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Abstract

In this thesis, we propose a novel image enhancement method to magnify the textural differences in the

images with respect to human visual characteristics. The method is intended to be a preprocessing step to

improve the performance of the texture-based image segmentation algorithms.

We propose to calculate the six Tamura’s texture features (coarseness, contrast, directionality, line-

likeness, regularity and roughness) in novel measurements. Each feature follows its original understanding of

the certain texture characteristic, but is measured by some local low-level features, e.g., direction of the local

edges, dynamic range of the local pixel intensities, kurtosis and skewness of the local image histogram. A

discriminant texture feature selection method based on principal component analysis (PCA) is then proposed

to find the most representative characteristics in describing textual differences in the image.

We decompose the image into pairwise components representing the texture characteristics strongly and

weakly, respectively. A set of wavelet-based soft thresholding methods are proposed as the dictionaries of

morphological component analysis (MCA) to sparsely highlight the characteristics strongly and weakly from

the image. The wavelet-based thresholding methods are proposed in pair, therefore each of the resulted

pairwise components can exhibit one certain characteristic either strongly or weakly.

We propose various wavelet-based manipulation methods to enhance the components separately. For each

component representing a certain texture characteristic, a non-linear function is proposed to manipulate the

wavelet coefficients of the component so that the component is enhanced with the corresponding characteristic

accentuated independently while having little effect on other characteristics.

Furthermore, the above three methods are combined into a uniform framework of image enhancement.

Firstly, the texture characteristics differentiating different textures in the image are found. Secondly, the

image is decomposed into components exhibiting these texture characteristics respectively. Thirdly, each

component is manipulated to accentuate the corresponding texture characteristics exhibited there. After

re-combining these manipulated components, the image is enhanced with the textural differences magnified

with respect to the selected texture characteristics.

The proposed textural differences enhancement method is used prior to both grayscale and colour image

segmentation algorithms. The convincing results of improving the performance of different segmentation

algorithms prove the potential of the proposed textural difference enhancement method.

Keywords: texture difference enhancement; segmentation improvement; human visual perception; mor-

phological component analysis; wavelet-based dictionary.
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Chapter 1

Introduction

Image enhancement aids in a diverse selection of image processing methods because higher image quality

generally results in better processing performance. In this thesis we propose a novel method to enhance

textural differences between textures in an image, which is used as a general pre-processing step to improve

results for texture-based segmentation algorithms.

1.1 Background

1.1.1 Texture-based segmentation

Texture-based segmentation can be generally defined as partitioning an image into regions of similar tex-

ture. Texture-based segmentation methods have recently received more attention because they are relatively

adaptive and robust to noise [108]. As a simple example, texture-based segmentation can be implemented

by thresholding feature maps of the image [176]. In [172], a group of seed pixels were firstly selected in the

original image and regions were grown by appending to each seed those neighbouring pixels that have texture

features similar to seed pixels. Rather than choosing seed points, the user can divide an image into a set of

arbitrary unconnected regions and then merge the regions [112, 154] with similar texture features. Most of

the clustering-based segmentation methods, including hard clustering [68], k-means clustering [148], mean-

shift clustering [79], and fuzzy clustering [124], can be adapted to texture-based segmentation: a similarity

criteria is defined between pixels with respect to texture features, then similar pixels are grouped together

to form clusters.

As discussed above, the performance of texture-based segmentation mostly relies on the textural differ-

ences in the image. Therefore, the texture-based segmentation could be difficult when the textural differences

are too subtle to differentiate. For example, as shown in Fig. 1.1, the segmentation method fails to partition

the image into five different texture regions because the quantitative texture features of the similar regions

cannot be reliably distinguished.
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(a) example image
with multiple textures

(b) feature map of
the example image

(c) segmentation of
the example image

Figure 1.1: An example of texture-based segmentation. (a) is the example image with five different
Brodatz [24] textures in it, (b) is the map of local contrast description [184] of the example image,
(c) is the segmentation of the example texture image by applying the k-means clustering [10] to the
feature map.

1.1.2 Improvement of texture-based segmentation

One way to achieve better performance of texture-based segmentation is to design more effective segmentation

algorithms, including extracting features that describe the differences between each region more clearly [78],

or clustering the pixels with similar features more accurately [127]. However, most of the recent segmentation

algorithms perform well only for the type of images they are designed to segment [57]. This disadvantage

leads to a novel attempt to design image enhancement methods magnifying the differences between regions

as the pre-processing steps prior to texture-based segmentation methods. For example, as shown in Fig.

1.2, different regions of the example image are made more different so that the segmentation results are

more accurate, closer to the ground truth. Image enhancement magnifies the texture differences without

prior-knowledge about the number and kind of textures present in the image or the segmentation algorithm,

leading to improved performance of different texture-based segmentation on different types of image.

1.1.3 Image Enhancement

Different image enhancement methods have been proposed to highlight the texture regions with respect

to certain features. Some early texture enhancement methods reduce noise or artifacts in the image to

highlight the textures indirectly, for example, the median filter [98] and the Weiner filter [104]. However,

these conventional filters degrade the textures in addition to removing noise because of their lowpass-filter-

like qualities. Discontinuity-preserving filters were developed which mitigate this issue to a certain extent by

preserving the image details and local geometries while removing the undesired noise [152]. Filtering based

on total variation (TV) was proposed by Rudin et. al. [169] to remove the noise by minimizing the total

variation (TV) of the image subject to constraints involving the statistics of the noise. Bilateral filtering

proposed by Tomasi et. al. [199] can preserve image details while de-noising by weighting the local Gaussian

filter coefficients with their corresponding relative pixel intensities. The non-local means filter was proposed

in [25] to estimate a pixel by using the similarities between it and all the other pixels in image to act as
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(a) original texture image (b) enhanced texture image

(c) segmentation of (a) (d) segmentation of (b) (e) ground truth

Figure 1.2: Example of enhancing the segmentation algorithm by magnifying the differences between
different regions in the image. (a) is the original image, (b) is the image enhanced by the adaptive
histogram equalization [157], (c) is the segmentation of the original image using the k-means clustering
method [148], (d) is the segmentation of the enhanced image using the same algorithm, and (e) is the
ground truth of the segmentation.

weight, and the similarities are computed not from pixels themselves but from their neighbouring window. It

can smooth the noise and artifacts in the image while preserving image detail as much as possible. Wavelet-

based methods, e.g. VISUShrink [47], BayesShrink [64], and SUREShrink [65] were proposed to remove noise

by shrinking coefficients in high-frequency sub-bands not exceeding certain thresholds, while preserving the

image textures which are represented by coefficients in high-frequency sub-bands that exceed these thresholds.

Recently, the de-blurring methods have become attractive in image enhancement or restoration, especially

for removing motion noise. Y. Hacohen et. al. [87] proposed a de-blurring method by using a sharp reference

example to a non-rigid dense correspondence (NRDC) model [86]. Tomer Michaeli et. al. [140] proposed a

blind de-blurring method using internal patch recurrence for recovering the unknown blur kernel.

Other methods enhance the textures in the image directly. Unsharp masking (UM) was proposed to

improve the visual appearance of an image by emphasizing its high frequency contents [158]. However, the

highpass-filter-like nature of UM causes enhancement of noise and artifacts in the image as well. The same

is true of histogram equalization methods [157]. Therefore, some non-linear methods have been proposed to

enhance the textures. Hong et. al. [94] proposed a texture enhancement algorithm that can improve the

clarity of ridge and valley structures of fingerprint textures based on the estimated local ridge orientation

and frequency. Coherence-enhancing anisotropic diffusion [209] is based on the modifications of partial
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differential equations (PDEs) [37] which can preserve strong discontinuities at edges while removing artifacts

from smooth regions. Shock filtering [210] is a transformation of anisotropic diffusion which smooths along

the coherent texture flow orientations, and reduces diffusivity at non-coherent structures which enhances

textural details. In recent research, fractional differential masks [105, 77] proved to be effective in enhancing

the edges in the image, therefore enhancing the image textures. These texture enhancement methods have

attracted more attention recently because they directly highlighted texture features without losing image

details. Unfortunately, current research work has been limited in enhancing the weak edges or contrast of

textures in the image.

The conventional methods introduced above have attempted to enhance the “textures” with the “non-

textures” unchanged, or smooth the “non-textures” with the “textures” preserved. However, most of these

existing enhancement methods had the following disadvantages:

1. the differences between “textures” and “non-textures” were subtle, resulting in the mis-enhancement

of the “non-textures” while the mis-suppression of the “textures”; and

2. the high-frequency contents of different types of “textures” were enhanced to the same extent, while

the low-different types of “non-textures” were suppressed equally, even though some adaptive methods

were applied.

These two drawbacks led to that the quantitative difference between texture descriptors for textures is not

much altered, resulting in only aesthetic enhancement but little improvement in image segmentation.

1.2 Motivation and Hypothesis

The research work summarized in Section 1.1 demonstrates the following facts:

• image enhancement can generally improve the performance of different texture-based segmentation

methods;

• the existing image enhancement methods cannot effectively emphasize the differences between textures

because they manipulate different types of textures identically.

These two facts are followed by the idea that different types of textures should be enhanced separately

and differently, so the textural differences can be magnified and the performance of segmentation methods

based on these differences can be improved consequently. It naturally follows that image component analysis

[85] might be useful for textural differences enhancement, with the following hypotheses:

• images can be considered as the combination of components representing different image characteristics;

• texture components of a given image are independent of each other, so that the manipulation of each

component won’t affect the manipulations of the others;
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• there exist some non-linear image manipulation methods that can accentuate or suppress a texture’s

own properties.

The possible advantages of this component-analysis-based textural differences enhancement method are:

• unlike the conventional model, an image can be considered as the combination of several components

representing different texture characteristics, leading to a novel understanding of the image composition;

• textures with different characteristics are separated into independent components, and by developing

the enhancement methods for these components to highlight their own properties, the re-combination

of these components will result in an enhanced image where textures are more different with respect to

the certain texture characteristics; and

• since the components separated from the image represent some certain texture characteristics, the

characteristics found in the image could guide the selection of the texture descriptors to be used with

a texture-based image segmentation algorithm.

This thesis investigates how to enhance the image by magnifying the textural differences between the

different textures in it. It is intended to be used as a general preprocessing method to be applied prior to

texture-based image segmentation.

1.3 Main problems and solution

The above discussion derives the following three main problems:

• What characteristics should be used to describe and separate a given image? There are several existing

texture descriptors which can describe the images with different characteristics. However, some descrip-

tors that describe images with low-level characteristics do not reflect textural differences according to

human visual perception. While some other descriptors describe images with semantic characteristics,

these characteristics are not orthogonal to each other, resulting in the redundancy of the description.

• How can a given image be separated into components representing different texture characteristics?

This is the core problem in this work. There are several component analysis methods [139, 61, 49],

but these methods can only separate an given image into components representing different directions,

oscillated and smooth, or low-level characteristics and coefficients map, and are not able to find image

components representing representing higher-level texture characteristics.

• How can a separated component be enhanced to highlight the texture characteristic it represents while

not changing other characteristics represented by other components? Since existing methods focus on

enhancing low-level characteristics (edges, high-frequency coefficients, high gradients, spatial distances,

etc.), high-level characteristics in the images are enhanced to the same extent, resulting in difficulties

in differentiating them.
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Texture description, image decomposition, and non-linear image enhancement methods can be used to

solve the problems listed above. We will:

• study human visual perceptual texture description and select the texture characteristics that can de-

scribe the textural differences in the image completely and orthogonally;

• develop morphological component analysis using wavelet-based dictionaries, by which a given image can

be separated to pairs of components respectively exhibiting any given texture characteristic strongly

and weakly;

• develop a group of wavelet-based manipulation methods, each of which can accentuate one certain

texture characteristic exhibited in the image while preserving other characteristics;

• combine the above solutions to propose a uniform framework, as shown in Fig. 1.3, to enhance the

textural differences in the image, which can be used as a pre-processing method to improve texture-

based segmentation algorithms generally.

Input image

Image
description

Image
decomposition

Image
manipulation

Image
segmentation

Enhancement as pre-processing

Figure 1.3: The process of our textural differences enhancement method. Human visual perceptual
texture characteristics are selected to describe the textural differences in the image. Then image
is decomposed into pairwise components exhibiting any of the selected characteristics strongly and
weakly. After that, each component is manipulated to accentuate the corresponding characteristic.
Re-combining the manipulated components result in the enhanced image where the textural differences
are magnified. These steps together function as a uniform pre-processing framework for better texture-
based segmentation.

1.4 Outline of the Thesis

Chapter 2 gives a review of the literature on the methods of image description, image decomposition, and

image manipulation. For the image description methods, we focus those statistical description methods based

on human visual perception, excluding some low-level description methods, e.g., first-order statistics [83], spin

image based description [118], or texel-based description [35], because the review is too extensive otherwise.

For the same reason, the discussion of image manipulation is limited to non-linear methods for manipulating

images.

In chapter 3, Tamura’s texture descriptor is studied in detail as a specific human visual perceptual tex-

ture description method. Tamura’s descriptor is improved to a local texture descriptor, making it especially
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suitable for discriminating different textures in the given images. Then the principal component analysis

(PCA) algorithm is applied to select key characteristics from the six Tamura’s texture characteristics, solv-

ing the problem that some of those characteristics are highly correlated to others. Thereby the essential

characteristics which make the textures different can be found.

Chapter 4 applies the selected texture characteristics as the basis of image decomposition. Morpho-

logical component analysis (MCA) is improved to decompose the image into components representing the

different essential texture characteristics. Wavelet-based thresholding methods are proposed and used as the

dictionaries of the MCA. Using Tamura’s description to measure the intra-component-similarity within one

component and inter-component-difference between different components, it is shown the proposed method

can provide good performance in separating image into components representing different texture characteris-

tics. For each characteristic, we study and quantify the minimum textural difference that can be decomposed

according to the certain characteristic.

The decomposition of the image leads to the idea that different texture characteristics can be high-

lighted by enhancing the components representing certain characteristics. In chapter 5, wavelet-based image

enhancement methods are introduced. These methods enhance the components’ own properties by manip-

ulating the wavelet coefficients of the components. Instead of removing or shrinking the wavelet coefficients

as conventional methods, the proposed methods manipulate the wavelet coefficients as nonlinear functions

of these coefficients themselves, such as adding “multiplicative noise” along the coefficients, leading to an

enhancement without loss of image information. After that, enhanced components are re-combined to form

the enhanced image, where the textural differences are magnified.

In chapter 6, we discuss the applications of the proposed textural differences enhancement method. We

show that by pre-processing with the new enhancement method the results of segmenting pure texture images

and natural images by several texture-based segmentation algorithms can be considerably improved.

Chapter 7 ends the thesis with some discussion, conclusions and plans for further research work.

1.5 Publications

The thesis contains work previously published and submitted for publication. The sources are as follows:

• In Chapter 4, the concept of decomposing the image based on texture characteristics is contained in a

paper published in IEEE Transactions on Image Processing [44].

• In Chapter 4 and 5, the proposed wavelet-based dictionaries for image decomposition and wavelet-based

enhancement methods for enhancing the components are contained in a paper submitted to Computer

Vision and Image Understanding [45].

• In Chapter 6, a paper on the the application of enhancing colour image segmentation algorithm has

been accepted and will be published in the proceedings of ICIP 2016 [46].
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Chapter 2

Literature review

In preparation for pursuing the solution to the problem that magnify the textural differences in the images,

we have thoroughly reviewed the literature in areas of texture description, image decomposition and image

manipulation in detail. We exclude some literature that have little relationship with our objective to avoid

a too extensive discussion.

2.1 Texture description

The central problem in many computer vision tasks can be regraded as extracting “meaningful” descriptions

from images or image sequences [111]. These descriptions are then used to solve problems such as object

recognition, classification or tracking [130, 141, 174, 175]. Different descriptors may reflect different charac-

teristics of the texture, so in our method of manipulating image textures, it is essential to select a certain

texture descriptor that is sensitive to some specific texture characteristics that we wish to measure.

Mathematical procedures to characterize texture can be classified into two major categories: statistical

and structural approaches. In early research, it has been demonstrated that statistical texture description

methods described textures by a quantitative measure of the arrangements of pixel intensities, while structural

texture descriptors described a texture as the composition of well-defined texels such as regularly spaced

parallel lines. Since structural methods [35, 230] can only describe very regular textures [83], statistical

methods have become the mainstream methods in describing arbitrary textures. According to the features

extracted from the image, the popular statistical texture descriptors can be categorized as: low-level texture

descriptor and high-level texture descriptor.

2.1.1 Low-level texture descriptor

Low-level texture descriptors describe the texture by the intuitive features of the texture itself, including

the occurrence and direction of the edges or corners, the shape of the textures, the occurrence frequency

of the texture primitives, the variance of the pixel intensities and other primitive level features. The most

widely-used low-level image description methods are reviewed as follows.
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Model-based descriptor

The model based descriptors typically generate a model of each pixel in the image based on a weighted

average of the pixel intensities in its neighbourhood. Then the estimated parameters of the image models are

used as textural feature descriptors. Deguchi et. al. [58] proposed the autoregression (AR) texture model,

where they “estimated” the pixel intensity as a linear combination of its neighbours’ intensities and used

the coefficients as the descriptor. Alex P. Pentland [156] proposed the fractal model that related a metric

property such as line length or surface area to the elementary length or area used as a basis for determining

the metric property. They demonstrated a correlation between texture coarseness and fractal dimension of

a texture. Another popular model based descriptor is based on Markov random fields (MRF), which was

proposed in [55] by George R. Cross and Anil K. Jain. Similar as Alex P. Pentland did in AR model, George

and Anil presented that the intensity of the central pixel was determined by the intensities distribution of its

neighbouring pixels, which was a Markov random field distribution. These Markov random field parameters

can describe the strength and directions of the clustering of the textures.

Edge-based descriptor

In [195], Sutton, R.N. and Hall, Ernest L. firstly proposed an edge detection based descriptor by calculating

the gradient magnitude and direction on the edge pixels by the pixel intensities, then measuring the distribu-

tion of the texture edges by a distance-dependent texture description function. Some other texture properties

that are derived from first-order and second-order statistics of edge distributions were summarized by Tomita

and Tsuji in [200]. Edge-based texture description can provide good performance of describing images con-

sisting of homogeneous textural regions. It can determine image regions of constant texture with no need to

assume a priori knowledge about the image, texture types or scale. However, the major disadvantage of the

edge-based texture description is that it is implemented after edge detection. If the result of edge detection

or gradient calculation is not accurate, the result of texture description is not meaningful either.

Local binary pattern (LBP) descriptor

Local binary pattern (LBP) [150], was proposed by Ojala et. al. to describe the texture by computing the LBP

code from comparing a pixel intensity with its neighbours. Based on the original LBP, several methods were

proposed to improve the LBP with rotation invariant variance measurement [225], adding local differences

features [225], avoiding missing local structure information [107], overcoming the distortion of noise [122],

combining with multi-scale analysis [215], better detecting various texture structures as dominant features

of images [223] and incorporating the non-uniform patterns [217].
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Scale invariant feature transformation descriptor

Scale invariant feature transform (SIFT) is another important intensity based descriptor proposed in [129] by

David G. Lowe, which combined a scale invariance region detector and a description based on the gradient

distribution in the detected regions. Although SIFT feature description was applied in image matching and

indexing, video tracking or moving matching [177], recent works show the possibility of using SIFT to describe

textures to improve texture classification or segmentation [222]. Some other methods have been proposed to

improve the distinctiveness and robustness of the original SIFT. For example, the gradient computation in

original SIFT, which was done with pixel differences, is very sensitive to noisy measurements [144]. In [121],

Liao and Liu proposed an improved SIFT descriptor by means of combining the second derivative and the

gradient magnitude and introducing the polar histogram orientation bin to improve the distinctiveness and

robustness. Another way to improve SIFT is to reduce the high dimensionality of the feature vectors. In

[113], Yan and Sukthankar proposed PCA-SIFT by using PCA instead of the histogram to normalize gradient

patch. Fewer components required less storage and resulted in a faster analysis, which lead to significant

improvement in efficiency. By combining SIFT and Locality Preserving Projection (LPP), a linear version

of manifold learning algorithm, Cao et. al. in [33] proposed LPP-SIFT to extract the most discriminative

feature so that the dimensionality could be reduced.

Spatial frequency based descriptor

The spatial frequency based descriptors are based on an assumption that textural characteristic directly

relates to the spatial frequencies of texture primitives: Fine textures are characterized by higher spatial

frequencies, coarse textures are characterized by lower spatial frequencies. One of many related spatial

frequency methods evaluated the autocorrelation function of a texture [194], where the decreasing speed

of the autocorrelation function around the certain texture primitive (pixel) with increasing distance had a

negative correlation with the coarseness of the texture. Shulman et. al. [180] first proposed to use average

values of energy in specific rings of the Fourier spectrum as a spatial frequency based texture description

features. Features evaluated from the rings can reflect the coarseness of the texture because high energy

in large radius rings is one of the character of fine textures and vice versa. Texture description based on

Gabor transform, proposed by Huang et. al. [99], overcame the Fourier transform’s problem of depending on

global information via applying the Gabor filters, which were a group of wavelets with each wavelet capturing

energy at a specific frequency and a specific direction. Therefore, the Gabor texture descriptor can measure

the coarseness and directionality of the texture in different scales.

2.1.2 High-level texture descriptor

The above low-level texture descriptors lacked in giving significant attention to explore the relationship

between the texture characteristics they described and human visual sense. Therefore, image descriptors for
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high-level features were proposed to describe how human beings “feel” about the different texture regions.

Gray level co-occurrence matrix (GLCM) texture descriptor

Haralick et. al. [90] defined 14 characteristics based on the gray level co-occurrence matrix (GLCM), which

was a two-dimensional array C in which both the rows and the columns were indexed by the set of possible

image values V and the value of C (i, j) indicated how many times value i co-occurred with value j in some

designated spatial relationship. In the 14 defined characteristics, the energy, entropy, contrast, homogeneity

and correlation were the most popular-used to describe a texture from others.

Laws’ texture descriptor

Laws in [117] asserted that uniformity, density, coarseness, roughness, regularity, linearity, directionality,

frequency and phase played important roles in describing a texture. They presented the Laws’ texture energy

measures to determine these properties by assessing average gray level, edges, spots, ripples and waves in

texture [116], which were derived from the convolution of three simple vectors calculating the averaging, first

difference (edge) and second difference (spots) with themselves and each other.

Tomita and Tsuji’s texture descriptor

Tomita and Tsuji’s work proved an edge detection based descriptor could also describe a wide range of texture

characteristics. They summarized the texture density, directionality, coarseness, randomness, linearity and

periodicity in [195, 200] by first detecting texture edges then calculating the edge densities in a given area,

the entropy of the edge magnitude histogram, the co-occurrences of edge pairs with the same edge direction

or perpendicular to the edge directions at constant distances.

M. Amadasun’s work

M. Amadasun et. al. [6] developed new measures that corresponded to textural characters, and therefore to

visual perception of textures. They defined five basic characters of texture namely as: coarseness, contrast,

busyness, complexity and texture strength in terms of spatial changes in intensity. To evaluate the proposed

texture characters, they used a ranking experiment where subjects (human and computer) were told to rank

the ten textures using each of the five characters then calculated the degree of correspondences between

the ranking results by Spearman’s coefficient of rank correlation. The results showed very high levels of

correspondence of coarseness and busyness between computational and perceptual measurements (0.856 and

0.782 respectively), with little lower levels of those three (contrast: 0.685, complexity: 0.600, strength:

0.600). However, the results for combining all these characters to recognize different textures performed

quite unstably, which meant a distance from the proposed description to the human visual perception.

11



Rao and Lohse’s work

Rao and Lohse et al. [163] developed a classification method for perceptual texture. Based on psychological

similarity judgements, they constructed a three-dimensional space for texture description. The three orthog-

onal dimensions were (1) repetitive vs. non-repetitive, (2) high-contrast and non-directional vs. low-contrast

and directional, and (3) granular, coarse and low-complexity vs. non-granular, fine and high-complexity.

Similar experiments conducted by Cho et al. [48] suggested that the dimensionality of perceptual texture

space was at least four. They described four orthogonal attributes, named as coarseness, regularity, contrast

and lightness.

K. Fujii’s work

K. Fujii et al. [76] presented a set of texture characters (contrast, coarseness and regularity) corresponding to

perceptual properties of visual texture based on autocorrelation function (ACF). They measured psychophys-

ical scales for the textural characters then compared these two measurement by the regression coefficients to

get a result that how these visual properties were related to particular characters. Their experiments showed

that the characteristics they chose and measured by ACF had high correspondences with the perceived tex-

ture properties (contrast: 0.89, regularity: 0.86 and coarseness: 0.70). Moreover, the regression coefficients

was the first attempt to show how human subjects seemed to be sensitive to the same parameters captured

by a certain descriptor (ACF).

Tamura’s texture descriptor

H. Tamura et. al. [196] first attempted to compare the correspondence between the texture characteristics

and psychological measurements for human subjects. They presented that six textural characteristics had

high correlation to human visual perception, which were coarseness, contrast, directionality, line-likeness,

regularity and roughness. They developed both computational and psychological measurements for these

characteristics and made a comparison between these two measures. From their comparison, they assessed

that coarseness, contrast, and directionality had a successful correspondence with human visual perception

in describing textures (the correspondence were 0.9, 0.86 and 0.831 respectively), while line-likeness, regular-

ity and roughness had less but still considerable correspondences between computational and psychological

measurements (the correspondence were 0.713, 0.719 and 0.652 respectively). As a conclusion from Tamura

et. al., coarseness, contrast, directionality would have higher weight in describing textures, but they also

admitted that their results needed more simulating experiments and the simple combinations of their features

had not simulated the human similarity measurement very well because there was more complex mechanisms

existing in the human usage of multiple cues.

Table 2.1 summarizes the image description methods reviewed above, including their categories, capabili-

ties and deficiencies. The literature reviewed here relating to image description is far from complete, and the

authors reviewed often emphasize the need for greater attention to this area. No work was found to provide
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Method Category Capability Deficiency

Model-based

descriptor

[58, 156, 55]

Low-level

descriptor

describe the texture by the

estimated parameters of the image

model

• do not reflect the textural

differences in human

visual sense

• lacking in richness to

describe a wide variety of

textures

Edge-based

descriptor [195]

Low-level

descriptor

describe the texture by the

distribution of the image edges

LBP descriptor

[150]

Low-level

descriptor

describe the texture by computing

the LBP code from comparing a

pixel intensity with its neighbours

SIFT descriptor

[129]

Low-level

descriptor

describe the gradient orientation

information of the keypoint pixels

in different scales

Tomita and

Tsuji’s

descriptor [200]

High-level

descriptor

define density, directionality,

coarseness, randomness, linearity

and periodicity

• do not provide a local

description of textural

differences

• lacking in deciding

orthogonal features for

texture description

GLCM

descriptor [90]

High-level

descriptor

define energy, entropy, contrast,

homogeneity, correlation and other

14 characteristics

Law’s

descriptor [117]

High-level

descriptor

define uniformity, density,

coarseness, roughness, regularity,

linearity, directionality, frequency

and phase

M. Amadasun’s

descriptor [6]

High-level

descriptor

define coarseness, contrast,

busyness, complexity and strength

Rao and

Lohse’s

descriptor [163]

High-level

descriptor

define coarseness, regularity,

contrast and lightness

K. Fujii’s work

[76]

High-level

descriptor

define contrast, coarseness and

regularity

Tamura’s

descriptor [196]

High-level

descriptor

define coarseness, contrast,

directionality, line-likeness,

regularity and roughness

Table 2.1: Summary of several popular texture description methods.
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a measurement of the degree of correspondence on a wider range of texture properties other than regression.

Further, no research was found that demonstrated how to determine the number of orthogonal dimensions

of texture characters for different textures. The theoretical methods proposed above for image description is

foundational to the hypothesis and research objectives which follow.

2.2 Image decomposition

According to the proposed solution in Chapter 1.3, the texture image needs to be manipulated by modifying

components of the texture. Therefore, image decomposition could be a good solution to this problem because

it separates the image into different parts. There are three elements for image decomposition methods, which

are 1) assumption of input images, 2) assumption of output results, and 3) algorithmic approaches for

achieving decomposition.

Assumption of input images

The input images of image decomposition can be obtained from a variety of sources, such as synthetic

texture images from different texture database, real world pictures, etc. These images can be classified into

the following two types:

• images containing model-specific components [100, 69, 26]: the intensity of each pixel in the image can

be considered as the sum of the products of value of some components and their coefficients:

I (x, y) =

K∑
k=1

ck (x, y) sk (x, y) , (2.1)

where I (x, y) is the intensity of the pixel at the position (x, y), sk (x, y) and ck (x, y) are the value of

the component and the coefficient at (x, y) respectively. A good example is the texture-cartoon model

proposed in [26] where an image is considered as the sum of two parts:

inf
(u,v)∈X1×X2

{F1 (u) + λF2 (v) : f = u+ v} , (2.2)

where u represents the cartoon part defined as the piecewise smooth image content [139] and v is the

texture part containing textures in the image [139].

• images containing components with arbitrary characteristics [119, 60, 59].

Assumption of output results

With different purposes, the results of image decomposition are different. The results can be also catego-

rized into the following two types:

• components corresponding to different features [153, 16]: images are separated into different basis

images that display certain features from the original image;

14



• components matching prior image models [198, 13, 18]: images are decomposed into different images

based on models that are learnt before separation.

Algorithmic approaches for decomposition

Given the types of input images and output results, there are two different types of algorithmic approaches

for the decomposition:

• component analysis [106, 203, 11]: searching for the comprising components of the input image;

• transformation [219, 43]: using filter masks or other algorithms to transform the images into components

as close to the assumption of results as possible.

Based on the above three elements, state-of-the-art methods for image decomposition can be classified

as: 1) methods based on mathematical models, 2) methods based on filter banks, and 3) methods based on

component analysis. Table 2.2 summarizes the relationship between these kinds of methods and the input,

output and strategies that we discussed before.

Method Input Output Strategy

Methods based on

mathematical models

Linear combination of

several components

Components matching

several prior image

models

Transformation

Methods based on

component analysis

Linear combination of

several components

Components

corresponding to different

features

Component analysis

Methods based on

filter banks

Images containing no

obvious components

Components

corresponding to different

features

Transformation

Table 2.2: Characteristics of different image decomposition methods.

2.2.1 Decomposition based on mathematical models

The general concept of this kind of method is that an image can be regarded as composed of several parts

following different mathematical models.

At the very beginning of the research in image decomposition, an image was regarded as composed by

a structural part, corresponding to the main large objects in the image, and a textural part, containing
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fine scale-details, usually with some periodicity and oscillatory nature. Because texture is vague and highly

depends on the image scale, the early decomposition methods based on models attempted to model the

meaningful structural parts first, and chose different models for textural parts. The most popular model for

estimating structural part was total variation proposed by Rudin et. al. [169]. Generally, they solved the

function as shown in Equation 2.2. To make better estimation of textural parts, different total variational

(TV) based models have been proposed. Here we just introduce some most widely-used models.

Rudin, Osher and Fatemi proposed in [169] a model (ROF) that decomposed an image f into a component

u belonging to a bounded variation (BV) function, which meant the total variation of u was finite, and a

component v in the L2 space where the distance of two functions f and g was defined as 2-norm. In their

approach the following function was minimized:

inf
(u,v)∈BV×L2/f=u+v

(∫
|Du|+ λ ‖v‖2L2

)
, (2.3)

where Du was the total variational model of u, ‖v‖L2 denoted the 2-norm of noise v, which can be modelled

as the difference between the input image f and the estimated component u.

In [139], Mayer suggested a new decomposition model based on Banach space G that is composed of

distributions f which can be written as:

f = ∂1g1 + ∂2g2 = div (g) . (2.4)

They also proposed the norm based on G as a model for the oscillatory part as:

‖v‖G = inf

{
‖g‖L∞ /v = div (g) , g = (g1, g2) , g1 ∈ L∞, g2 ∈ L∞, |g (x)| =

√(
|g1|2 + |g2|2

)
(x)

}
. (2.5)

The function belonging to G may have a large norm or a small norm. Thus the norm on G was well-adapted

to capture the oscillations of an image function in an energy minimization method.

In [149], it was suggested to replace the assumption that v was in L-2 space by that it is in L-1 space,

where the distance of two functions was defined as L-1 norm. From their experimental results, Nikolova et.

al. showed that their model can preserve the edge of objects from de-noising better than the ROF model

and it was well suited for separating “salt and pepper” noise from the smooth regions of the image.

The above methods perform well for synthesized images because the composition of the images is relatively

simple. But for natural images, the presence of noise lead researchers to find some new models to differentiate

texture and noise. In [139], Meyer et. al. proposed a method for decomposing images into three parts:

structures, textures and noise. Each of these were captured by a different model: structures and textures

were modelled by functions in BV and G spaces (BV was the bounded variation space and G was defined in

2.4), noise was modelled as a different oscillatory function in G and its G-norm was much smaller than the

norm of the textures. The following functions were used:

F JGλ,µ1,µ2
(u, v, w) = J (u) + J∗

(
v

µ1

)
+ J∗

(
w

µ2

)
+ (2λ)

−1 ‖f − u− ν1v − ν2w‖2L2 , (2.6)

16



where J∗ was the adjoint of J , guaranteeing the texture and noise part were in a particular range, defined by

J∗
(
v

µ

)
=

 0, v ∈ Gµ
+∞, v ∈ G \Gµ

, (2.7)

where

Gµ = {v ∈ G | ‖v‖G ≤ µ} . (2.8)

Following Meyer’s work, several additional models were proposed for distinguishing texture and noise.

For example, in [12], Aujol and Chambolle proposed to consider noise as a distribution modelled by functions

belonging to Besov space Bsp,q. From the experimental results, textures can be better de-noised by this

model, which proved a better noise modelling by distributions in the Besov space. But this model didn’t take

advantage of the adaptivity as the model before. In [82], J. Gilles combined the advantages of both the two

models and the experiments showed that the combination of the two properties (Besov space for noise and

local adaptivity) increased the quality of the decomposition. Textures were better de-noised and the noise

part contained less residual texture by the local adaptive algorithm. Though the noise was not modelled as

accurately as which was separated in [12], this method still attracted a great attention since one may care

about the texture and structure of an image more than the noise part.

2.2.2 Decomposition based on filter banks

Another category of classical decomposition methods are methods based on filter banks, which transforms the

input image without loss of information by a particular filter bank sensitive to some properties of the image.

Gaussian pyramid [202] and Laplacian pyramid [3] were two classical methods proposed to decompose image

based on different resolutions. The Gaussian pyramid consisted of a sequence of images where each image was

a down-sampled, low-pass filtered copy of the previous image. While Laplacian pyramid was a decomposition

derived from Gaussian pyramid for each level of this bandpass pyramid represented the difference between

successive levels of the Gaussian pyramid. Roberto and Mark proposed the directional filter bank (DFB)

image decomposition in [15], which decomposed an image into components representing different directional

edges in the image. A 2m-band DFB was implemented by a tree structure consisting of ‘m’ levels of two-

channel fan filter banks. In [67], the author tried changing the basic fan filter to a quadrature mirror filter

(QMF) and using it to the same DFB decomposition structure to get a lower error via filtering the image.

Recently, filter banks based on wavelet theory have attracted a great attention for it can decomposition

the image both by resolution and directionality. In [7], 2-D wavelet was first expanded from 1-D wavelet

transform to decompose an image by analyzing the image at different scales via down-sampling the image.

To solve the problem which higher scaling sub-images in wavelet transform have lower resolutions, Fowler

et. al. [75] proposed to decompose an image by stationary wavelet transform (SWT), which up-sampled

the wavelet in contrast to the traditional wavelet transform, producing full-resolution images at each level of

decomposition, leading to the preservation of more image details in the process of decomposition. Donoho et
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al. [63] proposed curvelet transform that enabled the possibility to analyze an image with different angular

resolutions in a single and effective transform. In [61], Do et. al. proposed a method that can separate the

input image into any resolution and any direction called contourlet, which was designed as a combination of

the Laplacian pyramid and the directional filter bank.

