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ABSTRACT 

 

Internet of Things (IoT) systems mostly follow a Cloud-centric approach. These systems 

get the benefits of the extensive computational capabilities and flexibility of the Cloud. Although 

Cloud-centric systems support virtualization of components to interact with IoT networks, many 

of these systems introduce high latency and restrict direct access to IoT devices. Fog computing 

has been presented as an alternative to reduce latency when interacting with IoT networks, 

however, new forms of virtualization are required to access physical devices in a direct manner.  

This research introduces a definition of Virtual Resources to enable direct access to IoT 

networks and to allow richer interactions between applications and IoT components. 

Additionally, this work proposes Virtual Resources as a mechanism to handle the multi-tenancy 

challenge that emerges when more than one tenant tries to access and manipulate an IoT 

component simultaneously.  Virtual Resources are developed using Go language and CoAP 

protocol. This work proposes permission-based blockchain to provision Virtual Resources 

directly on IoT devices. Seven experiments have been done using Raspberry Pi computers and 

Edison Arduino boards to test the definition of Virtual Resources presented by this work. The 

results of the experiments demonstrate that Virtual Resources can be deployed across different 

IoT platforms. Also, the results show that Virtual Resources and blockchain can support multi-

tenancy in the IoT space. IBM Bluemix Blockchain as a Service and Multichain blockchain have 

been evaluated handling the provisioning of Virtual Resources in the IoT network. The results of 

these experiments show that permission-based blockchain can store the configurations of Virtual 

Resources and provision these configurations in the IoT network. 
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INTRODUCTION 

The Internet of Things adds sensing and actuating capabilities to common “Things” to 

capture data from the real world [1]. The “Things” can work in different scenarios and under 

different conditions. Virtual systems use the “Things,” or IoT devices, to offer new forms of 

communication and services in many areas such as healthcare [2], transportation [3], smart homes 

[4], public services [5], industry [6], and other processes. According to a study from Gartner [7] 

(Figure 1.1), in 2009 the number of powerful devices (e.g. laptops and cellphones) connected to 

the Internet had not reached five billion, and this number is not expected to reach ten billion by 

2020. On the other hand, this study says that there were around two billion IoT devices (e.g. 

sensors and actuators) connected to the Internet in 2009. By 2020 the number of connected IoT 

devices is expected to increase to twenty-six billion. The low cost of IoT computing supports these 

estimates. According to Klubnikin A. [8], the price of sensors has dropped by almost 200% 

between 2004 and 2016. 

 

 

Figure 1.1  Number of connected PC's, Smartphones and Tablets vs. IoT connected devices [7]   
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Gubbi et al. [9] identify two groups of systems in the IoT space. The first group is Things-

centric systems, which highlight the features of devices to provide a richer user experience. The 

second group is Cloud-centric systems, which focus on IoT services and data processing. Most 

IoT systems are based on the Cloud-centric approach (e.g. [10], [11], [12]), they are hosted on the 

Cloud and get the benefits of extensive computational capabilities and virtualization support. 

Virtualization techniques have already been studied in the IoT space, for example, virtualization 

of physical sensors on the Cloud for sharing purposes [13] and software-defined IoT units on the 

Cloud for a unified access [14]. Overall, the primary interest of IoT virtualization on the Cloud is 

data, which means that the communication is a static reading process. 

Even though the Cloud represents a robust and reliable architecture for IoT analytics, its 

consolidated power does not fit the dynamic characteristics of IoT networks. For example, 

according to a study by Cortés et al. [15] about IoT in the health field, the centralized Cloud 

storage cannot handle the velocity of the data flow generated by sensing devices in real-time. 

Additionally, the significant latency restricts the direct access to IoT components and might affect 

the decision-making over data [16]. Finally, because the Cloud’s architecture does not enable 

direct access to IoT components, multi-tenancy is not a concern in Cloud-centric systems.  

Fog computing extends the Cloud features toward the edge of networks to deal with 

specific characteristics of some networking scenarios such as a large set of heterogeneous nodes, 

geographical location, and real-time communication [17], [18]. In the IoT space, Cisco explains 

that Fog nodes can directly access physical devices, consequently reducing latency and 

bandwidth consumption [16] (e.g. [18]). According to Bonomi et al. [19], IoT analytic tasks can be 

moved to a Fog layer as well. Due to the low latency cost, Fog computing facilitates virtualization 

and access to IoT components, however, when various users try to engage those components at 

the same time, multi-tenancy issues emerge. 

This research proposes a definition of Virtual Resources to allow direct manipulation of 

IoT components in a multi-tenant manner. Virtual Resources are programmed using Go language 

and CoAP protocol. Permission-based blockchain is used to handle the provisioning of Virtual 

Resources directly onto IoT devices. 
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The remaining parts of this work are organized as follows: 

• Chapter 2 - Problem Definition discusses the questions that arise when 

virtualization of IoT components is intended to be hosted closer to the “Things” 

layer. 

• Chapter 3 - Literature Review analyzes previous IoT works about system 

architectures, Cloud computing, Fog computing and communication patterns. 

Challenges regarding multi-tenancy are reviewed. Virtualization of IoT 

components and permission-based blockchain are studied as relevant concepts to 

develop and provision Virtual Resources in IoT networks.  

• Chapter 4 - Architecture explains the definition of Virtual Resources presented by 

this work and their provisioning using blockchain. 

• Chapter 5 - Implementation presents the technology needed to build and provision 

Virtual Resources onto IoT devices. 

• Chapter 6 - Experiment tests the performance of Virtual Resources and blockchain 

in the IoT space. 

• Chapter 7 - Conclusion and Future Work describes this research's next steps. 
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PROBLEM DEFINITION 

With the advent of Fog computing, some Internet of Things (IoT) tasks can be moved 

closer to physical devices. A solution to handle the virtualization issues that arise from moving 

computation closer to the IoT “Things” layer is needed. This work proposes Virtual Resources as 

the main mechanism to allow richer interactions and to enable multi-tenant access to IoT 

components. Virtual Resources are required to face the dynamic characteristics of IoT networks 

[20], [9]:  

 
• Heterogeneous platforms 

• Large set of devices 

• Limited computational capabilities 

• Limited energy consumption 

• Geographical distribution  

• Real-time operations  

 

The following questions should be answered to implement Virtual Resources:  

 
2.1     How to define Virtual Resources?  

Virtual Resources are required to have a light architecture that can be supported by the 

limited computational capabilities of constrained devices. Virtual Resources should be 

programmed in a cross-platform language that allows their compilation into different IoT 

platforms. Finally, Virtual Resources should expose simple interfaces to manipulate their current 

state and to communicate with other resources. 
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2.2     How to provision Virtual Resources?  

The provisioning of Virtual Resources is required to work on demand. When a tenant 

requires access to an IoT component, then, the correct configuration of Virtual Resources should 

be executed in the corresponding device. Provisioning also should include removing Virtual 

Resources on demand as well. 

 

2.3     How to guarantee multi-tenant access to IoT components? 

Multi-tenancy is the main issue that arises when engaging IoT components from a Fog 

layer. Virtual Resources are required to support multi-tenant interactions in real-time. Each 

tenant should have their configuration of Virtual Resources isolated from the other tenants.  
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LITERATURE REVIEW 

Placing computation at the edge of Internet of Things (IoT) networks demands support 

for virtualization, multi-tenancy and provisioning of resources. This work reviews important 

literature to address the challenges described in Chapter 2. 

 

• Internet of Things 

o Things-centric systems 

o Cloud-centric systems 

• Fog Computing 

• Multi-Tenancy 

• Software-Defined IoT and Virtualization 

• Blockchain 

• Architectural Design Patterns 

o Service Oriented Architecture (SOA) 

o Representational State Transfer (REST) 

• Communication Patterns in IoT  

o Data-centric 

o Message-centric 

o Resource centric 

 

3.1     Internet of Things (IoT) 

The Internet of Things (IoT) enables connectivity with the real world anytime and 

anywhere [21]. An IoT definition has not been yet formalized. Cisco expands the IoT concept to 

the Internet of Everything (IoE), including anything that supports sensing and connectivity [22]. 
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IBM refers to IoT as an industrial revolution (IIoT [23]), which enables machine-to-machine and 

human communication [24]. Microsoft introduces IoT as the adoption of low-cost and pervasive 

hardware [25]. Although these definitions highlight different aspects of the IoT paradigm, they 

follow the same vision, which is having a large number of constrained devices connected to the 

Internet to obtain data from the real world [26]. This vision has been observed by Howard P. [27]. 

Figure 3.1 shows that between 2011 and 2015, the number of connected devices has grown 

exponentially. 

 

 

 
Figure 3.1  Trend of Devices vs. People [27] 

 

 

According to Wu et al. [20], an IoT network is composed of three main layers:  
 

• Perception 

• Network 

• Application 

 
The Perception layer groups IoT physical devices either to sense data from its 

surroundings or to execute specific actions, both in real time. The Network layer represents the 

connection between IoT systems to handle data transmission. Finally, the Application layer 

denotes IoT systems that process and share data. Gubi et al. [9] identify two groups of IoT 

systems, Thing-centric and Cloud-centric.  
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3.1.1     Things-Centric IoT 

“Things,” is the generic term to refer to objects with sensing, actuating and connectivity 

capabilities, which can be reached anytime and anywhere [26]. The Things-centric approach 

enhances the features of devices to enrich the user experience, for example, smart objects [28] and 

enchanted devices [29]). Although these systems allow users to change the configuration of their 

devices, they do not support multi-tenancy because a device can only be engaged by one user 

(tenant) at the same time. 

