Interruptional Activity and Simulation of Transposable Elements

A Thesis Submitted to the College of Graduate and Postdoctoral Studies in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in the Department of Computer Science University of Saskatchewan Saskatoon
By
Lingling Jin

© Lingling Jin, August 2017. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to:

Head of the Department of Computer Science
176 Thorvaldson Building
110 Science Place
University of Saskatchewan
Saskatoon, Saskatchewan
Canada
S7N 5C9

Abstract

Transposable elements (TEs) are interspersed DNA sequences that can move or copy to new positions within a genome. The active TEs along with the remnants of many transposition events over millions of years constitute 46.69% of the human genome. TEs are believed to promote speciation and their activities play a significant role in human disease. The 22 Alu Y and 6 AluS TE subfamilies have been the most active TEs in recent human history, whose transposition has been implicated in several inherited human diseases and in various forms of cancer by integrating into genes. Therefore, understanding the transposition activities is very important.

Recently, there has been some work done to quantify the activity levels of active Alu transposable elements based on variation in the sequence. Here, given this activity data, an analysis of TE activity based on the position of mutations is conducted. Two different methods/simulations are created to computationally predict so-called harmful mutation regions in the consensus sequence of a TE; that is, mutations that occur in these regions decrease the transposition activities dramatically. The methods are applied to Alu Y, the youngest and most active Alu subfamily, to identify the harmful regions laying in its consensus, and verifications are presented using the activity of AluY elements and the secondary structure of the AluYa5 RNA, providing evidence that the method is successfully identifying harmful mutation regions. A supplementary simulation also shows that the identified harmful regions covering the AluYa5 RNA functional regions are not occurring by chance. Therefore, mutations within the harmful regions alter the mobile activity levels of active Alu Y elements. One of the methods is then applied to two additional TE families: the Alu family and $L 1$ family, in detecting the harmful regions in these elements computationally.

Understanding and predicting the evolution of these TEs is of interest in understanding their powerful evolutionary force in shaping their host genomes. In this thesis, a formal model of TE fragments and their interruptions is devised that provides definitions that are compatible with biological nomenclature, while still providing a suitable formal foundation for computational analysis. Essentially, this model is used for fixing terminology that was misleading in the literature, and it helps to describe further TE problems in a precise way. Indeed, later chapters include two other models built on top of this model: the sequential interruption model and the recursive interruption model, both used to analyze their activity throughout evolution.

The sequential interruption model is defined between TEs that occur in a genomic sequence to estimate how often TEs interrupt other TEs, which has been shown to be useful in predicting their ages and their activity throughout evolution. Here, this prediction from the sequential interruptions is shown to be closely related to a classic matrix optimization problem: the Linear Ordering Problem (LOP). By applying a well-studied method of solving the LOP, Tabu search, to the sequential interruption model, a relative age order of all

TEs in the human genome is predicted from a single genome. A comparison of the TE ordering between Tabu search and the method used in [47] shows that Tabu search solves the TE problem exceedingly more efficiently, while it still achieves a more accurate result. As a result of the improved efficiency, a prediction on all human TEs is constructed, whereas it was previously only predicted for a minority fraction of the set of the human TEs.

When many insertions occurred throughout the evolution of a genomic sequence, the interruptions nest in a recursive pattern. The nested TEs are very helpful in revealing the age of the TEs, but cannot be fully represented by the sequential interruption model. In the recursive interruption model, a specific contextfree grammar is defined, describing a general and simple way to capture the recursive nature in which TEs nest themselves into other TEs. Then, each production of the context-free grammar is associated with a probability to convert the context-free grammar into a stochastic context-free grammar that maximizes the applications of the productions corresponding to TE interruptions. A modified version of an algorithm to parse context-free grammars, the CYK algorithm, that takes into account these probabilities is then used to find the most likely parse tree(s) predicting the TE nesting in an efficient fashion.

The recursive interruption model produces small parse trees representing local TE interruptions in a genome. These parse trees are a natural way of grouping TE fragments in a genomic sequence together to form interruptions. Next, some tree adjustment operations are given to simplify these parse trees and obtain more standard evolutionary trees. Then an overall TE-interaction network is created by merging these standard evolutionary trees into a weighted directed graph. This TE-interaction network is a rich representation of the predicted interactions between all TEs throughout evolution and is a powerful tool to predict the insertion evolution of these TEs. It is applied to the human genome, but can be easily applied to other genomes. Furthermore, it can also be applied to multiple related genomes where common TEs exist in order to study the interactions between TEs and the genomes.

Lastly, a simulation of TE transpositions throughout evolution is developed. This is especially helpful in understanding the dynamics of how TEs evolve and impact their host genomes. Also, it is used as a verification technique for the previous theoretical models in the thesis. By feeding the simulated TE remnants and activity data into the theoretical models, a relative age order is predicted using the sequential interruption model, and a quantified correlation between this predicted order and the input age order in the simulation can be calculated. Then, a TE-interaction network is constructed using the recursive interruption model on the simulated data, which can also be converted into a linear age order by feeding the adjacency matrix of the network to Tabu search. Another correlation is calculated between the predicted age order from the recursive interruption model and the input age order. An average correlation of ten simulations is calculated for each model, which suggests that in general, the recursive interruption model performs better than the sequential interruption model in predicting a correct relative age order of TEs. Indeed, the recursive interruption model achieves an average correlation value of $\rho=0.939$ with the correct simulated answer.

Acknowledgements

First and foremost, I would like to express my sincere gratitude to Dr. Ian McQuillan, my Master's and Ph.D. supervisor, for his incredible amount of guidance and support in overcoming numerous difficulties that I have faced through my research.

Special thanks to Dr. Longhai Li, my cognate committee member, who has provided me with lots of ideas and guidance on statistical aspects of my thesis.

I am also grateful to the other members of my advisory committee: Dr. Tony Kusalik, Dr. Mark Keil, and Dr. Michael Domaratzki for their invaluable suggestions and comments.

I want to acknowledge my colleagues in the Bioinformatics lab and my friends for their friendship and helpful discussions.

I am grateful to my husband, Shi, and my children, April and Avery, for being the love and happiness of my life. Very special thanks goes to my husband for helping me with the implementation and graphic design in the thesis.

Last but not the least, I would like to acknowledge my parents, Xin and Zhimei, and my parents-in-law, Zhendong and Shuping. Thank you for all your love and support.

Contents

Permission to Use i
Abstract ii
Acknowledgements iv
Contents v
List of Tables vii
List of Figures viii
List of Abbreviations x
1 Introduction and objectives 1
1.1 Motivations 1
1.1.1 The impact of TEs on genomes 2
1.1.2 Transposable elements causing human diseases 3
1.1.3 Perspective 5
1.2 Objectives and layout of the thesis 5
2 Background 8
2.1 Biological background 10
2.1.1 Classification of transposable elements 10
2.1.2 Structural features of TE sequences 12
2.2 Bioinformatics background 19
2.2.1 Sequence alignment 19
2.2.2 Repbase Update - the database of repetitive sequences 20
2.2.3 TE discovery tools 20
2.3 Previous studies on TE phylogeny and evolution 25
2.3.1 TE phylogeny based on sequence divergence 25
2.3.2 TE phylogeny based on interruptional analysis 26
2.3.3 Perspective 29
3 Computational identification of harmful regions 30
3.1 Abstract 30
3.2 Introduction and motivation 31
3.3 Materials and notations 33
3.3.1 Materials 33
3.3.2 Notations 34
3.4 Method I: correlation analysis 37
3.4.1 Pearson's coefficient of correlation and multiple test correction 37
3.4.2 Statistical significance tests and results 38
3.4.3 Verifications 42
3.5 Method II: group comparison analysis 46
3.5.1 Statistical significance tests and results 48
3.5.2 Verifications 52
3.6 Additional case studies 54
3.6.1 The Alu family 54
3.6.2 The $L 1$ family 57
3.6.3 Perspective 60
3.7 Conclusion 60
4 The TE fragment model 62
4.1 Model definition 62
4.2 Discussion 69
5 The sequential interruption model 71
5.1 Model of sequential interruptions 72
5.2 The method of estimating TE ages from [47] 77
5.3 Linear ordering problem for sequential interruptions analysis 79
5.3.1 Preliminaries 79
5.3.2 Linear Ordering Problem 80
5.3.3 Tabu search and results 84
5.4 Conclusion 86
6 The recursive interruption model 88
6.1 Introduction. 88
6.2 Preliminaries on formal language theory 90
6.3 Context-free grammar to generate recursive interruptions 92
6.4 Stochastic CYK algorithm for finding a most likely parse tree 94
6.5 Improvements taking into account positional information between TE fragments 96
6.6 Adjustments to the parse trees 100
6.7 Construction of the TE-interaction network 104
6.8 The TE-interaction network of the human genome 117
6.9 Discussion 117
7 Simulation of TE transpositions through evolution 119
7.1 Introduction 119
7.2 Background 120
7.3 Methodology 123
7.4 Results. 130
7.5 Conclusion and discussion 140
8 Conclusion and future work 142
8.1 Conclusion 142
8.2 Future work 144
References 146
A The TE ordering in the human genome predicted from the sequential interruption model by applying Tabu search on interruption matrix 155
B The TE ordering in the human genome predicted from the recursive interruption model by applying Tabu search on the adjacency matrix of the TE-interaction network 175

List of TABLES

1.1 Human diseases caused by TE insertions. 4
2.1 A summary of the percentage of TE content in the human genome. 13
2.2 Overview of different classes of transposable elements (reflecting the classification in Figure 2.4) in the human genome. 14
2.3 A summary of currently recognizable DNA transposons in the human genome. 16
2.4 An example of a tabular summary of RepeatMasker. 21
3.1 Simulated and observed correlations between mutations and mobile activities. 40
3.2 The harmful mutation regions in AluY elements. 42
3.3 The percentage of mutations. 43
3.4 Comparison types of the group comparison analysis. 47
3.5 The matrix of observed and simulated ratios in each window. 49
3.6 Identified harmful windows with $\lambda=0.05$. 51
3.7 Identified harmful regions with the start and end positions of each region. 51
3.8 The percentage of mutations grouped by bins. 52
3.9 The harmful mutation regions in Alu elements. 56
3.10 Comparison between the harmful mutation regions in $A l u Y$ and Alu elements. 57
3.11 The harmful mutation regions in $L 1$ elements. 59
4.1 A table of two TE fragments on the human chromosome 1. 65
4.2 A summary of the total number of TE fragments in the human genome. 67
4.3 A table of six TE fragments on the human chromosome 1. 68
5.1 An example of an interruption. 73
5.2 An example of distances between three TE fragments 74
5.3 A summary of the total number of sequential interruptions detected in the human genome. 75
5.4 An example of sequential interruptions on chromosome 1. 76
5.5 The outlier TEs in Figure 5.3 87
6.1 An example of recursive interruptions on the X chromosome. 88
6.2 A summary of the order-pruned sequences of the transposon regions on the Y chromosome. 98
6.3 A summary of the order-pruned sequence in the human genome. 99
6.4 An example of three atomic patterns of interruptions. 101
6.5 List of TE names along with known information. 107
6.6 The order-pruned sequences only containing χ_{s}. 108
6.7 The age order of TEs in the TE-interaction network in Figure 66.13| 112
6.8 Comparison between the age orders of TEs in Figure 6.13] 113
6.9 List of TE names along with their information. 115
7.1 Parameters of the simulation 124
7.2 The input age order, activation time, deactivation time and lifespans of TEs in the simulation. 130
7.3 The relative age order calculated by Tabu search from IM. 133
7.4 The indegree and outdegree of each node in the network. 137
7.5 The relative age order calculated by Tabu search from AM. 138
7.6 Correlations calculated from ten simulations. 140

List of Figures

2.1 Repeated DNA sequences in eukaryotic genomes, adapted from [119. Transposons are marked in red. 8
2.2 The proportions of TEs in several genomes. 9
2.3 Conceptual diagrams representing the transposition mechanisms. 10
2.4 The classification of transposable elements can be represented as a tree. 11
2.5 Structural features of the DNA transposons. 15
2.6 Structural features of the LTR retrotransposons. 17
2.7 Structural features of the LTR retrotransposons. 18
2.8 The resultant relative age order of 360 TEs calculated in [47, where the numbers on the left axis represent positions in the age order. 28
3.1 Structure of Alu elements. 31
3.2 The plot of the 52 Alu Y elements from 12 34
3.3 The heat map of the number of mutations of AluY elements. 36
3.4 The Pearson's coefficients of correlation of AluY elements. 38
3.5 The flow chart of the algorithm in Section 3.4.2 39
3.6 The distribution of correlations. 41
3.7 The p-values and q-values of the AluY elements. 42
3.8 The secondary structure of an AluYa5 RNA. 44
3.9 The distribution of coverage. 46
3.10 Observed ratios R_{i} of the six comparison types in Table 3.4 48
3.11 The empirical distribution of simulated ratios of the window w_{20}. 50
3.12 The secondary structure of an AluY RNA. 53
3.13 The distribution of the coverage of random generated regions. 54
3.14 The heat map of the number of mutations of the Alu elements. 55
3.15 The Pearson's coefficients of correlation of the Alu elements. 55
3.16 The p-values and q-values of the Alu elements. 56
3.17 The Pearson's coefficients of correlation of the $L 1$ elements. 58
3.18 The p-values and q-values of the $L 1$ elements. 60
4.1 A conceptual visualization of TE fragments. 66
4.2 A conceptual visualization of a genomic sequence. 69
5.1 A conceptual visualization of a genomic sequence. 77
5.2 A conceptual diagram of the permuted interruptional matrix. 82
5.3 A comparison between two orderings. 86
6.1 A conceptual visualization of a genomic sequence. 89
6.2 A parse tree showing the derivation of 01010. 91
6.3 A diagram showing an insertion. 92
6.4 A parse tree of G from Definition 21 that yields \bar{s}_{0}. 93
6.5 The most likely parse tree of G from Definition 21 that yields \bar{s}_{o}. 96
6.6 A conceptual visualization of a genomic sequence. 97
6.7 The two most-likely trees of the same order-pruned sequence. 100
6.8 The corresponding parse trees in Table 6.4. 102
6.9 An example of condensing a tree. 103
6.10 An example of converting a parse tree to an evolutionary tree 104
6.11 An example of converting an interruption tree to an evolutionary tree. 104
6.12 Another example of converting an interruption tree to an evolutionary tree. 105
6.13 The directed graph generated by merging the interruption trees. 109
6.14 The directed graph generated by merging the interruption trees. 116
7.1 A workflow of simulated data verifying the theoretical models in previous chapters. 132
7.2 A comparison between the input age order and the predicted age order calculated by Tabu search from the simulated IM. 134
7.3 The TE-interaction network calculated from the recursive interruption model on the simulated data. 135

7.4	A comparison between the input age order and the predicted age order calculated by Tabu
search from AM.	. 139

List of Abbreviations

TE	Transposable Elements
bp	base pairs
Kbp	Kilobase pairs
Mbp	Megabase pairs
RU	Repbase Update
RM	RepeatMasker
Myr	Million years
MYA	Million Years Ago
LINE	Long Interspersed Nuclear Elements
SINE	Short Interspersed Nuclear Elements
LTR	Long Terminal Repeat
TIR	Terminal Inverted Repeat
TSD	Target Site Duplication
ORF	Open Reading Frame
IM	Interruption Matrix
LOP	Linear Ordering Problem
CFG	Context-free Grammar
SCFG	Stochastic Context-free Grammar
AM	Adjacency Matrix

Chapter 1

Introduction and objectives

Transposable elements were first discovered by Barbara McClintock in the 1950s during her studies of maize, work for which McClintock received the Nobel Prize in Physiology or Medicine in 1983. The patterns of colour in maize kernels changed in different breeding crosses, which was interpreted in her study as a result of the regulation of gene activity by some mobile genetic elements. These elements can move from place to place within/between the chromosomes. As the elements move, they mutate genes in some of the cells and change the colour of maize kernels due to their effects on pigmentation genes [14]. These mobile genetic elements are named transposable elements (TEs), or transposons.

Transposable elements were dismissed at one point as being useless, but they are emerging to be thought of as major players in evolution. Indeed, the impact of TEs on genome evolution appears to be extensive and they are even believed to promote speciation [42] and can therefore be seen as a driver of evolution. The evolutionary history of a TE family in a species may represent a plentiful source of information about genome evolution. Additionally, more and more evidence is emerging that active TEs play a significant role in human biology and disease as they create genetic diversity in human populations and can integrate into genes, potentially causing disease. However, little analysis is currently being undertaken in determining what factors influence their activity, what occurred throughout evolution, and in understanding how TEs change over time.

1.1 Motivations

In this section, the motivations of the thesis will be discussed from the impacts of TEs on genomes as well as some cases of human diseases caused by TE retrotranspositions.

1.1.1 The impact of TEs on genomes

Though the number of genes in a genome grows from bacteria to higher organisms, it is the repeats, especially TEs, that account for the major differences in genome size within species, and even between closely related species [14]; that is, genome size is not correlated with the complexity of the organism [143]. Retrotransposons are major players in promoting the increase of genome size. It has been shown using genomic studies of ancient human remains that the human genome is continuing to expand at a rate between 1 and 10 million base pairs per million years, and this expansion is heavily influenced by retrotransposition, the transposition of retrotransposons [71. For example, there are $\sim 2,000 \mathrm{~L} 1$ and $\sim 7,000$ Alu copies accumulated over the past $\sim 6 \mathrm{Myr}$ of human evolution 127. Not only in humans, TEs influence plant genome sizes significantly as well. The sizes of plant genomes span across many orders of magnitude ranging from about 63 Mbp of the Genlisea genome [51] to more than $110,000 \mathrm{Mbp}$ of the lily Fritillaria assyriaca [4], which is primarily the consequence of polyploidization and TE proliferation [27]. Moreover, studies of maize 122 and the rice Oryza australiensis [116] show that LTR retrotransposition doubled the genome size in the two species independently.

TEs also impact host genomes by generating genomic instability due to their continuous activity over years. The major way that a retrotransposon alters genome function is by inserting itself into protein-coding or regulatory regions. There are a number of examples of genetic disorders that are caused by the expansion of microsatellites [65, 26, 28], and non-LTR retrotransposons are the source of microsatellites. For example, it is known that about 20% of all microsatellites shared by the human and chimpanzee genomes lie within Alu elements 72.

Retrotransposons can generate genomic rearrangements as well, such as deletions, duplications, inversions, or translocations. It was observed in cultured human cells that $\sim 20 \%$ of $L 1$ insertions were related with structural rearrangements [30, including insertion-mediated deletions; that is, concurrent deletions at the insertion site. It has been estimated that during primate evolution, about 45,000 insertion-mediated deletions might have removed over 30 Mbp of genomic sequence [29].

Moreover, transposons can mediate the formation of a new gene family [106] or impact gene expression. TEs may influence the expression of surrounding genes often due to a regulatory promoter \square^{1} and terminator ${ }^{2}$ sequence occuring in LTRs [101]. Thus, TEs can be used as tools in genetic research to either open or terminate the expression of nearby genes.

Last but not least, TEs are of interest for their own sake as they have been a powerful evolutionary force in shaping genomes. The ubiquity of TEs raises a number of questions about the relationships between TEs

[^0]and their host genomes and the significance of these elements on the evolution of their hosts. Knowledge of the location of TEs can also be helpful in the determination of the evolutionary history of a locus of a genome.

1.1.2 Transposable elements causing human diseases

TEs have co-existed with their host organisms for an exceptionally long period, during which their transposition activities have contributed to their host genomes in both positive and negative ways. Transposition of currently active elements as well as recombination involving repetitive sequences can be responsible for genetic diseases, and there is a growing understanding of the specific negative impacts of TEs in human disease. Generally, the TE-associated insertional mutagenesis and recombination may cause DNA damage and contribute to human diseases. In this subsection, some examples of human diseases caused by TE activities will be described.

Retrotransposition events occur in both the germline and somatic tissues 30. The transposition of TEs has been implicated in processes ranging from cancer to brain development. The brain has one of the highest average frequencies of transposable element activity of all tissues in the human body [86]. In very recent research on Alzheimer's disease, a molecular mechanism of the Alzheimer's process was proposed to be caused by Alu elements losing their normal controls as a person ages, wreaking havoc on the machinery that supplies energy to brain cells and leading to a loss of neurons and dementia [86]. The authors hypothesize that through human-specific neurologic pathways, Alu insertions in mitochondrial genes can cause progressive neurological disfunction, which may underlie the origin of higher cognitive function 86. Therefore, retrotransposons have played an important role in primate evolution.

Human TEs have been reported to cause several types of cancer, such as breast cancer, colon cancer, retinoblastoma, neurofibromatosis, hepatoma, etc., through insertional mutagenesis of genes that are important to malignant transformation [10]. For example, the most up-to-date research in [126] has shown that a hot $L 1$ (defined as showing at least one-third of the activity of $L 1_{R P}$ in [17]) source TE on Chromosome 17 of a patient's genome interrupted somatic repression in normal colon tissues, and initiated colorectal cancer by disrupting the APC tumor suppressor gene [103]. The fact that $L 1$ transpositions occur in human tumors suggests the possibility that somatic $L 1$ insertions may play a role as driver mutations during the stages of initiation, progression, and metastasis of tumors [126].

Non-LTR retrotransposons are deemed as the major source of TE-related mutagenesis in the human genome. There have been a number of cases shown to cause heritable diseases, as a result of human genetic disorders caused by de novo L1, Alu and SVA insertions, such as haemophilia, cystic fibrosis, Apert syndrome, neurofibromatosis, Duchenne muscular dystrophy, β-thalassaemia, and hypercholesterolaemia [30]. Table 1.1 .

TE insertion	Chromosome	Disease caused by TE insertion	Reported papers
Alu insertions	X	Hemophilia B	[34. 25]
	X	Hemophilia A	25]
	X	Dent's disease	25]
	X	X-linked agammaglobulinemia	25]
	X	X-linked severe combined immunodeficiency	34]
	X	Glycerol kinase deficiency	34]
	X	Adrenoleukodystrophy	25]
	X	Menkes disease	[52]
	X	Hyper-immunoglobulin M syndrome	[5]
	1	Retinal blinding	25]
	1	Type 1 antithrombin deficiency	25]
	2	Muckle-Wells syndrome	25]
	2	Hereditary non-polyposis colorectal cancer	25]
	3	Hypocalciuric hypercalcemia and hyperparathyroidism	34]
	3	Cholinesterase deficiency	34]
	3	Aplasia anterior pituitary	25
	5	Associated with leukemia	34]
	5	Hereditary desmoid disease	34]
	7	Chronic hemolytic anemia	95
	7	Cystic fibrosis	[24]
	8	Branchio-oto-renal syndrome	[25]
	8	Lipoprotein lipase deficiency	(110]
	8	CHARGE syndrome	[142]
	9	Walker Warburg syndrome	15]
	10	Autoimmune lymphoproliferative syndrome	[25]
	10	Apert syndrome	[34]
	11	Complement deficiency	[34]
	11	Acute intermittent porphyria	[25]
	12	Human-specific evolutionary change	[15]
	12	Mucolipidosis type II	
	13 and 17	Breast cancer	34]
	17	Neurofibromatosis	[34]
L1 insertions	X	Choroideremia	25]
	X	Chronic granulomatous disease	25]
	X	X-linked Duchenne muscular dystrophy	25. 111
	X	Hemophilia A	25]
	X	Hemophilia B	25]
	X	X -linked retinitus pigmentosa	25]
	X	Coffin-Lowry syndrome	25]
	5	Colon cancer	25]
	9	Fukuyama-type congenital muscular dystrophy	25]
	11	Beta-thalassemia	25]
	11	Pyruvate dehydrogenase complex deficiency	15]

Table 1.1: Human diseases caused by TE insertions.
adapted from [9, gives more details about some diseases caused by the insertions of $L 1$ and $A l u$, the active elements in humans.

1.1.3 Perspective

It is important to understand the patterns of the activities of TEs and the factors that may change their activities, because such TE activities can powerfully influence the structure of the genome, including the capacity of chromosomes to rearrange and to regulate transcription. And, as discussed above, they are often important in understanding human disease. Further, identifying repetitive DNA sequences in eukaryotic DNA is essential in genome analysis, because these repeats offer an opportunity to study molecular evolution as "molecular fossils" in evolutionary studies based on comparative analysis of genomes from different species. It is amazing how much regarding evolution can be inferred from a single genome sequence, as most evolutionary analysis require sequences from multiple genomes. This might be useful in situations where TEs change quickly and multiple genomes are not available. The dynamic of what causes TE families as a whole to evolve is also of interest.

1.2 Objectives and layout of the thesis

The research of this thesis will be conducted only on data regarding human TEs. We intend to contribute to the understanding of how the TE propagation through evolution shapes the genome, how the age and lifespan of TEs can be predicted from a single genome, and a determination of certain factors that affect the activities of active TEs that may cause human disease. The major work of the thesis will be composed of four major goals with their corresponding chapters:

Goal 1 Create a model that describes TEs and remnants of TEs formally (Chapter 4).

After an extensive literature survey on transposable elements, we found that there did not exist a standard model that describes/defines the topic in a clear and consistent way. For example, the use of many terms are frequently ambiguous, such as a transposable element, a subfamily of a transposon, a clade of transposons, a group of transposable element fragments, etc. Moreover, some computational approaches regarding TEs were described in a prose-like language, without any formal algorithms, which brought in different ambiguities when reproducing the method. Therefore, our first goal is to create a formal model that consists of an initial definition of TEs, TE fragments, and interruptions between TEs, etc. This model does not attempt to capture the molecular operations of TE movement, but only describes the order and distance between TE fragments in genomic sequences by grouping homologous TEs together. It is a high-level abstraction defining TEs and their positional relationships, which serves
as a baseline in describing our other formal models.

Goal 2 Understand the factors that affect the activities of active TEs, and understand how activity is affected (Chapter 3).

The factors that change transpositional activities is largely a mystery, and it might be the result of a number of factors or combinations of them. Our goal is to understand what factors affect a transposon's activity level, and determine how they affect them. We will study "harmful mutation regions" in active TEs, where mutations within these regions will decrease the activities of the host element.

Goal 3 Predict the age, lifespan, and activity of TEs in the human genome from the remnants of these elements from a genome. In order to make this prediction, two formal models are created in Chapters 5 and 6 that describe and can be used to analyze and predict the ages of TEs.

By analyzing TE remnants in genomic sequences, the knowledge of TE activities can be inferred. Then understanding how TEs interrupted within each other will reveal information regarding the age and lifespan of a transposon; that is, when TEs activated and deactivated through evolution. Then the dynamics of TE transpositions through evolution can be predicted. This goal can be achieved by two sub-goals as follows.

- Understand interruption activities between TEs.

The interruptions are classified into two different types based on the fashion in which they nested. The formal model in Goal 1 is applied to these two models. The first application was the Sequential Interruption model, which captures the interruptions between pairs of TEs, and structures the abundance of these interruptions into a so-called interruption matrix. The second application was the Recursive Interruption model that describes the nested nature of the recursive interruptions with a context-free grammar. The parse trees of the grammar can illustrate the relationships of TE nesting using the structure of the trees.

- Predict an overall TE-interaction network.

Several of the small interruption trees can be combined together to form a weighted directed graph to illustrate all TE activity, which can also help in the understanding of TE evolution as a whole. Such a graph is created for all TEs in order and is used to predict the age order and lifespans of these TEs.

Goal 4 Understand the dynamics of TEs transpositions through evolution (Chapter 7).

Another goal of the thesis is to create a simulation that imitates the evolutionary history of the propagation of TEs in the human genome. This is done in such a way that the remnants of TEs with their
relative positions in the genome are comparable to the actual TE remnants in the human genome. Then by analyzing the generated TE remnants and predicting the TE evolution using the tools generated for Goal 3. this work can be used as a type of verification of the models and algorithms in Goal 3. A simulation also allows for specific hypotheses regarding TEs to be tested, which is of interest to the community. Moreover, some aspects of Goal 2 inform the simulation itself. The two sub-goals are listed as follows.

- Simulate TE propagation through evolution.
- Use the simulated interruptions to verify the prediction models.

Hence, the various goals of this thesis are quite interconnected:

- Goal 1 is used as a basic frame work for Goal 3 and Goal 4
- Goal 2 and Goal 3 inform the process of simulation of Goal 4.
- Goal 4 is used as a verification for Goal 3.

These goals all help in the study of transposable elements, their influence on genomes, and their ability to be used for evolutionary prediction.

Chapter 2

BaCkGROUND

Transposable elements are one type of repetitive DNA sequences in eukaryotic genomes. Typically, repetitive DNA sequences are broadly classified into two large families within eukaryotic genomes, tandem repeats and dispersed repeats, and each of these two families can be further divided into several subfamilies as shown in Figure 2.1

Figure 2.1: Repeated DNA sequences in eukaryotic genomes, adapted from [119. Transposons are marked in red.

TEs are found in both eukaryotic and prokaryotic organisms, including plants, animals, bacteria, and archaea. As shown in Figure 2.2 (summarized from [14, 125, 148, [136]), the proportion of TEs in a genome differs broadly depending on the organism, ranging from a few percent (0.3%) in the bacteria Escherichia coli to almost the entire genome ($>80 \%$) in maize Zea mays. In humans, $66-69 \%$ of the genome is repetitive or repeat-derived [32], whereas coding sequences comprise less than 5% of the genome. The majority of repeats in human are transposable elements, making up about 45% of the genome [88].

Some TEs have an evolutionary history dating back hundreds of millions of years during which they adaptively

Figure 2.2: The proportions of TEs in several genomes. As shown in the stacked bars, the TE proportions in yeast and fruitfly are shown as value ranges (3% to 5% in yeast, and 15% to 22% in fruitfly). The reason that there exists ranges is because the transposons in these species are transient components of those genomes, which means the repeat fraction of these genomes evolves very rapidly within species 100 .
diversified into forms that share very little sequence homology. Over time, inactivated copies of these elements have accumulated and now comprise a significant proportion of many genomes, serving as an important opportunity to study molecular evolution. This is because every element in the genome represents a "fossil record" that throughout evolution accumulates mutations randomly and independently, meaning that they can be used to study genomic changes both between and within species. "The mammalian genome could be compared, somewhat poetically, with a coral reef, in which the transposable elements are the coral, the reef is built of the fossils of their ancestors, and the genes are the inhabiting fish, anemones, sea stars, and so on." 130

So far in this chapter, a brief introduction about TEs including their proportions in genomes and some key terminologies has been provided, which gives a general idea about what TEs are. In the next sections, some necessary knowledge regarding the topic of the thesis will be provided from the perspectives of biology, bioinformatics, and previous research on TEs respectively.

2.1 Biological background

2.1.1 Classification of transposable elements

Transposition is defined as the movement of genetic material from one genomic location, the donor site, to another, the target site, within the same genome [50]. Transposable elements are traditionally classified into two broad classes on the basis of their transposition mechanism and sequence organization 43]:

Figure 2.3: Conceptual diagrams representing the transposition mechanisms. (a) Retrotransposons ("copy-and-paste" mechanism) copy themselves in two stages: first from DNA to RNA by transcription, then from RNA back to DNA by reverse transcription. The DNA copy is then inserted into the genome in a new position. (b) DNA transposons ("cut-and-paste" mechanism) do not involve an RNA intermediate. The transpositions in these classes are catalyzed by various types of transposase enzymes.

- Class I elements ("copy-and-paste" mechanism as the conceptual diagrams shown in Figure 2.3 (a)) are those that transpose via reverse transcription of an RNA intermediate, referred to as retrotransposons. The RNA intermediate is first transcribed from a genomic copy of DNA, then reverse-transcribed into DNA that is identical to the original DNA by a reverse transcriptas ϵ^{1} encoded in the TE sequence,

[^1]and each complete replication cycle produces one new copy into the host DNA [145. Consequently, retrotransposons can increase the copy numbers of elements and thereby increase genome size; indeed, they are major players in promoting the increase of genome size.

- Class II elements ("cut-and-paste" mechanism as the conceptual diagrams shown in Figure 2.3 (b)) move primarily through a DNA-mediated mechanism of excision and insertion, and are often called DNA transposons.

The class I and class II elements coexist in an extensive range of eukaryotes, which suggests their ancient evolutionary origins; however, there exist many variations in the activity, copy number, and diversity of TEs in the genomes of different species [49].

TEs can also be divided into several types on the basis of the structural features of their sequences: LTR retrotransposons, LINEs, SINEs, and DNA transposons (summarized as in Figure 2.4. Note that this classification is according to structural features of TEs as in Section 2.1.2, which is equivalent to the simplified classification shown in the red subtree in Figure 2.1. Among the four types of TEs, non-LTR retrotransposons (LINEs and SINEs) have been major factors of genome evolution by providing diversity and plasticity to the genome 71.

Figure 2.4: The classification of transposable elements can be represented as a tree.

TEs are also described as being autonomous or non-autonomous based on whether or not they encode their own genes for transposition. Those transposable elements that possess a complete set of transposition protein domains are called autonomous. Transposable elements that lack an intact set of mobility-associated genes are called non-autonomous TEs. The transposition of non-autonomous TEs requires involvement of protein(s) from either autonomous element(s) or from the genome in which they reside. For example, the autonomous $A c$ elements in maize can transpose themselves regardless of the other TEs present in the genome ; in contrast, the non-autonomous $D s$ elements cannot transpose without the aids of one or more copies of $A c$ elements in the genome 50.

Nevertheless, the term autonomous does not indicate that a TE is active or functional. A TE is defined as active if it can transpose either autonomously or non-autonomously. Typically, the lifespan of one transposable element starts from an activation of the transposon, followed by a burst of transpositions, while accumulating mutations, followed by the slowing of mobile activity after additional mutations. The transposon then ebbs further until it becomes inactive. The inactive elements, referred to as fossil transposable elements, become relics and can get interrupted by the transpositions of other active elements [47]. Active elements comprise only a tiny proportion of the TE content of the genomes of most organisms. The genomes of eukaryotes are filled with thousands of copies of the remnants of inactive TEs. For example, there are roughly 50,000 autonomous and 200,000 non-autonomous fossil DNA transposons in the human genome, and none of them are active any more 50 .

The human genome consists of a large amount of TEs and their remnants. Table 2.1 lists the percentage of TE contents in each chromosome calculated from the hg 38 assembly ${ }^{2}$ of the human genome. It should be noted that the total percentage of TEs we calculated on $h g 38$ is 46.69% in the thesis, which is slightly higher than the 45% estimated in the year of 2009 [88] from a previous version of the human genome.

Within each type, TEs can be even further subdivided into families then subfamilies, based on their details of the transposition mechanism, and sequence similarity. For example, $L 1, L 2$ are families under LINEs, while $A l u, S V A$ are families under SINEs; furthermore, there are subfamilies $A l u Y, A l u J, A l u S$ under the family of Alu. Table 2.2 (information from [84) is a detailed summary of each type of TE in the human genome.

A gust of transposition of $L 1$ and Alu elements in the primate lineage occurred about 40 million years ago (MYA), followed by a slowing of transpositional activity since then [73. Recent evidence indicates that there are 35 to 40 subfamilies of $A l u, S V A$, and $L 1$ elements staying actively mobile in the human genome [104, 71], and all of the active transposable elements only comprise less than 0.05% of the nucleotides in the human genome. It has been estimated that active human transposons generate about one insertion for every 10 to 100 live births [69, 89, 31. The rate of $L 1$ retrotransposition is estimated as $1 / 140$ live births per generation [38, and one new Alu insertion is generated for every 20 live human births 31. The active TEs along with their copy numbers are listed in Table 2.2 as well.

2.1.2 Structural features of TE sequences

In mammals, almost all transposable elements fall into one of the four types listed in Figure 2.4, of which three transpose through RNA intermediates and one transposes directly as DNA. Transposable elements use different strategies for their evolutionary survival (summarized from [84]):

[^2]| | LINE | SINE | LTR | DNA | Total TE percentage |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Chromosome 1 | 20.24\% | 14.39\% | 8.23\% | 3.27% | 46.19\% |
| Chromosome 2 | 22.63\% | 11.90\% | 9.16\% | 3.83\% | 47.58\% |
| Chromosome 3 | 23.52\% | 12.10% | 9.80\% | 3.99\% | 49.46\% |
| Chromosome 4 | 24.57\% | 10.27\% | 11.51\% | 3.70\% | 50.11\% |
| Chromosome 5 | 23.80\% | 11.26\% | 9.92\% | 3.79\% | 48.83\% |
| Chromosome 6 | 23.40% | 11.62\% | 9.67\% | 3.83% | 48.58\% |
| Chromosome 7 | 21.72\% | 13.81% | 8.87\% | 3.51% | 47.98\% |
| Chromosome 8 | 23.15\% | 12.03\% | 10.04\% | 3.61% | 48.90\% |
| Chromosome 9 | 19.75\% | 12.28% | 7.78\% | 3.09\% | 42.96\% |
| Chromosome 10 | 21.00\% | 13.94\% | 8.47\% | 3.64% | 47.11\% |
| Chromosome 11 | 22.99\% | 13.44\% | 8.96\% | 3.38% | 48.81\% |
| Chromosome 12 | 21.75\% | 14.94\% | 9.43\% | 3.72% | 49.90\% |
| Chromosome 13 | 19.41\% | 8.58\% | 8.90\% | 3.07\% | 40.01\% |
| Chromosome 14 | 18.61\% | 11.42\% | 8.18\% | 3.01\% | 41.28\% |
| Chromosome 15 | 17.80\% | 12.56% | 6.24\% | 3.00% | 39.65\% |
| Chromosome 16 | 14.70\% | 18.05\% | 7.26\% | 3.08\% | 43.12\% |
| Chromosome 17 | 15.17\% | 21.21\% | 6.27\% | 3.12% | 45.81\% |
| Chromosome 18 | 20.88\% | 10.39\% | 8.84\% | 3.48\% | 43.64\% |
| Chromosome 19 | 13.55\% | 27.14\% | 8.53\% | 2.11\% | 51.35\% |
| Chromosome 20 | 19.14\% | 15.68\% | 8.55\% | 4.06\% | 47.47\% |
| Chromosome 21 | 16.17\% | 9.05\% | 9.82\% | 2.64\% | 37.73\% |
| Chromosome 22 | 12.13\% | 15.81\% | 5.00\% | 2.05\% | 35.01\% |
| Chromosome X | 33.63\% | 10.36\% | 11.24\% | 3.22% | 58.50\% |
| Chromosome Y | 11.61\% | 4.63\% | 7.81\% | 0.81\% | 24.87\% |
| Total percentage in $h g 38$ | 21.42\% | 12.82% | 9.00\% | 3.40\% | 46.69\% |

Table 2.1: A summary of the percentage of TE content in the human genome (calculated on hg38). It also lists the percentage of TEs of four different types and summarized by chromosomes.

TE Class	Class I Elements				Class II Elements	
Class Name	Retrotransposons				DNA Transposons	
Type	LTR Retrotransposons		Non-LTR Retrotransposons			
			LINE	SINE		
Mode of Transposition	Autonomous	Non-autonomous	Autonomous	Non-autonomous	Autonomous	Non-autonomous
Length	$6-11 \mathrm{Kbp}$	$1.5-3 \mathrm{Kbp}$	$6-8 \mathrm{Kbp}$	100-300 bp	2-3 Kbp	$80-3000 \mathrm{bp}$
Copy Number	450,000		850,000	1,500,000	300,000	
Major Families	ERV, ERVK, ERVL, Tf series, Ty serie, MaLR, copia, Toms, 17.6		L1 (16.9% of the human genome), L2, L3	Alu (10.6% of the human genome) MIR, Ther2/MIR3	hAT, Tc1/mariner, piggyBac, Sleeping Beauty, Tn series, Mu, Mos1, Tol2, hobo, transits, MITEs	
Copy Number and age			$L 1$ ($>500,000$ copies, $\sim 150 \mathrm{Myr}$) less than 100 copies are functional	Alu (~ 1.1 million copies, $\sim 65 \mathrm{Myr}$) $S V A(\sim 3,000 \text { copies })$		

Table 2.2: Overview of different classes of transposable elements (reflecting the classification in Figure 2.4 in the human genome.

- LINEs and SINEs depend on vertical transmission, meaning that the new "offspring" TEs are produced from their "parent" TEs within the host genome.
- DNA transposons depend on horizontal transfer, meaning that the transfer between members of the same species are not in a parent-child relationship.
- LTR retrotransposons use both strategies.

It should be noted that it is beneficial to discuss the biological details in order to gain an understanding of the variation, since different parts of this thesis deal with different specific TEs and TE properties. Also, different existing TE-related tools take into account specific features, which are worth discussing. The biological insights of each type of TE is summarized as follows (information from [41], [84, [121], and [71]):

DNA transposons

DNA transposons are prevalent in bacteria, but are also found in the genomes of many metazoa, including insects, worms, and humans [70]. These elements are generally excised from one genomic site and integrated into another by a "cut-and-paste" mechanism (Figure 2.3).

As shown in Figure 2.5. DNA transposons are usually composed of terminal inverted repeat sequences (TIRs; in Figure 2.5, big blue arrows are in opposite directions) at their front and rear ends. Between TIRs is one ORF^{3} sequence (red boxes in Figure 2.5, 2.6, and 2.7) that encodes a transposase protein that recognizes

[^3]

Figure 2.5: Structural features of DNA transposons, which may contain both autonomous and nonautonomous elements.
the TIRs and cuts the transposon out of its genomic site. The two ends of the transposon are then held together by the transposase while it finds another site in the DNA to cut and insert into. Thus, the process uses a so-called "cut-and-paste" mechanism. All DNA transposons, both autonomous and non-autonomous, are surrounded by short duplications of the genomic sequence at their insertion sites, called target site duplications (TSDs) 4^{4} This occurs because the double-stranded target site is cut in a staggered manner, the single-stranded flanks are then repaired, and two repeats in the same orientation (called direct repeats, opposite to inverted repeats), are created on both sides of the integrated TE [50]. The TSDs can either be of fixed or variable lengths, depending on the type of elements. In fact, the integration of almost all TEs results in the target-site duplications as shown in black thin arrows flanking the element in Figure $2.5,2.6$, and 2.7. In fact, non-autonomous DNA transposons are usually derived from an autonomous transposon by an internal deletion.

There are nearly no known active DNA transposons in mammals (except bat [5] [7] has been previously believed that DNA transposons have not been active in the mammalian lineage for at least 40 million years (Mys). There are only 15 superfamilies to which currently known eukaryotic DNA transposons belong (despite their enormous diversity and abundance): hapaev, En/Spm (CACTA), hAT, Harbinger (Pif), ISL2EU (IS4EU), Kolobok, Mariner, Merlin, Mirage, MuDR(MULE), Novosib, P, PiggyBac, Rehavkus, and Transib 68 .

The human genome contains the remnants of at least five major families of DNA transposons, which can be subdivided into many transposons with independent origins. Table 2.3. derived from [112], is a summary of currently recognizable DNA transposons in the human genome with copy number greater than 100 .

DNA transposons generally transpose to genomic sites less than 100 Kbp from their original site, called
${ }^{4}$ When a transposon inserts itself into host DNA, a short (7-20bp) segment of host DNA is replicated at the site of insertion, which is called 'target site duplication' or TSD.
${ }^{5}$ Eight different families of DNA transposons, including hAT family members and piggyBac-like elements, were found active in the genome of the little brown bat, Myotis lucifigus.

Family	DNA Transposons	Number of Transposons	Copy Number
hAT	Autonomous:		
	Blackjack, Charlie, Cheshire, Zaphod	19	46,133
	Nonautonomous:		
	Arthur1, FordPrefect, MER102, MER106, MER107, MER112,	52	218,059
	MER113, MER115, MER117, MER119, MER1, MER20, MER3,		
	MER30, MER33, MER45, MER58, MER5, MER63, MER69,		
	MER81, MER91, MER94, MER96, MER99, ORSL		
	Total	71	264,192
MuDr	Nonautonomous:		
	Ricksha	3	985
	Total	3	985
piggyBac	Autonomous:		
	Looper	1	521
	Nonautonomous:		
	MER75, MER85	3	1,569
	Total	4	2,090
Tc1/mariner	Autonomous:		
	HSMAR, Tigger, Kanga	22	53,320
	Nonautonomous:		
	MADE, MARNA, MER104, MER2, MER44, MER46, MER53, MER6, MER8, MER82, MER97	23	54,718
	Total	45	108,038
Unknown	MER103, MER105	2	7,567
	Total	2	7,567
	Grand Total	125	382,872

Table 2.3: A summary of currently recognizable DNA transposons in the human genome with copy number greater than 100.
"local hopping" 70] (e.g., the Drosophila P element), and some are able to make distant "hops" (e.g., the fish Tc1/mariner element) as well. Moreover, DNA transposons are inclined to have short lifespans within a species compared to LINEs, and why DNA transposons have lost their ability to move for millions of years of mammalian evolution requires further studies.

Retrotransposons

Retrotransposons are very different from DNA transposons. They replicate and mobilize through an RNA intermediate via a "copy-and-paste" mechanism involving the enzyme reverse transcriptase and an endonuclease.

Retrotransposons typically can be divided into long terminal repeat (LTR) retrotransposons (Figure 2.6) and non-LTR retrotransposons (Figure 2.7), and non-LTR retrotransposons are subdivided into long interspersed
nuclear elements (LINEs) and short interspersed nuclear elements (SINEs). Most of retrotransposons are no longer able to retrotranspose. Retrotransposons have taken over large portions of the genomes of most plants and animals. In plants, most are LTR-retrotransposons, while in mammals non-LTR retrotransposons predominate.

Some retrotransposons are site-specific (only insert at specific sites in the genome). For instance, the nonLTR retrotransposons of the $R 1$ and $R 2$ families insert themselves only at specific sequences within the ribosomal RNA genes of insects [71. In contrast, there are some non-LTR retrotransposons of the L1 family that insert at many different sites that are AT-rich (e.g., 5'-TTTT/AA-3', where "/" signifies the cut site) 71.

LTR Retrotransposons. The LTR retrotransposons have many characteristics akin to retroviruses. They are called LTR retrotransposons because they have long terminal repeat (LTR) sequences of 300 to 1000 nucleotides at their two ends in direct orientation. These direct repeats have the same sequence in the same order, e.g., ABCD . In contrast, inverted repeats in DNA transposons are ABCD at one end and DCBA at the other (example from [70]). The LTRs contain promoters that stimulate transcription of the RNA of the element. Figure 2.6 shows the structural features of both the autonomous and non-autonomous LTR retrotransposons. Autonomous LTR retrotransposons have the products required for transposition encoded in open reading frames (ORFs), while non-autonomous LTR retrotransposons lack most or all coding sequence for transposition, and their internal region can be variable in length and unrelated to the autonomous elements.

Figure 2.6: Structural features of the autonomous and non-autonomous LTR retrotransposons (the genes in parentheses are optional).

According to [68], there are 6 superfamilies in LTR retrotransposons: Copia, Gypsy, BEL, ERV1, ERV2, and ERV3. Among a variety of LTR retrotransposons, only the vertebrate-specifc endogenous retroviruses $(E R V s)$ appear to have been active in the mammalian genome. Most (85%) of the LTR retrotransposon-
derived TE remnants consist only of an isolated LTR, where the internal sequence has been lost by homologous recombination 102.

Non-LTR Retrotransposons. Non-LTR retrotransposons are quite different from LTR-retrotransposons in their mode of regulation, replication, and structure. They are divided into autonomous elements (LINEs) and non-autonomous elements (SINEs). As shown in Figure 2.7, non-LTR retrotransposons have an internal promoter at their 5' end (pol II for LINEs and pol III for SINEs) that is important for starting expression or transcription of the element RNA. Non-LTR Retrotransposons end by a simple sequence repeat at their 3 ' end, usually a poly (A) tail (a region containing many A nucleotides in a row). All LINEs described so far usually encode two proteins necessary for their retrotransposition. The 3 ' tail of some SINEs and the 3 ' tail of LINEs present in the same genome are related to each other (share homology) [41], which indicates that SINEs must be aided by the transposition machinery of partner LINEs in the process of transposition [35].

Figure 2.7: Structural features of the non-LTR retrotransposons, that contain autonomous LINEs and non-autonomous SINEs.

In humans, LINEs are about 6 Kbp long, harbouring an internal polymerase II promoter and encoding two
 esteras $]^{7}$ activities, and ORF 2 encodes a pol protein with reverse transcriptas ε^{1} and endonucleas ε^{8} activities. It is believed that the LINE machinery is responsible for most reverse transcription in the genome, that also includes the transposition of the non-autonomous SINEs. Three distantly related LINE families are found in the human genome: $L 1, L 2$, and $L 3$, among which, only $L 1$ is still active.

The non-autonomous Alus are thought to use the transposition machinery of LINEs. They are about 100 $300 b p$ with no terminal repeats, harbour an internal polymerase III promoter and encode no proteins. The human genome contains a few families of SINEs: the active $A l u, S V A$, and the inactive $M I R$ and

[^4]Ther2/MIR3.

One of the key facts about human retrotransposons is that humans have active TEs, called L1s (the only active family in LINEs in humans), and these active TEs make an endonuclease and a reverse transcriptase that drives the retrotransposition of themselves and of other TEs, called Alu and $S V A$ (the active families in SINEs in humans).

2.2 Bioinformatics background

2.2.1 Sequence alignment

Many biological structures can be naturally represented by strings/sequences, such as DNA, RNA, and proteins. Sequence alignment is a method for biological sequence comparison, which can reveal similarity between different sequences. There exist a number of sequence alignment methods/tools, and some of them are based on dynamic programming alignment algorithms, such as the Needleman-Wunsch algorithm [109] or the Smith-Waterman algorithm [133], which compute the optimal alignments between two sequences.

