

VIRTUAL RESOURCES & INTERNET OF THINGS

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

MAYRA ALEJANDRA SAMANIEGO PALLAROSO

© Copyright MAYRA ALEJANDRA SAMANIEGO PALLAROSO, December 2016. All rights

reserved.

	 i	

PERMISSION TO USE

In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate
degree from the University of Saskatchewan, I agree that the Libraries of this University may
make it freely available for inspection. I further agree that permission for copying of this
thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by
the professor or professors who supervised my thesis/dissertation work or, in their absence, by
the Head of the Department or the Dean of the College in which my thesis work was done. It is
understood that any copying or publication or use of this thesis/dissertation or parts thereof for
financial gain shall not be allowed without my written permission. It is also understood that due
recognition shall be given to me and to the University of Saskatchewan in any scholarly use which
may be made of any material in my thesis/dissertation.

Requests for permission to copy or to make other uses of materials in this thesis/dissertation in
whole or part should be addressed to:

 Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

	 ii	

ABSTRACT

Internet of Things (IoT) systems mostly follow a Cloud-centric approach. These systems

get the benefits of the extensive computational capabilities and flexibility of the Cloud. Although

Cloud-centric systems support virtualization of components to interact with IoT networks, many

of these systems introduce high latency and restrict direct access to IoT devices. Fog computing

has been presented as an alternative to reduce latency when interacting with IoT networks,

however, new forms of virtualization are required to access physical devices in a direct manner.

This research introduces a definition of Virtual Resources to enable direct access to IoT

networks and to allow richer interactions between applications and IoT components.

Additionally, this work proposes Virtual Resources as a mechanism to handle the multi-tenancy

challenge that emerges when more than one tenant tries to access and manipulate an IoT

component simultaneously. Virtual Resources are developed using Go language and CoAP

protocol. This work proposes permission-based blockchain to provision Virtual Resources

directly on IoT devices. Seven experiments have been done using Raspberry Pi computers and

Edison Arduino boards to test the definition of Virtual Resources presented by this work. The

results of the experiments demonstrate that Virtual Resources can be deployed across different

IoT platforms. Also, the results show that Virtual Resources and blockchain can support multi-

tenancy in the IoT space. IBM Bluemix Blockchain as a Service and Multichain blockchain have

been evaluated handling the provisioning of Virtual Resources in the IoT network. The results of

these experiments show that permission-based blockchain can store the configurations of Virtual

Resources and provision these configurations in the IoT network.

	 iii	

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my supervisor Dr. Ralph Deters for

accepting me in his group of students. During these two years, his knowledge and support were

fundamental to pursue my master’s degree. I am very grateful to his sincerity when suggesting

to improve in certain areas, and to his trust when encouraging me to take new challenges.

I want to thank my husband for his love and continually support. His beautiful heart and

tenacity in pursuing his dreams makes me feel very proud of him. Thanks to my father for always

encouraging me to learn new things and be a model for others to follow. Thanks to my sister for

being my best friend and confident. I admire her strength and positive attitude. Thanks to my

beautiful cousin for believing in me. Her support during these two years has been very important

for me. Thanks to all my family for always sending me the best wishes from home.

Finally, I want to thank my angel in heaven that always encouraged me to pursue my

dreams even though that meant the sadness of my absence. My mom.

	 iv	

CONTENTS

PERMISSION	TO	USE	..	i	
ABSTRACT	...	ii	
ACKNOWLEDGEMENTS	..	iii	
CONTENTS	...	iv	
LIST	OF	TABLES	..	vi	
LIST	OF	FIGURES	...	vii	
LIST	OF	ABBREVIATIONS	..	xi	

	..	1	
INTRODUCTION	..	1	

	..	4	
PROBLEM	DEFINITION	..	4	

2.1	 How	to	define	Virtual	Resources?	...	4	
2.2	 How	to	provision	Virtual	Resources?	..	5	
2.3	 How	to	guarantee	multi-tenant	access	to	IoT	components?	..	5	

	..	6	
LITERATURE	REVIEW	..	6	

3.1	 Internet	of	Things	(IoT)	...	6	
3.1.1	 Things-Centric	IoT	...	8	
3.1.2	 Cloud-Centric	IoT	...	8	
3.2	 Fog	Computing	and	IoT	...	10	
3.3	 Multi-Tenancy	in	IoT	...	12	
3.4	 Software-defined	IoT	(SD-IoT)	and	Virtualization	IoT	...	13	
3.5	 Blockchain	and	IoT	..	14	
3.6	 Architectural	Design	Patterns	...	16	
3.6.1	 Service	Oriented	Architecture	(SOA)	...	16	
3.6.2	 Representational	State	Transfer	(REST)	..	16	
3.7	 Communication	Patterns	in	IoT	...	17	
3.7.1	 Data-centric	IoT	Communication	..	17	
3.7.2	 Message-centric	IoT	Communication	..	18	
3.7.3	 Resource-centric	IoT	Communication	...	19	
3.8	 Summary	...	23	

	..	25	
ARCHITECTURE	...	25	

4.1	 Definition	of	Virtual	Resources	...	25	
4.1.1	 Atomic	Virtual	Resources	..	26	

	 v	

4.1.2	 View	Virtual	Resources	...	27	
4.1.3	 Virtual	Systems	..	28	
4.2	 Provisioning	of	Virtual	Resources	..	29	
4.3	 Multi-tenant	access	to	IoT	Components	...	30	
4.4	 Summary	...	30	

	..	31	
IMPLEMENTATION	...	31	

5.1	 Definition	of	Virtual	Resources	...	31	
5.2	 Provisioning	of	Virtual	Resources	..	32	
5.3	 Multi-tenant	access	to	IoT	components	...	35	
5.4	 Summary	...	35	

	..	36	
EXPERIMENTS	AND	EVALUATIONS	...	36	

6.1	 Virtual	Resources	deployed	on	Raspberry	PI	..	36	
6.1.1	 Experiment	1:	..	36	
6.1.2	 Summary:	..	42	
6.2	 Virtual	Resources	deployed	on	Edison	Arduino	boards	..	42	
6.2.1	 Experiment	2:	..	42	
6.2.2	 Experiment	3:	..	46	
6.2.3	 Experiment	4:	..	51	
6.2.4	 Summary:	..	53	
6.3	 Provisioning	and	multi-tenant	access	to	Virtual	Resources	using	Blockchain	53	
6.3.1	 Experiment	5:	..	53	
6.3.2	 Experiment	6:	..	57	
6.3.3	 Experiment	7:	..	62	
6.3.4	 Summary:	..	67	

	..	68	
CONTRIBUTION	AND	FUTURE	WORK	...	68	

7.1	 Summary	...	68	
7.2	 Contributions	..	69	
7.2.1	 Definition	of	Virtual	Resources.	..	69	
7.2.2	 Provisioning	of	Virtual	Resources	on	IoT	devices.	...	69	
7.2.3	 Support	for	Multi-tenant	Access	in	IoT	networks.	..	69	
7.3	 Future	Work	..	70	
7.3.1	 Evaluation	of	Virtual	Resources	..	70	
7.3.2	 Evaluation	of	Blockchain	...	70	

REFERENCES	...	71	

	 vi	

LIST OF TABLES

Table	3-1		IoT	vs.	Cloud	scenarios	..	10	

Table	3-2		Comparison	between	Fog	and	Cloud	environments	...	12	

Table	3-3		Summary	of	the	Literature	Review	..	23	

Table	6-1	Description	of	Experiments	..	36	

Table	6-2		Specification	of	the	hardware	used	in	Experiment	1	...	38	

Table	6-3		Specification	of	Edison	Arduino	Board	..	43	

Table	6-4		Specification	of	the	Multichain	blockchain	nodes.	..	55	

	 vii	

LIST OF FIGURES

Figure	1.1		Number	of	connected	PC's,	Smartphones	and	Tablets	vs.	IoT	connected	devices	1	

Figure	3.1		Trend	of	Devices	vs.	People		...	7	

Figure	3.2		Representation	of	the	three	layers	of	Cloud-centric	IoT	systems	..	9	

Figure	3.3		Data	Distribution	Service	(DDS)	Diagram		..	18	

Figure	3.4		MQTT	IBM	..	19	

Figure	3.5		Abstract	layering	of	CoAP		..	20	

Figure	3.6		CoAP	Message	Format		...	20	

Figure	3.7		Example	of	a	CoAP	message	with	separated	acknowledgment	of	receipt		21	

Figure	3.8		Example	of	a	CoAP	piggybacked	message		...	22	

Figure	3.9		Observer	design	pattern		..	22	

Figure	4.1	Representation	of	Virtual	Resources	in	the	IoT	Things	layer.	...	26	

Figure	4.2	Representation	of	Atomic	Virtual	Resources.	Each	physical	component	has	an	Atomic	Virtual	
representation.	...	27	

Figure	4.3	Representation	of	View	Virtual	Resources.	A	View	Virtual	Resource	engages	two	Atomic	
Virtual	Resources.	...	28	

Figure	4.4		Representation	of	a	Virtual	System.	...	29	

Figure	5.1		Example	of	a	function	programmed	in	Go	language	that	exposes	CoAP	methods	32	

Figure	5.2		Example	of	a	function	programmed	in	Go	language	that	implements	a	channel.	32	

Figure	5.3		Example	of	a	JSON	file	..	33	

Figure	5.4		Example	of	the	declaration	of	the	routes	to	interact	with	the	blockchain	and	ten	Virtual	
Resources.	Code	programmed	in	Go	language.	...	34	

	 viii	

Figure	5.5		Example	of	one	Virtual	Resource	requesting	access	to	the	blockchain.	Code	programmed	in	
Go	language.	...	34	

Figure	5.6		Example	of	ten	Virtual	Resource	requesting	access	to	the	blockchain.	Code	programmed	in	
Go	language.	...	34	

Figure	6.1		Setup	of	Experiment	1.		An	IoT	Things	network	formed	by	a	Raspberry	Pi.	A	Fog	network	
formed	by	a	database	server.	A	Client	testing	the	Virtual	Resource.	...	37	

Figure	6.2		Results	of	the	evaluation	of	the	Discovery-of-Services	process	(“/.well-known/core”)	of	the	
Virtual	Resources.	...	39	

Figure	6.3		Results	of	the	evaluation	of	the	current-state	process	(“/state”)	of	the	Virtual	Resources.	40	

Figure	6.4		Results	of	the	Communication	between	the	Virtual	Resource	and	the	Database.	41	

Figure	6.5		Setup	of	experiment	2.	An	IoT	Things	layer	formed	by	two	Edison	Arduino	boards	connected	
to	the	Wi-Fi	network	and	communicating	via	CoAP	protocol.	Each	Edison	board	hosts	a	Virtual	
Resource.	..	42	

Figure	6.6		Results	of	Experiment	2.	One	View	Virtual	Resource	is	sending	1000	synchronous	requests	to	
one	Atomic	Virtual	Resource.	The	payload	is	8	bytes	+	16	bytes	AES	synchronous	encryption.	No	
delay.	..	44	

Figure	6.7		Results	of	Experiment	2.	One	View	Virtual	Resource	is	sending	1000	synchronous	requests	to	
one	Atomic	Virtual	Resource.	The	payload	is	8	bytes	+	16	bytes	AES	synchronous	encryption.	50ms	
and	100ms	delays.	..	44	

Figure	6.8		Results	of	Experiment	2.	One	View	Virtual	Resource	is	sending	1000	synchronous	requests	to	
one	Atomic	Virtual	Resource.	The	payload	is	8	bytes	+	16	bytes	AES	synchronous	encryption.	150ms	
and	200ms	delays.	..	45	

Figure	6.9	Results	of	Experiment	2.	One	View	Virtual	Resource	is	sending	1000	synchronous	requests	to	
one	Atomic	Virtual	Resource.	The	payload	is	8	bytes	+	16	bytes	AES	synchronous	encryption.	250ms	
and	300ms	delays.	..	45	

Figure	6.10		Results	of	Experiment	3.	Ten	View	Virtual	Resources	are	sending	100	CoAP	POST	requests	to	
one	Atomic	Virtual	Resource.	The	payload	is	8	bytes	+	16	bytes	AES	synchronous	encryption.	No	
delay	time	interval.	..	47	

Figure	6.11		Results	of	Experiment	3.	Ten	View	Virtual	Resources	are	sending	100	CoAP	POST	requests	to	
one	Atomic	Virtual	Resource.	The	payload	is	8	bytes	+	16	bytes	AES	synchronous	encryption.	50	ms	
delay.	..	48	

	 ix	

Figure	6.12		Results	of	Experiment	3.	Ten	View	Virtual	Resources	are	sending	100	CoAP	POST	requests	to	
one	Atomic	Virtual	Resource.	The	payload	is	8	bytes	+	16	bytes	AES	synchronous	encryption.	100	
ms	delay.	..	48	

Figure	6.13		Results	of	Experiment	3.	Ten	View	Virtual	Resources	are	sending	100	CoAP	POST	requests	to	
one	Atomic	Virtual	Resource.	The	payload	is	8	bytes	+	16	bytes	AES	synchronous	encryption.	150	
ms	delay.	..	49	

Figure	6.14		Results	of	Experiment	3.	Ten	View	Virtual	Resources	are	sending	100	CoAP	POST	requests	to	
one	Atomic	Virtual	Resource.	The	payload	is	8	bytes	+	16	bytes	AES	synchronous	encryption.	200	
ms	delay.	..	49	

Figure	6.15		Results	of	Experiment	3.	Ten	View	Virtual	Resources	are	sending	100	CoAP	POST	requests	to	
one	Atomic	Virtual	Resource.	The	payload	is	8	bytes	+	16	bytes	AES	synchronous	encryption.	250	
ms	delay.	..	50	

Figure	6.16		Results	of	Experiment	3.	Ten	View	Virtual	Resources	are	sending	100	CoAP	POST	requests	to	
one	Atomic	Virtual	Resource.	The	payload	is	8	bytes	+	16	bytes	AES	synchronous	encryption.	300	
ms	delay.	..	50	

Figure	6.17	Results	of	Experiment	4.	One	View	Virtual	Resource	sending	1000	requests	to	one	Atomic	
Virtual	Resource.	Payload	16	bytes	and	32	bytes	+	16	bytes	AES	synchronous	encryption.	52	

Figure	6.18		Results	of	Experiment	4.	One	View	Virtual	Resource	sending	1000	requests	to	one	Atomic	
Virtual	Resource.	Payload	64	bytes	and	128	bytes	+	16	bytes	AES	synchronous	encryption.	52	

Figure	6.19		Results	of	Experiment	4.	One	View	Virtual	Resource	sending	1000	requests	to	one	Atomic	
Virtual	Resource.	Payload	256	bytes	and	512	bytes	+	16	bytes	AES	synchronous	encryption.	53	