2.2.3 Decomposition based on component analysis

Methods based on mathematical models and methods based on filter banks both have some disadvantages

in decomposing the image into components corresponding to arbitrary characters. Methods based on math-

ematical models have the problem that the adaptivity of the function is difficult to guarantee because it

may be that the whole image cannot be represented by the same combination of the models and the optimal

solution (in terms of the model) is often a compromise result. For methods based on filter banks, there are

only multi-resolution and multi-directional filter banks used in image decomposition, so if the textures to be

processed don’t contain some obvious directional features or the contour of the object in the image is not

explicit, this kind of methods perform not as well as expected. The following work about decomposing meth-

ods based on component analysis have enlightened us a lot in decomposing the image according to arbitrary

features of textures.

Independent component analysis (ICA) was originally developed to deal with the blind source separation

problem in signal processing [52]. In [49], it was first proposed that ICA could represent an image by the

same feature combinations and different coefficients as it did in signal processing. Cichocki et. al. presented

that with a suitable selection of the components of ICA, an image can be projected into these basis function

directly, which was the target of image decomposition.

The methods of solving an ICA problem was summarized by Hyvarinen in [101] as formulating an objective

function that made a choice of the statistical properties of the components and than minimizing or maximizing

them, and some optimization algorithms were used to improve the performance of the method in terms of its

algorithmic properties. Following this idea, a diversity of ICA algorithms with different objective functions

and optimization algorithms were proposed in image processing. Hyvarinen and Oja proposed the FastICA

algorithm in [102], which had the advantages: (1) it can directly find independent components of any non-

Gaussian distribution using any non-linearity functions, (2) it was parallel distributed, computationally simple

and required little memory space, and (3) it was easy to use because it worked automatically after setting

the initial parameters. Sparse ICA (SPICA) was proposed in [227] with using the sparsity as the objective

function. Huang et al. [97] proposed a L-norm based sparsity as the objective function, then optimized

the function by gradient method, finally iterated the result by a Winner-Take-All (WTA) neural network,

improving the spasity by 30% and the speed by 40% compared with the classic ICA method.

Morphological component analysis (MCA) was proposed by Starck et at. [189] based on the sparse

representation of signals. MCA assumed that each mono-channel signal is the linear mixture of several

layers, which were so called morphological components, that are morphologically distinct, for example, sines
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and bumps.

A widely-used method in separating an image by MCA was proposed in [23] as solving the minimization

problem: {
sopt1 , . . . , soptK

}
= arg min

{s1,...,sK}

K∑
k=1

‖Tksk‖1 + λ

∥∥∥∥∥s−
K∑
k=1

sk

∥∥∥∥∥
2

2

+

K∑
k=1

γkCk (sk) , (2.9)

where sk represented the k-th source of the image signal, Tk was the transformation corresponding to the

particular characteristic of the source sk, s was the observed image, λ was the weighted parameter and

Ck implemented constraints on component sk. ‖·‖ was a 1-norm, minimizing ‖Tksk‖1 meant to make the

separation sparsest since it measured the number of non-zero entries in the signal matrix sk after transform

Tk.
∥∥∥s−∑K

k=1 sk

∥∥∥2

2
measured the distance between the observed image s and the estimated result

∑K
k=1 sk so

that a minimum of it meant the decomposed components can reconstruct the image closest to the original one.

While minimizing the residue
∑K
k=1 γkCk (sk) guaranteed the decomposition was implemented as complete

as possible.

Based on the work discussed above, the essential mission of solving MCA image decomposition is to find

different dictionaries corresponding to different transformations Tk in Eq. 2.9. Starck et al. [192] applied

the Discrete Cosine Transform (DCT) to comprise the dictionary for texture and curvelet transform for the

structure part. In [188], Starck et. al. proved that Gabor transform was helpful for extracting textures

with different orientations and frequencies from an image and they presented to use a Gabor transform to

compute the texture component. MCA was extended in [22] to deal with multichannel data (MMCA) based

on the idea proposed in [228] and [84] to build alternative source separation methods by sparsity. The input

data X were no longer the simple sum of sources but a set of linear combinations of some sources. MMCA

brought a stronger and more robust solution than original MCA as long as the MCA hypothesis was verified

for morphologically diverse sources. Another algorithm for multichannel morphological component analysis

was generalized morphological component analysis (GMCA), which was proposed in [72]. Fadili et. al.

assumed that GMCA was an extension of MMCA that each source was modelled as the linear combination of

morphological components where each component was sparse in a specific basis. GMCA was able to produce

better separation results than MMCA because it had greater morphological diversity, better sparsity and

used sparse, over-complete (redundant) representations. Further, in [189] Starck et. al. found that MCA

could help ICA to some extent because ICA aimed at enforcing the independence of the estimated sources

and suffered from a certain lack of robustness in the presence of noise while MCA performed well even in

the presence of noise for morphologically different sources. They proposed the ICA-MCA method that took

advantages of both ICA, which enforced the statistical independence of the estimated sources, and MCA,

which gave more contrast between the sources as it extracted the essence of each one.

Table 2.3 summarizes several most typical image decomposition methods, including their categories,

capabilities and deficiencies. Image decomposition based on component analysis can provide a more and more

adequate and accurate performance so far, but the decomposition is still based on “structure+texture+noise”.

There is still no convincing work in decomposing a texture into different components according to some
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Method Type Capability Deficiency

ROF model

[169]

method based on

mathematical

models

separate the structural parts

and texture or noise

can’t separate different types

of textures

Meyer’s model

[139]

method based on

mathematical

models

separate the structural parts

and oscillations

can’t separate different types

of textures

directional filter

bank [15]

method based on

filter banks

find components representing

directional edges

can’t separate textures

different in characteristics

other than directionality

wavelet [7] method based on

filter banks

find components representing

low-frequency parts and

high-frequency parts with

different directions

can’t separate textures

different in characteristics

other than directionality and

resolution

curvelet [63] method based on

filter banks

find components smooth

apart from singularities

along smooth curves

can’t separate different types

of smooth regions

contourlet [61] method based on

filter banks

find components in any

resolution and any direction

can’t separate textures

different in characteristics

other than directionality and

resolution

ICA [49] method based on

component analysis

find components representing

different pre-learned texture

features

can’t separate textures

different in characteristics

other than the pre-set ones

MCA [189] method based on

component analysis

find structural parts,

textural parts and noise

can’t separate different types

of textures

Table 2.3: Summary of several most popular image decomposition methods.
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characteristics, in which case the texture cannot be processed by manipulating the components composing

the texture. However, all the theoretical methods and practical work proposed above for image decomposition

are foundational work for our hypothesis in expressing different characteristics of texture and develop different

dictionaries corresponding to characteristics in the decomposition efficiently.

2.3 Image manipulation

Image manipulation is defined as the method of transforming the intensities of the pixels in an image by some

functions or operations. Since we consider the components of the texture as a set of independent images,

methods of image manipulation can be applied to modify the textural components so as to modify the texture.

As the proposed hypothesis, texture can be decomposed into different pairs according to different characters

and each sub-image of each pair represents the relative effect of that character (e.g. fine vs. coarse, directional

vs. non-directional, high-contrast vs. low-contrast), so we only need to enhance each of the sub-images to

increase the difference between different textures with respect to some characteristics. Therefore, popular

methods in image manipulation, particularly in image enhancement, are reviewed in the following part.

2.3.1 Linear image manipulation

Some classical intensity transformation methods were proposed to enhance the image contrast and so image

details by increasing the range of the intensity values in the image. Image normalization [155] was proposed

to transform an n-dimensional grayscale image I with intensity values in the range (Min,Max) into a new

image IN with intensity values in the range (newMin, newMax) by a linear transformation. Histogram

equalization was proposed in [229] to remap pixel intensities. It spread the pixel intensities over the entire

available dynamic range and made use of as many different intensities as possible and the discrete equalization

transformation was expressed as: sk = T (rk) =
∑k
j=0 pr (rj) =

∑k
j=0

nj
n for k = 0, 1, 2, . . . , L− 1, where sk

was the output intensity value corresponding to input value rk. Some other non-linear transformations can

also be used to expand the intensity range and image contrast, including logarithmic transformation [4], of

which the expression was v = c log (1 + u), power-law transformation [133], with the expression of v = c · uγ ,

and contrast-stretching transformation [216], with the form of v = 1
1+(m/u)E

.

The intensity transformations described above may cause loss of information because pixels of different

intensities might be mapped to the same one. Another disadvantage was that these operations didn’t consider

the spatial information of the processed pixel and the relationship between the pixel and its neighbours. Since

most image features (edge, textures, etc) involved a spatial neighbourhood of pixels, spatial filtering methods

that processed all pixels in the neighbourhood as a whole have attracted more attention.

Image derivate filters [182] manipulated the input image to its gradient image, which were proposed to

enhance some features of the image. Some famous example of derivative filters were: the first-order derivative

filter, Sobel operator [212] and Roberts operator [166] for edge extraction; the second-order derivative filter,
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Laplacian operator [207] for edge sharpening or detail enhancement and the Laplacian of Gaussian (LOG)

filter, which convolved the Gaussian smoothing filter with the Laplacian filter to reduce the high frequency

noise components prior to the different step so as to sharpen the edge without increasing the noise. Sticks

filter bank proposed by Czerwinski et al. [56] consisted of a set of 2n − 2 square binary valued linear filter

masks of size n × n, each responding maximally to a length n line segment of different orientation. Each

mask in a sticks filter bank represented the hypothesis of a line segment in a particular orientation in the

maximum likelihood formulation of the line and boundary detection problem. It has proved to be successful

in enhancing images for boundary detection because it assigned the maximal average only to the pixels that

on the boundary. Gaussian sticks were proposed in [70] to improve the contrast between linear features

and background based on uniform sticks. Instead of using uniform distribution along the line orientation,

Gaussian sticks applied Gaussian distributed masks along different orientations to build the filter bank. It

proved to be able to increase the difference between two textures with respect to some GLCM characteristics.

2.3.2 Non-linear image manipulation

The linear spatial filtering methods discussed above had the disadvantage of loss of adaptivity because of

using the same filter mask or set of filter masks to convolve the input image without considering different

image structures locally. The following spatial filtering methods based on non-linear processing enlightened

our proposed hypothesis a lot.

Coherence-enhancing anisotropic diffusion was proposed by Cottet and Germain [53] as a modification of

traditional anisotropic diffusion. The basic idea was to smooth the image anisotropically along the flow field

such that gaps can be closed. Cottet et. al. presented that their diffusion method encouraged smoothing

along the coherence orientation and was therefore well-suited for closing interrupted textures. Fig. 2.1 shows

the effect of enhancing fingerprint texture by coherence-enhancing anisotropic diffusion. Due to its reduced

diffusivity at non-coherent structures, the locations of the semantically important singularities in the texture

would remain the same.

Shock filtering was another type of morphological image enhancement methods, and most of the current

shock filters were based on modifications of Osher and Rudin’s formulation in terms of partial differential

equations (PDEs) [151]. They created strong discontinuities at image edges, and within a region the filtered

signal became flat, therefore, shock filtering can provide good performance where edge sharpening and a

piecewise constant segmentation was desired, as shown in Fig. 2.2. J. Weickert et al. [211] proposed the

so-called coherence-enhancing shock filters. The filters combined the stability properties of shock filters with

the possibility of enhancing flow-like structures. It was achieved by steering a shock filter with the orientation

information that was provided by the so-called structure tensor [19, 74, 162]. They reported their filter acted

like a contrast-enhancing shock filter perpendicular to the flow direction, while it created a constant signal

along the flow direction by applying either a dilation or an erosion process.

Fractional differential operator based method was another important attempt to enhance image textures,
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(a) original image (b) enhanced image

Figure 2.1: Texture enhancement by diffusion filtering. (a) is the original fingerprint image, and (b)
is the image enhanced by the coherence-enhancing diffusion filter [209]. The texture of the fingerprint
is enhanced with more smooth, continuous texture flows and less noise.

(a) original image (b) enhanced image

Figure 2.2: Texture enhancement by shock filtering. (a) is the original image, and (b) is the image
enhanced by the coherence-enhancing shock filter [210]. The subtle differences in the blurred texture
regions are enhanced with the sharp shocks of colours orthogonal to the directions of the texture flows.
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because fractional differential operator was well known for its capability of characterizing fractal-like patterns

[165] that typically composed texture regions. Pu et. al. [218] have developed an n×n fractional differential

operator mask after analyzing the geometric and physical properties of different ractional differential opera-

tors. By convoluting the mask to the image in different directions, the proposed method could nonlinearly

preserve the low-frequency contour feature in the smooth area to the furthest degree, and nonlinearly enhance

high-frequency areas including edges and details. Their experiments proved the proposed method enhanced

texture better than traditional integral-based differential operators [159]. Pu’s work had the problem that

texture regions with high self-similarity were not well characterized and it was difficult to find the optimal

fixed fractional derivative order matching local texture details. In [96], Hu et. al. proposed an adaptive

fractional differential operator mask to overcome this drawback. The proposed method could adaptively

determine the fractional order by integrating a non-regular support region so that the texture enhancement

performance can be optimized regardless of whether the regions consist of high or low frequency patterns.

(a) original image (b) enhanced image

Figure 2.3: Texture enhancement by fractional differential operator. (a) is the original image, and (b)
is the image enhanced by the fractional differential operator [96]. The contour features in the smooth
area are preserved while the edges and details are enhanced by convolving the fractional differential
operator mask to the image.

Other than spatial filtering, there were also image enhancement methods implemented in transform do-

main. They first converted the image by different transforming methods, then modified the coefficients in

the corresponding domains, and finally transformed the image back to the spatial domain using the modified

coefficients. The most widely-used methods in image enhancement were methods based on wavelet transform.

The most popular wavelet-based filtering was the soft-thresholding, which was first proposed in [62]. The

authors “shrank” or “expanded” the wavelet coefficients above a threshold T by the absolute value of the

threshold itself, therefore the noise would be restrained, the details would be enhanced, and the main struc-

ture wouldn’t be changed. Based on their theory, a diversity of wavelet thresholding methods were proposed

according to different choices of threshold and ways of modifying coefficients [95, 173, 206, 128].

The categories, capabilities and deficiencies of the most typical image manipulation methods are listed
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Method Category Capability Deficiency

Histogram

equalization [229]

linear

manipulation

enhance the contrast of the

image

degrade the spatial information

of the processed pixel and the

relationship between the pixel

and its neighbours

Gaussian sticks

filtering [70]

linear

manipulation

enhance the edges with

different orientations

degrade the texture details

without explicit orientations

Unsharp mask

filtering [158]

linear

manipulation

sharpen the edges in the

image

enhance all types of textures to

the same extent

Coherence-

enhancing diffusion

filtering [53]

non-linear

manipulation

enhance the continuity of the

texture flows and remove

noise

remove some isolated texels as

noise

Shock filtering

[211]

non-linear

manipulation

enhance the subtle

differences between textures

by adding shocks orthogonal

to the directions of the

texture flows

over-manipulate the shapes of

textures because of the additive

shocks

Fractional

differential

operator filtering

[159]

non-linear

manipulation

enhance the texture details

by finding the fractal-like

structures in the image

enhance all the textures using

the same fixed fractional

derivative order without

characterizing different types of

textures

Wavelet-based

filtering [62]

non-linear

manipulation

enhance the texture details

by modifying the

corresponding

high-frequency coefficients

only enhance the directional

texture edges by the wavelet

coefficients in the corresponding

sub-bands

Table 2.4: Summary of several typical image manipulation methods.
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(a) original image (b) enhanced image

Figure 2.4: Texture enhancement by wavelet-based shrinkage method. (a) is the original image, and
(b) is the image enhanced by the wavelet-based shrinkage method [47]. The noise is restrained and
the edges are preserved by shrinking the wavelet coefficients above the threshold.

in Table 2.4. From the discussion above, non-linear manipulation method fits our proposed hypothesis best

because it can accentuate the texture features in the image. However, the image manipulation with non-linear

filter is still a quite open problem so far. The enhancement methods mentioned above still degrade some

parts of the image while enhance the interesting region. Further, these methods focus on how to enhance

texture itself as a total but not each particular texture characteristics. However, the theoretical methods

proposed above enlighten what we will do in the following chapters.
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Chapter 3

Human visual perceptual texture description

3.1 Introduction

As we discussed in Chapter 2.1.2, the human visual perceptual texture descriptors are designed to reflect how

human beings perceive different types of textures. However, one drawback of the existing descriptors is the

incorrect calculation of the high-level texture characteristics by using the low-level statistical measurements

[103]. For example, the Tamura descriptor’s directionality was tested in [143] and the results demonstrated

that sometimes it gave higher directional score to images having edges with random directions than images

with a dominant edge orientation. Moreover, most of the descriptors capture the texture characteristics

globally for the given image, so they cannot precisely describe the variances of the texture characteristics in

the textural images with multiple textures, e.g., two completely different images each with a 50% black and

50% white pixels have idential gray level histograms [186], therefore the Tamura’s contrast, which is based

on the variance and the kurtosis of the gray level histogram of the whole image, cannot distinguish between

them.

Another shortcoming of the human visual perceptual texture descriptors is they capture more charac-

teristics than necessary. Tamura concluded that coarseness, contrast and directionality were the essential

factors in texture and had high potential to distinguish different textures [196]. But this result was based on

empirical and subjective experiments, i.e., they let human subjects rank textures with respect to the given

characteristics and approximated the correlation between each characteristic. Therefore, it is necessary to

design a more objective, mathematical algorithm to reduce the dimensionality of the feature vector extracted

from the image and extract the essential characteristics to describe the different textures in the image.

Dimensionality reduction is the process of reducing the number of random variables under consideration to

obtain a set of “uncorrelated” principal variables [168]. Most of the dimensionality reduction techniques can

be divided into feature extraction and feature selection [160]. Feature extraction approaches transform data

in a high-dimensional space to a lower-dimensional space. The transformations can be both linear (such as in

principal component analysis (PCA) [109], linear discriminant analysis (LDA) [136], and maximum margin

criterion (MMC) [120]), and non-linear (such as kernel PCA, locally linear embedding (LLE) [168], and

isomap [197]). However, transformed features usually lack obvious semantic meaning, making it difficult to

understand the image and to analyze image components representing different high-level visual characteristics.
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Feature selection techniques have proven to be more effective than feature extraction approaches for

dimensionality reduction of image features because they pick a subset of the original features rather than to

find a mapping that uses all of the original features. Some early feature selection methods have been proposed

and applied in different situations. Among them, the regression area has been investigated extensively. In

[126], a multi-layer perception is used for variable selection. In [125], step-wise discriminant analysis for

variable selection is used as inputs to a neural network that performs pattern recognition of circuitry faults.

Other regression techniques for variable selection are described in [93]. In contrast to the regression methods,

which lack unified optimality criteria, the optimality properties of PCA have attracted research on PCA-

based variable selection methods [138, 109, 114, 115]. However, these methods have the disadvantage of

either being too computationally expensive, or choosing a subset of features with redundant information.

In this chapter, we improve the Tamura’s texture descriptor by measuring each of the six texture character-

istics with novel local metrics so that these measurements reflect the human perception of each characteristics

more precisely. The local calculations of the texture characteristics make it possible to distinguish between

images with different textures but similar histograms. Then we propose a PCA-based feature selection

method exploiting the structure of the principal components of the feature set to find a subset of the original

feature vector, where the features reflect the most representative characteristics for the textures in the given

image dataset.

3.2 Local Tamura’s texture description

3.2.1 Tamura’s texture features

In [196], six human visual perceptual texture features were proposed by Tamura, Mori and Yamawaki on

the basis of psychological experiments. The six textural features are: coarseness, contrast, directionality,

line-likeness, regularity and roughness. The computations of these features are reviewed as follows.

Coarseness

Coarseness relates to spatial distances between obvious variations of gray levels. In other words, it is the mea-

surement of the size of the primitive elements (texels) composing the texture. The computational procedure

is defined in the following steps:

Step 1: Calculate averages at every point over neighbourhoods whose sizes are powers of two, e.g., 1× 1,

2× 2,4× 4,. . . , 32× 32. The average over the neighbourhood of size 2k × 2k at the pixel (x, y) is:

Ak (x, y) =

x+2k−1−1∑
i=x−2k−1

y+2k−1−1∑
j=y−2k−1

f (i, j) /22k, (3.1)

where f (i, j) is the intensity at (x, y).

28



Step 2: Calculate differences between pairs of averages corresponding to pairs of non-overlapping neigh-

bourhoods just on opposite sides of each pixel in both horizontal and vertical orientations. For example, the

difference in the horizontal case is:

Ek,h (x, y) =
∣∣Ak (x+ 2k−1, y

)
−Ak

(
x− 2k−1, y

)∣∣ . (3.2)

Step 3: At each pixel, pick the neighbourhood size which generates the highest output value:

Sbest (x, y) = 2k, (3.3)

where k maximizes E in either direction, i.e.,

Ek = Emax = max (E1, E2, · · · , EL) . (3.4)

Step 4: Finally, calculate the average of Sbest over the picture to be a coarseness measurement Fcrs:

Fcrs =
1

m× n
m∑
i=1

n∑
j=1

Sbest (i, j) , (3.5)

where m and n are the effective width and height of the image, respectively.

Contrast

In Tamura’s work, they assumed four factors that influenced the contrast difference between two texture

patterns with different structures:

1. dynamic range of gray levels,

2. polarization of the distribution of black and white on the gray level histogram or ratio of black and

white areas,

3. sharpness of edges,

4. period of repeating patterns.

However, they approximated only Factors 1 and 2 (to generate quite successful results for their testing texture

pattern) as follows:

For Factor 1, they used the variance of pixel intensities σ2 or standard deviation σ about the mean of the

gray levels probability distribution to reflect the dynamic range of the gray levels of the image. However, the

resultant value was undesirable for a distribution where a single peak is highly biased to black or white as

shown in Fig. 3.1.

For Factor 2, they applied the kurtosis α4 of the intensity histogram as a measurement of polarization,

which is defined as:

α4 =
µ4

σ4
, (3.6)
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(a) D7 texture in Brodatz database [24] (b) Histogram of the D7 texture in (a)

Figure 3.1: Example of the texture with the gray level distribution where a single peak is highly
biased to white. (a) is the part of the D7 texture in the Brodatz database [24], (b) is the distribution
of the gray levels of the pixels in the image.

where µ4 is the fourth moment about the mean and σ2 is the variance. The measurement is normalized with

respect to the range so that it can have the minimum value of one in case of twin peaks.

The standard deviation σ and the kurtosis α4 are combined for the measurement of contrast as follows:

Fcon = σ/ (α4)
n
, (3.7)

where n is a positive number. In their experiments, they varied n from 8, 4, 2, 1, 1/2, 1/4, to 1/8. Ex-

perimentally, n = 1/4 yielded the best correlation between the human measurement and the computational

measurement. This calculation of contrast could reduce the values for distributions with biased peaks while

almost preserving those for polarized distributions as shown in Fig. 3.2.
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(a) D20 texture in Brodatz database [24] (b) Histogram of the D20 texture in (a)

Figure 3.2: Example of the texture where the gray levels distribute into two polarized peaks. (a) is
the part of the D20 texture in the Brodatz database [24], (b) is the distribution of the gray levels of
the pixels in the image.

Directionality

In Tamura’s descriptor, directionality was measured using the histogram of directional angles of the oriented

local edges, i.e., the frequency distribution of oriented local edges against their directional angles. This
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method utilizes the fact that a gradient is a vector, so it has both magnitude and direction. In the discrete

case, the magnitude |∆G| and the local edge direction θ are approximated as follows:

|∆G| = (|∆H |+ |∆V |) /2
θ = tan−1 (∆V /∆H) + π

2

, (3.8)

where ∆H and ∆V are the horizontal and vertical differences measured by the following 3×3 moving window

operators:

−1 0 1

−1 0 1

−1 0 1

1 1 1

0 0 0

−1 −1 −1

(3.9)

The resultant θ is a real number (0 ≤ θ < π) measured counterclockwise so that the horizontal direction is 0.

The desired histogram HD is obtained by quantizing θ and counting the pixels with the magnitude |∆G|
over the threshold t as:

HD (k) = Nθ (k) /

n−1∑
i=0

Nθ (i) , k = 0, 1, · · · , n− 1, (3.10)

where Nθ (k) is the number of points where (2k − 1)π/2n ≤ θ < (2k + 1) /2n and |∆G| ≥ t. Thresholding

|∆G| by t prevents counting directions of the pixels that are too weak to be regarded as edge pixels.

By computing the sharpness of the peaks of the direction histogram HD, the directionality was measured

quantitatively, defined as follows:

Fdir = 1− r · np ·
np∑
p

∑
φ∈wp

(φ− φp)2 ·HD(φ), (3.11)

where np is the number of peaks, φp id the p-th peak position in the histogram HD, wp is the range of p-th

peak between valleys, φ is the quantized direction angle (cyclically in modulo 180◦), while r is a normalizing

factor related to the number of quantization levels of φ.

Line-likeness

Tamura defined the word line-likeness as a characteristic of texture that is composed of lines. For this purpose,

when the direction and the neighbouring edges’ directions for a given edge are nearly equal, they regarded

such a group of edge pixels as a line.

To be more specific, a direction co-occurrence matrix was constructed whose element PDd(i, j) was defined

as the relative frequency with which neighbourhoods centred at two pixels separated by a distance d along

the edge direction occur on the image, one with the quantized direction i and the other with the quantized

direction j. And as they calculated the directionality, it is preferable to ignore directions of trivial edges by

using the threshold t.

Therefore, as the measure of line-likeness, the following measurement is defined so that co-occurrences in

the same direction are weighted by +1 and those in the perpendicular direction by −1:

Flin =

m∑
i

n∑
j

PDd(i, j) cos[(i− j)2π

n
]/

m∑
i

n∑
j

PDd(i, j), (3.12)
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where PDd is the n× n local direction co-occurrence matrix of pixels at distance d.

Regularity For natural textures, it is difficult to measure the degree of irregularity because the natural

images are always without any information such as texture element (texel) size or shape. Therefore, Tamura

assumed that if any feature of a texture varies over the whole image, the image is irregular. Hence they

took partitioned sub-images from the input image and considered the variation of each feature in each sub-

image. They took the sum of the variation for each of the four features defined above as the measurement of

regularity:

Freg = 1− r(σcrs + σcon + σdir + σlin), (3.13)

where r is the normalizing factor and each σxxx means the standard deification of Fxxx.

Roughness According to the results of their psychological experiments on vision, Tamura emphasized the

effects of coarseness and contrast on roughness, and approximated a measurement of roughness by:

Frgh = Fcrs + Fcon. (3.14)

Their intention lied in examining to what an extent such a simple approximation corresponds to human visual

perception.

From their own experiments [196] and the following research [134], Tamura’s texture descriptor has proved

to be successful in reflecting the human visual perception on textures and bridging the semantic gap [226]

between low-level features (e.g., numerical vectors) and high-level concepts (e.g., coarseness/fineness, line-

like/blob-like). However, all the six texture characteristics from Tamura’s descriptor describe the textural

image globally, resulting in difficulties in discriminating the different textures in the image. Therefore, in

the next chapter, Tamura’s descriptor is improved to represent texture features locally, still following the

definition and the understanding of the texture characteristics.

3.2.2 Local Tamura’s texture features

This chapter will focus on extending Tamura’s features for local texture description. When extending de-

scriptors from global to local, a common method is: for each pixel, treat the neighbourhood centred at it

as an image, then apply the texture descriptor to this sub-image and assign the feature vector to the centre

pixel. However, for some of the Tamura’s features, this simple “global to local” method is not applicable

because the global features are calculated from the relations among the adjacent image blocks that cannot

be defined in a local neighbourhood. Therefore, we research the definition of each feature and calculate them

by the low-level features that measures the relation among pixels in the local window centred at each pixel.

Coarseness

Coarseness is defined to measure the size of the texels in the image. As shown in Fig. 3.3(a) and Fig.

3.3(g), larger texels composing the texture result in higher coarseness value. Equally, it can be considered to
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coarseness contrast directionality line-likeness regularity roughness

strong

(a) (b) (c) (d) (e) (f)

weak

(g) (h) (i) (j) (k) (l)

Figure 3.3: Example textures exhibiting the six Tamura’s texture features strongly and weakly.
Columns (from left to right): textures with high (upper row) and low (lower row) values with respect
to coarseness, contrast, directionality, line-likeness, regularity and roughness.

measure the density of the texels in the neighbourhood: the more texels are there in the local window, the

smaller sizes the texels have, and the lower the coarseness should be. Therefore, the computation procedure

is defined as follows:

Step 1: Calculate the edges in the given image I by applying the Laplacian of Gaussian (LoG) filter [185]

to the image and finding the zero crossings, i.e., the edge detection criterion is the presence of a zero crossing

in the second derivative with the corresponding large peak in the first derivative. The Laplacian of Gaussian

filter is defined as follows:

LoG = O2G (x, y) =

[
x2 + y2 − 2σ2

σ4

]
e−

x2+y2

2σ2 , (3.15)

where σ is the standard deviation of the Gaussian, which is given as:

G (x, y) = e−
x2+y2

2σ2 . (3.16)

Step 2: Connect the edges by the morphological transformation that sets 0-valued pixels to 1 if they have

two non-zero neighbours that are not connected [91], such as
1 0 0

1 0 1

0 0 1

becomes


1 1 0

1 1 1

0 1 1

 . (3.17)

After the edge connection, the edges that surround the smooth regions as “texels” are mostly detected from

the image.

Step 3: Calculate the “texels” image L̂ as the negative transformation of the connected edge image E′:

L̂ = 1− E′. (3.18)

Then the “texels” are labelled in the image L̂.
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Step 4: The coarseness is calculated as the ratio of the number of different texels to the number of the

pixels in the neighbourhood:

Fcrs =
diff(L̂)

M ×N , (3.19)

where diff(L̂) calculates the number of different “texels” in the neighbourhood of L̂, M and N are the size

of the neighbourhood.

Contrast

Based on the discussion in Chapter 3.2.1 and the observation of the textures with different contrast, as shown

in Fig. 3.3(b) and Fig. 3.3(h), the following factors are considered to influence the contrast difference between

different texture patterns:

1. the range of gray levels: the textures where the distances between the maximum and minimum gray

level is large are more likely to have higher contrast;

2. the concentration of the distribution of the gray level histogram: the textures where the histogram

distributes uniformly in a wide range will exhibit higher contrast;

3. the polarization of the distribution of the gray level histogram: a small difference of intensity is negligible

if the intensities are biased to 255, while the same small difference matters if the intensities are biased

to 0.

Therefore, the contrast of the image can be measured locally as:

Fcon =
rd
p
, (3.20)

where rd corresponds to the dynamic range of the gray levels between the maximum intensity Imax and the

minimum intensity Imin:

rd =
Imax − Imin
Imax + Imin

, (3.21)

and p combines the skewness skew(·) and the kurtosis kurt(·) of the histogram of the pixel intensities in the

neighbourhood Il to measure the concentration and the polarization of the distribution of the intensities:

p =
kurt(Il)

1 + skew(Il)
. (3.22)

Directionality

The concepts of directionality and line-likeness in Tamura’s texture descriptor are obscured because the

directionality measures the edges with similar directions while the line-likeness measures the coincidence of the

edge directions. It can partly explain the incorrectness of the Tamura’s descriptor in describing directionality

for some textures with random directions [103]. Therefore, in this thesis, the concept of directionality is

redefined as the measurement of the mean orientation of all the edges in the local texture. Moreover, the
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horizontal orientation is defined to have high directionality value, as shown in Fig. 3.3(c), while the vertical

orientation is defined to have low directionality value, as shown in Fig. 3.3(i). Then the directionality of a

texture pixel is calculated in its neighbourhood as:

Fdir(x, y) = tan−1

(∑M
x=1

∑N
y=1m(x, y)cosd(x, y)∑M

x=1

∑N
y=1m(x, y)sind(x, y)

)
, (3.23)

where M and N are the size of the neighbourhood, m(x, y) and d(x, y) represent the magnitude and direction

of the edge pixel (x, y), which are calculated as:

m(x, y) =
√
δx(x, y)2 + δy(x, y)2

d(x, y) = tan−1(
δy(x,y)
δx(x,y) ) + π

2

, (3.24)

where the δx(x, y) and δy(x, y) represent the pixel-wise horizontal and vertical derivatives using the Sobel

operator [183] to the neighbourhood centred at (x, y).

Line-likeness

The line-likeness measures how many of the edges in the neighbourhood have the same or similar directions.

Fig. 3.3(d) shows the texture with high line-likeness where most of the edges are in the similar direction,

while Fig. 3.3(j) shows the texture with low line-likeness because of the edges with various directions. The

directions at the edge pixels d(x, y) are quantized into n direction intervals [0, πn ), [πn ,
2π
n ), . . . , [ (n−1)π

n , π). As

a result, the line-likeness of the pixel (x, y) is calculated as 1 minus the variance of the local edge orientations:

Flin(x, y) =

(
1−

∑x+w
i=x−w

∑y+w
j=y−w (D (i, j)− µD)

2

(2w + 1)
2

)
, (3.25)

where D(x, y) is the quantized direction of the edge direction d(x, y), µD is the mean value of D in the local

window, w is the radius of the window.

Regularity

The regularity of the texture measures the spatially repetitiveness of texels over a certain distance. For a

regular texture shown in Fig. 3.3(e), the texel edges repeat every several pixels, and the distance of this

repetitiveness is relatively fixed in contrast to an irregular texture as shown in Fig. 3.3(k). Therefore, this

pattern can be calculated by the auto-correlation functions of the edge image as follows:

Freg(x, y) = 1− max(C)∑N
i=1(C(i))

, (3.26)

where C is the auto-correlation function of the neighbouring image centred at (x, y):

C = CORR(Il, Il), (3.27)

where CORR(·) represents the auto-correlation function, Il is the local window of the image I. Since the

maximum of the auto-correlation function C will only appear when the displacement of the texture is 0, and
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the regular texture where there must exist another displacement of the repeating texels will have other local

peak values in the auto-correlation function, the ratio of the maximum auto-correlation value to the sum of

all the local peak auto-correlation values max(C)∑N
i=1(C(i))

will be smaller in regular texture than that in irregular

one, leading to a larger measurement Freg(x, y).

Roughness

As shown in Fig. 3.3(f), a rough texture means the surface of the texture is uneven and not smooth, and

contains many edges, while the texture with quite smooth surface as shown in Fig. 3.3(l) has the low value of

roughness. Therefore, the roughness can be approximated by the density of the edges in the neighbourhood:

Frgh(x, y) =

∑M
i=1

∑N
j=1E(i, j)

M ×N , (3.28)

where the E represents the edge map of the neighbourhood centred at (x, y) with the size M ×N . Similar

to the calculation of coarseness, the edge is computed by the Laplacian of Gaussian (LoG) filter.

As discussed above, the six human visual perceptual texture characteristics proposed in Tamura’s work

have been locally calculated with novel methods from low-level texture features. Therefore, the texture image

can be described more precisely according to human visual perception and different types of textures can be

better differentiated locally.

3.3 PCA-based key characteristics selection in texture description

From the above discussion, textural images can be locally described by the six improved Tamura’s texture

features. Using all these features in describing textural images, however, is sometimes redundant because

these features are correlated to each other to some extent. In this part, a PCA-based discriminant texture

feature selection method is proposed to find the representative characteristics in differentiating textures in

the image.

3.3.1 Principal component analysis (PCA) in reducing dimensionality of feature

vector

Principal component analysis (PCA) is one of the most popular methods for dimensionality reduction [214].

As described in [80], for a set of data n dimensions, PCA aims to find a linear subspace of dimension p

lower than n so that the data points mostly lie in this subspace, which is likely to maintain most of the

variability of the original data. The linear subspace can be specified by p orthogonal vectors that form a

new coordinate system, called the ‘principal components’ [205]. The principal components are orthogonal,

linear transformations of the original data points, so there can be no more than n of them. However, the

expectation is that only p < n principal components are needed to approximate the space spanned by the n

original axes [181].
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Mathematically, the transformation is defined [1] by a set of p-dimensional vectors of weights or loading

w(k) = (w1,w2, . . . ,wp)(k) that map each row vector x(i) of X to a new vector of principal component scores

t(i) = (t1, t2, . . . , tk)(i), given by:

tk(i) = x(i) ·w(k). (3.29)

In such a way that the individual variables of t considered over the data set successively inherit the maximum

possible variance from x, with each weights vector w constrained to be a unit vector. Therefore the full

principal components transformation of x can be given as:

T = XW, (3.30)

where W is a p× p matrix whose columns are the eigenvectors of xTx.