A multiple sequence alignment (MSA), a natural extension of two-sequence comparisons, is a sequence alignment of three or more sequences. MSAs are a powerful way to study biological sequences. In a MSA, similar characters among a set of sequences are aligned together in columns. Often, the goal with aligning sequences is to reveal homology, which indicates similar position, structure, function, or characteristics due to evolutionary relatedness [57]. Sequences can be aligned to visualize the effect of evolution across the whole family. Ideally, a column of aligned characters all diverge from a common ancestor. The resulting MSA can infer sequence homology and guide phylogenetic analysis to assess the sequences' shared evolutionary origins. From this, a consensus sequence can be calculated from the result of a MSA. The consensus sequence of a multiple alignment is, informally, a "best" single sequence to represent the alignment. For example, a consensus for three DNA sequences

$$
\begin{aligned}
& \text { ACAGTAG } \\
& \text { AC - }- \text { TC G } \\
& \text { A G - G C G }
\end{aligned}
$$

is $A C A G T C G$. Notice that it is possible to have more than one consensus.

It is computationally expensive to calculate the optimal alignment between multiple sequences, therefore, most MSA tools use heuristic methods rather than global optimization.

2.2.2 Repbase Update - the database of repetitive sequences

Most eukaryotic repetitive sequences have been reconstructed into a database called Repbase Update (RU) [63], a database of the consensus sequences of repetitive elements (not only TEs, but also other repeats), that are present in diverse eukaryotic organisms. RU is the major reference database of repetitive sequences used in DNA annotation and analysis. Each sequence in the database is accompanied by a short description and references to the original contributors. It has been developed by Dr. Jerzy Jurka since 1990. It continues to grow through its community-driven annotation and submission tools and now is widely used in genome sequencing projects worldwide as a reference collection for masking and annotation of repetitive DNA. Consequently, the repeat classification based on RU is used in many other databases (such as UCSC genome database [120, Ensembl annotation [2]) and in secondary databases of repetitive elements. Some TE discovery and annotation tools also use RU as their reference library, such as the ones discussed in Section 2.2.3.

2.2.3 TE discovery tools

According to [13], there are usually two major goals in identifying TEs in genomic sequences:

- mask them as a preprocessing step in some bioinformatic tasks, such as gene finding;
- study them directly to make inferences about the biology or evolution of TEs.

These aims are incorporated into the most common systems used to detect individual instances of TEs in genome sequences.

The detection of TEs can be conducted in different ways, depending on the level of knowledge about the repeats that are taken into account when detecting them in a genome sequence. As suggested in [13], [121], [88, and 91, the approaches can be classified into four categories as follows.

- Library-based approaches search the repetitive sequences by comparing input data to a set of reference sequences (known TEs) contained in a library.
- Signature-based approaches search TEs using knowledge from their known structures.
- Comparative-genomics approaches use the fact that transposition creates large insertions that can be detected in multiple sequence alignments and rely on neither library nor structural features.
- De novo approaches look for similar subsequences found at multiple positions within a sequence.

In the next subsections, we will elaborate on each of these approaches in more detail.

Library-based techniques

Library-based methods identify repetitive sequences by comparing input datasets against a set of reference repeat sequences (known TEs) [121]. The library can either be user-defined, or it can be a general library, such as the commonly used Repbase Update 63. The advantages of library-based techniques are that this method is usually efficient and effective at finding repeats in the library, whereas the disadvantages are that it heavily depends on how much we already know, and fails to detect the repeats that do not exist in the library.

The most widely used library-based program is RepeatMasker [131, which is the major library-based tool used in repeat identification. It has been identified as one of the most accurate tools in detecting TEs and it has become a standard tool for finding repeats in genomes 91. Using precompiled repeat libraries, RepeatMasker finds copies of known repeat families represented in Repbase Update. As the name implies, it was designed to discover repeats and mask them. The program performs a similarity search based on local alignments, then outputs masked genomic DNA and a tabular summary of TE content.

Table 2.4 is an example of the tabular summary output by RepeatMasker, which shows eight repeat fragments identified in a query sequence named $H S U 08988$, and each row represents one fragment. The columns are information about each fragment. For example, the first fragment in the list is from position 6563 to position 6781 in the query sequence. It is a fragment from position 103 to position 336 of the complementary sequence of element $M E R 7 A$ (belongs to a DNA transposon MER2 family), with 15.6% percent divergence, 6.2% deletion, and 0% insertion compared to the $M E R 7 A$ consensus in the Repbase Update.

					position in query				matching repeat	repeat class/family	position in repeat		
score	$\begin{gathered} \% \\ \text { div. } \end{gathered}$	$\%$ del.	$\begin{gathered} \% \\ \text { ins. } \end{gathered}$	query sequence	begin	end	left	C +			left begin	end end	begin left
1306	15.6	6.2	0	HSU08988	6563	6781	-22462	C	MER7A	DNA/MER2	0	336	103
12204	10	2.4	1.8	HSU08988	6782	7714	-21529	C	TIGGER1	DNA/MER2	0	2418	1493
279	3	0	0	HSU08988	7719	7751	-21492	$+$	(TTTTA)n	Simple_repeat	1	33	0
1765	13.4	6.5	1.8	HSU08988	7752	8022	-21221	C	AluSx	SINE/Alu	-23	289	1
12204	10	2.4	1.8	HSU08988	8023	8694	-20549	C	TIGGER1	DNA/MER2	-925	1493	827
1984	11.1	0.3	0.7	HSU08988	8695	9000	-20243	C	AluSg	SINE/Alu	-5	305	1
12204	10	2.4	1.8	HSU08988	9001	9695	-19548	C	TIGGER1	DNA/MER2	-1591	827	2
711	21.2	1.4	0	HSU08988	9696	9816	-19427	C	MER7A	DNA/MER2	-224	122	2

Table 2.4: An example of a tabular output of RepeatMasker. In the tabular summary, there are eight repeat fragments listed, which were identified in the query sequence named HSU08988. Each row represents one fragment, and the columns are the detailed information about the fragments.

RepeatMasker uses multi-processor systems and a simple database search approach (e.g., BLAST [78]), making it one of the fastest and most effective repeat finders [90]. Because of the importance of this tool
in the field of TE identification, in the thesis, TE fragments are defined with the aid of RepeatMasker in Chapter 4.

In addition to the tabular output as in Table 2.4, there are several library-based repeat detection tools that use visualization to display the repeat fragments, such as CENSOR 64]. It applies the same kind of approach used in RepeatMasker, then graphically maps detected repeats with colour-coding of different types of repeats.

Signature-based techniques

Unlike library-based tools, all signature-based tools employ prior knowledge about the common structural features shared by different TEs in the same class as introduced in Section 2.1.2, and it is less biased by similarity to the set of known elements. Given a particular repeat group, signature-based repeat detection tools search query sequences for motiff 9^{9} and spatial arrangements characteristic of that group [121]. This approach can be used to find new elements of known groups, but not new groups of elements. The limitation of such approaches is that it depends entirely on how much is known about the structure of elements belonging to particular groups, and also on the existence of characteristic structures.

LTR retrotransposons are bordered by long terminal repeats (LTRs), with a more detailed structure shown in Figure 2.7. Based on the structure, there have been several tools developed to detect solely LTR retrotransposons, by searching for the common structural signals existing in LTR retrotransposons as listed below. Some of the features correspond to parameters that can be adjusted by the users of these tools, such as:

- a range of lengths of the LTR sequences;
- the distance between the two LTRs of an element;
- the presence of TSD $\sqrt{4}^{4}$ at each end;
- the presence of critical regions for replication, such as the primer binding site (PBSs$)^{10}$ and the polypurine tract (PPTs);
- the percent identity between the two LTRs;
- the existence of some conserved motifs corresponding to the genes they encode.

[^5]For example, the method LTR_STRUC [98] searches a query sequence for pairs of similar LTRs separated by a distance expected for this group of retrotransposons. The pairwise alignment of LTRs is then used to calculate the boundaries of the LTRs on the original segment, which should span a full-length element from the start of the 5^{\prime} LTR to the end of the 3^{\prime} LTR. LTR_par 66] is a similar structure-based method to detect LTR retrotransposons, which improves on some of the weaknesses in LTR_STRUC. Both LTR-detection tools have significant advantages over the library-based methods in the case of LTR retrotransposon families; thus, they are discovery tools that complement the library-based methods.

There are also some programs designed to detect non-LTR retrotransposons (SINEs, LINEs). For example, as illustrated in Figure 2.7. LINES and SINEs are flanked by target site duplications (TSDs), so the tools such as TSDfinder [137] are designed to precisely identify transposon boundaries and refine the coordinates of $L 1$ insertions that are detected by RepeatMasker [131], using the structural feature shared by the $L 1$ family. The SINEDR 141 identification tool can detect known SINEs that are flanked by TSDs. The RTAnalyzer 92] is designed to detect sequences of retrotransposed origin. It is used to detect the common signatures of L1 transposition to find out if the sequences have been transposed by an L1, by calculating a transposition score on the basis of the common signatures, such as the presence of a poly (A) tail, TSDs, and an endonuclease cleavage site in the 5 ' end of the sequence.

Comparative genomic method

An innovative method in [19] uses the fact that transposition creates large insertions to detect new TE families and instances, depending on neither library nor structural features. These large insertions can be detected in multiple sequence alignments. This method has two major advantages over other repeat-finding methods: first, in contrast to determining the location of repeats using sequence similarity, this method utilizes the genomic artifacts of the transposition mechanism itself in the context of multiple alignments; second, it can derive the lifespan of each repeat instance with the aid of phylogenetic trees.

This method looks for insertion regions (IRs) in multiple alignments of orthologous genome sequences that are interrupted by a large insertion in one or more species. The large insertions detected are then filtered and concatenated as IRs; then IRs are locally aligned with all other IRs to identify repeat IRs. This method is useful in detecting new TE families and instances, especially in placing TEs to branches of a phylogenetic tree.

In particular, this approach has the following three advantages: first, it depends less on the sequence similarity than do the commonly used library-based methods, thus it provides a complementary approach to TE identification; second, this method allows placing each insertion event to branches of a phylogeny, which is valuable information for understanding the transposition mechanism and the evolution of the host genomes; finally, the method is flexible in choosing between stringent criteria and low-quality cutoffs on repeat content
and structure, which allows mining deep into the past of TEs of the genomes. However, there exists some potential drawbacks caused by the huge difficulty in computing whole genome alignments.

De novo repeat discovery

De novo repeat discovery algorithms identify repetitive elements without using reference sequences or known structures in the repeat identification process. As the number of sequenced genomes increases, there is little or no information about their repeat content, thus de novo repeat discovery approaches are proposed to discover new repeats using different kinds of methodology, with different final goals. These methods usually use assembled sequence data, so both sequencing and assembly strategies are critical to the results [13]. The major challenges are to characterize TEs from other TE classes and to distinguish new TE families.

All de novo discovery of repeat families starts with identifying relatively short sequences that are found multiple times in a sequence or sequence set using classical computational strategies. The following list briefly describes some general approaches that have been utilized in identification and clustering of repeats.

- Self-comparison approaches

The self-comparison approach compares DNA sequence with itself to identify groups of similar sequences. This approach is used by the Repeat Pattern Toolkit (RPT) [1] the first attempt to detect repeats using the self-comparison approach. The RPT is based on a sequence similarity scoring system, and uses BLAST [3] to perform the self-comparison. The grouping of repeats is then formed by clustering. RECON [6], one of the most commonly used programs, also uses the BLAST program to perform the self-comparison, followed by a clustering method to form repeat families. PILER [37], repeat identification tool for assembled genomic regions, uses another procedure to perform the self-alignments called Pairwise Alignment of Long Sequences.

- k-mer approaches

A substring of length k occurring more than once with perfect matching in a sequence is identified as a repeat in the k-mer or "word counting" approaches. One of the first programs to apply the k-mer approach is called REPuter [82]. Based on a suffix-tree data structure, it can determine all the exact repetitive substrings in a complete genome. RepeatScout [117 first builds a library of high frequency k-mers with fixed length, then uses these as seeds for a greedy search.

- Spaced seed approaches

Spaced seed approaches are an extension of the k-mer approach, which allows some differences in the sequence of the seed, such as the length and/or the percentage identity. PatternHunter [93], as the first spaced seed tool, allows mismatches in fixed positions and at the same time requires identical matches
in others. RAP [18] uses a complex indexing strategy allowing space efficient counting of words of a specific size.

- Other approaches

There exists some other approaches which detect and classify TEs, but do not fall into any of the above categories. One example is the RepeatGluer [115] program, which represents the mosaic structure of sub-repeats using A-Bruijn graph representation. The A-Bruijn graph created by RepeatGluer derives the mosaic repeat structure from a set of pairwise similarities; furthermore, by traversing the graph, it can also illustrate evolutionary history of repeats.

2.3 Previous studies on TE phylogeny and evolution

2.3.1 TE phylogeny based on sequence divergence

Some TEs have an evolutionary history dating back hundreds of millions of years in which they adaptively diversified into different forms. In the meantime, inactive copies of these elements have accumulated and now comprise a significant proportion of many genomes. It is possible to perform a phylogenetic analyses via a multiple sequence alignment of transposons, under the assumption that transposon evolution behaves like a molecular clock after activation (a discussion of this assumption will follow below). Indeed, the molecular clock hypothesis is that for every given gene (or protein), the rate of molecular evolution is approximately constant. The age of transposons can be estimated by comparing the percentage of sequence divergence with some known age of divergence of species such as humans and Old World Monkeys (adapted from [114) as follows:

- most transposable elements in the human genome are ancient ($\sim 100 \mathrm{MYA}$), which get removed from the genome very slowly;
- non-LTR retrotransposons, LINEs and SINEs, have very long lineages, some dating back 150 MYA;
- DNA transposon are extinct, as there is no evidence for their activity in the human genome in the past 50 million years.

Specifically, each copy of a TE in a genome is derived from an active TE sequence that accumulates mutations randomly and independently from other copies of this TE. Consensus sequences of the original active copies (these consensus records are in Repbase Update 63]) are derived from multiple sequence alignments of the present-day copies. The approximate age of these elements can be calculated from the average sequence divergence of the present-day copies from the consensus sequence.

The divergence-based method has been applied to both Alu [67, 7] and L1 [132] elements to assign approximate ages to TEs. For example, to estimate the age of Alu subfamilies in [67], pairwise alignments were performed using the Smith-Waterman algorithm [133], and the divergence (d) between the two sequences was calculated by

$$
\begin{equation*}
d=\frac{\text { Number of mismatches }}{\text { Number of Matches }+ \text { mismatches }} . \tag{2.3.1}
\end{equation*}
$$

Note that a deletion or insertion of any length was deemed as a single mismatch. Then using Kimura's distance measurf ${ }^{11]}$ [74], the average age of all major Alu subfamilies were calculated based on the assumption that the rate of change of these sequences is 0.16% per site per million years 67].

However, these divergence-based calculations are limited by the assumption of the constant mutation rate (molecular clock) both over time and between the different classes of transposable elements [118, 16. Furthermore, the difference in percent divergence of a TE family is dependent on not only the length but also the age of the element. In addition, these methods do not help predict the periods of activity and inactivity of the TEs. Thus, a more thorough method taking into account of more factors other than a mutation rate is needed to predict TE evolution more accurately, and one innovative method called interruption analysis can produce an estimation of relative ages of TEs using the frequency of interruptions between TEs that will be elaborated on in the next subsection.

2.3.2 TE phylogeny based on interruptional analysis

Each transposable element has a distinct period of transposition activity when it is active, in which it spreads through the genome, followed by inactivation and accumulation of mutations. Though transposable elements make up about half of the human genome, most of them are inactive relics. DNA transposons have become completely inactive and LTR retrotransposons may have done so as well [84]. Because of the ubiquity of inactive TEs in many genomes, throughout evolution newer TEs end up nesting recursively, often multiple levels deep, inside existing inactive TEs. The result of the transposition activities can be described as (summarized from 47] and 81):

1. older TEs are heavily interrupted by younger TEs, but have not inserted into younger elements;
2. younger TEs, with a relatively recent period of activity, have inserted into older elements that were present in the genome, but are not interrupted by older elements;
3. TEs of intermediate age have both inserted into older elements and have themselves been fragmented by younger elements;

[^6]4. younger TEs interrupt not only older TEs, but also the fragmented TEs that had been previously interrupted. That is, interruptions are nested recursively.

A method in 47] called interruptional analysis estimates relative TE ages based on the frequencies with which every TE has inserted itself into every other TE in a genome. The resultant ordering that was obtained from a positional distribution agreed reasonably with published chronologies. This is in contrast to the more common divergence-based methods (Section 2.3.1) to estimate TE ages, which has been unreliable for older more diverged elements. The approach only relies on data from a single genome.

The interruptional analysis is strategized in two major steps (summarized from [47]):

Step one: generate an interruption matrix based on the identified transposon clusters.

Many TEs have split other TEs into two noncontiguous TE fragments by inserting into the sequence of those TEs already present in the genome. The occurrence of TEs that are inserted into other TEs are named "transposon clusters" in 47. These transposon clusters in the human genome were identified by defragmentation of TEs, and the number of times every TE inserted itself into every other TE were counted and grouped into an $n \times n$ matrix, called an interruption matrix, where n is the number of TEs (a formal definition and examples of interruption matrix will be given in Chapter 5).

Step two: generate a TE chronological order using a repositioning method.

A computational method called interruptional analysis then performs a repositioning of all elements on the axes of the interruption matrix, in order to search for an ordering of all elements that minimizes a penalty score defined as the summation of nonzero entries in the upper triangle matrix. Theoretically, the best ordering of TEs corresponds to the order that achieves the minimum penalty score of the matrix.

Figure 2.8 (adapted from 47]) shows the resultant relative age order of 360 TEs calculated by the interruptional analysis method.

Essentially, this interruptional analysis method uses exhaustive search with the computational complexity of $O(n!)$ over all orders. Though the authors in 47] tried different strategies to decrease the complexity, it is still not practically feasible when the number of TEs in consideration is large. Therefore, the authors only try seven to ten rounds of repositions to reach a local optimum, then do the same 100,000 times to compute a distribution of positions of each TE over all orderings. They are only able to do so on 360 of the over 1000 TEs in the human genome. Besides complexity, there are some other limitations listed as follows:

- The interruption matrix can only record the interruptions between every two TEs, but fails to take into account the recursively nested interruptions which can be informative (more details on this limitation in Chapter 6).

Figure 2.8: The resultant relative age order of 360 TEs calculated in 47, where the numbers on the left axis represent positions in the age order.

- A chronological order of TEs was calculated, which tells a relative age order of TEs, but without knowing how much older one TE is than another.
- Since each TE has a distinct period of activity, the age order (positional distribution) derived from this method cannot tell the exact timespan of transposition activity of each individual TE.
- Moreover, the relative age of the TEs that have not interrupted or been interrupted by other TEs can not be estimated by this method.

Overall, the interruptional analysis provides a novel analysis of the evolutionary history of some of the most abundant and ancient repetitive DNA elements in mammalian genomes by analyzing a single genome, which is important for understanding the dynamic forces that shape the genomes during evolution.

2.3.3 Perspective

The sequence divergence analysis is a traditional and common method for TE phylogeny, and it has been extensively used in estimating the age of younger TE families; however, other methods are worthy of investigation especially for older and more diverged elements. In contrast, the estimation of TE evolution based on interruptional analysis brought in a new idea of considering the interruptional activities between TEs, which can be used to predict the age and evolutionary activity of these TEs.

Chapter 3

Computational identification of harmpul mutation reGIONS THAT INFLUENCE TRANSPOSITIONS OF ACTIVE TRANSPOSABLE ELEMENTS IN THE HUMAN GENOME 1

3.1 Abstract

As the most abundant transposable elements, Alu elements have 1.1 million copies interspersed throughout the human genome, and about 11% of the human genome consists of Alu sequences [50]. Recent evidence indicates that the 22 Alu Y and 6 AluS TE families have been the most active TEs in recent human history [104, whose transposition has been implicated in several inherited human diseases and in various forms of cancer by integrating into genes; therefore, understanding the transpositional activity and factors that change the activity levels of these TEs is very important. There has been some work done to quantify and analyze the transposition of active Alu transposable elements in mobile assays. Based on this activity data, a method/simulation was created in this chapter to computationally identify the regions on a TE consensus sequence that may change the transpositional activity. This method was applied to AluY, the youngest and most active Alu subfamily, to identify the harmful mutation regions laying in its consensus. Mutations occurring within these regions have crucial effects in decreasing the elements' transposition. The identified regions were then verified by the secondary structure of the $A l u Y$ RNA, where the harmful regions overlapped with the AluY RNA major SRP9/14 contact sites. An additional simulation also showed that the identified harmful regions covering the Alu Y RNA functional regions are not occurring by chance. Therefore, we conclude that mutations within the harmful regions identified alter the mobile activity levels of active Alu Y elements. The method was then applied to the $A l u$ family and $L 1$ family in detecting the harmful regions in these elements.

[^7]
3.2 Introduction and motivation

Active TE elements only constitute a tiny fraction of the TE complement of the genomes of most organisms; for example, there are only about 100 active $L 1$ copies out of a total of over $500,000 L 1$ s in the human genome [41]. Recent evidence indicates that 35 to 40 subfamilies of $A l u, L 1$, and $S V A$ elements remain actively mobile in the human genome [104, 71]. Active human transposons have been estimated to generate about one new insertion per 10 to 100 live births [69, 89, 31]. Specifically for the Alu family, it is estimated that one new Alu insertion occur for every 20 live human births [31], and there is one Alu insertion for every 3000 bp in the human genome on average [84. Alu transposition events have a major impact on human biology and diseases [104] because the active TEs can create genetic diversity in human populations and integrate into genes that cause diseases. Indeed, forty-three disease-causing Alu insertions have been identified [9]. As mentioned in Chapter 1, in recent research in [86, the authors hypothesize that Alu insertions in mitochondrial genes can lead to progressive neurological disfunction. Therefore, it is of importance to understand how the activity level of Alus can change based on possible mutations and mutation loci.

Alu elements are approximately 300 base pairs long, and do not contain any protein-coding sequences for transposition. They rely upon $L 1$-encoded proteins for their own mobilization [35]. It is believed that Alu elements are derived from the 7SL RNA, and modern Alu elements emerged from a head-to-tail fusion of two distinct fossil antique monomers, hence its dimeric structure of two similar, but distinct monomers (left and right arms) joined by an A-rich linker and terminated by a poly (A) tail [55. The left arm contains functional, but weak, A and B boxes of the RNA polymerase III internal promoter [104], as shown in Figure 3.1 and also Figure 3.8 .

Figure 3.1: Structure of Alu elements.

Different periods of evolutionary history have given rise to different families and subfamilies of Alu elements, each containing a small number of active Alu elements that serve as the source of subsequent families [50. According to Repbase Update, there are three Alu subfamilies. AluJ is the most ancient (about 65 million years old), and is thought to be functionally extinct [8, 104, 9, 12]; the second oldest is the AluS subfamily,
which became active approximately 30 million years ago, and only some intact elements were found to be active in humans [12, 105]; Alu Y is the youngest subfamily, and most elements of this subfamily are currently active 77. Because there is no specific mechanism for removal of Alu insertions, Alu evolution is dominated by the accumulation of new $A l u$ inserts 50. These new copies of Alu accumulate mutations independently over time.

In order to identify active Alu copies that exist in the human genome and analyze their transpositional activities, Bennett et al. 12 designed an in vivo experiment to systematically examine the mobilization capacity of Alu copies across the human genome, in particular the transposition capacity of the 280 bp central "core" regions of Alu copies using a plasmid-based mobilization assay. The experimental procedure is described in more detail in 35. Briefly, the Alu retrotransposition was detected on induction by LINE expression vectors. Human HeLa cells were co-transfected with a marked Alu and an expression vector for the human L1 under the control of the CMV promotor. Cells were amplified and retrotransposition events were detected. This method allows for comparing the relative mobilization efficiencies of diverse core elements by keeping all other factors constant and eliminating possible variation due to flanking sequences.

An annotated database of 850,044 full-length human Alu copies was first developed in [12], then some representative elements were carefully selected from the database, as well as several synthetic older consensus elements that are no longer present in the modern human genome, totalling 89 elements, with 9 AluJ, 28 AluS, and 52 Alu Y. These elements were then cloned and tested in a mobile assay. From the functional analysis of the $A l u$ elements, it was shown that the elements with fewer changes relative to the consensus sequences generally had the highest levels of activity. No elements with more than 10% mutations, which would occur with at least 28 bp changes, were active [12]. This indicated that the amount of sequence variation is an effective factor in altering the transpositional activity. However, the fact that polymorphic AluY copies ${ }^{2}$ generally had robust levels of mobilization in contrast to the randomly chosen Alu Y copies with sequence variation, indicated that some sequence changes are more effective than others in altering activity.

In light of the experiments and the functional analysis done in [12, a more detailed analysis of more than just sequence similarity with the consensus is desired to understand more precisely what influences TE activity. In this chapter, a computational method is developed to further analyze how the sequence of an element influences its transpositional activity; specifically, this method identifies the critical regions within the Alu Y consensus that have crucial effects in deactivating the elements' transposition, called "harmful mutation regions". This analysis can be applied to any TE family or other organism, but it requires further experiments akin to those in [12], where a quantified transposition fraction is available for each TE.

[^8]
3.3 Materials and notations

3.3.1 Materials

Because $A l u Y$ is the youngest $A l u$ subfamily that harbours the largest number of active elements, in this section, the $A l u Y$ sequences from the experiment in [12] will be analyzed.

First, pairwise sequence alignments of the $A l u Y$ elements against the Alu Y consensus sequence from Repbase Update were calculated, giving pairwise scores for every Alu Y element sequence with the $A l u Y$ consensus. Pairwise scores are simply the number of identities between the two sequences, divided by the length of the alignment, giving the percent identity.

In the experiment in [12], AluYa5 elements were used as a standard for comparing the retrotransposition activity. An element is considered more active than AluYa5 when the cell culture of this element showed greater fluorescence intensity than the cell culture of AluYa5, and vice versa. The average activity fraction of a TE is defined as a percentage of the fluorescence intensity of the cell culture of this TE over that of AluYa5 elements. The $A l u$ elements can then be categorized by their average activity fraction (ranges from 0% to 118% of AluYa5 activity - it can be over 100% if the activity is higher than AluYa5). Starting from these activity fractions, all Alu elements were organized into four activity level groups as in Definition 1 .
Definition 1. A set of elements is defined as in the same activity group if their activity fractions are in the same range:

- the inactive group consists of elements with activity fractions that range from 0% to $<5 \%$,
- the low activity group consists of elements with activity fractions that range from 5% to $<40 \%$,
- the moderate activity group consists of elements with activity fraction that range from 40% to $<66.6 \%$,
- the high activity group consists of elements with activity fraction greater than 66.6%.

The activity fractions of all the $A l u Y$ elements were plotted against their percent identity in Figure 3.2, where each data point represents one $A l u Y$ element; the x-axis is the percent identity of the elements to the Alu Y consensus sequence; the y-axis is the activity fraction of these elements.

The elements in Figure 3.2 are also grouped into similar activity levels (e.g., high activity group, moderate activity group, low activity group, and inactive group, as marked in the figure). It can be seen that, roughly, the elements with higher percent identity tend to have higher activity level. However, a linear relationship is not clear. For example, there exist some elements with high activity level (in the high activity group) but a low percent identity, while some elements have a high percent identity but a low activity level (in the low

Figure 3.2: The plot of the 52 Alu Y elements from [12], where the x -axis is the percent identity and the y -axis is the activity fractions. The elements are partitioned into different groups of activity levels. Some elements are also grouped into vertical bins for further analysis in Section 3.4.3.
activity or inactive groups). The lack of a clear linear trend leads to the hypothesis that some mutation sites are less effective and some are in contrast more effective in altering the elements' transpositional activities. A computational method is proposed in the next sections to identify these affective mutation sites.

3.3.2 Notations

In order to formulate the description of the problem and the computational method that will be proposed, some notations need to be defined first.
Definition 2. The total number of elements to be considered in the TE family is denoted by N, and the length of the consensus sequence of this TE family is denoted by L.

For example, considering the 52 AluY elements in [12] $(N=52)$, the length of the AluY consensus in $R U$ is $L=282$.
A window is a region within the consensus sequence, and is defined by a window size, denoted by wsize, and
a start position of the window.

For example, a window denoted by w_{i} is the region from the i th position to the j th position, where $j=$ $i+w$ size -1 , in the consensus sequence.

Given the length of consensus and a window size, the number of windows, denoted by nw, can be calculated as $n w=L-w s i z e+1$.
Definition 3. Mutations in the window w_{i} of one TE element is defined as the total number of mutations (versus the consensus) of this element lying within the window, denoted by m_{i}.

For example, for an element with mutated positions at $2,3,7,15,80,224$ in the consensus, given wsize $=10$, then $m_{1}=3$ (number of mutations in the window from position 1 to 10), and $m_{10}=1$ (number of mutations in the window from position 10 to 19).
Definition 4. For every element, the window is "slid" from the beginning to the end of the consensus, to generate a vector of mutations in all windows for this element. Mutations in all windows in all elements can then be represented as a mutation matrix, denoted as $M(N \times n w)$.

$$
M(N \times n w)=\left[\begin{array}{ccccc}
m_{11} & m_{12} & m_{13} & \ldots & m_{1 n w} \tag{3.3.1}\\
m_{21} & m_{22} & m_{23} & \ldots & m_{2 n w} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
m_{N 1} & m_{N 2} & m_{N 3} & \ldots & m_{N n w}
\end{array}\right]
$$

Taking the example of the AluY elements in [12], there are $N=52$ rows and $n w=273$ (where $L=$ 282 , wsize $=10$) columns in the matrix. The mutation matrix of the Alu Y elements, representing the mutations of every element in each window, is shown in the heat map in Figure 3.3. The windows on the Alu Y consensus are shown in the x-axis; the Alu Y TE elements sorted by their activity fractions in descending order are shown in the y-axis. The activity groups are also marked with black lines in the figure.

From Figure 3.3 , it is easy to see that certain windows are apparently darker than others in most elements, which indicates that certain regions in the sequence tend to have more mutations; however, the heat map does not show whether the positions where mutations occurred are correlated with mobile activities, nor does it show how they are related.

In the next sections, by using correlation analysis (Section 3.4) and group comparison analysis (Section 3.5) respectively, it will be shown that mutations in some windows are indeed harmful to elements' activities.

Figure 3.3: The number of mutations in each window (wsize $=10$) of all 52 AluY element of Figure 3.2 , where the x -axis is all windows on the $\mathrm{Alu} Y$ consensus sequence and the y -axis is the $A l u Y$ elements. The elements are sorted by their activity fractions in descending order from the top to the bottom of the chart.

3.4 Method I: identification of harmful regions by correlations between mutations and mobile activity

In this section, a computational method is proposed to identify the harmful regions in an active TE family using the Pearson's coefficient of correlation.

3.4.1 Pearson's coefficient of correlation and multiple test correction

The Pearson's coefficient of correlation, normally denoted by ρ, is a measure of the linear correlation between two variables (X and Y), whose values range from -1 to 1 , with 1 indicating total positive correlation, 0 indicating no correlation, and -1 indicating total negative correlation. It is defined as the covariance of the two variables divided by the product of their standard deviations.

$$
\begin{equation*}
\rho=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}} \tag{3.4.1}
\end{equation*}
$$

where $\operatorname{cov}(X, Y)$ is the covariance of X and Y, σ_{X} is the standard deviation of X, and σ_{Y} is the standard deviation of Y.

Though using models for data analysis has many advantages, if the existing data does not fit the model perfectly, results are often misleading. The Pearson's correlation coefficient is a model-free method, and it therefore shows the nature of the data without depending on any existing models.

For each window in the $A l u Y$ consensus, the variable X is defined as the number of mutations in the window of all Alu Y elements, and the variable Y is defined as the activity fractions of all Alu Y elements. The Pearson's coefficient of correlation was calculated by comparing X against Y , using the correlation function cor in the R Language. The observed correlations from the data in the experiment in [12] are calculated and denoted by

$$
\rho_{o b s}=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{n w}\right)
$$

as shown in Figure 3.4. It can be seen in the figure that mutations occurring in most of the windows have negative correlation with the mobile activities. The negative correlations indicate that the TE activity decreases as the number of mutations in a window increases; in other words, the mutations in the window are harmful to TE activity. On the other hand, the negative correlations between the activity fractions and the number of mutations may arise by randomness/chance. Therefore, it is necessary to perform a statistical significance test to measure the probability that more negative correlations than what was observed in the data set can be caused solely by chance, which is the p-value, a measure of significance in terms of the false positive rate [144].

Figure 3.4: The Pearson's coefficients of correlation between the number of mutations in each window and the activity fractions of the $A l u Y$ elements. The x-axis gives the windows in order on the $A l u Y$ consensus.

In order to correct for multiple comparison bias due to a large number of windows, a q-value is also reported. A q-value, similar to a p-value, is a measurement of the "false discovery rate" (FDR) 11 . The false positive rate and FDR are defined differently - given a rule for calling features significant, the false positive rate is the rate that truly null features are called significant, while the FDR is the rate that significant features are truly null [134. For example, a false positive rate of 5% in a study means that 5% of the truly null features are called significant on average, while a FDR of 5% means that 5% of all features that are called significant are truly null. In general, the FDR is a sensible measure of the balance between the number of true positives and false positives. Multiple testing correction will be performed using the qualue package [146] under Bioconductor in the R Language.

3.4.2 Statistical significance tests and results

In order to investigate the relationships between the mobile activity and the mutations of a TE, a null hypothesis is proposed as "mutations in a window are not negatively related (or undifferentiated) to the activity of the $\mathbf{T E}$ ". To test the hypothesis, a statistical simulation is used to generate random data as elaborated in the steps below. The framework of the simulation is a general statistical technique for hypothesis testing.

Given a mutation matrix, $M(N \times n w)$, as in Equation 3.3.1 , the activity fractions vector of the N elements, α_{N}, and the observed correlations $\rho_{o b s}$, perform the following operations, with the flow chart of the steps in Figure 3.5

Step 1: generate simulated correlations as follows:
given the number of iterations as n (e.g., $n=1000$), for each iteration denoted by i,

1. permute M by columns as M^{i};

Figure 3.5: The flow chart of the algorithm in Section 3.4.2
2. calculate correlations between M^{i} and α_{N}. The correlations for each window for this iterations is denoted by $\rho_{(i, 1)}, \rho_{(i, 2)}, \ldots, \rho_{(i, n w)}$.

Step 2: form simulated and observed correlations into a matrix.

After the n iterations, there are n simulated correlations for each window. The simulated correlations along with the observed correlations are formed into a matrix and summarized in Table 3.1 ,

iteration	w_{1}	w_{2}	\ldots	w_{j}	\ldots	$w_{n w}$
1	$\rho_{(1,1)}$	$\rho_{(1,2)}$	\ldots	$\rho_{(1, j)}$	\ldots	$\rho_{(1, n w)}$
2	$\rho_{(2,1)}$	$\rho_{(2,2)}$	\ldots	$\rho_{(2, j)}$	\ldots	$\rho_{(2, n w)}$
\vdots						
i	$\rho_{(i, 1)}$	$\rho_{(i, 2)}$	\ldots	$\rho_{(i, j)}$	\ldots	$\rho_{(i, n w)}$
\vdots						
n	$\rho_{(n, 1)}$	$\rho_{(n, 2)}$	\ldots	$\rho_{(n, j)}$	\cdots	$\rho_{(n, n w)}$
observed						
correlation	ρ_{1}	ρ_{2}	\ldots	ρ_{j}	\ldots	$\rho_{n w}$
$\left(\rho_{\text {obs }}\right)$						
p-value	p_{1}	p_{2}	\ldots	p_{j}	\ldots	$p_{n w}$
q-value	q_{1}	q_{2}	\ldots	q_{j}	\ldots	$q_{n w}$

Table 3.1: Simulated and observed correlations between mutations and mobile activities.

Step 3: calculate p-values for each window.

For each column $w_{j}(1 \leq j \leq n w)$ in Table 3.1. calculate a p-value of ρ_{j} in the distribution of $\rho_{(i, j)}(1 \leq i \leq n)$, which is $p_{j}=P\left(\rho_{(i, j)} \leq \rho_{j}\right)$, where $1 \leq j \leq n w$.

Step 4: calculate q-values for each window.

After the p-values are calculated for each window, estimate the q-values of each window, $q_{1}, q_{2}, \ldots, q_{n w}$ using the function qualue in the R Language.

Step 5: test the null hypothesis for each window.

For each window $w_{j}(1 \leq j \leq n w)$, compare its q-value, q_{j}, to a confident threshold λ (eg. $\lambda=0.05$). If $q_{j}<\lambda$, we can reject the null hypothesis that "mutations in window w_{j} are not negatively related (or undifferentiated) to the activity of the $\mathbf{T E}$ ". If the null hypothesis is rejected, then the window w_{j} is harmful, and the sites in the window are harmful sites.

Step 6: filter out all windows that are harmful and form overall harmful regions.

Example 1 below shows how to test if a window is a harmful window by comparing the observed correlation and simulated correlations between elements' mobile activities and mutations in a window using the above method.

Example 1. Assume a window size wsize $=10$, the number of iterations $n=10,000$, and consider the window w_{20} where the window is between positions 20 and 29. Given M as the matrix of mutations in windows, calculate the observed correlation of w_{20} by comparing the number of mutations in the 20th window, $M[, 20]$ (the 20th column of the matrix), and the elements' activity fractions vector, α_{N}. The observed correlation is $\rho_{20}=-0.5059255$. Then perform the following steps:

Step 1: permute $M[, 20] n$ times and calculate the correlation for every permutation, denoted by $\rho_{(1,20)}, \rho_{(2,20)}, \ldots, \rho_{(n, 20)}$.
The distribution of the simulated correlations $\rho_{(1,20)}, \rho_{(2,20)}, \ldots, \rho_{(n, 20)}$ is shown in Figure 3.6.

Figure 3.6: The distribution of the simulated correlations in the window between position 20 and 29 .

Step 2: calculate the p-value of the observed correlation in the distribution: $p_{20}=P\left(\rho_{(i, 20)} \leq \rho_{20}\right)<0.00001$.
Using the same method, the p-values of all windows can be calculated.

Step 3: perform a multiple test correction to calculate the q-values. The q-value of the window in this example is calculated as $q_{20}<0.00001$.

Step 4: given the confident threshold $\lambda=0.05$, the null hypothesis is rejected. Hence, the window w_{20} is considered a harmful window, which means that mutations occurring within this window are more affective to the mobile activities of the Alu Y elements.

Using this method, the p-value and q-value are calculated for every window in the $A l u Y$ consensus and the results are shown in Figure 3.7 (a) and (b) respectively.

Given a confidential threshold $\lambda=0.05$, a window in the $A l u Y$ consensus is identified as a harmful window if and only if its q-value $\leq \lambda$. The harmful windows that are overlapped form into harmful regions as listed in Table 3.2 .

Figure 3.7: The p-values in (a), and q-values in (b) of the Alu Y elements. The x-axis gives the windows in order on the Alu Y consensus.

region ID	regionStart	regionEnd	average q-value
1	14	34	0.0101
2	38	57	0.0183
3	78	87	<0.0001
4	149	172	0.0178
5	180	190	<0.0001
6	212	222	0.0232

Table 3.2: The harmful mutation regions in Alu Y elements calculated from correlation analysis $(\lambda=0.05)$.

With $\lambda=0.05$, the identified harmful regions in Table 3.2 cover 34.5% of the total length of Alu Y consensus sequence. Next, these computationally identified regions will be verified to be harmful to the activity of Alu Y elements.

3.4.3 Verifications

In this subsection, the harmful regions in Table 3.2 will be verified in two different ways. First, the Alu Y elements with similar percent identity having various activity is due to whether or not mutations occurred in harmful regions. Second, a possible reason of the harmful regions affecting transpositional activity is because the harmful regions overlap with the functional sites of the AluYa5 RNA that are important for the transposition of the elements.

Verification by activity of $A l u Y$ elements

The sequences of the $A l u Y$ elements from [12] are compared to the Alu Y consensus sequence in this section. A relationship between the percent identity of these elements and their levels of mobile activity is plotted in Figure 3.2. It is observed that by grouping some elements with similar percent identity into vertical bins, as marked in the figure, the activity levels of the elements in the same bin vary to a large extent. For example, the elements in bin $\# 1$ all have a similar percent identity with the consensus ($\sim 97 \%$), but their activities range from 1% to 106% (the activity fraction is in comparison to the activity of AluYa5, and if an element is more active than $A l u Y a 5$, the activity fraction could go over 100%).

One possible explanation for this difference is that some mutations occurred in the elements' harmful regions, which decreased their activities dramatically. Thus, all mutations in the high activity group are labelled as "neutral sites", as the elements remain highly active despite the mutations. In other words, these mutations might be "less effective" to their transpositional activities.

	Activity group	Harmful regions	Neutral sites
bin 1	low activity	13%	63%
	moderate activity	13%	63%
	high activity	0%	100%
	low activity	0%	0%
	moderate activity	0%	5%
	high activity	0%	0%
	moderate activity	0%	0%
	high activity	0%	11%
bin 4	low activity	0%	8%
	moderate activity	40%	20%
	high activity	0%	10%

Table 3.3: The percentage of mutations grouped by bins marked on Figure 3.2 over the total number of mutations in each group.

Table 3.3 lists the percentage of mutations that occurred in harmful region and neutral region respectively for each activity group in the bins in Figure 3.2. It is observed that, in the low activity groups of each bin, there are more mutations in the harmful region compared to other activity groups. Moreover, none of the mutations in the high activity groups falls into the harmful regions. Therefore, the mutations that occurred in the harmful region may cause the low activity levels of these elements.

Verification by AluYa5 RNA secondary structure

As introduced in Section 3.2, Alu elements are derived from two 7SL RNA forming left and right arms, and the left arm contains A and B boxes of the RNA polymerase III internal promoter. Figure 3.8 shows the secondary structure of the AluYa5 RNA calculated by Mfold [149] (a program for predicting the secondary structure of RNA) based on previously determined secondary structure in [128, 55. It is known that SRP9/14 binding is necessary for efficient $A l u$ mobilization, and the left Alu monomer binding to SRP9/14 is more important for mobilization than the right Alu monomer binding [12]. In Figure 3.8, the major and the minor SRP contact sites, as well as the A and B boxes, are marked on the structure in grey; the identified harmful regions from Table 3.2 are marked in yellow. As visually indicated in Figure 3.8 , the harmful regions "cover" the two major SRP contact sites and Box B very well, with three other unknown regions that are recognized as harmful. The unknown regions might be caused by the limited amount of Alu transposition data, or they may have some interesting unknown functions.

Figure 3.8: The secondary structure of an AluYa5 RNA. The SRP contact sites and the A and B boxes are marked in grey. The harmful regions identified in Table 3.2 are marked in yellow along the structure as indicated in the legend.

Next, it will be shown that the identified harmful regions covering the functional regions are not picked up totally randomly (by chance). Define the coverage of harmful regions as the percentage of the overlapped number of positions between harmful regions (marked in yellow) and functional regions (marked in grey)
divided by the total number of positions in the functional regions (marked in grey). Another simulation is developed to compare the coverage of the harmful regions and that of randomly generated regions, which is described as follows: given the lengths and positions of functional regions ($n f$ as number of functional regions), the lengths and positions of harmful regions ($n h$ as number of harmful regions), and the number of trials as n,

1. calculate the coverage of harmful regions

$$
\text { Cov }_{\text {harmR }} \text {. }
$$

2. For every iteration i, where $1 \leq i \leq n$,
(a) randomly generate $n h$ regions with the same lengths as the harmful regions identified as shown in Table 3.2, and the algorithm makes sure that these regions do not overlap with each other;
(b) calculate the coverage of randomly generated regions in this iteration, denoted by $C o v_{\text {randR }}{ }^{i}$.
3. After n iterations, there are n generated coverages, denoted by

$$
C o v_{\mathrm{randR}^{1}}, C o v_{\mathrm{randR}^{2}}, \ldots, C o v_{\mathrm{randR}^{n}}
$$

4. Calculate the probability where the coverage of harmful regions is less than the coverage of random regions as

$$
P\left(\operatorname{Cov}_{\text {harmR }}<\operatorname{Cov}_{\text {randR }}\right)
$$

Using this method and running the simulation on the Alu Y harmful regions calculated in Table 3.2 for $n=10,000$ iterations, Figure 3.9 is the distribution of the coverage of random regions, and the blue line on the figure shows the coverage of the harmful regions in Table 3.2 ,

The probability is calculated as $P\left(C o v_{\text {harmR }}<C o v_{\mathrm{randR}}\right)=22 \%$; that is, 78% of randomly generated regions have less coverage than the harmful regions identified by our method. Therefore, we conclude that the harmful regions covering the Alu Y functional regions and this coverage is probably not by chance.

Figure 3.9: The distribution of the coverage of random generated regions. The blue vertical line is the coverage of the harmful regions.

3.5 Method II: Identification of harmful regions by group comparisons

In this section, the same type of analysis and verifications will be repeated, but with another computational method, called group comparison analysis, to identify the harmful regions by randomly introducing mutations into the elements, then comparing them with different activity groups (Definition 1) to evaluate statistical significance tests. This is a statistical technique similar to comparing two population means [99. Rather than classifying regions as harmful or not, the harmful regions identified by this method are classified into more detailed groups in terms of changing the activity levels in different ways, e.g., mutations in some regions can potentially change a TE from high activity level to moderate activity level, etc.

In describing this approach, some additional terms and labels are used. Based on the activity group defined in Definition 1, mutations of a set of elements is defined as follows.

Definition 5. Given a set (group) of related elements, e.g., elements of the same activity group, the number of mutations of the group is defined as the total number of the mutations (versus consensus) that occurred in every element in this group.

Thus mutations can occur more than once at a nucleotide position in the consensus sequence for a group, when more than one element is mutated at the same position.

In the group comparison analysis, it is a set of elements (not a single element) in consideration. Similar to the definition of the mutations in a window of an element (Definition 3), the mutations in a window of a set of elements is defined as below.

Definition 6. Given a window w_{i}, and a set of elements g, m_{i}^{g} is defined as the number of mutations in the
elements of the set (group) g in the window w_{i}. The number of elements in the set is denoted as $|g|$.

It should be noted that there are always two sets of elements from the same consensus, denoted as g_{1} and g_{2}, in comparison. A ratio is used to compare mutations in elements of two different activity groups, as defined in Definition 7

Definition 7. Given the mutations in the window w_{i} in the elements of two different activity groups, g_{1} and g_{2}, the ratio R_{i} of the window w_{i} is defined as

$$
\begin{equation*}
R_{i}=\frac{m_{i}^{g_{2}}+1}{m_{i}^{g_{1}}+1} \times \frac{\left|g_{1}\right|}{\left|g_{2}\right|} \tag{3.5.1}
\end{equation*}
$$

This ratio describes the relationship between the mutations within a specific window of two groups; more specifically, the ratio indicates how different the number of mutations of the two groups are in a window. Note that there might be some cases where there is no mutated position in the elements of the g_{2} group in the window, therefore, 1 is added to both the numerator and the denominator to avoid zero denominators.

There are four activity groups defined in Definition 1 the high activity group, the moderate activity group, the low activity group, and the inactive group. Take the example of the AluY elements in [12], and compare the elements in a group of higher activity $\left(g_{1}\right)$ with elements in a group of lower activity $\left(g_{2}\right)$ as listed in Table 3.4

	$g_{1}:$ group with higher activity level	g_{2} : group with lower activity level
Comparison type 1	the high activity group	the moderate activity group
Comparison type 2	the high activity group	the low activity group
Comparison type 3	the high activity group	the inactive group
Comparison type 4	the moderate activity group	the low activity group
Comparison type 5	the moderate activity group	the inactive group
Comparison type 6	the low activity group	the inactive group

Table 3.4: Comparison types of the group comparison analysis.

The observed ratios were calculated as in Equation 3.5.1 in every window of the Alu Y consensus for each comparison type listed above, and the results were visualized in the heat map in Figure 3.10, where the windows of the $A l u Y$ consensus are shown in the x-axis; the six comparisons in Table 3.4 are shown in the y -axis.

From this figure, it can be seen that certain windows have apparently larger ratios, which indicates that certain windows tend to have a larger difference in the number of mutations in the elements in the two groups comparing to other windows. However, the heat map cannot show whether the differences are correlated with

Figure 3.10: Observed ratios R_{i} of the six comparison types in Table 3.4 where the x -axis is all windows on the $A l u Y$ consensus sequence and the y -axis is the comparison types.
the mobile activities of the elements in the two groups; that is, the difference in mutations may change the elements from a group of higher activity into a group of lower activity.

Next, by using a statistical simulation, the significance of the null hypothesis that "the observed ratio is not greater than expected by chance" will be tested.

3.5.1 Statistical significance tests and results

In order to reveal the relationships between the mobile activity and the mutations in a window, the above null hypothesis is rewritten as: "mutations in a window are not negatively related (or undifferentiated) to the activity of the TE", to show a direct relationship between mutations and activity of TEs. A simulation is designed to test the null hypothesis, which is based on the assumption that a mutation can randomly occur at any nucleotide position in a sequence. Note that the evolutionary process of TEs diverging into different subfamilies by accumulating mutations with a mutation rate will not be simulated; instead, given the total number of mutations in the currently existing copies of TEs in an activity group, only the positions where these mutations occurred in the sequence will be simulated. Using the notations defined above, the simulation is described as generally as possible, as follows, so that it can be applied to other TE families. The following steps are performed for each of the comparison types in Table 3.4 .

Step 1: calculate observed ratios for all windows, denoted as $R_{1}, R_{2}, \ldots, R_{n w}$.

Step 2: generate simulated ratios.

Given the number of iterations as n (e.g., $n=10,000$), for each iteration denoted by i,

1. generate $m^{g_{1}}$ random positions between 1 and the sequence length L for the g_{1} group, and generate $m^{g_{2}}$ random positions between 1 and the sequence length L for the g_{2} group. The random positions are nucleotide positions in the consensus sequence;
2. calculate simulated ratios in all windows in this iteration, denoted as $r_{i 1}, r_{i 2}, \ldots, r_{i n}$.

