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Abstract

Transposable elements (TEs) are interspersed DNA sequences that can move or copy to new positions within

a genome. The active TEs along with the remnants of many transposition events over millions of years

constitute 46.69% of the human genome. TEs are believed to promote speciation and their activities play a

significant role in human disease. The 22 AluY and 6 AluS TE subfamilies have been the most active TEs

in recent human history, whose transposition has been implicated in several inherited human diseases and

in various forms of cancer by integrating into genes. Therefore, understanding the transposition activities is

very important.

Recently, there has been some work done to quantify the activity levels of active Alu transposable elements

based on variation in the sequence. Here, given this activity data, an analysis of TE activity based on the

position of mutations is conducted. Two different methods/simulations are created to computationally predict

so-called harmful mutation regions in the consensus sequence of a TE; that is, mutations that occur in these

regions decrease the transposition activities dramatically. The methods are applied to AluY, the youngest

and most active Alu subfamily, to identify the harmful regions laying in its consensus, and verifications are

presented using the activity of AluY elements and the secondary structure of the AluYa5 RNA, providing

evidence that the method is successfully identifying harmful mutation regions. A supplementary simulation

also shows that the identified harmful regions covering the AluYa5 RNA functional regions are not occurring

by chance. Therefore, mutations within the harmful regions alter the mobile activity levels of active AluY

elements. One of the methods is then applied to two additional TE families: the Alu family and L1 family,

in detecting the harmful regions in these elements computationally.

Understanding and predicting the evolution of these TEs is of interest in understanding their powerful

evolutionary force in shaping their host genomes. In this thesis, a formal model of TE fragments and their

interruptions is devised that provides definitions that are compatible with biological nomenclature, while still

providing a suitable formal foundation for computational analysis. Essentially, this model is used for fixing

terminology that was misleading in the literature, and it helps to describe further TE problems in a precise

way. Indeed, later chapters include two other models built on top of this model: the sequential interruption

model and the recursive interruption model, both used to analyze their activity throughout evolution.

The sequential interruption model is defined between TEs that occur in a genomic sequence to estimate how

often TEs interrupt other TEs, which has been shown to be useful in predicting their ages and their activity

throughout evolution. Here, this prediction from the sequential interruptions is shown to be closely related

to a classic matrix optimization problem: the Linear Ordering Problem (LOP). By applying a well-studied

method of solving the LOP, Tabu search, to the sequential interruption model, a relative age order of all
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TEs in the human genome is predicted from a single genome. A comparison of the TE ordering between

Tabu search and the method used in [47] shows that Tabu search solves the TE problem exceedingly more

efficiently, while it still achieves a more accurate result. As a result of the improved efficiency, a prediction

on all human TEs is constructed, whereas it was previously only predicted for a minority fraction of the set

of the human TEs.

When many insertions occurred throughout the evolution of a genomic sequence, the interruptions nest in

a recursive pattern. The nested TEs are very helpful in revealing the age of the TEs, but cannot be fully

represented by the sequential interruption model. In the recursive interruption model, a specific context-

free grammar is defined, describing a general and simple way to capture the recursive nature in which TEs

nest themselves into other TEs. Then, each production of the context-free grammar is associated with a

probability to convert the context-free grammar into a stochastic context-free grammar that maximizes the

applications of the productions corresponding to TE interruptions. A modified version of an algorithm to

parse context-free grammars, the CYK algorithm, that takes into account these probabilities is then used to

find the most likely parse tree(s) predicting the TE nesting in an efficient fashion.

The recursive interruption model produces small parse trees representing local TE interruptions in a genome.

These parse trees are a natural way of grouping TE fragments in a genomic sequence together to form

interruptions. Next, some tree adjustment operations are given to simplify these parse trees and obtain more

standard evolutionary trees. Then an overall TE-interaction network is created by merging these standard

evolutionary trees into a weighted directed graph. This TE-interaction network is a rich representation of the

predicted interactions between all TEs throughout evolution and is a powerful tool to predict the insertion

evolution of these TEs. It is applied to the human genome, but can be easily applied to other genomes.

Furthermore, it can also be applied to multiple related genomes where common TEs exist in order to study

the interactions between TEs and the genomes.

Lastly, a simulation of TE transpositions throughout evolution is developed. This is especially helpful in

understanding the dynamics of how TEs evolve and impact their host genomes. Also, it is used as a verification

technique for the previous theoretical models in the thesis. By feeding the simulated TE remnants and activity

data into the theoretical models, a relative age order is predicted using the sequential interruption model,

and a quantified correlation between this predicted order and the input age order in the simulation can be

calculated. Then, a TE-interaction network is constructed using the recursive interruption model on the

simulated data, which can also be converted into a linear age order by feeding the adjacency matrix of the

network to Tabu search. Another correlation is calculated between the predicted age order from the recursive

interruption model and the input age order. An average correlation of ten simulations is calculated for each

model, which suggests that in general, the recursive interruption model performs better than the sequential

interruption model in predicting a correct relative age order of TEs. Indeed, the recursive interruption model

achieves an average correlation value of ρ = 0.939 with the correct simulated answer.
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Chapter 1

Introduction and objectives

Transposable elements were first discovered by Barbara McClintock in the 1950s during her studies of maize,

work for which McClintock received the Nobel Prize in Physiology or Medicine in 1983. The patterns of

colour in maize kernels changed in different breeding crosses, which was interpreted in her study as a result

of the regulation of gene activity by some mobile genetic elements. These elements can move from place

to place within/between the chromosomes. As the elements move, they mutate genes in some of the cells

and change the colour of maize kernels due to their effects on pigmentation genes [14]. These mobile genetic

elements are named transposable elements (TEs), or transposons.

Transposable elements were dismissed at one point as being useless, but they are emerging to be thought

of as major players in evolution. Indeed, the impact of TEs on genome evolution appears to be extensive

and they are even believed to promote speciation [42] and can therefore be seen as a driver of evolution.

The evolutionary history of a TE family in a species may represent a plentiful source of information about

genome evolution. Additionally, more and more evidence is emerging that active TEs play a significant role

in human biology and disease as they create genetic diversity in human populations and can integrate into

genes, potentially causing disease. However, little analysis is currently being undertaken in determining what

factors influence their activity, what occurred throughout evolution, and in understanding how TEs change

over time.

1.1 Motivations

In this section, the motivations of the thesis will be discussed from the impacts of TEs on genomes as well

as some cases of human diseases caused by TE retrotranspositions.
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1.1.1 The impact of TEs on genomes

Though the number of genes in a genome grows from bacteria to higher organisms, it is the repeats, especially

TEs, that account for the major differences in genome size within species, and even between closely related

species [14]; that is, genome size is not correlated with the complexity of the organism [143]. Retrotransposons

are major players in promoting the increase of genome size. It has been shown using genomic studies of ancient

human remains that the human genome is continuing to expand at a rate between 1 and 10 million base

pairs per million years, and this expansion is heavily influenced by retrotransposition, the transposition of

retrotransposons [71]. For example, there are ∼2,000 L1 and ∼7,000 Alu copies accumulated over the past

∼6 Myr of human evolution [127]. Not only in humans, TEs influence plant genome sizes significantly as well.

The sizes of plant genomes span across many orders of magnitude ranging from about 63 Mbp of the Genlisea

genome [51] to more than 110,000 Mbp of the lily Fritillaria assyriaca [4], which is primarily the consequence

of polyploidization and TE proliferation [27]. Moreover, studies of maize [122] and the rice Oryza australiensis

[116] show that LTR retrotransposition doubled the genome size in the two species independently.

TEs also impact host genomes by generating genomic instability due to their continuous activity over years.

The major way that a retrotransposon alters genome function is by inserting itself into protein-coding or

regulatory regions. There are a number of examples of genetic disorders that are caused by the expansion of

microsatellites [65, 26, 28], and non-LTR retrotransposons are the source of microsatellites. For example, it

is known that about 20% of all microsatellites shared by the human and chimpanzee genomes lie within Alu

elements [72].

Retrotransposons can generate genomic rearrangements as well, such as deletions, duplications, inversions,

or translocations. It was observed in cultured human cells that ∼20% of L1 insertions were related with

structural rearrangements [30], including insertion-mediated deletions; that is, concurrent deletions at the

insertion site. It has been estimated that during primate evolution, about 45,000 insertion-mediated deletions

might have removed over 30 Mbp of genomic sequence [29].

Moreover, transposons can mediate the formation of a new gene family [106] or impact gene expression.

TEs may influence the expression of surrounding genes often due to a regulatory promoter1 and terminator2

sequence occuring in LTRs [101]. Thus, TEs can be used as tools in genetic research to either open or

terminate the expression of nearby genes.

Last but not least, TEs are of interest for their own sake as they have been a powerful evolutionary force in

shaping genomes. The ubiquity of TEs raises a number of questions about the relationships between TEs

1A promoter is a region of DNA that facilitates the transcription of a particular gene. Promoters are located near the genes

they regulate, on the same strand and typically upstream (towards the 5’ region of the sense strand).
2A terminator is a section of genetic sequence that marks the end of gene or operon on genomic DNA for transcription.
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and their host genomes and the significance of these elements on the evolution of their hosts. Knowledge

of the location of TEs can also be helpful in the determination of the evolutionary history of a locus of a

genome.

1.1.2 Transposable elements causing human diseases

TEs have co-existed with their host organisms for an exceptionally long period, during which their transpo-

sition activities have contributed to their host genomes in both positive and negative ways. Transposition

of currently active elements as well as recombination involving repetitive sequences can be responsible for

genetic diseases, and there is a growing understanding of the specific negative impacts of TEs in human dis-

ease. Generally, the TE-associated insertional mutagenesis and recombination may cause DNA damage and

contribute to human diseases. In this subsection, some examples of human diseases caused by TE activities

will be described.

Retrotransposition events occur in both the germline and somatic tissues [30]. The transposition of TEs has

been implicated in processes ranging from cancer to brain development. The brain has one of the highest

average frequencies of transposable element activity of all tissues in the human body [86]. In very recent

research on Alzheimer’s disease, a molecular mechanism of the Alzheimer’s process was proposed to be caused

by Alu elements losing their normal controls as a person ages, wreaking havoc on the machinery that supplies

energy to brain cells and leading to a loss of neurons and dementia [86]. The authors hypothesize that through

human-specific neurologic pathways, Alu insertions in mitochondrial genes can cause progressive neurological

disfunction, which may underlie the origin of higher cognitive function [86]. Therefore, retrotransposons have

played an important role in primate evolution.

Human TEs have been reported to cause several types of cancer, such as breast cancer, colon cancer,

retinoblastoma, neurofibromatosis, hepatoma, etc., through insertional mutagenesis of genes that are im-

portant to malignant transformation [10]. For example, the most up-to-date research in [126] has shown that

a hot L1 (defined as showing at least one-third of the activity of L1RP in [17]) source TE on Chromosome 17

of a patient’s genome interrupted somatic repression in normal colon tissues, and initiated colorectal cancer

by disrupting the APC tumor suppressor gene [103]. The fact that L1 transpositions occur in human tumors

suggests the possibility that somatic L1 insertions may play a role as driver mutations during the stages of

initiation, progression, and metastasis of tumors [126].

Non-LTR retrotransposons are deemed as the major source of TE-related mutagenesis in the human genome.

There have been a number of cases shown to cause heritable diseases, as a result of human genetic disorders

caused by de novo L1, Alu and SVA insertions, such as haemophilia, cystic fibrosis, Apert syndrome, neu-

rofibromatosis, Duchenne muscular dystrophy, β-thalassaemia, and hypercholesterolaemia [30]. Table 1.1,
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TE insertion Chromosome Disease caused by TE insertion Reported papers

Alu insertions

X Hemophilia B [34, 25]

X Hemophilia A [25]

X Dent’s disease [25]

X X-linked agammaglobulinemia [25]

X X-linked severe combined immunodeficiency [34]

X Glycerol kinase deficiency [34]

X Adrenoleukodystrophy [25]

X Menkes disease [52]

X Hyper-immunoglobulin M syndrome [5]

1 Retinal blinding [25]

1 Type 1 antithrombin deficiency [25]

2 Muckle-Wells syndrome [25]

2 Hereditary non-polyposis colorectal cancer [25]

3 Hypocalciuric hypercalcemia and hyperparathyroidism [34]

3 Cholinesterase deficiency [34]

3 Aplasia anterior pituitary [25]

5 Associated with leukemia [34]

5 Hereditary desmoid disease [34]

7 Chronic hemolytic anemia [95]

7 Cystic fibrosis [24]

8 Branchio-oto-renal syndrome [25]

8 Lipoprotein lipase deficiency [110]

8 CHARGE syndrome [142]

9 Walker Warburg syndrome [15]

10 Autoimmune lymphoproliferative syndrome [25]

10 Apert syndrome [34]

11 Complement deficiency [34]

11 Acute intermittent porphyria [25]

12 Human-specific evolutionary change [15]

12 Mucolipidosis type II

13 and 17 Breast cancer [34]

17 Neurofibromatosis [34]

L1 insertions

X Choroideremia [25]

X Chronic granulomatous disease [25]

X X-linked Duchenne muscular dystrophy [25, 111]

X Hemophilia A [25]

X Hemophilia B [25]

X X-linked retinitus pigmentosa [25]

X Coffin-Lowry syndrome [25]

5 Colon cancer [25]

9 Fukuyama-type congenital muscular dystrophy [25]

11 Beta-thalassemia [25]

11 Pyruvate dehydrogenase complex deficiency [15]

Table 1.1: Human diseases caused by TE insertions.
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adapted from [9], gives more details about some diseases caused by the insertions of L1 and Alu, the active

elements in humans.

1.1.3 Perspective

It is important to understand the patterns of the activities of TEs and the factors that may change their

activities, because such TE activities can powerfully influence the structure of the genome, including the

capacity of chromosomes to rearrange and to regulate transcription. And, as discussed above, they are often

important in understanding human disease. Further, identifying repetitive DNA sequences in eukaryotic DNA

is essential in genome analysis, because these repeats offer an opportunity to study molecular evolution as

“molecular fossils” in evolutionary studies based on comparative analysis of genomes from different species. It

is amazing how much regarding evolution can be inferred from a single genome sequence, as most evolutionary

analysis require sequences from multiple genomes. This might be useful in situations where TEs change

quickly and multiple genomes are not available. The dynamic of what causes TE families as a whole to

evolve is also of interest.

1.2 Objectives and layout of the thesis

The research of this thesis will be conducted only on data regarding human TEs. We intend to contribute

to the understanding of how the TE propagation through evolution shapes the genome, how the age and

lifespan of TEs can be predicted from a single genome, and a determination of certain factors that affect the

activities of active TEs that may cause human disease. The major work of the thesis will be composed of

four major goals with their corresponding chapters:

Goal 1 Create a model that describes TEs and remnants of TEs formally (Chapter 4).

After an extensive literature survey on transposable elements, we found that there did not exist a

standard model that describes/defines the topic in a clear and consistent way. For example, the use of

many terms are frequently ambiguous, such as a transposable element, a subfamily of a transposon, a

clade of transposons, a group of transposable element fragments, etc. Moreover, some computational

approaches regarding TEs were described in a prose-like language, without any formal algorithms, which

brought in different ambiguities when reproducing the method. Therefore, our first goal is to create

a formal model that consists of an initial definition of TEs, TE fragments, and interruptions between

TEs, etc. This model does not attempt to capture the molecular operations of TE movement, but only

describes the order and distance between TE fragments in genomic sequences by grouping homologous

TEs together. It is a high-level abstraction defining TEs and their positional relationships, which serves
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as a baseline in describing our other formal models.

Goal 2 Understand the factors that affect the activities of active TEs, and understand how activity is affected

(Chapter 3).

The factors that change transpositional activities is largely a mystery, and it might be the result of a

number of factors or combinations of them. Our goal is to understand what factors affect a transposon’s

activity level, and determine how they affect them. We will study “harmful mutation regions” in active

TEs, where mutations within these regions will decrease the activities of the host element.

Goal 3 Predict the age, lifespan, and activity of TEs in the human genome from the remnants of these elements

from a genome. In order to make this prediction, two formal models are created in Chapters 5 and 6

that describe and can be used to analyze and predict the ages of TEs.

By analyzing TE remnants in genomic sequences, the knowledge of TE activities can be inferred. Then

understanding how TEs interrupted within each other will reveal information regarding the age and

lifespan of a transposon; that is, when TEs activated and deactivated through evolution. Then the

dynamics of TE transpositions through evolution can be predicted. This goal can be achieved by two

sub-goals as follows.

• Understand interruption activities between TEs.

The interruptions are classified into two different types based on the fashion in which they nested.

The formal model in Goal 1 is applied to these two models. The first application was the Sequen-

tial Interruption model, which captures the interruptions between pairs of TEs, and structures the

abundance of these interruptions into a so-called interruption matrix. The second application was

the Recursive Interruption model that describes the nested nature of the recursive interruptions

with a context-free grammar. The parse trees of the grammar can illustrate the relationships of

TE nesting using the structure of the trees.

• Predict an overall TE-interaction network.

Several of the small interruption trees can be combined together to form a weighted directed graph

to illustrate all TE activity, which can also help in the understanding of TE evolution as a whole.

Such a graph is created for all TEs in order and is used to predict the age order and lifespans of

these TEs.

Goal 4 Understand the dynamics of TEs transpositions through evolution (Chapter 7).

Another goal of the thesis is to create a simulation that imitates the evolutionary history of the prop-

agation of TEs in the human genome. This is done in such a way that the remnants of TEs with their
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relative positions in the genome are comparable to the actual TE remnants in the human genome. Then

by analyzing the generated TE remnants and predicting the TE evolution using the tools generated

for Goal 3, this work can be used as a type of verification of the models and algorithms in Goal 3.

A simulation also allows for specific hypotheses regarding TEs to be tested, which is of interest to the

community. Moreover, some aspects of Goal 2 inform the simulation itself. The two sub-goals are

listed as follows.

• Simulate TE propagation through evolution.

• Use the simulated interruptions to verify the prediction models.

Hence, the various goals of this thesis are quite interconnected:

• Goal 1 is used as a basic frame work for Goal 3 and Goal 4;

• Goal 2 and Goal 3 inform the process of simulation of Goal 4;

• Goal 4 is used as a verification for Goal 3.

These goals all help in the study of transposable elements, their influence on genomes, and their ability to

be used for evolutionary prediction.
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Chapter 2

Background

Transposable elements are one type of repetitive DNA sequences in eukaryotic genomes. Typically, repetitive

DNA sequences are broadly classified into two large families within eukaryotic genomes, tandem repeats and

dispersed repeats, and each of these two families can be further divided into several subfamilies as shown in

Figure 2.1.

Figure 2.1: Repeated DNA sequences in eukaryotic genomes, adapted from [119]. Transposons are
marked in red.

TEs are found in both eukaryotic and prokaryotic organisms, including plants, animals, bacteria, and archaea.

As shown in Figure 2.2 (summarized from [14, 125, 148, 136]), the proportion of TEs in a genome differs

broadly depending on the organism, ranging from a few percent (0.3%) in the bacteria Escherichia coli to

almost the entire genome (>80%) in maize Zea mays. In humans, 66–69% of the genome is repetitive or

repeat-derived [32], whereas coding sequences comprise less than 5% of the genome. The majority of repeats

in human are transposable elements, making up about 45% of the genome [88].

Some TEs have an evolutionary history dating back hundreds of millions of years during which they adaptively
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Figure 2.2: The proportions of TEs in several genomes. As shown in the stacked bars, the TE
proportions in yeast and fruitfly are shown as value ranges (3% to 5% in yeast, and 15% to 22% in
fruitfly). The reason that there exists ranges is because the transposons in these species are transient
components of those genomes, which means the repeat fraction of these genomes evolves very rapidly
within species [100].

diversified into forms that share very little sequence homology. Over time, inactivated copies of these elements

have accumulated and now comprise a significant proportion of many genomes, serving as an important

opportunity to study molecular evolution. This is because every element in the genome represents a “fossil

record” that throughout evolution accumulates mutations randomly and independently, meaning that they

can be used to study genomic changes both between and within species. “The mammalian genome could be

compared, somewhat poetically, with a coral reef, in which the transposable elements are the coral, the reef

is built of the fossils of their ancestors, and the genes are the inhabiting fish, anemones, sea stars, and so

on.” [130]

So far in this chapter, a brief introduction about TEs including their proportions in genomes and some

key terminologies has been provided, which gives a general idea about what TEs are. In the next sections,

some necessary knowledge regarding the topic of the thesis will be provided from the perspectives of biology,

bioinformatics, and previous research on TEs respectively.
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2.1 Biological background

2.1.1 Classification of transposable elements

Transposition is defined as the movement of genetic material from one genomic location, the donor site, to

another, the target site, within the same genome [50]. Transposable elements are traditionally classified into

two broad classes on the basis of their transposition mechanism and sequence organization [43]:

Figure 2.3: Conceptual diagrams representing the transposition mechanisms. (a) Retrotransposons
(“copy-and-paste” mechanism) copy themselves in two stages: first from DNA to RNA by transcription,
then from RNA back to DNA by reverse transcription. The DNA copy is then inserted into the
genome in a new position. (b) DNA transposons (“cut-and-paste” mechanism) do not involve an
RNA intermediate. The transpositions in these classes are catalyzed by various types of transposase
enzymes.

• Class I elements (“copy-and-paste” mechanism as the conceptual diagrams shown in Figure 2.3 (a)) are

those that transpose via reverse transcription of an RNA intermediate, referred to as retrotransposons.

The RNA intermediate is first transcribed from a genomic copy of DNA, then reverse-transcribed into

DNA that is identical to the original DNA by a reverse transcriptase1 encoded in the TE sequence,

1Reverse transcriptase is an RNA-independent DNA polymerase that catalyzes the synthesis of DNA from RNA.
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and each complete replication cycle produces one new copy into the host DNA [145]. Consequently,

retrotransposons can increase the copy numbers of elements and thereby increase genome size; indeed,

they are major players in promoting the increase of genome size.

• Class II elements (“cut-and-paste” mechanism as the conceptual diagrams shown in Figure 2.3 (b))

move primarily through a DNA-mediated mechanism of excision and insertion, and are often called

DNA transposons.

The class I and class II elements coexist in an extensive range of eukaryotes, which suggests their ancient

evolutionary origins; however, there exist many variations in the activity, copy number, and diversity of TEs

in the genomes of different species [49].

TEs can also be divided into several types on the basis of the structural features of their sequences: LTR

retrotransposons, LINEs, SINEs, and DNA transposons (summarized as in Figure 2.4). Note that this

classification is according to structural features of TEs as in Section 2.1.2, which is equivalent to the simplified

classification shown in the red subtree in Figure 2.1. Among the four types of TEs, non-LTR retrotransposons

(LINEs and SINEs) have been major factors of genome evolution by providing diversity and plasticity to the

genome [71].

Figure 2.4: The classification of transposable elements can be represented as a tree.

TEs are also described as being autonomous or non-autonomous based on whether or not they encode their

own genes for transposition. Those transposable elements that possess a complete set of transposition protein

domains are called autonomous. Transposable elements that lack an intact set of mobility-associated genes are

called non-autonomous TEs. The transposition of non-autonomous TEs requires involvement of protein(s)

from either autonomous element(s) or from the genome in which they reside. For example, the autonomous

Ac elements in maize can transpose themselves regardless of the other TEs present in the genome ; in contrast,

the non-autonomous Ds elements cannot transpose without the aids of one or more copies of Ac elements in

the genome [50].
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Nevertheless, the term autonomous does not indicate that a TE is active or functional. A TE is defined as ac-

tive if it can transpose either autonomously or non-autonomously. Typically, the lifespan of one transposable

element starts from an activation of the transposon, followed by a burst of transpositions, while accumulating

mutations, followed by the slowing of mobile activity after additional mutations. The transposon then ebbs

further until it becomes inactive. The inactive elements, referred to as fossil transposable elements, become

relics and can get interrupted by the transpositions of other active elements [47]. Active elements comprise

only a tiny proportion of the TE content of the genomes of most organisms. The genomes of eukaryotes

are filled with thousands of copies of the remnants of inactive TEs. For example, there are roughly 50,000

autonomous and 200,000 non-autonomous fossil DNA transposons in the human genome, and none of them

are active any more [50].

The human genome consists of a large amount of TEs and their remnants. Table 2.1 lists the percentage of

TE contents in each chromosome calculated from the hg38 assembly2 of the human genome. It should be

noted that the total percentage of TEs we calculated on hg38 is 46.69% in the thesis, which is slightly higher

than the 45% estimated in the year of 2009 [88] from a previous version of the human genome.

Within each type, TEs can be even further subdivided into families then subfamilies, based on their details

of the transposition mechanism, and sequence similarity. For example, L1, L2 are families under LINEs,

while Alu, SVA are families under SINEs; furthermore, there are subfamilies AluY , AluJ , AluS under the

family of Alu. Table 2.2 (information from [84]) is a detailed summary of each type of TE in the human

genome.

A gust of transposition of L1 and Alu elements in the primate lineage occurred about 40 million years ago

(MYA), followed by a slowing of transpositional activity since then [73]. Recent evidence indicates that there

are 35 to 40 subfamilies of Alu, SVA, and L1 elements staying actively mobile in the human genome [104, 71],

and all of the active transposable elements only comprise less than 0.05% of the nucleotides in the human

genome. It has been estimated that active human transposons generate about one insertion for every 10 to

100 live births [69, 89, 31]. The rate of L1 retrotransposition is estimated as 1/140 live births per generation

[38], and one new Alu insertion is generated for every 20 live human births [31]. The active TEs along with

their copy numbers are listed in Table 2.2 as well.

2.1.2 Structural features of TE sequences

In mammals, almost all transposable elements fall into one of the four types listed in Figure 2.4, of which

three transpose through RNA intermediates and one transposes directly as DNA. Transposable elements use

different strategies for their evolutionary survival (summarized from [84]):

2hg38 is the December 2013 assembly of the human genome.
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LINE SINE LTR DNA Total TE percentage

Chromosome 1 20.24% 14.39% 8.23% 3.27% 46.19%

Chromosome 2 22.63% 11.90% 9.16% 3.83% 47.58%

Chromosome 3 23.52% 12.10% 9.80% 3.99% 49.46%

Chromosome 4 24.57% 10.27% 11.51% 3.70% 50.11%

Chromosome 5 23.80% 11.26% 9.92% 3.79% 48.83%

Chromosome 6 23.40% 11.62% 9.67% 3.83% 48.58%

Chromosome 7 21.72% 13.81% 8.87% 3.51% 47.98%

Chromosome 8 23.15% 12.03% 10.04% 3.61% 48.90%

Chromosome 9 19.75% 12.28% 7.78% 3.09% 42.96%

Chromosome 10 21.00% 13.94% 8.47% 3.64% 47.11%

Chromosome 11 22.99% 13.44% 8.96% 3.38% 48.81%

Chromosome 12 21.75% 14.94% 9.43% 3.72% 49.90%

Chromosome 13 19.41% 8.58% 8.90% 3.07% 40.01%

Chromosome 14 18.61% 11.42% 8.18% 3.01% 41.28%

Chromosome 15 17.80% 12.56% 6.24% 3.00% 39.65%

Chromosome 16 14.70% 18.05% 7.26% 3.08% 43.12%

Chromosome 17 15.17% 21.21% 6.27% 3.12% 45.81%

Chromosome 18 20.88% 10.39% 8.84% 3.48% 43.64%

Chromosome 19 13.55% 27.14% 8.53% 2.11% 51.35%

Chromosome 20 19.14% 15.68% 8.55% 4.06% 47.47%

Chromosome 21 16.17% 9.05% 9.82% 2.64% 37.73%

Chromosome 22 12.13% 15.81% 5.00% 2.05% 35.01%

Chromosome X 33.63% 10.36% 11.24% 3.22% 58.50%

Chromosome Y 11.61% 4.63% 7.81% 0.81% 24.87%

Total percentage in hg38 21.42% 12.82% 9.00% 3.40% 46.69%

Table 2.1: A summary of the percentage of TE content in the human genome (calculated on hg38 ).
It also lists the percentage of TEs of four different types and summarized by chromosomes.
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TE Class Class I Elements Class II Elements

Class Name Retrotransposons

DNA Transposons

Type LTR Retrotransposons
Non-LTR Retrotransposons

LINE SINE

Mode of Autonomous Non-autonomous Autonomous Non-autonomous Autonomous Non-autonomous

Transposition

Length 6-11 Kbp 1.5-3 Kbp 6-8 Kbp 100-300 bp 2-3 Kbp 80-3000 bp

Copy Number 450,000 850,000 1,500,000 300,000

Major Families

ERV, ERVK, ERVL,
L1 (16.9% of the human genome),

Alu (10.6% of the human genome) hAT, Tc1/mariner, piggyBac,

Tf series, Ty serie, L2, L3 MIR, Ther2/MIR3 Sleeping Beauty, Tn series, Mu, Mos1,

MaLR, copia, Toms, 17.6 Tol2, hobo, transits, MITEs

Copy Number L1 (>500,000 copies, ∼150 Myr) Alu (∼1.1 million copies, ∼65 Myr)

and age less than 100 copies are functional SVA (∼3,000 copies)

Table 2.2: Overview of different classes of transposable elements (reflecting the classification in
Figure 2.4) in the human genome.

• LINEs and SINEs depend on vertical transmission, meaning that the new “offspring” TEs are produced

from their “parent” TEs within the host genome.

• DNA transposons depend on horizontal transfer, meaning that the transfer between members of the

same species are not in a parent-child relationship.

• LTR retrotransposons use both strategies.

It should be noted that it is beneficial to discuss the biological details in order to gain an understanding of the

variation, since different parts of this thesis deal with different specific TEs and TE properties. Also, different

existing TE-related tools take into account specific features, which are worth discussing. The biological

insights of each type of TE is summarized as follows (information from [41], [84], [121], and [71]):

DNA transposons

DNA transposons are prevalent in bacteria, but are also found in the genomes of many metazoa, including

insects, worms, and humans [70]. These elements are generally excised from one genomic site and integrated

into another by a “cut-and-paste” mechanism (Figure 2.3).

As shown in Figure 2.5, DNA transposons are usually composed of terminal inverted repeat sequences (TIRs;

in Figure 2.5, big blue arrows are in opposite directions) at their front and rear ends. Between TIRs is one

ORF3 sequence (red boxes in Figure 2.5, 2.6, and 2.7) that encodes a transposase protein that recognizes

3An open reading frame (ORF) is a DNA sequence that does not contain a stop codon (a nucleotide triplet within messenger
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Figure 2.5: Structural features of DNA transposons, which may contain both autonomous and non-
autonomous elements.

the TIRs and cuts the transposon out of its genomic site. The two ends of the transposon are then held

together by the transposase while it finds another site in the DNA to cut and insert into. Thus, the process

uses a so-called “cut-and-paste” mechanism. All DNA transposons, both autonomous and non-autonomous,

are surrounded by short duplications of the genomic sequence at their insertion sites, called target site

duplications (TSDs)4. This occurs because the double-stranded target site is cut in a staggered manner,

the single-stranded flanks are then repaired, and two repeats in the same orientation (called direct repeats,

opposite to inverted repeats), are created on both sides of the integrated TE [50]. The TSDs can either be

of fixed or variable lengths, depending on the type of elements. In fact, the integration of almost all TEs

results in the target-site duplications as shown in black thin arrows flanking the element in Figure 2.5, 2.6,

and 2.7. In fact, non-autonomous DNA transposons are usually derived from an autonomous transposon by

an internal deletion.

There are nearly no known active DNA transposons in mammals (except bats5) [71]. It has been previously

believed that DNA transposons have not been active in the mammalian lineage for at least 40 million years

(Mys). There are only 15 superfamilies to which currently known eukaryotic DNA transposons belong (de-

spite their enormous diversity and abundance): hapaev, En/Spm (CACTA), hAT, Harbinger (Pif), ISL2EU

(IS4EU), Kolobok, Mariner, Merlin, Mirage, MuDR(MULE), Novosib, P, PiggyBac, Rehavkus, and Transib

[68].

The human genome contains the remnants of at least five major families of DNA transposons, which can be

subdivided into many transposons with independent origins. Table 2.3, derived from [112], is a summary of

currently recognizable DNA transposons in the human genome with copy number greater than 100.

DNA transposons generally transpose to genomic sites less than 100 Kbp from their original site, called

RNA that signals a termination of translation) in a given reading frame.
4When a transposon inserts itself into host DNA, a short (7-20bp) segment of host DNA is replicated at the site of insertion,

which is called ‘target site duplication’ or TSD.
5Eight different families of DNA transposons, including hAT family members and piggyBac-like elements, were found active

in the genome of the little brown bat, Myotis lucifigus.
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Family DNA Transposons Number of Transposons Copy Number

hAT

Autonomous:

Blackjack, Charlie, Cheshire, Zaphod 19 46,133

Nonautonomous:

Arthur1, FordPrefect, MER102, MER106, MER107, MER112,

MER113, MER115, MER117, MER119, MER1, MER20, MER3,

MER30, MER33, MER45, MER58, MER5, MER63, MER69,

MER81, MER91, MER94, MER96, MER99, ORSL

52 218,059

Total 71 264,192

MuDr
Nonautonomous:

Ricksha 3 985

Total 3 985

piggyBac

Autonomous:

Looper 1 521

Nonautonomous:

MER75, MER85 3 1,569

Total 4 2,090

Tc1/mariner

Autonomous:

HSMAR, Tigger, Kanga 22 53,320

Nonautonomous:

MADE, MARNA, MER104, MER2, MER44, MER46, MER53,

MER6, MER8, MER82, MER97

23 54,718

Total 45 108,038

Unknown MER103, MER105 2 7,567

Total 2 7,567

Grand Total 125 382,872

Table 2.3: A summary of currently recognizable DNA transposons in the human genome with copy
number greater than 100.

“local hopping” [70] (e.g., the Drosophila P element), and some are able to make distant “hops” (e.g., the

fish Tc1/mariner element) as well. Moreover, DNA transposons are inclined to have short lifespans within a

species compared to LINEs, and why DNA transposons have lost their ability to move for millions of years

of mammalian evolution requires further studies.

Retrotransposons

Retrotransposons are very different from DNA transposons. They replicate and mobilize through an RNA

intermediate via a “copy-and-paste” mechanism involving the enzyme reverse transcriptase and an endonu-

clease.

Retrotransposons typically can be divided into long terminal repeat (LTR) retrotransposons (Figure 2.6) and

non-LTR retrotransposons (Figure 2.7), and non-LTR retrotransposons are subdivided into long interspersed
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nuclear elements (LINEs) and short interspersed nuclear elements (SINEs). Most of retrotransposons are

no longer able to retrotranspose. Retrotransposons have taken over large portions of the genomes of most

plants and animals. In plants, most are LTR-retrotransposons , while in mammals non-LTR retrotransposons

predominate.

Some retrotransposons are site-specific (only insert at specific sites in the genome). For instance, the non-

LTR retrotransposons of the R1 and R2 families insert themselves only at specific sequences within the

ribosomal RNA genes of insects [71]. In contrast, there are some non-LTR retrotransposons of the L1 family

that insert at many different sites that are AT-rich (e.g., 5’-TTTT/AA-3’, where “/” signifies the cut site)

[71].

LTR Retrotransposons. The LTR retrotransposons have many characteristics akin to retroviruses. They

are called LTR retrotransposons because they have long terminal repeat (LTR) sequences of 300 to 1000

nucleotides at their two ends in direct orientation. These direct repeats have the same sequence in the same

order, e.g., ABCD. In contrast, inverted repeats in DNA transposons are ABCD at one end and DCBA at

the other (example from [70]). The LTRs contain promoters that stimulate transcription of the RNA of

the element. Figure 2.6 shows the structural features of both the autonomous and non-autonomous LTR

retrotransposons. Autonomous LTR retrotransposons have the products required for transposition encoded in

open reading frames (ORFs), while non-autonomous LTR retrotransposons lack most or all coding sequence

for transposition, and their internal region can be variable in length and unrelated to the autonomous

elements.

Figure 2.6: Structural features of the autonomous and non-autonomous LTR retrotransposons (the
genes in parentheses are optional).

According to [68], there are 6 superfamilies in LTR retrotransposons: Copia, Gypsy, BEL, ERV1, ERV2,

and ERV3. Among a variety of LTR retrotransposons, only the vertebrate-specifc endogenous retroviruses

(ERVs) appear to have been active in the mammalian genome. Most (85%) of the LTR retrotransposon-
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derived TE remnants consist only of an isolated LTR, where the internal sequence has been lost by homologous

recombination [102].

Non-LTR Retrotransposons. Non-LTR retrotransposons are quite different from LTR-retrotransposons

in their mode of regulation, replication, and structure. They are divided into autonomous elements (LINEs)

and non-autonomous elements (SINEs). As shown in Figure 2.7, non-LTR retrotransposons have an internal

promoter at their 5’ end (pol II for LINEs and pol III for SINEs) that is important for starting expression

or transcription of the element RNA. Non-LTR Retrotransposons end by a simple sequence repeat at their

3’ end, usually a poly(A) tail (a region containing many A nucleotides in a row). All LINEs described so

far usually encode two proteins necessary for their retrotransposition. The 3’ tail of some SINEs and the 3’

tail of LINEs present in the same genome are related to each other (share homology) [41], which indicates

that SINEs must be aided by the transposition machinery of partner LINEs in the process of transposition

[35].

Figure 2.7: Structural features of the non-LTR retrotransposons, that contain autonomous LINEs
and non-autonomous SINEs.

In humans, LINEs are about 6 Kbp long, harbouring an internal polymerase II promoter and encoding two

open reading frames (ORFs3). ORF 1 encodes a nucleic acid binding protein (nabp) with chaperone6 and

esterase7 activities, and ORF 2 encodes a pol protein with reverse transcriptase1 and endonuclease8 activities.

It is believed that the LINE machinery is responsible for most reverse transcription in the genome, that also

includes the transposition of the non-autonomous SINEs. Three distantly related LINE families are found in

the human genome: L1, L2, and L3, among which, only L1 is still active.

The non-autonomous Alus are thought to use the transposition machinery of LINEs. They are about 100−

300 bp with no terminal repeats, harbour an internal polymerase III promoter and encode no proteins.

The human genome contains a few families of SINEs: the active Alu, SVA, and the inactive MIR and

6In molecular biology, molecular chaperones are proteins that assist the non-covalent folding or unfolding and the assembly

or disassembly of other macromolecular structures, but do not occur in these structures when the structures are performing

their normal biological functions, having completed the processes of folding and/or assembly.
7An esterase is a hydrolase enzyme that splits esters into an acid and an alcohol in a chemical reaction with water called

hydrolysis.
8Endonucleases are enzymes that cleave the phosphodiester bond within a polynucleotide chain.
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Ther2/MIR3.

One of the key facts about human retrotransposons is that humans have active TEs, called L1 s (the only

active family in LINEs in humans), and these active TEs make an endonuclease and a reverse transcriptase

that drives the retrotransposition of themselves and of other TEs, called Alu and SVA (the active families in

SINEs in humans).

2.2 Bioinformatics background

2.2.1 Sequence alignment

Many biological structures can be naturally represented by strings/sequences, such as DNA, RNA, and

proteins. Sequence alignment is a method for biological sequence comparison, which can reveal similarity

between different sequences. There exist a number of sequence alignment methods/tools, and some of them

are based on dynamic programming alignment algorithms, such as the Needleman-Wunsch algorithm [109] or

the Smith-Waterman algorithm [133], which compute the optimal alignments between two sequences.

A multiple sequence alignment (MSA), a natural extension of two-sequence comparisons, is a sequence align-

ment of three or more sequences. MSAs are a powerful way to study biological sequences. In a MSA, similar

characters among a set of sequences are aligned together in columns. Often, the goal with aligning sequences

is to reveal homology, which indicates similar position, structure, function, or characteristics due to evolu-

tionary relatedness [57]. Sequences can be aligned to visualize the effect of evolution across the whole family.

Ideally, a column of aligned characters all diverge from a common ancestor. The resulting MSA can infer se-

quence homology and guide phylogenetic analysis to assess the sequences’ shared evolutionary origins. From

this, a consensus sequence can be calculated from the result of a MSA. The consensus sequence of a multiple

alignment is, informally, a “best” single sequence to represent the alignment. For example, a consensus for

three DNA sequences

A C A G T A G

A C − − T C G

A G − − G C G

is ACAGTCG. Notice that it is possible to have more than one consensus.

It is computationally expensive to calculate the optimal alignment between multiple sequences, therefore,

most MSA tools use heuristic methods rather than global optimization.
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2.2.2 Repbase Update — the database of repetitive sequences

Most eukaryotic repetitive sequences have been reconstructed into a database called Repbase Update (RU)

[63], a database of the consensus sequences of repetitive elements (not only TEs, but also other repeats),

that are present in diverse eukaryotic organisms. RU is the major reference database of repetitive sequences

used in DNA annotation and analysis. Each sequence in the database is accompanied by a short descrip-

tion and references to the original contributors. It has been developed by Dr. Jerzy Jurka since 1990. It

continues to grow through its community-driven annotation and submission tools and now is widely used

in genome sequencing projects worldwide as a reference collection for masking and annotation of repetitive

DNA. Consequently, the repeat classification based on RU is used in many other databases (such as UCSC

genome database [120], Ensembl annotation [2]) and in secondary databases of repetitive elements. Some

TE discovery and annotation tools also use RU as their reference library, such as the ones discussed in

Section 2.2.3.

2.2.3 TE discovery tools

According to [13], there are usually two major goals in identifying TEs in genomic sequences:

• mask them as a preprocessing step in some bioinformatic tasks, such as gene finding;

• study them directly to make inferences about the biology or evolution of TEs.

These aims are incorporated into the most common systems used to detect individual instances of TEs in

genome sequences.

The detection of TEs can be conducted in different ways, depending on the level of knowledge about the

repeats that are taken into account when detecting them in a genome sequence. As suggested in [13], [121],

[88], and [91], the approaches can be classified into four categories as follows.

• Library-based approaches search the repetitive sequences by comparing input data to a set of reference

sequences (known TEs) contained in a library.

• Signature-based approaches search TEs using knowledge from their known structures.

• Comparative-genomics approaches use the fact that transposition creates large insertions that can be

detected in multiple sequence alignments and rely on neither library nor structural features.

• De novo approaches look for similar subsequences found at multiple positions within a sequence.

In the next subsections, we will elaborate on each of these approaches in more detail.
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Library-based techniques

Library-based methods identify repetitive sequences by comparing input datasets against a set of reference

repeat sequences (known TEs) [121]. The library can either be user-defined, or it can be a general library,

such as the commonly used Repbase Update [63]. The advantages of library-based techniques are that this

method is usually efficient and effective at finding repeats in the library, whereas the disadvantages are that

it heavily depends on how much we already know, and fails to detect the repeats that do not exist in the

library.