3.3.2 Reduction of image feature dimensionality

According to Eq. 3.30, the transformation T = XW maps a data vector x(i) from an original space of p

variables to a new space of p variables which are de-correlated over the dataset. However, not all the principal

components need to be kept. Keeping only the first L principal components, produced by using only the first

L loading vectors, gives the truncated transformation:

TL = XWL, (3.31)

where the matrix TL now has n rows but only L columns. In other words, PCA learns a linear transformation

t = WTx, x ∈ Rp, t ∈ RL, where the columns of p×L matrix W form an orthogonal basis for the L features

(the components of representation t) that are de-correlated [17]. By construction of all the transformed data

matrices with only L columns, this score matrix maximizes the variance in the original data that has been

preserved, while minimizing the total squared reconstruction error
∥∥TWT −TLWT

L

∥∥2

2
or ‖X−XL‖22.

Following this transformation scheme, PCA has been widely used to reduce the dimensionality of the

image features selected by some certain image descriptor [113, 221, 34, 131, 2]. Given an image with size

M ×N and a local descriptor that extract p features for each pixel in the image. Then the data matrix X

can be considered as:

X =


x11 · · · x1p

...
. . .

...

xn1 · · · xnp

 , (3.32)

where n = M × N is the total number of the pixels in the image, p is the dimensionality of the original

feature space for each pixel. Then according to Eq. 3.31, only the first L principal components that generate

the largest variances are preserved and the newly feature matrix TL is:

TL =


y11 · · · y1L

...
. . .

...

yn1 · · · ynL

 , (3.33)
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where {yi1 . . . yiL} is the newly feature vector for each pixel in the image, with a reduced dimensionality of

the image feature.

3.3.3 PCA-based discriminant feature selection

Given the PCA transformation for image feature vector as described in Eq. 3.32 and Eq. 3.33, the “principal”

features are the linear combination of the original features with the coefficients matrix:

[Y1Y2 · · ·Yq] = [X1X2 · · ·Xp]


k11 k12 · · · k1q

k21 k22 · · · k2q

...
...

. . .
...

kp1 kp2 · · · kpq

 , (3.34)

where Y1, Y2, . . . , Yq are the q principal components translated from the p original features X1, X2, . . . , Xp(q ≤
p) by the coefficients matrix.

Assuming that there are n observations of the image with respect to the p features, then we have n sets

of the original features with p-dimension. After PCA transformation, the n observations of each of the q

features with the reduced dimensionality of p of the original feature space as follows:

Yi =


k1iX11 + k2iX12 + · · ·+ kpiX1p

k1iX21 + k2iX22 + · · ·+ kpiX2p

...

k1iXn1 + k2iXn2 + · · ·+ kpiXnp

 =


X11 X12 · · · X1p

X21 X22 · · · X2p

...
...

. . .
...

Xn1 Xn2 · · · Xnp




k1i

k2i

...

kpi

 = X


k1i

k2i

...

kpi

 (3.35)

where i = 1, 2, . . . , q. Since for every i, the observations of the original features X are the same, the column

[k1i, k2i, · · · , kpi]T controls the difference between two principal components Yi, while the absolute value of

the kri, r = 1, 2, . . . , p represents the weight of the r-th original feature to the i-th principal component.

Differently from the original PCA dimensionality reduction which uses Y1, Y2, · · · , Yq as the features to

describe the image, the PCA-based feature selection aims to find a subset of X ′ of the original data vector

X, so that with the corresponding coefficients k′, which is also the subset of the original coefficients k, the

output component Y ′ are also the “principal” components. In another word, the orthogonality of the output

Y ′ should remain close to that of the original principal components Y .

In this thesis, the orthogonality of the component matrix Y is defined based on the cosine dissimilarity

between each two components Yi and Yj in Y :

Ortho(Y ) =

∑q
i=1

∑q
j=1 Diss(Yi, Yj)

q2
, (3.36)

where q is the number of components in Y , and the cosine dissimilarity Diss(·) is defined as:

Diss(Yi, Yj) = 1−
∑n
p=1 YipYjp√∑n

p=1 Y
2
ip

√∑n
p=1 Y

2
jp

, (3.37)
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where n is the number of observations of the image data. However, it is difficult to calculate the dissimilarity

of the Yi and Yj directly because the n of them are always large as the total number of the image pixels

and varies in images with different sizes. Therefore we use the weighting coefficients matrix k to measure

the dissimilarity because the columns [k1i, k2i, · · · , kpi]T and [k1j , k2j , · · · , kpj ]T which are able to control the

difference between two principal components Yi and Yj . Then the orthogonality of the component matrix Y

can be calculated by the coefficient matrix k as:

Ortho(Y ) =

∑q
i=1

∑q
j=1 Diss(ki, kj)

q2
, (3.38)

where q is also the number of columns in k corresponding to the components in the Y , and

Diss(ki, kj) = 1−
∑p
l=1 kliklj√∑p

l=1 k
2
li

√∑p
l=1 k

2
lj

, (3.39)

where p is the dimensionality of the input features X. Since p is based on the descriptor used to represent

the image, p is a constant number for all the images, which simplifies the calculation of the orthogonality.

Therefore, the PCA-based feature selection can be mathematically described as:

{s} = args
{

Ortho(k(s)) ≈ Diss(k(p))
}
, (3.40)

where s is the subset of the original features and the number of the dimensionality of the selected subset is

l, while p represents the full set of the original features. The algorithm of the PCA-based feature selection is

implemented as Algorithm 3.1:

1. implement the PCA to the data vector consisting of the features of the images in the dataset;

2. find all the possible subsets of the coefficients matrix k. Each subset is formed by selecting the rows

from k, corresponding to the selected features;

3. calculate the dissimilarities between every two columns of all the possible subsets, then compute the

orthogonality of the components matrices represented by those subsets;

4. compare the orthogonality of the possible matrices, and select the most discriminant features repre-

sented by the subset of the coefficients matrix that deriving the output components matrix with the

orthogonality closest to the original one.
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1. Initialize L = 1, the number of selected features , sselect = {1, 2, . . . , p}, the selected features set ,
ortho = 0, the orthogonality of the principal components computed from the selected features ,
k is the principal component coefficients matrix with p rows corresponding to the original features.
2. Perform p− 1 times:

- Calculate the set s of possible combinations by choosing L features from the original p features

and the number of combinations CLp .

- Initialize i = 1, the order of the combination in the set s.

3. Perform CLp times:

- Calculate the orthogonality ortho(i) of the subset consisting of the i-th combination of

rows in the principal component coefficients matrix k by Eq. \ref{}.
- If ortho(i) > ortho, update the orthogonality by ortho = orthoi,

update the selected features set by sselect = s(i). Else , skip.

- Update the order i by i = i+ 1.
- Update the number of selected features L by L = L+ 1.

4. Return the selected features set sselect.

Algorithm 3.1: The algorithm for PCA-based feature selection.

3.4 Experiments and discussion

To evaluate the performance of the proposed PCA-based feature selection method, the features selected by

different methods are compared to classify textures in the given testing texture dataset.

3.4.1 Experimental materials

Image database of the experiment

The 112 original texture images from the Brodatz database [24] are randomly divided into 8 groups with

14 textures in each group, so that the experiment is implemented 8 times to classify the 14 textures in each

group. Since there are not enough samples of each texture in the original database, the training and testing

samples for each texture are generated from the given texture itself. As Fig. 3.5 shows, the training and

testing samples for a given texture are generated as follows:

1. each texture with the size of 512 × 512 is cut into 8 × 8 = 64 patches with the size of 64 × 64, shown

as those in Fig. 3.5(a) and (b). We choose 64 × 64 as the size of each texture patch because it is

a good trade off: size larger than 128 × 128 would result in too few patches of the original image to

generate enough texture samples, while size smaller than 32× 32 would result in too shattered patches

to generate the samples preserving enough original texture information;

2. the 64 patches are randomly combined into 8 rows and 8 columns then merged into one image. This

step is repeated 64 times, resulting in 64 images with the same type of texture. Fig. 3.5(c) and (d)

show two example randomly generated texture images;

3. 32 of the generated images are used as the training image set for one texture, the other 32 of the

generated images are used as the testing image set.

Comparators of the experiment

40



Figure 3.4: The example textures from Brodatz texture database [24].

The following state-of-the-art feature selection methods are used as the comparator to the proposed

method in finding discriminant features from the given feature set:

1. the mean square prediction error minimization of PCA method (PCA-MSPEM), which finds the subset

of the feature set that minimize the trace of a measure matrix of the covariance matrix of the input

feature vector;

2. the approximation of principal features by using the absolute value of the coefficients of the principal

components, which chooses the variables corresponding to the highest coefficients of each of the first q

principal components as the principal features from the given ones;

3. the principal feature analysis (PFA) [50], which clusters all the rows in the principal component coeffi-

cient matrix by K-Means algorithm, and chooses the feature corresponding to the row vector which is

closest to the mean of each cluster as the principal feature.

Implementation of the experiment

With the generated training and testing samples of each texture and the given feature selection methods,

the experiment of classifying the 14 selected textures is implemented as follows:

1. the local Tamura’s features, consisting of the 6 specific characteristics: coarseness, contrast, direction-

ality, line-likeness, regularity and roughness are calculated in the 7× 7 neighbourhood of each pixel in

each of the training and testing sample images. 7× 7 is a suitable size for the neighbourhood because

the size smaller than that would result in incomplete texture information in the neighbourhood, while

the size larger than that would result in much more complexity in calculation. The mean value of the

feature values for all the pixels in each sample image is considered as the certain feature value for the

image, that is, 1× 6 feature vector is calculated for each sample image;
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(a) the sample texture (b) 64 patches of the sample texture

(c) regenerated texture by merging the 64

partitions randomly

(d) another regenerated texture by merging the 64

partitions randomly

Figure 3.5: Example of generating multiple training and testing texture images from a given texture.
The texture is cut into 8× 8 = 64 patches with the size of 64× 64, then the 64 patches are randomly
combined into 8 rows and 8 columns then merged into one texture image. This process is repeated 64
times to get 32 training images and 32 testing images where the textures are the same as the given
texture.
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2. the most discriminating features are selected from the 6 Tamura’s features using the different feature

selection methods, then for each sample image a 1× q (q ≤ 6) vector of the most discriminating feature

for each feature selection method is generated;

3. the 14 × 32 = 448 testing samples of 14 textures are classified by various classifiers: (1) Multi-class

SVM [213], (2) Random forest (RF) [123], and (3) naive Bayes classifier [145], and the discriminant

Tamura’s features. The classifiers are trained with the discriminant Tamura’s feature vectors of the

14× 32 = 448 training samples;

4. the classification accuracy of each classification is defined as:

AR =
TP + TN

TP + FP + TN + FN
, (3.41)

where the traditional TP, TN, FP and FN are described in [5].

5. the classification accuracy of classifying the textures in the dataset with all the features and the principal

features selected by different methods are compared to evaluate the effect of different feature selection

methods in choosing the most representative features for the textures in a given database.

The experiment described above is implemented 8 times with different groups of textures randomly selected

from the Brodatz database [24] to evaluate the general performance of the feature selection methods in

discriminate different types of textures.

3.4.2 Experimental results and analysis

The textures in the Brodatz database [24] randomly assigned into Group 1 to Group 8 are shown in Table.

3.1. Table. 3.2 shows the features selected in Group 1 to Group 8 by different methods, together with the

comparison of the corresponding running time. Fig. 3.6 to Fig. 3.13 show the classification accuracy of

each texture in Group 1 to Group 8 by multi-SVM, naive Bayes and random forest classifier respectively,

using the texture features selected by different methods. And Table. 3.3 to Table. 3.5 show the classification

accuracies of the textures in Group 1 to Group 8 by different classifiers, using different features selected by

different methods. Note that the last three columns in Table. 3.3 to Table. 3.5 show the mean values of the

classification accuracies and running times in classifying the textures in Group 1 to Group 8 for a general

evaluation of the feature selection performance.

The full-feature description generates the best result in the classification, but with the cost of large com-

putation and running time. The features selected by PCA-MSPEM generates the classification results close

to the full-feature classification. However, it preserves 4 or 5 of the 6 original features so the redundancy is

still possible to exist. And the computational complexity of finding the principal features is high because

the mean square prediction error is calculated for all possible combinations of the q principal features. The

approximation based on the magnitudes of coefficients of the principal components is a very intuitive and
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Group Textures in the group

1 D30, D105, D34, D55, D67, D15, D54, D50, D65, D48, D82, D25, D74, D44

2 D59, D49, D52, D61, D24, D38, D109, D43, D4, D39, D108, D5, D26, D58

3 D89, D101, D93, D2, D60, D80, D20, D18, D106, D95, D35, D75, D66, D86

4 D8, D23, D97, D69, D22, D41, D72, D51, D98, D68, D62, D14, D7, D92

5 D12, D90, D56, D11, D13, D112, D9, D79, D94, D42, D111, D64, D84, D3

6 D107, D40, D6, D29, D99, D36, D110, D78, D16, D27, D37, D83, D103, D87

7 D10, D96, D1, D46, D33, D57, D28, D71, D45, D85, D88, D102, D31, D21

8 D73, D53, D63, D77, D32, D76, D47, D81, D104, D19, D100, D91, D17, D70

Table 3.1: The 8 groups of the Brodatz textures where there are 14 textures randomly assigned in
each group.

computationally feasible method because it needs no computation other than checking the highest absolute

value of the coefficients. But the number of the selected features is the same as that of the principal com-

ponents, which loses some discriminant features, therefore the performance of classifying textures with these

features varies a lot over the whole database, e.g., the classifications of D30, D59, D18, D8, D12, D107, D28,

D76 performs worse than those by using all the Tamura’s features. The PFA method achieves good perfor-

mance in selecting the features that are largely spread in the lower dimensional space and good representation

of the original data. But it requires the parameter K to be chosen first so it is not adaptive in selecting the

features. And the clustering method is high in computational cost when the number of coefficients is large.

The proposed method applies the cosine distance as the simpler dissimilarity measurement and finds the fea-

ture vectors that are most dissimilar to each other. Therefore, the discriminant features are computed with

less computational complexity than other methods and able to represent the most representative features of

the original ones, leading to a very close classification performance to the full-feature classification and much

shorter running time in both feature selection and classification.
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Method Group 1 Group 2 Group 3 Group 4

Features time(s) Features time(s) Features time(s) Features time(s)

PCA-M
F1, F2, F3,

F4, F5
2.74

F1, F2, F3,

F4, F5, F6
3.00

F1, F4,

F5, F6
3.04

F1, F2,

F3, F4
2.84

PCA-A
F1, F2,

F4
0.12

F1, F2,

F3
0.10

F1, F2,

F4
0.14

F2, F3,

F4
0.14

PFA
F1, F3,

F4
0.10

F1, F2,

F5
0.10

F2, F3,

F6
0.12

F2, F4,

F6
0.12

proposed
F1, F2

F4
0.18

F1, F2,

F4
0.16 F1, F4 0.21 F2, F4 0.20

Method Group 5 Group 6 Group 7 Group 8

Features time(s) Features time(s) Features time(s) Features time(s)

PCA-M
F1, F3, F4,

F5, F6
2.58

F1, F2, F4,

F5, F6
2.60

F1, F2, F3,

F4, F6
2.60

F2, F3, F4,

F5, F6
2.70

PCA-A
F1, F2,

F3
0.14

F1, F2,

F3, F4
0.14

F1, F2,

F4
0.14

F2, F3,

F4
0.12

PFA F1, F2 0.10
F2, F4,

F5
0.10

F1, F2,

F3, F4
0.10

F2, F3,

F4
0.08

proposed F1,F2 0.21 F2,F4 0.20
F1, F2,

F4
0.23 F2,F4 0.21

Table 3.2: The essential Tamura’s features selected to describe the 8 groups of textures by different
feature selection methods. The symbols F1, F2, F3, F4, F5, F6 denote the six Tamura’s features:
coarseness, contrast, directionality, line-likeness, regularity and roughness respectively.
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Figure 3.6: The classification rates of the Brodatz textures D30, D105, D34, D55, D67, D15, D54,
D50, D65, D48, D82, D25, D74, D44 by multi-SVM, naive Bayes and random forest classifiers (RF),
using the texture features selected by PCA-MSPEM, PCA-approximate, PFA and the propose method.

46



Textures
D59 D49 D52 D61 D24 D38 D109 D43 D4 D39 D108 D5 D26 D58

C
la

ss
ifi

ca
tio

n 
ra

te

0

0.2

0.4

0.6

0.8

1

Full-features
proposed
PCA-MSPEM
PFA
PCA-approximate

SVM

Textures
D59 D49 D52 D61 D24 D38 D109 D43 D4 D39 D108 D5 D26 D58

C
la

ss
ifi

ca
tio

n 
ra

te

0

0.2

0.4

0.6

0.8

1

Full-features
proposed
PCA-MSPEM
PFA
PCA-approximate

Naive Bayes

Textures
D59 D49 D52 D61 D24 D38 D109 D43 D4 D39 D108 D5 D26 D58

C
la

ss
ifi

ca
tio

n 
ra

te

0

0.2

0.4

0.6

0.8

1

Full-features
proposed
PCA-MSPEM
PFA
PCA-approximate

RF

Figure 3.7: The classification rates of the Brodatz textures D59, D49, D52, D61, D24, D38, D109,
D43, D4, D39, D108, D5, D26, D58 by multi-SVM, naive Bayes and random forest classifiers (RF),
using the texture features selected by PCA-MSPEM, PCA-approximate, PFA and the propose method.
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Figure 3.8: The classification rates of the Brodatz textures D89, D101, D93, D2, D60, D80, D20, D18,
D106, D95, D35, D75, D66, D86 by multi-SVM, naive Bayes and random forest classifiers (RF), using
the texture features selected by PCA-MSPEM, PCA-approximate, PFA and the propose method.
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Figure 3.9: The classification rates of the Brodatz textures D8, D23, D97, D69, D22, D41, D72, D51,
D98, D68, D62, D14, D7, D92 by multi-SVM, naive Bayes and random forest classifiers (RF), using
the texture features selected by PCA-MSPEM, PCA-approximate, PFA and the propose method.
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Figure 3.10: The classification rates of the Brodatz textures D12, D90, D56, D11, D13, D112, D9,
D79, D94, D42, D111, D64, D84, D3 by multi-SVM, naive Bayes and random forest classifiers (RF),
using the texture features selected by PCA-MSPEM, PCA-approximate, PFA and the propose method.
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Figure 3.11: The classification rates of the Brodatz textures D107, D40, D6, D29, D99, D36, D110,
D78, D16, D27, D37, D83, D103, D87 by multi-SVM, naive Bayes and random forest classifiers (RF),
using the texture features selected by PCA-MSPEM, PCA-approximate, PFA and the propose method.
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Figure 3.12: The classification rates of the Brodatz textures D10, D96, D1, D46, D33, D57, D28,
D71, D45, D85, D88, D102, D31, D21 by multi-SVM, naive Bayes and random forest classifiers (RF),
using the texture features selected by PCA-MSPEM, PCA-approximate, PFA and the propose method.
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Figure 3.13: The classification rates of the Brodatz textures D73, D53, D63, D77, D32, D76, D47,
D81, D104, D19, D100, D91, D17, D70 by multi-SVM, naive Bayes and random forest classifiers (RF),
using the texture features selected by PCA-MSPEM, PCA-approximate, PFA and the propose method.
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Method Group 1 Group 2 Group 3

AR T1(s) T2(s) AR T1(s) T2(s) AR T1(s) T2(s)

original 0.9554 0 131.63 0.9554 0 131.06 0.9598 0 129.89

PCA-M 0.9286 2.74 108.65 0.9286 3.00 110.14 0.9598 3.04 107.88

PCA-A 0.9487 0.12 41.10 0.8951 0.10 41.48 0.9174 0.14 41.10

PFA 0.9174 0.10 41.23 0.8996 0.10 42.54 0.9085 0.12 41.43

proposed 0.9487 0.18 41.10 0.9420 0.16 41.10 0.9554 0.21 40.84

Method Group 4 Group 5 Group 6

AR T1(s) T2(s) AR T1(s) T2(s) AR T1(s) T2(s)

original 0.9353 0 127.27 0.9442 0 132.51 0.9732 0 133.38

PCA-M 0.9241 2.84 109.81 0.9263 2.58 106.58 0.9554 2.60 109.96

PCA-A 0.8862 0.14 41.01 0.9018 0.14 41.48 0.9263 0.14 109.81

PFA 0.9040 0.12 41.90 0.9420 0.10 41.23 0.9308 0.10 43.05

proposed 0.9241 0.20 40.48 0.9420 0.21 41.23 0.9464 0.20 40.48

Method Group 7 Group 8

AR T1(s) T2(s) AR T1(s) T2(s)

original 0.9643 0 135.11 0.9643 0 131.49

PCA-M 0.9464 2.60 109.96 0.9397 2.70 108.29

PCA-A 0.9353 0.14 41.10 0.9152 0.12 41.01

PFA 0.9263 0.10 109.81 0.9152 0.08 41.01

proposed 0.9353 0.20 41.10 0.9241 0.21 40.48

Table 3.3: Accuracy and running time of classifying 8 groups of textures by SVM using different
subsets of the features. T1 and T2 are the running time of the feature selection step and classification
step respectively. Using the features selected by the proposed method provides the classification
accuracy close to that using all the features, with a relatively short running time of the classification
that includes the selection of the features (T1) and the implementation of the classifier (T2).
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Method Group 1 Group 2 Group 3

AR T1(s) T2(s) AR T1(s) T2(s) AR T1(s) T2(s)

original 0.9509 0 131.46 0.9509 0 131.25 0.9509 0 132.33

PCA-M 0.9509 2.74 108.78 0.9509 3.00 109.92 0.9487 3.04 105.07

PCA-A 0.9487 0.12 39.41 0.9241 0.10 39.86 0.9174 0.14 39.41

PFA 0.9152 0.10 39.72 0.9263 0.10 40.11 0.9241 0.12 40.02

proposed 0.9487 0.18 39.41 0.9464 0.16 39.41 0.9375 0.21 38.92

Method Group 4 Group 5 Group 6

AR T1(s) T2(s) AR T1(s) T2(s) AR T1(s) T2(s)

original 0.9554 0 134.28 0.9621 0 128.92 0.9487 0 131.2

PCA-M 0.9554 2.84 106.58 0.9598 2.58 108.59 0.9420 2.60 107.44

PCA-A 0.9308 0.14 38.43 0.9263 0.14 39.86 0.9286 0.14 106.58

PFA 0.9241 0.12 38.60 0.9598 0.10 38.06 0.9152 0.10 39.19

proposed 0.9554 0.20 38.29 0.9598 0.21 38.06 0.9308 0.20 38.29

Method Group 7 Group 8

AR T1(s) T2(s) AR T1(s) T2(s)

original 0.9598 0 132.43 0.9710 0 132.58

PCA-M 0.9554 2.60 107.12 0.9710 2.70 106.72

PCA-A 0.9420 0.14 39.41 0.9241 0.12 38.43

PFA 0.9040 0.10 106.58 0.9241 0.08 38.43

proposed 0.9420 0.23 39.41 0.9621 0.21 38.29

Table 3.4: Accuracy and running time of classifying 8 groups of textures by Naive Bayes using
different subsets of the features. T1 and T2 are the running time of the feature selection step and
classification step respectively. Using the features selected by the proposed method provides the
classification accuracy close to that using all the features, with a relatively short running time of the
classification that includes the selection of the features (T1) and the implementation of the classifier
(T2).
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Method Group 1 Group 2 Group 3

AR T1(s) T2(s) AR T1(s) T2(s) AR T1(s) T2(s)

original 0.9598 0 130.99 0.9576 0 131.17 0.9598 0 130.29

PCA-M 0.9487 2.74 106.84 0.9576 3.00 106.70 0.9576 3.04 107.43

PCA-A 0.9487 0.12 38.35 0.9241 0.10 40.01 0.9375 0.14 38.35

PFA 0.9420 0.10 38.39 0.9420 0.10 39.77 0.9397 0.12 39.21

proposed 0.9487 0.18 38.35 0.9509 0.16 38.35 0.9598 0.21 38.11

Method Group 4 Group 5 Group 6

AR T1(s) T2(s) AR T1(s) T2(s) AR T1(s) T2(s)

original 0.9397 0 130.47 0.9509 0 131.44 0.9576 0 131.97

PCA-M 0.9397 2.84 106.59 0.9509 2.58 107.27 0.9509 2.60 108.96

PCA-A 0.9241 0.14 39.75 0.9286 0.14 40.01 0.9308 0.14 106.59

PFA 0.9353 0.12 40.06 0.9509 0.10 38.95 0.9308 0.10 38.74

proposed 0.9397 0.20 38.18 0.9509 0.21 38.95 0.9487 0.20 38.18

Method Group 7 Group 8

AR T1(s) T2(s) AR T1(s) T2(s)

original 0.9487 0 131.88 0.9509 0 131.79

PCA-M 0.9420 2.60 107.86 0.9487 2.70 109.93

PCA-A 0.9420 0.14 38.35 0.9353 0.12 39.75

PFA 0.9297 0.10 106.59 0.9353 0.08 39.75

proposed 0.9420 0.23 38.35 0.9487 0.21 38.18

Table 3.5: Accuracy and running time of classifying 8 groups of textures by RF using different subsets
of the features. T1 and T2 are the running time of the feature selection step and classification step
respectively. Using the features selected by the proposed method provides the classification accuracy
close to that using all the features, with a relatively short running time of the classification that
includes the selection of the features (T1) and the implementation of the classifier (T2).
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3.5 Conclusion

In this chapter, we proposed a local Tamura’s texture description and a PCA-based feature selection scheme.

Texture images can be locally described by the high-level characteristics that fit the human visual perception,

including coarseness, contrast, directionality, line-likeness, regularity and roughness. Then a PCA-based

feature selection scheme was applied on a given database to find the discriminant features that can differentiate

the textures with low redundancy. Experiments were implemented to compare the performance of using the

principal features selected by the proposed method and other methods in classifying the Brodatz textures

by different classifiers. The experimental results demonstrate that the local Tamura’s texture features can

describe different textures in the database accurately and the proposed feature selection method can effectively

find the features that are essential in differentiating the textures. As a result, the textural differences in the

images are able to be measured with respect to these key texture characteristics and the image can be

considered as the sum of components representing these key characteristics.
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Chapter 4

Texture characteristic based morphological compo-

nent analysis using wavelet-based dictionaries

As discussed in the last chapter, a given image can be described by several human visual perceptual

characteristics, that is, different regions in the image are different in these certain characteristics. As a

result, magnifying the textural differences in the image equates to enhancement of the image components

representing these characteristics. Therefore, we will discuss how to decompose a given image into components

representing texture characteristics in the following parts.

4.1 Introduction

From the literatures reviewed in Chapter 2.2, morphological component analysis (MCA) is suitable for de-

composing images into components representing different features. However, the MCA requires improvement

both in concept and in dictionary selection to represent different texture characteristics. We will first intro-

duce some background knowledge relevant to our image decomposition method in this chapter.

4.1.1 Morphological component analysis

Morphological component analysis (MCA) has proven successful at separating features contained in an image

when these features present different morphological aspects [189]. In a series of recent papers [191, 188, 69, 71],

the MCA concept has been developed and shown that MCA can be used for separating the texture and the

piecewise smooth component from a given image [188], for in-painting applications [69] or, more generally,

for separating several components containing different morphologies. MCA has also been extended to the

multichannel case in [21, 20]. The central idea of MCA is to make use of the morphological diversity of

the different types of signals contained in the data, and to represent each morphology with a dictionary

for which a fast transform is available. Because of recent developments in harmonic analysis, many new

multi-scale transforms are now possible to be used as dictionaries [28, 187, 61], increasing the potential

versatility of MCA. However, most of the recent of MCA-based image decomposition methods, no matter

what dictionaries they make use of, are limited to decomposition of images into “cartoon” and “texture”

components, which is still far from the original assumption of the MCA concept that it can decompose
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the images into arbitrary morphologically different components. This shortcoming leads us to an overview

of recent dictionary selections of MCA, which determine the components separated from the image by the

MCA methods.

4.1.2 Dictionaries

A dictionary is a transformation representing some certain content type of the image. In recent MCA-

based methods, the selection of dictionaries focused on the transformations that can discriminate piecewise

smooth content and texture content, according to the purposes of these methods in image inpainting, texture

separation, or astronomical image processing, respectively.

For piecewise smooth content, bi-orthogonal wavelet transforms (OWT) have proved to be well suited

to sparse representation in the early research [64] because they can represent the directional elements inde-

pendently [7, 179, 171]. However, the OWT lacks shift invariance since it down-samples the original signals,

which causes difficulties by losing information of the structures of the images. Therefore, the undecimated

wavelet transform (UWT) was proposed to obtain the desired shift invariance property. UWT improved the

OWT by skipping the decimation, implying that it is an over-complete transform represented as a matrix

with more columns than rows. However, both the OWT and the UWT present only a fixed number of

directional elements without highly anisotropic elements [30], so they were deemed sub-optimal for detecting

highly anisotropic features of an image. Isotropic Trous Algorithm was another version of the wavelet trans-

form that decomposes an N ×N image I as a superposition of the form I(x, y) = cJ(x, y) +
∑J
j=1 wj(x, y),

where cJ is a coarse or smooth version of the original image I and wj represent the details of I at scale 2−j

[193]. Therefore, the algorithm outputs J + 1 sub-bands of size N ×N , which meets the requirement for shift

invariance. Moreover, this transform is very well adapted to the detection of isotropic features, which ex-

plains the reason of its success for astronomical image processing where data contains mostly (quasi-)isotropic

objects, such as stars or galaxies [190]. The ridgelet transform is the application of a 1-D wavelet transform

to the angular slices of the Radon transform [30]. It has shown to be effective in representing global lines

in an image. For detecting the line segments, a partitioning must be implemented [29], and then a ridgelet

transform is applied in each block. The curvelet transform, proposed in [187, 63, 31], enabled the directional

analysis of an image at different scales. The curvelet transform may be considered as a combination of the

wavelet transform and ridgelet transform: it first decomposes the image into a set of wavelet sub-bands, and

then analyzes each band with a local ridgelet transform with different block sizes at different scale levels.

Different levels of the multi-scale ridgelet pyramid are used to represent different sub-bands of a filter bank

output. To maintain the fundamental property of the curvelet transform, the side-length of the local windows

is doubled at every other dyadic sub-band. In another word, the elements of length about 2−j/2 serve for the

analysis and synthesis of the j-th sub-band
[
2j , 2j+1

]
. Therefore, the curvelet transform is also redundant

with a redundancy factor of 16J + 1 whenever J scales are employed, and the redundancy provides the shift

invariance of curvelet transform. So far, the curvelet transform performs best for the detection of anisotropic
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structures, smooth curves, and edges of different lengths, that is, the piecewise smooth content.

For texture content representation, the discrete cosine transform (DCT) [164] is a quite popular choice

recently. The DCT is a variant of the discrete Fourier transform (DFT) [92], replacing the complex analysis

with real numbers by a symmetric signal extension. The DCT is an orthogonal transform, known to be

well suited for first order Markov stationary signals. Its coefficients essentially represent frequency content,

similar to the those obtained by Fourier analysis. When dealing with non-stationary sources, DCT is typically

applied in blocks. Such is indeed the case in the JPEG image compression algorithm. Choice of overlapping

blocks is preferred for analyzing signals while preventing artifacts. A block overlap of 50% results in an

over-complete transform with a redundancy factor of 4. The DCT has proven to be appropriate for a sparse

representation of either smooth or periodic behaviours. Another popular choice for texture representation is

the Gabor transform. Similar to the DCT, the Gabor transform is essentially a localized DFT, where the

localization is obtained by windowing portions of the signal in an overlapping fashion [161]. The amount of

redundancy is controllable.

Given the goals of the standard MCA methods, the dictionaries for smooth and textured content are

sufficient for those goals. However, these conventional dictionaries cannot represent different texture char-

acteristics, which is necessary for finding the elements resulting in textural differences and enhancing them

as we describe in later sections. Therefore, it is necessary to find dictionaries that can both represent the

components sparsely and reflect different texture characteristics.

4.2 Standard morphological component analysis (MCA)

4.2.1 Assumptions of the MCA model

It was assumed in [189] that the data s can be considered as the sum of K different signals, i.e., s =
∑K
k=1 sk,

where each sk represents a different type of signal to be decomposed from s. Then the assumptions for the

standard morphological component analysis is:

1. For every possible signal sk, there exists a dictionary (which could be over-complete), Φk ∈ MN×Lk

(where typically Lk � N) such that solving:

αoptk = arg min
α
‖α‖0 subject to: sk = Φkα, (4.1)

leads to a very sparse solution (i.e.
∥∥αoptk

∥∥
0

is very small). The definition in the above equation is

essentially the over-complete transform of sk, yielding a representation αk.

2. For every possible signal sl, solving for k 6= l:

αoptl = arg min
α
‖α‖0 subject to:sl = Φkα, (4.2)

leads to a very non-sparse solution. This requirement suggests that the dictionary Φk is able to distin-

guish between the different types of signals to be separated.
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Therefore, the dictionaries Φk play the role of discriminants between the different content types. And it

is required that dictionaries Φk should have a fast transformation Tk (αk = Tksk) and reconstruction Rk

(sk = Rkαk) for computational convenience.

For an arbitrary signal s containing K types of signals as a linear combination, it was proposed to seek the

sparse representation over the augmented dictionary containing all Φk by the following optimization function:

{
αopt1 , . . . , αoptK

}
= arg min

α1,...,αK

K∑
k=1

‖αk‖0

subject to: s =

K∑
k=1

Φkαk

. (4.3)

This optimization task is likely to lead to a successful separation of the signal content, based on the as-

sumptions made earlier about Φk being very efficient in representing specific phenomena and being highly

ineffective in representing other signal types.

4.2.2 Standard “Cartoon + Texture” decomposition using MCA

In [69], the image was assumed to contain two types of content: (1) piece-wise smooth image content contain-

ing the non-texture or structure parts of the image, which was called “cartoon” component, and (2) texture

or oscillation image content, which was called “texture” component. By considering the input image that

contained N total pixels as a 1D vector of length N containing two types of signals, the image decomposition

can be modelled as a case of signal decomposition shown in Eq. 4.3 where the number of signal types K = 2.

To model the component Xt containing only texture, it was assumed that there was a transform Tt allowed

sparse decomposition:

αt = TtXt, αt is sparse. (4.4)

The sparsity was quantified by the small value of the l0 norm ‖αt‖0 = # {i : αt (i) 6= 0}. Sparsity of image

decomposition measured in the l0 norm indicates that the texture image Xt is a linear combination of

relatively few columns from Tt.

For the transformation Tt, there were two more assumptions proposed in [69]. One is the localization: the

representation of the image by transform Tt should be still sparse even if the textures appear only in parts

of the image, requiring that the dictionary exploited a multi-scale and local analysis of the image. The other

assumption was incoherence: Tt cannot represent the cartoon parts of the image sparsely, implying that the

cartoon image cannot be a linear combination of few columns from Tt. Therefore, Tt should be sensitive to

texture parts of the image while insensitive to the cartoon parts, differentiating between the two types of

image content.

Conversely, the existence of a dictionary Tn was assumed such that the cartoon component Xn can be

sparsely represented by the above definition. Similar to the assumptions about Tt, the analysis employed by

this dictionary was multi-scale and local in nature, enabling representation of localized pieces of the target

content. Moreover, incoherence should be guaranteed such that texture components are represented very
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non-sparsely by Tn. Therefore, for an arbitrary image X containing both texture and piece-wise smooth

content, the sparse representations and the transformation dictionaries Tt, Tn were sought at the same time

by solving the optimization function:

{
Xopt
t , Xopt

n

}
= arg min

{Xt,Xn}
‖TtXt‖0 + ‖TnXn‖0 subject to: X = Xt +Xn. (4.5)

Based on the assumptions about Tt and Tn being able to sparsely represent one type of content while

being highly ineffective in sparsely representing the other, the above optimization task leads to a successful

separation of the image with αt = TtXt corresponding to the texture and αn = TnXn corresponding to the

cartoon. However, the computational complexity of Eq. 4.5 grows exponentially with the number of columns

in the overall dictionary because the problem with l0 norm is non-convex and intractable. Then the l0 norm

was replaced by l1 norm as suggested by the basis pursuit (BP) method [41], resulting in the more tractable

optimization problem:

{
Xopt
t , Xopt

n

}
= arg min

{Xt,Xn}
‖TtXt‖1 + ‖TnXn‖1 subject to: X = Xt +Xn. (4.6)

The BP approach was extended for the case that the image was noisy and it cannot be completely decomposed

into texture and cartoon parts:

{
Xopt
t , Xopt

n

}
= arg min

{Xt,Xn}
‖TtXt‖1 + ‖TnXn‖1 subject to: ‖X −Xt −Xn‖2 ≤ ε, (4.7)

where ε is the noise level in the image X. This solution leads to an approximation of the image decomposition

leaving some error to be absorbed by content that was not represented well by either of the dictionaries.