Figure	6.20		Setup	of	experiment	5.	One	Edison	module	connected	to	the	Wi-Fi	network	and	
communicating	via	HTTP	protocol	with	a	Multichain	blockchain	cluster	hosted	in	a	Fog	layer.	54	

Figure	6.21		Results	of	Experiment	5.	One	View	Virtual	Resource	is	sending	1000	synchronous	requests	
to	the	Multichain	cluster.	The	payload	is	712	bytes.	No	delay.	...	55	

Figure	6.22		Results	of	Experiment	5.	One	View	Virtual	Resource	is	sending	1000	synchronous	requests	
to	the	Multichain	cluster.	The	payload	is	712	bytes.	50	ms	and	100	ms	delays.	56	

Figure	6.23		Results	of	Experiment	5.	One	View	Virtual	Resource	is	sending	1000	synchronous	requests	
to	the	Multichain	cluster.	The	payload	is	712	bytes.	150	ms	and	200	ms	delays.	56	

Figure	6.24		Results	of	Experiment	5.	One	View	Virtual	Resource	is	sending	1000	synchronous	requests	
to	the	Multichain	cluster.	The	payload	is	712	bytes.	250	ms	and	300	ms	delays.	57	

Figure	6.25		Results	of	Experiment	6.	Ten	View	Virtual	Resources	are	sending	100	asynchronous	requests	
to	the	Multichain	cluster.	The	payload	is	712	bytes.	No	delay.	...	58	

	 x	

Figure	6.26		Results	of	Experiment	6.	Ten	View	Virtual	Resources	are	sending	100	asynchronous	requests	
to	the	Multichain	cluster.	The	payload	is	712	bytes.	50	ms	delay.	..	59	

Figure	6.27		Results	of	Experiment	6.	Ten	View	Virtual	Resources	are	sending	100	asynchronous	requests	
to	the	Multichain	cluster.	The	payload	is	712	bytes.	100	ms	delay.	..	59	

Figure	6.28		Results	of	Experiment	6.	Ten	View	Virtual	Resources	are	sending	100	asynchronous	requests	
to	the	Multichain	cluster.	The	payload	is	712	bytes.	150	ms	delay.	..	60	

Figure	6.29		Results	of	Experiment	6.	Ten	View	Virtual	Resources	are	sending	100	asynchronous	requests	
to	the	Multichain	cluster.	The	payload	is	712	bytes.	200	ms	delay.	..	60	

Figure	6.30		Results	of	Experiment	6.	Ten	View	Virtual	Resources	are	sending	250	asynchronous	requests	
to	the	Multichain	cluster.	The	payload	is	712	bytes.	250	ms	delay.	..	61	

Figure	6.31		Results	of	Experiment	6.	Ten	View	Virtual	Resources	are	sending	100	asynchronous	requests	
to	the	Multichain	cluster.	The	payload	is	712	bytes.	300	ms	delay.	..	61	

Figure	6.32		Setup	of	experiment	7.	One	Edison	Arduino	board	connected	to	the	Wi-Fi	network	and	
communicating	via	HTTP	protocol	to	the	IBM	blockchain	service	in	the	Cloud.	62	

Figure	6.33		Results	of	Experiment	7.	Ten	View	Virtual	Resources	are	sending	100	asynchronous	requests	
to	the	IBM	Bluemix	blockchain	service	in	the	Cloud.	The	payload	is	712	bytes.	No	delay.	63	

Figure	6.34		Results	of	Experiment	7.	Ten	View	Virtual	Resources	are	sending	100	asynchronous	requests	
to	the	IBM	Bluemix	blockchain	service	in	the	Cloud.	The	payload	is	712	bytes.	50	ms	delay.	64	

Figure	6.35	Results	of	Experiment	7.	Ten	View	Virtual	Resources	are	sending	100	asynchronous	requests	
to	the	IBM	Bluemix	blockchain	service	in	the	Cloud.	The	payload	is	712	bytes.	100	ms	delay.	64	

Figure	6.36		Results	of	Experiment	7.	Ten	View	Virtual	Resources	are	sending	100	asynchronous	requests	
to	the	IBM	Bluemix	blockchain	service	in	the	Cloud.	The	payload	is	712	bytes.	150	ms	delay.	65	

Figure	6.37		Results	of	Experiment	7.	Ten	View	Virtual	Resources	are	sending	100	asynchronous	requests	
to	the	IBM	Bluemix	blockchain	service	in	the	Cloud.	The	payload	is	712	bytes.	200	ms	delay.	65	

Figure	6.38		Results	of	Experiment	7.	Ten	View	Virtual	Resources	are	sending	100	asynchronous	requests	
to	the	IBM	Bluemix	blockchain	service	in	the	Cloud.	The	payload	is	712	bytes.	250	ms	delay.	66	

Figure	6.39		Results	of	Experiment	7.	Ten	View	Virtual	Resources	are	sending	100	asynchronous	requests	
to	the	IBM	Bluemix	blockchain	service	in	the	Cloud.	The	payload	is	712	bytes.	300	ms	delay.	66	

	 xi	

LIST OF ABBREVIATIONS

ADEPT Autonomous Decentralized Peer-to-Peer Telemetry
AES Advanced Encryption Standard
CoAP Constrained Application Protocol
CRUD Create Read Update Delete
DaaS Data as a Service
DDS Data Distribution Service
ESB Enterprise Server Bus
Golang Go Language
HTTP Hyper Text Transfer Protocol
IIoT Industrial Internet of Things
IoE Internet of Everything
IoT Internet of Things
M2M Machine-to-Machine
MQTT Message Queue Telemetry Transfer
ms Milliseconds
NIST National Institute of Standards and Protocols
PBFT Practical Byzantine Fault Tolerance
REST Representational State Transfer
RR Round Robin
RTT Round-Trip Time
SoC System on a Chip
SAaaS Sensing and Actuation as a Service
SaaS Software as a Service
SD-IoT Software-Defined Internet of Things
SEaaS Sensor Event as a Service
SDN Software Defined Network
SOA Service Oriented Architecture
TCP Transmission Control Protocol
UDP User Datagram Protocol
URI Uniform Resource Identifier
WS Web Service

	 1	

INTRODUCTION

The Internet of Things adds sensing and actuating capabilities to common “Things” to

capture data from the real world [1]. The “Things” can work in different scenarios and under

different conditions. Virtual systems use the “Things,” or IoT devices, to offer new forms of

communication and services in many areas such as healthcare [2], transportation [3], smart homes

[4], public services [5], industry [6], and other processes. According to a study from Gartner [7]

(Figure 1.1), in 2009 the number of powerful devices (e.g. laptops and cellphones) connected to

the Internet had not reached five billion, and this number is not expected to reach ten billion by

2020. On the other hand, this study says that there were around two billion IoT devices (e.g.

sensors and actuators) connected to the Internet in 2009. By 2020 the number of connected IoT

devices is expected to increase to twenty-six billion. The low cost of IoT computing supports these

estimates. According to Klubnikin A. [8], the price of sensors has dropped by almost 200%

between 2004 and 2016.

Figure 1.1 Number of connected PC's, Smartphones and Tablets vs. IoT connected devices [7]

	 2	

Gubbi et al. [9] identify two groups of systems in the IoT space. The first group is Things-

centric systems, which highlight the features of devices to provide a richer user experience. The

second group is Cloud-centric systems, which focus on IoT services and data processing. Most

IoT systems are based on the Cloud-centric approach (e.g. [10], [11], [12]), they are hosted on the

Cloud and get the benefits of extensive computational capabilities and virtualization support.

Virtualization techniques have already been studied in the IoT space, for example, virtualization

of physical sensors on the Cloud for sharing purposes [13] and software-defined IoT units on the

Cloud for a unified access [14]. Overall, the primary interest of IoT virtualization on the Cloud is

data, which means that the communication is a static reading process.

Even though the Cloud represents a robust and reliable architecture for IoT analytics, its

consolidated power does not fit the dynamic characteristics of IoT networks. For example,

according to a study by Cortés et al. [15] about IoT in the health field, the centralized Cloud

storage cannot handle the velocity of the data flow generated by sensing devices in real-time.

Additionally, the significant latency restricts the direct access to IoT components and might affect

the decision-making over data [16]. Finally, because the Cloud’s architecture does not enable

direct access to IoT components, multi-tenancy is not a concern in Cloud-centric systems.

Fog computing extends the Cloud features toward the edge of networks to deal with

specific characteristics of some networking scenarios such as a large set of heterogeneous nodes,

geographical location, and real-time communication [17], [18]. In the IoT space, Cisco explains

that Fog nodes can directly access physical devices, consequently reducing latency and

bandwidth consumption [16] (e.g. [18]). According to Bonomi et al. [19], IoT analytic tasks can be

moved to a Fog layer as well. Due to the low latency cost, Fog computing facilitates virtualization

and access to IoT components, however, when various users try to engage those components at

the same time, multi-tenancy issues emerge.

This research proposes a definition of Virtual Resources to allow direct manipulation of

IoT components in a multi-tenant manner. Virtual Resources are programmed using Go language

and CoAP protocol. Permission-based blockchain is used to handle the provisioning of Virtual

Resources directly onto IoT devices.

	 3	

The remaining parts of this work are organized as follows:

• Chapter 2 - Problem Definition discusses the questions that arise when

virtualization of IoT components is intended to be hosted closer to the “Things”

layer.

• Chapter 3 - Literature Review analyzes previous IoT works about system

architectures, Cloud computing, Fog computing and communication patterns.

Challenges regarding multi-tenancy are reviewed. Virtualization of IoT

components and permission-based blockchain are studied as relevant concepts to

develop and provision Virtual Resources in IoT networks.

• Chapter 4 - Architecture explains the definition of Virtual Resources presented by

this work and their provisioning using blockchain.

• Chapter 5 - Implementation presents the technology needed to build and provision

Virtual Resources onto IoT devices.

• Chapter 6 - Experiment tests the performance of Virtual Resources and blockchain

in the IoT space.

• Chapter 7 - Conclusion and Future Work describes this research's next steps.

	 4	

PROBLEM DEFINITION

With the advent of Fog computing, some Internet of Things (IoT) tasks can be moved

closer to physical devices. A solution to handle the virtualization issues that arise from moving

computation closer to the IoT “Things” layer is needed. This work proposes Virtual Resources as

the main mechanism to allow richer interactions and to enable multi-tenant access to IoT

components. Virtual Resources are required to face the dynamic characteristics of IoT networks

[20], [9]:

• Heterogeneous platforms

• Large set of devices

• Limited computational capabilities

• Limited energy consumption

• Geographical distribution

• Real-time operations

The following questions should be answered to implement Virtual Resources:

2.1 How to define Virtual Resources?

Virtual Resources are required to have a light architecture that can be supported by the

limited computational capabilities of constrained devices. Virtual Resources should be

programmed in a cross-platform language that allows their compilation into different IoT

platforms. Finally, Virtual Resources should expose simple interfaces to manipulate their current

state and to communicate with other resources.

	 5	

2.2 How to provision Virtual Resources?

The provisioning of Virtual Resources is required to work on demand. When a tenant

requires access to an IoT component, then, the correct configuration of Virtual Resources should

be executed in the corresponding device. Provisioning also should include removing Virtual

Resources on demand as well.

2.3 How to guarantee multi-tenant access to IoT components?

Multi-tenancy is the main issue that arises when engaging IoT components from a Fog

layer. Virtual Resources are required to support multi-tenant interactions in real-time. Each

tenant should have their configuration of Virtual Resources isolated from the other tenants.

	 6	

LITERATURE REVIEW

Placing computation at the edge of Internet of Things (IoT) networks demands support

for virtualization, multi-tenancy and provisioning of resources. This work reviews important

literature to address the challenges described in Chapter 2.

• Internet of Things

o Things-centric systems

o Cloud-centric systems

• Fog Computing

• Multi-Tenancy

• Software-Defined IoT and Virtualization

• Blockchain

• Architectural Design Patterns

o Service Oriented Architecture (SOA)

o Representational State Transfer (REST)

• Communication Patterns in IoT

o Data-centric

o Message-centric

o Resource centric

3.1 Internet of Things (IoT)

The Internet of Things (IoT) enables connectivity with the real world anytime and

anywhere [21]. An IoT definition has not been yet formalized. Cisco expands the IoT concept to

the Internet of Everything (IoE), including anything that supports sensing and connectivity [22].

	 7	

IBM refers to IoT as an industrial revolution (IIoT [23]), which enables machine-to-machine and

human communication [24]. Microsoft introduces IoT as the adoption of low-cost and pervasive

hardware [25]. Although these definitions highlight different aspects of the IoT paradigm, they

follow the same vision, which is having a large number of constrained devices connected to the

Internet to obtain data from the real world [26]. This vision has been observed by Howard P. [27].

Figure 3.1 shows that between 2011 and 2015, the number of connected devices has grown

exponentially.

Figure 3.1 Trend of Devices vs. People [27]

According to Wu et al. [20], an IoT network is composed of three main layers:

• Perception

• Network

• Application

The Perception layer groups IoT physical devices either to sense data from its

surroundings or to execute specific actions, both in real time. The Network layer represents the

connection between IoT systems to handle data transmission. Finally, the Application layer

denotes IoT systems that process and share data. Gubi et al. [9] identify two groups of IoT

systems, Thing-centric and Cloud-centric.

	 8	

3.1.1 Things-Centric IoT

“Things,” is the generic term to refer to objects with sensing, actuating and connectivity

capabilities, which can be reached anytime and anywhere [26]. The Things-centric approach

enhances the features of devices to enrich the user experience, for example, smart objects [28] and

enchanted devices [29]). Although these systems allow users to change the configuration of their

devices, they do not support multi-tenancy because a device can only be engaged by one user

(tenant) at the same time.

3.1.2 Cloud-Centric IoT

Even though Cloud Computing [30] and IoT are two paradigms that emerged separately

to face different requirements (Table 3-1), both are considered complementary technologies to

build a flexible deployment environment for IoT systems (e.g. [10], [12]). While IoT works in the

real environment and lacks computational capabilities, Cloud Computing provides access to

virtualized and scalable services over the Internet [18]. The Cloud benefits IoT in the following

aspects [16], [31]:

• efficient use of resources

• orchestration of resources

• on-demand self-service

• broad network access

• resource pooling

• rapid deployment and elasticity

• planned services

As explained in Chapter 2, Cloud-Centric systems consist of three primary layers: Things,

Service, and Application. Figure 3.2 illustrates this architecture. The Things layer is the lowest-

level of abstraction and represents constrained devices, for example sensor and actuator

networks. The Application layer is the higher-level of abstraction and hosts final solutions such

	 9	

as monitoring, managing, and other processes. Finally, the Service layer is the bridge between

Applications and Things. This layer virtualizes IoT components and hosts all main IoT services

such as data storage, analytics, and other processes.