The most widely used library-based program is RepeatMasker [131], which is the major library-based tool

used in repeat identification. It has been identified as one of the most accurate tools in detecting TEs

and it has become a standard tool for finding repeats in genomes [91]. Using precompiled repeat libraries,

RepeatMasker finds copies of known repeat families represented in Repbase Update. As the name implies, it

was designed to discover repeats and mask them. The program performs a similarity search based on local

alignments, then outputs masked genomic DNA and a tabular summary of TE content.

Table 2.4 is an example of the tabular summary output by RepeatMasker, which shows eight repeat fragments

identified in a query sequence named HSU08988, and each row represents one fragment. The columns are

information about each fragment. For example, the first fragment in the list is from position 6563 to position

6781 in the query sequence. It is a fragment from position 103 to position 336 of the complementary

sequence of element MER7A (belongs to a DNA transposon MER2 family), with 15.6% percent divergence,

6.2% deletion, and 0% insertion compared to the MER7A consensus in the Repbase Update.

position in query position in repeat

score % % % query C matching repeat left end begin

div. del. ins. sequence begin end left + repeat class/family begin end left

1306 15.6 6.2 0 HSU08988 6563 6781 -22462 C MER7A DNA/MER2 0 336 103

12204 10 2.4 1.8 HSU08988 6782 7714 -21529 C TIGGER1 DNA/MER2 0 2418 1493

279 3 0 0 HSU08988 7719 7751 -21492 + (TTTTA)n Simple repeat 1 33 0

1765 13.4 6.5 1.8 HSU08988 7752 8022 -21221 C AluSx SINE/Alu -23 289 1

12204 10 2.4 1.8 HSU08988 8023 8694 -20549 C TIGGER1 DNA/MER2 -925 1493 827

1984 11.1 0.3 0.7 HSU08988 8695 9000 -20243 C AluSg SINE/Alu -5 305 1

12204 10 2.4 1.8 HSU08988 9001 9695 -19548 C TIGGER1 DNA/MER2 -1591 827 2

711 21.2 1.4 0 HSU08988 9696 9816 -19427 C MER7A DNA/MER2 -224 122 2

Table 2.4: An example of a tabular output of RepeatMasker. In the tabular summary, there are
eight repeat fragments listed, which were identified in the query sequence named HSU08988. Each
row represents one fragment, and the columns are the detailed information about the fragments.

RepeatMasker uses multi-processor systems and a simple database search approach (e.g., BLAST [78]),

making it one of the fastest and most effective repeat finders [90]. Because of the importance of this tool
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in the field of TE identification, in the thesis, TE fragments are defined with the aid of RepeatMasker in

Chapter 4.

In addition to the tabular output as in Table 2.4, there are several library-based repeat detection tools

that use visualization to display the repeat fragments, such as CENSOR [64]. It applies the same kind of

approach used in RepeatMasker, then graphically maps detected repeats with colour-coding of different types

of repeats.

Signature-based techniques

Unlike library-based tools, all signature-based tools employ prior knowledge about the common structural

features shared by different TEs in the same class as introduced in Section 2.1.2, and it is less biased by

similarity to the set of known elements. Given a particular repeat group, signature-based repeat detection

tools search query sequences for motifs9 and spatial arrangements characteristic of that group [121]. This

approach can be used to find new elements of known groups, but not new groups of elements. The limitation

of such approaches is that it depends entirely on how much is known about the structure of elements belonging

to particular groups, and also on the existence of characteristic structures.

LTR retrotransposons are bordered by long terminal repeats (LTRs), with a more detailed structure shown

in Figure 2.7. Based on the structure, there have been several tools developed to detect solely LTR retro-

transposons, by searching for the common structural signals existing in LTR retrotransposons as listed below.

Some of the features correspond to parameters that can be adjusted by the users of these tools, such as:

• a range of lengths of the LTR sequences;

• the distance between the two LTRs of an element;

• the presence of TSDs4 at each end;

• the presence of critical regions for replication, such as the primer binding site (PBSs)10 and the poly-

purine tract (PPTs);

• the percent identity between the two LTRs;

• the existence of some conserved motifs corresponding to the genes they encode.

9A sequence motif means a sequence pattern of nucleotides in a DNA sequence or amino acids in a protein.
10A primer binding site is a region of a nucleotide sequence where an RNA or DNA single-stranded primer binds to start

replication. The primer binding site is on one of the two complementary strands of a double-stranded nucleotide polymer, in

the strand which is to be copied, or is within a single-stranded nucleotide polymer sequence.
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For example, the method LTR STRUC [98] searches a query sequence for pairs of similar LTRs separated

by a distance expected for this group of retrotransposons. The pairwise alignment of LTRs is then used to

calculate the boundaries of the LTRs on the original segment, which should span a full-length element from

the start of the 5’ LTR to the end of the 3’ LTR. LTR par [66] is a similar structure-based method to detect

LTR retrotransposons, which improves on some of the weaknesses in LTR STRUC. Both LTR-detection tools

have significant advantages over the library-based methods in the case of LTR retrotransposon families; thus,

they are discovery tools that complement the library-based methods.

There are also some programs designed to detect non-LTR retrotransposons (SINEs, LINEs). For example,

as illustrated in Figure 2.7, LINES and SINEs are flanked by target site duplications (TSDs), so the tools

such as TSDfinder [137] are designed to precisely identify transposon boundaries and refine the coordinates of

L1 insertions that are detected by RepeatMasker [131], using the structural feature shared by the L1 family.

The SINEDR [141] identification tool can detect known SINEs that are flanked by TSDs. The RTAnalyzer

[92] is designed to detect sequences of retrotransposed origin. It is used to detect the common signatures of L1

transposition to find out if the sequences have been transposed by an L1, by calculating a transposition score

on the basis of the common signatures, such as the presence of a poly(A) tail, TSDs, and an endonuclease

cleavage site in the 5’ end of the sequence.

Comparative genomic method

An innovative method in [19] uses the fact that transposition creates large insertions to detect new TE families

and instances, depending on neither library nor structural features. These large insertions can be detected

in multiple sequence alignments. This method has two major advantages over other repeat-finding methods:

first, in contrast to determining the location of repeats using sequence similarity, this method utilizes the

genomic artifacts of the transposition mechanism itself in the context of multiple alignments; second, it can

derive the lifespan of each repeat instance with the aid of phylogenetic trees.

This method looks for insertion regions (IRs) in multiple alignments of orthologous genome sequences that

are interrupted by a large insertion in one or more species. The large insertions detected are then filtered

and concatenated as IRs; then IRs are locally aligned with all other IRs to identify repeat IRs. This method

is useful in detecting new TE families and instances, especially in placing TEs to branches of a phylogenetic

tree.

In particular, this approach has the following three advantages: first, it depends less on the sequence simi-

larity than do the commonly used library-based methods, thus it provides a complementary approach to TE

identification; second, this method allows placing each insertion event to branches of a phylogeny, which is

valuable information for understanding the transposition mechanism and the evolution of the host genomes;

finally, the method is flexible in choosing between stringent criteria and low-quality cutoffs on repeat content
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and structure, which allows mining deep into the past of TEs of the genomes. However, there exists some

potential drawbacks caused by the huge difficulty in computing whole genome alignments.

De novo repeat discovery

De novo repeat discovery algorithms identify repetitive elements without using reference sequences or known

structures in the repeat identification process. As the number of sequenced genomes increases, there is little

or no information about their repeat content, thus de novo repeat discovery approaches are proposed to

discover new repeats using different kinds of methodology, with different final goals. These methods usually

use assembled sequence data, so both sequencing and assembly strategies are critical to the results [13]. The

major challenges are to characterize TEs from other TE classes and to distinguish new TE families.

All de novo discovery of repeat families starts with identifying relatively short sequences that are found

multiple times in a sequence or sequence set using classical computational strategies. The following list briefly

describes some general approaches that have been utilized in identification and clustering of repeats.

• Self-comparison approaches

The self-comparison approach compares DNA sequence with itself to identify groups of similar se-

quences. This approach is used by the Repeat Pattern Toolkit (RPT) [1], the first attempt to detect

repeats using the self-comparison approach. The RPT is based on a sequence similarity scoring system,

and uses BLAST [3] to perform the self-comparison. The grouping of repeats is then formed by cluster-

ing. RECON [6], one of the most commonly used programs, also uses the BLAST program to perform

the self-comparison, followed by a clustering method to form repeat families. PILER [37], repeat iden-

tification tool for assembled genomic regions, uses another procedure to perform the self-alignments

called Pairwise Alignment of Long Sequences.

• k-mer approaches

A substring of length k occurring more than once with perfect matching in a sequence is identified as

a repeat in the k-mer or “word counting” approaches. One of the first programs to apply the k-mer

approach is called REPuter [82]. Based on a suffix-tree data structure, it can determine all the exact

repetitive substrings in a complete genome. RepeatScout [117] first builds a library of high frequency

k-mers with fixed length, then uses these as seeds for a greedy search.

• Spaced seed approaches

Spaced seed approaches are an extension of the k-mer approach, which allows some differences in the

sequence of the seed, such as the length and/or the percentage identity. PatternHunter [93], as the first

spaced seed tool, allows mismatches in fixed positions and at the same time requires identical matches
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in others. RAP [18] uses a complex indexing strategy allowing space efficient counting of words of a

specific size.

• Other approaches

There exists some other approaches which detect and classify TEs, but do not fall into any of the above

categories. One example is the RepeatGluer [115] program, which represents the mosaic structure of

sub-repeats using A-Bruijn graph representation. The A-Bruijn graph created by RepeatGluer derives

the mosaic repeat structure from a set of pairwise similarities; furthermore, by traversing the graph, it

can also illustrate evolutionary history of repeats.

2.3 Previous studies on TE phylogeny and evolution

2.3.1 TE phylogeny based on sequence divergence

Some TEs have an evolutionary history dating back hundreds of millions of years in which they adaptively

diversified into different forms. In the meantime, inactive copies of these elements have accumulated and

now comprise a significant proportion of many genomes. It is possible to perform a phylogenetic analyses via

a multiple sequence alignment of transposons, under the assumption that transposon evolution behaves like

a molecular clock after activation (a discussion of this assumption will follow below). Indeed, the molecular

clock hypothesis is that for every given gene (or protein), the rate of molecular evolution is approximately

constant. The age of transposons can be estimated by comparing the percentage of sequence divergence with

some known age of divergence of species such as humans and Old World Monkeys (adapted from [114]) as

follows:

• most transposable elements in the human genome are ancient (∼ 100 MYA), which get removed from

the genome very slowly;

• non-LTR retrotransposons, LINEs and SINEs, have very long lineages, some dating back 150 MYA;

• DNA transposon are extinct, as there is no evidence for their activity in the human genome in the past

50 million years.

Specifically, each copy of a TE in a genome is derived from an active TE sequence that accumulates mutations

randomly and independently from other copies of this TE. Consensus sequences of the original active copies

(these consensus records are in Repbase Update [63]) are derived from multiple sequence alignments of the

present-day copies. The approximate age of these elements can be calculated from the average sequence

divergence of the present-day copies from the consensus sequence.

25



The divergence-based method has been applied to both Alu [67, 7] and L1 [132] elements to assign approx-

imate ages to TEs. For example, to estimate the age of Alu subfamilies in [67], pairwise alignments were

performed using the Smith-Waterman algorithm [133], and the divergence (d) between the two sequences was

calculated by

d =
Number of mismatches

Number of Matches + mismatches
. (2.3.1)

Note that a deletion or insertion of any length was deemed as a single mismatch. Then using Kimura’s distance

measure11 [74], the average age of all major Alu subfamilies were calculated based on the assumption that

the rate of change of these sequences is 0.16% per site per million years [67].

However, these divergence-based calculations are limited by the assumption of the constant mutation rate

(molecular clock) both over time and between the different classes of transposable elements [118, 16]. Fur-

thermore, the difference in percent divergence of a TE family is dependent on not only the length but also

the age of the element. In addition, these methods do not help predict the periods of activity and inactivity

of the TEs. Thus, a more thorough method taking into account of more factors other than a mutation rate

is needed to predict TE evolution more accurately, and one innovative method called interruption analysis

can produce an estimation of relative ages of TEs using the frequency of interruptions between TEs that will

be elaborated on in the next subsection.

2.3.2 TE phylogeny based on interruptional analysis

Each transposable element has a distinct period of transposition activity when it is active, in which it spreads

through the genome, followed by inactivation and accumulation of mutations. Though transposable elements

make up about half of the human genome, most of them are inactive relics. DNA transposons have become

completely inactive and LTR retrotransposons may have done so as well [84]. Because of the ubiquity of

inactive TEs in many genomes, throughout evolution newer TEs end up nesting recursively, often multiple

levels deep, inside existing inactive TEs. The result of the transposition activities can be described as

(summarized from [47] and [81]):

1. older TEs are heavily interrupted by younger TEs, but have not inserted into younger elements;

2. younger TEs, with a relatively recent period of activity, have inserted into older elements that were

present in the genome, but are not interrupted by older elements;

3. TEs of intermediate age have both inserted into older elements and have themselves been fragmented

by younger elements;

11In 1980, Kimura introduced a model to estimate the level of nucleotide substitutions K: K = −0.5·ln{(1−2P−Q)
√

1− 2Q},

where P and Q are the proportions of transitional and transversional differences, respectively, between two homologous sequences.
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4. younger TEs interrupt not only older TEs, but also the fragmented TEs that had been previously

interrupted. That is, interruptions are nested recursively.

A method in [47] called interruptional analysis estimates relative TE ages based on the frequencies with which

every TE has inserted itself into every other TE in a genome. The resultant ordering that was obtained from

a positional distribution agreed reasonably with published chronologies. This is in contrast to the more

common divergence-based methods (Section 2.3.1) to estimate TE ages, which has been unreliable for older

more diverged elements. The approach only relies on data from a single genome.

The interruptional analysis is strategized in two major steps (summarized from [47]):

Step one: generate an interruption matrix based on the identified transposon clusters.

Many TEs have split other TEs into two noncontiguous TE fragments by inserting into the sequence of

those TEs already present in the genome. The occurrence of TEs that are inserted into other TEs are

named “transposon clusters” in [47]. These transposon clusters in the human genome were identified

by defragmentation of TEs, and the number of times every TE inserted itself into every other TE were

counted and grouped into an n × n matrix, called an interruption matrix, where n is the number of

TEs (a formal definition and examples of interruption matrix will be given in Chapter 5).

Step two: generate a TE chronological order using a repositioning method.

A computational method called interruptional analysis then performs a repositioning of all elements on

the axes of the interruption matrix, in order to search for an ordering of all elements that minimizes a

penalty score defined as the summation of nonzero entries in the upper triangle matrix. Theoretically,

the best ordering of TEs corresponds to the order that achieves the minimum penalty score of the

matrix.

Figure 2.8 (adapted from [47]) shows the resultant relative age order of 360 TEs calculated by the interrup-

tional analysis method.

Essentially, this interruptional analysis method uses exhaustive search with the computational complexity of

O(n!) over all orders. Though the authors in [47] tried different strategies to decrease the complexity, it is

still not practically feasible when the number of TEs in consideration is large. Therefore, the authors only

try seven to ten rounds of repositions to reach a local optimum, then do the same 100,000 times to compute

a distribution of positions of each TE over all orderings. They are only able to do so on 360 of the over 1000

TEs in the human genome. Besides complexity, there are some other limitations listed as follows:

• The interruption matrix can only record the interruptions between every two TEs, but fails to take into

account the recursively nested interruptions which can be informative (more details on this limitation

in Chapter 6).
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Figure 2.8: The resultant relative age order of 360 TEs calculated in [47], where the numbers on the
left axis represent positions in the age order.
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• A chronological order of TEs was calculated, which tells a relative age order of TEs, but without

knowing how much older one TE is than another.

• Since each TE has a distinct period of activity, the age order (positional distribution) derived from this

method cannot tell the exact timespan of transposition activity of each individual TE.

• Moreover, the relative age of the TEs that have not interrupted or been interrupted by other TEs can

not be estimated by this method.

Overall, the interruptional analysis provides a novel analysis of the evolutionary history of some of the most

abundant and ancient repetitive DNA elements in mammalian genomes by analyzing a single genome, which

is important for understanding the dynamic forces that shape the genomes during evolution.

2.3.3 Perspective

The sequence divergence analysis is a traditional and common method for TE phylogeny, and it has been

extensively used in estimating the age of younger TE families; however, other methods are worthy of investi-

gation especially for older and more diverged elements. In contrast, the estimation of TE evolution based on

interruptional analysis brought in a new idea of considering the interruptional activities between TEs, which

can be used to predict the age and evolutionary activity of these TEs.
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Chapter 3

Computational identification of harmful mutation re-

gions that influence transpositions of active trans-

posable elements in the human genome 1

3.1 Abstract

As the most abundant transposable elements, Alu elements have 1.1 million copies interspersed throughout

the human genome, and about 11% of the human genome consists of Alu sequences [50]. Recent evidence

indicates that the 22 AluY and 6 AluS TE families have been the most active TEs in recent human history

[104], whose transposition has been implicated in several inherited human diseases and in various forms

of cancer by integrating into genes; therefore, understanding the transpositional activity and factors that

change the activity levels of these TEs is very important. There has been some work done to quantify and

analyze the transposition of active Alu transposable elements in mobile assays. Based on this activity data,

a method/simulation was created in this chapter to computationally identify the regions on a TE consensus

sequence that may change the transpositional activity. This method was applied to AluY, the youngest

and most active Alu subfamily, to identify the harmful mutation regions laying in its consensus. Mutations

occurring within these regions have crucial effects in decreasing the elements’ transposition. The identified

regions were then verified by the secondary structure of the AluY RNA, where the harmful regions overlapped

with the AluY RNA major SRP9/14 contact sites. An additional simulation also showed that the identified

harmful regions covering the AluY RNA functional regions are not occurring by chance. Therefore, we

conclude that mutations within the harmful regions identified alter the mobile activity levels of active AluY

elements. The method was then applied to the Alu family and L1 family in detecting the harmful regions in

these elements.

1Part of the work in this chapter has been published in [60], and some is submitted in [61].
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3.2 Introduction and motivation

Active TE elements only constitute a tiny fraction of the TE complement of the genomes of most organisms;

for example, there are only about 100 active L1 copies out of a total of over 500,000 L1 s in the human genome

[41]. Recent evidence indicates that 35 to 40 subfamilies of Alu, L1, and SVA elements remain actively mobile

in the human genome [104, 71]. Active human transposons have been estimated to generate about one new

insertion per 10 to 100 live births [69, 89, 31]. Specifically for the Alu family, it is estimated that one new Alu

insertion occur for every 20 live human births [31], and there is one Alu insertion for every 3000 bp in the

human genome on average [84]. Alu transposition events have a major impact on human biology and diseases

[104] because the active TEs can create genetic diversity in human populations and integrate into genes that

cause diseases. Indeed, forty-three disease-causing Alu insertions have been identified [9]. As mentioned in

Chapter 1, in recent research in [86], the authors hypothesize that Alu insertions in mitochondrial genes can

lead to progressive neurological disfunction. Therefore, it is of importance to understand how the activity

level of Alus can change based on possible mutations and mutation loci.

Alu elements are approximately 300 base pairs long, and do not contain any protein-coding sequences for

transposition. They rely upon L1 -encoded proteins for their own mobilization [35]. It is believed that Alu

elements are derived from the 7SL RNA, and modern Alu elements emerged from a head-to-tail fusion of two

distinct fossil antique monomers, hence its dimeric structure of two similar, but distinct monomers (left and

right arms) joined by an A-rich linker and terminated by a poly(A) tail [55]. The left arm contains functional,

but weak, A and B boxes of the RNA polymerase III internal promoter [104], as shown in Figure 3.1 and

also Figure 3.8.

Figure 3.1: Structure of Alu elements.

Different periods of evolutionary history have given rise to different families and subfamilies of Alu elements,

each containing a small number of active Alu elements that serve as the source of subsequent families [50].

According to Repbase Update, there are three Alu subfamilies. AluJ is the most ancient (about 65 million

years old), and is thought to be functionally extinct [8, 104, 9, 12]; the second oldest is the AluS subfamily,
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which became active approximately 30 million years ago, and only some intact elements were found to be

active in humans [12, 105]; AluY is the youngest subfamily, and most elements of this subfamily are currently

active [77]. Because there is no specific mechanism for removal of Alu insertions, Alu evolution is dominated

by the accumulation of new Alu inserts [50]. These new copies of Alu accumulate mutations independently

over time.

In order to identify active Alu copies that exist in the human genome and analyze their transpositional

activities, Bennett et al. [12] designed an in vivo experiment to systematically examine the mobilization

capacity of Alu copies across the human genome, in particular the transposition capacity of the 280 bp

central “core” regions of Alu copies using a plasmid-based mobilization assay. The experimental procedure

is described in more detail in [35]. Briefly, the Alu retrotransposition was detected on induction by LINE

expression vectors. Human HeLa cells were co-transfected with a marked Alu and an expression vector for the

human L1 under the control of the CMV promotor. Cells were amplified and retrotransposition events were

detected. This method allows for comparing the relative mobilization efficiencies of diverse core elements by

keeping all other factors constant and eliminating possible variation due to flanking sequences.

An annotated database of 850,044 full-length human Alu copies was first developed in [12], then some

representative elements were carefully selected from the database, as well as several synthetic older consensus

elements that are no longer present in the modern human genome, totalling 89 elements, with 9 AluJ, 28 AluS,

and 52 AluY. These elements were then cloned and tested in a mobile assay. From the functional analysis

of the Alu elements, it was shown that the elements with fewer changes relative to the consensus sequences

generally had the highest levels of activity. No elements with more than 10% mutations, which would occur

with at least 28 bp changes, were active [12]. This indicated that the amount of sequence variation is an

effective factor in altering the transpositional activity. However, the fact that polymorphic AluY copies2

generally had robust levels of mobilization in contrast to the randomly chosen AluY copies with sequence

variation, indicated that some sequence changes are more effective than others in altering activity.

In light of the experiments and the functional analysis done in [12], a more detailed analysis of more than

just sequence similarity with the consensus is desired to understand more precisely what influences TE

activity. In this chapter, a computational method is developed to further analyze how the sequence of an

element influences its transpositional activity; specifically, this method identifies the critical regions within

the AluY consensus that have crucial effects in deactivating the elements’ transposition, called “harmful

mutation regions”. This analysis can be applied to any TE family or other organism, but it requires further

experiments akin to those in [12], where a quantified transposition fraction is available for each TE.

2Some elements from the young Alu subfamilies, known as Y, Yc1, Yc2, Ya5, Ya5a2, Ya8, Yb8, and Yb9, have inserted

into the human genome so recently that they are polymorphic with respect to the presence or absence of insertion in different

human genomes.

32



3.3 Materials and notations

3.3.1 Materials

Because AluY is the youngest Alu subfamily that harbours the largest number of active elements, in this

section, the AluY sequences from the experiment in [12] will be analyzed.

First, pairwise sequence alignments of the AluY elements against the AluY consensus sequence from Repbase

Update were calculated, giving pairwise scores for every AluY element sequence with the AluY consensus.

Pairwise scores are simply the number of identities between the two sequences, divided by the length of the

alignment, giving the percent identity.

In the experiment in [12], AluYa5 elements were used as a standard for comparing the retrotransposition

activity. An element is considered more active than AluYa5 when the cell culture of this element showed

greater fluorescence intensity than the cell culture of AluYa5, and vice versa. The average activity fraction of

a TE is defined as a percentage of the fluorescence intensity of the cell culture of this TE over that of AluYa5

elements. The Alu elements can then be categorized by their average activity fraction (ranges from 0% to

118% of AluYa5 activity — it can be over 100% if the activity is higher than AluYa5 ). Starting from these

activity fractions, all Alu elements were organized into four activity level groups as in Definition 1.

Definition 1. A set of elements is defined as in the same activity group if their activity fractions are in the

same range:

• the inactive group consists of elements with activity fractions that range from 0% to < 5%,

• the low activity group consists of elements with activity fractions that range from 5% to < 40%,

• the moderate activity group consists of elements with activity fraction that range from 40% to < 66.6%,

• the high activity group consists of elements with activity fraction greater than 66.6%.

The activity fractions of all the AluY elements were plotted against their percent identity in Figure 3.2,

where each data point represents one AluY element; the x-axis is the percent identity of the elements to the

AluY consensus sequence; the y-axis is the activity fraction of these elements.

The elements in Figure 3.2 are also grouped into similar activity levels (e.g., high activity group, moderate

activity group, low activity group, and inactive group, as marked in the figure). It can be seen that, roughly,

the elements with higher percent identity tend to have higher activity level. However, a linear relationship

is not clear. For example, there exist some elements with high activity level (in the high activity group) but

a low percent identity, while some elements have a high percent identity but a low activity level (in the low
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Figure 3.2: The plot of the 52 AluY elements from [12], where the x-axis is the percent identity and
the y-axis is the activity fractions. The elements are partitioned into different groups of activity levels.
Some elements are also grouped into vertical bins for further analysis in Section 3.4.3.

activity or inactive groups). The lack of a clear linear trend leads to the hypothesis that some mutation sites

are less effective and some are in contrast more effective in altering the elements’ transpositional activities.

A computational method is proposed in the next sections to identify these affective mutation sites.

3.3.2 Notations

In order to formulate the description of the problem and the computational method that will be proposed,

some notations need to be defined first.

Definition 2. The total number of elements to be considered in the TE family is denoted by N , and the

length of the consensus sequence of this TE family is denoted by L.

For example, considering the 52 AluY elements in [12] (N = 52), the length of the AluY consensus in RU is

L = 282.

A window is a region within the consensus sequence, and is defined by a window size, denoted by wsize, and
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a start position of the window.

For example, a window denoted by wi is the region from the ith position to the jth position, where j =

i+ wsize− 1, in the consensus sequence.

Given the length of consensus and a window size, the number of windows, denoted by nw, can be calculated

as nw = L− wsize+ 1.

Definition 3. Mutations in the window wi of one TE element is defined as the total number of mutations

(versus the consensus) of this element lying within the window, denoted by mi.

For example, for an element with mutated positions at 2, 3, 7, 15, 80, 224 in the consensus, given wsize = 10,

then m1 = 3 (number of mutations in the window from position 1 to 10), and m10 = 1 (number of mutations

in the window from position 10 to 19).

Definition 4. For every element, the window is “slid” from the beginning to the end of the consensus, to

generate a vector of mutations in all windows for this element. Mutations in all windows in all elements can

then be represented as a mutation matrix, denoted as M(N × nw).

M(N × nw) =


m11 m12 m13 . . . m1nw

m21 m22 m23 . . . m2nw

...
...

...
...

...

mN1 mN2 mN3 . . . mNnw

 (3.3.1)

Taking the example of the AluY elements in [12], there are N = 52 rows and nw = 273 (where L =

282, wsize = 10) columns in the matrix. The mutation matrix of the AluY elements, representing the

mutations of every element in each window, is shown in the heat map in Figure 3.3. The windows on the

AluY consensus are shown in the x-axis; the AluY TE elements sorted by their activity fractions in descending

order are shown in the y-axis. The activity groups are also marked with black lines in the figure.

From Figure 3.3, it is easy to see that certain windows are apparently darker than others in most elements,

which indicates that certain regions in the sequence tend to have more mutations; however, the heat map

does not show whether the positions where mutations occurred are correlated with mobile activities, nor does

it show how they are related.

In the next sections, by using correlation analysis (Section 3.4) and group comparison analysis (Section 3.5) re-

spectively, it will be shown that mutations in some windows are indeed harmful to elements’ activities.
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Figure 3.3: The number of mutations in each window (wsize = 10) of all 52 AluY element of
Figure 3.2, where the x-axis is all windows on the AluY consensus sequence and the y-axis is the AluY
elements. The elements are sorted by their activity fractions in descending order from the top to the
bottom of the chart.
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3.4 Method I: identification of harmful regions by correlations be-

tween mutations and mobile activity

In this section, a computational method is proposed to identify the harmful regions in an active TE family

using the Pearson’s coefficient of correlation.

3.4.1 Pearson’s coefficient of correlation and multiple test correction

The Pearson’s coefficient of correlation, normally denoted by ρ, is a measure of the linear correlation between

two variables (X and Y ), whose values range from -1 to 1, with 1 indicating total positive correlation, 0

indicating no correlation, and -1 indicating total negative correlation. It is defined as the covariance of the

two variables divided by the product of their standard deviations.

ρ =
cov(X,Y )

σXσY
, (3.4.1)

where cov(X,Y ) is the covariance of X and Y , σX is the standard deviation of X, and σY is the standard

deviation of Y .

Though using models for data analysis has many advantages, if the existing data does not fit the model

perfectly, results are often misleading. The Pearson’s correlation coefficient is a model-free method, and it

therefore shows the nature of the data without depending on any existing models.

For each window in the AluY consensus, the variable X is defined as the number of mutations in the window

of all AluY elements, and the variable Y is defined as the activity fractions of all AluY elements. The

Pearson’s coefficient of correlation was calculated by comparing X against Y, using the correlation function

cor in the R Language. The observed correlations from the data in the experiment in [12] are calculated and

denoted by

ρobs = (ρ1, ρ2, . . . , ρnw),

as shown in Figure 3.4. It can be seen in the figure that mutations occurring in most of the windows

have negative correlation with the mobile activities. The negative correlations indicate that the TE activity

decreases as the number of mutations in a window increases; in other words, the mutations in the window

are harmful to TE activity. On the other hand, the negative correlations between the activity fractions and

the number of mutations may arise by randomness/chance. Therefore, it is necessary to perform a statistical

significance test to measure the probability that more negative correlations than what was observed in the

data set can be caused solely by chance, which is the p-value, a measure of significance in terms of the false

positive rate [144].
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Figure 3.4: The Pearson’s coefficients of correlation between the number of mutations in each window
and the activity fractions of the AluY elements. The x-axis gives the windows in order on the AluY
consensus.

In order to correct for multiple comparison bias due to a large number of windows, a q-value is also reported.

A q-value, similar to a p-value, is a measurement of the “false discovery rate” (FDR) [11]. The false positive

rate and FDR are defined differently — given a rule for calling features significant, the false positive rate

is the rate that truly null features are called significant, while the FDR is the rate that significant features

are truly null [134]. For example, a false positive rate of 5% in a study means that 5% of the truly null

features are called significant on average, while a FDR of 5% means that 5% of all features that are called

significant are truly null. In general, the FDR is a sensible measure of the balance between the number of

true positives and false positives. Multiple testing correction will be performed using the qvalue package

[146] under Bioconductor in the R Language.

3.4.2 Statistical significance tests and results

In order to investigate the relationships between the mobile activity and the mutations of a TE, a null

hypothesis is proposed as “mutations in a window are not negatively related (or undifferentiated)

to the activity of the TE”. To test the hypothesis, a statistical simulation is used to generate random

data as elaborated in the steps below. The framework of the simulation is a general statistical technique for

hypothesis testing.

Given a mutation matrix, M(N×nw), as in Equation (3.3.1), the activity fractions vector of the N elements,

αN , and the observed correlations ρobs, perform the following operations, with the flow chart of the steps in

Figure 3.5.

Step 1: generate simulated correlations as follows:

given the number of iterations as n (e.g., n = 1000), for each iteration denoted by i,

1. permute M by columns as M i;
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Start

Matrix of mutations in windows: M 

Vector of activity fractions: αN

Vector of observed correlations: 
CORobs

Iteration i: 1 ≤ i ≤ n ?

Permute M  by columns

Calculate new vector of correlations

Form simulated and observed 
correlations into a matrix

window wj: 1 ≤ j ≤ nw ?

Calculate p value

Calculate q value

Test null hypothesis

Filter harmful windows and form 
harmful regions

Output harmful regions

Stop

Yes

No

Yes

No

Figure 3.5: The flow chart of the algorithm in Section 3.4.2.
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2. calculate correlations between M i and αN . The correlations for each window for this iterations is

denoted by ρ(i,1), ρ(i,2), . . . , ρ(i,nw).

Step 2: form simulated and observed correlations into a matrix.

After the n iterations, there are n simulated correlations for each window. The simulated correlations

along with the observed correlations are formed into a matrix and summarized in Table 3.1.

iteration w1 w2 . . . wj . . . wnw

1 ρ(1,1) ρ(1,2) . . . ρ(1,j) . . . ρ(1,nw)

2 ρ(2,1) ρ(2,2) . . . ρ(2,j) . . . ρ(2,nw)

...
...

...
...

...
...

...

i ρ(i,1) ρ(i,2) . . . ρ(i,j) . . . ρ(i,nw)

...
...

...
...

...
...

...

n ρ(n,1) ρ(n,2) . . . ρ(n,j) . . . ρ(n,nw)

observed

ρ1 ρ2 . . . ρj . . . ρnwcorrelation

(ρobs)

p-value p1 p2 . . . pj . . . pnw

q-value q1 q2 . . . qj . . . qnw

Table 3.1: Simulated and observed correlations between mutations and mobile activities.

Step 3: calculate p-values for each window.

For each column wj (1 ≤ j ≤ nw) in Table 3.1, calculate a p-value of ρj in the distribution of

ρ(i,j)(1 ≤ i ≤ n), which is pj = P (ρ(i,j) ≤ ρj), where 1 ≤ j ≤ nw.

Step 4: calculate q-values for each window.

After the p-values are calculated for each window, estimate the q-values of each window, q1, q2, . . . , qnw

using the function qvalue in the R Language.

Step 5: test the null hypothesis for each window.

For each window wj (1 ≤ j ≤ nw), compare its q-value, qj , to a confident threshold λ (eg. λ = 0.05).

If qj < λ, we can reject the null hypothesis that “mutations in window wj are not negatively

related (or undifferentiated) to the activity of the TE”. If the null hypothesis is rejected, then

the window wj is harmful, and the sites in the window are harmful sites.

Step 6: filter out all windows that are harmful and form overall harmful regions.
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Example 1 below shows how to test if a window is a harmful window by comparing the observed correlation

and simulated correlations between elements’ mobile activities and mutations in a window using the above

method.

Example 1. Assume a window size wsize = 10, the number of iterations n = 10, 000, and consider the

window w20 where the window is between positions 20 and 29. Given M as the matrix of mutations in

windows, calculate the observed correlation of w20 by comparing the number of mutations in the 20th window,

M [, 20] (the 20th column of the matrix), and the elements’ activity fractions vector, αN . The observed

correlation is ρ20 = −0.5059255. Then perform the following steps:

Step 1: permute M [, 20] n times and calculate the correlation for every permutation, denoted by ρ(1,20), ρ(2,20), . . . , ρ(n,20).

The distribution of the simulated correlations ρ(1,20), ρ(2,20), . . . , ρ(n,20) is shown in Figure 3.6.

Figure 3.6: The distribution of the simulated correlations in the window between position 20 and 29.

Step 2: calculate the p-value of the observed correlation in the distribution: p20 = P (ρ(i,20) ≤ ρ20) < 0.00001.

Using the same method, the p-values of all windows can be calculated.

Step 3: perform a multiple test correction to calculate the q-values. The q-value of the window in this

example is calculated as q20 < 0.00001.

Step 4: given the confident threshold λ = 0.05, the null hypothesis is rejected. Hence, the window w20

is considered a harmful window, which means that mutations occurring within this window are more

affective to the mobile activities of the AluY elements.

Using this method, the p-value and q-value are calculated for every window in the AluY consensus and the

results are shown in Figure 3.7 (a) and (b) respectively.

Given a confidential threshold λ = 0.05, a window in the AluY consensus is identified as a harmful window

if and only if its q-value ≤ λ. The harmful windows that are overlapped form into harmful regions as listed

in Table 3.2.
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Figure 3.7: The p-values in (a), and q-values in (b) of the AluY elements. The x-axis gives the
windows in order on the AluY consensus.

region ID regionStart regionEnd average q-value

1 14 34 0.0101

2 38 57 0.0183

3 78 87 <0.0001

4 149 172 0.0178

5 180 190 <0.0001

6 212 222 0.0232

Table 3.2: The harmful mutation regions in AluY elements calculated from correlation analysis
(λ = 0.05).

With λ = 0.05, the identified harmful regions in Table 3.2 cover 34.5% of the total length of AluY consensus

sequence. Next, these computationally identified regions will be verified to be harmful to the activity of AluY

elements.

3.4.3 Verifications

In this subsection, the harmful regions in Table 3.2 will be verified in two different ways. First, the AluY

elements with similar percent identity having various activity is due to whether or not mutations occurred

in harmful regions. Second, a possible reason of the harmful regions affecting transpositional activity is

because the harmful regions overlap with the functional sites of the AluYa5 RNA that are important for the

transposition of the elements.
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Verification by activity of AluY elements

The sequences of the AluY elements from [12] are compared to the AluY consensus sequence in this section.

A relationship between the percent identity of these elements and their levels of mobile activity is plotted in

Figure 3.2. It is observed that by grouping some elements with similar percent identity into vertical bins, as

marked in the figure, the activity levels of the elements in the same bin vary to a large extent. For example,

the elements in bin #1 all have a similar percent identity with the consensus (∼ 97%), but their activities

range from 1% to 106% (the activity fraction is in comparison to the activity of AluYa5, and if an element

is more active than AluYa5, the activity fraction could go over 100%).

One possible explanation for this difference is that some mutations occurred in the elements’ harmful regions,

which decreased their activities dramatically. Thus, all mutations in the high activity group are labelled as

“neutral sites”, as the elements remain highly active despite the mutations. In other words, these mutations

might be “less effective” to their transpositional activities.

Activity group Harmful regions Neutral sites

bin 1

low activity 13 % 63 %

moderate activity 13 % 63 %

high activity 0 % 100 %

bin 2

low activity 0 % 0 %

moderate activity 0 % 5 %

high activity 0 % 0 %

bin 3

low activity 6 % 0 %

moderate activity 0 % 11 %

high activity 0 % 8 %

bin 4

low activity 0 % 33 %

moderate activity 40 % 20 %

high activity 0 % 10 %

Table 3.3: The percentage of mutations grouped by bins marked on Figure 3.2 over the total number
of mutations in each group.

Table 3.3 lists the percentage of mutations that occurred in harmful region and neutral region respectively

for each activity group in the bins in Figure 3.2. It is observed that, in the low activity groups of each bin,

there are more mutations in the harmful region compared to other activity groups. Moreover, none of the

mutations in the high activity groups falls into the harmful regions. Therefore, the mutations that occurred

in the harmful region may cause the low activity levels of these elements.
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Verification by AluYa5 RNA secondary structure

As introduced in Section 3.2, Alu elements are derived from two 7SL RNA forming left and right arms, and

the left arm contains A and B boxes of the RNA polymerase III internal promoter. Figure 3.8 shows the

secondary structure of the AluYa5 RNA calculated by Mfold [149] (a program for predicting the secondary

structure of RNA) based on previously determined secondary structure in [128, 55]. It is known that SRP9/14

binding is necessary for efficient Alu mobilization, and the left Alu monomer binding to SRP9/14 is more

important for mobilization than the right Alu monomer binding [12]. In Figure 3.8, the major and the minor

SRP contact sites, as well as the A and B boxes, are marked on the structure in grey; the identified harmful

regions from Table 3.2 are marked in yellow. As visually indicated in Figure 3.8, the harmful regions “cover”

the two major SRP contact sites and Box B very well, with three other unknown regions that are recognized

as harmful. The unknown regions might be caused by the limited amount of Alu transposition data, or they

may have some interesting unknown functions.

Figure 3.8: The secondary structure of an AluYa5 RNA. The SRP contact sites and the A and B
boxes are marked in grey. The harmful regions identified in Table 3.2 are marked in yellow along the
structure as indicated in the legend.

Next, it will be shown that the identified harmful regions covering the functional regions are not picked up

totally randomly (by chance). Define the coverage of harmful regions as the percentage of the overlapped

number of positions between harmful regions (marked in yellow) and functional regions (marked in grey)
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divided by the total number of positions in the functional regions (marked in grey). Another simulation is

developed to compare the coverage of the harmful regions and that of randomly generated regions, which

is described as follows: given the lengths and positions of functional regions (nf as number of functional

regions), the lengths and positions of harmful regions (nh as number of harmful regions), and the number of

trials as n,

1. calculate the coverage of harmful regions

CovharmR.

2. For every iteration i, where 1 ≤ i ≤ n,

(a) randomly generate nh regions with the same lengths as the harmful regions identified as shown in

Table 3.2, and the algorithm makes sure that these regions do not overlap with each other;

(b) calculate the coverage of randomly generated regions in this iteration, denoted by CovrandRi .

3. After n iterations, there are n generated coverages, denoted by

CovrandR1 , CovrandR2 , . . . , CovrandRn .

4. Calculate the probability where the coverage of harmful regions is less than the coverage of random

regions as

P (CovharmR < CovrandR).

Using this method and running the simulation on the AluY harmful regions calculated in Table 3.2 for

n = 10, 000 iterations, Figure 3.9 is the distribution of the coverage of random regions, and the blue line on

the figure shows the coverage of the harmful regions in Table 3.2.

The probability is calculated as P (CovharmR < CovrandR) = 22%; that is, 78% of randomly generated

regions have less coverage than the harmful regions identified by our method. Therefore, we conclude that

the harmful regions covering the AluY functional regions and this coverage is probably not by chance.
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Figure 3.9: The distribution of the coverage of random generated regions. The blue vertical line is
the coverage of the harmful regions.

3.5 Method II: Identification of harmful regions by group compar-

isons

In this section, the same type of analysis and verifications will be repeated, but with another computational

method, called group comparison analysis, to identify the harmful regions by randomly introducing mutations

into the elements, then comparing them with different activity groups (Definition 1) to evaluate statistical

significance tests. This is a statistical technique similar to comparing two population means [99]. Rather

than classifying regions as harmful or not, the harmful regions identified by this method are classified into

more detailed groups in terms of changing the activity levels in different ways, e.g., mutations in some regions

can potentially change a TE from high activity level to moderate activity level, etc.

In describing this approach, some additional terms and labels are used. Based on the activity group defined

in Definition 1, mutations of a set of elements is defined as follows.

Definition 5. Given a set (group) of related elements, e.g., elements of the same activity group, the number

of mutations of the group is defined as the total number of the mutations (versus consensus) that occurred in

every element in this group.

Thus mutations can occur more than once at a nucleotide position in the consensus sequence for a group,

when more than one element is mutated at the same position.

In the group comparison analysis, it is a set of elements (not a single element) in consideration. Similar to

the definition of the mutations in a window of an element (Definition 3), the mutations in a window of a set

of elements is defined as below.

Definition 6. Given a window wi, and a set of elements g, mg
i is defined as the number of mutations in the
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elements of the set (group) g in the window wi. The number of elements in the set is denoted as |g|.

It should be noted that there are always two sets of elements from the same consensus, denoted as g1 and g2,

in comparison. A ratio is used to compare mutations in elements of two different activity groups, as defined

in Definition 7.