Step 3: form observed ratios and simulated ratios into a matrix. After the n iterations, there are n simulated ratios, $r_{i 1}, r_{i 2}, \ldots, r_{i N}$. The simulated ratios along with the observed ratios are formed into a matrix and summarized in Table 3.5 .

iteration	w_{1}	w_{1}	w_{3}	\ldots	w_{j}	\ldots	$w_{n w}$
1	r_{11}	r_{12}	r_{13}	\ldots	$r_{1 j}$	\ldots	$r_{1(n w)}$
2	r_{21}	r_{22}	r_{23}	\ldots	$r_{2 j}$	\ldots	$r_{2(n w)}$
\vdots							
i	$r_{i 1}$	$r_{i 2}$	$r_{i 3}$	\ldots	$r_{i j}$	\ldots	$r_{i(n w)}$
\vdots							
n	$r_{n 1}$	$r_{n 2}$	$r_{n 3}$	\ldots	$r_{n j}$	\ldots	$r_{n(n w)}$
observed ratios	R_{1}	R_{2}	R_{3}	\ldots	R_{j}	\ldots	$R_{n w}$

Table 3.5: The matrix of observed and simulated ratios in each window.

Step 4: calculate p-values for each window.

For each column $w_{j}(1 \leq j \leq n w)$ in Table 3.5. calculate a p-value of R_{j} in the distribution of $r_{(i, j)}(1 \leq i \leq n)$, which is $p_{j}=P\left(r_{(i, j)} \geq R_{j}\right)$.

Step 5: calculate q-values for each window.

After the p-values are calculated for each window, estimate the q-values of each window, $q_{1}, q_{2}, \ldots, q_{n w}$ using the function qualue in the R Language.

Step 6: test the null hypothesis for each window.

For each window $w_{j}(1 \leq j \leq n w)$, compare its q-value, q_{j}, to a confidence threshold $\lambda($ eg. $\lambda=0.05)$. If $q_{j}<\lambda$, we can reject the null hypothesis that "mutations in window w_{j} are not negatively related (or undifferentiated) to the activity of the TE". If the null hypothesis is rejected, then the window w_{j} is negatively related to the activity of the TE .

Step 7: filter out all windows that are harmful and form overall harmful regions.

Consider the case comparing the groups of high activity elements ($g 1$) and inactive elements ($g 2$) to identify potential harmful sites. Mutations at these sites indeed may deactivate a highly active Alu element. Example 2 illustrates how to test the hypothesis in a specific window using the Alu Y activity data.

Example 2. Assume a window size is wsize $=10$, the number of iterations is $n=1000$, and consider the case where the window occurs between positions 20 and 29. Here is an example to test if this window is a harmful window by comparing the high activity group with the inactive group. The observed ratio calculated by AluY data using Equation 3.5.1 for this window is $R_{20}=5$.

The empirical distribution of the simulated ratios in the experiment is shown in Figure 3.11.

Figure 3.11: The empirical distribution of simulated ratios of the window w_{20} (between position 20 and 29). The x -axis is the simulated ratios of the window, and the y -axis is the probability of the ratios.

The p-value of the observed ratio for this window is $P\left(r \geq R_{20}\right)=0.367$, and the q-value is $q_{20}<0.0001$, which is less than the confident threshold $\lambda=0.05$. Therefore, the null hypothesis that "the observed ratio is not greater than expected by chance" can be rejected. The window from position 20 to 29 is considered as harmful.

Table 3.6 shows all the harmful regions within the $A l u Y$ consensus with $q \leq \lambda$ using the above method by comparing two groups of elements: g_{1} is the high activity elements group; g_{2} is the inactive elements group. Mutations occurring in these regions can possibly turn an highly active Alu Y element into an inactive element.

$w . s t a r t$	$w . e n d$	p-value	q-value
153	162	<0.0000000000	<0.000000000
154	163	<0.0000000000	<0.000000000
155	164	0.0001290323	0.007045164
156	165	0.0001282051	0.007045164
158	167	0.0001265823	0.007045164
45	54	0.0002222222	0.007583333
46	55	0.0002173913	0.007583333
47	56	0.0002127660	0.007583333

Table 3.6: Identified harmful windows with $\lambda=0.05$ comparing two groups of elements: g_{1} is the high activity elements group; g_{2} is the inactive elements group. The column of w.start is the start nucleotide position in the $A l u Y$ consensus sequence; w.end is the end nucleotide position.

Applying the same method to each of the comparison types (pair of activity groups) in Table 3.4, the identified regions of each type are listed in Table 3.7. Note that there are no harmful regions identified in type 1 and type 6 comparisons.

Type ID	Compared activity groups	Harmful regions
Type 2	$g_{1}=$ high activity group	$153 \sim 171$
	$g_{2}=$ low activity group	$272 \sim 281$
	$g_{1}=$ high activity group	$45 \sim 56$
	$g_{2}=$ inactive group	$153 \sim 167$
		$20 \sim 34$
Type 4	$g_{1}=$ moderate activity group	$48 \sim 57$
	$g_{2}=$ low activity group	$160 \sim 170$
Type 5	$g_{1}=$ moderate activity group	$45 \sim 58$
	$g_{2}=$ inactive group	

Table 3.7: Identified harmful regions with the start and end positions of each region. The comparison types (from Table 3.4) are coded with different colours, which will be used in the next section.

3.5.2 Verifications

Similar to the verification in Section 3.4.3 the identified harmful regions in Table 3.7 will be verified in two different ways as well.

Verification by activity of Alu Y elements

Table 3.8 lists the percentage of mutations that occurred in each harmful region for each activity group in the bins in Figure 3.2. It can be seen that, in the low activity groups of each bin, there are more mutations in the harmful regions compared to other activity groups. Therefore, the mutations that occurred in the harmful regions may cause the lower activity levels of these elements. Oppositely, most mutations in the high activity groups are within the neutral regions, and none of them fell into the harmful regions, which indicates that mutations in the neutral regions do not have a large effect on the elements' activity levels. On the other hand, there are more mutations in regions 1 and 2 than in regions 3 and 4 in moderate and low activity groups, which indicates that mutations that occurred in region 1 and 2 have more effects on the mobile activities.

	activity group		Harmf	regions		Neutral sites
		Type 2	Type 3	Type 4	Type 5	
bin 1	high	$\begin{gathered} 0 \% \\ 37.5 \% \\ 37.5 \% \end{gathered}$	$\begin{gathered} 0 \% \\ 12.5 \% \\ 0 \% \end{gathered}$	$\begin{gathered} 0 \% \\ 0 \% \\ 12.5 \% \end{gathered}$	$\begin{aligned} & 0 \% \\ & 0 \% \\ & 0 \% \end{aligned}$	100\%
	moderate					62.5\%
	low					62.5\%
bin 2	high	0\%	0\%	0\%	0\%	92.3\%
	moderate	0\%	0\%	0\%	0\%	65\%
	low	20\%	3.3\%	10\%	0\%	20\%
bin 3	high	0\%	0\%	0\%	0\%	58.3\%
	moderate	11.1\%	11.1\%	0\%	0\%	66.7\%
	low	11.8\%	5.9\%	11.8\%	5.9\%	64.7\%
bin 4	high	0\%	0\%	0\%	0\%	60\%
	moderate	40\%	0\%	0\%	0\%	20\%
	low	0\%	0\%	0\%	0\%	33.3\%

Table 3.8: The percentage of mutations grouped by bins marked in Figure 3.2 over the total number of mutations in each activity group. Because of the overlap between regions, the percentages in the columns in the same row have overlapped parts too.

Verification by Alu Y RNA secondary structure

The harmful regions in Table 3.7 are marked on the Alu RNA secondary structure in Figure 3.12 ,

Figure 3.12: The secondary structure of an Alu Y RNA. The SRP contact sites and the A and B boxes are marked in Yellow. The harmful regions identified in Table 3.7 are marked in different colours along the structure as indicated in legend.

As visually indicated in the figure, these regions "cover" the two major SRP contact sites very well, with two other unknown regions that are recognized as harmful.

Another simulation that is the same as in Section 3.4 .3 is developed to compare the coverage of the harmful regions and that of randomly generated regions. Running the simulation on the Alu Y harmful regions calculated in Table 3.7 for 10,000 iterations, Figure 3.13 is the distribution of the coverage of random regions, and the blue line on the figure shows the coverage of the harmful regions in Table 3.7

Similarly, the probability is calculated as $P\left(\operatorname{Cov}_{\text {harmR }}>C o v_{\text {randR }}\right)=79.35 \%$; that is, 79.35% of randomly generated regions have less coverage than the harmful regions identified by the group comparison method. Therefore, the harmful regions cover the $A l u Y$ functional regions and this coverage is probably not by chance.

Figure 3.13: The distribution of the coverage of random generated regions. The blue vertical line is the coverage of the harmful regions.

3.6 Additional case studies

In Section 3.4. the computational method proposed to calculate the harmful mutation regions of TEs was applied to a specific TE family (the Alu Y subfamily) where the transpositional activity fractions of the elements in this family were quantified in [12]. The predicted regions of the AluY elements using this method were verified in Section 3.4.3, which also supports the correctness of the computational method proposed. In this section, this method will be applied to two other cases - the Alu family generally and the LINE-1 (L1) family, to identify the harmful mutation regions lying within their consensus sequences.

3.6.1 The Alu family

The work in [12] has systematically tested 89 representatives from many Alu families and subfamilies, and in Section 3.4, all the Alu Y elements have been examined. In this subsection, the computational method will be applied to a bigger set of elements of the Alu family, including 9 AluJ, 28 AluS, and $52 A l u Y$, where their activity fractions are also quantified in 12 .

There are a total of 89 elements $(N=89)$ and the length of the $A l u$ consensus is $L=312$. First, pairwise sequence alignment of each of the $N A l u$ elements is performed against the Alu consensus sequence from Repbase Update to get the mutation data for each element. Given the window size as wsize $=10$, a mutation matrix, $M(N \times n w)$, is calculated as in Equation 3.3.1. where $n w=L-w s i z e+1$. This mutation matrix, representing the number of mutations in each window, is plotted in the heat map as shown in Figure 3.14

windows on Alu consensus sequence

Figure 3.14: The number of mutations of the Alu elements in each window on the Alu consensus $($ wsize $=10)$, where the x -axis is all windows on the Alu consensus sequence and the y -axis is the Alu elements sorted by their activity fractions in descending order from the top to the bottom of the chart.

The observed Pearson's coefficient of correlation between the mutations in windows and the activities of the Alu elements are calculated using Equation 3.4.1 and is shown in Figure 3.15.

Figure 3.15: The Pearson's coefficients of correlation between the number of mutations in each window and the activity fractions of the $A l u$ elements. The x-axis gives the windows in order on the Alu consensus.

Then the steps in Section 3.4.2 are followed to perform the statistical significance tests on the Alu data for $n=10,000$, and the simulated correlations are calculated. The p-value and q-value are calculated for each window. The results are shown in Figure 3.16 . Finally, the harmful regions in the Alu elements are calculated and listed in Table 3.9. In summary, the total length of the harmful mutation regions is 171 bp , which is 54.81% of the Alu consensus.

Figure 3.16: The p-values in (a), and q-values in (b) of the $A l u$ elements. The x-axis gives the windows in order on the Alu consensus.

region ID	regionStart	regionEnd	average q-value
1	1	62	0.0010
2	104	119	0.0015
3	126	144	0.0181
4	147	173	0.0078
5	176	193	0.0102
6	233	250	0.0066
7	254	266	0.0176

Table 3.9: The harmful mutation regions in Alu elements calculated from correlation analysis $(\lambda=$ 0.05).

The harmful mutations regions calculated in the Alu elements (Table 3.9) are then compared with the regions in the AluY elements (Table 3.2) as listed in Table 3.10. As the AluY is a subfamily of Alu elements, their consensus sequences are very similar with a percent identity of 88.38%. Moreover, by pairwise aligning the two consensus sequences, there are only two indels in the global alignment, one of length 2 in the AluY consensus sequence (positions 62 and 63), the other of length 1 in the Alu consensus sequence (position 134). The rareness of indels indicates that the two sequences are aligned very compactly, and their coordinates are almost consistent (off by 1 or 2 in some regions) in the two consensus sequences, so that the positions of harmful regions can be compared directly between the $A l u$ and $A l u Y$ families. Calculated from Table 3.10 , the number of overlap positions of the harmful regions of the two TE families is 78.35% of the AluY harmful regions and 46.63% of the Alu harmful regions.

AluY		Alu	
regionStart	regionEnd	regionStart	regionEnd
14	34	1	62
38	57	104	119
78	87	126	144
149	172	147	173
180	190	176	193
212	222	233	250
		254	266

Table 3.10: Comparison between the harmful mutation regions in Alu Y and $A l u$ elements.

3.6.2 The $L 1$ family

$L 1$ elements comprise 17% of the human genome [84]. An active $L 1$ is about 6 Kbp in length, and it has been estimated that an average diploid human genome contains approximately 80-100 active L1s [17]. In [17], 82 $L 1$ elements were cloned and each assayed for its ability to retrotranspose in cultured cells. These elements were then compared with the $L 1_{R P}$ element to get their quantified retrotranspositional activity fractions in a similar fashion to [12].

Among the $82 L 1$ elements in [17], $N=77$ were retrieved where both their sequences and activity fractions were available. The length of the $L 1$ consensus sequence (accession no. L19092.1) is $6053 \mathrm{bp}(L=6053)$. Using the computational method in Section 3.4, a mutation matrix $M(N \times n w)$ is generated, and the observed Pearson's coefficient of correlation between the mutations in windows and the activities of the L1 elements are calculated using Equation 3.4.1. Then the steps in Section 3.4 .2 are followed to perform the statistical significance tests on the $L 1$ data for $n=10,000$, and the simulated correlations are calculated. The p-value
and q-value for each window are estimated, which gives the harmful regions in the $L 1$ elements. There are 201 harmful regions calculated from $N=77$ L1 elements, and the total length of these regions is 3500 bp in total, which covers 57.82% of the $L 1$ consensus sequence.

Notice that a large number (38 out of 77) of the $L 1$ elements have an activity fraction of 0%, and many (25 out of 77) are inactive with activity fractions between 0% to 5%. Since a large number of elements are inactive (more than 80% of the total number of elements), there are mutations occurring in almost every window that contribute to the change of an element's status from active to inactive, which results in most of the windows being identified as harmful windows. Therefore, the same calculation is performed again to only include the elements with non-zero activity fractions $(N=39)$. The observed Pearson's coefficient of correlation between the mutations in windows and the activities of the $L 1$ elements are calculated using Equation 3.4.1 and shown in Figure 3.17

Figure 3.17: The Pearson's coefficients of correlation between the number of mutations in each window and the activity fractions of the $L 1$ elements. The x-axis gives the windows in order on the L1 consensus.

The p-value and q-value for each window are shown in Figure 3.18 , and the predicted harmful regions with $\lambda=0.01$ are listed in Table 3.11 (here, λ is decreased to 0.01 in order to fit the harmful regions into one page). The total length of these regions is 894 bp , which covers 14.77% of the $L 1$ consensus.

region ID	regionStart	regionEnd	average q-value	region ID	regionStart	regionEnd	average q-value
1	19	31	<0.0001	33	2945	2963	< 0.0001
2	94	112	< 0.0001	34	2983	2992	< 0.0001
3	182	191	< 0.0001	35	3147	3162	< 0.0001
4	314	323	< 0.0001	36	3198	3216	< 0.0001
5	353	362	< 0.0001	37	3247	3256	< 0.0001
6	364	375	< 0.0001	38	3299	3310	< 0.0001
7	381	407	< 0.0001	39	3330	3339	< 0.0001
8	474	491	0.0041	40	3421	3431	< 0.0001
9	505	523	< 0.0001	41	3479	3497	< 0.0001
10	530	547	< 0.0001	42	3822	3846	< 0.0001
11	588	603	< 0.0001	43	3869	3887	< 0.0001
12	661	671	< 0.0001	44	4262	4283	< 0.0001
13	698	707	< 0.0001	45	4295	4311	< 0.0001
14	854	864	< 0.0001	46	4340	4349	< 0.0001
15	925	943	< 0.0001	47	4399	4424	< 0.0001
16	1000	1020	< 0.0001	48	4446	4464	< 0.0001
17	1046	1061	< 0.0001	49	4613	4631	< 0.0001
18	1328	1342	< 0.0001	50	4676	4685	< 0.0001
19	1386	1398	< 0.0001	51	4812	4827	< 0.0001
20	1455	1467	< 0.0001	52	4899	4910	< 0.0001
21	1508	1517	< 0.0001	53	5114	5131	< 0.0001
22	1594	1612	< 0.0001	54	5152	5170	< 0.0001
23	1935	1947	< 0.0001	55	5179	5197	< 0.0001
24	2095	2104	< 0.0001	56	5269	5279	< 0.0001
25	2315	2330	< 0.0001	57	5413	5424	< 0.0001
26	2332	2348	< 0.0001	58	5426	5441	< 0.0001
27	2460	2478	< 0.0001	59	5476	5488	< 0.0001
28	2547	2556	< 0.0001	60	5586	5596	< 0.0001
29	2591	2600	< 0.0001	61	5713	5724	< 0.0001
30	2710	2722	< 0.0001	62	5756	5765	< 0.0001
31	2838	2855	< 0.0001	63	5773	5787	< 0.0001
32	2889	2899	< 0.0001	64	5816	5829	< 0.0001

Table 3.11: The harmful mutation regions in $L 1$ elements calculated from correlation analysis $(\lambda=$ 0.01).

Figure 3.18: The p-values in (a), and q-values in (b) of the $L 1$ elements. The x-axis gives the windows in order on the $L 1$ consensus.

3.6.3 Perspective

The computational method was inspired by the observation on Figure 3.4 of the AluY family that mutations occurring in most of the windows have negative correlation with the mobile activities. In contrast, in Figure 3.15 of the Alu family and Figure 3.17 of the $L 1$ family, there are a number of windows that have positive correlation with the mobile activity. A positive correlation indicates that the TE mobile activity increases as the number of mutations in a window increases. This might be because of the selection of the consensus sequence, as the mutations are calculated based on the consensus sequence which is assumed to be a "representative" element in that family, and the mutations in younger elements with higher activity relative to the consensus may seem to "increase" the elements' activity. Furthermore, as was previously mentioned, there might be many factors altering elements' activities simultaneously and mutations are only one factor among them. Thus, the reasons that some mutations have positive correlations to mobile activity might be caused by a combination of other unknown factors.

3.7 Conclusion

In this chapter, the importance of understanding major factors affecting the mobile activity of transposable elements is discussed. Two computational methods are developed to identify a list of loci such that mutations within those loci changes the activity levels in different ways, which could be used to assess the potential for developing various TE related diseases.

Method I was developed using Pearson's coefficient of correlation analysis and statistical significance tests, and method II uses activity group comparison with statistical significance tests. The results of both methods are verified by using elements with the same percent identity that can have various mobile activities due to mutations that did or did not occur within harmful regions. The identified harmful regions by both methods cover the Alu Y functional sites, which are important for its mobilization, also supporting the fact that mutations in these regions play a significant role in the transposition of active elements. Moreover, the simulation of random coverage proved that the identified harmful regions covering the functional regions is not picked up totally randomly by chance. The correlation analysis method is then applied to a bigger set of elements of the Alu family, and then to the $L 1$ family to identify their harmful mutation regions. To the best of our knowledge, this is the only work in this regard, and there has not been any other studies involving a similar data analysis.

A limitation is that the current data available does not enable the ability to assess the role of other factors influencing the activity of transposable elements, such as a transposition-selection equilibrium, a succession of burst and decay stages [22, 87], or chromatin structure, etc. Though the method was applied to the Alu and $L 1$ families in the human genome only (as they are highly active in the human genome, and the data for activity levels exist), the technique can be easily applied to other families of TEs as well in other organisms once activity levels and sequence data are developed.

Moreover, the harmful regions and their existence in active TEs can be used to inform the simulation of TEs in Chapter 7 in order to understand how TEs activate and deactivate throughout evolution and how genome evolve.

Chapter 4

The TE fragment model

In this chapter, a formal model, called the TE fragment model, will be created describing notions such as TE families and fragments within genomic sequences. This is created because it is necessary to contribute a suitable foundation and standard nomenclature for future computational analysis; therefore, the models are formal yet compatible with the biological literature on TEs. Furthermore, multiple extensions and problems can be addressed on top of the same TE fragment model. However, this chapter only contains the model itself, which is principally just a set of formal definitions (or a standard markup syntax). Essentially, this is mainly for fixing terminology, which will be used in further chapters. Indeed, the model is used as a base notation within Chapters 5, 6, 7 of this thesis.

The TE fragment model consists of initial definitions of TEs, the set of TEs, and the set of TE fragments. It does not attempt to simulate or capture the molecular operations of TE movement (copying/cutting and pasting throughout a genome). However, the model describes the order and distance between TE fragments in genomic sequences by grouping homologous TEs together. At this level of abstraction, the model can be used to capture and calculate interruptions and their frequencies in a general way. Some of the definitions are also specialized for use when this model is associated with data from the prominent TE database Repbase Update 63] and a common TE identification tool RepeatMasker [131.

4.1 Model definition

The purpose of this section is to develop a formal model of TEs and fragments of TEs in order to describe the biological concepts and problems clearly. It will be the starting point in which multiple other problems will be studied.

As a large part of research on bioinformatics is based on the analysis of DNA or amino-acid sequences, a general sequence/string and other mathematical preliminaries will be briefly defined in Definition 8

[^9]Definition 8. Define several terms and notations:

An alphabet Σ is an abstract and finite set of symbols (either nucleic acids or animo acids). A string is any finite sequence of characters over Σ. The length of s, denoted by $|s|$, is the number of characters in the string. The empty word is denoted by λ and is of length 0 . The set of all strings (including the empty word) over Σ is denoted by Σ^{*}. Let $s=s_{1} s_{2} \ldots s_{n}$ be a string, $s_{i} \in \Sigma, 1 \leq i \leq n$. Let j, k satisfy $1 \leq j \leq k \leq n$, then the substring of s which begins at the jth character and ends at the kth character is

$$
s(j, k)=s_{j} s_{j+1} \ldots s_{k}
$$

Moreover, $s(j)=s_{j}$, the j th character alone.
Let $s \in \Sigma^{*}$, then $\operatorname{frag}(s)$ is the set of all possible fragments (substrings) of s. That is,

$$
\operatorname{frag}(s)=\{s(p, q)|1 \leq p \leq q \leq|s|\} \cup\{\lambda\} .
$$

Extend this to sets of strings $S \subseteq \Sigma^{*}$ by

$$
\operatorname{frag}(S)=\bigcup_{s \in S} \operatorname{frag}(s)
$$

Given a set $X,|X|$ is the number of elements in X.

When talking about a family of transposable elements, scientists usually are referring to a set of similar sequences that evolved from a single TE sequence. Therefore, a family of transposable elements is defined to simply be a set of strings (usually these strings will be similar to each other). A set of TE families, an instance of a TE family and the consensus TE are also defined in Definition 9 .
Definition 9. A family of transposable elements (a TE family or a TE) X is a finite set of strings (usually similar to each other) with $X \subseteq \Sigma^{*}$.

An instance of a TE family X is an element $x \in X$.
A consensus TE is a consensus sequence of the elements of X.
A set of TEs χ is a finite set of TE families. That is, $\chi \subseteq 2^{\Sigma^{*}}\left(2^{\Sigma^{*}}\right.$ is the set of all subsets of Σ^{*}; and so χ is some set of sets of strings), χ is finite and each element of χ is finite.

Because of different biological contexts, it is also possible to interpret a set of TE families, χ, in multiple ways depending on the purpose. For example, χ can be used as the set of all TE families and TE instances that are present in a single genome, or as the set of sequences collected in Repbase Update, or any set of sequences that are all similar to the consensus sequences in Repbase Update within a threshold.

Knowing that one TE family contains a number of instances and each instance itself is a string, now a TE fragments set can be defined. It is expected to see many fragments of TEs scattered throughout genomes as a family of TEs becomes fragmented within a genome and becomes interrupted by other families of TEs.

Definition 10. Let χ be a finite set of TEs. Then $\bar{\chi} \subseteq 2^{\Sigma^{*}}$ is called a TE fragments set, if for each element $\bar{X} \in \bar{\chi}$, there exists $X \in \chi$ such that \bar{X} is a subset of $\operatorname{frag}(X)$.

Thus, after picking a set of TEs, a TE fragments set is any set where each element consists of fragments of one TE family in the set of TEs (separate elements in $\bar{\chi}$ could contain fragments from different TEs). Then in principle, any number of fragment sets can be picked for one set of TEs. For example, if χ is picked to be the set of all TEs in the human genome, then a TE fragments set $\bar{\chi}$ can be the set where each element contains fragments of separate TEs of length at least 50 (in this case, $\bar{\chi}=\{\bar{X} \mid x \in \bar{X}$ implies $|x|=50, \bar{X} \subseteq$ $\operatorname{frag}(X), X \in \chi$, for some $X\})$.

Although TE fragments sets are defined in a general way, it is also necessary to create a restriction to transposable elements that occur in present-day sequences. RepeatMasker (RM) [131] is a sophisticated program that uses precompiled repeat libraries to find copies of known repeats represented in the libraries (as introduced in Section 2.2.3). The program performs a similarity search on both the "+" and "-" DNA strands based on local alignments, then outputs masked genomic DNA and provides a tabular summary of repeat content (e.g., Table 2.4) detected in both DNA strands. In the following definitions, the general Definition 10 is going to be connected to the fragments reported by RepeatMasker.

The reason that RepeatMasker is chosen to connect with is because RepeatMasker is one of the most accurate tools in detecting TEs, and it is commonly used. It is also possible to replace RepeatMasker with other TE discovery tools or a combination of tools to achieve a higher accuracy in detecting TE fragments in different situations, as long as the reported detailed annotations of each TE fragment is consistent with those defined in Definition 12,

Definition 11. Let s be a string representing some genomic sequence and χ_{s} to be the set of TEs existing in s, then $\bar{\chi}\left(s \stackrel{R M}{\longleftrightarrow} \chi_{s}\right)$ is a RepeatMasker TE fragments set, running the program with a set of consensus TEs χ_{s}, against the genomic sequence s.

In other words, each element of $\bar{\chi}\left(s \stackrel{R M}{\longleftrightarrow} \chi_{s}\right)$ is a subset of some element of $\bar{\chi}$, where only TE fragments detected by the RepeatMasker program are selected.

For each TE fragment z of some TE family X, and some $\bar{X} \in \bar{\chi}\left(s \stackrel{\mathrm{RM}}{\longleftrightarrow} \chi_{s}\right)$, a tuple is associated with it in Definition 12. These attributes are referred to frequently in this thesis, and they are also consistent with the output of the RepeatMasker program.
Definition 12. Given a genomic sequence s and a set of $T E s \chi_{s}$, each TE fragment z in each $\bar{X} \in \bar{\chi}(s \stackrel{R M}{\longleftrightarrow}$ $\left.\chi_{s}\right)$ is a tuple:

$$
\begin{align*}
\operatorname{info}(z)= & (\text { genoName, genoStart, genoEnd, genoLeft, strand }, \tag{4.1.1}\\
& \text { TEName,TEFamily,TEClass,TEStart,TEEnd,TELeft }) .
\end{align*}
$$

The operator "." is used to access the attributes. For example, z.TEname is the name of the TE to which
fragment z belongs. The definition of each attribute is summarized in the list as follows (from [131]), and described in Example 3 .
genoName: The name of the genomic sequence, where the fragment was detected.
genoStart: The start position of the fragment in the genomic sequence.
genoEnd: The end position of the fragment in the genomic sequence.
genoLeft: The opposite of the number of bases after the fragment in the genomic sequence.
strand: Relative orientation: "+" or "-".

TEName: The name of the TE to which the fragment belongs.

TEFamily: The name of the TE family to which the fragment belongs.

TEClass: The class of the TE to which the fragment belongs.

TEStart: The start position of the fragment in the TE consensus sequence to which the fragment belongs, if strand is " + ", or the opposite number of bases after the fragment in the TE consensus sequence, if strand is "-".

TEEnd: The end position of the fragment in the TE consensus sequence.

TELeft: The opposite of the number of bases after the fragment in TE consensus sequence, if the strand is "+", or the start position of the fragment in the TE consensus sequence, if the strand is "-".

Two TE fragments in the same TE family, $\bar{X} \in \bar{\chi}\left(s \stackrel{\mathrm{RM}}{\longleftrightarrow} \chi_{s}\right)$, have the same genoName. Also, a TE fragment can be matched with either the consensus TE or the complement of the consensus TE in the database; however, in both cases, the "+" strand coordinate is used to represent the location where it occurs. Example 3 picks two TE fragments showing the meanings of their attributes visually with respect to a genomic sequence and TE consensus sequences.

Example 3. Compare the human chromosome 1, denoted as s, against the library of human transposable elements in Repbase Update, denoted as χ_{s}. The two TE fragments, z_{1} and z_{2}, taken from two separate sets in the RepeatMasker TE fragments set, $\bar{\chi}\left(s \stackrel{R M}{\longleftrightarrow} \chi_{s}\right)$, are as listed in Table 4.1 with their detailed attributes, and then visualized in Figure 4.1.

Fragment	genoName	genoStart	genoEnd	genoLeft	strand	TEName	TEClass	TEFamily	TEStart	TEEnd	TELeft
z_{1}	chr1	377414	377536	-248578886	+	L1ME1	LINE	L1	6022	6151	-28
z_{2}	chr1	388433	388732	-248567690	-	AluSg4	SINE	Alu	1	297	-13

Table 4.1: A table of two TE fragments on the human chromosome 1.

Figure 4.1: A conceptual visualization of the TE fragments (in blue shadow) in Table 4.1. (a) visualizes the fragment z_{1}; (b) visualizes the fragment z_{2}. Note that the lengths of the visualized sequences in the figure are not proportional to their actual lengths.

Fig. 4.1 (a) shows a fragment of the element L1ME1 (L1 family, LINE type), which was detected on the "+" strand of chromosome 1, and Fig. 4.1 (b) shows a fragment of the TE family AluSg4 (Alu family, SINE type), which was detected on the "-" strand of chromosome 1. The two fragments are detected in different strands in the consensus TE as indicated in the figure.

In the human genome, there exists a huge number of such TE fragments. Table 4.2 lists the the number of TE fragments in each chromosome based on the hg38 assembly of the human genome.

Most of the present-day copies of TEs are detected by locally aligning the consensus TE sequences against a DNA sequence; thus the DNA sequence is fragmented into segments by the local aligned fragments. Some segments of the DNA sequence are detected as fragments of those TE families, while some are non-transposon DNA sequence. For much of the further analysis in this thesis, only the TE fragments and their positional relationships are of interest, therefore, the non-transposon fragments need to be separated from the TE fragments in the sequence. In essence, this DNA sequence can be "pruned" to present only the TE segments. This process is defined in Definition 13
Definition 13. Let s be a genomic sequence, χ_{s} a fixed ordering of the set of TEs in s, where $\chi_{s}=$ $\left\{X_{1}, \ldots, X_{m}\right\}$, and $\bar{\chi}_{s}$ is a set of TE fragments. Assume $s=w_{0} z_{1} w_{1} z_{2} w_{2} z_{3} \ldots z_{k} w_{k}$, with z_{1}, \ldots, z_{k} in sets in $\overline{\chi_{s}}$, and no fragment of $w_{0}, w_{1}, \ldots, w_{k}$ are in sets in $\overline{\chi_{s}}$. Then a pruned sequence \bar{s} of s with respect to $\overline{\chi_{s}}$ is

	LINE	SINE	LTR	DNA	Total number of TE fragments
Chromosome 1	125,726	163,484	53,063	37,777	38,0815
Chromosome 2	123,495	129,486	58,436	42,016	35,4251
Chromosome 3	103,348	109,938	48,805	36,382	299,125
Chromosome 4	94,966	88,618	53,582	28,930	266,743
Chromosome 5	91,522	92,952	46,323	30,729	262,069
Chromosome 6	86,266	88,382	41,256	28,779	245,227
Chromosome 7	80,022	96,350	37,609	25,355	239,841
Chromosome 8	75,052	79,829	37,601	22,890	215,836
Chromosome 9	65,241	77,250	28,835	20,176	191,881
Chromosome 10	66,746	83,330	29,978	22,813	203,247
Chromosome 11	72,010	84,910	30,717	21,068	209,062
Chromosome 12	69,862	89,305	33,236	23,632	216,462
Chromosome 13	49,838	43,589	25,716	14,726	134,189
Chromosome 14	46,101	54,782	22,786	14,627	138,620
Chromosome 15	45,127	57,130	17,257	15,021	134,817
Chromosome 16	40,469	73,211	20,245	15,435	149,522
Chromosome 17	40,361	76,438	15,638	14,055	146,701
Chromosome 18	38,290	37,472	18,574	12,187	106,782
Chromosome 19	26,867	67,882	14,397	7,556	116,751
Chromosome 20	34,414	46,496	16,606	13,499	111,151
Chromosome 21	17,298	18,281	12,330	5,476	53,501
Chromosome 22	19,467	36,238	7,888	5,471	69,128
Chromosome X	93,431	72,352	41,028	23,315	230,560
Chromosome Y	10,307	11,528	8,271	2,079	32,207
Total number in hg 38	1,516,226	1,779,233	720,177	483,994	4,508,488

Table 4.2: A summary of the total number of TE fragments in the human genome. It also lists the TEs in four different types and summarized by chromosomes.

$$
\begin{equation*}
\bar{s}=\beta_{0} z_{1} \beta_{1} z_{2} \beta_{2} \ldots z_{k} \beta_{k}, \text { where } \beta_{i}=\left|w_{i}\right|, 0 \leq i \leq k \tag{4.1.2}
\end{equation*}
$$

That is, in a pruned sequence, replace all non-TE fragments with their lengths.

In addition, from \bar{s} and χ_{s}, an order-pruned sequence \bar{s}_{o} of \bar{s} is defined as the string over $\{1, \ldots, m\}^{*}$,

$$
\begin{equation*}
\bar{s}_{o}=j_{1}, j_{2}, \ldots, j_{k}, \text { where } z_{i} \in X_{j_{i}}, \text { for all } i, 1 \leq i \leq k \tag{4.1.3}
\end{equation*}
$$

A pruned sequence can also be extended to a set of pruned sequences. Let $S=\left\{s_{1}, \ldots, s_{N}\right\}$, then the set of pruned sequences of S is $\bar{S}=\left\{\overline{s_{1}}, \ldots, s_{N}\right\}$.

The reason for extending a pruned sequence to a set of pruned sequences is because a genome usually contains several chromosomes, which is a set of sequences. In the upcoming chapters, not only the pruned sequence/chromosome, but also the set of pruned sequences/chromosomes of a genome, will be used.

Example 4 is an example showing the pruned sequence and the order-pruned sequence of a given genomic sequence segmented by the RepeatMasker detected TE fragments.
Example 4. A piece of the human chromosome 1 from position 33632576 to 33634148 , s, is compared against the library of human transposable elements in Repbase Update, χ_{s}, where $\chi_{s}=\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right\}$, and the names of the TE families $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ are L2a, L2b, MIR3, MLT1J, MER63A. The TE fragments taken from the RepeatMasker TE fragments set, $\bar{\chi}\left(s \stackrel{R M}{\longleftrightarrow} \chi_{s}\right)$, are as listed in Table 4.3 with their detailed attributes.

Fragment	genoName	genoStart	genoEnd	genoLeft	strand	TEName	TEClass	TEStart	TEEnd	TELeft
z_{1}	chr1	33632576	33632977	-215617644	+	L2a	LINE	2941	3379	-47
z_{2}	chr1	33633163	33633226	-215617395	+	L2b	LINE	3309	3374	-1
z_{3}	chr1	33633332	33633389	-215617232	-	MIR3	SINE	-19	189	128
z_{4}	chr1	33633467	33633769	-215616852	-	L2a	LINE	-2	3424	3074
z_{5}	chr1	33633802	33633941	-215616680	+	MLT1J	LTR	262	389	-123
z_{6}	chr1	33634011	33634148	-215616473	-	MER63A	DNA	-71	139	5

Table 4.3: A table of six TE fragments on the human chromosome 1.

As in Definition 13, the genomic sequence s is

$$
s=w_{0} z_{1} w_{1} z_{2} w_{2} z_{3} w_{3} z_{4} w_{4} z_{5} w_{5} z_{6} w_{6}
$$

This sequence is visualized in Fig. 4.2, where each fragment in the sequence is also marked as the order and the name of the TE family, to which it belongs.

From Definition 13. the pruned sequence of s is

$$
\bar{s}=\beta_{0} z_{1} \beta_{1} z_{2} \ldots z_{6} \beta_{6}, \text { where } \beta_{i}=\left|w_{i}\right|, 0 \leq i \leq 6
$$

$s:$	w_{0}	z_{1}	w_{1}	z_{2}	w_{2}	z_{3}	w_{3}	z_{4}	w_{4}	z_{5}	w_{5}	z_{6}	w_{6}
$\chi_{s}:$	X_{1}	X_{2}	X_{3}	X_{1}	X_{4}	X_{5}							
TE name:	L2a	L2b	MIR3	L2a	MLT1J	MER63A							

Figure 4.2: A conceptual visualization of a genomic sequence (the human chromosome 1 from position 33632576 to 33634148), with the RepeatMasker detected TE fragments in Table 4.3. The TE fragments z_{i}, where $i=1, \ldots, 6$ in the sequence are also marked with the notation of TE families $X_{j} \in \chi_{s}$, where $j=1, \ldots, 5$, and the names of the TE families to which they belong. Note that the lengths of the visualized sequences in the figure are not proportional to their actual lengths.
and the order-pruned sequence of s is

$$
\overline{s_{o}}=1,2,3,1,4,5, \text { where } z_{i} \in X_{j_{i}}, \text { for all } i, 1 \leq i \leq 6
$$

That is, the pruned sequence of s is obtained by removing any position of s that is not a fragment of a TE, and instead replacing the part of the sequence between two TE fragments by its length. This is done so that the TE fragments themselves remain (as we are interested in studying them), but the only non-TE aspects of interest for our study of TEs is the length between fragments. The pruned sequences is describing exactly what is needed for our study of TEs.

So far, some fundamental concepts associated with key biological terms have been defined, such as a family of transposable element, a TE fragment and a pruned sequence, which are also extended to sets within the TE fragment model. These terms were ambiguous and can refer to different concepts in biological literature before they are formally defined in this thesis. This work contributes in setting up a general formal model in using these terms in a consistent way.

4.2 Discussion

The TE fragment model serves as a theoretical foundation and helps to describe many TE problems clearly in a precise way. In the next two chapters, two other theoretical models will be proposed based on the TE fragment model: the sequential interruption model (Chapter 5) captures the interruptional activities between every pair of TEs; and the recursive interruption model (Chapter 6) further captures the nested nature of the interruptional activities of older TEs which cannot be represented by the interruptional matrix in the sequential interruption model. A TE simulation in Chapter 7 will also use these definitions.

The sequential and recursive interruption models are used to analyze the interruptional activities between the already annotated/detected TE fragments (as the input), and not to discover these fragments. Thus, in the TE fragment model in this chapter, it is reasonable to replace RepeatMasker with other TE discovery tools or a combination of tools in order to achieve a possibly higher accuracy of detected TE fragments, or to use, e.g., a de novo TE discovering tool instead. In essence, any TE detection tools can be used without affecting
the definition of the theoretical models in the thesis. However, the accuracy of the chosen TE discovery tool will affect the results of our sequential and recursive interruption models, as it determines the input data of our system.

The notations and descriptions in our system are very detailed. This is because it is useful to have a formal model in order to be precise with further analysis, and for the connection to additional tools such as the linear ordering problem (Chapter 5) and stochastic context-free grammars (Chapter 6). However, this necessitates adding details to the model in order to properly capture all of the detail. For example, the annotations used by RepeatMasker described in Definition 12 are only a small subset of those provided by RepeatMasker and all of those discussed are needed for our models.

Chapter 5

The sequential interruption model and THE LINEAR ORDERING PROBLEM FOR SEQUENTIAL INTERRUPTION ANALYSIS ${ }^{1}$

Newer TEs tend to interrupt older TEs, thereby fragmenting older TEs within the single linear sequence. By analyzing that sequence, it is possible to predict where and how often the transpositional interruptions occurred throughout evolution, which can be summarized into a so-called interruption matrix describing how many times each TE interrupts each other TE. A rearrangement of the matrix is attempted in order to minimize the penalty score that is calculated from the non-0's in the upper triangle 47. This has the effect of predicting an order that those interruptional activity occurred, and further, potentially inferring the ages of these TEs, as discussed in Section 2.3 .2 . The ordering that was obtained from rearranging the interruption matrix in 47] agreed reasonably with published chronologies. This prediction is made entirely from a single genome, which can therefore be applied in many scenarios.

This interruptional activity can be represented from 47] using the model and algorithms proposed in this chapter. First, the sequential interruptions and the interruption matrix will be described and defined, then the method of estimating TE ages from [47] will be briefly discussed, and essentially the same matrix that they used for their estimation will be calculated using a specialized model called the sequential interruptions model. The model will then be connected to the linear ordering problem, a classic matrix optimization problem, whose methods can be used in solving the problem. This reduces the problem that the authors of 47] used to estimate TE ages to an existing well-studied problem (Section 5.3.2 from another area of computer science.

[^10]
5.1 Model of sequential interruptions

To analyze interruptional patterns, only the TE fragments and their relative positions in a genomic sequence are of interest. In the method in [47, an interruption is classified as occurring when one TE fragment is within a certain distance from a fragment on the left and a fragment on the right, where both are from the same TE family, and the two fragments are "close to" continuous within the consensus sequence of the TE family. This information is then compiled into a so-called interruptional matrix, giving an estimate on the number of times each TE family interrupted each other. The same analysis can be conducted using the TE fragment model (Chapter 4), and in particular, using pruned sequences of Definition 13 of Chapter 4 . This definition provides all that is necessary to calculate the interruptional matrix. Before defining a sequential interruption in Definition 16, continuous TE fragments need to be defined first. Examples will also be given to clarify the definition.
Definition 14. Let s be a genomic sequence with a set of TEs χ_{s}, TE fragment set $\bar{\chi}\left(s \stackrel{R M}{\longleftrightarrow} \chi_{s}\right)$ and pruned sequence $\bar{s}=\beta_{0} z_{1} \beta_{1} z_{2} \ldots z_{i} \beta_{i} \ldots \beta_{j-1} z_{j} \beta_{j} \ldots z_{k} \beta_{k}$ as in Equation 4.1.2). Then two TE fragments z_{i} and z_{j} $(i<j)$ are in the same transposon region, if the non-transposon distances between every pair of TE fragments between z_{i} and z_{j} is within a threshold $E \in \mathbb{N}$ in the genomic sequence:

$$
\left\{\begin{array}{l}
\beta_{i} \leq E \\
\beta_{i+1} \leq E \\
\vdots \\
\beta_{j-1} \leq E \\
\beta_{j} \leq E
\end{array}\right.
$$

Definition 15. Let s be a genomic sequence with a set of TEs χ_{s}, TE fragment set $\bar{\chi}\left(s \stackrel{R M}{\longleftrightarrow} \chi_{s}\right)$ and pruned sequence $\bar{s}=\beta_{0} z_{1} \beta_{1} z_{2} \ldots z_{k} \beta_{k}$ as in Equation 4.1.2). Then two TE fragments z_{i} and $z_{j}(i<j)$ are continuous $T E$ fragments, $z_{i} \stackrel{\varepsilon, E}{\sim} z_{j}$, with distance $\varepsilon \in \mathbb{N}$ (in the consensus sequence) and distance $E \in \mathbb{N}$ (in the genomic sequence), if they satisfy the following conditions:

1. they belong to the same TE family:

$$
z_{i} \cdot T E N a m e=z_{j} . T E N a m e ;
$$

2. they are detected in the same strand:

$$
z_{i} . s t r a n d=z_{j} . s t r a n d
$$

3. they belong to the same transposon region with the distance threshold E;
4. they are either separated or overlap ${ }^{2}$ with a distance less than or equal to ε, with respect to the $T E$ consensus sequence to which family they belong:

$$
\begin{cases}a b s\left(z_{j} \cdot T E S t a r t-z_{i} \cdot T E E n d\right) \leq \varepsilon, & \text { if } z_{i} \text { and } z_{j} \text { occur in the "+" strand, } \\ a b s\left(z_{i} \cdot T E S t a r t-z_{j} \cdot T E E n d\right) \leq \varepsilon, & \text { if } z_{i} \text { and } z_{j} \text { occur in the "-" strand. }\end{cases}
$$

Notice that continuous TE fragments are not necessarily beside each other in the genomic sequence (there could be other fragments between them), as long as they belong to the same transposon region. Some continuous TE fragments appear to have an overlap of duplication of a portion of the transposon. This is because RepeatMasker [131] often extends the homology match of both fragments to the TE consensus sequence by several base pairs.
Definition 16. Given a genomic sequence s, a set of TEs with a fixed ordering on its elements $\chi_{s}=$ $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$, a distance $\varepsilon \in \mathbb{N}$ in a TE consensus sequence, a distance $E \in \mathbb{N}$ in a genomic sequence as in Definition 15, as well as a pruned sequence $\bar{s}=\beta_{0} z_{1} \beta_{1} z_{2} \ldots z_{k} \beta_{k}$, as in Equation (4.1.2). The sequential interruptions of X_{j} by X_{i} are defined as

$$
\begin{equation*}
\Xi_{s}^{\varepsilon, E}\left(X_{i}, X_{j}\right)=\left\{k \mid z_{k} \in \bar{X}_{i}, z_{k-\eta_{1}}, z_{k+\eta_{2}} \in \bar{X}_{j}, z_{k-\eta_{1}} \stackrel{\varepsilon, E}{\sim} z_{k+\eta_{2}}, \text { and } \eta_{1}, \eta_{2} \in \mathbb{N}\right\} \tag{5.1.1}
\end{equation*}
$$

Thus, the TE family X_{i} is called interrupter, and the $T E$ family X_{j} is called interruptee.

Intuitively, $\Xi_{s}^{\varepsilon, E}$ gives the set of all positions of X_{i} interrupting X_{j} in the genomic sequence s. This matches the (more informal) description of the calculation of an interruption matrix in 477 .

Example 5 illustrates how an interruption is identified in a genomic sequence.
Example 5. Table 5.1 is a list of three TE fragments from chromosome 1 position 448062 to 448403 taken from the RepeatMasker TE fragments set, $\bar{\chi}\left(s \stackrel{R M}{\longleftrightarrow} \chi_{s}\right)$. The fragments belong to two TE families: L1MD3 and AluYc, where L1MD3 is denoted as X_{1} and AluYc is denoted as X_{2}.

Fragment	genoName	genoStart	genoEnd	genoLeft	strand	TEName	TEClass	TEStart	TEEnd	TELeft
z_{1}	chr1	448062	448139	-248802482	+	L1MD3	LINE	6988	7068	-814
z_{2}	chr1	448150	448328	-248802293	+	AluYc	SINE	122	299	0
z_{3}	chr1	448332	448403	-248802218	+	L1MD3	LINE	7068	7148	-847

Table 5.1: An example of an interruption.

As in Definition 13, the genomic sequence s is

$$
s=w_{0} z_{1} w_{1} z_{2} w_{2} z_{3} w_{3}
$$

[^11]which gives the pruned sequence \bar{s} as
$$
s=\beta_{0} z_{1} \beta_{1} z_{2} \beta_{2} z_{3} \beta_{3}
$$
where $z_{1}, z_{3} \in \bar{X}_{1}, z_{2} \in \bar{X}_{2} \bar{X}_{1}, \bar{X}_{2} \in \bar{\chi}\left(s \stackrel{R M}{\longleftrightarrow} \chi_{s}\right), \beta_{0}, \ldots, \beta_{3} \in \mathbb{N}$.

Table 5.2 shows the distances between these TE fragments. Given the distance threshold in genomic sequence as $E=20 b p\left(\beta_{1} \leq E\right.$ and $\left.\beta_{2} \leq E\right)$, and the distance threshold in transposon sequence as $\varepsilon=10 b p(0 b p \leq \varepsilon)$, then z_{1} and z_{3} are continuous TE fragments; that is, $z_{1} \stackrel{\varepsilon, E}{\sim} z_{3}$. These three TE fragments are identified as an interruption, where the interrupter is $X_{2}\left(z_{2} \in X_{2}\right)$, AluYc, and the interruptee is $X_{1}\left(z_{1}, z_{3} \in X_{1}\right)$, L1MD3.

	distance in genomic sequence	distance in transposon sequence
$\beta_{1}:$ distance between z_{1} and z_{2} in genomic sequence	$\begin{aligned} & z_{2} \cdot \text { genoStart }-z_{1} \cdot \text { genoEnd } \\ & =448150-448139 \\ & =11 \mathrm{bp} \leq E \end{aligned}$	
$\beta_{2}:$ distance between z_{2} and z_{3} in genomic sequence	$\begin{aligned} & z_{3} . \text { genoStart }-z_{2} . \text { genoEnd } \\ & =448332-448328 \\ & =4 b p \leq E \end{aligned}$	
z_{1} and z_{3}		$\begin{aligned} & z_{3} \cdot \text { TEStart }-z_{1} \cdot \text { TEEnd } \\ & =7068-7068 \\ & =0 b p \leq \varepsilon \end{aligned}$

Table 5.2: An example of distances between three TE fragments identified as an interruption in Example 5, where the interrupter is $z_{2}(A l u Y c)$ and the interruptee is z_{1} and z_{3} (L1MD3).

Using this definition, a large number of sequential interruptions were detected in the human genome (hg38) as listed in Table 5.3, using the distance in the genomic sequence $E=20 \mathrm{bp}$, and the distance in the transposon sequence $\varepsilon=10 \mathrm{bp}$. In this case, the E and ε are chosen to make the detection of interruptions very strict compared to [47, in which 500 bp of "nonrepeat-masked sequence" (this is essentially the sum of $\beta \mathrm{s}$ in the same transposon region) was used to detect potential transposon clusters and an increasing "repeat index" (this is essentially the ε) up to 50% of the length of the shorter of the two fragments was used to detect continuous fragments.

