would disrupt the evolution of the diffusion layers produced by smaller electrodes.
Large electrodes were also needed so that the bundle could be placed such that it probes the

linear diffusion at the middle of the electrode without any edge effects.(43)
N I
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Figure 2.6: Cone of volume (red) probed by (a) optical fibers of high NA, with low redox species
concentration and (b) optical fiber of low NA, with high redox species concentration.

Overall fluorescence techniques provide the ability to monitor diffusion layers, but fluorescence

confocal laser microscopy and FEEM do not directly monitor the redox species, instead the
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concentrations of the redox species are coupled to secondary signals. Fluorescence confocal
laser microscopy is limited, in that it requires the appropriate selection of a pH sensitive
fluorophore and restricted electrolyte pH. The pH change is also only visible over the small
range determined by the fluorophore. FEEM is limited by the fact that the large bipolar
electrode array disrupts diffusion to the electrode so that the closest distance that can be probed
is 20 um form the electrode. While Amatore’s optical fiber bundle avoids the problems of the
first two techniques by directly monitoring the redox species, it does mean that one of the redox
species must be fluorescent. It also suffers from the fact that only large electrodes can be used, so

that fast processes cannot be probed.

2.6: X-ray

The first recorded use of an X-ray technique to spatially and temporally monitor an
electrochemical reaction was done by Guay et al, where they used scanning transmission X-ray
microscopy (STXM) to look at the changes in oxidation state of a polyaniline layer on a gold
electrode.(44) By monitoring changes in the N 1s edge at 398.7 eV, which appears upon
oxidation of the polymer, the change in oxidation state of the entire polyaniline layer could be
monitored. While this is not diffusion layer mapping, it does showcase that STXM can provide
50 nm spatial resolution, which is far superior to any of the other techniques previously
discussed. However, Guay et al encountered technical problems with the spectroelectrochemical
cell as they were not very robust. This was due to the fact that very small electrochemical cells
of mircron thickness were needed to allow sufficient X-ray throughput. Using electrodes of the
desired size and shape required deposition of thin layers of metal on an X-ray transparent
substrate. As a result, the gold layers were not stable over long periods and would peel away
from the substrate or crack when a potential was applied most likely due to poor adhesion to the
substrate.(44)

Besides STXM, a method based on confocal micro-X-ray fluorescence (CLLXRF) has also been
developed and allows for the spatial and temporal monitoring of diffusion layers during copper
deposition.(45, 46) Using this method Peng et al were able to observe the depletion of copper at
the electrode surface at various potentials and copper concentrations.(46) While successful, this

method can only probe concentrations above 0.1 M and its spatial resolution is only 26.4 um.
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This is much worse than many of the previous methods discussed. These studies do, however,
use a conventional X-ray source and the limit of detection and resolution could be improved

upon by using a much brighter X-ray source, such as a synchrotron.

The final X-ray technique that will be discussed is energy dispersive x-ray fluorescence
microscopy (EDX). This technique utilizes a small electron beam (<100 nm) produced by a
scanning electron microscope (SEM) for spatial resolution and to produce x-ray fluorescence.
Uematsu et al were able to follow the dissolution of silver ions in an ionic liquid (IL).(47)
Through mapping the diffusion of silver ions from the electrode, they were able to show that the
increase in the silver ion concentration caused an increase in the IL viscosity. This increase in
viscosity caused large decreases in the diffusion of silver ions near the electrode. By taking into
account the increase in viscosity, the experimental diffusion of the silver ions was measured and
found to agree well with that predicted by theory.(47) The obvious hindrance to the use of this
techniques is the fact that SEM requires vacuum and electrochemistry requires a solution. This
incompatibility makes this method useful only in very select cases, such as in ionic liquids as
they have negligible vapour pressures.

While X-ray methods are fairly recent additions to those available to map diffusion layers they
do show promise. In particular, STXM is a promising method, due to its spatial resolution. In
order to achieve this, a spectroelectrochemical cell needs to be produced that has stable
electrodes as well as the required thin cavity to allow sufficient X-ray throughput. For CuXRF a
synchrotron source is needed to improve upon the spot resolution and detection limit in order to
be applicable to a wider range of electrochemical reactions. The method based on EDX

measurement is the most restrictive and it is unlikely to find broad application.

2.7: IR

There have been no reports of diffusion layer mapping using IR partly due to the
difficulty of combining IR spectroscopy and electrochemistry, as discussed in Chapter 1.
However, if these drawbacks can be removed or mitigated, then IR spectroscopy is an ideal
candidate to probe the evolution of diffusion layers as a large number of molecules have

observable IR signals.
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Like UV-Vis and the other optical methods, it is a non-invasive technique so that the evolving
diffusion layer will not be perturbed. However, unlike UV-Vis, IR absorption signals have much
narrower bandwidths, providing better specificity. IR provides benefits over Raman techniques,
as it doesn’t rely on inherent signal enhancement to detect analytes at typical concentrations used
in electrochemical experiments. Compared to fluorescence techniques, IR doesn’t require
tagging analyte molecules with specific reporters and can, therefore, directly follow the redox
species. IR also has advantages over X-ray techniques, the most notable being the fact that it
does not require a vacuum which facilitates cell design. Surprisingly, diffraction-limited IR has

greater spatial resolution compared to CuUXRF.
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Chapter 3: Techniques and Theory
3.1: Cyclic Voltammetry

In Cyclic Voltammetry (CV) a triangular potential wave is applied using a potentiostat to
an electrode of interest. The nature of the potential wave applied depends on the two potential
limits (most negative and most positive potentials) and the potential scan rate (\V/s). The current

as a result of the potential wave is measured and plotted versus potential (Figure 3.1).

CV is typically done in a three-electrode electrochemical cell and the potential is applied
between the working and reference electrodes. The resulting current is measured between the
working and counter electrode.

a) b) T
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Current

Time Potential

Figure 3.1: (a) Potential wave and (b) the resulting voltammogram for a one electron transfer.

3.2: Hydrodynamic Linear Sweep Voltammetry

Hydrodynamic linear sweep voltammetry like CV is a voltammetric technique in that it is
a controlled potential method where the current is measured as a function of potential. Linear
sweep voltammetry differs from CV in that the potential is ramped linearly from some initial
potential (Ei) to a final potential (Ef) then the measurement is stopped, whereas with CV where
the potential cycles between the two potential limits.
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Hydrodynamic electrochemical experiments are electrochemical experiments where the electrode
or the electrolyte are motion.(1) Hydrodynamic techniques, unlike many stationary electrode
techniques, allow for a steady state to be obtained at the electrode at relatively short times. The
hydrodynamic technique employed here is hydrodynamic linear sweep voltammetry (HLSV)
using rotating disk electrode (RDE). A RDE is composed of a disk electrode that is embedded
into a cylinder of insulating material. The disk face is the electroactive surface and is then
placed in the liquid and spun at varying speeds. The spinning motion of the cylinder in the liquid
causes flow of the solution outward along the surface of the disk face. This outward flow in turn
causes inward flow towards the disk face. The fluid flow towards the electrode surface brings
material to a distance do from the electrode. Solution is stagnant beyond this distance, in what is
called the Nernst stagnation layer. At distances beyond the Nernst stagnation layer (> do), the
concentration is equal to the bulk concentration of the redox active species. This steady state
results in a limiting current at potentials sufficiently far from the formal potential of the redox

active species. The limiting current is described by the Levich equation:

i = 0.62nFAD 30 2v'/6C* (3.1)

Where n is the number of electrons transferred, F is Faradays constant, A is the area of the
electrode, D is the diffusion coefficient of the redox active molecule, w is the rotation speed in
radians per second, v is the kinematic viscosity of the solution and C" is the bulk concentration of

the electroactive molecule.

37



)

Flectrode

Figure 3.2: (a) Cross-section showing flow of fluid to the surface of a RDE, (b) plan view
showing flow of fluid at the surface of a RDE.

3.3: Chronoamperometry

Chronoamperometry is a potential step technique where the potential is stepped from a
reference potential (Erer) to @ new values (Estep). The current as a function of time during the
potential step is monitored and plotted as current versus time.

Typically, in chronoamperometry experiments the reference potential is chosen such that one
electroactive species is stable at the electrode. The potential after the step is chosen such that the
electroactive species is unstable at the electrode and undergoes oxidation or reduction depending

on the electrode potential.

A common chronoamperometric method is to step the potential from Eref to Estep and hold at Estep
for a specific amount of time then back to Ers. The current is monitored for the entire
experiment, resulting in a current response from the forward and backward reactions. This is

known as double step chronoamperometry.

38



3.4 Infrared Spectroscopy
3.4.1: Infrared Radiation

Infrared (IR) radiation is electromagnetic radiation that corresponds to the wavelengths
from ~0.70 pum to 1000 um. IR spectroscopy looks at the interaction of IR radiation with matter.
The energy range of IR radiation corresponds to the energies of vibrational and rotational
transitions in molecules. IR radiation is typically split into three regions: near-IR (~0.7 — 2.5
pm), mid-IR (2.5 — 25 um) and far-IR (25 — 1000 pum). The mid IR region results in vibrational
transitions, whereas the near and far IR regions can involve electronic transitions and rotations
respectively. These can make the spectra in the near and far IR regions hard to interpret. As
such, mid IR is used in these studies and is an ideal technique to study electrochemical processes,
as almost all molecules absorb IR radiation. The IR spectrum provides molecular information

and can be used with Beer’s law to provide quantitative information.

The interaction between mid IR radiation and molecules results in transitions between quantized
vibrational states. To explore the nature of vibrations and how molecular information can be
determined, the vibration of a diatomic molecule will be demonstrated briefly. The vibration of
a diatomic molecule can be considered as the vibration of two masses connected by a spring. In
this case the vibration can be approximated as a harmonic oscillator. In this approximation the

vibration of the two masses will obey Hooke’s law where the vibrational frequency is described

by:

w=— [ (3.2)

2mAl 1

Where K is the spring constant and p is the reduced mass. Intuitively this shows that the
frequency of molecular vibrations will be dependent on the two atoms that decide the reduced
mass and the bonding between atoms that decide the spring constant. The quantum mechanical

treatment of the harmonic oscillator results in discrete energy levels for vibration given by:

E,=(n+1/)ho (3.3)
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Where n=1,2,3..., his Plank’s constant and w is the vibrational frequency. From equation 3.2
and 3.3, it can be seen that only radiation of specific energy can be absorbed and that it can be
related back to molecular information as the energy absorbed is dependent on the bonding

between the atoms that determines w.

In the previous example, a diatomic molecule was used to describe vibrations because it has only
one possible vibration. Most of the molecules of interest consist of a number of atoms and by
increasing the number of atoms the number of possible vibrational modes also increases. The
number of vibrational modes a molecule can have is dependent on the number of atoms within
the molecule. Each atom will have three degrees of freedom, so that a molecule with N atoms
will have 3N degrees of freedom. Not all of these are vibrational degrees of freedom; three are
due to the translational motion of the atoms and another three are the rotational degrees of
freedom around the axes. The remaining degrees of freedom are the vibrational degrees of
freedom (vibrational modes), meaning that a molecule will have 3N-6 vibrational (modes)
degrees of freedom.(2) This is a little different for linear molecules, as they will have 3N-5

degree of freedom.