Figure 3.2 Representation of the three layers of Cloud-centric IoT systems

Cloud–centric systems introduce some limitations. For instance, Cloud-centric systems

support multi-tenancy as multiple tenants can interact with the virtualizations hosted in the

Service layer; however, this interaction with the IoT network is a static one-direction

communication that avoids direct access to physical devices and focuses on sensor data. Although

Cloud systems make data processing efficient and reliable [32], the time data streams take to reach

the Cloud may affect the accurate decision-making over that data [16]. Finally, these systems

introduce significant latency, network traffic and bandwidth consumption [16].

In the IoT space, it is mandatory to have low latency when engaging the geographically

distributed devices. The next section explores Fog computing as an option to engage IoT networks

geographically closer than from the Cloud. Furthermore, the challenges that emerge from hosting

IoT components closer to physical devices are addressed.

Services

Application

Things	Network

IoT	Components
Sensors	&	Actuators	

Cloud	Network

	 10	

Table 3-1 IoT vs. Cloud scenarios [31]

IoT Cloud

Pervasive

(things placed everywhere)

Ubiquitous

(resources usable from everywhere)

Real world things Virtual resources

Limited computational

capabilities

Virtually unlimited computational capabilities

Limited storage or no storage

capability

Virtually unlimited storage capabilities

The Internet as a point of

convergence

The Internet for service delivery

Big data source Means to manage big data

3.2 Fog Computing and IoT

Cisco describes Fog computing as an extension of the Cloud [16]. Fog Computing

paradigm moves the features of the Cloud toward the edge of networks. The characteristics of

Fog computing are [16]:

• edge location

• geographical distribution

• large-scale networks

• a significant number of nodes

• mobility support

• real-time interactions

• wireless connectivity supremacy

• interoperability and organization

• heterogeneity

• analytic support

	 11	

A Fog layer benefits IoT in the following aspects [16], [18]:

• location awareness rather than location ignorance, typical of Cloud computing

• geographical distribution of a vast number of nodes rather than centralized

clusters

• wireless mobility rather than static nodes

• real-time things engagement rather than streaming/batch processes

• resource heterogeneity rather than one static model

Table 3-2 presents a comparison between Fog and Cloud environments. Overall, the

response times in a Fog node are lower than in the Cloud. Although a Fog node works in a local

area and the time that data remains stored is short, those conditions are enough to do some

processing tasks in real-time and to avoid sending the entire row data to the Cloud. Additionally,

analyzing data in a Fog node increases the accurateness of decision-making over that data and

makes the analysis time-effective.

In the IoT space, a Fog layer allows engaging physical devices, reducing latency. For

example, Aazam and Huh [33] introduce a Fog “Smart Gateway,” which processes data in real

time and enhance the communication and service provisioning in the Cloud. IoT applications

hosted in a Fog layer are capable not only to read data from devices but also to manipulate them,

e.g. updating software versions, triggering alarms or engaging actuators. However, the following

challenges regarding multi-tenancy emerge:

• virtualization on the constrained and heterogeneous IoT components

• secure & safe software distribution of resources over IoT devices

• access control in the IoT network

Since Fog computing presents new possible interactions with the IoT network, multi-

tenancy is demanded as the main feature in IoT systems. The next section explores literature and

related work about multi-tenancy in IoT.

	 12	

Table 3-2 Comparison between Fog and Cloud environments [31]
 Fog nodes closest to IoT

devices

Fog aggregation

nodes

Cloud

Response time Milliseconds to sub seconds Seconds to

minutes

Minutes, days,

weeks

Application

examples

M2M communication Virtualization

Simple analytics

Big data analytics

Graphical

dashboard

How long IoT data

remains stored

Transient Short duration:

perhaps hours,

days

Months or years

Geographic

coverage

Very local: for example, one

city block

Wider Global

3.3 Multi-Tenancy in IoT

Multi-tenancy is the characteristic of an architecture that shares resources and serves

multiple users (tenants) in a cost-effective and secure manner [34]. Serving multiple tenants

means that they must operate within different contexts to share resources in a successful manner.

Multi-tenancy has been studied in many areas such as databases [35] and Cloud-hosted services

[36], [37]. In the IoT space, many studies identify multi-tenancy challenges, for example, control

flow [38] and access rights [19], [31]. Although these studies have observed that multi-tenancy

plays a major role in IoT, Cloud-centric and Things-centric systems tend to ignore it [9]. Cloud-

centric systems, e.g. [39], avoid direct communication with devices and focuses on the

provisioning of services and applications that process large data streams received from

constrained networks. Things-centric systems focus on the user experience configuring devices

to meet the needs of a single tenant, e.g. the enchanted umbrella that notifies the user of possible

weather changes [29].

	 13	

According to Xu [40], conflicting settings of actuators is another challenge when enabling

multi-tenancy over IoT components. Supporting multi-tenancy means that tenants should be able

to interact and configure IoT components based on their specific requirements. Each tenant

should be able to manage their own configuration in an isolated manner so it does not affect other

tenants that can be working with the same components at the same time.

The following section analyzes virtualization in IoT and how it can help building multi-

tenant systems in a Fog environment.

3.4 Software-defined IoT (SD-IoT) and Virtualization IoT

Software-defined elements emerged from the concept of Software Defined Networking

(SDN) [41], [42]. SDN is a management concept that uses virtualization to decouple the control

plane (determine destinations of traffic) from the data plane (forwarding traffic) and manage

network functionalities. SDN enables programmability to network application development [43],

[44]. Network virtualization focuses on virtualizing all elements of the network, which results in

the ability to define customized virtual networks [45].

The success of SDN and network virtualization has led to the rise of Software-Defined

IoT. According to Nastic et al. [14], “Software-defined IoT units are used to encapsulate the IoT

resources and lower level functionality in the IoT cloud and abstract their provisioning and

governance, at runtime.” Software-defined IoT units can encapsulate the complexity of access

and customization of the IoT network. Many works have covered virtualization of IoT

components in the Cloud. For example, Sensing and Actuation as a Service (SAaaS) [46], which

offers sensors and actuators resources as services hosted in the Cloud. Data as a Service (DaaS)

[47], which offers ubiquitous access to data. Sensor Event as a Service (SEaaS), which offers

management of events [48]. Similarly to virtualization in the Cloud, many studies have proposed

virtualization of IoT components in a Fog layer, for instance, gateways [33] and routers [49]. These

studies have focused on virtualizing individual components. According to Biswas and Giaffreda

[50], another potential benefit for IoT is building software-defined ecosystems or Virtual Systems.

	 14	

 Building Virtual Systems at the edge of the IoT network opens the possibility of

provisioning Virtual Resources directly on constrained devices, such as Raspberry Pi computers

or Arduino boards. Configuring Virtual Systems for each tenant is a mechanism for:

• handling multi-tenancy as each tenant uses their own Virtual System’s

configuration

• distributing the workload to a Fog layer as Virtual Resources deployed on

constrained devices can do real-time processing or analytic tasks

• enabling controlled and low-latency access to physical devices

The high number of constrained devices and their resource-limited characteristics

represent a challenge when provisioning Virtual Resources in the IoT network. The next section

explores blockchain technology as an option for software provisioning and versioning control on

IoT devices.

3.5 Blockchain and IoT

Introduced by Bitcoin in 2009 [51], blockchain represents the public ledger that stores

Bitcoin transactions in the form of blocks. Blocks are connected through a hash value forming a

chain (blockchain). A blockchain is a peer-to-peer network which allows the execution of direct

transactions without any central verification authority. Transactions are validated by a consensus

mechanism in which participants must invest computation to show trustworthiness. In Bitcoin,

this consensus is a proof-of-work task based on cryptography hashes algorithms. Participants

must scan the hash value to be able to write new blocks or update existing ones. Changing a block

means that the proof-of-work must be redone, in the current block and in the subsequent ones

that have been added, that is why changing or updating blocks is not a standard or functional

task. All participants of the network have a copy of the blockchain and are notified about new

blocks and changes over them. Because Bitcoin transactions can be seen by anyone on the Internet,

for example, the transactions of the bitcoin address https://blockchain.info/ [52], Bitcoin systems

are considered public blockchains.

	 15	

A public blockchain protocol gives open access to transactions and blocks [51]. Any user

on the Internet can interact with a public blockchain. However, a public blockchain protocol does

not trust any participant; participants must validate their transactions by a proof-of-work

consensus mechanism. The proof-of-work process involves significant time and computation.

When the use of blockchain is limited to an organization or company, then a private

blockchain protocol is a more convenient option. Private blockchains manage the blocks of

transactions and permissions in a centralized manner [53]. A private blockchain only trusts a set

of registered participants [54]. Even though registered participants do not have to do proof-of-

work; this participation has to be managed by a consensus mechanism, such as Practical

Byzantine Fault Tolerance (PBFT) [55], Round Robin (RR) scheduling [56], and other consensus

algorithms. Transactions in a private blockchain are validated by a small number of participant

nodes. The organization running a private blockchain has total control over all the elements of

the blockchain for instance blocks, transactions, and permissions.

The most popular example of blockchain in IoT is the IBM’s ADEPT system [57]. ADEPT

uses Ethereum, an open source blockchain protocol, to manage device coordination functions

such as storing the configuration of devices and authentication. IBM also has a private Blockchain

as a Service (BaaS), which stands on Bluemix [58]. Bluemix offers a virtual blockchain cluster in a

private network.

An area that is keeping attention within blockchain is smart contracts [59]. Smart contracts

were proposed by Szabo N. [60] in 1993. A smart contract is defined as “a computerized

transaction protocol that executes the terms of a contract” [60]. According to Christidis and

Devetsikiotis [54], in the contexts of IoT, smart contracts represent a convenient option to define

the business rules to interact with the blockchain.

Using blockchain in the IoT space puts forward new management possibilities. In this

work, blockchain is used to manage the provisioning of Virtual Resources and to control access

to the IoT network.

How to represent each resource in the IoT network is a question that arises. The next

section analyzes different architectural patterns to represent the IoT network.

	 16	

3.6 Architectural Design Patterns

3.6.1 Service Oriented Architecture (SOA)

The Service Oriented Architecture (SOA) [61] states well-defined and loosely coupled

services. The SOA design goal is to build services to fulfill the business need of a company [62].

Many works have studied SOA in IoT, for example, [63] proposes a solution based on SOA to

handle some IoT tasks such as discovery and provisioning of resources; [64] proposes an

implementation that follows the SOA approach to integrating IoT within enterprise services.

Additionally, many studies show that SOA would be a good architecture to deal with service

providers and users [65], [66]. The previous studies indicate that a service architecture might

work fine for the Application and Network layer of the IoT architecture.

3.6.2 Representational State Transfer (REST)

The Representational State Transfer (REST) is a resource-based architectural style for

distributed hypermedia systems proposed by Roy Fielding in 1994 [67]. Rather than focusing on

services, REST stands for the concept of state-full resources. Resources on the server side are

accessed through a URI (uniform resource identifier).

The REST constraints highlight “scalability of component interactions, generality

interfaces, independent deployment of components, and intermediary components to reduce

interaction latency, enforce security, and encapsulate legacy systems” [67].

Web APIs and REST-based methods are the basis of many studies in IoT, e.g. [68], [69],

[70]. These studies show that adopting the REST design leads to higher scalability, reliability, and

decoupling in systems. The REST architectural design, which focuses on resources, satisfies the

requirements and characteristic of the three layers of IoT systems. Additionally, the use of

lightweight data-exchange formats (being JSON the most used) can reduce the overhead related

to network bandwidth and storage capacity in the IoT Cloud.

REST enforces a resource-oriented view on the constrained components. In an IoT

network, constrained components can be represented as full state entities, and the interaction can

	 17	

be mapped to CRUD operations. A particularly interesting aspect of using REST to model the

Things layer is the possibility to define Virtual Resources on top of existing “Things.”

A communication protocol that follows the REST approach is needed to build Virtual

Systems for different tenants. The next section analyzes the communication patterns in IoT.

3.7 Communication Patterns in IoT

IoT communication patterns can be classified into three groups [71]: data-centric,

message-centric and resource-centric.

3.7.1 Data-centric IoT Communication

The Data-Centric communication pattern focuses on the transmission of data in a reliable

and secure manner.

DDS stands for Data Distribution Service. DDS is a standard developed by the Object

Management Group’s (OMG) [72]. DDS is a data-centric and publish-subscribe (DCPS) model for

distributed application communication and integration [73].

• Data Centric because DDS has a Global Data Space in which data is defined and

rules to access that data are structured.

• Publish-Subscribe because DDS provides a middleware that allows having

multiple readers subscribed to a topic and writers publishing to those topics [74].

DDS enables “Efficient and Robust Delivery of the Right Information to the Right Place at

the Right Time” [73]. DDS focuses on delivering data with Quality of Service (QoS) and reliability.

DDS offers 23 QoS policies that developers can address such as security, priority, reliability and

other policies that can be used when programming DDS [75].

Figure 3.3 shows the communication diagram of DDS. Topics enable the publishing and

subscribing processes. DDS Domains keep completely isolated from each other. There is no data-

sharing across DDS domains [74]. Following the publish/subscribe pattern [76], writers and

readers work in a decoupled environment regarding synchronization and time

	 18	

• Time: It is not necessary that writers and readers be active at the same time

• Synchronization: It is not necessary that readers have any information about

 writers, and vice versa

According to Esposito [77], DDS performs well and shows good scalability when the

number of participants increases. This behavior would fit well for IoT environments in which the

number of writers (sensors) is counted in hundreds and millions. This work seeks to enable multi-

tenancy over IoT components that produce data (writers), DDS would not be a suitable option

for this purpose as readers and writers are separated.

Figure 3.3 Data Distribution Service (DDS) Diagram [74]

3.7.2 Message-centric IoT Communication

The primary focus of the Message-Centric communication pattern is the delivery of

reliable messages from writers to readers.

MQTT stands for Message Queuing Telemetry Transport [78]. MQTT is a lightweight

message-centric protocol based on the publish/subscribe pattern [76]. Figure 3.4 shows the MQTT

architecture in which many clients are supported by one broker [79]. MQTT uses TCP for

	 19	

communicating with the message broker. Using TCP can lead to high communication costs.

Consequently, a UDP-based MQTT for sensors (MQTT-S) [80] has been developed. The message-

orientation feature of MQTT makes it a content agnostic protocol. MQTT focuses exclusively on

the delivery of messages.

MQTT has been widely adopted in IoT environments, e.g. [64], [81]. The low overhead,

easy implementation, and support from all leading vendors make MQTT a convenient option for

IoT. MQTT offers to decouple with respect to time, space, and synchronization. The classical

MQTT deployment follows a hub-spoke model in which nodes are linked directly to sensors and

actuators.