 

3.1.2     Cloud-Centric IoT  

Even though Cloud Computing [30] and IoT are two paradigms that emerged separately 

to face different requirements (Table 3-1), both are considered complementary technologies to 

build a flexible deployment environment for IoT systems (e.g. [10], [12]). While IoT works in the 

real environment and lacks computational capabilities, Cloud Computing provides access to 

virtualized and scalable services over the Internet [18]. The Cloud benefits IoT in the following 

aspects [16], [31]:  

 
• efficient use of resources 

• orchestration of resources 

• on-demand self-service 

• broad network access 

• resource pooling 

• rapid deployment and elasticity 

• planned services 

 
As explained in Chapter 2, Cloud-Centric systems consist of three primary layers: Things, 

Service, and Application. Figure 3.2 illustrates this architecture. The Things layer is the lowest-

level of abstraction and represents constrained devices, for example sensor and actuator 

networks. The Application layer is the higher-level of abstraction and hosts final solutions such 
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as monitoring, managing, and other processes. Finally, the Service layer is the bridge between 

Applications and Things. This layer virtualizes IoT components and hosts all main IoT services 

such as data storage, analytics, and other processes. 

 

 
Figure 3.2  Representation of the three layers of Cloud-centric IoT systems 

 

Cloud–centric systems introduce some limitations. For instance, Cloud-centric systems 

support multi-tenancy as multiple tenants can interact with the virtualizations hosted in the 

Service layer; however, this interaction with the IoT network is a static one-direction 

communication that avoids direct access to physical devices and focuses on sensor data. Although 

Cloud systems make data processing efficient and reliable [32], the time data streams take to reach 

the Cloud may affect the accurate decision-making over that data [16]. Finally, these systems 

introduce significant latency, network traffic and bandwidth consumption [16].  

In the IoT space, it is mandatory to have low latency when engaging the geographically 

distributed devices. The next section explores Fog computing as an option to engage IoT networks 

geographically closer than from the Cloud. Furthermore, the challenges that emerge from hosting 

IoT components closer to physical devices are addressed.  

 

Services

Application

Things	Network

IoT	Components
Sensors	&	Actuators	

Cloud	Network



	 10	

Table 3-1  IoT vs. Cloud scenarios [31] 

IoT Cloud 

Pervasive  

(things placed everywhere) 

Ubiquitous 

(resources usable from everywhere) 

Real world things Virtual resources 

Limited computational 

capabilities 

Virtually unlimited computational capabilities 

Limited storage or no storage 

capability 

Virtually unlimited storage capabilities 

The Internet as a point of 

convergence 

The Internet for service delivery 

Big data source Means to manage big data 
 

 

 

3.2     Fog Computing and IoT 

Cisco describes Fog computing as an extension of the Cloud [16]. Fog Computing 

paradigm moves the features of the Cloud toward the edge of networks. The characteristics of 

Fog computing are [16]:  

 
• edge location 

• geographical distribution 

• large-scale networks 

• a significant number of nodes 

• mobility support 

• real-time interactions 

• wireless connectivity supremacy 

• interoperability and organization 

• heterogeneity 

• analytic support 
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A Fog layer benefits IoT in the following aspects [16], [18]:  

 
• location awareness rather than location ignorance, typical of Cloud computing 

• geographical distribution of a vast number of nodes rather than centralized 

clusters 

• wireless mobility rather than static nodes 

• real-time things engagement rather than streaming/batch processes 

• resource heterogeneity rather than one static model 

 

Table 3-2 presents a comparison between Fog and Cloud environments. Overall, the 

response times in a Fog node are lower than in the Cloud. Although a Fog node works in a local 

area and the time that data remains stored is short, those conditions are enough to do some 

processing tasks in real-time and to avoid sending the entire row data to the Cloud. Additionally, 

analyzing data in a Fog node increases the accurateness of decision-making over that data and 

makes the analysis time-effective. 

In the IoT space, a Fog layer allows engaging physical devices, reducing latency. For 

example, Aazam and Huh [33] introduce a Fog “Smart Gateway,” which processes data in real 

time and enhance the communication and service provisioning in the Cloud. IoT applications 

hosted in a Fog layer are capable not only to read data from devices but also to manipulate them, 

e.g. updating software versions, triggering alarms or engaging actuators. However, the following 

challenges regarding multi-tenancy emerge: 

 
• virtualization on the constrained and heterogeneous IoT components 

• secure & safe software distribution of resources over IoT devices 

• access control in the IoT network 

 

Since Fog computing presents new possible interactions with the IoT network, multi-

tenancy is demanded as the main feature in IoT systems. The next section explores literature and 

related work about multi-tenancy in IoT. 
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Table 3-2  Comparison between Fog and Cloud environments [31] 
 Fog nodes closest to IoT 

devices 

Fog aggregation 

nodes 

Cloud 

Response time Milliseconds to sub seconds Seconds to 

minutes 

Minutes, days, 

weeks 

Application 

examples 

M2M communication  Virtualization 

Simple analytics 

Big data analytics 

Graphical 

dashboard 

How long IoT data 

remains stored 

Transient Short duration: 

perhaps hours, 

days 

Months or years 

Geographic 

coverage 

Very local: for example, one 

city block 

Wider Global 

 

 

 

3.3     Multi-Tenancy in IoT 

Multi-tenancy is the characteristic of an architecture that shares resources and serves 

multiple users (tenants) in a cost-effective and secure manner [34]. Serving multiple tenants 

means that they must operate within different contexts to share resources in a successful manner. 

Multi-tenancy has been studied in many areas such as databases [35] and Cloud-hosted services 

[36], [37]. In the IoT space, many studies identify multi-tenancy challenges, for example, control 

flow [38] and access rights [19], [31]. Although these studies have observed that multi-tenancy 

plays a major role in IoT, Cloud-centric and Things-centric systems tend to ignore it [9]. Cloud-

centric systems, e.g. [39], avoid direct communication with devices and focuses on the 

provisioning of services and applications that process large data streams received from 

constrained networks. Things-centric systems focus on the user experience configuring devices 

to meet the needs of a single tenant, e.g. the enchanted umbrella that notifies the user of possible 

weather changes [29].  
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According to Xu [40], conflicting settings of actuators is another challenge when enabling 

multi-tenancy over IoT components. Supporting multi-tenancy means that tenants should be able 

to interact and configure IoT components based on their specific requirements. Each tenant 

should be able to manage their own configuration in an isolated manner so it does not affect other 

tenants that can be working with the same components at the same time.  

The following section analyzes virtualization in IoT and how it can help building multi-

tenant systems in a Fog environment.  

 

3.4     Software-defined IoT (SD-IoT) and Virtualization IoT 

Software-defined elements emerged from the concept of Software Defined Networking 

(SDN) [41], [42]. SDN is a management concept that uses virtualization to decouple the control 

plane (determine destinations of traffic) from the data plane (forwarding traffic) and manage 

network functionalities. SDN enables programmability to network application development [43], 

[44]. Network virtualization focuses on virtualizing all elements of the network, which results in 

the ability to define customized virtual networks [45]. 

The success of SDN and network virtualization has led to the rise of Software-Defined 

IoT. According to Nastic et al. [14], “Software-defined IoT units are used to encapsulate the IoT 

resources and lower level functionality in the IoT cloud and abstract their provisioning and 

governance, at runtime.” Software-defined IoT units can encapsulate the complexity of access 

and customization of the IoT network. Many works have covered virtualization of IoT 

components in the Cloud. For example, Sensing and Actuation as a Service (SAaaS) [46], which 

offers sensors and actuators resources as services hosted in the Cloud. Data as a Service (DaaS) 

[47], which offers ubiquitous access to data. Sensor Event as a Service (SEaaS), which offers 

management of events [48]. Similarly to virtualization in the Cloud, many studies have proposed 

virtualization of IoT components in a Fog layer, for instance, gateways [33] and routers [49]. These 

studies have focused on virtualizing individual components.  According to Biswas and Giaffreda 

[50], another potential benefit for IoT is building software-defined ecosystems or Virtual Systems. 
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 Building Virtual Systems at the edge of the IoT network opens the possibility of 

provisioning Virtual Resources directly on constrained devices, such as Raspberry Pi computers 

or Arduino boards. Configuring Virtual Systems for each tenant is a mechanism for: 

 
• handling multi-tenancy as each tenant uses their own Virtual System’s 

configuration 

• distributing the workload to a Fog layer as Virtual Resources deployed on 

constrained devices can do real-time processing or analytic tasks 

• enabling controlled and low-latency access to physical devices  

 

The high number of constrained devices and their resource-limited characteristics 

represent a challenge when provisioning Virtual Resources in the IoT network. The next section 

explores blockchain technology as an option for software provisioning and versioning control on 

IoT devices.  