Although a molecule will contain a number of vibrational modes, not all of these modes will be
IR active (i.e. not all vibrations will appear in the IR spectrum of the molecule). In order for a
vibration to be IR active, the vibration must cause a change in the dipole moment of the
molecule.(2, 3) As an example, the vibrational modes of CO> will be examined. CO: is a linear
molecule that contains 3 atoms, so it will have 4 vibrational modes, which are depicted in Figure
3.3. The vibrations of CO> consist of two stretching modes and two bending modes. The
symmetric stretch depicted in Figure 3.3a does not cause a change in the dipole moment of the
CO2 molecule and as such this vibration is not present in the IR spectra of CO». The stretch
depicted in Figure 3.3b is an asymmetric stretch that does change the dipole moment of the CO>
molecule and is therefore present in the IR spectrum. The two bending vibrations of CO2 shown
in Figure 3.3c and 3.3d are IR active and are also degenerate. This means that although four
vibrational modes are present for CO2, only two can be seen by IR spectroscopy as the
degenerate signals overlap. This is typical and shows that care must be taken when interpreting

IR spectra.
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Figure 3.3: Bending modes of CO2, (a) Symmetric stretch (IR inactive), (b) Asymmetric stretch
(IR active, 2350 cm™), (c) Bending (IR active, 666 cm™), (d) Bending (IR active, 666 cm™).

3.4.2: Michelson Interferometer

Modern IR spectroscopy measurements are done using a Michelson interferometer. In a
Michelson interferometer the IR beam from the source impinges on a beam splitter and separates
the IR beam into two beams. One IR beam is sent to a fixed mirror and the other is sent to a
moveable mirror. The IR beams are reflected off these mirrors and back to the beam splitter
where the two reflected beams are combined and then sent to reflect or pass through the sample,

where the detector finally measures the resulting signal.

The movable mirror allows the optical path length (OPL) between the mirror and the beam
splitter to be varied, this change in OPL results an interference pattern between the IR radiation
reflected off the stationary and moveable mirrors.(3) This interference pattern is called an
interferogram. This interferogram is then Fourier transformed from time space to frequency

space, thus producing the IR spectrum.

3.4.3: Infrared Microscopy
IR microscopy utilizes an optical microscope as seen in Figure 3.5. An IR microscope
can be used to do both reflectance and transmission IR measurements. In reflectance

experiments the IR beam comes from the top. The objective then focuses the beam where it is
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reflected off the sample back to the objective and then the radiation is measured by the detector.
In transmission mode the IR beam comes from the bottom where the condenser focuses the
beam. The beam passes through the sample to the objective and is then measured by the
detector. In an IR microscope the area probed by the IR beam size can be selected by choosing
the appropriate aperture and condenser/objective, thus IR microscopes can provide spatial

resolution of the sample.

Movable
Mirror

Beam Splitter
IR source

Fixed
Mirror

Figure 3.4: Diagram of a Michelson Interferometer.
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Figure 3.5: Diagram of an IR microscope. The switching mirror allows for use of either
transmission or reflectance modes.
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3.4.4: Time Resolved Measurements

The time resolution of an IR interferometer is dependent on the speed at which an
interferogram can be collected. This depends on the mirror speed and the path length of the
movable mirror. Typically, in order to gather information on a dynamic process the time to
gather 1 interferogram must be 10x faster than the time of the dynamic process.(3) Time

resolved measurements will be considered in detail in Chapter 4.7.

3.5: Infrared Sources

3.5.1: Globar

Traditional IR sources in the mid IR region for IR spectroscopy are thermal emissive
materials typically made of silicon carbide and often-called Globars.(3) Globars are blackbody
radiators and the IR radiation is given off in all directions. Therefore, it must be collected and

focused into the interferometer.

3.5.2: Synchrotron Infrared Radiation Sources

Synchrotron sources produces electromagnetic radiation through the interactions of
electrons with a magnetic field. An electron beam is bent by a magnetic field, which causes the
electron beam to lose energy. Some of this lost energy is released as electromagnetic radiation
of various wavelengths. The electromagnetic radiation is given off tangential to the electron
beam path and is quite collimated. This results in an IR beam produced with a very high
brilliance. Brilliance is a measure of intensity where it is defined as the number of photons per
unit area per subtended angle. This means that although a globar has higher total photon output
than a synchrotron source, the synchrotron source has greater photon throughput at small IR
beam spots as the globar emits photons in all directions. This results in a greater signal from the

detector at small spot sizes when a synchrotron source is used compared to a globar.(4)
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Chapter 4: Materials and Methods

4.1: Reagents and Solutions

Potassium ferricyanide (KzFe(CN)s >99.99% trace metals basis), potassium ferrocyanide
trihydrate (KsFe(CN)s® 6H20 >99.99% trace metals basis) and sodium fluoride (NaF >99.98%)
were purchased from Sigma-Aldrich and used as received. 1,4-benzoquinone (98+%) was
purified by sublimation. Hydroquinone (99%) was used as received. Potassium phosphate
monobasic (KH2PO4, ACS grade) and Potassium phosphate dibasic (K2HPOa4, ACS grade) were
purchased from EMD as used a received. Deuterium oxide (D, 99%) was purchased from
Cambridge Laboratories, Inc. (Andover, MA). All aqueous solutions were prepared using Milli-

Q water(>18.2 MQcm™), except those using D20 as the solvent.

4.2: Spectroelectrochemical cell

SIR experiments were done using a custom built spectroelectrochemical cell (SEC) that
was based on a previous reflectance cell designed by Scott Rosendahl during his PhD work in the
Burgess group.(1) The new cell allowed for transmission of IR radiation through the cell.(2)

4.2.1: Spectroelectrochemical Cell Design Considerations

The main obstacle with the design of the new SEC was compatibility with the IR
microscope. In order for the SEC to be used for diffusion layer mapping studies it had to allow
for transmission of the focused IR beam through the SEC at positions adjacent to the electrode
(20 — 100 pm). Additionally, the SEC had to allow for potential control, have a thin cavity so
that there would be sufficient photon throughput (signal), allow for fluid to flow through the cell,
and fit within the working distance of the objective and condenser. The problems of potential

control, thin cavity and fluid flow in the cell were dealt with in previous SEC designs. (2, 3)

As described below, the appeal of diffusion layer mapping using SIR is the ability to focus the IR
beam to small spot sizes at known distances from the electrode edge. These distances are

typically 15-100 um. Part of the problem arises from the fact that the IR beam from the

46



condenser is conical in shape, and the angle between the IR beam and the normal to the surface
is ~24 degrees. This means that the working electrode must be oriented such that it can be
positioned within 15 — 100 pum from the focused IR beam spot, but also in a way that the
working electrode and other parts of the SEC do not obstruct the IR beam as it diverges from the
focal point. The first cell design depicted in Figure 4.1a consisted of a square calcium fluoride
(CaF2) window embedded in polyvinyl chloride (PVC) puck with the working electrode along
one edge of the window. This initial SEC design did not allow for the IR beam to be positioned
adjacent to the working electrode as a large portion of the IR beam would be obstructed by the

working electrode along the edge of the CaF, window as seen in Figure 4.1a.

The second cell design (Figure 4.2b) eliminated the problem of positioning the IR beam adjacent
to the working electrode by placing a thin platinum (Pt) foil (12 pm thickness) over half the CaF>
window. This allows for the IR beam to be positioned within the diffusion layer without
obstructing the IR beam. While this design has allowed for the positioning of the IR beam in the
desired location it results in a more complicated diffusion space that was very difficult to model.
Having the Pt foil protruding into solution also causes edge effects that cannot be easily
accounted for in numeric simulations (see below). An embedded band electrode such as the one
shown (Figure 4.1a) in the first design is desired as diffusion at an embedded band electrode is

analytically well described.(4, 5)

To produce a SEC cell that employed an embedded band electrode while allowing the IR beam
to be positioned adjacent to the IR beam, a CaF, window with one edge beveled at a 45° angle

was utilized. The working electrode was placed on the beveled edge as seen in Figure 4.1c.
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Figure 4.1: Cross sections through the spectroelectrochemical cells, 1: working electrode, 2:
CaF2 window, 3: counter electrode, 4: reference electrode, 5: IR beam. (a) First design with the
working electrode along the edge of a square CaF> window. (b) Second design with the Pt foil
overlaid on the CaF> window serving as the working electrode, (c) Third design with the working

electrode on the beveled edge of the CaF2 window.

The first two SEC designs are also limited in that they are only compatible with the 15x

objective and condenser. This limitation arises because the electrical and fluid connections
extend out perpendicular from the back face of the PVC puck. This makes the cell too large to

fit within the working distance of the larger magnification objectives and condensers. While the
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15x objective and condenser are sufficient for diffusion layer mapping, higher magnification
objectives and condensers will increase photon throughput through the same size spot. The
current SEC design (Figure 4.1c and Figure 4.2) provides compatibility with the 36x objective
and condenser by having the fluid and electrical connections extend out from the side of the PVC

puck instead of from the bottom face.

4.2.2: SEC Assembly

As discussed above, the SECs used for diffusion layer mapping consisted of a PVC puck
with an inlaid 10 mm x 10 mm x 2mm CaF> window (Crystran, UK) bevelled at 45 °© along one
edge. The working electrode was a ~150 pm x ~700 um x ~10 mm gold foil. A 0.25 mm
diameter silver wire (99.9985%, Alfa Aesar) served as a pseudo-reference electrode and a 1 mm
diameter gold wire (99.9985%, Alfa Aesar) acted as the counter electrode. The gold foil working
electrode was secured to the beveled edge of the CaF> window with a minimal amount of
cyanomethacrylate glue (Elmer’s Products, USA). The bottom of the bevelled edge and the
middle of the gold foil were roughened with 1200P grit sand paper to ensure good adhesion
between the CaF, and gold. The gold foil modified CaF, window was secured in the PVC puck
with a fiberglass resin (3M, USA) along with the silver pseudoreference and gold counter
electrode (Figure 4.2). The working face of the cell was then polished to a mirror finish using
successively finer diamond polish, the finest being 1 um (Pace Technologies, USA). The
working, counter and reference electrodes were connected to individual D-subminiature female
connector pins. These connectors were secured to the back side of the cell with

cyanomethacrylate glue.

The fluid inlet/outlet tubes were secured into holes pre-drilled in the PVC puck with
cyanomethacrylate glue. Quarter inch tube adapters (McMaster-Carr, USA) were affixed to the
opposite ends to allow facile connection to the fluid tubing. This cell design allowed the IR beam
to be positioned to within ~20 um of the working electrode edge. It is also compatible with both
the 15x and 36x objectives on the IR microscope (Bruker, Hyperion 3000) at the 01B1 beamline
at the Canadian Light Source.
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A thin cavity cell was produced by sandwiching a 25 um PTFE (Goodfellow, USA) gasket
(inner diameter of 19 mm) between the cell and a second, larger (25 mm diameter x 1 mm thick)
CaF, window. The nominal cell volume was thus 7.1 pL. The exact window to window
thickness was determined from the interference fringes produced in the empty cell caused by
reflection from the CaF, windows. The following equation relates the wavenumber position of

the interference fringes to the cavity thickness:

b= r/ (2@) 4.1)

Where b is the cavity thickness, n is the number of fringes and A v is wavenumber difference

between the maxima of n fringes.

Figure 4.2: (a) Active face of the spectroelectrochemical cell used in experiments;(1) Working
electrode, (2) CaF. window, (3) Counter electrode, (4) Reference electrode, (5) inlet/outlet
holes, (6) Tube connectors. (b) Back face of spectroelectrochemical cell; (1) Working electrode
connector, (2) CaF. window, (3) Counter electrode connector, (4) Reference electrode
connector.