Definition 7. Given the mutations in the window wi in the elements of two different activity groups, g1 and

g2, the ratio Ri of the window wi is defined as

Ri =
mg2
i + 1

mg1
i + 1

× |g1|
|g2|

(3.5.1)

This ratio describes the relationship between the mutations within a specific window of two groups; more

specifically, the ratio indicates how different the number of mutations of the two groups are in a window.

Note that there might be some cases where there is no mutated position in the elements of the g2 group in the

window, therefore, 1 is added to both the numerator and the denominator to avoid zero denominators.

There are four activity groups defined in Definition 1: the high activity group, the moderate activity group,

the low activity group, and the inactive group. Take the example of the AluY elements in [12], and compare

the elements in a group of higher activity (g1) with elements in a group of lower activity (g2) as listed in

Table 3.4.

g1: group with higher activity level g2: group with lower activity level

Comparison type 1 the high activity group the moderate activity group

Comparison type 2 the high activity group the low activity group

Comparison type 3 the high activity group the inactive group

Comparison type 4 the moderate activity group the low activity group

Comparison type 5 the moderate activity group the inactive group

Comparison type 6 the low activity group the inactive group

Table 3.4: Comparison types of the group comparison analysis.

The observed ratios were calculated as in Equation 3.5.1 in every window of the AluY consensus for each

comparison type listed above, and the results were visualized in the heat map in Figure 3.10, where the

windows of the AluY consensus are shown in the x-axis; the six comparisons in Table 3.4 are shown in the

y-axis.

From this figure, it can be seen that certain windows have apparently larger ratios, which indicates that

certain windows tend to have a larger difference in the number of mutations in the elements in the two groups

comparing to other windows. However, the heat map cannot show whether the differences are correlated with
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Figure 3.10: Observed ratios Ri of the six comparison types in Table 3.4, where the x-axis is all
windows on the AluY consensus sequence and the y-axis is the comparison types.

the mobile activities of the elements in the two groups; that is, the difference in mutations may change the

elements from a group of higher activity into a group of lower activity.

Next, by using a statistical simulation, the significance of the null hypothesis that “the observed ratio is not

greater than expected by chance” will be tested.

3.5.1 Statistical significance tests and results

In order to reveal the relationships between the mobile activity and the mutations in a window, the above

null hypothesis is rewritten as: “mutations in a window are not negatively related (or undifferentiated) to

the activity of the TE”, to show a direct relationship between mutations and activity of TEs. A simulation

is designed to test the null hypothesis, which is based on the assumption that a mutation can randomly

occur at any nucleotide position in a sequence. Note that the evolutionary process of TEs diverging into

different subfamilies by accumulating mutations with a mutation rate will not be simulated; instead, given

the total number of mutations in the currently existing copies of TEs in an activity group, only the positions

where these mutations occurred in the sequence will be simulated. Using the notations defined above, the

simulation is described as generally as possible, as follows, so that it can be applied to other TE families.

The following steps are performed for each of the comparison types in Table 3.4.

Step 1: calculate observed ratios for all windows, denoted as R1, R2, . . . , Rnw.
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Step 2: generate simulated ratios.

Given the number of iterations as n (e.g., n = 10, 000), for each iteration denoted by i,

1. generate mg1 random positions between 1 and the sequence length L for the g1 group, and generate

mg2 random positions between 1 and the sequence length L for the g2 group. The random positions

are nucleotide positions in the consensus sequence;

2. calculate simulated ratios in all windows in this iteration, denoted as ri1, ri2, . . . , rin.

Step 3: form observed ratios and simulated ratios into a matrix. After the n iterations, there are n simulated

ratios, ri1, ri2, . . . , riN . The simulated ratios along with the observed ratios are formed into a matrix

and summarized in Table 3.5.

iteration w1 w1 w3 . . . wj . . . wnw

1 r11 r12 r13 . . . r1j . . . r1(nw)

2 r21 r22 r23 . . . r2j . . . r2(nw)

...
...

...
...

...
...

...
...

i ri1 ri2 ri3 . . . rij . . . ri(nw)

...
...

...
...

...
...

...
...

n rn1 rn2 rn3 . . . rnj . . . rn(nw)

observed ratios R1 R2 R3 . . . Rj . . . Rnw

Table 3.5: The matrix of observed and simulated ratios in each window.

Step 4: calculate p-values for each window.

For each column wj (1 ≤ j ≤ nw) in Table 3.5, calculate a p-value of Rj in the distribution of

r(i,j)(1 ≤ i ≤ n), which is pj = P (r(i,j) ≥ Rj).

Step 5: calculate q-values for each window.

After the p-values are calculated for each window, estimate the q-values of each window, q1, q2, . . . , qnw

using the function qvalue in the R Language.

Step 6: test the null hypothesis for each window.

For each window wj (1 ≤ j ≤ nw), compare its q-value, qj , to a confidence threshold λ (eg. λ = 0.05).

If qj < λ, we can reject the null hypothesis that “mutations in window wj are not negatively

related (or undifferentiated) to the activity of the TE”. If the null hypothesis is rejected, then

the window wj is negatively related to the activity of the TE.

Step 7: filter out all windows that are harmful and form overall harmful regions.
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Consider the case comparing the groups of high activity elements (g1) and inactive elements (g2) to iden-

tify potential harmful sites. Mutations at these sites indeed may deactivate a highly active Alu element.

Example 2 illustrates how to test the hypothesis in a specific window using the AluY activity data.

Example 2. Assume a window size is wsize = 10, the number of iterations is n = 1000, and consider the

case where the window occurs between positions 20 and 29. Here is an example to test if this window is a

harmful window by comparing the high activity group with the inactive group. The observed ratio calculated

by AluY data using Equation 3.5.1 for this window is R20 = 5.

The empirical distribution of the simulated ratios in the experiment is shown in Figure 3.11.
Density of Ratios in Experiment

ratio = number of inactive positions / number high activity positions in this window
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Figure 3.11: The empirical distribution of simulated ratios of the window w20 (between position 20
and 29). The x-axis is the simulated ratios of the window, and the y-axis is the probability of the
ratios.

The p-value of the observed ratio for this window is P (r ≥ R20) = 0.367, and the q-value is q20 < 0.0001,

which is less than the confident threshold λ = 0.05. Therefore, the null hypothesis that “the observed ratio

is not greater than expected by chance” can be rejected. The window from position 20 to 29 is considered as

harmful.

Table 3.6 shows all the harmful regions within the AluY consensus with q ≤ λ using the above method by

comparing two groups of elements: g1 is the high activity elements group; g2 is the inactive elements group.

Mutations occurring in these regions can possibly turn an highly active AluY element into an inactive

element.
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w.start w.end p-value q-value

153 162 < 0.0000000000 < 0.000000000

154 163 < 0.0000000000 < 0.000000000

155 164 0.0001290323 0.007045164

156 165 0.0001282051 0.007045164

158 167 0.0001265823 0.007045164

45 54 0.0002222222 0.007583333

46 55 0.0002173913 0.007583333

47 56 0.0002127660 0.007583333

Table 3.6: Identified harmful windows with λ = 0.05 comparing two groups of elements: g1 is the
high activity elements group; g2 is the inactive elements group. The column of w.start is the start
nucleotide position in the AluY consensus sequence; w.end is the end nucleotide position.

Applying the same method to each of the comparison types (pair of activity groups) in Table 3.4, the identified

regions of each type are listed in Table 3.7. Note that there are no harmful regions identified in type 1 and

type 6 comparisons.

Type ID Compared activity groups Harmful regions

16 ∼ 34

Type 2 g1 = high activity group 153 ∼ 171

g2 = low activity group 272 ∼ 281

Type 3 g1 = high activity group 45 ∼ 56

g2 = inactive group 153 ∼ 167

20 ∼ 34

Type 4 g1 = moderate activity group 48 ∼ 57

g2 = low activity group 160 ∼ 170

Type 5 g1 = moderate activity group
45 ∼ 58

g2 = inactive group

Table 3.7: Identified harmful regions with the start and end positions of each region. The comparison
types (from Table 3.4) are coded with different colours, which will be used in the next section.
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3.5.2 Verifications

Similar to the verification in Section 3.4.3, the identified harmful regions in Table 3.7 will be verified in two

different ways as well.

Verification by activity of AluY elements

Table 3.8 lists the percentage of mutations that occurred in each harmful region for each activity group in

the bins in Figure 3.2. It can be seen that, in the low activity groups of each bin, there are more mutations

in the harmful regions compared to other activity groups. Therefore, the mutations that occurred in the

harmful regions may cause the lower activity levels of these elements. Oppositely, most mutations in the

high activity groups are within the neutral regions, and none of them fell into the harmful regions, which

indicates that mutations in the neutral regions do not have a large effect on the elements’ activity levels.

On the other hand, there are more mutations in regions 1 and 2 than in regions 3 and 4 in moderate and

low activity groups, which indicates that mutations that occurred in region 1 and 2 have more effects on the

mobile activities.

activity group
Harmful regions

Neutral sites
Type 2 Type 3 Type 4 Type 5

bin 1

high 0% 0% 0% 0% 100%

moderate 37.5% 12.5% 0% 0% 62.5%

low 37.5% 0% 12.5% 0% 62.5%

bin 2

high 0% 0% 0% 0% 92.3%

moderate 0% 0% 0% 0% 65%

low 20% 3.3% 10% 0% 20%

bin 3

high 0% 0% 0% 0% 58.3%

moderate 11.1% 11.1% 0% 0% 66.7%

low 11.8% 5.9% 11.8% 5.9% 64.7%

bin 4

high 0% 0% 0% 0% 60%

moderate 40% 0% 0% 0% 20%

low 0% 0% 0% 0% 33.3%

Table 3.8: The percentage of mutations grouped by bins marked in Figure 3.2 over the total number
of mutations in each activity group. Because of the overlap between regions, the percentages in the
columns in the same row have overlapped parts too.
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Verification by AluY RNA secondary structure

The harmful regions in Table 3.7 are marked on the Alu RNA secondary structure in Figure 3.12.

Figure 3.12: The secondary structure of an AluY RNA. The SRP contact sites and the A and B
boxes are marked in Yellow. The harmful regions identified in Table 3.7 are marked in different colours
along the structure as indicated in legend.

As visually indicated in the figure, these regions “cover” the two major SRP contact sites very well, with two

other unknown regions that are recognized as harmful.

Another simulation that is the same as in Section 3.4.3 is developed to compare the coverage of the harmful

regions and that of randomly generated regions. Running the simulation on the AluY harmful regions

calculated in Table 3.7 for 10,000 iterations, Figure 3.13 is the distribution of the coverage of random regions,

and the blue line on the figure shows the coverage of the harmful regions in Table 3.7.

Similarly, the probability is calculated as P (CovharmR > CovrandR) = 79.35%; that is, 79.35% of randomly

generated regions have less coverage than the harmful regions identified by the group comparison method.

Therefore, the harmful regions cover the AluY functional regions and this coverage is probably not by

chance.
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Figure 3.13: The distribution of the coverage of random generated regions. The blue vertical line is
the coverage of the harmful regions.

3.6 Additional case studies

In Section 3.4, the computational method proposed to calculate the harmful mutation regions of TEs was

applied to a specific TE family (the AluY subfamily) where the transpositional activity fractions of the

elements in this family were quantified in [12]. The predicted regions of the AluY elements using this

method were verified in Section 3.4.3, which also supports the correctness of the computational method

proposed. In this section, this method will be applied to two other cases — the Alu family generally and the

LINE-1 (L1) family, to identify the harmful mutation regions lying within their consensus sequences.

3.6.1 The Alu family

The work in [12] has systematically tested 89 representatives from many Alu families and subfamilies, and in

Section 3.4, all the AluY elements have been examined. In this subsection, the computational method will

be applied to a bigger set of elements of the Alu family, including 9 AluJ, 28 AluS, and 52 AluY, where their

activity fractions are also quantified in [12].

There are a total of 89 elements (N = 89) and the length of the Alu consensus is L = 312. First, pairwise

sequence alignment of each of the N Alu elements is performed against the Alu consensus sequence from

Repbase Update to get the mutation data for each element. Given the window size as wsize = 10, a

mutation matrix, M(N × nw), is calculated as in Equation 3.3.1, where nw = L−wsize+ 1. This mutation

matrix, representing the number of mutations in each window, is plotted in the heat map as shown in

Figure 3.14.
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Figure 3.14: The number of mutations of the Alu elements in each window on the Alu consensus
(wsize = 10), where the x-axis is all windows on the Alu consensus sequence and the y-axis is the Alu
elements sorted by their activity fractions in descending order from the top to the bottom of the chart.

The observed Pearson’s coefficient of correlation between the mutations in windows and the activities of the

Alu elements are calculated using Equation 3.4.1 and is shown in Figure 3.15.

Figure 3.15: The Pearson’s coefficients of correlation between the number of mutations in each
window and the activity fractions of the Alu elements. The x-axis gives the windows in order on the
Alu consensus.

Then the steps in Section 3.4.2 are followed to perform the statistical significance tests on the Alu data for

n = 10, 000, and the simulated correlations are calculated. The p-value and q-value are calculated for each

window. The results are shown in Figure 3.16. Finally, the harmful regions in the Alu elements are calculated

and listed in Table 3.9. In summary, the total length of the harmful mutation regions is 171 bp, which is

54.81% of the Alu consensus.
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Figure 3.16: The p-values in (a), and q-values in (b) of the Alu elements. The x-axis gives the
windows in order on the Alu consensus.

region ID regionStart regionEnd average q-value

1 1 62 0.0010

2 104 119 0.0015

3 126 144 0.0181

4 147 173 0.0078

5 176 193 0.0102

6 233 250 0.0066

7 254 266 0.0176

Table 3.9: The harmful mutation regions in Alu elements calculated from correlation analysis (λ =
0.05).
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The harmful mutations regions calculated in the Alu elements (Table 3.9) are then compared with the regions

in the AluY elements (Table 3.2) as listed in Table 3.10. As the AluY is a subfamily of Alu elements, their

consensus sequences are very similar with a percent identity of 88.38%. Moreover, by pairwise aligning the

two consensus sequences, there are only two indels in the global alignment, one of length 2 in the AluY

consensus sequence (positions 62 and 63), the other of length 1 in the Alu consensus sequence (position 134).

The rareness of indels indicates that the two sequences are aligned very compactly, and their coordinates

are almost consistent (off by 1 or 2 in some regions) in the two consensus sequences, so that the positions of

harmful regions can be compared directly between the Alu and AluY families. Calculated from Table 3.10,

the number of overlap positions of the harmful regions of the two TE families is 78.35% of the AluY harmful

regions and 46.63% of the Alu harmful regions.

AluY Alu

regionStart regionEnd regionStart regionEnd

14 34 1 62

38 57 104 119

78 87 126 144

149 172 147 173

180 190 176 193

212 222 233 250

254 266

Table 3.10: Comparison between the harmful mutation regions in AluY and Alu elements.

3.6.2 The L1 family

L1 elements comprise 17% of the human genome [84]. An active L1 is about 6 Kbp in length, and it has been

estimated that an average diploid human genome contains approximately 80-100 active L1s [17]. In [17], 82

L1 elements were cloned and each assayed for its ability to retrotranspose in cultured cells. These elements

were then compared with the L1RP element to get their quantified retrotranspositional activity fractions in

a similar fashion to [12].

Among the 82 L1 elements in [17], N = 77 were retrieved where both their sequences and activity fractions

were available. The length of the L1 consensus sequence (accession no. L19092.1) is 6053 bp (L = 6053).

Using the computational method in Section 3.4, a mutation matrix M(N×nw) is generated, and the observed

Pearson’s coefficient of correlation between the mutations in windows and the activities of the L1 elements

are calculated using Equation 3.4.1. Then the steps in Section 3.4.2 are followed to perform the statistical

significance tests on the L1 data for n = 10, 000, and the simulated correlations are calculated. The p-value
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and q-value for each window are estimated, which gives the harmful regions in the L1 elements. There are

201 harmful regions calculated from N = 77 L1 elements, and the total length of these regions is 3500 bp in

total, which covers 57.82% of the L1 consensus sequence.

Notice that a large number (38 out of 77) of the L1 elements have an activity fraction of 0%, and many

(25 out of 77) are inactive with activity fractions between 0% to 5%. Since a large number of elements are

inactive (more than 80% of the total number of elements), there are mutations occurring in almost every

window that contribute to the change of an element’s status from active to inactive, which results in most

of the windows being identified as harmful windows. Therefore, the same calculation is performed again

to only include the elements with non-zero activity fractions (N = 39). The observed Pearson’s coefficient

of correlation between the mutations in windows and the activities of the L1 elements are calculated using

Equation 3.4.1 and shown in Figure 3.17.

Figure 3.17: The Pearson’s coefficients of correlation between the number of mutations in each
window and the activity fractions of the L1 elements. The x-axis gives the windows in order on the
L1 consensus.

The p-value and q-value for each window are shown in Figure 3.18, and the predicted harmful regions with

λ = 0.01 are listed in Table 3.11 (here, λ is decreased to 0.01 in order to fit the harmful regions into one

page). The total length of these regions is 894 bp, which covers 14.77% of the L1 consensus.
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region ID regionStart regionEnd average q-value region ID regionStart regionEnd average q-value

1 19 31 < 0.0001 33 2945 2963 < 0.0001

2 94 112 < 0.0001 34 2983 2992 < 0.0001

3 182 191 < 0.0001 35 3147 3162 < 0.0001

4 314 323 < 0.0001 36 3198 3216 < 0.0001

5 353 362 < 0.0001 37 3247 3256 < 0.0001

6 364 375 < 0.0001 38 3299 3310 < 0.0001

7 381 407 < 0.0001 39 3330 3339 < 0.0001

8 474 491 0.0041 40 3421 3431 < 0.0001

9 505 523 < 0.0001 41 3479 3497 < 0.0001

10 530 547 < 0.0001 42 3822 3846 < 0.0001

11 588 603 < 0.0001 43 3869 3887 < 0.0001

12 661 671 < 0.0001 44 4262 4283 < 0.0001

13 698 707 < 0.0001 45 4295 4311 < 0.0001

14 854 864 < 0.0001 46 4340 4349 < 0.0001

15 925 943 < 0.0001 47 4399 4424 < 0.0001

16 1000 1020 < 0.0001 48 4446 4464 < 0.0001

17 1046 1061 < 0.0001 49 4613 4631 < 0.0001

18 1328 1342 < 0.0001 50 4676 4685 < 0.0001

19 1386 1398 < 0.0001 51 4812 4827 < 0.0001

20 1455 1467 < 0.0001 52 4899 4910 < 0.0001

21 1508 1517 < 0.0001 53 5114 5131 < 0.0001

22 1594 1612 < 0.0001 54 5152 5170 < 0.0001

23 1935 1947 < 0.0001 55 5179 5197 < 0.0001

24 2095 2104 < 0.0001 56 5269 5279 < 0.0001

25 2315 2330 < 0.0001 57 5413 5424 < 0.0001

26 2332 2348 < 0.0001 58 5426 5441 < 0.0001

27 2460 2478 < 0.0001 59 5476 5488 < 0.0001

28 2547 2556 < 0.0001 60 5586 5596 < 0.0001

29 2591 2600 < 0.0001 61 5713 5724 < 0.0001

30 2710 2722 < 0.0001 62 5756 5765 < 0.0001

31 2838 2855 < 0.0001 63 5773 5787 < 0.0001

32 2889 2899 < 0.0001 64 5816 5829 < 0.0001

Table 3.11: The harmful mutation regions in L1 elements calculated from correlation analysis (λ =
0.01).
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Figure 3.18: The p-values in (a), and q-values in (b) of the L1 elements. The x-axis gives the windows
in order on the L1 consensus.

3.6.3 Perspective

The computational method was inspired by the observation on Figure 3.4 of the AluY family that muta-

tions occurring in most of the windows have negative correlation with the mobile activities. In contrast, in

Figure 3.15 of the Alu family and Figure 3.17 of the L1 family, there are a number of windows that have

positive correlation with the mobile activity. A positive correlation indicates that the TE mobile activity

increases as the number of mutations in a window increases. This might be because of the selection of the

consensus sequence, as the mutations are calculated based on the consensus sequence which is assumed to be

a “representative” element in that family, and the mutations in younger elements with higher activity relative

to the consensus may seem to “increase” the elements’ activity. Furthermore, as was previously mentioned,

there might be many factors altering elements’ activities simultaneously and mutations are only one factor

among them. Thus, the reasons that some mutations have positive correlations to mobile activity might be

caused by a combination of other unknown factors.

3.7 Conclusion

In this chapter, the importance of understanding major factors affecting the mobile activity of transposable

elements is discussed. Two computational methods are developed to identify a list of loci such that mutations

within those loci changes the activity levels in different ways, which could be used to assess the potential for

developing various TE related diseases.
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Method I was developed using Pearson’s coefficient of correlation analysis and statistical significance tests,

and method II uses activity group comparison with statistical significance tests. The results of both methods

are verified by using elements with the same percent identity that can have various mobile activities due

to mutations that did or did not occur within harmful regions. The identified harmful regions by both

methods cover the AluY functional sites, which are important for its mobilization, also supporting the fact

that mutations in these regions play a significant role in the transposition of active elements. Moreover, the

simulation of random coverage proved that the identified harmful regions covering the functional regions is

not picked up totally randomly by chance. The correlation analysis method is then applied to a bigger set of

elements of the Alu family, and then to the L1 family to identify their harmful mutation regions. To the best

of our knowledge, this is the only work in this regard, and there has not been any other studies involving a

similar data analysis.

A limitation is that the current data available does not enable the ability to assess the role of other factors

influencing the activity of transposable elements, such as a transposition-selection equilibrium, a succession

of burst and decay stages [22, 87], or chromatin structure, etc. Though the method was applied to the Alu

and L1 families in the human genome only (as they are highly active in the human genome, and the data for

activity levels exist), the technique can be easily applied to other families of TEs as well in other organisms

once activity levels and sequence data are developed.

Moreover, the harmful regions and their existence in active TEs can be used to inform the simulation of TEs

in Chapter 7 in order to understand how TEs activate and deactivate throughout evolution and how genome

evolve.
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Chapter 4

The TE fragment model 1

In this chapter, a formal model, called the TE fragment model, will be created describing notions such as

TE families and fragments within genomic sequences. This is created because it is necessary to contribute a

suitable foundation and standard nomenclature for future computational analysis; therefore, the models are

formal yet compatible with the biological literature on TEs. Furthermore, multiple extensions and problems

can be addressed on top of the same TE fragment model. However, this chapter only contains the model

itself, which is principally just a set of formal definitions (or a standard markup syntax). Essentially, this is

mainly for fixing terminology, which will be used in further chapters. Indeed, the model is used as a base

notation within Chapters 5, 6, 7 of this thesis.

The TE fragment model consists of initial definitions of TEs, the set of TEs, and the set of TE fragments.

It does not attempt to simulate or capture the molecular operations of TE movement (copying/cutting and

pasting throughout a genome). However, the model describes the order and distance between TE fragments

in genomic sequences by grouping homologous TEs together. At this level of abstraction, the model can be

used to capture and calculate interruptions and their frequencies in a general way. Some of the definitions

are also specialized for use when this model is associated with data from the prominent TE database Repbase

Update [63] and a common TE identification tool RepeatMasker [131].

4.1 Model definition

The purpose of this section is to develop a formal model of TEs and fragments of TEs in order to describe

the biological concepts and problems clearly. It will be the starting point in which multiple other problems

will be studied.

As a large part of research on bioinformatics is based on the analysis of DNA or amino-acid sequences, a

general sequence/string and other mathematical preliminaries will be briefly defined in Definition 8.

1The work in this chapter, as well as part of the next chapter, has been published in [58].
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Definition 8. Define several terms and notations:

An alphabet Σ is an abstract and finite set of symbols (either nucleic acids or animo acids). A string is

any finite sequence of characters over Σ. The length of s, denoted by |s|, is the number of characters in the

string. The empty word is denoted by λ and is of length 0. The set of all strings (including the empty word)

over Σ is denoted by Σ∗. Let s = s1s2 . . . sn be a string, si ∈ Σ, 1 ≤ i ≤ n. Let j, k satisfy 1 ≤ j ≤ k ≤ n,

then the substring of s which begins at the jth character and ends at the kth character is

s(j, k) = sjsj+1 . . . sk.

Moreover, s(j) = sj, the jth character alone.

Let s ∈ Σ∗, then frag(s) is the set of all possible fragments (substrings) of s. That is,

frag(s) = {s(p, q) | 1 ≤ p ≤ q ≤ |s|} ∪ {λ}.

Extend this to sets of strings S ⊆ Σ∗ by

frag(S) =
⋃
s∈S

frag(s).

Given a set X, |X| is the number of elements in X.

When talking about a family of transposable elements, scientists usually are referring to a set of similar

sequences that evolved from a single TE sequence. Therefore, a family of transposable elements is defined

to simply be a set of strings (usually these strings will be similar to each other). A set of TE families, an

instance of a TE family and the consensus TE are also defined in Definition 9.

Definition 9. A family of transposable elements (a TE family or a TE) X is a finite set of strings (usually

similar to each other) with X ⊆ Σ∗.

An instance of a TE family X is an element x ∈ X.

A consensus TE is a consensus sequence of the elements of X.

A set of TEs χ is a finite set of TE families. That is, χ ⊆ 2Σ∗ (2Σ∗ is the set of all subsets of Σ∗; and so χ

is some set of sets of strings), χ is finite and each element of χ is finite.

Because of different biological contexts, it is also possible to interpret a set of TE families, χ, in multiple

ways depending on the purpose. For example, χ can be used as the set of all TE families and TE instances

that are present in a single genome, or as the set of sequences collected in Repbase Update, or any set of

sequences that are all similar to the consensus sequences in Repbase Update within a threshold.

Knowing that one TE family contains a number of instances and each instance itself is a string, now a TE

fragments set can be defined. It is expected to see many fragments of TEs scattered throughout genomes as a

family of TEs becomes fragmented within a genome and becomes interrupted by other families of TEs.
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Definition 10. Let χ be a finite set of TEs. Then χ̄ ⊆ 2Σ∗ is called a TE fragments set, if for each element

X̄ ∈ χ̄, there exists X ∈ χ such that X̄ is a subset of frag(X).

Thus, after picking a set of TEs, a TE fragments set is any set where each element consists of fragments of

one TE family in the set of TEs (separate elements in χ̄ could contain fragments from different TEs). Then

in principle, any number of fragment sets can be picked for one set of TEs. For example, if χ is picked to

be the set of all TEs in the human genome, then a TE fragments set χ̄ can be the set where each element

contains fragments of separate TEs of length at least 50 (in this case, χ̄ = {X̄ | x ∈ X̄ implies |x| = 50, X̄ ⊆

frag(X), X ∈ χ, for some X}).

Although TE fragments sets are defined in a general way, it is also necessary to create a restriction to

transposable elements that occur in present-day sequences. RepeatMasker (RM) [131] is a sophisticated

program that uses precompiled repeat libraries to find copies of known repeats represented in the libraries

(as introduced in Section 2.2.3). The program performs a similarity search on both the “+” and “-” DNA

strands based on local alignments, then outputs masked genomic DNA and provides a tabular summary

of repeat content (e.g., Table 2.4) detected in both DNA strands. In the following definitions, the general

Definition 10 is going to be connected to the fragments reported by RepeatMasker.

The reason that RepeatMasker is chosen to connect with is because RepeatMasker is one of the most accurate

tools in detecting TEs, and it is commonly used. It is also possible to replace RepeatMasker with other TE

discovery tools or a combination of tools to achieve a higher accuracy in detecting TE fragments in different

situations, as long as the reported detailed annotations of each TE fragment is consistent with those defined

in Definition 12.

Definition 11. Let s be a string representing some genomic sequence and χs to be the set of TEs existing

in s, then χ̄(s
RM←−→ χs) is a RepeatMasker TE fragments set, running the program with a set of consensus

TEs χs, against the genomic sequence s.

In other words, each element of χ̄(s
RM←−→ χs) is a subset of some element of χ̄, where only TE fragments

detected by the RepeatMasker program are selected.

For each TE fragment z of some TE family X, and some X̄ ∈ χ̄(s
RM←−→ χs), a tuple is associated with it in

Definition 12. These attributes are referred to frequently in this thesis, and they are also consistent with the

output of the RepeatMasker program.

Definition 12. Given a genomic sequence s and a set of TEs χs, each TE fragment z in each X̄ ∈ χ̄(s
RM←−→

χs) is a tuple:

info(z) =(genoName, genoStart, genoEnd, genoLeft, strand,

TEName, TEFamily, TEClass, TEStart, TEEnd, TELeft).
(4.1.1)

The operator “.” is used to access the attributes. For example, z.TEname is the name of the TE to which
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fragment z belongs. The definition of each attribute is summarized in the list as follows (from [131]), and

described in Example 3.

genoName: The name of the genomic sequence, where the fragment was detected.

genoStart: The start position of the fragment in the genomic sequence.

genoEnd: The end position of the fragment in the genomic sequence.

genoLeft: The opposite of the number of bases after the fragment in the genomic sequence.

strand: Relative orientation: “+” or “-”.

TEName: The name of the TE to which the fragment belongs.

TEFamily: The name of the TE family to which the fragment belongs.

TEClass: The class of the TE to which the fragment belongs.

TEStart: The start position of the fragment in the TE consensus sequence to which the fragment belongs,

if strand is “+”, or the opposite number of bases after the fragment in the TE consensus sequence, if

strand is “-”.

TEEnd: The end position of the fragment in the TE consensus sequence.

TELeft: The opposite of the number of bases after the fragment in TE consensus sequence, if the strand is

“+”, or the start position of the fragment in the TE consensus sequence, if the strand is “-”.

Two TE fragments in the same TE family, X̄ ∈ χ̄(s
RM←−→ χs), have the same genoName. Also, a TE

fragment can be matched with either the consensus TE or the complement of the consensus TE in the

database; however, in both cases, the “+” strand coordinate is used to represent the location where it occurs.

Example 3 picks two TE fragments showing the meanings of their attributes visually with respect to a genomic

sequence and TE consensus sequences.

Example 3. Compare the human chromosome 1, denoted as s, against the library of human transposable

elements in Repbase Update, denoted as χs. The two TE fragments, z1 and z2, taken from two separate sets

in the RepeatMasker TE fragments set, χ̄(s
RM←−→ χs), are as listed in Table 4.1 with their detailed attributes,

and then visualized in Figure 4.1.

Fragment genoName genoStart genoEnd genoLeft strand TEName TEClass TEFamily TEStart TEEnd TELeft

z1 chr1 377414 377536 -248578886 + L1ME1 LINE L1 6022 6151 -28

z2 chr1 388433 388732 -248567690 - AluSg4 SINE Alu 1 297 -13

Table 4.1: A table of two TE fragments on the human chromosome 1.
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Figure 4.1: A conceptual visualization of the TE fragments (in blue shadow) in Table 4.1. (a)
visualizes the fragment z1; (b) visualizes the fragment z2. Note that the lengths of the visualized
sequences in the figure are not proportional to their actual lengths.

Fig. 4.1 (a) shows a fragment of the element L1ME1 (L1 family, LINE type), which was detected on the

“+” strand of chromosome 1, and Fig. 4.1 (b) shows a fragment of the TE family AluSg4 (Alu family, SINE

type), which was detected on the “-” strand of chromosome 1. The two fragments are detected in different

strands in the consensus TE as indicated in the figure.

In the human genome, there exists a huge number of such TE fragments. Table 4.2 lists the the number of

TE fragments in each chromosome based on the hg38 assembly of the human genome.

Most of the present-day copies of TEs are detected by locally aligning the consensus TE sequences against

a DNA sequence; thus the DNA sequence is fragmented into segments by the local aligned fragments. Some

segments of the DNA sequence are detected as fragments of those TE families, while some are non-transposon

DNA sequence. For much of the further analysis in this thesis, only the TE fragments and their positional

relationships are of interest, therefore, the non-transposon fragments need to be separated from the TE

fragments in the sequence. In essence, this DNA sequence can be “pruned” to present only the TE segments.

This process is defined in Definition 13.

Definition 13. Let s be a genomic sequence, χs a fixed ordering of the set of TEs in s, where χs =

{X1, . . . , Xm}, and χ̄s is a set of TE fragments. Assume s = w0z1w1z2w2 z3 . . . zkwk, with z1, . . . , zk in sets

in χ̄s, and no fragment of w0, w1, . . . , wk are in sets in χ̄s. Then a pruned sequence s̄ of s with respect to χ̄s

is
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LINE SINE LTR DNA Total number of TE fragments

Chromosome 1 125,726 163,484 53,063 37,777 38,0815

Chromosome 2 123,495 129,486 58,436 42,016 35,4251

Chromosome 3 103,348 109,938 48,805 36,382 299,125

Chromosome 4 94,966 88,618 53,582 28,930 266,743

Chromosome 5 91,522 92,952 46,323 30,729 262,069

Chromosome 6 86,266 88,382 41,256 28,779 245,227

Chromosome 7 80,022 96,350 37,609 25,355 239,841

Chromosome 8 75,052 79,829 37,601 22,890 215,836

Chromosome 9 65,241 77,250 28,835 20,176 191,881

Chromosome 10 66,746 83,330 29,978 22,813 203,247

Chromosome 11 72,010 84,910 30,717 21,068 209,062

Chromosome 12 69,862 89,305 33,236 23,632 216,462

Chromosome 13 49,838 43,589 25,716 14,726 134,189

Chromosome 14 46,101 54,782 22,786 14,627 138,620

Chromosome 15 45,127 57,130 17,257 15,021 134,817

Chromosome 16 40,469 73,211 20,245 15,435 149,522

Chromosome 17 40,361 76,438 15,638 14,055 146,701

Chromosome 18 38,290 37,472 18,574 12,187 106,782

Chromosome 19 26,867 67,882 14,397 7,556 116,751

Chromosome 20 34,414 46,496 16,606 13,499 111,151

Chromosome 21 17,298 18,281 12,330 5,476 53,501

Chromosome 22 19,467 36,238 7,888 5,471 69,128

Chromosome X 93,431 72,352 41,028 23,315 230,560

Chromosome Y 10,307 11,528 8,271 2,079 32,207

Total number in hg38 1,516,226 1,779,233 720,177 483,994 4,508,488

Table 4.2: A summary of the total number of TE fragments in the human genome. It also lists the
TEs in four different types and summarized by chromosomes.

67



s̄ = β0z1β1z2β2 . . . zkβk, where βi = |wi|, 0 ≤ i ≤ k. (4.1.2)

That is, in a pruned sequence, replace all non-TE fragments with their lengths.

In addition, from s̄ and χs, an order-pruned sequence s̄o of s̄ is defined as the string over {1, . . . ,m}∗,

s̄o = j1, j2, . . . , jk, where zi ∈ Xji , for all i, 1 ≤ i ≤ k. (4.1.3)

A pruned sequence can also be extended to a set of pruned sequences. Let S = {s1, . . . , sN}, then the set of

pruned sequences of S is S̄ = {s̄1, . . . , s̄N}.

The reason for extending a pruned sequence to a set of pruned sequences is because a genome usually

contains several chromosomes, which is a set of sequences. In the upcoming chapters, not only the pruned

sequence/chromosome, but also the set of pruned sequences/chromosomes of a genome, will be used.

Example 4 is an example showing the pruned sequence and the order-pruned sequence of a given genomic

sequence segmented by the RepeatMasker detected TE fragments.

Example 4. A piece of the human chromosome 1 from position 33632576 to 33634148, s, is compared against

the library of human transposable elements in Repbase Update, χs, where χs = {X1, X2, X3, X4, X5}, and

the names of the TE families X1, X2, X3, X4, X5 are L2a, L2b, MIR3, MLT1J, MER63A. The TE fragments

taken from the RepeatMasker TE fragments set, χ̄(s
RM←−→ χs), are as listed in Table 4.3 with their detailed

attributes.

Fragment genoName genoStart genoEnd genoLeft strand TEName TEClass TEStart TEEnd TELeft

z1 chr1 33632576 33632977 -215617644 + L2a LINE 2941 3379 -47

z2 chr1 33633163 33633226 -215617395 + L2b LINE 3309 3374 -1

z3 chr1 33633332 33633389 -215617232 - MIR3 SINE -19 189 128

z4 chr1 33633467 33633769 -215616852 - L2a LINE -2 3424 3074

z5 chr1 33633802 33633941 -215616680 + MLT1J LTR 262 389 -123

z6 chr1 33634011 33634148 -215616473 - MER63A DNA -71 139 5

Table 4.3: A table of six TE fragments on the human chromosome 1.

As in Definition 13, the genomic sequence s is

s = w0z1w1z2w2z3w3z4w4z5w5z6w6.

This sequence is visualized in Fig. 4.2, where each fragment in the sequence is also marked as the order and

the name of the TE family, to which it belongs.

From Definition 13, the pruned sequence of s is

s̄ = β0z1β1z2 . . . z6β6, where βi = |wi|, 0 ≤ i ≤ 6,
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Figure 4.2: A conceptual visualization of a genomic sequence (the human chromosome 1 from position
33632576 to 33634148), with the RepeatMasker detected TE fragments in Table 4.3. The TE fragments
zi, where i = 1, . . . , 6 in the sequence are also marked with the notation of TE families Xj ∈ χs, where
j = 1, . . . , 5, and the names of the TE families to which they belong. Note that the lengths of the
visualized sequences in the figure are not proportional to their actual lengths.

and the order-pruned sequence of s is

s̄o = 1, 2, 3, 1, 4, 5, where zi ∈ Xji , for all i, 1 ≤ i ≤ 6.

That is, the pruned sequence of s is obtained by removing any position of s that is not a fragment of a TE,

and instead replacing the part of the sequence between two TE fragments by its length. This is done so that

the TE fragments themselves remain (as we are interested in studying them), but the only non-TE aspects

of interest for our study of TEs is the length between fragments. The pruned sequences is describing exactly

what is needed for our study of TEs.

So far, some fundamental concepts associated with key biological terms have been defined, such as a family

of transposable element, a TE fragment and a pruned sequence, which are also extended to sets within the

TE fragment model. These terms were ambiguous and can refer to different concepts in biological literature

before they are formally defined in this thesis. This work contributes in setting up a general formal model in

using these terms in a consistent way.

4.2 Discussion

The TE fragment model serves as a theoretical foundation and helps to describe many TE problems clearly

in a precise way. In the next two chapters, two other theoretical models will be proposed based on the TE

fragment model: the sequential interruption model (Chapter 5) captures the interruptional activities between

every pair of TEs; and the recursive interruption model (Chapter 6) further captures the nested nature of

the interruptional activities of older TEs which cannot be represented by the interruptional matrix in the

sequential interruption model. A TE simulation in Chapter 7 will also use these definitions.

The sequential and recursive interruption models are used to analyze the interruptional activities between the

already annotated/detected TE fragments (as the input), and not to discover these fragments. Thus, in the

TE fragment model in this chapter, it is reasonable to replace RepeatMasker with other TE discovery tools

or a combination of tools in order to achieve a possibly higher accuracy of detected TE fragments, or to use,

e.g., a de novo TE discovering tool instead. In essence, any TE detection tools can be used without affecting
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the definition of the theoretical models in the thesis. However, the accuracy of the chosen TE discovery tool

will affect the results of our sequential and recursive interruption models, as it determines the input data of

our system.

The notations and descriptions in our system are very detailed. This is because it is useful to have a formal

model in order to be precise with further analysis, and for the connection to additional tools such as the linear

ordering problem (Chapter 5) and stochastic context-free grammars (Chapter 6). However, this necessitates

adding details to the model in order to properly capture all of the detail. For example, the annotations used

by RepeatMasker described in Definition 12 are only a small subset of those provided by RepeatMasker and

all of those discussed are needed for our models.
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Chapter 5

The sequential interruption model and

the linear ordering problem for

sequential interruption analysis 1

Newer TEs tend to interrupt older TEs, thereby fragmenting older TEs within the single linear sequence.

By analyzing that sequence, it is possible to predict where and how often the transpositional interruptions

occurred throughout evolution, which can be summarized into a so-called interruption matrix describing how

many times each TE interrupts each other TE. A rearrangement of the matrix is attempted in order to

minimize the penalty score that is calculated from the non-0’s in the upper triangle [47]. This has the effect

of predicting an order that those interruptional activity occurred, and further, potentially inferring the ages

of these TEs, as discussed in Section 2.3.2. The ordering that was obtained from rearranging the interruption

matrix in [47] agreed reasonably with published chronologies. This prediction is made entirely from a single

genome, which can therefore be applied in many scenarios.

This interruptional activity can be represented from [47] using the model and algorithms proposed in this

chapter. First, the sequential interruptions and the interruption matrix will be described and defined, then

the method of estimating TE ages from [47] will be briefly discussed, and essentially the same matrix that

they used for their estimation will be calculated using a specialized model called the sequential interruptions

model. The model will then be connected to the linear ordering problem, a classic matrix optimization

problem, whose methods can be used in solving the problem. This reduces the problem that the authors

of [47] used to estimate TE ages to an existing well-studied problem (Section 5.3.2) from another area of

computer science.

1Part of the work in this chapter has been published in [58].
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5.1 Model of sequential interruptions

To analyze interruptional patterns, only the TE fragments and their relative positions in a genomic sequence

are of interest. In the method in [47], an interruption is classified as occurring when one TE fragment is

within a certain distance from a fragment on the left and a fragment on the right, where both are from the

same TE family, and the two fragments are “close to” continuous within the consensus sequence of the TE

family. This information is then compiled into a so-called interruptional matrix, giving an estimate on the

number of times each TE family interrupted each other. The same analysis can be conducted using the TE

fragment model (Chapter 4), and in particular, using pruned sequences of Definition 13 of Chapter 4. This

definition provides all that is necessary to calculate the interruptional matrix. Before defining a sequential

interruption in Definition 16, continuous TE fragments need to be defined first. Examples will also be given

to clarify the definition.

Definition 14. Let s be a genomic sequence with a set of TEs χs, TE fragment set χ̄(s
RM←−→ χs) and pruned

sequence s̄ = β0z1β1z2 . . . ziβi . . . βj−1zjβj . . . zkβk as in Equation (4.1.2). Then two TE fragments zi and zj

(i < j) are in the same transposon region, if the non-transposon distances between every pair of TE fragments

between zi and zj is within a threshold E ∈ N in the genomic sequence:

βi ≤ E

βi+1 ≤ E
...