 

3.5     Blockchain and IoT 

Introduced by Bitcoin in 2009 [51], blockchain represents the public ledger that stores 

Bitcoin transactions in the form of blocks. Blocks are connected through a hash value forming a 

chain (blockchain). A blockchain is a peer-to-peer network which allows the execution of direct 

transactions without any central verification authority. Transactions are validated by a consensus 

mechanism in which participants must invest computation to show trustworthiness. In Bitcoin, 

this consensus is a proof-of-work task based on cryptography hashes algorithms. Participants 

must scan the hash value to be able to write new blocks or update existing ones. Changing a block 

means that the proof-of-work must be redone, in the current block and in the subsequent ones 

that have been added, that is why changing or updating blocks is not a standard or functional 

task. All participants of the network have a copy of the blockchain and are notified about new 

blocks and changes over them. Because Bitcoin transactions can be seen by anyone on the Internet, 

for example, the transactions of the bitcoin address https://blockchain.info/ [52], Bitcoin systems 

are considered public blockchains.   
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A public blockchain protocol gives open access to transactions and blocks [51]. Any user 

on the Internet can interact with a public blockchain. However, a public blockchain protocol does 

not trust any participant; participants must validate their transactions by a proof-of-work 

consensus mechanism. The proof-of-work process involves significant time and computation.  

When the use of blockchain is limited to an organization or company, then a private 

blockchain protocol is a more convenient option. Private blockchains manage the blocks of 

transactions and permissions in a centralized manner [53]. A private blockchain only trusts a set 

of registered participants [54]. Even though registered participants do not have to do proof-of-

work; this participation has to be managed by a consensus mechanism, such as Practical 

Byzantine Fault Tolerance (PBFT) [55], Round Robin (RR) scheduling [56], and other consensus 

algorithms. Transactions in a private blockchain are validated by a small number of participant 

nodes. The organization running a private blockchain has total control over all the elements of 

the blockchain for instance blocks, transactions, and permissions.  

The most popular example of blockchain in IoT is the IBM’s ADEPT system [57]. ADEPT 

uses Ethereum, an open source blockchain protocol, to manage device coordination functions 

such as storing the configuration of devices and authentication. IBM also has a private Blockchain 

as a Service (BaaS), which stands on Bluemix [58]. Bluemix offers a virtual blockchain cluster in a 

private network.  

An area that is keeping attention within blockchain is smart contracts [59]. Smart contracts 

were proposed by Szabo N. [60] in 1993. A smart contract is defined as “a computerized 

transaction protocol that executes the terms of a contract” [60]. According to Christidis and 

Devetsikiotis [54], in the contexts of IoT, smart contracts represent a convenient option to define 

the business rules to interact with the blockchain.  

Using blockchain in the IoT space puts forward new management possibilities. In this 

work, blockchain is used to manage the provisioning of Virtual Resources and to control access 

to the IoT network. 

How to represent each resource in the IoT network is a question that arises. The next 

section analyzes different architectural patterns to represent the IoT network. 
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3.6     Architectural Design Patterns 

3.6.1     Service Oriented Architecture (SOA) 

The Service Oriented Architecture (SOA) [61] states well-defined and loosely coupled 

services. The SOA design goal is to build services to fulfill the business need of a company [62]. 

Many works have studied SOA in IoT, for example, [63] proposes a solution based on SOA to 

handle some IoT tasks such as discovery and provisioning of resources; [64] proposes an 

implementation that follows the SOA approach to integrating IoT within enterprise services. 

Additionally, many studies show that SOA would be a good architecture to deal with service 

providers and users [65], [66]. The previous studies indicate that a service architecture might 

work fine for the Application and Network layer of the IoT architecture.  

 

3.6.2     Representational State Transfer (REST) 

The Representational State Transfer (REST) is a resource-based architectural style for 

distributed hypermedia systems proposed by Roy Fielding in 1994 [67]. Rather than focusing on 

services, REST stands for the concept of state-full resources. Resources on the server side are 

accessed through a URI (uniform resource identifier). 

The REST constraints highlight “scalability of component interactions, generality 

interfaces, independent deployment of components, and intermediary components to reduce 

interaction latency, enforce security, and encapsulate legacy systems” [67].  

Web APIs and REST-based methods are the basis of many studies in IoT, e.g. [68], [69], 

[70]. These studies show that adopting the REST design leads to higher scalability, reliability, and 

decoupling in systems. The REST architectural design, which focuses on resources, satisfies the 

requirements and characteristic of the three layers of IoT systems. Additionally, the use of 

lightweight data-exchange formats (being JSON the most used) can reduce the overhead related 

to network bandwidth and storage capacity in the IoT Cloud. 

REST enforces a resource-oriented view on the constrained components. In an IoT 

network, constrained components can be represented as full state entities, and the interaction can 
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be mapped to CRUD operations. A particularly interesting aspect of using REST to model the 

Things layer is the possibility to define Virtual Resources on top of existing “Things.” 

A communication protocol that follows the REST approach is needed to build Virtual 

Systems for different tenants. The next section analyzes the communication patterns in IoT. 

 

3.7     Communication Patterns in IoT 

IoT communication patterns can be classified into three groups [71]: data-centric, 

message-centric and resource-centric. 

 

3.7.1     Data-centric IoT Communication 

The Data-Centric communication pattern focuses on the transmission of data in a reliable 

and secure manner. 

DDS stands for Data Distribution Service. DDS is a standard developed by the Object 

Management Group’s (OMG) [72]. DDS is a data-centric and publish-subscribe (DCPS) model for 

distributed application communication and integration [73].  

• Data Centric because DDS has a Global Data Space in which data is defined and 

rules to access that data are structured.  

• Publish-Subscribe because DDS provides a middleware that allows having 

multiple readers subscribed to a topic and writers publishing to those topics [74].  

DDS enables “Efficient and Robust Delivery of the Right Information to the Right Place at 

the Right Time” [73]. DDS focuses on delivering data with Quality of Service (QoS) and reliability. 

DDS offers 23 QoS policies that developers can address such as security, priority, reliability and 

other policies that can be used when programming DDS [75].  

Figure 3.3 shows the communication diagram of DDS. Topics enable the publishing and 

subscribing processes. DDS Domains keep completely isolated from each other. There is no data-

sharing across DDS domains [74]. Following the publish/subscribe pattern [76], writers and 

readers work in a decoupled environment regarding synchronization and time  
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• Time: It is not necessary that writers and readers be active at the same time 

• Synchronization: It is not necessary that readers have any information about  

  writers, and vice versa 

 
According to Esposito [77], DDS performs well and shows good scalability when the 

number of participants increases. This behavior would fit well for IoT environments in which the 

number of writers (sensors) is counted in hundreds and millions. This work seeks to enable multi-

tenancy over IoT components that produce data (writers), DDS would not be a suitable option 

for this purpose as readers and writers are separated. 

 

 
 

Figure 3.3  Data Distribution Service (DDS) Diagram [74] 
 

 

3.7.2     Message-centric IoT Communication 

The primary focus of the Message-Centric communication pattern is the delivery of 

reliable messages from writers to readers. 

MQTT stands for Message Queuing Telemetry Transport [78]. MQTT is a lightweight 

message-centric protocol based on the publish/subscribe pattern [76].  Figure 3.4 shows the MQTT 

architecture in which many clients are supported by one broker [79]. MQTT uses TCP for 
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communicating with the message broker. Using TCP can lead to high communication costs. 

Consequently, a UDP-based MQTT for sensors (MQTT-S) [80] has been developed. The message-

orientation feature of MQTT makes it a content agnostic protocol. MQTT focuses exclusively on 

the delivery of messages. 

MQTT has been widely adopted in IoT environments, e.g. [64], [81]. The low overhead, 

easy implementation, and support from all leading vendors make MQTT a convenient option for 

IoT. MQTT offers to decouple with respect to time, space, and synchronization. The classical 

MQTT deployment follows a hub-spoke model in which nodes are linked directly to sensors and 

actuators. 

 

 
 

Figure 3.4  MQTT IBM [82] 
 

3.7.3     Resource-centric IoT Communication  

As the name suggests, the Resource-Centric communication pattern focuses exclusively 

on resources. 

The Constrained Application Protocol (CoAP) [83] is a machine-to-machine (M2M) 

resource base protocol designed for constrained scenarios. CoAP follows the REST approach 
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exchanging representations of resources. Like in HTTP, the request methods in CoAP are GET, 

POST, PUT, DELETE.  

Even though the CoAP specification uses UDP protocol as the default transport option, 

TCP can be used as well. Figure 3.5 presents the logical layers of CoAP. The figure shows the 

request/response layer that interacts with applications through methods and codes and the 

messaging layer that works with UDP [83]. The CoAP package size varies from the minimum 4 

bytes (simple GET requests) to a maximum of 1024 bytes (Figure 3.6). 

 

 
Figure 3.5  Abstract layering of CoAP [83] 

 

 

 
Figure 3.6  CoAP Message Format [83] 

 

CoAP specifies four types of messages: Acknowledgment, Reset, Confirmable (CON), and 

Non-Confirmable (NON). An acknowledgment message is sent by the recipient confirming the 

reception of the message. A reset message is an empty confirmable message that the recipient 

sends to indicate that something was missing in the message. A confirmable message requires an 

acknowledgment message from the recipient; it ensures reliability when sending CoAP messages. 