An alternative method was proposed to replace the constrained condition in Eq. 4.7 by an unconstrained

penalized optimization, providing more accurate sparse representation:

{
Xopt
t , Xopt

n

}
= arg min

{Xt,Xn}
‖TtXt‖1 + ‖TnXn‖1 + λ ‖X −Xt −Xn‖22 , (4.8)

where λ was the penalty coefficient for the noise in the image.

4.2.3 Algorithm to solve the standard morphological component analysis

To solve the optimization problem Eq. 4.8, the following steps were implemented in [189]:

1. two dictionaries were selected first for the cartoon and texture parts of the image. The dictionaries

employed transformations that represent either texture or piecewise smooth (cartoon) behaviours of

the image. More details about candidate dictionaries were described in [188];

2. with the selected dictionaries Tt and Tn, the Algorithm 1 was proposed to minimize Eq. 4.8 and seek

two images Xt and Xn as the texture and cartoon components of the image X.
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1. Initialize Lmax, the number of iterations ,
and threshold δ = λ · Lmax, X = input image ,
Xt = Xn = 0. Tt, Tn, Rt, Rn are the forward and inverse
transforms for the dictionaries , respectively.

2. Perform Lmax times:
Update of Xt assuming Xn is fixed:

- Calculate the residual r = X −Xt −Xn.
- Calculate the transform Tt of Xt + r

and obtain αt = Tt (Xt + r).
- Soft threshold the coefficient αt with

the δ threshold and obtain α̂t.
- Reconstruct Xt by Xt = Rtα̂t.

Update of Xn assuming Xt is fixed:
- Calculate the residual r = X −Xn −Xt.
- Calculate the transform Tn of Xn + r

and obtain αn = Tn (Xn + r).
- Soft threshold the coefficient αn with

the δ threshold and obtain α̂n.
- Reconstruct Xn by Xn = Rnα̂n.

3. Update the threshold by δ = δ − λ.
4. If δ > λ, return to Step 2. Else , finish.

Algorithm 4.1: The algorithm for minimizing Eq. 4.8 [189].

4.3 Wavelet-based texture characteristic morphological component

analysis

4.3.1 Model of texture characteristic MCA

Similar to the standard MCA method, the model of texture characteristic morphological component analysis

(TC-MCA) is established on the following assumptions:

1. According to i-th feature in the selected texture descriptor, a given image x is the combination of 2

parts, x = xs,i + xw,i, where xs,i and xw,i represent the strong and weak aspect of the i-th texture

characteristic.

2. For xs,i, there exists a dictionary Φs,i exploiting the transformation Ts,i so that the solution:

αopts,i = arg min
α
‖α‖1 subject to: αs,i = Ts,ixs,i, (4.9)

is very sparse, that is , ‖αs,i‖1 is very small.

3. For xw,i, solving:

αoptw,i = arg min
α
‖α‖1 subject to: αw,i = Ts,ixw,i (4.10)

leads to a very non-sparse solution or zero-solution, suggesting that the dictionary Φs,i is distinguishing

between strong and weak aspects of the i-th texture characteristic.

Therefore, for a given texture image I consisting of components representing different texture characteris-

tics, TC-MCA decomposes the image to pairwise components, wherein each pair is composed of components

showing the strong and weak aspects of a certain texture characteristic of the image respectively. However,
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1. Initialize the number of iterations Lmax, the parameters
µs,i and µw,i of the dictionaries
Ts,i and Tw,i, δ = λ · Lmax, threshold for stopping
decomposition , and φ is a threshold for updating
parameters of dictionaries. ss,i = sw,i = 0.

2. Perform Lmax times:
Update of ss,i assuming sw,i is fixed:

- Calculate the residual r = I − ss,i − sw,i.
- Calculate the transformation Ts,i of ss,i + r and

obtain s
′
s,i = Ts,i (ss,i + r).

- Calculate d =
∥∥∥s′s,i − ss,i∥∥∥

1
.

- If d > φ, update Ts,i by updating

µs,i with µs,i −
µs,i
Lmax

.

Else , µs,i keep the same values.

- Update ss,i with s
′
s,i.

Update of sw,i assuming ss,i is fixed:
- Calculate the residual r = I − sw,i − ss,i.
- Calculate the transformation Tw,i of sw,i + r and

obtain s
′
w,i = Tw,i (sw,i + r).

- Calculate d =
∥∥∥s′w,i − sw,i∥∥∥

1
.

- If d > φ, update Tw,i by updating

µw,i with µw,i −
µw,i
Lmax

.

Else , µw,i keep the same values.

- Update sw,i with s
′
w,i.

3. Update the threshold by δ = δ − λ.
4. If δ > λ, return to Step 2. Else , finish.

Algorithm 4.2: The algorithm for minimizing Eq. 4.11.

differently from the traditional MCA decomposition introduced in Chapter 4.2, where “cartoon” and “tex-

ture” are two strictly different types of image contents, the boundary between “strong characteristic” and

“weak characteristic” in TC-MCA is quite fuzzy because it represents the extent to which one type of texture

exhibits the certain texture characteristic. For example, “coarse” and “fine” components are decomposed

from the image according to “coarseness”. The “coarser” the texture is, the more it is preserved in “coarse”

component, while the “finer” the texture is, the more it is preserved in “fine” component. Generally, the

decomposition problem is equivalent to the optimization task:

{
sopts,i , s

opt
w,i, T

opt
s,i , T

opt
w,i

}
= arg min

{ss,i,sw,i,Ts,i,Tw,i}
‖Ts,iss,i‖1

+ ‖Tw,isw,i‖1 + ‖I − ss,i − sw,i‖22
, (4.11)

where ss,i and sw,i are the components strongly and weakly exhibiting the i-th characteristic of the input im-

age I, i = 1, 2, . . . , k, and T opts,i and T optw,i are the filters with optimized parameters as dictionaries representing

the strong and weak components of i-th characteristic ss,i and sw,i respectively.

Based on the selected dictionaries, an improved Block-Coordinate-Relaxation method is used to iteratively

compute components ss,i and sw,i as well as the parameters of dictionaries Ts,i and Tw,i in Eq. 4.11. In

Algorithm 2, µs,i and µw,i are the parameter sets of the dictionaries Ts,i and Tw,i respectively. Lmax is the

maximum number of iterations of decomposition. The parameters in µs,i and µw,i are decreased uniformly

over each iteration to 0 until optimal results are obtained. Note that the decomposition for each texture

characteristic is independent of the others so that any number of texture characteristics may be used as

desired.
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4.4 Wavelet-based thresholding used as the dictionaries of TC-

MCA

Considering that all the four characteristics used as the basis of decomposition: coarseness, contrast, line-

likeness and directionality, are about measuring the statistics of edges and pixel intensities of the image, we

propose to apply the discrete wavelet transform [170] as the basis of the dictionaries for all the four parts of

decomposition because:

1. the low-frequency sub-band of DWT contains the information of the distribution of pixel intensities

of the image and high-frequency sub-bands contain the information of the distribution of edges of the

image, which is suitable for reflecting the coarseness (density of edges) and contrast (variance of pixel

intensities);

2. the high-frequency sub-bands of DWT preserve the directions and positions of the edges in the image,

which is necessary in measuring directionality (mean of edge directions in a local region) and line-likeness

(variance of edge directions in a local region);

Therefore, the i-th strong and weak components ss,i and sw,i are separated from the input image I by

the wavelet-based dictionaries Ts,i and Tw,i respectively:

ss,i = Ts,i (I) , sw,i = Tw,i (I), (4.12)

I

✓ ✓s,i ss,i

Si
Ts,i

✓ ✓w,i sw,i

Wi Tw,i

DWT
�s,i IDWT

DWT
�w,i IDWT

Figure 1: Decomposition of the image for the i-th texture characteristic with
wavelet-based dictionaries Ts,i and Tw,i. Ts,i and Tw,i are implemented in three
steps: 1) obtain wavelet coe�cients ✓ from input image I, 2) filter the coe�-
cients ✓ by the shrinkage coe�cients �s,i and �w,i (which are dependent on the
characteristic maps Si and Wi) to obtain wavelet coe�cients of the strong and
weak components, 3) obtain the strong and weak components of the i-th texture
characteristic ss,i and sw,i from the inverse wavelet transform (IDWT) of ✓s,i

and ✓w,i.

1

Figure 4.1: Decomposition of the image for the i-th texture characteristic with wavelet-based dic-
tionaries Ts,i and Tw,i. Ts,i and Tw,i are implemented in three steps: 1) obtain wavelet coefficients θ
from input image I, 2) filter the coefficients θ by the shrinkage coefficients λs,i and λw,i (which are
dependent on the characteristic maps Si and Wi) to obtain wavelet coefficients of the strong and weak
components, 3) obtain the strong and weak components of the i-th texture characteristic ss,i and sw,i
from the inverse wavelet transform (IDWT) of θs,i and θw,i.

Fig. 4.1 shows the implementation of Ts,i and Tw,i. θ = {a, h, v, d} are, respectively, the approximation,

horizontal, vertical, and diagonal wavelet coefficients from the discrete wavelet transform dwt(·) with j scales.

The characteristic maps Si and Wi are binary images computed from the components of θ which denote which
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areas of the image respectively strongly and weakly exhbit the i-th texture characteristic; these are computed

differently for each characteristic (see Chapter 4.4.1 for details). The shrinkage coefficients λs,i and λw,i are

defined as the local density of the strong and weak characteristic maps Si and Wi as follows:

λs,i (x, y) =
∑

(r,c)∈L Si(r,c)

N , λw,i (x, y) =
∑

(r,c)∈LWi(r,c)

N
, (4.13)

where L represents the local neighbourhood centred at (x, y), and N is the number of pixels in the neigh-

bourhood. The shrinkage coefficients λs,i and λw,i, Ts,i and Tw,i separate the wavelet coefficients θ to θsi

and θwi where only wavelet coefficients exhibiting the i-th characteristic strongly and weakly are preserved

respectively. The components ss,i and sw,i representing the i-th texture characteristic strongly and weakly

are obtained from the inverse wavelet transform idwt(·) of θs,i and θw,i.

Based on the above discussion, the key point to solve the decomposition problem is to find appropriate

wavelet thresholding functions for representing each texture characteristic strongly and weakly. The proposed

functions are described in the following parts.

4.4.1 Thresholding functions for each texture characteristic

The thresholding functions based on the strong and weak characteristic maps Si and Wi are shown in Table

4.1. These functions determine the dictionaries Ts,i and Tw,i for the i-th texture characteristic as shown in

Fig. 4.1 and Eq. 4.13. The details of the design of the characteristic maps for each texture characteristic are

described below.

Strong characteristic map Weak characteristic map

coarseness S1 (i, j) =


1 if |h (i, j)| < δh &

|v (i, j)| < δv &

|d (i, j)| < δd
0 otherwise

W1 (i, j) =


1 if |h (i, j)| > δh or

|v (i, j)| > δv or

|d (i, j)| > δd
0 otherwise

contrast S2 (i, j) =


1 if ∆x > δx or

∆y > δy
0 otherwise

W2 (i, j) =


1 if ∆x < δx &

∆y < δy
0 otherwise

∆x = |a (x+ 1, y)− a (x, y)|
∆y = |a (x, y + 1)− a (x, y)|

∆x = |a (x+ 1, y)− a (x, y)|
∆y = |a (x, y + 1)− a (x, y)|

directionality S3 (i, j) =


1 if |h (i, j)| > δh &

|v (i, j)| ≤ δv
0 otherwise

W3 (i, j) =


1 if |v (i, j)| > δv &

|h (i, j)| ≤ δh
0 otherwise

line-likeness S4 (i, j) =



1 if |h (i, j)| > δh &

|v (i, j)| ≤ δv &

|d (i, j)| ≤ δd
1 if |h (i, j)| ≤ δh &

|v (i, j)| > δv &

|d (i, j)| ≤ δd
1 if |h (i, j)| ≤ δh &

|v (i, j)| ≤ δv &

|d (i, j)| > δd
0 otherwise

W4 (i, j) =



1 if |h (i, j)| > δh &

|v (i, j)| > δv
1 if |h (i, j)| > δh &

|d (i, j)| > δd
1 if |v (i, j)| > δv &

|d (i, j)| > δd
1 if |h (i, j)| < δh &

|v (i, j)| < δv &

|d (i, j)| < δd
0 otherwise

Table 4.1: Thresholding functions for representing each texture characteristics for the proposed
wavelet-based TC-MCA (WT-TC-MCA). The initial values are selected as: δh = 0.95 |h|max, δv =
0.95 |v|max and δd = 0.95 |d|max.
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Coarseness

As discussed in Chapter 2, coarseness is used to measure the size of the primitives of the texture. Coarse

(strong coarseness) texture corresponds to larger primitives in the texture image, while fine (weak coarseness)

texture corresponds to smaller primitives. When measured in low-level description, texture is considered as

the regular repetition of some elements (called texels). Thus, the edges between those elements in a given

neighbourhood can represent different image contents with strong and weak coarseness: coarse areas of

the image exhibit fewer, stronger edges surrounding the larger texels, while fine areas of the image have

more, weaker edges surrounding the small texels. Therefore, the dictionaries, as well as the corresponding

characteristic maps S1 and W1, which are used to discriminate coarse and fine contents of the image, are also

based on the measurement of the quantity and strength of the edges, which are represented by the values of

the wavelet coefficients in high-frequency sub-bands, reflecting the distribution of edges in the image.

The characteristic map for coarse component is defined as follows:

S1 (i, j) =



1 if |h (i, j)| < δh &

|v (i, j)| < δv &

|d (i, j)| < δd

0 otherwise

, (4.14)

where h (i, j), v (i, j), d (i, j) are the wavelet coefficients in high-frequency sub-bands, δh, δv and δd are the

corresponding thresholds. In coarse regions, the magnitudes of the coefficients h (i, j), v (i, j), d (i, j) will be

lower than the thresholds δh, δv and δd, S1 has the value of 1 so that the shrinkage coefficient λs,1 has the

value close to 1, therefore these wavelet coefficients will be preserved. In fine regions, the value of λs,1 is close

to 0 so these wavelet coefficients will be close to 0 after shrinkage. In the coarse component of the image, as

shown in Fig. 4.2(b), most of the coarse region in the image (upper region in Fig. 4.2(a)) is preserved while

most of the fine region in the image (lower region in Fig. 4.2(a)) is suppressed.

For the fine component, W1 is the opposite of S1 as:

W1 (i, j) =



1 if |h (i, j)| > δh or

|v (i, j)| > δv or

|d (i, j)| > δd

0 otherwise

, (4.15)

where h (i, j), v (i, j), d (i, j), δh, δv and δd are the same as those in Eq. 4.14, so coarse regions will be

suppressed. Fig. 4.2(c) shows the fine component of the image, where the fine region is mostly preserved

while the coarse region is mostly suppressed.
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(a) original (b) coarse component (c) fine component

Figure 4.2: The decomposition of an image by coarseness. (a) is the original image, (b) is the coarse
component exhibiting coarseness strongly, and (c) is the fine component exhibiting coarseness weakly.

Contrast

Contrast is the measurement of the change of the pixel intensities of the texture. High-contrast (strong

contrast) texture corresponds to that the intensities change rapidly over space within the local neighbour-

hood, and low-contrast (weak) texture corresponds to a more gradual change in the intensities in the local

neighbourhood. Unlike coarseness, the low-level definition of texture contrast is identical to its high-level de-

scription. To distinguish the high and low contrast areas of the image, the dictionaries and the characteristic

maps S2 (high-contrast) and W2 (low-contrast) are based on the magnitudes of the wavelet coefficients in

the approximate sub-band reflecting the distribution of pixel intensities of the image.

The characteristic map S2 for the high contrast component is defined as:

S2 (i, j) =


1 if ∆x > δx or

∆y > δy

0 otherwise

∆x = |a (x+ 1, y)− a (x, y)|
∆y = |a (x, y + 1)− a (x, y)|

. (4.16)

In high contrast regions, where the approximate magnitude of one of the first partial horizontal and vertical

derivatives ∆x or ∆y exceed the thresholds δx and δy respectively, the value of S2 is 1 so λs,2 (x, y) are close

to 1, therefore these wavelet coefficients are preserved. Low-contrast regions will be suppressed because there

are few pixels with large intensity changes and the λs,2 (x, y) are close to 0, shown as Fig. 4.3(b).
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For the low contrast component, W2 is defined opposite to the high contrast map S2:

W2 (i, j) =


1 if ∆x < δx &

∆y < δy

0 otherwise

∆x = |a (x+ 1, y)− a (x, y)|
∆y = |a (x, y + 1)− a (x, y)|

. (4.17)

W2 is 1 only when both of the partial derivatives are below the thresholds, which results in the suppression

of high contrast regions as in Fig. 4.3(c).

(a) original (b) high-contrast component (c) low-contrast component

Figure 4.3: The decomposition of an image corresponding to contrast. (a) is the original image, (b)
is the high-contrast component exhibiting contrast strongly, and (c) is the low-contrast component
exhibiting contrast weakly.

Directionality

Directionality of texture measures the orientation of the local texture. Though the orientation of texture

could be anywhere in the range from 0 to π, herein we consider the horizontal texture as the image content

with strong directionality while the vertical texture as that with weak directionality. When measured in

low-level description, the edge directions are used to represent the directions of the texture. Therefore, we

require dictionaries to represent the horizontal and vertical edge directions separately. Since the wavelet

coefficients in high frequency sub-bands reflect the occurrence of edges with horizontal, vertical and diagonal

directions, the dictionaries for horizontal and vertical texture contents, and the corresponding strong and

weak characteristic maps S3 and W3 are based on the magnitudes of the wavelet coefficients in horizontal

and vertical sub-bands respectively, which are defined as follows:

S3 (i, j) =

1 if |h (i, j)| > δh & |v (i, j)| ≤ δv

0 otherwise

, (4.18)
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and

W3 (i, j) =

1 if |v (i, j)| > δv & |h (i, j)| ≤ δh

0 otherwise

, (4.19)

where h (i, j) and v (i, j) are the wavelet coefficients in horizontal and vertical sub-bands respectively, δh and

δv are the corresponding thresholds.

In regions with horizontal directionality, coefficients are preserved because the horizontal coefficients are

larger than the threshold δh, vertical coefficients are below the threshold δv, and S3 is 1. In regions with

non-horizontal directionality, neither of these conditions are met, and S3 is zero, suppressing such regions as

shown as Fig. 4.4(b). Similarly, W3 suppresses regions of non-vertical directionality as shown in Fig. 4.4(c).

(a) original (b) horizontal component (c) vertical component

Figure 4.4: The decomposition of an image corresponding to directionality. (a) is the original image,
(b) is the horizontal component exhibiting directionality strongly, and (c) is the vertical component
exhibiting directionality weakly.

Line-likeness

According to the definition of line-likeness, the line-like texture and the non-line-like texture show high and

low coincidence of edge directions in the neighbourhood, respectively. Measured in low-level description,

the number of edges with the same direction can be used to differentiate textures with strong and weak

line-likeness: line-like contents of the image correspond to the regions where most edges are in the similar

direction, while non-line-like contents of the image correspond to the regions where the edge directions vary

a lot. Since the high-frequency sub-bands of the wavelet transform are with strong directionality (horizontal,

vertical and diagonal), the dictionaries used to discriminate line-like and non-line-like regions are based on

the measurement of the number of coefficients in every high-frequency sub-band. Therefore, the characteristic

maps for line-like component S4 and non-line-like component W4 are defined as:

S4 (i, j) =



1 if |h (i, j)| > δh & |v (i, j)| ≤ δv & |d (i, j)| ≤ δd

1 if |h (i, j)| ≤ δh & |v (i, j)| > δv & |d (i, j)| ≤ δd

1 if |h (i, j)| ≤ δh & |v (i, j)| ≤ δv & |d (i, j)| > δd

0 otherwise

, (4.20)
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and

W4 (i, j) =



1 if |h (i, j)| > δh & |v (i, j)| > δv

1 if |h (i, j)| > δh & |d (i, j)| > δd

1 if |v (i, j)| > δv & |d (i, j)| > δd

1 if |h (i, j)| < δh & |v (i, j)| < δv & |d (i, j)| < δd

0 otherwise

, (4.21)

where h (i, j), v (i, j), d (i, j) are the wavelet coefficients in high-frequency sub-bands, while δh, δv and δd are

the corresponding thresholds.

The line-like characteristic map S4 is 1 only in regions where there is a large magnitude in only one

high frequency sub-band, resulting in a λs,4 which preserves coefficients in such regions, as in Fig. 4.5(b).

Conversely, the non-line-like characteristic map W4 is 1 only in regions where there is strong coefficient

magnitude in more than one direction, which causes λw,4 to preserve non-line-like regions as in Fig. 4.5(c).

(a) original (b) line-like component (c) non-line-like component

Figure 4.5: The decomposition of an image corresponding to directionality. (a) is the original image,
(b) is the line-like component exhibiting line-likeness strongly, and (c) is the non-line-like component
exhibiting line-likeness weakly.

4.4.2 Incoherence of the texture characteristic dictionaries

The ability of the wavelet thresholding methods with different thresholding functions in highlighting different

texture characteristics are described in the above chapter. However, being the dictionaries for representing

the certain texture characteristics, these wavelet thresholding methods needs to be incoherent in represent-

ing either strong or weak characteristics: the component exhibiting a certain texture characteristic can be

considered as the combination of few columns of the corresponding transformation while cannot be recon-

structed by the sum of the coefficients of the other transformation. In the following part, we will discuss the

incoherence of the dictionaries corresponding to strong characteristics and weak characteristics respectively.
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Incoherence of dictionaries corresponding to strong characteristics

According to the assumption of the dictionaries of MCA introduced in Chapter 4.3.1, the incoherence of the

dictionaries for strong characteristics representation should be discussed in the following two aspects:

1. the “strong-characteristics” dictionaries can represent the components with strong characteristics sparsely,

that is, the components can be considered as the linear combination of few columns of the transforma-

tions employed by the “strong-characteristics” dictionaries;

2. the “strong-characteristics” dictionaries cannot represent the components with weak characteristics

sparsely, that is, the components cannot be considered as the linear combination of few columns of

the transformations employed by the “strong-characteristics” dictionaries.

Since the transformations exploited by the proposed dictionaries Ts,i are all wavelet thresholding methods,

the number of columns of the transformations used to compose the components ss,i can be approximated by

the number of sub-bands where the wavelet coefficients after thresholding by Ts,i are able to reconstruct the

component ss,i. The transformation Ts,i of ss,i is defined as:

Ts,iss,i :


[as,i, hs,i, vs,i, ds,i] = dwt(ss,i)

Si = f(as,i, hs,i, vs,i, ds,i, δs,i)

[âs,i, ĥs,i, v̂s,i, d̂s,i] = λ(Si) · [as,i, hs,i, vs,i, ds,i]
, (4.22)

where dwt(·) represents the discrete wavelet transform, Si is the map for i-th strong characteristic, and λ(·)
denotes the shrinkage function based on the characteristic map Si as defined in Eq. 4.13. As discussed in

Chapter 4.4, the wavelet coefficients [as,i, hs,i, vs,i, ds,i] of the component ss,i exhibiting the i-th characteristic

strongly are mostly preserved by the shrinkage function λ(Si) with a group of calculated thresholds δs,i:

Si = f(as,i, hs,i, vs,i, ds,i, δs,i) ≈ 1

[âs,i, ĥs,i, v̂s,i, d̂s,i] = λ(Si) · [as,i, hs,i, vs,i, ds,i] ≈ [as,i, hs,i, vs,i, ds,i]
. (4.23)

Therefore, the reconstruction of the component ss,i can be implemented as:

idwt(âs,i, ĥs,i, v̂s,i, d̂s,i) ≈ idwt(as,i, hs,i, vs,i, ds,i) = ss,i, (4.24)

where idwt(·) represent the inverse discrete wavelet transformation. The component ss,i can be calculated

from the thresholded wavelet coefficients in at most 4 sub-bands. Considering that the magnitudes of the

coefficients in some sub-bands are so small that they can be omitted, the reconstruction of the component ss,i

can be calculated from the coefficients using less than 4 sub-bands. We will now show that the component

ss,i exhibiting i-th characteristic strongly can be represented sparsely by the dictionaries Ts,i corresponding

to the i-th strong characteristic by using a small number of coefficients thresholded by the transformations

exploited in Ts,i such that:

‖Ts,iss,i‖0 ≤ 4. (4.25)
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Fig. 4.6 shows the coarse (strong coarseness) component ss,1, the wavelet coefficients before and after

thresholding by Ts,1, and the reconstruction of the coarse component with the thresholded wavelet coeffi-

cients. Since the magnitudes of both the original coefficients hs,1, vs,1, ds,1 and the thresholded coefficients

ĥs,1, v̂s,1, d̂s,1 of the coarse component are quite small, the component ss,1 can be approximately reconstructed

by using only the thresholded coefficients in the approximate sub-band âs,1, resulting in the l0 norm of Ts,1ss,1

being equal to 1.

(a) (b) (c) (d)

Figure 4.6: The representation of the coarse component by the transformation used in the “strong-
coarseness” dictionary Ts,1. (a) is the coarse component of the image, (b) and (c) are the wavelet
coefficients before and after thresholded by the dictionary Ts,1, (d) is the coarse component recon-
structed by the wavelet coefficients thresholded by Ts,1.

Fig. 4.7 shows the process of representing a high-contrast (strong contrast) component ss,2 with the

strong contrast dictionary Ts,2. The magnitudes of hs,2, ds,2 and those of ĥs,2, d̂s,2 are small because the

gradients vary most in vertical direction. Then the component ss,2 can be reconstructed by only using the

approximate and vertical sub-bands, that is, ‖Ts,2ss,2‖0 = 2 < 4.

(a) (b) (c) (d)

Figure 4.7: The representation of the high-contrast component by the transformation used in the
“strong-contrast” dictionary Ts,2. (a) is the high-contrast component of the image, (b) and (c) are
the wavelet coefficients before and after thresholded by the dictionary Ts,2, (d) is the high-contrast
component reconstructed by the wavelet coefficients thresholded by Ts,2.

Fig. 4.8 shows the transformation and reconstruction of a horizontal (strong directionality) component

ss,3 with the strong directionality dictionary Ts,3. The magnitudes of coefficients as,3, hs,3 are high and

mostly preserved. The coefficients in only the approximate and horizontal sub-bands can reconstruct this

horizontal component well. Consequently the l0 norm is: ‖Ts,3ss,3‖0 = 2 < 4.
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(a) (b) (c) (d)

Figure 4.8: The representation of the horizontal component by the transformation used in the
“strong-directionality” dictionary Ts,3. (a) is the horizontal component of the image, (b) and (c)
are the wavelet coefficients before and after thresholded by the dictionary Ts,3, (d) is the horizontal
component reconstructed by the wavelet coefficients thresholded by Ts,3.

Fig. 4.9 shows the coefficients of the line-like (strong line-likeness) component ss,4 before and after the

transformation Ts,4 corresponding to the strong line-likeness. Since the textures in this example component

are mostly in horizontal-like directions, the magnitudes of coefficients as,4, hs,4 are preserved with high values.

Therefore, the line-like component ss,4 can be considered as the combination of the thresholded coefficients

âs,4, ĥs,4 in only the approximate and horizontal sub-bands. Then the dictionary Ts,4 can represent the

component ss,4 sparsely with the l0 norm small: ‖Ts,4ss,4‖0 = 2 < 4.

(a) (b) (c) (d)

Figure 4.9: The representation of the line-like component by the transformation used in the “strong-
line-likeness” dictionary Ts,4. (a) is the line-like component of the image, (b) and (c) are the wavelet
coefficients before and after thresholded by the dictionary Ts,4, (d) is the line-like component recon-
structed by the wavelet coefficients thresholded by Ts,4.

Now we apply the transformations for the strong characteristic components, Ts,i, respectively to the weak

characteristic components sw,i and show that these transformations cannot represent the weak components

sparsely. The transformation Ts,i of sw,i is:

Ts,isw,i :


[aw,i, hw,i, vw,i, dw,i] = dwt(sw,i)

Si = f(aw,i, hw,i, vw,i, dw,i, δs,i)

[âw,i, ĥw,i, v̂w,i, d̂w,i] = λ(Si) · [aw,i, hw,i, vw,i, dw,i]
, (4.26)

where δs,i is the same as that in Eq. 4.22 because the same transformation is applied to the components.

As a result, the wavelet coefficients [aw,i, hw,i, vw,i, dw,i] of the component sw,i with weak aspect of the i-th
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characteristic are thresholded out by the thresholding function λ(Si) with the thresholds δs,i for preserving

strong aspect of the i-th characteristic:

Si = f(aw,i, hw,i, vw,i, dw,i, δs,i) ≈ 0

[âw,i, ĥw,i, v̂w,i, d̂w,i] = λ(Si) · [aw,i, hw,i, vw,i, dw,i] ≈ [0, 0, 0, 0]
. (4.27)

Then the inverse discrete wavelet transform of these thresholded coefficients is:

idwt(âw,i, ĥw,i, v̂w,i, d̂w,i) ≈ 0 6= sw,i. (4.28)

As shown above, the component sw,i cannot be reconstructed even by using the thresholded coefficients in all

of the sub-bands. Therefore, it can be concluded that the i-th weak characteristic components sw,i cannot

be represented by the dictionaries Ts,i designed for the i-th strong characteristic sparsely, since using all the

coefficients thresholded by the transformations employed by Ts,i cannot reconstruct the component sw,i:

‖Ts,isw,i‖0 > 4. (4.29)

Fig. 4.10 to Fig. 4.13 show the process of transformation, thresholding and reconstruction of the fine

(weak coarseness), low-contrast (weak contrast), vertical (weak directionality) and non-line-like (weak line-

likeness) components sw,i, i = 1, 2, 3, 4 of the same example image by the same dictionaries Ts,i, i = 1, 2, 3, 4

for the strong components. As illustrated in Eq. 4.28, the reconstructions of these components by the

coefficients thresholded with Ts,i, i = 1, 2, 3, 4 yield nearly untextured components. In the other words, the

components sw,i cannot be considered as the combination of few columns of the dictionaries Ts,i.

(a) (b) (c) (d)

Figure 4.10: The representation of the fine component by the transformation used in the “strong-
coarseness” dictionary Ts,1. (a) is the fine component of the image, (b) and (c) are the wavelet
coefficients before and after thresholded by the dictionary Ts,1, (d) is the fine component reconstructed
by the wavelet coefficients thresholded by Ts,1.

Based on the above discussion, the proposed dictionaries Ts,i, i = 1, 2, 3, 4 can represent the strong

characteristic components ss,i, i = 1, 2, 3, 4 sparsely while cannot represent the weak characteristic component

sw,i, i = 1, 2, 3, 4 sparsely. Therefore, the dictionary Ts,i, i = 1, 2, 3, 4 is incoherent for the decomposition of

components exhibiting the i-th characteristic strongly.
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(a) (b) (c) (d)

Figure 4.11: The representation of the low-contrast component by the transformation used in the
“strong-contrast” dictionary Ts,2. (a) is the low-contrast component of the image, (b) and (c) are
the wavelet coefficients before and after thresholded by the dictionary Ts,2, (d) is the low-contrast
component reconstructed by the wavelet coefficients thresholded by Ts,2.

(a) (b) (c) (d)

Figure 4.12: The representation of the vertical component by the transformation used in the “strong-
directionality” dictionary Ts,3. (a) is the vertical component of the image, (b) and (c) are the wavelet
coefficients before and after thresholded by the dictionary Ts,3, (d) is the vertical component recon-
structed from the wavelet coefficients thresholded by Ts,3.

(a) (b) (c) (d)

Figure 4.13: The representation of the non-line-like component by the transformation used in the
“strong-line-likeness” dictionary Ts,4. (a) is the non-line-like component of the image, (b) and (c) are
the wavelet coefficients before and after thresholded by the dictionary Ts,4, (d) is the non-line-like
component reconstructed from the wavelet coefficients thresholded by Ts,4.
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Incoherence of dictionaries corresponding to weak characteristics

Proof of the incoherence of dictionaries corresponding to weak characteristics are the same as those corre-

sponding to strong characteristics, for which also need to discuss the following evidence:

1. the “weak-characteristics” dictionaries can represent the components with weak characteristics sparsely,

which means the components can be considered as the combination of few columns of the transformation

exploited in the “weak-characteristics” dictionaries;

2. the “weak-characteristics” dictionaries cannot represent the components with strong characteristics

sparsely, equally saying that the components cannot be considered as the combination of few columns

of transformations exploited by those “weak-characteristics” dictionaries.

Applying the transformations Tw,i to the components sw,i that represent the i-th weak characteristic is

described as:

Tw,isw,i :


[aw,i, hw,i, vw,i, dw,i] = dwt(sw,i)

Wi = f(aw,i, hw,i, vw,i, dw,i, δw,i)

[âw,i, ĥw,i, v̂w,i, d̂w,i] = λ(Wi) · [aw,i, hw,i, vw,i, dw,i]
, (4.30)

where δw,i are the thresholds controlling the thresholding mapsWi so that the wavelet coefficients [aw,i, hw,i, vw,i, dw,i]

of the components sw,i exhibiting the i-th characteristic weakly are mostly preserved by the thresholding

function λ(Wi):

Wi = f(aw,i, hw,i, vw,i, dw,i, δw,i) ≈ 1

[âw,i, ĥw,i, v̂w,i, d̂w,i] = λ(Si) · [aw,i, hw,i, vw,i, dw,i] ≈ [aw,i, hw,i, vw,i, dw,i]
. (4.31)

As a result, the component sw,i is close to the inverse discrete wavelet transform of those thresholded wavelet

coefficients:

idwt(âw,i, ĥw,i, v̂w,i, d̂w,i) ≈ idwt(aw,i, hw,i, vw,i, dw,i) = sw,i. (4.32)

Similar to the conclusion for Eq. 4.24, the component sw,i can be reconstructed by using the coefficients

thresholded by Tw,i in no more than the 4 sub-bands. Therefore, the components sw,i exhibiting the i-th

characteristic weakly can be represented by the corresponding dictionaries Tw,i sparsely, because only some

of the subbands thresholded by the transformation Tw,i are needed to reconstruct the component sw,i:

‖Tw,isw,i‖0 ≤ 4. (4.33)

Fig. 4.14 shows the transformation and reconstruction of an example fine (weak coarseness) component

sw,1. The quantity of edges in the local neighbourhood of the fine component is large and the edges are close

to vertical directions, so the coefficients in the approximate sub-band and the vertical sub-band are preserved

with high magnitude. Then the component sw,1 can be considered as the combination of the approximate

and vertical wavelet sub-bands, ‖Tw,1sw,1‖0 = 2 < 4.
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(a) (b) (c) (d)

Figure 4.14: The representation of the fine component by the transformation used in the “weak-
coarseness” dictionary Tw,1. (a) is the fine component of the image, (b) and (c) are the wavelet
coefficients before and after thresholded by the dictionary Tw,1, (d) is the fine component reconstructed
by the wavelet coefficients thresholded by Tw,1.

Fig. 4.15 shows the process of representing the low-contrast (weak contrast) component sw,2 by the

dictionary Tw,2 corresponding to the weak characteristic. The magnitudes of wavelet coefficients in the three

high-frequency sub-bands are low and those of coefficients in the approximate sub-band are preserved and

close to the components. Therefore, the component sw,2 is close to the inverse discrete wavelet transform of

the coefficients only in approximate sub-band, with the l0 norm: ‖Tw,2sw,2‖0 = 1 < 4.