4.3: Determination of Diffusion Coefficients by Hydrodynamic Linear Sweep
Voltammetry

Hydrodynamic linear sweep voltammetry was done using a rotating disc electrode
(RDE), which consisted of a 3 mm diameter platinum disc electrode embedded in a polyether
ether ketone (PEEK) support. An Autolab PGSTAT302N with RDE controller was used to
control the working electrode voltage and the RDE rotation speed, as well as monitor the current-
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potential responses. The RDE was placed in a glass electrochemical cell which allowed the
solution to be purged with argon. An overpressure of argon was maintained over the electrolyte
during the experiment to minimize interference from the reduction of oxygen. A gold counter
electrode was placed in the same cell as the Pt RDE and an Ag/AgCl reference electrode in
saturated KCI solution was connected through a salt bridge in order to prevent chloride

contamination.

The RDE was first mechanically polished with 3 um diamond abrasive for 5 minutes. The RDE
was then electropolished in a 0.1 M sulfuric acid solution by cycling the potential from the oxide
formation to the start of hydrogen evolution for 30 minutes. A cyclic voltammogram of the Pt
electrode under quiescent (no rotation) conditions was recorded and the under potential

deposition (UPD) of hydrogen was used to determine its electrochemical surface area (ECSA).

Hydrogen UPD is the adsorption of hydrogen atoms on the surface of Pt at potentials that are
positive of the thermodynamic hydrogen evolution potential. The adsorption of hydrogen atoms
results in the passage of charge as the H* ion in solution is reduced to the adsorbed neutral
hydrogen atom species. The charge passed within the UPD region is directly related to the
amount of hydrogen adsorbed on the surface. The electrode area is determined by integrating the
hydrogen UPD region in the CV to determine the total electronic charge passed. The surface area
can then be determined using the well-established charge density value for hydrogen UPD of 210

HC cm.(6) The RDE was rinsed with copious amounts of deionized water before further use.

Rotating disk electrode experiments were then performed for different supporting electrolytes
and the various redox species. In all instances, a CV of the RDE in the absence of the redox
probe was run to ensure the RDE was clean. Hydrodynamic linear sweep voltammograms
(HLSVs) were collected where the potential was swept at a rate of 10 mV/s and the
measurements were repeated for at least five different rotation speeds. A typical LSV of the

ferri/ferrocyanide redox couple is shown in Figure 4.3.
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Figure 4.3: Hydrodynamic Linear Sweep Voltammogram of 10 mM ferricyanide and
ferrocyanide in aqueous 0.1 M NaF electrolyte at a rotation speed of 3000 RPM.

The limiting current for the reduction (or oxidation) process was readily determined when the
current became independent of the applied overpotential. Levich plots were produced by plotting
the limiting current, I, as a See Figure 4.4. The Levich equation reveals that the slope of this

plot should be proportional to the diffusion coefficient, D, of the redox species.

i = 0.62nFAD 30 2v'/6C* (4.2)
Additional terms in the Levich equation are the Faraday constant, F, the electrode area, A, the

number of electrons transferred in the overall redox reaction, n, the kinematic viscosity of the

solution, v, and the concentration of the redox probe, C.
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Figure 4.4: Levich plot of the oxidation of 1 mM ferricyanide in 0.1 M NaF electrolyte.

Diffusion coefficients were determined from hydrodynamic voltammetry for all redox species
studied in this thesis using essentially the same methodology as described above. It should be
noted that in the case of the benzoquinone and hydroguinone the measurements were made in
both H20 and D20 based electrolyte solutions as SIR measurements for this redox couple were

made in heavy water.

4.4: Molar Extinction Coefficients of Hydroquinone and Benzoquinone

As discussed below the evaluation of the diffusion coefficients using IR measurements
requires the pre-determination of the molar extinction coefficients of the diffusing (redox)
species. IR transmission measurements were taken using a Bruker Vertex 70 spectrometer with a
mercury cadmium telluride (MCT) detector. Values were already known for ferricyanide and
ferrocyanide,(7) so measurements were only required for the hydroquinone (HQ)/benzoquinone
(BQ) redox couple.

The determination of the molar extinction coefficients of BQ/HQ were done using D>O with no
electrolyte present as none of the electrolyte species absorb in the same spectral region as the
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signals for benzoquinone or hydroquinone. This also avoids other complications due to the
electrolyte that will be discussed below. For BQ an initial 15.13 mM solution was made and a
serial dilution was used to make solutions with the following concentrations: 10.1 mM, 5.03 mM
and 2.52 mM. For HQ, a series of solutions were also made by serial dilution. The solution
concentrations of HQ used for the determination of the molar extinction coefficient were; 15.3
mM, 10.2 mM, 5.1 mM and 2.54 mM. These solutions were kept covered and refrigerated until
use to minimize photo-oxidation. No discolouration in any of the solutions was noticed during

the experiment.

The cell was assembled using a 25 pum thick Teflon gasket and positioned on the sample stage
such that the IR beam passed through the cell unobstructed. The cavity thickness was measured
at this position. A reference spectrum of D20 (in the absence of any redox molecules) was made
using different spectrometer resolutions (4, 8, and 16 cm™). Following this, the solution within
the cell was replaced with the lowest concentration solution by pumping through 4 mL of the
solution. Three spectra at each resolution were then taken. This process was repeated for each
concentration starting with the lowest concentration for both BQ and HQ.

As seen in Figure 4.5, the molar extinction coefficient were then determined by plotting the
absorbance as a function of concentration and assuming the applicability of Beer’s law. The
measured molar extinction values for the BQ/HQ species used in this thesis are summarized in
Table 4.1.
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Figure 4.5: Absorbance versus concentration plot to determine molar absorptivity of

benzoquinone at a spectral resolution of 8 cm™.

Spectral Resolution (cm™)

Molar Extinction Coefficients (M*cm™)

Benzoquinone

Hydroquinone

4 1116 1054
8 893 734
16 650 461

Table 4.1: Molar extinction coefficients of Benzoquinone and Hydroquinone at various spectral

resolutions.

4.5: Pumping Protocol Optimization

In SIR studies the IR data of the triggered electrochemical reaction is the average of the

individual time resolved experiments which are repeated many times until a sufficient signal-to-

noise ratio for the IR data is achieved. This requires the electrochemical reaction that is being

studied be highly repeatable. To ensure that the IR signal is consistent throughout a SIR

diffusion layer mapping study, the initial conditions within the SEC at the start of each time

resolved experiment must be identical to ensure the same response. Changes in the initial

conditions between individual time resolved experiments would cause a change in the IR

response, resulting in a degraded IR signal.
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In principle, if the reaction is completely chemically reversible, the initial conditions found in the
cell can be re-established by returning the working electrode potential to its base value after a
perturbing potential step. This is equivalent to a double-step chronoamperometry experiment.
The main concern with obtaining a repeatable electrochemical reaction when doing double-step
chronoamperometry is that some of the redox active product diffuses far enough away from the
working electrode during the initial potential step that when the potential is returned, not all the
product is converted back into reactant.(4) Although this “lost charge” is small on an individual
basis, if the double-step is repeated numerous times as in the case of the diffusion layer mapping
done here there can be a significant change in the composition of the solution. This requires that
the solution within the SEC be refreshed after each time resolved experiment to ensure the
solution composition is identical at the start of every double-step chronoamperometry

experiment.

In order to refresh the solution in the SEC between experiments a pumping system was
implemented. The pumping system consisted of a syringe pump (New Era Pump Systems Inc.)
used to inject fresh solution into the SEC along with two solenoid valves (Biochem Valves) that
close during an experiment to create a closed fluid line, but could be opened to allow solution to
flow between time resolved experiments. The system ends with the collection of the used

solution (Figure 4.6).

A syringe pump system that could be completely automated was required because refreshing the
solution required precise timing such that the fluid in the SEC could be replaced while ensuring
that there would be no fluid flow within the SEC during a time resolved experiment. This
automation also allows for potential and pumping control via a single LabVIEW program during
SIR studies and allows the pumping to be optimized such that the time required to reset the cell

is minimized.

Valve Valve

Pump SEC Waste

Figure 4.6: Diagram of pumping setup used to fresh the fluid in the SEC.
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Custom software written in LabVIEW with a National Instruments 6251 X-series multifunction
data acquisition card was used. The software allowed for pump control, valve control, control of
quiescence times, as well as control of the solenoid valves in the inlet and outlet fluid lines. In
order to determine the optimized conditions for the pumping procedure, a solution of 1 mM
ferricyanide in 0.25 M NaF was used as a probe. Ideally, the pump procedure should ensure that
the electrolyte within the cell volume is devoid of any turbulent or convective flow, as these
mass-transport effects will greatly perturb the expected diffusion-controlled response of the
system. In evaluating the pumping protocol, the cell volume was replenished using a given set of
conditions (pumping time, pumping rate, timing of valve closing and resting times) and then the
electrode potential was stepped to a value where the redox probe gets oxidized. The current-time
response was digitally recorded under a limiting set of conditions (extremely long wait times and
slow pump rate) to set a bench mark. The specific conditions for the benchmark was the injection
of 180 pL of electrolyte at a pump rate of 250 pL/min. The electrolyte was allowed to settle for
two minutes after pumping with both the inlet and outlet solenoid valves in the open positions.
The valves were sequentially closed with a 30s wait time after each valve closing to allow
pressure dissipation within the fluid tubing. Another wait time of two minutes was added to
achieve total quiescence within the SEC. The wait times of the various stages in the pumping
protocol were then decreased until the transients showed clear deviation from the benchmark.
Stability testing was also performed by repeating the chronoamperometry under a given fluid
injection protocol for several hours. See Figure 4.7 for an example of the resulting current

transients as the wait time is changed.

In order to produce the bench mark described above, a pump rate that would produce a stable
system over long times was needed. To reduce the time for pumping, a higher pump rate was
used (500 pL/min). This large rate of pumping resulted in high pressures within the SEC. High
pressure resulted in solution being forced between the surface of the SEC and the gasket. To
avoid this the pump rate was limited to 250 pL/min. While this results in twice the time needed
to pump, it provided a stable system where solution could be pumped through the SEC

continuously without any solution leaking.
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The initial step to optimize the pumping procedure was to adjust the total time that the pump is
on (referred to as pump time henceforth). A more intuitive way to think about pump time is to
combine it with the pump rate and express it in terms of pumped volume. It should be noted that
although the nominal volume with a gasket of 25 um would be 7.1 pL, the measurement of the
cavity by interference fringes resulted in a cavity thickness of 30-40 um. A cavity thickness of
40 pm results in a volume of 12 pL and was used as the SEC cell volume for the optimization of
the pumping protocol. Ata minimum, the volume of the SEC needs to be pumped through the
SEC to allow the solution to be replaced with no changes in the electrochemical response. A
volume that is roughly five times larger than the SEC volume was chosen to ensure that the
solution was truly refreshed during the longer SIR studies, which resulted in a pump time of 15
seconds at a rate of 250 uLmin*. This volume was chosen due to the fact that the placement of
the inlet and outlet holes in the SEC results in the majority of the fluid flow in the SEC to be
directly from the inlet to the outlet, so a large excess of fluid was required to refresh the solution
throughout the SEC.

The pumping of solution caused the buildup of pressure in the fluid tubing. This buildup of
pressure within the tubing means that even after the pump has stopped there will be a pressure
gradient across the SEC, so fluid will continue to flow for a time after the pump is stopped. This
flow required that the solenoid valves not be closed until the pressure on either side had
equalized. To ensure pressure dissipation, a 20 second wait time was required. This increases the
time required for solution to be refreshed and the overall duration of the SIR diffusion layer

mapping study.