The frequencies with which the interruptions between different families of TEs occur in the sequence can also show the activity of these TE families. Therefore, the abundance of interruptions is defined to capture the frequencies of interruptions in Definition 17 to represent interruptions in a general way.

Definition 17. Given a genomic sequence s, a set of TEs with a fixed ordering on its elements $\chi_{s}=$ $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$, the abundance that X_{i} interrupts X_{j} in $s, 1 \leq i \leq m, 1 \leq j \leq m$, is defined as the total number of times that X_{i} interrupts X_{j}. The abundance is equal to

$$
\left|\Xi_{s}^{\varepsilon, E}\left(X_{i}, X_{j}\right)\right| .
$$

	Total number of interruptions	Number of interruptions per Mbp
Chromosome 1	33,186	133
Chromosome 2	28,985	120
Chromosome 3	23,620	119
Chromosome 4	20,214	106
Chromosome 5	20,960	115
Chromosome 6	19,616	115
Chromosome 7	20,965	132
Chromosome 8	17,016	117
Chromosome 9	16,424	119
Chromosome 10	17,316	129
Chromosome 11	16,860	125
Chromosome 12	18,500	139
Chromosome 13	10,470	92
Chromosome 14	12,031	112
Chromosome 15	12,271	120
Chromosome 16	13,741	152
Chromosome 17	14,567	175
Chromosome 18	8,422	105
Chromosome 19	13,235	226
Chromosome 20	9,720	151
Chromosome 21	4,566	98
Chromosome 22	6,922	136
Chromosome X	21,400	137
Chromosome Y	2,636	46
Human Genome	383,643	124

Table 5.3: A summary of the number of sequential interruptions $(E=20 b p, \varepsilon=10 b p)$ detected in the human genome (hg38), summarized by chromosomes.

For a genome S that has chromosomes $s_{1}, s_{2}, \ldots, s_{N}$, the abundance that X_{i} interrupts X_{j} for all chromosomes are added up, which is

$$
\left|\Xi_{S}^{\varepsilon, E}\left(X_{i}, X_{j}\right)\right|=\sum_{n=1}^{N}\left|\Xi_{s_{n}}^{\varepsilon, E}\left(X_{i}, X_{j}\right)\right| .
$$

The interruption array of X_{i} on S, for $1 \leq i \leq m$, is the array

$$
M(i)=\left[\left|\Xi_{S}^{\varepsilon, E}\left(X_{i}, X_{j}\right)\right|\right]_{j=1, \ldots, m}
$$

The interruption matrix on S is an $m \times m$ matrix defined by

$$
M=\left[\left|\Xi_{S}^{\varepsilon, E}\left(X_{i}, X_{j}\right)\right|\right]_{\substack{i=1, \ldots, m \\ j=1, \ldots, m}}
$$

The interruption array and matrix are different ways to structure the abundance by using the ordering on the elements in χ_{s}. This interruption matrix was calculated in a similar fashion as the interruptional matrix of 47.

Example 6illustrates how to apply the model of sequential interruptions in a real situation to find sequential interruptions, and calculate the interruptional matrix.

Example 6. Table 5.4 is a list of five TE fragments from chromosome 1 position 448062 to 449273 taken from the RepeatMasker TE fragments set, $\bar{\chi}\left(s \stackrel{R M}{\longleftrightarrow} \chi_{s}\right)$, in Example 3. The five fragments belong to three TE families: X_{1}, X_{2}, and X_{3}, where the names of the families X_{1}, X_{2}, X_{3} are L1MD3, AluYc, AluSq.

Fragment	genoName	genoStart	genoEnd	genoLeft	strand	TEName	TEClass	TEStart	TEEnd	TELeft
z_{1}	chr1	448062	448139	-248802482	+	L1MD3	LINE	6988	7068	-814
z_{2}	chr1	448150	448328	-248802293	+	AluYc	SINE	122	299	0
z_{3}	chr1	448332	448403	-248802218	+	L1MD3	LINE	7068	7148	-847
z_{4}	chr1	448403	448710	-248801911	+	AluSq	SINE	1	313	0
z_{5}	chr1	448710	449273	-248801348	+	L1MD3	LINE	7149	7753	-242

Table 5.4: An example of sequential interruptions on chromosome 1.

As in Definition 13, the genomic sequence s is

$$
s=w_{0} z_{1} w_{1} z_{2} w_{2} z_{3} w_{3} z_{4} w_{4} z_{5} w_{5},
$$

as visualized in Figure 5.1.

The pruned sequence of s is

$$
\bar{s}=\beta_{0} z_{1} \beta_{1} z_{2} \beta_{2} z_{3} \beta_{3} z_{4} \beta_{4} z_{5} \beta_{5},
$$

where $z_{1}, z_{3}, z_{5} \in \bar{X}_{1}, z_{2} \in \bar{X}_{2}, z_{4} \in \bar{X}_{3}, \bar{X}_{1}, \bar{X}_{2}, \bar{X}_{3} \in \bar{\chi}\left(s \stackrel{R M}{\longleftrightarrow} \chi_{s}\right), \beta_{0}, \ldots, \beta_{5} \in \mathbb{N}$, and $z_{1} \stackrel{\varepsilon, E}{\sim} z_{3}, z_{3} \stackrel{\varepsilon, E}{\sim} z_{5}$, as shown in Figure 5.1.

$s:$	w_{0}	$\mathbf{z}_{\mathbf{1}}$	w_{1}	$\mathbf{z}_{\mathbf{2}}$	w_{2}	$\mathbf{z}_{\mathbf{3}}$	w_{3}	$\mathbf{z}_{\mathbf{4}}$	w_{4}	$\mathbf{z}_{\mathbf{5}}$	w_{5}
$\chi_{s}:$	X_{1}	X_{2}	X_{1}	X_{3}	X_{1}						
TE name:	LIMD3	AluYC	L1MD3	AluSq	L1MD3						

Figure 5.1: A conceptual visualization of a genomic sequence (the human chromosome 1 from position 448062 to 449273), with the RepeatMasker detected TE fragments in Table 5.4. Note that the lengths of the visualized sequences in the figure are not proportional to their actual lengths.

It is possible to see that there are two potential interruptions in s: an instance of X_{1} is present in the sequence, then an instance of X_{2} and an instance of X_{3} potentially inserted themselves into the instance of X_{1} to break it into three segments z_{1}, z_{3}, and z_{5}; that is, $\left|\Xi_{s}^{\varepsilon, E}\left(X_{2}, X_{1}\right)\right|=1$ and $\left|\Xi_{s}^{\varepsilon, E}\left(X_{3}, X_{1}\right)\right|=1$, where $E=20$ bp and $\varepsilon=10 \mathrm{bp}$.

Given a fixed order of the set of TEs as

$$
\chi_{s}=\left\{\ldots, X_{1}, \ldots, X_{2}, \ldots, X_{3}, \ldots\right\}
$$

the interruption matrix showing only the rows and columns of these TEs is

$$
M=\left[\begin{array}{ccccccc}
& \vdots & & \vdots & & \vdots & \\
& 0 & \ldots & 0 & \ldots & 0 & \ldots \\
& \vdots & & \vdots & & \vdots & \\
\ldots & 1 & \ldots & 0 & \ldots & 0 & \ldots \\
& \vdots & & \vdots & & \vdots & \\
\ldots & 1 & \ldots & 0 & \ldots & 0 & \ldots \\
& \vdots & & \vdots & & \vdots &
\end{array}\right]
$$

From the analysis on these sequential interruptions, it is reasonable to predict the age of L1MD3 as being older than both AluYc and AluSq, but this provides no clue as to which one of AluYc and AluSq is older, because which one of the two independent interruptions occurred first is unknown.

The notions in this section transformed the interruptional matrix construction similar to the method described in prose in 47 into a formal model, which is more clear, and can also be used for other purposes, such as the study of recursive patterns, as in Chapter 6.

5.2 The method of estimating TE ages from [47]

The interruptional analysis done in 47] was performed using the interruptions between TEs, then rearranged the TEs using a so-called "repositioning" method, in such a way that they hypothesized would order them in the chronological order of TEs (from the oldest to youngest). The method tried to rearrange the interruptional
matrix in order to minimize the penalty score that is calculated from the non-0's in the upper triangle of the matrix. This is done because ideally, the matrix that achieves a lowest penalty score corresponds to reordering these TEs families, from those that get interrupted most while getting interrupting the least, to those that interrupt most while getting interrupted least. In this way, in a hypothetical matrix, the TE families are arranged in a predictive chronological order of decreasing age (from oldest to youngest). The interruptional analysis is done as follows:

First, an interruptional matrix was calculated comparable to an interruption matrix in Definition 17, whose rows/columns correspond to a TE ordering, which counts the number of interruptions between each pair of TE families. A method, called the repositioning method, is used to rearrange the TE ordering by repositioning TEs in the ordering to minimize the penalty score. The penalty score is defined as the summation of nonzero entries in the upper triangle of the interruption matrix (the nonzero entries were transformed by a continuous function, $\tau(x)=x$ for $x \leq 3$ and $\tau(x)=3+\log (x+1) / 4$ for $x>3$, before summation). The repositioning method starts at the first TE in the ordering, and moves it to the position that results in the greatest decrease in the penalty score, then rearrange the matrix by placing this TE to its new position. In the rearranged matrix, the first TE is now different, the algorithm then checks the first TE in the new ordering again. When repositioning of the first TE no longer results in a decrease in the penalty score, the algorithm checks and moves to the second TE in the matrix, until the second TE can no longer be repositioned to decrease the penalty score. Then it checks the third TE, and so on until it reaches the last TE. Then the same procedure is iterated multiple times (100,000 times), and every time starts with a random initial ordering of TEs (the initial ordering affects the best solution that the algorithm can find). The final position of each TE in the ordering is represented as the median of the distribution of its positions across all iterations. Note that in some sense, the complexity of the repositioning method is $O(n!)$, where n is the number of TE families. Although 47] did not report how long the repositioning method took to compute the problem, it is likely quite long as they needed to reduce the size of the matrix to a minority fraction of the set of the human TEs.

The formal model of sequential interruptions from Section 5.1 calculates an interruption matrix in essentially the same way as the interruptional matrix in 47. Next, this matrix will be mapped to a well-studied matrix optimization problem - the linear ordering problem - which rearranges a matrix similarly to the repositioning approach in [47] to predict a potential chronology of these TE families.

5.3 Linear ordering problem for sequential interruptions analysis

First of all, a set of matrix rearrangement operations in linear algebra will be examined in the next subsection, in order to describe and compute the linear ordering problem.

5.3.1 Preliminaries

When rearranging some objects or values, the act of rearrangement is a permutation as defined in Definition 18

Definition 18. A permutation π is a bijective function from $\{1,2, \ldots, n\}$ to itself. It will be denoted by an n-tuple where the number at position i is $\pi(i)$.

A permutation matrix is a square $n \times n$ binary matrix that has exactly one entry 1 in each row and each column and Os elsewhere. Specifically, the permutation matrix of a permutation π is a matrix P_{π} whose entries are all 0 except that in row i, where the entry at column $\pi(i)$ equals 1 .

Each such matrix represents a specific permutation of n elements and, when multiplying another $n \times n$ matrix A with P from the left, it permutes the rows of A. Further, multiplying A with the transpose of P, P^{T}, from the right, permutes the columns of A.

Example 7 illustrates a permutation of an ordering and its permutation matrix, as well as discussing how to permute a square matrix using this permutation.
Example 7. For an ordering of $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)$, a permutation could be $\pi(1)=1, \pi(2)=4, \pi(3)=2$, $\pi(4)=5, \pi(5)=3$, which is written as $\pi=\left(\begin{array}{lllll}1 & 4 & 2 & 5 & 3\end{array}\right)$.

The permutation matrix P_{π} of π is

$$
P_{\pi}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

As in Definition 18, any square matrix with n rows and columns can be rearranged by a permutation of n elements, using its permutation matrix.

Given a square matrix,

$$
A=\left[\begin{array}{ccccc}
11 & 12 & 13 & 14 & 15 \\
21 & 22 & 23 & 24 & 25 \\
31 & 32 & 33 & 34 & 35 \\
41 & 42 & 43 & 44 & 45 \\
51 & 52 & 53 & 54 & 55
\end{array}\right]
$$

multiplying A with P_{π} from the left permutes the rows of A :

$$
P_{\pi} \times A=\left[\begin{array}{ccccc}
11 & 12 & 13 & 14 & 15 \\
41 & 42 & 43 & 44 & 45 \\
21 & 22 & 23 & 24 & 25 \\
51 & 52 & 53 & 54 & 55 \\
31 & 32 & 33 & 34 & 35
\end{array}\right]
$$

while multiplying A with P_{π}^{T} from the right permutes the columns of A :

$$
A \times P_{\pi}^{T}=\left[\begin{array}{ccccc}
11 & 14 & 12 & 15 & 13 \\
21 & 24 & 22 & 25 & 23 \\
31 & 34 & 32 & 35 & 33 \\
41 & 44 & 42 & 45 & 43 \\
51 & 54 & 52 & 55 & 53
\end{array}\right]
$$

Therefore, $P_{\pi} \times A \times P_{\pi}^{T}$ permutes A with the permutation $\pi=\left(\begin{array}{lllll}1 & 4 & 2 & 3 & 5\end{array}\right)$:

$$
P_{\pi} \times A \times P_{\pi}^{T}=\left[\begin{array}{ccccc}
11 & 14 & 12 & 15 & 13 \\
41 & 44 & 42 & 45 & 43 \\
21 & 24 & 22 & 25 & 23 \\
51 & 54 & 52 & 55 & 53 \\
31 & 34 & 32 & 35 & 33
\end{array}\right]
$$

For each given ordering of n elements, there exists n ! possible permutations. Permuting a square matrix in this fashion is the operation used in the linear ordering problem in Section 5.3.2.

5.3.2 Linear Ordering Problem

The linear ordering problem is one of the classical combinatorial optimization problems. It was classified as $\mathcal{N} \mathcal{P}$-hard in 1979 by Garey and Johnson [45]. This problem is defined using either a graph problem or a matrix problem. The matrix problem is described in [124] as:

Given an $m \times m$ matrix C, the linear ordering problem is the problem of finding a permutation π of the column and row indices $\{1, \cdots, m\}$, such that the value

$$
\begin{equation*}
f(\pi)=\sum_{i=1}^{m} \sum_{j=i+1}^{m} C^{(\pi(i), \pi(j))} \tag{5.3.1}
\end{equation*}
$$

is maximized. In other words, the goal is to find a permutation of the columns and rows of C such that the sum of the elements in the upper triangle is maximized.

Analogously, the goal of the TE sequential interruptional analysis is to find a permutation of TE ordering that maximizes the sum of upper triangle of the interruption matrix in Definition 17. The sequential interruption analysis can be described in terms of the linear ordering problem as follows.

Given a set of genomic sequences, S, a set of TEs with a fixed ordering on its elements,

$$
\chi_{s}=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}
$$

and an interruption matrix of χ_{s} on S,

$$
I M=\left[\left|\Xi_{S}^{\varepsilon, E}\left(X_{i}, X_{j}\right)\right|\right]_{\substack{i=1, \ldots, m \\ j=1, \ldots, m}}
$$

the problem is to find a permutation π of χ_{s}, corresponding to the column and row indices $\{1, \cdots, m\}$, such that the value

$$
\begin{equation*}
f(\pi)=\sum_{i=1}^{m} \sum_{j=i+1}^{m} I M^{(\pi(i), \pi(j))} \tag{5.3.2}
\end{equation*}
$$

is maximized. Note that in the LOP, the permutation π provides the ordering of both the columns and the rows.

The resultant permutation of χ_{s} corresponds to a hypothetical chronological order of TE families in χ_{s} of increasing age, as it optimizes essentially the same function used to estimate the ages (in [47], they attempt to find a permutation, corresponding to TE families of decreasing age that minimizes the summation of nonzero entries in the upper triangle of the matrix). The resulting matrix whose rows and columns are rearranged, will have the following features (as shown in Figure 5.2):

1. Each item in the matrix records the number of interruptions that an interrupter (on the vertical axis) has inserted itself into an interruptee (on the horizontal axis);
2. The order of TEs on the vertical axis (from top to bottom) is the same as the order of TEs on the horizontal axis (from left to right), which is arranged in predicted chronological order of increasing in age (from youngest to oldest).
3. The matrix can be divided into four portions:

- the top-left portion of the matrix represents young TE families interrupting young TE families;

Interruptee

Figure 5.2: A conceptual diagram of the permuted interruptional matrix with a maximum sum of the upper triangle. The row and column of the matrix correspond to the resultant permutation of the TE ordering, which is a hypothetical chronological order of TEs of increasing in age.

- the top-right portion of the matrix represents young TE families interrupting old TE families;
- the bottom-left portion of the matrix represents old TE families interrupting young TE families;
- the bottom-right portion of the matrix represents old TE families interrupting old TE families.

4. Ideally, the lower triangle region of the matrix (light grey in Figure 5.2), corresponds to older TE families interrupting younger TE families, should be mainly populated by zeros, meaning that there are no interruptions. Non-zeros in this region might occur possibly because of defragmentation errors, or other mutation events that give the appearance of TE insertion.
5. Most non-zero values should appear in the upper triangle region of the matrix (dark grey in Figure 5.2), which corresponds to young TE families interrupting old TE families.
6. Interruptions of the same families of TEs into themselves (which would be recorded directly on the matrix diagonal) are not scored due to the fact that they are difficult to confidently identify and do not affect the ordering analysis.

The linear ordering problem is $\mathcal{N} \mathcal{P}$-hard; this implies that there likely does not exist a polynomial time algorithm for calculating an optimal solution. After computing an interruption matrix of n TEs using the sequential interruption model in Section5.1. a straightforward method to find the permutation of the problem would be exhaustive search: applying all n ! possible permutations to the interruption matrix and the resultant permutation will be the one with which the permuted interruption matrix achieves the maximum score over all $n!$ sum of upper triangle scores. The exhaustive search algorithm has a complexity of $O\left(n^{2} \times n!\right)$ (the
n^{2} does the additions of the upper triangle), which is considerably inefficient. In the human genome (hg38) and according to Repbase Update, there are 1,080 different TEs existing in the genome, thus the size of the matrix is $n \times n$, where $n=1080$. As such, it is not feasible to use the exhaustive search on the original matrix (when n is big) to find a permutation. Therefore, non-optimal techniques are required:

1. Because of the sparseness property of the matrix, it is possible to slightly reduce the size of the matrix by removing any transposon (both the corresponding row and column) with zero (or low) interruptions. Lemma 1 shows that it is possible to remove these rows and columns.
Lemma 1. Let $M(n \times n)$ and $i, 1 \leq i \leq n$, where row i and column i are all $0 s$, and let M^{\prime} be obtained from M by removing row i and column i. M^{\prime} is $(n-1) \times(n-1)$. The optimal answer for linear ordering problem on M^{\prime} is the same as M.

Proof. Assume that $\pi=\left(k_{1}, k_{2}, k_{3}, \ldots, k_{n}\right)$ is the order corresponding to the permuted matrix, M_{π}, that $\sum_{p=k_{1}}^{k_{n}} \sum_{q=p+1}^{k_{n}} M^{(\pi(p), \pi(q))}$ is maximum among all possible permutations. Given $k_{j}=i$, remove k_{j} from π, then the order becomes $\pi^{\prime}=\left\{k_{1}, \ldots, k_{j-1}, k_{j+1}, \ldots, k_{n}\right\}$, and the permuted matrix becomes $M_{\pi^{\prime}}$, where the row k_{j} and column k_{j} in M_{π} are removed from the matrix. As row i and column i are all 0 's in M, thus row k_{j} and column k_{j} are all 0 's in M_{π} as well. Thus, the sum of the upper triangle of $M_{\pi^{\prime}}$ is the same as that of M_{π}. Therefore, the optimal answer for the linear ordering problem on M^{\prime} is the same as M.

Though Lemma 1 provides a way to reduce n, then to reduce the time of computation, the complexity of exhaustive search does not change. After applying Lemma 1 to the overall interruption matrix of the human genome we calculated, the size of the matrix is reduced from 1,080 to 1,015 . With $n=1,015$, an exhaustive search method is still not practical. Therefore, this method can be only used to calculate for a smaller set of TEs (such as a family with perhaps 10 TEs). This brute force method has been implemented only on reduced sized matrix for a small set of TEs. Unfortunately, the removed TEs (that do not have interruption data) were not fit into the calculated order.
2. Furthermore, since the linear ordering problem arises in a variety of applications ranging from archeology and scheduling to economics and even mathematical psychology, algorithms for its efficient solution are required. There are some exact methods that use Branch-and-Bound algorithms to solve the problem to (proven) optimality (discussed in [96]), such as the branch-and-bound with partial orderings in [33], the lexicographic search algorithm in [79, 80], and the branch-and-bound approach, where Lagrangian relaxation techniques are used for bound computations in [23. The branch-and-bound can also be realized in a special way leading to the so-called Branch-and-Cut method, which is essentially a branch-and-bound algorithm, where the upper bounds are computed using linear programming relaxations as discussed in 96. In this thesis, the details of these exact algorithms or their application to the sequential interruption model will not be discussed.
3. Heuristic and meta-heuristic methods attempt to find a good, but not necessarily optimal solution to the problem, which is in contrast to exact methods that guarantee to give an optimum solution. Nevertheless, the time taken to find an optimum solution to a difficult problem by an exact method is often much greater than heuristic and meta-heuristic methods. Thus, heuristic and meta-heuristic methods are often used to solve real optimization problems. Martí and Reinelt [96] summarized many heuristic and meta-heuristic methods to solve the LOP, such as GRASP [40], Tabu search [48], the simulated annealing method [76], variable neighbourhood search [53], scatter search [83], iterated local search [20], etc. A computational comparison of 24 heuristic and meta-heuristic methods for the LOP on 484 instances done in [97], concluded that the meta-heuristics obtain high quality solutions, moreover, the memetic algorithm implementation, MA, performs best, followed by iterated local search, ILS, and with the Tabu search, TS, ranked in third place.

Several of the implemented software for solving the LOP only output the score of the best solution without providing the actual ordering that yields the score, which is important to our problem. Fortunately, we have obtained the source code of one method, Tabu search, from the authors of [97], and by modifying it, the ordering can be output together with its score, which corresponds to the relative ages of TEs. In the next subsection, the general idea of Tabu search [48] will be described, then the result of Tabu search applied in the sequential interruption model will be provided and compared with the published result in 47.

5.3.3 Tabu search and results

The word "tabu" comes from a language of Polynesia, Tongan, indicating things that cannot be touched because they are sacred, which accords very well with the idea of Tabu search. Generally speaking, Tabu search keeps a table of solutions that are forbidden to guide the search, so that the selection of solutions is limited according to the table of tabu status.

Tabu search begins in the same way as an ordinary local search, moving from one solution to another repeatedly until a number of global iterations are performed without improving the best solution found so far. If the search space is seen as a huge set of solutions and only a tiny part of the set can be explored, then Tabu search guides the local search process to examine the solution space beyond local optimality. It consists of two search strategies - intensification and diversification - with complementary objectives to search in the solution set. Intensification favours the exploration of promising areas of the solution space, while diversification moves the search to new regions of the solution space.

As mentioned in the last section, the authors of 97 have provided us with the C source code of the Tabu search solving the LOP program. Given an interruption matrix (Definition 17), $I M(1015 \times 1015)$, calculated on the human genome $h g 38$, the sum of the overall matrix excluding the sum of diagonal is $\sum_{i=1}^{m} \sum_{j=1}^{m} I M^{(i, j)}-$
$\sum_{i=1}^{m} I M^{(i, i)}=381,201$. By inputing $I M$ to the Tabu search program, a TE ordering (from predicted youngest TE to the oldest TE) that achieves the best superdiagonal score,

$$
f(\pi)=\sum_{i=1}^{m} \sum_{j=i+1}^{m} I M^{(\pi(i), \pi(j))}=377,417
$$

is calculated. Since the Tabu search is a meta-heuristic algorithm, this score is not guaranteed to be optimal. However, it only took 38 seconds to calculate the best score of a matrix of size 1,015 on a 2.9 GHz Intel Core i5 processor with 16 GB memory. The calculated TE ordering of the interruption matrix, $I M(1015 \times 1015)$, achieving the best score of the LOP is attached in Appendix A. The ability in solving this problem on such a big matrix has made Tabu search outperform the method proposed in [47] in terms of efficiency, which was only able to solve a much smaller matrix also without a guarantee of finding the optimal solution.

The resultant ordering from Tabu search is then compared with the ordering published in 47] (Giordano et. al.) in two different ways. First, as the method in [47] is computationally impractically expensive, though there were $\approx 1,000$ TEs with interruptions, only 405 were selected for calculating their ordering in the paper. Moreover, among these selected 405 TEs, there were 359 of them that are in common with the TEs in the $I M$ that was calculated on the human genome $h g 38$. This might be caused by the ongoing updates of the TE names in Repbase Update during these years. The set of the $n=359$ common TEs are denoted by χ_{n}. The resultant ordering from Tabu search of χ_{n} is denoted as $\pi_{t a b u}$, and the ordering published in Giordano et. al. [47] of these TEs is denoted as $\pi_{\text {Giordano }}$, then the sub-matrix of $I M$ on χ_{n} is denoted as $I M_{\chi_{n}}$. For the matrix $I M_{\chi_{n}}$, the sum of the overall matrix excluding its diagonal is

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} I M_{\chi n}^{(i, j)}-\sum_{i=1}^{n} I M_{\chi n}^{(i, i)}=169,503-1,687=167,816 .
$$

The superdiagonal scores of the two permutations $\pi_{t a b u}$ and $\pi_{\text {Giordano }}$ on $I M_{\chi_{n}}$ are

$$
\begin{aligned}
& f\left(\pi_{\text {tabu }}\right)=\sum_{i=1}^{n} \sum_{j=i+1}^{n} I M_{\chi_{n}}^{\left(\pi_{\text {tabu }}(i), \pi_{\text {tabu }}(j)\right)}=165,980, \\
& f\left(\pi_{\text {Giordano }}\right)=\sum_{i=1}^{n} \sum_{j=i+1}^{n} I M_{\chi_{n}}^{\left(\pi_{\text {Giordano }}(i), \pi_{\text {Giordano }}(j)\right)}=165,591 .
\end{aligned}
$$

It can be seen that the ordering calculated by Tabu search achieves a higher score for this (reduced) problem, which indicates that Tabu search is performing better than the method in 47 in terms of the final score.

Second, the similarity between the ordering calculated from Tabu search ($\pi_{t a b u}$) and the ordering published in 47] ($\pi_{\text {Giordano }}$) are compared with each other using the Pearson's coefficient of correlation calculated as

$$
\rho=\frac{\operatorname{cov}\left(\pi_{\text {Giordano }}, \pi_{\text {tabu }}\right)}{\sigma_{\pi_{\text {tabu }}} \sigma_{\pi_{\text {Giordano }}}}=0.943522,
$$

which shows a strong positive correlation (agreement) between the two orderings.

Figure 5.3: A comparison between the ordering calculated in 47 ($\pi_{\text {Giordano }}$) and the ordering calculated by Tabu search $\left(\pi_{t a b u}\right)$. The thick red diagonal line represents the case when the two orderings are exactly the same. The elements in Table 5.5 are marked in red.

The two orderings are then plotted against each other in Figure 5.3. where the ordering calculated in [47] is shown on the x-axis, the ordering calculated by Tabu search is shown on the y-axis, and the thick red diagonal line represents the case when the two orderings are exactly the same, namely 100% agreement line.

As TEs can be active for a period of time, more than one TE can be active at the same time, in parallel. Hence, it is reasonable that the relative age order of these parallelly active TEs are shuffled within a region of the overall ordering, which results in these TEs being "around" the 100% agreement line on the plot. It can be seen from the figure that most of the elements agree in the two orderings very well as they are very "close" to the red line. There are also some "outliers", which indicate that their positions are distant (very different) in the two orderings. The elements that have a distance of more than 100 positions in the two orderings are listed in Table 5.5 and marked with their names and types in brackets in Figure 5.3 .

A detailed biological analysis and verifications of their actual positions (actual evolutionary age) of the elements in Table 5.5 relative to other TEs will be left as future work. However, another technique for verification, with the help of a simulation, is created as part of Chapter 7, where this work will be revisited.

5.4 Conclusion

In this chapter, a TE sequential interruption model was created based on the abundance of TEs interrupting other TEs, and the problem of predicting TE age, proposed in [47, was formulated by our model as a wellstudied matrix problem - the Linear Ordering Problem - which can solve our problem very efficiently. As discussed, though [47] did not report how long it took the repositioning method to solve the problem

TE_name	TE_type	TE_family	Position in Giodano's method	Position in Tabu search
MLT-int	LTR	ERVL-MaLR	49	200
PRIMA4-int	LTR	ERV1	133	357
L1M3f	LINE	L1	140	246
Ricksha	DNA	MULE-MuDR	156	356
MLT1A0-int	LTR	ERVL-MaLR	172	330
MER4B-int	LTR	ERV1	181	298
LTR49-int	LTR	ERV1	186	355
FordPrefect_a	DNA	hAT-Tip100	300	183
L1M	LINE	L1	309	102
Charlie4	DNA	hAT-Charlie	315	177
Charlie11	DNA	hAT-Charlie	358	199

Table 5.5: The TEs that have a distance of more than 100 positions in the two orderings of $\pi_{\text {Giordano }}$ and $\pi_{t a b u}$.
on the reduced matrix (of size 405), it is likely long, as only a portion of TEs were solved; in contrast, the Tabu search solves the LOP on the full size matrix (of size 1,015) in just 38 seconds, while achieving better results when restricting to the elements common in both method. Therefore, the LOP and Tabu search in particular as per the sequential interruption model is more practical and achieves good results in predicting the relative ages of TEs. Further verification and comparison of the sequential interruption model to another new method will occur in Chapter 7 .

Chapter 6

The Recursive interruption model using STOCHASTIC CONTEXT-FREE GRAMMARS

6.1 Introduction

When many insertions occurred throughout the evolution of a genomic sequence, the interruptions can nest in a recursive pattern [81, which cannot be represented entirely with the interruptional matrix approach that only counts the abundance of a TE in-between another TE without storing the hierarchical relationships of interruptions. Indeed, Example 8 shows some nested TEs in real data that occurs in the human genome and cannot be described with the linear model.

Example 8. Table 6.1 contains a list of TE fragments taken from the RepeatMasker TE fragments set, $\bar{\chi}\left(s \stackrel{R M}{\longrightarrow} \chi_{s}\right)$, where s is the X chromosome of the human genome, and χ_{s} is the library of human transposable elements in Repbase Update. These seven TE fragments start from the X chromosome position 53437061 to 53438226 that belong to four TE families: X_{1}, X_{2}, X_{3}, and X_{4}, where the names of the families of TEs $X_{1}, X_{2}, X_{3}, X_{4}$ are MIR, AluJb, AluSx, AluSq2.

Fragment	genoName	genoStart	genoEnd	genoLeft	strand	TEName	TEClass	TEStart	TEEnd	TELeft
z_{1}	$\operatorname{chr} X$	53437061	53437143	-101833417	+	MIR	SINE	3	88	-174
z_{2}	$\operatorname{chr} X$	53437143	53437277	-101833283	+	AluJb	SINE	1	132	-170
z_{3}	$\operatorname{chr} X$	53437277	53437448	-101833112	+	AluSx	SINE	39	192	-120
z_{4}	$\operatorname{chr} X$	53437448	53437761	-101832799	+	AluSq2	SINE	1	312	0
z_{5}	$\operatorname{chr} X$	53437761	53437887	-101832673	+	AluSx	SINE	193	312	0
z_{6}	$\operatorname{chr} X$	53437887	53438055	-101832505	+	AluJb	SINE	133	293	-9
z_{7}	$\operatorname{chr} X$	53438055	53438226	-101832334	+	MIR	SINE	89	261	-1

Table 6.1: An example of recursive interruptions on the X chromosome.

As in Definition 13. the genomic sequence s is

$$
s=w_{0} z_{1} w_{1} z_{2} w_{2} z_{3} w_{3} \ldots z_{7} w_{7},
$$

[^12]as visualized in Figure 6.1.

Figure 6.1: A conceptual visualization of a genomic sequence (the human X chromosome from position 53437061 to 53438226), with the RepeatMasker detected TE fragments in Table 6.1. Note that the lengths of the visualized sequences in the figure are not proportional to their actual lengths.

The pruned sequence of s is

$$
\bar{s}=\beta_{0} z_{1} \beta_{1} z_{2} \beta_{2} z_{3} \beta_{3} z_{4} \beta_{4} z_{5} \beta_{5} z_{6} \beta_{6} z_{7} \beta_{7}
$$

where $\beta_{0}, \ldots, \beta_{7} \in \mathbb{N}, z_{1}, z_{7} \in \bar{X}_{1}, z_{2}, z_{6} \in \bar{X}_{2}, z_{3}, z_{5} \in \bar{X}_{3}, z_{4} \in \bar{X}_{4}, \bar{X}_{1}, \bar{X}_{2}, \bar{X}_{3}, \bar{X}_{4} \in \bar{\chi}\left(s \stackrel{R M}{\longleftrightarrow} \chi_{s}\right)$, and $z_{1} \stackrel{\varepsilon, E}{\sim} z_{7}, z_{2} \stackrel{\varepsilon, E}{\sim} z_{6}, z_{3} \stackrel{\varepsilon, E}{\sim} z_{5}$.

It is possible to see a potential process of nested interruptions described as:

- at first, an instance of AluJb inserted itself into an instance of MIR to break it into z_{1} and z_{7};
- then an instance of AluSx inserted itself into the instance of AluJb that has already presented in the sequence, to break it into z_{2} and z_{6};
- more recently, an instance of AluSq2 (z_{4}) inserted itself into the presented AluSx instance to break it into z_{3} and z_{5}.

From the interruptional analysis above, the age order of the three families of TEs can be predicted from the recursive interruptions as: MIR, AluJb, AluSx, AluSq2, from oldest to youngest.

The nested nature of the interruptions in Example 8 is not captured by the interruptional matrix as done in Chapter 5, or in 47], because the recursive nesting can "push" fragments so that they are no longer continuous. However, these nested interruptions are informative in predicting the chronological order of when these interruptions occurred in the genomic sequence. Therefore, a new model built on top of the TE fragment model will be created in this chapter to capture this hierarchical nesting feature. First, a specific context-free grammar called the recursive interruption context-free grammar will be defined to model the generation of recursive interruptions. Then algorithms that calculate a parse tree of the grammar generating a given order-pruned sequence will be given, where the parse tree shows a prediction of the hierarchical structure of TE insertions. Before formally defining the recursive interruption context-free grammar, some basic preliminaries on formal language theory will be introduced in Section 6.2

6.2 Preliminaries on formal language theory

First, the definitions in this section build on the definition of an alphabet and the set of all words over that alphabet as in Definition 8 Also, given an alphabet Σ, and the set Σ^{*}, a language L is any $L \subseteq \Sigma^{*}$.

In the area of formal language theory, a context-free grammar is a certain type of rewriting system that iteratively rewrites strings as per a set of production rules describing the manner in which letters can become replaced. Formally:
Definition 19. A context-free grammar (CFG) is a four tuple $G=(V, T, P, S)$, where

- V is the alphabet of variables (usually capital letters),
- T is the alphabet of terminals (usually lower case),
- P is the finite set of productions, each of the form $A \rightarrow w$, where $A \in V$ and $w \in(V \cup T)^{*}$,
- S is the starting variable, where $S \in V$.

The left-hand side of each production is always a variable, and the right-hand side is any string containing variables and terminals. Each context-free grammar defines a language over the terminal alphabet using either a rewriting mechanism, or an equivalent mechanism using parse trees. We will adopt the latter approach 56.

Derivations can be represented by a tree, called a parse tree, that shows clearly how the symbols of a terminal string (e.g., 01010) are derived as leaves of the tree, where the tree is constructed according to the productions.

Definition 20. Let $G=(V, T, P, S)$ be a context-free grammar. A parse tree (or derivation tree) of G is an ordered, rooted tree that represents the syntactic structure of a string according to some context-free grammar. The parse trees of G are all trees, t, with the following conditions (from [56]):

- the root is labelled by S;
- each interior node (non-leaf) is labelled by a variable in V;
- each leaf is labelled by either a terminal, or λ. However, if the leaf is labelled λ, then it must be the only child of its parent;
- if an interior node is labelled A, and its children are labelled $X_{1}, X_{2}, \ldots, X_{k}$ respectively, from left-toright, then $A \rightarrow X_{1} X_{2} \ldots X_{k}$ is a production of P. Note that the only time one of the X 's can be λ is if that is the label of the only child, and $A \rightarrow \lambda$ is a production of G.

The yield of a parse tree t is the string obtained by concatenating all labels on leaves from left to right. This must be a string over T. The language generated by G, denoted by $L(G)$, is the set of all yields of parse trees of G. This is a language over T.

Example 9 shows the context-free grammar of palindromes.
Example 9. A palindrome is a string that reads the same forward and backward, such as level, madam, 101101 etc. Let $G=(V, T, P, S)$ be a context-free grammar, where

- $V=\{S, X\}$ is the variable alphabet,
- $T=\{0,1\}$ is the terminal alphabet,
- $P=\{S \rightarrow X, X \rightarrow \lambda, X \rightarrow 0, X \rightarrow 1, X \rightarrow 0 X 0, X \rightarrow 1 X 1\}$,
- S is the start symbol.

Figure 6.2 shows a parse tree of G. The production used at the root is $S \rightarrow X$. Then the production used on the first X is $X \rightarrow 0 X 0$, etc. The yield of the tree is 01010, a palindrome. It is possible to show that $L(G)$ is the set of all palindromes over T.

Figure 6.2: A parse tree showing the derivation of 01010.

Given a context-free grammar G, and a word w, the process of finding a parse tree of G generating w is called parsing. There is a polynomial time parsing algorithm called the CYK algorithm [56].

A stochastic context-free grammar (SCFG) is a context-free grammar, where every production in the grammar has an associated probability value between 0 and 1 , such that the probability for all productions from each variable adds to 1 . The probability associated with a parse tree is the product of the probabilities of the production instances applied to produce it.

SCFGs can be applied to different areas. For example, it is used in the field of speech recognition in modelling
isolated words (words with similar beginning and ending but with different vowels in between) accurately, or in representing the language model component of a speech recognizer 85]. They are also applied in RNA secondary structure problems [36], such as RNA secondary structure prediction for a single sequence, and multiple RNA sequence alignment algorithms that incorporate secondary structure constraints.

6.3 Context-free grammar to generate recursive interruptions

In this section, a theoretical model will be proposed to describe the nature of recursive interruptions using a context-free grammar. Ultimately, a probabilistic model will be created.

Definition 21. Given a set of TEs with a fixed order on its elements, $\chi=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$, the recursive interruption context-free grammar is a grammar $G=(V, T, P, S)$, where $V=\left\{S, X_{1}, X_{2}, \ldots, X_{m}\right\}, T=$ $\{1,2, \ldots, m\}$, and P contains the following productions:

$$
\begin{array}{rll}
S & \rightarrow X_{i} S, & 1 \leq i \leq m \\
S & \rightarrow X_{i}, & 1 \leq i \leq m \\
X_{i} & \rightarrow X_{i} X_{j} X_{i}, & 1 \leq i \leq m, 1 \leq j \leq m \\
X_{i} & \rightarrow i, & 1 \leq i \leq m \tag{6.3.4}
\end{array}
$$

This grammar is used to generate strings over $\{1, \ldots, m\}^{*}$ corresponding to TE orders. Intuitively, productions of type 6.3 .3 correspond to an instance of X_{j} inserting itself throughout evolution into an instance of X_{i}, as shown in Figure 6.3, leaving a fragment from i, then j, then i.

Figure 6.3: A diagram showing an instance of X_{j} inserting itself throughout evolution into an instance of X_{i}, corresponding to an application of a production of type 6.3.3.

When constructing a parse tree from the top-down, if there are three consecutive nodes labelled by $X_{i} X_{j} X_{i}$, these can either derive $i j i$ (using productions of type 6.3.4) corresponding to that order of TEs, or any of them can be further interrupted (using additional productions of type 6.3.3. . Productions of type 6.3.1
correspond to independent positions of the sequence where a TE can insert itself (not a nested insertion, and this can only be produced continuously from the root along the rightmost path of a parse tree). Productions of type 6.3 .2 correspond to the final independent position of a TE insertion.

We are therefore interested in parse trees, which correspond to different potential sets of molecular events that could have occurred, and the nesting patterns. However, this context-free grammar is ambiguous (meaning that multiple parse trees can produce the same string). Indeed, it is clear that any non-empty string over T^{*} can be generated by G by using only productions of types 6.3.1, 6.3.2, and 6.3.4. This would require the application of $2 k$ productions to generate a string of length k. However, for every application of a production of type 6.3.3, the total number of productions needed to generate a string of length k decreases. If there are l productions of type 6.3 .3 applied, the total number of productions needed to generate a string of length k decreases to $2(k-l)$.

Example 10 shows how nested interruptions in a sequence are generated by the grammar as the yield of its possible parse trees.

Example 10. Given a genomic sequence s and a set of TEs with a fixed order on its elements $\chi_{s}=\left\{X_{1}, X_{2}\right.$, $\left.\ldots, X_{10}\right\}$, assume

$$
s=w_{0} z_{1} w_{1} \ldots z_{13} w_{13}
$$

as in Equation (4.1.2), with $z_{1}, z_{4}, z_{6} \in \bar{X}_{2}, z_{2}, z_{8}, z_{10}, z_{12} \in \bar{X}_{3}, z_{5} \in \bar{X}_{4}, z_{11}, z_{13} \in \bar{X}_{5}, z_{3}, z_{7} \in \bar{X}_{6}$, $z_{9} \in \overline{X_{10}}$. Then an order-pruned sequence

$$
\bar{s}_{o}=2,3,6,2,4,2,6,3,10,3,5,3,5
$$

is the yield of the parse tree shown in Figure 6.4.

Figure 6.4: A parse tree of G from Definition 21 that yields \bar{s}_{o}.

Only the parse tree that maximizes the application of productions of type 6.3.3, or equivalently minimizes
the total number of productions applied are of interest. This would correspond to minimizing the number of transpositional events that occurred throughout evolution. Indeed, it is common in phylogeny to prefer the evolutionary pathway that requires the fewest number of changes to be applied [113], which is known as parsimony. Hence, minimizing the number of transpositional events is the most parsimonious possibility.

6.4 Stochastic CYK algorithm for finding a most likely parse tree

As discussed, given an order-pruned sequence, a parse tree of the grammar that maximizes the applications of productions of type 6.3.3, or minimizes the overall number of productions applied to generate this sequence, is of primary interest. In this subsection, some methods to find such parse trees will be given by converting the recursive interruption context-free grammar into a stochastic context-free grammar.

Considering the context-free grammar in Definition 21, by slightly changing production 6.3 .2 and attaching probabilities between 0 and 1 , the parse trees that use fewer productions will have a higher probability.
Definition 22. Given a set of TEs with a fixed order on its elements, $\chi=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$, the recursive interruption stochastic context-free grammar is a grammar $G=(V, T, P, S)$, where $V=\left\{S, X_{1}, X_{2}, \ldots, X_{m}\right\}$, $T=\{1,2, \ldots, m\}$, and P contains the following productions where each production is attached with a probability p :

$$
\begin{array}{rll}
S \rightarrow X_{i} S, & 1 \leq i \leq m, & p=\frac{1}{m^{2}} \\
S \rightarrow X_{i} X_{j}, & 1 \leq i \leq m, 1 \leq j \leq m, i \neq j, & p=\frac{1}{m^{2}} \\
X_{i} \rightarrow X_{i} X_{j} X_{i}, & 1 \leq i \leq m, 1 \leq j \leq m, i \neq j, & p=\frac{1}{m} \\
X_{i} \rightarrow i, & 1 \leq i \leq m, & p=\frac{1}{m} \tag{6.4.4}
\end{array}
$$

Given a word of $w \in T^{*}$, a most likely parse tree for w is defined as a parse tree with a yield of w with the highest probability. This corresponds to the parse tree that has the most productions of type 6.4.3 applied in the recursive interruption context-free grammar. For this grammar, all productions for each variable were given equal weight: for each production of S, the probability is $1 / m^{2}$ (there are m productions of type 6.4.1 and $m \times(m-1)$ productions of type 6.4 .2 giving m^{2} productions), and for each production of X_{i}, the probability is $1 / m$ (there are $m-1$ productions of type 6.4.3, and 1 production of type 6.4.4. Thus a modified version of the CYK algorithm [36] that takes the probabilities into account can find a most likely parse tree that has a given sequence as yield is of primary interest. In our case, starting with the order-pruned sequence, it can predict a most likely parse tree with it as the yield.

Example 10 shows how nested interruptions in a sequence are generated by the stochastic context-free grammar as the yield of the parse tree that maximized the application of productions of type 6.4.3.
Example 11. Given a genomic sequence s and a set of TEs with a fixed order on its elements $\chi_{s}=\left\{X_{1}, X_{2}\right.$, $\left.\ldots, X_{10}\right\}$, assume

$$
s=w_{0} z_{1} w_{1} \ldots z_{13} w_{13}
$$

as in Equation (4.1.2), with $z_{1}, z_{4}, z_{6} \in \bar{X}_{2}, z_{2}, z_{8}, z_{10}, z_{12} \in \bar{X}_{3}, z_{5} \in \bar{X}_{4}, z_{11}, z_{13} \in \bar{X}_{5}, z_{3}, z_{7} \in \bar{X}_{6}$, $z_{9} \in \overline{X_{10}}$.

The stochastic context-free grammar is

$$
\begin{aligned}
& S \quad \rightarrow \quad X_{i} S, \quad i=2,3,4,5,6,10 \quad p=0.0278 \\
& S \quad \rightarrow \quad X_{2} X_{j}, \quad j=3,4,5,6,10 \quad p=0.0278 \\
& S \quad \rightarrow \quad X_{3} X_{j}, \quad j=2,4,5,6,10 \quad p=0.0278 \\
& S \quad \rightarrow \quad X_{4} X_{j}, \quad j=2,3,5,6,10 \quad p=0.0278 \\
& S \quad \rightarrow \quad X_{5} X_{j}, \quad j=2,3,4,6,10 \quad p=0.0278 \\
& S \quad \rightarrow \quad X_{6} X_{j}, \quad j=2,3,4,5,10 \quad p=0.0278 \\
& S \quad \rightarrow \quad X_{10} X_{j}, \quad j=2,3,4,5,6 \quad p=0.0278 \\
& X_{2} \quad \rightarrow \quad X_{2} X_{j} X_{2}, \quad j=3,4,5,6,10 \quad p=0.1667 \\
& X_{3} \quad \rightarrow \quad X_{3} X_{j} X_{3}, \quad j=2,4,5,6,10 \quad p=0.1667 \\
& X_{4} \quad \rightarrow \quad X_{4} X_{j} X_{4}, \quad j=2,3,5,6,10 \quad p=0.1667 \\
& X_{5} \quad \rightarrow \quad X_{5} X_{j} X_{5}, \quad j=2,3,4,6,10 \quad p=0.1667 \\
& X_{6} \quad \rightarrow \quad X_{6} X_{j} X_{6}, \quad j=2,3,4,5,10 \quad p=0.1667 \\
& X_{10} \quad \rightarrow \quad X_{10} X_{j} X_{10}, \quad j=2,3,4,5,6 \quad p=0.1667 \\
& X_{i} \quad \rightarrow \quad i, \quad i=2,3,4,5,6,10 \quad p=0.1667
\end{aligned}
$$

Then an order-pruned sequence

$$
\bar{s}_{o}=2,3,6,2,4,2,6,3,10,3,5,3,5
$$

is the yield of the parse tree calculated by the stochastic CYK algorithm shown in Figure 6.4 with probability of $7.63713361322155 e-18$.

It can be seen that compared to the parse tree in Figure 6.4, the most likely parse tree is the one in Figure 6.5 as it maximizes the number of applications of production 6.4.3 and pushes the nested interruptions deeper into the tree, which is more parsimonious, and therefore a more likely age order than a tree that spreads the interruptions into different branches in the same level.

The complexity of the (both non-stochastic and stochastic) CYK algorithm is $O\left(n^{3}\right)$ 56, where n is the length of the yield (order-pruned sequence corresponding to the number of TE fragments detected in a genomic sequence). Unlike the standard CYK algorithm that returns all the possible parse trees, the stochastic

Figure 6.5: The most likely parse tree of G from Definition 21 that yields \bar{s}_{o}.

CYK only traces back the productions with the highest probabilities, which can decrease the computing time dramatically in practice. A package in the Perl language of a stochastic CYK algorithm has been developed derived from an existing package [123] with polynomial time parsing to calculate the most likely parse tree(s) with the highest probabilities corresponding to the most probable evolutionary events, using the stochastic context-free grammar in Definition 22.

6.5 Improvements taking into account positional information between TE fragments

The recursive interruption context-free grammar in Definition 21 is a very simple and general way of capturing the recursive nature of TE interruptions. However, a limitation of the model is that the order-pruned sequence generated by the grammar only contains the TEs (names/order of TEs) to which the detected TE fragments belong. It does not take into account whether two TE fragments are separated by say $1 b p$ or $1,000 b p$ in the genomic sequence, or where each fragment lies within a TE consensus sequence with the current grammar. It is less clear how one could take the positional information into account to determine whether two TE fragments are continuous fragments (both E and ε in Definition 15), then further determine the existence of an interruption in an order-pruned sequence.

In this section, one improvement taking into account of the positions of TE fragments in the genomic sequence is incorporated in detecting pruned sequences by utilizing the definition of a transposon region (Definition 14 .

Recall the pruned sequence and order-pruned sequence in Definition 13 in Chapter 4. A genomic sequence $s=w_{0} z_{1} w_{1} z_{2} w_{2} z_{3} w_{3} z_{4} w_{4} z_{5} w_{5} z_{6} w_{6}$ is visualized in Figure 6.6.