(a) (b) (c) (d)

Figure 4.15: The representation of the low-contrast component by the transformation used in the
“weak-contrast” dictionary Tw,2. (a) is the low-contrast component of the image, (b) and (c) are
the wavelet coefficients before and after thresholded by the dictionary Tw,2, (d) is the low-contrast
component reconstructed by the wavelet coefficients thresholded by Tw,2.

Fig. 4.16 shows the coefficients of the vertical (weak directionality) component sw,3 and the inverse

transformation of the coefficients thresholded by the dictionary Tw,3. The coefficients of the approximate

and vertical sub-bands obviously contain most of the information of the vertical edges in the component,

and these coefficients are mostly preserved by the thresholding method in Tw,3. So the reconstruction of

the component sw,3 only requires the coefficients in the approximate and vertical sub-bands, leading to

‖Tw,3sw,3‖0 = 2 < 4.

Fig. 4.17 shows the transformation and reconstruction of the non-line-like (weak line-likeness) component

sw,4 under the weak line-likeness dictionary Tw,4. After thresholded by the transformation in Tw,4, most

of the wavelet coefficients are preserved and the coefficients in approximate and diagonal sub-bands reflect
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(a) (b) (c) (d)

Figure 4.16: The representation of the vertical component by the transformation used in the “weak-
directionality” dictionary Tw,3. (a) is the vertical component of the image, (b) and (c) are the wavelet
coefficients before and after thresholded by the dictionary Tw,3, (d) is the vertical component recon-
structed by the wavelet coefficients thresholded by Tw,3.

most of the non-line-like textures in the components. The component sw,4 can be sparsely represented by

the Tw,4 by using thresholded coefficients in approximate and diagonal sub-bands, therefore the l0 norm of

the transformation of the component sw,4 is small: ‖Tw,4sw,4‖0 = 2 < 4.

(a) (b) (c) (d)

Figure 4.17: The representation of the non-line-like component by the transformation used in the
“weak-line-likeness” dictionary Tw,4. (a) is the non-line-like component of the image, (b) and (c) are
the wavelet coefficients before and after thresholded by the dictionary Tw,4, (d) is the non-line-like
component reconstructed by the wavelet coefficients thresholded by Tw,4.

To prove the remaining properties of incoherence, the transformations for weak characteristics Tw,i are

applied to the strong components ss,i:

Tw,iss,i :


[as,i, hs,i, vs,i, ds,i] = dwt(ss,i)

Wi = f(as,i, hs,i, vs,i, ds,i, δw,i)

[âs,i, ĥs,i, v̂s,i, d̂s,i] = λ(Wi) · [as,i, hs,i, vs,i, ds,i]
, (4.34)

where δw,i are the same thresholds as those in Eq. 4.30 because the same transformations Tw,i are applied

to the components. Then the wavelet coefficients [as,i, hs,i, vs,i, ds,i] of the component ss,i representing i-th

strong characteristics are filtered by the thresholding functions λ(Wi) because the threshold δw,i is calculated

in Chapter 4.4.1 for preserving weak aspect of the i-th characteristic:

Wi = f(as,i, hs,i, vs,i, ds,i, δw,i) ≈ 0

[âs,i, ĥs,i, v̂s,i, d̂s,i] = λ(Wi) · [as,i, hs,i, vs,i, ds,i] ≈ [0, 0, 0, 0]
. (4.35)

79



Therefore the inverse discrete wavelet transform of these thresholded coefficients is:

idwt(âs,i, ĥs,i, v̂s,i, d̂s,i) ≈ 0 6= ss,i, (4.36)

which illustrates that the component ss,i cannot be reconstructed by the coefficients thresholded by the

transformations of dictionaries Ts,i, even using all the sub-bands. It can be therefore concluded that the

components ss,i containing i-th strong characteristics cannot be represented by the coefficients from the

dictionaries Tw,i designed for the i-th weak characteristics sparsely, because using the coefficients transformed

by Tw,i in all the sub-bands cannot reconstruct the component ss,i:

‖Tw,iss,i‖ > 4. (4.37)

The transformation, thresholding and reconstruction of the coarse (strong coarseness), high-contrast

(strong contrast), horizontal (strong directionality) and line-like (strong line-likeness) components ss,i, i =

1, 2, 3, 4 of the same example images with the same dictionaries Tw,i, i = 1, 2, 3, 4 for the weak components

are shown in Fig. 4.18 to Fig. 4.21. Demonstrated in Eq. 4.36, the magnitudes of the coefficients of these

components transformed by Tw,i, i = 1, 2, 3, 4 are close to zero, resulting in nearly untextured reconstruc-

tions of the components using these coefficients. Therefore the components ss,i cannot be represented as the

combination of few columns of the dictionaries Tw,i.

(a) (b) (c) (d)

Figure 4.18: The representation of the coarse component by the transformation used in the “weak-
coarseness” dictionary Tw,1. (a) is the coarse component of the image, (b) and (c) are the wavelet
coefficients before and after thresholded by the dictionary Tw,1, (d) is the coarse component recon-
structed from the wavelet coefficients thresholded by Tw,1.

It is proved above that the proposed dictionaries Tw,i, i = 1, 2, 3, 4 can represent the weak charac-

teristic components sw,i, i = 1, 2, 3, 4 sparsely and cannot represent the strong characteristic components

ss,i, i = 1, 2, 3, 4 such sparsely. Therefore, the dictionaries Tw,i, i = 1, 2, 3, 4 are incoherent in decomposing

components exhibiting the corresponding characteristics weakly.
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(a) (b) (c) (d)

Figure 4.19: The representation of the high-contrast component by the transformation used in the
“weak-contrast” dictionary Tw,2. (a) is the high-contrast component of the image, (b) and (c) are
the wavelet coefficients before and after thresholded by the dictionary Tw,2, (d) is the high-contrast
component reconstructed from the wavelet coefficients thresholded by Tw,2.

(a) (b) (c) (d)

Figure 4.20: The representation of the horizontal component by the transformation used in the
“weak-directionality” dictionary Tw,3. (a) is the horizontal component of the image, (b) and (c) are
the wavelet coefficients before and after thresholded by the dictionary Tw,3, (d) is the horizontal
component reconstructed from the wavelet coefficients thresholded by Tw,3.

(a) (b) (c) (d)

Figure 4.21: The representation of the line-like component by the transformation used in the “weak-
line-likeness” dictionary Tw,4. (a) is the line-like component of the image, (b) and (c) are the wavelet
coefficients before and after thresholded by the dictionary Tw,4, (d) is the line-like component recon-
structed from the wavelet coefficients thresholded by Tw,4.
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4.5 Experiments and analysis

In this chapter, the wavelet-based texture characteristic morphological component analysis (WT-TC-MCA)

is tested and evaluated for its performance in decomposing images into components corresponding to different

texture characteristics.

4.5.1 Experimental images

The first image set used in our experiments consists of mosaic texture images created by concatenating

textures randomly selected from the Brodatz texture database [24] and the SIPI texture database [208], as

shown in Fig. 4.22(a) through (e). The decomposition of this kind of images is relatively simple because each

image region contains one type of homogeneous texture that need to be exhibited in the certain component.

Therefore, this image set is used as the starting step in our image decomposition evaluation experiments.

In addition to the synthesized mosaic texture images, the natural images from the BSD500 database

[135], as shown in Fig. 4.22(f) through (j), are used as the second image set in our experiments. The

scenes in the natural images are more complex and the textures are not as homogeneous as those in mosaic

images. Therefore, the natural image set is used to evaluate different image decomposition methods more

comprehensively and more representative of actual decomposition problems.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.22: Examples of images used in the experiments. Rows: the mosaic texture images synthe-
sized from 4 textures randomly selected from the Brodatz texture dataset [24] and the SIPI texture
database [208] (top) and the natural images from the BSD500 database [135] (bottom).

4.5.2 Experimental benchmarks

There are two benchmarks which which we evaluate the performance of the WT-TC-MCA:
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1. sensitivity and specificity: they are used to evaluate the accuracy of the decomposition by WT-TC-

MCA, that is, how much of the texture component representing a certain texture characteristic can be

accurately separated from others in the image;

2. threshold of the decomposable textural difference: it is used to measure the applicability of the WT-

TC-MCA, that is, how different the textures in the image must be so that the image can be successfully

decomposed.

Sensitivity and specificity

Both the sensitivity and specificity are statistical measurements of the performance of classifiers, and they

can be used to evaluate the texture decomposition since the texture decomposition problem in our work is

to separate the image into parts representing one texture characteristic “strongly” and “weakly”:

• Sensitivity (also called the true positive rate) measures the proportion of positives that are correctly

identified as such (e.g., the percentage of texture regions with strong characteristic that are correctly

identified as the strong component of the image).

• Specificity (also called the true negative rate) measures the proportion of negatives that are correctly

identified as such (e.g., the percentage of texture regions with weak characteristic that are correctly

identified as the weak component of the image).

Therefore, the sensitivity and specificity are calculated based on the following 4 measurements: true positive

(TP), true negative (TN), false positive (FP) and false negative (FN). Then the sensitivity and specificity

for the decomposition corresponding to each texture characteristic, together with these basic measurements

in each textural image was computed by comparing the decomposed result with the ground truth using the

metric as follows:

Sens = TP
TP+FN

Spec = TN
TN+FP

TP =
|{S(x,y)|MSE(Ss,i(x,y),Gs,i(x,y))≤Th}|

N

TN =
|{S(x,y)|MSE(Sw,i(x,y),Gw,i(x,y))≤Th}|

N

FP =
|{S(x,y)|MSE(Ss,i(x,y),Gs,i(x,y))>Th}|

N

FN =
|{S(x,y)|MSE(Sw,i(x,y),Gw,i(x,y))>Th}|

N

, (4.38)

where Ss,i and Sw,i denote the decomposed image component, Gs,i and Gw,i represent the ground truth image

component, MSE(Ss,i, Gs,i) and MSE(Sw,i, Gw,i) measure the mean square error (MSE) [204] between the

decomposed image components and the corresponding ground truths, Th is the threshold that discriminate

the correctly and incorrectly decomposed components: the MSE between the component and the ground truth

smaller than the threshold Th means the component is correctly decomposed from the image, otherwise the

component is incorrectly decomposed from the image. N is the total number of the pixels in the image.
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Threshold of the decomposable textural difference

In addition, we quantify the amount of variation in the measure of a particular texture characteristic in an

image that is sufficient to permit decomposition of the image into strong and weak components of that char-

acteristic. The threshold of the decomposable textural difference measures the ability of the WT-TC-MCA

to separate similar textures with respect to one certain texture characteristic. For example, to decompose

the given image into “strong” and “weak” coarseness components, WT-TC-MCA requires the coarseness of

the two components differ by more than some threshold Tcor, or the image cannot be decomposed according

to coarseness. Therefore, the threshold is calculated by using the following metric:

Ti = min {Di,j}
Di,j = Mahalanobis (Cs,i,j , Cw,i,j)

Cs,i,j = Ci(ss,j)

Cw,i,j = Ci(sw,j)

subject to: Dacci,j =
Sens(si,j)+Spec(si,j)

2 > 0.9

, (4.39)

where Dacci,j is the decomposition accuracy calculated based on the decomposition sensitivity and decom-

position specificity from Eq. 4.38, Cs,i,j is the cluster of the i-th (i = 1, 2, . . . , 4) texture characteristic of the

“strong” component in the j-th image from the dataset, Cw,i,j is the cluster of the i-th texture characteristic

of the “weak” component in the j-th image from the dataset, Di,j is the Mahalanobis distance between the

two components in j-th image with respect to the i-th texture characteristic, and the threshold Ti for the

i-th characteristic is therefore the minimum distance of all the images in the given dataset.

4.5.3 Experimental methods

As discussed in Chapter 4.5.2, the performance of the wavelet-based texture characteristics morphological

component analysis (WT-TC-MCA) in image decomposition includes two aspects: 1) the accuracy of the

decomposition, and 2) the applicability of the decomposition.

For the evaluation of the accuracy, the WT-TC-MCA method is herein compared with the conventional

morphological component analysis that apply the curvelet transform as the dictionary for the cartoon com-

ponent and the local discrete cosine transform (LDCT) as the dictionary for the texture component. The

experiment is implemented as follows:

1. the images are decomposed by WT-TC-MCA corresponding to different texture characteristics (coarse-

ness, contrast, directionality and line-likeness) and the traditional MCA method to cartoon and texture

components;

2. the sensitivity and specificity of the images decomposed by the WT-TC-MCA and the traditional MCA

are calculated as Eq. 4.38 and compared for each texture characteristic.

For the evaluation of the applicability of the WT-TC-MCA, another experiment is implemented as follows:
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1. the mosaic images are decomposed by the WT-TC-MCA according to different texture characteristics;

2. the thresholds for the decomposable textural difference with respect to each texture characteristic are

calculated and compared with range of the certain texture features of all the images in the database.

4.5.4 Experimental results and analysis

Accuracy of the image decomposition

Fig. 4.23 shows the results of the decomposition of an example mosaic texture image according to coarseness,

contrast, directionality and line-likeness by the WT-TC-MCA method, compared with the decomposition of

the image to piece-wise cartoon and texture by the traditional MCA method. The conventional component

analysis method can only decompose the image into smooth and oscillating components (the piece-wise

cartoon and texture components). It cannot differentiate the different texture types in the image with

respect to different texture characteristics, leading to low sensitivity and specificity when considering strong

and weak aspects of the texture characteristic as positive and negative parts of the image. In contrast,

the WT-TC-MCA is established based on the new model that an image is the combination of components

representing different texture characteristics, and each of the wavelet-based dictionaries can highlight only one

texture characteristic sparsely. Therefore, by the WT-TC-MCA method, for each texture characteristic, the

image can be separated into two components representing the strong and weak aspects of the characteristic,

respectively. In some cases of decomposition, there may exist “wavy boundaries” in both of the components.

It is caused by over-suppressing or over-preserving the pixels that are around the “strong-weak” boundary

of the input image and are therefore difficult to calculate their shrinkage coefficients. However, these pixels

not decomposed well only occur around the boundaries in the synthesized texture images, while most of

the pixels in the images are correctly represented in the corresponding components. As a result, according

to any arbitrary texture characteristic, the WT-TC-MCA leads to higher sensitivity and specificity values.

Table 4.2 shows the average sensitivity and specificity over all testing mosaic images according to different

characteristics.

MCA-CT WT-TC-MCA

Characteristic Sensitivity Specificity Sensitivity Specificity

Coarseness 54.26% 34.40% 98.83% 98,51%

Contrast 54.53% 40.06% 97.76% 97.60%

Directionality 45.29% 34.40% 95.98% 97.93%

line-likeness 63.50% 41.16% 97.57% 97.02%

Table 4.2: Average sensitivity and specificity of decomposing 435 synthetic images by MCA-CT and
WT-TC-MCA. WT-TC-MCA exhibited better average performance than the MCA-CT method.
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input image

coarseness contrast directionality line-likeness

coarse fine high-contrast low-contrast horizontal vertical line-like non-line-like

Sens=47.40%

Spec=38.37%

Sens=65.87%

Spec=49.68%

Sens=65.87%

Spec=49.68%

Sens=47.40%

Spec=38.37%

Sens=98.46%

Spec=98.85%

Sens=98.36%

Spec=98.20%

Sens=97.89%

Spec=97.86%

Sens=98.15%

Spec=98.61%

Figure 4.23: The decomposition results of a sample synthetic texture image with two textures in it
by different decomposition methods. Rows: decomposition results by different methods: ground truth
(top), traditional “cartoon+texture” MCA (middle), WT-TC-MCA (bottom). Columns: decompo-
sition results according to different texture characteristics: coarse, fine, high-contrast, low-contrast,
line-like, non-line-like, horizontal, vertical (from left to right). The sensitivity and specificity of the de-
composition with respect to each characteristic are calculated as Eq. 4.38 with the threshold Th = 0.1.

86



While for the real-world image, Fig. 4.24 shows the results of decomposing the example real-world image

according to coarseness, contrast, directionality and line-likeness by the WT-TC-MCA method, compared

with other decomposition methods. Similar to the decomposition results of the mosaic images, the con-

ventional components analysis based method can only separate the structure and textures from the image,

without finding the components representing the certain texture characteristics. While the WT-TC-MCA

can highlight the regions with the certain texture characteristics separately. Therefore, the sensitivity and

specificity of separating the image into strong and weak characteristic components by WT-TC-MCA are

higher than those generated by other methods. Table 4.3 shows the average sensitivity and specificity over

all testing real-world images according to different characteristics.

input image

coarseness contrast directionality line-likeness

coarse fine high-contrast low-contrast horizontal vertical line-like non-line-like

Sens=60.24%

Spec=32.35%

Sens=62.69%

Spec=55.93%

Sens=62.69%

Spec=55.93%

Sens=60.24%

Spec=32.35%

Sens=93.88%

Spec=98.60%

Sens=98.30%

Spec=93.85%

Sens=93.01%

Spec=94.44%

Sens=97.81%

Spec=92.97%

Figure 4.24: The decomposition result of a sample natural texture image with two textures in it
by TC-MCA with different dictionary strategies. Rows: decomposition results by different methods:
ground truth (top), non-sparse dictionary (middle), wavelet-based dictionary (bottom). Columns:
decomposition results according to different texture characteristics: coarse, fine, high-contrast, low-
contrast, line-like, non-line-like, horizontal, vertical (from left to right). The decomposition sensitivity
and specificity are calculated as Eq. 4.38 with the threshold Th = 0.1.
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MCA-CT TC-MCA-WT

Characteristic Sensitivity Specificity Sensitivity Specificity

Coarseness 61.11% 24.50% 94.67% 98.66%

Contrast 62.33% 36.29% 97.41% 95.04%

Directionality 63.94% 36.19% 93.96% 93.86%

Line-likeness 62.71% 24.40% 97.48% 95.09%

Table 4.3: Average sensitivity and specificity of decomposing 200 real-world images by MCA-CT and
WT-TC-MCA. WT-TC-MCA exhibited better average performance than the MCA-CT method.

Applicability of the WT-TC-MCA image decomposition method

Table. 4.4 shows part of the textures in Brodatz and SIPI datasets that compose the mosaic images, together

with the value of the texture characteristics of these textures (ranked from high to low, that is, from strong

to weak).

Fig. 4.25 to Fig. 4.28 show the decomposition of some example images composed by different textures

in Table 4.4 with respect to coarseness, contrast, directionality and line-likeness, respectively. As shown in

these examples, images where the textures are very different with respect to the certain texture characteristics

are decomposed much more accuratly than those where the texture are quite similar. Fig. 4.29 show four

extreme examples, where we apply the WT-TC-MCA method to decompose four images where there is only

one single texture. In these examples of unsuccessful decompositions, shown as the bottom rows in Fig. 4.25

to Fig. 4.28 and the cases in Fig. 4.29, textures are fully preserved in either the “strong” components or

the “weak” components, or over half of the textures are mistakenly preserved in the opposite characteristics.

The reason for these unsuccessful decompositions is that there is little textural difference in the image with

respect to coarseness, contrast, directionality and line-likeness, respectively. Therefore we need to find the

threshold of the textural differences so that only the images where the textural differences are larger than

the threshold can be decomposed by WT-TC-MCA according to the certain texture characteristics.

Fig. 4.30 shows the results of the relationship between the decomposition accuracy and the textural dif-

ferences (Mahalanobis distance between two clusters of a certain texture feature) over the whole dataset, that

is, 435 test pairwise textural images consisting of 30 different textures. We consider that the decompositions

with the decomposition accuracies larger than 90% are successful while those with the decomposition accu-

racies smaller than 90% are unsuccessful. And if the decomposition is successful, we consider the image as a

decomposable image. Although the very specific threshold value cannot be calculated from the experimental

results, there exists a quite small range of the threshold that the image is decomposable according to each

texture characteristic. For coarseness, the threshold is between [0.79, 0.80], which means the images could

be decomposed if the textural differences was larger than 0.80 in Mahalanobis distance while the images

couldn’t be decomposed if the textural difference was less than 0.79 in Mahalanobis distance with respect
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Texture Coarseness Texture Contrast Texture Line-likeness Texture Directionality

0.8567 0.3254 0.8567 0.4785

0.8395 0.3240 0.8652 0.4432

0.8204 0.3135 0.7725 0.4192

0.7886 0.2927 0.7150 0.3969

0.7874 0.2901 0.6702 0.3762

0.7648 0.2390 0.6595 0.3521

0.7636 0.2357 0.6500 0.3442

0.7623 0.2242 0.6285 0.3374

0.7605 0.2068 0.5801 0.3336

0.7506 0.1984 0.5778 0.3245

0.7450 0.1966 0.5710 0.3214

0.7380 0.1885 0.5557 0.2970

0.7318 0.1866 0.5496 0.2951

0.7295 0.1851 0.5490 0.2935

0.7235 0.1692 0.5406 0.2874

0.7153 0.1637 0.5251 0.2870

0.7073 0.1574 0.5222 0.2832

0.7033 0.1548 0.5090 0.2676

0.6969 0.1547 0.5007 0.2480

0.6748 0.1537 0.4990 0.2412

0.6658 0.1415 0.4948 0.2364

0.6632 0.1346 0.4829 0.2360

0.6518 0.1316 0.4563 0.2282

0.6511 0.1283 0.4363 0.2243

0.6134 0.1218 0.4360 0.2230

0.6121 0.1191 0.4350 0.2088

Table 4.4: Example textures taken from Brodatz and SIPI texture database used to compose the
mosaic texture images in the experiments. The textures are sorted from high to low with respect to
coarseness, contrast, line-likeness and directionality respectively.
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Figure 4.25: The decomposition of the mosaic images with respect to coarseness by the WT-TC-MCA
method. Rows (from top to bottom): decomposition of the image where textures are very different
in coarseness and decomposition of the image where textures are very similar in coarseness. Columns
(from left to right): the input images, the feature maps of the coarseness of the images, the colour
mesh plots of the corresponding the feature maps, the “strong-coarseness” component decomposed
from the image by WT-TC-MCA and the “weak-coarseness” component decomposed from the image
by WT-TC-MCA.

Figure 4.26: The decomposition of the mosaic images with respect to contrast by the WT-TC-MCA
method. Rows (from top to bottom): decomposition of the image where textures are very different in
contrast and decomposition of the image where textures are very similar in contrast. Columns (from
left to right): the input images, the feature maps of the contrast of the images, the colour mesh plots
of the corresponding the feature maps, the “strong-contrast” component decomposed from the image
by WT-TC-MCA and the “weak-contrast” component decomposed from the image by WT-TC-MCA.
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Figure 4.27: The decomposition of the mosaic images with respect to directionality by the WT-
TC-MCA method. Rows (from top to bottom): decomposition of the image where textures are very
different in directionality and decomposition of the image where textures are very similar in direc-
tionality. Columns (from left to right): the input images, the feature maps of the directionality of
the images, the colour mesh plots of the corresponding the feature maps, the “strong-directionality”
component decomposed from the image by WT-TC-MCA and the “weak-directionality” component
decomposed from the image by WT-TC-MCA.

Figure 4.28: The decomposition of the mosaic images with respect to line-likeness by the WT-
TC-MCA method. Rows (from top to bottom): decomposition of the image where textures are very
different in line-likeness and decomposition of the image where textures are very similar in line-likeness.
Columns (from left to right): the input images, the feature maps of the line-likeness of the images,
the colour mesh plots of the corresponding the feature maps, the “strong-line-likeness” component
decomposed from the image by WT-TC-MCA and the “weak-line-likeness” component decomposed
from the image by WT-TC-MCA.
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input texture feature map strong component weak component

coarseness

contrast

directionality

line-likeness

Figure 4.29: The decomposition of the pure texture exhibiting one consistent texture characteristic
by the WT-TC-MCA. Rows (from top to bottom): pure textures exhibiting coarseness, contrast,
directionality, line-likeness consistently. Columns (from left to right): input textures, feature maps of
the corresponding texture characteristics, the decomposed “strong” components and the decomposed
“weak” components.
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to the coarseness. And for the contrast, line-likeness and directionality, the thresholds are [0.81, 0.83],

[0.80, 0.82] and [0.81, 0.82] respectively. The “decomposable” threshold is quite small, which means most of

the testing textural images can be decomposed by the proposed method. Table 4.5 shows the number of

images which can be decomposed or not according to the 4 specific characteristics, as well as the average

decomposition accuracies of the decomposable images and indecomposable images respectively. For coarse-

ness, 400 images over the total 435 can be decomposed with an average accuracy of 98.85%, while the rest

35 images result in an average accuracy of 48.75%; for contrast, 395 images can be decomposed with an av-

erage accuracy of 98.43%, while the rest 40 images result in an average accuracy of 47.92%; for line-likeness,

389 images can be decomposed with an average accuracy of 97.95%, while the rest 46 images result in an

average accuracy of 49.25%; and for directionality, 390 images can be decomposed with an average accuracy

of 98.45%, while the rest 45 images result in an average accuracy of 47.12%. These results show that the

proposed decomposition method can provide quite stable performance in decomposing the textural images

according to different texture characteristics over most of the test mosaic images.

characteristic
number of successfully decomposed

images (of the total 435 images)

average decomposition

accuracy

coarseness 400 98.85%

contrast 395 98.43%

directionality 389 97.95%

line-likeness 390 98.45%

characteristic
number of unsuccessfully decomposed

images (of the total 435 images)

average decomposition

accuracy

coarseness 35 48.75%

contrast 40 47.92%

directionality 46 49.25%

line-likeness 45 47.12%

Table 4.5: The number of decomposable and indecomposable images of all the 435 testing images
according to coarseness, contrast, directionality and line-likeness, as well as the corresponding average
decomposition accuracies.

4.5.5 Discussion

To analyze the advantages of the WT-TC-MCA over the conventional image decomposition, we herein com-

pare the feature maps of the components from the WT-TC-MCA and standard “cartoon and texture” mor-

phological component analysis (MCA). In Fig. 4.31, an example mosaic texture image is decomposed by

MCA and WT-TC-MCA (according to coarseness, contrast, directionality and line-likeness), then the tex-

ture characteristics of the separated components are measured and mapped. It shows that for each one of the
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Figure 4.30: The relationship between the decomposition accuracy and differences with respect to
texture characteristics (coarseness, contrast, directionality and line-likeness from (a) to (d)). The
decomposition accuracy is calculated by Eq. 4.39.
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characteristics, the regions with strong aspect are concentrated in the strong component after WT-TC-MCA

while those with weak aspect are mostly in the weak component. However, in the case of the MCA, the

distribution of the features does not show any performance of clustering because the dictionaries MCA used

cannot represent different texture characteristics.

Input image

coarseness contrast directionality line-likeness

cartoon texture cartoon texture cartoon texture cartoon texture

MCA

feature maps

of the components

coarse fine high-contrast low-contrast horizontal vertical line-like non-line-like

WT-TC-MCA

feature maps

of the components

Figure 4.31: The feature maps of the decomposed components of the example mosaic texture image
with two textures in it by different methods. Rows: decomposition results and the corresponding
Tamura’s feature maps by different methods: original image, traditional “cartoon+texture” MCA and
WT-TC-MCA (from top to bottom). Columns: decomposition results and the feature maps with
respect to different texture characteristics: coarseness, contrast, directionality and line-likeness (from
left to right). The Tamura’s features are locally calculated as described in Chapter 3.

Fig. 4.32 shows the comparison of feature separation on an example real-world image, which exhibits

results similar to those for the mosaic image. Therefore, it demonstrates that the WT-TC-MCA, with the

help of dictionaries representing texture characteristics, outperforms the conventional component analysis
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methods in separating the different texture characteristics, leading to better performance in decomposing the

image according to different texture characteristics.

Input image

coarseness contrast directionality line-likeness

cartoon texture cartoon texture cartoon texture cartoon texture

MCA

feature maps

of the components

coarse fine high-contrast low-contrast horizontal vertical line-like non-line-like

WT-TC-MCA

feature maps

of the components

Figure 4.32: The feature maps of the decomposed components of the example real-world image with
two types of contents in it by different methods. Rows: decomposition results and the corresponding
Tamura’s feature maps by different methods: original image, traditional “cartoon+texture” MCA and
WT-TC-MCA (from top to bottom). Columns: decomposition results and the feature maps with
respect to different texture characteristics: coarseness, contrast, directionality and line-likeness (from
left to right). The Tamura’s features are locally calculated as described in Chapter 3.

4.6 Conclusion

In this chapter, we proposed a texture characteristic based morphological component analysis using wavelet-

based dictionaries. Image can be decomposed into pairwise components representing a given texture char-
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acteristic strongly and weakly with the wavelet-based dictionaries that can sparsely highlight strong and

weak texture characteristics, respectively. Experiments are implemented to compare the performance of

WT-TC-MCA and other methods in decomposing both mosaic texture images and real-world images. The

experimental results show that the WT-TC-MCA can successfully decompose the image into components

strongly and weakly exhibiting the certain characteristics, even when the variation of a given characteristic

over the image is relatively small. In the next chapter we will we will develop a texture enhancement method

where the components resulting from the WT-TC-MCA decomposition can be be manipulated to enhance

their own properties.
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Chapter 5

Wavelet-based texture components enhancement

In the last chapter, the input image can be decomposed into pairwise components representing some

certain texture characteristics strongly and weakly. To obtain the enhanced image with the texture char-

acteristics more distinguishable, these components with the certain texture characteristics are enhanced to

highlight their own properties and then recombined together. Therefore, in this chapter, we will discuss how

to enhance the separated components with respect to the certain texture feature.

5.1 Introduction

Image enhancement methods can be used to enhance the components separated from the image. Based on

the literature reviewed in Chapter 2.3, non-linear image manipulation methods are suitable for our purpose

of enhancing the texture characteristics represented by different components. Moreover, the wavelet-based

image enhancement methods have become more attractive recently. By manipulating the wavelet coefficients

in different sub-bands with different functions, the wavelet-based enhancement methods can manipulate

different types of image content in different ways at the same time, e.g., suppressing the noise and amplifying

the edges, so that the image can be enhanced with more accentuated texture characteristics.

Most of the wavelet-based image enhancement methods follow the idea that a threshold T is determined,

and then the coefficients larger and smaller than T are modified according to two different rules. The key

points of this kind of method are to estimate the threshold T correctly and optimally design the rules for

modifying coefficients. Based on the different selections of the threshold, the recent methods can be classified

as hard thresholding and soft thresholding.

Hard thresholding functions, as first proposed in [66], retain all wavelet coefficients greater than the given

threshold T and set the others to zero. The threshold T is chosen according to the signal energy and the noise

variance σ2. It was considered a simple but very useful method for processing images in the wavelet domain

since it preserves the coefficients larger than T that are assumed to be attributed to the original signal and

removes the coefficients smaller than T that are assumed to be due to noise. However, the method causes a

lot of artifacts in the images when it fails to remove moderately strong coefficients caused by noise.

To overcome the disadvantages of hard thresholding, soft thresholding, also known as wavelet shrinkage,

was proposed in [62]. In the wavelet shrinkage method, wavelet coefficients above the threshold are shrunk
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by the absolute value of the threshold itself. Most of the wavelet shrinkage literature was based on methods

for choosing the optimal threshold which can be adaptive or non-adaptive to the image. VISUShrink [64] is

a non-adaptive universal threshold which depends only on the number of the data points. It has asymptotic

equivalence and obtains best performance, in terms of mean square error (MSE), when the number of pixels

reaches infinity. Another advantage of VISUShrink was that the threshold can be easily computed with

knowledge of the noise variance and image size, so it can implement the de-noising efficiently. However,

it generates overly-smoothed images because its threshold choice can be too large due to its dependence

on the number of pixels in the image. To address the drawback of the VISUShrink, the SUREShrink

was proposed as an adaptive thresholding method where the wavelet coefficients were treated in level-by-

level fashion. In each level, when there is information that the wavelet representation of that level is not

sparse, a threshold that minimizes Stein’s unbiased risk estimate (SURE) is applied. The main advantage

of SUREShrink is that it calculates a separate threshold value for each of the detail levels, which avoids

over-smoothing to some extent. In [65], it is shown that SUREShrink performs better than VISUShrink in

recovering the high frequency signal. However, SUREShrink performs poorly in situations of extreme sparsity

of the wavelet coefficients, where the noise contributed to the SURE profile by the many coordinates where

the signal is zero overwhelms the information contributed to the SURE profile by the few coordinates where

the signal is nonzero. Moreover, the SUREShrink algorithm is not efficient because it calculates a threshold

for every level, but only the thresholds from the first few decomposition levels are necessary for image

processing. After the work of Donoho et al., BayesShrink [39] was proposed as another adaptive, data-driven

thresholding method where the wavelet coefficients in a sub-band of the image can be represented effectively

by a Generalized Gaussian Distribution (GCD) and the threshold is derived in a Bayesian framework. Since

each high-frequency sub-band can have a different generalized Gaussian distribution, and therefore a different

variance, a separate threshold is calculated for each detail sub-band using only the data from that sub-band

and the noise variance, which is assumed to be constant across all sub-bands. However, for the noise whose

variance is proportional to the measurements of image pixels, BayesShrink has the disadvantage that it is only

effective for small-amplitude noise coefficients. Chen et al. [40] proposed the wavelet thresholding method by

incorporating neighbouring coefficients, named NeighShrink. The method thresholded the wavelet coefficient

according to the magnitude of the squared sum of all the wavelet coefficients, i.e., the local energy, within the

neighbourhood window. In contrast to the conventional wavelet shrinkage method proposed by Donoho, the

NeighShrink de-noising method avoids the main disadvantage of the former wavelet shrinkage method that

too many wavelet coefficients that might contain useful image information (textures, edges or other details)

are attenuated too greatly. Because the correlation among the wavelet coefficients in the neighbourhood is

fully considered in NeighShrink, it can preserve the image details very well when removing noise. Sendur et

al. [178] proposed BiShrink that determines the threshold by using a bivariate shrinkage function between a

coefficient and its parent whose statistical dependency is modelled by a bivariate probability density function

(PDF). It considers the relationship between the coefficients at different decomposition levels, not only those
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at the same scale. However, the performance of BiShrink is highly dependent on the estimation of noise and

signal variance of each wavelet coefficient, resulting in poor de-noising when the homogeneous regions are

heavily corrupted by noise.

The methods introduced above have proven efficient for image de-noising. There are not yet, however,

good methods for enhancing image details or contrast in the wavelet domain. It is difficult to differentiate

the coefficients corresponding to details or high contrast areas from those corresponding to noise in wavelet

domain so as to apply different modification to those coefficients. However, attempts have been proposed

recently [95, 173, 206]. In [128], X. Liu et al. proposed a non-linear operator to modify the high-frequency

sub-bands of wavelet decomposition. Low-frequency coefficients are modified for adjusting the grayscale range

ofthe image, and high-frequency coefficients are modified to enhance local contrast and edges. Most of the

popular non-linear filters can be used to modify these coefficients.

However, all of the wavelet-based image enhancement methods suffer from the same disadvantages as

other non-linear enhancing methods, that is, few of them can enhance the texture characteristics other than

contrast. Therefore, to enhance the components representing Tamura’s texture characteristics, it is necessary

to find wavelet-based enhancement methods for the coarseness, contrast, directionality and line-likeness

components of an image, respectively, such that each method enhances exactly one characteristic while not

influencing the others.

5.2 Concept of image enhancement based on wavelet transforma-

tion

Typically, the enhancement of a given image I by using wavelet transform is implemented in three steps.

Firstly, the image is decomposed with wavelet transform into four sub-bands as follows:

Wφ(j0,m, n) = 1√
MN

∑M
x=1

∑N
y=1 f(x, y)φj0,m,n(x, y)

W i
ϕ(j0,m, n) = 1√

MN

∑M
x=1

∑N
y=1 f(x, y)ϕij0,m,n(x, y)

, (5.1)

where f(x, y) represents the pixel in image I, φ(x, y) is the scaling function giving the low-frequency approx-

imation of the image, ϕi(x, y) are the wavelet functions measuring the variations along columns (i = H),

rows (i = V ) and diagonals (i = D), M and N are the rows and columns of the image respectively. Then

the image is decomposed into Wφ(j0,m, n) representing the low-frequency approximate image at the scale

j0 and W i
ϕ(j0,m, n) representing the high-frequency approximate images of horizontal part (i = H), vertical

part (i = V ) and diagonal part (i = D) at the scale j0.