The closing of the valves to create a closed system during the SIR experiments causes a small
amount of fluid displacement as the valve pinches the tubing. The closing of the valves also
causes vibrations. To decrease the fluid movement caused by the closing of the valves, they were
closed in sequence with enough delay time to ensure the majority of the flow had subsided.
Empirically, it was found that it was critical that the valve between the pump and SEC was
closed first. Within three seconds the flow of solution was no longer visible. The

electrochemical response was found to be stable when this wait time was set to five seconds.

An additional problem is fluid turbulence within the SEC after the second solenoid valve closes.

To ensure that the electrochemistry is mass transport limited, time must be allowed for the

58



solution to become quiescent. This results in a wait time needed between the closing of the last
valve and the start of the SIR experiment to make sure the solution within the cell is stagnant.
This time was difficult to determine accurately as non-quiescent conditions resulted in subtle
changes in the electrochemical response. The wait time for quiescence was lowered until a 10s
quiescence time was reached (Figure 4.7b). Above 10 seconds it was difficult to discern whether
or not there was a difference in the transients. To ensure that they system was stable throughout

a SIR diffusion layer mapping study the wait time was set to 15s.
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Figure 4.7: Every fifth current transient to 25 of 0.1M NaF electrolyte for (a) benchmark wait
times and (b) 10 second wait for quiescence.

The pumping procedure adds an additional 55 seconds to each SIR time resolved experiment and
is in fact the majority of time consumption in an SIR diffusion layer mapping study as the
collection of IR data only takes ~10 seconds to complete. This demonstrates that SIR diffusion
layer mapping studies are limited by the pumping procedure. Any effort that can minimize this

time would be hugely beneficial for future experiments.

4.6: SIR beam profile investigation
The SIR beam profile at the 01B1 mid-IR beamline at the Canadian Light Source was

investigated using the Bruker 70v spectrometer coupled to a Hyperion 3000 IR microscope using
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the 64x64 pixel focal plane array detector with a pixel resolution of 2.7 um to determine the best
configuration of the IR beam for diffusion layer mapping. The data acquired by the focal plane
array consists of an IR spectrum at each pixel, where the image of the IR beam at a particular
frequency was produced by extracting the IR signal at the desired frequency from every pixel
using custom built software in Matlab (MathWorks, USA). The imaging of the beam at the
desired frequency revealed that the IR beam was composed of two elliptical beam cross-sections
with a roughly Gaussian profile.(8) The shape of the beam could be manipulated by slightly
defocusing to create an area that was more homogeneously illuminated than the focused beam as

seen in Figure 4.8 below.
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Figure 4.8: Image of the IR beam at a wavenumber of 2040 cm™ with (a) the beam focused and
(b) slightly defocused.

4.6.1: Beam Profile and Apertures

The shape of the IR beam (two ellipsoids or a defocused, but more uniform intensity) has
implications on the choice of the apertures, as the SEC employed in the SIR studies uses an
inlaid band electrode as the working electrode as depicted in Figure 4.2a. In the restricted
geometry of the cell, the band electrode results in a quasi-linear diffusion layer perpendicular to
the length of the band electrode. Within the time frame of a typical experiment the diffusion
layer will extend out ~250 um from the electrode’s edge, but it is expected that only the area that

is 100 um away will produce an appreciable IR signal. This defines the area that can be used for
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SIR studies. Within the area available, the closest approach of the IR beam is on the order of 20

pum in the current cell design. This limits the available area to 20 to 100 um in SIR studies.

The diffusion layer produced in the thin cavity propagates away from the electrode edge over the
CaF>window (Figure 4.9, 4.11 and 4.13). The following Cartesian coordinates will be defined to
assist the subsequent discussion: the direction between the CaF, windows will be the z-direction,
the length of the electrode is the y-direction, and the x-direction extends away from the electrode
edge. As the electrochemical reaction is occurring uniformly along the y-direction, any x-z plane
should have the same concentration profile. As such, any change in the IR beam intensity
parallel to the edge of the electrode will not affect the resulting IR signal, as the same
concentration profile will be interrogated. However, any change in the IR beam intensity
perpendicular to the electrode edge (x-direction) will cause bias of the IR signal, with the high
intensity portions of the IR beam dominating the overall IR signal produced. The use of blade
apertures allows for the beam footprint in the y and x directions to be adjusted to the desired size.
This is advantageous over circular apertures as the blade apertures can be set so that the
illumination size perpendicular to the electrode is minimized and the illumination area parallel to
the electrode edge expanded to encompass the whole beam. The smallest dimension possible
with the blade apertures is 10 um, as smaller sizes causes a stark decrease in signal due to
diffraction of the IR beam. It should also be noted that the distance between each set of blade
apertures cannot be adjusted with the same accuracy. One can be set to an accuracy of + 0.5 um

whereas the other set of blade apertures can only be set to an accuracy of £ 7 um

Figures 4.9 and 4.10 display the advantages of using the blade apertures over the circular
apertures. The smallest circular apertures with the 15x objective produces a 20 um diameter IR
illumination spot (Figure 4.10), which would incorporate most of the IR beam whether
defocused or focused, resulting in the need for deconvolution of the IR signal based on the two-
dimensional intensity of IR illumination within the aperture area. While it is conceivable, it
would be impractical, especially when the blade apertures can be used to select the most

homogeneous spot of the IR beam as seen in Figure 4.10.
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Figure 4.9: Three dimensional contour plot of concentration profile within the SEC, with the
blade aperture (white) and circular aperture (black) overlaid and the electrode displayed in
yellow. The blade aperture in the y direction is omitted for clarity.

Figure 4.9 shows that by using the blade apertures, a much narrower range of concentrations
within the diffusion layer are probed as compared to the 20 um diameter circular aperture. The
ability to probe a narrow range of concentrations further decreases the effects of the non-
homogenous IR beam intensity. The blade apertures also allow for more sections of the
diffusion layer at distances closer to the electrode to be probed. This is advantageous because
the change in concentration of the redox is greater closer to the electrode and produces a stronger
IR signal. This in turn decreases the number of repeats of the time resolved experiments to

produce adequate signal-to-noise.

4.7: Time-resolved FT-IR measurements
All FT-IR rapid scan measurements were taken at the 01B1 mid-IR beamline at the

Canadian Light Source. The resulting rectangular aperture could easily be moved to increasing
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distances from the electrode edge. To mitigate the effects of the IR beam heterogeneity as
described above, the beam was defocused and the opening of the blade apertures was centered on
an area of the IR beam that showed relatively high homogeneity as seen in Figure 4.10. It was
assumed that the resulting diffusion profiles would be homogeneous along the electrode’s edge
and therefore any effects on the measured IR response caused by the inhomogeneities in the IR

beam would be minimized.

Figure 4.11 shows the simulated concentration distribution in both the horizontal and vertical
directions at short time and short distances from the raised electrode (see below for modelling
details). At short times and distances the concertation gradient is large enough that the IR beam
will interrogate numerous concentrations within the 10 um distance (x-direction) selected by the
blade apertures. Linear diffusion also has not been established at short time, which results in the
IR beam interrogating variable concentrations as it passes through the solution (z-direction), as
seen in Figure 4.11b. The resulting IR spectra at short distances and times will report on a
distribution of concentrations in both the x and z directions where quantitatively accurate
agreement between experimental and simulated results would require rigorous mathematical
treatment. However, the error should be significantly less problematic at larger distances due to

the increasing linearity of the diffusion front and should result in quantitative agreement.
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Figure 4.10: Defocused beam with the blade aperture (black) and circular aperture (white)
centered on the most homogeneous section of IR beam. The dark grey region is the edge of the
working electrode.
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Figure 4.11: Simulated diffusion layer profile at (a) 0.1 second, (b) 1 second and (c) 10 seconds
with the IR beam overlaid (white).

For the time resolved IR measurements the mirror speed was 80 Hz and the resolution was set to
either 4 cm™ or 8 cm™ depending on the experiment. At 4 cm™ a single interferogram can be
collected every ~250 milliseconds and at 8 cm™ every ~170 milliseconds. This allowed for
sufficient time resolution to observe the growth of the diffusion layer during the ten second

potential step.

65



Before the start of each SIR diffusion layer mapping study, a cyclic voltammogram was recorded
to ensure proper electrochemical behaviour was operative and to determine the reference and
step potentials. Step potentials were chosen such that they were sufficiently far from the formal
potential of the redox couple to ensure that the electrochemical reaction was diffusion limited.
However, too large an overpotential is problematic as secondary redox processes associated with

electrolysis of the water or the oxidation of gold need to be avoided.

The setup described in the pumping procedure (Chapter 4.4) was used for double-step
chronoamperometry experiments, where the potential was stepped from a reference potential to a
sample potential followed, by a potential step back to the reference value with the solution in the
SEC being replaced in between experiments. This was performed simultaneously with the time
resolved IR measurements. The precise synchronization of the potential step and the start of the
individual time resolved IR spectra acquisition was done using custom software written in
LabVIEW.

Each rapid scan experiment consisted of 10 inteferograms collected at the reference potential,
which were averaged and used as the reference spectrum. This was followed by the collection of
either 40 or 60 individual interferograms using the spectrometer’s rapid-scan functionality. This
resulted in the collection of spectra over approximately 10 seconds with the exact time resolution
defined by the chosen spectral resolution. To ensure that the system was properly “reset” after a
double potential step, fresh electrolyte was pumped into the cell and allowed to settle. The
double-step and pumping process was repeated up to 256 times at each beam position in order to
improve the signal-to-noise ratio. This entire procedure was repeated at various positions away
from the electrode. The smallest electrode to beam position was determined by how close the IR
beam could be placed to the electrode edge without being “clipped” by various components of
the cell. The first position measured was the position closest to the electrode edge and the
remaining positions measured were increasingly further away so that concentration versus time
curves at the various distances could be measured. The term “SIR study” will be used from here
on to signify diffusion layer mapping by time resolved IR measurements at positions from the

electrode edge.
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4.8: Numerical Simulations

To extract the diffusion coefficients, a comparison of the experimental concentration
profiles in time and space with those predicted by theory is required. In principle, Fick’s second
law can be shown to provide an analytical solution for C(x,y,z,t) with the diffusion coefficients
being the adjustable parameters. However, there are no analytical solutions for the thin-cavity
geometry and numerical simulations are required. Therefore, it was necessary to model the
diffusion so that comparisons to the experimental results could be made. The numerical
simulations were performed using commercial software (Flex PDE). This software uses finite
elements to model space and finite differences to model time. A two dimensional Cartesian
geometry was setup with the spatial geometries being the height (Z) and length (X) of the
diffusion space (Figure 4.12). Dimensionless variables were used in the numerical simulations.
Concentrations are normalized by the bulk concentration of the initial redox species present in
the electrolyte and all spatial and temporal parameters are normalized by the cell thickness, h.

The dimensionless quantities are summarized in Table 4.2.

