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 ABSTRACT 

 

Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic 

function. NPV, including standing dead vegetation and surface plant litter, plays a vital role in 

maintaining ecosystem function through controlling carbon, water and nutrient uptake as well as 

natural fire frequency and intensity in diverse ecosystems such as forest, savannah, wetland, 

cropland, and grassland. Due to its ecological importance, NPV has been selected as an indicator 

of grassland ecosystem health by the Alberta Public Lands Administration in Canada. The 

ecological importance of NPV has driven considerable research on quantifying NPV biomass 

with remote sensing approaches in various ecosystems. Although remote images, especially 

hyperspectral images, have demonstrated potential for use in NPV estimation, there has not been 

a way to quantify NPV biomass in semiarid grasslands where NPV biomass is affected by green 

vegetation (PV), bare soil and biological soil crust (BSC). The purpose of this research is to find 

a solution to quantitatively estimate NPV biomass with remote sensing approaches in semiarid 

mixed grasslands. Research was conducted in Grasslands National Park (GNP), a parcel of 

semiarid mixed prairie grassland in southern Saskatchewan, Canada. Multispectral images, 

including newly operational Landsat 8 Operational Land Imager (OLI) and Sentinel-2A Multi-

spectral Instrument (MSI) images and fine Quad-pol Radarsat-2 images were used for estimating 

NPV biomass in early, middle, and peak growing seasons via a simple linear regression 

approach. The results indicate that multispectral Landsat 8 OLI and Sentinel-2A MSI have 

potential to quantify NPV biomass in peak and early senescence growing seasons. Radarsat-2 

can also provide a solution for NPV biomass estimation. However, the performance of Radarsat-

2 images is greatly affected by incidence angle of the image acquisition. This research filled a 

critical gap in applying remote sensing approaches to quantify NPV biomass in grassland 

ecosystems. NPV biomass estimates and approaches for estimating NPV biomass will contribute 

to grassland ecosystem health assessment (EHA) and natural resource (i.e. land, soil, water, 

plant, and animal) management.    

 

Keywords: non-photosynthetic vegetation, biomass, green vegetation, biological soil crust, bare 

soil, multispectral image, Landsat 8, Sentinel-2A, Radarsat-2, ecosystem health, vegetation 

phenology 
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CHAPTER 1: INTRODUCTION 

1.1 Preface 

This chapter introduces the ecological importance of non-photosynthetic vegetation (NPV) and 

summarizes the theory, methods, and research progress on quantifying NPV cover and biomass 

in diverse ecosystems using optical, radar, Light Detection and Ranging (LiDAR) data and their 

integration. More importantly, this chapter identifies research gaps evident from the literature 

and sets up the research hypothesis and objectives. Also, this chapter describes the study area 

and field data sampling and outlines the structure of this dissertation. Section 1.2 and 1.3 were 

published as a part of a review paper:  

 

Li Z and Guo X. (2016) Remote sensing of terrestrial non-photosynthetic vegetation using 

hyperspectral, multispectral, SAR, and LiDAR data. Progress in Physical Geography 40 

(2):276-304, doi: 10.1177/0309133315582005. 

 

Zhaoqin Li reviewed the literature and wrote this manuscript. Dr. Xulin Guo provided valuable 

comments that greatly improved the manuscript. Re-use in the dissertation was granted by the 

Publisher (SAGE; Appendix A).  

 

1.2 Ecological Importance of NPV 

The classification of NPV and photosynthetic vegetation (PV) is based on vegetation 

photosynthetic function perspectives (Guerschman et al., 2009). NPV refers to the vegetation 

that cannot perform a photosynthetic function. Above-ground standing dead biomass and plant 

litter at the ground surface make up a large part of NPV. NPV also includes woody stems, 

below-ground dead biomass and dormant vegetation (Asner, 1998). However, below-ground 

dead biomass and dormant vegetation are not part of this research. NPV is a significant 

component of vegetation productivity in grasslands, savannas, shrublands, and dry woodlands 

(Asner, 1998) as well as wetlands (Schile et al., 2013). 
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NPV is ecologically important for controlling carbon, water, and nutrient uptake and natural fire 

frequency and intensity (Nagler et al., 2003; Guerschman et al., 2009), and serving as a wildlife 

habitat (Davis, 2005; Huang et al., 2009; Fisher and Davis, 2010). The presence of NPV exerts 

influence on ecosystem functioning by altering macro and micro environments (Figure 1-1). At a 

macro (or global) scale, NPV is a large carbon pool in natural ecosystems. Because of this, 

quantifying NPV is important for understanding carbon sequestration, a tool to lower 

atmospheric CO2 concentration. Also, NPV as wildfire fuels (Kim et al., 2009; Newnham et al., 

2011) has a potential impact on climate, as biomass burning has a substantial contribution to 

global greenhouse gas, aerosol, and black carbon emissions (Weise and Wright, 2013). Such 

effects of NPV on climate exert influence on ecosystems globally.  

 

At a micro (or local) scale, the presence of NPV affects plant community structure and 

biodiversity by altering microenvironments (Facelli and Pickett, 1991). This further exerts 

influence on ecosystem functionality. NPV affects the transfer of light, heat, and water between 

the topsoil and the atmosphere. NPV intercepts light, which may negatively influence plant 

germination (Bonanomi et al., 2009) and seedling recruitment (Galvanek and Leps, 2012). NPV 

intercepts solar radiation and insulates the soil from air temperature that affects the near surface 

air and soil temperature (Facelli and Pickett, 1991). NPV-induced soil temperature change may 

exert direct and indirect effects on plant growth by modifying mineralization rates, and therefore 

nutrient availability (Facelli and Pickett, 1991). NPV accumulation may also increase soil water 

availability through trapping snow, reducing evaporation from the soil, decreasing runoff, and 

improving water infiltration (Guerschman et al., 2009; Donath and Eckstein, 2010; Deutsch et 

al., 2010; Wang et al., 2011). Thus, NPV may positively enhance productivity in semiarid 

ecosystems where plant growth is constrained by water availability (Deutsch et al., 2010; Wang 

et al., 2011). However, under some circumstances, large NPV accumulations may reduce water 

available to plants through retaining rainfall and reducing infiltration (Facelli and Pickett, 1991), 

consequently reducing ecosystem production (Jackson et al., 2006). NPV supplies nutritients to 

the soil (Yin and Huang, 1996; Henry et al., 2008; Hewins et al., 2013) through decomposition, 

and, in-turn, the amount, variety, and distribution of nutrients largely controls productivity and 

affects species composition (Eckstein and Donath, 2005; Patrick et al., 2008). Besides its 

contribution to climate warming agents, NPV as a wildfire fuel (Kim et al., 2009; Newnham et 
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al., 2011) has a profound influence on productivity and species composition. Finally, the 

presence of NPV is important for wildlife habitats (Davis, 2005; Huang et al., 2009; Fisher and 

Davis, 2010).  

 

These factors suggest that NPV is important for the ecological functionality of grasslands 

(Jensen and Gutekunst, 2003; Rasran et al., 2007; Lamb, 2008; Ruprecht et al., 2010; Ruprecht 

and Szabo, 2012), savannah (Guerschman et al., 2009), forests (Huang et al., 2009), shrublands 

and dry woodlands (Asner, 1998), and croplands (Daughtry et al., 1996; Serbin et al., 2013). 

Accurate quantification of NPV and temporal and spatial variation of NPV is essential for 

ecosystem management (Guerschman et al., 2009; Serbin et al., 2013).  

 

 

 

 

Figure 1-1 Ecological importance of non-photosynthetic vegetation (NPV) at global and local 

scales. 
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1.3 Remote Sensing of NPV  

The ecological importance of NPV has driven many attempts to quantify it using traditional field 

sampling methods and remote sensing approaches. Traditional approaches, such as destructive 

harvesting (White et al., 2000) for NPV biomass and visual interpretation of NPV cover 

estimation, can provide accurate estimates. However, they are not suitable at large spatial scales 

due to being labor-intensive and time-consuming (Byrne et al., 2011). The use of remote sensing 

technology can provide an efficient way to estimate NPV at a range of spatial scales and to 

monitor spatial and temporal variations in NPV (Serbin et al., 2013).  

 

Remote sensing techniques are grouped into passive and active categories based on energy 

sources used. Passive remote sensing is limited to collecting electromagnetic energy originating 

from the sun or the earth. This includes passive optical and passive microwave remote sensing. 

Passive optical remote sensing, including hyperspectral and multispectral sensors, have been 

used to study terrestrial ecosystem attributes, including plant vigor (e.g., biomass), organization 

(vertical structure/leaf area index (LAI), etc.), and resilience (e.g. vegetation response to climate, 

grazing and burning, etc.). Passive microwave remote sensing is used in meteorology, hydrology, 

and oceanography. Active remote sensors emit their energy and receive the backscattered energy 

from the surface. They are represented by Synthetic Aperture Radar (SAR), and Light Detection 

and Ranging (LiDAR). Similar to optical data, SAR and LiDAR data have demonstrated great 

potential to quantify ecosystem attributes, especially in forests and croplands.  

 

1.3.1 Passive optical remote sensing data for NPV estimation 

1.3.1.1 Theory 

Research on NPV estimation has been focused on differentiating NPV from PV and bare soil.  In 

this context, passive optical remote sensing data have greater potential to estimate NPV as NPV 

has much lower chlorophyll and water content than PV (Asner, 1998; Numata et al., 2008; 

Serbin et al., 2013), and the high cellulose and lignin content in NPV is absent  in bare soil 

(Asner, 1998; Serbin et al., 2009a). These differences create separation in their spectra (Figure 1-

2) that may be used to distinguish NPV from PV and bare soil.  

 



 

5 

 

 

Figure 1-2 Spectral response curves of dead vegetation, green vegetation, and bare soil (samples 

were collected from Grasslands National Park (GNP), Canada in mid-June of 2004, and their 

spectra were measured in a laboratory with an ASD Spectroradiometer). 

 

NPV can be separated from PV in the visible (VIS, 400-700 nm) and near-infrared (NIR, 700-

1200 nm) wavelength regions because NPV reflectance in the VIS regions is generally higher 

than PV. This is due to a lack of absorption of pigments (especially chlorophylls a and b) (Asner, 

1998; Cao et al., 2010). NPV reflectance is lower than PV in NIR due to the change in leaf 

structure (Figure 1-2). In the shortwave infrared (SWIR, 1100-2500 nm) region, leaf water 

content controls the absorption features of PV that blur absorption of cellulose and lignin in PV 

(Cao et al., 2010). Therefore, the absorption features near 2100 nm and 2300 nm of cellulose and 

lignin in the spectral range of NPV are usually not evident in the spectral range of PV (Daughtry 

et al., 2005).  

 

NPV is difficult to separate from soil in VIS and NIR wavelength regions because they have 

similar featureless spectral reflectance curves (Aase and Tanaka, 1991; Daughtry et al., 1996; 

Nagler et al., 2000). However, NPV can be distinguished from soil in the SWIR wavelength 

region due to the unique absorption features of lignin and cellulose at 2090 nm and 2300 nm 

(Stoner and Baumgardner, 1981; Elvidge, 1990; Asner, 1998; Nagler et al., 2000). These unique 

absorption features have been used to develop spectral indices, such as the cellulose absorption 

index (CAI) (Daughtry et al., 1996; Nagler et al., 2000), to distinguish NPV from soil.  
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The VIS to NIR transition, also called red-edge (680-780 nm), is sensitive to variations in 

chlorophyll content. The red-edge chlorophyll index has demonstrated better performance than 

greenness indices, such as the Normalized Difference Vegetation Index (NDVI), for estimating 

chlorophyll content in semiarid mixed grasslands (Wong and He, 2013), green canopy cover in 

hyper-arid Atacama Desert (Chavez et al., 2013), and green leaf area index in croplands (Viña et 

al., 2011). These studies have demonstrated the potential of the red-edge position for identifying 

PV from NPV using the difference in chlorophyll content and structure. At the red-edge position, 

the slope of the reflectance spectra of NPV is greater than that in soils. Although the slope at the 

red-edge position is influenced by moisture conditions and age of NPV (Goward et al., 1994; 

Daughtry et al., 1996; Nagler et al., 2000), use of red-edge position for NPV estimation is worthy 

of further investigation.  

 

Overall, the 400 to 2500 nm wavelength region contains sufficient information to separate NPV 

from PV and bare soil (Asner, 1998). However, the presence of water, soil minerals, and Soil 

Organic Carbon (SOC) makes distinguishing NPV from soils more difficult. Water content refers 

to both canopy water and surface soil water which can significantly alter the reflectance 

spectrum by reducing overall reflectance at all wavelengths (400-2500 nm) as well as broadening 

the water absorption feature at 1400 and 1900 nm (Nagler et al., 2000; Daughtry and Hunt, 

2008). Despite the effects of water on the spectra, NPV could still be distinguished from soils 

because the cellulose absorption features of the NPV can be detected even in water-dominated 

spectra (Gao and Goetz, 1994). However, the concavity of the NPV cellulose-lignin absorption 

feature used for developing CAI becomes shallow in the presence of water (Nagler et al., 2000). 

Also, SOC and soil minerals affect the spectral absorption features in shortwave regions 

(Daughtry and Hunt, 2008; Serbin et al., 2009a; Serbin et al., 2009b), and thus increase the 

difficulty in estimating NPV. 

 

1.3.1.2 Approaches 

The approaches used for the NPV estimation using passive optical remote sensing data can be 

grouped into two categories: 1) empirical spectral indices–NPV cover/biomass relationships and, 

2) linear spectral unmixing approach (SMA). The spectral indices for NPV cover estimation 

were originally developed based on the spectral contrast between NPV, PV, and bare soil. Based 
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on the spectral resolution of the sensors, the derived spectral indices are classified as 

hyperspectral and multispectral indices.  

 

Spectral indices. Hyperspectral indices for NPV estimation were developed based on the 

absorption features of cellulose and lignin in shortwave wavelength regions. These indices 

include the most commonly used CAI, Lignocellulose Absorption Depth (LCD), and 

Lignocellulose Absorption Area (LCA). The CAI has demonstrated a strong correlation with 

NPV cover, including plant litter and crop residue (Serbin et al., 2009c; Cao et al., 2010; Serbin 

et al., 2013), and it outperformed LCD and LCA in previous studies (Daughtry et al., 2005; 

Numata et al., 2008; Serbin et al., 2009c; Ren and Zhou, 2012 ). However, the performance of 

these lignocellulose-based indices on NPV estimation is greatly affected by the presence of PV 

and soil minerals. The high water content of PV blurs the absorption features of cellulose and 

lignin in the shortwave wavelength regions. Research reveals that the CAI performance 

decreases when the fraction of green vegetation is greater than 30% (Daughtry et al., 2004; 

Daughtry et al., 2005). Although most common soil minerals will not affect the performance of 

CAI for crop residue cover estimation, the utility of CAI may be limited in high-cellulose soils 

(e.g. peat moss) because of the small variation in CAI in residue and soil (Serbin et al., 2009a). 

Additionally, the usefulness of LCA is constrained by common soil minerals, such as carbonates, 

epidotes, and chlorites (Serbin et al., 2009a), suggesting that information on soil composition 

may be beneficial to crop residue cover estimation (Serbin et al., 2009b). Although the effects of 

green vegetation and soil minerals on the hyperspectral indices developed for NPV estimation, 

hyperspectral data have a contiguous spectrum covering the 350-2500 nm optical wavelength 

and contain the most suitable wavelengths for discriminating NPV from bare soil and PV 

(Numata et al., 2008; Table 1-1). Additionally, Unmanned Aerial Vehicle (UAV) airborne 

hyperspectral cameras have provided a more recent solution to acquire hyperspectral reflectance. 
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Table 1-1 Hyperspectral remote sensing data that have been used or have a potential for NPV estimation   

Name 

Number 

of 

bands 

Spectral 

Coverage 

(nm) 

Spatial 

resolution 

(m) 

Swath width 

(km) 
Example citation Availability 

Airborne Visible 

InfraRed 

Imaging 

Spectrometer 

(AVIRIS) 

 

224 400-2450 20
a
 10.6

a
 

 

Asner et al., 2003; 

Asner et al., 2005 

 

http://aviris.jpl.nasa.gov/ 

EO-1 Hyperion 

hyperspectral 

sensor 

(spaceborne) 

220 400-2500 30 7.5 ×100 

Roberts et al., 2003; 

Numata et al., 

2008; Guerschman 

et al., 2009 

 

http://eo1.gsfc.nasa.gov/ 

Technology/Hyperion.html 

Probe-1 

(airborne) 
128 400-2450 1-10 <1 to 6 Bannari et al., 2006 

http://www.earthsearch.com/

technology/about-probe-1/ 

       

Hyperspectral 

Mapper (HyMap) 

(airborne) 

126 450-2500 3-5 0.13-2.3 potential http://www.hyvista.com/ 

Note: 
a 
AVIRIS has a spatial resolution of 20 m at the nominal ER-2 aircraft altitude of 19.8 km.  
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Multispectral indices have been developed for Landsat Thematic Mapper (TM), such as the 

Normalized Difference Tillage Index (NDTI) (Van Deventer et al., 1997), the Normalized 

Difference Index (NDI) (McNairn and Protz, 1993), and the Normalized Difference Senescent 

Vegetation Index (NDSVI) (Qi et al., 2002). The NDSVI, based on the ratio between the 

difference and the sum of SWIR (1650 nm) and red (660 nm) bands, was more sensitive to 

senescent vegetation than green vegetation and soil (Marsett et al., 2006). To eliminate the soil 

effect from NDSVI, a soil adjustment factor was introduced to develop the Soil Adjusted Total 

Vegetation Index (SATVI) (Marsett et al., 2006). SATVI is sensitive to both green and senescent 

vegetation. However, it does not work when forbs cover more than 30% of the total vegetated 

area (Marsett et al., 2006). These multiband indices have successfully identified broad crop 

residue cover classes (McNairn and Protz, 1993; Biard and Baret, 1997; Van Deventer et al., 

1997; Qi et al., 2002). Notably, they were less effective when used in agricultural regions with 

variable soil types (Daughtry et al., 2005) due to poor contrasts between crop residues and many 

soils (Serbin et al., 2009b), and because these indices were strongly affected by green vegetation 

(Gill and Phinn, 2008). These multispectral indices were generally inferior to the hyperspectral 

and spectral indices derived from Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER), such as the Shortwave Infrared Normalized Difference Residue Index 

(SINDRI) (Serbin et al., 2009a; Serbin et al., 2009c; Daughtry et al., 2005). The limited 

capability of those multispectral sensors to discriminate NPV from PV and soils is due to the 

sensitivity, bandwidths and locations of SWIR, which are not ideal for effectively distinguishing 

NPV from soils (Asner and Lobell, 2000). 

 

The linear spectral unmixing approach. The linear SMA relies on the hypothesis that 

reflectance within an image pixel is a linear combination of the spectral signatures of scene 

targets or endmembers (eq. 1.1 and 1.2) (Asner and Heidebrecht, 2002). The SMA is a popular 

method for estimating NPV cover when the ground cover is a mixture of PV, NPV, and bare soil. 

It had been used to map the cover of NPV, PV, and bare soil in semiarid shrublands, tropical 

forests, and along a vegetation gradient in Hawaii using Airborne Visible InfraRed Imaging 

Spectrometer (AVIRIS) (Asner et al., 2003; Asner et al., 2005). In addition to the AVIRIS data, 

the SMA has been applied to separate NPV from bare soil in shrublands using EO-1 Hyperion 

(Roberts et al., 2003) and in croplands using Probe-1 hyperspectral data (Bannari et al., 2006).  
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𝜌 (𝜆) = ∑(𝑓𝑒𝜌 (𝜆)𝑒) = ( 𝑓𝑝𝑣𝜌 (𝜆)𝑝𝑣+𝑓𝑛𝑝𝑣𝜌 (𝜆)𝑛𝑝𝑣+𝑓𝑠𝑜𝑖𝑙𝜌 (𝜆)𝑠𝑜𝑖𝑙)                                        (1.1) 

                                               ∑𝑓𝑒 = (𝑓𝑝𝑣+𝑓𝑛𝑝𝑣+𝑓𝑠𝑜𝑖𝑙) = 1                                                     (1.2) 

where  ρ (λ) is the reflectance of mixed canopies at wavelength  λ within one pixel; fe  is the 

fractional cover of each ground cover endmember that is PV, NPV, and bare soil respectively;  

ρ (λ)e is the reflectance of each ground cover endmember at wavelength λ .  

 

An alternative method of SMA was proposed (Daughtry, 2001) based on the hypothesis that 

NDVI and CAI values of PV, NPV, and bare soil form a triangle. On the triangle, PV has a high 

NDVI and an intermediate value CAI, NPV has a low NDVI and a high CAI, while bare soil has 

a low NDVI and a low CAI value (Figure 1-3). Any mixture of PV, NPV, and bare soil should be 

located within the triangle, and thus their cover can be resolved through the linear unmixing 

approach (eq. 1.2-1.6) when the positions of endmembers are known (Daughtry, 2001; 

Guerschman et al., 2009).  

 

𝑁𝐷𝑉𝐼 =
(𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑)

(𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑)
⁄                                                                                      (1.3) 

𝐶𝐴𝐼 = 100 × (
𝜌2.0+𝜌2.2

2
) − 𝜌2.1                                                                                                  (1.4) 

𝑁 = ∑(𝑓𝑒𝑁𝑒) = (𝑓𝑝𝑣𝑁𝑝𝑣 + 𝑓𝑛𝑝𝑣𝑁𝑛𝑝𝑣 + 𝑓𝑠𝑜𝑖𝑙𝑁𝑠𝑜𝑖𝑙)                                                                  (1.5) 

𝐶 = ∑(𝑓𝑒𝐶𝑒) = (𝑓𝑝𝑣𝐶𝑝𝑣 + 𝑓𝑛𝑝𝑣𝐶𝑛𝑝𝑣 + 𝑓𝑠𝑜𝑖𝑙𝐶𝑠𝑜𝑖𝑙)                                                                    (1.6) 

Where 𝜌𝑁𝐼𝑅  and 𝜌𝑅𝑒𝑑  are the reflectance at NIR and red wavelength regions respectively. 