βj−1 ≤ E

βj ≤ E

Definition 15. Let s be a genomic sequence with a set of TEs χs, TE fragment set χ̄(s
RM←−→ χs) and

pruned sequence s̄ = β0z1β1z2 . . . zkβk as in Equation (4.1.2). Then two TE fragments zi and zj (i < j) are

continuous TE fragments, zi
ε,E∼ zj, with distance ε ∈ N (in the consensus sequence) and distance E ∈ N (in

the genomic sequence), if they satisfy the following conditions:

1. they belong to the same TE family:

zi.TEName = zj .TEName;

2. they are detected in the same strand:

zi.strand = zj .strand;

3. they belong to the same transposon region with the distance threshold E;
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4. they are either separated or overlap 2 with a distance less than or equal to ε, with respect to the TE

consensus sequence to which family they belong: abs(zj .TEStart− zi.TEEnd) ≤ ε, if zi and zj occur in the “+” strand,

abs(zi.TEStart− zj .TEEnd) ≤ ε, if zi and zj occur in the “-” strand.

Notice that continuous TE fragments are not necessarily beside each other in the genomic sequence (there

could be other fragments between them), as long as they belong to the same transposon region. Some

continuous TE fragments appear to have an overlap of duplication of a portion of the transposon. This

is because RepeatMasker [131] often extends the homology match of both fragments to the TE consensus

sequence by several base pairs.

Definition 16. Given a genomic sequence s, a set of TEs with a fixed ordering on its elements χs =

{X1, X2, . . . , Xm}, a distance ε ∈ N in a TE consensus sequence, a distance E ∈ N in a genomic sequence as

in Definition 15, as well as a pruned sequence s̄ = β0z1β1z2 . . . zkβk, as in Equation (4.1.2). The sequential

interruptions of Xj by Xi are defined as

Ξε,Es (Xi, Xj) = {k | zk ∈ X̄i, zk−η1 , zk+η2 ∈ X̄j , zk−η1
ε,E∼ zk+η2 , and η1, η2 ∈ N}. (5.1.1)

Thus, the TE family Xi is called interrupter, and the TE family Xj is called interruptee.

Intuitively, Ξε,Es gives the set of all positions of Xi interrupting Xj in the genomic sequence s. This matches

the (more informal) description of the calculation of an interruption matrix in [47].

Example 5 illustrates how an interruption is identified in a genomic sequence.

Example 5. Table 5.1 is a list of three TE fragments from chromosome 1 position 448062 to 448403 taken

from the RepeatMasker TE fragments set, χ̄(s
RM←−→ χs). The fragments belong to two TE families: L1MD3

and AluY c, where L1MD3 is denoted as X1 and AluY c is denoted as X2.

Fragment genoName genoStart genoEnd genoLeft strand TEName TEClass TEStart TEEnd TELeft

z1 chr1 448062 448139 -248802482 + L1MD3 LINE 6988 7068 -814

z2 chr1 448150 448328 -248802293 + AluYc SINE 122 299 0

z3 chr1 448332 448403 -248802218 + L1MD3 LINE 7068 7148 -847

Table 5.1: An example of an interruption.

As in Definition 13, the genomic sequence s is

s = w0z1w1z2w2z3w3,

2The amount that separates them or the amount they overlap is calculated using the abs() function to get the absolute

value.
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which gives the pruned sequence s̄ as

s = β0z1β1z2β2z3β3,

where z1, z3 ∈ X̄1, z2 ∈ X̄2 X̄1, X̄2 ∈ χ̄(s
RM←−→ χs), β0, . . . , β3 ∈ N.

Table 5.2 shows the distances between these TE fragments. Given the distance threshold in genomic sequence

as E = 20 bp (β1 ≤ E and β2 ≤ E), and the distance threshold in transposon sequence as ε = 10 bp (0 bp ≤ ε),

then z1 and z3 are continuous TE fragments; that is, z1
ε,E∼ z3. These three TE fragments are identified as an

interruption, where the interrupter is X2 (z2 ∈ X2), AluYc, and the interruptee is X1 (z1, z3 ∈ X1), L1MD3.

distance in genomic sequence distance in transposon sequence

β1: z2.genoStart - z1.genoEnd

distance between z1 and z2 = 448150 - 448139

in genomic sequence =11 bp ≤ E

β2: z3.genoStart - z2.genoEnd

distance between z2 and z3 = 448332 - 448328

in genomic sequence = 4 bp ≤ E

z3.TEStart - z1.TEEnd

z1 and z3 = 7068 - 7068

= 0 bp ≤ ε

Table 5.2: An example of distances between three TE fragments identified as an interruption in
Example 5, where the interrupter is z2 (AluYc) and the interruptee is z1 and z3 (L1MD3 ).

Using this definition, a large number of sequential interruptions were detected in the human genome (hg38 ) as

listed in Table 5.3, using the distance in the genomic sequence E = 20 bp, and the distance in the transposon

sequence ε = 10 bp. In this case, the E and ε are chosen to make the detection of interruptions very strict

compared to [47], in which 500 bp of “nonrepeat-masked sequence” (this is essentially the sum of βs in the

same transposon region) was used to detect potential transposon clusters and an increasing “repeat index”

(this is essentially the ε) up to 50% of the length of the shorter of the two fragments was used to detect

continuous fragments.

The frequencies with which the interruptions between different families of TEs occur in the sequence can also

show the activity of these TE families. Therefore, the abundance of interruptions is defined to capture the

frequencies of interruptions in Definition 17 to represent interruptions in a general way.

Definition 17. Given a genomic sequence s, a set of TEs with a fixed ordering on its elements χs =

{X1, X2, . . . , Xm}, the abundance that Xi interrupts Xj in s, 1 ≤ i ≤ m, 1 ≤ j ≤ m, is defined as the total

number of times that Xi interrupts Xj. The abundance is equal to

|Ξε,Es (Xi, Xj)|.
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Total number of interruptions Number of interruptions per Mbp

Chromosome 1 33,186 133

Chromosome 2 28,985 120

Chromosome 3 23,620 119

Chromosome 4 20,214 106

Chromosome 5 20,960 115

Chromosome 6 19,616 115

Chromosome 7 20,965 132

Chromosome 8 17,016 117

Chromosome 9 16,424 119

Chromosome 10 17,316 129

Chromosome 11 16,860 125

Chromosome 12 18,500 139

Chromosome 13 10,470 92

Chromosome 14 12,031 112

Chromosome 15 12,271 120

Chromosome 16 13,741 152

Chromosome 17 14,567 175

Chromosome 18 8,422 105

Chromosome 19 13,235 226

Chromosome 20 9,720 151

Chromosome 21 4,566 98

Chromosome 22 6,922 136

Chromosome X 21,400 137

Chromosome Y 2,636 46

Human Genome 383,643 124

Table 5.3: A summary of the number of sequential interruptions (E = 20 bp, ε = 10 bp) detected in
the human genome (hg38), summarized by chromosomes.

75



For a genome S that has chromosomes s1, s2, . . . , sN , the abundance that Xi interrupts Xj for all chromo-

somes are added up, which is

|Ξε,ES (Xi, Xj)| =
N∑
n=1

|Ξε,Esn (Xi, Xj)|.

The interruption array of Xi on S, for 1 ≤ i ≤ m, is the array

M(i) = [|Ξε,ES (Xi, Xj)|]j=1,...,m.

The interruption matrix on S is an m×m matrix defined by

M = [|Ξε,ES (Xi, Xj)|]i=1,...,m
j=1,...,m

.

The interruption array and matrix are different ways to structure the abundance by using the ordering on

the elements in χs. This interruption matrix was calculated in a similar fashion as the interruptional matrix

of [47].

Example 6 illustrates how to apply the model of sequential interruptions in a real situation to find sequential

interruptions, and calculate the interruptional matrix.

Example 6. Table 5.4 is a list of five TE fragments from chromosome 1 position 448062 to 449273 taken

from the RepeatMasker TE fragments set, χ̄(s
RM←−→ χs), in Example 3. The five fragments belong to three

TE families: X1, X2, and X3, where the names of the families X1, X2, X3 are L1MD3, AluY c, AluSq.

Fragment genoName genoStart genoEnd genoLeft strand TEName TEClass TEStart TEEnd TELeft

z1 chr1 448062 448139 -248802482 + L1MD3 LINE 6988 7068 -814

z2 chr1 448150 448328 -248802293 + AluYc SINE 122 299 0

z3 chr1 448332 448403 -248802218 + L1MD3 LINE 7068 7148 -847

z4 chr1 448403 448710 -248801911 + AluSq SINE 1 313 0

z5 chr1 448710 449273 -248801348 + L1MD3 LINE 7149 7753 -242

Table 5.4: An example of sequential interruptions on chromosome 1.

As in Definition 13, the genomic sequence s is

s = w0z1w1z2w2z3w3z4w4z5w5,

as visualized in Figure 5.1.

The pruned sequence of s is

s̄ = β0z1β1z2β2z3β3z4β4z5β5,

where z1, z3, z5 ∈ X̄1, z2 ∈ X̄2, z4 ∈ X̄3, X̄1, X̄2, X̄3 ∈ χ̄(s
RM←−→ χs), β0, . . . , β5 ∈ N, and z1

ε,E∼ z3, z3
ε,E∼ z5,

as shown in Figure 5.1.
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Figure 5.1: A conceptual visualization of a genomic sequence (the human chromosome 1 from position
448062 to 449273), with the RepeatMasker detected TE fragments in Table 5.4. Note that the lengths
of the visualized sequences in the figure are not proportional to their actual lengths.

It is possible to see that there are two potential interruptions in s: an instance of X1 is present in the sequence,

then an instance of X2 and an instance of X3 potentially inserted themselves into the instance of X1 to break

it into three segments z1, z3, and z5; that is, |Ξε,Es (X2, X1)| = 1 and |Ξε,Es (X3, X1)| = 1, where E = 20 bp

and ε = 10 bp.

Given a fixed order of the set of TEs as

χs = {. . . , X1, . . . , X2, . . . , X3, . . .},

the interruption matrix showing only the rows and columns of these TEs is

M =



...
...

...

. . . 0 . . . 0 . . . 0 . . .
...

...
...

. . . 1 . . . 0 . . . 0 . . .
...

...
...

. . . 1 . . . 0 . . . 0 . . .
...

...
...


.

From the analysis on these sequential interruptions, it is reasonable to predict the age of L1MD3 as being

older than both AluYc and AluSq, but this provides no clue as to which one of AluYc and AluSq is older,

because which one of the two independent interruptions occurred first is unknown.

The notions in this section transformed the interruptional matrix construction similar to the method described

in prose in [47] into a formal model, which is more clear, and can also be used for other purposes, such as

the study of recursive patterns, as in Chapter 6.

5.2 The method of estimating TE ages from [47]

The interruptional analysis done in [47] was performed using the interruptions between TEs, then rearranged

the TEs using a so-called “repositioning” method, in such a way that they hypothesized would order them in

the chronological order of TEs (from the oldest to youngest). The method tried to rearrange the interruptional
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matrix in order to minimize the penalty score that is calculated from the non-0’s in the upper triangle of

the matrix. This is done because ideally, the matrix that achieves a lowest penalty score corresponds to

reordering these TEs families, from those that get interrupted most while getting interrupting the least, to

those that interrupt most while getting interrupted least. In this way, in a hypothetical matrix, the TE

families are arranged in a predictive chronological order of decreasing age (from oldest to youngest). The

interruptional analysis is done as follows:

First, an interruptional matrix was calculated comparable to an interruption matrix in Definition 17, whose

rows/columns correspond to a TE ordering, which counts the number of interruptions between each pair of TE

families. A method, called the repositioning method, is used to rearrange the TE ordering by repositioning

TEs in the ordering to minimize the penalty score. The penalty score is defined as the summation of nonzero

entries in the upper triangle of the interruption matrix (the nonzero entries were transformed by a continuous

function, τ(x) = x for x ≤ 3 and τ(x) = 3 + log(x + 1)/4 for x > 3, before summation). The repositioning

method starts at the first TE in the ordering, and moves it to the position that results in the greatest decrease

in the penalty score, then rearrange the matrix by placing this TE to its new position. In the rearranged

matrix, the first TE is now different, the algorithm then checks the first TE in the new ordering again. When

repositioning of the first TE no longer results in a decrease in the penalty score, the algorithm checks and

moves to the second TE in the matrix, until the second TE can no longer be repositioned to decrease the

penalty score. Then it checks the third TE, and so on until it reaches the last TE. Then the same procedure

is iterated multiple times (100,000 times), and every time starts with a random initial ordering of TEs (the

initial ordering affects the best solution that the algorithm can find). The final position of each TE in the

ordering is represented as the median of the distribution of its positions across all iterations. Note that in

some sense, the complexity of the repositioning method is O(n!), where n is the number of TE families.

Although [47] did not report how long the repositioning method took to compute the problem, it is likely

quite long as they needed to reduce the size of the matrix to a minority fraction of the set of the human

TEs.

The formal model of sequential interruptions from Section 5.1 calculates an interruption matrix in essentially

the same way as the interruptional matrix in [47]. Next, this matrix will be mapped to a well-studied

matrix optimization problem — the linear ordering problem — which rearranges a matrix similarly to the

repositioning approach in [47] to predict a potential chronology of these TE families.
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5.3 Linear ordering problem for sequential interruptions analy-

sis

First of all, a set of matrix rearrangement operations in linear algebra will be examined in the next subsection,

in order to describe and compute the linear ordering problem.

5.3.1 Preliminaries

When rearranging some objects or values, the act of rearrangement is a permutation as defined in Defini-

tion 18.

Definition 18. A permutation π is a bijective function from {1, 2, . . . , n} to itself. It will be denoted by an

n-tuple where the number at position i is π(i).

A permutation matrix is a square n × n binary matrix that has exactly one entry 1 in each row and each

column and 0s elsewhere. Specifically, the permutation matrix of a permutation π is a matrix Pπ whose

entries are all 0 except that in row i, where the entry at column π(i) equals 1.

Each such matrix represents a specific permutation of n elements and, when multiplying another n×n matrix

A with P from the left, it permutes the rows of A. Further, multiplying A with the transpose of P , PT , from

the right, permutes the columns of A.

Example 7 illustrates a permutation of an ordering and its permutation matrix, as well as discussing how to

permute a square matrix using this permutation.

Example 7. For an ordering of
(

1 2 3 4 5
)

, a permutation could be π(1) = 1, π(2) = 4, π(3) = 2,

π(4) = 5, π(5) = 3, which is written as π =
(

1 4 2 5 3
)

.

The permutation matrix Pπ of π is

Pπ =



1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

0 0 1 0 0


.

As in Definition 18, any square matrix with n rows and columns can be rearranged by a permutation of n

elements, using its permutation matrix.
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Given a square matrix,

A =



11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55


,

multiplying A with Pπ from the left permutes the rows of A:

Pπ ×A =



11 12 13 14 15

41 42 43 44 45

21 22 23 24 25

51 52 53 54 55

31 32 33 34 35


,

while multiplying A with PTπ from the right permutes the columns of A:

A× PTπ =



11 14 12 15 13

21 24 22 25 23

31 34 32 35 33

41 44 42 45 43

51 54 52 55 53


.

Therefore, Pπ ×A× PTπ permutes A with the permutation π =
(

1 4 2 3 5
)

:

Pπ ×A× PTπ =



11 14 12 15 13

41 44 42 45 43

21 24 22 25 23

51 54 52 55 53

31 34 32 35 33


.

For each given ordering of n elements, there exists n! possible permutations. Permuting a square matrix in

this fashion is the operation used in the linear ordering problem in Section 5.3.2.

5.3.2 Linear Ordering Problem

The linear ordering problem is one of the classical combinatorial optimization problems. It was classified as

N P -hard in 1979 by Garey and Johnson [45]. This problem is defined using either a graph problem or a

matrix problem. The matrix problem is described in [124] as:
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Given an m × m matrix C, the linear ordering problem is the problem of finding a permutation π of the

column and row indices {1, · · · ,m}, such that the value

f(π) =

m∑
i=1

m∑
j=i+1

C(π(i),π(j)) (5.3.1)

is maximized. In other words, the goal is to find a permutation of the columns and rows of C such that the

sum of the elements in the upper triangle is maximized.

Analogously, the goal of the TE sequential interruptional analysis is to find a permutation of TE ordering that

maximizes the sum of upper triangle of the interruption matrix in Definition 17. The sequential interruption

analysis can be described in terms of the linear ordering problem as follows.

Given a set of genomic sequences, S, a set of TEs with a fixed ordering on its elements,

χs = {X1, X2, . . . , Xm},

and an interruption matrix of χs on S,

IM = [|Ξε,ES (Xi, Xj)|]i=1,...,m
j=1,...,m

,

the problem is to find a permutation π of χs, corresponding to the column and row indices {1, · · · ,m}, such

that the value

f(π) =

m∑
i=1

m∑
j=i+1

IM (π(i),π(j)), (5.3.2)

is maximized. Note that in the LOP, the permutation π provides the ordering of both the columns and the

rows.

The resultant permutation of χs corresponds to a hypothetical chronological order of TE families in χs of

increasing age, as it optimizes essentially the same function used to estimate the ages (in [47], they attempt to

find a permutation, corresponding to TE families of decreasing age that minimizes the summation of nonzero

entries in the upper triangle of the matrix). The resulting matrix whose rows and columns are rearranged,

will have the following features (as shown in Figure 5.2):

1. Each item in the matrix records the number of interruptions that an interrupter (on the vertical axis)

has inserted itself into an interruptee (on the horizontal axis);

2. The order of TEs on the vertical axis (from top to bottom) is the same as the order of TEs on the

horizontal axis (from left to right), which is arranged in predicted chronological order of increasing in

age (from youngest to oldest).

3. The matrix can be divided into four portions:

• the top-left portion of the matrix represents young TE families interrupting young TE families;
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Figure 5.2: A conceptual diagram of the permuted interruptional matrix with a maximum sum of
the upper triangle. The row and column of the matrix correspond to the resultant permutation of the
TE ordering, which is a hypothetical chronological order of TEs of increasing in age.

• the top-right portion of the matrix represents young TE families interrupting old TE families;

• the bottom-left portion of the matrix represents old TE families interrupting young TE families;

• the bottom-right portion of the matrix represents old TE families interrupting old TE families.

4. Ideally, the lower triangle region of the matrix (light grey in Figure 5.2), corresponds to older TE

families interrupting younger TE families, should be mainly populated by zeros, meaning that there

are no interruptions. Non-zeros in this region might occur possibly because of defragmentation errors,

or other mutation events that give the appearance of TE insertion.

5. Most non-zero values should appear in the upper triangle region of the matrix (dark grey in Figure 5.2),

which corresponds to young TE families interrupting old TE families.

6. Interruptions of the same families of TEs into themselves (which would be recorded directly on the

matrix diagonal) are not scored due to the fact that they are difficult to confidently identify and do not

affect the ordering analysis.

The linear ordering problem is N P -hard; this implies that there likely does not exist a polynomial time

algorithm for calculating an optimal solution. After computing an interruption matrix of n TEs using the

sequential interruption model in Section 5.1, a straightforward method to find the permutation of the problem

would be exhaustive search: applying all n! possible permutations to the interruption matrix and the resultant

permutation will be the one with which the permuted interruption matrix achieves the maximum score over

all n! sum of upper triangle scores. The exhaustive search algorithm has a complexity of O(n2 × n!) (the
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n2 does the additions of the upper triangle), which is considerably inefficient. In the human genome (hg38 )

and according to Repbase Update, there are 1,080 different TEs existing in the genome, thus the size of the

matrix is n × n, where n = 1080. As such, it is not feasible to use the exhaustive search on the original

matrix (when n is big) to find a permutation. Therefore, non-optimal techniques are required:

1. Because of the sparseness property of the matrix, it is possible to slightly reduce the size of the matrix

by removing any transposon (both the corresponding row and column) with zero (or low) interruptions.

Lemma 1 shows that it is possible to remove these rows and columns.

Lemma 1. Let M (n × n) and i, 1 ≤ i ≤ n, where row i and column i are all 0s, and let M ′ be

obtained from M by removing row i and column i. M ′ is (n − 1) × (n − 1). The optimal answer for

linear ordering problem on M ′ is the same as M .

Proof. Assume that π = (k1, k2, k3, . . . , kn) is the order corresponding to the permuted matrix, Mπ,

that
∑kn
p=k1

∑kn
q=p+1M

(π(p),π(q)) is maximum among all possible permutations. Given kj = i, remove

kj from π, then the order becomes π′ = {k1, . . . , kj−1, kj+1, . . . , kn}, and the permuted matrix becomes

Mπ′ , where the row kj and column kj in Mπ are removed from the matrix. As row i and column i are

all 0’s in M , thus row kj and column kj are all 0’s in Mπ as well. Thus, the sum of the upper triangle

of Mπ′ is the same as that of Mπ. Therefore, the optimal answer for the linear ordering problem on

M ′ is the same as M .

Though Lemma 1 provides a way to reduce n, then to reduce the time of computation, the complexity

of exhaustive search does not change. After applying Lemma 1 to the overall interruption matrix of the

human genome we calculated, the size of the matrix is reduced from 1,080 to 1,015. With n = 1, 015,

an exhaustive search method is still not practical. Therefore, this method can be only used to calculate

for a smaller set of TEs (such as a family with perhaps 10 TEs). This brute force method has been

implemented only on reduced sized matrix for a small set of TEs. Unfortunately, the removed TEs

(that do not have interruption data) were not fit into the calculated order.

2. Furthermore, since the linear ordering problem arises in a variety of applications ranging from archeology

and scheduling to economics and even mathematical psychology, algorithms for its efficient solution are

required. There are some exact methods that use Branch-and-Bound algorithms to solve the problem

to (proven) optimality (discussed in [96]), such as the branch-and-bound with partial orderings in [33],

the lexicographic search algorithm in [79, 80], and the branch-and-bound approach, where Lagrangian

relaxation techniques are used for bound computations in [23]. The branch-and-bound can also be

realized in a special way leading to the so-called Branch-and-Cut method, which is essentially a branch-

and-bound algorithm, where the upper bounds are computed using linear programming relaxations

as discussed in [96]. In this thesis, the details of these exact algorithms or their application to the

sequential interruption model will not be discussed.
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3. Heuristic and meta-heuristic methods attempt to find a good, but not necessarily optimal solution

to the problem, which is in contrast to exact methods that guarantee to give an optimum solution.

Nevertheless, the time taken to find an optimum solution to a difficult problem by an exact method

is often much greater than heuristic and meta-heuristic methods. Thus, heuristic and meta-heuristic

methods are often used to solve real optimization problems. Mart́ı and Reinelt [96] summarized many

heuristic and meta-heuristic methods to solve the LOP, such as GRASP [40], Tabu search [48], the

simulated annealing method [76], variable neighbourhood search [53], scatter search [83], iterated local

search [20], etc. A computational comparison of 24 heuristic and meta-heuristic methods for the LOP on

484 instances done in [97], concluded that the meta-heuristics obtain high quality solutions, moreover,

the memetic algorithm implementation, MA, performs best, followed by iterated local search, ILS, and

with the Tabu search, TS, ranked in third place.

Several of the implemented software for solving the LOP only output the score of the best solution without

providing the actual ordering that yields the score, which is important to our problem. Fortunately, we have

obtained the source code of one method, Tabu search, from the authors of [97], and by modifying it, the

ordering can be output together with its score, which corresponds to the relative ages of TEs. In the next

subsection, the general idea of Tabu search [48] will be described, then the result of Tabu search applied in

the sequential interruption model will be provided and compared with the published result in [47].

5.3.3 Tabu search and results

The word “tabu” comes from a language of Polynesia, Tongan, indicating things that cannot be touched

because they are sacred, which accords very well with the idea of Tabu search. Generally speaking, Tabu

search keeps a table of solutions that are forbidden to guide the search, so that the selection of solutions is

limited according to the table of tabu status.

Tabu search begins in the same way as an ordinary local search, moving from one solution to another

repeatedly until a number of global iterations are performed without improving the best solution found so

far. If the search space is seen as a huge set of solutions and only a tiny part of the set can be explored,

then Tabu search guides the local search process to examine the solution space beyond local optimality. It

consists of two search strategies — intensification and diversification — with complementary objectives to

search in the solution set. Intensification favours the exploration of promising areas of the solution space,

while diversification moves the search to new regions of the solution space.

As mentioned in the last section, the authors of [97] have provided us with the C source code of the Tabu search

solving the LOP program. Given an interruption matrix (Definition 17), IM(1015× 1015), calculated on the

human genome hg38, the sum of the overall matrix excluding the sum of diagonal is
∑m
i=1

∑m
j=1 IM

(i,j) −
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∑m
i=1 IM

(i,i) = 381, 201. By inputing IM to the Tabu search program, a TE ordering (from predicted

youngest TE to the oldest TE) that achieves the best superdiagonal score,

f(π) =

m∑
i=1

m∑
j=i+1

IM (π(i),π(j)) = 377, 417,

is calculated. Since the Tabu search is a meta-heuristic algorithm, this score is not guaranteed to be optimal.

However, it only took 38 seconds to calculate the best score of a matrix of size 1,015 on a 2.9 GHz Intel Core

i5 processor with 16 GB memory. The calculated TE ordering of the interruption matrix, IM(1015× 1015),

achieving the best score of the LOP is attached in Appendix A. The ability in solving this problem on such

a big matrix has made Tabu search outperform the method proposed in [47] in terms of efficiency, which was

only able to solve a much smaller matrix also without a guarantee of finding the optimal solution.

The resultant ordering from Tabu search is then compared with the ordering published in [47] (Giordano et.

al.) in two different ways. First, as the method in [47] is computationally impractically expensive, though

there were ≈ 1, 000 TEs with interruptions, only 405 were selected for calculating their ordering in the paper.

Moreover, among these selected 405 TEs, there were 359 of them that are in common with the TEs in the

IM that was calculated on the human genome hg38. This might be caused by the ongoing updates of the

TE names in Repbase Update during these years. The set of the n = 359 common TEs are denoted by χn.

The resultant ordering from Tabu search of χn is denoted as πtabu, and the ordering published in Giordano

et. al. [47] of these TEs is denoted as πGiordano, then the sub-matrix of IM on χn is denoted as IMχn . For

the matrix IMχn , the sum of the overall matrix excluding its diagonal is

n∑
i=1

n∑
j=1

IM (i,j)
χn
−

n∑
i=1

IM (i,i)
χn

= 169, 503− 1, 687 = 167, 816.

The superdiagonal scores of the two permutations πtabu and πGiordano on IMχn are

f(πtabu) =

n∑
i=1

n∑
j=i+1

IM (πtabu(i),πtabu(j))
χn

= 165, 980,

f(πGiordano) =

n∑
i=1

n∑
j=i+1

IM (πGiordano(i),πGiordano(j))
χn

= 165, 591.

It can be seen that the ordering calculated by Tabu search achieves a higher score for this (reduced) problem,

which indicates that Tabu search is performing better than the method in [47] in terms of the final score.

Second, the similarity between the ordering calculated from Tabu search (πtabu) and the ordering published

in [47] (πGiordano) are compared with each other using the Pearson’s coefficient of correlation calculated

as

ρ =
cov(πGiordano, πtabu)

σπtabu
σπGiordano

= 0.943522,

which shows a strong positive correlation (agreement) between the two orderings.
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Figure 5.3: A comparison between the ordering calculated in [47] (πGiordano) and the ordering
calculated by Tabu search (πtabu). The thick red diagonal line represents the case when the two
orderings are exactly the same. The elements in Table 5.5 are marked in red.

The two orderings are then plotted against each other in Figure 5.3, where the ordering calculated in [47] is

shown on the x-axis, the ordering calculated by Tabu search is shown on the y-axis, and the thick red diagonal

line represents the case when the two orderings are exactly the same, namely 100% agreement line.

As TEs can be active for a period of time, more than one TE can be active at the same time, in parallel.

Hence, it is reasonable that the relative age order of these parallelly active TEs are shuffled within a region

of the overall ordering, which results in these TEs being “around” the 100% agreement line on the plot. It

can be seen from the figure that most of the elements agree in the two orderings very well as they are very

“close” to the red line. There are also some “outliers”, which indicate that their positions are distant (very

different) in the two orderings. The elements that have a distance of more than 100 positions in the two

orderings are listed in Table 5.5 and marked with their names and types in brackets in Figure 5.3.

A detailed biological analysis and verifications of their actual positions (actual evolutionary age) of the

elements in Table 5.5 relative to other TEs will be left as future work. However, another technique for verifi-

cation, with the help of a simulation, is created as part of Chapter 7, where this work will be revisited.

5.4 Conclusion

In this chapter, a TE sequential interruption model was created based on the abundance of TEs interrupting

other TEs, and the problem of predicting TE age, proposed in [47], was formulated by our model as a well-

studied matrix problem — the Linear Ordering Problem — which can solve our problem very efficiently.

As discussed, though [47] did not report how long it took the repositioning method to solve the problem
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TE name TE type TE family Position in Giodano’s method Position in Tabu search

MLT-int LTR ERVL-MaLR 49 200

PRIMA4-int LTR ERV1 133 357

L1M3f LINE L1 140 246

Ricksha DNA MULE-MuDR 156 356

MLT1A0-int LTR ERVL-MaLR 172 330

MER4B-int LTR ERV1 181 298

LTR49-int LTR ERV1 186 355

FordPrefect a DNA hAT-Tip100 300 183

L1M LINE L1 309 102

Charlie4 DNA hAT-Charlie 315 177

Charlie11 DNA hAT-Charlie 358 199

Table 5.5: The TEs that have a distance of more than 100 positions in the two orderings of πGiordano
and πtabu.

on the reduced matrix (of size 405), it is likely long, as only a portion of TEs were solved; in contrast, the

Tabu search solves the LOP on the full size matrix (of size 1,015) in just 38 seconds, while achieving better

results when restricting to the elements common in both method. Therefore, the LOP and Tabu search in

particular as per the sequential interruption model is more practical and achieves good results in predicting

the relative ages of TEs. Further verification and comparison of the sequential interruption model to another

new method will occur in Chapter 7.
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Chapter 6

The recursive interruption model using

stochastic context-free grammars 1

6.1 Introduction

When many insertions occurred throughout the evolution of a genomic sequence, the interruptions can nest

in a recursive pattern [81], which cannot be represented entirely with the interruptional matrix approach that

only counts the abundance of a TE in-between another TE without storing the hierarchical relationships of

interruptions. Indeed, Example 8 shows some nested TEs in real data that occurs in the human genome and

cannot be described with the linear model.

Example 8. Table 6.1 contains a list of TE fragments taken from the RepeatMasker TE fragments set,

χ̄(s
RM←−→ χs), where s is the X chromosome of the human genome, and χs is the library of human transposable

elements in Repbase Update. These seven TE fragments start from the X chromosome position 53437061 to

53438226 that belong to four TE families: X1, X2, X3, and X4, where the names of the families of TEs

X1, X2, X3, X4 are MIR, AluJb, AluSx, AluSq2.

Fragment genoName genoStart genoEnd genoLeft strand TEName TEClass TEStart TEEnd TELeft

z1 chrX 53437061 53437143 -101833417 + MIR SINE 3 88 -174

z2 chrX 53437143 53437277 -101833283 + AluJb SINE 1 132 -170

z3 chrX 53437277 53437448 -101833112 + AluSx SINE 39 192 -120

z4 chrX 53437448 53437761 -101832799 + AluSq2 SINE 1 312 0

z5 chrX 53437761 53437887 -101832673 + AluSx SINE 193 312 0

z6 chrX 53437887 53438055 -101832505 + AluJb SINE 133 293 -9

z7 chrX 53438055 53438226 -101832334 + MIR SINE 89 261 -1

Table 6.1: An example of recursive interruptions on the X chromosome.

As in Definition 13, the genomic sequence s is

s = w0z1w1z2w2z3w3 . . . z7w7,

1Part of the work in this chapter has been published in [59].
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as visualized in Figure 6.1.

Figure 6.1: A conceptual visualization of a genomic sequence (the human X chromosome from
position 53437061 to 53438226), with the RepeatMasker detected TE fragments in Table 6.1. Note
that the lengths of the visualized sequences in the figure are not proportional to their actual lengths.

The pruned sequence of s is

s̄ = β0z1β1z2β2z3β3z4β4z5β5z6β6z7β7,

where β0, . . . , β7 ∈ N, z1, z7 ∈ X̄1, z2, z6 ∈ X̄2, z3, z5 ∈ X̄3, z4 ∈ X̄4, X̄1, X̄2, X̄3, X̄4 ∈ χ̄(s
RM←−→ χs), and

z1
ε,E∼ z7, z2

ε,E∼ z6, z3
ε,E∼ z5.

It is possible to see a potential process of nested interruptions described as:

• at first, an instance of AluJb inserted itself into an instance of MIR to break it into z1 and z7;

• then an instance of AluSx inserted itself into the instance of AluJb that has already presented in the

sequence, to break it into z2 and z6;

• more recently, an instance of AluSq2 (z4) inserted itself into the presented AluSx instance to break it

into z3 and z5.

From the interruptional analysis above, the age order of the three families of TEs can be predicted from the

recursive interruptions as: MIR, AluJb, AluSx, AluSq2, from oldest to youngest.

The nested nature of the interruptions in Example 8 is not captured by the interruptional matrix as done

in Chapter 5, or in [47], because the recursive nesting can “push” fragments so that they are no longer

continuous. However, these nested interruptions are informative in predicting the chronological order of

when these interruptions occurred in the genomic sequence. Therefore, a new model built on top of the TE

fragment model will be created in this chapter to capture this hierarchical nesting feature. First, a specific

context-free grammar called the recursive interruption context-free grammar will be defined to model the

generation of recursive interruptions. Then algorithms that calculate a parse tree of the grammar generating

a given order-pruned sequence will be given, where the parse tree shows a prediction of the hierarchical

structure of TE insertions. Before formally defining the recursive interruption context-free grammar, some

basic preliminaries on formal language theory will be introduced in Section 6.2.
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6.2 Preliminaries on formal language theory

First, the definitions in this section build on the definition of an alphabet and the set of all words over that

alphabet as in Definition 8. Also, given an alphabet Σ, and the set Σ∗, a language L is any L ⊆ Σ∗.

In the area of formal language theory, a context-free grammar is a certain type of rewriting system that

iteratively rewrites strings as per a set of production rules describing the manner in which letters can become

replaced. Formally:

Definition 19. A context-free grammar (CFG) is a four tuple G = (V, T, P, S), where

• V is the alphabet of variables (usually capital letters),

• T is the alphabet of terminals (usually lower case),

• P is the finite set of productions, each of the form A→ w, where A ∈ V and w ∈ (V ∪ T )∗,

• S is the starting variable, where S ∈ V .

The left-hand side of each production is always a variable, and the right-hand side is any string containing

variables and terminals. Each context-free grammar defines a language over the terminal alphabet using either

a rewriting mechanism, or an equivalent mechanism using parse trees. We will adopt the latter approach

[56].

Derivations can be represented by a tree, called a parse tree, that shows clearly how the symbols of a

terminal string (e.g., 01010) are derived as leaves of the tree, where the tree is constructed according to the

productions.

Definition 20. Let G = (V, T, P, S) be a context-free grammar. A parse tree (or derivation tree) of G is an

ordered, rooted tree that represents the syntactic structure of a string according to some context-free grammar.

The parse trees of G are all trees, t, with the following conditions (from [56]):

• the root is labelled by S;

• each interior node (non-leaf) is labelled by a variable in V ;

• each leaf is labelled by either a terminal, or λ. However, if the leaf is labelled λ, then it must be the

only child of its parent;

• if an interior node is labelled A, and its children are labelled X1, X2, . . . , Xk respectively, from left-to-

right, then A→ X1X2 . . . Xk is a production of P . Note that the only time one of the X’s can be λ is

if that is the label of the only child, and A→ λ is a production of G.
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The yield of a parse tree t is the string obtained by concatenating all labels on leaves from left to right. This

must be a string over T . The language generated by G, denoted by L(G), is the set of all yields of parse trees

of G. This is a language over T .

Example 9 shows the context-free grammar of palindromes.

Example 9. A palindrome is a string that reads the same forward and backward, such as level, madam,

101101 etc. Let G = (V, T, P, S) be a context-free grammar, where

• V = {S,X} is the variable alphabet,

• T = {0, 1} is the terminal alphabet,

• P = {S → X, X → λ, X → 0, X → 1, X → 0X0, X → 1X1},

• S is the start symbol.

Figure 6.2 shows a parse tree of G. The production used at the root is S → X. Then the production used on

the first X is X → 0X0, etc. The yield of the tree is 01010, a palindrome. It is possible to show that L(G)

is the set of all palindromes over T .

Figure 6.2: A parse tree showing the derivation of 01010.

Given a context-free grammar G, and a word w, the process of finding a parse tree of G generating w is

called parsing. There is a polynomial time parsing algorithm called the CYK algorithm [56].

A stochastic context-free grammar (SCFG) is a context-free grammar, where every production in the grammar

has an associated probability value between 0 and 1, such that the probability for all productions from each

variable adds to 1. The probability associated with a parse tree is the product of the probabilities of the

production instances applied to produce it.

SCFGs can be applied to different areas. For example, it is used in the field of speech recognition in modelling
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isolated words (words with similar beginning and ending but with different vowels in between) accurately,

or in representing the language model component of a speech recognizer [85]. They are also applied in RNA

secondary structure problems [36], such as RNA secondary structure prediction for a single sequence, and

multiple RNA sequence alignment algorithms that incorporate secondary structure constraints.

6.3 Context-free grammar to generate recursive interruptions

In this section, a theoretical model will be proposed to describe the nature of recursive interruptions using a

context-free grammar. Ultimately, a probabilistic model will be created.

Definition 21. Given a set of TEs with a fixed order on its elements, χ = {X1, X2, . . . , Xm}, the recursive

interruption context-free grammar is a grammar G = (V, T, P, S), where V = {S,X1, X2, . . . , Xm}, T =

{1, 2, . . . ,m}, and P contains the following productions:

S → XiS, 1 ≤ i ≤ m, (6.3.1)

S → Xi, 1 ≤ i ≤ m, (6.3.2)

Xi → XiXjXi, 1 ≤ i ≤ m, 1 ≤ j ≤ m, (6.3.3)

Xi → i, 1 ≤ i ≤ m. (6.3.4)

This grammar is used to generate strings over {1, . . . ,m}∗ corresponding to TE orders. Intuitively, produc-

tions of type 6.3.3 correspond to an instance of Xj inserting itself throughout evolution into an instance of

Xi, as shown in Figure 6.3, leaving a fragment from i, then j, then i.

Figure 6.3: A diagram showing an instance of Xj inserting itself throughout evolution into an instance
of Xi, corresponding to an application of a production of type 6.3.3.

When constructing a parse tree from the top-down, if there are three consecutive nodes labelled by XiXjXi,

these can either derive iji (using productions of type 6.3.4) corresponding to that order of TEs, or any

of them can be further interrupted (using additional productions of type 6.3.3). Productions of type 6.3.1
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correspond to independent positions of the sequence where a TE can insert itself (not a nested insertion, and

this can only be produced continuously from the root along the rightmost path of a parse tree). Productions

of type 6.3.2 correspond to the final independent position of a TE insertion.

We are therefore interested in parse trees, which correspond to different potential sets of molecular events that

could have occurred, and the nesting patterns. However, this context-free grammar is ambiguous (meaning

that multiple parse trees can produce the same string). Indeed, it is clear that any non-empty string over

T ∗ can be generated by G by using only productions of types 6.3.1, 6.3.2, and 6.3.4. This would require the

application of 2k productions to generate a string of length k. However, for every application of a production

of type 6.3.3, the total number of productions needed to generate a string of length k decreases. If there are

l productions of type 6.3.3 applied, the total number of productions needed to generate a string of length k

decreases to 2(k − l).

Example 10 shows how nested interruptions in a sequence are generated by the grammar as the yield of its

possible parse trees.

Example 10. Given a genomic sequence s and a set of TEs with a fixed order on its elements χs = {X1, X2,

. . . , X10}, assume

s = w0z1w1 . . . z13w13,

as in Equation (4.1.2), with z1, z4, z6 ∈ X̄2, z2, z8, z10, z12 ∈ X̄3, z5 ∈ X̄4, z11, z13 ∈ X̄5, z3, z7 ∈ X̄6,

z9 ∈ X̄10. Then an order-pruned sequence

s̄o = 2, 3, 6, 2, 4, 2, 6, 3, 10, 3, 5, 3, 5

is the yield of the parse tree shown in Figure 6.4.

Figure 6.4: A parse tree of G from Definition 21 that yields s̄o.

Only the parse tree that maximizes the application of productions of type 6.3.3, or equivalently minimizes
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the total number of productions applied are of interest. This would correspond to minimizing the number of

transpositional events that occurred throughout evolution. Indeed, it is common in phylogeny to prefer the

evolutionary pathway that requires the fewest number of changes to be applied [113], which is known as par-

simony. Hence, minimizing the number of transpositional events is the most parsimonious possibility.

6.4 Stochastic CYK algorithm for finding a most likely parse tree

As discussed, given an order-pruned sequence, a parse tree of the grammar that maximizes the applications of

productions of type 6.3.3, or minimizes the overall number of productions applied to generate this sequence,

is of primary interest. In this subsection, some methods to find such parse trees will be given by converting

the recursive interruption context-free grammar into a stochastic context-free grammar.

Considering the context-free grammar in Definition 21, by slightly changing production 6.3.2 and attaching

probabilities between 0 and 1, the parse trees that use fewer productions will have a higher probability.

Definition 22. Given a set of TEs with a fixed order on its elements, χ = {X1, X2, . . . , Xm}, the recursive

interruption stochastic context-free grammar is a grammar G = (V, T, P, S), where V = {S,X1, X2, . . . , Xm},

T = {1, 2, . . . ,m}, and P contains the following productions where each production is attached with a proba-

bility p:

S → XiS, 1 ≤ i ≤ m, p =
1

m2
, (6.4.1)

S → XiXj , 1 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j, p =
1

m2
, (6.4.2)

Xi → XiXjXi, 1 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j, p =
1

m
, (6.4.3)

Xi → i, 1 ≤ i ≤ m, p =
1

m
. (6.4.4)

Given a word of w ∈ T ∗, a most likely parse tree for w is defined as a parse tree with a yield of w with the

highest probability. This corresponds to the parse tree that has the most productions of type 6.4.3 applied

in the recursive interruption context-free grammar. For this grammar, all productions for each variable were

given equal weight: for each production of S, the probability is 1/m2 (there are m productions of type

6.4.1, and m × (m − 1) productions of type 6.4.2 giving m2 productions), and for each production of Xi,

the probability is 1/m (there are m − 1 productions of type 6.4.3, and 1 production of type 6.4.4). Thus a

modified version of the CYK algorithm [36] that takes the probabilities into account can find a most likely

parse tree that has a given sequence as yield is of primary interest. In our case, starting with the order-pruned

sequence, it can predict a most likely parse tree with it as the yield.
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Example 10 shows how nested interruptions in a sequence are generated by the stochastic context-free gram-

mar as the yield of the parse tree that maximized the application of productions of type 6.4.3.