Figure 3.4 MQTT IBM [82]

3.7.3 Resource-centric IoT Communication

As the name suggests, the Resource-Centric communication pattern focuses exclusively

on resources.

The Constrained Application Protocol (CoAP) [83] is a machine-to-machine (M2M)

resource base protocol designed for constrained scenarios. CoAP follows the REST approach

	 20	

exchanging representations of resources. Like in HTTP, the request methods in CoAP are GET,

POST, PUT, DELETE.

Even though the CoAP specification uses UDP protocol as the default transport option,

TCP can be used as well. Figure 3.5 presents the logical layers of CoAP. The figure shows the

request/response layer that interacts with applications through methods and codes and the

messaging layer that works with UDP [83]. The CoAP package size varies from the minimum 4

bytes (simple GET requests) to a maximum of 1024 bytes (Figure 3.6).

Figure 3.5 Abstract layering of CoAP [83]

Figure 3.6 CoAP Message Format [83]

CoAP specifies four types of messages: Acknowledgment, Reset, Confirmable (CON), and

Non-Confirmable (NON). An acknowledgment message is sent by the recipient confirming the

reception of the message. A reset message is an empty confirmable message that the recipient

sends to indicate that something was missing in the message. A confirmable message requires an

acknowledgment message from the recipient; it ensures reliability when sending CoAP messages.

A non-confirmable message does not require an acknowledgment message from the recipient.

	 21	

Figure 3.7 shows an example of the interaction between a client and a server. The client

makes a confirmable CoAP GET request asking for the current temperature value. As soon as the

server receives the request, it responds with an acknowledgment message. When the server has

the current temperature value, it sends a confirmable message with the temperature value.

Finally, the client confirms the reception.

Figure 3.7 Example of a CoAP message with separated acknowledgment of receipt [83]

When the server has the requested value immediately available, the value can be sent

directly in the acknowledgment message. This kind of message is called a piggybacked response.

Figure 3.8 shows an example of a piggybacked message. The client asks the current temperature

value in a confirmable CoAP GET message. When the server receives the request, the value is

immediately attached to the acknowledgment message.

CoAP does not have a formal implementation of the publish/subscribe pattern. However,

the publish/subscribe pattern is addressable by making resources observable [84]

(subject/observer design pattern). When a resource is observed, the observer will receive the

updates of any change in the resource. Figure 3.9 shows an example of the CoAP Observe pattern.

The observer registers into a subject. When the state of the subject changes, the observer receives

the updated value.

	 22	

Figure 3.8 Example of a CoAP piggybacked message [83]

Figure 3.9 Observer design pattern [84]

According to Hemdi [85], the REST pattern of CoAP enforces a resource-oriented view

over IoT components. CoAP represents a unified manner to abstract and engage IoT components.

Many studies in IoT have used CoAP protocol. For example, Kovatsch [86] presents a special

implementation of CoAP for Contiki operating system, and Ludovici [87] presents an

implementation of CoAP for wireless sensor networks.

The REST orientation of CoAP makes it a good option to represent constrained elements

with URI’s and operate them through CRUD interfaces.

	 23	

3.8 Summary

With the rapid increase of the number of devices connected to the Internet, new challenges

have emerged in research. Table 3-3 presents the topics that have been revised to provide an

efficient solution to handle the issues that emerge from implementing virtualization in the IoT

network.

Table 3-3 Summary of the Literature Review
Topic Papers Results

Internet of

Things (IoT)

 [9] The IoT architecture states three basic layers: perception,

network, and application.

IoT applications [2], [3], [4], [5],

[6], [88], [89],

[90]

Nowadays, IoT plays an important role in different areas such

as healthcare, transportation, smart homes, public services,

industry, and other processes.

Fog Computing [16], [18], [33],

[36]

Fog computing decreases the latency to engage IoT

components; however, many challenges emerge due to the

features of IoT networks, such as a large set of nodes and

heterogeneity of components.

Multi-tenancy &

IoT

[19], [31], [38] Multi-tenancy has been identified by many studies as a

challenge in IoT; however current systems do not see it as a

concern because they do not support multi-tenant access.

Virtualization &

IoT

[46], [47], [48],

[50], [33], [49]

Virtualization of IoT components in the IoT network is

considered by this work as a solution to handle multi-tenancy

in IoT. Some studies have covered IoT virtualization in the

Cloud and Fog networks. This work proposes virtualization

directly onto IoT devices to create Virtual Systems for each

tenant (this topic is covered in the Architecture chapter).

	 24	

Blockchain and

IoT

[51], [52], [53],

[57], [60]

Permission-based blockchains are proposed by this work as

an alternative to storing the configuration of the Virtual

Resources and Virtual Systems for each tenant.

SOA & REST [63], [64], [65],

[66], [68], [69],

[70]

Many works show that the flexibility of SOA is a good feature

for the Application and Network layers of the IoT

architecture. However, that flexibility may introduce

complexity when defining services for the variety of IoT

components.

REST represents a light way to define services for IoT

components. REST CRUD mapping makes the engagement of

IoT components simple.

Communication

Patterns in IoT

[72], [73], [74],

[77], [78], [64],

[81], [83], [85],

[86], [87]

This review has found three focuses on IoT communication,

Data-Oriented, Message-Oriented, and Resource-Oriented.

Resource Oriented communication is the one that fits better

to the characteristics of components of constrained networks.

Each component can be abstracted as a resource.

	 25	

ARCHITECTURE

The Literature Review presented in Chapter 3 evidenced the need to manipulate the

Internet of Things (IoT) network in a multi-tenant manner. The review discussed Virtualization

on the Cloud and a Fog layer. This chapter presents an architecture based on Virtual Resources

to deal with the characteristics of IoT networks and support multi-tenancy. Additionally, this

chapter introduces blockchain technology to handle the provisioning of Virtual Resources

directly on IoT devices.

4.1 Definition of Virtual Resources

Virtual Resources are digital artifacts, which can be defined using different technologies.

This work defines Virtual Resources as RESTful micro services. Virtual Resources communicate

via CoAP protocol exposing the methods GET, POST, PUT, and DELETE. When processing

requests, Virtual Resources can either engage other Things or use their internal state.

REST architecture was selected over SOA to model Virtual Systems. REST fits better for

constrained networks as each IoT component can be represented as an individual resource using

a URI [91]. Also, the REST approach is useful to manipulate Things through mapped CRUD

(create, read, update and delete) operations. Figure 4.1 shows a representation of Virtual

Resources in the IoT Things layer. The figure shows three levels of abstraction. The first level is

the IoT Components, which perform the sensing or actuating actions. The second level is the

Atomic Layer, which groups Atomic Virtual Resources. The third level is the View Layer, which

groups View Virtual Resources. Atomic Virtual Resources and View Virtual Resources are

explained in the following sections.

	 26	

Figure 4.1 Representation of Virtual Resources in the IoT Things layer.

4.1.1 Atomic Virtual Resources

Atomic Virtual Resources are individual abstractions of elements of the Things layer.

Figure 4.2 shows the relation between an element in the Things layer and the Atomic Virtual

Resource. Each element of the Things layer is linked to its Atomic representation, building a one-

to-one relation. This relation is aimed to control the access to physical devices. Atomic Virtual

Resources can communicate between them before responding to any request.

	 27	

Figure 4.2 Representation of Atomic Virtual Resources. Each physical component has an Atomic Virtual

representation.

4.1.2 View Virtual Resources

This work defines View Virtual Resources as abstractions of one or more Atomic Virtual

Resources. View Virtual Resources work as processing units that expose interfaces and present

data for tenants.

View Virtual Resources are built on top of Atomic Virtual Resources. This model results

in a one-to-many relation. Figure 4.3 shows the model of a View Virtual Resource. In this figure,

a View Virtual Resource engages three Atomic Virtual Resources through the CoAP interfaces

“/.well-known/core” [92] and “/state” (these interfaces are explained in Chapter 5).

	 28	

Figure 4.3 Representation of View Virtual Resources. A View Virtual Resource engages two Atomic Virtual

Resources.

When building the data representation for each tenant, View Virtual Resources require to

integrate not only Atomic Virtual Resources but also other View Virtual Resources as well. This

integration results in a Virtual System for each tenant.

4.1.3 Virtual Systems

Virtual Systems integrate many Virtual Resources (Atomic or View). Figure 4.4 shows the

integration of different Virtual Resources into a Virtual System. This integration results in a

hierarchical composition with Atomic Virtual Resources as root elements and View Virtual

Resources as child nodes. The figure shows a View Virtual Resource on the top, which integrates

two other View Virtual Resources and one Atomic Virtual Resource. The View Virtual Resources

in the second level engage other Atomic Virtual Resources.

Users can build their own customized and dedicated Virtual Systems on top of other

Virtual Resources. Virtual Systems defined on top of existing virtualizations make possible to

create N virtual IoT systems.

	 29	

Figure 4.4 Representation of a Virtual System.

4.2 Provisioning of Virtual Resources

Provisioning of Virtual Resources in the IoT network represents a challenge regarding

security. Virtual Resources must be correctly distributed over the large set of heterogeneous

platforms that can work on a single IoT network.

Permission-based blockchain protocols handle the provisioning of Virtual Resources in a

secure manner. The configuration of Virtual Resources (code or metadata) is stored in the

blockchain. Only the configurations that come from trusted nodes remain in the blockchain in the

form of blocks.

Having the configurations of Virtual Resources available in a blockchain makes it possible

to create Virtual Resources at runtime. This functionality allows each tenant to self-define and

self-deploy their Virtual Resources reading the blocks of the blockchain. Only, the users

registered in the blockchain can read or write blocks.

A virtual IoT system is the deployment of multiple Virtual Resources pulled from the

blockchain working together.

	 30	

4.3 Multi-tenant access to IoT Components

Moving computation to the edge of the IoT network enables direct and dynamic

manipulations of physical devices. In this scenario, multiple tenants demand access to IoT devices

to configure them at the same time. This multi-tenancy issue is handled by giving the tenant the

capacity to deploy their own Virtual Systems.

Tenants must be listed in the registry of the permission-based blockchain to be able to

read or write in the blocks. Registered tenants can read existing Virtual Resources and write and

deploy new ones.

This architecture guarantees security in the deployment of Virtual Resources by

encrypting the data stored in the blocks. The encryption process is necessary to ensure that only

registered tenants with the correct key can decrypt the configurations stored in the blocks.

4.4 Summary

This chapter proposes an architecture to achieve the virtualization challenges presented

in Chapter 2:

• Virtual resources are defined as light RESTful micro services communicating via

CoAP protocol. Virtual resources expose CoAP methods: GET, POST, PUT, DELETE.

• The provisioning of Virtual Resources on IoT devices is handled by permission-based

blockchain technology. Blockchain hosts the configuration of Virtual Resources and

allows tenants to build their unique Virtual Systems.

• Multi-tenant access to IoT components is granted by defining IoT Virtual Systems for

each tenant. Permission-based blockchain handles the configuration of Virtual

Resources in encrypted blocks, which can be decrypted exclusively by the tenant with

the correct key.

	 31	

IMPLEMENTATION

The architecture to support virtualization and multi-tenancy on Internet of Things (IoT)

networks is presented in Chapter 4. Each user (tenant) can configure their own hierarchical

Virtual System to access the IoT network. Virtual Resources are modeled as light RESTful micro

services. Provisioning of Virtual Resources on IoT devices is handled by permission-based

blockchain.

This chapter explores the necessary technologies to implement the previous architecture.

5.1 Definition of Virtual Resources

Virtual Resources are written in Go language. Routines in Go language are a lightweight

option to run concurrent Virtual Resources [93]. Each routine implements a micro service

following the CoAP protocol. Go language allows to compile Virtual Resources into different IoT

platforms.

Virtual Resources expose two interfaces:

• “/.well-known/core” [92], which identifies the available services or resources of

the current Virtual Resource

• “/state”, which gets the current state of the Virtual Resource

Virtual Resources are manipulated through CRUD (create, read, update, delete)

operations mapped by the CoAP methods GET, POST, PUT, and DELETE. Figure 5.1 shows the

Go language syntax to expose CoAP methods.

Channels are another feature of Go language, which is useful to send and receive values

[94]. Virtual Resources communicate between them sending CoAP messages through channels.

	 32	

A channel can be heard by N Virtual Resources simultaneously. Figure 5.2 shows an

implementation of a channel in Go language. Virtual Resources listen to the channel. As soon as

a value is received through the channel, all Virtual Resources that are listening to that channel

change their state.

Virtual Resources format the responses using JSON notation. Figure 5.3 shows an example

of a JSON response from a Virtual Resource. The name/value pairing of JSON is an efficient

option to transmit data between IoT devices.

Figure 5.1 Example of a function programmed in Go language that exposes CoAP methods

Figure 5.2 Example of a function programmed in Go language that implements a channel.

5.2 Provisioning of Virtual Resources

This work implements two permission-based blockchains to store the configuration of

Virtual Resources. First, Multichain, a private blockchain cluster, which validates transactions

using the round-robin process. Round-robin process requires that each party put a signature in

	 33	

every block they attempt to create [95]. After adding a block, parties must stop creating new

blocks for a certain time. The Multichain cluster is hosted in a Fog node.

Second, IBM Bluemix, a blockchain as a service (BaaS), which validates transactions using

a consensus process. This consensus process establishes a quorum of at least fifty percent of nodes

plus one to approve transactions [96].

Figure 5.3 Example of a JSON file

An API is required to face the blockchain nodes and ask permission to write or read

blocks. In this work, all the code is written in Go language. The methods to interact with the

blockchain follow the standard naming of the Hyperledger project [97].

Figure 5.4 shows the declarations of the routes to interact with the blockchain and the

declaration of ten Virtual Resources. Virtual resources execute the method invoke_code to write

data in the blockchain. Figure 5.5 and Figure 5.6 present examples of one and ten Virtual

Resources requesting for write operations to the blockchain respectively.

The data written in the blockchain is encrypted using the Advanced Encryption Standard

(AES) [98] with a key of 16 bytes.

	 34	

Figure 5.4 Example of the declaration of the routes to interact with the blockchain and ten Virtual Resources.

Code programmed in Go language.

Figure 5.5 Example of one Virtual Resource requesting access to the blockchain. Code programmed in Go

language.

Figure 5.6 Example of ten Virtual Resource requesting access to the blockchain. Code programmed in Go

language.
	

	 35	

5.3 Multi-tenant access to IoT components

The registration of tenants is handled by the permission-based blockchain. Both

blockchain technologies, Multichain and IBM Bluemix, manage a registry of tenants to allow

correct read and write operations. Additionally, the methods to approve transactions (round

robin process for Multichain and consensus process for Bluemix) balance the access to the blocks.

5.4 Summary

This chapter shows the most suitable technologies to implement the architecture proposed

in Chapter 4.