𝜌2.0, 𝜌2.1, and  𝜌2.2 are the reflectance of the spectral bands centered at 2030, 2100, and 2210 nm 

respectively, and 100 is a scaling factor.   𝑁 and  𝐶 are the NDVI and CAI values in a given 

pixel of images or a given sampling qudarat of ground hyperspectral data, 

 𝑁𝑝𝑣, 𝑁𝑛𝑝𝑣, 𝑎𝑛𝑑 𝑁𝑠𝑜𝑖𝑙 are the NDVI values of endmembers and 𝐶𝑝𝑣, 𝐶𝑛𝑝𝑣, 𝑎𝑛𝑑 𝐶𝑠𝑜𝑖𝑙  are the CAI 

values of endmembers. As in e.q. (1.1) and (1.2), 𝑓𝑝𝑣, 𝑓𝑛𝑝𝑣, 𝑎𝑛𝑑 𝑓𝑠𝑜𝑖𝑙 are the fractional covers of 

endmembers.   
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Figure 1-3 The triangular CAI-NDVI relationship of dead vegetation (NPV), green vegetation 

(PV), and bare soil (BS) (modified and combined from Guerschman et al. (2009) and Serbin et 

al. (2009b)). 

 

The alternative SMA approach based on the NDVI-CAI triangle relationship of NPV, PV, and 

bare soil has been used for mapping tillage practices in agricultural areas (Daughtry, 2001; 

Daughtry et al., 2006) and estimating bare ground, NPV cover, and PV cover in Australian 

savannah (Guerschman et al., 2009). Typically, all soils have negative CAI values, NPV is CAI-

positive, and CAI values of PV are approximately zero (Figure 1-2) (Serbin et al., 2009b). 

However, water content can significantly reduce the contrast between NPV and bare soil by 

decreasing the CAI of NPV towards zero (Figure 1-2) (Daughtry and Hunt, 2008; Serbin et al., 

2009b), making this approach less useful. In addition, to use this alternative approach, NDVI can 

be replaced by other greenness indices if the variations of the indices for PV, NPV, and bare soil 

are easily distinguishable. LCA was used to replace CAI in the triangle relationship to estimate 

bare ground, NPV cover, and PV cover in Australian savannas (Gill and Phinn, 2009). However, 

unlike the CAI of soils, which is not affected by common soil minerals and compounds such as 

carbonates, chlorites, and epidotes, LCA values of soil could be increased to be above zero, 

complicating the application of the triangle relationship (Serbin et al., 2009a).  

 

When using SMA models, hyperspectral data usually yield better NPV estimates than 

multispectral data, similarly to the spectral index approach. However, conclusions on the success 

of multispectral data are not consistent. Using SMA and multispectral data for NPV cover 

estimation was not successful in some studies (Arsenault and Bonn, 2005; Roberts et al., 1993; 
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Elmore et al., 2005), but successful in others, such as tropical savanna zones with Moderate-

resolution imaging spectroradiometer (MODIS) data (Guerschman et al., 2009) and harvested 

croplands using Landsat and SPOT data without considering green vegetation (Pacheco and 

McNairn, 2010). In addition, tree mortality estimated from Landsat TM and ETM+ using the 

SMA approach in an Amazon forest demonstrated a strong relationship with field measurements 

(Negrón-Juárez et al., 2010). 

 

1.3.1.3 NPV estimation with passive remote sensing data 

Many efforts have been made to estimate NPV cover since the 1990’s. The focus has been on 

distinguishing crop residue from bare soil (McNairn and Protz, 1993; Daughtry et al., 1997; 

Biard and Baret, 1997; Nagler et al., 2003; Daughtry et al., 2004; Roberts et al., 2003; Arsenault 

and Bonn, 2005; Bannari et al., 2006; Daughtry et al., 2006; Daughtry and Hunt, 2008; Serbin et 

al., 2009a; Serbin et al., 2009c; Pacheco and McNairn, 2010; Aguilar et al., 2012; Serbin et al., 

2013; Zheng et al., 2013). In such studies, PV is not a significant contributor to the spectra. 

Efforts have been made to quantify NPV cover from a mixture of PV, NPV, and bare soil in 

grassland, savannah, and forest ecosystems (Roberts et al., 1993; Asner and Heidebrecht, 2002; 

Guerschman et al., 2009; Cao et al., 2010; Yue et al., 2010; Meyer and Okin, 2015; Smith et al., 

2015; Jackson and Prince, 2016; Li et al., 2016). These studies have demonstrated the potential 

for using passive remote sensing data to obtain NPV cover estimates.  

 

There have been far fewer attempts to estimate NPV biomass. The estimation of NPV biomass 

has been conducted in grazed pasture in the Brazilian Amazon (Numata et al., 2008) and 

semiarid steppe (Ren and Zhou, 2012) using hyperspectral data, as well as in semiarid mixed 

grassland (Cihlar, 2012) using multispectral data. These studies demonstrated that hyperspectral 

data have great potential for NPV biomass estimation (Numata et al., 2008; Ren and Zhou, 

2012), while multispectral data were of far less use (Cihlar, 2012). The study in grazed pasture 

(Numata et al., 2008) was conducted in two grass dominated communities, and concluded that 

the relationship between spectral variables and NPV biomass was significantly influenced by 

species architecture and community heterogeneity. Ren and Zhou (2012)’s conclusion was drawn 

in a steppe ecosystem where PV cover is less than 30%. Whether conclusions of Numata et al. 

(2008) and Ren and Zhou (2012) are consistent in other herbaceous-dominated ecosystems, such 
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as semi-arid mixed grassland, needs further investigation. In addition, Cihlar’s (2012) research 

may be improved by using other spectral indices, an SMA approach, or hyperspectral data. A 

summary of study sites, methods used, and accuracies of NPV cover and biomass estimation in 

the cited literature is presented in Table 1-2.  

 

1.3.1.4 Optical remote sensing platforms 

Although hyperspectral imagery and advanced multispectral ASTER imagery have demonstrated 

superiority over multispectral imagery such as Landsat, the limited spatial and temporal coverage 

of hyperspectral images constrains their applicability to monitoring NPV quantity at large spatial 

extents. Additionally, the ASTER sensor ceased functioning in April 2008 

(http://asterweb.jpl.nasa.gov/latest.asp), and thus is no longer available for NPV estimates.  

Alternatively, spaceborne multispectral imagery with extended spatial coverage of the earth, 

temporal resolution, and much lower cost is worth investigation.   

 

Active multispectral sensors with shortwave spectral bands that cover the cellulose absorption 

spectral regions include Advanced Land Imager (ALI), Land 7 Enhanced Thematic Mapper 

(ETM+), Landsat 8 Operational Land Imager (OLI), and MODIS. Zheng et al. (2014) asserted 

that MODIS imagery with 500 m spatial resolution in shortwave bands is too coarse to be used 

for mapping crop residues at the field scale. Nonetheless, Guerschman et al. (2009) concluded 

that MODIS could be used to estimate NPV cover in a tropical savannah based on the triangle 

relationship of NDVI and CAI between PV, NPV, and bare soil. ALI, ETM+, and OLI are all 

members of the Landsat family. The ALI sensor is not activated until requested and the imagery 

acquired has a very small footprint. Such limited temporal and spatial coverage hindered the 

application of ALI imagery in NPV estimation (Zheng et al., 2014).  Landsat 7 ETM+ is still 

operational, while Landsat TM 4 and TM 5 are inactive. Imagery from ETM+ and TM has been 

used in many studies to estimate NPV, and it yields less accurate NPV estimation compared to 

hyperspectral or ASTER imagery as stated in the “Approach” section. Limited research has been 

conducted on the usage of OLI for NPV estimation so far, as it was only launched on February 

11, 2013.   

http://asterweb.jpl.nasa.gov/latest.asp
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Table 1-2 A literature summary of non-photosynthetic vegetation (NPV) cover and biomass estimation using optical remote sensing 

data with respect to the study objects and sites, methods, and accuracy measured by coefficient of determination (r
2
) and Root-mean-

square error (RMSE). 

Citations Study objects Study sites 
Remote sensing 

data 
Methods 

Accuracy 

r
2
 RMSE 

Roberts et al., 

1993 
NPV cover 

Jasper Ridge Biological 

Preserve, California,USA 

Airborne 

Visible/Infrared 

Imaging 

Spectrometer 

(AVIRIS) 

spectral mixture 

analysis (SMA) 
\ \ 

Biard and 

Baret, 1997 
corn residue 

corn field near Avignon, 

France 

field measured 

hyperspectral and 

Landsat TM 

linear regression with crop residue 

index multiband (CRIM) 
0.91 0.1036 

Asner & 

Heidebrecht, 

2002 

NPV cover 

 

arid shrubland & grassland 

in Chihuahuan Desert, 

New Mexico, USA 

AVIRIS, Landsat 

TM; MODIS; & 

ASTER 

SMA \ \ 

Nagler et al., 

2003 

crop residue; forest 

litter 

 

corn, soybean, rice, and 

wheat fields in Tsukuba, 

Japan, & coniferous/ 

deciduous trees 

lab measured 

hyperspectral 

reflectance 

linear regression with CAI 0.72-0.94 \ 
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Roberts et al., 

2003 

NPV in grasslands 

& chaparral 

Grassland & Oak north of 

Santa Barbara, California, 

USA 

field measured & 

EO-1 Hyperion 

hyperspectral 

reflectance; and 

AVRIS 

SMA *0.75 \ 

Daughtry et 

al., 2004 
corn residue 

corn, soybean, and wheat 

fields near Maryland, USA 

field measured 

hyperspectral 

reflectance 

linear regression with CAI 0.89 \ 

Arsenault & 

Bonn, 2005 
corn residue 

Sainte-Ange`le-de-

Monnoir, Canada & Pays-

de-Caux, 

France 

simulated Landsat 

TM 5 reflectance 
linear regression with CRIM & SMA 

Regression 

(SMA): 0.96 

(0.70) & 0.94 

(0.68) in 

Canada & 

France 

respectively 

\ 

Bannari et al., 

2006 
corn residue 

 

wheat, canola, & pea 

fields, Saskatchewan, 

Canada 

Field measured & 

Probe-1 (P) 

hyperspectral & 

IKONOS (IK) high 

spatial data 

SMA 
0.61 (P); 0.27 

(IK) 

0.12 (P); 0.24 

(IK) 

Daughtry et 

al., 2006 
crop residue 

corn & soybean fields, 

Iowa, USA 
*EO-1 Hyperion linear regression with CAI 

0.77 in June & 

0.85 in May 
\ 
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Daughtry & 

Hunt, 2008 
crop residue 

corn, soybean, & wheat 

fields near Beltsville, 

Maryland, USA 

field measured 

hyperspectral 
linear regression with CAI 0.813-0.933 0.089-0.165 

Numata et al., 

2008 
NPV biomass 

grazed pastures in the 

Brazilian Amazon 

field measured 

hyperspectral and 

EO-1 Hyperion 

multilinear regression with 

lignocellulose absorption depth 

(LCD) and normalized difference 

water index (NDWI) 

0.70 \ 

Guerschman 

et al., 2009 
NPV cover tropical savanna, Australia 

field measured 

hyperspectral data; 

EO-1 Hyperion, & 

MODIS 

SMA based on the CAI-NDVI 

triangle relationship 
***0.98 0.05 

Serbin et al., 

2009c 
crop residue 

 

corn, soybean, & wheat 

fields in 

Indiana, Illinois, Iowa, & 

Centreville, Maryland, 

USA 

ground & airborne 

hyperspectral, & 

ASTER 

linear regression with ASTER 

SINDRI index 
0.640-0.868 0.088-0.159 

Cao et al., 

2010 
dead fuel cover Xilin Gole steppe, China 

field measured 

hyperspectral data 

linear regression with Dead Fuel 

Index calculated from simulated 

MODIS reflectance 

0.96 \ 

Pacheco & 

McNairn, 

2010 

crop residue 

corn, soybean, wheat and 

barley & pasture fields, 

Ontario, Canada 

multispectral 

Landsat and SPOT 

data 

SMA 0.45-0.98 
**0.109-

0.223 
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Yue et al., 

2010 
NPV cover 

Karst ecosystem in 

Guizhou, China 

field measured 

hyperspectral data 

linear regression with karst rocky 

desertification synthesis index 

(KRDSI) 

0.70 \ 

Aguilar et al., 

2012 
crop residue 

malting barley, spring 

wheat durum, field pea, & 

fallow lands in the United 

States 

field measured 

hyperspectral 

reflectance 

linear regression with CAI 

peas & fallow: 

0.55; small 

grains: 0.41 

peas & 

fallow: 

**0.149; 

small grains: 

**0.117 

Cihlar, 2012 NPV biomass 

semiarid mixed grasslands 

in Saskatchewan & 

Alberta, Canada 

Landsat 

TM/ETM+; 

&MODIS 

linear regression with normalized 

canopy index (NCI) 
0.34 \ 

Ren and 

Zhou, 2012 
NPV biomass desert steppe, China 

field measured 

hyperspectral data 

 

linear regression  with CAI 
0.67 17.9 g m

-2
 

Zheng et al., 

2013 
crop residue 

 

corn, soybean, & winter 

wheat lands near Iowa, 

Illinois, Indiana, & 

Maryland, USA 

field measured & 

Airborne 

hyperspectral data; 

Landsat TM/ 

ETM+, & ASTER 

Linear regressions of minimal values 

of Normalized Difference Tillage 

Index (minNDTI) 

0.56-0.93 
**0.084-

0.151 

Jacques et al., 

2014 

mass of dry 

herbaceous 

vegetation 

rangelands in Sahel MODIS 
linear regression  with soil tillage 

Index (STI) 
0.66 

280 kg 

DM/ha 
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Smith et al., 

2015 
NPV cover 

semiarid mixed grasslands 

in Alberta, Canada 

field measured 

hyperspectral 

&Landsat TM 

Linear regression with CAI & SMA \ \ 

Meyer and 

Okin, 2015 
NPV cover 

savannah in western 

Botswana 
MODIS SMA 0.75 \ 

Note: For studies that compared several methods or spectral indices, only the best method and highest accuracy are given in the Table. * r
2
 was 

measured by Hyperion modeled NPV against AVRIS modeled NPV cover. ** The RMSE was converted from original % value to proportions to 

maintain consistency. *** r
2
 measures the consistency between observed and predicted NPV cover. 
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The newly launched WorldView-3 (WV-3 Imager) satellite (August 13, 2014), and Sentinel-2A 

 Multispectral Instrument (MSI) (June 23, 2015), provide new opportunities for NPV estimation. 

The Sentinel-2 mission includes twin satellites (2A and 2B) in the same orbit, ensuring 

continuity of SPOT- and Landsat-type multispectral data. The Sentinel-2B satellite is planned for 

launch in March 2017. It is collecting high spatial resolution (10 m, 20 m, and 60 m) 

multispectral imagery and is providing systematic global acquisitions with a high revisit 

frequency. The Sentinel-2A MSI sensors sample reflectance at two red-edge spectral ranges and 

two SWIR bands and provide a new opportunity for NPV estimation from space. The WV-3 

Imager on the WorldView-3 satellite has eight multispectral bands in the VIS and NIR spectral 

ranges with one red-edge band and eight bands in SWIR regions. The red-edge and SWIR bands 

may greatly contribute to NPV estimation. In addition, it has a very high spatial resolution at 

1.24 m for multispectral bands and 3.7 m SWIR resolution, which may also be an advantage for 

NPV estimation. However, like hyperspectral imagery, a small swath width (13.1 km) of WV-3 

may hinder its application in large spatial extents. Information on WV-3 is from 

https://directory.eoportal.org/web/eoportal/satellite-missions/v-w-x-y-z/worldview-3.  

WorldView-3 imagery is not acquired until requested, further limiting its application.  

 

Selecting an image for NPV estimation should take the spectral, spatial, and temporal resolution 

of the imagery into account. Most current research on NPV estimation has focused on the 

spectral resolution of the imagery, as low spectral resolution imagery has limited ability to 

differentiate NPV from PV and bare soil. Research on the spatial and temporal resolution of 

imagery on NPV estimation is limited. NDTI derived from a single Landsat image was not able 

to estimate crop residue cover (Daughtry et al., 2006). This is because the spectral resolution of 

band 7 (2080-2350nm) is too coarse to distinguish NPV from PV (Serbin et al., 2009b).  A multi-

temporal approach (minNDTI) that extracts minimum NDTI values from the spectral profiles of 

NDTI derived from time-series Landsat imagery was used to minimize the effects of PV on crop 

residue cover estimation (Zheng et al., 2013). The accuracy of crop residue cover estimation 

from the minNDTI approach is comparable to that of ASTER SINDRI and hyperspectral CAI in 

Central Indiana croplands. Nevertheless, less satisfactory results were observed in the other 

testing areas due to the effects of soil variation (Zheng et al., 2013). Whether a multi-temporal 
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approach works in other ecosystems including grasslands, and how spatial resolution of imagery 

affects NPV estimation, needs further investigation.   

 

1.3.2 LiDAR for NPV estimation 

A LiDAR device measures the distance between the sensor and a target surface. To do this, it 

emits a laser pulse towards the target surface and records the elapsed time between emission of 

the pulse and its reflection to the sensor (Lefsky et al., 2002). LiDAR sensors differ in the 

wavelength, power, pulse duration and repetition rate, beam size and beam divergence angle, the 

scanning mechanism, and the information recorded for each reflected laser pulse (Lefsky et al., 

2002). LiDAR data can be classified as discrete return LiDAR and full waveform LiDAR. 

Discrete return LiDAR data can be further divided into single and multiple LiDAR returns. 

Single return records either the first or the last peak and multiple returns records a few peaks, 

while the full waveform LiDAR records the entire waveform of the reflected laser pulse (Jensen, 

2009). LiDAR remote sensing can also be categorized as small and large footprint LiDAR 

according to the laser illumination area (Blanchard et al., 2011). Small footprint LiDAR typically 

has a laser illumination area of about 1 m
2
 and is useful for detailed local mapping. Large 

footprint LiDAR can have tens of meters of illumination area and is more suitable for 

investigating interactions with multiple vertical structures and taking a complete ground sample 

(Jensen, 2009). LiDAR remote sensing can gather information returned from the ground as well 

as leaves, branches, and stems (or trunks) of vegetation in vegetated areas (Blanchard et al., 

2011), and thus has the capability to measure the 3-D structure of both terrestrial and aquatic 

ecosystems at a range of spatial extents (Lefsky et al., 2002). 

 

1.3.2.1 Current research on NPV estimation using LiDAR 

LiDAR data have been widely used for measuring forest structure, aboveground biomass, and 

biodiversity in forest ecosystems (Lim et al., 2003; Lefsky et al., 2005; Hudak et al., 2008; 

Jaskierniak et al., 2011; Cho et al., 2012; Huang et al., 2013). Recently, efforts have been made 

to use LiDAR for NPV estimation or identification in forests. The application of LiDAR data on 

NPV estimation in forests relies on the fact that dead tree architecture is less complex than live 

tree architecture. This can help identify variation in distances and intensities of returned laser 
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pulses. The identification of NPV from living trees and the estimation of NPV volume (or 

biomass) were implemented at a tree or plot level. At tree level, full waveform LiDAR data have 

been used to distinguish standing dead trees from living ones in a forest using classification 

schemes (Yao et al., 2012).  At a plot level, standing dead tree biomass and live tree biomass 

were estimated with LiDAR data with a correlation coefficient of predicted versus observed 

(from cross-validation with field data) of 0.79 and 0.85 respectively (Kim et al., 2009). 

Researchers concluded that LiDAR intensity alone is crucial for dead biomass estimation, while 

both LiDAR intensity and canopy volume are critical for live tree biomass estimation (Kim et al., 

2009). The distribution of standing dead tree classes within forests has also been estimated based 

on extracted variables from LiDAR (Bater et al., 2009; Polewski et al., 2015). The cumulative 

proportion of dead tree stems within forest plots has been predicted using an ordinal regression 

approach with an r value of 0.61 and a Root Mean Square Error (RMSE) of 16.8% (Bater et al., 

2009). LiDAR data have also demonstrated the capacity to estimate the volume of standing dead 

woody debris in natural forests with an RMSE 78.8% (Pesonen et al., 2008; Pesonen et al., 

2010), and can provide auxiliary information for field sampling methods to assess coarse woody 

debris (Pesonen et al., 2009).  

 

In addition to the application for measuring standing dead trees, LiDAR data have been used to 

delineate downed dead wood and dead basal area. The volumes of downed dead woody debris on 

naturally forested surfaces were estimated with an RMSE of 51.6%, which was more accurate 

than the estimation of standing dead tree volume (Pesonen et al., 2008; Pesonen et al., 2010). 

The dead basal area was analyzed using airborne LiDAR data in bark beetle affected coniferous 

forest canopies, and it was concluded that LiDAR-derived metrics can account for more variance 

in live areas than the dead basal area (Hudak et al., 2012). Downed dead wood was successfully 

identified using multiple-return airborne LiDAR data with an accuracy of 73% in a forested area 

(Blanchard et al., 2011). It was possible to identify downed dead trees with a correctness of 90% 

using full-waveform airborne LiDAR data. However, the accuracy was affected by the degree of 

decay, vegetation density, and laser penetration (Mücke et al., 2013).  
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1.3.2.2 LiDAR platforms for NPV estimation 

Research discussed above demonstrated the potential of LiDAR remote sensing to determine the 

relative abundance of standing dead trees in forest stands and downed dead wood on the forested 

ground surface. LiDAR data used in previous research for identifying and estimating NPV in 

forest ecosystems are presented in Table 1-3.  

 

Table 1-3 Summary of cited literature using LiDAR for NPV identification and estimation in 

forest ecosystems 

LiDAR data Application Citation 

full-waveform, airborne downed tree identification Mücke et al. 2013 

discrete, multiple, airborne downed dead wood delineation Blanchard et al. 2011 

full-waveform, airborne dead tree discrimination Yao et al. 2012 

discrete, multiple, airborne standing dead tree identification Bater et al. 2009 

discrete, multiple, ground standing dead tree biomass estimation Kim et al. 2009 

discrete, multiple, airborne dead basal area prediction Hudak et al. 2012 

discrete, multiple, airborne downed and stand dead volume estimation Pesonen et al. 2008 

 

1.3.3 SAR for NPV estimation 

Radar images are formed by backscattered microwave radiation sent to the earth by an energy 

generator and collected by a receiver on an aircraft or satellite platform. SAR imagery is 

advanced radar data that can be formed at fine spatial scales using the advanced SAR technology 

for acquiring imagery (Zheng et al., 2014). For orbital and suborbital imaging radars, the most 

commonly used bands are X-band (8-12 GHz), C-band (4-8 GHz), L-band (1-2 GHz), or P-band 

(0.3-1 GHz) with the corresponding free-space wavelength increasing from 2.4 to 100 cm 

(Jensen, 2009).   