Example 11. Given a genomic sequence s and a set of TEs with a fixed order on its elements χs = {X1, X2,

. . . , X10}, assume

s = w0z1w1 . . . z13w13,

as in Equation (4.1.2), with z1, z4, z6 ∈ X̄2, z2, z8, z10, z12 ∈ X̄3, z5 ∈ X̄4, z11, z13 ∈ X̄5, z3, z7 ∈ X̄6,

z9 ∈ X̄10.

The stochastic context-free grammar is

S → XiS, i = 2, 3, 4, 5, 6, 10 p=0.0278

S → X2Xj, j = 3, 4, 5, 6, 10 p=0.0278

S → X3Xj, j = 2, 4, 5, 6, 10 p=0.0278

S → X4Xj, j = 2, 3, 5, 6, 10 p=0.0278

S → X5Xj, j = 2, 3, 4, 6, 10 p=0.0278

S → X6Xj, j = 2, 3, 4, 5, 10 p=0.0278

S → X10Xj, j = 2, 3, 4, 5, 6 p=0.0278

X2 → X2XjX2, j = 3, 4, 5, 6, 10 p=0.1667

X3 → X3XjX3, j = 2, 4, 5, 6, 10 p=0.1667

X4 → X4XjX4, j = 2, 3, 5, 6, 10 p=0.1667

X5 → X5XjX5, j = 2, 3, 4, 6, 10 p=0.1667

X6 → X6XjX6, j = 2, 3, 4, 5, 10 p=0.1667

X10 → X10XjX10, j = 2, 3, 4, 5, 6 p=0.1667

Xi → i, i = 2, 3, 4, 5, 6, 10 p=0.1667

Then an order-pruned sequence

s̄o = 2, 3, 6, 2, 4, 2, 6, 3, 10, 3, 5, 3, 5

is the yield of the parse tree calculated by the stochastic CYK algorithm shown in Figure 6.4 with probability

of 7.63713361322155e− 18.

It can be seen that compared to the parse tree in Figure 6.4, the most likely parse tree is the one in Figure 6.5

as it maximizes the number of applications of production 6.4.3 and pushes the nested interruptions deeper

into the tree, which is more parsimonious, and therefore a more likely age order than a tree that spreads the

interruptions into different branches in the same level.

The complexity of the (both non-stochastic and stochastic) CYK algorithm is O(n3) [56], where n is the length

of the yield (order-pruned sequence corresponding to the number of TE fragments detected in a genomic

sequence). Unlike the standard CYK algorithm that returns all the possible parse trees, the stochastic
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Figure 6.5: The most likely parse tree of G from Definition 21 that yields s̄o.

CYK only traces back the productions with the highest probabilities, which can decrease the computing time

dramatically in practice. A package in the Perl language of a stochastic CYK algorithm has been developed

derived from an existing package [123] with polynomial time parsing to calculate the most likely parse tree(s)

with the highest probabilities corresponding to the most probable evolutionary events, using the stochastic

context-free grammar in Definition 22.

6.5 Improvements taking into account positional information be-

tween TE fragments

The recursive interruption context-free grammar in Definition 21 is a very simple and general way of capturing

the recursive nature of TE interruptions. However, a limitation of the model is that the order-pruned sequence

generated by the grammar only contains the TEs (names/order of TEs) to which the detected TE fragments

belong. It does not take into account whether two TE fragments are separated by say 1 bp or 1, 000 bp in the

genomic sequence, or where each fragment lies within a TE consensus sequence with the current grammar.

It is less clear how one could take the positional information into account to determine whether two TE

fragments are continuous fragments (both E and ε in Definition 15), then further determine the existence of

an interruption in an order-pruned sequence.
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In this section, one improvement taking into account of the positions of TE fragments in the genomic se-

quence is incorporated in detecting pruned sequences by utilizing the definition of a transposon region (Def-

inition 14).

Recall the pruned sequence and order-pruned sequence in Definition 13 in Chapter 4. A genomic sequence

s = w0z1w1z2w2z3w3z4w4z5w5z6w6 is visualized in Figure 6.6.

Figure 6.6: A conceptual visualization of a genomic sequence (the human chromosome 1 from position
33632576 to 33634148). The TE fragments zi, where i = 1, . . . , 6 in the sequence are marked with the
notation of TE families Xj ∈ χs, where j = 1, . . . , 5, and the names of the TE families to which they
belong.

According to Definition 13, the pruned sequence of s is

s̄ = β0z1β1z2 . . . z6β6, where βi = |wi|, 0 ≤ i ≤ 6,

and the order-pruned sequence of s is

s̄o = 1, 2, 3, 1, 4, 5, where zi ∈ Xji , for all i, 1 ≤ i ≤ 6.

Similar to the above case, the human genome, or each chromosome, can be represented as a giant pruned

sequence that includes all TE fragments in the genome, where the non-repeat part, βi, can be very small

if two TE fragments are close to each other, or can be very large (or infinity) if two TE fragments are

on different chromosomes. However, the fact is that the TE fragments belonging to the same interruption

should not be apart for a large genomic distance (they should be on the same chromosome, and very close to

each other), which is the why the definition of interruption (Definition 16) takes the two distances (both in

genomic sequence and in TE consensus sequence) into account. In light of this property of TE interruption,

a pruned sequence can be limited to only represent the segment of genomic sequence where a transposon

region is located. Essentially, a transposon region is a region of the genomic sequence where TE fragments

are detected and they are close to each other by a distance E ∈ N.

Given a distance d ∈ N (in the genomic sequence), a number of transposon regions can be detected by

parsing the genomic sequence, within which potential interruptions may be detected. For example, parsing

the genomic sequence of the human genome hg38 Y chromosome with d = 20 bp, there are 2,125 transposon

regions detected with the length of their order-pruned sequences ranging from 3 to 65 (the number of TE

fragments in the region) as listed in Table 6.2. It can be seen that a majority (78%) of order-pruned sequences

are short with a length of less than 10. Each pruned sequence is one yield to feed into the recursive interruption

context-free grammar, which corresponds to one (or more) most-likely parse tree.
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Length of the order-

pruned sequence

Number of order-pruned

sequences of the length

Length of the order-

pruned sequence

Number of order-pruned

sequences of the length

3 485 23 11

4 312 24 5

5 273 25 12

6 195 26 4

7 141 27 8

8 131 28 3

9 113 29 3

10 69 30 5

11 68 31 3

12 48 32 1

13 40 34 3

14 39 35 2

15 27 40 2

16 36 41 1

17 20 43 1

18 13 44 1

19 18 57 1

20 11 59 1

21 10 65 1

22 8

Table 6.2: A summary of the order-pruned sequences of the transposon regions detected on the Y

chromosome of hg38.

Similarly, the order-pruned sequences of transposon regions on every chromosome of the human genome are

extracted with the ranges of their length. A summary of the order-pruned sequences in the human genome

is listed in Table 6.3.

Note that the total number of order-pruned sequences in the human genome is 327,305, which will obtain

around the same number of parse trees (TE interruption trees). The number of order-pruned sequences

and the number of parse trees are not necessarily the same. This is because some order-pruned sequences

(e.g., s̄o = 3, 4, 5 or s̄o = 7, 7, 7, 6) cannot obtain any interruption tree, and some can obtain multiple most-

likely trees with the same probability (e.g., s̄o = 3, 6, 3, 6, 3, 6, 10, 6, 3 can obtain two trees as visualized in

Figure 6.7).
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Number of transposon regions The length range of order-pruned sequences

(no. order-pruned sequences) (minimum length, maximum length)

Chromosome 1 27,747 (3, 77)

Chromosome 2 25,173 (3, 268)

Chromosome 3 21,057 (3, 82)

Chromosome 4 19,006 (3, 63)

Chromosome 5 18,794 (3, 83)

Chromosome 6 17,470 (3, 80)

Chromosome 7 17,423 (3, 111)

Chromosome 8 15,348 (3, 64)

Chromosome 9 13,682 (3,78)

Chromosome 10 14,450 (3, 72)

Chromosome 11 14,901 (3, 95)

Chromosome 12 16,088 (3, 74)

Chromosome 13 9,613 (3, 79)

Chromosome 14 10048 (3, 83)

Chromosome 15 9,749 (3, 62)

Chromosome 16 11,527 (3, 68)

Chromosome 17 11,178 (3, 63)

Chromosome 18 7,424 (3, 118)

Chromosome 19 9,618 (3, 69)

Chromosome 20 8,346 (3, 77)

Chromosome 21 3,887 (3, 75)

Chromosome 22 5,242 (3, 70)

Chromosome X 17,083 (3,117)

Chromosome Y 2,451 (3, 65)

Human Genome 327,305 (3, 268)

Table 6.3: A summary of the total number of order-pruned sequences and their lengths of regions
detected in the human genome (hg38), summarized by chromosomes.
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Figure 6.7: The two most-likely trees with the same probability of the order-pruned sequence s̄o =
3, 6, 3, 6, 3, 6, 10, 6, 3 on the Y chromosome of hg38, where X3 = MSTB, X6 = AluSx1, X10 = AluSx.

6.6 Adjustments to the parse trees

Nested interruptions are captured using a tree by the recursive interruption model, which produces small parse

trees representing evolutions of TE interruptions in order-pruned sequences. However, there are redundant

nodes and unnecessary “level splits” in the parse trees that are an artefact of the grammar itself (described

below). In other words, the parse trees have all the information regarding predicted interruptions, but not

encoded in the most natural way. It is not obvious if another stochastic grammar could be instead created

that has parse trees that are naturally evolutionary trees (where the parse trees with the highest probabilities

correspond to the fewest insertions).

Recall the recursive interruption stochastic context-free grammar in Definition 22: given a set of TEs with a

fixed order on its elements, χ = {X1, X2, . . . , Xm}, the recursive interruption stochastic context-free grammar

is a grammar G = (V, T, P, S), where V = {S,X1, X2, . . . , Xm}, T = {1, 2, . . . ,m}, and P contains the

following productions where each production is attached with a probability p:

S → XiS, 1 ≤ i ≤ m, p =
1

m2
, (6.4.1)

S → XiXj , 1 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j, p =
1

m2
, (6.4.2)

Xi → XiXjXi, 1 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j, p =
1

m
, (6.4.3)

Xi → i, 1 ≤ i ≤ m, p =
1

m
. (6.4.4)

The productions of type 6.4.1 and 6.4.3 determine the generation of interruptions from the left to the right

side of the sequence. This places independent interruptions at differing heights of the parse tree — as
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interruptions occur from left to right sequentially, they move lower and lower down in the parse tree of the

grammar. Therefore, the parse trees are not an accurate reflection of the independent nature of these types

of interruptions, even though that information is encoded in the tree. In this section, this situation will be

addressed by proposing a modification to turn the parse trees into another tree that is more representative

of evolutionary trees of interruptions, in order to capture the TE evolution more accurately.

Next, three examples will be analyzed to intuitively explain the conversion. Example 12 illustrates three

atomic patterns of interruptions: a single interruption, sequential interruptions, and recursive interruptions.

These three patterns can exist by themselves, can nest with themselves, or can mix with other pattern(s) to

form more complex interruptions in a genomic sequence. Instead of representing interruptions using a parse

tree strictly following the grammar in Definition 22, a simplified form of trees is used in Example 12, showing

these interruptions essentially in the same way.

Example 12. Table 6.4 is a list of TE fragments from chromosome 1 taken from the RepeatMasker TE

fragments set, χ̄(s
RM←−→ χs). The fragments are grouped into three interruptions sets marked as (a), (b), and

(c), corresponding to the trees in Figure 6.8 (a), (b), and (c), where instead of orders of TEs, the nodes of

the trees are labelled with the names of TE families to which these fragments belong.

group genoName genoStart genoEnd genoLeft strand TEName TEClass TEStart TEEnd TELeft

(a)

chr1 23803 24038 -249226583 + L2b LINE 2940 3212 -175

chr1 24087 24250 -249226371 + MIR SINE 49 260 -2

chr1 24254 24448 -249226173 + L2b LINE 3213 3425 -1

(b)

chr1 140784 141290 -249109331 + MER21C LTR 26 527 -411

chr1 141290 141597 -249109024 - AluJb SINE -18 294 2

chr1 141597 141667 -249108954 + MER21C LTR 528 605 -333

chr1 141667 141970 -249108651 + AluJr SINE 1 302 -10

chr1 141970 142271 -249108350 + MER21C LTR 606 919 -19

(c)

chr1 389450 389591 -248861030 + L1ME3D LINE 3222 3368 -2778

chr1 389589 391571 -248859050 + L1MA8 LINE 4080 6108 -183

chr1 391571 392307 -248858314 - L1MA2 LINE -1 6303 5556

chr1 392307 392431 -248858190 + L1MA8 LINE 6109 6238 -53

chr1 392465 393206 -248857415 + L1ME3D LINE 3352 4119 -2027

Table 6.4: An example of three atomic patterns of interruptions. Group (a) is a single interruption;
group (b) shows two sequential interruptions; group (c) shows two recursive interruptions. Their
corresponding trees are in Figure 6.8.

• Group (a) is a single interruption, where an instance of MIR inserted itself into an instance of L2b.

• Group (b) shows two sequential interruptions (similar to Example 6), where an instance of AluJb and

an instance of AluJr inserted themselves into an instance of MER21C and broke MER21C into three

fragments.
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Figure 6.8: The corresponding trees in Table 6.4. (a) is a tree of a single interruption; (b) is a tree of
two sequential interruptions following the productions of type 6.3.3 of the grammar in Definition 21;
(c) is a tree of two recursive interruptions following the productions of type 6.3.3 of the grammar in
Definition 21.

• Group (c) shows two recursive interruptions (similar to Example 8), where an instance of L1MA8

inserted itself into an instance of L1ME3D, then at a later time an instance of L1MA2 inserted itself

into an instance of L1MA8.

For a single interruption, the root node of the ordered tree represents the interruptee and the children of that

node correspond to the fragments of the interruption and their order in the genomic sequence, which are the

left fragment of the interruptee, the interrupter, and the right fragment of the interruptee. The interruption

shown in Table 6.4 group (a) corresponds to the TE fragments tree in Figure 6.8 (a). Here, the root node is

the interruptee, labelled as the name of the TE fragment to which it belongs, L2b, and the three children of

the root are (from left to right) the left fragment of the interruptee, L2b, the interrupter, MIR, and the right

fragment of the interruptee, L2b.

Nested interruptions correspond to higher level TE fragments trees following the same rule, as in Figure 6.8

(b) and (c).

Notice that the trees in Figure 6.8 capture not only the nested TEs by the levels of the tree, but also the

orders of the TE fragments within a genomic sequence. An order-pruned sequence of the genomic sequence

can be generated by traversing the leaves of the tree (and mapping TE names with their orders in the

TE set), from the left to right of the tree. They contain all the fragments of interruptions as branches.

Nevertheless, from the perspective of the relationship between interrupters and interruptees, some of the

branches are redundant (such as the left and right fragments of the interruptees), because the interruptee

already appears as the parent node. Moreover, the two sequential interruptions in group (2) are split into

two levels in Figure 6.8 (b); however, this is simply a side effect of the structure of the parse trees and the

rules of the grammar. They are in fact independent. In addition, since only the interruptional phylogeny

of TEs is of current interest, the positional order does not matter in this case; thus, an ordered tree is not

necessary. Therefore, the tree can be simplified by turning it into an unordered tree, removing the redundant

branches and correcting the level split of the sequential interruptions. Definition 23 defines a tree operation,
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named condense, that compresses a tree by reducing the height while still preserving the order of leaves

(corresponding to the order-pruned sequence) of the tree.

Definition 23. Given a tree t (t is the root) with a non-root node µ in t, let the condensing of µ from t be

the tree obtained from t by replacing µ with its children, if there are any, and keeping t, if there are not. This

is drawn in Figure 6.9.

condense µ from t
−−−−−−−−−−−−−−−−−−→

Figure 6.9: An example of condensing a non-root node, µ, from a tree t.

Algorithm 1: Convert a SCFG parse tree to an interruptional evolutionary tree.

Data: A SCFG parse tree t.

Result: An interruptional evolutionary tree.

/* Step 1: "bring up" the sequential interruptions of the same interruptee to the same

level of the tree by condensing the inner nodes corresponding to sequential

interruptions in the tree. */

1 for each node µ of t with children µ1, µ2, µ3 representing a production of the type 6.4.3, from the highest to

the lowest level of t do

2 condense µ1 and µ3

/* Step 2: remove all leaves that represent the left and right fragments of

interruptees. */

3 for each node µ of t and for each of µ’s children µ1, µ2, . . . , µk do

4 if the label of µi and µ are equal, and µi does not have any children then

5 remove the child µi

6 return the modified t

Algorithm 1 turns interruption parse trees, such as the trees in Example 12, into a simplified form of trees,

where the redundant branches are removed and the sequential interruptions are moved up into the same level,

making them closer to describing evolutionary events.

Example 13 demonstrates how to convert a tree of sequential interruptions in Example 12 into an interrup-

tional evolutionary tree using Algorithm 1. Note that the TE orders, instead of TE names, are used to label
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the nodes in the next examples, as it is more clear. The nodes representing interrupters of the sequential

interruptions are coded in pink in the diagram.

Example 13. Figure 6.10 is an example showing how to convert the context-free grammar parse tree to an

interruptional evolutionary tree showing the atomic sequential interruptions pattern using the two steps in

Algorithm 1.

Step 1
=⇒ Step 2

=⇒

Figure 6.10: An example of converting the context-free grammar parse tree to an interruptional
evolutionary tree for the atomic sequential interruptions pattern.

In Example 14, there are two more examples of simplifying the trees using Algorithm 1. These two trees are

mixed patterns of the atomic patterns of Example 12.

Example 14. Figure 6.11 and Figure 6.12 are two extended examples showing how to simplify the TE inter-

ruption trees — where the interruptions are nested in more complex patterns — to interruptional evolutionary

trees.

Step 1
=⇒ Step 2

=⇒

Figure 6.11: An example of converting an interruption tree to an interruptional evolutionary tree of
mixed interruption patterns.

6.7 Construction of the TE-interaction network

Based on the standard formalizations defining TEs and their activities, the next goal is to computationally

predict the overall evolution of the TEs and TE activity in the human genome. In this section, an algorithm

will be proposed to merge all the small interruptional evolutionary trees obtained from last section and

produce a weighted directed graph, called the overall TE-interaction network. The TE-interaction network

is a rich representation of the interactions between TEs and is a more powerful tool than the individual trees

separately to predict the evolution of these TEs.
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Step 1
=⇒ Step 2

=⇒

Figure 6.12: Another example of converting an interruption tree to an interruptional evolutionary
tree of mixed interruption patterns.

Consider the set of all interruptional evolutionary trees generated from the output of Algorithm 1 on the SCFG

trees from the recursive interruption model. These simplified interruptional evolutionary trees represent a

hypothesis for how younger TEs interrupt older TEs in the human genome. Each parse tree is generated

from an order-pruned sequence of a transposon region of the genome, where the TE fragments are close to

each other in the genomic sequence, therefore, instead of a “global” evolutionary relationship, these simplified

evolutionary trees each represents a “local” pattern of TE interruptions. Here, another model will be created

to show the overall TE interactions globally in a genome. Informally, all the local interruptional trees will be

merged into a global structure; however in so doing, a graph is required instead of a tree. In the area of graph

theory, a weighted directed graph, or a weighted directed network, is a graph that is a set of vertices connected

by edges, where the edges have a direction and a weight associated with them. By merging the simplified

evolutionary trees (output by Algorithm 1) into a weighted directed graph, the TE-interaction network is

constructed that shows the overall TE interactions globally in a genome.

The network construction is described as follows:

• Let G = (V,E, π) be a weighted graph, where the edges have non-negative integer weights, and the

vertices are all the TEs that appear in the trees, denoted as V = {TE1, TE2, . . . , TEn}.

• The edges are built iteratively. For each tree, one at a time (no matter in any order until all trees are

merged), add all the edges from the tree into the graph either with a weight of 1 if it is new, or if the

edge already exists, add 1 to the weight of that edge. For example, if (TEi, TEj) is an edge of the tree,

then add (TEi, TEj) as an edge to G with weight 1, or if the edge already exists in the graph, increase

the weight of the edge by 1.

At the end, the graph shows all the edges present in any tree, and the weights show how many times the edge

is used in the trees. Moreover, each TE occurs exactly once in the graph if it is involved in any interruption.

This weighted directed graph is called the TE-interaction network, which encodes the interactions between
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TEs that interrupt each other. The network itself is an overall representation of the evolution of the TEs.

One would expect that TEs that occur “early” in paths represent older TEs, whereas TEs that occur “later”

in paths represent newer TEs. If the graph were acyclic, then a linear age order of the TEs would be some

listing of the vertices whereby, for each edge (u, v) of the graph, u comes before v in the listing. This is known

as a topological sort on the graph. However, it is reasonable to assume that the network contains cycles. This

is because the lifespan of TEs could overlap over time in reality, which means multiple TEs might be active

in parallel. For example, if two TEs, TEi and TEj , are active at the same time, then it is possible that

in some region where TEi already exists in some genome, TEj inserted itself into TEi (a simplified tree

TEi → TEj), or vice versa (a simplified tree TEj → TEi). Then by merging these trees together, there is a

cycle TEi → TEj → TEi in the network. They can also be more complex with intermediate TEs.

Moreover, in the network, the nodes that only contain outgoing edges are informally referred to as upstream

nodes corresponding to the TEs with the oldest predicted age or a TE with relatively old age and a short

lifespan (so that it did not have time to interrupt others when it was active), and the nodes that only have

incoming edges are called downstream nodes corresponding to the TEs with the youngest predicted age or a

TE with relatively young age and a long lifespan (when it has lots of chances to interrupt others). Moreover,

the inner nodes in the network correspond to the TEs with intermediate predicted age, among which the

ones that are “closer” to the upstream nodes are predicted to be relatively older, while the ones that are

“closer” to the downstream nodes are predicted to be relatively younger.

Next, the TE-interaction network of two examples will be examined, with a comparison to the sequential

interruption model in one example and same validation using biological literature. A more systematic com-

parison of the two approaches will be done in Chapter 7.

Example 15 illustrates the construction of a TE-interaction network on a small set of TEs (20 TEs) on the

human Y chromosome, and some predictions on the ages and lifespans of these TEs are made from the

network, along with some verification on the predicted ages using biological literature.

Example 15. Select 20 TEs in the human genome, denoted as χs = {X1, X2, . . . , X20,}, where the infor-

mation of these TEs are listed in Table 6.5.

All the order-pruned sequences only containing TEs ∈ χs were identified on the Y chromosome. There are a

total of 37 order-pruned sequences as listed in Table 6.6.

Figure 6.13 is the TE-interaction network of χs, generated by merging the small trees in Table 6.6.

The TEs in χs belong to two TE types, SINE and LTR, which are colour coded in the figure, where the

elements of SINE type are marked in grey and LTR are in blue. Moreover, each element is marked with its

name and type. The network is drawn so that upstream TEs are towards the top and downstream TEs are

towards the bottom.
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Notation TE family/subfamily type

X1 MLT1C ERV L−MaLR LTR

X2 MLT1A0 ERV L−MaLR LTR

X3 MSTB ERV L−MaLR LTR

X4 MSTB1 ERV L−MaLR LTR

X5 MLT1D ERV L−MaLR LTR

X6 AluSx1 AluS SINE

X7 AluSg4 AluS SINE

X8 FLAM C Alu SINE

X9 MER74A ERV L LTR

X10 AluSx AluS SINE

X11 AluJb AluJ SINE

X12 FRAM Alu SINE

X13 MER74B ERV L LTR

X14 AluSp AluS SINE

X15 AluSq AluS SINE

X16 AluY AluY SINE

X17 MER67C ERV 1 LTR

X18 AluSc8 AluS SINE

X19 AluJo AluJ SINE

X20 AluY c AluY SINE

Table 6.5: List of TE names along with known information.
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order-pruned sequence detected on the Y chromosome of hg38 Edges of the tree

1 19 6 19 19→ 6

2 11 10 11 11→ 10

3 6 16 6 6→ 16

4 2 15 2 2→ 15

5 11 6 11 11→ 6

6 19 10 19 19→ 10

7 2 20 2 2→ 20

8 2 19 2 2→ 19

9 2 11 2 2→ 11

10 5 19 5 5→ 19

11 11 6 11 11→ 6

12 6 16 6 6→ 16

13 4 14 4 4→ 14

14 19 16 19 19→ 16

15 19 16 19 19→ 16

16 16 11 16 16→ 11

17 11 10 6 10 10→ 6

18 7 7 7 6

19 6 10 11 6

20 1 6 1 1 1→ 6

21 1 6 1 1 1→ 6

22 5 10 16 10 10→ 16

23 2 10 2 14 2→ 10

24 11 15 11 6 11→ 15

25 1 1 8 1 1→ 8

26 2 2 2 6 2 2→ 6

27 1 1 5 6 5 5→ 6

28 19 19 19 11 19 19→ 11

29 10 10 11 10 11 10→ 11, 11→ 10

30 5 1 1 1 1 1

31 1 16 1 1 1 1 1→ 16

32 16 19 11 11 7 11 11→ 7

33 10 10 15 10 6 10 15 15 15 10→ 6, 15→ 10

34 1 1 17 18 17 16 17 10 16 17→ 18, 17→ 16

35 3 6 3 6 3 6 10 6 3 3→ 6, 6→ 3, 6→ 10

36 1 2 2 3 3 3 3 3 3 3 3 3 4 3 4 3 4 3 3 3 3 3 3 4 3 3 3 3 4 3 4 3 4 4

3 3 3 3 3 3 3 3 3 3 3 4 4 3 4 3 3 3 3 3 3 3 3 4 3

3→ 4,4→ 3

37 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 6 7 8 9 10 11 8 12 6 13 14 15 16 6 17 16 17 18

18 19 11 20

16→ 17

Table 6.6: The order-pruned sequences only containing χs in Table 6.5 on the human Y chromosome.
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Figure 6.13: The directed graph generated by merging the interruption trees in Table 6.6, and
visualized using Graphviz [44]. The edge weights greater than 1 are marked on the edges. The
elements of SINE type are marked in grey and LTR are in blue. Each vertex in the graph is marked
with its corresponding TE name and type.

The predicted interruptional evolution of these TEs is encoded in the network:

• upstream elements in the graph are predicted to be the oldest in age, e.g., X1 (MLT1C, ERVL-MaLR,

LTR), X2 (MLT1A0, ERVL-MaLR, LTR), X5 (MLT1D, ERVL-MaLR, LTR).

• downstream elements in the graph are predicted to be the youngest in age, e.g., X7 (AluSg4, AluS,

SINE), X8 (FLAM C, Alu, SINE), X14 (AluSp, AluS, SINE), X15 (AluSq, AluS, SINE), X18 (AluSc8,

AluS, SINE).

• elements in the same cycle in the graph indicate that they have overlapped lifespans:

cycle 1: X6 (AluSx1, AluS, SINE) → X10 (AluSx, AluS, SINE) → X11 (AluJb, AluJ, SINE) → X6

(AluSx1, AluS, SINE);

cycle 2: X6 (AluSx1, AluS, SINE) → X16 (AluY, AluY, SINE) → X11 (AluJb, AluJ, SINE) → X6
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(AluSx1, AluS, SINE);

cycle 3: X3 (MSTB, ERVL-MaLR, LTR)→ X4 (MSTB1, ERVL-MaLR, LTR)→ X3 (MSTB, ERVL-

MaLR, LTR);

cycle 4: X16 (AluY, AluY, SINE) → X17 (MER67C, ERV1, LTR) → X16 (AluY, AluY, SINE).

• paths in the network indicate orders of TE ages. The elements marked in “J K” are in the same cycle

in the network, which indicates that these elements have overlapped lifespans.

path 1: X2 (MLT1A0, ERVL-MaLR, LTR) → X19 (AluJo, AluJ, SINE) → J X6 (AluSx1, AluS,

SINE) → X10 (AluSx, AluS, SINE) → X16 (AluY, AluY, SINE) → X17 (MER67C, ERV1,

LTR) K→ X18 (AluSc8, AluS, SINE);

path 2: X1 (MLT1C, ERVL-MaLR, LTR) → J X6 (AluSx1, AluS, SINE) → X16 (AluY, AluY, SINE)

→ X11 (AluJb, AluJ, SINE) K→ X15 (AluSq, AluS, SINE)

path 3: X5 (MLT1D, ERVL-MaLR, LTR) → X19 (AluJo, AluJ, SINE) → X11 (AluJb, AluJ, SINE)

→ X7 (AluSg4, AluS, SINE)

path 4: J X3 (MSTB, ERVL-MaLR, LTR) → X4 (MSTB1, ERVL-MaLR, LTR) K → X14 (AluSp,

AluS, SINE)

As previous mentioned in Chapter 2, LTR elements are known to be relatively old elements that are probably

distinct in the human genome, while Alus in SINEs are relatively young elements, which matches the above

predicted relative age of the upstream and downstream elements. It was also mentioned in Chapter 3 that

there are three Alu subfamilies. AluJ is the most ancient (about 65 million years old), and is thought to be

functionally extinct; the second oldest is the AluS subfamily, which became active approximately 30 million

years ago, and only some intact elements were found to be active in humans; AluY is the youngest subfamily,

and most elements of this subfamily are currently active. The history of Alu elements matches with the above

predicted relative ages as well, e.g., paths 1 to 4. The predicted evolution of the TEs in χs in the network

also matches with relative order published in [47] as shown in Figure 2.8, in terms of the cycles (overlapped

lifespan) of the three subfamilies of Alu elements.

In the area of graph theory, a directed graph is strongly connected if there is a path between all pairs of

vertices. A strongly connected component of a directed graph is a maximal strongly connected subgraph. It

should be noted that some cycles in the network can form into a strongly connected component, such as cycle

1 and cycle 2 in Example 15. However, cycles are different from strongly connected components in predicting

lifespans of TEs. For example, X6 is predicted to have a longer lifespan in cycle 1 and cycle 2 in Example 15

than in the strongly connected component consisted of cycle 1 and cycle 2. Therefore, no further attempts

were made to construct strongly connected components here.
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Furthermore, the adjacency matrix equivalent to the graph of a TE-interaction network contains the number

of times (the weight of the edge) each TE inserts into each other TE. Hence, this matrix can also be reordered

using the Linear Ordering Problem from Chapter 5, and indeed the Tabu search program. This predicts a

linear age order of the TEs in χs that were involved in interactions.

There are two major differences between the adjacency matrix (recursive interruption model) and the inter-

ruption matrix (sequential interruption model):

• first, the interruption-detection techniques are different. The detection of interruptions in the sequential

problem, or with the interruption model has more conditions because they are detected by comparing

the positions of TE remnants on both the genomic sequence and the TE consensus as defined in

Definition 16, while the interruptions in the recursive interruption model are detected by parsing the

order-pruned sequences of the genomic sequence using the SCFG in Definition 22. Then, the recursive

model includes all nested interruptions as well;

• second, the values in the interruption matrix in the sequential interruption model represent the number

of times younger elements (interrupters on rows) interrupted older elements (interruptees on columns),

while the adjacency matrix converted from the TE-interaction network represent that older elements

has edges in the evolutionary tree pointing to younger elements. Hence, if feeding the two matrices to

the LOP, the age order calculated from interruption matrix is from the youngest to oldest TEs, and

from the adjacency matrix is in contrast from the oldest to youngest TEs.

The result of applying the Tabu search algorithm to the TE-interaction network of Figure 6.13 is listed in

Table 6.7.

It can be seen from Table 6.7 that by applying the Tabu search algorithm for LOP to the data detected by

the recursive interruption model, the TEs are ordered from LTR to SINE (except for MER67C), and the

three major subfamilies of Alu are ordered by their known ages from AluJ to AluS to AluY . The TEs in

Table 6.7 are then compared with the age order of the entire set of human TEs (Appendix A) predicted

by the sequential interruption model using Tabu search. The comparison is listed in Table 6.8, where the

age orders are from the oldest to youngest, and the TEs are sorted by the order calculated on interruption

matrix.

From the comparison of the same method applied to the two different matrices, it can be seen that the

predicted age calculated on the interruption matrix moved MER67C to an older age, so that all TEs of the

LTR type are older than those of the SINE type. In addition, the FLAM C element is also moved up to be

the oldest Alu element in the table. The ordering on the interruption matrix also agree with the facts that

LTR are old elements and SINEs are young TEs.

This single result supports the interruptional analysis method. However, though a linear age order is a clear
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Age order Notation TE family/subfamily type

from oldest to youngest

1 X1 MLT1C ERV L−MaLR LTR

2 X4 MSTB1 ERV L−MaLR LTR

3 X2 MLT1A0 ERV L−MaLR LTR

4 X3 MSTB ERV L−MaLR LTR

5 X5 MLT1D ERV L−MaLR LTR

6 X19 AluJo AluJ SINE

7 X11 AluJb AluJ SINE

8 X8 FLAM C Alu SINE

9 X15 AluSq AluS SINE

10 X10 AluSx AluS SINE

11 X6 AluSx1 AluS SINE

12 X7 AluSg4 AluS SINE

13 X17 MER67C ERV 1 LTR

14 X14 AluSp AluS SINE

15 X18 AluSc8 AluS SINE

16 X16 AluY AluY SINE

Table 6.7: The age order of TEs in the TE-interaction network in Figure 6.13 predicted by Tabu
search on the adjacency matrix of the network.
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TE name TE family TE type Age order calculated Position in Age order calculated

on adjacency matrix Appendix A on interruption matrix

MER67C ERV1 LTR 13 595 1

MLT1D ERVL-MaLR LTR 5 571 2

MLT1C ERVL-MaLR LTR 1 563 3

MLT1A0 ERVL-MaLR LTR 3 427 4

MSTB1 ERVL-MaLR LTR 2 331 5

MSTB ERVL-MaLR LTR 4 282 6

FLAM C Alu SINE 8 226 7

AluJo AluJ SINE 6 224 8

AluJb AluJ SINE 7 208 9

AluSx AluS SINE 10 122 10

AluSx1 AluS SINE 11 100 11

AluSq AluS SINE 9 85 12

AluSg4 AluS SINE 12 68 13

AluSp AluS SINE 14 67 14

AluSc8 AluS SINE 15 54 15

AluY AluY SINE 16 22 16

Table 6.8: Comparison between the age orders of TEs in Figure 6.13 predicted by Tabu search of
LOP on adjacency matrix and on interruption matrix.
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representation, the lifespans of TEs are not predicted.

Example 16 describes another example of a TE-interaction network of a bigger set of TEs (41 TEs) on the

human X chromosome. The TE-interaction network in this example is much more complex than that in

Figure 6.13, whereas it is only based on the order-pruned sequences containing solely the 41 TEs on the one

chromosome.

Example 16. These select 41 TEs in the human genome, denoted as χs = {X1, X2, . . . , X41,}, where the

information of these TEs are listed in Table 6.9.

The order-pruned sequences only containing TEs in χs on the X chromosome of hg38 are identified. There

are a total of 174 order-pruned sequences that have interruptions encoded in them.

Figure 6.14 is the TE-interaction network of χs constructed by merging the interruption trees from the 174

order-pruned sequences.

The evolution of these TEs is encoded in the network:

• upstream elements in the graph are predicted to be the oldest, e.g., X41 (L1ME3E, L1, LINE), X13

(LOR1-int, ERV1, LTR), X26 (MER92-int, ERV1, LTR), X4 (LTR41, ERVL, LTR), X30 (LTR49,

ERV1, LTR), X38 (Tigger2TcMar-Tigger, DNA), etc.

All of the upstream TEs belong to LTR or DNA transposons (except X41), which are considered to be

very old. X41 belongs to the LINE type and L1ME is one of the oldest TE families in the human

genome as shown in Figure 2.8.

• downstream elements in the graph are predicted to be the youngest, e.g., X20 (AluSc8, AluS, SINE),

X10 (AluSx3, AluS, SINE), X37 (LTR10F, ERV1, LTR), X2 (AluY, AluY, SINE) etc.

As previously mentioned, the AluS and AluY families are young TE families in the human genome as

shown in Figure 2.8. The LTR10F appears as a downstream node in the network, but the TEs of the

LTR type are probably old. This might be because this element (even with an old age) probably has a

small number of copies in the human genome, so that younger elements had little chance to insert into

it. We could not find any literature to verify the age of this element.

• elements in the same cycle in the graph indicate that they have overlapped lifespans:

cycle 1: X39 (AluJo, AluSJ, SINE) → X12 (AluSq2, AluS, SINE) → X6 (L1M5, L1, LINE) → X39

(AluJo, AluJ, SINE);

cycle 2: X12 (AluSq2, AluS, SINE) → X6 (L1M5, L1, LINE) → X7 (AluJr, AluJ, SINE) → X23

(LTR49-int, ERV1, LTR) → X12 (AluSq2, AluS, SINE);

114



Notation TE family/subfamily type

X1 AluSg7 Alu SINE

X2 AluY Alu SINE

X3 ERV L− int ERV L LTR

X4 LTR41 ERV L LTR

X5 AluJb Alu SINE

X6 L1M5 L1 LINE

X7 AluJr Alu SINE

X8 AluSx1 Alu SINE

X9 AluJr4 Alu SINE

X10 AluSx3 Alu SINE

X11 MLT1E3 ERV L−MaLR LTR

X12 AluSq2 Alu SINE

X13 LOR1− int ERV 1 LTR

X14 MER49 ERV 1 LTR

X15 AluSx Alu SINE

X16 LTR26 ERV 1 LTR

X17 AluSz6 Alu SINE

X18 MER90 ERV 1 LTR

X19 Tigger5b TcMar − Tigger DNA

X20 AluSc8 Alu SINE

X21 Alu Alu SINE

X22 MER94 hAT −Blackjack DNA

X23 LTR49− int ERV 1 LTR

X24 AluSz Alu SINE

X25 MER41B ERV 1 LTR

X26 MER92− int ERV 1 LTR

X27 LTR29 ERV 1 LTR

X28 AluY b8 Alu SINE

X29 MER34B − int ERV 1 LTR

X30 LTR49 ERV 1 LTR

X31 THE1D ERV L−MaLR LTR

X32 LTR54 ERV 1 LTR

X33 Tigger2bP ri T cMar − Tigger DNA

X34 LTR2 ERV 1 LTR

X35 Harlequin− int ERV 1 LTR

X36 MER50 ERV 1 LTR

X37 LTR10F ERV 1 LTR

X38 Tigger2 TcMar − Tigger DNA

X39 AluJo Alu SINE

X40 THE1D − int ERV L−MaLR LTR

X41 L1ME3E L1 LINE

Table 6.9: List of TE names along with their information.
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Figure 6.14: The directed graph generated by merging the interruption trees of the TEs in Table 6.9
using Graphviz [44]. The edge weights greater than 1 are marked on the edges. The elements of SINE
type are marked in grey, LTR are in blue, LINEs are in green, and DNA are in red.
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cycle 3: X15 (AluSx, AluS, SINE)→ X31 (THE1D, ERVL-MaLR, LTR)→ X17 (AluSz6, AluS, SINE)

→ X15 (AluSx, AluS, SINE);

cycle 4: X18 (MER90, ERV1, LTR) → X20 (AluSc8, AluS, SINE) → X18 (MER90, ERV1, LTR).

• paths in the network indicate age orders. The elements marked in “J K” are in the same cycle in the

network, which indicates that these elements have overlapped lifespans.

path 1: X38 (Tigger2, TcMar-Tigger, DNA) → JX39 (AluJo, AluJ, SINE) → X12 (AluSq2, AluS,

SINE) → X6 (L1M5, L1, LINE)K→ X8 (AluSx1, AluS, SINE) → X20 (AluSc8, AluS, SINE) →

X10 (AluSx3, AluS, SINE);

path 2: X41 (L1ME3E, L1, LINE) → X7 (AluJr, AluJ, SINE) → JX15 (AluSx, AluS, SINE) → X31

(THE1D, ERVL-MaLR, LTR) K→ X24 (AluSz, AluS, SINE) → X10 (AluSx3, AluS, SINE)

It can be seen in Figure 2.8 that the Tigger elements of DNA transposon and the L1ME family of LINEs

are very old elements, which matches the predicted age in the above paths.

6.8 The TE-interaction network of the human genome

The network of the whole set of human TEs on the entire human genome (1,080 TEs) is also constructed. As

the network is very complicated to visualize and analyze, it is represented as an adjacency matrix which is

then fed to Tabu search. The predicted age order of the whole set of human TEs calculated by Tabu search

based on the adjacency matrix is attached in Appendix B.

6.9 Discussion

So far, three theoretical models have been proposed: the TE fragment model helps to describe the TE

problems clearly in a precise way; the sequential interruption model captures the interruptional activities

between every pair of TEs; and the recursive interruption model further captures the nested nature of

the interruptional activities of older TEs which cannot be represented by the interruptional matrix in the

sequential interruption model.

The TE-interaction network is a richer representation of the phylogeny of TEs than only the interruption

trees, as it shows the overall interactions globally and the evolutionary history of all TEs rather than a set

of more local interruptional information. The network can also be represented as an adjacency matrix which

is similar to the interruption matrix discussed in the sequential interruption model in Chapter 5. However,
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unlike the interruptional matrix, the TE-interaction network encodes both sequential interruptions with their

abundance, and also the recursive interruptions with the interruptional evolution encoded in the hierarchy

of the trees. As was mentioned previously, a topological sort would represent a prediction of the TEs, if

the graph had been acyclic. It should be possible to remove some edges from the graph to break the cycles.

This can be done by using the minimum feedback arc set problem, which is classified as N P -complete [21],

but this is beyond the scope of this thesis. Nevertheless, the cycles in the graphs are also informative, as

they can perhaps indicate some notion of the lifespan of TEs. Therefore, we made no attempt to remove the

cycles.

The model is used on the human genome, but as a standard method, it can be easily applied to other

genomes to construct the TE-interaction network by including the TEs and their interruptions in that genome.

Furthermore, it can even be applied to multiple related genomes (e.g., several primate genomes, or several

plant genomes) where common TEs exist in them to study the interactions between both TEs and the

genomes.

Last but not least, the network could possibly serve as a visualization tool to show the interactive history

between TEs. The weights on outgoing edges represent the number of times each TE got interrupted by

another TE (how much older the TE is compared to another), which further implies the age of that TE —

the bigger outdegree, the older age. The weights on incoming edges capture the number of times each TE

interrupt another TE, which further implies the lifespan of a TE — the bigger indegree, the longer lifespan.

A Python implementation of this chapter can adjust parse trees to obtain interruptional evolutionary trees,

then construct the network from the adjusted trees.