A non-confirmable message does not require an acknowledgment message from the recipient.  
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Figure 3.7 shows an example of the interaction between a client and a server. The client 

makes a confirmable CoAP GET request asking for the current temperature value. As soon as the 

server receives the request, it responds with an acknowledgment message. When the server has 

the current temperature value, it sends a confirmable message with the temperature value. 

Finally, the client confirms the reception. 

 

  
Figure 3.7  Example of a CoAP message with separated acknowledgment of receipt [83] 

 

When the server has the requested value immediately available, the value can be sent 

directly in the acknowledgment message. This kind of message is called a piggybacked response. 

Figure 3.8 shows an example of a piggybacked message. The client asks the current temperature 

value in a confirmable CoAP GET message. When the server receives the request, the value is 

immediately attached to the acknowledgment message.  

CoAP does not have a formal implementation of the publish/subscribe pattern. However, 

the publish/subscribe pattern is addressable by making resources observable [84] 

(subject/observer design pattern). When a resource is observed, the observer will receive the 

updates of any change in the resource.  Figure 3.9 shows an example of the CoAP Observe pattern. 

The observer registers into a subject. When the state of the subject changes, the observer receives 

the updated value. 
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Figure 3.8  Example of a CoAP piggybacked message [83] 

 

 

 
Figure 3.9  Observer design pattern [84] 

 

According to Hemdi [85], the REST pattern of CoAP enforces a resource-oriented view 

over IoT components. CoAP represents a unified manner to abstract and engage IoT components. 

Many studies in IoT have used CoAP protocol. For example, Kovatsch [86] presents a special 

implementation of CoAP for Contiki operating system, and Ludovici [87] presents an 

implementation of CoAP for wireless sensor networks.   

The REST orientation of CoAP makes it a good option to represent constrained elements 

with URI’s and operate them through CRUD interfaces.   
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3.8     Summary  

With the rapid increase of the number of devices connected to the Internet, new challenges 

have emerged in research. Table 3-3 presents the topics that have been revised to provide an 

efficient solution to handle the issues that emerge from implementing virtualization in the IoT 

network. 

 

Table 3-3  Summary of the Literature Review 
Topic Papers Results 

Internet of 

Things (IoT) 

 [9] The IoT architecture states three basic layers: perception, 

network, and application. 

IoT applications [2], [3], [4], [5], 

[6], [88], [89], 

[90] 

Nowadays, IoT plays an important role in different areas such 

as healthcare, transportation, smart homes, public services, 

industry, and other processes. 

Fog Computing [16], [18], [33], 

[36]  

Fog computing decreases the latency to engage IoT 

components; however, many challenges emerge due to the 

features of IoT networks, such as a large set of nodes and 

heterogeneity of components. 

Multi-tenancy & 

IoT 

[19], [31], [38] Multi-tenancy has been identified by many studies as a 

challenge in IoT; however current systems do not see it as a 

concern because they do not support multi-tenant access. 

Virtualization & 

IoT 

[46], [47], [48], 

[50], [33], [49] 

Virtualization of IoT components in the IoT network is 

considered by this work as a solution to handle multi-tenancy 

in IoT.  Some studies have covered IoT virtualization in the 

Cloud and Fog networks. This work proposes virtualization 

directly onto IoT devices to create Virtual Systems for each 

tenant (this topic is covered in the Architecture chapter). 
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Blockchain and 

IoT 

[51], [52], [53], 

[57], [60] 

Permission-based blockchains are proposed by this work as 

an alternative to storing the configuration of the Virtual 

Resources and Virtual Systems for each tenant. 

SOA & REST  [63], [64], [65], 

[66], [68], [69], 

[70] 

Many works show that the flexibility of SOA is a good feature 

for the Application and Network layers of the IoT 

architecture. However, that flexibility may introduce 

complexity when defining services for the variety of IoT 

components.  

REST represents a light way to define services for IoT 

components. REST CRUD mapping makes the engagement of 

IoT components simple. 

Communication 

Patterns in IoT 

[72], [73], [74], 

[77], [78], [64], 

[81], [83], [85], 

[86], [87] 

This review has found three focuses on IoT communication, 

Data-Oriented, Message-Oriented, and Resource-Oriented. 

Resource Oriented communication is the one that fits better 

to the characteristics of components of constrained networks. 

Each component can be abstracted as a resource. 
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ARCHITECTURE 

The Literature Review presented in Chapter 3 evidenced the need to manipulate the 

Internet of Things (IoT) network in a multi-tenant manner. The review discussed Virtualization 

on the Cloud and a Fog layer. This chapter presents an architecture based on Virtual Resources 

to deal with the characteristics of IoT networks and support multi-tenancy. Additionally, this 

chapter introduces blockchain technology to handle the provisioning of Virtual Resources 

directly on IoT devices. 

 

4.1     Definition of Virtual Resources 

Virtual Resources are digital artifacts, which can be defined using different technologies. 

This work defines Virtual Resources as RESTful micro services.  Virtual Resources communicate 

via CoAP protocol exposing the methods GET, POST, PUT, and DELETE. When processing 

requests, Virtual Resources can either engage other Things or use their internal state.  

REST architecture was selected over SOA to model Virtual Systems. REST fits better for 

constrained networks as each IoT component can be represented as an individual resource using 

a URI [91]. Also, the REST approach is useful to manipulate Things through mapped CRUD 

(create, read, update and delete) operations. Figure 4.1 shows a representation of Virtual 

Resources in the IoT Things layer. The figure shows three levels of abstraction. The first level is 

the IoT Components, which perform the sensing or actuating actions. The second level is the 

Atomic Layer, which groups Atomic Virtual Resources. The third level is the View Layer, which 

groups View Virtual Resources. Atomic Virtual Resources and View Virtual Resources are 

explained in the following sections.  
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Figure 4.1 Representation of Virtual Resources in the IoT Things layer. 

 

 

4.1.1     Atomic Virtual Resources 

Atomic Virtual Resources are individual abstractions of elements of the Things layer.  

Figure 4.2 shows the relation between an element in the Things layer and the Atomic Virtual 

Resource. Each element of the Things layer is linked to its Atomic representation, building a one-

to-one relation. This relation is aimed to control the access to physical devices. Atomic Virtual 

Resources can communicate between them before responding to any request. 

 



	 27	

 
Figure 4.2 Representation of Atomic Virtual Resources. Each physical component has an Atomic Virtual 

representation. 
 

 

4.1.2     View Virtual Resources 

This work defines View Virtual Resources as abstractions of one or more Atomic Virtual 

Resources. View Virtual Resources work as processing units that expose interfaces and present 

data for tenants.  

View Virtual Resources are built on top of Atomic Virtual Resources. This model results 

in a one-to-many relation.  Figure 4.3 shows the model of a View Virtual Resource. In this figure, 

a View Virtual Resource engages three Atomic Virtual Resources through the CoAP interfaces 

“/.well-known/core” [92] and “/state” (these interfaces are explained in Chapter 5). 
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Figure 4.3 Representation of View Virtual Resources. A View Virtual Resource engages two Atomic Virtual 

Resources. 
 

When building the data representation for each tenant, View Virtual Resources require to 

integrate not only Atomic Virtual Resources but also other View Virtual Resources as well.  This 

integration results in a Virtual System for each tenant.  

 

4.1.3     Virtual Systems 

Virtual Systems integrate many Virtual Resources (Atomic or View). Figure 4.4 shows the 

integration of different Virtual Resources into a Virtual System. This integration results in a 

hierarchical composition with Atomic Virtual Resources as root elements and View Virtual 

Resources as child nodes. The figure shows a View Virtual Resource on the top, which integrates 

two other View Virtual Resources and one Atomic Virtual Resource. The View Virtual Resources 

in the second level engage other Atomic Virtual Resources.  

Users can build their own customized and dedicated Virtual Systems on top of other 

Virtual Resources. Virtual Systems defined on top of existing virtualizations make possible to 

create N virtual IoT systems. 
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Figure 4.4  Representation of a Virtual System.  

 

 

4.2     Provisioning of Virtual Resources 

Provisioning of Virtual Resources in the IoT network represents a challenge regarding 

security. Virtual Resources must be correctly distributed over the large set of heterogeneous 

platforms that can work on a single IoT network.  

Permission-based blockchain protocols handle the provisioning of Virtual Resources in a 

secure manner. The configuration of Virtual Resources (code or metadata) is stored in the 

blockchain. Only the configurations that come from trusted nodes remain in the blockchain in the 

form of blocks.  

Having the configurations of Virtual Resources available in a blockchain makes it possible 

to create Virtual Resources at runtime. This functionality allows each tenant to self-define and 

self-deploy their Virtual Resources reading the blocks of the blockchain. Only, the users 

registered in the blockchain can read or write blocks. 

A virtual IoT system is the deployment of multiple Virtual Resources pulled from the 

blockchain working together.  
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4.3     Multi-tenant access to IoT Components 

Moving computation to the edge of the IoT network enables direct and dynamic 

manipulations of physical devices. In this scenario, multiple tenants demand access to IoT devices 

to configure them at the same time. This multi-tenancy issue is handled by giving the tenant the 

capacity to deploy their own Virtual Systems. 

Tenants must be listed in the registry of the permission-based blockchain to be able to 

read or write in the blocks. Registered tenants can read existing Virtual Resources and write and 

deploy new ones.  