Variable Dimensionless Variables
Reactant Concentration C _ Creactant,t /
reactant Creactant,initial
Product Concentration C _ Cproduct,t /
product Creactant,initial
Time T = tDreactant/hz
Height z=2/,
Length of the Diffusion Space X=%/
Width of the Electrode w=w/
Diffusion Coefficient of Product D= Dproduct/
reactant

Table 4.2: Reduced coordinates used in numerical simulations.
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The symmetry of the SEC required that only half of the diffusion space be modelled. The
modelled space in the x direction started from the middle (width) of the electrode and extended
to a semi-infinite distance. The full cavity thickness, i.e. 0<Z<I, is modelled. The resulting
simulation space is a plane in the cell starting at the middle of the electrode and extending out
across the calcium fluoride window and from the face of the cell to the top calcium fluoride

window, see Figure 4.12.
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Figure 4.12: Reduced Cartesian coordinates and variables used in the numerical simulations. W
is half the width of the electrode in reduced coordinates and B is the height of the electrode in
reduced coordinates. (B is zero for the embedded electrode cell design). h is the height of the

cell. C, D, E and F are the boundaries where the flux of material is zero

The boundary conditions imposed on the system are summarized in the table below.
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Description (Boundary) Condition

Electrode (A and B) t =0, Creqctant = 1
t > 0,Creactant =0
N VCeactant = —N* D " VCproquct
Body of diffusion space (G) t =0, Creactant = 1, Cproquct = 0
Bottom CaF> window (C) N VCreactant = N * VCproguct = 0
Top CaF> window (E) N VCreactant = 1 VCproguct = 0
Vertical edge above electrode (F) N VCreactant =N VCproquct = 0
Vertical edge at far end of diffusion space (D) Creactant = 1, Cproquct = 0

Table 4.3: Boundary conditions used in numerical simulations, Letters correspond to the
boundary in Figure 4.10.
The signal registered by the IR beam was simulated by selecting a rectangular region at the same
distance from the electrode as the experimental data and with the same width as the aperture
setting. The normalized concentration in this area is monitored versus time and compared to the
experimental data. The diffusion coefficient in the simulated data is adjusted until good

agreement is obtained between experimental and simulated data diffusion profiles.
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Figure 4.13: Simulation of the diffusion space where the black rectangle is the area interrogated
by the IR beam.

4.9: FT-IR Rapid-scan Data Analysis
4.9.1: Ferri/Ferrocyanide

The rapid scan FT-IR spectra collected by the spectrometer’s proprietary software
(OPUS) are collected as interferograms and digitally Fourier Transformed to provide single-
channel spectra. A custom-built routine written in MATLAB was used for further data
processing. The routine converted the single channel spectra into absorbance spectra according

to equation 4.3.
Abs = —Logqg ((Si/Sref> 4.3)

Where S; are the individual spectra at each time and Sef is the reference spectrum collected at the

beginning of each time resolved experiment.

These absorbance values were then converted to normalized concentration values via the

following equations:
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Abs(reactant,t) Creactant,t

=1- (4.4)
Abs(reactant,max.) Creactant,max
Abs(product,t) _ Eproduct Cproduct,t (4 5)
Abs (reactant,max.) €Ereactant Creactant,max

Where Abs is absorption, ¢ is the molar absorptivity and C is concentration. AbSreqctantmax.) IS
the maximum absorbance of the reactant species, determined by filling the cell with electrolyte
then with the initial reactant solution without applying a potential. The maximum absorbance
used in equations 4.4 and 4.5 is calculated using the just electrolyte solution as the reference and
the initial reactant solution as the experimental spectra using equation 4.3. To produce the final
normalized concentration versus time graphs, the absorbance’s at the wavelengths of interest
(2115 cm? [ferricyanide], 2040 cm™*[ferrocyanide], 1512 cm™*[hydroquinone] and 1656 cm"

benzoquinone]) were used.

The absorbance’s at the desired wavenumber were then plotted against time, where the time for
each point, tspectra, i Was taken as the mid-point between the start time and end time of the
acquisition of each spectra.

4.9.2: Hydroquinone/Benzoquinone

The data analysis for the oxidation of hydroquinone (HQ) to benzoquinone (BQ) uses the

same Matlab routine to produce the absorbance spectra.

Every fourth absorbance spectrum was then taken and individually baseline corrected using the
peak analyzer function in Origin (OriginLab, USA). A series of straight line fits to each spectra
are used as the baseline. From the baseline corrected spectra the maximum absorbance is
determined. This absorbance is converted to a normalized concentration and plotted against time

by the previously described method.

The error for the experimental data is determined by calculating the standard deviation from a

region in the spectra where no signal is present in an individual time resolved spectra at each
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distance. The error in absorbance used for all data points at that distance is three standard

deviations of the noise value.

4.10 Fitting of Simulation Data

The comparison of the simulated data to the normalized IR data was done using Origin.
The reduced simulation data was exported to Origin. The reduced simulation data contains
normalized concentrations, but time (t) needs to be extracted from the reduced time (T) in order
to be compared to the normalized IR data. Real time was extracted from the reduced time via the
following equation:

=T/, (4.2)

reactant

The diffusion coefficient of the reactant is varied to adjust the simulation data and plotted versus
the experimental IR data. The diffusion coefficient is adjusted until the simulated data and the
experimental data showed good visual agreement for the farthest distance from the electrode
investigated.

In principle a fitting regression analysis could be implemented, but this would require significant

method development.
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5: Diffusion Layer Mapping Part 1: Reduction of Ferricyanide

5.1: Introduction

Following the evolution of electrochemical diffusion layers can give insight into the
nature of coupled electrochemical reactions. For example, in many electrochemical reactions,
including those related to important electrocatalytic reactions such as methanol oxidation,
intermediates produced in a heterogeneous charge transfer process diffuse from the electrode
surface and undergo a homogeneous chemical reaction in the electrolyte volume adjacent to the
electrode. Such processes are known as EC reactions to designate that an Electrochemical
process precedes a Chemical one. Although it is possible to infer details of the chemical process
by measuring its perturbation of the electrochemical reaction, mechanistic insight, the kinetics of
the process and even identification of the reaction intermediates requires the collection of

analytical information of concentrations in the diffusion layer surrounding the electrode.

There have been many methods developed to probe the growth of electrochemically generated
diffusion layers.(1-6) As described previously these methods require the use of sensitive and
selective analytical techniques. Many of these techniques are limiting due to the fact that they
require the analytes to exhibit fluorescence(4), resonant Raman effects(3) or require the reaction
intermediates and products be redox active.(7) IR spectroscopy is an attractive technique for
diffusion layer mapping as it should be much more universal as compared to the previous
methods used. When coupled with synchrotron radiation, IR microscopy also provides a high

degree of spatial resolution.

This chapter will discuss the use of synchrotron infrared radiation (SIR) to investigate the growth
of an electrochemically generated diffusion layer within a thin cavity transmission
spectroelectrochemical cell (SEC). The thin cavity within the SEC is needed in order to
minimize the attenuation of the IR radiation by the solvent. The thin cavity is also responsible

for producing a nearly linear diffusion front that extends away from the electrode.

The ferri/ferrocyanide redox couple was the system used to evaluate and develop diffusion layer
mapping by SIR. This system is very simple and involves only the reversible one electron
transfer redox reaction without a coupled chemical step. It was imperative to study such a simple

system to first establish that the SIR-based diffusion layer mapping provides the same diffusion
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coefficients for ferricyanide and ferrocyanide that are considered to be well-established in the
electrochemistry literature. The ferri/ferrocyanide redox couple was chosen because it had been
previous used by the Burgess group to evaluate the use of SIR to probe redox reactions at
ultramicroelectrodes with high time resolution.(8) The ferri/ferrocyanide is also a well-studied
system that has frequently been used in IR spectroelectrochemical studies(9-11) owing to the fact
that the CN stretches lie outside any interferences from the IR-active modes of water and there is
a shift of ~ 75 cm™ in the CN vibration between ferricyanide and ferrocyanide. This spectral
shift allows both species to be followed independently by IR.

5.2: Results and Discussion

In order to develop diffusion layer mapping by SIR it was prudent to first characterize the
electrochemistry of the ferri/ferrocyanide redox couple in the SEC cell. As discussed above, SIR-
based mapping of the diffusion layer requires the co-addition of many individual IR scans during
applied potential steps that significantly alter the concentrations of the redox species. As
detailed in Chapter 4.4, it is imperative that the system is restored to its initial conditions after
each individual measurement to ensure that co-addition of multiple measurements provides
improved signal to noise (S/N) ratios. Cyclic voltammetry (CV) and double-step
chronoamerometry (D-SC) were done to qualitatively characterize the electrochemistry within
the SEC. The CVs of 10 mM ferricyanide within the second version of the SEC cell (Figure
4.1b) were distorted showing that the process was less reversible as indicated by the shift in the
peaks to potentials further from the formal potential as seen in Figure 5.1. There also appears to
be small waves closer to the formal potential. The current transients produced from D-SC
experiments also show abnormal behaviour with a shoulder present in the current transients
indicating a secondary process is occurring after about 1 second (Figure 5.2). The nature of this
process is unknown, but it is thought that the resistive thin-cavity and large working electrode
give rise to this anomalous behaviour. The large electrode and high solution resistance also leads
to somewhat large times required to charge the electrode surface (time constant) that could result
in a perturbation of the formation and evolution of the diffusion layer. It is also conceivable that
the large electrode could give rise to convection at the electrode surface via a density gradient

due to the large change in concentration of species at the electrode surface.(12-14) Although this
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behaviour is anomalous it is consistently seen within the SEC cell with little variation. Due to
the unknown origin of this electrochemical behaviour its’ effect on the resulting diffusion layer
could not be predicted. From the electrochemical description and simulations, it was thought
that if there was any effect that it would be most pronounced when the beam was focused to

spots close to the working electrode edge and at short times.
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Figure 5.1: Cyclic voltammogram of 10 mM ferricyanide in 0.1 M NaF electrolyte using the
second generation SEC (Figure 4.1b).
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Figure 5.2: Current transients from double-step chronoamperometry experiments, 0.1M NaF, 10
mM ferricyanide within the SEC, with (a) the perturbing potential step followed by (b) the step
back to the base potential.
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Figure 5.3: Spectrum showing the change in absorbance for the reduction of 10 mM ferricyanide
(2115 cm™) to ferrocyanide (2040 cm™) in 0.1 M NaF using the SEC cell.

Before SIR studies were performed, the change in IR signal for ferricyanide and ferrocyanide in
the SEC were measured. Figure 5.3 shows the change in absorbance for a 10 mM ferricyanide
solution after a potential step of from +600 mV to -400 mV. Large changes in the absorbance
are observed at 2040 cm™ and a weaker change in absorbance at 2115 cm™. These bands can be
assigned to the conversion of ferricyanide to ferrocyanide. The differences in signal intensity is
due to the differences in the molar extinction coefficients of ferricyanide and ferrocyanide.

Figure 5.4 shows the results of this initial qualitative SIR study to investigate the change in
ferricyanide and ferrocyanide concentrations following the co-addition of 256 scans. The curves
show the expected trend with the change in absorbance at a distance of 25 um from the electrode
showing the largest change. The change in absorbance is smaller for distances further away from
the electrode, as expected. This preliminary experiment also demonstrated that when using 10
mM redox species, both the ferricyanide and ferrocyanide IR signatures provide sufficient S/N to
allow mapping of the time-dependent diffusion layer concentrations of the species being depleted
and the species being produced. The signal for ferricyanide is significantly noisier due to its
smaller molar extinction coefficient, but the general trend is visible. With this initial evidence

supporting the feasibility of the technique’s use in investigating electrochemically generated
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diffusion layers, refinements in the measurement described in Chapter 4 were done, specifically
the change from circular apertures to the narrow blade apertures with the defocused beam
(Chapter 4.5). This allows for higher spatial resolution in the distance perpendicular to the
electrode edge and a more homogenous IR illumination. This, along with the ability to refresh
the solution within the cell in a timely manner were done to improve the measurement. The
refinements in the measurement resulted in the concentration transients shown in Figure 5.5 for
both ferri- and ferrocyanide. A qualitative comparison between Figure 5.4 and 5.5 shows that

there is an improvement in the S/N, especially for the ferricyanide transients.
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Figure 5.4: Absorbance transients for the reduction of 10 mM ferricyanide, (a) ferricyanide (Ox)
and (b) ferrocyanide (Red). Experiments were preformed using a 20 um circular aperture at
distances of 25 um (triangles), 45 um (circles) and 65 um (squares).