 

SAR data are useful for NPV estimation because they convey information on the physical 

structure and moisture status of NPV. NPV usually contains less moisture (Saatchi et al., 1995) 

and has a less complex canopy compared to PV.  NPV, with low moisture content, typically has 

a very small dielectric permittivity, and thus less backscattering (Saatchi et al., 1995). In 
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addition, the less complex structure of NPV also causes a difference in backscattered radiation 

from PV (Liu et al., 2013). 

 

1.3.3.1 Current research on NPV estimation using SAR data 

Estimates for NPV cover have been made using SAR data. The sensitivity of crop residue to 

being measured by microwave backscatter has been shown in field experiments (McNairn et al., 

2001). One X-band TerraSAR image was used to determine if a crop field had been tilled which 

is primarily determined by crop residue and surface roughness (Pacheco et al., 2010). Efforts 

have also been made to estimate NPV biomass using SAR data. Finnigan (2013) attempted to 

correlate canopy water content estimated from C-band Radarsat-2 imagery with NPV biomass in 

a semi-arid mixed grassland ecosystem with an r
2
 value of 0.30. Phased Array L-band Synthetic 

Aperture Radar on Japan's Advanced Land Observing Satellite (ALOS PALSAR) data were used 

to determine standing dead tree biomass in the forests of West Africa (Carreiras et al., 2012). 

The most widely used method to estimate NPV using SAR data in these studies is to use 

regression models to establish the relationship between NPV and backscatter or variables derived 

from backscatter, such as canopy water content. These studies demonstrate that SAR data has 

great potential for estimating NPV. However, this potential is dependent on many factors, such 

as the characteristics of the instrument (frequency or wavelength, polarization, incident angle, 

look direction, and spatial resolution; Ghasemi et al., 2010), and the properties of the land 

surface including surface roughness, NPV type and size, and moisture content of the surface and 

NPV (Zheng et al., 2014).   

 

Wavelength of SAR data on NPV estimation. The wavelength of a SAR system is critical for 

the effectiveness of SAR data for NPV estimation. Longer wavelength microwaves, such as L- 

and P- band SAR, can penetrate the tree canopy and reach NPV on the surface. Thus, they can be 

beneficial for identifying dead trees, coarse woody debris, and dead basal area in forested areas. 

However, in a sparsely vegetated or non-vegetated area (e.g., harvested cropland), longer 

wavelength signals tend to penetrate more deeply below the soil surface, and thus are less 

sensitive to the presence of NPV (McNairn et al., 2001). Consequently, SAR systems with 

shorter wavelength microwaves, such as X- and C-band, are potentially more effective for crop 

residue estimation (Zheng et al., 2014) and NPV estimation in grasslands or pastures. 
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Nonetheless, it is worth noting that these X- and C-band SAR data may not be applicable for 

NPV estimation in forest ecosystems due to their low penetration ability. SAR data with a 

suitable wavelength should be selected specifically for NPV estimation in different ecosystems.  

 

Polarization of SAR data on NPV estimation. Polarization is another factor that needs to be 

accounted for when selecting SAR data for NPV estimation. Cross-polarized (HV and VH) 

backscatter is less sensitive to the look direction effects of a SAR system than co-polarized 

backscatter (HH and VV) (McNairn and Brisco, 2004). When SAR data were used for estimating 

crop residue, cross-polarized backscatter was more strongly correlated with crop residue than co-

polarized scatter (McNairn et al., 2001). In addition, the other two polarimetric parameters, 

including co-polarized circular backscatter and pedestal height, that are related to multiple 

scattering and volume scattering were significantly correlated with crop residue (McNairn et al., 

2002). However, the study conducted by McNairn et al. (2002) suggests these polarimetric 

parameters are more sensitive to surface roughness than crop residue. SAR data alone are 

difficult to use for crop residue estimation due to the high influence of surface roughness (Zheng 

et al., 2014). Nonetheless, how the polarimetric parameters of SAR data are related to NPV in 

forest and grassland ecosystems is poorly understood.   

  

Incidence angle of SAR data on NPV estimation. Higher incident angle tends to reduce the 

penetration ability of SAR data. The reduced penetration of the soil surface increases the 

sensitivity of the signal to crop residue in harvested cropland (McNairn et al., 1996). However, 

the reduced penetration due to higher incident angles also makes SAR signals more sensitive to 

surface roughness (Baghdadi et al., 2002; Baghdadi et al., 2008). Whether a higher incident 

angle is beneficial for crop residue estimation requires further investigation. Additionally, how 

incident angle affects NPV estimation in forest and grassland ecosystems is also worthy of study.  

 

Look direction of SAR data on NPV estimation. Look direction affects backscatter, especially 

co-polarized backscatter. When look direction is perpendicular to the row direction for croplands 

or farmed forests, much higher co-polarized backscatter is observed than when it is parallel to the 

row look direction (Beaudoin et al., 1990). However, look direction does not affect cross-

polarization backscatter (McNairn et al., 2001). In this regard, how look direction affects NPV 
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estimation in croplands and farmed forests is dependent on the polarization of the SAR selected.  

Look direction effects may not be significant for NPV estimation in natural forest and grassland 

ecosystems.  

 

Spatial resolution of SAR data on NPV estimation. Spatial resolution as an inherent property of 

one specific SAR data is an important factor affecting NPV estimation. The SAR sensors with 

coarse spatial resolution may result in mixed pixels that reduce the accuracy of NPV estimation.  

Some types of NPV with smaller size distributions may not be captured by SAR data with coarse 

resolution. In this regard, the integrated multi-resolution (or multi-sensor) data can be used to 

improve NPV estimation accuracy by reducing the amount of mixed pixels (Ghasemi et al., 

2010).   

 

Surface roughness effects on NPV estimation. Surface roughness may have significant effects 

on backscatter of SAR data. The effects of surface roughness are related to incidence angle, with 

greater effect at higher incidence angles (Baghdadi et al., 2002; Baghdadi et al., 2008). In 

addition, the effects of surface roughness on NPV estimation using SAR data are also related to 

the free-space frequency of SAR data. Lower frequency (longer wavelength) of SAR data may 

be more sensitive to surface roughness than NPV in harvested croplands (McNairn et al., 2002) 

and thus are not able to detect NPV.   

 

Effects of NPV type and condition on NPV estimation. Backscatter of SAR data may have 

variable sensitivity to different types of NPV. Dead standing trees and dead woody debris in 

forests,  plant residue in croplands, and standing dead grasses and plant litter on the surface in 

grasslands all affect backscatter differently. This is due to the different types of NPV differing in 

structure, decay status, and moisture content. The sensitivity of SAR C-band and L-band data to 

crop residue type and moisture content was investigated in field experiments where it was found 

that stronger backscatter was associated with higher moisture levels, especially with corn residue 

(McNairn et al., 2001). Limited research has been conducted on the sensitivity of SAR data with 

different free-space frequency and polarization to NPV in forest and grassland ecosystems. In 

addition, temporal and spatial variations of NPV properties may also play an important role in 

NPV estimation using SAR data (McNairn et al., 2001; Zheng et al., 2014).  
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Table 1-4 Current and future operational synthetic aperture radar (SAR) satellite systems for 

NPV estimation. 

System 
Dates of 

service 

Wavelength/f

requency 

band 

Polariza

tion 

Spatial 

resolution 

(m) 

Swath 

width 

(km) 

Revisit 

interval 

Incidence 

angles (◦) 

Radarsat-2 
2007-

present 
C Full 9-100 25-170 24 days 49-60 

TerraSAR-X
* 

2007-

present 
X Full 16 100 2.5 days 15-60 

COSMO-

SkyMed 

Constellation 

2007-

present 
X Dual 30 100 1-15 days 25-50 

SAR-Lupe (5 

satellites) 

2006-

present 
X Full <1 8 × 60

a 11 h Multiple 

TanDEM-X 
2010-

present 
X Full 18 100-150 2.5 days 20-65 

ESA 

Sentinel-1 A 

(1B) 

2014 

(2016) 
C Dual 5-100 80-400 12 days Multiple 

Radarsat 

Constellation 
2018 C Full 30 125 24 h 21-47 

NovaSAR-S 2015 S Full 6-30 22-750 <1-6 days 16-34** 

Notes: X, C, and S denote 8-12, 4-8, and 2-4 GHz frequency bands respectively. * indicates the 

stripmap modes of TerraSAR-X, and ** means that the incidence angles of NovaSAR-S are for 

terrestrial application. 

 

1.3.3.2 SAR platforms for NPV estimation 

Current and future operational SAR satellite systems that demonstrate potential for NPV 

estimation are listed in Table 1-4. Selecting a suitable SAR data source should comprehensively 

take all the critical elements discussed above (section 1.3.3.1) into account. For example, to 

estimate NPV cover in croplands, full polarization, shorter wavelength (C- and X-band), and a 

large incidence angle are favorable (Zheng et al., 2014).  However, for estimating downed logs 
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on the surface of forested ecosystems, X-band might not have enough penetration capability to 

reach the surface. Further research should be conducted on properties of SAR systems for NPV 

estimation in different ecosystems.  

 

1.3.4 The integration of passive and active remote sensing data  

Both passive and active remote sensing data have demonstrated potential for use in NPV 

estimation, but each data source has its own merits and drawbacks. Integrated multi-sensor data 

have significant advantages over each single source data (Hall and Llinas, 1997), and the 

maximum amount useful information can be retrieved from the fused images (Welch and Ehlers, 

1987). Therefore, using the integrated passive and active remote sensing data for NPV estimation 

has the potential for excellent results, although currently only a few attempts have been made.  

  

1.3.4.1 Integrated optical and LiDAR data 

Optical remote sensing data contain biophysical and biochemical information of NPV, while 

LiDAR data can obtain physical structure information of NPV through measuring the distances 

and intensities of returned laser pulses to the sensors. Thus, integrated optical and LiDAR data 

are expected to provide better estimates of NPV. LiDAR data can provide horizontal and vertical 

structure information at very fine spatial scales with high vertical accuracy (Lim et al., 2003), 

and thus have the advantage of providing an estimate of total aboveground biomass. Visible and 

near-infrared wavelengths of passive optical systems are sensitive to vegetation leaf pigment 

structure and thus are beneficial for PV biomass estimation. NPV biomass thus can be estimated 

by subtracting PV biomass estimated from optical imagery from the aboveground total biomass 

quantified using LiDAR data.  

 

Integrated passive optical and LiDAR data have seen limited use in NPV estimates. However, 

their integration has provided better results than independent data sources in many relevant 

fields, such as fuel type (Mutlu et al., 2008a; Varga and Asner, 2008; Erdody and Moskal, 2010; 

García et al., 2011), fuel quantity mapping (Mutlu et al., 2008b), tree crown metrics (McCombs 

et al., 2003; Popescu and Wynne, 2004; Buddenbaum et al., 2013), canopy height and biomass 

(Hyde et al., 2006; Swatantran et al., 2011), vegetation classification (Nordkvist et al., 2012) and 
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timber volume (Tonolli et al., 2011). The success of integrated passive optical and LiDAR in 

NPV relevant fields has demonstrated a potential for their application for NPV estimation, 

especially in forest ecosystems.  

 

1.3.4.2 Integrated optical and SAR data 

Optical remote sensing data contain biological information from NPV, while SAR data convey 

physical structure and moisture content information from NPV. In addition, better penetration of 

SAR than optical data is beneficial for estimating NPV on the surface. Therefore, the integrated 

passive optical remote sensing data and SAR data should provide better opportunities for NPV 

estimation.   

 

Few studies have been focused on investigating integrated SAR and optical data on NPV 

estimation. The fusion of multi-frequency, multi-polarization Airborne Synthetic Aperture SAR 

(AirSAR) and AVIRIS optical remote sensing data have been used to estimate the quantity and 

quality of dead woody biomass in Yellowstone post-fire forest ecosystems, with partial success 

(Huang et al., 2009). The 500-m spatial resolution dual-polarization L-band ALOS PALSAR 

data cannot distinguish evergreen forest from standing dead trees, while the combination of 

ALOS PALSAR and MODIS imagery may provide an opportunity for monitoring deforestation 

in the Amazon region (Sheldon et al., 2012). In addition, attempts to use integrated SAR and 

optical data in NPV relevant fields have demonstrated potential for use in NPV estimation. For 

example, the fusion of AVIRIS and AirSAR data shows the potential for large-area rangeland 

monitoring in the context of estimating sagebrush, herbaceous, and bare ground cover in arid and 

semiarid sagebrush-grass ecosystems in Yellowstone (Huang et al., 2010). Incorporating optical 

and SAR images could provide more accurate land cover estimations (Peters et al., 2011; Pereira 

et al., 2013) and herbaceous biomass mapping (Svoray and Shoshany, 2003).  

 

1.3.5 Advantages and disadvantages of remote sensing data for NPV estimation 

Based on the above review, the accuracy of NPV estimates based on remote sensing data relies 

heavily on the type of data. Currently, remote images used for NPV estimation contain largely 

passive optical data. Multi-sensor approaches for NPV estimation based on polarimetric SAR, 
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LiDAR, and hyperspectral data have not been sufficiently developed (Koch, 2010). There is a 

need to develop more suitable approaches for integrating multi-sensor data. Selecting data is also 

important for NPV estimation, because each data source has advantages and disadvantages.  

 

Advantages of passive remote sensing include its repeatability, lower acquisition cost, and 

greater spatial extent. The fact that optical remote sensing imagery is available for more than 

three decades into the past and has high spectral sensitivity for species identification is also 

important to consider (Koch, 2010). However, passive optical remote sensing data has 

constraints. In a dense canopy environment, passive optical remote sensing data are limited by 

their top-of-canopy characteristics and limited accessibility to objects below the canopy (Huang 

et al., 2009; Blanchard et al., 2011). The low penetration of optical data makes it difficult to 

estimate NPV where vegetation is dense and substantial surface plant litter is present. In an open 

canopy environment, the applicability of optical remote sensing is hindered by litter decay 

(Nagler et al., 2000; Daughtry, 2001; Nagler et al., 2003) and backgrounds that include bare soil 

and BSC. In arid and semiarid regions, moss and lichen contribute greatly to the canopy spectra. 

Although NPV is distinguishable from bare soil in the SWIR regions (Asner, 1998), the 

influence of BSC (e.g. moss) increases the difficulty of NPV estimation due to the similar 

cellulose and lignin absorption features of dry moss and NPV in the SWIR regions (Figure 1-3). 

In addition, optical data are easily affected by clouds, haze, and smoke (Avitabile et al., 2012) 

and saturation issues exist when such data are used to estimate terrestrial, particularly forest, 

densities (Song, 2013).   
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Figure 1-4 (a) Spectral response curves of dead vegetation and dry moss, (b) Photograph of dead 

grass, and (c) Photograph of dry moss (dead grass samples and moss samples were collected 

from Grasslands National Park (GNP), Canada, in the mid-June of 2004 and 2013 respectively, 

and their spectra were measured in laboratory with an ASD Spectroradiometer). 

 

LiDAR has several advantages over passive optical sensors (Blanchard et al., 2011), especially in 

forests. The LiDAR pulse can penetrate a tree canopy to the forest floor, allowing the mapping of 

vertical and horizontal structures of both canopy and understory vegetation at a fine spatial 

resolution (Lefsky et al., 2002; Vierling et al., 2008; Guo et al., 2010). In addition, LiDAR can 

(b) Dead grass (c) Dry moss 

(a) Spectral response curves 
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be analyzed and used in different formats ranging from a collection of points, a derived raster 

layer, or a series of raster layers (Blanchard et al., 2011). However, compared to passive remote 

sensing, the application of LiDAR is limited by small spatial extent, complex data processing, 

and high acquisition costs (Blanchard et al., 2011). For terrestrial applications, LiDAR has a 

wavelength range of 900-1064 nm where healthy green vegetation has a high reflectance (Lefsky 

et al., 2002). Thus, just as for passive optical remote sensing, its application is affected by clouds 

(Lefsky et al., 2002). The use of both passive optical remote sensing and LiDAR were also 

affected by the decay of NPV (Nagler et al., 2003; Mücke et al., 2013). Whether LiDAR has 

advantages over optical sensors for NPV estimation in other ecosystems, such as grasslands and 

croplands, needs further investigation.  

 

SAR data has a longer wavelength, meaning stronger penetration ability, and thus are not 

affected by clouds, haze, and rain that influence the quality of most optical images. The 

application of SAR remote sensing can also avoid issues of optical remote sensing for estimating 

NPV, such as decay mediated changes in the spectral reflectance features of NPV (Nagler et al., 

2003). Polarimetric SAR data can provide better structural information than optical sensors, and 

this improved information can contribute to the separation of NPV from PV. However, just as 

with optical data, the direct application of SAR data for NPV estimation is restricted by 

saturation issues in high biomass vegetation areas (Koch, 2010). SAR data also have deficiencies 

resulting from antenna pattern calibration and the effects of local incidence angle, soil moisture, 

and surface roughness (Huang et al., 2010). 

 

1.4 Summary and Research Gaps 

The ecological importance of NPV has driven considerable research on quantifying NPV. 

Studies have demonstrated the potential of optical data, LiDAR, and SAR, and their integration 

for NPV estimation in diverse ecosystems, including croplands, savannah, grasslands, 

shrublands, and forests. However, no solution exists yet for quantifying NPV biomass with 

remote sensing approaches in Canadian mixed prairie grasslands with a considerable amount of 

PV, NPV, BSC, and bare soil (Cihlar, 2012).  
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1.5 Research Hypothesis and Objectives 

The hypothesis of this research is that NPV biomass in Canadian mixed grassland can be 

quantitatively estimated with remote sensing approaches. The overall objective is to find a 

solution for quantifying NPV biomass with remote sensing approaches in Canadian mixed prairie 

grassland. The fractional cover of NPV, PV, bare soil, and BSC change as vegetation phenology 

changes, which means the degree of effects exerted by PV, bare soil, and BSC on NPV 

estimation change with vegetation phenology. Therefore, the first objective of this dissertation 

was to determine vegetation phenology. The second objective was to explore the potential of 

optical data for NPV biomass estimation based on the vegetation phenology. The third objective 

was to investigate the application of Radarsat-2 images for quantifying NPV biomass.    

 

1.6  Study Area and Field Data Collection 

1.6.1 Study area  

This study was conducted in the west block of Grasslands National Park (GNP, 49.10°N, 

106.89°W) in Canada (Figure 1-5). GNP, as a parcel of northern mixed-grass prairie, has been 

extensively studied because it is a genetic refuge for rare native and endangered species, and is at 

the northern edge of continental C4 species (Li and Guo, 2014). GNP was established in 1984, 

and from then until 2006 it had no large herbivore grazing. In 2006, for conservation purposes, 

bison were introduced into the west block. Despite grazing, a substantial amount of dead 

vegetation is still observable, which is attributed to the low frequency of natural fire and 

prescribed burning.  

 

GNP is in a continental semiarid climate region with hot summers and cold winters. The mean 

annual temperature is 3.8 ºC, and the average of the annual total precipitation is 347.7 mm, based 

on the 1971-2000 climate records from Environment Canada. Most of the annual precipitation 

comes from evening storms in May and June. Consequently, low soil moisture content is a 

typical climatic feature of GNP (Wang and Davidson, 2007). Moisture is the dominant factor 

limiting vegetation growth (Li and Guo, 2012), and the precipitation pattern in Canadian prairies 
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has been projected to change in the future according to climate modeling (Solomon et al., 2007).  

Under such circumstances, monitoring grassland ecosystems is important.  

 

GNP has a rolling topography with elevation ranging between 750 and 905 m above sea level. 

Vegetation in GNP was classified into upland, valley, and slope communities based on 

topography with disturbed (invasive species) communities identified separately. The dominant 

upland vegetation species are speargrass and blue grama grass (Hesperostipa comata -Bouteloua 

gracilis) and western wheatgrass and sedge (Pascopyrum smithii-carex spp.) (Li and Guo, 2014). 

Valley vegetation communities mainly consist of western wheatgrass and sagebrush 

(Pascopyrum smithii-Artemesia spp.) with shrubs and occasional trees along the Frenchmen 

River (Li and Guo, 2014). Sloped communities have both upland and valley vegetation species. 

Main disturbed communities are occupied by crested wheatgrass (Agropyron cristatum) and 

smooth bromegrass (Bromus inermis).  Typical vegetation in each community is shown in Figure 

1-6.  

 

Figure 1-5 Location of the west block of Grasslands National Park and its surrounding pastures 

with (a) the sampling sites and (b) the sampling design (Background shows the elevation of the 

study area). 

(a) Sample sites (b) Sampling design 

1
0
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Figure 1-6 Typical vegetation communities in (a): disturbed grassland, (b): slope grassland (c): 

upland grassland, and (d): valley grassland. 

 

The main soil type in GNP is Brown Chernozemic (Fargey et al., 2000) that developed from 

morainal parent materials. The morainal materials are mainly comprised of loams and clay loam 

derived from the underlying siltstone, shale, and sandstone (Pennock et al., 2011). Such soil has 

SOC storage of about 60 to 80 Mg ha
-1 

(Pennock et al., 2011). The soil mineralogy includes the 

clay mineral assemblage which is dominated by smectite and mica, with smaller quantities of 

chlorites, kaolinite, and vermiculite, and non-clay mineral fractions mainly consisting of 

carbonates, quartz, Mica, K-feldspar, Na-feldspar, and Ca-feldspar (Pennock et al., 2011). The 

SOC and soil mineralogy exert a certain influence on the soil spectra at shortwave wavelength 

regions (Daughtry and Hunt, 2008; Serbin et al., 2009a; Serbin et al., 2009b).  