This architecture guarantees security in the deployment of Virtual Resources by 

encrypting the data stored in the blocks. The encryption process is necessary to ensure that only 

registered tenants with the correct key can decrypt the configurations stored in the blocks. 

 

4.4     Summary 

This chapter proposes an architecture  to achieve the virtualization challenges presented 

in Chapter 2: 

• Virtual resources are defined as light RESTful micro services communicating via 

CoAP protocol. Virtual resources expose CoAP methods: GET, POST, PUT, DELETE. 

• The provisioning of Virtual Resources on IoT devices is handled by permission-based 

blockchain technology. Blockchain hosts the configuration of Virtual Resources and 

allows tenants to build their unique Virtual Systems. 

• Multi-tenant access to IoT components is granted by defining IoT Virtual Systems for 

each tenant. Permission-based blockchain handles the configuration of Virtual 

Resources in encrypted blocks, which can be decrypted exclusively by the tenant with 

the correct key.  
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IMPLEMENTATION 

The architecture to support virtualization and multi-tenancy on Internet of Things (IoT) 

networks is presented in Chapter 4. Each user (tenant) can configure their own hierarchical 

Virtual System to access the IoT network.  Virtual Resources are modeled as light RESTful micro 

services. Provisioning of Virtual Resources on IoT devices is handled by permission-based 

blockchain. 

This chapter explores the necessary technologies to implement the previous architecture. 

 

5.1     Definition of Virtual Resources 

Virtual Resources are written in Go language. Routines in Go language are a lightweight 

option to run concurrent Virtual Resources [93]. Each routine implements a micro service 

following the CoAP protocol. Go language allows to compile Virtual Resources into different IoT 

platforms.  

Virtual Resources expose two interfaces:  

 

• “/.well-known/core” [92], which identifies the available services or resources of 

the current Virtual Resource 

• “/state”, which gets the current state of the Virtual Resource 

 
Virtual Resources are manipulated through CRUD (create, read, update, delete) 

operations mapped by the CoAP methods GET, POST, PUT, and DELETE. Figure 5.1 shows the 

Go language syntax to expose CoAP methods. 

Channels are another feature of Go language, which is useful to send and receive values 

[94]. Virtual Resources communicate between them sending CoAP messages through channels. 
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A channel can be heard by N Virtual Resources simultaneously. Figure 5.2 shows an 

implementation of a channel in Go language. Virtual Resources listen to the channel. As soon as 

a value is received through the channel, all Virtual Resources that are listening to that channel 

change their state.  

Virtual Resources format the responses using JSON notation. Figure 5.3 shows an example 

of a JSON response from a Virtual Resource. The name/value pairing of JSON is an efficient 

option to transmit data between IoT devices. 

 

 
Figure 5.1  Example of a function programmed in Go language that exposes CoAP methods 

 

 
Figure 5.2  Example of a function programmed in Go language that implements a channel.  

 

 

5.2     Provisioning of Virtual Resources 

This work implements two permission-based blockchains to store the configuration of 

Virtual Resources. First, Multichain, a private blockchain cluster, which validates transactions 

using the round-robin process. Round-robin process requires that each party put a signature in 
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every block they attempt to create [95]. After adding a block, parties must stop creating new 

blocks for a certain time. The Multichain cluster is hosted in a Fog node.  

Second, IBM Bluemix, a blockchain as a service (BaaS), which validates transactions using 

a consensus process. This consensus process establishes a quorum of at least fifty percent of nodes 

plus one to approve transactions [96]. 

 

 

 
Figure 5.3  Example of a JSON file 

 

 

An API is required to face the blockchain nodes and ask permission to write or read 

blocks. In this work, all the code is written in Go language. The methods to interact with the 

blockchain follow the standard naming of the Hyperledger project [97].  

Figure 5.4 shows the declarations of the routes to interact with the blockchain and the 

declaration of ten Virtual Resources. Virtual resources execute the method invoke_code to write 

data in the blockchain. Figure 5.5 and Figure 5.6 present examples of one and ten Virtual 

Resources requesting for write operations to the blockchain respectively.  

The data written in the blockchain is encrypted using the Advanced Encryption Standard 

(AES) [98] with a key of 16 bytes.  
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Figure 5.4  Example of the declaration of the routes to interact with the blockchain and ten Virtual Resources. 

Code programmed in Go language. 
 

 

 
Figure 5.5  Example of one Virtual Resource requesting access to the blockchain. Code programmed in Go 

language. 
 

 
Figure 5.6  Example of ten Virtual Resource requesting access to the blockchain. Code programmed in Go 

language. 
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5.3     Multi-tenant access to IoT components 

The registration of tenants is handled by the permission-based blockchain. Both 

blockchain technologies, Multichain and IBM Bluemix, manage a registry of tenants to allow 

correct read and write operations. Additionally, the methods to approve transactions (round 

robin process for Multichain and consensus process for Bluemix) balance the access to the blocks. 

 

5.4     Summary 

This chapter shows the most suitable technologies to implement the architecture proposed 

in Chapter 4.  

Go is the base programming language. Go has useful features to implement the definition 

of Virtual Resources presented by this work, such as routines and channels. Running concurrent 

routines in Go language allows to deploy multiple Virtual Resources on runtime. Channels 

distribute the state of Virtual Resources to multiple listeners.  

Multichain and IBM Bluemix are two permission-based blockchain technologies that have 

the ideal characteristics to handle the provisioning of Virtual Resources and multi-tenant access. 

The configuration of Virtual Resources is stored in the form of encrypted blocks, which 

guarantees security and a correct deployment through a decryption key.  
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EXPERIMENTS AND EVALUATIONS 

This chapter describes the experiments designed to evaluate the performance of the 

definition of Virtual Resources presented by this research. In addition to the evaluation of Virtual 

Resources, experiments on blockchain working in the IoT space are detailed. 

Seven experiments have been designed. Table 6-1 presents a description of each section of 

the experiments: 

 

Table 6-1 Description of Experiments 
Experiment Sections Description 

Virtual Resources deployed on Raspberry 

PI 

Test the performance of Virtual Resources 

deployed on Raspberry PI computers. 

Virtual Resources deployed on Edison 

Arduino Boards 

Test the performance of Virtual Resources 

deployed on Edison compute modules. 

Provisioning and multi-tenant access to 

Virtual Resources using blockchain 

Test the performance of blockchain used to 

manage the provisioning of Virtual 

Resources and multi-tenant access. 

 

 

6.1     Virtual Resources deployed on Raspberry PI 

6.1.1     Experiment 1: 

This experiment evaluates the performance of Virtual Resources deployed on Raspberry 

PI computers. Figure 6.1 shows the setup of this experiment. The setup includes a Raspberry Pi 

computer, a Mac OS computer, and a Linux server. The three elements of this experiment are 
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connected to the university’s Wi-Fi network. The Raspberry Pi hosts a state-full View Virtual 

Resource. This View Virtual Resource connects to a NoSQL database to get the current state of 

the resources linked to it. The View Virtual Resource responses with a CoAP Acknowledgment 

message to all requests. The responses include the state of the resources in the payload. The 

Raspberry Pi computer represents the IoT Things layer. 

The Mac OS computer hosts a Client routine programmed in Go language to test the View 

Virtual Resource. The Client sends 1000 CoAP GET requests to the View Virtual Resource. Before 

sending a request, the Client must wait for the previous acknowledgment message. 

The Linux server hosts Elasticsearch, which is a RESTful search engine for analytics [99]. 

Although Elasticsearch is not formally considered a NoSQL database, it can be contemplated as 

a document-oriented database due to its schema-less document storage. The “query time” and 

“index time” features of Elasticsearch support the heterogeneity nature of the data generated in 

the IoT Cloud. The Linux database server represents the Fog layer.  

 

 

 
Figure 6.1  Setup of Experiment 1.  An IoT Things network formed by a Raspberry Pi. A Fog network formed by a 

database server. A Client testing the Virtual Resource.  
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Table 6-2 details the characteristics of the hardware used in this experiment.  

 

Table 6-2  Specification of the hardware used in Experiment 1 
Hardware Details 

Client 

Mac OS X 

2.5 GHz Intel Core i7 

16 GB RAM 

Virtual Resource 

Raspberry Pi Model B 

Raspbian. Linux kernel 3.18 

900 MHz ARM Cortex-A7 

1GB LPDDR2 SDRAM 

Database 

Linux Ubuntu 

Intel Core i7-6700 CPU @ 3.40GHz 

14 GB RAM 

Elasticsearch DB 
 

 

This experiment evaluates three processes of View Virtual Resources:  

• the Discovery-of-Services process, which is exposed in a REST interface (“/.well-

known/core” -  Core Link Format - RFC6690) 

• the current-state process, which is exposed in a REST interface (“/state”)  

• the communication with the database  

 

A. Discovery of Services 

The first part of Experiment 1 evaluates the Discovery-of-Services process. Virtual 

Resources expose a REST interface (“/.well-known/core”), which handles this process. Figure 6.2 

shows the results of this evaluation. The y-axis of the graph represents the round-trip time in 

milliseconds measured from the Client side. The x-axis of the graph represents the Client’s 

requests (1-1000). This experiment introduces delays of 0, 50, and 100 ms in sending the requests 

from the Client to the Virtual Resource. Overall, the round-trip time of the requests is between 
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0.2 ms and 2.2 ms. The delay intervals directly affect the response times. The higher the interval, 

the higher the response time. The round-trip time of the 0ms-delay series is between 0.2 ms and 

0.6 ms, and the average round-trip time is 0.38 ms. These results do not show any pick. The round-

trip time of the 50ms-delay series is between 0.6 ms and 01.2 ms, and the average round-trip time 

is 0.79 ms. These results evidence some picks, which can be attributed to the noise of the network, 

memory allocation or background processes of the device.  Additionally, as the difference 

between the results of each series is minuscule, any noise could have affected the response times. 