In the next chapter, there will be further use of this model on simulated data. A systematic comparison

between the two approaches (models from Chapter 5 and 6), together with a new technique to measure the

accuracy, will be given.
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Chapter 7

Simulation of the TE transpositions through

sequence evolution

TEs have existed for billions of years, as they predate eukaryotes. They are ubiquitous in the human genome

and many other genomes, and their impacts on genome size, genome structure, plasticity, and evolution are

substantial. In the previous chapters, given the TE remnants in a genome, theoretical models have been

created predicting the history of TE interaction which reflects the age of TEs and their activities throughout

evolution. In this chapter, a simulation of TE transpositions is created to imitate the simplification of

evolutionary history of the propagation of TEs. By simulating the TE activities through evolution, the

remnants of TEs with their positions in a simulated genome can be generated. Such a simulation is an

important tool for understanding transpositions and the evolution of genomes generally, since TEs are such

an important factor in their form. Furthermore, a simulation can be used as a verification tool for TE

prediction problems. Ideally, the known ages and lifespans of TEs from a simulation, and the predicted age

order calculated by the models in Chapter 5 and 6 using the simulated remnants data should be identical,

which serves as an in silico verification to these theoretical models. Using simulations of sequence evolution

as a means of verification has also been used similarly in other areas, such as to compare multiple sequence

alignment algorithms [135].

7.1 Introduction

As introduced in Chapter 2, the typical lifespan of a transposon starts from the activation of the transposon,

followed by a burst of transposition activity. For both Class I and Class II elements, a transposition event

generates a duplicated copy of the transposon, and inserts it into a new genomic site with a sequence that

is identical to the original copy. The copies of this transposon accumulate mutations independently, and as

their divergence increases, their mobile activity slows down with time. The transposon then ebbs further

until it is deactivated once all of its copies become inactive. The inactive elements become relics and fade into

the genomic sequence while accumulating mutations at the neutral mutation rate as surrounding DNA loci,
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which results in older TEs becoming more divergent than younger TEs. At the same time, the old elements

(both active or inactive copies) can get interrupted by the transpositions of younger active elements [47],

where a younger element replicates itself at the site of insertion within an old element.

The simulation begins with a set of TEs and their ages (when they first appear) as an input. It starts from a

point in evolutionary time (e.g., 200 MYA), and simulates the mutations in a genome (using an existing tool,

called PhyloSim) and the insertion and degrading activities of TEs. As time progresses, TEs are activated

when the “current” time matches their input ages. The activated TEs start their transpositional activities

while also accumulating mutations at the same time. The mutations in TEs decrease the activity levels of

these TEs, until they become inactive. The simulation can imitate the activity of the entire lifespan of these

transposons in a genome of a molecular sequence.

In the next sections, more details of the simulation will be introduced including the background of a similar

simulation of sequence evolution, key parameters, existing substitution models, and the workflow of the

simulation.

7.2 Background

The human mutation rate

Human genomes differ from each other in a number of ways, such as single nucleotide mutations, insertions and

deletions, repeat polymorphisms, and larger-scale rearrangements. A mutation rate is defined as a measure

of the rate at which various types of mutations occur in the genome over time, which is characterized using

a measure such as mutations per base pair per cell division, per gene per generation, or per genome per

generation, etc. In most studies, mutation rates are based on single nucleotide mutations because they are

comparatively easy to quantify. The mutation rate in the human genome was estimated in different units

as:

• µ1 = 0.17% mutations per base pair per Mys in [73];

• µ2 = 10−10 mutations per replication per base pair in [107];

• µ3 = 2.5× 10−8 per site per generation [108];

• µ4 = 160 mutations per dipoid genome per generation [108].
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These rates in different units are roughly consistent by converting to each other. For example,

µ4 = 160 mutations (per human genome) (per generation)

≈ µ1

106 years per Mys
× 3.2× 109 (bp) (per human genome)× 30 (years) (per generation)

=
0.17% mutations (per bp) (per Mys)

106 years per Mys
× 3.2× 109 (bp) (per human genome)× 30 (years) (per generation)

= 163.2 mutations (per human genome) (per generation)

µ3 = 2.5× 10−8 per site per generation

=
µ4

6.4× 109 (per bp per diplod genome)

=
160 mutations per dipoid genome per generation

6.4× 109 (per bp per diplod genome)

= 2.5× 10−8 per site per generation

Transposition rates of L1 and Alu in the human genome

Because of their continued activity and accumulation in the genome over years, L1 and Alu elements have had

a huge impact on the evolution of primate genomes. To assess this impact, the amplification/transposition

rates of the L1 and Alu elements are considered. A transposition rate is defined as the frequency that

retrotranspositions occur in the germline 1 over time.

The current transposition rate of L1 retrotransposition has been estimated as approximately 1 insertion

for every 140 births in humans [38], and the current rate of Alu retrotransposition has been estimated as

approximately 1 insertion for every 20 births in humans [31]. The rates are calculated based both on the

frequency of disease-causing de novo insertions compared with nucleotide substitutions and on comparisons

between the human and chimpanzee genomes and between multiple human genome sequences [147].

Models of DNA substitutions

The process of a sequence of nucleotides changing into another sequence of nucleotides can be described

using a DNA substitution model, which is a phenomenological description of the DNA sequence evolution as

a string of four discrete states. Mutation events whose occurrence at each site of the DNA sequence can be

mathematically modelled by a continuous-time Markov chain, which is defined by matrices containing the

relative probabilities of changing from any nucleotide to any other nucleotide at any site over any period of

1In biology and genetics, the germline of a mature or developing individual is the line (sequence) of germ cells that have

genetic material that may be passed to a child.
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evolutionary time. Note that most modern simulation software allows simulating sequence regions evolving

under different models/parameters.

The most common DNA substitution models includes JC69 (Jukes and Cantor, 1969) [62], K80 (Kimura,

1980) [75], F81 (Felsenstein 1981) [39], HKY85 (Hasegawa, Kishino and Yano 1985) [54], T92 (Tamura

1992) [138], TN93 (Tamura and Nei 1993) [139], GTR (generalised time-reversible) [140], etc., among

which JC69 is the simplest model based on assumptions such as equal base frequencies and equal muta-

tion rates.

The PhyloSim simulation package

The PhyloSim [129] (License: GNU General Public License Version 3) is an object-oriented framework of

Monte Carlo simulation2 of sequence evolution written in R, which simulates the evolution of DNA or protein

sequences by using substitution models of the type of the sequence following an input-phylogenetic tree. The

framework builds on and complements the APE (Analyses of Phylogenetics and Evolution) package 3.

PhyloSim uses the Gillespie algorithm [46] as a unified framework for simulating the actions of many concur-

rent processes such as substitutions, insertions, and deletions in sequence evolution. The Gillespie algorithm

is a method of stochastic simulation, which tracks the evolution of variables that can change randomly with

some probabilities. It was first used to simulate reactions of chemical or biochemical systems efficiently and

accurately, and is now heavily used in the area of computational systems biology.

In PhyloSim, the simulation of sequence evolution is guided by an input-phylogenetic tree, where the branch

lengths represent evolutionary time length. Every branch (in terms of evolutionary time) of the tree is

simulated in two steps iterated repeatedly: first, randomly generate the time of occurrence of the next event;

second, modify the sequence object according to a randomly selected event. The event is chosen by selecting

the highest event rate, which is estimated by the substitution models attached to the sites in the sequence.

These steps are repeated until the available time on the current branch is exhausted. At the end, the genomic

sequences of the simulated species (at the tips of the phylogenetic tree) are related to each other according

to the (input) phylogenetic tree.

The key features offered by PhyloSim includes (adapted from [129]): the evolution of a set of discrete

characters can be simulated with arbitrary states evolving by a Markov process (JC69, HKY, GTR, etc.)

2Monte Carlo simulation is a numerical experimentation technique to obtain the statistics of the output variables of a

computational model, given the statistics of the input variables [94].
3The APE package provides functions for reading, writing, plotting, and manipulating phylogenetic trees, analyses of compar-

ative data in a phylogenetic framework, ancestral character analyses, analyses of diversification and macroevolution, computing

distances from DNA sequences, reading and writing nucleotide sequences as well as importing from BioConductor.

122



with an arbitrary rate matrix; the evolution can be simulated by a combination of different substitution

processes with any rate matrices on the same site; popular models and patterns of among-sites rate variation

can be simulated; different site- and process-specific parameters are allowed for every site, which permits for

any number of partitions in the simulated data.

7.3 Methodology

Our simulation of TE transpositions through sequence evolution is written in the R language and built on top

of the PhyloSim package. This is because PhyloSim provides functions that simulate random substitutions

through sequence evolution, and the TE transposition simulation imitates the replication and insertion of

active TEs on a dynamically changing genomic sequence through evolution created by PhyloSim. There-

fore, the PhyloSim package provides the necessary generality on which to extend, rather than rewriting its

functionality. Unlike PhyloSim that simulates sequence evolution of multiple species under the guidance of a

phylogenetic tree, the TE transposition simulation currently only simulates one genomic sequence. The work-

flow of the TE transposition simulation starts from an evolutionary time T and an original genomic sequence.

As time is being consumed, mutations are introduced into the genome randomly using the functions provided

by PhyloSim following a substitution model and the mutation rate; at the same time, TEs are being activated

when the current time reaches the input ages of these TEs, and transpositions occur through evolution. This

is repeated until time is exhausted. The modified genomic sequence at the end of the simulation represents

the current-day genome, which encodes the history of TE activities by their positions of insertions and their

interruption patterns, similar to the current-day human genome.

The simulation is subject to a number of parameters such as mutation rate, transposition rates, substitution

model etc., and a set of input data, which is listed and explained in details in the next subsections, as well

as a discussion of the limitations of the approach.

Parameters, inputs, and limitations

There are some parameters in Table 7.1, which are useful for the simulation, followed by justifications of

these parameters.

Though mutation rates may differ between species and even between different regions of the genome of a

single species, in this chapter, the main objective is to simulate the TE transpositions instead of the evolution

of the sequence itself, so an assumption that any site in the sequence has the same neutral mutation rate

is made for simplicity. More dynamic rates, including for example, epigenetic effects on transposition is left

as future work. Similarly, the same substitution model is applied to each site in the nucleotide sequence for
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Name Notation Values

Mutation rate µ 0.17% (per site) (per Mys)

Substitution model p JC69

Evolutionary time to simulate T 200 MYA

Length of initial genomic sequence seq.len 10,000 bp

Transposition rate Tr.rate 10 site mutations per insertion

Threshold of percent identity to deacti-

vate a TE

PID 90%

Table 7.1: Parameters of the simulation

simplicity as well. In our simulation, the JC69 model is applied to the genomic sequence. A more extensive

simulation taking into account sequence regions evolving under different models/parameters is also left as

future work.

As previously mentioned in Chapter 3, no Alu elements with more than 10% mutations were active in the

cell culture in [12]. Therefore, the threshold of percent identity to deactivate a TE in the simulation is set to

be

PID = 90%.

Recall that the transposition rate, denoted as Tr.rate, for the Alu elements has been estimated as approxi-

mately 1 insertion for every 20 births in humans. We assume that transposons have the same mutation rate as

their surrounding DNA loci after they inserted into the genome. We also assume that both the transposition

rates and mutation rate are constant over time. Given a neutral mutation rate of 160 mutations per diploid

genome per generation in human [108], the transposition rates of Alu elements can then be converted and

represented relative to the sequence evolution in our simulation as:

Tr.rate =
160 mutations (per diploid genome) (per generation)

1/20 Alu insertion (per diploid genome) (per generation)

= 3, 200 mutations (per Alu insertion).

However, to make the time taken to execute the simulation practical and the TE-interaction network easy to

read, only a small set of 20 TEs (2% of the TEs in the human genome) will be simulated on a small genome

of length 10,000 bp ( 3.33×10−4% of the human genome size). Moreover, in order to generate a large number

of insertions and interruptions in a practical amount of time in the simulation, the transposition rate is set

to Tr.rate = 10 mutations (per insertion) for simplicity.

It should be noted that the simulation in this thesis only imitates the transposition of retrotransposons (trans-
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pose using copy-and-paste mechanism), not DNA transposons (transpose using cut-and-paste mechanism).

This is because each insertion of retrotransposons is stable through evolutionary time, and is a “fossil” of

a unique transposition event. The transposition of DNA transposons involves not only insertions, but also

excisions, which is more complicated.

The simulation is based on known TEs and their properties, therefore, there are known data inputs, including

consensus sequences, ages, and harmful regions of these TEs.

1. TE consensus sequences: a list of n TEs (n = 20) whose propagation will be simulated along with their

consensus sequences. The consensus is randomly generated with a length of 30 bp (10% of the length

of Alu).

2. TE ages: the list of n TEs are input together with their age of activities (ranging from 200 Mys to 30

Mys). The TEs will be activated once the current time reaches their age (when the TEs start appearing

in the genome).

3. Harmful regions: the genomic positions of harmful regions in the consensus sequences of the TEs. If

mutations occur within the harmful regions of a TE, the activity fraction of this TE will be decreased

in the simulation. According to the harmful regions of AluY elements calculated in Table 3.2, the

harmful regions covered 32.9% of the AluY consensus sequence. Therefore, in the simulation, 30% of

the consensus sequences are marked as harmful regions, where the positions of the regions are randomly

generated.

Initializations

The simulation starts with some preprocessing and initialization steps. This includes certain values that are

needed for a verification of the sequential interruption model and the recursive interruption model in previous

chapters.

1. construct the database of TEs. Each record is one transposon, denoted by T E , with its attributes as

info(T E ) = (name, consensus, length, status, age, harmfulRG, SCFGterminal, tactivate, tdeactivate).

The definitions of the attributes are as follows:

name: the name of the transposon;

consensus: the consensus sequence of the transposon from Repbase Update;

length: the number of nucleotides in the consensus sequence;
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status: the activity status of the transposon. The status is set to 0 when the simulation starts:

status =



0 if the transposon has never been activated;

1 if the current time equals to the age of this transposon, it is activated;

2 if this TE is currently active;

3 if the TE is no longer active (but stays in the genome).

age: the age of the transposon, meaning the time when it became active;

harmfulRG: start and end positions of the harmful regions in the consensus sequence;

SCFGterminal: corresponding terminal letter (a label) of this element used for the context-free

grammar (explained below);

tactivate: time when the element is activated;

tdeactivate: time when the element is deactivated.

2. Initialize an interruptional matrix, IM , with all 0s, where rows represent interrupters, columns represent

interruptees. This matrix will store the sequential interruptions that occur during the simulation, and

will be used input to the sequential interruption model developed in Chapter 5 as a verification.

3. Create a randomly generated nucleotide sequence, geno.seq, of length seq.len, and attach a substitution

model, p, to the sites in the sequence (using functions provided in PhyloSim).

4. Initialize a TE fragment list, TEfragments, where each element in the list is one TE fragment z with

its attributes as:

info(z) = (genoName, genoStart, genoEnd, genoLeft, strand, TEName, TEClass,

TEStart, TEEnd, TELeft, segmented, updated, activeFrac, pid, Y earInsertion).

Besides the attributes defined in the TE fragment model (Chapter 4) in Definition 12, there are five

additional attributes for the sake of the simulation:

• segmented: “yes” if the fragment is segmented by another TE; “no” otherwise.

• updated: “1” if the coordinate of the fragment is updated (when another fragment was inserted

into the genomic sequence at a position before the current fragment, the coordinate of the fragment

needs to be updated); “0” the fragment has already been updated, or there is no need to update

the coordinate (if another fragment was inserted at a position after the current fragment, the

coordinate of the fragment does not change).
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• activeFrac: the active fraction of the fragment. 0% means inactive; 100% means the most active

when the TE is just activated.

• pid: the percent identity of the fragment compared to the consensus sequence of this transposon.

• Y earInsertion: time when the fragment was inserted into the genomic sequence.

General steps of the simulation

Briefly, the TE transposition simulation is based upon the sequence evolution simulation, where random mu-

tations (simulated by the substitution model) are introduced into the sequence for each time step iteratively.

For every Tr.rate (a transposition rate described in terms of the number of mutations) mutations, introduce

a TE insertion. The inserted TE is replicated from either a newly activated TE from the TE database (when

the current time matches the age of that TE) or from a randomly selected active TE copy (from its activity

fraction) that already existed in the genome. Each active TE existing in the genome has an attribute called

activity fraction, denoted as activeFrac, which is dynamically calculated by the current percent identity, the

number of mutations occurred within the harmful regions, and the lifespan of that TE. The mutations and

insertions are repeated until the simulation time is exhausted.

Starting from a time in evolution t ← T (e.g., 200 million years ago), for every time step, do the following

operations until t is exhausted.

Step 1 Introduce a mutation into the sequence subject to the substitution model p attached to the sequence

using functions provided in the PhyloSim package.

Step 2 After accumulating Tr.rate substitutions, check whether there are active TEs to transpose:

case 1: if there are newly activated TE (TE.age ≤ t and TE.status == 0), prepare to introduce an

insertion from the TEs in the TE database by doing the following steps, then go to Step 3. If

there are more than one TEs that are newly activated, randomly choose one from them. The

newly activated TE that is chosen to be inserted is denoted by T E .

(a) In the TE database, update the activation status of the chosen TE, T E .status = 1 (activate

the TE now) and its year of activation, T E .tactivate = t;

(b) Create a copy of T E .consensus as seqToInsert;

case 2: if there does not exist any newly activated TE, check if there are existing active TE copies in

the genomic sequence, and prepare to introduce a TE insertion from an active copy by doing the

following steps, then go to Step 3.
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For every intact TE fragment (that did not get interrupted by other TEs) z in the TEfragments

list, do the following steps:

(a) Calculate the percent identity of the fragment, z.pid, by comparing the sequence of this

fragment to the consensus sequence.

(b) If there are mutations that occurred within the harmful regions of the TE, calculate the

number of mutations in the harmful regions, denoted as n. The more mutations that occurred

in harmful regions, the less active this TE will be.

(c) Calculate the lifespan of the TE family (T E ) that the fragment belongs to, denoted as span =

t − T E .age. The longer this TE family has existed in the genome, the less active it tends to

be.

(d) update the activity fraction z.activeFrac:

• If z diverges to a threshold (z.pid ≤ PID), change it to the inactive status (z.activeFrac←

0%);

• Otherwise, calculate a new activity fraction subject to the percent identity of the fragment,

the number of mutations in the harmful regions, and the lifespan since the TE of this

fragment has become active:

z.activeFrac← z.pid× 1

n+ 1
× 1

span
× z.activeFrac.

(e) select the active TE fragment with the highest activity fraction (if there are multiple fragments

with the same activity fraction, randomly select one), and create a copy of its sequence as

seqToInsert (the new insert will have the same sequence and same activity fraction as the

original fragment).

case 3: if there are no active TEs to transpose, skip Step 3 and Step 4, and go to Step 5 directly.

Step 3 Insert seqToInsert from the last step into the genomic sequence:

(a) Randomly generate a position of the genomic site, pos.

(b) Create a fragment object that inherits the attributes from the original copy of the element (either

a newly activated TE or an existing active TE copy in the genomic sequence) with positions in

the genome and append it to the TEfragments list.

(c) Insert seqToInsert at pos.
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(d) check if the insertion interrupts other existing fragments in TEfragments list (if pos is within

any fragments). Once an interruption is detected, deactivate the interruptee (z.segmented← yes,

z.activeFrac← 0%), and update the interruptional matrix IM .

(e) Update coordinates of all fragments afterwards.

(f) Update the percent identity of each intact TE fragment (that did not get interrupted by others)

in the TE fragment list. If it is less than PID, make this fragment inactive (z.activeFrac← 0%).

Step 4 Check the activity fractions of all TEs in the list of TEfragments. If no copies of the family T E are

still active, deactivate this family in the TE database and record the deactivation time ( T E .status← 3,

T E .tdeactivate ← t), otherwise, T E .status← 2.

Step 5 Sample a time.interval with a fixed mean calculated from the mutation rate µ and the current length

of the sequence seq.len′,

mean =

1
µ

seq.len′
.

Step 6 Decrease the current time t by time.interval, and repeat from Step 1 until t is exhausted.

Output

After t is exhausted, the simulation is finished, and the final genomic sequence is output. In addition, the

TEfragments list with detailed information regarding each fragment in the genome is output. Furthermore,

there are two outputs that connect to the theoretical models created in previous chapters:

• An interruptional matrix of the sequential interruptions that are detected from the simulated genomic

sequence using the sequential interruption model in Chapter 5 will be output and fed to the Tabu

search of the Linear Ordering Problem to predict a linear age order of these TEs. This is used to

verify the accuracy of the sequential interruptional analysis work, as the correct answer is known for

the simulation.

• A list of order-pruned sequences of the generated TE remnants will be output and fed into the recursive

interruptions model in Chapter 6 to predict the local TE interruption trees of evolution.

• A list of TEs with their lifespans in the simulation will be output. All the interruption trees from the

last step will be adjusted and merged into a TE-interaction network, and will be visualized whereby

the node size of each node in the network, determined by the lifespan of that TE in the simulation.
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7.4 Results

Although the simulation will be run 10 times and aggregate statistics will be collected, one simulation will

be described in detail first as an example. This allows for a more detailed discussion.

A simulation of 20 TEs was run for T = 200 Mys using the parameters listed in Table 7.1. The consensus

and harmful regions (cover 30% of the length of the consensus) of these TEs are randomly generated. The

activation and deactivation time and the lifespan of each TE in the simulation are in Table 7.2 (from oldest

to youngest). Note that the TEs are labelled intentionally to be consistent with their age for simplicity; for

example, TE1 is the oldest, and TE20 is the youngest. Moreover, the column of input age order in the table

is marked in red, which will be compared to the predicted age orders later.

TE name Input age order Year of activation Year of deactivation Lifespan Number of fragments

(oldest to youngest) (MYA) (MYA) (Mys) in genome

TE1 1 199 138 61 80

TE2 2 195 171 23 6

TE3 3 189 168 22 3

TE4 4 185 151 34 1

TE5 5 180 112 68 77

TE6 6 170 119 50 13

TE7 7 160 89 71 58

TE8 8 150 86 64 59

TE9 9 140 69 71 19

TE10 10 130 55 74 122

TE11 11 120 97 22 1

TE12 12 110 62 48 7

TE13 13 100 63 37 9

TE14 14 90 13 76 129

TE15 15 80 39 41 5

TE16 16 70 8 61 22

TE17 17 60 0 60 60

TE18 18 50 0 50 53

TE19 19 40 0 40 33

TE20 20 30 0 30 29

Table 7.2: The input age order, activation time, deactivation time and lifespans of TEs in the
simulation. The column of input age order is marked in red, which will be compared to the predicted
age orders later.
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Verification of the theoretical models using the simulated data

As mentioned in Section 7.3, there are three outputs from the simulation: an interruption matrix of sequential

interruptions, a set of order-pruned sequences of TE remnants with E = 5 bp in transposon regions in the

genomic sequence, and the lifespans of the TEs in the simulation. The output data are fed into both the

sequential interruption model and recursive interruption model of the previous chapters, as illustrated in the

flow chart in Figure 7.1, to verify the sequential and recursive interruption models created in Chapters 5

and 6.

First, the interruption matrix (IM) detected using the sequential interruption model is fed into the Tabu

search of the LOP to predict an age order from IM; second, the order-pruned sequences are fed into the

stochastic CYK to generate the most-likely parse trees of the SCFG of recursive interruption model; then the

most-likely parse trees are adjusted and merged into an TE-interruption network where the node sizes of the

TEs in the network are determined by the lifespans of TEs in simulation (these are not inferred); meanwhile,

the adjacency matrix (AM) of the TE-interruption network is fed into the Tabu search of the LOP again to

predict another age order from AM; last (not shown on the workflow), the predicted age orders from IM (the

blue order) and from AM (the green order) are compared to the input age order of TEs (the red order), and

the correlations of each comparison will be reported reflecting the accuracy of the predicted ages against the

input known ages. Moreover, the two predicted orders will be compared to each other to report how much

they agree with each other.

As discussed in Lemma 1, the position of transposons with zero interruptions does not affect the optimal

solution of the LOP, hence, it is reasonable to remove these TEs from the interruption matrix so that they

will not appear in the predicted order. The predicted age order from the interruption matrix is calculated

and shown in Table 7.3. Note that TE4 and TE11 were not involved in any interruptions, so their relative

ages were not predicted, and the predicted age order of the sequential interruption model is marked in the

same colour (blue) as the predicted order of IM in Figure 7.1.

To quantify how much the predicted order is correlated with the input order, the Pearson’s coefficient of

correlation is calculated between the blue order (predicted age order from IM) and the red order (input TE

age order) as:

ρblue vs. red = 0.9401445,

which indicates that the predicted order from IM and the input order have strong positive correlation (a

correlation of 1 means that the two orders are identical). Furthermore, Figure 7.2 shows the comparison

between the blue order (predicted age order from IM) and the red order (input TE age order). As previously

mentioned in Chapter 5, it is reasonable that the two orders in comparison are distributed “around” the

diagonal line, as TEs have overlapped lifespans. It can be seen that the predicted age order calculated by
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Figure 7.1: A workflow of simulated data verifying the theoretical models in previous chapters. The
three age orders are colour coded in the chart, where the input age order in red corresponds to the
red column in Table 7.2, the predicted age order on IM in blue corresponds to the blue column in
Table 7.3, and the predicted age order on AM in green corresponds to the green column in Table 7.5.
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Predicted age order

TE name calculated by Tabu search from IM

(oldest to youngest)

TE1 3

TE2 5

TE3 1

TE5 2

TE6 6

TE7 7

TE8 4

TE9 9

TE10 8

TE12 12

TE13 13

TE14 10

TE15 11

TE16 14

TE17 15

TE18 18

TE19 17

TE20 16

Table 7.3: The relative age order calculated by Tabu search from the interruption matrix of the
sequential interruption model. Note that TE4 and TE11 were not involved in any interruptions, so
their relative ages are not predicted. The column of the predicted age order is marked in the same
colour as the predicted order of IM in Figure 7.1.
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Tabu search agrees well with the input age order.

Figure 7.2: A comparison between the input age order and the predicted age order calculated by
Tabu search from the simulated interruption matrix. The x-axis is the predicted relative age order,
the y-axis is the input relative age order, and the diagonal line marked in red represents all points that
agree between the predicted and actual order.

Next, the order-pruned sequences output from the simulation are fed into the recursive interruption model to

calculate the most-likely parse trees. The parse trees are then adjusted to obtain interruptional evolutionary

trees using the implementation of Algorithm 1, and the interruptional evolutionary trees are merged into a

TE-interaction network as shown in Figure 7.3.

Note that each node in the network represents one TE, and the TE numbering matches the numbering of

the variables in the grammar, for example, the node X1 in the network represents TE1 for simplicity. The

edge weights greater than one are marked on the edges. As previously discussed in Chapter 6, the lifespans

of TEs also influences the number of interruptions in which the TEs can be involved. In light of this, some

improvements on visualizing the network have been made to include the information of lifespans. The size

of each node in Figure 7.3 is subjected to the lifespan of the corresponding TE output from the simulation,

where the size of the node is the logarithm (base 10) of the lifespan of that TE. The reason for converting

the lifespan into the logarithm scale is for the clarity, as otherwise the big nodes will make the directions and

weights on the edges hard to see. Furthermore, the TEs are aligned with their activation time (timeline on

the left of the graph) in the simulation.

The network shows the interruptions between TEs visually. It can be seen that most of the edges point down,

which suggests younger TEs interrupting older TEs in the simulation; whereas there are some edges that

point up, which suggests overlapped lifespans between the TEs connected by the cycles. Some properties of

the predicted interruptional evolution of these TEs are encoded in the network:

• upstream elements in the graph are predicted to be the oldest in age, e.g., X2, X3.
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Figure 7.3: The TE-interaction network calculated from the recursive interruption model on the
simulated data, with each TE aligned with its year of activation.
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• downstream elements in the graph are predicted to be the youngest in age, e.g., X12.

Though we know that X12 is not the youngest in age, it only has 7 fragments in the genome as in

Table 7.2, therefore, it has less chance to be interrupted by younger TEs than the TEs with a large

number of copies in the genome.

• elements in the same cycle in the graph indicate that they have overlapped lifespans:

cycle 1: X5 → X10 → X5;

cycle 2: X7 → X10 → X9 → X7;

cycle 3: X14 → X16 → X17 → X14;

cycle 4: X17 → X20 → X18 → X17.

The activation and deactivation time in Table 7.2 show that the TEs in the same cycle have overlapped

lifespans.

• paths in the network indicate orders of TE ages. The elements marked in “J K” are in the same cycle

in the network, which indicates that these elements have overlapped lifespans. As the input age order

is encoded in the TE names, a small number in the name suggests an old age, and vice versa.

path 1: X1 → JX5 → X10 K → X12;

path 2: X8 → J X7 → X10 K → X14 → X18

path 3: X13 → JX17→ X20 → X19 → X18 K

path 4: X14 → X15 → X16 → X19

The TEs in a path with inverted numbering also indicate overlapped lifespans, such as X8 → X7 in

path 2, and X20 → X19 → X18 in path 3.

Table 7.4 summarizes the indegree and outdegree of each node in Figure 7.3. As discussed, the old TEs

tend to have high outdegree and low indegree, while the young TEs tend to have high indegree and low

outdegree.

Next, the adjacency matrix of the TE-interaction network in Figure 7.3 is fed into the Tabu search of the

LOP, and a predicted age order from AM (the green order in Figure 7.1) is calculated and listed in Table 7.5,

where the column of the predicted order is coloured in green to match with the data in Figure 7.1.

Similarly, the Pearson’s coefficient of correlation is calculated between the green order (predicted age order
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TE name Outdegree Indegree

TE1 32 1

TE2 4 0

TE3 3 0

TE4 0 0

TE5 27 10

TE6 2 6

TE7 16 11

TE8 23 3

TE9 8 2

TE10 32 32

TE11 0 0

TE12 0 2

TE13 2 3

TE14 20 37

TE15 1 2

TE16 6 3

TE17 6 31

TE18 3 25

TE19 1 15

TE20 5 8

Table 7.4: The indegree and outdegree of each node in the network in Figure 7.3.
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Predicted age order

TE name calculated by Tabu search from AM

(oldest to youngest)

TE1 1

TE2 2

TE3 4

TE5 7

TE6 8

TE7 6

TE8 3

TE9 5

TE10 9

TE12 16

TE13 14

TE14 10

TE15 11

TE16 12

TE17 15

TE18 18

TE19 17

TE20 13

Table 7.5: The relative age order calculated by Tabu search from the adjacency matrix (AM) of
the TE-interaction network of the recursive interruption model. Note that TE4 and TE11 were not
involved in any interruptions (they are not connected to any other nodes in Figure 7.3), so their
relative ages are not predicted. The column of predicted age order is marked in the same colour as the
predicted order of AM in Figure 7.1.
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from AM) and the red order (input TE age order) as:

ρgreen vs. red = 0.8658411,

which indicates that the predicted order from AM and the input order have strong positive correlation

as well, but it is less strong than the correlation between the predicted order from IM and the input order

(ρblu vs. red = 0.9401445) in this particular simulation. Furthermore, Figure 7.4 shows the comparison between

the green order (predicted age order from AM) and the red order (input TE age order).

Figure 7.4: A comparison between the input age order and the predicted age order calculated by
Tabu search from adjacency matrix. The x-axis is the predicted relative age, the y-axis is the input
relative age, and the diagonal line marked in red represents all points that agree between the predicted
and actual order.

Lastly, the two predicted orders are compared to each other, and the Pearson’s coefficient of correlation

between the two orders is calculated as

ρgreen vs. blue = 0.8968008,

which indicates that the two predicted orders are also positively correlated with each other.

To further show that the two theoretical models created in this thesis achieves good results in predicting the

relative ages of TEs in general, the simulation was run for 10 times with the same parameters as in Table 7.1

for 20 TEs for T = 200 Mys using the same data input (TE consensus, age order, and harmful regions). The

same workflow of Figure 7.1 is applied to all the simulated data to compare the predicted orders from both

the sequential interruption model and the recursive interruption model to the input order. The correlations

are listed in Table 7.6.

The correlations in the table suggest that the recursive interruption model seems to perform better in gen-
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ρblue vs. red ρgreen vs. red

(ordering from IM vs. input order) (ordering from AM vs. input order)

simulation1 0.936 0.962

simulation2 0.889 0.898

simulation3 0.686 0.950

simulation4 0.611 0.991

simulation5 0.641 0.989

simulation6 0.734 0.833

simulation7 0.719 0.956

simulation8 0.787 0.929

simulation9 0.692 0.950

simulation10 0.681 0.934

average 0.738 0.939

Table 7.6: Correlations calculated from ten simulations.

eral, because it achieves a better correlation on average, in contrast to the one example above, where the

sequential model performed better. Indeed, on average, the Pearson’s coefficient of correlation is 0.939 for

the recursive interruption model, versus the considerably lower 0.738 for the sequential interruption model.

Further simulations across longer timespans, more TEs, larger sequence, and varied parameters is left as

future work.

7.5 Conclusion and discussion

In this chapter, a simulation is developed in the R language, which simulates the evolutionary process of how

TEs propagate through time, built on top of the existing PhyloSim package that simulates sequence evolution.

It is based on several assumptions, such as that the mutation rate is constant both through all genomic sites

including inserted TEs, as well as through evolution. It also assumes that the transposition rate is constant

for all the TEs in the simulation. The simulation is general for all TE families or all genomes.

After a simulation, the TE remnants in the simulated genome are used to verify the theoretical models

in previous chapters. First, the predicted relative age calculated by Tabu search based on the sequential

interruption model shows a strong positive correlation with the input age order of TEs, which supports

the accuracy of the sequential interruption model in predicting TE ages. Then a TE-interaction network

is created using the recursive interruption model which shows the interactions between TEs in evolution

graphically. The directions of edges generally pointing downward in the graph agrees with the known TE
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activity in the simulation. The adjacency matrix of the TE-interaction network is then used by Tabu search

to predict another relative age order of the TEs, which also shows a strong positive correlation with the

input order. Both the direction of edges and the agreement between predicted order and input order support

the accuracy of the result of the recursive interruption model. Moreover, the two predicted orders from the

sequential interruption model and the recursive interruption model are positively correlated with each other

as well, meaning that both methods aiming to find the same solution. The average correlation from the two

models suggests that the recursive interruption model, with an average Pearson’s coefficient of correlation of

0.939, achieves a better result than the sequential interruption model, with an average Pearson’s coefficient

of correlation of 0.738, in predicting a linear relative age order of TEs. Moreover, the recursive interruption

model is more useful than the sequential interruption model in terms of visualizing the TE interactions in

the entire genome as a whole, which further can show the lifespans of the TEs, although more work on

visualization is left as future work.
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Chapter 8

Conclusion and future work

Although traditionally viewed as “junk DNA”, many discoveries have shown that transposable elements, es-

pecially retrotransposons (SINEs and LINEs), have played a fundamental role in primate evolution, including

the evolution of our own genome. Furthermore, TEs not only contributed to the formation of novel genes and

gene transcription networks, but also play a role in human disease such as cancers and Alzheimer’s. They

remain active in the human central nervous system throughout life and act as a driver of human intellect

[86]. However, comparatively little work or analysis is currently being undertaken on TEs. Therefore, it is

important to understand how the activity of TEs changes throughout their lives, how they shape the genome,

and how the positions and patterns of existing fossil elements can infer aspects of genome evolution.

In this chapter, an overall conclusion will tie each of the previous chapters together with respect to the

research goals proposed in Section 1.2, and then some future directions will be proposed.

8.1 Conclusion

First, recall the four major research goals proposed in Chapter 1:

Goal 1 Create a model that describes TEs and remnants of TEs formally.

Goal 2 Understand the factors that affect the activities of active TEs, and understand how activity is affected.

Goal 3 Predict the age, lifespan, and activity of TEs in the human genome from the remnants of these elements

in the genome.

Goal 4 Understand the dynamics of TEs transpositions through evolution.

The research in this thesis has provided information on not only current active/existing TEs, but also the

evolution of TEs over time inferred by their interaction with each other, potentially contributing to both our

understanding of human health and the evolution of species. The major work of this thesis can be divided
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into three topics: the prediction of harmful mutation regions within active TEs, the prediction of evolutionary

relationships between different TEs, and a simulation of propagation of TEs throughout evolution.

The first topic, the prediction of harmful mutations regions in Chapter 3, consists of the two predicting

methods, the correlation method and the group comparison method, verifications and applications. By using

the statistical methods, a negative correlation between the positions of mutations within a TE and the

change of activity of that TE has been revealed, which accomplished Goal 2 proposed in the objectives of

the thesis. Understanding how activity is influenced by the sequence of TEs can be useful for understanding

susceptibility to different diseases caused by their activity. In addition, the results of the predicted regions

are useful information for the last topic of simulating the TE activity throughout evolution.

In the second topic, three theoretical models have been created in order to predict the evolutionary relation-

ships (the age, lifespan, and interactions) between different TEs from the remnants of these elements in the

genome from Chapter 4 to Chapter 6.

• The first model, the TE fragment model in Chapter 4, set up a foundation (high-level abstraction)

that consists of an initial definition of TEs, TE fragments, and interruptions between TEs, etc., which

serves as a baseline in describing the other models in the thesis. Such a model, if used, helps in using

unambiguous terminology consistently. This has accomplished the Goal 1 proposed in the objectives

of the thesis that describes TEs and their remnants formally.

• The second model, the sequential interruption model in Chapter 5, is formalized from the problem in

[47] using the TE fragment model, and is connected and reduced to the well-studied Linear Ordering

Problem. It can be solved by the existing meta-heuristic method of Tabu search for LOP incredibly

efficiently while achieving a better result than the method in [47]. This is used to predict the order of

all 1,080 TEs as opposed to the 405 TEs that were ordered in [47].

• The third model, the recursive interruption model in Chapters 6, is built upon the TE fragment model

and is complementary to the sequential interruption model. By capturing the interruptions and nested

interruptions of TEs existing in the genome using the recursive interruption stochastic context-free

grammar, the parse trees of the grammar can illustrate the relationships of TE interruptions using

the levels of the trees. The stochastic CYK algorithm is implemented and determines the most-likely

parse trees, and is applied to the entire human genome. Then by merging the small interruptional

evolutionary trees into a TE-interaction network, TE evolution and interactions can be visualized as a

whole.

All the models under this topic have accomplished Goal 3 proposed in the objectives of the thesis that predicts

the age and lifespan of TEs in a single genome. Both of the latter two models do the entire prediction from

only a single genomic sequence. This is somewhat amazing what can be determined from a single sequence
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rather than requiring multiple genomes.

The third topic is the simulation of the TE activity and propagation throughout evolution in Chapter 7. A

simulation has been created to imitate the activation, propagation, interaction, and deactivation of a number

of TEs in a simulated genome throughout evolution, using the data of harmful regions calculated from the first

topic. After the simulation, the genome represents a “current-day” genome containing the remnants of TEs,

similar to the current-day human genome. By generating an interruption matrix and order-pruned sequences

from the simulated genome, a linear age order of TEs is calculated from the sequential interruption model,

and a TE-interaction network is constructed from the recursive interruption model. These are compared to

the input age order and the activity of TEs in the simulation. The results of predicted age order by the

models on the simulated data agree very well with the input data (with an average Pearson’s coefficient of

correlation of 0.939 for the recursive interruption model, and 0.738 for the sequential interruption model),

which serves as a verification to the theoretical models in the second topic. The simulation accomplishes

Goal 4 proposed in the objectives of the thesis.

In conclusion, all four objectives proposed at the beginning of the thesis have been accomplished, in predicting

the harmful mutations regions within a TE, and both a linear age order and an interaction network of TE

evolution. This helps improve the understanding of transposable elements generally and helps to understand

the evolution of genomes, for which TEs are a major influence.

8.2 Future work

The major contributions of this thesis are the theoretical models that predict the relative age order of TEs

in the human genome, the computational methods for predicting harmful mutation regions in active TEs,

as well as the simulation of the evolutionary process of TE propagation. Beyond this thesis, there are some

avenues for further work on various aspects of transposable elements.

The computational models were developed and applied only on the human genome and human TEs in the

thesis. The models can be further applied to other related genomes to analyze the evolution of TEs both within

and across those genomes, which will help in understanding the roles that TEs play in phylogeny. Also, many

organisms, such as many plant species, have very dynamic genomes with many active transposable elements.

Methods developed here could end up playing an important role in improving our understanding of these

species, not only from the perspective of evolution, but also present-day and future possibilities for them as

well, such as susceptibility to disease, or speciation.

Second, regarding active TEs in the human genome, it is important to understand factors that affect TE

activity. Computational methods have been developed that predict harmful mutation regions affecting the
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activity of TEs. However, limited by the current data, the roles of factors other than mutations, such as

chromatin structure, influencing the activity of TEs were unable to be assessed. By collaborating with

experts on biology of TEs, a thorough analysis of TE activities can be conducted computationally, aiming

for detection of more factors affecting TE activities and their relationship with human disease.

In the two theoretical models in predicting TE insertion evolution, two different interruption detection tech-

niques were used. An interruption is detected using the positional information (positions in both genomic

sequence and TE consensus sequence) of the TE fragments by several conditions in the sequential interrup-

tion model. In the recursive interruption model, interruptions are detected using the stochastic context-free

grammar by parsing the order-pruned sequences, which only encode the positional information in the ge-

nomic sequence. Hence, the technique of the sequential interruption model is superior in one respect to

that of the recursive interruption model. In contrast, the recursive interruption model is superior to the

sequential interruption model in detecting nested interruptions which cannot be represented by sequential

interruptions. One future direction is to combine the two techniques. For example, one could first preprocess

the order-pruned sequences to incorporate conditions of sequential interruptions, then detect interruptions

using the SCFG that is useful in discovering the nested interruptions.

As a visualization tool, more methods can be investigated for drawing the TE-interaction network in laying

out the nodes in a clear way to show the relationships between interactions and the predicted ages. One

attempt was made in Chapter 7 to visualize the nodes by different sizes subject to the known lifespans in

simulation. Other useful attributes can be studied to adjust the node sizes in a TE-interaction network from

actual TE data to infer the lifespans of TEs.

There are many possibilities for future work on TE simulation. First, additional biological verifications can

be made to validate the predicted age orders and lifespans of human TEs calculated from the models of the

thesis. The efficiency of the simulation can be optimized, so that it can be used to simulate a larger genome

(e.g., comparable to the size of the human genome) and TE activities that are closer to a real situation.

Additional parameters can be systematically studied. Also, starting with properties of existing real genomes,

it is of interest to study the types of parameters and likelihood of obtaining those properties via simulation.