 

(a) Disturbed (b) Slope 

(c) Upland (d) Valley 
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1.6.2 Field data sampling  

Field data collected for this study are ground hyperspectral reflectance, vegetation biomass, and 

ground cover percentages for green grass, forb, shrub, standing dead, litter, bare soil, moss, 

lichen, and rock. Field seasons were from May 22 to May 31 in 2009, June 10 to June 25 in 

2011, June 9 to June 17 in 2013, June 20 to July 2 in 2014, and July 2 to July 9 in 2016 at 

numerous sample sites (Figure 1-5 (a)). Stratified random sampling was used to locate sites. 

There were 10, 10, 12, 14, and 10 sampling sites in 2009, 2011, 2013, 2014, and 2016 

respectively. The sample sites in 2009 and 2011 were randomly selected on the stratified grazed 

and ungrazed uplands. In 2013, 2014, and 2016, sample sites were randomly selected to 

represent upland, valley, slope, and disturbed communities and measurements were taken within 

one sampling plot at each site.  

 

At each site, one sampling plot was set up in all sampling years except for 2009. In each plot, 

one 100 m × 100 m sampling transect was surveyed. Spectral measurements and biophysical 

parameters, except for biomass, were taken at 10 m intervals, while biomass was clipped at 20 m 

intervals (Figure 1-5 (b)). Thus, there were 20 total spectral and ground cover measurements, and 

8 biomass samples within each site. At each site in 2009, measurements were taken within 5 

sample plots. Within each plot, the same 100 m × 100 m sampling transect was surveyed, 

however, each arm was sampled at 2.5 m, 5 m, 10 m, 20 m, 30 m, and 50 m away from the 

central point for spectra and ground cover measurements (Yang and Guo, 2011). Biomass was 

clipped at 5 m and 20 m from the central point of the north and south arms and at 10 m and 50 m 

distance from the central point at the east and west arms, yielding 8 measurements within each 

plot and 40 samples at each site. The measurements within each sampling site were averaged 

over the site to avoid spatial autocorrelation in the analysis. The geocoordinates of each sampling 

site were recorded using a Global Positioning System (GPS).  

 

Ground cover was visually estimated within a 50 cm × 50 cm quadrat. The general rule used for 

cover estimation is that cover was estimated at a 5% increment when the fractional cover is 

larger than 5% and smaller than 95%, or the cover was evaluated at a 1% increment.    
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Ground cover was visually estimated within a 50 cm × 50 cm quadrat. The fractional cover of 

grass, forbs, shrub, standing dead vegetation, plant litter on the surface, moss, lichen, rock, and 

bare soil were visually estimated at a sum of 100%. When the fractional cover is larger than 5% 

and smaller than 95%, cover was estimated at a 5% increment. When the fractional cover is 

smaller than 5% or larger than 95%, the cover was evaluated at a 1% increment.   

 

Ground hyperspectral reflectance was measured using an ASD Spectroradiometer (Boulder, CO) 

with wavelength ranges from 350 to 2500 nm and a resolution of 3 nm at 700 nm and 10 nm at 

1400 and 2100 nm.  The hyperspectral reflectance was sampled near simultaneously when and 

where the biophysical data were sampled, yielding 20 spectra from each sampling plot. Spectra 

measures were taken between 10 am and 2 pm on sunny days during each field season. Prior to 

sampling and every 15 minutes while sampling, a white reference panel was used for calibration. 

While sampling, the sensor of the ASD instrument was pointed down from approximately 1 m 

above the ground, facing the canopy within the center of the sampling quadrats. The field of 

view of the probe was 25°, yielding a sampling area of 0.15 m2 that is slightly larger than the 

biomass sampling quadrat (0.10 m2). This difference would not cause large variations in NPV 

biomass estimation, because each sampling plot was set up in a relatively homogeneous area, and 

all the ASD measurements within one plot were averaged to represent the sampling plot. 

   

The ground cover estimation is summarized in Table 1-5. The total dead vegetation coverage 

varies from 29% in 2013 to 50% in 2009 with 46% and 47% in 2011 and 2016, respectively. The 

mean green cover ranges from 19% in the early growing season of 2009 to 45% in 2013 and 47% 

in 2016. The averaged total NPV coverage is 38%. The BSC cover was 6% to 14% in the study 

years. The percentage of bare soil was as small as 1% and 2% in 2011 and 2016, respectively, 

while as high as 22% and 10% in 2009 and 2013, respectively. 
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Table 1-5 Biophysical data description in Grasslands National Park in 2009, 2011, 2013, 2014, 

and 2016 (BSC, biological soil crust including large amount of moss and small portion of lichen). 

Year Description 

% Green vegetation  % Dead vegetation % Backgrounds 

Grass Forb Shrub Standing dead Litter Total dead Moss Rock Bare soil 

2009 

Average 12 5 2 40 10 50 6 3 22 

Max 17 8 8 73 20 83 13 10 56 

Min 10 3 0 10 0 24 4 0 14 

SD 2 1 3 19 7 18 2 3 12 

2011 

Average 28 14 0 18 28 46 10 1 1 

Max 44 22 3 31 45 55 17 4 3 

Min 18 9 0 4 12 33 1 0 0 

SD 7 4 1 9 10 7 5 1 1 

2013 

Average 33 11 1 11 18 29 14 2 10 

Max 73 25 3 37 32 61 29 15 36 

Min 18 2 0 0 4 4 0 0 3 

SD 16 7 1 13 9 17 9 5 10 

2014 

Average 33 10 4 19 19 38 7 2 5 

Max 49 48 14 32 39 71 25 15 22 

Min 9 0 1 7 3 10 0 0 0 

SD 12 13 5 10 13 23 8 4 8 

2016 

Average 34 4 6 18 29 47 6 1 3 

Max 51 8 15 28 50 63 17 3 6 

Min 27 1 0 7 9 29 0 0 0 

SD 7 2 5 7 12 8 6 1 2 

 

1.7 Dissertation Structure 

This dissertation was organized in manuscript format, and it consists of six chapters (Figure 1-7). 

Chapter 1 introduced the importance and rationale of this research. Chapter 2 fulfills Objective 1, 

estimating vegetation phenology under climate variation in the study area. Based on the 

vegetation phenology determined in Chapter 2, Chapter 3 (Objective 2) analyzes ground 

hyperspectral and multispectral Landsat 8 OLI and Sentinel-2A remote sensing data for NPV 

biomass estimation and Chapter 4 (Objective 3) explores the potential of fine Quad-pol Radarsat-

2 data for NPV biomass estimation. Chapter 5 discusses the contribution of remote sensing of 

NPV to grassland ecosystem health assessment and monitoring, followed by Chapter 6 in which 

a general conclusion on this research is made, and contributions, limitations, and further research 

are also discussed.    
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Figure 1-7 Flow chart and structure of this dissertation. 

 

1.8 Addendum 

To better organize this dissertation, Table 1 (the spectral indices used for NPV estimation in the 

selected literature) in the published paper was moved to Chapter 3 and titled Table 3-3 with the 

addition of new multispectral indices. Table 3 (a summary of the cited literature on NPV cover 

and biomass estimation) was updated with newly published research. Figure 1-1 was also 

updated. Information on the newly launched remote sensing platforms was updated. The last 

section of summary, challenges, and future direction in the paper was deleted from this chapter 

and moved to Chapter 5.   
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CHAPTER 2: VEGETATION RESPONSES IN SEMI-ARID NORTHERN MIXED 

GRASSLAND TO CLIMATE VARIATION 

2.1 Preface 

This chapter fulfills Objective 1- estimate vegetation phenology in the study area. In this chapter, 

vegetation phenology was estimated, effects of temperature and precipitation on vegetation were 

investigated, and temporal trend of vegetation productivity was explored. This work was 

published in the journal Remote Sensing.  

 

Li Z and Guo X. (2012) Detecting climate effects on vegetation in northern mixed prairie using 

NOAA AVHRR 1-km time-series NDVI data. Remote Sensing 4: 120-134, 

doi:10.3390/rs4010120. 

 

The initial idea for this paper came from my discussion with Dr. Xulin Guo. I analyzed and 

interpreted the data, and came up with the manuscript. Dr. Xulin Guo’s comments dramatically 

enhanced the quality of the paper. It was published by MDPI – Open Access Publishing, and thus 

the authors retain the copyright.  

 

2.2 Abstract 

Percentage of canopy cover including PV, NPV, BSC, and bare soil changes with vegetation 

phenology. The performance of remote sensing data on NPV biomass estimation may change as 

vegetation phenology changes, because the contributions of PV, BSC, and bare soil to canopy 

spectra vary. Therefore, before seeking a solution to quantify NPV biomass with remote sensing 

tools, vegetation phenology in the study area is estimated. Because vegetation phenology and 

vegetation growth are highly dependent on climate variables, such as temperature and 

precipitation, this study also investigated grassland vegetation response to climate and 

established vegetation growth baseline using NDVI. The main findings were: (1) vegetation 

green-up generally started in mid-April to mid-May, peak growing season was reached in late 

June to mid-July, and senescence typically began in early to mid-July; (2) climate has significant 

effects on vegetation, and the growing season tended to increase in length indicated by earlier 

green-up and later senescence; and (3) vegetation productivity, reflected by the phenologically-
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tuned annual NDVI, had an increasing trend from 1985 to 2007 and the baselines of annual 

NDVI range from 0.13 to 0.32, and only the NDVI in 1999 is beyond the upper bound of the 

baseline.  

2.3 Introduction  

Quantifying NPV biomass in a semiarid grassland with optical or SAR remote sensing 

approaches is made more challenging by the presence of PV, bare soil, and BSC (Smith et al., 

2015; Li and Guo, 2016). Since the fractional cover of NPV, PV, bare soil, and BSC change as 

vegetation grows, the intensity of the influence of PV, bare soil, and BSC on remote sensing of 

NPV is expected to vary at different growing stages. Therefore, it is necessary to investigate the 

potential of remote sensing data for NPV biomass considering vegetation phenology. 

 

Biotic elements including plants, animals, and abiotic elements including climate and soil, etc., 

and their interactions are important components of grassland ecosystems. In natural grassland 

ecosystems, climate is a dominant factor of vegetation growth and condition (Coupland, 1992). 

Weather has a moderate effect on the seasonal and annual variation of Net Primary Productivity 

(NPP), and spatial biological heterogeneity in GNP (Zhang et al., 2008). The results of the 

CENTURY model indicate that the stability of the vegetation community in GNP was affected 

by precipitation variability (Mitchell and Csillag, 2001). However, little work has been done to 

comprehensively investigate how vegetation phenology and productivity in GNP respond to 

climate change. In addition, climate variables, including temperature and precipitation, can be 

auxiliary data for measuring NPV biomass with remote sensing approaches if a significant 

relationship is found.   

 

NDVI is a good indicator of various vegetation biophysical parameters, including biomass, LAI, 

green cover percentage (Amri et al., 2011), and NPP (Weiss et al., 2004), as well as fraction of 

absorbed photosynthetically active radiation (fAPAR) (Asrar et al., 1992). NDVI also 

demonstrates linear relationships with environmental variables, such as temperature and 

precipitation, under a variety of environmental conditions (Anyamba et al., 2001). Therefore, 

NDVI data have been widely used to estimate vegetation phenology (e.g., Balzarolo et al, 2016), 

study temporal responses (e.g. Anyamba et al., 2002; Lotsch et al., 2003) and spatial pattern of 
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vegetation to climate fluctuations (e.g. Nicholson and Farrar, 1994; Wang et al., 2001). NDVI 

data have also been used to explore vegetation trends (e.g. Tucker et al., 2001; Eklundh and 

Olsson, 2003; Nemani et al., 2003) under climate variation. In addition, previous studies have 

shown that NDVI could be quantified to measure the deviation of vegetation from normal 

conditions (Tucker and Sellers, 1986; Al-Bakri and Taylor, 2003; Piwowar, 2011). In summary, 

NDVI can be used to estimate vegetation phenology (Balzarolo et al., 2016), and study 

vegetation response to climate variation at a range of time and spatial scales (Anyamba et al., 

2001). 

 

In this chapter, using NDVI as a proxy, vegetation phenology in GNP was estimated, impacts of 

climate variation on vegetation phenology and vegetation productivity were investigated, and 

baselines for vegetation productivity were established. Before the analyses, the ability of NDVI 

to represent vegetation condition was evaluated based on the aboveground biomass data. Also, 

inter- and intra-annual relationships between NDVI and climate variables, including temperature 

and precipitation, were quantified.  

2.4  Data  

The NDVI data used were extracted from Canada-wide 10-day Advanced Very High Resolution 

Radiometer (AVHRR) 1 km spatial resolution composites. Composites were processed using the 

New Geocoding and Compositing System (GEOCOMP-n) (Adair et al., 2002; Cihlar et al., 

2002), by the Manitoba Remote Sensing Centre, Canada. The GEOCOMP-n system produces 

higher level products with improvements on geocoding, inter-sensor calibration, atmospheric 

correction, Bi-directional Reflectance Distribution Function (BRDF) correction, and 

identification and removal of cloud contamination (Cihlar et al., 2002). NDVI composites used 

were from April 1
st
 to October 31

st
 during 1985 to 2007, and were produced from the imagery of 

AVHRR onboard the National Oceanic and Atmospheric Administration (NOAA) 9, 

11,14,16,17, and 18 satellites. Some NDVI data within the range of -1~0 in a badland landscape 

area were removed after data retrieval, as they represent non-vegetation information. Finally, the 

inter- and intra-annual consistency of NDVI data was examined against dry green biomass data 

before data analyses.  
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Dried green biomass data were obtained by drying fresh green biomass, including green grasses, 

forbs, and shrubs, for 48 hours at 60 
◦
C in the oven. Fresh aboveground biomass was collected in 

June and July of 2003 and 2005, as well as June of 2004, using the field methods described in 

Section 1.6.2 in Chapter 1. 

 

Climate data used are daily temperature and precipitation from 1985 to 2007 in Val Marie, the 

weather station closest to the study area (approximately 1 km). Temperature data were averaged, 

and precipitation data were summed at different temporal scales (Section 2.5.3) to meet the 

requirements of analyses. 

2.5 Methods  

2.5.1 Applicability of AVHRR/NDVI data  

Whether variation in NDVI responds to actual variation of vegetation cover in semiarid areas is 

debatable, due to seasonal variation in atmospheric water vapor (Justice et al., 1991), 

atmospheric aerosol content (Vermote et al., 1997), and large areas of bare soil (Farrar et al., 

1994; Huete and Tucker, 1991). In addition, orbital drift and sensor changes also exert known 

effects on time series AVHRR/NDVI datasets (Kaufmann et al., 2000). Hence, the first step of 

this study is to verify the ability of AVHRR/NDVI data to estimate vegetation phenology and 

monitor vegetation condition in GNP. Nevertheless, the potential for using 10-day AVHRR 1 km 

NDVI data in GNP and the northern Great Plains has been shown (Zhang et al., 2008; Piwowar, 

2011). Collected biomass data from all sample sites were averaged during a 10-day period to 

match the compositing period of AVHRR imagery. Also, NDVI data in the corresponding 

periods were extracted from sample sites and averaged. Finally, averaged aboveground biomass 

and NDVI data were plotted, and their relationship to the sampled sites was investigated through 

a comparison of the averaged NDVI of the sites from the mean NDVI of the entire study area. 

 

2.5.2 Vegetation phenology 

The curvature-change rate method developed by Zhang et al. (2003) was used to estimate 

vegetation phenology, namely green-up, peak growth, and senescence. This approach was 

chosen due to its ability to handle multiple growth cycles with no requirement to arbitrarily 
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define thresholds that identify phenological transition dates. Also, the method is ecologically 

meaningful.  

 

2.5.3 Relationships between NDVI and climate variables 

To investigate intra-annual NDVI-temperature and NDVI-precipitation relationships, 

temperature was averaged, and precipitation was accumulated based on the time intervals (Table 

2-1), considering the lag effects of environmental variables on NDVI. The first and last NDVI 

data used in the correlation analysis were phenologically-tuned. While averaging temperature 

and summing precipitation, some values were removed because of continuous data missing on 

three out of 10 days. Finally, the effects of temperature and precipitation on NDVI were 

determined based on their correlation at various time intervals.  

 

To find the period over which temperature and precipitation most affect vegetation growth in 

GNP, correlation of NDVI in the current 10 days (hereafter one period) was measured with 

respect to temperature and precipitation within different periods. This involved first, the current 

period, then the first, second, third, and fourth previous period, respectively (as shown in the first 

row in Table 2-1). Second, NDVI in the current period was measured with respect to temperature 

and precipitation within 20 day intervals, initially covering the previous period through to the 

current period, then two periods prior to one period prior, three periods prior to two periods 

prior, and five periods prior to four periods prior (second row in Table 2-1). This same approach 

was repeated for 30 day periods, 40 day periods and 50 day periods (row 3–5 in Table 2-1). 
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Table 2-1 The time intervals during which precipitation is accumulated, and temperature is 

averaged (0 indicates the current 10-day period, 1 indicates the first previous 10-day period, 0_1 

indicates from current period to the first previous period, etc.) (adapted from (Wang et al., 

2003)).  

 

Duration 
Lag 

0 1 2 3 4 

1 0 1 2 3 4 

2 0_1 1_2 2_3 3_4 4_5 

3 0_2 1_3 2_4 3_5 4_6 

4 0_3 1_4 2_5 3_6 4_7 

5 0_4 1_5 2_6 3_7 4_8 

 

The impacts of temperature and precipitation on the inter-annual variation of NDVI were 

investigated by applying a multiple regression to annual NDVI, mean temperature, and total 

precipitation. Annual NDVI in this study refers to the phenologically-tuned averaged NDVI in 

the entire study area throughout the growing season. Mean temperature refers to averaged 

temperature, and total precipitation refers to the accumulated precipitation during each growing 

season. While calculating mean temperature and total precipitation, the time lags of their effects 

on NDVI determined by the intra-annual relationships were considered. 

 

2.5.4 Trend detection  

The non-parametric Mann-Kendall test (M-K) has been widely used for trend detection of 

normally or non-normally distributed time series in the environmental sciences (Hirsch et al., 

1982). It can be applied to detect trends in vegetation phenology, annual NDVI, mean 

temperature, total precipitation, and monthly NDVI. For monthly NDVI trends, it was applied to 

every month from April to October.   

 

Taking NDVI as an example, given the annual NDVI time series NDVI1, NDVI2 …, NDVIn are 

the sequential data values, n (23 in this study) is the data set record length, the M-K test statistic 

S is given by the formula: 

               𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑁𝐷𝑉𝐼𝑗
𝑛
𝐽=𝑘+1

𝑛−1
𝑘=1 − 𝑁𝐷𝑉𝐼𝑘)                                                                    (2.1) 
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Where 𝑁𝐷𝑉𝐼𝑗 and 𝑁𝐷𝑉𝐼𝑖 are the annual values in years j and k, j > k, respectively, and  

            𝑠𝑔𝑛 (𝑁𝐷𝑉𝐼𝑗 − 𝑁𝐷𝑉𝐼𝑘) = {

  1        𝑁𝐷𝑉𝐼𝑗 − 𝑁𝐷𝑉𝐼𝑘 > 0

  0         𝑁𝐷𝑉𝐼𝑗 − 𝑁𝐷𝑉𝐼𝑘 = 0

−1        𝑁𝐷𝑉𝐼𝑗 −𝑁𝐷𝑉𝐼𝑘 < 0
                                             (2.2) 

The variance of S is computed as:  

                      𝑉𝐴𝑅 (𝑆) =
𝑛(𝑛−1)(2𝑛+5)

18
                                                                                       (2.3) 

The test statistic Z is calculated as below: 

                    𝑍 =

{
 

 
𝑆+1

√𝑉𝐴𝑅 (𝑆)
      𝑆 > 0

          0         𝑆 = 0
𝑆−1

√𝑉𝐴𝑅 (𝑆)
       𝑆 < 0

                                                                                       (2.4) 

The statistical trend of mean NDVI is evaluated using the Z value.  A negative (positive) Z value 

indicates a downward (upward) trend, and a zero Z value means that the time series data have no 

trend. The significance of the detected trend is tested based on 0.05 and 0.10 significance levels. 

 

2.5.5 NDVI baselines 

Statistically, values beyond two standard deviations of the mean can be defined as anomalies 

(Gliner et al., 2010).  A 0.5 standard deviation value was used to define AVHRR NDVI baselines 

after Thaim (2003). However, this was too low to highlight sensitive areas (Li et al., 2004). A 

two standard deviation value was used to create NDVI baselines for the Northern Great Plains 

and define the NDVI anomalies (Piwowar, 2011). Thus, two standard deviations were also used 

in this study to establish NDVI baselines in GNP. Annual NDVI baselines were established by 

subtracting two standard deviations from mean NDVI value of 1985–2007. The same method 

was used to create monthly NDVI baselines from April to October. 

 

2.6 Results  

2.6.1 Applicability of AVHRR/NDVI  

The averaged dry biomass and NDVI from sample sites and the mean NDVI in the study area are 

shown in Figure 2-1. Biomass and NDVI demonstrated clear inter-annual consistency indicated 

by the larger amount of dry biomass and the corresponding higher NDVI values in 2003 and 
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2004, and the smaller amount of biomass and reduced NDVI in 2005. Within each year, biomass 

variation is reasonably represented by the changes of NDVI. In addition, NDVI from the 

sampled area reasonably represents the mean NDVI in the study area. The seasonal and inter-

annual consistency of NDVI and biomass supports the common use of NDVI to study vegetation 

response to climate variation (Anyamba and Eastman, 1996; Kogan, 1997). 

 

 

Figure 2-1 Biomass versus NDVI in the sampling sites and the mean NDVI in the west block of 

GNP from mid-June to mid-July in 2003, 2004, and 2005. 

 

2.6.2 Relationships between NDVI and climate variables 

The intra-annual relationships among NDVI, temperature and precipitation at various lags are 

shown in Figure 2-2. The mean temperature in the current period shows the most significant 

effect on NDVI with an r value of 0.63 (P = 0.000), followed by the mean temperature during the 

previous two periods (r = 0.62) (Figure 2-2(a)). Precipitation during the 50-day span ending with 

the current period (“4_0” in Table 2-1) has the strongest correlation with NDVI in the current 

period, indicated by an r value of 0.69 (P = 0.000) (Figure 2-2(b)). 
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Figure 2-2 Intra-annual relationships between (a): NDVI and temperature and (b): NDVI and 

precipitation. 