The round-trip time of the 100ms-delay series is between 0.6 ms and 1.2 ms, and the average 

round-trip time is 0.89 ms. These results do not show any picks.  

 

 

 
Figure 6.2  Results of the evaluation of the Discovery-of-Services process (“/.well-known/core”) of the Virtual 

Resources. 
 

 

B. Current State 

The second part of Experiment 1 evaluates the “current-state” process. Virtual Resources 

expose a REST interface (“/state”) to handle this process. Figure 6.3 presents the results of this 
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evaluation. The y-axis of the graph represents the round-trip time in milliseconds measured from 

the Client side. The x-axis of the graph represents the Client’s requests (1-1000). This experiment 

introduces delays of 0, 50, and 100 ms in sending the requests. Overall, the round-trip time from 

the client to the Virtual Resource is between 5.4 ms and 9.8 ms.  

Like the first part of Experiment 1, the delay intervals affect the communication 

performance. The round-trip time increases when a higher delay is introduced. The round-trip 

time of the 0ms-delay series is between 5.2 ms and 7.2 ms, and the average round-trip time is 6.96 

ms. The round-trip time of the 50ms-delay series is between 6.2 ms and 8.4 ms, and the average 

round-trip time is 7.67 ms. The round-trip time of the 100ms-delay series is between 6.9 ms and 9 

ms, and the average round-trip time is 8.29 ms. 

 

 

 
Figure 6.3  Results of the evaluation of the current-state process (“/state”) of the Virtual Resources. 
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C. Database communication 

The third part of Experiment 1 evaluates the communication performance between the 

View Virtual Resource and the database. This experiment introduces delays of 0, 50ms, and 100 

ms in the requests from the View Virtual Resource to the database. Figure 6.4 presents the results 

of this evaluation. The y-axis of the graph represents the round-trip time in milliseconds 

measured from the Virtual Resource side. The x-axis of the graph represents the Virtual 

Resource’s requests (1-1000). This graph shows that the delay intervals do not affect the response 

times of the database server.  Overall, the results are between 4.8 ms and 7 ms. 

 

 
Figure 6.4  Results of the Communication between the Virtual Resource and the Database. 
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6.1.2     Summary: 

This experiment shows that Virtual Resources defined as RESTful micro services and 

programmed in Go language, perform well when responding to requests from a more powerful 

computer. Additionally, this experiment shows that a Raspberry Pi computer can manage the 

connection to a database hosted in a Fog node.  

 

6.2     Virtual Resources deployed on Edison Arduino boards 

6.2.1     Experiment 2: 

This experiment evaluates the communication performance between two Virtual 

Resources deployed on Edison Arduino boards. Figure 6.5 shows the setup of this experiment. 

The setup includes an IoT Things layer of two Edison Arduino boards connected to the 

university’s Wi-Fi network. Both boards communicate via CoAP protocol. The first Edison board 

hosts an Atomic Virtual Resource. This Virtual Resource responds with a CoAP acknowledgment 

message, which includes its current state. The second Edison board hosts a state-less View Virtual 

Resource that sends 1000 CoAP POST requests to the Atomic Virtual Resource. This Virtual 

Resource waits for the acknowledgment of the current request before sending the next one. 

Table 6-3 explains the characteristics of the Edison modules. 

 

 
Figure 6.5  Setup of experiment 2. An IoT Things layer formed by two Edison Arduino boards connected to the 

Wi-Fi network and communicating via CoAP protocol. Each Edison board hosts a Virtual Resource.  
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Table 6-3  Specification of Edison Arduino Board 
Hardware 

Edison Arduino Board 

Details 

Operating System Linux Yocto 

CPU 500 MHz dual-core, dual threaded Intel Atom and a 100 

MHz 32-bit Intel Quark microcontroller 

RAM 4 GB 
 

 

The payload of the requests is encrypted to make the data transmission secure. Due to the 

limited resources of the Edison boards, a synchronous AES encryption method with a key of 16 

bytes is performed. The payload size of the requests is 8 bytes + 16 bytes of AES encryption. 

Figures 6.6 to 6.9 show the results of this experiment.  In the result graphs, the y-axis 

represents the round-trip time in milliseconds measured from the side of the View Virtual 

Resource. The x-axis represents the View Virtual Resource’s requests (1-1000). This experiment 

introduces delays of 0, 50, 100, 150, 200, 250 and 300 ms in issuing each request. These delays are 

represented as the series of each graph. The delays help to evaluate the performance of the Virtual 

Resources under different loads.  

This experiment shows that the seven-delay series have similar round-trip time values. 

The delay times do not have a significant impact on the performance of the Edison board as there 

is just one single Virtual Resource sending CoAP POST requests. In general, the round-trip time 

is between 4 and 11 milliseconds. Some picks appear in the graphs, but they can be attributed to 

the noise of the network, memory allocation or background processes of the Edison board.  

The average round-trip time of each delay series is explained as follows. The 0ms-delay 

series has an average round-trip time of 6.45 ms. The 50ms-delay series has an average round-

trip time of 6.46 ms. The 100ms-delay series has an average round-trip time of 8.02 ms. The 150ms-

delay series has an average round-trip time of 6.46 ms. The 200ms-delay series has an average 

round-trip time of 7.93 ms. The 250m-delay series has an average round-trip time of 6.52 ms. 

Finally, the 300ms-delay series has an average round-trip time of 6.55 ms. These results indicate 
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that the definition of Virtual Resources presented by this research has a good communication 

performance when deployed on Edison Arduino boards. 

 

 
Figure 6.6  Results of Experiment 2. One View Virtual Resource is sending 1000 synchronous requests to one 

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. No delay. 
 

 
Figure 6.7  Results of Experiment 2. One View Virtual Resource is sending 1000 synchronous requests to one 

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 50ms and 100ms delays. 
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Figure 6.8  Results of Experiment 2. One View Virtual Resource is sending 1000 synchronous requests to one 

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 150ms and 200ms delays. 
 

 
Figure 6.9 Results of Experiment 2. One View Virtual Resource is sending 1000 synchronous requests to one 

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 250ms and 300ms delays. 
 

0

10

20

30

40

50

60

70

80

90

100

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Virtual	Resource	Communication	- 150	ms	and	200	ms	Delay	Intervals

Delay	150 Delay	200

0

10

20

30

40

50

60

70

80

90

100

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Virtual	Resource	Communication	- 250	ms	and	300	ms	Delay	Intervals

Delay	250 Delay	300



	 46	

6.2.2     Experiment 3: 

This experiment evaluates the performance of Virtual Resources responding to multiple 

requests. Virtual Resources are deployed on Edison Arduino boards. Like in Experiment 2 (Figure 

6.5), the setup of this new experiment involves two Edison boards, which represent the IoT Things 

layer. The two boards are connected to the university’s Wi-Fi network. Both boards communicate 

via CoAP protocol. The characteristics of the Edison boards are explained in Table 6-3 from 

Experiment 2. 

The first Edison board hosts an Atomic Virtual Resource that responds with a CoAP 

acknowledgment message to all requests. This message includes the current state of the Virtual 

Resource. The second Edison board hosts ten View Virtual Resources. These Virtual Resources 

send 100 asynchronous CoAP POST requests each to the Atomic Virtual Resource. These Virtual 

Resources also wait for the acknowledgment of the current request before sending the next one. 

A synchronous AES encryption method with a key of 16 bytes is performed. The payload size of 

the requests is 8 bytes + 16 bytes of AES encryption. 

This experiment introduces delays of 0, 50, 100, 150, 200, 250, and 300 ms in sending the 

requests. The delays help to evaluate the performance of the Virtual Resources under different 

stress levels. The results are split in seven graphs, one for each delay. The y-axis represents the 

round-trip time in milliseconds, measured from the side of the View Virtual Resource. The x-axis 

represents each View Virtual Resource’s request (1-100). 

Figures 6.10 to 6.16 show the performance of the Virtual Resource. The results of the seven 

graphs show high fluctuations on the response times. These fluctuations are obtained due to the 

ten clients sending requests concurrently and asynchronously. The ten View Virtual Resources 

are called as asynchronous routines in Go language.  

In this experiment, we observed that sending concurrent CoAP POST requests affects the 

response times. Compared to Experiment 1, in which there was only one View Virtual Resource 

sending requests, the round-trip time sending concurrent requests has increased around three 

times. 
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The average round-trip time value of each delay series is explained as follows. The series 

with no delay has an average round-trip time of 21.12 ms. The 50ms-delay series has an average 

round-trip time of 20.28 ms. The 100ms-delay series has an average round-trip time of 23.44 ms. 