Go is the base programming language. Go has useful features to implement the definition

of Virtual Resources presented by this work, such as routines and channels. Running concurrent

routines in Go language allows to deploy multiple Virtual Resources on runtime. Channels

distribute the state of Virtual Resources to multiple listeners.

Multichain and IBM Bluemix are two permission-based blockchain technologies that have

the ideal characteristics to handle the provisioning of Virtual Resources and multi-tenant access.

The configuration of Virtual Resources is stored in the form of encrypted blocks, which

guarantees security and a correct deployment through a decryption key.

	 36	

EXPERIMENTS AND EVALUATIONS

This chapter describes the experiments designed to evaluate the performance of the

definition of Virtual Resources presented by this research. In addition to the evaluation of Virtual

Resources, experiments on blockchain working in the IoT space are detailed.

Seven experiments have been designed. Table 6-1 presents a description of each section of

the experiments:

Table 6-1 Description of Experiments
Experiment Sections Description

Virtual Resources deployed on Raspberry

PI

Test the performance of Virtual Resources

deployed on Raspberry PI computers.

Virtual Resources deployed on Edison

Arduino Boards

Test the performance of Virtual Resources

deployed on Edison compute modules.

Provisioning and multi-tenant access to

Virtual Resources using blockchain

Test the performance of blockchain used to

manage the provisioning of Virtual

Resources and multi-tenant access.

6.1 Virtual Resources deployed on Raspberry PI

6.1.1 Experiment 1:

This experiment evaluates the performance of Virtual Resources deployed on Raspberry

PI computers. Figure 6.1 shows the setup of this experiment. The setup includes a Raspberry Pi

computer, a Mac OS computer, and a Linux server. The three elements of this experiment are

	 37	

connected to the university’s Wi-Fi network. The Raspberry Pi hosts a state-full View Virtual

Resource. This View Virtual Resource connects to a NoSQL database to get the current state of

the resources linked to it. The View Virtual Resource responses with a CoAP Acknowledgment

message to all requests. The responses include the state of the resources in the payload. The

Raspberry Pi computer represents the IoT Things layer.

The Mac OS computer hosts a Client routine programmed in Go language to test the View

Virtual Resource. The Client sends 1000 CoAP GET requests to the View Virtual Resource. Before

sending a request, the Client must wait for the previous acknowledgment message.

The Linux server hosts Elasticsearch, which is a RESTful search engine for analytics [99].

Although Elasticsearch is not formally considered a NoSQL database, it can be contemplated as

a document-oriented database due to its schema-less document storage. The “query time” and

“index time” features of Elasticsearch support the heterogeneity nature of the data generated in

the IoT Cloud. The Linux database server represents the Fog layer.

Figure 6.1 Setup of Experiment 1. An IoT Things network formed by a Raspberry Pi. A Fog network formed by a

database server. A Client testing the Virtual Resource.

	 38	

Table 6-2 details the characteristics of the hardware used in this experiment.

Table 6-2 Specification of the hardware used in Experiment 1
Hardware Details

Client

Mac OS X

2.5 GHz Intel Core i7

16 GB RAM

Virtual Resource

Raspberry Pi Model B

Raspbian. Linux kernel 3.18

900 MHz ARM Cortex-A7

1GB LPDDR2 SDRAM

Database

Linux Ubuntu

Intel Core i7-6700 CPU @ 3.40GHz

14 GB RAM

Elasticsearch DB

This experiment evaluates three processes of View Virtual Resources:

• the Discovery-of-Services process, which is exposed in a REST interface (“/.well-

known/core” - Core Link Format - RFC6690)

• the current-state process, which is exposed in a REST interface (“/state”)

• the communication with the database

A. Discovery of Services

The first part of Experiment 1 evaluates the Discovery-of-Services process. Virtual

Resources expose a REST interface (“/.well-known/core”), which handles this process. Figure 6.2

shows the results of this evaluation. The y-axis of the graph represents the round-trip time in

milliseconds measured from the Client side. The x-axis of the graph represents the Client’s

requests (1-1000). This experiment introduces delays of 0, 50, and 100 ms in sending the requests

from the Client to the Virtual Resource. Overall, the round-trip time of the requests is between

	 39	

0.2 ms and 2.2 ms. The delay intervals directly affect the response times. The higher the interval,

the higher the response time. The round-trip time of the 0ms-delay series is between 0.2 ms and

0.6 ms, and the average round-trip time is 0.38 ms. These results do not show any pick. The round-

trip time of the 50ms-delay series is between 0.6 ms and 01.2 ms, and the average round-trip time

is 0.79 ms. These results evidence some picks, which can be attributed to the noise of the network,

memory allocation or background processes of the device. Additionally, as the difference

between the results of each series is minuscule, any noise could have affected the response times.

The round-trip time of the 100ms-delay series is between 0.6 ms and 1.2 ms, and the average

round-trip time is 0.89 ms. These results do not show any picks.

Figure 6.2 Results of the evaluation of the Discovery-of-Services process (“/.well-known/core”) of the Virtual

Resources.

B. Current State

The second part of Experiment 1 evaluates the “current-state” process. Virtual Resources

expose a REST interface (“/state”) to handle this process. Figure 6.3 presents the results of this

	 40	

evaluation. The y-axis of the graph represents the round-trip time in milliseconds measured from

the Client side. The x-axis of the graph represents the Client’s requests (1-1000). This experiment

introduces delays of 0, 50, and 100 ms in sending the requests. Overall, the round-trip time from

the client to the Virtual Resource is between 5.4 ms and 9.8 ms.

Like the first part of Experiment 1, the delay intervals affect the communication

performance. The round-trip time increases when a higher delay is introduced. The round-trip

time of the 0ms-delay series is between 5.2 ms and 7.2 ms, and the average round-trip time is 6.96

ms. The round-trip time of the 50ms-delay series is between 6.2 ms and 8.4 ms, and the average

round-trip time is 7.67 ms. The round-trip time of the 100ms-delay series is between 6.9 ms and 9

ms, and the average round-trip time is 8.29 ms.

Figure 6.3 Results of the evaluation of the current-state process (“/state”) of the Virtual Resources.

	 41	

C. Database communication

The third part of Experiment 1 evaluates the communication performance between the

View Virtual Resource and the database. This experiment introduces delays of 0, 50ms, and 100

ms in the requests from the View Virtual Resource to the database. Figure 6.4 presents the results

of this evaluation. The y-axis of the graph represents the round-trip time in milliseconds

measured from the Virtual Resource side. The x-axis of the graph represents the Virtual

Resource’s requests (1-1000). This graph shows that the delay intervals do not affect the response

times of the database server. Overall, the results are between 4.8 ms and 7 ms.

Figure 6.4 Results of the Communication between the Virtual Resource and the Database.

	 42	

6.1.2 Summary:

This experiment shows that Virtual Resources defined as RESTful micro services and

programmed in Go language, perform well when responding to requests from a more powerful

computer. Additionally, this experiment shows that a Raspberry Pi computer can manage the

connection to a database hosted in a Fog node.

6.2 Virtual Resources deployed on Edison Arduino boards

6.2.1 Experiment 2:

This experiment evaluates the communication performance between two Virtual

Resources deployed on Edison Arduino boards. Figure 6.5 shows the setup of this experiment.

The setup includes an IoT Things layer of two Edison Arduino boards connected to the

university’s Wi-Fi network. Both boards communicate via CoAP protocol. The first Edison board

hosts an Atomic Virtual Resource. This Virtual Resource responds with a CoAP acknowledgment

message, which includes its current state. The second Edison board hosts a state-less View Virtual

Resource that sends 1000 CoAP POST requests to the Atomic Virtual Resource. This Virtual

Resource waits for the acknowledgment of the current request before sending the next one.

Table 6-3 explains the characteristics of the Edison modules.

Figure 6.5 Setup of experiment 2. An IoT Things layer formed by two Edison Arduino boards connected to the

Wi-Fi network and communicating via CoAP protocol. Each Edison board hosts a Virtual Resource.

	 43	

Table 6-3 Specification of Edison Arduino Board
Hardware

Edison Arduino Board

Details

Operating System Linux Yocto

CPU 500 MHz dual-core, dual threaded Intel Atom and a 100

MHz 32-bit Intel Quark microcontroller

RAM 4 GB

The payload of the requests is encrypted to make the data transmission secure. Due to the

limited resources of the Edison boards, a synchronous AES encryption method with a key of 16

bytes is performed. The payload size of the requests is 8 bytes + 16 bytes of AES encryption.

Figures 6.6 to 6.9 show the results of this experiment. In the result graphs, the y-axis

represents the round-trip time in milliseconds measured from the side of the View Virtual

Resource. The x-axis represents the View Virtual Resource’s requests (1-1000). This experiment

introduces delays of 0, 50, 100, 150, 200, 250 and 300 ms in issuing each request. These delays are

represented as the series of each graph. The delays help to evaluate the performance of the Virtual

Resources under different loads.

This experiment shows that the seven-delay series have similar round-trip time values.

The delay times do not have a significant impact on the performance of the Edison board as there

is just one single Virtual Resource sending CoAP POST requests. In general, the round-trip time

is between 4 and 11 milliseconds. Some picks appear in the graphs, but they can be attributed to

the noise of the network, memory allocation or background processes of the Edison board.

The average round-trip time of each delay series is explained as follows. The 0ms-delay

series has an average round-trip time of 6.45 ms. The 50ms-delay series has an average round-

trip time of 6.46 ms. The 100ms-delay series has an average round-trip time of 8.02 ms. The 150ms-

delay series has an average round-trip time of 6.46 ms. The 200ms-delay series has an average

round-trip time of 7.93 ms. The 250m-delay series has an average round-trip time of 6.52 ms.

Finally, the 300ms-delay series has an average round-trip time of 6.55 ms. These results indicate

	 44	

that the definition of Virtual Resources presented by this research has a good communication

performance when deployed on Edison Arduino boards.

Figure 6.6 Results of Experiment 2. One View Virtual Resource is sending 1000 synchronous requests to one

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. No delay.

Figure 6.7 Results of Experiment 2. One View Virtual Resource is sending 1000 synchronous requests to one

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 50ms and 100ms delays.

0
10
20
30
40
50
60
70
80
90
100

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Virtual	Resource	Communication	- No	Delay	Intervals.

Delay	0

0
10
20
30
40
50
60
70
80
90
100

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Virtual	Resource	Communication	- 50	ms	and	100	ms	Delay	Intervals

Delay	50 Delay	100

	 45	

Figure 6.8 Results of Experiment 2. One View Virtual Resource is sending 1000 synchronous requests to one

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 150ms and 200ms delays.

Figure 6.9 Results of Experiment 2. One View Virtual Resource is sending 1000 synchronous requests to one

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 250ms and 300ms delays.

0

10

20

30

40

50

60

70

80

90

100

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Virtual	Resource	Communication	- 150	ms	and	200	ms	Delay	Intervals

Delay	150 Delay	200

0

10

20

30

40

50

60

70

80

90

100

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Virtual	Resource	Communication	- 250	ms	and	300	ms	Delay	Intervals

Delay	250 Delay	300

	 46	

6.2.2 Experiment 3:

This experiment evaluates the performance of Virtual Resources responding to multiple

requests. Virtual Resources are deployed on Edison Arduino boards. Like in Experiment 2 (Figure

6.5), the setup of this new experiment involves two Edison boards, which represent the IoT Things

layer. The two boards are connected to the university’s Wi-Fi network. Both boards communicate

via CoAP protocol. The characteristics of the Edison boards are explained in Table 6-3 from

Experiment 2.

The first Edison board hosts an Atomic Virtual Resource that responds with a CoAP

acknowledgment message to all requests. This message includes the current state of the Virtual

Resource. The second Edison board hosts ten View Virtual Resources. These Virtual Resources

send 100 asynchronous CoAP POST requests each to the Atomic Virtual Resource. These Virtual

Resources also wait for the acknowledgment of the current request before sending the next one.

A synchronous AES encryption method with a key of 16 bytes is performed. The payload size of

the requests is 8 bytes + 16 bytes of AES encryption.

This experiment introduces delays of 0, 50, 100, 150, 200, 250, and 300 ms in sending the

requests. The delays help to evaluate the performance of the Virtual Resources under different

stress levels. The results are split in seven graphs, one for each delay. The y-axis represents the

round-trip time in milliseconds, measured from the side of the View Virtual Resource. The x-axis

represents each View Virtual Resource’s request (1-100).

Figures 6.10 to 6.16 show the performance of the Virtual Resource. The results of the seven

graphs show high fluctuations on the response times. These fluctuations are obtained due to the

ten clients sending requests concurrently and asynchronously. The ten View Virtual Resources

are called as asynchronous routines in Go language.

In this experiment, we observed that sending concurrent CoAP POST requests affects the

response times. Compared to Experiment 1, in which there was only one View Virtual Resource

sending requests, the round-trip time sending concurrent requests has increased around three

times.

	 47	

The average round-trip time value of each delay series is explained as follows. The series

with no delay has an average round-trip time of 21.12 ms. The 50ms-delay series has an average

round-trip time of 20.28 ms. The 100ms-delay series has an average round-trip time of 23.44 ms.

The 150ms-delay series has an average round-trip time of 23.41 ms. The 200ms-delay series has

an average round-trip time of 15.39 ms. The 250ms-delay series has an average round-trip time

of 19.91. Finally, the 300ms-delay series has an average round-trip time of 19.21 ms.

Even though the results show some high picks, such as the ones in the 0-delay graph that

rise to more than 320 ms, the response times represent a good performance considering that the

Edison Arduino Boards are IoT devices with limited computational capabilities.

Figure 6.10 Results of Experiment 3. Ten View Virtual Resources are sending 100 CoAP POST requests to one

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. No delay time interval.

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340

1 11 21 31 41 51 61 71 81 91

Ro
un

d-
Tr
ip
	T
im

e	
(m

s)

Virtual	Resource	Requests	

Virtual	Resource	Communication	- No	Delay	Intervals

Client	1 Client	2 Client	3 Client	4 Client	5

Client	6 Client	7 Client	8 Client	9 Client	10

	 48	

Figure 6.11 Results of Experiment 3. Ten View Virtual Resources are sending 100 CoAP POST requests to one

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 50 ms delay.

Figure 6.12 Results of Experiment 3. Ten View Virtual Resources are sending 100 CoAP POST requests to one

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 100 ms delay.

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340

1 11 21 31 41 51 61 71 81 91

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Virtual	Resource	Communication	- 50	ms	Delay	Intervals

Client	1 Client	2 Client	3 Client	4 Client	5
Client	6 Client	7 Client	8 Client	9 Client	10

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340

1 11 21 31 41 51 61 71 81 91

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Virtual	Resource	Communication	- 100	ms	Delay	Intervals

Client	1 Client	2 Client	3 Client	4 Client	5
Client	6 Client	7 Client	8 Client	9 Client	10

	 49	

Figure 6.13 Results of Experiment 3. Ten View Virtual Resources are sending 100 CoAP POST requests to one

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 150 ms delay.