Using the improved measurement procedure (particularly the use of blade apertures instead of
circular apertures) the IR signal at the closest spot position shows a much starker change in
concentration (Figure 5.5, black squares). The increased S/N also gives the transients for
ferricyanide a more defined curve that can be simulated with greater accuracy. This indicates
that the size of the aperture does have an effect on the reported IR signal simply because the
circular apertures sample a greater range of concentrations but report only the mean

concentration change.
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Figure 5.5: Experimental (points) and simulated (lines) concentrations transients for the
reductions of 10 mM ferricyanide, (a) ferricyanide (Ox) and (b) ferrocyanide (Red).
Concentrations have been normalized by the initial concentration of Ox. Experiments were
performed with the closest edge of the beam at distances of 15 um (squares), 30 um (circles), 45
um (triangles) and 65 pm (down triangles).

The simulated results seen in Figure 5.5 were produced using the procedure detailed in Chapter
4.8. The optical fringes between the two windows were used to determine the cell height (the
inter-window cavity was 38 pum) and the distance between the window and the top of the Pt foil
working electrode (~25 um ). The distance between the top calcium fluoride (CaF) and the
electrode varied slightly depending on the location on the Pt foil electrode that was measured.
This indicates that the Pt foil surface was uneven, which is not surprising given the fact that
attachment of the foil was done by gluing the foil onto the CaF> window using
cyanomethacrylate adhesive. While it is conceivable to simulate the diffusion using an electrode
of variable height, it is expected that the overall effect would be minimal and as such the

electrode thickness was set to a constant height of 25 pm.

Using these values for the boundary conditions in Table 4.3 the simulated curves used to fit the
experimental data are shown as the solid lines in Figure 5.5. This resulted in diffusion
coefficients of Dox = 4.4 x 10 cm? s* (ferricyanide) and Dred = 3.6 X 10 cm? st (ferrocyanide).
These diffusion coefficients were determined using the procedure outlined in Chapter 4.10 where

the diffusion coefficient of the initial redox species present is adjusted to fit the experimental
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curves. Comparison of the simulated concentration transients and experimental concentration
transients show that distances of 30, 45 and 60 um demonstrate good agreement for both the
ferricyanide and ferrocyanide species. The curves at the 15 pum distance shows good agreement
at long times but at short times the experimental signal is lower than that predicted by
simulation. The discrepancy between the simulated concentration transients and the experimental
concentration transients can be attributed to two factors. The first factor is that deviations from
the expected concentration profile have been previously noted in diffusion layer mapping studies
where the large concentration gradient produces a refractive index gradient causing angular
divergence of the beam.(4) The other factor was described previously in Chapter 4.7; where the
evolution of the diffusion layer at distances close to the electrode and at short times results in the
sampling of various concentrations as the IR beam passed through the SEC as described in
Figure 4.8b. While both are thought to be factors that contribute to the difference between the
experimental results and the simulated results at the 15 um spot, it is believed that the
discrepancies are primarily caused by the convoluted diffusion profile produced by the
electrode’s particular geometry. This is due to the fact that the divergence of the optical path
cause by refractive index gradients is path dependent and with such a small optical path length its

contribution should to be minimal.(15)

The absolute diffusion coefficients determined for ferri and ferrocyanide obtained by SIR studies
are lower by about ~ 30 — 40% than those previously obtained by electrochemical methods.(16)
However, the ratio between the two diffusion coefficients is in good agreement with the
literature values. The systematically low diffusion coefficients predicted by SIR studies here

will be discussed, analyzed and reconciled in Chapter 7.

5.3: Summary and Conclusion

Preliminary experiments showed that a change in the IR signal with respect to time for
both ferricyanide and ferrocyanide could be followed in the SEC and produced the expected
trends. However, the reported IR signal for ferricyanide was quite noisy with only the general
trend being distinguishable.

Refinements to the measurement resulted in data quality. The increase in S/N was such that the
concentration transients at the various distances from the electrode for both the ferricyanide and
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ferrocyanide could be resolved. Simulation of the experimental concentration transients was
performed in order to extract the diffusion coefficients of both ferricyanide and ferrocyanide.
The simulation resulted in diffusion coefficients of Dox= 4.4 x 10° cm? s and Dred = 3.6 x 10°®
cm? st of ferricyanide and ferrocyanide respectively. These diffusion coefficients are lower than

the reported literature values, this discrepancy will be discussed in Chapter 7.
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6: Diffusion Layer Mapping Part 2: Oxidation of Hydroquinone

6.1: Introduction

In the previous chapter the evolution of the diffusion layer for the reduction of
ferricyanide, which is a simple one electrode redox process was examined. This chapter looks at
extending the use of the diffusion layer mapping methodology (as described in Chapter 4) to
follow the evolution of the diffusion layers produced during a more complex redox reaction.
Furthermore, the results in Chapter 5 show a significant discrepancy between literature values of
the diffusion coefficients and those determined by SIR studies. To determine if the discrepancy

is systematic, the method was applied to a second electrochemical system.

The 1,4-benzoquinone (BQ)/hydroquinone (HQ) redox couple was chosen to extend SIR studies.
This redox system was chosen due to the fact that unlike the ferri/ferrocyanide redox couple it
undergoes a two electron, two proton redox process (see Figure 6.1). While the redox chemistry
of the BQ/HQ redox couple is much more complicated, it is still well characterized. Laviron
performed a theoretical treatment of the pH effects on the kinetic and thermodynamic factors
affecting the electron and proton transfer mechanism(1, 2) and Smith and co-workers have

elucidated the role of buffer and protic solvents during quinone redox chemistry.(3, 4)

OH O

_— + 2¢ + 2H"

OH O

Figure 6.1: Oxidation of HQ to BQ.

These studies highlight the need for the use of buffers for SIR studies as the oxidation of HQ
would cause the acidification in the area around the electrode due to the release of protons. The
acidification will cause shifts in the formal potential as well as change the proton transfer
kinetics(1-3), which can be avoided by the use of buffered solution.(3) As such, a buffered

solution was used in all SIR studies to ensure reproducible electrochemistry.
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Aside from the BQ/HQ redox couple being well studied electrochemically, it has also been used
in IR spectroscopic(5-7) and IR spectroelectrochemical studies.(8-12) Of particular interest is
the study by Jin et al, who have used time resolved IR measurements to follow the formation and
decay of BQ/HQ reaction intermediates in aprotic solvents(12)

6.2: Results and Discussion

6.2.1: Molar Extinction Coefficients

While there have been extensive spectroscopic studies(5-12) of the BQ/HQ redox couple
there is little reported on the molar extinction coefficient in the IR. To the author’s knowledge,
the only reported IR molar extinction coefficients have been by Yang et al, who report molar
extinction coefficients for benzoquinone and the intermediates of its reduction in acetonitrile.(10)
In order to utilize equations 4.4 and 4.5 from Chapter 4.9.1, the molar extinction coefficients are

needed. These values must first be obtained from independent measurements.

Before the molar extinction coefficients could be determined, a spectral analysis of BQ and HQ
in the D20 electrolyte solution within the SEC cell was done to determine the IR peaks that
would be used to monitor the loss of HQ and production of BQ during SIR studies. The molar
extinction coefficients were determined in D20 due to the overlap of the signal from HQ with the
IR-active modes of water. The use of D20 causes a shift of those modes to regions outside
where the IR signal for HQ should appear. Figure 6.2 shows the absorbance spectra of both HQ
and BQ in the D0 electrolyte solution. HQ exhibits a strong peak at 1512 cm™, corresponding
to the benzene ring stretching.(13, 14) The spectra of BQ exhibits a strong peak at 1658 cm™,
corresponding to the carbonyl stretch as well as a weak peak at 1315 cm™, corresponding to the
C-H stretching of the ring.(5, 14) The peak at 1315 cm™ is far too weak to be used to follow the
production of BQ in SIR studies. The strong peak at 1512 cm™ for HQ and 1658 cm™ for BQ
provide good IR signals to monitor the change of both BQ and HQ during SIR studies. Also
present in the spectra is a large downward going band that is a result of the H-O-D.(15) This
band arises due to the exchange of a labile hydrogen from the phosphate buffer species and the
D0 solvent. This IR signal from the H-O-D bending mode overlaps other vibrations for BQ and

HQ that would be present in that region.(5, 14) The H-O-D bending mode perturbs the baseline
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near the ring vibration of HQ and requires that no phosphate buffer be used when determining

the molar extinction values.

—HQ
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Figure 6.2: Spectra of 15 mM HQ (red) and 15 mM BQ (black) in 0.1M NaF and 20 mM, pH 8
phosphate buffer solution in the SEC cell at a resolution of 8 cm™.

The molar extinction coefficients BQ and HQ at 1658 cm *and 1512 cm™ respectively are

shown in Figure 6.3 and given in Table 6.1.
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Figure 6.3: Absorbance versus concentration curves for benzoquinone (BQ) and hydroguinone

(HQ) at resolutions of 4, 8 and 16 cm™. Note: the ratios of the molar extinction coefficients are

not the same at each resolution due to the presence of a shoulder on the BQ signal that changes
with resolution.

86



Spectral Resolution (cm™) Molar Extinction Coefficients (M*cm™)
Benzoquinone Hydroquinone
4 1116 1054
8 893 734
16 650 461

Table 6.1: Calculated molar extinction coefficients for BQ and HQ.

The data for both BQ and HQ show linear trends, which indicates that Beer’s law is applicable

within the concentration ranges used here.

The concentration versus absorbance at resolutions of 16 cm™, 8 cm™ and 4 cm™* show good
agreement with Beer’s law and the resulting molar extinction coefficients as expected show an
increase with decreased resolution. A resolution of 8 cm™ was chosen for use during SIR
experiments for the oxidation of HQ, as it greatly decreased the noise present in the spectra

caused by water vapour, but still resulted in a strong signal for both BQ and HQ.

6.2.2: Diffusion Layer Mapping

The SIR studies for the oxidation of HQ to BQ was much more technically challenging
due to the instability of BQ and HQ in solution. Both HQ and BQ degrade in solution over time
to produce highly conjugated products that cause discolouration of the solutions.(16-19) It was
found here that solutions of HQ showed a much lower rate of degradation than BQ solutions.
Thus, the electrochemical oxidation of HQ was chosen for SIR studies. The number of repeated
time resolved measurements (Chapter 4.7) taken during a SIR study was lowered from 256 to 64,
as this allows for a time resolved measurement to be completed in ~ 1.2 hour, while still ensuring
a sufficient signal to noise ratio at a concentration of 5 mM of HQ. It was also found that the life
time of the HQ solution could be extended to last the entire time needed to perform an entire SIR
study by placing the HQ solution in a glass electrochemical cell, purging it with nitrogen, and
keeping it covered. To further mitigate degradation, the syringe containing the HQ solution was
refilled after each time resolved measurement during a SIR study, and the length of tubing

between the syringe pump and the SEC was minimized (Figure 4.6). Upon refilling the syringe,
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the pump was left on for ~2 minutes to replace some of the old solution within the tube to the
SEC with fresh solution. It would be ideal to replace all the fluid from the syringe to the SEC,
but this would require a long time to pump enough solution, in which time the solution would
have decayed. The other option would be to use new tubing after every syringe refill. While this

is possible, it can displace the alignment of the SEC under the microscope.