The 150ms-delay series has an average round-trip time of 23.41 ms. The 200ms-delay series has 

an average round-trip time of 15.39 ms. The 250ms-delay series has an average round-trip time 

of 19.91. Finally, the 300ms-delay series has an average round-trip time of 19.21 ms. 

Even though the results show some high picks, such as the ones in the 0-delay graph that 

rise to more than 320 ms, the response times represent a good performance considering that the 

Edison Arduino Boards are IoT devices with limited computational capabilities. 

 

 
Figure 6.10  Results of Experiment 3. Ten View Virtual Resources are sending 100 CoAP POST requests to one 

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. No delay time interval. 
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Figure 6.11  Results of Experiment 3. Ten View Virtual Resources are sending 100 CoAP POST requests to one 

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 50 ms delay. 
 

 

 
Figure 6.12  Results of Experiment 3. Ten View Virtual Resources are sending 100 CoAP POST requests to one 

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 100 ms delay. 
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Figure 6.13  Results of Experiment 3. Ten View Virtual Resources are sending 100 CoAP POST requests to one 

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 150 ms delay. 
 

 
Figure 6.14  Results of Experiment 3. Ten View Virtual Resources are sending 100 CoAP POST requests to one 

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 200 ms delay. 
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Figure 6.15  Results of Experiment 3. Ten View Virtual Resources are sending 100 CoAP POST requests to one 

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 250 ms delay. 
	

 
Figure 6.16  Results of Experiment 3. Ten View Virtual Resources are sending 100 CoAP POST requests to one 

Atomic Virtual Resource. The payload is 8 bytes + 16 bytes AES synchronous encryption. 300 ms delay. 
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6.2.3     Experiment 4: 

This experiment evaluates the impact of different payload sizes in the performance of 

Virtual Resources deployed on Edison Arduino boards. The hardware setup of this experiment 

is the same as in Experiment 2 (Figure 6.5). The setup includes two Edison Arduino boards, which 

represent the IoT Things layer. Both boards are connected to the university’s Wi-Fi network and 

communicate via CoAP protocol. The characteristics of the Edison Arduino boards are explained 

in Table 6-3 from Experiment 2. 

The first Edison board hosts an Atomic Virtual Resource, which responds with a CoAP 

acknowledgment message to all requests. The second Edison board hosts one View Virtual 

Resource, which sends 1000 CoAP POST requests to the Atomic Virtual Resource. The payload 

size of the requests are between 16 bytes and 512 bytes. The payload is encrypted using an AES 

synchronous encryption method with a key of 16 bytes. The total payload size would be from 16 

bytes to 512 bytes + 16-bytes AES encryption key. 

Figures 6.17 to 6.19 present the results of this experiment. Each graph presents the results 

obtained by sending two different payload sizes. The y-axis represents the round-trip time in 

milliseconds, measured from the View Virtual Resource side. The x-axis represents each View 

Virtual Resource’s request (1-1000).  

Overall, the results indicate that the payload size does not affect the communication 

between the Virtual Resources. The round-trip time values are between 5 and 10 ms. There is a 

slight difference sending CoAP POST requests with different payload sizes, the average round-

trip time values of each delay are explained as follows. The 16-bytes-payload series has an 

average round-trip time of 6.46 ms. The 32-bytes-payload series has an average round-trip time 

of 6.47 ms. The 64-bytes-payload series has an average round-trip time of 6.72 ms. The 128-bytes-

payload series has an average round-trip time of 6.75 ms. The 256-bytes-series has an average 

round-trip time of 6.94 ms. Finally, the 51- bytes-series has an average round-trip time of 7.54 ms. 

The computational capabilities of the Edison board do not affect the data transmission. 
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Figure 6.17 Results of Experiment 4. One View Virtual Resource sending 1000 requests to one Atomic Virtual 

Resource. Payload 16 bytes and 32 bytes + 16 bytes AES synchronous encryption. 
 

 
Figure 6.18  Results of Experiment 4. One View Virtual Resource sending 1000 requests to one Atomic Virtual 

Resource. Payload 64 bytes and 128 bytes + 16 bytes AES synchronous encryption.  
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Figure 6.19  Results of Experiment 4. One View Virtual Resource sending 1000 requests to one Atomic Virtual 

Resource. Payload 256 bytes and 512 bytes + 16 bytes AES synchronous encryption. 
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This experiment evaluates the communication performance between a Virtual Resource 

and a Multichain blockchain cluster. Figure 6.20 shows the setup of this experiment. The setup 
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API that handles read and write operations to the blockchain cluster. The Multichain cluster 

0
10
20
30
40
50
60
70
80
90

100

1 101 201 301 401 501 601 701 801 901

Ro
un

d-
Tr
ip
	Ti
m
e	
(m

s)

Virtual	Resource	Requests

Virtual	Resource	Communication	- 256	and	512	bytes	payload

256	bytes 512	bytes



	 54	

represents the Fog layer and stores the configuration of Virtual Resources. The experiment setup 

also includes one Edison Arduino board, which represents the IoT Things layer. The Edison and 

Multichain cluster are connected to the university’s Wi-Fi network and communicate via HTPP 

protocol. The characteristics of the Multichain nodes are specified in Table 6-4. 

The Edison board hosts one View Virtual Resource that sends 1000 HTTP POST requests 

to the python blockchain API. Each request asks for permission to write blocks. The payload of 

the requests is 712 bytes. The payload includes 256 bytes encrypted using an AES encryption 

method with a key of 16 bytes.  

 

 

 
Figure 6.20  Setup of experiment 5. One Edison module connected to the Wi-Fi network and communicating via 

HTTP protocol with a Multichain blockchain cluster hosted in a Fog layer. 
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Table 6-4  Specification of the Multichain blockchain nodes. 
 

Hardware 

Edison Arduino Board 

Details 

Operating System Linux Debian 8.5 (Jessie) 

CPU Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz 

RAM 14 GB 
 

 

Figures 6.21 to 6.24 summarize the results of this experiment. In the graphs, the y-axis 

represents the round-trip time in milliseconds measured from the side of the View Virtual 

Resource. The x-axis represents each View Virtual Resource request (1-1000). This experiment 

introduces delays between 0 and 300 ms before issuing each request to the blockchain cluster. The 

delays are useful to evaluate the performance of the Virtual Resources under different load 

scenarios. Each series of the graphs represents the delay intervals. 

In this experiment, the average communication time between the Virtual Resource and 

the blockchain cluster is between 10 to 40 ms. The arrival rate variation of the requests makes the 

round-trip time slightly decrease. Hence, this private blockchain cluster does not represent a 

bottleneck. The traffic and the network card determine the cluster performance.  

 

 
Figure 6.21  Results of Experiment 5. One View Virtual Resource is sending 1000 synchronous requests to the 

Multichain cluster. The payload is 712 bytes. No delay. 
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Figure 6.22  Results of Experiment 5. One View Virtual Resource is sending 1000 synchronous requests to the 

Multichain cluster. The payload is 712 bytes. 50 ms and 100 ms delays. 
 

 

 
Figure 6.23  Results of Experiment 5. One View Virtual Resource is sending 1000 synchronous requests to the 

Multichain cluster. The payload is 712 bytes. 150 ms and 200 ms delays. 
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Figure 6.24  Results of Experiment 5. One View Virtual Resource is sending 1000 synchronous requests to the 

Multichain cluster. The payload is 712 bytes. 250 ms and 300 ms delays. 
 

 

6.3.2     Experiment 6: 

This experiment evaluates the impact of ten concurrent requests in the performance of the 
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university’s Wi-Fi network and communicate to each other via HTPP protocol. 

The Edison board hosts ten View Virtual Resources that request for writing operations to 
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requests is 712 bytes. The payload includes 256 bytes encrypted using an AES encryption method 

with a key of 16 bytes. 
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Figures 6.25 to 6.31 show the results of this experiment. The graphs show the performance 

of the Multichain cluster. The series of each graph represent the delay intervals. The y-axis 

represents the RTT in milliseconds measured from the side of the View Virtual Resource. The x-

axis represents each View Virtual Resource request (1-100). This experiment introduces delays of 

0, 50, 100, 150, 200, 250 and 300 milliseconds in issuing the requests to the blockchain API.  

The results indicate that the blockchain cluster is affected by the request concurrency. 

Overall, the concurrent requests increase de round-trip time values, between 20 ms and 50 ms. 

Additionally, increasing the delay time causes the peaks to decrease. 

The average round-trip time of each delay series is explained as follows. The series with 

no delay has an average round-trip time of 59 ms. The 50ms-delay series has an average round-

trip time of 34.74 ms. The 100ms-delay series has an average round-trip time of 25.96 ms. The 

150ms-delay series has an average round-trip time of 37.93 ms. The 200ms-delay series has an 

average round-trip time of 20.78 ms. The 250ms-delay series has an average round-trip time of 

24.13 ms. Finally, the 300ms-delay series has an average round-trip time of 24.16 ms. 

 

 
Figure 6.25  Results of Experiment 6. Ten View Virtual Resources are sending 100 asynchronous requests to the 

Multichain cluster. The payload is 712 bytes. No delay.  
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Figure 6.26  Results of Experiment 6. Ten View Virtual Resources are sending 100 asynchronous requests to the 

Multichain cluster. The payload is 712 bytes. 50 ms delay.  
 