Secondly, some adequate enhancement is made to the high-frequency sub-bands representing the edges

or textures in the image:

[
W i
ϕ(j,m, n)

]′
=

sgn
(
W i
ϕ(j,m, n)

)
· (K1

∣∣W i
ϕ(j,m, n)

∣∣) if
∣∣W i

ϕ(j,m, n)
∣∣ ≤ T

sgn
(
W i
ϕ(j,m, n)

)
· (K2

∣∣W i
ϕ(j,m, n) +K1T

∣∣) if
∣∣W i

ϕ(j,m, n)
∣∣ > T

, (5.2)
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where K1 and K2 are the enhancing coefficients for the wavelet coefficient W i
ϕ(j, x, y), and T is the threshold.

If K1 > K2, the coefficients with small magnitudes are amplified so that the weak edges of the image are

enhanced. While if K1 < K2, the coefficients with large magnitudes are amplified more, thus the sharp edges

are highlighted.

With the manipulated wavelet coefficients, the image is enhanced by the inverse-transform as the last

step:

f
′
(x, y) =

1√
MN

∑
m

∑
n

Wφ(j0,m, n)φj0,m,n(x, y) +
1√
MN

∑
i=H,V,D

∞∑
j=j0

∑
m

∑
n

[
W i
ϕ(j,m, n)

]′
ϕij0,m,n(x, y).

(5.3)

Other functions have also been proposed to manipulate the wavelet coefficients so that the image can

be enhanced in local contrast and edges [110]. However, most of the recent enhancement methods only

manipulate the magnitudes of the wavelet coefficients in the high-frequency sub-bands, so only the texture

characteristics based on the magnitudes of the edges, such as local contrast, directionality, can be enhanced.

In this thesis, we manipulate the magnitudes and the distribution of the wavelet coefficients in both low-

frequency and high-frequency sub-bands, so that the image can be enhanced with respect to other texture

characteristics.

5.3 Texture characteristic enhancement based on wavelet trans-

formation

The proposed texture characteristics enhancement methods apply the same scheme of the wavelet-based

enhancement methods as discussed in Chapter 5.2. The image components, which are separated from the

image using the WT-TC-MCA method from Chapter 4, are firstly decomposed by a given wavelet transform:

αs,i = [as,i, hs,i, vs,i, ds,i] = dwt (ss,i, j)

αw,i = [aw,i, hw,i, vw,i, dw,i] = dwt (sw,i, j)
, (5.4)

where ss,i and sw,i are the image components representing the coarseness (i = 1), contrast (i = 2), direction-

ality (i = 3) and line-likeness (i = 4) strongly and weakly, αs,i and αw,i are the wavelet coefficients of these

image components via the wavelet transform dwt(·). Then the wavelet coefficients are manipulated by the

functions designed for enhancing each texture characteristic respectively:

α
′
s,i = fs,i (αs,i)

α
′
w,i = fw,i (αw,i)

, (5.5)

where α
′
s,i and α

′
w,i are the wavelet coefficients of the components manipulated by the functions fs,i(·) and

fw,i(·) that accentuate the characteristics represented by the wavelet coefficients αs,i and αw,i of the image

components. The enhanced components s
′
s,i and s

′
w,i are then computed from the inverse wavelet transform
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of the certain manipulated coefficients:

s
′
s,i = idwt(α

′
s,i)

s
′
w,i = idwt(α

′
w,i)

. (5.6)

The proposed wavelet-based image enhancement method differs from the conventional ones in the functions

for manipulating the wavelet coefficients. We don’t simply apply the thresholding method on coefficients

in high-frequency sub-bands, but manipulate the coefficients in all sub-bands by the spatial-like non-linear

filters to accentuate the relations between wavelet coefficients in the neighbourhood. The filters or functions

are different due to different texture characteristics to be highlighted, so we will first discuss the details of

designing the enhancement functions in the following part.

5.3.1 Discipline of texture characteristics enhancement

As discussed in Chapter 4, different texture characteristics can be represented by wavelet coefficients in

different sub-bands. Given the texture characteristics: coarseness, contrast, directionality and line-likeness,

the wavelet coefficients are used as follows to reflect them:

1. the high-frequency sub-bands of DWT contains the information of the distribution of edges of the image

so as to reflect the coarseness of the image;

2. the low-frequency sub-band of DWT contains the information of the distribution of pixel intensities of

the image and reflects the contrast of the image;

3. the high-frequency sub-bands of DWT preserves the directions and positions of the edges in the image,

and the mean value of the distribution of the high frequency coefficients reflects the directionality;

4. the variance of the distribution of the coefficients in high frequency sub-bands with different directions

reflects the line-likeness of the image.

Given how the wavelet coefficients reflect the texture characteristics, it can be summarized how to highlight

the texture characteristics by modifying the corresponding wavelet coefficients. However, because the coeffi-

cients may relate to more than one texture characteristic, it should be also required that the modification of

the coefficients will not affect the texture characteristics other than that which we are attempting to enhance.

Therefore, the requirements of the enhancement scheme are shown in Table 5.1.

According to the “rules” for enhancement of the wavelet coefficients, different functions fs,i and fw,i

in Eq. 5.5 for manipulating the wavelet coefficients for specific texture characteristics are described in the

following parts.
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characteristics operations need to do operation need to avoid

coarseness

modification of the number

of edges in the

neighbourhood

1. modification of the gray levels in the neigh-

bourhood;

2. modification of the mean and the variance of

the edge directions in the neighbourhood.

contrast

modification of the variation

of the gray levels in the

neighbourhood

1. modification of the edge occurrences in the

neighbourhood;

2. modification of the edge directions in the neigh-

bourhood.

directionality

modification of the number

of edge pixels with the

certain direction

1. modification of the distribution of the edge di-

rections in the neighbourhood;

2. modification of the distribution of the gray lev-

els in the neighbourhood.

line-likeness

modification of the variance

and the kurtosis of the edge

directions

1. modification of the mean value of the directions

in the neighbourhood;

2. modification of the number of edges in the

neighbourhood.

Table 5.1: The requirements of the scheme of the methods in enhancing texture characteristics
reflected by wavelet coefficients.
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5.3.2 Manipulations for the coarseness-decomposed components

Coarse (strong coarseness) component enhancement

To enhance the coarse component’s property, that is, make the component coarser, can be considered intu-

itively as the process of removing the small-size, granular texels from the component. It requires removing

the “weak” edges where the gradients are relatively small, and enhance the “strong” edges showing the main

structures image. Fig. 5.1(a) shows the enhancement method by a one-dimensional diagram. There are two

“texels” in the diagram: one is from 1 to 6 and the other is from 6 to 11. By removing the “weak” edges

at position 6 while preserving other pixels as much as possible, the two small texels with the width of 5

merge to one larger texel with the width of 10, leading to the coarseness magnified twice than that before

enhancement.
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original
manipulated

(a) Simulation of manipulating a
coarse texture, shown as a

one-dimensional curve

(b) Original coarse
component

(c) Manipulated coarse
component

(d) Details of the image
inset in (b)

(e) Details of the image inset
in (c)

Figure 5.1: The diagram and example of the coarse component enhancement. (a) The diagram of
making the given one-dimension curve coarser; (b) the coarse component separated from the example
image; (c) the manipulated coarse component where the textures are coarser; (d) details of the image
inset in (b), marked by the red rectangle; (e) details of the image inset in (c), marked by the red
rectangle.

In the wavelet domain, the edges are represented by the coefficients with high magnitudes in high-frequency

sub-bands, and the gradients can be calculated by the variances of the magnitudes of the coefficients in

approximate sub-band. Therefore, the following function is proposed to enhance the coarse component ss,1:

α
′
s,1 = (g (|αs,1|) + k · d) · sign (αs,1) (5.7)

d = |αs,1| − g (|αs,1|)

k =
edmax−d − 1

edmax−dmin − 1
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where |·| denotes the magnitude of the coefficients, g (·) is a 7× 7 Gaussian filter with σ = 1, k is the weight

of the difference d between the magnitude of wavelet coefficient and that of the Gaussian filtered coefficient.

The strong edges which have a larger d will be enhanced while the weak edges or smooth regions which have

smaller d will be further suppressed, enhancing the texture coarseness, as shown in Fig. 5.1(b) and Fig.

5.1(c).

Fine (weak coarseness) component enhancement

The enhancement of the fine component, which is to make the component finer, follows the opposite idea of

enhancing the coarse component, that is, increasing the number of texels in the local neighbourhood. It is

the process of adding granules in the texture regions, or cutting the complete texels into small pieces, which

requires adding pixels with singular intensities to the neighbouring pixels so that the size of texels will be

smaller. Fig. 5.2(a) is the diagram of enhancing “fineness” in one dimension. Originally there are two texels

which are represented by the points from 1 to 6 and those from 6 to 11 respectively. By adding or changing

the pixel intensities at position 4 and 8 to intensities more different than their surroundings, the two small

texels with the width of 5 are split to four smaller texels with width 2 or 3, resulting in a finer texture.
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(a) Simulation of manipulating a
fine texture, shown as a
one-dimensional curve

(b) Original fine component
(c) Manipulated fine

component

(d) Details of the image
inset in (b)

(e) Details of the image inset
in (c)

Figure 5.2: The diagram and example of the fine component enhancement. (a) The diagram of
making the given one-dimension curve finer; (b) the fine component separated from the example
image; (c) the manipulated fine component where the textures are finer; (d) details of the image inset
in (b), marked by the red rectangle; (e) details of the image inset in (c), marked by the red rectangle.

In the wavelet domain, we increase the texture primitives in the local neighbourhood by adding multi-
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plicative noise dependent on the magnitudes of wavelet coefficients:

α
′
w,1 = (g (|αw,1|) + k · n · |αw,1|) · sign (αw,1) (5.8)

k =
ed − 1

e− 1

where |·| denotes the magnitudes of the coefficients, n is the uniformly distributed random noise, k is the

weight of the noise, calculated based on d, the local standard deviation of the magnitudes of wavelet coeffi-

cients. By adding these random noise to the fine regions where the magnitudes of wavelet coefficients change

rapidly, the textures in Fig. 5.2(b) will be “shattered” locally, leading to an increasing of fineness shown in

Fig. 5.2(c).

5.3.3 Manipulation for the contrast-decomposed components

High-contrast component enhancement

Enhancement of the high-contrast component is achieved by making the contrast of the local neighbourhood

higher. The contrast measures the change of the pixel intensities in the neighbourhood, so enhancement

of the contrast means increasing the the number of gray levels and the difference between the maximum

and minimum intensity in the neighbourhood, but still preserving the positions of the edges . A diagram is

shown as Fig. 5.3(a) demonstrating the method of contrast enhancement. By changing the pixel intensities

of the pixels so that they have higher gradients to the neighbours, the smooth regions with gradual intensity

changes are modified to the regions with rapid intensity changes.

In the wavelet domain, the magnitudes of the coefficients in the approximate sub-band represent the

intensity distribution of the image, and the magnitudes of the coefficients in the high frequency sub-bands

represent the gradients of pixels in the image, therefore we use a weighted Laplacian filtering to increase the

local contrast:

α
′
s,2 =

(
|αs,2|+ k · ∇2 (|αs,2|)

)
· sign (αs,2) (5.9)

k = e
√
|hs,2|2+|vs,2|2

where |·| denotes the magnitudes of the coefficients, |∇2(·)| is a 5×5 Laplacian filter, and k is the weight based

on the magnitude distribution of wavelet coefficients in horizontal and vertical sub-bands. The Laplacian of

wavelet coefficients has high magnitudes in the high-contrast regions. As shown in Fig. 5.3(c), the magnitudes

of the Laplacian are adjusted by k, which is positively related to the magnitudes of high-frequency wavelet

coefficients, and added to the input wavelet coefficients, resulting in higher contrast of the original regions.

Low-contrast component enhancement

Contrary to the enhancement of the high-contrast component, the enhancement of the low-contrast compo-

nent needs to compress the range the range of gray levels in the local neighbourhood. The common way to
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(a) Simulation of manipulating a
high-contrast texture, shown as a

one-dimensional curve

(b) Original high-contrast
component

(c) Manipulated
high-contrast component

(d) Details of the image
inset in (b)

(e) Details of the image inset
in (c)

Figure 5.3: The diagram and example of the high-contrast component enhancement. (a) The diagram
of making the given one-dimension curve higher contrast; (b) the high-contrast component separated
from the example image; (c) the manipulated high-contrast component where the textures are with
higher contrast; (d) details of the image inset in (b), marked by the red rectangle; (e) details of the
image inset in (c), marked by the red rectangle.

achieve this target is to lower the differences between the centre pixels and the neighbours according to the

intensity variations themselves, therefore the histogram of the gray levels will be compressed to the mean

value of the neighbourhood and the texture structures are preserved. Fig. 5.4(a) shows how the low-contrast

enhancement is implemented. By modifying the intensities at position 1,3,5,7,9, the histogram of the gray

levels is changes from a distribution with wide range (from 0.3 to 0.4) to a concentrated distribution (most

are around 0.25).

While in the wavelet domain, a weighted Gaussian filtering where the weights are calculated from the

coefficients in the horizontal and vertical sub-bands is applied to the coefficients in approximate sub-band:

α
′
w,2 = (g (|αw,2|) / (1 + k)) · sign (αw,2) (5.10)

k =

√
|hw,2|2 + |vw,2|2

where g (·) is a 7 × 7 Gaussian filtering with σ = 1, k is the weighting coefficients calculated from the

distribution of magnitudes of wavelet coefficients in the horizontal and vertical wavelet sub-bands. The

Gaussian filtering compresses the magnitudes of the wavelet coefficients, and the weighting coefficient k

further increases compression on the smooth region where the hw,2 and vw,2 are low, as shown in Fig. 5.4(b)

and Fig. 5.4(c).
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(a) Simulation of manipulating a
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one-dimensional curve

(b) Original low-contrast
component

(c) Manipulated low-contrast
component

(d) Details of the image
inset in (b)

(e) Details of the image inset
in (c)

Figure 5.4: The diagram and example of the low-contrast component enhancement. (a) The diagram
of making the given one-dimension curve lower contrast; (b) the low-contrast component separated
from the example image; (c) the manipulated low-contrast component where the textures are with
lower contrast; (d) details of the image inset in (b), marked by the red rectangle; (e) details of the
image inset in (c), marked by the red rectangle.

5.3.4 Manipulation for the directionality-decomposed components

Horizontal (strong directionality) component enhancement

The enhancement of horizontal component requires that we make the component more “horizontal-like”.

The directions of edges in the horizontal components are close to horizontal, so the enhancement means

making these edges more obvious than before. It requires increasing the pixel intensities along the horizontal

direction and decreasing the pixel intensities along the other directions. Fig. 5.5(a) and Fig. 5.5(b) show

diagrams of the horizontal-enhancement method. By increasing the pixel intensities with x = 3 and x = 9

and decreasing the pixel intensities with x = 2, x = 4, x = 8 and x = 10, this horizontal edge becomes more

obvious compared with others in the image, leading to the image exhibits more horizontal.

The position of horizontal edges are mostly represented by the wavelet coefficients in the horizontal

sub-band and the magnitudes of the edges are reflected by the coefficients in approximate sub-band. To

enhance the horizontal components, the wavelet coefficients in the approximate and horizontal sub-bands are

manipulated to highlight those representing horizontal edges, while the wavelet coefficients in the vertical and

diagonal sub-bands are removed so that the horizontal coefficients are more dominant in the output image.
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(a) Simulation of a horizontal
texture

(b) Simulation of the manipulated
horizontal texture

(c) Original horizontal
component

(d) Manipulated
horizontal component

(e) Details of the image
inset in (c)

(f) Details of the image
inset in (d)

Figure 5.5: The diagram and example of the horizontal component enhancement. (a) The diagram
of example texture with horizontal edges; (b) the diagram of accentuating the horizontal edges in the
example texture; (c) the horizontal component separated from the example image; (d) the manipulated
horizontal component where the horizontal edges are more obvious; (e) details of the image inset in
(c), marked by the red rectangle; (f) details of the image inset in (d), marked by the red rectangle.
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The coefficients of horizontal component αs,3 is made more horizontal by:

a
′
s,3 = fh (|as,3|) · sign (as,3) (5.11)

h
′
s,3 = fh (|hs,3|) · sign (hs,3)

v
′
s,3 = 0

d
′
s,3 = 0

where fh (·) is an averaging filter with the length of 5 and diffusing in horizontal direction: fh =
[

1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

]
.

The wavelet coefficients in approximate and horizontal sub-bands are “moving” horizontally and the coeffi-

cients with other directions are removed, therefore the image in Fig. 5.5(c) is made more horizontal in Fig.

5.5(d).

Vertical (weak directionality) component enhancement

Since the vertical component can be considered as the rotation of the horizontal component, the enhancement

of the vertical component can be implemented using the same method as that for horizontal component

enhancement. By magnifying the gradients along the vertical edges and degrading the gradients along the

other directions, the component is made more vertical. Fig. 5.6(a) to Fig. 5.6(b) show the process of the

enhancement: increasing the intensities of pixels with y = 6 and y = 9, and decreasing the intensities of

pixels with y = 5 and y = 7, the vertical edges are enhanced.

In the wavelet domain, the vertical component αw,3 is manipulated by manipulating the coefficients in

approximate sub-band (representing the magnitudes of the edges) and vertical sub-band (representing the

positions of the edges):

a
′
w,3 = fv (|aw,3|) · sign (aw,3) (5.12)

h
′
w,3 = 0

v
′
w,3 = fv (|vw,3|) · sign (vw,3)

d
′
w,3 = 0

where fv (·) is the averaging filter with the length of 5 and diffusing in vertical direction: fv =
[

1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

]T
.

Similarly, in Fig. 5.6(d), the vertical components are made more vertical from the original image in Fig. 5.6(c)

by “moving” approximate and vertical coefficients vertically and removing coefficients with other directions.

5.3.5 Manipulation for the line-likeness-decomposed components

Line-like (strong line-likeness) component enhancement

As discussed in Chapter 3, the line-likeness measures the similarity of the directions of the edges in the

neighbourhood. Therefore, enhancing the line-like component means making the edges in the neighbourhood

exhibit similar direction as much as possible. The basic idea of line-like enhancement is to remove the edges

110



12
10

Position in vertical direction

8
6

4
2

00

2

Position in horizontal direction

4

6

8

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

12

Pi
xe

l i
nt

en
si

ty

12
10

Position in vertical direction

8
6

4
2

00

2

Position in horizontal direction

4

6

8

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

12

Pi
xe

l i
nt

en
si

ty

(a) Simulation of
a vertical texture
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manipulated vertical texture

(c) Original vertical
component

(d) Manipulated vertical
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(e) Details of the image
inset in (c)
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Figure 5.6: The diagram and example of the vertical component enhancement. (a) The diagram of
example texture with vertical edges; (b) the diagram of accentuating the vertical edges in the example
texture; (c) the vertical component separated from the example image; (d) the manipulated vertical
component where the vertical edges are more obvious; (e) details of the image inset in (c), marked by
the red rectangle; (f) details of the image inset in (d), marked by the red rectangle.
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with directions different from the major direction in the neighbourhood. Fig. 5.7(a) and Fig. 5.7(b) show

the process of modification of edges. By increasing the edges along position x = 2, x = 3 and x = 8, x = 9,

most of the edges with gradient magnitudes larger than threshold 0.5 are parallel to x-axis, therefore the

distribution of edge directions can be more concentrated and the edges would be more line-like.
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(a) Simulation of
a line-like texture
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manipulated line-like texture
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Figure 5.7: The diagram and example of the line-like component enhancement. (a) The diagram of
example texture where the edges exhibit different directions ; (b) the diagram of making the directions
of the edges similar in the example texture; (c) the line-like component separated from the example
image; (d) the manipulated line-like component where most of the edges are close to horizontal; (e)
details of the image inset in (c), marked by the red rectangle; (f) details of the image inset in (d),
marked by the red rectangle.

Inspired by the enhancement of components for directionality, we use a local motion filter to enhance the

wavelet coefficients in every sub-band:

α
′
s,4 = (|αs,4| ⊗mL (θ, w)) · sign (αs,4) , (5.13)

where mL (θ, w) is the local averaging filter adaptive to the neighbourhood L, with the length of w that is

the size of the neighbourhood, and diffusing in the direction θ that is the edge direction (quantized into 4

directions 0, π
2 , π

4 , 3π
4 ) occurring the most frequently in L. This filter “pulls” the coefficients into the same

direction locally and the line-likeness will be enhanced since the line-likeness is defined as the frequency of

the occurrence of the same direction in the local neighbourhood, as shown in Fig. 5.7(d).
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Non-line-like component enhancement

The non-line-like component exhibits the opposite feature to that of the line-like component: the edges in

the neighbourhood have very different directions to each other. So the more non-line-like the component is,

the directions of the edges should vary more in the local window. In the extreme case, we add “branches”

to the original edges along the perpendicular directions to the original ones. Fig. 5.8 and Fig. 5.8(b) show

the above assumption. By increasing the gradients at the pixels with x = 3, x = 5, x = 7 and x = 10, which

is perpendicular to the edges at y = 3 and y = 9, the distribution of the directionality is changed from the

concentration at horizontal to equally distribution to horizontal and vertical.
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Figure 5.8: The diagram and example of the non-line-like component enhancement. (a) The diagram
of example texture where the edges exhibit similar directions ; (b) the diagram of making the horizontal
and vertical edges equally distributed in the example texture; (c) the non-line-like component separated
from the example image; (d) the manipulated non-line-like component where the directions of the edges
are more different; (e) details of the image inset in (c), marked by the red rectangle; (f) details of the
image inset in (d), marked by the red rectangle.

In wavelet domain, we propose to enhance it by adding multiplicative noise to the coefficients representing
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edges in the images:

a
′
w,4 = (|aw,4|+ ka · n · |aw,4|) · sign (aw,4) (5.14)

h
′
w,4 = (|hw,4|+ kh · n · |hw,4|) · sign (hw,4)

v
′
w,4 = (|vw,4|+ kv · n · |vw,4|) · sign (vw,4)

d
′
w,4 = (|dw,4|+ kd · n · |dw,4|) · sign (dw,4)

k =
edmax−d − 1

edmax−dmin − 1

where n is a uniformly distributed random noise with mean 0 and variance 0.16, ka, kh, kv and kd are

again the weighting coefficients depending on the changes of the edge directions d of the wavelet coefficients

magnitudes. dmax and dmin are the maximum and minimum value of d. The added noises make the directions

of the edges more random, which enhance the non-line-likeness of the texture, as shown in Fig. 5.8(d).

5.4 Analysis of the enhancement methods

Based on the discussion in Chapter 5.3.1, the enhancement methods should not only accentuate the corre-

sponding characteristics, but also not affect the other characteristics that the components to be enhanced

don’t represent, or at least not affect as much as the enhancement methods for those certain characteristics.

Therefore, in this chapter, we will discuss the insensitivity of these enhancement methods in affecting other

texture characteristics.

5.4.1 Insensitivity of the coarseness-enhancement methods

Coarse-enhancement method

According to the function for enhancing the coarse component, as shown in Eq. 5.7, the weighting coefficient

k is close to 1 if the difference d is small and k is close to 0 if d is large. Since the d measures the difference

between the magnitude of the wavelet coefficient and its Gaussian filtered value, d is small when the centre

magnitude is larger than its neighbourhood, representing the strong edges in the image, and d is large when

the magnitudes in the neighbourhood are close to each other, representing the smooth or the weak-edge

regions. Therefore, after the enhancement, the strong edges where the gradients are large will be preserved

and the smooth or weak-edge-filling regions will be smoothened more. The change of the coarseness feature

map is shown as Fig. 5.9(3b).

The change of contrast feature map is shown in Fig. 5.9(3c). The contrast, which measures the difference

between the largest intensity and the smallest intensity, will not be changed too much, because the maximum

is more likely to occur in the strong-edge regions, which are preserved by the enhancement method, and the

minimum is more likely to occur in the weak-edge regions, which are degraded, but the change won’t be large

because of its original low value.
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Figure 5.9: The changes from the original coarse component to the enhanced one with respect
to image intensity, coarseness map, contrast map, directionality map and line-likeness map. Rows
(from top to bottom): original component and its features, enhanced component and its features, the
differences between the original component and the enhanced one displayed by colour maps, the colour
bar showing the colour scale of the above colour maps (red and blue mean“large change”, cyan and
yellow mean “small change”). Columns (from left to right): the original and enhanced image intensities,
feature maps with respect to coarseness, contrast, directionality and line-likeness, respectively. As the
expectation, the proposed method increases a lot the coarseness (red in the coarseness difference map)
and doesn’t change other characteristics as much (cyan or yellow in the other difference maps).
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The changes of the directionality and line-likeness feature maps are shown in Fig. 5.9(3d) and Fig. 5.9(3e)

respectively. The directionality and the line-likeness, which measures the mean value and the variance of the

distribution of the edge directions, will not be changed much because the enhancement functions are applied

to every wavelet sub-bands, without the bias in any certain directional sub-band.

Fine-enhancement method

The fine component enhancement is described in Eq. 5.8, which adds weighted random noise to the regions

where the magnitudes of wavelet coefficients change rapidly. The weighting coefficient k is a function of the

local standard deviation d of the coefficient magnitudes, so k is close to 0 if d is small and k is close to 1 if d

is large. Since d measures the speed of the change of the magnitude, it is small at the smooth region where

the magnitudes change gradually and it is large around the edges where the magnitudes change quickly. The

edges are cut into “pieces”, leading to an increasing number of edges in the local region therefore the fineness

is enhanced, as shown in Fig. 5.10(3b).

The change of the local contrast of the enhanced fine component is shown in Fig. 5.10(3c). The contrast

is not changed too much because the noise is uniformly, randomly distributed in the local window without

increasing or decreasing the maximum, minimum or the gray levels too much.

The changes of the directionality and line-likeness of the enhanced component are shown in Fig. 5.10(3d)

and Fig. 5.10(3e) respectively. With the same reason for the enhancement of the coarse component that the

modifications occur in every wavelet sub-bands, these two features remained almost the same in the enhanced

fine component.

5.4.2 Insensitivity of the contrast-enhanced methods

high-contrast-enhancement method

The high-contrast component is enhanced as Eq. 5.9, where the magnitudes of the coefficients are first

processed by a weighted Laplacian filter and then added to the original magnitudes. The weights k are

positively correlated to the magnitudes of the coefficients in wavelet high-frequency sub-bands, representing

the occurrence of the pixels with high gradients to the surroundings. Therefore, the contrast of the component

is increased as shown in Fig. 5.11(3c).

The change of the feature map for coarseness from the original to the enhanced high-contrast component

is shown in Fig. 5.11(3b). The enhancement of the contrast increases the magnitudes of the existing edges in

the neighbourhood, which strengthens some weak edges in the local regions, However, most of these additive

edges occur at the regions where there are subtle gradients between the pixels, and their magnitudes are not

large enough to be considered as “true” edges for the calculation of the coarseness, so the coarseness will not

be affected as much as the contrast.

Fig. 5.11(3d) shows the change of the feature map for directionality. Since the enhancement of the pixels
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Figure 5.10: The changes from the original fine component to the enhanced one with respect to image
intensity, coarseness map, contrast map, directionality map and line-likeness map. Rows (from top to
bottom): original component with its features, enhanced component with its features, the differences
between the original component and the enhanced one displaying by colour maps, the colour bar
showing the colour scale of the above colour maps (red and blue mean “large change”, cyan and yellow
mean “small change”). Columns (from left to right): the original and enhanced image intensities,
feature maps with respect to coarseness, contrast, directionality and line-likeness, respectively. As
the expectation, the proposed method decreases the coarseness a lot (blue in the coarseness difference
map) and doesn’t change other characteristics as much (cyan or yellow in the other difference maps).
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Figure 5.11: The changes from the original high-contrast component to the enhanced one with respect
to image intensity, coarseness map, contrast map, directionality map and line-likeness map. Rows
(from top to bottom): original component with its features, enhanced component with its features,
the differences between the original component and the enhanced one displaying by colour maps, the
colour bar showing the colour scale of the above colour maps (red and blue mean “large change”,
cyan and yellow mean “small change”). Columns (from left to right): the original and enhanced
image intensities, feature maps with respect to coarseness, contrast, directionality and line-likeness,
respectively. As the expectation, the proposed method increases the contrast a lot (red in the contrast
difference map) and doesn’t change other characteristics as much (cyan or yellow in the other difference
maps).
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are positively correlated to the magnitudes of the gradients, the added edges with different directions but

small magnitudes will not change much of the directionality that measures the weighted mean of the local

edge directions.

The change of the feature map for line-likeness is shown in Fig. 5.11(3e). The increment of the magnitudes

of the weak edges will increase the line-likeness if they have similar direction to the surrounding edges while

decrease the line-likeness otherwise. However, the magnitudes of these additive edges are still quite small so

the change of the line-likeness is not as much as that of the contrast.

low-contrast-enhancement method

The function for enhancing the low-contrast component is applied to the wavelet coefficients in approximate

sub-band as shown in Eq. 5.10. The coefficients are first smoothed by the Gaussian filter and then divided

by the weighting coefficient k representing the magnitudes of the image gradients. k gets larger when

the magnitudes of the coefficients in horizontal and vertical sub-bands increase, so the pixels on the edges

represented by these coefficients are smoothed more than the pixels in the smooth regions. Therefore, as

shown in Fig. 5.12(3c), the contrast of the image is decreased by reducing the gradients between every pair

of pixels.

The change of the coarseness map is shown in Fig. 5.12(3b), smoothening the pixels on the edges and

removing the weak, isolated edges will increase the coarseness at the same time. However, the existing strong

edges or the regions with high gradients are preserved so that the structure of the component is not changed

much, i.e., the number of the edges, and therefore the coarseness is not be changed much.

The coefficients in the high-frequency sub-bands are not modified much so the existing edges are not

changed much in structures, therefore the directionality and line-likeness, which measure the mean value and

the variance of the local edge directions respectively. As shown in Fig. 5.12 (3d) and (3e), the changes of the

directionality and line-likeness are not as much as that of the contrast.

5.4.3 Insensitivity of the directionality-enhancement methods

We discuss the insensitivity of the two directionality-enhancement methods together because they actually

apply the same functions to enhance the image, just with a rotation of the filter and a different use in the

horizontal and vertical wavelet sub-bands. As shown in Eq. 5.11 and Eq. 5.12, the enhancement applies

the motion filter with one certain direction to the coefficients in the approximate sub-band and a certain

directional sub-band. Since the filter will enhance the edges with the certain direction and remove the edges

with directions other than that which the filter responds to, the horizontal or vertical edges distribute more

uniformly in the image, causing any directionality to become more obvious, as shown in Fig. 5.13(3d) and

Fig. 5.14(3d).

Take the horizontal component enhancement as example, though the vertical edges are removed, some

weak horizontal edges are enhanced at the same time. Therefore, the total number of edges in the neighbour-
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Figure 5.12: The changes from the original low-contrast component to the enhanced one with respect
to image intensity, coarseness map, contrast map, directionality map and line-likeness map. Rows
(from top to bottom): original component with its features, enhanced component with its features,
the differences between the original component and the enhanced one displaying by colour maps, the
colour bar showing the colour scale of the above colour maps (red and blue mean “large change”,
cyan and yellow mean “small change”). Columns (from left to right): the original and enhanced
image intensities, feature maps with respect to coarseness, contrast, directionality and line-likeness,
respectively. As the expectation, the proposed method decreases the contrast a lot (blue in the contrast
difference map) and doesn’t change other characteristics as much (cyan or yellow in the other difference
maps).
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Figure 5.13: The changes from the original horizontal component to the enhanced one with respect
to image intensity, coarseness map, contrast map, directionality map and line-likeness map. Rows
(from top to bottom): original component with its features, enhanced component with its features,
the differences between the original component and the enhanced one displaying by colour maps, the
colour bar showing the colour scale of the above colour maps (red and blue mean “large change”,
cyan and yellow mean “small change”). Columns (from left to right): the original and enhanced
image intensities, feature maps with respect to coarseness, contrast, directionality and line-likeness,
respectively. As the expectation, the proposed method changes the directionality much closer to
horizontal (Fdir = 0 or Fdir = 1) and doesn’t change other characteristics as much (cyan or yellow in
the other difference maps).
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Figure 5.14: The changes from the original vertical component to the enhanced one with respect
to image intensity, coarseness map, contrast map, directionality map and line-likeness map. Rows
(from top to bottom): original component with its features, enhanced component with its features,
the differences between the original component and the enhanced one displaying by colour maps, the
colour bar showing the colour scale of the above colour maps (red and blue mean “large change”,
cyan and yellow mean “small change”). Columns (from left to right): the original and enhanced
image intensities, feature maps with respect to coarseness, contrast, directionality and line-likeness,
respectively. As the expectation, the proposed method changes the directionality much closer to
vertical (Fdir = 0.5) and doesn’t change other characteristics as much (cyan or yellow in the other
difference maps).
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hood won’t be changed much, leading to that the coarseness doesn’t change much, as shown in Fig. 5.13(3b).

The edges with large magnitudes in horizontal direction are preserved so that the local maximum won’t be

changed, while the edges with the other direction are suppressed but the local minimum won’t be lowered too

much because they are already with low magnitudes, therefore the local contrast of the enhanced component

is not changed much as shown in Fig. 5.13(3c). Because the edges with horizontal direction are preserved as

much as possible, the line-likeness, which measures the co-occurrence of the similar edge directions, will not

be affected much as shown in Fig. 5.13(3e). The analysis for the vertical component enhancement method is

the same as the above analysis for the horizontal component enhancement method.

5.4.4 Insensitivity of the line-likeness-enhancement methods

line-like-enhancement method

The enhancement of line-like component is implemented as Eq. 5.13, where local motion filters are applied to

the neighbourhoods, making the edges close to similar direction locally. It means that in each neighbourhood,

the image is processed as the enhancement for the directionality so that the edges in the local window have

similar directions to the main direction of the neighbourhood. The change of the line-likeness of the image

is shown as Fig. 5.15(3e), where the line-likeness is increased in most of the line-like regions.

As shown in Fig. 5.15(3b), to enhance the line-likeness, the edge structures are changed to have similar

directions and some edges with very different directions to the surrounding ones are smoothed, therefore, the

coarseness is increased because the number of edges in the neighbourhood is decreased. However, most of

the edges in the line-like component have similar directions so the increment of the coarseness is not much.

The change of the contrast of line-like-enhanced component is shown in Fig. 5.15(3c). The contrast

remains almost the same because the line-like component exhibits obvious directionality locally, then each

local region is processed by the motion filter, which we discussed in Chapter 5.3.3 such that it won’t affect

the contrast of the component with obvious directionality much.

Since the edges in each local window have the similar direction and the local motion filter is adaptive to

the certain direction for each neighbourhood, the directionality of the enhanced component won’t be changed

as much as the line-likeness, as shown in Fig. 5.15(3e).

non-line-like-enhancement method

The enhancement of non-line-like component is shown in Eq. 5.14. Weighted multiplicative noise is added

to the wavelet coefficients representing edges in the image. The weights k for the noise are a function of the

changes of the edge directions. When the change d is small, k is close to 1, so the regions with edges in

similar directions are laced with strong multiplicative noise to reduce the homogeneity of the edge direction.

When the change d gets large, k is close to 0, which prevents over-enhancement of the already non-line-like

regions. Therefore, the component is getting more non-line-like but not corrupted with noise everywhere.
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Figure 5.15: The changes from the original line-like component to the enhanced one with respect
to image intensity, coarseness map, contrast map, directionality map and line-likeness map. Rows
(from top to bottom): original component with its features, enhanced component with its features,
the differences between the original component and the enhanced one displaying by colour maps, the
colour bar showing the colour scale of the above colour maps (red and blue mean “large change”,
cyan and yellow mean “small change”). Columns (from left to right): the original and enhanced
image intensities, feature maps with respect to coarseness, contrast, directionality and line-likeness,
respectively. As the expectation, the proposed method increases the line-likeness a lot (red in the
line-likeness difference map) and doesn’t change other characteristics as much (cyan or yellow in the
other difference maps).
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Figure 5.16: The changes from the original non-line-like component to the enhanced one with respect
to image intensity, coarseness map, contrast map, directionality map and line-likeness map. Rows
(from top to bottom): original component with its features, enhanced component with its features,
the differences between the original component and the enhanced one displaying by colour maps, the
colour bar showing the colour scale of the above colour maps (red and blue mean “large change”,
cyan and yellow mean “small change”). Columns (from left to right): the original and enhanced
image intensities, feature maps with respect to coarseness, contrast, directionality and line-likeness,
respectively. As the expectation, the proposed method decreases the line-likeness a lot (blue in the
line-likeness difference map) and doesn’t change other characteristics as much (cyan or yellow in the
other difference maps).
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As shown in Fig. 5.16(3b), the noise added to the image is multiplicative noise, which is correlated to the

original texture structures, therefore the enhancement won’t add extra edges or remove existing edges too

much from the input component, leading to the coarseness not much affected.