 

The multiple regression approach was applied to evaluate the impacts of temperature and 

precipitation on the inter-annual variation of NDVI, with the outcome shown in the following 

Equation:  

             𝑉 = −0.43 + 0.01 ∗ 𝑇 + 0.19 ∗ 𝐿𝑔(𝑃𝑟)    (r
2 

=0.30; n=23; P<0.05)                          (2.5) 

0.63 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L0 L2 L4 L6 L8 1_2 3_4 0_2 2_4 4_6 1_4 3_6 0_4 2_6 4_8

C
o

rr
el

a
ti

o
n

 C
o

ef
fi

cn
et

 b
et

w
ee

n
 N

D
V

I 

a
n

d
 T

em
p

er
a

tu
re

 

Lag 

0.67 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L0 L2 L4 L6 L8 1_23_40_22_44_61_43_60_42_64_8C
o

rr
el

a
ti

o
n

 C
o

ef
fi

ci
en

t 
b

et
w

ee
n

 N
D

V
I 

a
n

d
 P

re
ci

p
it

a
ti

o
n

 

Lag 

(a) NDVI and Temperature 

(b) NDVI and Precipitation 



 

48 

 

where 𝑉  is phenologically-tuned annual NDVI;  𝑇  is mean temperature (
◦
C); 𝑃𝑟  is the total 

precipitation (mm) throughout the growing season, considering the lag effects described above; 

𝐿𝑔(𝑃𝑟) is the logarithm 10 transformed precipitation; n (23) is the number of years.  

 

Multiple regression analysis indicates that the co-effects of temperature and precipitation on 

Inter-annual variation of NDVI in GNP is statistically significant. The r
2
 value indicated that 

temperature and precipitation can account for 30% of the inter-annual variation of NDVI. 

Spearman correlation analyses were also performed to determine the effects of temperature and 

precipitation separately. The results show that the effect of temperature on interannual NDVI 

variation is not significant (P > 0.10), while the impact of precipitation is significant (P < 0.05).  

 

2.6.3 Trends of phenology  

The results of the trend analysis on green-up, peak growth and senescence are demonstrated in 

Table 2-2. The negative Z value of green-up indicates that vegetation in GNP tended to start 

growing earlier during 1985 to 2007. The positive Z values show that both peak growth and 

senescence were significantly delayed at the 0.10 significance level.  

 

Table 2-2 The trends of green-up, peak growth, and senescence indicated by the Z values during 

1985-2007 in GNP.  

 

Phenology Green-up Peak Growth Senescence 

Z value -0.79* 1.75* 0.16* 

* indicates the significance at the 0.10 level 

 

2.6.4 Trends of NDVI, temperature, and precipitation  

The results of the M-K test on annual NDVI, mean temperature, total precipitation throughout 

the growing season, and monthly NDVI are shown in Table 2-3. During the 1985-2007 period, 

annual NDVI had an increasing trend indicated by the positive Z value (0.26). Both annual 

temperature and precipitation demonstrated a significant increasing trend indicated by the 

positive Z values of 0.03 and 0.08, respectively. The temperature trend is significant at the 0.05 

level, while the precipitation is at the 0.10 level.   
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Positive Z values indicate that monthly NDVI in April, May, August, September, and October all 

show increasing trends, which are statistically significant at the 0.10 level. The slightly increased 

monthly NDVI can be explained by the earlier green-up and later senescence that was driven by 

increased temperature and precipitation.  

  

Table 2-3 The trends of annual NDVI, temperature, and precipitation throughout the growing 

season, and monthly NDVI from April to October indicated by the Z values during 1985-2007 in 

GNP 

Variables Temperature Precipitation 

NDVI 

 Annual Apr May Jun Jul Aug Sept Oct 

           Z values 0.03** 0.08* 0.18* 0.03* 0.08* 0.18* 0.13* 0.08* 0.03* 0.03* 

Note: ** and * indicate significance at the 0.05 and 0.10 level, respectively. 

 

2.6.5 NDVI baselines  

Baselines of annual NDVI and monthly NDVI from April to October and the years in which 

NDVI were out of baseline are listed in Table 2-4. The baseline of annual NDVI ranges from 

0.13 to 0.32. The largest baseline range (0.12-0.40) was observed in June, followed by July and 

August, while the smallest baseline range (0.06-0.20) occurred in October. In 1986 and 2000, 

monthly NDVI values in April are below the low limit of the baseline. 1999 was the only year in 

which monthly NDVI in May to July and annual NDVI are beyond the upper baselines. Other 

NDVI and monthly NDVI values were all within the baselines. 

 

 

 

 

 

 

 

 

Table 2-4 Baselines of monthly and annual NDVI and years out of baselines from 1985 to 2007 
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NDVI Baselines 

 

Years out of baselines 

Time Period Low limit Upper limit 

 

Below low baseline Above upper baseline 

April 0.02 0.22 

 

1986, 2000 / 

May 0.09 0.30 

 

/ 1999 

June 0.12 0.40 

 

/ 1999 

July 0.13 0.39 

 

/ 1999 

August 0.08 0.34 

 

/ / 

September 0.07 0.27 

 

/ / 

October 0.06 0.20 

 

/ / 

Annual 0.13 0.32 

 

/ 1999 

 

2.7 Discussion 

2.7.1 Climate variables and NDVI  

The significant effect of temperature on vegetation is consistent with the assertion of Mitchell 

and Csillag (2001) that seasonal temperature has a strong impact on grass productivity in GNP, 

based on prescribed temperature trends in the Century model. The finding of a significant 

relationship between precipitation and phenologically-tuned NDVI is consistent with the finding 

of Wang et al. (2003) that precipitation and NDVI in central Great Plains North America are 

strongly correlated at a particular temporal scale. The 40-day influence lag of precipitation and 

non-lag effect of temperature on NDVI indicate that the impact of precipitation lasts much longer 

than that of temperature in GNP. The statistically significant relationship between temperature, 

precipitation and vegetation productivity indicated that integrating them with remote sensing 

data may yield better NPV biomass estimation than using remote sensing data only. 

  

Variation in climate is the major contributor to interannual NDVI variation because the effects of 

grazing and fire were negligible during the study period (Li and Guo, 2012). However, 

temperature together with precipitation, can only account for 30% of inter-annual NDVI 

variation. The unexplained portion of the inter-annual variation might be accounted for by 

variation in other environmental variables such as soil moisture that is controlled by precipitation 
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(Frank, 2003), wind (Magagi and Kerr, 1997), topography (Bindlish et al., 2008), soil type and 

humus in soil (Nicholson and Farrar, 1994). 

 

Although co-effects of temperature and precipitation on the interannual variation of NDVI in 

GNP are statistically significant, these statistics indicate that the effect of temperature on the 

interannual NDVI variation is not significant (P>0.10), while the impact of precipitation is 

significant (P<0.05) at the 0.05 level. The finding that precipitation is more important than 

temperature on interannual variability of vegetation productivity in GNP agrees with the findings 

of Mitchell and Csillag (2001) based on the manipulated climate scenario in the Century model. 

It is also supported by the assertion of Coughenour (1985) that vegetation growth in northern 

semi-arid mixed grassland is primarily constrained by soil moisture, which is largely determined 

by precipitation (Kogan, 1997). Soil moisture or evapotranspiration data can be used to further 

investigate the impact of climate variation on vegetation condition in semi-arid mixed grassland, 

although these are not regular observational data reported by weather networks.  

 

2.7.2 Trends of phenology, NDVI, temperature, and precipitation 

A trend towards earlier green-up supports earlier conclusions that the growing season starts 

earlier at higher northern latitudes (Keeling et al., 1996; Randerson et al., 1999). Earlier green-up 

can be explained by increased winter temperature in southern Canada (Zhang et al., 2000). 

Delayed peak growth may be related to this increased annual maximum temperature (Zhang et 

al., 2000), which stunts vegetation development. Later senescence may be attributed to the 

increased minimum temperature that can delay the onset of frost (Zhang et al., 2000). Increased 

annual mean temperature and precipitation may increase the length of growing season (Li and 

Guo, 2012), and thus account for the delayed peak growth and senescence.  

 

Increased mean temperature during the growing season is consistent with the fact that annual 

mean temperature has been increasing from 1900-1998 in southern Canada (Randerson et al., 

1999). Also, the increasing trend of precipitation is consistent with the finding that precipitation 

in Canadian prairies has increased (Zhang et al., 2000, Akinremi et al., 1999). The increasing 

trend of annual NDVI can be accounted for by the increased temperature and precipitation. 
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2.7.3 Baselines of NDVI 

Monthly NDVI anomalies in April of 1986 and 2000 may be explained by cold events in the 

winters of 1985–1986 and 1999–2000. The occurrence of NDVI anomalies in 1999 may be 

accounted for by the lag effect of anomalous warming associated with the largest El 

Niño/Southern Oscillation (ENSO) phenomenon observed last century during June 1997 to May 

1998 (Anyamba et al., 2001; McPhaden, 1999). However, drawing a firm conclusion on the 

relationship between NDVI anomalies and ENSO events requires further study. Multiple 

temporal scales of the impact of temperature and precipitation, as well as extreme climate events 

(e.g., ENSO) on vegetation conditions, could be further investigated with longer data time series. 

 

2.8 Conclusions 

The comparisons between NDVI and biomass indicate that AVHRR 1 km spatial resolution 

NDVI data are suitable for monitoring vegetation condition in GNP. Estimates of the curvature-

change rate of NDVI indicate that vegetation green-up started in mid-April to mid-May, peak 

growing season was reached in late June to mid-July, and senescence typically began in early to 

late July. Trend analyses indicated that vegetation growing season had a lengthening trend from 

1985 to 2007 with an earlier green-up and later senescence. Concurrently, peak growth tended to 

be later. 

 

The study of the effects of precipitation and temperature on intra-annual NDVI variation 

concluded that temperature has significant effects on NDVI variation with no time lag. At the 

same time, the mean temperature in the previous 10-day period has the second greatest impact on 

NDVI variation. Precipitation has stronger effects on NDVI than temperature with a lag of 40 

days. Temperature and precipitation account for 30% of inter-annual NDVI variation. However, 

measured separately, the influence of precipitation is statistically significant, while the effect of 

temperature is not. Phenologically-tuned annual NDVI demonstrated an increasing trend. There 

was a significant increasing trend for both annual temperature and precipitation, which 

accounted for the increasing trend of annual NDVI. Monthly NDVI demonstrated an expanding 

trend in each month from April to October. 
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The annual AVHRR NDVI baselines range from 0.13 to 0.32. With climate variation, annual 

NDVI in most years of 1985-2007 are within the baselines. The only exception is 1999. Monthly 

NDVI baselines from April to October were also established, and most monthly NDVI are within 

the baselines. The exceptions are monthly NDVI in April of 1986 and 2000 that are below 

minimum baselines, and monthly NDVI in May to July in 1999 that are above maximum 

baselines.  

 

This study measured vegetation phenology in GNP that is needed to remotely sense NPV 

biomass as studied in Chapters 3 and 4. It also demonstrates the successful application of 

AVHRR NDVI products on climate change studies in the northern mixed prairie. By comparing 

retrieved NDVI values from AVHRR composites to the created NDVI baselines, park managers 

can evaluate climatic effects on vegetation in every month for any year and thus adjust 

corresponding conservation plans (e.g., prescribed fire or grazing) to minimize these effects. The 

approaches used in this study can be applied to other areas to investigate vegetation response to 

climate variation.  

 

2.9 Addendum 

To allow this Chapter to better fit this dissertation, I have updated the abstract, replaced the first 

two paragraphs in the introduction, deleted study site information, and reorganized the original 

‘results and discussion’ into two separate sections. 
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CHAPTER 3: GROUND HYPERSPECTRAL, LANDSAT 8 OLI, AND SENTINEL-2A 

DATA FOR NON-PHOTOSYNTHETIC VEGETATION BIOMASS ESTIMATION 

 

3.1 Preface 

This chapter was submitted as a manuscript to the International Journal of Remote Sensing 

(IJRS) on Dec 15, 2016. The IJRS is published by Taylor & Francis Group. If this research is 

published, the Group will allow me to reuse it as content for a thesis or dissertation at no cost as 

long as a permission request is submitted.  

 

Li Z and Guo X. (2016) Quantifying non-photosynthetic vegetation (NPV) biomass in semiarid 

mixed grasslands using Landsat 8 OLI and Sentinel-2A images. International Journal of 

Remote Sensing (revison submitted in July, 2017). 

 

Zhaoqin Li came up with the idea, analyzed the data, interpreted the results, and wrote the 

manuscript. Dr. Xulin Guo provided valuable comments to improve the quality of the paper. 

 

3.2 Abstract 

Research on quantifying Non-photosynthetic vegetation (NPV) with optical remote sensing 

approaches has been focusing on optically distinguishing NPV from green vegetation and bare 

soil. With a very similar spectral response curve to NPV, dry moss is a significant component in 

semiarid mixed grasslands and plays a large role in NPV estimation.  However, limited attention 

has been paid to this role. We investigated the potential of optical remote sensing to distinguish 

NPV biomass in semiarid grasslands characterized by NPV, biological soil crust (BSC) 

dominated by moss and lichen, and bare soil. First, hyperspectral spectral indices were examined 

to determine the most useful spectral wavelength regions for NPV biomass estimation. Second, 

multispectral red-edge indices and shortwave-infrared indices were simulated based on Landsat 8 

OLI and Sentinel-2A MSI band reflectance, respectively, to determine the most suitable 

multispectral indices for NPV estimation. Those multispectral indices were then applied to 

Landsat 8 OLI images and Sentinel-2A images acquired in early, middle, peak, and early 
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senescence growing seasons to investigate the potential of satellite images for quantifying NPV 

biomass. Our results indicated that red-edge hyperspectral indices, such as modified red-edge 

Normalized Difference Vegetation Index (mNDVI705), Plant Senescence Reflectance Index 

(PSRI), and Normalized Difference Vegetation Index (NDVI705), are better than shortwave-

infrared hyperspectral indices (e.g., Cellulose Absorption Index (CAI)) for quantifying NPV 

biomass. Multispectral Landsat 8 OLI and Sentinel-2A MSI images demonstrated potential for 

NPV estimation in peak and (or) early senescence growing season using multispectral shortwave 

indices (NDI5) and multispectral red-edge indices (NDVIred-edge). The performance of NDVIred-

edge and NDI5 are similar in middle to early senesces seasons, while NDVIred-edge is better than 

NDI5 for NPV biomass estimation in early growing season.  

 

3.3 Introduction 

NPV plays an essential role in maintaining soil and site stability and affects nutrient, energy, and 

water cycling among air, vegetation, water, and soil (Facelli and Pickett, 1991). It also controls 

frequency and intensity of fires and grazing in grassland ecosystems (Nagler et al., 2003; 

Guerschman et al., 2009). These roles can directly and indirectly affect ecosystem functioning 

through influence on ecosystem vigor, organization, and resilience.  

 

The ecological importance of NPV has driven considerable research on estimating its fractional 

cover using optical remote sensing data in croplands (Daughtry et al., 2006; McNairn and Protz, 

1993; Serbin et al., 2013), savannah (Guerschman et al., 2009; Jackson and Prince, 2016; Li et 

al., 2016), shrublands (Asner and Heidebrecht, 2003), grasslands (Smith et al., 2015; Xu et al., 

2014), forests (Roberts et al., 1993), and the Otindag Sandy Land of China (Li et al., 2016). 

Studies have also been conducted to quantify NPV biomass in grazed vegetation communities in 

the Amazon (Numata et al., 2008), the inner Mongolian steppe (Ren and Zhou, 2012), and 

pastoral Sahel in the Gourma region of East Africa (Jacques et al., 2014). These studies have 

demonstrated the potential of optical remote sensing data, especially hyperspectral data, for NPV 

estimation.  

 

Studies of NPV estimation using optical remote sensing data have been focused on 

differentiating NPV from bare soil and green vegetation (Li and Guo, 2016), with little attention 
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to the effects of Biological Soil Crust (BSC). NPV can be separated from bare soil using 

shortwave-infrared (SWIR) spectral indices. This is because NPV has high lignin and cellulose 

content, showing strong absorption features in the shortwave wavelength regions of the NPV 

spectral response curve (Figure 1-2), unlike bare soil. Shortwave spectral indices, such as the 

Cellulose Absorption Index (CAI) (Daughtry et al., 1996), Lignocellulose Absorption Depth 

(LCD) (Numata et al., 2008) and Lignocellulose Absorption Area (LCA) (Numata et al., 2008) 

are commonly used for quantifying NPV (e.g., Daughtry et al., 2006; Ren and Zhou, 2012; 

Serbin et al., 2013). The lignin and cellulose absorption features in shortwave wavelength 

regions of green vegetation are obscured by the high water content of green vegetation (Figure 1-

2). Therefore, optical remote sensing of NPV biomass using SWIR spectral indices becomes 

difficult where the fraction of green vegetation is greater than 30% (Ren and Zhou, 2012; 

Daughtry et al., 2004). In addition, the presence of considerable amounts of BSC, including moss 

and lichen in semiarid and arid grasslands, makes NPV estimation more challenging. This is 

because dry moss has very similar optical characteristics to NPV throughout the 400 to 2500 nm 

wavelength range (Figure 1-4) (Li and Guo, 2016; Smith et al., 2015). Consequently, in 

grasslands where there are large amounts of NPV and green vegetation with the presence of BSC 

and bare soil, such as Canadian mixed prairies, no solution has been found for quantifying NPV 

biomass using optical remote sensing data (Cihlar, 2012). 

 

NPV can be distinguished from green vegetation by their different spectral responses in the 

visible (400-690 nm) and the near-infrared (NIR) (750-1200 nm) (Asner, 1998; Cao et al., 2010), 

and the red-edge position (690-750 nm). This is because NPV has much less chlorophyll content 

and less complex leaf structures (Asner, 1998; Nagler et al., 2003; Numata et al., 2008; Serbin et 

al., 2013). In this regard, spectral indices developed based on visible and NIR spectral bands, 

such as the Normalized Difference Vegetation Index (NDVI) and a difference index between 

green and red bands ((Green-Red)/(Green+ Red)), are useful for quantifying NPV. However, 

such spectral indices are highly influenced by the presence of bare soil (Colwell, 1974; Huete et 

al., 1985) and BSC (Karnieli et al., 1996).  

 

The red-edge region is a chlorophyll absorption-to-leaf scattering transition zone (Clevers et al., 

2002). The shape of the red-edge region is primarily controlled by the slope of the reflectance 
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curve (Filella and Penuelas, 1994), which is strongly affected by canopy vertical structure (e.g., 

Leaf Area Index) (Delegido et al., 2008; Lee et al., 2004). Red-edge position is also impacted by 

leaf chlorophyll content, meaning a decrease in chlorophyll content will shift it towards the 

shorter wavelength (Dash and Curran, 2004; Filella and Penuelas, 1994). These characteristics 

allow NPV to be distinguished from green vegetation, dry moss, and bare soil using the 

differences in structure and chlorophyll content. The slope of the reflectance curve of the red-

edge region is the best wavelength region for separating NPV and dry moss (Figure 1-4). Hence, 

red-edge spectral indices are expected to have the most potential for NPV biomass estimation in 

grasslands where BSC is a considerable component.  

 

The purpose of this study was to explore the potential of optical remote sensing data for 

estimating NPV biomass in Canadian mixed grass prairie where NPV estimation is not only 

affected by green vegetation and bare soil, but is also impacted by the availability of BSC. To 

achieve the objective, hyperspectral red-edge and SWIR spectral indices were used to investigate 

the potential of optical remote sensing data for NPV biomass estimation. Then, multispectral 

indices calculated from the simulated Landsat 8 OLI and Sentinel-2A MSI reflectance were 

examined to determine the most suitable multispectral indices for quantifying NPV biomass. 

Finally, the most suitable multispectral indices were applied to evaluate the potential of Landsat 

8 OLI and Sentinel-2A MSI images for NPV biomass estimation. 

 

3.4 Datasets  

3.4.1 Field data 

Field data used for this chapter are ground hyperspectral reflectance, dry vegetation biomass, and 

the ground cover data sampled in 2009, 2011, 2013, and 2016. Ground cover data include the 

fractional cover of green grass, forb, shrub, standing dead vegetation, plant litter on the surface, 

bare soil, moss, lichen, and rock. The ground cover estimation is summarized in Table 1-5. 
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3.4.2 Satellite images 

Satellite data used in this study are the Landsat 8 OLI level 1T images from June 18, 2013, July 

30, 2014, June 10, June 17, and July 3, 2016, and the Sentinel-2A level-1C images on May 3, 

June 12, and July 22 of 2016. Data were downloaded from the website of United States 

Geological Survey (USGS) (http://earthexplorer.usgs.gov/). The characteristics of the Landsat 8 

OLI and Sentinel-2A images are summarized in Table 3-1. Both Landsat 8 OLI level 1T and 

Sentinel-2A level 1C products are geometrically corrected. Atmospheric correction was applied 

to all Landsat 8 OLI and Sentinel-2A images before surface reflectance retrieval. The Landsat 8 

OLI images were atmospherically corrected using the ATCOR module in Geomatica PCI 2016. 

The Sentinel-2A images were atmospherically corrected using Sen2cor software provided by the 

European Space Agency (ESA) (http://step.esa.int/main/third-party-plugins-2/sen2cor/). At each 

ground sampling site, reflectance was retrieved within 3 × 3 pixels of the Landsat 8 OLI images, 

9 × 9 pixels (Band 2, 3, 4, and 8) and 5 × 5 pixels (Band 5, 6, 7, 8a, 11 and 12) of the Sentinel-

2A images to match the 100 × 100 m sample plot size. Retrieved reflectance within each sample 

site was averaged to represent the site.  

 

Table 3-1 The characteristics of Landsat 8 OLI and Sentinel-2A imagery (only bands analyzed in 

this study are included). 