$s:$	w_{0}	\mathbf{z}_{1}	w_{1}	\mathbf{z}_{2}	w_{2}	\mathbf{z}_{3}	w_{3}	\mathbf{z}_{4}	w_{4}	\mathbf{z}_{5}	w_{5}	\mathbf{z}_{6}	w_{6}
$\chi_{s}:$	X_{1}	X_{2}	X_{3}		X_{1}		X_{4}	X_{5}					
TE name:	L2a	L2b	MIR3	L2a	MLT1J	MER63A							

Figure 6.6: A conceptual visualization of a genomic sequence (the human chromosome 1 from position 33632576 to 33634148). The TE fragments z_{i}, where $i=1, \ldots, 6$ in the sequence are marked with the notation of TE families $X_{j} \in \chi_{s}$, where $j=1, \ldots, 5$, and the names of the TE families to which they belong.

According to Definition 13, the pruned sequence of s is

$$
\bar{s}=\beta_{0} z_{1} \beta_{1} z_{2} \ldots z_{6} \beta_{6}, \text { where } \beta_{i}=\left|w_{i}\right|, 0 \leq i \leq 6
$$

and the order-pruned sequence of s is

$$
\overline{s_{o}}=1,2,3,1,4,5, \text { where } z_{i} \in X_{j_{i}}, \text { for all } i, 1 \leq i \leq 6
$$

Similar to the above case, the human genome, or each chromosome, can be represented as a giant pruned sequence that includes all TE fragments in the genome, where the non-repeat part, β_{i}, can be very small if two TE fragments are close to each other, or can be very large (or infinity) if two TE fragments are on different chromosomes. However, the fact is that the TE fragments belonging to the same interruption should not be apart for a large genomic distance (they should be on the same chromosome, and very close to each other), which is the why the definition of interruption (Definition 16) takes the two distances (both in genomic sequence and in TE consensus sequence) into account. In light of this property of TE interruption, a pruned sequence can be limited to only represent the segment of genomic sequence where a transposon region is located. Essentially, a transposon region is a region of the genomic sequence where TE fragments are detected and they are close to each other by a distance $E \in \mathbb{N}$.

Given a distance $d \in \mathbb{N}$ (in the genomic sequence), a number of transposon regions can be detected by parsing the genomic sequence, within which potential interruptions may be detected. For example, parsing the genomic sequence of the human genome $h g 38 \mathrm{Y}$ chromosome with $d=20 b p$, there are 2,125 transposon regions detected with the length of their order-pruned sequences ranging from 3 to 65 (the number of TE fragments in the region) as listed in Table 6.2 . It can be seen that a majority (78%) of order-pruned sequences are short with a length of less than 10. Each pruned sequence is one yield to feed into the recursive interruption context-free grammar, which corresponds to one (or more) most-likely parse tree.

Length of the orderpruned sequence	Number of order-pruned sequences of the length	Length of the orderpruned sequence	Number of order-pruned sequences of the length
3	485	23	11
4	312	24	5
5	273	25	12
6	195	26	4
7	141	27	8
8	131	28	3
9	113	29	3
10	69	30	5
11	68	31	3
12	48	32	1
13	40	34	3
14	39	35	2
15	27	40	2
16	36	41	1
17	20	43	1
18	13	44	1
19	18	57	1
20	11	59	1
21	10	65	1
22	8		

Table 6.2: A summary of the order-pruned sequences of the transposon regions detected on the Y chromosome of $h g 38$.

Similarly, the order-pruned sequences of transposon regions on every chromosome of the human genome are extracted with the ranges of their length. A summary of the order-pruned sequences in the human genome is listed in Table 6.3.

Note that the total number of order-pruned sequences in the human genome is 327,305 , which will obtain around the same number of parse trees (TE interruption trees). The number of order-pruned sequences and the number of parse trees are not necessarily the same. This is because some order-pruned sequences (e.g., $\overline{s_{o}}=3,4,5$ or $\overline{s_{o}}=7,7,7,6$) cannot obtain any interruption tree, and some can obtain multiple mostlikely trees with the same probability (e.g., $\overline{s_{o}}=3,6,3,6,3,6,10,6,3$ can obtain two trees as visualized in Figure 6.7.

	Number of transposon regions (no. order-pruned sequences)	The length range of order-pruned sequences (minimum length, maximum length)
Chromosome 1	27,747	$(3,77)$
Chromosome 2	25,173	$(3,268)$
Chromosome 3	21,057	$(3,82)$
Chromosome 4	19,006	$(3,63)$
Chromosome 5	18,794	$(3,83)$
Chromosome 6	17,470	$(3,80)$
Chromosome 7	17,423	$(3,111)$
Chromosome 8	15,348	$(3,64)$
Chromosome 9	13,682	$(3,78)$
Chromosome 10	14,450	$(3,72)$
Chromosome 11	14,901	$(3,95)$
Chromosome 12	16,088	$(3,74)$
Chromosome 13	9,613	$(3,79)$
Chromosome 14	10048	$(3,83)$
Chromosome 15	9,749	$(3,62)$
Chromosome 16	11,527	$(3,68)$
Chromosome 17	11,178	$(3,63)$
Chromosome 18	7,424	$(3,118)$
Chromosome 19	9,618	$(3,69)$
Chromosome 20	8,346	$(3,77)$
Chromosome 21	3,887	$(3,75)$
Chromosome 22	5,242	$(3,70)$
Chromosome X	17,083	$(3,117)$
Chromosome Y	2,451	$(3,65)$
Human Genome	327,305	$(3,268)$

Table 6.3: A summary of the total number of order-pruned sequences and their lengths of regions detected in the human genome (hg38), summarized by chromosomes.

Figure 6.7: The two most-likely trees with the same probability of the order-pruned sequence $\overline{s_{o}}=$ $3,6,3,6,3,6,10,6,3$ on the Y chromosome of $h g 38$, where $X_{3}=M S T B, X_{6}=A l u S x 1, X_{10}=A l u S x$.

6.6 Adjustments to the parse trees

Nested interruptions are captured using a tree by the recursive interruption model, which produces small parse trees representing evolutions of TE interruptions in order-pruned sequences. However, there are redundant nodes and unnecessary "level splits" in the parse trees that are an artefact of the grammar itself (described below). In other words, the parse trees have all the information regarding predicted interruptions, but not encoded in the most natural way. It is not obvious if another stochastic grammar could be instead created that has parse trees that are naturally evolutionary trees (where the parse trees with the highest probabilities correspond to the fewest insertions).

Recall the recursive interruption stochastic context-free grammar in Definition 22, given a set of TEs with a fixed order on its elements, $\chi=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$, the recursive interruption stochastic context-free grammar is a grammar $G=(V, T, P, S)$, where $V=\left\{S, X_{1}, X_{2}, \ldots, X_{m}\right\}, T=\{1,2, \ldots, m\}$, and P contains the following productions where each production is attached with a probability p :

$$
\begin{array}{rll}
S \rightarrow X_{i} S, & 1 \leq i \leq m, & p=\frac{1}{m^{2}} \\
S \rightarrow X_{i} X_{j}, & 1 \leq i \leq m, 1 \leq j \leq m, i \neq j, & p=\frac{1}{m^{2}} \\
X_{i} \rightarrow X_{i} X_{j} X_{i}, & 1 \leq i \leq m, 1 \leq j \leq m, i \neq j, & p=\frac{1}{m} \\
X_{i} \rightarrow i, & 1 \leq i \leq m, & p=\frac{1}{m} \tag{6.4.4}
\end{array}
$$

The productions of type 6.4 .1 and 6.4 .3 determine the generation of interruptions from the left to the right side of the sequence. This places independent interruptions at differing heights of the parse tree - as
interruptions occur from left to right sequentially, they move lower and lower down in the parse tree of the grammar. Therefore, the parse trees are not an accurate reflection of the independent nature of these types of interruptions, even though that information is encoded in the tree. In this section, this situation will be addressed by proposing a modification to turn the parse trees into another tree that is more representative of evolutionary trees of interruptions, in order to capture the TE evolution more accurately.

Next, three examples will be analyzed to intuitively explain the conversion. Example 12 illustrates three atomic patterns of interruptions: a single interruption, sequential interruptions, and recursive interruptions. These three patterns can exist by themselves, can nest with themselves, or can mix with other pattern(s) to form more complex interruptions in a genomic sequence. Instead of representing interruptions using a parse tree strictly following the grammar in Definition 22, a simplified form of trees is used in Example 12, showing these interruptions essentially in the same way.
Example 12. Table 6.4 is a list of TE fragments from chromosome 1 taken from the RepeatMasker TE fragments set, $\bar{\chi}\left(s \stackrel{R M}{\longleftrightarrow} \chi_{s}\right)$. The fragments are grouped into three interruptions sets marked as (a), (b), and (c), corresponding to the trees in Figure 6.8 (a), (b), and (c), where instead of orders of TEs, the nodes of the trees are labelled with the names of TE families to which these fragments belong.

group	genoName	genoStart	genoEnd	genoLeft	strand	TEName	TEClass	TEStart	TEEnd	TELeft
(a)	chr1	23803	24038	-249226583	+	L2b	LINE	2940	3212	-175
	chr1	24087	24250	-249226371	+	MIR	SINE	49	260	-2
	chr1	24254	24448	-249226173	+	L2b	LINE	3213	3425	-1
(b)	chr1	140784	141290	-249109331	+	MER21C	LTR	26	527	-411
	chr1	141290	141597	-249109024	-	AluJb	SINE	-18	294	2
	chr1	141597	141667	-249108954	+	MER21C	LTR	528	605	-333
	chr1	141667	141970	-249108651	+	AluJr	SINE	1	302	-10
	chr1	141970	142271	-249108350	+	MER21C	LTR	606	919	-19
(c)	chr1	389450	389591	-248861030	+	L1ME3D	LINE	3222	3368	-2778
	chr1	389589	391571	-248859050	+	L1MA8	LINE	4080	6108	-183
	chr1	391571	392307	-248858314	-	L1MA2	LINE	-1	6303	5556
	chr1	392307	392431	-248858190	+	L1MA8	LINE	6109	6238	-53
	chr1	392465	393206	-248857415	+	L1ME3D	LINE	3352	4119	-2027

Table 6.4: An example of three atomic patterns of interruptions. Group (a) is a single interruption; group (b) shows two sequential interruptions; group (c) shows two recursive interruptions. Their corresponding trees are in Figure 6.8.

- Group (a) is a single interruption, where an instance of MIR inserted itself into an instance of L2b.
- Group (b) shows two sequential interruptions (similar to Example 6), where an instance of AluJb and an instance of AluJr inserted themselves into an instance of MER21C and broke MER21C into three fragments.

Figure 6.8: The corresponding trees in Table 6.4 (a) is a tree of a single interruption; (b) is a tree of two sequential interruptions following the productions of type 6.3 .3 of the grammar in Definition 21; (c) is a tree of two recursive interruptions following the productions of type 6.3 .3 of the grammar in Definition 21 .

- Group (c) shows two recursive interruptions (similar to Example 8), where an instance of L1MA8 inserted itself into an instance of L1ME3D, then at a later time an instance of L1MA2 inserted itself into an instance of L1MA8.

For a single interruption, the root node of the ordered tree represents the interruptee and the children of that node correspond to the fragments of the interruption and their order in the genomic sequence, which are the left fragment of the interruptee, the interrupter, and the right fragment of the interruptee. The interruption shown in Table 6.4 group (a) corresponds to the TE fragments tree in Figure 6.8 (a). Here, the root node is the interruptee, labelled as the name of the TE fragment to which it belongs, L2b, and the three children of the root are (from left to right) the left fragment of the interruptee, L2b, the interrupter, MIR, and the right fragment of the interruptee, L2b.

Nested interruptions correspond to higher level TE fragments trees following the same rule, as in Figure 6.8 (b) and (c).

Notice that the trees in Figure 6.8 capture not only the nested TEs by the levels of the tree, but also the orders of the TE fragments within a genomic sequence. An order-pruned sequence of the genomic sequence can be generated by traversing the leaves of the tree (and mapping TE names with their orders in the TE set), from the left to right of the tree. They contain all the fragments of interruptions as branches. Nevertheless, from the perspective of the relationship between interrupters and interruptees, some of the branches are redundant (such as the left and right fragments of the interruptees), because the interruptee already appears as the parent node. Moreover, the two sequential interruptions in group (2) are split into two levels in Figure 6.8 (b); however, this is simply a side effect of the structure of the parse trees and the rules of the grammar. They are in fact independent. In addition, since only the interruptional phylogeny of TEs is of current interest, the positional order does not matter in this case; thus, an ordered tree is not necessary. Therefore, the tree can be simplified by turning it into an unordered tree, removing the redundant branches and correcting the level split of the sequential interruptions. Definition 23 defines a tree operation,
named condense, that compresses a tree by reducing the height while still preserving the order of leaves (corresponding to the order-pruned sequence) of the tree.
Definition 23. Given a tree t (t is the root) with a non-root node μ in t, let the condensing of μ from t be the tree obtained from t by replacing μ with its children, if there are any, and keeping t, if there are not. This is drawn in Figure 6.9.

Figure 6.9: An example of condensing a non-root node, μ, from a tree t.

```
Algorithm 1: Convert a SCFG parse tree to an interruptional evolutionary tree.
Data: A SCFG parse tree t.
Result: An interruptional evolutionary tree.
/* Step 1: "bring up" the sequential interruptions of the same interruptee to the same
    level of the tree by condensing the inner nodes corresponding to sequential
    interruptions in the tree. */
```

for each node μ of t with children $\mu_{1}, \mu_{2}, \mu_{3}$ representing a production of the type 6.4.3. from the highest to
the lowest level of t do
condense μ_{1} and μ_{3}
/* Step 2: remove all leaves that represent the left and right fragments of
interruptees. */
3 for each node μ of t and for each of μ 's children $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ do
if the label of μ_{i} and μ are equal, and μ_{i} does not have any children then
remove the child μ_{i}
6 return the modified t

Algorithm 1 turns interruption parse trees, such as the trees in Example 12, into a simplified form of trees, where the redundant branches are removed and the sequential interruptions are moved up into the same level, making them closer to describing evolutionary events.

Example 13 demonstrates how to convert a tree of sequential interruptions in Example 12 into an interruptional evolutionary tree using Algorithm 1. Note that the TE orders, instead of TE names, are used to label
the nodes in the next examples, as it is more clear. The nodes representing interrupters of the sequential interruptions are coded in pink in the diagram.
Example 13. Figure 6.10 is an example showing how to convert the context-free grammar parse tree to an interruptional evolutionary tree showing the atomic sequential interruptions pattern using the two steps in Algorithm 1.

Figure 6.10: An example of converting the context-free grammar parse tree to an interruptional evolutionary tree for the atomic sequential interruptions pattern.

In Example 14 there are two more examples of simplifying the trees using Algorithm 1. These two trees are mixed patterns of the atomic patterns of Example 12
Example 14. Figure 6.11 and Figure 6.12 are two extended examples showing how to simplify the TE interruption trees - where the interruptions are nested in more complex patterns - to interruptional evolutionary trees.

Figure 6.11: An example of converting an interruption tree to an interruptional evolutionary tree of mixed interruption patterns.

6.7 Construction of the TE-interaction network

Based on the standard formalizations defining TEs and their activities, the next goal is to computationally predict the overall evolution of the TEs and TE activity in the human genome. In this section, an algorithm will be proposed to merge all the small interruptional evolutionary trees obtained from last section and produce a weighted directed graph, called the overall TE-interaction network. The TE-interaction network is a rich representation of the interactions between TEs and is a more powerful tool than the individual trees separately to predict the evolution of these TEs.

Figure 6.12: Another example of converting an interruption tree to an interruptional evolutionary tree of mixed interruption patterns.

Consider the set of all interruptional evolutionary trees generated from the output of Algorithm 1 on the SCFG trees from the recursive interruption model. These simplified interruptional evolutionary trees represent a hypothesis for how younger TEs interrupt older TEs in the human genome. Each parse tree is generated from an order-pruned sequence of a transposon region of the genome, where the TE fragments are close to each other in the genomic sequence, therefore, instead of a "global" evolutionary relationship, these simplified evolutionary trees each represents a "local" pattern of TE interruptions. Here, another model will be created to show the overall TE interactions globally in a genome. Informally, all the local interruptional trees will be merged into a global structure; however in so doing, a graph is required instead of a tree. In the area of graph theory, a weighted directed graph, or a weighted directed network, is a graph that is a set of vertices connected by edges, where the edges have a direction and a weight associated with them. By merging the simplified evolutionary trees (output by Algorithm 1) into a weighted directed graph, the TE-interaction network is constructed that shows the overall TE interactions globally in a genome.

The network construction is described as follows:

- Let $G=(V, E, \pi)$ be a weighted graph, where the edges have non-negative integer weights, and the vertices are all the TEs that appear in the trees, denoted as $V=\left\{T E_{1}, T E_{2}, \ldots, T E_{n}\right\}$.
- The edges are built iteratively. For each tree, one at a time (no matter in any order until all trees are merged), add all the edges from the tree into the graph either with a weight of 1 if it is new, or if the edge already exists, add 1 to the weight of that edge. For example, if $\left(T E_{i}, T E_{j}\right)$ is an edge of the tree, then add $\left(T E_{i}, T E_{j}\right)$ as an edge to G with weight 1 , or if the edge already exists in the graph, increase the weight of the edge by 1 .

At the end, the graph shows all the edges present in any tree, and the weights show how many times the edge is used in the trees. Moreover, each TE occurs exactly once in the graph if it is involved in any interruption. This weighted directed graph is called the TE-interaction network, which encodes the interactions between

TEs that interrupt each other. The network itself is an overall representation of the evolution of the TEs. One would expect that TEs that occur "early" in paths represent older TEs, whereas TEs that occur "later" in paths represent newer TEs. If the graph were acyclic, then a linear age order of the TEs would be some listing of the vertices whereby, for each edge (u, v) of the graph, u comes before v in the listing. This is known as a topological sort on the graph. However, it is reasonable to assume that the network contains cycles. This is because the lifespan of TEs could overlap over time in reality, which means multiple TEs might be active in parallel. For example, if two TEs, $T E_{i}$ and $T E_{j}$, are active at the same time, then it is possible that in some region where $T E_{i}$ already exists in some genome, $T E_{j}$ inserted itself into $T E_{i}$ (a simplified tree $T E_{i} \rightarrow T E_{j}$), or vice versa (a simplified tree $T E_{j} \rightarrow T E_{i}$). Then by merging these trees together, there is a cycle $T E_{i} \rightarrow T E_{j} \rightarrow T E_{i}$ in the network. They can also be more complex with intermediate TEs.

Moreover, in the network, the nodes that only contain outgoing edges are informally referred to as upstream nodes corresponding to the TEs with the oldest predicted age or a TE with relatively old age and a short lifespan (so that it did not have time to interrupt others when it was active), and the nodes that only have incoming edges are called downstream nodes corresponding to the TEs with the youngest predicted age or a TE with relatively young age and a long lifespan (when it has lots of chances to interrupt others). Moreover, the inner nodes in the network correspond to the TEs with intermediate predicted age, among which the ones that are "closer" to the upstream nodes are predicted to be relatively older, while the ones that are "closer" to the downstream nodes are predicted to be relatively younger.

Next, the TE-interaction network of two examples will be examined, with a comparison to the sequential interruption model in one example and same validation using biological literature. A more systematic comparison of the two approaches will be done in Chapter 7.

Example 15 illustrates the construction of a TE-interaction network on a small set of TEs (20 TEs) on the human Y chromosome, and some predictions on the ages and lifespans of these TEs are made from the network, along with some verification on the predicted ages using biological literature.

Example 15. Select 20 TEs in the human genome, denoted as $\chi_{s}=\left\{X_{1}, X_{2}, \ldots, X_{20},\right\}$, where the information of these TEs are listed in Table 6.5.

All the order-pruned sequences only containing $T E s \in \chi_{s}$ were identified on the Y chromosome. There are a total of 37 order-pruned sequences as listed in Table 6.6.

Figure 6.13 is the TE-interaction network of χ_{s}, generated by merging the small trees in Table 6.6.

The TEs in χ_{s} belong to two TE types, SINE and LTR, which are colour coded in the figure, where the elements of SINE type are marked in grey and LTR are in blue. Moreover, each element is marked with its name and type. The network is drawn so that upstream TEs are towards the top and downstream TEs are towards the bottom.

Notation	TE	family/subfamily	type
X_{1}	MLT1C	$E R V L-M a L R$	LTR
X_{2}	MLT1A0	$E R V L-M a L R$	$L T R$
X_{3}	MSTB	ERVL-MaLR	LTR
X_{4}	MSTB1	ERVL-MaLR	$L T R$
X_{5}	MLT1D	ERVL-MaLR	LTR
X_{6}	AluSx 1	AluS	SINE
X_{7}	AluSg4	AluS	SINE
X_{8}	FLAM_C	Alu	SINE
X_{9}	MER74A	ERVL	$L T R$
X_{10}	AluSx	AluS	SINE
X_{11}	AluJb	AluJ	SINE
X_{12}	FRAM	Alu	SINE
X_{13}	MER74B	ERVL	LTR
X_{14}	AluSp	AluS	SINE
X_{15}	AluSq	AluS	SINE
X_{16}	AluY	AluY	SINE
X_{17}	MER67C	ERV1	$L T R$
X_{18}	AluSc8	AluS	SINE
X_{19}	AluJo	AluJ	SINE
X_{20}	AluYc	AluY	SINE

Table 6.5: List of TE names along with known information.

	order-pruned sequence detected on the Y chromosome of hg38	Edges of the tree
1	19619	$19 \rightarrow 6$
	111011	$11 \rightarrow 10$
	6166	$6 \rightarrow 16$
	2152	$2 \rightarrow 15$
	11611	$11 \rightarrow 6$
6	191019	$19 \rightarrow 10$
7	2202	$2 \rightarrow 20$
8	2192	$2 \rightarrow 19$
	2112	$2 \rightarrow 11$
10	5195	$5 \rightarrow 19$
	11611	$11 \rightarrow 6$
	6166	$6 \rightarrow 16$
13	4144	$4 \rightarrow 14$
	191619	$19 \rightarrow 16$
	191619	$19 \rightarrow 16$
	161116	$16 \rightarrow 11$
	1110610	$10 \rightarrow 6$
	7776	
19	610116	
	1611	$1 \rightarrow 6$
	1611	$1 \rightarrow 6$
	5101610	$10 \rightarrow 16$
	210214	$2 \rightarrow 10$
	1115116	$11 \rightarrow 15$
	1181	$1 \rightarrow 8$
	22262	$2 \rightarrow 6$
	11565	$5 \rightarrow 6$
	1919191119	$19 \rightarrow 11$
	1010111011	$10 \rightarrow 11,11 \rightarrow 10$
	511111	
	1161111	$1 \rightarrow 16$
	16191111711	$11 \rightarrow 7$
	10101510610151515	$10 \rightarrow 6,15 \rightarrow 10$
34	1117181716171016	$17 \rightarrow 18,17 \rightarrow 16$
35	3636361063	$3 \rightarrow 6,6 \rightarrow 3,6 \rightarrow 10$
36	1223333333334343433333343333434344	$3 \rightarrow 4,4 \rightarrow 3$
	3333333333344343333333343	
37	$\begin{aligned} & 5555555555555555555555555555555555 \\ & 55555555567891011812613141516617161718 \\ & 18191120 \end{aligned}$	$16 \rightarrow 17$

Table 6.6: The order-pruned sequences only containing χ_{s} in Table 6.5 on the human Y chromosome.

Figure 6.13: The directed graph generated by merging the interruption trees in Table 6.6, and visualized using Graphviz 44. The edge weights greater than 1 are marked on the edges. The elements of SINE type are marked in grey and LTR are in blue. Each vertex in the graph is marked with its corresponding TE name and type.

The predicted interruptional evolution of these TEs is encoded in the network:

- upstream elements in the graph are predicted to be the oldest in age, e.g., X_{1} (MLT1C, ERVL-MaLR, LTR), X_{2} (MLT1A0, ERVL-MaLR, LTR), X_{5} (MLT1D, ERVL-MaLR, LTR).
- downstream elements in the graph are predicted to be the youngest in age, e.g., X_{7} (AluSg4, AluS, SINE), X_{8} (FLAM_C, Alu, SINE), X_{14} (AluSp, AluS, SINE), X_{15} (AluSq, AluS, SINE), X_{18} (AluSc8, AluS, SINE).
- elements in the same cycle in the graph indicate that they have overlapped lifespans:
cycle 1: X_{6} (AluSx1, AluS, SINE) $\rightarrow X_{10}$ (AluSx, AluS, SINE) $\rightarrow X_{11}$ (AluJb, AluJ, SINE) $\rightarrow X_{6}$ (AluSx1, AluS, SINE);
cycle 2: X_{6} (AluSx1, AluS, SINE) $\rightarrow X_{16}$ (AluY, AluY, SINE) $\rightarrow X_{11}$ (AluJb, AluJ, SINE) $\rightarrow X_{6}$
(AluSx1, AluS, SINE);
cycle 3: $X_{3}(M S T B, E R V L-M a L R, L T R) \rightarrow X_{4}(M S T B 1, E R V L-M a L R, L T R) \rightarrow X_{3}(M S T B, E R V L-$ MaLR, LTR);
cycle 4: $X_{16}(A l u Y, A l u Y, S I N E) \rightarrow X_{17}(M E R 67 C, E R V 1, L T R) \rightarrow X_{16}(A l u Y, A l u Y$, SINE).
- paths in the network indicate orders of TE ages. The elements marked in "【" are in the same cycle in the network, which indicates that these elements have overlapped lifespans.
path 1: X_{2} (MLT1A0, ERVL-MaLR, LTR) $\rightarrow X_{19}$ (AluJo, AluJ, SINE) $\rightarrow \llbracket X_{6}$ (AluSx1, AluS, SINE) $\rightarrow X_{10}\left(\right.$ AluSx, AluS, SINE) $\rightarrow X_{16}$ (AluY, AluY, SINE) $\rightarrow X_{17}$ (MER67C, ERV1, $L T R) \rrbracket \rightarrow X_{18}(A l u S c 8$, AluS, SINE);
path 2: $X_{1}(M L T 1 C, E R V L-M a L R, L T R) \rightarrow \llbracket X_{6}\left(A l u S x 1\right.$, AluS, SINE) $\rightarrow X_{16}$ (AluY, AluY, SINE) $\rightarrow X_{11}\left(\right.$ AluJb, AluJ, SINE) $\rrbracket \rightarrow X_{15}(A l u S q, A l u S, S I N E)$
path 3: $X_{5}(M L T 1 D, E R V L-M a L R, L T R) \rightarrow X_{19}\left(\right.$ AluJo, AluJ, SINE) $\rightarrow X_{11}$ (AluJb, AluJ, SINE) $\rightarrow X_{7}$ (AluSg4, AluS, SINE)
path 4: $\llbracket X_{3}(M S T B, E R V L-M a L R, L T R) \rightarrow X_{4}(M S T B 1, E R V L-M a L R, L T R) \rrbracket \rightarrow X_{14}(A l u S p$, AluS, SINE)

As previous mentioned in Chapter 2, LTR elements are known to be relatively old elements that are probably distinct in the human genome, while Alus in SINEs are relatively young elements, which matches the above predicted relative age of the upstream and downstream elements. It was also mentioned in Chapter 3 that there are three Alu subfamilies. AluJ is the most ancient (about 65 million years old), and is thought to be functionally extinct; the second oldest is the AluS subfamily, which became active approximately 30 million years ago, and only some intact elements were found to be active in humans; AluY is the youngest subfamily, and most elements of this subfamily are currently active. The history of Alu elements matches with the above predicted relative ages as well, e.g., paths 1 to 4. The predicted evolution of the TEs in χ_{s} in the network also matches with relative order published in 47] as shown in Figure 2.8, in terms of the cycles (overlapped lifespan) of the three subfamilies of Alu elements.

In the area of graph theory, a directed graph is strongly connected if there is a path between all pairs of vertices. A strongly connected component of a directed graph is a maximal strongly connected subgraph. It should be noted that some cycles in the network can form into a strongly connected component, such as cycle 1 and cycle 2 in Example 15 . However, cycles are different from strongly connected components in predicting lifespans of TEs. For example, X_{6} is predicted to have a longer lifespan in cycle 1 and cycle 2 in Example 15 than in the strongly connected component consisted of cycle 1 and cycle 2 . Therefore, no further attempts were made to construct strongly connected components here.

Furthermore, the adjacency matrix equivalent to the graph of a TE-interaction network contains the number of times (the weight of the edge) each TE inserts into each other TE. Hence, this matrix can also be reordered using the Linear Ordering Problem from Chapter 5, and indeed the Tabu search program. This predicts a linear age order of the TEs in χ_{s} that were involved in interactions.

There are two major differences between the adjacency matrix (recursive interruption model) and the interruption matrix (sequential interruption model):

- first, the interruption-detection techniques are different. The detection of interruptions in the sequential problem, or with the interruption model has more conditions because they are detected by comparing the positions of TE remnants on both the genomic sequence and the TE consensus as defined in Definition 16, while the interruptions in the recursive interruption model are detected by parsing the order-pruned sequences of the genomic sequence using the SCFG in Definition 22, Then, the recursive model includes all nested interruptions as well;
- second, the values in the interruption matrix in the sequential interruption model represent the number of times younger elements (interrupters on rows) interrupted older elements (interruptees on columns), while the adjacency matrix converted from the TE-interaction network represent that older elements has edges in the evolutionary tree pointing to younger elements. Hence, if feeding the two matrices to the LOP, the age order calculated from interruption matrix is from the youngest to oldest TEs, and from the adjacency matrix is in contrast from the oldest to youngest TEs.

The result of applying the Tabu search algorithm to the TE-interaction network of Figure 6.13 is listed in Table 6.7

It can be seen from Table 6.7 that by applying the Tabu search algorithm for LOP to the data detected by the recursive interruption model, the TEs are ordered from LTR to SINE (except for MER67C), and the three major subfamilies of $A l u$ are ordered by their known ages from AluJ to AluS to AluY. The TEs in Table 6.7 are then compared with the age order of the entire set of human TEs (Appendix A predicted by the sequential interruption model using Tabu search. The comparison is listed in Table 6.8, where the age orders are from the oldest to youngest, and the TEs are sorted by the order calculated on interruption matrix.

From the comparison of the same method applied to the two different matrices, it can be seen that the predicted age calculated on the interruption matrix moved $M E R 67 C$ to an older age, so that all TEs of the LTR type are older than those of the SINE type. In addition, the FLAM_C element is also moved up to be the oldest Alu element in the table. The ordering on the interruption matrix also agree with the facts that LTR are old elements and SINEs are young TEs.

This single result supports the interruptional analysis method. However, though a linear age order is a clear

Age order from oldest to youngest	Notation	TE	family/subfamily	type
1	X_{1}	$M L T 1 C$	$E R V L-M a L R$	LTR
2	X_{4}	$M S T B 1$	$E R V L-M a L R$	LTR
3	X_{2}	$M L T 1 A 0$	$E R V L-M a L R$	LTR
4	X_{3}	$M S T B$	$E R V L-M a L R$	LTR
5	X_{5}	$M L T 1 D$	$E R V L-M a L R$	LTR
6	X_{19}	AluJo	AluJ	SINE
7	X_{11}	AluJb	AluJ	SINE
8	X_{8}	FLAM_C	Alu	SINE
9	X_{15}	AluSq	AluS	SINE
10	X_{10}	AluSx	AluS	SINE
11	X_{6}	AluSx1	AluS	SINE
12	X_{7}	AluSg4	AluS	SINE
13	X_{17}	$M E R 67 C$	$E R V 1$	LTR
14	X_{14}	AluSp	AluS	SINE
15	X_{18}	AluSc8	AluS	SINE
16	X_{16}	AluY	AluY	SINE

Table 6.7: The age order of TEs in the TE-interaction network in Figure 6.13 predicted by Tabu search on the adjacency matrix of the network.

TE name	TE family	TE type	Age order calculated on adjacency matrix	Position in Appendix	Age order calculated on interruption matrix
MER67C	ERV1	LTR	13	595	1
MLT1D	ERVL-MaLR	LTR	5	571	2
MLT1C	ERVL-MaLR	LTR	1	563	3
MLT1A0	ERVL-MaLR	LTR	3	427	4
MSTB1	ERVL-MaLR	LTR	2	331	5
MSTB	ERVL-MaLR	LTR	4	282	6
FLAM_C	Alu	SINE	8	226	7
AluJo	AluJ	SINE	6	224	8
AluJb	AluJ	SINE	7	208	10
AluSx	AluS	SINE	10	122	11
AluSx1	AluS	SINE	11	100	12
AluSq	AluS	SINE	9	85	13
AluSg4	AluS	SINE	12	68	14
AluSp	AluS	SINE	14	67	15
AluSc8	AluS	SINE	15	54	16
AluY	AluY	SINE	16	22	15

Table 6.8: Comparison between the age orders of TEs in Figure 6.13 predicted by Tabu search of LOP on adjacency matrix and on interruption matrix.
representation, the lifespans of TEs are not predicted.

Example 16 describes another example of a TE-interaction network of a bigger set of TEs (41 TEs) on the human X chromosome. The TE-interaction network in this example is much more complex than that in Figure 6.13. whereas it is only based on the order-pruned sequences containing solely the 41 TEs on the one chromosome.

Example 16. These select 41 TEs in the human genome, denoted as $\chi_{s}=\left\{X_{1}, X_{2}, \ldots, X_{41}\right.$, $\}$, where the information of these TEs are listed in Table 6.9.

The order-pruned sequences only containing TEs in χ_{s} on the X chromosome of hg38 are identified. There are a total of 174 order-pruned sequences that have interruptions encoded in them.

Figure 6.14 is the TE-interaction network of χ_{s} constructed by merging the interruption trees from the 174 order-pruned sequences.

The evolution of these TEs is encoded in the network:

- upstream elements in the graph are predicted to be the oldest, e.g., X_{41} (L1ME3E, L1, LINE), X_{13} (LOR1-int, ERV1, LTR), X_{26} (MER92-int, ERV1, LTR), X_{4} (LTR41, ERVL, LTR), X_{30} (LTR49, ERV1, LTR), X_{38} (Tigger2TcMar-Tigger, DNA), etc.

All of the upstream TEs belong to LTR or DNA transposons (except X_{41}), which are considered to be very old. X_{41} belongs to the LINE type and L1ME is one of the oldest TE families in the human genome as shown in Figure 2.8.

- downstream elements in the graph are predicted to be the youngest, e.g., X_{20} (AluSc8, AluS, SINE), X_{10} (AluSx3, AluS, SINE), X_{37} (LTR10F, ERV1, LTR), X_{2} (AluY, AluY, SINE) etc.

As previously mentioned, the AluS and AluY families are young TE families in the human genome as shown in Figure 2.8. The LTR10F appears as a downstream node in the network, but the TEs of the LTR type are probably old. This might be because this element (even with an old age) probably has a small number of copies in the human genome, so that younger elements had little chance to insert into it. We could not find any literature to verify the age of this element.

- elements in the same cycle in the graph indicate that they have overlapped lifespans:
cycle 1: $X_{39}\left(\right.$ AluJo, AluSJ, SINE) $\rightarrow X_{12}\left(\right.$ AluSq2, AluS, SINE) $\rightarrow X_{6}($ L1M5, L1, LINE $) \rightarrow X_{39}$ (AluJo, AluJ, SINE);
cycle 2: $X_{12}(A l u S q 2$, AluS, SINE $) \rightarrow X_{6}(L 1 M 5, L 1$, LINE $) \rightarrow X_{7}\left(\right.$ AluJr, AluJ, SINE) $\rightarrow X_{23}$ (LTR49-int, ERV1, LTR) $\rightarrow X_{1} 2$ (AluSq2, AluS, SINE);

Notation	TE	family/subfamily	type
X_{1}	AluSg7	Alu	SINE
X_{2}	AluY	Alu	SINE
X_{3}	ERVL-int	ERVL	LTR
X_{4}	LTR41	ERVL	LTR
X_{5}	AluJb	Alu	SINE
X_{6}	L1M5	$L 1$	LINE
X_{7}	AluJr	Alu	SINE
X_{8}	AluSx 1	Alu	SINE
X_{9}	AluJr 4	Alu	SINE
X_{10}	AluSx3	Alu	SINE
X_{11}	MLT1E3	$E R V L-M a L R$	LTR
X_{12}	AluSq2	Alu	SINE
X_{13}	LOR1-int	ERV1	LTR
X_{14}	MER49	ERV1	LTR
X_{15}	AluSx	Alu	SINE
X_{16}	LTR26	ERV1	LTR
X_{17}	AluSz6	Alu	SINE
X_{18}	MER90	ERV1	LTR
X_{19}	Tigger 5 b	TcMar - Tigger	DNA
X_{20}	AluSc8	Alu	SINE
X_{21}	Alu	Alu	SINE
X_{22}	MER94	hAT - Blackjack	DNA
X_{23}	LTR49 - int	ERV1	LTR
X_{24}	AluSz	Alu	SINE
X_{25}	MER41B	ERV1	$L T R$
X_{26}	MER92-int	ERV1	$L T R$
X_{27}	LTR29	ERV1	LTR
X_{28}	AluYb8	Alu	SINE
X_{29}	MER34B - int	ERV1	LTR
X_{30}	LTR49	ERV1	$L T R$
X_{31}	THE1D	$E R V L-M a L R$	$L T R$
X_{32}	LTR54	ERV1	LTR
X_{33}	Tigger $2 b_{P} r i$	TcMar - Tigger	DNA
X_{34}	LTR2	ERV1	$L T R$
X_{35}	Harlequin - int	ERV1	$L T R$
X_{36}	MER50	ERV1	LTR
X_{37}	LTR10F	ERV1	LTR
X_{38}	Tigger 2	TcMar - Tigger	DNA
X_{39}	AluJo	Alu	SINE
X_{40}	THE1D - int	$E R V L-M a L R$	LTR
X_{41}	L1ME3E	L1	LINE

Table 6.9: List of TE names along with their information.

Figure 6.14: The directed graph generated by merging the interruption trees of the TEs in Table 6.9 using Graphviz 44. The edge weights greater than 1 are marked on the edges. The elements of SINE type are marked in grey, LTR are in blue, LINEs are in green, and DNA are in red.
cycle 3: $X_{15}(A l u S x, A l u S, S I N E) \rightarrow X_{31}(T H E 1 D, E R V L-M a L R, L T R) \rightarrow X_{17}$ (AluSz6, AluS, SINE) $\rightarrow X_{15}$ (AluSx, AluS, SINE);
cycle 4: $X_{18}(M E R 90, E R V 1, L T R) \rightarrow X_{20}\left(A l u S c 8\right.$, AluS, SINE) $\rightarrow X_{18}($ MER90, ERV1, LTR $)$.

- paths in the network indicate age orders. The elements marked in "【】" are in the same cycle in the network, which indicates that these elements have overlapped lifespans.
path 1: X_{38} (Tigger2, TcMar-Tigger, DNA) $\rightarrow \llbracket X_{39}$ (AluJo, AluJ, SINE) $\rightarrow X_{12}$ (AluSq2, AluS, SINE) $\rightarrow X_{6}\left(\right.$ L1M5, L1, LINE) $\rrbracket X_{8}($ AluSx1, AluS, SINE $) \rightarrow X_{20}($ AluSc8, AluS, SINE) \rightarrow X_{10} (AluSx3, AluS, SINE);
path 2: $X_{41}(L 1 M E 3 E, L 1, L I N E) \rightarrow X_{7}($ AluJr, AluJ, SINE $) \rightarrow \llbracket X_{15}($ AluSx, AluS, SINE $) \rightarrow X_{31}$ $(T H E 1 D, E R V L-M a L R, L T R) \rrbracket \rightarrow X_{24}(A l u S z, A l u S, S I N E) \rightarrow X_{10}(A l u S x 3, A l u S, S I N E)$

It can be seen in Figure 2.8 that the Tigger elements of DNA transposon and the L1ME family of LINEs are very old elements, which matches the predicted age in the above paths.

6.8 The TE-interaction network of the human genome

The network of the whole set of human TEs on the entire human genome ($1,080 \mathrm{TEs}$) is also constructed. As the network is very complicated to visualize and analyze, it is represented as an adjacency matrix which is then fed to Tabu search. The predicted age order of the whole set of human TEs calculated by Tabu search based on the adjacency matrix is attached in Appendix B

6.9 Discussion

So far, three theoretical models have been proposed: the TE fragment model helps to describe the TE problems clearly in a precise way; the sequential interruption model captures the interruptional activities between every pair of TEs; and the recursive interruption model further captures the nested nature of the interruptional activities of older TEs which cannot be represented by the interruptional matrix in the sequential interruption model.

The TE-interaction network is a richer representation of the phylogeny of TEs than only the interruption trees, as it shows the overall interactions globally and the evolutionary history of all TEs rather than a set of more local interruptional information. The network can also be represented as an adjacency matrix which is similar to the interruption matrix discussed in the sequential interruption model in Chapter 5. However,
unlike the interruptional matrix, the TE-interaction network encodes both sequential interruptions with their abundance, and also the recursive interruptions with the interruptional evolution encoded in the hierarchy of the trees. As was mentioned previously, a topological sort would represent a prediction of the TEs, if the graph had been acyclic. It should be possible to remove some edges from the graph to break the cycles. This can be done by using the minimum feedback arc set problem, which is classified as $\mathcal{N} \mathcal{P}$-complete [21], but this is beyond the scope of this thesis. Nevertheless, the cycles in the graphs are also informative, as they can perhaps indicate some notion of the lifespan of TEs. Therefore, we made no attempt to remove the cycles.

The model is used on the human genome, but as a standard method, it can be easily applied to other genomes to construct the TE-interaction network by including the TEs and their interruptions in that genome. Furthermore, it can even be applied to multiple related genomes (e.g., several primate genomes, or several plant genomes) where common TEs exist in them to study the interactions between both TEs and the genomes.

Last but not least, the network could possibly serve as a visualization tool to show the interactive history between TEs. The weights on outgoing edges represent the number of times each TE got interrupted by another TE (how much older the TE is compared to another), which further implies the age of that TE the bigger outdegree, the older age. The weights on incoming edges capture the number of times each TE interrupt another TE, which further implies the lifespan of a TE - the bigger indegree, the longer lifespan. A Python implementation of this chapter can adjust parse trees to obtain interruptional evolutionary trees, then construct the network from the adjusted trees.

In the next chapter, there will be further use of this model on simulated data. A systematic comparison between the two approaches (models from Chapter 5 and 6), together with a new technique to measure the accuracy, will be given.

Chapter 7

Simulation of the TE Transpositions through SEQUENCE EVOLUTION

TEs have existed for billions of years, as they predate eukaryotes. They are ubiquitous in the human genome and many other genomes, and their impacts on genome size, genome structure, plasticity, and evolution are substantial. In the previous chapters, given the TE remnants in a genome, theoretical models have been created predicting the history of TE interaction which reflects the age of TEs and their activities throughout evolution. In this chapter, a simulation of TE transpositions is created to imitate the simplification of evolutionary history of the propagation of TEs. By simulating the TE activities through evolution, the remnants of TEs with their positions in a simulated genome can be generated. Such a simulation is an important tool for understanding transpositions and the evolution of genomes generally, since TEs are such an important factor in their form. Furthermore, a simulation can be used as a verification tool for TE prediction problems. Ideally, the known ages and lifespans of TEs from a simulation, and the predicted age order calculated by the models in Chapter 5 and 6 using the simulated remnants data should be identical, which serves as an in silico verification to these theoretical models. Using simulations of sequence evolution as a means of verification has also been used similarly in other areas, such as to compare multiple sequence alignment algorithms 135.

7.1 Introduction

As introduced in Chapter 2, the typical lifespan of a transposon starts from the activation of the transposon, followed by a burst of transposition activity. For both Class I and Class II elements, a transposition event generates a duplicated copy of the transposon, and inserts it into a new genomic site with a sequence that is identical to the original copy. The copies of this transposon accumulate mutations independently, and as their divergence increases, their mobile activity slows down with time. The transposon then ebbs further until it is deactivated once all of its copies become inactive. The inactive elements become relics and fade into the genomic sequence while accumulating mutations at the neutral mutation rate as surrounding DNA loci,
which results in older TEs becoming more divergent than younger TEs. At the same time, the old elements (both active or inactive copies) can get interrupted by the transpositions of younger active elements 47, where a younger element replicates itself at the site of insertion within an old element.

The simulation begins with a set of TEs and their ages (when they first appear) as an input. It starts from a point in evolutionary time (e.g., 200 MYA), and simulates the mutations in a genome (using an existing tool, called PhyloSim) and the insertion and degrading activities of TEs. As time progresses, TEs are activated when the "current" time matches their input ages. The activated TEs start their transpositional activities while also accumulating mutations at the same time. The mutations in TEs decrease the activity levels of these TEs, until they become inactive. The simulation can imitate the activity of the entire lifespan of these transposons in a genome of a molecular sequence.

In the next sections, more details of the simulation will be introduced including the background of a similar simulation of sequence evolution, key parameters, existing substitution models, and the workflow of the simulation.

7.2 Background

The human mutation rate

Human genomes differ from each other in a number of ways, such as single nucleotide mutations, insertions and deletions, repeat polymorphisms, and larger-scale rearrangements. A mutation rate is defined as a measure of the rate at which various types of mutations occur in the genome over time, which is characterized using a measure such as mutations per base pair per cell division, per gene per generation, or per genome per generation, etc. In most studies, mutation rates are based on single nucleotide mutations because they are comparatively easy to quantify. The mutation rate in the human genome was estimated in different units as:

- $\mu_{1}=0.17 \%$ mutations per base pair per Mys in [73];
- $\mu_{2}=10^{-10}$ mutations per replication per base pair in [107;
- $\mu_{3}=2.5 \times 10^{-8}$ per site per generation [108;
- $\mu_{4}=160$ mutations per dipoid genome per generation [108].

These rates in different units are roughly consistent by converting to each other. For example,

$$
\begin{aligned}
\mu_{4} & =160 \text { mutations (per human genome) (per generation) } \\
& \approx \frac{\mu_{1}}{10^{6} \text { years per Mys }} \times 3.2 \times 10^{9}(\mathrm{bp})(\text { per human genome) } \times 30 \text { (years) (per generation) } \\
& =\frac{0.17 \% \text { mutations }(\text { per } \mathrm{bp})(\text { per Mys) }}{10^{6} \text { years per Mys }} \times 3.2 \times 10^{9}(\mathrm{bp})(\text { per human genome) } \times 30 \text { (years) (per generation) } \\
& =163.2 \text { mutations (per human genome) (per generation) } \\
\mu_{3} & =2.5 \times 10^{-8} \text { per site per generation } \\
& =\frac{\mu_{4}}{6.4 \times 10^{9}(\text { per bp per diplod genome) }} \\
& =\frac{160 \text { mutations per dipoid genome per generation }}{6.4 \times 10^{9}(\text { per bp per diplod genome) }} \\
& =2.5 \times 10^{-8} \text { per site per generation }
\end{aligned}
$$

Transposition rates of $L 1$ and $A l u$ in the human genome

Because of their continued activity and accumulation in the genome over years, $L 1$ and $A l u$ elements have had a huge impact on the evolution of primate genomes. To assess this impact, the amplification/transposition rates of the $L 1$ and $A l u$ elements are considered. A transposition rate is defined as the frequency that retrotranspositions occur in the germline ${ }^{1}$ over time.

The current transposition rate of $L 1$ retrotransposition has been estimated as approximately 1 insertion for every 140 births in humans [38, and the current rate of Alu retrotransposition has been estimated as approximately 1 insertion for every 20 births in humans [31. The rates are calculated based both on the frequency of disease-causing de novo insertions compared with nucleotide substitutions and on comparisons between the human and chimpanzee genomes and between multiple human genome sequences [147.

Models of DNA substitutions

The process of a sequence of nucleotides changing into another sequence of nucleotides can be described using a DNA substitution model, which is a phenomenological description of the DNA sequence evolution as a string of four discrete states. Mutation events whose occurrence at each site of the DNA sequence can be mathematically modelled by a continuous-time Markov chain, which is defined by matrices containing the relative probabilities of changing from any nucleotide to any other nucleotide at any site over any period of

[^13]evolutionary time. Note that most modern simulation software allows simulating sequence regions evolving under different models/parameters.

The most common DNA substitution models includes JC69 (Jukes and Cantor, 1969) 62], K80 (Kimura, 1980) [75], F81 (Felsenstein 1981) [39], HKY85 (Hasegawa, Kishino and Yano 1985) [54], T92 (Tamura 1992) [138, TN93 (Tamura and Nei 1993) [139], GTR (generalised time-reversible) [140, etc., among which JC69 is the simplest model based on assumptions such as equal base frequencies and equal mutation rates.

The PhyloSim simulation package

The PhyloSim [129] (License: GNU General Public License Version 3) is an object-oriented framework of Monte Carlo simulation ${ }^{2}$ of sequence evolution written in R, which simulates the evolution of DNA or protein sequences by using substitution models of the type of the sequence following an input-phylogenetic tree. The framework builds on and complements the APE (Analyses of Phylogenetics and Evolution) package ${ }^{3}$

PhyloSim uses the Gillespie algorithm [46] as a unified framework for simulating the actions of many concurrent processes such as substitutions, insertions, and deletions in sequence evolution. The Gillespie algorithm is a method of stochastic simulation, which tracks the evolution of variables that can change randomly with some probabilities. It was first used to simulate reactions of chemical or biochemical systems efficiently and accurately, and is now heavily used in the area of computational systems biology.

In PhyloSim, the simulation of sequence evolution is guided by an input-phylogenetic tree, where the branch lengths represent evolutionary time length. Every branch (in terms of evolutionary time) of the tree is simulated in two steps iterated repeatedly: first, randomly generate the time of occurrence of the next event; second, modify the sequence object according to a randomly selected event. The event is chosen by selecting the highest event rate, which is estimated by the substitution models attached to the sites in the sequence. These steps are repeated until the available time on the current branch is exhausted. At the end, the genomic sequences of the simulated species (at the tips of the phylogenetic tree) are related to each other according to the (input) phylogenetic tree.