As shown in Fig. 5.16(3c), the contrast of the enhanced component is increased by adding noise that

increases the gray levels in the neighbourhood. However, the noise is uniformly distributed noise with zero-

mean, so the gray levels of the enhanced component will increase and decrease randomly resulting in the

contrast is not changed as much as the line-likeness.

For the directionality, since the edges in non-line-like component are with very different directions dis-

tributed evenly in the neighbourhood, the circular mean value of the directions in the local window is close

to 0. After enhancement, the edges in the same neighbourhood will have more different directions and more

randomly distributed, making the mean value of the directions still close to 0. Therefore, we conclude that the

enhancement of non-line-like component won’t change much of the directionality, as shown in Fig. 5.16(3d).

5.5 Experiments and analysis

In this part, each of the wavelet-based texture characteristic enhancement methods are evaluated for its

performance in accentuating the corresponding texture characteristic in the image.

5.5.1 Experimental images, comparators and methods

Experimental images

To evaluate the enhancement of the texture characteristics by the proposed method, we use the texture

images from the Brodatz texture database [24] and the SIPI database [208]. There is only one type of texture

contents in a given texture image, so the mean value of the texture characteristics calculated from all pixels

in the image is sufficient to describe the texture. Then the changes of the certain texture characteristics over

all the texture images in the database can be conveniently calculated because only one value is assigned to

one image with respect to one texture characteristic. Fig. 5.17 shows some examples of the testing images.

Comparators and experimental methods

Several state-of-the-art image enhancement methods are used here to compare with the proposed wavelet-

based texture characteristic enhancement method:

1. Unsharp masking filter (UM) [158], which enhances texture by emphasizing its high frequency contents.

2. Wavelet VISUShrink method (VISU) [47], which enhances texture by removing noise via shrinking

wavelet coefficients in high-frequency sub-bands not exceeding certain thresholds. It is used as an

example of all the other similar wavelet soft thresholding methods;
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Figure 5.17: Examples of images used in the experiments. The texture images are from the Brodatz
texture dataset [24] and the SIPI texture database [208]

3. Coherence-enhancing diffusion filter (CDF) [210], which preserves strong discontinuities at edges while

removing artifacts from smooth regions, so that image textures are enhanced.

4. Shock diffusion filter (SHK) [209], which smooths along the coherent texture flow orientations and

reduces diffusivity at non-coherent structures so as to enhance the texture details.

These comparator methods are selected to represent at least one of the major types of texture enhancement

methods discussed in Chapter 2. Then the experiments are implemented as follows:

1. apply the proposed wavelet-based enhancement method and the comparators to the testing images;

2. compare the feature maps of the images and the images enhanced by different methods with respect to

the 4 Tamura’s texture characteristics: coarseness, contrast, directionality and line-likeness;

3. compute the features of the original images and those of the enhanced images by different enhancement

methods. For each texture feature, the changes of mean values from the original images and the

enhanced images are calculated, and the hypothesis testing is implemented both in each group of the

feature values and between groups of the feature values before and after enhancement, so that it is

determined if the observed differences are real effects.

5.5.2 Results of enhancing pure textures

Fig. 5.18 to Fig. 5.25 show the results of the enhancement of the coarse textures, fine textures, high-

contrast textures, low-contrast textures, horizontal textures, vertical textures, line-like textures and non-

line-like textures by the 8 wavelet-based enhanced methods respectively, compared with the other texture

enhancement methods. The changes of the feature maps with respect to each characteristics before and

after the enhancement are also shown in the corresponding figure. The unsharp masking (UM) filter firstly

calculates the high-frequency contents by a high-pass filter, then adds the high-frequency contents back to

get a sharpening image. Therefore, it works well in increasing the local contrast and decreasing the local
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coarseness. But it doesn’t affect other texture characteristics because it does nothing with edge direction.

Wavelet VISUShrink or other wavelet shrinkage methods can reduce the high frequency content or noise

in the image, therefore, the coarseness will be enhanced and the contrast will be decreased. However, the

texture edges are not modified by the enhancement method, so that the directionality and line-likeness cannot

be enhanced, either the strong or the weak aspect. The coherence-enhancing diffusion filter enhances the

directionality and line-likeness by removing artifacts and connecting the continuous edges. But it cannot

enhance the coarseness and contrast because the number of edges or gray levels in the local window is not

modified. The shock filter (SHK) enhances the texture by producing a sharp discontinuity (shock) at the

borderline or edge between two influence zones. The contrast will be increased and the line-likeness will

be decreased because of the added sharp shocks. But since the shocks are added along the texture edges,

the coarseness and the directionality that measure the number of local edges and the mean value of the

local edge directions respectively are not modified much. Moreover, all these enhancement methods can

only modify either the strong or weak aspect (not both) of certain texture characteristics. Our wavelet-based

enhancement methods can enhance the image by applying different, independent modifications of the wavelet

coefficients. Therefore, both strong and weak aspects of all the texture characteristics can be enhanced while

affecting others less than the certain texture characteristics supposed to be enhanced. Table 5.2 shows the

changes of mean values of the four texture features from the original images to the images enhanced by

different methods. The certain feature values from the original images and enhanced images were subjected

to a Lilliefors test (P < 0.05) [81]. The Lilliefor’s test is a statistical hypothesis test that tests the null

hypothesis that a group of samples is normally distributed against the alternative hypothesis that they are

not. A Lilliefor’s test for each group of the certain texture features failed to reject the null hypothesis in

all cases. Therefore, we performed a student’s T-test (P < 0.05) [81] on the groups of the feature values

calculated from the original images and the enhanced ones. The student’s T-test (for paired samples) tests

the null hypothesis that the differences between paired samples are symmetrically distributed around zero,

against the null hypothesis that they are not. Each of the wavelet-based texture characteristic enhancement

methods can accentuate the corresponding texture characteristics statistically significantly (P2 < 0.05) while

having no statistically significant effect on the other texture characteristics (P2 > 0.05).

coarseness contrast directionality line-likeness

original

mean 0.7476 0.2698 0.4846 0.4110
P1 0.1372 0.2815 0.4808 0.0595
P2 - - - -

UM

mean +0.0167 +0.4316 +0.0196 -0.0174
P1 0.1907 0.1743 0.0740 0.2001
P2 0.0078 0.0114 0.2337 0.3786

VISU

mean +0.0394 -0.1553 +0.0026 -0.1374
P1 0.1400 0.3109 0.1008 0.2320
P2 0.0059 0.0146 0.7034 0.1036

CDF

mean +0.0130 -0.0278 +0.0112 +0.0035
P1 0.0837 0.4261 0.3219 0.3668
P2 0.0073 0.0157 0.4732 0.4113

SHK

mean -0.0075 +0.0751 -0.0063 -0.0126
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P1 0.2855 0.4990 0.2479 0.1781
P2 0.0176 0.0013 0.5358 0.4883

WT-COR-S

mean +0.0837 -0.0136 -0.0098 -0.0073
P1 0.4945 0.1140 0.4637 0.2433
P2 0.0015 0.0675 0.3565 0.4686

WT-COR-W

mean -0.0720 +0.0180 +0.0055 -0.0022
P1 0.3456 0.2947 0.2535 0.1661
P2 0.0343 0.0579 0.4456 0.5886

WT-CON-S

mean -0.0017 +0.2346 +0.0005 -0.0120
P1 0.3635 0.2343 0.2764 0.3229
P2 0.6284 0.0069 0.8626 0.2188

WT-CON-W

mean +0.0048 -0.1721 -0.0011 -0.0120
P1 0.2307 0.0505 0.3829 0.1849
P2 0.8987 0.0167 0.5888 0.2224

WT-DIR-S

mean +0.0031 +0.0175 +0.0900 +0.0045
P1 0.1456 0.4057 0.2169 0.1097
P2 0.0936 0.0787 0.0106 0.2248

WT-DIR-W

mean +0.0051 -0.0124 -0.0507 -0.0035
P1 0.4958 0.1425 0.2642 0.2457
P2 0.0877 0.0679 0.0177 0.6204

WT-LIN-S

mean -0.0033 -0.0156 0.0048 +0.0850
P1 0.1228 0.0998 0.2280 0.3721
P2 0.3864 0.0656 0.7498 0.0226

WT-LIN-W

mean +0.0071 +0.0194 +0.0061 -0.0750
P1 0.3808 0.2625 0.3488 0.2321
P2 0.4127 0.0688 0.2146 0.0224

Table 5.2: The changes of the mean values of the texture characteristics of the 112 Brodatz textures

before and after different enhancement methods: UM[158], VISU[47], SHK[210], CDF[209] and the

proposed eight wavelet-based texture characteristics enhancement methods. For each enhancement

method, P1 is the P-value of doing Lilliefors test (P < 0.05) [81] for each group of the certain texture

features, and P2 is the P-value of doing the student’s T-test (P < 0.05) [81] for the groups of the certain

texture features calculated from the original images and the enhanced images, since the texture features

in each group are normally distributed (P1 > 0.05).
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Figure 5.18: Comparison of the performances of different image enhancement methods in manipulat-
ing different texture characteristics of the example coarse texture image. Row 1: the original image
and the images enhanced by UM[158], VISU[47], SHK[210], CDF[209] and the proposed wavelet-based
coarse-enhancement method (WT-COR-S). Row 2 to Row 5: the differences between the feature maps
of the original image and those of each enhanced image with respect to coarseness, contrast, direction-
ality and line-likeness displayed by colour maps, with the mean values of the corresponding textural
differences ∆cor, ∆con, ∆dir and ∆lin. The colour bar in first column shows the colour scale of the
colour maps displaying the textural differences (red and blue mean “large change”, cyan and yellow
mean “small change”). The texture characteristics are selected and calculated as the definition in
Chapter 3. The expected result of coarse enhancement is to increase the coarseness of the image
(represented by the red colour in coarseness difference map) while not changing other texture charac-
teristics that much (represented by the cyan or yellow colour in other characteristic difference maps).
The coarseness of the texture manipulated by the wavelet-based coarse-enhancement method obvi-
ously increases, meaning the texture is manipulated coarser, while the contrast, directionality and
line-likeness of the manipulated texture are not changed as much as the coarseness, proving the insen-
sitivity of the coarse-enhancement method. The comparing enhancement methods have little effect in
increasing the coarseness, or change other characteristics much while increasing the coarseness of the
texture: UM, CDF and SHK cannot increase the coarseness, VISU can increase the coarseness but
affects contrast and line-likeness too much
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Figure 5.19: Comparison of the performances of different image enhancement methods in manipu-
lating different texture characteristics of the example fine texture image. Row 1: the original image
and the images enhanced by UM[158], VISU[47], SHK[210], CDF[209] and the proposed wavelet-based
fine-enhancement method (WT-COR-W). Row 2 to Row 5: the differences between the feature maps of
the original image and those of each enhanced image with respect to coarseness, contrast, directionality
and line-likeness displayed by colour maps, with the mean values of the corresponding textural differ-
ences ∆cor, ∆con, ∆dir and ∆lin. The colour bar in first column shows the colour scale of the colour
maps displaying the textural differences (red and blue mean “large change”, cyan and yellow mean
“small change”). The texture characteristics are selected and calculated as the definition in Chapter 3.
The expected result of fine enhancement is to decrease the coarseness of the image (represented by the
blue colour in coarseness difference map) while not changing other texture characteristics that much
(represented by the cyan or yellow colour in other characteristic difference maps). The coarseness of
the texture manipulated by the wavelet-based fine-enhancement method obviously decreases, meaning
the texture is manipulated finer, while the contrast, directionality and line-likeness of the manipulated
texture are not changed as much as the coarseness, proving the insensitivity of the coarse-enhancement
method. The comparing enhancement methods have little effect in decreasing the coarseness, or change
other characteristics much while increasing the coarseness of the texture: UM and SHK can decrease
the coarseness but affect the line-likeness and contrast too much, VISU increases the coarseness and
decreases the contrast and line-likeness, CDF cannot change the coarseness much.
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Figure 5.20: Comparison of the performances of different image enhancement methods in manipulat-
ing different texture characteristics of the example high-contrast texture image. Row 1: the original
image and the images enhanced by UM[158], VISU[47], SHK[210], CDF[209] and the proposed wavelet-
based high-contrast-enhancement method (WT-CON-S). Row 2 to Row 5: the differences between the
feature maps of the original image and those of each enhanced image with respect to coarseness,
contrast, directionality and line-likeness displayed by colour maps, with the mean values of the cor-
responding textural differences ∆cor, ∆con, ∆dir and ∆lin. The colour bar in first column shows the
colour scale of the colour maps displaying the textural differences (red and blue mean “large change”,
cyan and yellow mean “small change”). The texture characteristics are selected and calculated as the
definition in Chapter 3. The expected result of high-contrast enhancement is to increase the contrast of
the image (represented by the red colour in contrast difference map) while not changing other texture
characteristics that much (represented by the cyan or yellow colour in other characteristic difference
maps). The contrast of the texture manipulated by the wavelet-based high-contrast-enhancement
method obviously increases, meaning the texture is manipulated with higher contrast, while the
coarseness, directionality and line-likeness of the manipulated texture are not changed as much as
the contrast, proving the insensitivity of the high-contrast-enhancement method. The comparing en-
hancement methods have little effect in increasing the contrast, or change other characteristics much
while increasing the contrast of the texture: UM and SHK can increase the contrast but decrease the
line-likeness too much, VISU decreases the contrast, CDF cannot change the contrast much.
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Figure 5.21: Comparison of the performances of different image enhancement methods in manip-
ulating different texture characteristics of the example low-contrast texture image. Row 1: the
original image and the images enhanced by UM[158], VISU[47], SHK[210], CDF[209] and the proposed
wavelet-based low-contrast-enhancement method (WT-CON-W). Row 2 to Row 5: the differences
between the feature maps of the original image and those of each enhanced image with respect to
coarseness, contrast, directionality and line-likeness displayed by colour maps, with the mean values
of the corresponding textural differences ∆cor, ∆con, ∆dir and ∆lin. The colour bar in first column
shows the colour scale of the colour maps displaying the textural differences (red and blue mean
“large change”, cyan and yellow mean “small change”). The texture characteristics are selected and
calculated as the definition in Chapter 3. The expected result of high-contrast enhancement is to
decrease the contrast of the image (represented by the blue colour in contrast difference map) while
not changing other texture characteristics that much (represented by the cyan or yellow colour in other
characteristic difference maps). The contrast of the texture manipulated by the wavelet-based low-
contrast-enhancement method method decreases a lot, meaning the texture is manipulated to lower
contrast, while the coarseness, directionality and line-likeness of the manipulated texture are not
changed as much as the contrast, proving the insensitivity of the low-contrast-enhancement method.
The comparing enhancement methods have little effect in decreasing the contrast, or change other
characteristics much while decreasing the contrast of the texture: VISU can decrease the contrast
but decreases the line-likeness too much at the same time, UM and SHK increases the contrast, CDF
cannot change the contrast much.
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Figure 5.22: Comparison of the performances of different image enhancement methods in manip-
ulating different texture characteristics of the example horizontal texture image. Row 1: the orig-
inal image and the images enhanced by UM[158], VISU[47], SHK[210], CDF[209] and the proposed
wavelet-based horizontal-enhancement method (WT-DIR-S). Row 2 to Row 5: the differences between
the feature maps of the original image and those of each enhanced image with respect to coarseness,
contrast, directionality and line-likeness displayed by colour maps, with the mean values of the cor-
responding textural differences ∆cor, ∆con, ∆dir and ∆lin. The colour bar in first column shows the
colour scale of the colour maps displaying the textural differences (red and blue mean “large change”,
cyan and yellow mean “small change”). The texture characteristics are selected and calculated as the
definition in Chapter 3. The expected result of horizontal enhancement is to decrease the directionality
of the image (represented by the blue colour in directionality difference map) while not changing other
texture characteristics that much (represented by the cyan or yellow colour in other characteristic
difference maps). The wavelet-based horizontal-enhancement method decreases the directionality in
the original vertical-like regions from 0.5 to around 0, therefore the directionality of the whole image is
closer to 0, meaning the texture is more horizontal, while the coarseness, contrast and line-likeness
of the manipulated texture are not changed as much as the directionality, proving the insensitivity of
the horizontal-enhancement method. The comparing enhancement methods have little effect in ma-
nipulating the directionality, or change other characteristics much while changing the directionality:
VISU can increase the directionality but affects other characteristics too much, UM, CDF and SHK
cannot change the directionality much.
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Figure 5.23: Comparison of the performances of different image enhancement methods in manipulat-
ing different texture characteristics of the example vertical texture image. Row 1: the original image
and the images enhanced by UM[158], VISU[47], SHK[210], CDF[209] and the proposed wavelet-based
vertical-enhancement method (WT-DIR-W). Row 2 to Row 5: the differences between the feature
maps of the original image and those of each enhanced image with respect to coarseness, contrast,
directionality and line-likeness displayed by colour maps, with the mean values of the corresponding
textural differences ∆cor, ∆con, ∆dir and ∆lin. The colour bar in first column shows the colour scale
of the colour maps displaying the textural differences (red and blue mean “large change”, cyan and
yellow mean “small change”). The texture characteristics are selected and calculated as the definition
in Chapter 3. The expected result of vertical enhancement is to change the directionality of the image
to 0.5 (represented by the dark yellow or light blue colour in directionality difference map) while not
changing other texture characteristics that much (represented by the cyan or yellow colour in other
characteristic difference maps). The directionality of the texture manipulated by the wavelet-based
coarse-enhancement method increases closer to 0.5, meaning the texture is more vertical, while the
coarseness, contrast and line-likeness of the manipulated texture are not changed as much as the direc-
tionality, proving the insensitivity of the vertical-enhancement method. The comparing enhancement
methods have little effect in manipulating the directionality, or change other characteristics much
while manipulating the directionality: VISU can decrease the directionality somehow but affects other
characteristics too much, UM, CDF and SHK cannot change the directionality much.
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Figure 5.24: Comparison of the performances of different image enhancement methods in manipulat-
ing different texture characteristics of the example line-like texture image. Row 1: the original image
and the images enhanced by UM[158], VISU[47], SHK[210], CDF[209] and the proposed wavelet-based
line-like-enhancement method (WT-LIN-S). Row 2 to Row 5: the differences between the feature maps
of the original image and those of each enhanced image with respect to coarseness, contrast, direction-
ality and line-likeness displayed by colour maps, with the mean values of the corresponding textural
differences ∆cor, ∆con, ∆dir and ∆lin. The colour bar in first column shows the colour scale of the colour
maps displaying the textural differences (red and blue mean “large change”, cyan and yellow mean
“small change”). The texture characteristics are selected and calculated as the definition in Chapter 3.
The expected result of line-like enhancement is to increase the line-likeness of the image (represented
by the red colour in line-likeness difference map) while not changing other texture characteristics
that much (represented by the cyan or yellow colour in other characteristic difference maps). The
line-likeness of the texture manipulated by the wavelet-based line-like-enhancement method increases
much more than the coarseness, contrast and directionality, meaning the texture is manipulated more
line-like while the coarseness, contrast and directionality of the manipulated texture not changed as
much as the line-likeness due to the insensitivity of the line-like-enhancement method. The comparing
enhancement methods have little effect in increasing the line-likeness, or change other characteristics
much while changing the line-likeness of the texture: CDF can increase the line-likeness but affect
directionality much, UM, VISU and SHK all decrease the line-likeness.
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Figure 5.25: Comparison of the performances of different image enhancement methods in manip-
ulating different texture characteristics of the example non-line-like texture image. Row 1: the
original image and the images enhanced by UM[158], VISU[47], SHK[210], CDF[209] and the proposed
wavelet-based non-line-like-enhancement method (WT-LIN-W). Row 2 to Row 5: the differences be-
tween the feature maps of the original image and those of each enhanced image with respect to
coarseness, contrast, directionality and line-likeness displayed by colour maps, with the mean values
of the corresponding textural differences ∆cor, ∆con, ∆dir and ∆lin. The colour bar in first column
shows the colour scale of the colour maps displaying the textural differences (red and blue mean “large
change”, cyan and yellow mean “small change”). The texture characteristics are selected and calcu-
lated as the definition in Chapter 3. The expected result of non-line-like enhancement is to decrease
the line-likeness of the image (represented by the blue colour in line-likeness difference map) while not
changing other texture characteristics that much (represented by the cyan or yellow colour in other
characteristic difference maps). The line-likeness of the texture manipulated by the wavelet-based
line-like-enhancement method decreases much more than the coarseness, contrast and directionality,
meaning the texture is manipulated more non-line-like while the coarseness, contrast and direc-
tionality of the manipulated texture not changed as much as the line-likeness due to the insensitivity
of the non-line-like-enhancement method. The comparing enhancement methods have little effect in
decreasing the line-likeness, or change other characteristics much while changing the line-likeness of
the texture: UM and VISU can decrease the line-likeness but affect contrast and coarseness too much,
CDF and SHK both increase the line-likeness.
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5.6 Conclusion

In this chapter, we proposed a wavelet-based texture characteristic manipulation method consisting of a series

of functions that modify the wavelet coefficients of the given image. The image can be enhanced to exhibit

any arbitrary texture characteristic more accentuated without affecting other characteristics of the image by

using the corresponding wavelet coefficients modification function. Experiments are implemented to compare

the performance of the proposed method and other methods in enhancing both texture images and natural

images. The experimental results show that the proposed method can manipulate the image where each

texture characteristic can be accentuated independently without interrupting other characteristics. With the

manipulation, the components of the image representing different texture characteristics can be enhanced

with the corresponding characteristics more noticeably.
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Chapter 6

Wavelet-based textural difference enhancement based

on morphological component analysis and the appli-

cations

The main problems in developing an image enhancement method that enlarges the textural differences

in the image have been solved in the previous three chapters respectively and the proposed methods are

summarized as follows:

1. in Chapter 3, the textural differences in a given image are locally described by the novel definitions of

Tamura’s texture characteristics, which are selected by the PCA-based feature selection method;

2. in Chapter 4, the given image is considered as the sum of components representing these texture

characteristics, then these components are decomposed from the image based on the morphological

component analysis using wavelet-based thresholding methods as dictionaries;

3. in Chapter 5, different texture characteristics are enhanced by wavelet-based enhancement methods

independently without affecting other characteristics.

In the following parts, these methods are combined together to enhance the image so that different textures

are more different, and this image enhancement method is shown to be effective as pre-processing step for

various of image processing algorithms.

6.1 Textural difference enhancement method based on morpho-

logical component analysis

Fig. 6.1 shows the procedure of the WT-TC-MCA in magnifying the textural differences in the image.

Intuitively, each step functions as follows:

1. the image is decomposed to several pairs of components where each pair consists of a component that

strongly exhibits a particular texture characteristic and a component that weakly exhibits it, or exhibits

opposite characteristics, e.g. a “coarse” component and a “fine” component;
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2. the components are manipulated to enhance the texture characteristics they are meant to capture, e.g.

a high-coarseness (coarse) component is manipulated so that so it becomes coarser, a low-coarseness

(fine) component is manipulated so that it becomes finer;

3. the manipulated components are recombined to obtain an image in which textures are more different

from each other than in the original image with respect to the chosen texture characteristics.

Decomposition

Manipulation

Recombination

Input
Image I

TC-MCA TC-MCA TC-MCA· · ·

ss,1 sw,1 ss,2 sw,2 ss,k sw,k· · ·

Ts,1 Tw,1 Ts,2 Tw,2 Ts,k Tw,k

s0s,1 s0w,1 s0s,2 s0w,2 s0s,k s0w,k

+

Enhanced
Image I 0

· · ·

Figure 1: The process of enhancing image by wavelet-based texture charac-
teristic morphological component analysis (WT-TC-MCA). The input image is
decomposed to components representing strong and weak aspects of the selected
characteristics. Components are then modified to highlight their representative
characteristics. The enhanced image is the combination of the modified compo-
nents so that the textural di↵erences are more obvious in terms of the certain
characteristics.

1

Figure 6.1: The process of enhancing image by wavelet-based texture characteristic morphological
component analysis (WT-TC-MCA). The input image is decomposed to components representing
strong and weak aspects of the selected characteristics. Components are then modified to highlight their
representative characteristics. The enhanced image is the combination of the modified components so
that the textural differences are more obvious in terms of the certain characteristics.

6.1.1 Decomposition of the image

For a given texture image I consisting of components representing different texture characteristics, WT-TC-

MCA decomposes the image to pairwise components following the function described as Eq. 4.11 in Chapter
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4, wherein each pair is composed of components showing the strong and weak aspects of a certain texture

characteristic of the image respectively. For example, the input image as shown in Fig. 6.2 is decomposed

to “coarse” and “fine” components according to coarseness, “high-contrast” and “low-contrast” components

according to contrast, “horizontal” and “vertical” components according to directionality, “line-like” and

“non-line-like” components according to line-likeness, respectively.

6.1.2 Manipulation of the image components

The components are then modified to singularize the texture characteristics they exhibit. Because the

image components are still images, the manipulation of the components are implemented as the image

texture characteristic enhancement method proposed in Chapter 5.3. Each image component exhibits one

certain texture characteristic separately, so by applying the functions for enhancing the corresponding texture

characteristics, the image components can be enhanced with the certain texture characteristics more apparent

while preserving the other characteristics. The image components, shown in the second row of Fig. 6.2, are

manipulated to obtain the enhanced components, shown in the third row of Fig. 6.2, where the corresponding

texture characteristics are made more extreme.

6.1.3 Re-combination of the manipulated components

The manipulated components s
′
s,i and s

′
w,i, which represent the strong and weak aspect of the i-th charac-

teristic (i = 1, 2, . . . , k) more distinctly, are re-combined to form the enhanced image I
′

as follows:

I ′ =
1

k

k∑
i=1

(
s
′
s,i + s

′
w,i

)
. (6.1)

The enhancement of an example image is shown in Fig. 6.2. The feature maps of the input image and the

enhanced image in Fig. 6.2 with respect to coarseness, contrast, directionality and line-likeness are shown in

Fig. 6.3. Consider the coarseness maps: the coarse regions with high values of coarseness are manipulated

to regions with higher values in the feature map, while the fine regions with low values of coarseness are

manipulated to regions with lower values, leading to magnified differences between two regions with respect

to coarseness. The same enhancement happens in the feature maps of other three characteristics, therefore

different textures in the manipulated image are more different than those in the original image.

6.1.4 Experiments on textural differences enlargement by the WT-TC-MCA

In this part, we’ll evaluate the performance of the WT-TC-MCA for the task of textural difference enhance-

ment, compared with other image enhancement methods. The experiment in Chapter 5 proves the ability of

WT-TC-MCA to accentuate each certain texture characteristic, while the experiment here is concerned with

evaluating the ability of WT-TC-MCA to magnify the textural differences between different texture regions

in a given image with respect to the texture descriptor proposed in Chapter 3.

141



original image

coarseness contrast directionality line-likeness

coarse fine
high

contrast
low

contrast
horizontal vertical line-like

non-
line-like

coarse fine
high

contrast
low

contrast
horizontal vertical line-like

non-
line-like

enhanced image

Figure 6.2: The enhancement of the texture image where there are multiple textures. The original
image is first decomposed into components exhibiting a certain texture characteristic strongly and
weakly. Then the components corresponding to strong and weak characteristics are manipulated with
accentuated texture characteristics. The enhanced image is the re-combination of all the enhanced
components equally.

original image coarseness contrast directionality line-likeness

enhanced image coarseness contrast directionality line-likeness

Figure 6.3: The coarseness, contrast, directionality and line-likeness of the original image and the
image enhanced by the WT-TC-MCA. Two textures in the original image are made more distinct with
respect to these texture characteristics.
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Testing images, comparators and benchmarks

Similar to the experiments in Chapter 4, we use the synthesized mosaic texture images as a starting step to

test the performance of different enhancement methods in magnifying the textural differences. These mosaic

texture images consist of 4 textures randomly selected from the Brodatz [24] and SIPI [208] textures and

combined following the diagram in Fig. 6.4(a). Examples of the mosaic texture images are shown as Fig.

6.4(b), (c) and (d). The textural differences in these images are relatively easy to calculate because texture

regions are exactly pre-set and texture descriptions are homogeneous in each of the region with one single

texture.

1 2

34

(a) Texture map for

mosaic images

(b) Mosaic texture

image #1

(c) Mosaic texture

image #2

(d) Mosaic texture

image #3

Figure 6.4: Examples of mosaic texture images used in the experiments. (a) is the diagram to
combine the Brodatz textures and SIPI textures into the mosaic images. (b), (c) and (d) are three
examples of mosaic texture images synthesized using 4 textures randomly selected from the database
and combined as the diagram in (a).

As discussed in Sec. 4.5.1, only these synthesized mosaic texture images are not sufficient for evaluating the

performance of different texture enhancement methods because the images in actual enhancement problems

are more complex with texture regions not as homogeneous as the pure textures. Therefore, we use the

natural images from the BSDS500 dataset [135] as another category of testing images in our experiments for

a more comprehensive evaluation of different enhancement methods in the textural differences enhancement.

Fig. 6.5 shows some examples of these experimental natural images.

Figure 6.5: Examples of natural images used in the experiments. The images are from the the
BSDS500 dataset [135].

As introduced in Chapter 5.5, the unsharp masking filter (UM) [158], wavelet VISUShrink method (VISU)
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[47], standard MCA filter (MCA-CT), coherence-enhancing diffusion filter (CDF) [209] and shock diffusion

filter (SHK) [210] are again used here as the comparators of the WT-TC-MCA to evaluate the performance

of the textural differences enlargement because of their wide use in texture enhancement.

The textural differences between different textures in the image are measured by the Mahalanobis distance

[132] between the clusters of four-dimensional vectors ([coarseness, contrast,directionality, line-likeness]) of

different textures in the image. As shown in Fig. 6.6, for a given image with k different textures in it,

there are k clusters of four-dimensional vectors for the original image (“before” clusters) and k clusters for

the processed image (“after” clusters). We then computed the Mahalanobis distance between each “before”

cluster mean and each other “before” cluster, resulting in A2
k Mahalanobis distances dibefore, i = 1, . . . , A2

k.

These A2
k Mahalanobis distances are illustrated on the right side of Fig. 6.6. The same was done for the

“after” clusters, resulting in A2
k Mahalanobis distances diafter, i = 1, . . . , A2

k, with the mean-cluster pairs

indexed by i in the same order as for the “before” images. Finally, we computed the difference between the

“before” and “after” Mahalanobis distances for each mean-cluster pairing:

Di = diafter − dibefore, i = 1, 2, . . . , A2
k. (6.2)

T1 T2

T3 T4

Figure 6.6: An example mosaic image with 4 textures. T1, T2, T3, T4 are 4 different textures,
resulting in A2

4 = 12 ordered-pairwise Mahalanobis distances. Textures become mutually more different
due to a particular enhancement method if the 12 Mahalanobis distances are increased after processing.

Mahalanobis distance [132] measures the distance between a point and a cluster of points normalized with

respect to the spread of the distribution of points in the cluster (intuitively, distances along each dimensional

axis can be thought of as being in units of standard deviations). If all of the “before” and “after” Mahalanobis

distances between mean-cluster pairs increase after processing, it means that the clusters have mutually

moved away from each other in the multidimensional space and become more separated, which means that

the textures have become mutually more different with respect to their descriptions by the four texture

characteristics.

Our experiment was conducted as follows:

1. the testing images were enhanced by WT-TC-MCA and each of the comparator methods;

2. the local Tamura’s features, consisting of the four specific characteristics: coarseness, contrast, direc-

tionality and line-likeness, were extracted from the 15×15 neighbourhood of every pixel of each original

testing image and each enhanced testing image by each enhancement method to create feature maps;
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3. the differences between the “before” and “after” Mahalanobis distances Di were computed as Eq. 6.2

for each pair of textures in the original image and the image enhanced by different methods;

4. the changes of the Mahalanobis distances between the textures from the original images to the images

enhanced by different methods are compared to evaluate how well the different texture enhancement

methods were able to enlarge textural differences.

Experimental results on mosaic texture images

The results of enhancing an example mosaic texture image by different image enhancement methods are

shown in Fig. 6.7. Fig. 6.8 shows all twelve Di (Mahalanobis distance differences) for the 4 textures in

Fig. 6.7 after processing by different methods. The UM filter increases the local contrast, decreases the

local coarseness, but the directionality and line-likeness are remained the same. The VISU and MCA-CT

filters increase the coarseness, decrease the contrast, but preserve the directionality and line-likeness because

the structures of the texture are not changed. Coherence-enhancing diffusion filter (CDF) connects the

edges with similar directions so that the directionality is changed and line-likeness is enhanced, however

the coarseness and contrast are not changed because the number of edges and gray levels are not modified.

Shock filter (SHK) adds sharp shocks between different influence zones so that the contrast is enhanced and

the line-likeness is decreased, but the coarseness and the directionality that measure the number and the

mean direction of local edges are not modified much. Moreover, since all these methods process the textures

as a single “texture ” component, all the different textures in the image are enhanced to the same extent.

However, our WT-TC-MCA method can enhance different textures to different extents with respect to their

own properties because it separates the textures into components representing different visual characteristics

and modifies these components to accentuate the corresponding texture characteristics separately. As a

result, the proposed texture enhancement method enlarges the textural differences between different textures

in the enhanced image. As shown in Fig. 6.8, the proposed method is the only one for which the Mahalanobis

distances between clusters is consistently increased. The comparator methods all exhibit pairs of clusters

that become less separated, and even when clusters become more separated, the magnitude of the increased

separation is generally less than that for the proposed method.

Experimental results on natural images

Fig. 6.9 shows images enhanced by the same methods and the feature maps of different texture character-

istics in the corresponding images. Fig. 6.10 shows the Mahalanobis distance differences Di for different

textural regions in Fig. 6.9 before and after enhanced by different methods. Note that in this experiment,

the natural image is considered as the composition of two textures: foreground textures and background

textures. Therefore, the number of the Mahalanobis distance differences in the image is 2 (A1
2 = 2). Like the

results on mosaic texture images, the proposed method is the only enhancement method that enlarges the

textural differences between the two regions with respect to our features corresponding to Tamura’s texture
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enhanced
images

coarseness
feature map

contrast
feature map

directionality
feature map

line-likeness
feature map

original UM VISU MCA-CT CDF SHK proposed

Figure 6.7: Comparison of the performances of different image enhancement methods in making
textures more distinct with respect to the texture characteristics. Columns: the original image and
images enhanced by UM[158], VISU[47], traditional MCA[189], SHK[210], CDF[209] and the proposed
WT-TC-MCA. Rows: the maps of coarseness, contrast, directionality and line-likeness of the original
and enhanced images.
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Figure 6.8: The changes in the twelve Mahalanobis distances between clusters of local texture char-
acteristic vectors in the image in Figure 6.6 after processing with unsharp masking (UM), VISUShrink
(VISU), MCA-CT filtering (MCA-CT), coherence enhancing diffusion (CDF), shock filtering (SHK)
and “texture characteristic” MCA filtering with proposed manipulation method (WT-TC-MCA). Only
the proposed method increases the Mahalanobis distance between all clusters of textures descriptions
which is the main mechanism behind the textural differences enlargement proposed in Chapter 6.1.
Each Di is computed using Eq. 6.2.

.