Landsat 8 OLI Sentinel-2A MSI  

Band 

wavelengt

h (nm) 

spatial 

resolution 

(m) Band 

wavelength 

(nm) 

spatial 

resolution 

(m) 

Band 2 (Blue) 450-510 30 Band 2 (Blue) 458-522 10 

Band 3 (Green) 530-590 30 Band 3 (Green) 543-577 10 

Band 4 (Red) 640-670 30 Band 4 (Red) 650-679 10 

   

Band 5 (Red-edge 1) 698-712 20 

   

Band 6 ( Red-edge 2) 731-747 20 

Band 5 (NIR) 850-880 30 
Band 8a (NIR 

plateau)  856-875 20 

Band 6 

(SWIR1) 

1570-

1650 
30 Band 11 (SWIR 1) 1566-1655 20 

Band 7 

(SWIR2) 

2110-

2290 
30 Band 12 (SWIR 2) 2101-2280 20 

Note: only bands analyzed in this study are included. 

 

 

http://earthexplorer.usgs.gov/
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3.5 Spectral indices 

3.5.1 Hyperspectral indices 

Red-edge and SWIR hyperspectral indices are potentially useful for quantifying NPV as 

discussed in the Introduction section. The commonly used red-edge and shortwave hyperspectral 

indices in the literature (Table 3-2) were calculated from ground hyperspectral reflectance and 

used to investigate the potential of optical remote sensing data for NPV biomass estimation.   

 

3.5.2 Multispectral indices  

Multispectral indices were developed mainly based on NIR and shortwave wavelength regions to 

estimate NPV (Table 3-3). Based on the justification on the usage of red-edge and visible bands, 

we came up with green-red index, red edge Normalized Difference Vegetation Index (NDVIred-

edge), and modified red edge Normalized Difference Vegetation Index (mNDVIred-edge) (Table 3-

3). These multispectral indices were calculated from the simulated Landsat 8 OLI and Sentinel-

2A MSI band reflectance from ground hyperspectral data to determine the most suitable spectral 

indices for quantifying NPV biomass. The determined spectral indices were then used to estimate 

NPV biomass with Landsat 8 OLI and Sentinel-2A MSI images. The spectral bands used for 

deriving multispectral indices are shown in Table 3-1.  

 

3.5.3 Analysis 

Prior to analysis, the hyperspectral measurements and NPV biomass data sampled within each 

site were averaged over the site to avoid spatial autocorrelation in the analysis. Outliers of the 

biomass data of the 3 years (2009, 2011, and 2013) were checked at the site level using SPSS. 

Outliers were detected using an upper threshold (75% percentile + 2.20 × (75% percentile - 25% 

percentile)) and a lower threshold (25% percentile - 2.20 × (75% percentile - 25% percentile)) 

(Hoaglin and Lglewicz, 1987). Values larger than the upper threshold or smaller than the lower 

threshold were identified as outliers. Two outliers were statistically identified and were double-

checked with the photos taken at the sites. After removing outliers, measurements made at 36 

sampling sites of all 3 years were used for analysis.  
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Ordinary linear regression was applied to quantify NPV biomass using hyperspectral indices and 

the simulated multispectral indices of 2009, 2011, and 2013. The most suitable multispectral 

indices were then derived from Landsat 8 OLI and Sentinel-2A MSI images acquired in 2016 to 

investigate the potential of multispectral satellite images for quantifying NPV biomass in mixed 

prairie grassland. The coefficients of determination (r
2
) and Root Mean Square Error (RMSE) 

were used to evaluate the performance of hyperspectral and multispectral indices for NPV 

biomass estimation. NPV biomass maps were also created using NDI5 derived from Landsat 8 

OLI images acquired on June 18, 2013 and July 30, 2014.  
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Table 3-2 The hyperspectral indices used for NPV estimation (𝜌 is reflectance and BD is band depth at the corresponding wavelength) 

 

Category 
Spectral index 

name 
Spectral index expression Citation Primary application 

NPV indices 

Cellulose absorption 

index (CAI) 
100 × (

𝜌2000 + 𝜌2200
2

) − 𝜌2100 Daughtry et al., 1996 Crop residue cover 

Lignocellulose 

absorption depth 

(LCD) 
max (𝐵𝐷2015−2155) Numata et al., 2008 Senesced grass biomass 

Lignocellulose 

absorption area 

(LCA) 

∑ 𝐵𝐷𝑖

2155

𝑖=2015

 

 

Numata et al., 2008 Senesced grass biomass 

Normalized 

difference Lignin 

index (NDLI) 

log (
1

𝜌1754
) − log (

1
𝜌1680

)

log (
1

𝜌1754
) + log (

1
𝜌1680

)
 Serrano et al., 2002 Surface plant litter 

Red-edge indices 

Plant senescence 

reflectance index 

(PSRI) 

𝜌680 − 𝜌500
𝜌750

 Merzlyak et al., 1999            Plant stress  

Red edge normalized 

difference vegetation 

index (NDVI705)    

𝜌750 − 𝜌705
𝜌750 + 𝜌705

 Gitelson and Merzlyak, 1994 Plant stress  
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Modified red edge 

simple ratio index 

(mSR705 )      

𝜌750 − 𝜌445
𝜌705 − 𝜌445

 

 

 

Datt ,1999 

 

Plant stress  

Modified Red edge 

normalized 

difference vegetation 

index (mNDVI705)    

𝜌750 − 𝜌705
𝜌750 + 𝜌705 − 2𝜌445

 

 

Datt, 1999; 

Sims and Gamon, 2002 
Plant stress 

Vogelmann red edge 

index 1 (VOG1) 
𝜌740

𝜌720⁄  Vogelmann et al., 1993 Vegetation phenology 

Vogelmann red edge 

index 2 (VOG2) 

𝜌734 − 𝜌747
𝜌715 + 𝜌726

 

 

Vogelmann et al., 1993 Vegetation phenology 
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Table 3-3 The multispectral indices used for NPV estimation  

Spectral index name Spectral index expression Citation Primary 

application 

Normalized Difference 

Index (NDI5) 

(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1)/(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1) McNairn and Protz, 

1993 

Crop residue 

Normalized Difference 

Index (NDI7) 

(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅2)/(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅2) McNairn and Protz, 

1993 

Crop residue 

Normalized Difference 

Tillage Index (NDTI) 

(𝑆𝑊𝐼𝑅1 − 𝑆𝑊𝐼𝑅2)/(𝑆𝑊𝐼𝑅1 + 𝑆𝑊𝐼𝑅2) Van Deventer et al., 

1997 

Tillage practices 

Normalized Difference 

Senescent Vegetation 

Index (NDSVI) 

(𝑆𝑊𝐼𝑅1 − 𝑅𝑒𝑑)/(𝑆𝑊𝐼𝑅1 + 𝑅𝑒𝑑) Qi et al., 2002 Senescent 

vegetation density 

the soil adjusted total 

vegetation index (SATVI) 

(𝑆𝑊𝐼𝑅1 − 𝑅𝑒𝑑) × (1 + 𝐿)

(𝑆𝑊𝐼𝑅1 + 𝑅𝑒𝑑 + 𝐿)
− 𝑆𝑊𝐼𝑅2/2 

𝐿 = 1 for low vegetation 

Marsett et al., 2006 Herbaceous 

vegetation cover 

soil-adjusted corn residue 

index (SACRI) 

𝛼(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1 − 𝛽)

𝛼𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1 − 𝛼𝛽
 

Bannari et al., 1995 Crop residue 

modified soil-adjusted 

crop residue index 

(MSACRI)  

𝐶 ×
𝛼(𝑆𝑊𝐼𝑅1 − 𝛼𝑆𝑊𝐼𝑅2 − 𝛽)

𝛼𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅2 − 𝛼𝛽
 

Bannari et al., 2000 Crop residue 

Green-red index 

 

(𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑)/(𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑) Motohka et al., 2010; 

Tucker, 1977 

NPV estimation 
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*Red edge NDVI 

(NDVIred-edge) 

(Rededge1 − Rededge2)

(Rededge1 + Rededge2)
 

Gitelson and Merzlyak, 

1996  

 

Vegetation stress 

 

*modified Red edge 

NDVI (mNDVIred-edge) 

(Rededge1 − Rededge2)

(Rededge1 + Rededge2 − 2Band1)
 

Datt,  1999; Sims and 

Gamon, 2002 

 

Vegetation stress 

 

Note: 𝛼 and 𝛽 are the slope and intercept of the soil line. 𝐶 = 5 (a multiplicative constant). * marks the spectral indices that are 

adapted from hyperspectral red-edge indices and are only derived from simulated Sentinel-2A band reflectance and Sentinel-2A 

images. 
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3.6 Results  

3.6.1 Hyperspectral indices for quantifying NPV biomass 

Potential of hyperspectral shortwave-infrared and red-edge spectral indices for NPV biomass 

estimation was evaluated using the r
2
 values in Figure 3-1 and Figure 3-2, respectively. In terms 

of shortwave spectral indices, both CAI and Normalized Difference Lignin Index (NDLI) have 

an r
2
 of 0.44 and RMSE of 69 g/m

2
 for quantifying NPV biomass (Figure 3-1a & 3-1b), while 

LCD and LCA (Figure 3-1c & 3-1d) do not have a significant relationship with NPV biomass. 
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(a) CAI 

 

(b) NDLI 

 

(c) LCD 

 

(d) LCA 

 

Figure 3-1 Shortwave-infrared spectral indices for Non-Photosynthetic Vegetation (NPV) 

biomass estimation in Grasslands National Park characterized by NPV, green vegetation, 

Biological Soil Crust (BSC), and bare soil.  

 

Red-edge spectral indices can account for 41% to 65% of variations in NPV biomass with RSME 

values ranging from 54 g/m
2
 to 70 g/m

2
 (Figure 3-2). Plant Senescence Reflectance Index (PSRI) 

and mNDVI705 have the best performance, with r
2
 values of 0.64 and 0.65 respectively. 

Vogelmann red edge index (VOG1 and VOG2) with r
2
 values of 0.46 and 0.41 respectively are 

inferior to other investigated red-edge spectral indices for NPV biomass estimation.    
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(a) PSRI 

 

(b) NDVI705 

 

 

(c) mSR705 

 

(d) mNDVI705 
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(e) VOG1 

 

(f) VOG2 

 

Figure 3-2 Red-edge spectral indices for Non-Photosynthetic Vegetation (NPV) biomass 

estimation in Grasslands National Park characterized by NPV, green vegetation, Biological Soil 

Crust (BSC), and bare soil (the sample number used for analysis is 36).  

 

3.6.2. Simulated multispectral indices for quantifying NPV biomass 

The r
2
 values of the simulated multispectral indices of Landsat 8 OLI and Sentinel-2A MSI for 

NPV biomass estimation are presented in Table 3-4. Multispectral indices with good 

performance are determined. Then, the relationships between NPV biomass and the multispectral 

indices of Sentinel-2A are plotted as shown in Figure 3-3. The mNDVIred-edge has the largest r
2
 

value (0.67) and smallest RMSE (53 g/m
2
), followed by Soil-Adjusted Corn Residue Index 

(SACRI) and Normalized Difference Index (NDI). Green/red index and NDVIred-edge also have 

fairly good performance indicated by a moderate r
2
 value (0.51). 
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Table 3-4 The coefficient of determination (r
2
) of the simulated multispectral indices for 

quantifying non-photosynthetic vegetation (NPV) estimation  

Spectral indices 

Landsat 

8  Sentinel-2A 

NDI5 0.61 0.62 

NDI7 0.6 0.6 

NDTI 0.35 0.36 

NDSVI 0.1 0.12 

SATVI 0 0 

SACRI 0.64 0.64 

MSACRI 0.22 0.25 

Green/red 0.51 0.51 

NDVIred-edge \ 0.51 

mNDVIred-edge \ 0.67 
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(a) NDI5 

 

(b) SACRI 

 

(c) NDVIred-edge 

 

(d) mNDVIred-edge 

 

Figure 3-3 Simulated Sentinel-2A MSI multispectral indices for Non-Photosynthetic Vegetation 

(NPV) biomass estimation in Grasslands National Park characterized by NPV, green vegetation, 

Biological Soil Crust (BSC), and bare soil (the sample number used for analysis is 36).  

 

3.6.2  Multispectral satellite images for quantifying NPV biomass 

The multispectral NDI5, SACRI, and NDVIred-edge were selected to investigate the potential of 

multispectral satellite images for quantifying NPV biomass. Despite good performance, 

mNDVIred-edge was not used to investigate potential of Sentinel-2A images, because Band1 of 

Sentinel-2A images is designed for aerosol study. Potential of multispectral Landsat 8 images 

was explored using NDI5 and SACRI derived from the images acquired on June 10, June 17, and 

July 3, 2016 (Figure 3-4). In addition to NDI5 and SACRI, NDVIred-edge was also used for NPV 

estimation using Sentinel-2A MSI images acquired on May 3, June 12, and July 22, 2017 (Figure 
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3-5). The relationship between spectral indices and NPV biomass is highly affected by the 

disturbed community (the data marked by a triangle in Figures 3-4 & 3-5) where smooth brome 

grass is dominant (Figure 1-6a). The triangle point cannot be removed, as it is not an outlier.  

 

Landsat 8 OLI images performed best in the peak growing season (July 3) with an r
2
 value of 

0.50 and RMSE of 69 g/m
2
, achieved by NDI5 (Figure 3-4e). NDI5 has very similar performance 

to SACRI, and their performance was enhanced as percentage of green vegetation increased from 

June 10 to July 3.  
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(a) NDI5 June 10, 2016 

 

(b) SACRI June 10, 2016 

 

(c) NDI5 June 17, 2016 

 

(d) SACRI June 17, 2016 

 

(e) NDI5 July 3, 2016 

 

 (f) SACRI July 3, 2016
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Figure 3-4 Normalized difference index (NDI5) and Soil-Adjusted Corn Residue Index (SACRI) 

of Landsat 8 OLI images acquired on June 10, June 17, and July 3, 2016 for quantifying NPV 

biomass (the sample number used for analysis is 10). 

 

The best performance of Sentinel-2A MSI images was shown by NDI5 and NDVIred-edge with an 

r
2
 of 0.43 and RMSE of 75 and 74 g/m

2
 respectively using the image acquired on July 22, 2016 

(the early senescence season). There are no Sentinel-2A MSI images available in the peak 

growing season for analysis. For all the three multispectral indices, NDI5, SACRI, and NDVIred-

edge, their performance was enhanced from early growing season (May 3), through middle 

growing season (June 12), to the early senescence season (July 22). In the early growing season, 

NDVIred-edge outperforms NDI5 and SACRI for NPV biomass estimation. In the middle growing 

season, NDI5 and NDVIred-edge have similar performance, which are better than that of SACRI. 

Like the application of Landsat 8 OLI images, the relationship between spectral indices of 

Sentinel-2A MSI images and NPV biomass is highly influenced by the triangle point (Figure 3-

5) that is smooth brome community (Figure 1-6a).  
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(a) NDI5 May 3, 2016 

 

(b) SACRI May 3, 2016 

 

(c) NDVIred-edge May 3, 2016 

 

(d) NDI5 June 12, 2016 

 

(e) SACRI June 12, 2016 

 

(f) NDVIred-edge June 12, 2016 

 

(g) NDI5 July 22, 2016 

 

(h) SACRI July 22, 2016 

 

(i) NDVIred-edge July 22, 2016 

 

Figure 3-5 Normalized difference index (NDI5), soil-adjusted corn residue index (SACRI), and 

Red edge normalized difference vegetation index (NDVIred-edge) of  Sentinel-2A MSI images 

acquired on May 3, June 12, and July 22, 2016 for quantifying NPV biomass (the sample number 

used for analysis is 10). 
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1.1.4 NPV biomass maps 

To further investigate if multispectral Landsat 8 OLI images can quantify spatial variations of 

NPV biomass, NPV biomass was estimated using NDI5 derived from the image acquired on 

June 18, 2013 (Figure 3-6). The relationship between NPV biomass and NDI5 was then applied 

to the Landsat 8 OLI images to create an NPV biomass map (Figure 3-7). 

 

The NPV biomass can be quantified using NDI5 derived from the Landsat 8 OLI image with an 

r
2
 of 0.42 and RMSE of 46.8 g/m

2
.  

 

Figure 3-6 NPV biomass estimation using NDI5 derived from Landsat 8 OLI image acquired on 

June 18, 2013 (RMSE=46.8 g/m
2
). 

 

The NPV biomass map indicates low NPV biomass along the Frenchman River following the big 

wildfire in March 2013 that wiped out a large area along the valley. Spatial variations of NPV 

biomass generally correspond to land cover. However, extreme NPV biomass values were found 

in some areas, such as the Prairie dog town and disturbed community marked by the two red 

squares.  
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Figure 3-7 The NPV biomass estimation map using NDI5 derived from the Landsat 8 OLI image 

acquired on June 18, 2013 (RMSE=46.8 g/m
2
). 

 

NPV biomass was estimated using NDI5 derived from the image acquired on July 30, 2014 

(Figure 3-8). The relationship between NPV biomass and NDI5 was then applied to the Landsat 

8 OLI images to create an NPV biomass map (Figure 3-9). The NPV biomass can be quantified 

using NDI5 derived from the Landsat 8 OLI image with an r
2
 of 0.50 and RMSE of 122 g/m

2
. 

This map shows spatial variations of NPV biomass in the west block of GNP. It indicates high 

NPV biomass along the Frenchman River and low and high NPV biomass in the Prairie dog 

town and the disturbed alfalfa community marked by the two red squares on the map, 

respectively. The low NPV biomass in the Prairie dog town is accounted for by the exposed bare 

soil and the high NPV biomass of the alfalfa community is attributed to large biomass of alfalfa 

in previous years.  

 

 

 

 

 

 

 



 

77 

 

 

 

 

 

Figure 3-8 NPV biomass estimation using NDI5 derived from Landsat 8 OLI image acquired on 

July 30, 2014 (RMSE=122 g/m
2
). 

 

Figure 3-9 The NPV biomass estimation map using NDI5 derived from the Landsat 8 OLI image 

acquired on July 30, 2014 (RMSE=46.8 g/m
2
). 
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3.7 Discussion 

3.7.1 Spectral indices for NPV biomass estimation 

Hyperspectral red-edge indices are generally superior to shortwave-infrared spectral indices for 

quantifying NPV biomass (Figures 3-1&3-2) in semiarid mixed grasslands, where ground cover 

consists of not only green vegetation, NPV, and bare soil, but also BSC. The best hyperspectral 

index for NPV biomass estimation is mNDVI705, which incorporates reflectance at 445 nm that is 

sensitive to variations in caritinoid (Sims and Garmon, 2002). Generally, the good performance 

of hyperspectral red-edge indices is attributed to the sensitivity of red-edge position to the 

variations in chlorophyll content and structure (Filella and Penuelas, 1994; Lee et al., 2004; 

Delegido et al., 2008). However, the slope at the red-edge position may change as moisture 

content and age of NPV change (Daughtry et al., 1996), which affects the application of red-edge 

indices for NPV biomass estimation.  

 

Despite inferiority to most hyperspectral red-edge indices investigated, hyperspectral shortwave-

infrared indices have potential for quantifying NPV biomass because of the absorption features 

of cellulose and lignin in NPV. Nevertheless, such absorption features of cellulose and lignin can 

be obscured by water content of green vegetation when its fractional cover is larger than 30% 

(Daughtry et al., 2004; 2005). In addition, the similar spectra of NPV and dry moss in the 

shortwave-infrared regions also reduce the effectiveness of shortwave spectral indices. The r
2
 

value (0.44) of hyperspectral CAI for NPV biomass estimation is smaller than that (r
2
 = 0.67) for 

Inner Mongolian desert steppes, where green vegetation cover is less than 30% (Ren and Zhou 

2012). Hyperspectral CAI outperforms LCD and LCA for estimating NPV biomass in this study. 

This is inconsistent with the finding in a homogenous Amazon pasture (Numata et al., 2008). 

However, this does agree with the finding from the Inner Mongolian desert steppe that CAI 

outperformed LCD for NPV biomass estimation (Ren and Zhou, 2012). Notably, neither of these 

two studies considered the influence of both BSC and bare soil. 

 

 The simulated multispectral mNDVIred-edge, followed by SACRI (normalized difference between 

NIR and SWIR1 with adjusting soil effects), NDI5 (normalized difference between NIR and 

SWIR1), and NDVIred-edge, outperform the other investigated spectral indices for quantifying 
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NPV biomass. This highlights the importance of red-edge position. However, application of 

mNDVIred-edge to Sentinel-2A MSI images is difficult because Band 1 (Center wavelength: 443 

nm; bandwidth: 20 nm) of Sentinel-2A MSI is very sensitive to aerosol. In addition, good 

performance of SACRI and NDI5 implies that the difference between NIR and SWIR1 bands is 

important for NPV biomass estimation. This finding is supported by our previous study in which 

NIR and SWIR were found to be very useful for fractional cover of NPV estimation in the study 

area (Xu et al., 2014). 

 

The advantage of red-edge multispectral indices for quantifying NPV biomass was also 

demonstrated by the NDVIred-edge derived from Sentinel-2A MSI images. NDVIred-edge 

consistently has better performance than SACRI for NPV biomass estimation using Sentinel-2A 

satellite images. NDVIred-edge has very similar performance as NDI5 in middle growing season 

and early senescence season, but much better performance than NDI5 in early growing season 

(Figure 3-5). Although NDVIred-edge is the best index for NPV estimation in early growing 

season, the r
2
 value is only 0.27. This indicates a need for hyperspectral images for quantifying 

NPV biomass in early growing season.  

 

3.7.2 NPV biomass estimation at different vegetation growing stages 

NPV estimation in grasslands needs to account for effects of fractional cover of NPV, green 

vegetation, bare soil, and BSC, and canopy structure. The best NPV biomass estimation was 

achieved in the peak growing season using Landsat 8 images acquired on July 3, 2016 (Figure 3-

4). The increased green vegetation cover could mask NPV from nadir sensing in temperate 

grasslands where curing of green vegetation inconsistently and asynchronously occurs. 

Performance of each multispectral index for NPV biomass estimation changes at different 

vegetation growing stages (Figures 3-4&3-5). The amount of NPV is assumed unchanged from 

green-up until peak growing season. The change of performance of multispectral indices for 

NPV biomass estimation is mainly the consequence of change in ground cover from green-up to 

peak vegetation growing season.  