The key features offered by PhyloSim includes (adapted from [129): the evolution of a set of discrete characters can be simulated with arbitrary states evolving by a Markov process (JC69, HKY, GTR, etc.)

[^14]with an arbitrary rate matrix; the evolution can be simulated by a combination of different substitution processes with any rate matrices on the same site; popular models and patterns of among-sites rate variation can be simulated; different site- and process-specific parameters are allowed for every site, which permits for any number of partitions in the simulated data.

7.3 Methodology

Our simulation of TE transpositions through sequence evolution is written in the R language and built on top of the PhyloSim package. This is because PhyloSim provides functions that simulate random substitutions through sequence evolution, and the TE transposition simulation imitates the replication and insertion of active TEs on a dynamically changing genomic sequence through evolution created by PhyloSim. Therefore, the PhyloSim package provides the necessary generality on which to extend, rather than rewriting its functionality. Unlike PhyloSim that simulates sequence evolution of multiple species under the guidance of a phylogenetic tree, the TE transposition simulation currently only simulates one genomic sequence. The workflow of the TE transposition simulation starts from an evolutionary time T and an original genomic sequence. As time is being consumed, mutations are introduced into the genome randomly using the functions provided by PhyloSim following a substitution model and the mutation rate; at the same time, TEs are being activated when the current time reaches the input ages of these TEs, and transpositions occur through evolution. This is repeated until time is exhausted. The modified genomic sequence at the end of the simulation represents the current-day genome, which encodes the history of TE activities by their positions of insertions and their interruption patterns, similar to the current-day human genome.

The simulation is subject to a number of parameters such as mutation rate, transposition rates, substitution model etc., and a set of input data, which is listed and explained in details in the next subsections, as well as a discussion of the limitations of the approach.

Parameters, inputs, and limitations

There are some parameters in Table 7.1, which are useful for the simulation, followed by justifications of these parameters.

Though mutation rates may differ between species and even between different regions of the genome of a single species, in this chapter, the main objective is to simulate the TE transpositions instead of the evolution of the sequence itself, so an assumption that any site in the sequence has the same neutral mutation rate is made for simplicity. More dynamic rates, including for example, epigenetic effects on transposition is left as future work. Similarly, the same substitution model is applied to each site in the nucleotide sequence for

Name	Notation	Values
Mutation rate	μ	0.17% (per site) (per Mys)
Substitution model	p	JC69
Evolutionary time to simulate	T	200 MYA
Length of initial genomic sequence	seq.len	$10,000 \mathrm{bp}$
Transposition rate	Tr.rate	10 site mutations per insertion
Threshold of percent identity to deacti- vate a TE	PID	90%

Table 7.1: Parameters of the simulation
simplicity as well. In our simulation, the JC69 model is applied to the genomic sequence. A more extensive simulation taking into account sequence regions evolving under different models/parameters is also left as future work.

As previously mentioned in Chapter 3] no Alu elements with more than 10% mutations were active in the cell culture in [12]. Therefore, the threshold of percent identity to deactivate a TE in the simulation is set to be

$$
P I D=90 \%
$$

Recall that the transposition rate, denoted as Tr.rate, for the Alu elements has been estimated as approximately 1 insertion for every 20 births in humans. We assume that transposons have the same mutation rate as their surrounding DNA loci after they inserted into the genome. We also assume that both the transposition rates and mutation rate are constant over time. Given a neutral mutation rate of 160 mutations per diploid genome per generation in human [108], the transposition rates of Alu elements can then be converted and represented relative to the sequence evolution in our simulation as:

$$
\begin{aligned}
\text { Tr.rate } & =\frac{160 \text { mutations (per diploid genome) (per generation) }}{1 / 20 \text { Alu insertion (per diploid genome) (per generation) }} \\
& =3,200 \text { mutations (per Alu insertion) }
\end{aligned}
$$

However, to make the time taken to execute the simulation practical and the TE-interaction network easy to read, only a small set of 20 TEs (2% of the TEs in the human genome) will be simulated on a small genome of length $10,000 \mathrm{bp}\left(3.33 \times 10^{-4} \%\right.$ of the human genome size). Moreover, in order to generate a large number of insertions and interruptions in a practical amount of time in the simulation, the transposition rate is set to Tr.rate $=10$ mutations (per insertion) for simplicity.

It should be noted that the simulation in this thesis only imitates the transposition of retrotransposons (trans-
pose using copy-and-paste mechanism), not DNA transposons (transpose using cut-and-paste mechanism). This is because each insertion of retrotransposons is stable through evolutionary time, and is a "fossil" of a unique transposition event. The transposition of DNA transposons involves not only insertions, but also excisions, which is more complicated.

The simulation is based on known TEs and their properties, therefore, there are known data inputs, including consensus sequences, ages, and harmful regions of these TEs.

1. TE consensus sequences: a list of n TEs $(n=20)$ whose propagation will be simulated along with their consensus sequences. The consensus is randomly generated with a length of 30 bp (10% of the length of Alu).
2. TE ages: the list of n TEs are input together with their age of activities (ranging from 200 Mys to 30 Mys). The TEs will be activated once the current time reaches their age (when the TEs start appearing in the genome).
3. Harmful regions: the genomic positions of harmful regions in the consensus sequences of the TEs. If mutations occur within the harmful regions of a TE, the activity fraction of this TE will be decreased in the simulation. According to the harmful regions of AluY elements calculated in Table 3.2, the harmful regions covered 32.9% of the AluY consensus sequence. Therefore, in the simulation, 30% of the consensus sequences are marked as harmful regions, where the positions of the regions are randomly generated.

Initializations

The simulation starts with some preprocessing and initialization steps. This includes certain values that are needed for a verification of the sequential interruption model and the recursive interruption model in previous chapters.

1. construct the database of TEs. Each record is one transposon, denoted by $\mathcal{T E}$, with its attributes as

$$
\operatorname{info}(\mathcal{T} \mathcal{E})=\left(\text { name }, \text { consensus, length, status, age }, \text { harmfulRG, SCFGterminal }, t_{\text {activate }}, t_{\text {deactivate }}\right) .
$$

The definitions of the attributes are as follows:
name: the name of the transposon;
consensus: the consensus sequence of the transposon from Repbase Update;
length: the number of nucleotides in the consensus sequence;
status: the activity status of the transposon. The status is set to 0 when the simulation starts:

$$
\text { status }= \begin{cases}0 & \text { if the transposon has never been activated; } \\ 1 & \text { if the current time equals to the age of this transposon, it is activated; } \\ 2 & \text { if this TE is currently active; } \\ 3 & \text { if the TE is no longer active (but stays in the genome). }\end{cases}
$$

age: the age of the transposon, meaning the time when it became active;
harmfulRG: start and end positions of the harmful regions in the consensus sequence;

SCFGterminal: corresponding terminal letter (a label) of this element used for the context-free grammar (explained below);
$t_{\text {activate }}$: time when the element is activated;
$t_{\text {deactivate }}$: time when the element is deactivated.
2. Initialize an interruptional matrix, $I M$, with all 0s, where rows represent interrupters, columns represent interruptees. This matrix will store the sequential interruptions that occur during the simulation, and will be used input to the sequential interruption model developed in Chapter 5 as a verification.
3. Create a randomly generated nucleotide sequence, geno.seq, of length seq.len, and attach a substitution model, p, to the sites in the sequence (using functions provided in PhyloSim).
4. Initialize a TE fragment list, TEfragments, where each element in the list is one TE fragment z with its attributes as:

$$
\begin{gathered}
\text { info }(z)=(\text { genoName, genoStart, genoEnd, genoLeft, strand,TEName, TEClass, } \\
\text { TEStart,TEEnd,TELeft, segmented, updated, activeFrac, pid,YearInsertion }) .
\end{gathered}
$$

Besides the attributes defined in the TE fragment model (Chapter 4) in Definition 12 , there are five additional attributes for the sake of the simulation:

- segmented: "yes" if the fragment is segmented by another TE; "no" otherwise.
- updated: " 1 " if the coordinate of the fragment is updated (when another fragment was inserted into the genomic sequence at a position before the current fragment, the coordinate of the fragment needs to be updated); " 0 " the fragment has already been updated, or there is no need to update the coordinate (if another fragment was inserted at a position after the current fragment, the coordinate of the fragment does not change).
- activeFrac: the active fraction of the fragment. 0% means inactive; 100% means the most active when the TE is just activated.
- pid: the percent identity of the fragment compared to the consensus sequence of this transposon.
- YearInsertion: time when the fragment was inserted into the genomic sequence.

General steps of the simulation

Briefly, the TE transposition simulation is based upon the sequence evolution simulation, where random mutations (simulated by the substitution model) are introduced into the sequence for each time step iteratively. For every Tr.rate (a transposition rate described in terms of the number of mutations) mutations, introduce a TE insertion. The inserted TE is replicated from either a newly activated TE from the TE database (when the current time matches the age of that TE) or from a randomly selected active TE copy (from its activity fraction) that already existed in the genome. Each active TE existing in the genome has an attribute called activity fraction, denoted as activeFrac, which is dynamically calculated by the current percent identity, the number of mutations occurred within the harmful regions, and the lifespan of that TE. The mutations and insertions are repeated until the simulation time is exhausted.

Starting from a time in evolution $t \leftarrow T$ (e.g., 200 million years ago), for every time step, do the following operations until t is exhausted.

Step 1 Introduce a mutation into the sequence subject to the substitution model p attached to the sequence using functions provided in the PhyloSim package.

Step 2 After accumulating Tr.rate substitutions, check whether there are active TEs to transpose:
case 1: if there are newly activated TE (TE.age $\leq t$ and TE.status $==0$), prepare to introduce an insertion from the TEs in the TE database by doing the following steps, then go to Step 3. If there are more than one TEs that are newly activated, randomly choose one from them. The newly activated TE that is chosen to be inserted is denoted by $\mathcal{T} \mathcal{E}$.
(a) In the TE database, update the activation status of the chosen TE, $\mathcal{T} \mathcal{E}$. status $=1$ (activate the TE now) and its year of activation, $\mathcal{T E}$. $t_{\text {activate }}=t ;$
(b) Create a copy of $\mathcal{T} \mathcal{E} . c o n s e n s u s$ as seqToInsert;
case 2: if there does not exist any newly activated TE, check if there are existing active TE copies in the genomic sequence, and prepare to introduce a TE insertion from an active copy by doing the following steps, then go to Step 3.

For every intact TE fragment (that did not get interrupted by other TEs) z in the TE fragments list, do the following steps:
(a) Calculate the percent identity of the fragment, z.pid, by comparing the sequence of this fragment to the consensus sequence.
(b) If there are mutations that occurred within the harmful regions of the TE, calculate the number of mutations in the harmful regions, denoted as n. The more mutations that occurred in harmful regions, the less active this TE will be.
(c) Calculate the lifespan of the TE family $(\mathcal{T E})$ that the fragment belongs to, denoted as span $=$ $t-\mathcal{T} \mathcal{E} . a g e$. The longer this TE family has existed in the genome, the less active it tends to be.
(d) update the activity fraction z.activeFrac:

- If z diverges to a threshold $(z . p i d \leq P I D)$, change it to the inactive status $(z . a c t i v e F r a c \leftarrow$ 0%);
- Otherwise, calculate a new activity fraction subject to the percent identity of the fragment, the number of mutations in the harmful regions, and the lifespan since the TE of this fragment has become active:

$$
z . a c t i v e F r a c \leftarrow z . p i d \times \frac{1}{n+1} \times \frac{1}{\text { span }} \times z . a c t i v e F r a c .
$$

(e) select the active TE fragment with the highest activity fraction (if there are multiple fragments with the same activity fraction, randomly select one), and create a copy of its sequence as seqToInsert (the new insert will have the same sequence and same activity fraction as the original fragment).
case 3: if there are no active TEs to transpose, skip Step 3 and Step 4 and go to Step 5 directly.

Step 3 Insert seqToInsert from the last step into the genomic sequence:
(a) Randomly generate a position of the genomic site, pos.
(b) Create a fragment object that inherits the attributes from the original copy of the element (either a newly activated TE or an existing active TE copy in the genomic sequence) with positions in the genome and append it to the TE fragments list.
(c) Insert seqToInsert at pos.
(d) check if the insertion interrupts other existing fragments in TEfragments list (if pos is within any fragments). Once an interruption is detected, deactivate the interruptee (z.segmented $\leftarrow y e s$, z.activeFrac $\leftarrow 0 \%$), and update the interruptional matrix $I M$.
(e) Update coordinates of all fragments afterwards.
(f) Update the percent identity of each intact TE fragment (that did not get interrupted by others) in the TE fragment list. If it is less than PID, make this fragment inactive (z.activeFrac $\leftarrow 0 \%$).

Step 4 Check the activity fractions of all TEs in the list of TEfragments. If no copies of the family $\mathcal{T} \mathcal{E}$ are still active, deactivate this family in the TE database and record the deactivation time (\mathcal{T} E.status $\leftarrow 3$, $\mathcal{T} \mathcal{E} . t_{\text {deactivate }} \leftarrow t$), otherwise, $\mathcal{T} \mathcal{E} . s t a t u s ~ \leftarrow 2$.

Step 5 Sample a timeinterval with a fixed mean calculated from the mutation rate μ and the current length of the sequence seq.len',

$$
\text { mean }=\frac{\frac{1}{\mu}}{\text { seq.len' }}
$$

Step 6 Decrease the current time t by time.interval, and repeat from Step 1 until t is exhausted.

Output

After t is exhausted, the simulation is finished, and the final genomic sequence is output. In addition, the TE fragments list with detailed information regarding each fragment in the genome is output. Furthermore, there are two outputs that connect to the theoretical models created in previous chapters:

- An interruptional matrix of the sequential interruptions that are detected from the simulated genomic sequence using the sequential interruption model in Chapter 5 will be output and fed to the Tabu search of the Linear Ordering Problem to predict a linear age order of these TEs. This is used to verify the accuracy of the sequential interruptional analysis work, as the correct answer is known for the simulation.
- A list of order-pruned sequences of the generated TE remnants will be output and fed into the recursive interruptions model in Chapter 6 to predict the local TE interruption trees of evolution.
- A list of TEs with their lifespans in the simulation will be output. All the interruption trees from the last step will be adjusted and merged into a TE-interaction network, and will be visualized whereby the node size of each node in the network, determined by the lifespan of that TE in the simulation.

7.4 Results

Although the simulation will be run 10 times and aggregate statistics will be collected, one simulation will be described in detail first as an example. This allows for a more detailed discussion.

A simulation of 20 TEs was run for $T=200$ Mys using the parameters listed in Table 7.1. The consensus and harmful regions (cover 30% of the length of the consensus) of these TEs are randomly generated. The activation and deactivation time and the lifespan of each TE in the simulation are in Table 7.2 (from oldest to youngest). Note that the TEs are labelled intentionally to be consistent with their age for simplicity; for example, TE1 is the oldest, and TE20 is the youngest. Moreover, the column of input age order in the table is marked in red, which will be compared to the predicted age orders later.

TE name	Input age order (oldest to youngest)	Year of activation (MYA)	Year of deactivation (MYA)	Lifespan $($ Mys $)$	Number of fragments in genome
TE1	1	199	138	61	80
TE2	2	195	171	23	6
TE3	3	189	168	22	3
TE4	4	185	151	34	1
TE5	5	180	112	68	77
TE6	6	170	119	50	13
TE7	7	160	89	71	58
TE8	8	150	86	64	59
TE9	9	140	69	71	19
TE10	10	130	55	74	122
TE11	11	120	97	22	1
TE12	12	110	62	48	7
TE13	13	100	63	37	9
TE14	14	90	13	76	129
TE15	15	80	39	41	5
TE16	16	70	8	61	22
TE17	17	60	0	60	60
TE18	18	40	0	50	53
TE19	19	30	0	40	33
TE20	20		30	29	

Table 7.2: The input age order, activation time, deactivation time and lifespans of TEs in the simulation. The column of input age order is marked in red, which will be compared to the predicted age orders later.

Verification of the theoretical models using the simulated data

As mentioned in Section 7.3 , there are three outputs from the simulation: an interruption matrix of sequential interruptions, a set of order-pruned sequences of TE remnants with $E=5 b p$ in transposon regions in the genomic sequence, and the lifespans of the TEs in the simulation. The output data are fed into both the sequential interruption model and recursive interruption model of the previous chapters, as illustrated in the flow chart in Figure 7.1 , to verify the sequential and recursive interruption models created in Chapters 5 and 6.

First, the interruption matrix (IM) detected using the sequential interruption model is fed into the Tabu search of the LOP to predict an age order from IM; second, the order-pruned sequences are fed into the stochastic CYK to generate the most-likely parse trees of the SCFG of recursive interruption model; then the most-likely parse trees are adjusted and merged into an TE-interruption network where the node sizes of the TEs in the network are determined by the lifespans of TEs in simulation (these are not inferred); meanwhile, the adjacency matrix (AM) of the TE-interruption network is fed into the Tabu search of the LOP again to predict another age order from AM; last (not shown on the workflow), the predicted age orders from IM (the blue order) and from AM (the green order) are compared to the input age order of TEs (the red order), and the correlations of each comparison will be reported reflecting the accuracy of the predicted ages against the input known ages. Moreover, the two predicted orders will be compared to each other to report how much they agree with each other.

As discussed in Lemma 1, the position of transposons with zero interruptions does not affect the optimal solution of the LOP, hence, it is reasonable to remove these TEs from the interruption matrix so that they will not appear in the predicted order. The predicted age order from the interruption matrix is calculated and shown in Table 7.3 Note that TE4 and TE11 were not involved in any interruptions, so their relative ages were not predicted, and the predicted age order of the sequential interruption model is marked in the same colour (blue) as the predicted order of IM in Figure 7.1 .

To quantify how much the predicted order is correlated with the input order, the Pearson's coefficient of correlation is calculated between the blue order (predicted age order from IM) and the red order (input TE age order) as:

$$
\rho_{\text {blue vs. red }}=0.9401445,
$$

which indicates that the predicted order from IM and the input order have strong positive correlation (a correlation of 1 means that the two orders are identical). Furthermore, Figure 7.2 shows the comparison between the blue order (predicted age order from IM) and the red order (input TE age order). As previously mentioned in Chapter 5, it is reasonable that the two orders in comparison are distributed "around" the diagonal line, as TEs have overlapped lifespans. It can be seen that the predicted age order calculated by

Figure 7.1: A workflow of simulated data verifying the theoretical models in previous chapters. The three age orders are colour coded in the chart, where the input age order in red corresponds to the red column in Table 7.2 the predicted age order on IM in blue corresponds to the blue column in Table 7.3 and the predicted age order on AM in green corresponds to the green column in Table 7.5

TE name	Predicted age order calculated by Tabu search from IM (oldest to youngest)
TE1	3
TE2	
TE3	5
TE5	1
TE6	2
TE7	6
TE8	7
TE9	4
TE10	9
TE12	8
TE13	12
TE14	13
TE15	10
TE16	11
TE17	14
TE18	15
TE19	18
TE20	17

Table 7.3: The relative age order calculated by Tabu search from the interruption matrix of the sequential interruption model. Note that TE4 and TE11 were not involved in any interruptions, so their relative ages are not predicted. The column of the predicted age order is marked in the same colour as the predicted order of IM in Figure 7.1

Tabu search agrees well with the input age order.

Figure 7.2: A comparison between the input age order and the predicted age order calculated by Tabu search from the simulated interruption matrix. The x -axis is the predicted relative age order, the y-axis is the input relative age order, and the diagonal line marked in red represents all points that agree between the predicted and actual order.

Next, the order-pruned sequences output from the simulation are fed into the recursive interruption model to calculate the most-likely parse trees. The parse trees are then adjusted to obtain interruptional evolutionary trees using the implementation of Algorithm 1, and the interruptional evolutionary trees are merged into a TE-interaction network as shown in Figure 7.3 .

Note that each node in the network represents one TE, and the TE numbering matches the numbering of the variables in the grammar, for example, the node $X 1$ in the network represents TE1 for simplicity. The edge weights greater than one are marked on the edges. As previously discussed in Chapter 6, the lifespans of TEs also influences the number of interruptions in which the TEs can be involved. In light of this, some improvements on visualizing the network have been made to include the information of lifespans. The size of each node in Figure 7.3 is subjected to the lifespan of the corresponding TE output from the simulation, where the size of the node is the logarithm (base 10) of the lifespan of that TE. The reason for converting the lifespan into the logarithm scale is for the clarity, as otherwise the big nodes will make the directions and weights on the edges hard to see. Furthermore, the TEs are aligned with their activation time (timeline on the left of the graph) in the simulation.

The network shows the interruptions between TEs visually. It can be seen that most of the edges point down, which suggests younger TEs interrupting older TEs in the simulation; whereas there are some edges that point up, which suggests overlapped lifespans between the TEs connected by the cycles. Some properties of the predicted interruptional evolution of these TEs are encoded in the network:

- upstream elements in the graph are predicted to be the oldest in age, e.g., X_{2}, X_{3}.

Figure 7.3: The TE-interaction network calculated from the recursive interruption model on the simulated data, with each TE aligned with its year of activation.

- downstream elements in the graph are predicted to be the youngest in age, e.g., X_{12}.

Though we know that X_{12} is not the youngest in age, it only has 7 fragments in the genome as in Table 7.2, therefore, it has less chance to be interrupted by younger TEs than the TEs with a large number of copies in the genome.

- elements in the same cycle in the graph indicate that they have overlapped lifespans:
cycle 1: $X_{5} \rightarrow X_{10} \rightarrow X_{5} ;$
cycle 2: $X_{7} \rightarrow X_{10} \rightarrow X_{9} \rightarrow X_{7} ;$
cycle 3: $X_{14} \rightarrow X_{16} \rightarrow X_{17} \rightarrow X_{14}$;
cycle 4: $X_{17} \rightarrow X_{20} \rightarrow X_{18} \rightarrow X_{17}$.

The activation and deactivation time in Table 7.2 show that the TEs in the same cycle have overlapped lifespans.

- paths in the network indicate orders of TE ages. The elements marked in "【 Ø" are in the same cycle in the network, which indicates that these elements have overlapped lifespans. As the input age order is encoded in the TE names, a small number in the name suggests an old age, and vice versa.
path 1: $X_{1} \rightarrow \llbracket X_{5} \rightarrow X_{10} \rrbracket \rightarrow X_{12} ;$
path 2: $X_{8} \rightarrow \llbracket X_{7} \rightarrow X_{10} \rrbracket \rightarrow X_{14} \rightarrow X_{18}$
path 3: $X_{13} \rightarrow \llbracket X_{17} \rightarrow X_{20} \rightarrow X_{19} \rightarrow X_{18} \rrbracket$
path 4: $X_{14} \rightarrow X_{15} \rightarrow X_{16} \rightarrow X_{19}$
The TEs in a path with inverted numbering also indicate overlapped lifespans, such as $X_{8} \rightarrow X_{7}$ in path 2, and $X_{20} \rightarrow X_{19} \rightarrow X_{18}$ in path 3.

Table 7.4 summarizes the indegree and outdegree of each node in Figure 7.3 . As discussed, the old TEs tend to have high outdegree and low indegree, while the young TEs tend to have high indegree and low outdegree.

Next, the adjacency matrix of the TE-interaction network in Figure 7.3 is fed into the Tabu search of the LOP, and a predicted age order from AM (the green order in Figure 7.1 is calculated and listed in Table 7.5 where the column of the predicted order is coloured in green to match with the data in Figure 7.1.

Similarly, the Pearson's coefficient of correlation is calculated between the green order (predicted age order

TE name	Outdegree	Indegree
TE1	32	1
TE2	4	0
TE3	3	0
TE4	0	0
TE5	27	10
TE6	2	6
TE7	16	11
TE8	23	3
TE9	8	2
TE10	32	32
TE11	0	0
TE12	0	2
TE13	2	3
TE14	20	37
TE15	1	2
TE16	6	3
TE17	6	31
TE18	3	25
TE19	1	15
TE20	5	8

Table 7.4: The indegree and outdegree of each node in the network in Figure 7.3 .
\(\left.$$
\begin{array}{c|c}\hline & \begin{array}{c}\text { Predicted age order }\end{array}
$$

TE name \& calculated by Tabu search from AM

(oldest to youngest)\end{array}\right]\)| TE1 | 1 |
| :---: | :---: |
| TE2 | 2 |
| TE3 | 4 |
| TE5 | 7 |
| TE6 | 8 |
| TE7 | 6 |
| TE8 | 3 |
| TE9 | 5 |
| TE10 | 9 |
| TE12 | 16 |
| TE13 | 14 |
| TE14 | 10 |
| TE15 | 11 |
| TE16 | 12 |
| TE17 | 15 |
| TE18 | 18 |
| TE19 | 17 |
| TE20 | 13 |
| | |

Table 7.5: The relative age order calculated by Tabu search from the adjacency matrix (AM) of the TE-interaction network of the recursive interruption model. Note that TE4 and TE11 were not involved in any interruptions (they are not connected to any other nodes in Figure 7.3), so their relative ages are not predicted. The column of predicted age order is marked in the same colour as the predicted order of AM in Figure 7.1 .
from AM) and the red order (input TE age order) as:

$$
\rho_{\text {green vs. red }}=0.8658411,
$$

which indicates that the predicted order from AM and the input order have strong positive correlation as well, but it is less strong than the correlation between the predicted order from IM and the input order $\left(\rho_{\text {blu vs. red }}=0.9401445\right)$ in this particular simulation. Furthermore, Figure 7.4 shows the comparison between the green order (predicted age order from AM) and the red order (input TE age order).

Figure 7.4: A comparison between the input age order and the predicted age order calculated by Tabu search from adjacency matrix. The x -axis is the predicted relative age, the y -axis is the input relative age, and the diagonal line marked in red represents all points that agree between the predicted and actual order.

Lastly, the two predicted orders are compared to each other, and the Pearson's coefficient of correlation between the two orders is calculated as

$$
\rho_{\text {green vs. blue }}=0.8968008
$$

which indicates that the two predicted orders are also positively correlated with each other.
To further show that the two theoretical models created in this thesis achieves good results in predicting the relative ages of TEs in general, the simulation was run for 10 times with the same parameters as in Table 7.1 for 20 TEs for $T=200$ Mys using the same data input (TE consensus, age order, and harmful regions). The same workflow of Figure 7.1 is applied to all the simulated data to compare the predicted orders from both the sequential interruption model and the recursive interruption model to the input order. The correlations are listed in Table 7.6 .

The correlations in the table suggest that the recursive interruption model seems to perform better in gen-

	$\rho_{\text {blue vs. red }}$ (ordering from IM vs. input order)	$\rho_{\text {green vs. red }}$ (ordering from AM vs. input order)
simulation1	0.936	0.962
simulation2	0.889	0.898
simulation3	0.686	0.950
simulation4	0.611	0.991
simulation5	0.641	0.989
simulation6	0.734	0.833
simulation7	0.719	0.956
simulation8	0.787	0.929
simulation9	0.692	0.950
simulation10	0.681	0.934
average	0.738	0.939

Table 7.6: Correlations calculated from ten simulations.
eral, because it achieves a better correlation on average, in contrast to the one example above, where the sequential model performed better. Indeed, on average, the Pearson's coefficient of correlation is 0.939 for the recursive interruption model, versus the considerably lower 0.738 for the sequential interruption model. Further simulations across longer timespans, more TEs, larger sequence, and varied parameters is left as future work.

7.5 Conclusion and discussion

In this chapter, a simulation is developed in the R language, which simulates the evolutionary process of how TEs propagate through time, built on top of the existing PhyloSim package that simulates sequence evolution. It is based on several assumptions, such as that the mutation rate is constant both through all genomic sites including inserted TEs, as well as through evolution. It also assumes that the transposition rate is constant for all the TEs in the simulation. The simulation is general for all TE families or all genomes.

After a simulation, the TE remnants in the simulated genome are used to verify the theoretical models in previous chapters. First, the predicted relative age calculated by Tabu search based on the sequential interruption model shows a strong positive correlation with the input age order of TEs, which supports the accuracy of the sequential interruption model in predicting TE ages. Then a TE-interaction network is created using the recursive interruption model which shows the interactions between TEs in evolution graphically. The directions of edges generally pointing downward in the graph agrees with the known TE
activity in the simulation. The adjacency matrix of the TE-interaction network is then used by Tabu search to predict another relative age order of the TEs, which also shows a strong positive correlation with the input order. Both the direction of edges and the agreement between predicted order and input order support the accuracy of the result of the recursive interruption model. Moreover, the two predicted orders from the sequential interruption model and the recursive interruption model are positively correlated with each other as well, meaning that both methods aiming to find the same solution. The average correlation from the two models suggests that the recursive interruption model, with an average Pearson's coefficient of correlation of 0.939 , achieves a better result than the sequential interruption model, with an average Pearson's coefficient of correlation of 0.738 , in predicting a linear relative age order of TEs. Moreover, the recursive interruption model is more useful than the sequential interruption model in terms of visualizing the TE interactions in the entire genome as a whole, which further can show the lifespans of the TEs, although more work on visualization is left as future work.

Chapter 8

Conclusion and future work

Although traditionally viewed as "junk DNA", many discoveries have shown that transposable elements, especially retrotransposons (SINEs and LINEs), have played a fundamental role in primate evolution, including the evolution of our own genome. Furthermore, TEs not only contributed to the formation of novel genes and gene transcription networks, but also play a role in human disease such as cancers and Alzheimer's. They remain active in the human central nervous system throughout life and act as a driver of human intellect [86]. However, comparatively little work or analysis is currently being undertaken on TEs. Therefore, it is important to understand how the activity of TEs changes throughout their lives, how they shape the genome, and how the positions and patterns of existing fossil elements can infer aspects of genome evolution.

In this chapter, an overall conclusion will tie each of the previous chapters together with respect to the research goals proposed in Section 1.2 and then some future directions will be proposed.

8.1 Conclusion

First, recall the four major research goals proposed in Chapter 1

Goal 1 Create a model that describes TEs and remnants of TEs formally.

Goal 2 Understand the factors that affect the activities of active TEs, and understand how activity is affected.

Goal 3 Predict the age, lifespan, and activity of TEs in the human genome from the remnants of these elements in the genome.

Goal 4 Understand the dynamics of TEs transpositions through evolution.

The research in this thesis has provided information on not only current active/existing TEs, but also the evolution of TEs over time inferred by their interaction with each other, potentially contributing to both our understanding of human health and the evolution of species. The major work of this thesis can be divided
into three topics: the prediction of harmful mutation regions within active TEs, the prediction of evolutionary relationships between different TEs, and a simulation of propagation of TEs throughout evolution.

The first topic, the prediction of harmful mutations regions in Chapter 3. consists of the two predicting methods, the correlation method and the group comparison method, verifications and applications. By using the statistical methods, a negative correlation between the positions of mutations within a TE and the change of activity of that TE has been revealed, which accomplished Goal 2 proposed in the objectives of the thesis. Understanding how activity is influenced by the sequence of TEs can be useful for understanding susceptibility to different diseases caused by their activity. In addition, the results of the predicted regions are useful information for the last topic of simulating the TE activity throughout evolution.

In the second topic, three theoretical models have been created in order to predict the evolutionary relationships (the age, lifespan, and interactions) between different TEs from the remnants of these elements in the genome from Chapter 4 to Chapter 6

- The first model, the TE fragment model in Chapter 4, set up a foundation (high-level abstraction) that consists of an initial definition of TEs, TE fragments, and interruptions between TEs, etc., which serves as a baseline in describing the other models in the thesis. Such a model, if used, helps in using unambiguous terminology consistently. This has accomplished the Goal 1 proposed in the objectives of the thesis that describes TEs and their remnants formally.
- The second model, the sequential interruption model in Chapter 5, is formalized from the problem in [47] using the TE fragment model, and is connected and reduced to the well-studied Linear Ordering Problem. It can be solved by the existing meta-heuristic method of Tabu search for LOP incredibly efficiently while achieving a better result than the method in 47. This is used to predict the order of all 1,080 TEs as opposed to the 405 TEs that were ordered in 47.
- The third model, the recursive interruption model in Chapters 6 is built upon the TE fragment model and is complementary to the sequential interruption model. By capturing the interruptions and nested interruptions of TEs existing in the genome using the recursive interruption stochastic context-free grammar, the parse trees of the grammar can illustrate the relationships of TE interruptions using the levels of the trees. The stochastic CYK algorithm is implemented and determines the most-likely parse trees, and is applied to the entire human genome. Then by merging the small interruptional evolutionary trees into a TE-interaction network, TE evolution and interactions can be visualized as a whole.

All the models under this topic have accomplished Goal 3 proposed in the objectives of the thesis that predicts the age and lifespan of TEs in a single genome. Both of the latter two models do the entire prediction from only a single genomic sequence. This is somewhat amazing what can be determined from a single sequence
rather than requiring multiple genomes.

The third topic is the simulation of the TE activity and propagation throughout evolution in Chapter 7. A simulation has been created to imitate the activation, propagation, interaction, and deactivation of a number of TEs in a simulated genome throughout evolution, using the data of harmful regions calculated from the first topic. After the simulation, the genome represents a "current-day" genome containing the remnants of TEs, similar to the current-day human genome. By generating an interruption matrix and order-pruned sequences from the simulated genome, a linear age order of TEs is calculated from the sequential interruption model, and a TE-interaction network is constructed from the recursive interruption model. These are compared to the input age order and the activity of TEs in the simulation. The results of predicted age order by the models on the simulated data agree very well with the input data (with an average Pearson's coefficient of correlation of 0.939 for the recursive interruption model, and 0.738 for the sequential interruption model), which serves as a verification to the theoretical models in the second topic. The simulation accomplishes Goal 4 proposed in the objectives of the thesis.

In conclusion, all four objectives proposed at the beginning of the thesis have been accomplished, in predicting the harmful mutations regions within a TE, and both a linear age order and an interaction network of TE evolution. This helps improve the understanding of transposable elements generally and helps to understand the evolution of genomes, for which TEs are a major influence.

8.2 Future work

The major contributions of this thesis are the theoretical models that predict the relative age order of TEs in the human genome, the computational methods for predicting harmful mutation regions in active TEs, as well as the simulation of the evolutionary process of TE propagation. Beyond this thesis, there are some avenues for further work on various aspects of transposable elements.

The computational models were developed and applied only on the human genome and human TEs in the thesis. The models can be further applied to other related genomes to analyze the evolution of TEs both within and across those genomes, which will help in understanding the roles that TEs play in phylogeny. Also, many organisms, such as many plant species, have very dynamic genomes with many active transposable elements. Methods developed here could end up playing an important role in improving our understanding of these species, not only from the perspective of evolution, but also present-day and future possibilities for them as well, such as susceptibility to disease, or speciation.

Second, regarding active TEs in the human genome, it is important to understand factors that affect TE activity. Computational methods have been developed that predict harmful mutation regions affecting the
activity of TEs. However, limited by the current data, the roles of factors other than mutations, such as chromatin structure, influencing the activity of TEs were unable to be assessed. By collaborating with experts on biology of TEs, a thorough analysis of TE activities can be conducted computationally, aiming for detection of more factors affecting TE activities and their relationship with human disease.

In the two theoretical models in predicting TE insertion evolution, two different interruption detection techniques were used. An interruption is detected using the positional information (positions in both genomic sequence and TE consensus sequence) of the TE fragments by several conditions in the sequential interruption model. In the recursive interruption model, interruptions are detected using the stochastic context-free grammar by parsing the order-pruned sequences, which only encode the positional information in the genomic sequence. Hence, the technique of the sequential interruption model is superior in one respect to that of the recursive interruption model. In contrast, the recursive interruption model is superior to the sequential interruption model in detecting nested interruptions which cannot be represented by sequential interruptions. One future direction is to combine the two techniques. For example, one could first preprocess the order-pruned sequences to incorporate conditions of sequential interruptions, then detect interruptions using the SCFG that is useful in discovering the nested interruptions.

As a visualization tool, more methods can be investigated for drawing the TE-interaction network in laying out the nodes in a clear way to show the relationships between interactions and the predicted ages. One attempt was made in Chapter 7 to visualize the nodes by different sizes subject to the known lifespans in simulation. Other useful attributes can be studied to adjust the node sizes in a TE-interaction network from actual TE data to infer the lifespans of TEs.

There are many possibilities for future work on TE simulation. First, additional biological verifications can be made to validate the predicted age orders and lifespans of human TEs calculated from the models of the thesis. The efficiency of the simulation can be optimized, so that it can be used to simulate a larger genome (e.g., comparable to the size of the human genome) and TE activities that are closer to a real situation. Additional parameters can be systematically studied. Also, starting with properties of existing real genomes, it is of interest to study the types of parameters and likelihood of obtaining those properties via simulation. This is especially interesting given the variance of TE activity in different organisms. It is also of interest to understand why certain taxa have such high activity, whereas others have low activity, and to understand why this might be the case.