This is especially interesting given the variance of TE activity in different organisms. It is also of interest

to understand why certain taxa have such high activity, whereas others have low activity, and to understand

why this might be the case.
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Appendix A

The TE ordering in the human genome predicted from

the sequential interruption model by applying Tabu

search on interruption matrix

Age order
TE name TE family TE type

(youngest to oldest)
1 AluYa5 Alu SINE
2 AluYk3 Alu SINE
3 AluYc3 Alu SINE
4 HERV1 LTRb ERV1 LTR
5 AluYe5 Alu SINE
6 LTR6B ERV1 LTR
7 AluYk2 Alu SINE
8 AluYi6 Alu SINE
9 AluYd8 Alu SINE
10 LTR7A ERV1 LTR
11 hAT-16 Crp hAT-Charlie DNA
12 AluYc Alu SINE
13 AluYk4 Alu SINE
14 LTR5A ERVK LTR
15 AluYb8 Alu SINE
16 MER11B ERVK LTR
17 AluYb9 Alu SINE
18 LTR12C ERV1 LTR
19 Alu Alu SINE
20 LTR12E ERV1 LTR
21 MER9a2 ERVK LTR
22 AluY Alu SINE
23 AluYa8 Alu SINE
24 LTR14 ERVK LTR
25 LTR13 ERVK LTR
26 AluYm1 Alu SINE
27 MER11D ERVK LTR
28 LTR13 ERVK LTR
29 LTR3B ERVK LTR
30 LTR22C2 ERVK LTR
31 LTR10G ERV1 LTR
32 AluYi6 4d Alu SINE
33 LTR6A ERV1 LTR
34 AluYe6 Alu SINE
35 AluYf1 Alu SINE
36 LTR7Y ERV1 LTR
37 LTR5 Hs ERVK LTR
38 AluYj4 Alu SINE
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39 MER9a1 ERVK LTR
40 LTR17 ERV1 LTR
41 LTR7 ERV1 LTR
42 MER11C ERVK LTR
43 LTR21A ERV1 LTR
44 AluYg6 Alu SINE
45 LTR76 ERV1 LTR
46 LTR22E ERVK LTR
47 LTR1F1 ERV1 LTR
48 LTR12D ERV1 LTR
49 LTR22B1 ERVK LTR
50 LTR22 ERVK LTR
51 LTR18A ERVL LTR
52 LTR14C ERVK LTR
53 LTR12F ERV1 LTR
54 AluSc8 Alu SINE
55 HERV1 LTRa ERV1 LTR
56 LTR12 ERV1 LTR
57 LTR5B ERVK LTR
58 L1PA2 L1 LINE
59 LTR2 ERV1 LTR
60 AluYk11 Alu SINE
61 LTR18C ERVL LTR
62 LTR12B ERV1 LTR
63 AmnSINE2 tRNA-Deu SINE
64 AluYh3 Alu SINE
65 LTR7B ERV1 LTR
66 MER9a3 ERVK LTR
67 AluSp Alu SINE
68 AluSg4 Alu SINE
69 LTR12 ERV1 LTR
70 AluSg Alu SINE
71 AluYk12 Alu SINE
72 MER11A ERVK LTR
73 LTR14B ERVK LTR
74 AluYh9 Alu SINE
75 LTR3A ERVK LTR
76 LTR10F ERV1 LTR
77 AluSq4 Alu SINE
78 AluSq10 Alu SINE
79 AluSc5 Alu SINE
80 LTR2B ERV1 LTR
81 AluSg7 Alu SINE
82 LTR2C ERV1 LTR
83 AluSc Alu SINE
84 LTR10B1 ERV1 LTR
85 AluSq Alu SINE
86 LTR10B2 ERV1 LTR
87 LTR13A ERVK LTR
88 LTR10D ERV1 LTR
89 AluSx4 Alu SINE
90 LTR3 ERVK LTR
91 AluSx3 Alu SINE
92 AluYh3a3 Alu SINE
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93 LTR22A ERVK LTR
94 L1HS L1 LINE
95 AluSq2 Alu SINE
96 LTR3B ERVK LTR
97 LTR27 ERV1 LTR
98 LTR15 ERV1 LTR
99 LTR22B ERVK LTR
100 AluSx1 Alu SINE
101 LTR4 ERV1 LTR
102 L1PA3 L1 LINE
103 LTR1B1 ERV1 LTR
104 LTR10A ERV1 LTR
105 LTR1A2 ERV1 LTR
106 L1PA4 L1 LINE
107 LTR1C3 ERV1 LTR
108 MER85 PiggyBac DNA
109 LTR19B ERV1 LTR
110 LTR46 ERV1 LTR
111 LTR30 ERV1 LTR
112 L1P1 L1 LINE
113 LTR22B2 ERVK LTR
114 L1PA5 L1 LINE
115 LTR7C ERV1 LTR
116 LTR10E ERV1 LTR
117 LTR1B0 ERV1 LTR
118 LTR25 ERV1 LTR
119 MER52D ERV1 LTR
120 LTR10C ERV1 LTR
121 MER48 ERV1 LTR
122 AluSx Alu SINE
123 LTR71A ERV1 LTR
124 THE1-int ERVL-MaLR LTR
125 LTR28B ERV1 LTR
126 LTR19A ERV1 LTR
127 AluSz Alu SINE
128 L1P2 L1 LINE
129 LTR66 ERVL LTR
130 LTR9C ERV1 LTR
131 L1PA6 L1 LINE
132 MLT2A1 ERVL LTR
133 LTR9A1 ERV1 LTR
134 MER61F ERV1 LTR
135 MER52C ERV1 LTR
136 MER51A ERV1 LTR
137 LTR22C0 ERVK LTR
138 HERV1 LTRd ERV1 LTR
139 L1PA7 L1 LINE
140 LTR61 ERV1 LTR
141 MER51B ERV1 LTR
142 LTR71B ERV1 LTR
143 LTR1D ERV1 LTR
144 LTR18B ERVL LTR
145 MER9B ERVK LTR
146 AluSz6 Alu SINE
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147 LTR1A1 ERV1 LTR
148 LTR9B ERV1 LTR
149 MER61A ERV1 LTR
150 LTR77 ERV1 LTR
151 L1PA8 L1 LINE
152 LTR10B ERV1 LTR
153 LTR5 ERVK LTR
154 MER57A1 ERV1 LTR
155 LTR9 ERV1 LTR
156 MER75A PiggyBac DNA
157 THE1A ERVL-MaLR LTR
158 HERV1 I-int ERV1 LTR
159 MER61E ERV1 LTR
160 LTR1F2 ERV1 LTR
161 THE1A-int ERVL-MaLR LTR
162 LTR2752 ERV1 LTR
163 PABL A ERV1 LTR
164 LTR1E ERV1 LTR
165 PABL B ERV1 LTR
166 MER61C ERV1 LTR
167 MADE1 TcMar-Mariner DNA
168 MER47C TcMar-Tigger DNA
169 THE1B ERVL-MaLR LTR
170 LTR14A ERVK LTR
171 MER30B hAT-Charlie DNA
172 LTR1 ERV1 LTR
173 LTR19C ERV1 LTR
174 MER61D ERV1 LTR
175 MER52A ERV1 LTR
176 MER51C ERV1 LTR
177 LTR21C ERVL LTR
178 MER84 ERV1 LTR
179 LTR28C ERV1 LTR
180 MER83C ERV1 LTR
181 LTR21B ERV1 LTR
182 LTR28 ERV1 LTR
183 LTR1D1 ERV1 LTR
184 LTR22C ERVK LTR
185 MLT2A2 ERVL LTR
186 MER75B PiggyBac DNA
187 MER51E ERV1 LTR
188 LTR27C ERV1 LTR
189 LTR9D ERV1 LTR
190 MER61B ERV1 LTR
191 LTR1B ERV1 LTR
192 MER4E ERV1 LTR
193 MER41A ERV1 LTR
194 LTR1F ERV1 LTR
195 MER4A1 ERV1 LTR
196 HERV1 LTRc ERV1 LTR
197 THE1C ERVL-MaLR LTR
198 HERV-Fc1 LTR3 ERV1 LTR
199 LTR1C1 ERV1 LTR
200 MER50B ERV1 LTR
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201 LTR27E ERV1 LTR
202 LTR1C ERV1 LTR
203 LTR27D ERV1 LTR
204 THE1D ERVL-MaLR LTR
205 MER30 hAT-Charlie DNA
206 MER1A hAT-Charlie DNA
207 LTR43 ERV1 LTR
208 AluJb Alu SINE
209 MER1B hAT-Charlie DNA
210 MER83 ERV1 LTR
211 MER4A1 ERV1 LTR
212 L1P3 L1 LINE
213 LTR8 ERV1 LTR
214 AluYh7 Alu SINE
215 L1PA8A L1 LINE
216 L1P3b L1 LINE
217 L1PA10 L1 LINE
218 LTR27B ERV1 LTR
219 THE1D-int ERVL-MaLR LTR
220 MER66B ERV1 LTR
221 LTR75 1 ERV1 LTR
222 MER75 PiggyBac DNA
223 MSTA ERVL-MaLR LTR
224 AluJo Alu SINE
225 LTR38 ERV1 LTR
226 FLAM C Alu SINE
227 L1P4d L1 LINE
228 LTR47B4 ERVL LTR
229 L1P L1 LINE
230 FRAM Alu SINE
231 LTR35A ERV1 LTR
232 MER41B ERV1 LTR
233 MER4E1 ERV1 LTR
234 MER57B1 ERV1 LTR
235 L1PB1 L1 LINE
236 MST-int ERVL-MaLR LTR
237 MER41E ERV1 LTR
238 MER107 hAT-Charlie DNA
239 MER66A ERV1 LTR
240 PRIMA4 LTR ERV1 LTR
241 HSMAR1 TcMar-Mariner DNA
242 AluJr Alu SINE
243 L1P4e L1 LINE
244 THE1B-int ERVL-MaLR LTR
245 LTR43B ERV1 LTR
246 THE1C-int ERVL-MaLR LTR
247 MER41C ERV1 LTR
248 LTR32 ERVL LTR
249 LTR45C ERV1 LTR
250 MLT2B3 ERVL LTR
251 MER50 ERV1 LTR
252 L1PA14 L1 LINE
253 MER4B ERV1 LTR
254 MER66D ERV1 LTR
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255 LTR62 ERVL LTR
256 L1PA11 L1 LINE
257 LTR8B ERV1 LTR
258 L1PA13 L1 LINE
259 MER87B ERV1 LTR
260 MER4A ERV1 LTR
261 Charlie3 hAT-Charlie DNA
262 LTR26E ERV1 LTR
263 AluJr4 Alu SINE
264 MER66C ERV1 LTR
265 L1PREC2 L1 LINE
266 MER83B ERV1 LTR
267 LTR60B ERV1 LTR
268 MLT2B5 ERVL LTR
269 LTR35B ERV1 LTR
270 MER87 ERV1 LTR
271 LOR1b ERV1 LTR
272 MER50-int ERV1 LTR
273 LTR8A ERV1 LTR
274 L1PA12 L1 LINE
275 MER8 TcMar-Tigger DNA
276 L1PB2 L1 LINE
277 MER21A ERVL LTR
278 Tigger3d TcMar-Tigger DNA
279 L1PB L1 LINE
280 L1MA1 L1 LINE
281 LTR26 ERV1 LTR
282 MSTB ERVL-MaLR LTR
283 MER41D ERV1 LTR
284 L1M L1 LINE
285 MSTA-int ERVL-MaLR LTR
286 LTR45 ERV1 LTR
287 LTR34 ERV1 LTR
288 MER72B ERV1 LTR
289 LTR36 ERV1 LTR
290 LOR1a ERV1 LTR
291 L1MA2 L1 LINE
292 LTR51 ERV1 LTR
293 L1PB3 L1 LINE
294 LTR24 ERV1 LTR
295 L1P4 L1 LINE
296 L1P4a L1 LINE
297 L1PA15 L1 LINE
298 LTR26D ERV1 LTR
299 LTR26B ERV1 LTR
300 MER72 ERV1 LTR
301 LTR59 ERV1 LTR
302 LTR38C ERV1 LTR
303 LTR73 ERV1 LTR
304 MER4C ERV1 LTR
305 LTR23 ERV1 LTR
306 LTR26C ERV1 LTR
307 LTR45B ERV1 LTR
308 Tigger1a Art TcMar-Tigger DNA
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309 MER4CL34 ERV1 LTR
310 L1MA3 L1 LINE
311 MER4D1 ERV1 LTR
312 LTR38A1 ERV1 LTR
313 FAM Alu SINE
314 LTR47A ERVL LTR
315 FLAM A Alu SINE
316 Ricksha 0 MULE-MuDR DNA
317 L1PA16 L1 LINE
318 MER4D ERV1 LTR
319 LTR72 ERV1 LTR
320 LTR35 ERV1 LTR
321 LTR47B3 ERVL LTR
322 MER6C TcMar-Tigger DNA
323 LTR48 ERV1 LTR
324 LTR42 ERVL LTR
325 MER41G ERV1 LTR
326 LTR72B ERV1 LTR
327 MER34D ERV1 LTR
328 L1PA17 L1 LINE
329 LTR24C ERV1 LTR
330 L1PB4 L1 LINE
331 MSTB1 ERVL-MaLR LTR
332 MER6A TcMar-Tigger DNA
333 MER4D0 ERV1 LTR
334 LTR56 ERV1 LTR
335 HSMAR2 TcMar-Mariner DNA
336 LTR24B ERV1 LTR
337 LTR64 ERV1 LTR
338 L1P5 L1 LINE
339 Tigger3a TcMar-Tigger DNA
340 LTR38B ERV1 LTR
341 PrimLTR79 ERV1 LTR
342 LTR29 ERV1 LTR
343 MER49 ERV1 LTR
344 MER101 ERV1 LTR
345 Tigger2b Pri TcMar-Tigger DNA
346 LTR06 ERV1 LTR
347 LTR48B ERV1 LTR
348 MER57B2 ERV1 LTR
349 LTR47A2 ERVL LTR
350 MER65A ERV1 LTR
351 Tigger2a TcMar-Tigger DNA
352 MER65D ERV1 LTR
353 MSTB2 ERVL-MaLR LTR
354 MER39B ERV1 LTR
355 MER51D ERV1 LTR
356 LTR57 ERVL LTR
357 LTR47B ERVL LTR
358 MSTA1 ERVL-MaLR LTR
359 MSTC ERVL-MaLR LTR
360 MER135 DNA DNA
361 MER6B TcMar-Tigger DNA
362 MER65C ERV1 LTR
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363 L1MA5A L1 LINE
364 MER2B TcMar-Tigger DNA
365 L1MA4A L1 LINE
366 MER101B ERV1 LTR
367 MER47A TcMar-Tigger DNA
368 MER65B ERV1 LTR
369 Tigger3c TcMar-Tigger DNA
370 MER47B TcMar-Tigger DNA
371 LTR39 ERV1 LTR
372 LTR69 ERVL LTR
373 LTR49 ERV1 LTR
374 Merlin1 HS Merlin DNA
375 LTR60 ERV1 LTR
376 LTR47B2 ERVL LTR
377 LTR54 ERV1 LTR
378 Tigger4b TcMar-Tigger DNA
379 Charlie12 hAT-Charlie DNA
380 Tigger3 TcMar-Tigger DNA
381 L1MA4 L1 LINE
382 MER76-int ERVL LTR
383 HERVK11D-int ERVK LTR
384 Tigger2 TcMar-Tigger DNA
385 HERV-Fc1 LTR1 ERV1 LTR
386 MER54A ERVL LTR
387 Tigger5 TcMar-Tigger DNA
388 MER6 TcMar-Tigger DNA
389 HERVL32-int ERVL LTR
390 Tigger5b TcMar-Tigger DNA
391 Tigger4a TcMar-Tigger DNA
392 MER57C2 ERV1 LTR
393 L1M2a1 L1 LINE
394 Tigger1 TcMar-Tigger DNA
395 L1MA5 L1 LINE
396 OldhAT1 hAT-Ac DNA
397 Tigger3b TcMar-Tigger DNA
398 MER2 TcMar-Tigger DNA
399 MER57C1 ERV1 LTR
400 MER44A TcMar-Tigger DNA
401 MSTD ERVL-MaLR LTR
402 MER39 ERV1 LTR
403 MER44B TcMar-Tigger DNA
404 Ricksha c MULE-MuDR DNA
405 MER44C TcMar-Tigger DNA
406 MER96 hAT-Tip100 DNA
407 MER73 ERVL LTR
408 Tigger7 TcMar-Tigger DNA
409 MER57D ERV1 LTR
410 LTR31 ERV1 LTR
411 UCON132b hAT-Tip100 DNA
412 MER57E1 ERV1 LTR
413 MER21B ERVL LTR
414 MamRep1161 TcMar-Tigger DNA
415 MLT1A1 ERVL-MaLR LTR
416 MER44D TcMar-Tigger DNA
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417 LTR70 ERV1 LTR
418 MER54B ERVL LTR
419 LTR54B ERV1 LTR
420 MER34B ERV1 LTR
421 L1PBa L1 LINE
422 MER70B ERVL LTR
423 LTR109A2 ERV1 LTR
424 LTR44 ERV1 LTR
425 LTR58 ERV1 LTR
426 MLT2B2 ERVL LTR
427 MLT1A0 ERVL-MaLR LTR
428 L1PBb L1 LINE
429 L1MA6 L1 LINE
430 MER34C ERV1 LTR
431 MER67A ERV1 LTR
432 LTR75B ERVL LTR
433 MER34 ERV1 LTR
434 MER34C2 ERV1 LTR
435 MER94B hAT-Blackjack DNA
436 MER57F ERV1 LTR
437 MER95 ERV1 LTR
438 LTR108e Mam ERVL LTR
439 Tigger1a Mars TcMar-Tigger DNA
440 X8 LINE CR1 LINE
441 L1P4b L1 LINE
442 L1MA7 L1 LINE
443 HERVS71-int ERV1 LTR
444 Tigger4 TcMar-Tigger DNA
445 MER74B ERVL LTR
446 MER34C ERV1 LTR
447 HERV15-int ERV1 LTR
448 MER70C ERVL LTR
449 MLT2B1 ERVL LTR
450 HERV1 LTRe ERV1 LTR
451 UCON79 DNA? DNA?
452 MLT1A ERVL-MaLR LTR
453 MER57E2 ERV1 LTR
454 MSTB-int ERVL-MaLR LTR
455 MER45A hAT-Tip100 DNA
456 CR1-L3A Croc CR1 LINE
457 MLT1N2-int ERVL-MaLR LTR
458 UCON8 DNA DNA
459 Ricksha a MULE-MuDR DNA
460 L1P4c L1 LINE
461 Penelope1 Vert Penelope LINE
462 HERV9NC-int ERV1 LTR
463 MER83A-int ERV1 LTR
464 MER57E3 ERV1 LTR
465 MLT1E-int ERVL-MaLR LTR
466 HERV9-int ERV1 LTR
467 HERVFH19-int ERV1 LTR
468 MamRep488 hAT-Tip100 DNA
469 UCON78 DNA DNA
470 X2 LINE CR1 LINE
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471 LTR91 ERVL LTR
472 PRIMAX-int ERV1 LTR
473 MER126 DNA DNA
474 MER34A ERV1 LTR
475 MER50C ERV1 LTR
476 MLT2B4 ERVL LTR
477 MLT1E1A-int ERVL-MaLR LTR
478 UCON33 TcMar-Tigger DNA
479 MSTB2-int ERVL-MaLR LTR
480 X5B LINE CR1 LINE
481 HERVK22-int ERVK LTR
482 MER83B-int ERV1 LTR
483 MamGypsy2-LTR Gypsy LTR
484 MER70A ERVL LTR
485 MSTA1-int ERVL-MaLR LTR
486 MLT1E1-int ERVL-MaLR LTR
487 LTR38-int ERV1 LTR
488 MLT1A1-int ERVL-MaLR LTR
489 L1M1 L1 LINE
490 Charlie30a hAT-Charlie DNA
491 Charlie4 hAT-Charlie DNA
492 MADE2 TcMar-Mariner DNA
493 X6B LINE CR1 LINE
494 Ricksha b MULE-MuDR DNA
495 L1M3de L1 LINE
496 MER121 hAT? DNA
497 HERVFH21-int ERV1 LTR
498 L1PBa1 L1 LINE
499 UCON107 hAT-Tag1 DNA
500 HERVL66-int ERVL LTR
501 LTR53B ERVL LTR
502 MER131 DNA? DNA?
503 LTR108b Mam ERVL LTR
504 UCON29 PiggyBac? DNA
505 MER31A ERV1 LTR
506 MER127 TcMar-Tigger DNA
507 X6A LINE CR1 LINE
508 MER21C ERVL LTR
509 Mam R4 Dong-R4 LINE
510 Chompy-7 Croc PIF-Harbinger DNA
511 L1M2 L1 LINE
512 AmnSINE1 5S-Deu-L2 SINE
513 LTR81AB Gypsy LTR
514 HERVK14-int ERVK LTR
515 FordPrefect a hAT-Tip100 DNA
516 X9 LINE L1 LINE
517 HERV17-int ERV1 LTR
518 MER88 ERVL LTR
519 L1MA8 L1 LINE
520 L1MA9 L1 LINE
521 LTR19-int ERV1 LTR
522 HERV30-int ERV1 LTR
523 MLT1-int ERVL-MaLR LTR
524 MLT2D ERVL LTR
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525 L1MB1 L1 LINE
526 MSTB1-int ERVL-MaLR LTR
527 L1M2c L1 LINE
528 L1M2b L1 LINE
529 Tigger17b TcMar-Tigger DNA
530 Charlie10b hAT-Charlie DNA
531 MSTC-int ERVL-MaLR LTR
532 L1M3b L1 LINE
533 MLT1G-int ERVL-MaLR LTR
534 MER34A1 ERV1 LTR
535 MER89 ERV1 LTR
536 LTR108a Mam ERVL LTR
537 HERVIP10F-int ERV1 LTR
538 ERV24B Prim-int ERV1 LTR
539 MER92A ERV1 LTR
540 LFSINE Vert tRNA SINE
541 MER67B ERV1 LTR
542 MER67D ERV1 LTR
543 L1MA10 L1 LINE
544 MLT1B ERVL-MaLR LTR
545 ERV24 Prim-int ERV1 LTR
546 MER34B-int ERV1 LTR
547 LTR57-int ERVL LTR
548 MLT1E2-int ERVL-MaLR LTR
549 LTR55 ERVL? LTR
550 LTR53 ERVL LTR
551 MER74C ERVL LTR
552 MER31B ERV1 LTR
553 L1MC1 L1 LINE
554 LTR33C ERVL LTR
555 MER97d hAT-Tip100 DNA
556 LTR108c Mam ERVL LTR
557 MER58D hAT-Charlie DNA
558 L1M3c L1 LINE
559 MLT1C-int ERVL-MaLR LTR
560 Tigger17a TcMar-Tigger DNA
561 MER74A ERVL LTR
562 MER92D ERV1 LTR
563 MLT1C ERVL-MaLR LTR
564 LTR107 Mam LTR LTR
565 Charlie11 hAT-Charlie DNA
566 HERVKC4-int ERVK LTR
567 MLT-int ERVL-MaLR LTR
568 MLT2C2 ERVL LTR
569 MER77B ERVL LTR
570 MER77 ERVL LTR
571 MLT1D ERVL-MaLR LTR
572 MLT1E1 ERVL-MaLR LTR
573 LTR53-int ERVL LTR
574 L1MB2 L1 LINE
575 MLT1E ERVL-MaLR LTR
576 MER92B ERV1 LTR
577 Tigger17c TcMar-Tigger DNA
578 MER68C ERVL LTR
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579 MER97b hAT-Tip100 DNA
580 LTR16D1 ERVL LTR
581 MER92C ERV1 LTR
582 Tigger6b TcMar-Tigger DNA
583 hAT-N1 Mam hAT-Tip100? DNA
584 LTR52 ERVL LTR
585 LTR75 ERVL LTR
586 LTR16D2 ERVL LTR
587 MLT1E2 ERVL-MaLR LTR
588 MER81 hAT-Blackjack DNA
589 CR1-16 AMi CR1 LINE
590 L1PA15-16 L1 LINE
591 MER68B ERVL LTR
592 MER76 ERVL LTR
593 MER106A hAT-Charlie DNA
594 L1MB3 L1 LINE
595 MER67C ERV1 LTR
596 MER106B hAT-Charlie DNA
597 MER68 ERVL LTR
598 MLT1B-int ERVL-MaLR LTR
599 MER70-int ERVL LTR
600 LTR108d Mam ERVL LTR
601 MER45B hAT-Tip100 DNA
602 L1MB4 L1 LINE
603 L1M3d L1 LINE
604 LTR40A1 ERVL LTR
605 L1MC2 L1 LINE
606 MER53 hAT DNA
607 LTR40b ERVL LTR
608 LTR68 ERV1 LTR
609 MER45C hAT-Tip100 DNA
610 MLT1E3 ERVL-MaLR LTR
611 L1M3e L1 LINE
612 MSTD-int ERVL-MaLR LTR
613 MLT1E3-int ERVL-MaLR LTR
614 MER90 ERV1 LTR
615 Tigger6a TcMar-Tigger DNA
616 MLT2C1 ERVL LTR
617 ORSL hAT-Tip100 DNA
618 MLT1E1A ERVL-MaLR LTR
619 MER20 hAT-Charlie DNA
620 X7D LINE CR1 LINE
621 MER58A hAT-Charlie DNA
622 LTR16B2 ERVL LTR
623 LTR40a ERVL LTR
624 MLT1F-int ERVL-MaLR LTR
625 MamRep1894 hAT DNA
626 Tigger9b TcMar-Tigger DNA
627 L1M3 L1 LINE
628 MER63A hAT-Blackjack DNA
629 MLT1G3-int ERVL-MaLR LTR
630 Charlie14a hAT-Charlie DNA
631 MER91B hAT-Tip100 DNA
632 LTR41B ERVL LTR
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633 LTR16B ERVL LTR
634 MLT1F2 ERVL-MaLR LTR
635 LTR41 ERVL LTR
636 LTR52-int ERVL LTR
637 MER90a ERV1 LTR
638 LTR86A1 ERVL LTR
639 UCON55 TcMar-Tigger DNA
640 L5 RTE-X LINE
641 LTR41C ERVL LTR
642 L1MB8 L1 LINE
643 MER96B hAT-Tip100 DNA
644 MER58C hAT-Charlie DNA
645 LTR40c ERVL LTR
646 MER58B hAT-Charlie DNA
647 MLT1L-int ERVL-MaLR LTR
648 MER99 hAT? DNA
649 LTR102 Mam ERVL LTR
650 L1M3f L1 LINE
651 MLT1F ERVL-MaLR LTR
652 L1MB5 L1 LINE
653 ERV3-16A3 LTR ERVL LTR
654 Tigger17 TcMar-Tigger DNA
655 L1MB7 L1 LINE
656 MER63B hAT-Blackjack DNA
657 MLT1G1-int ERVL-MaLR LTR
658 MER3 hAT-Charlie DNA
659 MER110A ERV1 LTR
660 LTR80B ERVL LTR
661 LTR37A ERV1 LTR
662 LTR16B1 ERVL LTR
663 MLT2F ERVL LTR
664 MLT1F1 ERVL-MaLR LTR
665 MLT1G1 ERVL-MaLR LTR
666 MLT1H1 ERVL-MaLR LTR
667 MER94 hAT-Blackjack DNA
668 LTR16 ERVL LTR
669 LTR88b Gypsy? LTR
670 FordPrefect hAT-Tip100 DNA
671 MER124 DNA? DNA?
672 MER119 hAT-Charlie DNA
673 MER104 TcMar-Tc2 DNA
674 MER97a hAT-Tip100 DNA
675 MER110-int ERV1 LTR
676 MER5A1 hAT-Charlie DNA
677 DNA1 Mam TcMar DNA
678 L1MC L1 LINE
679 MLT1I-int ERVL-MaLR LTR
680 Charlie10 hAT-Charlie DNA
681 Charlie5 hAT-Charlie DNA
682 MERX TcMar-Tigger DNA
683 MLT1F1-int ERVL-MaLR LTR
684 MER45R hAT-Tip100 DNA
685 L1M2a L1 LINE
686 Tigger12c TcMar-Tigger DNA
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687 L1MEg2 L1 LINE
688 Arthur1C hAT-Tip100 DNA
689 LTR16A2 ERVL LTR
690 L1MD3 L1 LINE
691 L1M4 L1 LINE
692 Charlie6 hAT-Charlie DNA
693 L1MD L1 LINE
694 L1MD1 L1 LINE
695 Charlie1b hAT-Charlie DNA
696 L1MC3 L1 LINE
697 L1M4a2 L1 LINE
698 L1MD2 L1 LINE
699 Charlie1a hAT-Charlie DNA
700 MER33 hAT-Charlie DNA
701 Looper PiggyBac DNA
702 MLT1G3 ERVL-MaLR LTR
703 HERVIP10B3-int ERV1 LTR
704 L1MCc L1 LINE
705 MER5C1 hAT-Charlie DNA
706 Charlie1 hAT-Charlie DNA
707 MER63C hAT-Blackjack DNA
708 MER5C hAT-Charlie DNA
709 MER5A hAT-Charlie DNA
710 Charlie10a hAT-Charlie DNA
711 MER105 hAT-Charlie DNA
712 X7C LINE CR1 LINE
713 MLT1G ERVL-MaLR LTR
714 LTR86B2 ERVL LTR
715 LTR16A ERVL LTR
716 LTR105 Mam ERVL LTR
717 LTR80A ERVL LTR
718 Charlie7a hAT-Charlie DNA
719 Zaphod3 hAT-Tip100 DNA
720 L1ME2z L1 LINE
721 MER63D hAT-Blackjack DNA
722 MLT1H2-int ERVL-MaLR LTR
723 LTR83 ERVL LTR
724 Kanga1a TcMar-Tc2 DNA
725 MER91A hAT-Tip100 DNA
726 LTR37B ERV1 LTR
727 MER5B hAT-Charlie DNA
728 LTR87 ERVL? LTR
729 LTR86C ERVL LTR
730 MLT1H ERVL-MaLR LTR
731 MLT1F2-int ERVL-MaLR LTR
732 LTR50 ERVL LTR
733 LTR16E1 ERVL LTR
734 LTR16A1 ERVL LTR
735 L1MEb L1 LINE
736 LTR46-int ERV1 LTR
737 MER91C hAT-Tip100 DNA
738 MLT1K-int ERVL-MaLR LTR
739 MLT2E ERVL LTR
740 Charlie9 hAT-Charlie DNA
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741 Kanga1c TcMar-Tc2 DNA
742 Cheshire hAT-Charlie DNA
743 MLT1J1 ERVL-MaLR LTR
744 L1ME3 L1 LINE
745 MamRep38 hAT DNA
746 Charlie17a hAT-Charlie DNA
747 LTR81B Gypsy LTR
748 LTR81A Gypsy LTR
749 MLT1H2 ERVL-MaLR LTR
750 LTR16D ERVL LTR
751 LTR16C ERVL LTR
752 LTR16E2 ERVL LTR
753 L1M4a1 L1 LINE
754 MER110 ERV1 LTR
755 MER4B-int ERV1 LTR
756 LTR103 Mam ERV1? LTR
757 MamGypLTR1c Gypsy LTR
758 MamGypLTR1a Gypsy LTR
759 LTR33A ERVL LTR
760 MER115 hAT-Tip100 DNA
761 CR1-3 Croc CR1 LINE
762 Charlie4a hAT-Charlie DNA
763 MER21-int ERVL LTR
764 MLT1I ERVL-MaLR LTR
765 X7B LINE CR1 LINE
766 Charlie19a hAT-Charlie DNA
767 Arthur1A hAT-Tip100 DNA
768 L2-1 AMi L2 LINE
769 LTR33 ERVL LTR
770 Arthur1 hAT-Tip100 DNA
771 LTR82A ERVL LTR
772 Arthur1B hAT-Tip100 DNA
773 MamRTE1 RTE-BovB LINE
774 Zaphod2 hAT-Tip100 DNA
775 L1MEg1 L1 LINE
776 LTR79 ERVL LTR
777 MER97c hAT-Tip100 DNA
778 LTR104 Mam Gypsy LTR
779 L1M3a L1 LINE
780 Charlie26a hAT-Charlie DNA
781 LTR33B ERVL LTR
782 MER46C TcMar-Tigger DNA
783 MamGypLTR1d Gypsy LTR
784 MER102a hAT-Charlie DNA
785 MER102c hAT-Charlie DNA
786 MamGypLTR2c Gypsy LTR
787 Tigger14a TcMar-Tigger DNA
788 LTR88a Gypsy? LTR
789 Charlie17 hAT-Charlie DNA
790 Kanga1b TcMar-Tc2 DNA
791 MLT1J2 ERVL-MaLR LTR
792 L1MC4a L1 LINE
793 LTR82B ERVL LTR
794 L1MC4 L1 LINE
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795 Charlie4z hAT-Charlie DNA
796 LTR33A ERVL LTR
797 HERVL18-int ERVL LTR
798 L1ME3A L1 LINE
799 LTR85c Gypsy? LTR
800 MER117 hAT-Charlie DNA
801 Kanga1 TcMar-Tc2 DNA
802 Kanga1d TcMar-Tc2 DNA
803 MamRep1879 hAT-Tip100? DNA
804 MLT1J ERVL-MaLR LTR
805 HAL1M8 L1 LINE
806 Tigger18a TcMar-Tigger DNA
807 L1MC5 L1 LINE
808 Plat L3 CR1 LINE
809 Tigger16a TcMar-Tigger DNA
810 MamTip1 hAT-Tip100 DNA
811 MamSINE1 tRNA-RTE SINE
812 MLT1J2-int ERVL-MaLR LTR
813 Tigger9a TcMar-Tigger DNA
814 MER112 hAT-Charlie DNA
815 HERVL74-int ERVL LTR
816 LTR67B ERVL LTR
817 HERVK13-int ERVK LTR
818 MIR MIR SINE
819 MamGyp-int Gypsy LTR
820 MER102b hAT-Charlie DNA
821 MER20B hAT-Charlie DNA
822 LTR81C Gypsy LTR
823 L1ME5 L1 LINE
824 Charlie15a hAT-Charlie DNA
825 Charlie7 hAT-Charlie DNA
826 LTR106 Mam LTR LTR
827 HERVE-int ERV1 LTR
828 MLT1L ERVL-MaLR LTR
829 Charlie16a hAT-Charlie DNA
830 LTR103b Mam ERV1? LTR
831 HUERS-P2-int ERV1 LTR
832 LTR84b ERVL LTR
833 HUERS-P1-int ERV1 LTR
834 L1MEh L1 LINE
835 LTR86A2 ERVL LTR
836 HERVK-int ERVK LTR
837 Charlie22a hAT-Charlie DNA
838 HERVK3-int ERVK LTR
839 L1M4c L1 LINE
840 MER113A hAT-Charlie DNA
841 MLT1H1-int ERVL-MaLR LTR
842 L1MEa L1 LINE
843 MIR1 Amn MIR SINE
844 ERVL-int ERVL LTR
845 MamRep4096 hAT-Tip100 DNA
846 LTR85a Gypsy? LTR
847 MLT1K ERVL-MaLR LTR
848 MER68-int ERVL LTR
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849 Tigger12A TcMar-Tigger DNA
850 CR1 Mam CR1 LINE
851 UCON74 DNA? DNA?
852 LTR89 ERVL? LTR
853 LTR90A LTR LTR
854 Chap1 Mam hAT-Charlie DNA
855 L1MEg L1 LINE
856 LTR101 Mam ERVL LTR
857 L1M5 L1 LINE
858 Charlie13b hAT-Charlie DNA
859 L1MDa L1 LINE
860 Charlie21a hAT-Charlie DNA
861 MamGypLTR1b Gypsy LTR
862 L1MCb L1 LINE
863 L1MCa L1 LINE
864 MLT1A0-int ERVL-MaLR LTR
865 L1MEf L1 LINE
866 L1MEc L1 LINE
867 L1ME1 L1 LINE
868 L1M4b L1 LINE
869 LTR78B ERV1 LTR
870 L1MC5a L1 LINE
871 L1ME3E L1 LINE
872 L1ME2 L1 LINE
873 LTR65 ERV1 LTR
874 Charlie2a hAT-Charlie DNA
875 LTR85b Gypsy? LTR
876 MLT1N2 ERVL-MaLR LTR
877 MLT1M ERVL-MaLR LTR
878 BLACKJACK hAT-Blackjack DNA
879 L2a L2 LINE
880 L1MEi L1 LINE
881 LTR78 ERV1 LTR
882 Charlie18a hAT-Charlie DNA
883 L1ME4b L1 LINE
884 MER101-int ERV1 LTR
885 Zaphod hAT-Tip100 DNA
886 Charlie15b hAT-Charlie DNA
887 Charlie17b hAT-Charlie DNA
888 L1ME3B L1 LINE
889 MamRep137 TcMar-Tigger DNA
890 Charlie29a hAT-Charlie DNA
891 L1M7 L1 LINE
892 L1ME3F L1 LINE
893 Charlie2b hAT-Charlie DNA
894 L1ME3D L1 LINE
895 HAL1b L1 LINE
896 LTR88c Gypsy? LTR
897 MamGypLTR3a Gypsy LTR
898 Tigger13a TcMar-Tigger DNA
899 MLT1O ERVL-MaLR LTR
900 MLT1J-int ERVL-MaLR LTR
901 Charlie24 hAT-Charlie DNA
902 ORSL-2a hAT-Tip100 DNA

171



903 MamGypLTR2b Gypsy LTR
904 MamRep1151 LTR? LTR?
905 Kanga11a TcMar-Tc2 DNA
906 MamRep1527 LTR LTR
907 MLT1D-int ERVL-MaLR LTR
908 LTR84a ERVL LTR
909 Charlie8 hAT-Charlie DNA
910 L2b L2 LINE
911 MER84-int ERV1 LTR
912 MER113B hAT-Charlie DNA
913 MLT1H-int ERVL-MaLR LTR
914 L1MEd L1 LINE
915 L1M8 L1 LINE
916 Charlie23a hAT-Charlie DNA
917 LTR90B LTR LTR
918 LTR81 Gypsy LTR
919 L1MDb L1 LINE
920 HERV4 I-int ERV1 LTR
921 HERV35I-int ERV1 LTR
922 MamGypLTR3 Gypsy LTR
923 MamRep434 TcMar-Tigger DNA
924 Kanga2 a TcMar-Tc2 DNA
925 MLT1J1-int ERVL-MaLR LTR
926 ORSL-2b hAT-Tip100 DNA
927 MamTip3 hAT-Tip100 DNA
928 MIRb MIR SINE
929 L2 L2 LINE
930 Tigger11a TcMar-Tigger DNA
931 L1ME3G L1 LINE
932 Tigger20a TcMar-Tigger DNA
933 MER103C hAT-Charlie DNA
934 L1M6 L1 LINE
935 MamRep605 LTR? LTR?
936 L4 A Mam RTE-X LINE
937 MER113 hAT-Charlie DNA
938 Tigger16b TcMar-Tigger DNA
939 HAL1 L1 LINE
940 HAL1ME L1 LINE
941 Charlie25 hAT-Charlie DNA
942 MLT1A-int ERVL-MaLR LTR
943 MamTip2 hAT-Tip100 DNA
944 LTR86B1 ERVL LTR
945 L1M6B L1 LINE
946 L1ME3Cz L1 LINE
947 Tigger8 TcMar-Tigger DNA
948 L2c L2 LINE
949 HERVE a-int ERV1 LTR
950 L1ME4a L1 LINE
951 L3b CR1 LINE
952 Tigger19a TcMar-Tigger DNA
953 X7A LINE CR1 LINE
954 Tigger15a TcMar-Tigger DNA
955 L1MEj L1 LINE
956 MIR3 MIR SINE
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957 L4 B Mam RTE-X LINE
958 MIRc MIR SINE
959 L1ME4c L1 LINE
960 L3 CR1 LINE
961 Tigger12 TcMar-Tigger DNA
962 Tigger10 TcMar-Tigger DNA
963 Tigger19b TcMar-Tigger DNA
964 Harlequin-int ERV1 LTR
965 HERVL-int ERVL LTR
966 HERVH-int ERV1 LTR
967 MamGypsy2-I Gypsy LTR
968 L1ME3C L1 LINE
969 ERV3-16A3 I-int ERVL LTR
970 MER92-int ERV1 LTR
971 MER31-int ERV1 LTR
972 HUERS-P3b-int ERV1 LTR
973 LTR49-int ERV1 LTR
974 MER61-int ERV1 LTR
975 HERVK11-int ERVK LTR
976 HERV9N-int ERV1 LTR
977 Ricksha MULE-MuDR DNA
978 L4 C Mam RTE-X LINE
979 PABL A-int ERV1 LTR
980 LTR43-int ERV1 LTR
981 MER89-int ERV1 LTR
982 MER65-int ERV1 LTR
983 PRIMA4-int ERV1 LTR
984 L2-3 Crp L2 LINE
985 HERV3-int ERV1 LTR
986 HERVK9-int ERVK LTR
987 HERVK14C-int ERVK LTR
988 MER66-int ERV1 LTR
989 HERVIP10FH-int ERV1 LTR
990 MER34-int ERV1 LTR
991 HERVI-int ERV1 LTR
992 LTR25-int ERV1 LTR
993 ERVL47-int ERVL LTR
994 Charlie13a hAT-Charlie DNA
995 PABL B-int ERV1 LTR
996 HERV16-int ERVL LTR
997 LTR39-int ERV1 LTR
998 PRIMA41-int ERV1 LTR
999 Charlie20a hAT-Charlie DNA
1000 MER52-int ERV1 LTR
1001 LTR37-int ERV1 LTR
1002 HERVP71A-int ERV1 LTR
1003 MER4-int ERV1 LTR
1004 MER57A-int ERV1 LTR
1005 HERVL40-int ERVL LTR
1006 MER51-int ERV1 LTR
1007 LOR1-int ERV1 LTR
1008 LTR23-int ERV1 LTR
1009 HUERS-P3-int ERV1 LTR
1010 ERVL-B4-int ERVL LTR
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1011 MARNA TcMar-Mariner DNA
1012 MER57-int ERV1 LTR
1013 ERVL-E-int ERVL LTR
1014 MER41-int ERV1 LTR
1015 HERVH48-int ERV1 LTR
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Appendix B