 

 
Figure 6.27  Results of Experiment 6. Ten View Virtual Resources are sending 100 asynchronous requests to the 

Multichain cluster. The payload is 712 bytes. 100 ms delay. 
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Figure 6.28  Results of Experiment 6. Ten View Virtual Resources are sending 100 asynchronous requests to the 

Multichain cluster. The payload is 712 bytes. 150 ms delay. 
 

 

 
Figure 6.29  Results of Experiment 6. Ten View Virtual Resources are sending 100 asynchronous requests to the 

Multichain cluster. The payload is 712 bytes. 200 ms delay. 
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Figure 6.30  Results of Experiment 6. Ten View Virtual Resources are sending 250 asynchronous requests to the 

Multichain cluster. The payload is 712 bytes. 250 ms delay. 
 

 

 
Figure 6.31  Results of Experiment 6. Ten View Virtual Resources are sending 100 asynchronous requests to the 

Multichain cluster. The payload is 712 bytes. 300 ms delay. 
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6.3.3     Experiment 7: 

The following experiment evaluates the communication performance between a Virtual 

Resource and the Blockchain as a Service (BaaS) IBM Bluemix. Figure 6.32 shows the setup of this 

experiment. The experiment includes an IBM Bluemix free service account 

(http://www.ibm.com/blockchain/) and one Edison Arduino board connected to the Wi-Fi 

network. The communication between the blockchain service and the Edison board is 

implemented following the HTTP protocol. 

 

 
Figure 6.32  Setup of experiment 7. One Edison Arduino board connected to the Wi-Fi network and 

communicating via HTTP protocol to the IBM blockchain service in the Cloud. 
  

The Edison Arduino board hosts ten View Virtual Resources that send 100 HTTP POST 

requests each to the blockchain service in the Cloud. The purpose of these requests is to perform 

a write operation in the blockchain. The payload size of all requests is 712 bytes, which includes 

256 bytes encrypted using an AES encryption method with a key of 16 bytes. 
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Figures 6.33 to 6.39 present the results of this experiment. The graphs show the 

performance of IBM Bluemix blockchain service. Each graph represents the results of the ten 

Virtual Resources sending requests in certain delay interval. The y-axis represents the RTT in 

milliseconds measured from the side of the View Virtual Resource. The x-axis represents each 

View Virtual Resource request (1-100). Delay times of 0, 50, 100, 150, 200, 250 and 300 ms have 

been introduced to evaluate the performance of the blockchain cluster under different request 

loads. 

The variation in the arrival rate of the requests does not lead to a better communication 

performance. Having the blockchain as a service in the Cloud means a significant impact on the 

performance.  As Chapter 2 reviews, the latency caused by engaging Cloud services from IoT 

devices explains the high values of the round-trip time. 

 

 
Figure 6.33  Results of Experiment 7. Ten View Virtual Resources are sending 100 asynchronous requests to the 

IBM Bluemix blockchain service in the Cloud. The payload is 712 bytes. No delay. 
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Figure 6.34  Results of Experiment 7. Ten View Virtual Resources are sending 100 asynchronous requests to the 

IBM Bluemix blockchain service in the Cloud. The payload is 712 bytes. 50 ms delay. 
 

 

 
Figure 6.35 Results of Experiment 7. Ten View Virtual Resources are sending 100 asynchronous requests to the 

IBM Bluemix blockchain service in the Cloud. The payload is 712 bytes. 100 ms delay. 
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Figure 6.36  Results of Experiment 7. Ten View Virtual Resources are sending 100 asynchronous requests to the 

IBM Bluemix blockchain service in the Cloud. The payload is 712 bytes. 150 ms delay. 
 

 
Figure 6.37  Results of Experiment 7. Ten View Virtual Resources are sending 100 asynchronous requests to the 

IBM Bluemix blockchain service in the Cloud. The payload is 712 bytes. 200 ms delay. 
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Figure 6.38  Results of Experiment 7. Ten View Virtual Resources are sending 100 asynchronous requests to the 

IBM Bluemix blockchain service in the Cloud. The payload is 712 bytes. 250 ms delay. 
	

 
Figure 6.39  Results of Experiment 7. Ten View Virtual Resources are sending 100 asynchronous requests to the 

IBM Bluemix blockchain service in the Cloud. The payload is 712 bytes. 300 ms delay. 
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6.3.4     Summary: 

Experiments 5 to 7 show that the definition of Virtual Resources presented by this work 

performs well when interacting with blockchains hosted in Fog nodes and the Cloud. These 

experiments indicate that permission-based blockchain technology can efficiently handle the 

duties of provisioning and multi-tenant access control in the IoT network.  

Overall, the private blockchain Multichain has a better performance than the public 

blockchain service Bluemix. This result is obviously obtained due to the location of the Multichain 

cluster, which is closer to IoT devices. However, we can argue that the round robin process that 

Multichain uses to approve transactions demands less computational effort than the consensus 

process of Bluemix.  

Bluemix as a Service can be used to store the configuration of high-level View Virtual 

Resources, which are required to be deployed on Fog nodes and accessed directly by third parties 

in the Cloud. On the other hand, private Blockchains like Multichain can be used to store the 

configuration of Atomic Virtual Resources, View Virtual Resources and Virtual Systems, which 

are required to be deployed on the IoT devices.  
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CONTRIBUTION AND FUTURE WORK 

7.1     Summary 

Most of the Internet of Things (IoT) applications follow a Cloud-centric approach. Cloud-

centric systems tend to isolate the “Things” due to the significant latency and bandwidth 

consumption necessary for the communication. Users do not interact with the constrained 

components but with virtualizations of them. This form of interaction is typical of Cloud-centric 

systems, which tend to ignore multi-tenancy as a direct manipulation of IoT devices is not 

supported.  

This research evaluates existing technologies to develop a virtualization solution for IoT 

networks. The virtualization of IoT components introduces challenges in the provisioning and 

multi-tenancy services. This research proposes a definition of Virtual Resources deployed directly 

on IoT devices to handle those provisioning and multi-tenancy challenges. This work defines 

Virtual Resources as REST micro services and develop them using Go language following the 

CoAP protocol. Additionally, this research proposes blockchain to handle the provisioning of 

Virtual Resources and store the configuration of Virtual Systems for each tenant.  Virtual 

Resources configured for each user (tenant) in a blockchain demonstrated to support 

provisioning and multi-tenancy. 

The evaluations show that Virtual Resources can be deployed on different IoT platforms. 

Virtual Resources evidence a good performance when they are deployed on Raspberry Pi 

computers and Edison Arduino boards.  The experiments with permission-based blockchains 

show that blocks are an efficient option to store the configuration of Virtual Resources and 

provision them on IoT devices. Also, these evaluations confirm that hosting applications at the 

edge of the IoT network notably reduces latency and bandwidth consumption.  The decision-
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making over data becomes time-effective as the time the data takes to arrive at the processing 

unit (Fog layer) decreases.  

 

7.2     Contributions 

This research makes the following contributions. 

 

7.2.1    Definition of Virtual Resources.  

This work defines Virtual Resources as REST micro-services, which communicate via 

CoAP protocol. Virtual Resources expose two interfaces: “/.well-known/core” to discover the 

services of Virtual Resources and “/state” to get the current state of Virtual Resources. The CoAP 

methods that Virtual Resources implement are a simple mechanism to manipulate IoT 

components.  

 

7.2.2    Provisioning of Virtual Resources on IoT devices.  

This research explores two permission-based blockchain to handle the provisioning of 

Virtual Resources in the IoT network. Multichain, a private blockchain hosted in a Fog layer and 

IBM Bluemix blockchain as a Service hosted in the Cloud. The experiments show that it is possible 

to handle the provisioning of Virtual Resources storing encrypted configurations for each tenant 

in the form of blocks.  

 

7.2.3    Support for Multi-tenant Access in IoT networks.  

Permission-based blockchain manages a registry of tenants to control the access and 

operations on the blocks. Tenants must be registered in the blockchain and have the correct key 

to decrypt the blocks. Multi-tenancy is guaranteed when different tenants can access, write, and 

deploy Virtual Resources‘ configurations for different IoT components simultaneously. 
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7.3     Future Work 

Virtual Resources are expected to be evaluated and improved in the following aspects. 

 

7.3.1    Evaluation of Virtual Resources 

A future work is focused on testing the performance of Virtual Resources on different IoT 

devices like Intel Genuino boards. New experiments, will monitor disconnections and will 

include the context in which Virtual Resources work. 

Additionally, autonomy features will be added to Virtual Resources such as self-

monitoring. 

 

7.3.2    Evaluation of Blockchain   

A future work will evaluate other private blockchain technologies in a Fog environment, 

for example, Hyperledger, Etherium, and Eris. Future work also includes the study of smart 

contracts in blockchain to manage events in the IoT network. 

With the implementation of private blockchains in a Fog layer, it becomes possible to 

build CoAP APIs to interact with the blockchains. A future work includes the development of a 

CoAP API in Go language to communicate Virtual Resources with blockchains. 

Cyber currencies will be explored as a mechanism to handle access to IoT networks and 

monetize services. A future work proposes to monetize the tasks performed in the Fog and IoT 

networks. 
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