References

[1] Pankaj Agarwal et al. The Repeat Pattern Toolkit (RPT): analyzing the structure and evolution of the C. elegans genome. In International Conference on Intelligent Systems for Molecular Biology; ISMB., volume 2, pages 1-9, 1993.
[2] Bronwen L Aken, Sarah Ayling, Daniel Barrell, Laura Clarke, Valery Curwen, Susan Fairley, Julio Fernandez Banet, Konstantinos Billis, Carlos García Girón, Thibaut Hourlier, et al. The ensembl gene annotation system. Database: the Journal of Biological Databases and Curation, 2016.
[3] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment search tool. Journal of Molecular Biology, 215(3):403-410, 1990.
[4] Kateřina Ambrožová, Terezie Mandáková, Petr Bureš, Pavel Neumann, Ilia J Leitch, Andrea Koblížková, Jiří Macas, and Martin A Lysak. Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Annals of Botany, 107(2):255-268, 2010.
[5] P.A. Apoil, E. Kuhlein, A. Robert, H. Rubie, and A. Blancher. HIGM syndrome caused by insertion of an AluYb8 element in exon 1 of the CD40LG gene. Immunogenetics, 59(1):17-23, 2007.
[6] Z. Bao and S.R. Eddy. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Research, 12(8):1269-1276, 2002.
[7] M.A. Batzer, P.L. Deininger, U. Hellmann-Blumberg, Jerzy Jurka, D. Labuda, C.M. Rubin, C.W. Schmid, E. Zietkiewicz, and E. Zuckerkandl. Standardized Nomenclature for Alu Repeats. Journal of Molecular Evolution, 42(1):3-6, 1996.
[8] Mark A. Batzer and Prescott L. Deininger. Alu repeats and human genomic diversity. Nature Reviews Genetics, 3(5):370-379, 2002.
[9] Victoria P. Belancio, Dale J. Hedges, and Prescott Deininger. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Research, 18(3):343-358, 2008.
[10] V.P. Belancio, A.M. Roy-Engel, and P.L. Deininger. All y'all need to know 'bout retroelements in cancer. In Seminars in Cancer Biology, volume 20, pages 200-210. Elsevier, 2010.
[11] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1):289-300, 1995.
[12] E. Andrew Bennett, Heiko Keller, Ryan E. Mills, Steffen Schmidt, John V. Moran, Oliver Weichenrieder, and Scott E. Devine. Active Alu retrotransposons in the human genome. Genome Research, 18(12):1875-1883, 2008.
[13] C.M. Bergman and H. Quesneville. Discovering and detecting transposable elements in genome sequences. Briefings in Bioinformatics, 8(6):382-392, 2007.
[14] Christian Biémont and Cristina Vieira. Genetics: junk DNA as an evolutionary force. Nature, 443(7111):521-524, 2006.
[15] C. Bouchet, S. Vuillaumier-Barrot, M. Gonzales, S. Boukari, C. Le Bizec, C. Fallet, A.L. Delezoide, H. Moirot, A. Laquerriere, F. Encha-Razavi, et al. Detection of an Alu insertion in the POMT1 gene from three French Walker Warburg syndrome families. Molecular Genetics and Metabolism, 90(1):9396, 2007.
[16] Lindell Bromham and David Penny. The modern molecular clock. Nature Reviews Genetics, 4(3):216224, 2003.
[17] Brook Brouha, Joshua Schustak, Richard M. Badge, Sheila Lutz-Prigge, Alexander H. Farley, John V. Moran, and Haig H. Kazazian. Hot L1s account for the bulk of retrotransposition in the human population. Proceedings of the National Academy of Sciences, 100(9):5280-5285, 2003.
[18] D. Campagna, C. Romualdi, N. Vitulo, M. Del Favero, M. Lexa, N. Cannata, and G. Valle. Rap: a new computer program for de novo identification of repeated sequences in whole genomes. Bioinformatics, 21(5):582, 2005.
[19] A. Caspi and L. Pachter. Identification of transposable elements using multiple alignments of related genomes. Genome Research, 16(2):260-270, 2006.
[20] Guadalupe Castilla Castilla Valdez and Shulamith Samantha Bastiani Medina. Iterated local search for the linear ordering problem. International Journal of Combinatorial Optimization Problems and Informatics, 3(1):12, 2012.
[21] Pierre Charbit, Stéphan Thomassé, and Anders Yeo. The minimum feedback arc set problem is NP-hard for tournaments. Combinatorics, Probability and Computing, 16(01):1-4, 2007.
[22] Brian Charlesworth and Deborah Charlesworth. The population dynamics of transposable elements. Genetical Research, 42(01):1-27, 1983.
[23] Irène Charon and Olivier Hudry. A branch-and-bound algorithm to solve the linear ordering problem for weighted tournaments. Discrete Applied Mathematics, 154(15):2097-2116, 2006.
[24] Jian-Min Chen, Emmanuelle Masson, Milan Macek, Odile Raguénès, Tereza Piskackova, Brigitte Fercot, Libor Fila, David N Cooper, Marie-Pierre Audrézet, and Claude Férec. Detection of two Alu insertions in the CFTR gene. Journal of Cystic Fibrosis, 7(1):37-43, 2008.
[25] Jichao Chen, Amir Rattner, and Jeremy Nathans. Effects of L1 retrotransposon insertion on transcript processing, localization and accumulation: lessons from the retinal degeneration 7 mouse and implications for the genomic ecology of L1 elements. Human Molecular Genetics, 15(13):2146-2156, 2006.
[26] Wei Chen, Benjamin J Swanson, and Wendy L Frankel. Molecular genetics of microsatellite-unstable colorectal cancer for pathologists. Diagnostic Pathology, 12(1):24, 2017.
[27] Benoît Chénais, Aurore Caruso, Sophie Hiard, and Nathalie Casse. The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene, 509(1):7-15, 2012.
[28] John Douglas Cleary and Laura PW Ranum. Repeat associated non-ATG (RAN) translation: new starts in microsatellite expansion disorders. Current Opinion in Genetics $\mathcal{E}^{\mathcal{S}}$ Development, 26:6-15, 2014.
[29] Richard Cordaux. The human genome in the LINE of fire. Proceedings of the National Academy of Sciences, 105(49):19033-19034, 2008.
[30] Richard Cordaux and Mark A. Batzer. The impact of retrotransposons on human genome evolution. Nature Reviews Genetics, 10(10):691-703, 2009.
[31] Richard Cordaux, Dale J. Hedges, Scott W. Herke, and Mark A. Batzer. Estimating the retrotransposition rate of human Alu elements. Gene, 373:134-137, 2006.
[32] A.P. Jason de Koning, Wanjun Gu, Todd A. Castoe, Mark A. Batzer, and David D. Pollock. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genetics, 7(12):e1002384, 2011.
[33] John S. Decani. A branch and bound algorithm for maximum likelihood paired comparison ranking. Biometrika, 59(1):131-135, 1972.
[34] Prescott L. Deininger and Mark A. Batzer. Alu repeats and human disease. Molecular Genetics and Metabolism, 67(3):183-193, 1999.
[35] Marie Dewannieux, Cécile Esnault, and Thierry Heidmann. LINE-mediated retrotransposition of marked Alu sequences. Nature Genetics, 35(1):41-48, 2003.
[36] R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, 1998.
[37] R.C. Edgar and E.W. Myers. Piler: identification and classification of genomic repeats. Bioinformatics, 21(suppl 1):i152-i158, 2005.
[38] Adam D. Ewing and Haig H. Kazazian. High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Research, 20(9):1262-1270, 2010.
[39] Joseph Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17(6):368-376, 1981.
[40] Thomas A. Feo and Mauricio G.C. Resende. Greedy randomized adaptive search procedures. Journal of Global Optimization, 6(2):109-133, 1995.
[41] C. Feschotte, N. Jiang, and S.R. Wessler. Plant transposable elements: where genetics meets genomics. Nature Reviews Genetics, 3(5):329-341, 2002.
[42] C. Feschotte and E.J. Pritham. DNA transposons and the evolution of eukaryotic genomes. Annual Review of Genetics, 41:331-368, 2007.
[43] David J. Finnegan. Eukaryotic transposable elements and genome evolution. Trends in Genetics, 5:103-107, 1989.
[44] Emden R. Gansner and Stephen C. North. An open graph visualization system and its applications to software engineering. Software Practice and Experience, 30(11):1203-1233, 2000.
[45] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP Completeness, volume 174. Freeman San Francisco, CA, San Francisco, 1979.
[46] Daniel T Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22(4):403-434, 1976.
[47] J. Giordano, Y. Ge, Y. Gelfand, G. Abrusán, G. Benson, and P.E. Warburton. Evolutionary history of mammalian transposons determined by genome-wide defragmentation. PLoS Computational Biology, $3(7):$ e137, 2007.
[48] Fred Glover and Manuel Laguna. Tabu Search*. Springer, New York, 2013.
[49] John L. Goodier and Haig H. Kazazian. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell, 135(1):23-35, 2008.
[50] Dan Graur. Molecular and Genome Evolution. Sinauer Associates, Incorporated, Massachusetts, USA, 2016.
[51] J. Greilhuber, T. Borsch, K. Müller, A. Worberg, S. Porembski, and W. Barthlott. Smallest angiosperm genomes found in lentibulariaceae, with chromosomes of bacterial size. Plant Biology, 8(6):770-777, 2006.
[52] YanHong Gu, Hiroko Kodama, Shigero Watanabe, Nobuyuki Kikuchi, Ineo Ishitsuka, Hiroshi Ozawa, Chie Fujisawa, and Katsuaki Shiga. The first reported case of Menkes disease caused by an Alu insertion mutation. Brain and Development, 29(2):105-108, 2007.
[53] Pierre Hansen and Nenad Mladenović. Variable Neighborhood Search. Springer, New York, 2003.
[54] Masami Hasegawa, Hirohisa Kishino, and Taka-aki Yano. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2):160-174, 1985.
[55] Julien Häsler and Katharina Strub. Alu elements as regulators of gene expression. Nucleic Acids Research, 34(19):5491-5497, 2006.
[56] John E. Hopcroft. Introduction to Automata Theory, Languages, and Computation, 3/E. Pearson Education India, 2008.
[57] Lingling Jin. Multiple sequence alignment augmented by expert user constraints. Master's thesis, University of Saskatchewan, 2010.
[58] Lingling Jin and Ian McQuillan. Computational modelling of the interruptional activities between transposable elements. In Lecture Notes in Computer Science, volume 8273, pages 108-120. Springer, 2013.
[59] Lingling Jin and Ian McQuillan. Computational modelling of interruptional activities between transposable elements using grammars and the linear ordering problem. Soft Computing, 20(1):19-35, 2016.
[60] Lingling Jin, Ian McQuillan, and Longhai Li. Computationally identify harmful regions that influence transpositions of active transposable elements in the human genome. In IEEE International Conference on Bioinformatics \& Biomedicine, 2016. Proceedings. IEEE, 2016.
[61] Lingling Jin, Ian McQuillan, and Longhai Li. Computational identification of harmful mutation regions to the activity of transposable elements, 2017. Submitted to BMC Genomics.
[62] Thomas H Jukes, Charles R Cantor, et al. Evolution of protein molecules. Mammalian Protein Metabolism, 3(21):132, 1969.
[63] Jerzy Jurka, V.V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany, and J. Walichiewicz. Repbase update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research, 110(1-4):462467, 2005.
[64] Jerzy Jurka, P. Klonowski, V. Dagman, and P. Pelton. CENSOR-a program for identification and elimination of repetitive elements from DNA sequences. Computers \mathcal{E} Chemistry, 20(1):119-121, 1996.
[65] Cristina M. Justice, Zhining Den, Son V. Nguyen, Mark Stoneking, Prescott L. Deininger, Mark A. Batzer, and Bronya J.B. Keats. Phylogenetic analysis of the Friedreich ataxia GAA trinucleotide repeat. Journal of Molecular Evolution, 52(3):232-238, 2001.
[66] A. Kalyanaraman and S. Aluru. Efficient algorithms and software for detection of full-length LTR retrotransposons. In Computational Systems Bioinformatics Conference, 2005. Proceedings. IEEE, pages 56-64. IEEE, 2005.
[67] V. Kapitonov and J. Jurkal. The Age of Alu Subfamilies. Journal of Molecular Evolution, 42(1):59-65, 1996.
[68] Vladimir V. Kapitonov and Jerzy Jurka. A universal classification of eukaryotic transposable elements implemented in repbase. Nature Reviews Genetics, 9(5):411-412, 2008.
[69] Haig H. Kazazian. An estimated frequency of endogenous insertional mutations in humans. Nature Genetics, 22(2):130-130, 1999.
[70] Haig H. Kazazian. Mobile elements: Drivers of genome evolution. Science, 303(5664):1626-1632, 2004.
[71] Haig H. Kazazian. Mobile DNA: Finding Treasure in Junk. FT Press, United States, 2011.
[72] Yogeshwar D. Kelkar, Svitlana Tyekucheva, Francesca Chiaromonte, and Kateryna D. Makova. The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Research, 18(1):30-38, 2008.
[73] Hameed Khan, Arian Smit, and Stéphane Boissinot. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Research, 16(1):78-87, 2006.
[74] M. Kimura. Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences, 78(1):454, 1981.
[75] Motoo Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2):111-120, 1980.
[76] Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, et al. Optimization by simmulated annealing. Science, 220(4598):671-680, 1983.
[77] Miriam K. Konkel, Jerilyn A. Walker, Ashley B. Hotard, Megan C. Ranck, Catherine C. Fontenot, Jessica Storer, Chip Stewart, Gabor T. Marth, Mark A. Batzer, 1000 Genomes Consortium, et al. Sequence analysis and characterization of active human Alu Subfamilies Based on the 1000 Genomes Pilot Project. Genome Biology and Evolution, 7(9):2608-2622, 2015.
[78] I. Korf, M. Yandell, and J. Bedell. BLAST. O'Reilly Media, Inc., Sebastopol, CA, USA, 2003.
[79] B. Korte and Walter Oberhofer. Zwei algorithmen zur lösung eines komplexen reihenfolgeproblems. Unternehmensforschung Operations Research-Recherche Opérationnelle, 12:217-231, 1968.
[80] Bernhard Korte and Walter Oberhofer. Triangularizing input-output matrices and the structure of production. European Economic Review, 1(4):482-511, 1970.
[81] Brent A. Kronmiller and Roger P. Wise. Tenest: automated chronological annotation and visualization of nested plant transposable elements. Plant Physiology, 146(1):45-59, 2008.
[82] S. Kurtz and C. Schleiermacher. Reputer: fast computation of maximal repeats in complete genomes. Bioinformatics, 15(5):426, 1999.
[83] Manuel Laguna, Rafael Marti, and Rafael Cunquero Martí. Scatter Search: Methodology and Implementations in C, volume 24. Springer, New York, 2003.
[84] E.S. Lander, L.M. Linton, B. Birren, C. Nusbaum, M.C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh, et al. Initial sequencing and analysis of the human genome. Nature, 409(6822):860-921, 2001.
[85] Karim Lari and Steve J Young. Applications of stochastic context-free grammars using the insideoutside algorithm. Computer Speech \& Language, 5(3):237-257, 1991.
[86] Peter A Larsen, Michael W Lutz, Kelsie E Hunnicutt, Mirta Mihovilovic, Ann M Saunders, Anne D Yoder, and Allen D Roses. The Alu neurodegeneration hypothesis: A primate-specific mechanism for neuronal transcription noise, mitochondrial dysfunction, and manifestation of neurodegenerative disease. Alzheimer's \& Dementia, 2017.
[87] Arnaud Le Rouzic and Pierre Capy. Population genetics models of competition between transposable element subfamilies. Genetics, 174(2):785-793, 2006.
[88] E. Lerat. Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity, 104(6):520-533, 2009.
[89] Xuemin Li, William A. Scaringe, Kathleen A. Hill, Stacy Roberts, April Mengos, Diane Careri, Miguel Tezanos Pinto, Carol K. Kasper, and Steve S. Sommer. Frequency of recent retrotransposition events in the human factor ix gene. Human Mutation, 17(6):511-519, 2001.
[90] Zhanjiang John Liu. Bioinformatics in Aquaculture: Principles and Methods. John Wiley \& Sons, 2017.
[91] Tiago Loureiro, Rui Camacho, Jorge Vieira, and Nuno A. Fonseca. Improving the performance of transposable elements detection tools. Journal of Integrative Bioinformatics, 10(3):231, 2013.
[92] J.F. Lucier, J. Perreault, J.F. Noël, G. Boire, and J.P. Perreault. RTAnalyzer: a web application for finding new retrotransposons and detecting L1 retrotransposition signatures. Nucleic Acids Research, 35(suppl 2):W269-W274, 2007.
[93] B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive homology search. Bioinformatics, 18(3):440, 2002.
[94] Sankaran Mahadevan. Monte carlo simulation. Mechanical Engineering-New York and Basel-Marcel Dekker-, pages 123-146, 1997.
[95] Licínio Manco, Luís Relvas, C. Silva Pinto, Janet Pereira, A. Bessa Almeida, and M. Letícia Ribeiro. Molecular characterization of five portuguese patients with pyrimidine 5 '-nucleotidase deficient hemolytic anemia showing three new p5'ni mutations. Haematologica, 91(2):266-267, 2006.
[96] Rafael Martí and Gerhard Reinelt. The Linear Ordering Problem: Exact and Heuristic Methods in Combinatorial Optimization, volume 175. Springer, New York, 2011.
[97] Rafael Martí, Gerhard Reinelt, and Abraham Duarte. A benchmark library and a comparison of heuristic methods for the linear ordering problem. Computational Optimization and Applications, 51(3):1297-1317, 2012.
[98] E.M. McCarthy and J.F. McDonald. LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics, 19(3):362-367, 2003.
[99] James T McClave and Terry Sincich. Statistics. Prentice Hall, One Lake Street, Upper Saddle River, NJ, 07458, United States, 2005.
[100] John Francis McDonald. Transposable elements and evolution, volume 1. Springer Science \& Business Media, New York, 2012.
[101] P. Medstrand, L.N. Van De Lagemaat, and D.L. Mager. Retroelement distributions in the human genome: variations associated with age and proximity to genes. Genome Research, 12(10):1483-1495, 2002.
[102] Blake C. Meyers, Scott V. Tingey, and Michele Morgante. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Research, 11(10):1660-1676, 2001.
[103] Yoshio Miki, Isamu Nishisho, Akira Horii, Yasuo Miyoshi, Joji Utsunomiya, Kenneth W. Kinzler, Bert Vogelstein, and Yusuke Nakamura. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Research, 52(3):643-645, 1992.
[104] Ryan E. Mills, E. Andrew Bennett, Rebecca C. Iskow, and Scott E. Devine. Which transposable elements are active in the human genome? Trends in Genetics, 23(4):183-191, 2007.
[105] Ryan E. Mills, E. Andrew Bennett, Rebecca C. Iskow, Christopher T. Luttig, Circe Tsui, W. Stephen Pittard, and Scott E. Devine. Recently mobilized transposons in the human and chimpanzee genomes. The American Journal of Human Genetics, 78(4):671-679, 2006.
[106] John V. Moran, Ralph J. DeBerardinis, and Haig H. Kazazian. Exon shuffling by L1 retrotransposition. Science, 283(5407):1530-1534, 1999.
[107] LA Moran. Estimating human mutation rate: Biochemical method. Sandwalk: Strolling with a sceptical biochemist, 2013.
[108] Michael W Nachman and Susan L Crowell. Estimate of the mutation rate per nucleotide in humans. Genetics, 156(1):297-304, 2000.
[109] S.B. Needleman and C.D. Wunsch. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443-453, 1970.
[110] Minoru Okubo, Asako Horinishi, Mieko Saito, Tetsu Ebara, Yoriko Endo, Kohei Kaku, Toshio Murase, and Masaaki Eto. A novel complex deletion-insertion mutation mediated by Alu repetitive elements leads to lipoprotein lipase deficiency. Molecular Genetics and Metabolism, 92(3):229-233, 2007.
[111] Eric M. Ostertag and Haig H. Kazazian Jr. Biology of mammalian L1 retrotransposons. Annual Review of Genetics, 35(1):501-538, 2001.
[112] John K. Pace and Cédric Feschotte. The Evolutionary History of Human DNA Transposons: Evidence for Intense Activity in the Primate Lineage. Genome Research, 17(4):422-432, 2007.
[113] Jonathan Pevsner. Bioinformatics and functional genomics. John Wiley \& Sons, New York City, United States, 2005.
[114] Jonathan Pevsner. Bioinformatics and functional genomics. John Wiley \& Sons, New York City, United States, 2015.
[115] P.A. Pevzner, H. Tang, and G. Tesler. De novo repeat classification and fragment assembly. Genome Research, 14(9):1786-1796, 2004.
[116] Benoit Piegu, Romain Guyot, Nathalie Picault, Anne Roulin, Abhijit Saniyal, Hyeran Kim, Kristi Collura, Darshan S Brar, Scott Jackson, Rod A Wing, et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Research, 16(10):1262-1269, 2006.
[117] A.L. Price, N.C. Jones, and P.A. Pevzner. De novo identification of repeat families in large genomes. Bioinformatics, 21(suppl 1):i351-i358, 2005.
[118] A. Rambaut and L. Bromham. Estimating divergence dates from molecular sequences. Molecular Biology and Evolution, 15(4):442-448, 1998.
[119] Guy-Franck Richard, Alix Kerrest, and Bernard Dujon. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiology and Molecular Biology Reviews, 72(4):686-727, 2008.
[120] Kate R Rosenbloom, Joel Armstrong, Galt P Barber, Jonathan Casper, Hiram Clawson, Mark Diekhans, Timothy R Dreszer, Pauline A Fujita, Luvina Guruvadoo, Maximilian Haeussler, et al. The ucsc genome browser database: 2015 update. Nucleic Acids Research, 43(D1):D670-D681, 2015.
[121] S. Saha, S. Bridges, Z.V. Magbanua, and D.G. Peterson. Computational approaches and tools used in identification of dispersed repetitive DNA sequences. Tropical Plant Biology, 1(1):85-96, 2008.
[122] Phillip SanMiguel, Brandon S Gaut, Alexander Tikhonov, Yuko Nakajima, and Jeffrey L Bennetzen. The paleontology of intergene retrotransposons of maize. Nature Genetics, 20(1):43-45, 1998.
[123] Anoop Sarkar. An implementation of the CYK algorithm. https://github.com/anoopsarkar.
[124] T. Schiavinotto and T. Stützle. The linear ordering problem: Instances, search space analysis and algorithms. Journal of Mathematical Modelling and Algorithms, 3(4):367-402, 2004.
[125] Patrick S. Schnable, Doreen Ware, Robert S. Fulton, Joshua C. Stein, Fusheng Wei, Shiran Pasternak, Chengzhi Liang, Jianwei Zhang, Lucinda Fulton, Tina A. Graves, et al. The B73 maize genome: complexity, diversity, and dynamics. Science, 326(5956):1112-1115, 2009.
[126] Emma C. Scott, Eugene J. Gardner, Ashiq Masood, Nelson T. Chuang, Paula M. Vertino, and Scott E. Devine. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Research, 2016.
[127] The Chimpanzee Sequencing, Analysis Consortium, et al. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437(7055):69-87, 2005.
[128] Daniel Sinnett, Chantal Richer, Jean-Marc Deragon, and D. Labuda. Alu RNA secondary structure consists of two independent 7 SL RNA-like folding units. Journal of Biological Chemistry, 266(14):86758678, 1991.
[129] Botond Sipos, Tim Massingham, Gregory E Jordan, and Nick Goldman. PhyloSim-Monte Carlo simulation of sequence evolution in the R statistical computing environment. BMC Bioinformatics, 12(1):104, 2011.
[130] A.F.A. Smit. Structure and Evolution of Mammalian Interspersed Repeats. PhD thesis, University of Southern California, 1996.
[131] A.F.A. Smit, Hubley R., and Green P. RepeatMasker Open-3.0, 1996-2010. http://www.repeatmasker.org.
[132] A.F.A. Smit, G. Toth, A.D. Riggs, and Jerzy Jurka. Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. Journal of Molecular Biology, 246(3):401-417, 1995.
[133] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. Journal of Molecular Biology, 147:195-197, 1981.
[134] John D. Storey and Robert Tibshirani. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, 100(16):9440-9445, 2003.
[135] Amarendran R Subramanian, Jan Weyer-Menkhoff, Michael Kaufmann, and Burkhard Morgenstern. Dialign-t: an improved algorithm for segment-based multiple sequence alignment. BMC Bioinformatics, 6(1):66, 2005.
[136] Cheng Sun, Donald B. Shepard, Rebecca A. Chong, Jose Lopez Arriaza, Kathryn Hall, Todd A. Castoe, Cedric Feschotte, David D. Pollock, and Rachel Lockridge Mueller. LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biology and Evolution, 4(2):168-183, 2012.
[137] S.T. Szak, O.K. Pickeral, W. Makalowski, M.S. Boguski, D. Landsman, J.D. Boeke, et al. Molecular archeology of 11 insertions in the human genome. Genome Biol, 3(10), 2002.
[138] Koichiro Tamura. Estimation of the number of nucleotide substitutions when there are strong transitiontransversion and G+ C-content biases. Molecular Biology and Evolution, 9(4):678-687, 1992.
[139] Koichiro Tamura and Masatoshi Nei. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, $10(3): 512-526,1993$.
[140] Simon Tavaré. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences, 17:57-86, 1986.
[141] Z. Tu, S. Li, and C. Mao. The changing tails of a novel short interspersed element in aedes aegypti. Genetics, 168(4):2037, 2004.
[142] Toru Udaka, Nobuhiko Okamoto, Michihiko Aramaki, Chiharu Torii, Rika Kosaki, Noboru Hosokai, Toshiyuki Hayakawa, Naoyuki Takahata, Takao Takahashi, and Kenjiro Kosaki. An Alu retrotransposition-mediated deletion of CHD7 in a patient with CHARGE syndrome. American Journal of Medical Genetics Part A, 143(7):721-726, 2007.
[143] Graham S Warren et al. Plant biotechnology: comprehensive biotechnology. Second supplement/volume editor, Michael W. Fowler \mathfrak{G} Graham S. Warren; editor-in-chief, Murray Moo-Young. Pergamon Press, Oxford, New York, Seoul, Tokyo, 1992.
[144] Ronald L Wasserstein and Nicole A Lazar. The ASA's statement on p-values: context, process, and purpose. Am Stat, 70(2):129-133, 2016.
[145] Thomas Wicker, François Sabot, Aurélie Hua-Van, Jeffrey L Bennetzen, Pierre Capy, Boulos Chalhoub, Andrew Flavell, Philippe Leroy, Michele Morgante, Olivier Panaud, et al. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 8(12):973-982, 2007.
[146] John D. Storey with contributions from Andrew J. Bass, Alan Dabney, and David Robinson. qualue: Q-value estimation for false discovery rate control, 2015. R package version 2.2.2.
[147] Jinchuan Xing, Yuhua Zhang, Kyudong Han, Abdel Halim Salem, Shurjo K. Sen, Chad D. Huff, Qiong Zhou, Ewen F. Kirkness, Samuel Levy, Mark A Batzer, et al. Mobile elements create structural variation: Analysis of a complete human genome. Genome Research, 19(9):1516-1526, 2009.
[148] Andrea Zuccolo, Aswathy Sebastian, Jayson Talag, Yeisoo Yu, HyeRan Kim, Kristi Collura, Dave Kudrna, and Rod A. Wing. Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evolutionary Biology, 7(1):152, 2007.
[149] Michael Zuker. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13):3406-3415, 2003.

Appendix A

The TE ordering in The human genome predicted from THE SEQUENTIAL INTERRUPTION MODEL BY APPLYING TABU SEARCH ON INTERRUPTION MATRIX

$\begin{array}{c\|} \text { Age order } \\ \text { (youngest to oldest) } \end{array}$	TE name	TE family	TE type
1	AluYa5	Alu	SINE
2	AluYk3	Alu	SINE
3	AluYc3	Alu	SINE
4	HERV1_LTRb	ERV1	LTR
5	AluYe5	Alu	SINE
6	LTR6B	ERV1	LTR
7	AluYk2	Alu	SINE
8	AluYi6	Alu	SINE
9	AluYd8	Alu	SINE
10	LTR7A	ERV1	LTR
11	hAT-16_Crp	hAT-Charlie	DNA
12	AluYc	Alu	SINE
13	AluYk4	Alu	SINE
14	LTR5A	ERVK	LTR
15	AluYb8	Alu	SINE
16	MER11B	ERVK	LTR
17	AluYb9	Alu	SINE
18	LTR12C	ERV1	LTR
19	Alu	Alu	SINE
20	LTR12E	ERV1	LTR
21	MER9a2	ERVK	LTR
22	AluY	Alu	SINE
23	AluYa8	Alu	SINE
24	LTR14	ERVK	LTR
25	LTR13	ERVK	LTR
26	AluYm1	Alu	SINE
27	MER11D	ERVK	LTR
28	LTR13-	ERVK	LTR
29	LTR3B	ERVK	LTR
30	LTR22C2	ERVK	LTR
31	LTR10G	ERV1	LTR
32	AluYi6_4d	Alu	SINE
33	LTR6A	ERV1	LTR
34	AluYe6	Alu	SINE
35	AluYf1	Alu	SINE
36	LTR7Y	ERV1	LTR
37	LTR5_Hs	ERVK	LTR
38	AluYj4	Alu	SINE

93	LTR22A	ERVK	LTR
94	L1HS	L1	LINE
95	AluSq2	Alu	SINE
96	LTR3B	ERVK	LTR
97	LTR27	ERV1	LTR
98	LTR15	ERV1	LTR
99	LTR22B	ERVK	LTR
100	AluSx1	Alu	SINE
101	LTR4	ERV1	LTR
102	L1PA3	L1	LINE
103	LTR1B1	ERV1	LTR
104	LTR10A	ERV1	LTR
105	LTR1A2	ERV1	LTR
106	L1PA4	L1	LINE
107	LTR1C3	ERV1	LTR
108	MER85	PiggyBac	DNA
109	LTR19B	ERV1	LTR
110	LTR46	ERV1	LTR
111	LTR30	ERV1	LTR
112	L1P1	L1	LINE
113	LTR22B2	ERVK	LTR
114	L1PA5	L1	LINE
115	LTR7C	ERV1	LTR
116	LTR10E	ERV1	LTR
117	LTR1B0	ERV1	LTR
118	LTR25	ERV1	LTR
119	MER52D	ERV1	LTR
120	LTR10C	ERV1	LTR
121	MER48	ERV1	LTR
122	AluSx	Alu	SINE
123	LTR71A	ERV1	LTR
124	THE1-int	ERVL-MaLR	LTR
125	LTR28B	ERV1	LTR
126	LTR19A	ERV1	LTR
127	AluSz	Alu	SINE
128	L1P2	L1	LINE
129	LTR66	ERVL	LTR
130	LTR9C	ERV1	LTR
131	L1PA6	L1	LINE
132	MLT2A1	ERVL	LTR
133	LTR9A1	ERV1	LTR
134	MER61F	ERV1	LTR
135	MER52C	ERV1	LTR
136	MER51A	ERV1	LTR
137	LTR22C0	ERVK	LTR
138	HERV1_LTRd	ERV1	LTR
139	L1PA7	L1	LINE
140	LTR61	ERV1	LTR
141	MER51B	ERV1	LTR
142	LTR71B	ERV1	LTR
143	LTR1D	ERV1	LTR
144	LTR18B	ERVL	LTR
145	MER9B	ERVK	LTR
146	AluSz6	Alu	SINE

201	LTR27E	ERV1	LTR
202	LTR1C	ERV1	LTR
203	LTR27D	ERV1	LTR
204	THE1D	ERVL-MaLR	LTR
205	MER30	hAT-Charlie	DNA
206	MER1A	hAT-Charlie	DNA
207	LTR43	ERV1	LTR
208	AluJb	Alu	SINE
209	MER1B	hAT-Charlie	DNA
210	MER83	ERV1	LTR
211	MER4A1.	ERV1	LTR
212	L1P3	L1	LINE
213	LTR8	ERV1	LTR
214	AluYh7	Alu	SINE
215	L1PA8A	L1	LINE
216	L1P3b	L1	LINE
217	L1PA10	L1	LINE
218	LTR27B	ERV1	LTR
219	THE1D-int	ERVL-MaLR	LTR
220	MER66B	ERV1	LTR
221	LTR75_1	ERV1	LTR
222	MER75	PiggyBac	DNA
223	MSTA	ERVL-MaLR	LTR
224	AluJo	Alu	SINE
225	LTR38	ERV1	LTR
226	FLAM_C	Alu	SINE
227	L1P4d	L1	LINE
228	LTR47B4	ERVL	LTR
229	L1P	L1	LINE
230	FRAM	Alu	SINE
231	LTR35A	ERV1	LTR
232	MER41B	ERV1	LTR
233	MER4E1	ERV1	LTR
234	MER57B1	ERV1	LTR
235	L1PB1	L1	LINE
236	MST-int	ERVL-MaLR	LTR
237	MER41E	ERV1	LTR
238	MER107	hAT-Charlie	DNA
239	MER66A	ERV1	LTR
240	PRIMA4_LTR	ERV1	LTR
241	HSMAR1	TcMar-Mariner	DNA
242	AluJr	Alu	SINE
243	L1P4e	L1	LINE
244	THE1B-int	ERVL-MaLR	LTR
245	LTR43B	ERV1	LTR
246	THE1C-int	ERVL-MaLR	LTR
247	MER41C	ERV1	LTR
248	LTR32	ERVL	LTR
249	LTR45C	ERV1	LTR
250	MLT2B3	ERVL	LTR
251	MER50	ERV1	LTR
252	L1PA14	L1	LINE
253	MER4B	ERV1	LTR
254	MER66D	ERV1	LTR

255	LTR62	ERVL	LTR
256	L1PA11	L1	LINE
257	LTR8B	ERV1	LTR
258	L1PA13	L1	LINE
259	MER87B	ERV1	LTR
260	MER4A	ERV1	LTR
261	Charlie3	hAT-Charlie	DNA
262	LTR26E	ERV1	LTR
263	AluJr4	Alu	SINE
264	MER66C	ERV1	LTR
265	L1PREC2	L1	LINE
266	MER83B	ERV1	LTR
267	LTR60B	ERV1	LTR
268	MLT2B5	ERVL	LTR
269	LTR35B	ERV1	LTR
270	MER87	ERV1	LTR
271	LOR1b	ERV1	LTR
272	MER50-int	ERV1	LTR
273	LTR8A	ERV1	LTR
274	L1PA12	L1	LINE
275	MER8	TcMar-Tigger	DNA
276	L1PB2	L1	LINE
277	MER21A	ERVL	LTR
278	Tigger3d	TcMar-Tigger	DNA
279	L1PB	L1	LINE
280	L1MA1	L1	LINE
281	LTR26	ERV1	LTR
282	MSTB	ERVL-MaLR	LTR
283	MER41D	ERV1	LTR
284	L1M	L1	LINE
285	MSTA-int	ERVL-MaLR	LTR
286	LTR45	ERV1	LTR
287	LTR34	ERV1	LTR
288	MER72B	ERV1	LTR
289	LTR36	ERV1	LTR
290	LOR1a	ERV1	LTR
291	L1MA2	L1	LINE
292	LTR51	ERV1	LTR
293	L1PB3	L1	LINE
294	LTR24	ERV1	LTR
295	L1P4	L1	LINE
296	L1P4a	L1	LINE
297	L1PA15	L1	LINE
298	LTR26D	ERV1	LTR
299	LTR26B	ERV1	LTR
300	MER72	ERV1	LTR
301	LTR59	ERV1	LTR
302	LTR38C	ERV1	LTR
303	LTR73	ERV1	LTR
304	MER4C	ERV1	LTR
305	LTR23	ERV1	LTR
306	LTR26C	ERV1	LTR
307	LTR45B	ERV1	LTR
308	Tigger1a_Art	TcMar-Tigger	DNA

309	MER4CL34	ERV1	LTR
310	L1MA3	L1	LINE
311	MER4D1	ERV1	LTR
312	LTR38A1	ERV1	LTR
313	FAM	Alu	SINE
314	LTR47A	ERVL	LTR
315	FLAM_A	Alu	SINE
316	Ricksha_0	MULE-MuDR	DNA
317	L1PA16	L1	LINE
318	MER4D	ERV1	LTR
319	LTR72	ERV1	LTR
320	LTR35	ERV1	LTR
321	LTR47B3	ERVL	LTR
322	MER6C	TcMar-Tigger	DNA
323	LTR48	ERV1	LTR
324	LTR42	ERVL	LTR
325	MER41G	ERV1	LTR
326	LTR72B	ERV1	LTR
327	MER34D	ERV1	LTR
328	L1PA17	L1	LINE
329	LTR24C	ERV1	LTR
330	L1PB4	L1	LINE
331	MSTB1	ERVL-MaLR	LTR
332	MER6A	TcMar-Tigger	DNA
333	MER4D0	ERV1	LTR
334	LTR56	ERV1	LTR
335	HSMAR2	TcMar-Mariner	DNA
336	LTR24B	ERV1	LTR
337	LTR64	ERV1	LTR
338	L1P5	L1	LINE
339	Tigger3a	TcMar-Tigger	DNA
340	LTR38B	ERV1	LTR
341	PrimLTR79	ERV1	LTR
342	LTR29	ERV1	LTR
343	MER49	ERV1	LTR
344	MER101	ERV1	LTR
345	Tigger2b_Pri	TcMar-Tigger	DNA
346	LTR06	ERV1	LTR
347	LTR48B	ERV1	LTR
348	MER57B2	ERV1	LTR
349	LTR47A2	ERVL	LTR
350	MER65A	ERV1	LTR
351	Tigger2a	TcMar-Tigger	DNA
352	MER65D	ERV1	LTR
353	MSTB2	ERVL-MaLR	LTR
354	MER39B	ERV1	LTR
355	MER51D	ERV1	LTR
356	LTR57	ERVL	LTR
357	LTR47B	ERVL	LTR
358	MSTA1	ERVL-MaLR	LTR
359	MSTC	ERVL-MaLR	LTR
360	MER135	DNA	DNA
361	MER6B	TcMar-Tigger	DNA
362	MER65C	ERV1	LTR

363	L1MA5A	L1	LINE
364	MER2B	TcMar-Tigger	DNA
365	L1MA4A	L1	LINE
366	MER101B	ERV1	LTR
367	MER47A	TcMar-Tigger	DNA
368	MER65B	ERV1	LTR
369	Tigger3c	TcMar-Tigger	DNA
370	MER47B	TcMar-Tigger	DNA
371	LTR39	ERV1	LTR
372	LTR69	ERVL	LTR
373	LTR49	ERV1	LTR
374	Merlin1_HS	Merlin	DNA
375	LTR60	ERV1	LTR
376	LTR47B2	ERVL	LTR
377	LTR54	ERV1	LTR
378	Tigger4b	TcMar-Tigger	DNA
379	Charlie12	hAT-Charlie	DNA
380	Tigger3	TcMar-Tigger	DNA
381	L1MA4	L1	LINE
382	MER76-int	ERVL	LTR
383	HERVK11D-int	ERVK	LTR
384	Tigger2	TcMar-Tigger	DNA
385	HERV-Fc1_LTR1	ERV1	LTR
386	MER54A	ERVL	LTR
387	Tigger5	TcMar-Tigger	DNA
388	MER6	TcMar-Tigger	DNA
389	HERVL32-int	ERVL	LTR
390	Tigger5b	TcMar-Tigger	DNA
391	Tigger4a	TcMar-Tigger	DNA
392	MER57C2	ERV1	LTR
393	L1M2a1	L1	LINE
394	Tigger1	TcMar-Tigger	DNA
395	L1MA5	L1	LINE
396	OldhAT1	hAT-Ac	DNA
397	Tigger3b	TcMar-Tigger	DNA
398	MER2	TcMar-Tigger	DNA
399	MER57C1	ERV1	LTR
400	MER44A	TcMar-Tigger	DNA
401	MSTD	ERVL-MaLR	LTR
402	MER39	ERV1	LTR
403	MER44B	TcMar-Tigger	DNA
404	Ricksha_c	MULE-MuDR	DNA
405	MER44C	TcMar-Tigger	DNA
406	MER96	hAT-Tip100	DNA
407	MER73	ERVL	LTR
408	Tigger7	TcMar-Tigger	DNA
409	MER57D	ERV1	LTR
410	LTR31	ERV1	LTR
411	UCON132b	hAT-Tip100	DNA
412	MER57E1	ERV1	LTR
413	MER21B	ERVL	LTR
414	MamRep1161	TcMar-Tigger	DNA
415	MLT1A1	ERVL-MaLR	LTR
416	MER44D	TcMar-Tigger	DNA

417	LTR70	ERV1	LTR
418	MER54B	ERVL	LTR
419	LTR54B	ERV1	LTR
420	MER34B	ERV1	LTR
421	L1PBa	L1	LINE
422	MER70B	ERVL	LTR
423	LTR109A2	ERV1	LTR
424	LTR44	ERV1	LTR
425	LTR58	ERV1	LTR
426	MLT2B2	ERVL	LTR
427	MLT1A0	ERVL-MaLR	LTR
428	L1PBb	L1	LINE
429	L1MA6	L1	LINE
430	MER34C-	ERV1	LTR
431	MER67A	ERV1	LTR
432	LTR75B	ERVL	LTR
433	MER34	ERV1	LTR
434	MER34C2	ERV1	LTR
435	MER94B	hAT-Blackjack	DNA
436	MER57F	ERV1	LTR
437	MER95	ERV1	LTR
438	LTR108e_Mam	ERVL	LTR
439	Tigger1a_Mars	TcMar-Tigger	DNA
440	X8_LINE	CR1	LINE
441	L1P4b	L1	LINE
442	L1MA7	L1	LINE
443	HERVS71-int	ERV1	LTR
444	Tigger4	TcMar-Tigger	DNA
445	MER74B	ERVL	LTR
446	MER34C	ERV1	LTR
447	HERV15-int	ERV1	LTR
448	MER70C	ERVL	LTR
449	MLT2B1	ERVL	LTR
450	HERV1_LTRe	ERV1	LTR
451	UCON79	DNA?	DNA?
452	MLT1A	ERVL-MaLR	LTR
453	MER57E2	ERV1	LTR
454	MSTB-int	ERVL-MaLR	LTR
455	MER45A	hAT-Tip100	DNA
456	CR1-L3A_Croc	CR1	LINE
457	MLT1N2-int	ERVL-MaLR	LTR
458	UCON8	DNA	DNA
459	Ricksha_a	MULE-MuDR	DNA
460	L1P4c	L1	LINE
461	Penelope1_Vert	Penelope	LINE
462	HERV9NC-int	ERV1	LTR
463	MER83A-int	ERV1	LTR
464	MER57E3	ERV1	LTR
465	MLT1E-int	ERVL-MaLR	LTR
466	HERV9-int	ERV1	LTR
467	HERVFH19-int	ERV1	LTR
468	MamRep488	hAT-Tip100	DNA
469	UCON78	DNA	DNA
470	X2_LINE	CR1	LINE

471	LTR91	ERVL	LTR
472	PRIMAX-int	ERV1	LTR
473	MER126	DNA	DNA
474	MER34A	ERV1	LTR
475	MER50C	ERV1	LTR
476	MLT2B4	ERVL	LTR
477	MLT1E1A-int	ERVL-MaLR	LTR
478	UCON33	TcMar-Tigger	DNA
479	MSTB2-int	ERVL-MaLR	LTR
480	X5B_LINE	CR1	LINE
481	HERVK22-int	ERVK	LTR
482	MER83B-int	ERV1	LTR
483	MamGypsy2-LTR	Gypsy	LTR
484	MER70A	ERVL	LTR
485	MSTA1-int	ERVL-MaLR	LTR
486	MLT1E1-int	ERVL-MaLR	LTR
487	LTR38-int	ERV1	LTR
488	MLT1A1-int	ERVL-MaLR	LTR
489	L1M1	L1	LINE
490	Charlie30a	hAT-Charlie	DNA
491	Charlie4	hAT-Charlie	DNA
492	MADE2	TcMar-Mariner	DNA
493	X6B_LINE	CR1	LINE
494	Ricksha_b	MULE-MuDR	DNA
495	L1M3de	L1	LINE
496	MER121	hAT?	DNA
497	HERVFH21-int	ERV1	LTR
498	L1PBa1	L1	LINE
499	UCON107	hAT-Tag1	DNA
500	HERVL66-int	ERVL	LTR
501	LTR53B	ERVL	LTR
502	MER131	DNA?	DNA
503	LTR108b_Mam	ERVL	LTR
504	UCON29	PiggyBac?	DNA
505	MER31A	ERV1	LTR
506	MER127	TcMar-Tigger	DNA
507	X6A LINE	CR1	LINE
508	MER21C	ERVL	LTR
509	Mam_R4	Dong-R4	LINE
510	Chompy-7_Croc	PIF-Harbinger	DNA
511	L1M2	L1	LINE
512	AmnSINE1	5S-Deu-L2	SINE
513	LTR81AB	Gypsy	LTR
514	HERVK14-int	ERVK	LTR
515	FordPrefect_a	hAT-Tip100	DNA
516	X9_LINE	L1	LINE
517	HERV17-int	ERV1	LTR
518	MER88	ERVL	LTR
519	L1MA8	L1	LINE
520	L1MA9	L1	LINE
521	LTR19-int	ERV1	LTR
522	HERV30-int	ERV1	LTR
523	MLT1-int	ERVL-MaLR	LTR
524	MLT2D	ERVL	LTR

525	L1MB1	L1	LINE
526	MSTB1-int	ERVL-MaLR	LTR
527	L1M2c	L1	LINE
528	L1M2b	L1	LINE
529	Tigger 17 b	TcMar-Tigger	DNA
530	Charlie10b	hAT-Charlie	DNA
531	MSTC-int	ERVL-MaLR	LTR
532	L1M3b	L1	LINE
533	MLT1G-int	ERVL-MaLR	LTR
534	MER34A1	ERV1	LTR
535	MER89	ERV1	LTR
536	LTR108a_Mam	ERVL	LTR
537	HERVIP10F-int	ERV1	LTR
538	ERV24B_Prim-int	ERV1	LTR
539	MER92A	ERV1	LTR
540	LFSINE_Vert	tRNA	SINE
541	MER67B	ERV1	LTR
542	MER67D	ERV1	LTR
543	L1MA10	L1	LINE
544	MLT1B	ERVL-MaLR	LTR
545	ERV24_Prim-int	ERV1	LTR
546	MER34B-int	ERV1	LTR
547	LTR57-int	ERVL	LTR
548	MLT1E2-int	ERVL-MaLR	LTR
549	LTR55	ERVL?	LTR
550	LTR53	ERVL	LTR
551	MER74C	ERVL	LTR
552	MER31B	ERV1	LTR
553	L1MC1	L1	LINE
554	LTR33C	ERVL	LTR
555	MER97d	hAT-Tip100	DNA
556	LTR108c_Mam	ERVL	LTR
557	MER58D	hAT-Charlie	DNA
558	L1M3c	L1	LINE
559	MLT1C-int	ERVL-MaLR	LTR
560	Tigger17a	TcMar-Tigger	DNA
561	MER74A	ERVL	LTR
562	MER92D	ERV1	LTR
563	MLT1C	ERVL-MaLR	LTR
564	LTR107_Mam	LTR	LTR
565	Charlie11	hAT-Charlie	DNA
566	HERVKC4-int	ERVK	LTR
567	MLT-int	ERVL-MaLR	LTR
568	MLT2C2	ERVL	LTR
569	MER77B	ERVL	LTR
570	MER77	ERVL	LTR
571	MLT1D	ERVL-MaLR	LTR
572	MLT1E1	ERVL-MaLR	LTR
573	LTR53-int	ERVL	LTR
574	L1MB2	L1	LINE
575	MLT1E	ERVL-MaLR	LTR
576	MER92B	ERV1	LTR
577	Tigger17c	TcMar-Tigger	DNA
578	MER68C	ERVL	LTR

579	MER97b	hAT-Tip100	DNA
580	LTR16D1	ERVL	LTR
581	MER92C	ERV1	LTR
582	Tigger6b	TcMar-Tigger	DNA
583	hAT-N1_Mam	hAT-Tip 100 ?	DNA
584	LTR52	ERVL	LTR
585	LTR75	ERVL	LTR
586	LTR16D2	ERVL	LTR
587	MLT1E2	ERVL-MaLR	LTR
588	MER81	hAT-Blackjack	DNA
589	CR1-16_AMi	CR1	LINE
590	L1PA15-16	L1	LINE
591	MER68B	ERVL	LTR
592	MER76	ERVL	LTR
593	MER106A	hAT-Charlie	DNA
594	L1MB3	L1	LINE
595	MER67C	ERV1	LTR
596	MER106B	hAT-Charlie	DNA
597	MER68	ERVL	LTR
598	MLT1B-int	ERVL-MaLR	LTR
599	MER70-int	ERVL	LTR
600	LTR108d_Mam	ERVL	LTR
601	MER45B	hAT-Tip100	DNA
602	L1MB4	L1	LINE
603	L1M3d	L1	LINE
604	LTR40A1	ERVL	LTR
605	L1MC2	L1	LINE
606	MER53	hAT	DNA
607	LTR40b	ERVL	LTR
608	LTR68	ERV1	LTR
609	MER45C	hAT-Tip100	DNA
610	MLT1E3	ERVL-MaLR	LTR
611	L1M3e	L1	LINE
612	MSTD-int	ERVL-MaLR	LTR
613	MLT1E3-int	ERVL-MaLR	LTR
614	MER90	ERV1	LTR
615	Tigger6a	TcMar-Tigger	DNA
616	MLT2C1	ERVL	LTR
617	ORSL	hAT-Tip100	DNA
618	MLT1E1A	ERVL-MaLR	LTR
619	MER20	hAT-Charlie	DNA
620	X7D_LINE	CR1	LINE
621	MER58A	hAT-Charlie	DNA
622	LTR16B2	ERVL	LTR
623	LTR40a	ERVL	LTR
624	MLT1F-int	ERVL-MaLR	LTR
625	MamRep1894	hAT	DNA
626	Tigger9b	TcMar-Tigger	DNA
627	L1M3	L1	LINE
628	MER63A	hAT-Blackjack	DNA
629	MLT1G3-int	ERVL-MaLR	LTR
630	Charlie14a	hAT-Charlie	DNA
631	MER91B	hAT-Tip100	DNA
632	LTR41B	ERVL	LTR

633	LTR16B	ERVL	LTR
634	MLT1F2	ERVL-MaLR	LTR
635	LTR41	ERVL	LTR
636	LTR52-int	ERVL	LTR
637	MER90a	ERV1	LTR
638	LTR86A1	ERVL	LTR
639	UCON55	TcMar-Tigger	DNA
640	L5	RTE-X	LINE
641	LTR41C	ERVL	LTR
642	L1MB8	L1	LINE
643	MER96B	hAT-Tip100	DNA
644	MER58C	hAT-Charlie	DNA
645	LTR40c	ERVL	LTR
646	MER58B	hAT-Charlie	DNA
647	MLT1L-int	ERVL-MaLR	LTR
648	MER99	hAT?	DNA
649	LTR102_Mam	ERVL	LTR
650	L1M3f	L1	LINE
651	MLT1F	ERVL-MaLR	LTR
652	L1MB5	L1	LINE
653	ERV3-16A3_LTR	ERVL	LTR
654	Tigger17	TcMar-Tigger	DNA
655	L1MB7	L1	LINE
656	MER63B	hAT-Blackjack	DNA
657	MLT1G1-int	ERVL-MaLR	LTR
658	MER3	hAT-Charlie	DNA
659	MER110A	ERV1	LTR
660	LTR80B	ERVL	LTR
661	LTR37A	ERV1	LTR
662	LTR16B1	ERVL	LTR
663	MLT2F	ERVL	LTR
664	MLT1F1	ERVL-MaLR	LTR
665	MLT1G1	ERVL-MaLR	LTR
666	MLT1H1	ERVL-MaLR	LTR
667	MER94	hAT-Blackjack	DNA
668	LTR16	ERVL	LTR
669	LTR88b	Gypsy?	LTR
670	FordPrefect	hAT-Tip100	DNA
671	MER124	DNA?	DNA?
672	MER119	hAT-Charlie	DNA
673	MER104	TcMar-Tc2	DNA
674	MER97a	hAT-Tip100	DNA
675	MER110-int	ERV1	LTR
676	MER5A1	hAT-Charlie	DNA
677	DNA1_Mam	TcMar	DNA
678	L1MC	L1	LINE
679	MLT1I-int	ERVL-MaLR	LTR
680	Charlie10	hAT-Charlie	DNA
681	Charlie5	hAT-Charlie	DNA
682	MERX	TcMar-Tigger	DNA
683	MLT1F1-int	ERVL-MaLR	LTR
684	MER45R	hAT-Tip100	DNA
685	L1M2a	L1	LINE
686	Tigger12c	TcMar-Tigger	DNA

687	L1MEg2	L1	LINE
688	Arthur1C	hAT-Tip100	DNA
689	LTR16A2	ERVL	LTR
690	L1MD3	L1	LINE
691	L1M4	L1	LINE
692	Charlie6	hAT-Charlie	DNA
693	L1MD	L1	LINE
694	L1MD1	L1	LINE
695	Charlie1b	hAT-Charlie	DNA
696	L1MC3	L1	LINE
697	L1M4a2	L1	LINE
698	L1MD2	L1	LINE
699	Charliela	hAT-Charlie	DNA
700	MER33	hAT-Charlie	DNA
701	Looper	PiggyBac	DNA
702	MLT1G3	ERVL-MaLR	LTR
703	HERVIP10B3-int	ERV1	LTR
704	L1MCc	L1	LINE
705	MER5C1	hAT-Charlie	DNA
706	Charlie1	hAT-Charlie	DNA
707	MER63C	hAT-Blackjack	DNA
708	MER5C	hAT-Charlie	DNA
709	MER5A	hAT-Charlie	DNA
710	Charlie10a	hAT-Charlie	DNA
711	MER105	hAT-Charlie	DNA
712	X7C_LINE	CR1	LINE
713	MLT1G	ERVL-MaLR	LTR
714	LTR86B2	ERVL	LTR
715	LTR16A	ERVL	LTR
716	LTR105_Mam	ERVL	LTR
717	LTR80A	ERVL	LTR
718	Charlie7a	hat-Charlie	DNA
719	Zaphod3	hAT-Tip100	DNA
720	L1ME2z	L1	LINE
721	MER63D	hAT-Blackjack	DNA
722	MLT1H2-int	ERVL-MaLR	LTR
723	LTR83	ERVL	LTR
724	Kanga1a	TcMar-Tc2	DNA
725	MER91A	hAT-Tip100	DNA
726	LTR37B	ERV1	LTR
727	MER5B	hAT-Charlie	DNA
728	LTR87	ERVL?	LTR
729	LTR86C	ERVL	LTR
730	MLT1H	ERVL-MaLR	LTR
731	MLT1F2-int	ERVL-MaLR	LTR
732	LTR50	ERVL	LTR
733	LTR16E1	ERVL	LTR
734	LTR16A1	ERVL	LTR
735	L1MEb	L1	LINE
736	LTR46-int	ERV1	LTR
737	MER91C	hAT-Tip100	DNA
738	MLT1K-int	ERVL-MaLR	LTR
739	MLT2E	ERVL	LTR
740	Charlie9	hAT-Charlie	DNA

741	Kanga1c	TcMar-Tc2	DNA
742	Cheshire	hAT-Charlie	DNA
743	MLT1J1	ERVL-MaLR	LTR
744	L1ME3	L1	LINE
745	MamRep38	hAT	DNA
746	Charlie17a	hAT-Charlie	DNA
747	LTR81B	Gypsy	LTR
748	LTR81A	Gypsy	LTR
749	MLT1H2	ERVL-MaLR	LTR
750	LTR16D	ERVL	LTR
751	LTR16C	ERVL	LTR
752	LTR16E2	ERVL	LTR
753	L1M4a1	L1	LINE
754	MER110	ERV1	LTR
755	MER4B-int	ERV1	LTR
756	LTR103_Mam	ERV1?	LTR
757	MamGypLTR1c	Gypsy	LTR
758	MamGypLTR1a	Gypsy	LTR
759	LTR33A	ERVL	LTR
760	MER115	hAT-Tip100	DNA
761	CR1-3_Croc	CR1	LINE
762	Charlie4a	hAT-Charlie	DNA
763	MER21-int	ERVL	LTR
764	MLT1I	ERVL-MaLR	LTR
765	X7B_LINE	CR1	LINE
766	Charlie19a	hAT-Charlie	DNA
767	Arthur1A	hAT-Tip100	DNA
768	L2-1_AMi	L2	LINE
769	LTR33	ERVL	LTR
770	Arthur1	hAT-Tip100	DNA
771	LTR82A	ERVL	LTR
772	Arthur1B	hAT-Tip100	DNA
773	MamRTE1	RTE-BovB	LINE
774	Zaphod2	hAT-Tip100	DNA
775	L1MEg1	L1	LINE
776	LTR79	ERVL	LTR
777	MER97c	hAT-Tip100	DNA
778	LTR104_Mam	Gypsy	LTR
779	L1M3a	L1	LINE
780	Charlie26a	hAT-Charlie	DNA
781	LTR33B	ERVL	LTR
782	MER46C	TcMar-Tigger	DNA
783	MamGypLTR1d	Gypsy	LTR
784	MER102a	hAT-Charlie	DNA
785	MER102c	hAT-Charlie	DNA
786	MamGypLTR2c	Gypsy	LTR
787	Tigger14a	TcMar-Tigger	DNA
788	LTR88a	Gypsy?	LTR
789	Charlie17	hAT-Charlie	DNA
790	Kanga1b	TcMar-Tc2	DNA
791	MLT1J2	ERVL-MaLR	LTR
792	L1MC4a	L1	LINE
793	LTR82B	ERVL	LTR
794	L1MC4	L1	LINE

795	Charlie4z	hAT-Charlie	DNA
796	LTR33A-	ERVL	LTR
797	HERVL18-int	ERVL	LTR
798	L1ME3A	L1	LINE
799	LTR85c	Gypsy?	LTR
800	MER117	hat-Charlie	DNA
801	Kanga1	TcMar-Tc2	DNA
802	Kanga1d	TcMar-Tc2	DNA
803	MamRep1879	hAT-Tip100?	DNA
804	MLT1J	ERVL-MaLR	LTR
805	HAL1M8	L1	LINE
806	Tigger18a	TcMar-Tigger	DNA
807	L1MC5	L1	LINE
808	Plat_L3	CR1	LINE
809	Tigger16a	TcMar-Tigger	DNA
810	MamTip1	hAT-Tip100	DNA
811	MamSINE1	tRNA-RTE	SINE
812	MLT1J2-int	ERVL-MaLR	LTR
813	Tigger9a	TcMar-Tigger	DNA
814	MER112	hAT-Charlie	DNA
815	HERVL74-int	ERVL	LTR
816	LTR67B	ERVL	LTR
817	HERVK13-int	ERVK	LTR
818	MIR	MIR	SINE
819	MamGyp-int	Gypsy	LTR
820	MER102b	hAT-Charlie	DNA
821	MER20B	hAT-Charlie	DNA
822	LTR81C	Gypsy	LTR
823	L1ME5	L1	LINE
824	Charlie15a	hAT-Charlie	DNA
825	Charlie7	hAT-Charlie	DNA
826	LTR106_Mam	LTR	LTR
827	HERVE-int	ERV1	LTR
828	MLT1L	ERVL-MaLR	LTR
829	Charlie16a	hAT-Charlie	DNA
830	LTR103b_Mam	ERV1?	LTR
831	HUERS-P2-int	ERV1	LTR
832	LTR84b	ERVL	LTR
833	HUERS-P1-int	ERV1	LTR
834	L1MEh	L1	LINE
835	LTR86A2	ERVL	LTR
836	HERVK-int	ERVK	LTR
837	Charlie22a	hAT-Charlie	DNA
838	HERVK3-int	ERVK	LTR
839	L1M4c	L1	LINE
840	MER113A	hAT-Charlie	DNA
841	MLT1H1-int	ERVL-MaLR	LTR
842	L1MEa	L1	LINE
843	MIR1_Amn	MIR	SINE
844	ERVL-int	ERVL	LTR
845	MamRep4096	hAT-Tip100	DNA
846	LTR85a	Gypsy?	LTR
847	MLT1K	ERVL-MaLR	LTR
848	MER68-int	ERVL	LTR

849	Tigger12A	TcMar-Tigger	DNA
850	CR1_Mam	CR1	LINE
851	UCON74	DNA?	DNA?
852	LTR89	ERVL?	LTR
853	LTR90A	LTR	LTR
854	Chap1_Mam	hAT-Charlie	DNA
855	L1MEg	L1	LINE
856	LTR101_Mam	ERVL	LTR
857	L1M5	L1	LINE
858	Charlie13b	hAT-Charlie	DNA
859	L1MDa	L1	LINE
860	Charlie21a	hAT-Charlie	DNA
861	MamGypLTR1b	Gypsy	LTR
862	L1MCb	L1	LINE
863	L1MCa	L1	LINE
864	MLT1A0-int	ERVL-MaLR	LTR
865	L1MEf	L1	LINE
866	L1MEc	L1	LINE
867	L1ME1	L1	LINE
868	L1M4b	L1	LINE
869	LTR78B	ERV1	LTR
870	L1MC5a	L1	LINE
871	L1ME3E	L1	LINE
872	L1ME2	L1	LINE
873	LTR65	ERV1	LTR
874	Charlie2a	hAT-Charlie	DNA
875	LTR85b	Gypsy?	LTR
876	MLT1N2	ERVL-MaLR	LTR
877	MLT1M	ERVL-MaLR	LTR
878	BLACKJACK	hAT-Blackjack	DNA
879	L2a	L2	LINE
880	L1MEi	L1	LINE
881	LTR78	ERV1	LTR
882	Charlie18a	hAT-Charlie	DNA
883	L1ME4b	L1	LINE
884	MER101-int	ERV1	LTR
885	Zaphod	hAT-Tip100	DNA
886	Charlie15b	hAT-Charlie	DNA
887	Charlie17b	hAT-Charlie	DNA
888	L1ME3B	L1	LINE
889	MamRep137	TcMar-Tigger	DNA
890	Charlie29a	hAT-Charlie	DNA
891	L1M7	L1	LINE
892	L1ME3F	L1	LINE
893	Charlie2b	hAT-Charlie	DNA
894	L1ME3D	L1	LINE
895	HAL1b	L1	LINE
896	LTR88c	Gypsy?	LTR
897	MamGypLTR3a	Gypsy	LTR
898	Tigger13a	TcMar-Tigger	DNA
899	MLT1O	ERVL-MaLR	LTR
900	MLT1J-int	ERVL-MaLR	LTR
901	Charlie24	hAT-Charlie	DNA
902	ORSL-2a	hAT-Tip100	DNA