SIR studies for the oxidation of BQ also differ from the SIR studies of the reduction of
ferricyanide in that the SEC with the inlaid band electrode (Figure 4.1c) was used along with
resolution 8 cm™ instead of 4 cm™*. The normalized concentration versus time curves with the

“best-fit” simulated data overlaid are shown in Figure 6.4.
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Figure 6.4: Experimental (points) and simulated (lines) concentrations transients for the
oxidation of 5 mM hydroquinone, (a) benzoquinone (Ox) and (b) hydroquinone (Red).
Concentrations have been normalized by the initial concentration of Red. Experiments were
performed with the closest edge of the beam at distances of 25 um (squares), 45 um (circles), 65
um (triangles).

The resulting concentration transients again show the expected trend with the change in
concentration being most pronounced at distances close to the electrode. The experimental data
is also in very good agreement with the simulated data. The simulation of the experimental data
results in diffusion coefficients of Dox = 4.1 x 10 cm? s and Dgred = 4.7 x 10 cm? s for BQ

and HQ respectively. The nature of the differences in the diffusion coefficients is thought to
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arise from differences in the hydrogen bonding between HQ, BQ and the solvent. These
diffusion coefficients are lower than those determined for BQ and HQ in H2O solution of 12.7 x
10 cm? st (20) and 7.5 x 10° cm? s (21) respectively. The decrease in diffusion coefficients is
expected due to the increased density of D20 over water. Again the “validity” of diffusion

coefficients determined by SIR will be discussed in the next chapter.

It is important to note that the concentration transients produced in SIR studies are not just
dependent on the diffusion coefficients of the species, but also depend on, the cell height and the
distance that the IR measurement was made from the electrode. This makes a direct comparison
between the BQ/HQ and ferri/ferrocyanide transients impossible. It is this dependency on
numerous variables that gives rise to the fact the BQ/HQ transients here show a lower
concentration change than the ferri/ferrocyanide transients even though they have larger

diffusion coefficients.

6.3: Summary and Conclusions
In this chapter, spectral analysis of BQ and HQ was first done to determine the IR signals
that can be used to monitor the change in concentration of BQ and HQ. The molar extinction

coefficients for BQ and HQ at various resolutions have been determined.

This chapter has shown that SIR studies using the BQ/HQ redox couple are more technically
challenging due to the instability of HQ in solution over time. This required the number of
repeated time resolved measurements in a SIR study to be lowered and for the HQ solution

within the setup to be refreshed between individual time resolved measurements.

The study of this system has highlighted the need for the appropriate choice of solvent and
electrolyte for SIR studies to avoid overlap of solvent IR signals with the IR signals of the
analytes. It also gives insight into the limits of SIR studies in the fact that some systems may not
be stable enough to be examined by SIR studies due to the long times that are required to

complete a full SIR study or the fact that it may be too technically demanding to be feasible.

Nevertheless, SIR studies have been successfully extended from the simple one electron transfer
of the ferri/ferrocyanide redox system to the two electron, two proton transport HQ/BQ redox

system. The diffusion coefficients of BQ and HQ in the DO electrolyte have been determined
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to be Dox= 4.0 x 10 cm? s and Dred = 4.5 x 10°° cm? s respectively, which as expected are
lower than the diffusion coefficients reported for BQ and HQ in aqueous solution (H20). The
examination of the diffusion coefficients produced from SIR studies will be examined in the next
chapter.
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7: Diffusion Coefficient Analysis

7.1: Introduction

Both the ferri/ferrocyanide redox couple and the BQ/HQ redox couple are well studied
systems and while diffusion coefficients for both have been determined(1-4) they are not directly
applicable to these studies. This is due to fact that the solution composition for the
ferri/ferrocyanide used here involved the use of different supporting electrolyte.(1, 2) The
previously determined diffusion coefficients are also not directly applicable for the BQ/HQ
redox system owing to the fact that DO instead of H20 was used as the solvent in this work. To
the author’s knowledge there have been no reported values for the diffusion coefficients for
either BQ or HQ with D»0O as the solvent. Therefore, this needed to be determined
independently.

In this chapter the diffusion coefficients of ferricyanide, ferrocyanide, BQ and HQ will be
determined using hydrodynamic linear sweep voltammetry (HLSV), the details of which are
given in Chapter 4.2. The diffusion coefficients determined by this purely electrochemical
technique will be compared to those determined by SIR studies to validate its” ability to monitor

the evolution of diffusion layers during electrochemical reactions.

7.2: Diffusion Coefficient Analysis

First the diffusion coefficients for ferricyanide and ferrocyanide will be discussed. The
initial steps for determining diffusion coefficients was to preform HLSV experiments at the same
conditions used by Arvia et al (0.1 M KCI electrolyte)(2) and compare the values. These initial
studies using HLSV produced diffusion coefficients that were lower that the literature values
determined previously by HLSV for ferricyanide and ferrocyanide of 6.77 x 10 cm? s and 5.88
x 108 cm? s respectively. The determination of the diffusion coefficients using HLSV by Arvia
et al do not discuss the determination of the electrode area, which lead to the investigation of the
effect of the electrode area on the diffusion coefficients. In the analysis of the diffusion

coefficients by HLSV, the resulting slope of the Levich plot is equal to:
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slope = 0.620nFAD*/3v " /sC (7.3)

Only the electrode area (A) has to be determined independently, as all other quantities are
known. It was found that if the geometric area of the electrode was substituted for the
electrochemical surface area (ECSA), as determined by H UPD in the methodology used here
(Chapter 4.2) that the resulting diffusion coefficients were 7.2 x 10° cm? s* and 6.5 x 10° cm? s°
! for ferricyanide and ferrocyanide respectively. These values are in excellent agreement with
the literature values for ferricyanide and ferrocyanide stated above.(2) This suggests that
previous studies to determine the diffusion coefficient for ferricyanide and ferrocyanide have not
accurately taken into account the area of the electrode. When the ECSA of the electrode is used

rather than the geometric area, lower diffusion coefficients are obtained.

When 0.1 M NaF was used instead of KCI the resulting diffusion coefficients determined using
the actual area of the electrode show good agreement with the diffusion coefficients determined
by SIR studies. The consistency in the diffusion coefficients between SIR studies and HLSV
using the actual area supports the need to be able to accurately determine the electrode area when
electrochemical techniques are employed. Beyond this, it also indicates that the methodology
developed here for diffusion layer mapping produces a diffusion limited electrochemical reaction
with no other mass transport present, resulting in the ability to extract the diffusion coefficients

of the redox species.

Analytes Conditions Diffusion Coefficient (10 cm? s™)
SIR Study RDE
Ferricyanide 0.1MKCl+1mM 51
Ferrocyanide analytes 4.6
Ferricyanide 0.1 M NaF + 10 mM 4.5 4.1
Ferrocyanide analytes 3.6 3.7
Benzoquinone 0.1 M NaF +1 mM 6.0
Hydroquinone analytes in H20 6.1
Benzoquinone 0.1 M NaF +5 mM 4.1 3.7
Hydroquinone analytes in D>O 4.7 4.2

Table 7.1: Diffusion coefficients of ferricyanide, ferrocyanide, benzoquinone and hydroquinone
using various electrolytes and solvents. The error on RDE diffusion coefficients is expected to be
~10%.
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As in the case of ferricyanide and ferrocyanide, the diffusion coefficients of BQ and HQ were
determined by HLSV in water and compared to literature values. Although the literature values
of the diffusion coefficient for BQ in H2O could not be found, the closely related orthoquinone
(catechol) has a reported diffusion coefficient of 6.61 x 10 cm? s1.(5) Other studies have also
reported the diffusion coefficients for catechols, which are substituted with small groups as 6.0 x
10 cm?s1.(6) The values for BQ measured by HLSV are therefore quite consistent with the
literature values for the closely related molecules. Like the values for BQ determined here by
HLSV the diffusion coefficient of HQ shows agreement with the literature value of 7.5 x 107
cm? s1.(3) While the values for BQ and HQ determined here are lower, the disparity could be

attributed to differences in the electrolyte used here as compared to the literature.

As expected, the diffusion coefficients of both species decreased by ~ 30% in D20 due to its
higher density compared to H>O. Most importantly, the diffusion coefficients for HQ and BQ as

determined by SIR are within 10-15% of the electrochemically determined values.

In this chapter, the diffusion coefficients of BQ or HQ needed to be independently determined in
order to verify the ability of SIR to monitor the diffusion layer, as no values for the diffusion
coefficients of either BQ or HQ have previously been reported in D2O. The resulting diffusion
coefficients as determined by the purely electrochemical HLSV technique and SIR studies
resulted in diffusion coefficients that were within 10-15% of each other, indicating the validity of

SIR to monitor the evolution of electrochemical diffusion layers.

The self-consistency of the diffusion coefficients for the BQ/HQ redox system indicated that the
same level of agreement should have been obtained for the ferri/ferrocyanide system. Instead,
diffusion coefficients that were ~30% lower than the previously reported values were obtained.
While it was thought that the differences in electrolyte could cause shifts in the diffusion of the
redox species, this could not account for that large a discrepancy. This chapter reconciles the
differences in the diffusion coefficients for ferricyanide and ferrocyanide. It was found that the
literature values for the diffusion coefficients previously determined by HLSV for
ferri/ferricyanide were erroneous. This error is a result of the fact that the geometric area of the
electrode was used instead of the ECSA, as no method to determine the ECSA had been
developed. By using the ECSA the results by HLSV and SIR show excellent agreement with

each other.
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7.3: Summary and Conclusions

Here the diffusion coefficient of ferricyanide and ferrocyanide have been determined by
HLSV. It was found that earlier studies to determine the diffusion coefficients did not accurately
account for the entire electrochemical active electrode area, which resulted in an over estimation
of the diffusion coefficients. This is a rather remarkable result for ferricyanide and ferrocyanide
as this redox couple has been a standard go to simple redox system, partly due to the fact that the
diffusion coefficients are considered well established within the electrochemical community.
For example, the diffusion coefficients of ferricyanide and ferrocyanide listed are in Bard and
Faulkner as tabulated data in much the same way as reduction potentials. However, further
inspection of the diffusion coefficients reported in the literature revealed that the original
measurements were made in the 1950’s before the Pt-H UPD method of determining the

electrode area was known.

These studies have accurately accounted for the electrochemical active area, which results in
lower diffusion coefficients than the literature values. These lower diffusion coefficients
produced by using the electrochemical active area show good agreement with the coefficients

determined by SIR studies.

The diffusion coefficient determined for BQ and HQ by HLSV in water are comparable to the
literature values and diffusion coefficients determined SIR studies also show good agreement to
the values determined by HLSV in D20.

This study of the diffusion coefficients has shown that the methodology developed here results in
a diffusion limited electrochemical reactions within the SEC. The resulting diffusion layers can
be monitored by spatially and temporally monitored using SIR, with that ability to extract

quantitative information.
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Chapter 8: Conclusions and Future Work

8.1: Conclusions

Purely electrochemical techniques cannot provide molecular information regarding the
identity of the species within the diffusion layer created by and electrochemical reaction. The
inherent difficulty in spatially probing the area near electrodes via spectroscopic techniques is
positioning the radiation close to the electrode without obscuring it, while also allowing
sufficiently high resolution such that many regions near the electrode can be distinguished.