 

In the early growing season when dead vegetation is dominant, the canopy is less dense 

compared to the peak and early senesces growing seasons. The less dense canopy increased 
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exposure of backgrounds including BSC, bare soil, and surface plant litter. Under such 

circumstances, NPV biomass is potentially overestimated because of the similar spectra of BSC 

and NPV. Presence of BSC and bare soil, and decay of surface plant litter (Serbin et al., 2013) 

contribute to canopy spectra. None of the investigated multispectral indices show a significant 

relationship with NPV biomass. Nonetheless, multispectral NDVIred-edge is superior to NDI5 and 

SACRI, because the red-edge wavelength region has the most potential to differentiate NPV 

from green vegetation, bare soil, and BSC (Figure 1-2 & 1-4a). In addition, SACRI is better than 

NDI5, because SACRI suppresses influence of bare soil.   

 

From middle to peak and early senescence growing seasons, increased fractional cover of green 

vegetation, together with the pre-existing standing dead vegetation, form a denser canopy. A 

denser canopy decreases the exposure of BSC and bare soil. Thus, performance of NDI5, 

SACRI, and NDVIred-edge are all enhanced. However, the superiority of SACRI to NDI5 is no 

longer present (Figures 3-4 & 3-5).  NDVIred-edge has very similar performance to NDI5.  

 

This is the first study, to our knowledge, that has investigated the potential of red-edge spectral 

indices of optical remote sensing data in semiarid mixed grasslands characterized by large 

amounts of NPV, considerable amounts of BSC, and relatively low amounts of bare soil. This 

study explored the potential of multispectral Landsat 8 OLI and Sentinel-2A MSI images for 

quantifying NPV biomass, especially in peak and early senescence seasons. It indicated the 

potential to quantify spatial variations of NPV biomass using multispectral images, although 

performance of these multispectral images is highly associated with change of ground cover at 

different vegetation growing stages.  

 

3.8 Further research 

The relationships between spectral indices and NPV biomass change from negative to positive as 

fraction of ground cover changes. The hyperspectral NDVI705 and simulated multispectral 

NDVIred-edge from hyperspectral reflectance decrease as NPV biomass increases (Figures 3-2 & 3-

3). The relationship between multispectral NDVIred-edge calculated from Sentinel-2A MSI image 

acquired on May 3 and NPV biomass (Figure 3-5c) is also negative. However, the relationship 

changes to positive using the Sentinel-2A MSI images acquired on June 12 and July 22, 2016. 
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This transition of negative-to-positive relationship is controlled by fractional cover of NPV, 

green vegetation, BSC, and bare soil. When NPV cover is large, NPV cover is the dominant 

factor that influences NDVIred-edge. An increase in NPV results in a decrease in NDVIred-edge 

(Figures 3-2, 3-3, & 3-5c). As green vegetation cover increases and NPV cover relatively 

decreases, green vegetation cover is the main factor that determines NDVIred-edge. For this reason, 

a positive relationship between NPV and NDVIred-edge was observed (Figure 3-5f & 3-5i). Our 

previous study has investigated the transition points of the negative-to-positive relationship 

between NDVI ((NIR-Red)/(NIR+Red)) and dead cover in the study area (Xu et al. 2014). 

Where the transition point from negative to positive NDVIred-edge and NPV relationship is, as well 

as what role BSC and bare soil play, need to further investigated. 

   

The shortwave-infrared spectral indices NDI5 and SACRI are negatively correlated with NPV 

biomass using the simulated multispectral Landsat 8 OLI and Sentinel-2A MSI reflectance 

(Figure 3-2), while their relationships change to positive using Landsat 8 OLI and Sentinel-2A 

MSI images. As discussed on the relationship between NDVIred-edge and NPV biomass, the 

negative-to-positive relationship change of shortwave-infrared NDI5 and SACRI are also 

controlled by variations in fractional cover. The transition point of negative-to-positive 

relationship and the effects of BSC and bare soil on this relationship also need to be further 

explored. 

 

3.9 Conclusions  

Hyperspectral red-edge spectral indices, modified red-edge Normalized Difference Vegetation 

Index (mNDVI705), Plant Senescence Reflectance Index (PSRI), modified Simple Ratio (mSR705) 

and Normalized Difference Vegetation Index (NDVI705), are better than shortwave-infrared 

hyperspectral indices, including Cellulose Absorption Index (CAI) for non-photosynthetic 

vegetation (NPV) biomass estimation. The best hyperspectral red-edge index is mNDVI705 and 

the best shortwave-infrared index is CAI.  

 

Multispectral Landsat 8 OLI and Sentinel-2A MSI images demonstrated potential for NPV 

estimation using shortwave-infrared multispectral indices (NDI5) and multispectral red-edge 

indices (NDVIred-edge). However, performance of multispectral NDI5 and NDVIred-edge varies as 
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ground cover changes at different growing stages. The performances of NDI5 and NDVIred-edge 

are similar in middle to early senesces seasons, while NDVIred-edge is better than NDI5 for NPV 

biomass estimation in early growing season when the exposure of Biological Soil Crust (BSC) 

and bare soil is at the largest extent. The peak and (or) early senescence growing season, when 

the influence of BSC and bare soil is minimized, is the best time for NPV biomass estimation. 

The NPV biomass map shows potential of Landsat 8 OLI images for quantifying spatial 

variations of NPV biomass.  
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CHAPTER 4: NON-PHOTOSYNTHETIC VEGETATION BIOMASS ESTIMATION IN 

SEMIARID MIXED GRASSLAND FROM MULTI-ANGULAR, MULTI-

TEMPORAL, AND MULTI-POLARIZATION RADARSAT-2 DATA 

4.1 Preface 

The main content of this chapter was accepted by Canadian Journal of Remote Sensing (CJRS) 

on August 1
st
, 2017. Like the IJRS, the CJRS is also published by Taylor & Francis Group which 

allows the published work to be reused as content of a dissertation with a request for permission.  

 

Li Z and Guo X. (2017) Can Polarimetric Radarsat-2 images provide a solution to quantify non-

photosynthetic vegetation biomass in semi-arid mixed grassland? Canadian Journal of 

Remote Sensing (accepted) 

 

This manuscript was completed by Zhaoqin Li under the supervision of Dr. Xulin Guo, and the 

manuscript was improved by the valuable comments of Dr. Xulin Guo. 

 

4.2 Abstract  

Quantifying non-photosynthetic vegetation (NPV) biomass using optical remote sensing in 

semiarid mixed grassland is challenging. This is due to the combined effects of photosynthetic 

vegetation (PV), biological soil crust (BSC), and bare soil on the canopy spectra. Radarsat-2 

provides a new way to quantify NPV biomass. This study investigated the potential of fine quad-

pol Radarsat-2 images for quantifying NPV biomass and total aboveground biomass in semiarid 

mixed grasslands. The parameters used were Radar Vegetation Index (RVI), co-polarization ratio 

(HH/VV), cross-polarization ratios (VH/HH and VH/VV), de-Polarization ratio, the Cloude and 

Pottier decomposition component (Entropy and Alpha angle) and the Freeman-Durden 

decomposition components (volume, surface, and multiple scattering). The best NPV and total 

aboveground biomass estimations are achieved with an r
2
 of 0.70 and 0.51 and relative Root 

Mean Square Error (rRMSE) of 9% and 8.4%, respectively, using the VH/VV cross-polarization 

ratio of the FQ23 (41.9°-43.3°) image in the middle growing season. The r
2
 values are 0.65 and 

0.70 and the rRMSE are 12.6% and 8.4%, respectively, for NPV and total biomass estimation 

using the depolarization ratio of the FQ3 (20.9°-22.9°) image in the peak growing season. 
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4.3 Introduction 

 Multispectral Landsat 8 OLI and Sentinel-2A MSI images have demonstrated the capability to 

quantify NPV biomass in the peak growing and early senescence seasons in semiarid mixed 

prairie grassland characterized by substantial amounts of NPV, PV, BSC, and bare soil (Chapter 

3). However, the accuracy of NPV biomass estimation with Landsat 8 OLI and Sentinel-2A MSI 

images is highly affected the fractional cover of PV, BSC, and bare soil. Also, passive optical 

remote sensing data have limited ability to access objects below the dense canopy (Huang et al., 

2009; Blanchard et al., 2011), which makes it difficult to estimate plant litter on the surface in 

valley grassland communities in GNP. In an open canopy environment, such as upland and slope 

land vegetation communities in GNP, application of optical remote sensing to quantify NPV 

biomass is highly affected by litter decay (Nagler et al., 2000; Daughtry, 2001; Nagler et al., 

2003) and availability of BSC and bare soil (Li and Guo, 2016). Moreover, acquisition of high-

quality optical images is sometimes difficult because of clouds, haze, and smoke (Avitabile et al., 

2012).  

 

Unlike optical images, SAR images can be acquired under all weather conditions, although 

factors such as clouds, precipitation, and wind may exert an influence on the interpretation of 

SAR data focusing on the land and sea surface (Danklmayer et al., 2009, Alpers et al., 2016). 

Potential of SAR data for quantifying NPV has been demonstrated in croplands using field 

measurements (McNairn et al., 2001) and TerraSAR-X images (Pacheco et al., 2010), and the 

forests of West Africa using ALOS-1 PALSAR data (Carreiras et al., 2012). The application of 

C-band dual-pol Radarsat-2 imagery for NPV biomass estimation in Canadian mixed prairies 

yielded an r
2
 of 0.30 (Finnigan, 2013). However, the advantage of quad-pol Radarsat-2 images 

was not investigated. The effects of incidence angle and polarization of Radarsat-2 images on 

NPV biomass estimation were also not explored. As Radarsat Constellation Mission (RCM) will 

be fulfilled in 2018, high temporal and spatial resolution of Radarsat-2 images will be a valuable 

asset for ecosystem monitoring (http://www.asc-csa.gc.ca/eng/satellites/radarsat/).  

 

Fully polarimetric SAR data have demonstrated potential in differentiating crops, croplands and 

grasslands, and macrophyte species. For example, the Polarimetric L-band ALOS-1 PALSAR 
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data identified diverse macrophyte species in the Amazon floodplain wetlands (Sartori et al., 

2011). TerraSAR-X images have demonstrated advantages over C-band Radsarsat-2 images for 

identifying crops (McNairn et al., 2009). The research of Li et al. (2012) showed the superiority 

of polarimetric decomposition over the linear polarization for rice mapping using C-band 

Radarsat-2 images. The study of McNairn et al. (2009) also concluded that polarimetric 

decomposition is superior to linear polarization for identifying crop types. The Freeman-Durden 

classification of Radarsat-2 images could identify native grasslands from croplands, but had 

difficulty in separating native grasslands from improved grasslands (Smith and Buckley, 2011). 

These studies contributed greatly to agriculture management and environment conservation. 

Nevertheless, limited research was conducted to investigate the potential of fully polarimetric C-

band SAR images to quantify NPV biomass in grasslands.   

 

The purpose of this chapter is to investigate the potential of Quad-pol Radarsat-2 images for 

quantifying NPV biomass in semiarid mixed grasslands characterized by large amounts of NPV, 

PV, BSC, and bare soil. Specifically, this research was to 1) determine suitable fine Quad-pol 

Radarsat-2 images for quantifying NPV biomass; and 2) explore the optimum SAR parameter(s) 

for NPV biomass estimation. The potential of Radarsat-2 images for quantifying total 

aboveground biomass was also investigated. This study was conducted based on the hypothesis 

that SAR parameters (e.g., volume scattering) that are sensitive to change in canopy vegetation 

are useful for estimating standing dead vegetation biomass, while SAR parameters sensitive to 

change in ground surface are useful for quantifying plant litter on the surface. SAR parameters 

sensitive to canopy vegetation were retrieved and applied to NPV and total biomass estimation, 

as were the parameters sensitive to ground surface.  

 

4.4 Data 

4.4.1 Biomass data  

Dry aboveground NPV biomass used in this study was collected during June 20 to July 2, 2014. 

Fourteen sites were surveyed using a stratified random sampling design with four upland, three 

valley, five sloped, and two disturbed communities (Figure 1-5 (a)) for field data sampling. Data 

sampling and processing procedures were presented in Section 1.6.2. 
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Dry green grass biomass, green forb biomass, shrub biomass, NPV biomass, and total dry 

biomass (aboveground biomass) at upland, slope, valley, and disturbed sites are summarized in 

Table 4-1. Table 4-1 shows high variation in biomass among sample sites, which indicates a 

good representation of sites sampled in the study area. The percentage of NPV biomass ranges 

from 59% of total dry biomass in valley sites to 81% of total dry biomass in disturbed 

communities.  The average NPV biomass in upland is 386.5 g/m
2
, accounting for 70% of total 

aboveground biomass. 

 

Table 4-1 Descriptive analysis of aboveground biomass data sampled in the summer of 2014 

(NPV includes standing dead vegetation, plant litter on the surface, and moss and lichens). 

 

Sites 

Statistical 

description 

PV 

NPV 

(g/m
2
) 

Total aboveground 

biomass(g/m
2
) 

Grass 

(g/m
2
) 

Forb 

(g/m
2
) 

Shrub 

(g/m
2
) 

Upland  

Average 122.7 22.2 16.9 386.5 548.3 

 Max 222.1 115.0 311.5 791.0 1196.5 

 Min 38.2 0.0 0.0 65.7 172.1 

 StdDev 51.6 24.8 64.0 236.9 265.8 

Slope 

Average 95.6 28.8 7.3 258.6  390.3 

 Max 295.1 246.0 123.7 909.0 983.2 

 Min 12.8 0.0 0.0 12.7 46.6 

 StdDev 61.9 42.5 23.5 216.8 244.4 

Valley 

Average 124.6 31.7 12.1 247.8 416.3 

 Max 273.0 136.1 110.4 972.2 1084.0 

 Min 16.1 0.0 0.0 20.9 76.2 

 StdDev 62.7 39.2 27.4 211.9 226.5 

Disturbed 

Average 136.5 0.0 9.5 624.3  770.2 

 Max 228.9 0.0 75.9 950.0 1175.3 

 Min 19.0 0.0 0.0 480.4 603.2 

 StdDev 77.5 0.0 26.8 147.0 185.2 

 

4.4.2 SAR data and preprocessing 

In total, this study analyzed 12 Radarsat-2 fine quad-pol single look complex (SLC) images 

acquired from June 2 through August 30, 2014 (Table 4-2). The incident angles of the images 

ranged from 18.54° to 46.5°, and the spatial resolution was 5 m. Temperature, dewpoint 
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temperature, wind speed, and precipitation around the acquisition time, as well as precipitation 

within three days before acquisition at Val Marie, Saskatchewan (Table 4-2) were downloaded 

from the Environment Canada website to check the effects of wind, dew, and rain on the data 

quality. Based on the environmental data (Table 4-2), the quality of those images was not 

directly compromised by dew or rainfall. However, the wetness of the canopy, surface litter, and 

soil moisture caused by heavy precipitation may exert influence on the June 15 FQ23, the June 

18 FQ12 image, the June 19 FQ5 image, the June 28 FQ3 image, and the August 30 image.



 

 

8
8
 

  

Table 4-2 Radarsat-2 data description and environmental conditions (T denotes temperature at acquisition, Dew-T is dewpoint 

temperature, and P is total precipitation in the acquisition day) 

Date 

Beam 

mode 

Incident 

angle (°) 

Spatial 

Resolution 

X × Y (m)  

Wind 

(km/h) T (°C) 

Dew-T 

(°C) P (mm) 

3-day P 

(mm) 

12-hour P 

(mm/h) 

Jun 02 FQ1 18.5-20.3 4.73 × 4.83 6 7.8 6.9 0 5.3 0 

Jun 08 FQ27 45.2-46.5 4.73 × 4.85  5 2.5 1.1 0 0 0 

Jun 12 FQ10 29.2-30.9 4.73 × 5.18 4 1.3 -0.5 0 0.6 0 

Jun 15 FQ23 41.9-43.3 4.73 × 4.94 15 10.1 8.8 0.2 9.6 0.1 

Jun 18 FQ12 31.5-32.9 4.73 × 4.96 11 14.5 10.3 24.9 89 0 

Jun 19 FQ5 23.4-25.3 4.73 × 4.97 15 9.7 7.1 0.4 113.7 0 

Jun 28 FQ3* 20.9-22.9 4.73 × 5.33 25 15.2 8 0.7 20 20 

Jul 02 FQ27 45.2-46.5 4.73 × 4.85 6 11.9 10.9 0 2.7 0 

Jul 05 FQ7* 25.8-27.6 4.73 × 4.74 30 27.9 6.9 0 0 0 

Jul 06 FQ10 29.2-30.9 4.73 × 5.18 6 13.7 11.6 0 0 0 

Jul 09 FQ23 41.9-43.3 4.73 × 4.94 8 12.6 11 0 4.5 0 

Aug 30 FQ5 23.4-25.3 4.73 × 4.97 22 15.2 10.1 2.8 0.3 0 

* All the images were collected at the right look direction. 
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The Radarsat-2 images were orthorectified based on the Radar Specific Model in Radar Ortho 

Suite, an add-on in PCI Geomatica 2015. The Digital Elevation Model (DEM) used for 

orthorectification was ASTER Global Digital Elevation Model Version 2 (GDEM V2). The 

digital number (DN) of Radarsat-2 images was converted to backscatter coefficient through 

sigma-nought (σ°) calibration. A 5 × 5 boxcar filter was applied to reduce speckle noise of the 

orthorectified Radarsat-2 SLC images. The boxcar filter can be applied to both detected and SLC 

data to reduce speckles through averaging the covariance (or coherency) metrics of neighboring 

pixels (Lee et al. 2015). In this study, boxcar filtering was applied to the orthorectified Radarsat-

2 SLC data using PSBOXCAR algorithm with 5 * 5 pixel size in PCI Geomatica. This step 

increased the estimated number of looks from a single look to multiple looks, meeting the 

requirements of algorithms for performing the Cloude and Pottier decomposition (Cloude and 

Pottier, 1997) and Freeman-Durden decomposition (Freeman and Durden, 1998). The boxcar 

filter is the most commonly used algorithm when there are no distinct features on the image and 

when there is no concern on preservation of spatial resolution (Lee et al., 2015). It is effective in 

reducing speckles for forest and cropland biomass estimation (Wiseman et al., 2014, Lee et al., 

2015). The boxcar filter was used in this study because a comparison using our data indicated 

that the images filtered with the boxcar approach had a better estimation on biomass than those 

filtered by the Lee adaptive filter approach. A flow chart (Figure 4-1) was created to demonstrate 

the procedures for image pre-processing, data retrieval, and data analysis. 
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Figure 4-1 The procedure of Radarsat-2 image processing and data retrieval and analysis 

 

4.5 Methods 

It is hypothesized that SAR parameters (e.g., volume scattering) that are sensitive to change in 

canopy vegetation are useful for estimating standing dead vegetation biomass, while SAR 

parameters sensitive to change in ground surface are useful for quantifying plant litter on the 

surface. SAR parameters sensitive to canopy vegetation were retrieved and applied to NPV and 

total biomass estimation, as were the parameters sensitive to ground surface. Prior to the 

calculation of SAR parameters, differences in backscattering mechanisms resulting from images 

with different incidence angles were analyzed.      
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4.5.1 Scattering mechanism 

The Cloude and Pottier decomposition (Cloude and Pottier, 1997) was applied to the Boxcar 

filtered Radarsat-2 SLC images to explore the scattering mechanism of the sampling sites at 

different imaging incidence angles. The Cloude and Pottier decomposition calculated the 

eigenvalues of the covariance or coherence matrix of the image to obtain the entropy (H, 

between 0 and 1) and the anisotropy (A, between 0 and 1), and parameterized each eigenvector 

in terms of four angles, including the alpha angle (0° - 90°) (Cloude and Pottier, 1997). The 

entropy (H) indicates the degree of mixing between surface, volume, and double bounce 

scattering and the anisotropy (A) is dependent on the ratio between probabilities based on second 

and third eigenvalues (Cloude and Pottier, 1997). The alpha angle depicts the scattering 

mechanism of the eigenvector. The alpha angle (0°, 45°, and 90°) indicates a trihedral scatter (a 

smooth surface), a dipole scatter, and a dihedral scatter respectively. An entropy-alpha plane was 

used to demonstrate the scattering mechanism of the sampling sites. 

 

4.5.2 NPV biomass estimation from SAR polarimetric data 

The asymmetric matrix of each filtered Radarsat-2 SLC image was converted to a symmetric 

matrix prior to the Freeman-Durden decomposition. The Freeman-Durden classification 

decomposes the total backscatter into the contribution of volume scattering (dipole scattering), 

double bounce (dihedral scattering), and surface scattering (Bragg scattering) (Freeman and 

Durden, 1998). Co-polarization ratios (HH/VV) and cross-polarization ratios (VH/HH and 

VH/VV) were generated. HV/HH, HV/VV were not analyzed as HV and VH backscatter are 

similar (Moran et al., 2012a). The depolarization ratio (𝒙𝒗), which is sensitive to soil surface 

roughness (Ulaby  et al., 1986, Gherboudj  et al., 2011), was calculated using eq. (4.1):  

𝑥𝑣 = 𝜎𝑣ℎ(𝑑𝐵) − 𝜎𝑣𝑣(𝑑𝐵)                                                                                                     (4.1) 

Where 𝜎𝑣ℎ  and 𝜎𝑣𝑣  are the VH cross-polarization and VV co-polarization backscatter 

coefficients in decibels (dB) respectively. Radar vegetation index (RVI) (Kim and van Zyl, 

2009) was characterized by the ratio of cross-polarization backscatter to the total scattering (eq. 

(4.2)), 

𝑅𝑉𝐼 =
8𝜎𝐻𝑉

𝜎𝐻𝐻+𝜎𝑣𝑣+2𝜎𝐻𝑉
                                                                                                               (4.2) 
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where 𝝈𝑯𝑽 is the cross-polarization backscattering and  𝝈𝑯𝑯  and  𝝈𝒗𝒗 are the co-polarization 

backscattering in power units. The RVI is sensitive to biomass variation, but less affected by 

environmental conditions, including soil moisture (Kim and van Zyl, 2009). The value of RVI is 

not only determined by vegetation condition, but also controlled by incident angle of the radar 

images. This is because an increase in incidence angle will increase the path length of the radar 

pulse through the vegetation canopy (Kim et al., 2012).    