903	MamGypLTR2b	Gypsy	LTR
904	MamRep1151	LTR?	LTR?
905	Kanga11a	TcMar-Tc2	DNA
906	MamRep1527	LTR	LTR
907	MLT1D-int	ERVL-MaLR	LTR
908	LTR84a	ERVL	LTR
909	Charlie8	hAT-Charlie	DNA
910	L2b	L2	LINE
911	MER84-int	ERV1	LTR
912	MER113B	hAT-Charlie	DNA
913	MLT1H-int	ERVL-MaLR	LTR
914	L1MEd	L1	LINE
915	L1M8	L1	LINE
916	Charlie23a	hAT-Charlie	DNA
917	LTR90B	LTR	LTR
918	LTR81	Gypsy	LTR
919	L1MDb	L1	LINE
920	HERV4-I-int	ERV1	LTR
921	HERV35I-int	ERV1	LTR
922	MamGypLTR3	Gypsy	LTR
923	MamRep434	TcMar-Tigger	DNA
924	Kanga2_a	TcMar-Tc2	DNA
925	MLT1J1-int	ERVL-MaLR	LTR
926	ORSL-2b	hAT-Tip100	DNA
927	MamTip3	hAT-Tip100	DNA
928	MIRb	MIR	SINE
929	L2	L2	LINE
930	Tigger11a	TcMar-Tigger	DNA
931	L1ME3G	L1	LINE
932	Tigger20a	TcMar-Tigger	DNA
933	MER103C	hAT-Charlie	DNA
934	L1M6	L1	LINE
935	MamRep605	LTR?	LTR?
936	L4_A_Mam	RTE-X	LINE
937	MER113	hAT-Charlie	DNA
938	Tigger16b	TcMar-Tigger	DNA
939	HAL1	L1	LINE
940	HAL1ME	L1	LINE
941	Charlie25	hAT-Charlie	DNA
942	MLT1A-int	ERVL-MaLR	LTR
943	MamTip2	hAT-Tip100	DNA
944	LTR86B1	ERVL	LTR
945	L1M6B	L1	LINE
946	L1ME3Cz	L1	LINE
947	Tigger8	TcMar-Tigger	DNA
948	L2c	L2	LINE
949	HERVE_a-int	ERV1	LTR
950	L1ME4a	L1	LINE
951	L3b	CR1	LINE
952	Tigger19a	TcMar-Tigger	DNA
953	X7A LINE	CR1	LINE
954	Tigger15a	TcMar-Tigger	DNA
955	L1MEj	L1	LINE
956	MIR3	MIR	SINE

957	L4_B_Mam	RTE-X	LINE
958	MIRc	MIR	SINE
959	L1ME4c	L1	LINE
960	L3	CR1	LINE
961	Tigger12	TcMar-Tigger	DNA
962	Tigger10	TcMar-Tigger	DNA
963	Tigger 19 b	TcMar-Tigger	DNA
964	Harlequin-int	ERV1	LTR
965	HERVL-int	ERVL	LTR
966	HERVH-int	ERV1	LTR
967	MamGypsy2-I	Gypsy	LTR
968	L1ME3C	L1	LINE
969	ERV3-16A3_I-int	ERVL	LTR
970	MER92-int	ERV1	LTR
971	MER31-int	ERV1	LTR
972	HUERS-P3b-int	ERV1	LTR
973	LTR49-int	ERV1	LTR
974	MER61-int	ERV1	LTR
975	HERVK11-int	ERVK	LTR
976	HERV9N-int	ERV1	LTR
977	Ricksha	MULE-MuDR	DNA
978	L4_C_Mam	RTE-X	LINE
979	PABL_A-int	ERV1	LTR
980	LTR43-int	ERV1	LTR
981	MER89-int	ERV1	LTR
982	MER65-int	ERV1	LTR
983	PRIMA4-int	ERV1	LTR
984	L2-3_Crp	L2	LINE
985	HERV3-int	ERV1	LTR
986	HERVK9-int	ERVK	LTR
987	HERVK14C-int	ERVK	LTR
988	MER66-int	ERV1	LTR
989	HERVIP10FH-int	ERV1	LTR
990	MER34-int	ERV1	LTR
991	HERVI-int	ERV1	LTR
992	LTR25-int	ERV1	LTR
993	ERVL47-int	ERVL	LTR
994	Charlie13a	hAT-Charlie	DNA
995	PABL_B-int	ERV1	LTR
996	HERV16-int	ERVL	LTR
997	LTR39-int	ERV1	LTR
998	PRIMA41-int	ERV1	LTR
999	Charlie20a	hAT-Charlie	DNA
1000	MER52-int	ERV1	LTR
1001	LTR37-int	ERV1	LTR
1002	HERVP71A-int	ERV1	LTR
1003	MER4-int	ERV1	LTR
1004	MER57A-int	ERV1	LTR
1005	HERVL40-int	ERVL	LTR
1006	MER51-int	ERV1	LTR
1007	LOR1-int	ERV1	LTR
1008	LTR23-int	ERV1	LTR
1009	HUERS-P3-int	ERV1	LTR
1010	ERVL-B4-int	ERVL	LTR

1011	MARNA	TcMar-Mariner	DNA
1012	MER57-int	ERV1	LTR
1013	ERVL-E-int	ERVL	LTR
1014	MER41-int	ERV1	LTR
1015	HERVH48-int	ERV1	LTR

Appendix B

The TE ordering in The human genome predicted from

 THE RECURSIVE INTERRUPTION MODEL BY APPLYING TABU SEARCH ON THE ADJACENCY MATRIX OF THE TE-INTERACTION NETWORK| Age order (youngest to oldest) | TE name | TE family | TE type |
| :---: | :---: | :---: | :---: |
| 1 | AluYc | SINE | Alu |
| 2 | LTR5A | LTR | ERVK |
| 3 | AluYk4 | SINE | Alu |
| 4 | AluYa5 | SINE | Alu |
| 5 | MER9a2 | LTR | ERVK |
| 6 | AluYb8 | SINE | Alu |
| 7 | AluYe5 | SINE | Alu |
| 8 | AluYc3 | SINE | Alu |
| 9 | LTR5_Hs | LTR | ERVK |
| 10 | AluY | SINE | Alu |
| 11 | L1PA2 | LINE | L1 |
| 12 | AluYk2 | SINE | Alu |
| 13 | HERV1_LTRb | LTR | ERV1 |
| 14 | LTR13 | LTR | ERVK |
| 15 | HERVE_a-int | LTR | ERV1 |
| 16 | AluYk3 | SINE | Alu |
| 17 | LTR2 | LTR | ERV1 |
| 18 | AluYm1 | SINE | Alu |
| 19 | AluYf1 | SINE | Alu |
| 20 | AluYb9 | SINE | Alu |
| 21 | HERV9NC-int | LTR | ERV1 |
| 22 | LTR7 | LTR | ERV1 |
| 23 | LTR21A | LTR | ERV1 |
| 24 | LTR12C | LTR | ERV1 |
| 25 | AluYh3 | SINE | Alu |
| 26 | AluYj4 | SINE | Alu |
| 27 | LTR7B | LTR | ERV1 |
| 28 | LTR14 | LTR | ERVK |
| 29 | MER9a1 | LTR | ERVK |
| 30 | MER11C | LTR | ERVK |
| 31 | LTR6A | LTR | ERV1 |
| 32 | AluSp | SINE | Alu |
| 33 | LTR13_ | LTR | ERVK |
| 34 | AluSc8 | SINE | Alu |
| 35 | AluSg | SINE | Alu |

36	AluSg4	SINE	Alu
37	AluSq10	SINE	Alu
38	AluSc5	SINE	Alu
39	AluSg7	SINE	Alu
40	MER11B	LTR	ERVK
41	LTR5B	LTR	ERVK
42	AluYg6	SINE	Alu
43	HERVK11D-int	LTR	ERVK
44	MER11D	LTR	ERVK
45	AluYd8	SINE	Alu
46	AluSx 3	SINE	Alu
47	AluYi6	SINE	Alu
48	L1HS	LINE	L1
49	L1PA5	LINE	L1
50	LTR12B	LTR	ERV1
51	MER11A	LTR	ERVK
52	AluSq4	SINE	Alu
53	HERV9N-int	LTR	ERV1
54	AluSq	SINE	Alu
55	LTR22C2	LTR	ERVK
56	HERV9-int	LTR	ERV1
57	LTR10F	LTR	ERV1
58	LTR10G	LTR	ERV1
59	LTR17	LTR	ERV1
60	AluSq2	SINE	Alu
61	LTR12F	LTR	ERV1
62	LTR14C	LTR	ERVK
63	LTR12	LTR	ERV1
64	LTR12_	LTR	ERV1
65	LTR5	LTR	ERVK
66	LTR7A	LTR	ERV1
67	LTR12D	LTR	ERV1
68	Alu	SINE	Alu
69	LTR22B	LTR	ERVK
70	AluYe6	SINE	Alu
71	AluYk12	SINE	Alu
72	LTR2B	LTR	ERV1
73	LTR2C	LTR	ERV1
74	LTR3A	LTR	ERVK
75	LTR6B	LTR	ERV1
76	LTR10D	LTR	ERV1
77	LTR14B	LTR	ERVK
78	AluSx4	SINE	Alu
79	AluSc	SINE	Alu
80	AluSx1	SINE	Alu
81	L1P1	LINE	L1
82	L1PA4	LINE	L1
83	AluYi6_4d	SINE	Alu
84	LTR13A	LTR	ERVK
85	LTR1B1	LTR	ERV1
86	LTR27	LTR	ERV1
87	LTR7C	LTR	ERV1
88	LTR18A	LTR	ERVL
89	AluYk11	SINE	Alu

90	LTR30	LTR	ERV1
91	LTR3B_	LTR	ERVK
92	AluSz6	SINE	Alu
93	AluYh3a3	SINE	Alu
94	LTR3B	LTR	ERVK
95	MER9a3	LTR	ERVK
96	LTR10A	LTR	ERV1
97	LTR76	LTR	ERV1
98	AluSz	SINE	Alu
99	L1PA3	LINE	L1
100	HERVI-int	LTR	ERV1
101	HERV15-int	LTR	ERV1
102	LTR15	LTR	ERV1
103	HERV1_I-int	LTR	ERV1
104	LTR10C	LTR	ERV1
105	LTR1A2	LTR	ERV1
106	HERVIP10B3-int	LTR	ERV1
107	L1PA6	LINE	L1
108	HERV1_LTRa	LTR	ERV1
109	LTR10B1	LTR	ERV1
110	LTR19C	LTR	ERV1
111	HERVK22-int	LTR	ERVK
112	LTR12E	LTR	ERV1
113	LTR22B1	LTR	ERVK
114	LTR61	LTR	ERV1
115	LTR22B2	LTR	ERVK
116	LTR7Y	LTR	ERV1
117	LTR10E	LTR	ERV1
118	LTR10B2	LTR	ERV1
119	LTR22E	LTR	ERVK
120	LTR22A	LTR	ERVK
121	AluSx	SINE	Alu
122	LTR22	LTR	ERVK
123	LTR4	LTR	ERV1
124	Penelope1_Vert	LINE	Penelope
125	LTR22C0	LTR	ERVK
126	LTR3	LTR	ERVK
127	THE1-int	LTR	ERVL-MaLR
128	L1PA8	LINE	L1
129	L1PA7	LINE	L1
130	HERVFH19-int	LTR	ERV1
131	LTR19A	LTR	ERV1
132	MER61C	LTR	ERV1
133	LTR9D	LTR	ERV1
134	THE1B	LTR	ERVL-MaLR
135	LTR9A1	LTR	ERV1
136	LTR46	LTR	ERV1
137	THE1A-int	LTR	ERVL-MaLR
138	LTR71B	LTR	ERV1
139	MER61E	LTR	ERV1
140	LTR66	LTR	ERVL
141	HERVH48-int	LTR	ERV1
142	MLT2A1	LTR	ERVL
143	MER48	LTR	ERV1

252	L1PA14	LINE	L1
253	MER4D1	LTR	ERV1
254	MER57C2	LTR	ERV1
255	L1PBb	LINE	L1
256	LTR72	LTR	ERV1
257	L1PBa	LINE	L1
258	FLAM_A	SINE	Alu
259	MER57B1	LTR	ERV1
260	THE1D-int	LTR	ERVL-MaLR
261	L1PB2	LINE	L1
262	AluJr4	SINE	Alu
263	L1PREC2	LINE	L1
264	L1PA13	LINE	L1
265	MER4B	LTR	ERV1
266	LTR8A	LTR	ERV1
267	MER84	LTR	ERV1
268	LTR60B	LTR	ERV1
269	MER66C	LTR	ERV1
270	Tigger3d	DNA	TcMar-Tigger
271	HERVKC4-int	LTR	ERVK
272	PrimLTR79	LTR	ERV1
273	LTR1C1	LTR	ERV1
274	HERVIP10FH-int	LTR	ERV1
275	LTR35A	LTR	ERV1
276	L1MA1	LINE	L1
277	hAT-16_Crp	DNA	hAT-Charlie
278	MER75B	DNA	PiggyBac
279	LTR36	LTR	ERV1
280	MER4C	LTR	ERV1
281	LTR57	LTR	ERVL
282	LTR8B	LTR	ERV1
283	L1MA2	LINE	L1
284	MER41D	LTR	ERV1
285	MSTB-int	LTR	ERVL-MaLR
286	LTR32	LTR	ERVL
287	MER66A	LTR	ERV1
288	MSTB	LTR	ERVL-MaLR
289	LOR1a	LTR	ERV1
290	MER21A	LTR	ERVL
291	AluYh7	SINE	Alu
292	L1PB3	LINE	L1
293	L1PA15	LINE	L1
294	L1M	LINE	L1
295	LTR45C	LTR	ERV1
296	L1MA3	LINE	L1
297	LTR38A1	LTR	ERV1
298	MER72	LTR	ERV1
299	MER66D	LTR	ERV1
300	LTR35B	LTR	ERV1
301	MER4D0	LTR	ERV1
302	LTR38B	LTR	ERV1
303	LTR73	LTR	ERV1
304	LTR47A	LTR	ERVL
305	FAM	SINE	Alu

306	L1PA16	LINE	L1
307	LTR44	LTR	ERV1
308	MER49	LTR	ERV1
309	LTR43B	LTR	ERV1
310	MER4D	LTR	ERV1
311	L1PA17	LINE	L1
312	LTR62	LTR	ERVL
313	MER51D	LTR	ERV1
314	LTR1F2	LTR	ERV1
315	LTR39	LTR	ERV1
316	MSTB1-int	LTR	ERVL-MaLR
317	L1P4	LINE	L1
318	LTR26C	LTR	ERV1
319	LTR26E	LTR	ERV1
320	MER70A	LTR	ERVL
321	L1PB4	LINE	L1
322	MER41E	LTR	ERV1
323	MSTB1	LTR	ERVL-MaLR
324	LTR75_1	LTR	ERV1
325	MER87	LTR	ERV1
326	LTR38	LTR	ERV1
327	LTR24	LTR	ERV1
328	MER87B	LTR	ERV1
329	LTR26D	LTR	ERV1
330	LTR47B2	LTR	ERVL
331	LTR24C	LTR	ERV1
332	LTR64	LTR	ERV1
333	AmnSINE1	SINE	5S-Deu-L2
334	MER65C	LTR	ERV1
335	LTR47B3	LTR	ERVL
336	MER72B	LTR	ERV1
337	LTR34	LTR	ERV1
338	MER39B	LTR	ERV1
339	LTR51	LTR	ERV1
340	LTR59	LTR	ERV1
341	LTR06	LTR	ERV1
342	LTR45B	LTR	ERV1
343	LTR56	LTR	ERV1
344	LTR29	LTR	ERV1
345	MER57B2	LTR	ERV1
346	L1M2c	LINE	L1
347	L1P4a	LINE	L1
348	MER8	DNA	TcMar-Tigger
349	LTR47A2	LTR	ERVL
350	L1MA5A	LINE	L1
351	LTR35	LTR	ERV1
352	LTR48B	LTR	ERV1
353	HSMAR2	DNA	TcMar-Mariner
354	Tigger2	DNA	TcMar-Tigger
355	MER65A	LTR	ERV1
356	Tigger2b_Pri	DNA	TcMar-Tigger
357	Tigger2a	DNA	TcMar-Tigger
358	MSTA1-int	LTR	ERVL-MaLR
359	MSTA1	LTR	ERVL-MaLR

360	L1PBa1	LINE	L1
361	LTR72B	LTR	ERV1
362	LTR49	LTR	ERV1
363	MER34D	LTR	ERV1
364	L1M3f	LINE	L1
365	MSTB2-int	LTR	ERVL-MaLR
366	MER54A	LTR	ERVL
367	MSTB2	LTR	ERVL-MaLR
368	MER101	LTR	ERV1
369	MER4CL34	LTR	ERV1
370	L1MA4	LINE	L1
371	MSTC-int	LTR	ERVL-MaLR
372	MSTC	LTR	ERVL-MaLR
373	MER47A	DNA	TcMar-Tigger
374	Tigger4b	DNA	TcMar-Tigger
375	LTR42	LTR	ERVL
376	LTR23	LTR	ERV1
377	MLT1A1-int	LTR	ERVL-MaLR
378	LTR45	LTR	ERV1
379	MER6A	DNA	TcMar-Tigger
380	LTR24B	LTR	ERV1
381	MER6B	DNA	TcMar-Tigger
382	MER65D	LTR	ERV1
383	MER50C	LTR	ERV1
384	MER6	DNA	TcMar-Tigger
385	Tigger3a	DNA	TcMar-Tigger
386	L1MA5	LINE	L1
387	MER57C1	LTR	ERV1
388	L1MA4A	LINE	L1
389	LTR54	LTR	ERV1
390	LTR1F	LTR	ERV1
391	THE1C-int	LTR	ERVL-MaLR
392	Tigger1	DNA	TcMar-Tigger
393	MER2B	DNA	TcMar-Tigger
394	MER2	DNA	TcMar-Tigger
395	Tigger3	DNA	TcMar-Tigger
396	Tigger4a	DNA	TcMar-Tigger
397	Tigger3c	DNA	TcMar-Tigger
398	MER44B	DNA	TcMar-Tigger
399	MER44A	DNA	TcMar-Tigger
400	LTR26B	LTR	ERV1
401	Tigger3b	DNA	TcMar-Tigger
402	MSTD-int	LTR	ERVL-MaLR
403	MER41G	LTR	ERV1
404	LTR48	LTR	ERV1
405	MSTD	LTR	ERVL-MaLR
406	MER39	LTR	ERV1
407	MER21B	LTR	ERVL
408	MLT1A1	LTR	ERVL-MaLR
409	MER44C	DNA	TcMar-Tigger
410	MER47B	DNA	TcMar-Tigger
411	LTR54B	LTR	ERV1
412	Tigger7	DNA	TcMar-Tigger
413	MER47C	DNA	TcMar-Tigger

468	LTR53B	LTR	ERVL
469	Tigger17a	DNA	TcMar-Tigger
470	MER95	LTR	ERV1
471	MER57E2	LTR	ERV1
472	LTR55	LTR	ERVL?
473	L1MB2	LINE	L1
474	MER81	DNA	hAT-Blackjack
475	MLT1C	LTR	ERVL-MaLR
476	MER89	LTR	ERV1
477	MLT1D	LTR	ERVL-MaLR
478	MER106B	DNA	hAT-Charlie
479	MER106A	DNA	hAT-Charlie
480	MER53	DNA	hAT
481	MADE2	DNA	TcMar-Mariner
482	CR1-16_AMi	LINE	CR1
483	UCON29	DNA	PiggyBac?
484	LTR75	LTR	ERVL
485	L2-1_Crp	LINE	L2
486	X2_LINE	LINE	CR1
487	X1_LINE	LINE	CR1
488	Charlie15a	DNA	hAT-Charlie
489	Chompy-6_Croc	DNA	PIF-Harbinger
490	MER67A	LTR	ERV1
491	MER96	DNA	hAT-Tip100
492	MER68-int	LTR	ERVL
493	MER20	DNA	hAT-Charlie
494	MLT1N2-int	LTR	ERVL-MaLR
495	X5B_LINE	LINE	CR1
496	UCON14	DNA?	DNA?
497	UCON7	DNA?	DNA?
498	Eulor10	DNA?	DNA?
499	X7D_LINE	LINE	CR1
500	MLT1E1A-int	LTR	ERVL-MaLR
501	MER127	DNA	TcMar-Tigger
502	X8_LINE	LINE	CR1
503	L1P4d	LINE	L1
504	MER68	LTR	ERVL
505	MER131	DNA?	DNA?
506	Eulor2B	DNA?	DNA?
507	LTR108c_Mam	LTR	ERVL
508	MamRep1894	DNA	hAT
509	LTR75B	LTR	ERVL
510	UCON11	DNA	TcMar-Tigger
511	UCON62	DNA?	DNA?
512	Tigger17b	DNA	TcMar-Tigger
513	Ricksha_b	DNA	MULE-MuDR
514	MER5C1	DNA	hAT-Charlie
515	MER94B	DNA	hAT-Blackjack
516	UCON49	LINE	L2
517	HERV-Fc2-int	LTR	ERV1
518	Merlin1_HS	DNA	Merlin
519	MER133A	DNA?	DNA?
520	Eulor6A	DNA?	DNA?
521	X6B_LINE	LINE	CR1

522	UCON81	DNA	hAT-Charlie
523	LTR108e_Mam	LTR	ERVL
524	LTR108b_Mam	LTR	ERVL
525	UCON89	DNA	hAT?
526	MER132	DNA	TcMar-Pogo
527	MER134	DNA?	DNA?
528	MER57E3	LTR	ERV1
529	Ricksha	DNA	MULE-MuDR
530	MER121B	DNA	hAT?
531	Eulor12	DNA?	DNA?
532	UCON69	DNA	hAT?
533	MER34C2	LTR	ERV1
534	Eulor2A	DNA?	DNA?
535	UCON39	DNA	TcMar-Tigger
536	Charlie10a	DNA	hAT-Charlie
537	UCON86	LINE	L2
538	UCON21	DNA?	DNA?
539	Eulor7	DNA?	DNA?
540	MER68C	LTR	ERVL
541	MER92D	LTR	ERV1
542	Eulor3	DNA?	DNA?
543	Ricksha_a	DNA	MULE-MuDR
544	HERV1_LTRe	LTR	ERV1
545	Eulor5A	DNA?	DNA?
546	UCON51	LTR?	LTR?
547	Eulor2C	DNA?	DNA?
548	MLT1E-int	LTR	ERVL-MaLR
549	MLT1E	LTR	ERVL-MaLR
550	LTR109A2	LTR	ERV1
551	Eulor11	DNA	DNA
552	MER68B	LTR	ERVL
553	MER125	DNA	DNA
554	MLT1E1	LTR	ERVL-MaLR
555	UCON83	SINE?	SINE?
556	MER58A	DNA	hAT-Charlie
557	UCON80	DNA	hAT?
558	MER58D	DNA	hAT-Charlie
559	LTR60	LTR	ERV1
560	Eulor6D	DNA?	DNA?
561	MER133B	DNA?	DNA?
562	MER74B	LTR	ERVL
563	MamRep1161	DNA	TcMar-Tigger
564	L1M3	LINE	L1
565	CR1-11_Crp	LINE	CR1
566	Eulor9B	DNA	DNA
567	LTR81AB	LTR	Gypsy
568	MER126	DNA	DNA
569	L1MC	LINE	L1
570	MER70C	LTR	ERVL
571	LTR70	LTR	ERV1
572	HERV-Fc2_LTR	LTR	ERV1
573	L2-3_AMi	LINE	L2
574	L1M2a	LINE	L1
575	UCON97	DNA	DNA

576	HERV-Fc1_LTR2	LTR	ERV1
577	L1MB3	LINE	L1
578	PRIMAX-int	LTR	ERV1
579	MLT1E1-int	LTR	ERVL-MaLR
580	CRP1	SINE?	tRNA
581	UCON79	DNA?	DNA?
582	MER76	LTR	ERVL
583	AluYh9	SINE	Alu
584	MER130	DNA	DNA
585	MER121	DNA	hAT?
586	Eulor9C	DNA	DNA
587	L1M2	LINE	L1
588	UCON23	DNA	hAT-Tip100?
589	Eulor1	DNA	DNA
590	MER92C	LTR	ERV1
591	Eulor8	DNA	TcMar?
592	UCON8	DNA	DNA
593	MER92B	LTR	ERV1
594	L1MC1	LINE	L1
595	MER113A	DNA	hAT-Charlie
596	UCON100	DNA?	DNA?
597	MER67C	LTR	ERV1
598	L1M3d	LINE	L1
599	MER77B	LTR	ERVL
600	L1MA10	LINE	L1
601	UCON78	DNA	DNA
602	MER74A	LTR	ERVL
603	Eulor6B	DNA?	DNA?
604	MER77	LTR	ERVL
605	L1MB1	LINE	L1
606	L1MB4	LINE	L1
607	L1MC2	LINE	L1
608	LTR53	LTR	ERVL
609	LTR40b	LTR	ERVL
610	MLT1E3	LTR	ERVL-MaLR
611	L1MB5	LINE	L1
612	LTR52-int	LTR	ERVL
613	MLT2C1	LTR	ERVL
614	HERVFH21-int	LTR	ERV1
615	LTR23-int	LTR	ERV1
616	MLT1E2	LTR	ERVL-MaLR
617	UCON2	DNA?	DNA?
618	HERV-Fc1 LTR1	LTR	ERV1
619	MLT1E1A	LTR	ERVL-MaLR
620	LTR41C	LTR	ERVL
621	LTR21C	LTR	ERVL
622	Charlie12	DNA	hAT-Charlie
623	LTR40a	LTR	ERVL
624	L1M4a2	LINE	L1
625	MLT1F-int	LTR	ERVL-MaLR
626	MLT1A0-int	LTR	ERVL-MaLR
627	LTR52	LTR	ERVL
628	LTR41B	LTR	ERVL
629	MLT1F2	LTR	ERVL-MaLR

630	Chompy-7_Croc	DNA	PIF-Harbinger
631	MER45R	DNA	hAT-Tip100
632	Eulor5B	DNA?	DNA?
633	Eulor6E	DNA?	DNA?
634	MER63A	DNA	hAT-Blackjack
635	MER136	DNA	DNA
636	L1MB8	LINE	L1
637	MER58C	DNA	hAT-Charlie
638	L1MB7	LINE	L1
639	LTR16B2	LTR	ERVL
640	MER96B	DNA	hAT-Tip100
641	ORSL	DNA	hAT-Tip100
642	CR1-13_AMi	LINE	CR1
643	Tigger9b	DNA	TcMar-Tigger
644	MER3	DNA	hAT-Charlie
645	MLT1G-int	LTR	ERVL-MaLR
646	MER58B	DNA	hAT-Charlie
647	L1MD	LINE	L1
648	MER90a	LTR	ERV1
649	MLT1G	LTR	ERVL-MaLR
650	MLT1F1-int	LTR	ERVL-MaLR
651	MER45B	DNA	hAT-Tip100
652	LTR37A	LTR	ERV1
653	MLT1F1	LTR	ERVL-MaLR
654	MER92A	LTR	ERV1
655	LTR80B	LTR	ERVL
656	L1MC3	LINE	L1
657	LTR68	LTR	ERV1
658	L1P4b	LINE	L1
659	Tigger6a	DNA	TcMar-Tigger
660	LTR41	LTR	ERVL
661	LTR65	LTR	ERV1
662	MLT-int	LTR	ERVL-MaLR
663	MLT1F	LTR	ERVL-MaLR
664	UCON55	DNA	TcMar-Tigger
665	MER90	LTR	ERV1
666	MLT1-int	LTR	ERVL-MaLR
667	L1MD2	LINE	L1
668	MER63B	DNA	hAT-Blackjack
669	MER110A	LTR	ERV1
670	MER63D	DNA	hAT-Blackjack
671	LTR16B	LTR	ERVL
672	LTR40c	LTR	ERVL
673	MLT1G1-int	LTR	ERVL-MaLR
674	MER135	DNA	DNA
675	Charlie10b	DNA	hAT-Charlie
676	MLT1G1	LTR	ERVL-MaLR
677	MER97d	DNA	hAT-Tip100
678	MER119	DNA	hAT-Charlie
679	L1MD3	LINE	L1
680	MER89-int	LTR	ERV1
681	Charlie1	DNA	hAT-Charlie
682	Charlie10	DNA	hAT-Charlie
683	L1M2a1	LINE	L1

684	Charlie1a	DNA	hat-Charlie
685	MER33	DNA	hAT-Charlie
686	MLT1E3-int	LTR	ERVL-MaLR
687	MER63C	DNA	hAT-Blackjack
688	MER5A1	DNA	hAT-Charlie
689	MLT1H1-int	LTR	ERVL-MaLR
690	LTR83	LTR	ERVL
691	MER5A	DNA	hAT-Charlie
692	LTR37B	LTR	ERV1
693	MER105	DNA	hAT-Charlie
694	LTR86C	LTR	ERVL
695	LTR33C	LTR	ERVL
696	L1M4c	LINE	L1
697	MLT2F	LTR	ERVL
698	LTR16B1	LTR	ERVL
699	LTR80A	LTR	ERVL
700	ERV3-16A3_LTR	LTR	ERVL
701	MER94	DNA	hAT-Blackjack
702	Charlie1b	DNA	hAT-Charlie
703	LTR16A	LTR	ERVL
704	LTR107_Mam	LTR	LTR
705	LTR33A	LTR	ERVL
706	L1PA15-16	LINE	L1
707	Tigger6b	DNA	TcMar-Tigger
708	L1M4	LINE	L1
709	L1MC4a	LINE	L1
710	MLT1H1	LTR	ERVL-MaLR
711	Tigger17	DNA	TcMar-Tigger
712	Arthur1C	DNA	hAT-Tip100
713	MLT1G3-int	LTR	ERVL-MaLR
714	LTR16	LTR	ERVL
715	LTR90B	LTR	LTR
716	LTR16D	LTR	ERVL
717	MER99	DNA	hAT?
718	MLT1H	LTR	ERVL-MaLR
719	L1MD1	LINE	L1
720	MLT1G3	LTR	ERVL-MaLR
721	MLT1J1-int	LTR	ERVL-MaLR
722	L1M4a1	LINE	L1
723	MER104	DNA	TcMar-Tc2
724	Charlie17a	DNA	hAT-Charlie
725	MLT1K-int	LTR	ERVL-MaLR
726	MLT1D-int	LTR	ERVL-MaLR
727	Zaphod3	DNA	hAT-Tip100
728	MER97a	DNA	hAT-Tip100
729	L1ME1	LINE	L1
730	L1ME2z	LINE	L1
731	LTR91	LTR	ERVL
732	MLT1L-int	LTR	ERVL-MaLR
733	MERX	DNA	TcMar-Tigger
734	MER5B	DNA	hAT-Charlie
735	LTR16A1	LTR	ERVL
736	DNA1_Mam	DNA	TcMar
737	MER5C	DNA	hAT-Charlie

738	MLT1H2-int	LTR	ERVL-MaLR
739	LTR16E2	LTR	ERVL
740	MamRep38	DNA	hat
741	Kangal	DNA	TcMar-Tc2
742	MER115	DNA	hAT-Tip100
743	MLT1H2	LTR	ERVL-MaLR
744	LTR16C	LTR	ERVL
745	Arthur 1 A	DNA	hAT-Tip100
746	MamRep488	DNA	hAT-Tip100
747	X9LINE	LINE	L1
748	LTR33	LTR	ERVL
749	LTR16E1	LTR	ERVL
750	LTR40A1	LTR	ERVL
751	LTR33B	LTR	ERVL
752	L1M2b	LINE	L1
753	MER91A	DNA	hAT-Tip100
754	LTR67B	LTR	ERVL
755	LTR104_Mam	LTR	Gypsy
756	MER102c	DNA	hAT-Charlie
757	LTR87	LTR	ERVL?
758	LTR16A2	LTR	ERVL
759	Tigger19b	DNA	TcMar-Tigger
760	Arthur1B	DNA	hAT-Tip100
761	L1MEb	LINE	L1
762	Charlie4	DNA	hAT-Charlie
763	Kanga1c	DNA	TcMar-Tc2
764	L2-3_Crp	LINE	L2
765	LTR82A	LTR	ERVL
766	Charlie4a	DNA	hAT-Charlie
767	Cheshire	DNA	hAT-Charlie
768	L1MC5	LINE	L1
769	MLT1J-int	LTR	ERVL-MaLR
770	MLT1J	LTR	ERVL-MaLR
771	LTR85c	LTR	Gypsy?
772	HAL1M8	LINE	L1
773	MLT2E	LTR	ERVL
774	LTR43-int	LTR	ERV1
775	L1M3a	LINE	L1
776	Charlie7a	DNA	hAT-Charlie
777	MLT1I-int	LTR	ERVL-MaLR
778	MER117	DNA	hAT-Charlie
779	MLT1J2	LTR	ERVL-MaLR
780	MLT1J1	LTR	ERVL-MaLR
781	MLTII	LTR	ERVL-MaLR
782	Looper	DNA	PiggyBac
783	Kanga1b	DNA	TcMar-Tc2
784	MER112	DNA	hAT-Charlie
785	MER97b	DNA	hAT-Tip100
786	MamGypLTR1a	LTR	Gypsy
787	MamGypLTR1d	LTR	Gypsy
788	L1MC5a	LINE	L1
789	Kanga1a	DNA	TcMar-Tc2
790	MamRep1879	DNA	hAT-Tip100?
791	LTR50	LTR	ERVL

792	OldhAT1	DNA	hAT-Ac
793	MER45C	DNA	hAT-Tip100
794	LTR33A_	LTR	ERVL
795	MER46C	DNA	TcMar-Tigger
796	Tigger19a	DNA	TcMar-Tigger
797	L2-1_AMi	LINE	L2
798	LTR102_Mam	LTR	ERVL
799	LFSINE_Vert	SINE	tRNA
800	MIR	SINE	MIR
801	LTR46-int	LTR	ERV1
802	MER91B	DNA	hAT-Tip100
803	MER102b	DNA	hAT-Charlie
804	MER102a	DNA	hAT-Charlie
805	LTR106_Mam	LTR	LTR
806	MamRep137	DNA	TcMar-Tigger
807	MamRep1527	LTR	LTR
808	ERVL-int	LTR	ERVL
809	LTR16D2	LTR	ERVL
810	MamGypLTR2c	LTR	Gypsy
811	HERVP71A-int	LTR	ERV1
812	L1M5	LINE	L1
813	L1MCb	LINE	L1
814	LTR108d_Mam	LTR	ERVL
815	L1MCa	LINE	L1
816	Charlie14a	DNA	hAT-Charlie
817	hAT-N1_Mam	DNA	hAT-Tip 100 ?
818	L1M4b	LINE	L1
819	MamRep434	DNA	TcMar-Tigger
820	L1MEc	LINE	L1
821	CR1_Mam	LINE	CR1
822	L1ME3	LINE	L1
823	LTR86A2	LTR	ERVL
824	MLT1J2-int	LTR	ERVL-MaLR
825	UCON74	DNA?	DNA?
826	L1MDa	LINE	L1
827	L1ME2	LINE	L1
828	LTR86B2	LTR	ERVL
829	Zaphod	DNA	hAT-Tip100
830	L1MEg1	LINE	L1
831	MER110	LTR	ERV1
832	L1ME3A	LINE	L1
833	L1ME3G	LINE	L1
834	MLT1L	LTR	ERVL-MaLR
835	Charlie17	DNA	hAT-Charlie
836	Charlie16a	DNA	hAT-Charlie
837	L1ME5	LINE	L1
838	Charlie6	DNA	hAT-Charlie
839	Kanga1d	DNA	TcMar-Tc2
840	LTR101_Mam	LTR	ERVL
841	Charlie24	DNA	hAT-Charlie
842	MamGypLTR1b	LTR	Gypsy
843	Tigger9a	DNA	TcMar-Tigger
844	MLT1N2	LTR	ERVL-MaLR
845	Charlie4z	DNA	hAT-Charlie

846	Chap1_Mam	DNA	hAT-Charlie
847	LTR86A1	LTR	ERVL
848	MER113	DNA	hAT-Charlie
849	MamTip1	DNA	hAT-Tip100
850	MIRb	SINE	MIR
851	MER91C	DNA	hAT-Tip100
852	MLT1E2-int	LTR	ERVL-MaLR
853	LTR84a	LTR	ERVL
854	LTR86B1	LTR	ERVL
855	L1ME4b	LINE	L1
856	LTR84b	LTR	ERVL
857	Tigger16a	DNA	TcMar-Tigger
858	ORSL-2a	DNA	hAT-Tip100
859	MamRep4096	DNA	hAT-Tip100
860	L1MC4	LINE	L1
861	Plat_L3	LINE	CR1
862	BLACKJACK	DNA	hAT-Blackjack
863	MIR1_Amn	SINE	MIR
864	LTR90A	LTR	LTR
865	Charlie18a	DNA	hAT-Charlie
866	LTR88c	LTR	Gypsy?
867	MLT1C-int	LTR	ERVL-MaLR
868	LTR79	LTR	ERVL
869	LTR53-int	LTR	ERVL
870	L2a	LINE	L2
871	Charlie2a	DNA	hAT-Charlie
872	L1M7	LINE	L1
873	Kanga11a	DNA	TcMar-Tc2
874	L1MEh	LINE	L1
875	L1MEg	LINE	L1
876	Charlie29a	DNA	hAT-Charlie
877	Kanga2_a	DNA	TcMar-Tc2
878	L1ME3F	LINE	L1
879	Tigger13a	DNA	TcMar-Tigger
880	L1ME3Cz	LINE	L1
881	L1ME4a	LINE	L1
882	LTR16D1	LTR	ERVL
883	L1ME3D	LINE	L1
884	Tigger8	DNA	TcMar-Tigger
885	MER103C	DNA	hAT-Charlie
886	MamTip3	DNA	hAT-Tip100
887	ORSL-2b	DNA	hAT-Tip100
888	LTR105_Mam	LTR	ERVL
889	HAL1b	LINE	L1
890	Charlie19a	DNA	hAT-Charlie
891	AmnSINE2	SINE	tRNA-Deu
892	X7B_LINE	LINE	CR1
893	L2c	LINE	L2
894	LTR57-int	LTR	ERVL
895	L1ME3E	LINE	L1
896	Charlie11	DNA	hAT-Charlie
897	LTR82B	LTR	ERVL
898	MER101-int	LTR	ERV1
899	X7C_LINE	LINE	CR1

900	L1P4c	LINE	L1
901	Tigger15a	DNA	TcMar-Tigger
902	LTR89	LTR	ERVL?
903	MLT1M	LTR	ERVL-MaLR
904	L4_A_Mam	LINE	RTE-X
905	L1ME3B	LINE	L1
906	L4_B_Mam	LINE	RTE-X
907	MamGypLTR3	LTR	Gypsy
908	Charlie22a	DNA	hAT-Charlie
909	X6A_LINE	LINE	CR1
910	MLT1B-int	LTR	ERVL-MaLR
911	MamRTE1	LINE	RTE-BovB
912	Tigger11a	DNA	TcMar-Tigger
913	MIRc	SINE	MIR
914	MLT1O	LTR	ERVL-MaLR
915	L1M8	LINE	L1
916	Charlie17b	DNA	hAT-Charlie
917	LTR81A	LTR	Gypsy
918	Tigger20a	DNA	TcMar-Tigger
919	MER20B	DNA	hAT-Charlie
920	HERV17-int	LTR	ERV1
921	HERVL74-int	LTR	ERVL
922	Charlie9	DNA	hAT-Charlie
923	Charlie20a	DNA	hAT-Charlie
924	MamGypsy2-LTR	LTR	Gypsy
925	LTR81B	LTR	Gypsy
926	LTR78	LTR	ERV1
927	MER21-int	LTR	ERVL
928	FordPrefect_a	DNA	hAT-Tip100
929	Mam_R4	LINE	Dong-R4
930	MIR3	SINE	MIR
931	Charlie25	DNA	hAT-Charlie
932	L5	LINE	RTE-X
933	ERVL47-int	LTR	ERVL
934	L1M3b	LINE	L1
935	L1ME3C	LINE	L1
936	Tigger14a	DNA	TcMar-Tigger
937	CR1-3_Croc	LINE	CR1
938	L1MEi	LINE	L1
939	L3b	LINE	CR1
940	HERVK14C-int	LTR	ERVK
941	HERVK-int	LTR	ERVK
942	MamSINE1	SINE	tRNA-RTE
943	Tigger18a	DNA	TcMar-Tigger
944	Charlie15b	DNA	hAT-Charlie
945	L1MCc	LINE	L1
946	MER129	LTR?	LTR?
947	MER34B-int	LTR	ERV1
948	LTR85a	LTR	Gypsy?
949	MamTip2	DNA	hAT-Tip100
950	L2b	LINE	L2
951	LTR103_Mam	LTR	ERV1?
952	FordPrefect	DNA	hAT-Tip100
953	Charlie26a	DNA	hAT-Charlie

954	MER113B	DNA	hAT-Charlie
955	L1ME4c	LINE	L1
956	Tigger12	DNA	TcMar-Tigger
957	L2	LINE	L2
958	Tigger12A	DNA	TcMar-Tigger
959	CR1-L3A_Croc	LINE	CR1
960	HAL1ME	LINE	L1
961	CR1-12_AMi	LINE	CR1
962	LTR78B	LTR	ERV1
963	L4_C_Mam	LINE	RTE-X
964	Zaphod2	DNA	hAT-Tip100
965	UCON132b	DNA	hAT-Tip100
966	L3	LINE	CR1
967	Eulor9A	DNA	DNA
968	UCON99	DNA	DNA
969	Charlie30a	DNA	hAT-Charlie
970	MamGypLTR1c	LTR	Gypsy
971	MamGyp-int	LTR	Gypsy
972	ERV24_Prim-int	LTR	ERV1
973	MER76-int	LTR	ERVL
974	Charlie7	DNA	hAT-Charlie
975	Tigger1a_Art	DNA	TcMar-Tigger
976	PABL_B-int	LTR	ERV1
977	L1MDb	LINE	L1
978	MamGypLTR3a	LTR	Gypsy
979	Eulor6C	DNA?	DNA?
980	LTR88b	LTR	Gypsy?
981	MER83B-int	LTR	ERV1
982	MER41-int	LTR	ERV1
983	L1MEd	LINE	L1
984	HERVL40-int	LTR	ERVL
985	PRIMA41-int	LTR	ERV1
986	LTR85b	LTR	Gypsy?
987	LTR39-int	LTR	ERV1
988	HERVIP10F-int	LTR	ERV1
989	MER110-int	LTR	ERV1
990	HERVL-int	LTR	ERVL
991	L1MEg2	LINE	L1
992	LTR103b_Mam	LTR	ERV1?
993	Charlie5	DNA	hAT-Charlie
994	Charlie13b	DNA	hAT-Charlie
995	X7A_LINE	LINE	CR1
996	MER4B-int	LTR	ERV1
997	ERVL-E-int	LTR	ERVL
998	CR1-8_Crp	LINE	CR1
999	Charlie21a	DNA	hAT-Charlie
1000	L1M6B	LINE	L1
1001	MER70-int	LTR	ERVL
1002	HERV35I-int	LTR	ERV1
1003	ERVL-B4-int	LTR	ERVL
1004	MER61-int	LTR	ERV1
1005	Tigger12c	DNA	TcMar-Tigger
1006	Charlie23a	DNA	hAT-Charlie
1007	HERVS71-int	LTR	ERV1

1008	ERV3-16A3_I-int	LTR	ERVL
1009	MER124	DNA?	DNA?
1010	ERV24B_Prim-int	LTR	ERV1
1011	Harlequin-int	LTR	ERV1
1012	MER31-int	LTR	ERV1
1013	MER57A-int	LTR	ERV1
1014	MER34-int	LTR	ERV1
1015	Tigger10	DNA	TcMar-Tigger
1016	HERVK14-int	LTR	ERVK
1017	MLT1H-int	LTR	ERVL-MaLR
1018	PRIMA4-int	LTR	ERV1
1019	HERVK11-int	LTR	ERVK
1020	HERVE-int	LTR	ERV1
1021	LTR49-int	LTR	ERV1
1022	MER51-int	LTR	ERV1
1023	MamGypsy2-I	LTR	Gypsy
1024	MamGypLTR2b	LTR	Gypsy
1025	MARNA	DNA	TcMar-Mariner
1026	MLT1A-int	LTR	ERVL-MaLR
1027	HAL1	LINE	L1
1028	MER52-int	LTR	ERV1
1029	MER84-int	LTR	ERV1
1030	LTR88a	LTR	Gypsy?
1031	HERVK9-int	LTR	ERVK
1032	HUERS-P2-int	LTR	ERV1
1033	HUERS-P1-int	LTR	ERV1
1034	PABL_A-int	LTR	ERV1
1035	HERVK3-int	LTR	ERVK
1036	MER92-int	LTR	ERV1
1037	HERV3-int	LTR	ERV1
1038	MLT1O-int	LTR	ERVL-MaLR
1039	MER57-int	LTR	ERV1
1040	LTR81C	LTR	Gypsy
1041	MamRep1151	LTR?	LTR?
1042	L1MEf	LINE	L1
1043	MLT1K	LTR	ERVL-MaLR
1044	HERVK13-int	LTR	ERVK
1045	HERV16-int	LTR	ERVL
1046	L1M6	LINE	L1
1047	MSTA-int	LTR	ERVL-MaLR
1048	MamRep605	LTR?	LTR?
1049	MER4-int	LTR	ERV1
1050	Charlie13a	DNA	hAT-Charlie
1051	LOR1-int	LTR	ERV1
1052	HERV4_I-int	LTR	ERV1
1053	MER97c	DNA	hAT-Tip100
1054	LTR81	LTR	Gypsy
1055	Charlie8	DNA	hAT-Charlie
1056	UCON33	DNA	TcMar-Tigger
1057	LTR37-int	LTR	ERV1
1058	Ricksha_0	DNA	MULE-MuDR
1059	HUERS-P3-int	LTR	ERV1
1060	MLT1F2-int	LTR	ERVL-MaLR
1061	LTR38-int	LTR	ERV1

1062	Arthur1	DNA	hAT-Tip100
1063	L1MEa	LINE	L1
1064	L1P4e	LINE	L1
1065	MER66-int	LTR	ERV1
1066	MER83A-int	LTR	ERV1
1067	Charlie2b	DNA	hAT-Charlie
1068	Tigger16b	DNA	TcMar-Tigger
1069	LTR19-int	LTR	ERV1
1070	HERVL32-int	LTR	ERVL
1071	LTR25-int	LTR	ERV1
1072	MER65-int	LTR	ERV1
1073	MER50-int	LTR	ERV1
1074	HERVL66-int	LTR	ERVL
1075	HUERS-P3b-int	LTR	ERV1
1076	L1MEj	LINE	L1
1077	HERVH-int	LTR	ERV1
1078	HERV30-int	LTR	ERV1
1079	L1M3de	LINE	L1

[^0]: ${ }^{1}$ A promoter is a region of DNA that facilitates the transcription of a particular gene. Promoters are located near the genes they regulate, on the same strand and typically upstream (towards the 5 ' region of the sense strand).
 ${ }^{2} \mathrm{~A}$ terminator is a section of genetic sequence that marks the end of gene or operon on genomic DNA for transcription.

[^1]: ${ }^{1}$ Reverse transcriptase is an RNA-independent DNA polymerase that catalyzes the synthesis of DNA from RNA.

[^2]: ${ }^{2} h g 38$ is the December 2013 assembly of the human genome.

[^3]: ${ }^{3}$ An open reading frame $(O R F)$ is a DNA sequence that does not contain a stop codon (a nucleotide triplet within messenger

[^4]: ${ }^{6}$ In molecular biology, molecular chaperones are proteins that assist the non-covalent folding or unfolding and the assembly or disassembly of other macromolecular structures, but do not occur in these structures when the structures are performing their normal biological functions, having completed the processes of folding and/or assembly.
 ${ }^{7}$ An esterase is a hydrolase enzyme that splits esters into an acid and an alcohol in a chemical reaction with water called hydrolysis.
 ${ }^{8}$ Endonucleases are enzymes that cleave the phosphodiester bond within a polynucleotide chain.

[^5]: ${ }^{9}$ A sequence motif means a sequence pattern of nucleotides in a DNA sequence or amino acids in a protein.
 ${ }^{10}$ A primer binding site is a region of a nucleotide sequence where an RNA or DNA single-stranded primer binds to start replication. The primer binding site is on one of the two complementary strands of a double-stranded nucleotide polymer, in the strand which is to be copied, or is within a single-stranded nucleotide polymer sequence.

[^6]: ${ }^{11}$ In 1980, Kimura introduced a model to estimate the level of nucleotide substitutions $K: K=-0.5 \cdot \ln \{(1-2 P-Q) \sqrt{1-2 Q}\}$, where P and Q are the proportions of transitional and transversional differences, respectively, between two homologous sequences.

[^7]: ${ }^{1}$ Part of the work in this chapter has been published in 60, and some is submitted in 61].

[^8]: ${ }^{2}$ Some elements from the young $A l u$ subfamilies, known as $Y, Y c 1, Y c 2, Y a 5, Y a 5 a 2, Y a 8, Y b 8$, and $Y b 9$, have inserted into the human genome so recently that they are polymorphic with respect to the presence or absence of insertion in different human genomes.

[^9]: ${ }^{1}$ The work in this chapter, as well as part of the next chapter, has been published in 58 .

[^10]: ${ }^{1}$ Part of the work in this chapter has been published in 58 .

[^11]: ${ }^{2}$ The amount that separates them or the amount they overlap is calculated using the $a b s()$ function to get the absolute value.

[^12]: ${ }^{1}$ Part of the work in this chapter has been published in 59.

[^13]: ${ }^{1}$ In biology and genetics, the germline of a mature or developing individual is the line (sequence) of germ cells that have genetic material that may be passed to a child.

[^14]: ${ }^{2}$ Monte Carlo simulation is a numerical experimentation technique to obtain the statistics of the output variables of a computational model, given the statistics of the input variables 94 .
 ${ }^{3}$ The APE package provides functions for reading, writing, plotting, and manipulating phylogenetic trees, analyses of comparative data in a phylogenetic framework, ancestral character analyses, analyses of diversification and macroevolution, computing distances from DNA sequences, reading and writing nucleotide sequences as well as importing from BioConductor.