The TE ordering in the human genome predicted from

the recursive interruption model by applying Tabu

search on the adjacency matrix of the TE-interaction

network

Age order
TE name TE family TE type

(youngest to oldest)
1 AluYc SINE Alu
2 LTR5A LTR ERVK
3 AluYk4 SINE Alu
4 AluYa5 SINE Alu
5 MER9a2 LTR ERVK
6 AluYb8 SINE Alu
7 AluYe5 SINE Alu
8 AluYc3 SINE Alu
9 LTR5 Hs LTR ERVK
10 AluY SINE Alu
11 L1PA2 LINE L1
12 AluYk2 SINE Alu
13 HERV1 LTRb LTR ERV1
14 LTR13 LTR ERVK
15 HERVE a-int LTR ERV1
16 AluYk3 SINE Alu
17 LTR2 LTR ERV1
18 AluYm1 SINE Alu
19 AluYf1 SINE Alu
20 AluYb9 SINE Alu
21 HERV9NC-int LTR ERV1
22 LTR7 LTR ERV1
23 LTR21A LTR ERV1
24 LTR12C LTR ERV1
25 AluYh3 SINE Alu
26 AluYj4 SINE Alu
27 LTR7B LTR ERV1
28 LTR14 LTR ERVK
29 MER9a1 LTR ERVK
30 MER11C LTR ERVK
31 LTR6A LTR ERV1
32 AluSp SINE Alu
33 LTR13 LTR ERVK
34 AluSc8 SINE Alu
35 AluSg SINE Alu
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36 AluSg4 SINE Alu
37 AluSq10 SINE Alu
38 AluSc5 SINE Alu
39 AluSg7 SINE Alu
40 MER11B LTR ERVK
41 LTR5B LTR ERVK
42 AluYg6 SINE Alu
43 HERVK11D-int LTR ERVK
44 MER11D LTR ERVK
45 AluYd8 SINE Alu
46 AluSx3 SINE Alu
47 AluYi6 SINE Alu
48 L1HS LINE L1
49 L1PA5 LINE L1
50 LTR12B LTR ERV1
51 MER11A LTR ERVK
52 AluSq4 SINE Alu
53 HERV9N-int LTR ERV1
54 AluSq SINE Alu
55 LTR22C2 LTR ERVK
56 HERV9-int LTR ERV1
57 LTR10F LTR ERV1
58 LTR10G LTR ERV1
59 LTR17 LTR ERV1
60 AluSq2 SINE Alu
61 LTR12F LTR ERV1
62 LTR14C LTR ERVK
63 LTR12 LTR ERV1
64 LTR12 LTR ERV1
65 LTR5 LTR ERVK
66 LTR7A LTR ERV1
67 LTR12D LTR ERV1
68 Alu SINE Alu
69 LTR22B LTR ERVK
70 AluYe6 SINE Alu
71 AluYk12 SINE Alu
72 LTR2B LTR ERV1
73 LTR2C LTR ERV1
74 LTR3A LTR ERVK
75 LTR6B LTR ERV1
76 LTR10D LTR ERV1
77 LTR14B LTR ERVK
78 AluSx4 SINE Alu
79 AluSc SINE Alu
80 AluSx1 SINE Alu
81 L1P1 LINE L1
82 L1PA4 LINE L1
83 AluYi6 4d SINE Alu
84 LTR13A LTR ERVK
85 LTR1B1 LTR ERV1
86 LTR27 LTR ERV1
87 LTR7C LTR ERV1
88 LTR18A LTR ERVL
89 AluYk11 SINE Alu
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90 LTR30 LTR ERV1
91 LTR3B LTR ERVK
92 AluSz6 SINE Alu
93 AluYh3a3 SINE Alu
94 LTR3B LTR ERVK
95 MER9a3 LTR ERVK
96 LTR10A LTR ERV1
97 LTR76 LTR ERV1
98 AluSz SINE Alu
99 L1PA3 LINE L1
100 HERVI-int LTR ERV1
101 HERV15-int LTR ERV1
102 LTR15 LTR ERV1
103 HERV1 I-int LTR ERV1
104 LTR10C LTR ERV1
105 LTR1A2 LTR ERV1
106 HERVIP10B3-int LTR ERV1
107 L1PA6 LINE L1
108 HERV1 LTRa LTR ERV1
109 LTR10B1 LTR ERV1
110 LTR19C LTR ERV1
111 HERVK22-int LTR ERVK
112 LTR12E LTR ERV1
113 LTR22B1 LTR ERVK
114 LTR61 LTR ERV1
115 LTR22B2 LTR ERVK
116 LTR7Y LTR ERV1
117 LTR10E LTR ERV1
118 LTR10B2 LTR ERV1
119 LTR22E LTR ERVK
120 LTR22A LTR ERVK
121 AluSx SINE Alu
122 LTR22 LTR ERVK
123 LTR4 LTR ERV1
124 Penelope1 Vert LINE Penelope
125 LTR22C0 LTR ERVK
126 LTR3 LTR ERVK
127 THE1-int LTR ERVL-MaLR
128 L1PA8 LINE L1
129 L1PA7 LINE L1
130 HERVFH19-int LTR ERV1
131 LTR19A LTR ERV1
132 MER61C LTR ERV1
133 LTR9D LTR ERV1
134 THE1B LTR ERVL-MaLR
135 LTR9A1 LTR ERV1
136 LTR46 LTR ERV1
137 THE1A-int LTR ERVL-MaLR
138 LTR71B LTR ERV1
139 MER61E LTR ERV1
140 LTR66 LTR ERVL
141 HERVH48-int LTR ERV1
142 MLT2A1 LTR ERVL
143 MER48 LTR ERV1
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144 LTR25 LTR ERV1
145 LTR9B LTR ERV1
146 PABL A LTR ERV1
147 MER61B LTR ERV1
148 LTR2752 LTR ERV1
149 MER52C LTR ERV1
150 LTR1F1 LTR ERV1
151 MADE1 DNA TcMar-Mariner
152 MER52D LTR ERV1
153 THE1A LTR ERVL-MaLR
154 MER51B LTR ERV1
155 LTR14A LTR ERVK
156 LTR18B LTR ERVL
157 LTR19B LTR ERV1
158 LTR71A LTR ERV1
159 LTR1B LTR ERV1
160 LTR9 LTR ERV1
161 LTR77 LTR ERV1
162 MER4A1 LTR ERV1
163 LTR1E LTR ERV1
164 LTR1D LTR ERV1
165 MER61A LTR ERV1
166 THE1C LTR ERVL-MaLR
167 MER57A1 LTR ERV1
168 MER41A LTR ERV1
169 MER51C LTR ERV1
170 MER61F LTR ERV1
171 LTR9C LTR ERV1
172 MER51A LTR ERV1
173 HERV1 LTRc LTR ERV1
174 LTR27C LTR ERV1
175 MER61D LTR ERV1
176 MER50B LTR ERV1
177 LTR28 LTR ERV1
178 PABL B LTR ERV1
179 MER4A1 LTR ERV1
180 MER4E LTR ERV1
181 MER52A LTR ERV1
182 LTR28C LTR ERV1
183 LTR1A1 LTR ERV1
184 MER9B LTR ERVK
185 LTR8 LTR ERV1
186 MLT2A2 LTR ERVL
187 LTR27D LTR ERV1
188 LTR1D1 LTR ERV1
189 THE1D LTR ERVL-MaLR
190 MER30 DNA hAT-Charlie
191 FRAM SINE Alu
192 LTR43 LTR ERV1
193 MER123 DNA? DNA?
194 MER1B DNA hAT-Charlie
195 LTR38C LTR ERV1
196 MER85 DNA PiggyBac
197 LTR1B0 LTR ERV1
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198 HERV-Fc1-int LTR ERV1
199 MER83 LTR ERV1
200 CR1-L3B Croc LINE CR1
201 AluJo SINE Alu
202 LTR1 LTR ERV1
203 MER41B LTR ERV1
204 PRIMA4 LTR LTR ERV1
205 L1PA10 LINE L1
206 MER51E LTR ERV1
207 MER107 DNA hAT-Charlie
208 LTR22C LTR ERVK
209 LTR10B LTR ERV1
210 UCON107 DNA hAT-Tag1
211 MER66B LTR ERV1
212 MER83B LTR ERV1
213 LTR1C3 LTR ERV1
214 LTR47B4 LTR ERVL
215 AluJb SINE Alu
216 HERVL18-int LTR ERVL
217 L1P3 LINE L1
218 LTR27E LTR ERV1
219 LTR18C LTR ERVL
220 LTR28B LTR ERV1
221 Charlie3 DNA hAT-Charlie
222 FLAM C SINE Alu
223 LTR27B LTR ERV1
224 MER75 DNA PiggyBac
225 MER4E1 LTR ERV1
226 MER83C LTR ERV1
227 MER75A DNA PiggyBac
228 LTR1C LTR ERV1
229 AluJr SINE Alu
230 MER41C LTR ERV1
231 L1P2 LINE L1
232 L1P5 LINE L1
233 LTR21B LTR ERV1
234 MER30B DNA hAT-Charlie
235 L1PB LINE L1
236 HERV-Fc1 LTR3 LTR ERV1
237 HERV1 LTRd LTR ERV1
238 AluYa8 SINE Alu
239 L1PB1 LINE L1
240 HSMAR1 DNA TcMar-Mariner
241 L1PA8A LINE L1
242 L1PA11 LINE L1
243 MER1A DNA hAT-Charlie
244 MSTA LTR ERVL-MaLR
245 MER4A LTR ERV1
246 LOR1b LTR ERV1
247 L1PA12 LINE L1
248 MST-int LTR ERVL-MaLR
249 MLT2B3 LTR ERVL
250 MER50 LTR ERV1
251 LTR26 LTR ERV1
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252 L1PA14 LINE L1
253 MER4D1 LTR ERV1
254 MER57C2 LTR ERV1
255 L1PBb LINE L1
256 LTR72 LTR ERV1
257 L1PBa LINE L1
258 FLAM A SINE Alu
259 MER57B1 LTR ERV1
260 THE1D-int LTR ERVL-MaLR
261 L1PB2 LINE L1
262 AluJr4 SINE Alu
263 L1PREC2 LINE L1
264 L1PA13 LINE L1
265 MER4B LTR ERV1
266 LTR8A LTR ERV1
267 MER84 LTR ERV1
268 LTR60B LTR ERV1
269 MER66C LTR ERV1
270 Tigger3d DNA TcMar-Tigger
271 HERVKC4-int LTR ERVK
272 PrimLTR79 LTR ERV1
273 LTR1C1 LTR ERV1
274 HERVIP10FH-int LTR ERV1
275 LTR35A LTR ERV1
276 L1MA1 LINE L1
277 hAT-16 Crp DNA hAT-Charlie
278 MER75B DNA PiggyBac
279 LTR36 LTR ERV1
280 MER4C LTR ERV1
281 LTR57 LTR ERVL
282 LTR8B LTR ERV1
283 L1MA2 LINE L1
284 MER41D LTR ERV1
285 MSTB-int LTR ERVL-MaLR
286 LTR32 LTR ERVL
287 MER66A LTR ERV1
288 MSTB LTR ERVL-MaLR
289 LOR1a LTR ERV1
290 MER21A LTR ERVL
291 AluYh7 SINE Alu
292 L1PB3 LINE L1
293 L1PA15 LINE L1
294 L1M LINE L1
295 LTR45C LTR ERV1
296 L1MA3 LINE L1
297 LTR38A1 LTR ERV1
298 MER72 LTR ERV1
299 MER66D LTR ERV1
300 LTR35B LTR ERV1
301 MER4D0 LTR ERV1
302 LTR38B LTR ERV1
303 LTR73 LTR ERV1
304 LTR47A LTR ERVL
305 FAM SINE Alu

180



306 L1PA16 LINE L1
307 LTR44 LTR ERV1
308 MER49 LTR ERV1
309 LTR43B LTR ERV1
310 MER4D LTR ERV1
311 L1PA17 LINE L1
312 LTR62 LTR ERVL
313 MER51D LTR ERV1
314 LTR1F2 LTR ERV1
315 LTR39 LTR ERV1
316 MSTB1-int LTR ERVL-MaLR
317 L1P4 LINE L1
318 LTR26C LTR ERV1
319 LTR26E LTR ERV1
320 MER70A LTR ERVL
321 L1PB4 LINE L1
322 MER41E LTR ERV1
323 MSTB1 LTR ERVL-MaLR
324 LTR75 1 LTR ERV1
325 MER87 LTR ERV1
326 LTR38 LTR ERV1
327 LTR24 LTR ERV1
328 MER87B LTR ERV1
329 LTR26D LTR ERV1
330 LTR47B2 LTR ERVL
331 LTR24C LTR ERV1
332 LTR64 LTR ERV1
333 AmnSINE1 SINE 5S-Deu-L2
334 MER65C LTR ERV1
335 LTR47B3 LTR ERVL
336 MER72B LTR ERV1
337 LTR34 LTR ERV1
338 MER39B LTR ERV1
339 LTR51 LTR ERV1
340 LTR59 LTR ERV1
341 LTR06 LTR ERV1
342 LTR45B LTR ERV1
343 LTR56 LTR ERV1
344 LTR29 LTR ERV1
345 MER57B2 LTR ERV1
346 L1M2c LINE L1
347 L1P4a LINE L1
348 MER8 DNA TcMar-Tigger
349 LTR47A2 LTR ERVL
350 L1MA5A LINE L1
351 LTR35 LTR ERV1
352 LTR48B LTR ERV1
353 HSMAR2 DNA TcMar-Mariner
354 Tigger2 DNA TcMar-Tigger
355 MER65A LTR ERV1
356 Tigger2b Pri DNA TcMar-Tigger
357 Tigger2a DNA TcMar-Tigger
358 MSTA1-int LTR ERVL-MaLR
359 MSTA1 LTR ERVL-MaLR
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360 L1PBa1 LINE L1
361 LTR72B LTR ERV1
362 LTR49 LTR ERV1
363 MER34D LTR ERV1
364 L1M3f LINE L1
365 MSTB2-int LTR ERVL-MaLR
366 MER54A LTR ERVL
367 MSTB2 LTR ERVL-MaLR
368 MER101 LTR ERV1
369 MER4CL34 LTR ERV1
370 L1MA4 LINE L1
371 MSTC-int LTR ERVL-MaLR
372 MSTC LTR ERVL-MaLR
373 MER47A DNA TcMar-Tigger
374 Tigger4b DNA TcMar-Tigger
375 LTR42 LTR ERVL
376 LTR23 LTR ERV1
377 MLT1A1-int LTR ERVL-MaLR
378 LTR45 LTR ERV1
379 MER6A DNA TcMar-Tigger
380 LTR24B LTR ERV1
381 MER6B DNA TcMar-Tigger
382 MER65D LTR ERV1
383 MER50C LTR ERV1
384 MER6 DNA TcMar-Tigger
385 Tigger3a DNA TcMar-Tigger
386 L1MA5 LINE L1
387 MER57C1 LTR ERV1
388 L1MA4A LINE L1
389 LTR54 LTR ERV1
390 LTR1F LTR ERV1
391 THE1C-int LTR ERVL-MaLR
392 Tigger1 DNA TcMar-Tigger
393 MER2B DNA TcMar-Tigger
394 MER2 DNA TcMar-Tigger
395 Tigger3 DNA TcMar-Tigger
396 Tigger4a DNA TcMar-Tigger
397 Tigger3c DNA TcMar-Tigger
398 MER44B DNA TcMar-Tigger
399 MER44A DNA TcMar-Tigger
400 LTR26B LTR ERV1
401 Tigger3b DNA TcMar-Tigger
402 MSTD-int LTR ERVL-MaLR
403 MER41G LTR ERV1
404 LTR48 LTR ERV1
405 MSTD LTR ERVL-MaLR
406 MER39 LTR ERV1
407 MER21B LTR ERVL
408 MLT1A1 LTR ERVL-MaLR
409 MER44C DNA TcMar-Tigger
410 MER47B DNA TcMar-Tigger
411 LTR54B LTR ERV1
412 Tigger7 DNA TcMar-Tigger
413 MER47C DNA TcMar-Tigger
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414 Tigger5 DNA TcMar-Tigger
415 L1P LINE L1
416 MER73 LTR ERVL
417 MER44D DNA TcMar-Tigger
418 MER65B LTR ERV1
419 MLT1A0 LTR ERVL-MaLR
420 Tigger1a Mars DNA TcMar-Tigger
421 MER31A LTR ERV1
422 MER34B LTR ERV1
423 MER54B LTR ERVL
424 MER101B LTR ERV1
425 MLT2B1 LTR ERVL
426 MER57E1 LTR ERV1
427 THE1B-int LTR ERVL-MaLR
428 MER70B LTR ERVL
429 LTR31 LTR ERV1
430 MER88 LTR ERVL
431 MER34C LTR ERV1
432 Tigger5b DNA TcMar-Tigger
433 MER34 LTR ERV1
434 MER34C LTR ERV1
435 MER57F LTR ERV1
436 MLT2B2 LTR ERVL
437 MLT1A LTR ERVL-MaLR
438 MER6C DNA TcMar-Tigger
439 MER21C LTR ERVL
440 MLT2B5 LTR ERVL
441 L1M1 LINE L1
442 L1MA6 LINE L1
443 Ricksha c DNA MULE-MuDR
444 LTR69 LTR ERVL
445 L1MA7 LINE L1
446 MLT2B4 LTR ERVL
447 L1M3c LINE L1
448 LTR58 LTR ERV1
449 L1M3e LINE L1
450 MER34A LTR ERV1
451 L1P3b LINE L1
452 MER57D LTR ERV1
453 Tigger4 DNA TcMar-Tigger
454 L1MA8 LINE L1
455 L1MA9 LINE L1
456 MER34A1 LTR ERV1
457 MER45A DNA hAT-Tip100
458 MLT2D LTR ERVL
459 MER67D LTR ERV1
460 MLT1B LTR ERVL-MaLR
461 MER67B LTR ERV1
462 LTR47B LTR ERVL
463 Tigger17c DNA TcMar-Tigger
464 LTR108a Mam LTR ERVL
465 MLT2C2 LTR ERVL
466 MER74C LTR ERVL
467 MER31B LTR ERV1

183



468 LTR53B LTR ERVL
469 Tigger17a DNA TcMar-Tigger
470 MER95 LTR ERV1
471 MER57E2 LTR ERV1
472 LTR55 LTR ERVL?
473 L1MB2 LINE L1
474 MER81 DNA hAT-Blackjack
475 MLT1C LTR ERVL-MaLR
476 MER89 LTR ERV1
477 MLT1D LTR ERVL-MaLR
478 MER106B DNA hAT-Charlie
479 MER106A DNA hAT-Charlie
480 MER53 DNA hAT
481 MADE2 DNA TcMar-Mariner
482 CR1-16 AMi LINE CR1
483 UCON29 DNA PiggyBac?
484 LTR75 LTR ERVL
485 L2-1 Crp LINE L2
486 X2 LINE LINE CR1
487 X1 LINE LINE CR1
488 Charlie15a DNA hAT-Charlie
489 Chompy-6 Croc DNA PIF-Harbinger
490 MER67A LTR ERV1
491 MER96 DNA hAT-Tip100
492 MER68-int LTR ERVL
493 MER20 DNA hAT-Charlie
494 MLT1N2-int LTR ERVL-MaLR
495 X5B LINE LINE CR1
496 UCON14 DNA? DNA?
497 UCON7 DNA? DNA?
498 Eulor10 DNA? DNA?
499 X7D LINE LINE CR1
500 MLT1E1A-int LTR ERVL-MaLR
501 MER127 DNA TcMar-Tigger
502 X8 LINE LINE CR1
503 L1P4d LINE L1
504 MER68 LTR ERVL
505 MER131 DNA? DNA?
506 Eulor2B DNA? DNA?
507 LTR108c Mam LTR ERVL
508 MamRep1894 DNA hAT
509 LTR75B LTR ERVL
510 UCON11 DNA TcMar-Tigger
511 UCON62 DNA? DNA?
512 Tigger17b DNA TcMar-Tigger
513 Ricksha b DNA MULE-MuDR
514 MER5C1 DNA hAT-Charlie
515 MER94B DNA hAT-Blackjack
516 UCON49 LINE L2
517 HERV-Fc2-int LTR ERV1
518 Merlin1 HS DNA Merlin
519 MER133A DNA? DNA?
520 Eulor6A DNA? DNA?
521 X6B LINE LINE CR1

184



522 UCON81 DNA hAT-Charlie
523 LTR108e Mam LTR ERVL
524 LTR108b Mam LTR ERVL
525 UCON89 DNA hAT?
526 MER132 DNA TcMar-Pogo
527 MER134 DNA? DNA?
528 MER57E3 LTR ERV1
529 Ricksha DNA MULE-MuDR
530 MER121B DNA hAT?
531 Eulor12 DNA? DNA?
532 UCON69 DNA hAT?
533 MER34C2 LTR ERV1
534 Eulor2A DNA? DNA?
535 UCON39 DNA TcMar-Tigger
536 Charlie10a DNA hAT-Charlie
537 UCON86 LINE L2
538 UCON21 DNA? DNA?
539 Eulor7 DNA? DNA?
540 MER68C LTR ERVL
541 MER92D LTR ERV1
542 Eulor3 DNA? DNA?
543 Ricksha a DNA MULE-MuDR
544 HERV1 LTRe LTR ERV1
545 Eulor5A DNA? DNA?
546 UCON51 LTR? LTR?
547 Eulor2C DNA? DNA?
548 MLT1E-int LTR ERVL-MaLR
549 MLT1E LTR ERVL-MaLR
550 LTR109A2 LTR ERV1
551 Eulor11 DNA DNA
552 MER68B LTR ERVL
553 MER125 DNA DNA
554 MLT1E1 LTR ERVL-MaLR
555 UCON83 SINE? SINE?
556 MER58A DNA hAT-Charlie
557 UCON80 DNA hAT?
558 MER58D DNA hAT-Charlie
559 LTR60 LTR ERV1
560 Eulor6D DNA? DNA?
561 MER133B DNA? DNA?
562 MER74B LTR ERVL
563 MamRep1161 DNA TcMar-Tigger
564 L1M3 LINE L1
565 CR1-11 Crp LINE CR1
566 Eulor9B DNA DNA
567 LTR81AB LTR Gypsy
568 MER126 DNA DNA
569 L1MC LINE L1
570 MER70C LTR ERVL
571 LTR70 LTR ERV1
572 HERV-Fc2 LTR LTR ERV1
573 L2-3 AMi LINE L2
574 L1M2a LINE L1
575 UCON97 DNA DNA
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576 HERV-Fc1 LTR2 LTR ERV1
577 L1MB3 LINE L1
578 PRIMAX-int LTR ERV1
579 MLT1E1-int LTR ERVL-MaLR
580 CRP1 SINE? tRNA
581 UCON79 DNA? DNA?
582 MER76 LTR ERVL
583 AluYh9 SINE Alu
584 MER130 DNA DNA
585 MER121 DNA hAT?
586 Eulor9C DNA DNA
587 L1M2 LINE L1
588 UCON23 DNA hAT-Tip100?
589 Eulor1 DNA DNA
590 MER92C LTR ERV1
591 Eulor8 DNA TcMar?
592 UCON8 DNA DNA
593 MER92B LTR ERV1
594 L1MC1 LINE L1
595 MER113A DNA hAT-Charlie
596 UCON100 DNA? DNA?
597 MER67C LTR ERV1
598 L1M3d LINE L1
599 MER77B LTR ERVL
600 L1MA10 LINE L1
601 UCON78 DNA DNA
602 MER74A LTR ERVL
603 Eulor6B DNA? DNA?
604 MER77 LTR ERVL
605 L1MB1 LINE L1
606 L1MB4 LINE L1
607 L1MC2 LINE L1
608 LTR53 LTR ERVL
609 LTR40b LTR ERVL
610 MLT1E3 LTR ERVL-MaLR
611 L1MB5 LINE L1
612 LTR52-int LTR ERVL
613 MLT2C1 LTR ERVL
614 HERVFH21-int LTR ERV1
615 LTR23-int LTR ERV1
616 MLT1E2 LTR ERVL-MaLR
617 UCON2 DNA? DNA?
618 HERV-Fc1 LTR1 LTR ERV1
619 MLT1E1A LTR ERVL-MaLR
620 LTR41C LTR ERVL
621 LTR21C LTR ERVL
622 Charlie12 DNA hAT-Charlie
623 LTR40a LTR ERVL
624 L1M4a2 LINE L1
625 MLT1F-int LTR ERVL-MaLR
626 MLT1A0-int LTR ERVL-MaLR
627 LTR52 LTR ERVL
628 LTR41B LTR ERVL
629 MLT1F2 LTR ERVL-MaLR
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630 Chompy-7 Croc DNA PIF-Harbinger
631 MER45R DNA hAT-Tip100
632 Eulor5B DNA? DNA?
633 Eulor6E DNA? DNA?
634 MER63A DNA hAT-Blackjack
635 MER136 DNA DNA
636 L1MB8 LINE L1
637 MER58C DNA hAT-Charlie
638 L1MB7 LINE L1
639 LTR16B2 LTR ERVL
640 MER96B DNA hAT-Tip100
641 ORSL DNA hAT-Tip100
642 CR1-13 AMi LINE CR1
643 Tigger9b DNA TcMar-Tigger
644 MER3 DNA hAT-Charlie
645 MLT1G-int LTR ERVL-MaLR
646 MER58B DNA hAT-Charlie
647 L1MD LINE L1
648 MER90a LTR ERV1
649 MLT1G LTR ERVL-MaLR
650 MLT1F1-int LTR ERVL-MaLR
651 MER45B DNA hAT-Tip100
652 LTR37A LTR ERV1
653 MLT1F1 LTR ERVL-MaLR
654 MER92A LTR ERV1
655 LTR80B LTR ERVL
656 L1MC3 LINE L1
657 LTR68 LTR ERV1
658 L1P4b LINE L1
659 Tigger6a DNA TcMar-Tigger
660 LTR41 LTR ERVL
661 LTR65 LTR ERV1
662 MLT-int LTR ERVL-MaLR
663 MLT1F LTR ERVL-MaLR
664 UCON55 DNA TcMar-Tigger
665 MER90 LTR ERV1
666 MLT1-int LTR ERVL-MaLR
667 L1MD2 LINE L1
668 MER63B DNA hAT-Blackjack
669 MER110A LTR ERV1
670 MER63D DNA hAT-Blackjack
671 LTR16B LTR ERVL
672 LTR40c LTR ERVL
673 MLT1G1-int LTR ERVL-MaLR
674 MER135 DNA DNA
675 Charlie10b DNA hAT-Charlie
676 MLT1G1 LTR ERVL-MaLR
677 MER97d DNA hAT-Tip100
678 MER119 DNA hAT-Charlie
679 L1MD3 LINE L1
680 MER89-int LTR ERV1
681 Charlie1 DNA hAT-Charlie
682 Charlie10 DNA hAT-Charlie
683 L1M2a1 LINE L1
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684 Charlie1a DNA hAT-Charlie
685 MER33 DNA hAT-Charlie
686 MLT1E3-int LTR ERVL-MaLR
687 MER63C DNA hAT-Blackjack
688 MER5A1 DNA hAT-Charlie
689 MLT1H1-int LTR ERVL-MaLR
690 LTR83 LTR ERVL
691 MER5A DNA hAT-Charlie
692 LTR37B LTR ERV1
693 MER105 DNA hAT-Charlie
694 LTR86C LTR ERVL
695 LTR33C LTR ERVL
696 L1M4c LINE L1
697 MLT2F LTR ERVL
698 LTR16B1 LTR ERVL
699 LTR80A LTR ERVL
700 ERV3-16A3 LTR LTR ERVL
701 MER94 DNA hAT-Blackjack
702 Charlie1b DNA hAT-Charlie
703 LTR16A LTR ERVL
704 LTR107 Mam LTR LTR
705 LTR33A LTR ERVL
706 L1PA15-16 LINE L1
707 Tigger6b DNA TcMar-Tigger
708 L1M4 LINE L1
709 L1MC4a LINE L1
710 MLT1H1 LTR ERVL-MaLR
711 Tigger17 DNA TcMar-Tigger
712 Arthur1C DNA hAT-Tip100
713 MLT1G3-int LTR ERVL-MaLR
714 LTR16 LTR ERVL
715 LTR90B LTR LTR
716 LTR16D LTR ERVL
717 MER99 DNA hAT?
718 MLT1H LTR ERVL-MaLR
719 L1MD1 LINE L1
720 MLT1G3 LTR ERVL-MaLR
721 MLT1J1-int LTR ERVL-MaLR
722 L1M4a1 LINE L1
723 MER104 DNA TcMar-Tc2
724 Charlie17a DNA hAT-Charlie
725 MLT1K-int LTR ERVL-MaLR
726 MLT1D-int LTR ERVL-MaLR
727 Zaphod3 DNA hAT-Tip100
728 MER97a DNA hAT-Tip100
729 L1ME1 LINE L1
730 L1ME2z LINE L1
731 LTR91 LTR ERVL
732 MLT1L-int LTR ERVL-MaLR
733 MERX DNA TcMar-Tigger
734 MER5B DNA hAT-Charlie
735 LTR16A1 LTR ERVL
736 DNA1 Mam DNA TcMar
737 MER5C DNA hAT-Charlie
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738 MLT1H2-int LTR ERVL-MaLR
739 LTR16E2 LTR ERVL
740 MamRep38 DNA hAT
741 Kanga1 DNA TcMar-Tc2
742 MER115 DNA hAT-Tip100
743 MLT1H2 LTR ERVL-MaLR
744 LTR16C LTR ERVL
745 Arthur1A DNA hAT-Tip100
746 MamRep488 DNA hAT-Tip100
747 X9 LINE LINE L1
748 LTR33 LTR ERVL
749 LTR16E1 LTR ERVL
750 LTR40A1 LTR ERVL
751 LTR33B LTR ERVL
752 L1M2b LINE L1
753 MER91A DNA hAT-Tip100
754 LTR67B LTR ERVL
755 LTR104 Mam LTR Gypsy
756 MER102c DNA hAT-Charlie
757 LTR87 LTR ERVL?
758 LTR16A2 LTR ERVL
759 Tigger19b DNA TcMar-Tigger
760 Arthur1B DNA hAT-Tip100
761 L1MEb LINE L1
762 Charlie4 DNA hAT-Charlie
763 Kanga1c DNA TcMar-Tc2
764 L2-3 Crp LINE L2
765 LTR82A LTR ERVL
766 Charlie4a DNA hAT-Charlie
767 Cheshire DNA hAT-Charlie
768 L1MC5 LINE L1
769 MLT1J-int LTR ERVL-MaLR
770 MLT1J LTR ERVL-MaLR
771 LTR85c LTR Gypsy?
772 HAL1M8 LINE L1
773 MLT2E LTR ERVL
774 LTR43-int LTR ERV1
775 L1M3a LINE L1
776 Charlie7a DNA hAT-Charlie
777 MLT1I-int LTR ERVL-MaLR
778 MER117 DNA hAT-Charlie
779 MLT1J2 LTR ERVL-MaLR
780 MLT1J1 LTR ERVL-MaLR
781 MLT1I LTR ERVL-MaLR
782 Looper DNA PiggyBac
783 Kanga1b DNA TcMar-Tc2
784 MER112 DNA hAT-Charlie
785 MER97b DNA hAT-Tip100
786 MamGypLTR1a LTR Gypsy
787 MamGypLTR1d LTR Gypsy
788 L1MC5a LINE L1
789 Kanga1a DNA TcMar-Tc2
790 MamRep1879 DNA hAT-Tip100?
791 LTR50 LTR ERVL
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792 OldhAT1 DNA hAT-Ac
793 MER45C DNA hAT-Tip100
794 LTR33A LTR ERVL
795 MER46C DNA TcMar-Tigger
796 Tigger19a DNA TcMar-Tigger
797 L2-1 AMi LINE L2
798 LTR102 Mam LTR ERVL
799 LFSINE Vert SINE tRNA
800 MIR SINE MIR
801 LTR46-int LTR ERV1
802 MER91B DNA hAT-Tip100
803 MER102b DNA hAT-Charlie
804 MER102a DNA hAT-Charlie
805 LTR106 Mam LTR LTR
806 MamRep137 DNA TcMar-Tigger
807 MamRep1527 LTR LTR
808 ERVL-int LTR ERVL
809 LTR16D2 LTR ERVL
810 MamGypLTR2c LTR Gypsy
811 HERVP71A-int LTR ERV1
812 L1M5 LINE L1
813 L1MCb LINE L1
814 LTR108d Mam LTR ERVL
815 L1MCa LINE L1
816 Charlie14a DNA hAT-Charlie
817 hAT-N1 Mam DNA hAT-Tip100?
818 L1M4b LINE L1
819 MamRep434 DNA TcMar-Tigger
820 L1MEc LINE L1
821 CR1 Mam LINE CR1
822 L1ME3 LINE L1
823 LTR86A2 LTR ERVL
824 MLT1J2-int LTR ERVL-MaLR
825 UCON74 DNA? DNA?
826 L1MDa LINE L1
827 L1ME2 LINE L1
828 LTR86B2 LTR ERVL
829 Zaphod DNA hAT-Tip100
830 L1MEg1 LINE L1
831 MER110 LTR ERV1
832 L1ME3A LINE L1
833 L1ME3G LINE L1
834 MLT1L LTR ERVL-MaLR
835 Charlie17 DNA hAT-Charlie
836 Charlie16a DNA hAT-Charlie
837 L1ME5 LINE L1
838 Charlie6 DNA hAT-Charlie
839 Kanga1d DNA TcMar-Tc2
840 LTR101 Mam LTR ERVL
841 Charlie24 DNA hAT-Charlie
842 MamGypLTR1b LTR Gypsy
843 Tigger9a DNA TcMar-Tigger
844 MLT1N2 LTR ERVL-MaLR
845 Charlie4z DNA hAT-Charlie
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846 Chap1 Mam DNA hAT-Charlie
847 LTR86A1 LTR ERVL
848 MER113 DNA hAT-Charlie
849 MamTip1 DNA hAT-Tip100
850 MIRb SINE MIR
851 MER91C DNA hAT-Tip100
852 MLT1E2-int LTR ERVL-MaLR
853 LTR84a LTR ERVL
854 LTR86B1 LTR ERVL
855 L1ME4b LINE L1
856 LTR84b LTR ERVL
857 Tigger16a DNA TcMar-Tigger
858 ORSL-2a DNA hAT-Tip100
859 MamRep4096 DNA hAT-Tip100
860 L1MC4 LINE L1
861 Plat L3 LINE CR1
862 BLACKJACK DNA hAT-Blackjack
863 MIR1 Amn SINE MIR
864 LTR90A LTR LTR
865 Charlie18a DNA hAT-Charlie
866 LTR88c LTR Gypsy?
867 MLT1C-int LTR ERVL-MaLR
868 LTR79 LTR ERVL
869 LTR53-int LTR ERVL
870 L2a LINE L2
871 Charlie2a DNA hAT-Charlie
872 L1M7 LINE L1
873 Kanga11a DNA TcMar-Tc2
874 L1MEh LINE L1
875 L1MEg LINE L1
876 Charlie29a DNA hAT-Charlie
877 Kanga2 a DNA TcMar-Tc2
878 L1ME3F LINE L1
879 Tigger13a DNA TcMar-Tigger
880 L1ME3Cz LINE L1
881 L1ME4a LINE L1
882 LTR16D1 LTR ERVL
883 L1ME3D LINE L1
884 Tigger8 DNA TcMar-Tigger
885 MER103C DNA hAT-Charlie
886 MamTip3 DNA hAT-Tip100
887 ORSL-2b DNA hAT-Tip100
888 LTR105 Mam LTR ERVL
889 HAL1b LINE L1
890 Charlie19a DNA hAT-Charlie
891 AmnSINE2 SINE tRNA-Deu
892 X7B LINE LINE CR1
893 L2c LINE L2
894 LTR57-int LTR ERVL
895 L1ME3E LINE L1
896 Charlie11 DNA hAT-Charlie
897 LTR82B LTR ERVL
898 MER101-int LTR ERV1
899 X7C LINE LINE CR1
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900 L1P4c LINE L1
901 Tigger15a DNA TcMar-Tigger
902 LTR89 LTR ERVL?
903 MLT1M LTR ERVL-MaLR
904 L4 A Mam LINE RTE-X
905 L1ME3B LINE L1
906 L4 B Mam LINE RTE-X
907 MamGypLTR3 LTR Gypsy
908 Charlie22a DNA hAT-Charlie
909 X6A LINE LINE CR1
910 MLT1B-int LTR ERVL-MaLR
911 MamRTE1 LINE RTE-BovB
912 Tigger11a DNA TcMar-Tigger
913 MIRc SINE MIR
914 MLT1O LTR ERVL-MaLR
915 L1M8 LINE L1
916 Charlie17b DNA hAT-Charlie
917 LTR81A LTR Gypsy
918 Tigger20a DNA TcMar-Tigger
919 MER20B DNA hAT-Charlie
920 HERV17-int LTR ERV1
921 HERVL74-int LTR ERVL
922 Charlie9 DNA hAT-Charlie
923 Charlie20a DNA hAT-Charlie
924 MamGypsy2-LTR LTR Gypsy
925 LTR81B LTR Gypsy
926 LTR78 LTR ERV1
927 MER21-int LTR ERVL
928 FordPrefect a DNA hAT-Tip100
929 Mam R4 LINE Dong-R4
930 MIR3 SINE MIR
931 Charlie25 DNA hAT-Charlie
932 L5 LINE RTE-X
933 ERVL47-int LTR ERVL
934 L1M3b LINE L1
935 L1ME3C LINE L1
936 Tigger14a DNA TcMar-Tigger
937 CR1-3 Croc LINE CR1
938 L1MEi LINE L1
939 L3b LINE CR1
940 HERVK14C-int LTR ERVK
941 HERVK-int LTR ERVK
942 MamSINE1 SINE tRNA-RTE
943 Tigger18a DNA TcMar-Tigger
944 Charlie15b DNA hAT-Charlie
945 L1MCc LINE L1
946 MER129 LTR? LTR?
947 MER34B-int LTR ERV1
948 LTR85a LTR Gypsy?
949 MamTip2 DNA hAT-Tip100
950 L2b LINE L2
951 LTR103 Mam LTR ERV1?
952 FordPrefect DNA hAT-Tip100
953 Charlie26a DNA hAT-Charlie
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954 MER113B DNA hAT-Charlie
955 L1ME4c LINE L1
956 Tigger12 DNA TcMar-Tigger
957 L2 LINE L2
958 Tigger12A DNA TcMar-Tigger
959 CR1-L3A Croc LINE CR1
960 HAL1ME LINE L1
961 CR1-12 AMi LINE CR1
962 LTR78B LTR ERV1
963 L4 C Mam LINE RTE-X
964 Zaphod2 DNA hAT-Tip100
965 UCON132b DNA hAT-Tip100
966 L3 LINE CR1
967 Eulor9A DNA DNA
968 UCON99 DNA DNA
969 Charlie30a DNA hAT-Charlie
970 MamGypLTR1c LTR Gypsy
971 MamGyp-int LTR Gypsy
972 ERV24 Prim-int LTR ERV1
973 MER76-int LTR ERVL
974 Charlie7 DNA hAT-Charlie
975 Tigger1a Art DNA TcMar-Tigger
976 PABL B-int LTR ERV1
977 L1MDb LINE L1
978 MamGypLTR3a LTR Gypsy
979 Eulor6C DNA? DNA?
980 LTR88b LTR Gypsy?
981 MER83B-int LTR ERV1
982 MER41-int LTR ERV1
983 L1MEd LINE L1
984 HERVL40-int LTR ERVL
985 PRIMA41-int LTR ERV1
986 LTR85b LTR Gypsy?
987 LTR39-int LTR ERV1
988 HERVIP10F-int LTR ERV1
989 MER110-int LTR ERV1
990 HERVL-int LTR ERVL
991 L1MEg2 LINE L1
992 LTR103b Mam LTR ERV1?
993 Charlie5 DNA hAT-Charlie
994 Charlie13b DNA hAT-Charlie
995 X7A LINE LINE CR1
996 MER4B-int LTR ERV1
997 ERVL-E-int LTR ERVL
998 CR1-8 Crp LINE CR1
999 Charlie21a DNA hAT-Charlie
1000 L1M6B LINE L1
1001 MER70-int LTR ERVL
1002 HERV35I-int LTR ERV1
1003 ERVL-B4-int LTR ERVL
1004 MER61-int LTR ERV1
1005 Tigger12c DNA TcMar-Tigger
1006 Charlie23a DNA hAT-Charlie
1007 HERVS71-int LTR ERV1
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1008 ERV3-16A3 I-int LTR ERVL
1009 MER124 DNA? DNA?
1010 ERV24B Prim-int LTR ERV1
1011 Harlequin-int LTR ERV1
1012 MER31-int LTR ERV1
1013 MER57A-int LTR ERV1
1014 MER34-int LTR ERV1
1015 Tigger10 DNA TcMar-Tigger
1016 HERVK14-int LTR ERVK
1017 MLT1H-int LTR ERVL-MaLR
1018 PRIMA4-int LTR ERV1
1019 HERVK11-int LTR ERVK
1020 HERVE-int LTR ERV1
1021 LTR49-int LTR ERV1
1022 MER51-int LTR ERV1
1023 MamGypsy2-I LTR Gypsy
1024 MamGypLTR2b LTR Gypsy
1025 MARNA DNA TcMar-Mariner
1026 MLT1A-int LTR ERVL-MaLR
1027 HAL1 LINE L1
1028 MER52-int LTR ERV1
1029 MER84-int LTR ERV1
1030 LTR88a LTR Gypsy?
1031 HERVK9-int LTR ERVK
1032 HUERS-P2-int LTR ERV1
1033 HUERS-P1-int LTR ERV1
1034 PABL A-int LTR ERV1
1035 HERVK3-int LTR ERVK
1036 MER92-int LTR ERV1
1037 HERV3-int LTR ERV1
1038 MLT1O-int LTR ERVL-MaLR
1039 MER57-int LTR ERV1
1040 LTR81C LTR Gypsy
1041 MamRep1151 LTR? LTR?
1042 L1MEf LINE L1
1043 MLT1K LTR ERVL-MaLR
1044 HERVK13-int LTR ERVK
1045 HERV16-int LTR ERVL
1046 L1M6 LINE L1
1047 MSTA-int LTR ERVL-MaLR
1048 MamRep605 LTR? LTR?
1049 MER4-int LTR ERV1
1050 Charlie13a DNA hAT-Charlie
1051 LOR1-int LTR ERV1
1052 HERV4 I-int LTR ERV1
1053 MER97c DNA hAT-Tip100
1054 LTR81 LTR Gypsy
1055 Charlie8 DNA hAT-Charlie
1056 UCON33 DNA TcMar-Tigger
1057 LTR37-int LTR ERV1
1058 Ricksha 0 DNA MULE-MuDR
1059 HUERS-P3-int LTR ERV1
1060 MLT1F2-int LTR ERVL-MaLR
1061 LTR38-int LTR ERV1
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1062 Arthur1 DNA hAT-Tip100
1063 L1MEa LINE L1
1064 L1P4e LINE L1
1065 MER66-int LTR ERV1
1066 MER83A-int LTR ERV1
1067 Charlie2b DNA hAT-Charlie
1068 Tigger16b DNA TcMar-Tigger
1069 LTR19-int LTR ERV1
1070 HERVL32-int LTR ERVL
1071 LTR25-int LTR ERV1
1072 MER65-int LTR ERV1
1073 MER50-int LTR ERV1
1074 HERVL66-int LTR ERVL
1075 HUERS-P3b-int LTR ERV1
1076 L1MEj LINE L1
1077 HERVH-int LTR ERV1
1078 HERV30-int LTR ERV1
1079 L1M3de LINE L1
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