Figure 6.14 Results of Experiment 3. Ten View Virtual Resources are sending 100 CoAP POST requests to one

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 200 ms delay.

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340

1 11 21 31 41 51 61 71 81 91

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Virtual	Resource	Communication	- 150	ms	Delay	Intervals

Client	1 Client	2 Client	3 Client	4 Client	5
Client	6 Client	7 Client	8 Client	9 Client	10

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340

1 11 21 31 41 51 61 71 81 91

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Virtual	Resource	Communication	- 200	ms	Delay	Intervals

Client	1 Client	2 Client	3 Client	4 Client	5
Client	6 Client	7 Client	8 Client	9 Client	10

	 50	

Figure 6.15 Results of Experiment 3. Ten View Virtual Resources are sending 100 CoAP POST requests to one

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 250 ms delay.
	

Figure 6.16 Results of Experiment 3. Ten View Virtual Resources are sending 100 CoAP POST requests to one

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 300 ms delay.

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340

1 11 21 31 41 51 61 71 81 91

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Delay		250

Virtual	Resource	Communication	- 250	ms	Delay	Intervals

Client	1 Client	2 Client	3 Client	4 Client	5
Client	6 Client	7 Client	8 Client	9 Client	10

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340

1 11 21 31 41 51 61 71 81 91

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Delay		300

Virtual	Resource	Communication	- 300	ms	Delay	Intervals

Client	1 Client	2 Client	3 Client	4 Client	5

Client	6 Client	7 Client	8 Client	9 Client	10

	 51	

6.2.3 Experiment 4:

This experiment evaluates the impact of different payload sizes in the performance of

Virtual Resources deployed on Edison Arduino boards. The hardware setup of this experiment

is the same as in Experiment 2 (Figure 6.5). The setup includes two Edison Arduino boards, which

represent the IoT Things layer. Both boards are connected to the university’s Wi-Fi network and

communicate via CoAP protocol. The characteristics of the Edison Arduino boards are explained

in Table 6-3 from Experiment 2.

The first Edison board hosts an Atomic Virtual Resource, which responds with a CoAP

acknowledgment message to all requests. The second Edison board hosts one View Virtual

Resource, which sends 1000 CoAP POST requests to the Atomic Virtual Resource. The payload

size of the requests are between 16 bytes and 512 bytes. The payload is encrypted using an AES

synchronous encryption method with a key of 16 bytes. The total payload size would be from 16

bytes to 512 bytes + 16-bytes AES encryption key.

Figures 6.17 to 6.19 present the results of this experiment. Each graph presents the results

obtained by sending two different payload sizes. The y-axis represents the round-trip time in

milliseconds, measured from the View Virtual Resource side. The x-axis represents each View

Virtual Resource’s request (1-1000).

Overall, the results indicate that the payload size does not affect the communication

between the Virtual Resources. The round-trip time values are between 5 and 10 ms. There is a

slight difference sending CoAP POST requests with different payload sizes, the average round-

trip time values of each delay are explained as follows. The 16-bytes-payload series has an

average round-trip time of 6.46 ms. The 32-bytes-payload series has an average round-trip time

of 6.47 ms. The 64-bytes-payload series has an average round-trip time of 6.72 ms. The 128-bytes-

payload series has an average round-trip time of 6.75 ms. The 256-bytes-series has an average

round-trip time of 6.94 ms. Finally, the 51- bytes-series has an average round-trip time of 7.54 ms.

The computational capabilities of the Edison board do not affect the data transmission.

	 52	

Figure 6.17 Results of Experiment 4. One View Virtual Resource sending 1000 requests to one Atomic Virtual

Resource. Payload 16 bytes and 32 bytes + 16 bytes AES synchronous encryption.

Figure 6.18 Results of Experiment 4. One View Virtual Resource sending 1000 requests to one Atomic Virtual

Resource. Payload 64 bytes and 128 bytes + 16 bytes AES synchronous encryption.

0
10
20
30
40
50
60
70
80
90

100

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Virtual	Resource	Communication	- 16	and	32	bytes	payload

16	bytes 32	bytes

0
10
20
30
40
50
60
70
80
90

100

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Virtual	Resource	Communication	- 64	and	128	bytes	payload

64	bytes 128	bytes

	 53	

Figure 6.19 Results of Experiment 4. One View Virtual Resource sending 1000 requests to one Atomic Virtual

Resource. Payload 256 bytes and 512 bytes + 16 bytes AES synchronous encryption.

6.2.4 Summary:

These experiments show that Virtual Resources defined as REST micro services,

programmed in Go language and communicated via CoAP protocol can be successfully deployed

on different IoT devices. Also, these experiments show that the definition of Virtual Resources

presented by this work can successfully handle concurrent access with different payload sizes.

6.3 Provisioning and multi-tenant access to Virtual Resources using Blockchain

6.3.1 Experiment 5:

This experiment evaluates the communication performance between a Virtual Resource

and a Multichain blockchain cluster. Figure 6.20 shows the setup of this experiment. The setup

includes a cluster of three machines running Multichain blockchain. One machine runs a python

API that handles read and write operations to the blockchain cluster. The Multichain cluster

0
10
20
30
40
50
60
70
80
90

100

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Virtual	Resource	Communication	- 256	and	512	bytes	payload

256	bytes 512	bytes

	 54	

represents the Fog layer and stores the configuration of Virtual Resources. The experiment setup

also includes one Edison Arduino board, which represents the IoT Things layer. The Edison and

Multichain cluster are connected to the university’s Wi-Fi network and communicate via HTPP

protocol. The characteristics of the Multichain nodes are specified in Table 6-4.

The Edison board hosts one View Virtual Resource that sends 1000 HTTP POST requests

to the python blockchain API. Each request asks for permission to write blocks. The payload of

the requests is 712 bytes. The payload includes 256 bytes encrypted using an AES encryption

method with a key of 16 bytes.

Figure 6.20 Setup of experiment 5. One Edison module connected to the Wi-Fi network and communicating via

HTTP protocol with a Multichain blockchain cluster hosted in a Fog layer.

	 55	

Table 6-4 Specification of the Multichain blockchain nodes.

Hardware

Edison Arduino Board

Details

Operating System Linux Debian 8.5 (Jessie)

CPU Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz

RAM 14 GB

Figures 6.21 to 6.24 summarize the results of this experiment. In the graphs, the y-axis

represents the round-trip time in milliseconds measured from the side of the View Virtual

Resource. The x-axis represents each View Virtual Resource request (1-1000). This experiment

introduces delays between 0 and 300 ms before issuing each request to the blockchain cluster. The

delays are useful to evaluate the performance of the Virtual Resources under different load

scenarios. Each series of the graphs represents the delay intervals.

In this experiment, the average communication time between the Virtual Resource and

the blockchain cluster is between 10 to 40 ms. The arrival rate variation of the requests makes the

round-trip time slightly decrease. Hence, this private blockchain cluster does not represent a

bottleneck. The traffic and the network card determine the cluster performance.

Figure 6.21 Results of Experiment 5. One View Virtual Resource is sending 1000 synchronous requests to the

Multichain cluster. The payload is 712 bytes. No delay.

0
10
20
30
40
50
60
70
80
90

100

1 101 201 301 401 501 601 701 801 901Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	resource	requests

Multichain	Cluster	Communication	- No	Delay	Intervals

Delay	0

	 56	

Figure 6.22 Results of Experiment 5. One View Virtual Resource is sending 1000 synchronous requests to the

Multichain cluster. The payload is 712 bytes. 50 ms and 100 ms delays.

Figure 6.23 Results of Experiment 5. One View Virtual Resource is sending 1000 synchronous requests to the

Multichain cluster. The payload is 712 bytes. 150 ms and 200 ms delays.

0
10
20
30
40
50
60
70
80
90
100

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	resource	requests

Multichain	Cluster	Communication	- 50	ms	and	100	ms	Delay	Intervals

Delay	50 Delay	100

0
10
20
30
40
50
60
70
80
90
100

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	resource	requests

Multichain	Cluster	Communication	- 150	ms	and	200	ms	Delay	Intervals

Delay	150 Delay	200

	 57	

Figure 6.24 Results of Experiment 5. One View Virtual Resource is sending 1000 synchronous requests to the

Multichain cluster. The payload is 712 bytes. 250 ms and 300 ms delays.

6.3.2 Experiment 6:

This experiment evaluates the impact of ten concurrent requests in the performance of the

Multichain blockchain cluster. The characteristics of the Multichain cluster nodes are explained

in Table 6-4 from Experiment 5. The hardware setup of this experiment is the same as in

Experiment 5 (Figure 6.20). The setup includes a cluster of three machines running Multichain

blockchain, one of them runs a python API that handles the operations to the blockchain cluster.

The Multichain cluster represents the Fog layer. An Edison Arduino board in the IoT Things layer

is also part of the experiment. The Multichain cluster and the Edison board are connected to the

university’s Wi-Fi network and communicate to each other via HTPP protocol.

The Edison board hosts ten View Virtual Resources that request for writing operations to

the python API. These Virtual Resources send 100 HTTP POST requests each. The payload of all

requests is 712 bytes. The payload includes 256 bytes encrypted using an AES encryption method

with a key of 16 bytes.

0
10
20
30
40
50
60
70
80
90
100

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	resource	requests

Multichain	Cluster	Communication	- 250	ms	and	300	ms	Delay	Intervals

Delay	250 Delay	300

	 58	

Figures 6.25 to 6.31 show the results of this experiment. The graphs show the performance

of the Multichain cluster. The series of each graph represent the delay intervals. The y-axis

represents the RTT in milliseconds measured from the side of the View Virtual Resource. The x-

axis represents each View Virtual Resource request (1-100). This experiment introduces delays of

0, 50, 100, 150, 200, 250 and 300 milliseconds in issuing the requests to the blockchain API.

The results indicate that the blockchain cluster is affected by the request concurrency.

Overall, the concurrent requests increase de round-trip time values, between 20 ms and 50 ms.

Additionally, increasing the delay time causes the peaks to decrease.

The average round-trip time of each delay series is explained as follows. The series with

no delay has an average round-trip time of 59 ms. The 50ms-delay series has an average round-

trip time of 34.74 ms. The 100ms-delay series has an average round-trip time of 25.96 ms. The

150ms-delay series has an average round-trip time of 37.93 ms. The 200ms-delay series has an

average round-trip time of 20.78 ms. The 250ms-delay series has an average round-trip time of

24.13 ms. Finally, the 300ms-delay series has an average round-trip time of 24.16 ms.

Figure 6.25 Results of Experiment 6. Ten View Virtual Resources are sending 100 asynchronous requests to the

Multichain cluster. The payload is 712 bytes. No delay.

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000

1 11 21 31 41 51 61 71 81 91

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resources	Requests

Multichain	Blockchain	Communication	- No	Delay	Intervals

VR	1 VR	2 VR	3 VR	4 VR	5
VR	6 VR	7 VR	8 VR	9 VR	10

	 59	

Figure 6.26 Results of Experiment 6. Ten View Virtual Resources are sending 100 asynchronous requests to the

Multichain cluster. The payload is 712 bytes. 50 ms delay.

Figure 6.27 Results of Experiment 6. Ten View Virtual Resources are sending 100 asynchronous requests to the

Multichain cluster. The payload is 712 bytes. 100 ms delay.

0

200

400

600

800

1000

1200

1 10 19 28 37 46 55 64 73 82 91 100

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Multichain	Blockchain	Communication	- 50	ms	Delay	Intervals

VR	1 VR	2 VR	3 VR	4 VR	5

VR	6 VR	7 VR	8 VR	9 VR	10

0

200

400

600

800

1000

1200

1 10 19 28 37 46 55 64 73 82 91 100

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Multichain	Blockchain	Communication	- 100	ms	Delay	Intervals

VR	1 VR	2 VR	3 VR	4 VR	5

VR	6 VR	7 VR	8 VR	9 VR	10

	 60	

Figure 6.28 Results of Experiment 6. Ten View Virtual Resources are sending 100 asynchronous requests to the

Multichain cluster. The payload is 712 bytes. 150 ms delay.

Figure 6.29 Results of Experiment 6. Ten View Virtual Resources are sending 100 asynchronous requests to the

Multichain cluster. The payload is 712 bytes. 200 ms delay.

0

200

400

600

800

1000

1200

1 10 19 28 37 46 55 64 73 82 91 100

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Multichain	Blockchain	Communication	- 150	ms	Delay	Intervals

VR	1 VR	2 VR	3 VR	4 VR	5

VR	6 VR	7 VR	8 VR	9 VR	10

0

100

200

300

400

500

1 10 19 28 37 46 55 64 73 82 91 100

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Multichain	Blockchain	Communication	- 200	ms	Delay	Intervals

VR	1 VR	2 VR	3 VR	4 VR	5

VR	6 VR	7 VR	8 VR	9 VR	10

	 61	

Figure 6.30 Results of Experiment 6. Ten View Virtual Resources are sending 250 asynchronous requests to the

Multichain cluster. The payload is 712 bytes. 250 ms delay.

Figure 6.31 Results of Experiment 6. Ten View Virtual Resources are sending 100 asynchronous requests to the

Multichain cluster. The payload is 712 bytes. 300 ms delay.

0

200

400

600

800

1000

1200

1 10 19 28 37 46 55 64 73 82 91 100

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Multichain	Blockchain	Communication	- 250	ms	Delay	Intervals

VR	1 VR	2 VR	3 VR	4 VR	5
VR	6 VR	7 VR	8 VR	9 VR	10

0

200

400

600

800

1000

1 10 19 28 37 46 55 64 73 82 91 100

Ro
un

d-
Tr
ip
	T
im

e	
(m

s)

Virtual	Resource	Requests

Multichain	Blockchain	Communication	- 300	ms	Delay	Intervals

VR	1 VR	2 VR	3 VR	4 VR	5
VR	6 VR	7 VR	8 VR	9 VR	10

	 62	

6.3.3 Experiment 7:

The following experiment evaluates the communication performance between a Virtual

Resource and the Blockchain as a Service (BaaS) IBM Bluemix. Figure 6.32 shows the setup of this

experiment. The experiment includes an IBM Bluemix free service account

(http://www.ibm.com/blockchain/) and one Edison Arduino board connected to the Wi-Fi

network. The communication between the blockchain service and the Edison board is

implemented following the HTTP protocol.

Figure 6.32 Setup of experiment 7. One Edison Arduino board connected to the Wi-Fi network and

communicating via HTTP protocol to the IBM blockchain service in the Cloud.