The Burgess group has previously used the small illumination spots available with SIR to
monitor electrochemical reactions at ultramicroelectrodes, (1) but until now have not taken
advantage of the small spot size for spatial resolution. This thesis has focused on utilizing the
small spot size capabilities of SIR for spatial resolution in order to monitor diffusion layers. To
do so, the IR beam must be situated within the area adjacent to the electrode where the diffusion
layer develops but not be significantly attenuated or blocked. Two SEC cells have been designed
and presented in this thesis that have overcome these challenges; the first SEC used a Pt foil
overlaid on the CaF> window of the SEC (Figure 4.2b), while the second employs an embedded
band electrode (Figure 4.2c). The SEC with the embedded band electrode provides a much more
desirable configuration, as diffusion at inlaid band electrodes has been previously described.(2)
The inlaid band electrode also eliminated edge effects that cannot be easily quantified or
accounted for when using the raised Pt foil electrode.

Other than the need to create a SEC that allowed for the passage of the SIR beam adjacent to the
electrode, reproducible electrochemistry was needed to ensure that there was no significant
change in the relative concentration of the electroactive species within the SEC over the entire
duration of a SIR study. To avoid this, the solution within the SEC needed to be replaced after
every electrochemical reaction that was triggered. A fully automated pumping system was
developed and used as it allowed for the solution within the SEC to be exchanged and minimized

the time needed to refill the cell between the IR measurements.

Whereas in previous reflection based studies reflection of the IR light off the electrode(3) was

used and only the spot size was of interest, in this case the nature of the spot is of interest due to
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the nature of the SIR beam, which consists of the two parallel ellipsoids with a roughly Gaussian
distribution.(4) The non-homogenous nature of the IR beam can cause skewing of the reported
IR signal if “hot spots” are present. To minimize this effect, the IR beam was defocused to
produce a single spot that showed more homogenous illumination and blade apertures rather than
circular apertures were employed. The blade aperture increased the spatial resolution by allowing
the distance normal to the electrode to be minimized. It also allowed for the positioning of the
apertures such that the most homogenous illumination area could be selected. These refinements
in the methodology resulted in an increase in the S/N and increased the spatial resolution. This is
advantageous as only the first 200 um away from the electrode edge are expected to give a

significant enough change in IR signal to be followed.

Here, the diffusion space around an electrode for two redox systems was studied. The first was
the simple one electron transfer of the ferri/ferrocyanide redox couple, the second was the two
electron, two proton transfer of the BQ/HQ redox couple. The goal of studying both of these
redox systems was to verify the ability of SIR studies to monitor the evolution of diffusion layers
as well as determine if quantitative information about the redox species could be obtained. In the
systems studied here, the diffusion coefficients of the redox species can be extracted by
numerically simulating the experimental data. As a comparison, hydrodynamic linear sweep
voltammetry (HLSV) was done to determine the diffusion coefficients of the redox species
independently to see if the diffusion coefficient measurements were consistent. For the
ferri/ferrocyanide redox couple, the diffusion coefficients from SIR studies and HLSV are
consistent, however, these values were inconsistent with the previously reported literature values.
As mentioned earlier, this divergence from the literature values was primarily due to the fact that
in the literature studies the geometric area of the electrode was used to determine the diffusion
coefficient instead of the electrochemically active area of the electrode. This is quite a
remarkable result due to the fact that the diffusion coefficients of ferricyanide and ferrocyainde
are considered to be well established. This, and the fact that this redox couple displays simple
well-described electrochemical behaviour along with readily identifiable spectroscopic signals,
has resulted in this redox couple being widely used in electrochemical studies. Many of the
studies like this one have used this ideal behaviour of the ferri/ferrocyanide redox couple for the
purposes of technique development, as is the case here and as a probe to aid in measurement and

analysis.(5, 6) The fact that the results presented here have brought to light a discrepancy with
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established values could question the validity of previous electrochemical studies using
ferri/ferrocyanide. One convenient method for determining electrode areas is to measure
voltammetric currents from the ferri/ferrocyanide redox couple and apply the Randles-Sevcik
equation. It is quite common to see this method implemented using the diffusion coefficients
listed in text books such as Bard and Faulkner [ref]. Clearly the results of this thesis call into
question this practice and indicate that electrochemical areas determined in such a fashion are

most likely in error by roughly 30%.

In the case of the BQ/HQ redox couple, no known diffusion coefficients of either BQ or HQ in
D>0 solvent were previously reported, and as such they needed to be determined independently.
The study of diffusion coefficients of BQ and HQ by HLSV and SIR studies were within 10-
15%. The discrepancy between the diffusion coefficients determined by SIR studies and HLSV
may be due to accelerated decay of the solution used in HLSV that arises from the fact that both

HQ and BQ were present in solution and BQ appears to be less stable.

A method has been developed here where a diffusion limited reaction is produced such that the
IR beam can be positioned adjacent to the working electrode, resulting in the ability to spatially
and temporally monitor the evolution of the resulting diffusion layer produced during an
electrochemical reaction. This is evidenced by the consistency of the diffusion coefficients of all
the species studied here as determined by the IR based SIR studies and the purely
electrochemical HLSV. This spatiotemporal monitoring has resulted in the ability to extract the
diffusion coefficients of the redox species. This is a first step towards using this method to
studying more complex electrochemical reactions with the ability to monitor the growth/decay of

reactant, intermediates and products.

Previous diffusion layer mapping methods, such as SECM and Raman microscopy have been
successful in monitoring diffusion produced by electrode processes and are capable of
monitoring and analyzing reactions within the diffusion layer. (7, 8) However, they have not
found widespread application in studying complex electrochemical processes, this is due to the

fact that in many cases the methods cannot detect the molecules of interest.

The technique developed here offers a more versatile method that greatly broadens the breadth of

electrochemical systems that can be studied. This method is much better tool to study
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electrochemical processes of both scientific and industrial interest such as fuel cell reactions (e.g.
methanol oxidation) and complex bioelectrochemical conversions (e.g. intracylcization of
dopamine).(9, 10) Application of the methodology developed herein can provide a full
understanding of the processes occurring in the vicinity of the electrode and potentially lead to

the development of improved processes.

8.2: Future Work

The methodology developed here is open to improvement. One area that will require
further refinement is the design of the SEC. While the current SEC design fulfills optical
requirements and the embedded electrode allows for more accurate modeling of the temporal-
evolving concentration gradient, there are limitations. It is suspected that the SEC based on the
current design will be limited to the 36x objective and in order to reach compatibility with higher
magnification objectives, a radically new SEC design is needed. This redesign is required due to
the small working distance of higher magnification lenses. Miller et al have developed an optical
flow cell that is compatible with the 72x objective and is a promising starting point for future
possible SECs.(11) The ability to couple SEC with these high magnification objective will allow

a truly diffusion limited spot to be used.

The current cell is also limited by the fact that it cannot handle solution with high or low pH due
to the materials used in its construction, in particular the cyanomethacrylate adhesive. A design
based on the cell used by Miller et al could be used to overcome this by eliminating the use of
adhesives altogether. This would increase the variability of electrochemical reactions that could
be studied by SIR studies.

Another aspect of the SEC that could be addressed to improve SIR studies would be to have the
working electrode oriented parallel to the focused beams so that the blade apertures could be
oriented over one of the elliptical IR spots. This would eliminate the need to defocus the beam
to produce a homogenous IR beam spot, however implementing the correct orientation is not
trivial and requires the ability to precisely orient the SEC. This could be achieved through the
use of a rotation stage to hold the SEC.
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As mentioned above, the current SEC is compatible with the 36x objectives, but only the 15x
objectives were used here. A beneficial study would be to use the 36x objectives and repeat the
SIR studies using the ferri/ferrocyanide redox couple. This study would indicate whether or not
increased photon throughput due to the increased focusing of the IR beam would allow for the
same signal to noise level to be reached in a smaller amount of time. This could also determine

if the use of higher magnification objectives are truly advantageous.

Other than improvements to the measurements of diffusion layers, there is a need to quantify the
fitting of the simulated data to the experimental data. The fitting of the simulated curves
presented here has been done by eye (solid lines Figures 5.5 and 6.4). While this has produced
diffusion coefficients that show good agreement with those produced by HLSV, the diffusion
coefficients determined by simulations are still very much qualitative in nature. As such, for
further use of this technique a mathematical fitting of the simulated data to the experiment via
least-squares regression is necessary. This type of analysis will give a more accurate and reliable
diffusion coefficient. However, implementing a fitting routine of this nature is not an “out-of-
the-box” optimizing via computer program. Significant resources would be need to be devoted to

build a successful routine.

Beyond the improvements in the SEC and refinements in the methodology, the expansion of the
use of SIR studies to electrochemical reactions of greater complexity is of great interest. In
particular, the Burgess group has immediate plans to study EC type reactions where information
about the kinetics and nature of the coupled chemical reaction are not defined. Simulations of
the SEC diffusion space for a simple EC reaction (Figure 8.1) are given in Figure 8.2 and show
that the formation and decay of the intermediate can be followed at different distances from the

electrode.

A+e” -B
B - C

Figure 8.1: Example of an EC type reaction.
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Figure 8.2: Simulation of an EC type electrochemical with the reactant (black, a), intermediate
(red, b) and product (blue, ¢) concentrations shown at various distances from the electrode.

The oxidation of hydroxylamine at gold electrodes offers an EC type reaction system where the
reactants and products have clearly distinguishable IR signatures for both products and reactants.
The coupled chemical reaction should also be such that it can be monitored effectively by SIR
studies.(12) This makes the oxidation of hydroxylamine ideal for the verification of SIR studies
ability to analyze EC type electrochemical reactions. The validation of SIR studies to examine
EC type reactions would open up this methodology to study a number of electrochemical
reaction of greater interest.

Beyond this, Gross et al have eluded to another aspect of using the spatial resolution of SIR(13)
as it could easily be translated in order to study electrochemical reaction that involve the flow of
solution across the electrode instead of the quiescent solutions studied here.
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Appendix

A: Matlab script

clear variables
close all

%$Sets path to retrieve rapid scan single channel spectra
path = 'C:\Users\ladna\Desktop\Data\CLS\Analysis\2015-07-24-Analysis\2015-07~-
24-matlab\Rapidscan-65um-4.9mMHQ-0.5MNaF-PBS20mM-pH8-matlab\"';

search path = sprintf('%s*.mat',path);

file count = 0;

files = dir(search path);

%The sniftir and DeltaABS matrices must be set so the same number of rows
%as the spectra (same length as the wavenumber points) and the columns must
be set

%$to the number of data points (# of individual spectra gathered in the
$rapid-scan measurement)

sniftir = zeros(1271,60);

DeltaABS = zeros (1271,60);

%$Loop that co-adds the spectra. Note: the # of loops must be equal to the #

%0f columns of the snifter and DeltaABS matrices

for file = files'
filename = sprintf('%s%s’',path,file.name);
temp = load(filename)
data temp.Sc;

’

for 3j=1:1:60
temp sniftir = (data(:,j+2)-data(:,2))./data(:,2);
sniftir(:,7) sniftir(:,j)+temp sniftir;

end;

file count = file count+l;
end;

for i= 1:1:60
sniftir(:,i) = sniftir(:,1i)./file count;
end;

wavenum = temp.Sc (:,1);
Sconverts snifter spectra into absrobance spectra and extracts areas of
%interest

DeltaABS = -1oglO((sniftir+1));
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ABS1658 = DeltaABS(800:885,:);
ABS1512 DeltaABS (885:950, :);

soutput of absorbance data
dlmwrite ('Absorbancel658.dpt', ABS1658);
dlmwrite ('Absorbancelb512.dpt', ABS1512);
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B: LabVIEW program
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