147



characteristics: the differences of coarseness, contrast and line-likeness are all magnified, while the differ-

ences of directionality are not changed much since the original differences between two regions are too small

to discriminate. The Mahalanobis distance differences between two textural regions enhanced by the pro-

posed method are increased more than the comparators, demonstrating its ability in enhancing the textural

differences in the image.

enhanced
images

coarseness
feature map

contrast
feature map

directionality
feature map

line-likeness
feature map

original UM VISU MCA-CT CDF SHK proposed

Figure 6.9: Comparison of the performances of different image enhancement methods in magnify-
ing the textural differences in natural image more distinct with respect to the texture characteristics.
Columns: the original image and images enhanced by UM[158], VISU[47], traditional MCA[189],
SHK[210], CDF[209] and the proposed WT-TC-MCA. Rows: the maps of coarseness, contrast, direc-
tionality and line-likeness of the original and enhanced images. The red boundary is the ground truth
boundary between the foreground object and the background.
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Figure 6.10: The changes in the twelve Mahalanobis distances between clusters of local texture char-
acteristic vectors in the image in Figure 6.9 after processing with unsharp masking (UM), VISUShrink
(VISU), MCA-CT filtering (MCA-CT), coherence enhancing diffusion (CDF), shock filtering (SHK)
and “texture characteristic” MCA filtering with proposed manipulation method (WT-TC-MCA). Only
the proposed method increases the Mahalanobis distance between all clusters of textures descriptions
which is the main mechanism behind the textural differences enlargement proposed in Chapter 6.1.
Each Di is computed using Eq. 6.2.
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6.2 WT-TC-MCA as pre-processing method prior to grayscale im-

age segmentation

Since the WT-TC-MCA can enhance the textural differences in the image, the performance of texture-based

image segmentation, which is to partition the image into regions exhibiting similar texture features within

them and different texture features between regions, can be enhanced by using the image enhanced by WT-

TC-MCA method to preprocess images to be segmented.

6.2.1 The algorithm of the WT-TC-MCA image enhancement as the pre-processing

of image segmentation

Fig. 6.11 shows the schematic of applying WT-TC-MCA to enhance the gray scale image. Each step functions

as follows:

1. the local Tamura’s features are extracted from the 7 × 7 neighbourhood of every pixel in the input

image I;

2. the PCA-based feature selection method in Chapter 3 is applied to the feature vectors of all the pixels

to choose the key characteristics to describe the differences between different textures in the image;

3. based on the selected texture feature, the WT-TC-MCA algorithm is applied to the image to en-

hance the textural differences with respect to the corresponding texture characteristics: 1) the image

is decomposed to components representing the Tamura texture characteristics, 2) each components is

manipulated to enhance its own characteristic by the corresponding wavelet-based manipulation func-

tions, and 3) the components are re-combined to get the enhanced image where the textural differences

are magnified with respect to the selected texture characteristics.

To be more intuitive, an example of enhancing a gray scale image is shown in Fig. 6.12. The coarseness,

contrast, directionality and line-likeness are calculated locally for the input image. After the use of PCA-

based feature selection, coarseness and contrast are chosen as the key characteristics in describing the image.

Row 2 of Fig. 6.12 show the two pairs of components representing coarse, fine, high-contrast and low-contrast

respectively. Then the components are manipulated as shown in the Row 3 of Fig. 6.12. By combining these

enhanced components, the image is enhanced where the differences between different regions with respect

to coarseness and contrast are getting larger. The maps of coarseness and contrast of the input image and

output image are shown in Fig. 6.13.

6.2.2 Experiments and analysis

The performance of the proposed grayscale image enhancement method in improving grayscale image seg-

mentation algorithms is tested and evaluated in this chapter.
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Input
image I

feature maps

key texture
characteristics

components
representing key
characteristics

enhanced components
with more apparent

characteristics

Enhanced image I 0
with larger

textural di↵erences

Decomposition us-
ing WT-TC-MCA
with the key tex-
ture characteristics

Manipulation

Recombination

Figure 1: The process of pre-processing the image for improving the image
segmentation. The most distinctive texture characteristics are selected by the
PCA-based feature selection method. The image is enhanced by the WT-TC-
MCA to enlarge the textural di↵erences in the image with respect to these
certain texture characteristics.

1

Figure 6.11: The process of pre-processing the image for improving the image segmentation. The
most distinctive texture characteristics are selected by the PCA-based feature selection method. The
image is enhanced by the WT-TC-MCA to enlarge the textural differences in the image with respect
to these certain texture characteristics.
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input image
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component

fine
component

high-contrast
component

low-contrast
component

coarser
component

finer
component

higher-contrast
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lower-contrast
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Enhanced image

Figure 6.12: The enhancement of an example natural image as the pre-processing step prior to
the segmentation of the image. The image is decomposed corresponding to coarseness and contrast,
which are selected by the PCA feature selection method. Then the components representing coarseness
and contrast strongly and weakly are manipulated so that the corresponding characteristics are more
accentuated. The enhanced image, as the re-combination of the enhanced components, have the
textures more distinguishable so that the texture-based segmentation could be improved.
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original image coarseness contrast

enhanced image coarseness contrast

Figure 6.13: The coarseness and contrast of the original natural image and the image enhanced by
the WT-TC-MCA method. Two texture regions (inside and outside the red boundary) are enhanced
with larger differences with respect to both of the two texture characteristics. The red boundary is
the ground truth boundary between the foreground object and the background.

The test images include the synthetic texture images that are synthesized by combining textures from

the Brodatz texture database [24] and SIPI texture database [208], and the natural images that are from the

BSDS500 dataset [135]. The same texture enhancement methods in Chapter 6.6.1, including unsharp masking

(UM) [158], wavelet VISUShrink (VISU) [47], coherence-enhancing diffusion filter (CDF) [209], shock filter

(SHK) [210], standard MCA filter (MCA-CT), are used as comparators in the experiments. Then the image

segmentation tests are carried out as follows:

1. the test images are enhanced as described in Chapter 6.2.1 as well as with each of the comparator

methods;

2. the mosaic texture images are segmented by Tamura-feature-based segmentation [201], LBP-based

segmentation [137] and Factorization-based segmentation [220]; and the natural images are segmented

by the active contour segmentation [38], the diffusion-based feature-based segmentation [167] and the

texture and boundary compression segmentation [142] methods;

3. the segmentation effects of the images before and after enhancement are compared in terms of the

precision, recall and accuracy as defined in [224]:

Pre = (
∑n
i=1 |Si ∩Rimax| /

∑n
i=1 |Si|)× 100%

Rec = (
∑m
i=1 |Ri ∩ Simax| /

∑m
i=1 |Ri|)× 100%

Acc = (Pre + Rec)/2
, (6.3)

where Pre, Rec and Acc are the precision, recall and accuracy respectively, |·| denotes the area repre-

sented by the number of pixels in a region, Rimax is the matched reference object for each segment Si
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while Simax is the matched segment for each reference object Ri;

4. the average precision and recall of segmenting all the enhanced images by a certain algorithm with each

given parameter are computed as:

Preδ =
∑N
j=1 Prej,δ/N

Recδ =
∑N
j=1 Recj,δ/N

, (6.4)

where δ denotes the given parameter for the certain segmentation algorithm, j is the index of the

image in the database and N is the total number of the images in the database. With changing the

parameters, the precision-recall curves are drawn to evaluate the general performance of different image

enhancement methods in improving the given segmentation algorithm.

Evaluation of improving the segmentation of mosaic texture images

The results of enhancing a mosaic texture image by different enhancement methods and segmenting the

enhanced images by different texture-based segmentation algorithms are shown in Fig. 6.14.

original UM VISU CDF SHK MCA-CT
WT-

TC-MCA

Tamura [201]

97.54% 62.56% 94.03% 86.07% 89.09% 97.89% 98.59%

Factorization [220]

97.79% 96.47% 88.54% 98.08% 97.12% 97.89% 98.89%

LBP [137]

96.02% 81.99% 80.98% 90.43% 83.70% 92.73% 97.71%

Figure 6.14: Comparison of the performances of different image enhancement methods in improv-
ing the effect of segmenting the example mosaic texture image by various texture-based segmentation
algorithms. Columns: the original image and images enhanced by UM[158], VISU[47], SHK[210],
CDF[209], “cartoon+texture” MCA filtering (MCA-CT)[189] and the proposed WT-TC-MCA. Rows:
the effects of segmenting the images by Tamura-feature-based segmentation [201], LBP-based segmen-
tation [137] and Factorization-based segmentation [220], together with the segmentation accuracies
defined in Eq. 6.3.

As discussed in Chapter 6.1.4, the WT-TC-MCA can enlarge the textural differences in the image with

respect to the certain texture characteristics more than other conventional texture enhancement methods
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because of its ability in extracting the components representing different texture characteristics and ma-

nipulating these components to accentuate the corresponding texture characteristics independently. The

texture-based segmentation algorithms are therefore improved by using the image enhanced by WT-TC-

MCA more than using the image enhanced by the other methods since these segmentation algorithms are

equal to label the regions with different texture features. The mean accuracies and standard deviations of

segmenting 200 mosaic images and the enhanced ones by different segmentation methods are shown in Table

6.1. The accuracies from segmenting the images with each segmentation algorithm and enhancement method

(including no enhancement) were subjected to a Lilliefors test. For all algorithms we were unable to reject the

null hypothesis that the segmentation accuracies were normally distributed (p > 0.05). For each segmenta-

tion algorithm and enhancement method we performed a student’s T-test [81] on the accuracies obtained for

the original images and on the accuracies obtained for the enhanced images. In all case the null hypothesis

was rejected (p < 10−4), and the observed differences in mean accuracy before and after enhancement are

statistically significant. Fig. 6.15 shows the precision-recall curves for different segmentation methods over

the mosaic images enhanced by the comparator methods, WT-TC-MCA provides greater precision for almost

all values of recall.

Tamura Factorization LBP

Acc (%) P1 P2 Acc (%) P1 P2 Acc (%) P1 P2

original 92.82± 1.11 0.2694 - 92.37± 1.27 0.1492 - 84.67± 1.21 0.0989 -

UM 92.67± 1.46 0.1504 5.08e−24 93.79± 1.38 0.2389 5.69e−30 87.20± 1.40 0.0940 5.91e−16

VISU 92.07± 0.30 0.4322 2.57e−34 93.07± 1.08 0.0681 1.92e−40 84.61± 0.39 0.1662 6.60e−44

CDF 91.42± 1.08 0.3415 1.24e−5 94.54± 1.27 0.1080 9.80e−11 85.81± 1.19 0.2597 1.29e−5

SHK 94.02± 1.44 0.1292 7.19e−28 95.81± 1.04 0.2757 1.03e−29 87.30± 1.39 0.3266 2.14e−23

MCA-CT 94.53± 1.03 0.4769 9.13e−27 94.75± 1.07 0.3323 1.35e−28 90.79± 1.08 0.1288 6.06e−25

WT-TC-MCA 95.53± 0.24 0.2978 3.14e−30 97.36± 0.95 0.4312 2.08e−25 92.12± 0.96 0.2553 9.36e−23

Table 6.1: Mean accuracy and standard deviation of segmenting 200 mosaic images and the enhanced
ones by different texture-based segmentation methods. For each enhancement method, P1 is the P-
value of a Lilliefors test (P < 0.05) [81] for each group of segmentation accuracies, and P2 is the
P-value of doing Student’s t-test (P < 0.05) [81] for the groups of the segmentation accuracies of the
original images and the enhanced images. The differences in the means, though, in some cases, small,
are statistically significant (P2 < 10−4).

Evaluation of improving the segmentation of natural images

Fig. 6.16 shows the enhancement and segmentation of the natural image after texture enhancement by

the comparison methods. Table 6.2 shows the mean accuracies and standard deviations of segmenting 200

natural images and the enhanced ones by different segmentation algorithms, together with the p-values

from the Student’s t-test (P < 0.05) between the accuracies of the original images and the enhanced images.

Similar as the results of mosaic images, the WT-TC-MCA provides larger, statistically significant (P2 < 0.05)

improvement of accuracy of segmenting the enhanced images by all the segmentation algorithms. With the

changes of parameters, the WT-TC-MCA stably improves the general performance of each segmentation
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(a) Tamura (b) Factorization (c) LBP

Figure 6.15: The precision-recall curves of segmenting synthetic texture images enhanced by different
methods using different segmentation algorithms. (a) Tamura-feature-based K-means segmentation,
with the parameter window size w = [5→ 20]. (b) Factorization based texture segmentation, with the
parameters spatial frequency band-width b = [0.4→ 2.5] and spatial aspect ratio γ = [0.2→ 1]. (c)
LBP based texture segmentation method, with the parameter window size w = [5→ 20]. WT-TC-
MCA method, represented by the red curve, results in higher precision for most values of recall.

algorithm as the precision-recall curves shown in Fig. 6.17.

Similarly to the results for mosaic texture images, the WT-TC-MCA provides larger improvement of accu-

racy in segmenting the enhanced natural images by all the segmentation algorithms, and better performance

of segmentation over all the natural images in the database in terms of precision and recall. The average

accuracies of segmenting 200 natural images and the enhancing ones by different segmentation methods are

shown in Table. 6.2.

AC Diffusion-based feature space TBES

Acc (%) P1 P2 Acc (%) P1 P2 Acc (%) P1 P2

original 87.83± 3.21 0.2517 - 76.99± 2.65 0.1561 - 87.16± 0.64 0.0884 -

UM 87.54± 4.36 0.3664 9.75e−8 79.05± 3.58 0.1788 6.79e−11 87.82± 1.23 0.1811 2.58e−16

VISU 87.47± 2.51 0.3953 1.27e−6 78.93± 2.15 0.3688 1.08e−20 87.10± 1.09 0.0758 5.30e−8

CDF 87.83± 3.09 0.3490 2.00e−13 78.58± 2.45 0.2096 6.57e−16 87.16± 0.75 0.1044 5.15e−16

SHK 88.35± 4.03 0.2267 3.15e−6 79.53± 4.04 0.2569 5.26e−5 87.40± 1.24 0.2584 4.38e−7

MCA-CT 89.01± 4.27 0.4373 3.05e−16 82.16± 4.13 0.2767 9.17e−14 88.63± 1.66 0.3601 3.35e−25

WT-TC-MCA 90.55± 3.36 0.4305 2.95e−19 87.68± 3.08 0.2493 1.09e−14 91.87± 1.67 0.4022 1.02e−26

Table 6.2: Mean accuracy and standard deviation of segmenting 200 natural images and the enhanced
ones by different texture-based segmentation methods. For each enhancement method, P1 is the P-
value of a Lilliefors test (P < 0.05) [81] for each group of segmentation accuracies, and P2 is the
P-value for the Student’s t-test (P < 0.05) [81] for the groups of the segmentation accuracies of the
original images and the enhanced images. WT-TC-MCA outperforms other enhancement methods
in increasing the accuracy for every testing segmentation method. The differences in means are all
statistically significant (P2 < 10−4).

According to the above experimental results, we conclude that use of the WT-TC-MCA method as a pre-

processing step prior to the grayscale image segmentation can improve the performance of these segmentation

algorithms, and likely others as well, because the WT-TC-MCA can enhance the textural differences in the

image with respect to the key texture characteristics differentiating the different texture regions.
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original UM VISU CDF SHK MCA-CT
WT-

TC-MCA

AC [38]

97.10% 97.01% 88.47% 97.12% 96.81% 96.79% 97.18%

Diffusion-based
feature space [167]

92.04% 89.11% 92.02% 88.78% 92.75% 92.04% 93.95%

TBES [142]

95.45% 96.72% 95.74% 96.70% 96.57% 96.43% 99.24%

Figure 6.16: Comparison of the performances of different image enhancement methods in improving
the effect of segmenting the example natural image by various texture-based segmentation algorithms.
Columns: the original image and the enhanced ones by UM[158], VISU[47], SHK[210], CDF[209],
“cartoon+texture” MCA filtering (MCA-CT)[189] and the proposed WT-TC-MCA. Rows: the effects
of segmenting the images by the active contour segmentation [38], the diffusion based feature based
segmentation [167] and the texture and boundary compression segmentation [142], together with the
segmentation accuracies defined in Eq. 6.3.
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Figure 6.17: The precision-recall curves of segmenting natural texture images enhanced by different
methods using different segmentation algorithms. (a) Active contour segmentation, with the pa-
rameters: µ = [1e1, 1e2, 1e3, 1e4] and patch size w = [5→ 15]. (b) Diffusion feature space based
segmentation, with the parameters: regularization weight v = [0.1→ 1] and parzen window size
σ = [1→ 10]. (c) Texture and boundary compression segmentation, with the parameters: distor-
tion level ε = [25→ 400] and max window size wM = [5→ 20]. WT-TC-MCA method, represented
by the red curve, results in higher precision for most values of recall.
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6.3 WT-TC-MCA as pre-processing method prior to colour image

segmentation

Since the WT-TC-MCA can enhance the textural differences in grayscale images, it is available to enhance the

colour image as an extension of grayscale image enhancement. In this chapter, the colour image enhancement

used WT-TC-MCA is proposed as the pre-precessing of the colour image segmentation algorithms.

6.3.1 The algorithm of the WT-TC-MCA colour image enhancement

The WT-TC-MCA texture enhancement method is applied to the luminance component from the CIELab

colour space. The CIELab colour space transforms the RGB colour space into a luminance channel L and

two opponent chrominance channels a and b [14]. By enhancing the L component of the colour image with

WT-TC-MCA, the textures are differentiated more whereas chrominance values remain unchanged. As shown

in Fig. 6.18, the WT-TC-MCA based colour image enhancement is implemented as follows:

1. transform the input image I from RGB colour space to CIELab colour space;

2. enhance the L component by the WT-TC-MCA method so that texture differences in the L channel

are modified to be mutually more different to obtain the enhanced component L′;

3. replace the L component with L
′
, then transform the colour image back to the RGB colour space,

yielding the texture-enhanced colour image I
′
.

6.3.2 Experimental results and analysis

The colour image enhancement method discussed above is evaluated by analyzing the performance improve-

ment of colour image segmentation algorithms, because the main purpose of the image enhancement is to

differentiate the texture details in the colour image so as to enhance the effect of colour image segmentation

algorithms.

Experimental materials

The colour images utilized in this part are from the Berkerly segmentation dataset [135]. The performance

of the proposed method is compared with the state-of-the-art colour image enhancement methods as follows:

1. adaptive neighbourhood histogram equalization (ANHE) [27], which equalizes the intensities in a

variable-shaped neighbourhood containing pixels similar to the seed pixels and updates the seed pixels’

intensities with the equalized ones;

2. J. Han, S. Yang and B. Lee’s work (HP-ILP) [88], which defines the histogram of a colour image whose

cumulative distribution function (cdf) is the accumulation of probability distribution functions (pdfs)
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color space transformation(RGB to CIELab)

L a b

WT-TC-MCA

L
0 a b

I

I
0

color space transformation(CIELab to RGB)

Figure 1: The WT-TC-MCA based colour image enhancement process. The input
image I is transformed to luminance component L and chrominance components a
and b. The luminance component L is enhanced by WT-TC-MCA method to L

0
while

the chrominance components a and b are kept unchanged. By transforming the colour
image back to RGB colour space, the image I

0
is enhanced with more di↵erentiable

textures.

1

Figure 6.18: The WT-TC-MCA based colour image enhancement process. The input image I
is transformed to luminance component L and chrominance components a and b. The luminance
component L is enhanced by WT-TC-MCA method to L

′
while the chrominance components a and

b are kept unchanged. By transforming the colour image back to RGB colour space, the image I
′

is
enhanced with more differentiable textures.
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within the box of size R×G×B in 3D colour space. Then the image is enhanced by equalizing this 3D

colour histogram with the method proposed in [146] preserving both the hue and the gamut constraints;

3. multi-scale retinex with colour restoration (MSRCR) [89], which is based on the retinex image enhance-

ment concept that enhances the image by processing the incident light and the reflectance of the object

separately;

4. spatial entropy-based contrast enhancement using discrete cosine transform (SECE-DCT) [36], where

DCT transform domain coefficients of the image globally enhanced by SECE is further weighted to

obtain both globally and locally enhanced image;

5. luminance and contrast masking of human visual system based image enhancement (HVS-SWT-LCM)

[147], which combines a multi-resolution transform with luminance masking and contrast masking based

on human visual system. It is capable of adjusting the brightness level of the image and providing both

dynamic range compression and contrast enhancement;

6. histogram equalization and unsharp masking (HE-UM) [42], which applies both histogram equalization

and unsharp masking filter to the luminance channel of the image;

7. coherence enhancing diffusion filter (CDF) [209], which applies the CDF texture enhancement filter to

enhance the luminance of the colour image;

8. shock filtering (SHK) [210], which enhances the luminance channel of the colour image as the grayscale

texture image.

With the above comparator methods, the segmentation tests are carried out as follows:

1. the test images are enhanced as described in Chapter 3, and with the comparator methods listed above;

2. the original images and the images enhanced by the proposed method were segmented using several

segmentation algorithms: gPb-owt-ucm [9], UCM [8], Mean Shift [51], N-cuts [54], region merging

[73] and Canny [32], and evaluated using the BSDS500 benchmark. All the BSDS500 benchmarks are

calculated as the average values of comparing the segmentation results to the ground truths drawn by

different human subjects;

3. the original images and the images enhanced by different image enhancement methods were segmented

with the hierarchical segmentation algorithm gPb-owt-ucm [9] and evaluated using the BSDS500 bench-

mark.

Performance of enhanced colour image segmentation

Fig. 6.19 shows an example image enhanced by different colour image enhancement methods, together with

the gPb-owt-ucm segmentation results, which performs the best over all images in the dataset. The AHNE
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method stretches the brightness too much and distorts the colour, leading over-enhancement of weak edges.

The HP-ILP method focuses on local textures but produces artifacts in smooth regions. MSRCR and HVS-

SWT-LCM methods both make the images too bright and distort the colour in the dark areas, adding a

lot of unwanted textures. SECE-DCT degrades the textures in bright regions. HE-UM enhances the edges

globally however degrades the textures with similar local intensities. CDF and SHK both change the shapes

of textures in the images, which cannot highlight textures in the regions of interest either. The proposed

method leads to better segmentation results because WT-TC-MCA can enhance textures to different extents

with respect to their own properties because it separates the textures into components representing different

visual characteristics and modifies these components in different ways.

Fig. 6.20 shows the evaluation of segmentation algorithms on the BSDS500 images and those enhanced

by the proposed method. Table 6.3 shows the F-measures when choosing an optimal scale for the entire

dataset (ODS) or per image (OIS), as well as the average precision (AP). Use of the proposed method prior

to segmentation improves the performance of every segmentation method.

original WT-TC-MCA
ODS OIS AP ODS OIS AP

gPb-owt-ucm[9] 0.69 0.72 0.70 0.73 0.75 0.76
UCM[8] 0.66 0.68 0.65 0.68 0.69 0.68

Mean Shift[51] 0.62 0.64 0.58 0.66 0.68 0.63
N-cuts[54] 0.60 0.64 0.54 0.63 0.68 0.58

region merging[73] 0.56 0.59 0.48 0.60 0.62 0.56
Canny[32] 0.54 0.57 0.43 0.56 0.57 0.51

Table 6.3: The F-measure of segmenting BSDS500 images and images enhanced by the proposed
method with different segmentation methods.

Then we selected the gPb-owt-ucm segmentation method, which has the best performance in segmenting

colour images in the dataset. Fig. 6.21 shows the evaluation of gPb-owt-ucm in segmenting images enhanced

by different enhancing methods. Table 6.4 shows the F-measure of different enhanced images in the testing

dataset. Use of the proposed method prior to segmentation leads to a better segmentation effect than other

enhancement methods.

F-measure F-measure
ODS OIS AP ODS OIS AP

original 0.69 0.72 0.71 HVS-SWT-LCM[147] 0.71 0.74 0.75
ANHE[27] 0.69 0.71 0.69 HE-UM[42] 0.68 0.71 0.71
HP-ILP[88] 0.71 0.74 0.74 CDF[209] 0.72 0.74 0.75
MSRCR[89] 0.70 0.72 0.71 SHK[210] 0.71 0.72 0.73

SECE-DCT[36] 0.71 0.74 0.75 WT-TC-MCA 0.73 0.75 0.76

Table 6.4: The F-measure of segmenting BSDS500 images and the images enhanced by different
methods using the gPb-owt-ucm segmentation method.
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original ANHE HP-ILP MSRCR SECE-DCT

HVS-SWT-LCM HE-UM CDF SHK WT-TC-MCA

User #1 User #2 User #3 User #4 User #5

Figure 6.19: Comparison of the performances of different colour image enhancement methods in
improving the effect of segmenting the example colour image by gPb-owt-ucm. Row 1 and Row 3:
colour image enhanced by ANHE [27], HP-ILP [88], MSRCR [89], SECE-DCT [36], HVS-SWT-LCM
[147], HE-UM [42], CDF [209], SHK [210] and WT-TC-MCA. Row 2 and Row 4: the segmentation of
the enhanced images by gPb-owt-ucm. Row 5: the ground truths of segmenting the colour image by
5 human users.
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Figure 6.20: Evaluation of different segmentation algorithms on the BSDS500 images and those
enhanced by the proposed method. Blue curves are the precision-recall curves of segmenting the
original images, red curves are the precision-recall curves of segmenting the enhanced images.
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Figure 6.21: Evaluation of the gPb-owt-ucm segmentation method on the BSD500 images and those
enhanced by different image enhancment methods. (a) The comparison among the original images
(blue), ANHE (cyan), HP-ILP (green), MSRCR (magenta), SECE-DCT (yellow) and the proposed
method (red); (b) the comparison among the original images (blue), HVS-SWT-LCM (cyan), HE-UM
(green), CDF (magenta), SHK (yellow) and the proposed method (red).
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6.4 Conclusion

In this part, several applications based on the wavelet-based texture characteristics morphological component

analysis (WT-TC-MCA) are proposed and discussed, including the textural difference enhancement method

based on morphological component analysis, WT-TC-MCA grayscale image enhancement and WT-TC-MCA

colour image enhancement method. The experimental results demonstrate that the textural difference en-

hancement method based on morphological component analysis can successfully enlarge the textural differ-

ences in the image because of the different texture characteristics are made more apparent, use of the WT-TC-

MCA grayscale image enhancement and the WT-TC-MCA colour image enhancement as pre-processing step

to image segmentation algorithms can effectively improve the performance of those segmentation algorithms

by making the textures more differentiable.
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Chapter 7

Conclusions

This thesis analyzed the method and application of enhancing textural differences in the image. To enlarge

the textural differences, three main problems need to be solved:

1. Which characteristics should be used to describe the textural differences?

2. Can the image be considered as the composition of components representing the certain characteristics?

3. How can a certain component separated from the image be enhanced to accentuate the corresponding

texture characteristic while not affecting other characteristics represented by other components?

Through this thesis, these three problems are solved by three different methods: local Tamura’s human visual

perceptual texture description (Chapter 3), wavelet-based texture characteristics morphological component

analysis (Chapter 4), wavelet-based texture characteristics enhancement (Chapter 5). These separate modules

are combined as a whole framework and the framework is applied as the image enhancement prior to grayscale

and colour image segmentation algorithms (Chapter 6). The main contributions of this thesis are listed below.

7.1 Contributions

Reviews on image description, image decomposition and image manipulation methods. Statisti-

cal image description, image decomposition methods and image manipulation techniques have been exhaus-

tively reviewed in Chapter 2. Mainstream image descriptors have been introduced and analyzed with their

advantages and disadvantages. Human visual perceptual texture descriptors are highlighted as a method

based on the relation between the texture and human observation. For the analysis of image decomposition

methods, a novel classification of the image decomposition approaches is proposed. Image decomposition

techniques can be classified by different assumptions of the input images, different assumptions of output

results or different algorithmic approaches. Thus morphological component analysis is considered as the best

method to find components representing texture characteristics in the image. While for image manipulation,

both linear and non-linear, both de-noising and enhancing modification methods are introduced. As a result,

non-linear image manipulation methods are used as the foundation for this thesis work.

Human visual perceptual texture description and PCA-based feature selection method. In

Chapter 3, Tamura’s texture features, including coarseness, contrast, directionality, line-likeness, regularity
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and roughness, are novelly calculated to locally describe the neighbourhood centred at each pixel in the

image. Then the principal component analysis concept is applied to find the key features that are necessary

and sufficient enough to differentiate the textures or images in the dataset, or the various regions in the given

textural image.

Texture characteristics morphological component analysis using wavelet-based dictionaries.

In Chapter 4, a series of wavelet-based soft thresholding methods are proposed as the dictionaries to represent

the certain texture characteristics. The thresholding methods are proposed pairwisely so that each of them

exhibit one certain texture characteristics either strongly or weakly. The sensitivity and sparsity of each

thresholding method as the dictionary to represent the certain texture characteristic are also demonstrated

in this chapter.

Wavelet-based texture characteristics enhancement methods. In Chapter 5, various wavelet

coefficients manipulation methods are proposed to accentuate the texture characteristics independently. Each

non-linear wavelet coefficient manipulation function can enhance one texture characteristic, including coarse,

fine, high-contrast, low-contrast, horizontal, vertical, line-like and non-line-like, while not affecting other

texture characteristics of the image.

Textural differences enhancement by wavelet-based texture characteristics morphological

component analysis. In Chapter 6, the three methods proposed in Chapter 3,4 and 5 are combined to

one uniform framework as a novel method to enlarge the textural differences in the image. The key texture

characteristics that differentiate different textures in the image are found first, then the image is decomposed

by the morphological component analysis using wavelet-based dictionaries into components representing

the key texture characteristics, then the components are enhanced by the wavelet coefficient manipulation

functions to make the components exhibit the corresponding texture characteristics more apparently, after

re-combining the manipulated components, the image is enhanced with the textures more differentiable with

respect to the certain texture characteristics.

Applications of the textural differences enhancement method. In Chapter 6, the proposed

textural differences enhancement method is used as the pre-processing steps of the grayscale and colour

image segmentation algorithms respectively, so that the performance of these texture-based segmentation

algorithms are improved more effectively than pre-processed by other image enhancement methods. When

we look back at the segmentation problem mentioned in Chapter 1, Fig. 7.1 shows an example of how

the image is enhanced by the WT-TC-MCA method and the segmentation is therefore improved. The

textural differences enhancement method is adaptive in finding the key discriminant texture characteristics,

decomposing the image into components exhibiting these characteristics strongly and weakly and accentuating

the texture characteristics in the corresponding components, making no assumptions about the descriptors

used for differentiating different textures. Therefore, the proposed textural differences enhancement method

can be used as a general pre-processing step prior to any texture-based segmentation method. In theory, it

should be able to improve the performance of any algorithm that relies on distinguishing regions of the image
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based on a texture description.

(a) example image
with multiple textures

(b) feature map of
the example image

(c) segmentation of
the example image

(d) enhanced image
with multiple textures

(e) feature map of
the enhanced image

(f) segmentation of
the enhanced image

Figure 7.1: An example of texture-based segmentation improvement. (a) is the example image with
five different Brodatz [24] textures in it, (b) is the map of local contrast description [184] of the example
image, (c) is the segmentation of the example texture image by applying the k-means clustering [10]
to the feature map, (d) is the image enhanced by the WT-TC-MCA method, (e) is the map of local
contrast description of the enhanced image, (f) is the segmentation of the enhanced texture image by
applying the k-means clustering to the feature map.

7.2 Future work

The design of the enhancement of textural differences in the image system involves the consideration of a

wide range of questions. For the three steps proposed to compose the enhancement algorithm, in addition

to the solutions which have been proposed and described in this thesis, a lot of ideas have the possibility to

solve the description, decomposition and manipulation steps. On the other hand, the problem of textural

differences enhancement itself is still a quite open problem, where many questions remain as undeveloped

ideas that need to be further analyzed. We suggest all these undeveloped, possible ideas as our future work.

In order to conveniently organize these ideas for the future, we have divided them into two basic parts.

The first one is composed of some possible improvements that can be analyzed in order to refine the proposed

image enhancement method. The second part suggests some novel strategies that can be explored to enlarge

the textural differences in the image.

7.2.1 Further work on the proposed enhancement method

Image description based on human visual perception. As has been denoted, there are different image
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analysis techniques which describe the textural differences in images, especially differences with respect to

human visual perception. The results of comparing these types of high-level texture features have been

inconclusive and it is difficult to assess which is the best method. Therefore, other human visual perceptual

features should be considered. Furthermore, the relationship between the texture features and human visual

perception should be analyzed so that the differences with respect to these high-level texture features can

reflect how a human observes different textures more precisely.

Dictionaries representing texture characteristics. As discussed in this thesis, the core problem

of decomposition is to find dictionaries suitable for representing the certain types of image contents. The

proposed method using wavelet-based dictionaries that apply different thresholding methods to remove the

components not exhibiting the selected characteristics is considered as an indirect way to represent the

corresponding components. Therefore, sparse transformations other than the wavelet transform should be

considered as a more direct way to separate components with different texture characteristics from the image.

Non-linear texture characteristics enhancement methods. In this thesis, a series of functions are

proposed to manipulate the wavelet coefficients to enhance certain texture characteristics of the image while

not affecting other characteristics. As discussed in the literature review, wavelet-based image manipulation

methods have some disadvantages in losing image information after transformation, or increasing noise or

artifacts in the image. Therefore, other non-linear image enhancement methods should be studied so that

texture characteristics can be enhanced by non-linear spatial filters independently. Moreover, dictionaries

that can represent characteristics other than coarseness, contrast, directionality and line-likeness should be

proposed to model the image more completely.

Applications using textural differences enhancement method. The proposed textural differences

enhancement method has been used prior to grayscale and colour image segmentation algorithms. However,

as one of the pre-processing steps, the ability of the proposed method in improving the performance of the

image processing methods other than the image segmentation is not demonstrated. Thus, the enhancement

should be applied to enhance the image and used to widen the range of image processing methods, including

image classification, image retrieval, object detection or some others.

7.2.2 Further work on the textural differences enhancement

Methods to model the image. The human visual perceptual characteristics are not the only way to model

different types of image content. It is possible to model the image as the linear or non-linear combination

of some specific components representing the content features that can differentiate different textures in

the image. For example, different shapes of textures can be used as the criteria so that the image can be

considered as the combination of these components with different shapes of textures. Then the image can be

enhanced by an enhancing schematic similar to that proposed in this thesis, but with different components.

Methods to enhance the image directly. The proposed image enhancement method manipulates the

image quite indirectly, where it first finds the components of the image, then enhances the components and
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finally re-combines the enhanced components to get the enhanced image. In other words, the proposed method

considers the image as a function of components, then it manipulates the function output by manipulating

the components. If there exists a method for considering the image as the input variable, the image could

be manipulated with a function where the variables are the image data and the coefficients are calculated as

the function of the variables themselves. Therefore, different image regions with different features would be

manipulated differently, leading to magnified differences between different regions of the image. For example,

the coherence-enhancing diffusion filter [209] and shock filter [210] are able to manipulate textures by the

PDE function of the textures themselves.
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[1] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(4):433–459, 2010.

[2] M. Abdulrahman, T. R. Gwadabe, F. J. Abdu, and A. Eleyan. Gabor wavelet transform based fa-
cial expression recognition using pca and lbp. In 2014 22nd Signal Processing and Communications
Applications Conference (SIU), pages 2265–2268, April 2014.

[3] Edward H Adelson, Charles H Anderson, James R Bergen, Peter J Burt, and Joan M Ogden. Pyramid
methods in image processing. RCA engineer, 29(6):33–41, 1984.

[4] S.S. Agaian, B. Silver, and K.A. Panetta. Transform Coefficient Histogram-Based Image Enhancement
Algorithms Using Contrast Entropy. Image Processing, IEEE Transactions on, 16(3):741–758, 2007.

[5] Douglas G Altman and J Martin Bland. Diagnostic tests. 1: Sensitivity and specificity. BMJ: British
Medical Journal, 308(6943):1552, 1994.

[6] M. Amadasun and R. King. Textural features corresponding to textural properties. Systems, Man and
Cybernetics, IEEE Transactions on, 19(5):1264–1274, Sep 1989.

[7] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. Image Coding Using Wavelet Transform.
Image Processing, IEEE Transactions on, 1(2):205–220, 1992.

[8] P. Arbelaez. Boundary Extraction in Natural Images Using Ultrametric Contour Maps. In Computer
Vision and Pattern Recognition Workshop, 2006. CVPRW ’06. Conference on, pages 182–182, June
2006.

[9] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour Detection and Hierarchical Image Seg-
mentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(5):898–916, May
2011.

[10] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In Proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027–1035. Society for
Industrial and Applied Mathematics, 2007.

[11] Jean-François Aujol, Gilles Aubert, Laure Blanc-Féraud, and Antonin Chambolle. Image Decomposi-
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