The Edison Arduino board hosts ten View Virtual Resources that send 100 HTTP POST

requests each to the blockchain service in the Cloud. The purpose of these requests is to perform

a write operation in the blockchain. The payload size of all requests is 712 bytes, which includes

256 bytes encrypted using an AES encryption method with a key of 16 bytes.

	 63	

Figures 6.33 to 6.39 present the results of this experiment. The graphs show the

performance of IBM Bluemix blockchain service. Each graph represents the results of the ten

Virtual Resources sending requests in certain delay interval. The y-axis represents the RTT in

milliseconds measured from the side of the View Virtual Resource. The x-axis represents each

View Virtual Resource request (1-100). Delay times of 0, 50, 100, 150, 200, 250 and 300 ms have

been introduced to evaluate the performance of the blockchain cluster under different request

loads.

The variation in the arrival rate of the requests does not lead to a better communication

performance. Having the blockchain as a service in the Cloud means a significant impact on the

performance. As Chapter 2 reviews, the latency caused by engaging Cloud services from IoT

devices explains the high values of the round-trip time.

Figure 6.33 Results of Experiment 7. Ten View Virtual Resources are sending 100 asynchronous requests to the

IBM Bluemix blockchain service in the Cloud. The payload is 712 bytes. No delay.

0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400

1 10 19 28 37 46 55 64 73 82 91 100

Ro
un

d-
Tr
ip
	T
im

e	
(m

s)

Virtual	Resource	Requests

Bluemix	Blockchain	Communication	- No	Delay	Interval

VR	1 VR	2 VR	3 VR	4 VR	5
VR	6 VR	7 VR	8 VR	9 VR	10

	 64	

Figure 6.34 Results of Experiment 7. Ten View Virtual Resources are sending 100 asynchronous requests to the

IBM Bluemix blockchain service in the Cloud. The payload is 712 bytes. 50 ms delay.

Figure 6.35 Results of Experiment 7. Ten View Virtual Resources are sending 100 asynchronous requests to the

IBM Bluemix blockchain service in the Cloud. The payload is 712 bytes. 100 ms delay.

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

1 10 19 28 37 46 55 64 73 82 91 100

Ro
un

d-
Tr
ip
	T
im

e	
(m

s)

Virtual	Resource	Requests

Bluemix	Blockchain	Communication	- 50	ms	Delay	Intervals

VR	1 VR	2 VR	3 VR	4 VR	5
VR	6 VR	7 VR	8 VR	9 VR	10

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

1 10 19 28 37 46 55 64 73 82 91 100

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Bluemix	Blockchain	Communication	- 100	ms	Delay	Intervals

VR	1 VR	2 VR	3 VR	4 VR	5
VR	6 VR	7 VR	8 VR	9 VR	10

	 65	

Figure 6.36 Results of Experiment 7. Ten View Virtual Resources are sending 100 asynchronous requests to the

IBM Bluemix blockchain service in the Cloud. The payload is 712 bytes. 150 ms delay.

Figure 6.37 Results of Experiment 7. Ten View Virtual Resources are sending 100 asynchronous requests to the

IBM Bluemix blockchain service in the Cloud. The payload is 712 bytes. 200 ms delay.

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

1 10 19 28 37 46 55 64 73 82 91 100

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Bluemix	Blockchain	Communication	- 150	ms	Delay	Intervals

VR	1 VR	2 VR	3 VR	4 VR	5
VR	6 VR	7 VR	8 VR	9 VR	10

0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400

1 10 19 28 37 46 55 64 73 82 91 100

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Bluemix	Blockchain	Communication	- 200	ms	Delay	Intervals

VR	1 VR	2 VR	3 VR	4 VR	5
VR	6 VR	7 VR	8 VR	9 VR	10

	 66	

Figure 6.38 Results of Experiment 7. Ten View Virtual Resources are sending 100 asynchronous requests to the

IBM Bluemix blockchain service in the Cloud. The payload is 712 bytes. 250 ms delay.
	

Figure 6.39 Results of Experiment 7. Ten View Virtual Resources are sending 100 asynchronous requests to the

IBM Bluemix blockchain service in the Cloud. The payload is 712 bytes. 300 ms delay.

0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000

1 10 19 28 37 46 55 64 73 82 91 100

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Bluemix	Blockchain	Communication	- 250	ms	Delay	Intervals

VR	1 VR	2 VR	3 VR	4 VR	5
VR	6 VR	7 VR	8 VR	9 VR	10

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

1 10 19 28 37 46 55 64 73 82 91 100

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Bluemix	Blockchain	Communication	- 300	ms	Delay	Intervals

VR	1 VR	2 VR	3 VR	4 VR	5

VR	6 VR	7 VR	8 VR	9 VR	10

	 67	

6.3.4 Summary:

Experiments 5 to 7 show that the definition of Virtual Resources presented by this work

performs well when interacting with blockchains hosted in Fog nodes and the Cloud. These

experiments indicate that permission-based blockchain technology can efficiently handle the

duties of provisioning and multi-tenant access control in the IoT network.

Overall, the private blockchain Multichain has a better performance than the public

blockchain service Bluemix. This result is obviously obtained due to the location of the Multichain

cluster, which is closer to IoT devices. However, we can argue that the round robin process that

Multichain uses to approve transactions demands less computational effort than the consensus

process of Bluemix.

Bluemix as a Service can be used to store the configuration of high-level View Virtual

Resources, which are required to be deployed on Fog nodes and accessed directly by third parties

in the Cloud. On the other hand, private Blockchains like Multichain can be used to store the

configuration of Atomic Virtual Resources, View Virtual Resources and Virtual Systems, which

are required to be deployed on the IoT devices.

	 68	

CONTRIBUTION AND FUTURE WORK

7.1 Summary

Most of the Internet of Things (IoT) applications follow a Cloud-centric approach. Cloud-

centric systems tend to isolate the “Things” due to the significant latency and bandwidth

consumption necessary for the communication. Users do not interact with the constrained

components but with virtualizations of them. This form of interaction is typical of Cloud-centric

systems, which tend to ignore multi-tenancy as a direct manipulation of IoT devices is not

supported.

This research evaluates existing technologies to develop a virtualization solution for IoT

networks. The virtualization of IoT components introduces challenges in the provisioning and

multi-tenancy services. This research proposes a definition of Virtual Resources deployed directly

on IoT devices to handle those provisioning and multi-tenancy challenges. This work defines

Virtual Resources as REST micro services and develop them using Go language following the

CoAP protocol. Additionally, this research proposes blockchain to handle the provisioning of

Virtual Resources and store the configuration of Virtual Systems for each tenant. Virtual

Resources configured for each user (tenant) in a blockchain demonstrated to support

provisioning and multi-tenancy.

The evaluations show that Virtual Resources can be deployed on different IoT platforms.

Virtual Resources evidence a good performance when they are deployed on Raspberry Pi

computers and Edison Arduino boards. The experiments with permission-based blockchains

show that blocks are an efficient option to store the configuration of Virtual Resources and

provision them on IoT devices. Also, these evaluations confirm that hosting applications at the

edge of the IoT network notably reduces latency and bandwidth consumption. The decision-

	 69	

making over data becomes time-effective as the time the data takes to arrive at the processing

unit (Fog layer) decreases.

7.2 Contributions

This research makes the following contributions.

7.2.1 Definition of Virtual Resources.

This work defines Virtual Resources as REST micro-services, which communicate via

CoAP protocol. Virtual Resources expose two interfaces: “/.well-known/core” to discover the

services of Virtual Resources and “/state” to get the current state of Virtual Resources. The CoAP

methods that Virtual Resources implement are a simple mechanism to manipulate IoT

components.

7.2.2 Provisioning of Virtual Resources on IoT devices.

This research explores two permission-based blockchain to handle the provisioning of

Virtual Resources in the IoT network. Multichain, a private blockchain hosted in a Fog layer and

IBM Bluemix blockchain as a Service hosted in the Cloud. The experiments show that it is possible

to handle the provisioning of Virtual Resources storing encrypted configurations for each tenant

in the form of blocks.

7.2.3 Support for Multi-tenant Access in IoT networks.

Permission-based blockchain manages a registry of tenants to control the access and

operations on the blocks. Tenants must be registered in the blockchain and have the correct key

to decrypt the blocks. Multi-tenancy is guaranteed when different tenants can access, write, and

deploy Virtual Resources‘ configurations for different IoT components simultaneously.

	 70	

7.3 Future Work

Virtual Resources are expected to be evaluated and improved in the following aspects.

7.3.1 Evaluation of Virtual Resources

A future work is focused on testing the performance of Virtual Resources on different IoT

devices like Intel Genuino boards. New experiments, will monitor disconnections and will

include the context in which Virtual Resources work.

Additionally, autonomy features will be added to Virtual Resources such as self-

monitoring.

7.3.2 Evaluation of Blockchain

A future work will evaluate other private blockchain technologies in a Fog environment,

for example, Hyperledger, Etherium, and Eris. Future work also includes the study of smart

contracts in blockchain to manage events in the IoT network.

With the implementation of private blockchains in a Fog layer, it becomes possible to

build CoAP APIs to interact with the blockchains. A future work includes the development of a

CoAP API in Go language to communicate Virtual Resources with blockchains.

Cyber currencies will be explored as a mechanism to handle access to IoT networks and

monetize services. A future work proposes to monetize the tasks performed in the Fog and IoT

networks.

	 71	

REFERENCES

[1] K. Ashton, “That ‘Internet of Things’ Thing - RFID Journal,” RFiD J., vol. 22, no. 7, pp. 97–
114, 2009.

[2] Z. Pang et al., “Design of a terminal solution for integration of in-home health care devices
and services towards the Internet-of-Things,” Enterp. Inf. Syst., vol. 9, no. 1, pp. 86–116,
2015.

[3] G. Broil, M. Paolucci, M. Wagner, E. Rukzio, A. Schmidt, and H. Hußmann, “Perci:
Pervasive service interaction with the internet of things,” IEEE Internet Comput., vol. 13, no.
6, pp. 74–81, 2009.

[4] M. Darianian and M. P. Michael, “Smart home mobile RFID-based internet-of-things
systems and services,” Proc. - 2008 Int. Conf. Adv. Comput. Theory Eng. ICACTE 2008, pp.
116–120, 2008.

[5] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things for smart
cities,” IEEE Internet Things J., vol. 1, no. 1, pp. 22–32, 2014.

[6] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,” IEEE Trans. Ind.
Informatics, vol. 10, no. 4, pp. 2233–2243, 2014.

[7] J. Rivera and R. Van der Muelen, “Gartner Says the Internet of Things Installed Base Will
Grow to 26 Billion Units By 2020,” Gartner, 2013. [Online]. Available:
https://www.gartner.com/doc/2625419/forecast-internet-things-worldwide-. [Accessed:
26-Nov-2015].

[8] A. Klubnikin, “Internet of Things: How Much Does it Cost to Build IoT Solution?” [Online].
Available: http://r-stylelab.com/company/blog/it-trends/internet-of-things-how-much-
does-it-cost-to-build-iot-solution. [Accessed: 01-Nov-2016].

[9] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision,
architectural elements, and future directions,” Futur. Gener. Comput. Syst., vol. 29, no. 7, pp.
1645–1660, 2013.

[10] F. Li, M. Vögler, M. Claeßens, and S. Dustdar, “Efficient and Scalable IoT Service Delivery
on Cloud.,” IEEE CLOUD, pp. 740–747, 2013.

[11] S. Nastic, S. Sehic, M. Vögler, H. L. Truong, and S. Dustdar, “PatRICIA - A novel
programming model for iot applications on cloud platforms,” Proc. - IEEE 6th Int. Conf.
Serv. Comput. Appl. SOCA 2013, pp. 53–60, 2013.

	 72	

[12] F. Khodadadi, R. N. Calheiros, and R. Buyya, “A data-centric framework for development
and deployment of Internet of Things applications in clouds,” 2015 IEEE Tenth Int. Conf.
Intell. Sensors, Sens. Networks Inf. Process., no. April, pp. 1–6, 2015.

[13] M. Yuriyama and T. Kushida, “Sensor-cloud infrastructure physical sensor management
with virtualized sensors on cloud computing,” Proc. - 13th Int. Conf. Network-Based Inf. Syst.
NBiS 2010, pp. 1–8, 2010.

[14] S. Nastic, S. Sehic, D. H. Le, H. L. Truong, and S. Dustdar, “Provisioning software-defined
IoT cloud systems,” Proc. - 2014 Int. Conf. Futur. Internet Things Cloud, FiCloud 2014, pp.
288–295, 2014.

[15] R. Cortés, X. Bonnaire, O. Marin, and P. Sens, “Stream Processing of Healthcare Sensor
Data: Studying User Traces to Identify Challenges from a Big Data Perspective,” Procedia
Comput. Sci., vol. 52, pp. 1004–1009, 2015.

[16] Cisco Systems, “Fog Computing and the Internet of Things: Extend the Cloud to Where
the Things Are,” 2015.

[17] L. M. Vaquero and L. Rodero-Merino, “Finding your Way in the Fog: Towards a
Comprehensive Definition of Fog Computing,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 5, pp. 27–32, 2014.

[18] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its Role in the Internet
of Things,” Proc. first Ed. MCC Work. Mob. cloud Comput., pp. 13–16, 2012.

[19] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Computing: A Platform for Internet of
Things and Analytics,” Big Data Internet Things A Roadmap Smart Environ., pp. 169–186,
2014.

[20] M. Wu, T.-J. Lu, F.-Y. Ling, J. Sun, and H.-Y. Du, “Research on the architecture of the
Internet of Things,” no. August, pp. 20–22, 2010.

[21] L. Tan, “Future internet: The Internet of Things,” 2010 3rd Int. Conf. Adv. Comput. Theory
Eng., pp. V5-376-V5-380, 2010.

[22] “Internet of Things - Cisco.” [Online]. Available: http://www.cisco.com/c/r/en/us/internet-
of-everything-ioe/internet-of-things-iot/index.html. [Accessed: 23-Nov-2016].

[23] J. A. Stankovic, “Research Directions for the Internet of Things,” Internet Things Journal,
IEEE, vol. 1, no. 1, pp. 3–9, 2014.

[24] J. Caldwell, “Ibm Point of View: Internet of Things Security,” 2015. [Online]. Available:
http://toronto.ieee.ca/files/2016/02/TOR-IEEE-IBM-IoT-Jan-28-2016-Final.pdf. [Accessed:
26-Nov-2016].

[25] “What is Internet of Things | Microsoft.” [Online]. Available:

	 73	

https://www.microsoft.com/en-ca/cloud-platform/internet-of-things. [Accessed: 23-Nov-
2016].

[26] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Comput. Networks,
vol. 54, no. 15, pp. 2787–2805, 2010.

[27] P. N. Howard, “Sketching out the Internet of Things trendline | Brookings Institution,”
2015. [Online]. Available:
https://www.brookings.edu/blog/techtank/2015/06/09/sketching-out-the-internet-of-
things-trendline/. [Accessed: 12-Nov-2016].

[28] T. Sánchez López, D. C. Ranasinghe, M. Harrison, and D. McFarlane, “Adding sense to the
Internet of Things: An architecture framework for Smart Object systems,” Pers. Ubiquitous
Comput., vol. 16, no. 3, pp. 291–308, 2012.

[29] D. Rose, Enchanted Objects: Innovation, Design, and the Future of Technology. Simon and
Schuster, 2014.

[30] P. Mell and T. Grance, “The NIST Definition of Cloud Computing (Draft)
Recommendations of the National Institute of Standards and Technology,” 2011.

[31] A. Botta, W. De Donato, V. Persico, and A. Pescape, “On the integration of cloud
computing and internet of things,” Proc. - 2014 Int. Conf. Futur. Internet Things Cloud,
FiCloud 2014, pp. 23–30, 2014.

[32] P. Parwekar, “From Internet of Things towards cloud of things,” 2011 2nd Int. Conf. Comput.
Commun. Technol. ICCCT-2011, pp. 329–333, 2011.

[33] M. Aazam and E. N. Huh, “Fog computing and smart gateway based communication for
cloud of things,” Proc. - 2014 Int. Conf. Futur. Internet Things Cloud, FiCloud 2014, pp. 464–
470, 2014.

[34] C. P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. Hart, “Enabling multi-
tenancy: An industrial experience report,” IEEE Int. Conf. Softw. Maintenance, ICSM, 2010.

[35] D. Jacobs and S. Aulbach, “Ruminations on Multi-Tenant Databases,” BTW Proc., vol. 103,
pp. 514–521, 2007.

[36] J. M. A. Calero, N. Edwards, J. Kirschnick, L. Wilcock, and M. Wray, “Toward a multi-
tenancy authorization system for cloud services,” IEEE Secur. Priv., vol. 8, no. 6, pp. 48–55,
2010.

[37] R. Mietzner, T. Unger, R. Titze, and F. Leymann, “Combining different multi-tenancy
patterns in service-oriented applications,” Proc. - 13th IEEE Int. Enterp. Distrib. Object
Comput. Conf. EDOC 2009, pp. 131–140, 2009.

[38] S. Cherrier, Z. Movahedi, and Y. M. Ghamri-Doudane, “Multi-tenancy in decentralised

	 74	

IoT,” IEEE World Forum Internet Things, WF-IoT 2015 - Proc., pp. 256–261, 2016.

[39] C. Doukas and I. Maglogiannis, “Bringing IoT and cloud computing towards pervasive
healthcare,” Proc. - 6th Int. Conf. Innov. Mob. Internet Serv. Ubiquitous Comput. IMIS 2012,
pp. 922–926, 2012.

[40] X. Xu, “From cloud computing to cloud manufacturing,” Robot. Comput. Integr. Manuf., vol.
28, no. 1, pp. 75–86, 2012.

[41] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and T. Turletti, “A survey of
software-defined networking: Past, present, and future of programmable networks,” IEEE
Commun. Surv. Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[42] Morreale and Anderson, Software Defined Networking Design and Deployment. 2012.

[43] J. Chen, X. Zheng, and C. Rong, “Survey on software-defined networking,” Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9106,
no. 1, pp. 115–124, 2015.

[44] K. Kirkpatrick, “Software-defined Networking,” Commun. ACM, vol. 56, no. 9, pp. 58–65,
2013.

[45] N. M. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,” Comput.
Networks, vol. 54, no. 5, pp. 862–876, 2010.

[46] S. Distefano, G. Merlino, and A. Puliafito, “Sensing and actuation as a service: A new
development for clouds,” Proc. - IEEE 11th Int. Symp. Netw. Comput. Appl. NCA 2012, vol.
1, pp. 272–275, 2012.

[47] O. Terzo, P. Ruiu, E. Bucci, and F. Xhafa, “Data as a Service (DaaS) for sharing and
processing of large data collections in the cloud,” Proc. - 2013 7th Int. Conf. Complex,
Intelligent, Softw. Intensive Syst. CISIS 2013, pp. 475–480, 2013.

[48] S. Alam, M. M. R. Chowdhury, and J. Noll, “SenaaS: An event-driven sensor virtualization
approach for internet of things cloud,” 2010 IEEE Int. Conf. Networked Embed. Syst. Enterp.
Appl. NESEA 2010, pp. 1–6, 2010.

[49] M. Jutila, “An Adaptive Edge Router Enabling Internet of Things,” IEEE Internet Things J.,
vol. 4662, no. c, pp. 1–1, 2016.

[50] A. R. Biswas and R. Giaffreda, “IoT and Cloud Convergence: Opportunities and
Challenges,” 2014 IEEE World Forum Internet Things, pp. 375–376, 2014.

[51] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Www.Bitcoin.Org, p. 9,
2008.

[52] “Blockchain Info.” [Online]. Available: https://blockchain.info/. [Accessed: 02-Nov-2016].

	 75	

[53] V. Buterin, “On Public and Private Blockchains - Ethereum Blog,” 2015. [Online].
Available: https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/.
[Accessed: 20-Nov-2016].

[54] K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts for the Internet of
Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[55] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” Proc. Symp. Oper. Syst. Des.
Implement., no. February, pp. 1–14, 1999.

[56] W. Assumptions, “Scheduling: Introduction.” [Online]. Available:
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched.pdf. [Accessed: 08-Oct-2016].

[57] V. Pureswaran, S. Panikkar, S. Nair, and P. Brody, “Empowering the Edge: Practical
Insights on a Decentralized Internet of Things,” 2015. [Online]. Available: https://www-
935.ibm.com/services/multimedia/GBE03662USEN.pdf. [Accessed: 22-Nov-2016].

[58] “IBM Blockchain.” [Online]. Available: https://www.ibm.com/us-en/marketplace/cloud-
based-blockchain-platform. [Accessed: 27-Nov-2016].

[59] V. Buterin, “A NEXT GENERATION SMART CONTRACT & DECENTRALIZED
APPLICATION PLATFORM,” 2014.

[60] N. Szabo, “Formalizing and securing relationships on public networks,” First Monday, vol.
2, no. 9, Sep. 1997.

[61] E. Newcomer and G. Lomow, Understanding SOA with Web services. Addison-Wesley, 2005.

[62] D. Linthicum, “Chapter 1: Service Oriented Architecture (SOA).” [Online]. Available:
https://msdn.microsoft.com/en-us/library/bb833022.aspx. [Accessed: 17-Nov-2016].

[63] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting with the SOA-
based internet of things: Discovery, query, selection, and on-demand provisioning of web
services,” IEEE Trans. Serv. Comput., vol. 3, no. 3, pp. 223–235, 2010.

[64] P. Spiess et al., “Soa-based integration of the internet of things in enterprise services,” 2009
IEEE Int. Conf. Web Serv. ICWS 2009, pp. 968–975, 2009.

[65] A. P. Castellani, N. Bui, P. Casari, M. Rossi, Z. Shelby, and M. Zorzi, “Architecture and
protocols for the internet of things: A case study,” in 2010 8th IEEE International Conference
on Pervasive Computing and Communications Workshops, PERCOM Workshops 2010, 2010, pp.
678–683.

[66] I. Ishaq, J. Hoebeke, J. Rossey, E. De Poorter, I. Moerman, and P. Demeester, “Enabling the
web of things: facilitating deployment, discovery and resource access to IoT objects using
embedded web services,” Int. J. Web Grid Serv., vol. 10, no. 2/3, p. 218, 2014.

[67] R. T. Fielding, “Architectural Styles and the Design of Network-based Software

	 76	

Architectures,” University of California, Irvine, 2000.

[68] Y. Xue and R. Deters, “Resource Sharing in Mobile Cloud-computing with Coap,” Procedia
Comput. Sci., vol. 63, no. Euspn, pp. 96–103, 2015.

[69] F. Khodadadi, A. V Dastjerdi, and R. Buyya, “Simurgh: A framework for effective
discovery, programming, and integration of services exposed in IoT,” Recent Adv. Internet
Things (RIoT), 2015 Int. Conf., no. April, pp. 1–6, 2015.

[70] A. Elmangoush, T. Magedanz, A. Blotny, and N. Blum, “Design of RESTful APIs for M2M
services,” 2012 16th Int. Conf. Intell. Next Gener. Networks, ICIN 2012, pp. 50–56, 2012.

[71] H. Shi, N. Chen, and R. Deters, “Combining Mobile and Fog Computing: Using CoAP to
Link Mobile Device Clouds with Fog Computing,” Proc. - 2015 IEEE Int. Conf. Data Sci. Data
Intensive Syst. 8th IEEE Int. Conf. Cyber, Phys. Soc. Comput. 11th IEEE Int. Conf. Green Comput.
Commun. 8th IEEE Inte, pp. 564–571, 2016.

[72] “About the Object Management Group.” [Online]. Available:
http://www.omg.org/gettingstarted/gettingstartedindex.htm. [Accessed: 16-Nov-2016].

[73] “Data Distribution Service (DDS).” [Online]. Available: http://www.omg.org/omg-dds-
portal/. [Accessed: 28-Oct-2016].

[74] “What is DDS?” [Online]. Available: http://portals.omg.org/dds/what-is-dds-3/. [Accessed:
28-Oct-2016].

[75] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of
Things: A Survey on Enabling Technologies, Protocols and Applications,” IEEE Commun.
Surv. Tutorials, vol. PP, no. 99, pp. 1–1, 2015.

[76] OASIS, “MQTT Version 3.1.1,” OASIS Standard, 2014. [Online]. Available:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. [Accessed: 09-Aug-
2016].

[77] C. Esposito, S. Russo, and D. Di Crescenzo, “Performance assessment of OMG compliant
data distribution middleware,” Parallel Distrib. Process. 2008. IPDPS 2008. IEEE Int. Symp.,
pp. 1–8, 2008.

[78] A. Ghosh, “Message Queuing Telemetry Transport (MQTT) Protocol,” 2014. [Online].
Available: https://thecustomizewindows.com/2014/07/message-queuing-telemetry-
transport-mqtt-protocol/. [Accessed: 31-Oct-2016].

[79] V. Lampkin, “What is MQTT and how does it work with WebSphere MQ? (WebSphere
and CICS Support Blog),” no. 43645, pp. 20–22, 2012.

[80] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S — A publish/subscribe
protocol for Wireless Sensor Networks,” 2008 3rd Int. Conf. Commun. Syst. Softw. Middlew.

	 77	

Work. (COMSWARE ’08), pp. 791–798, 2008.

[81] V. Lampkin, W. T. Leong, L. Olivera, S. Rawat, N. Subrahmanyam, and R. Xiang, “Building
Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry,” IBM Redbooks,
p. 270, 2012.

[82] V. Lampkin, “What is MQTT and how does it work with WebSphere MQ? (Application
Integration Middleware Support Blog),” 2012. [Online]. Available:
https://www.ibm.com/developerworks/community/blogs/aimsupport/entry/what_is_mqt
t_and_how_does_it_work_with_websphere_mq?lang=en. [Accessed: 23-Nov-2016].

[83] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol (CoAP),”
The Constrained Application Protocol (CoAP), 2014. [Online]. Available:
https://tools.ietf.org/html/rfc7252. [Accessed: 27-Oct-2016].

[84] K. Hartke, “Observing Resources in the Constrained Application Protocol (CoAP),” 2015.
[Online]. Available: https://tools.ietf.org/html/rfc7641. [Accessed: 27-Nov-2016].

[85] M. Hemdi, “Using REST based protocol to enable ABAC within IoT systems,” Inf. Technol.
Electron. Mob. Commun. Conf. (IEMCON), 2016 IEEE 7th Annu., pp. 1–7, 2016.

[86] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A low-power CoAP for Contiki,” Proc. - 8th
IEEE Int. Conf. Mob. Ad-hoc Sens. Syst. MASS 2011, pp. 855–860, 2011.

[87] A. Ludovici, P. Moreno, and A. Calveras, “TinyCoAP: A Novel Constrained Application
Protocol (CoAP) Implementation for Embedding RESTful Web Services in Wireless Sensor
Networks Based on TinyOS,” J. Sens. Actuator Netw, vol. 2, no. 2, pp. 288–315, 2013.

[88] N. Bui and M. Zorzi, “Health care applications: a solution based on the internet of things,”
Proc. 4th Int. Symp. Appl. Sci. Biomed. Commun. Technol., p. 131, 2011.

[89] V. M. Rohokale, N. R. Prasad, and R. Prasad, “A cooperative Internet of Things (IoT) for
rural healthcare monitoring and control,” Wirel. Commun. Veh. Technol. Inf. Theory Aerosp.
Electron. Syst. Technol. (Wireless VITAE), 2011 2nd Int. Conf., pp. 1–6, 2011.

[90] A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, and G. Schreier, “The Internet of Things
for Ambient Assisted Living,” 2010 Seventh Int. Conf. Inf. Technol. New Gener., pp. 804–809,
2010.

[91] T. Fredrich, “What is REST?” [Online]. Available:
http://www.restapitutorial.com/lessons/whatisrest.html. [Accessed: 27-Oct-2016].

[92] Z. Shelby, “Constrained RESTful Environments (CoRE) Link Format,” pp. 1–22, 2012.

[93] “Concurrency — An Introduction to Programming in Go | Go Resources.” [Online].
Available: https://www.golang-book.com/books/intro/10. [Accessed: 06-Sep-2016].

[94] “A Tour of Go.” [Online]. Available: https://tour.golang.org/concurrency/1. [Accessed: 06-

	 78	

Dec-2016].

[95] A. Lewis, “In a nutshell: MultiChain (Epicenter Bitcoin interview – Nov 2015) | Bits on
blocks,” 2016. [Online]. Available: https://bitsonblocks.net/2016/03/07/in-a-nutshell-
multichain-epicenter-bitcoin-interview-nov-2015/. [Accessed: 27-Nov-2016].

[96] “Testing consensus and availability.” [Online]. Available:
https://console.ng.bluemix.net/docs/services/blockchain/etn_pbft.html. [Accessed: 27-
Nov-2016].

[97] “Hyperledger Fabric,” 2016. [Online]. Available: http://hyperledger-
fabric.readthedocs.io/en/latest/. [Accessed: 22-Nov-2016].

[98] “AES encryption.” [Online]. Available: http://aesencryption.net/. [Accessed: 22-Nov-2016].

[99] A. Brasetvik, “Elasticsearch as a NoSQL Database,” 2013. [Online]. Available:
https://www.elastic.co/blog/found-elasticsearch-as-nosql. [Accessed: 15-Oct-2016].