 

SAR parameters, including RVI, co-polarization ratio, cross-polarization ratios, depolarization 

ratio, the Freeman-Durden decomposition components, and Entropy and Alpha angle of the 

Cloude and Pottier decomposition, were retrieved within a 19 × 19 pixel window size to match 

the 100 × 100 m sampling site. The retrieved SAR parameters were individually averaged within 

each plot to correlate with the biomass data within the plot. Before the analysis, outliers of the 

biomass data were checked at the quadrat level using SPSS using the method introduced in 

Chapter 3 (Hoaglin and Lglewicz, 1987). Values identified as outliers based on the criteria were 

doubled checked with the photos taken at the quadrats. After checking, one disturbed plot with 

over 90% alfalfa and one upland plot with apparently low biomass measurement were excluded 

from analysis. The sample number for analysis of most images is 12, except for the July 5 image 

that covers 10 sampling sites. Since plant surface litter and moss and lichen are a significant 

contributor to NPV biomass, all the derived radar parameters, including surface scattering, were 

investigated. Accuracy of NPV biomass and total aboveground biomass estimations was 

quantitatively measured using leave-one-out cross-validation. Relative Root Mean Square Error 

(rRMSE) was used to measure the accuracy. The determined best SAR image and SAR 

parameter was also used to create an NPV biomass map to investigate the potential of 

quantifying spatial variations of NPV biomass.  

 

4.6 Results  

4.6.1 Scattering Mechanism 

The entropy-alpha planes of the June 2 FQ1 and the June 8 FQ27 Radarsat-2 images are 

presented in Figure 4-2 to demonstrate the scattering mechanism of images with different 

incidence angles. Environmental effects on the quality of these three images are negligible 
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(Table 4-2). Therefore, variations in the scattering mechanism can be considered a result of 

different incidence angles. Shown by the scattering mechanism plot, the FQ1 image on June 2 is 

dominated by smooth surface backscattering, while the FQ27 image on June 8 is characterized 

by rough surface scattering and volume scattering, as a result of low penetration capability 

through the canopy. Although vegetation growth from June 2 to June 8 may contribute to the 

volume scattering of the FQ27 image, the dramatic decrease in the surface scattering of the FQ27 

images on June 8 was more likely a result of a larger incidence angle. The scattering mechanism 

explored the capability of the images with small incidence angles to quantify the surface plant 

litter portion of biomass, and the ability of the images with large incidence angles to quantify 

standing dead vegetation biomass. 
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Figure 4-2 The Radarsat-2 images (Red: HH, Green: HV, and Blue: VV) with the field sampling 

sites (yellow dots) on (a) the June 2 FQ 1 image and (b) the June 8 FQ 27 image; and the 

scattering mechanism of Radarsat-2 images on: (c) the June 2 2014 FQ1image and (d) the June 8 

2014 FQ27 image are demonstrated using backscattering at one upland sampling site 

encompassed by the orange square in (a) and (b). 

 

4.6.2 Radarsat-2 response and biomass 

The relationships between NPV biomass and various Radarsat-2 parameters are presented in 

Table 4-3. The largest r
2
 value for quantifying NPV biomass is 0.70, achieved by using the cross-

polarization ratio (VH/VV) calculated from the June 15 FQ23 image. The volume scattering of 

(a) June 2 FQ 1 image 

 

(b) June 8 FQ 27 image 

 

(c) June 2, FQ1 

 

(d) June 8, FQ27 
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the June 08 FQ27 image and the depolarization ratio of the June 15 FQ23 image have an r
2
 value 

of 0.69 for NPV biomass estimation.  

 

The cross-polarization ratio (VH/VV) and the de-polarization ratio calculated from the VH and 

VV bands of all the images, except for the FQ10 images on June 12 and July 06 and the July 09 

FQ23 image, yield better NPV biomass estimations than RVI, co-polarization ratio (HH/VV) and 

cross-polarization ratio (VH/HH). However, performance of VH/VV and de-polarization ratio 

changes as incidence angles of the images and vegetation phenology change. From middle 

growing season (mid-May to mid-June) to peak growing season (late June to mid-July), NPV 

biomass remains unchanged. From Table 4-3, in the middle growing season, the VH/VV ratio 

and de-polarization ratios derived from the large incidence angle FQ23 image outperform those 

calculated from the smallest incidence angle FQ1 image and the largest incidence angle FQ27 

image. The medium incidence angle FQ10 and FQ12 images have the worst performances for 

NPV biomass estimation. In the peak growing season, the VH/VV and de-polarization ratio of 

the June 28 FQ3 image are superior for quantifying NPV biomass, compared to those calculated 

from larger incidence angle images, including the July 02 FQ27, July 05 FQ7, July 06 FQ10 and 

July 09 FQ23 images.  

 

The decomposition components of the Cloude and Pottier decomposition are more promising 

than the Freeman-Durden classification for quantifying NPV biomass (Table 4-3), although the 

largest r
2
 value achieved is not beyond those obtained by the VH/VV and de-polarization ratio. 

Incidence angle of the images and vegetation phenology also have an influence on performance 

of the decomposition components. In the middle growing season, when incidence angle is 

smaller than that of the FQ10 image, both entropy (H) and Alpha angle have a significant 

relationship with NPV biomass with an r
2
 larger than 0.60, but smaller than 0.69. When 

incidence angle is larger than that of FQ10, there is no significant relationship between H/Alpha 

angle and NPV biomass. Nevertheless, volume scattering of the Freeman-Durden decomposition 

extracted from the largest incidence angle FQ27 image yields an r
2
 value of 0.69 for quantifying 

NPV biomass, followed by the smallest incidence angle FQ1 image. In the peak growing season, 

the H and Alpha angle of the FQ3 images on June 28 have similar performance with the VH/VV 

and de-polarization ratios. Volume scattering extracted from the July 9
 
FQ23 images has a 
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significant r
2 

value (0.38) for NPV biomass estimation. Surface scattering is not a significant 

contributor for quantifying NPV biomass.   

 

Table 4-3 The Relationship (r
2
 values) between various Radrsat-2 parameters and non-

photosynthetic vegetation (NPV) biomass (D-ratio is depolarization ratio; Entropy (H) and Alpha 

angle were derived from the Cloude and Pottier decomposition; V and S represent volume 

scattering and surface scattering, respectively, which were derived from the Freeman-Durden 

decomposition) 

Date 

Beam 

mode RVI 

HH/

VV 

VH/

HH 

VH/

VV D-ratio H Alpha V S 

02-Jun FQ1 

 

0.45 0.46 0.53 0.51 0.51 0.57 0.52 

 08-Jun FQ27 0.34 

  

0.48 0.43 

  
0.69 

 12-Jun FQ10 0.46 0.43 0.35 0.44 0.4 

 

0.41 

  15-Jun FQ23 0.57 0.58 0.36 0.70 0.69 

    18-Jun FQ12 0.38 

        19-Jun FQ5 0.45 

 

0.34 0.47 0.58 0.65 0.60 

  28-Jun FQ3 0.55 

 

0.44 0.63 0.65 0.59 0.63 

 

0.44 

02-Jul FQ27 

         05-Jul FQ7 

    

0.34 0.35 

   06-Jul FQ10 0.36 

        09-Jul FQ23 0.48 

 

0.35 

    

0.38 

 Note: only r
2
 values significant at the 0.05 level are demonstrated.  

 

The performance of Radarsat-2 on total aboveground biomass estimation is summarized in Table 

4-4. To account for the increase in green vegetation during the growing season until it reaches 

the peak in late June or early July, only the images acquired near the field days were used for 

aboveground biomass estimation. The June 28 FQ3 images demonstrated the greatest ability with 

the r
2
 value of 0.70 achieved by the de-polarization ratio, followed by the VH/VV and RVI with 

an r
2
 of 0.65 and 0.57, respectively.  

 

Entropy and Alpha angle extracted from the June 28 FQ3 image have an r
2
 value similar to that 

of VH/VV and de-polarization ratio for quantifying total aboveground biomass. The entropy 

extracted from the FQ5 image acquired on June 19 has an r
2
 value of 0.62, which is comparable 

to that of the June 28 FQ3 image. Entropy and Alpha angle derived from images with an 

incidence angle larger than that of the FQ7 image have no significant relationship with total 

aboveground biomass. Volume scattering of the FQ23 image acquired on July 09, 2014 has a 
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significant relationship with total aboveground biomass, while surface scattering of the June 28 

FQ3 image can significantly account for the variations in total aboveground biomass.  

 

Table 4-4 The relationship (r
2
 values) between various Radrsat-2 parameters and total 

aboveground biomass (D-ratio is depolarization ratio; Entropy (H) and Alpha angle were derived 

from the Cloude and Pottier decomposition; V and S present volume scattering and surface 

scattering, respectively, which were derived from the Freeman-Durden decomposition) 

Date 

Beam 

mode RVI 

HH/

VV 

VH/

HH 

VH/

VV D-ratio H Alpha V  S  

15-Jun FQ23 0.39 0.51 

 

0.51 0.5 

    18-Jun FQ12 0.38 

        19-Jun FQ5 0.37 

  

0.38 0.52 0.62 0.55 

  28-Jun FQ3 0.57 

 

0.42 0.65 0.70 0.60 0.65 

 

0.45 

02-Jul FQ27 

         05-Jul FQ7 0.36 

 

0.48 0.52 0.52 

    06-Jul FQ10 

         09-Jul FQ23 

       

0.41 

 * Note: only r
2 

values significant at the 0.05 level are demonstrated. 

 

The best relationships between Radarsat-2 response and NPV and total aboveground biomass 

identified in Table 4-3 and Table 4-4 are plotted in Figure 4-3. The main purpose of Figure 4-3 is 

to address whether NPV biomass is measured directly or indirectly as a component of total 

aboveground biomass. From the middle to peak growing season, NPV biomass is unchanged 

without cure of green vegetation and removal of NPV by ground overflow and wind etc., while 

total aboveground biomass increases as green vegetation increases. So NPV biomass sampled in 

the field season (June 20 to July 2) generally equal to that in middle growing season; however 

total aboveground biomass sampled in the field season is larger than that in middle growing 

season.  Therefore, SAR parameters from June 15 and June 19 yield better estimation of NPV 

biomass than total aboveground biomass. In the peak growing season, using the June 28 image, 

total aboveground biomass estimate is slightly better than the NPV biomass estimate. The very 

similar r
2
 values for measuring total aboveground and NPV biomass in the peak growing season 

suggest that NPV, as a merely part of the total vegetation, may be indirectly measured as a part 

of the total aboveground biomass.     
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Figure 4-3 The Radarsat-2 response and non-photosynthetic vegetation (NPV) and total 

aboveground biomass: (a) the cross-polarization VH/VV ratio of the June 15 FQ 23 image, (b) 

the Entropy of the June 19 FQ5 image, (c) the cross-polarization ratio of the June 28 FQ 3 image, 

and (d) the Alpha angle of the June 28 FQ3 image. 

 

4.6.3 Accuracy Assessment 

Accuracy of NPV biomass and total aboveground biomass estimation using the VH/VV ratio 

extracted from the June 15 FQ23 image and the depolarization ratio of the June 28 FQ3 image 

was assessed using a leave-one-out cross-validation approach (Figure 4-4). Relative RMSE 

(rRMSE) for NPV biomass and total aboveground biomass estimation using the VH/VV ratio of 

NPV:  

y = 2324.1x - 280.03 

(r² = 0.70, P<0.05) 

Total biomass:  

y = 2280.6x - 82.4 

(r² = 0.51, P<0.05) 
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the FQ23 image acquired on June 15, 2014 are 9% and 8.4%, respectively. The rRMSE (12.6%) 

for NPV biomass estimation is higher, while it (6.9%) is lower for total aboveground biomass 

estimation using the depolarization ratio of the June 28 FQ3 image.  

  

Figure 4-4 shows that using the June 15 FQ23 image, both NPV biomass and total aboveground 

biomass in valley and disturbed vegetation communities are well estimated (stay close to the 1:1 

line). Comparatively, accuracy of biomass estimation in slope and upland vegetation 

communities is lower. Using the small incidence angle FQ3 image, NPV biomass is generally 

underestimated, except for one upland site and one slope site. Using the FQ3 image, total 

aboveground biomass in valley and slope land is better estimated than that in upland and 

disturbed communities. This indicates that vegetation biomass can be better estimated in valley 

and disturbed communities where vegetation biomass is larger than other sampling sites in the 

study area, as long as the saturation threshold of SAR images is not reached in dense vegetation 

communities.   
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(a) VH/HH for NPV biomass, June 15 FQ23 

image 

 

(b) VH/HH for total aboveground biomass, June 

15 FQ23 image 

 
(c) De-polarization ratio for NPV biomass, 

June 28 FQ3 image 

 
 

(d) De-polarization ratio for total aboveground 

biomass, June 28 FQ3 image 

 
 

Figure 4-4 Comparison of estimated and field measured non-photosynthetic vegetation (NPV) 

and total aboveground biomass: (a) the cross-polarization VH/VV ratio of the June 15 FQ 23 

image for NPV biomass estimation (rRMSE = 9%), (b) the cross-polarization VH/VV ratio of 

the June 15 FQ 23 image for quantifying total aboveground biomass (rRMSE = 8.4%), (c) the 

de-polarization ratio of the June 28 FQ 3 image for NPV biomass estimation (rRMSE=12.6% ), 

and (d) the de-polarization ratio of the June 28 FQ3 image for quantifying total aboveground 

biomass (rRMSE= 6.9%). 

 

4.6.4 NPV biomass map 

The NPV biomass map was created using the cross-polarization ratio (VH/VV) calculated from 

the FQ23 SAR image acquired on June 15, 2014 (Figure 4-5). The NPV map shows high NPV 
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biomass along the Frenchman River, and the prairie dog town marked by the red square shows 

very low NPV biomass. The rRMSE is 9% based on the cross-validation. However, the RMSE is 

as large as 155 g/m
2
.  Notably, the majority of the study area shows low NPV biomass close to 

zero, which means the spatial variations of NPV biomass estimated using the FQ23 image is not 

quite meaningful.  

 

Figure 4-5 The NPV biomass map derived from the cross-polarization VH/VV ratio of the June 

15 FQ 23 image (rRMSE = 9%, RMSE=155 g/m
2
). 

 

 

4.7 Discussion 

The largest r
2
 values for NPV and total aboveground biomass estimation were achieved by the 

VH/VV ratio of the FQ23 image acquired on June 15, 2014. It indicated the potential of 

Radarsat-2 data for quantifying NPV biomass in middle growing season when capability of 

optical images, including Landsat 8 OLI and Sentinel-2A, is limited (Chapter 3). In the peak 

growing season, depolarization ratio of the June 28 FQ3 image has the best performance for 

NPV and total aboveground biomass estimation. However, the performance of June 28 image for 

biomass estimation was affected by increased SAR backscattering  as a result of increased 

moisture from the 0.7 mm daily precipitation on June 28th, and 20 mm total precipitation within 

3 days (June 26 to June 28). The performance of Radarsat-2 images for NPV and total above 
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ground biomass estimation in the early growing season was not evaluated due to the lack of 

images.   

 

4.7.1 Incidence angle effects 

The performance of the Radarsat-2 images on quantifying NPV biomass was affected by 

incidence angle, ground cover that was highly related to vegetation phenology, and environment 

condition (e.g., wetness of canopy and soil surface, etc.). NPV biomass was nearly unchanged 

from the early growing season until the peak growing season in GNP. The volume scattering of 

the June 2 FQ1 image is not as good as that of the June 8 FQ27 image for estimating NPV 

biomass, because the FQ1 image, with a small incidence angle, has more ability to penetrate the 

canopy (Figure 4-2(c)), and therefore cannot quantify standing dead vegetation biomass very 

well. The good performance of volume scattering of the June 8 FQ27 images on NPV biomass 

estimation is attributed to its large incidence angle which enables them to capture the standing 

dead biomass, a substantial component of NPV biomass. Besides the precipitation influence on 

the FQ12 image, the moderate canopy penetration capability to plant surface litter and ability to 

capture canopy volume scattering of the FQ10 and FQ12 images accounted for the lower r
2 

values for quantifying NPV biomass.  

 

The superiority of the June 15 FQ23 and the June 8 FQ27 images for NPV biomass estimation is 

consistent with the finding that radar images with a large incidence angle and reduced 

penetration to soil surface are more sensitive to crop residue in harvested cropland (McNairn et 

al., 1996). Also, SAR images with large incidence angles are more sensitive to surface roughness 

(Baghdadi et al., 2002; 2008).  

 

4.7.2 Environmental Effects 

Besides incidence angle effects, wind and precipitation play a role in NPV and total aboveground 

biomass estimation using SAR data. Strong wind blows down standing dead vegetation and 

green vegetation, alters surface roughness and changes exposure of plant litter on the surface, 

and thus affects backscattering.  Such change in backscattering affects NPV biomass estimation. 

The poor performance of the July 02 FQ27 image for NPV biomass estimation can be attributed 

to wind effects and precipitation may account for the reduced r
2
 value for quantifying NPV 
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biomass using the July 09 FQ23 image (Table 4-2). The difference in performance of the July 05 

FQ7 and July 06 FQ10 images for biomass estimation is possibly partially attributed to the 

strong wind on July 5, besides the small incidence angle difference. Also, the July 5 image 

covers only 10 sites, which also possibly makes a difference.  

 

Precipitation increases background and canopy moisture, which increases dielectricity and 

further enhances backscattering. This enhanced backscattering from increased moisture reduced 

the ability of SAR data to detect NPV that usually has very low water content. The reduced r
2 

value for quantifying NPV and total aboveground biomass using the July 09 FQ23 image may be 

accounted for by precipitation. Although incidence angle of the June 19 FQ5 and June 18 FQ12 

makes a lot difference in biomass estimation, the large amount of precipitation (Table 4-2) is also 

a possible reason of the bad performance of the June 18 image. 

 

4.7.3 Suitable SAR parameters 

Selecting a suitable SAR parameter is vital for quantifying NPV biomass and total aboveground 

biomass. The cross-polarization ratio (VH/VV) and depolarization ratio outperformed the co-

polarization ratio (HH/VV) for NPV and total aboveground biomass estimation. This finding 

agrees with the finding of Ferrazzoli et al. (1997) that the availability of cross-polarization was 

important for biomass estimation in croplands and forests. It also explained the much smaller r
2
 

(0.30) on NPV biomass estimation achieved by the co-polarization Radarsat-2 image in the study 

area (Finnigan, 2013). The good performance of VH/VV is attributed to the sensitivity of cross-

polarization backscatter coefficients (VH) to standing vegetation biomass and the sensitivity of 

VV backscatter coefficient to the vertical structure of vegetation (Bartsch et al., 2016). The 

inferiority of the co-polarization ratio is because co-polarization backscattering is primarily from 

surface scattering (Wiseman et al., 2014).  

 

The VH/VV and depolarization ratio are also superior to other SAR parameters analyzed in this 

study for NPV and total biomass estimation, including RVI and decomposition components of 

the Freeman-Durden decomposition with an exception of volume scattering of the June 8 FQ27 

image. Superiority of the VH/VV and depolarization is also demonstrated, in contrast with 

entropy and Alpha angle. Entropy and Alpha angle of steep incidence angles (in this study, the 
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FQ1-FQ3 mode) have similar performance with the VH/VV and depolarization ratio for 

quantifying NPV and total aboveground biomass. However, when using shallow incidence angle 

images, such as the June 15 FQ23 and June 8 FQ27 images, entropy and Alpha angle are inferior 

to the VH/VV and depolarization ratio. 

 

4.8 Conclusions 

This study investigated the application of C-band, fine quad-pol, and Radarsat-2 data for 

quantifying NPV biomass and total aboveground in a conserved semiarid mixed grassland, 

characterized by a large amount of dead vegetation material and high percentage of biological 

soil crust. The FQ3 Radarsat-2 image is most suitable for quantifying NPV and total 

aboveground biomass in the peak growing season. However, Radarsat-2 images with a large 

incidence angle, such as FQ23, are recommended for NPV and total aboveground biomass 

estimation in middle growing seasons. Creating an NPV biomass map using a SAR image is still 

challenging.  

The depolarization ratio and the cross-polarization ratios (VH/VV) are the best SAR parameters 

for quantifying NPV and total aboveground biomass. Entropy and alpha angle decomposed using 

Radarsat-2 images with small incidence angles also have potential.  

This was the first study, to our knowledge, done to investigate the potential effectiveness of 

multi-angular, multi-temporal fine Quad-pol Radarsat-2 images for quantifying NPV biomass in 

grasslands. This has the potential to significantly contribute to grassland management that uses 

NPV biomass and (or) total aboveground biomass as an indicator of ecosystem health, fire risk 

assessment, and herbivore carrying capacity estimation, among other things. It also contributes to 

our understanding of grassland ecology, hydrology, and climatology that use biomass as a model 

input.   
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CHAPTER 5: NON-PHOTOSYNTHETIC VEGETATION AND REMOTE SENSING OF 

ECOSYSTEM HEALTH 

5.1 Preface 

This chapter reviews the potential, the challenges, and the opportunity of remote sensing 

including optical, SAR, and LiDAR to assess and monitor ecosystem health. It discusses the 

contribution of my research to quantify NPV biomass for grassland ecosystem health assessment. 

Section 5.2 to 5.7 was published as a review paper in Sensors.   

 

Li Z, Xu D and Guo X. (2014) Remote sensing of ecosystem health: opportunities, challenges, 

and future perspectives. Sensors 14: 21117-21139. DOI: 10.3390/s141121117. 

 

Zhaoqin Li came up with the idea, reviewed the literature, and wrote this manuscript. Dr. 

Dandan Xu reviewed the concept of ecosystem health assessment. This manuscript was finished 

under the direction of Dr. Xulin Guo. The authors hold the copyright, as it was published through 

Open Access Publishing (MDPI). 

 

5.2 Abstract 

Maintaining a healthy ecosystem is essential for maximizing sustainable, good quality ecological 

services to human beings. Ecological and conservation research has provided a strong scientific 

background to identify ecological health indicators and correspondingly, plan effective 

conservation. At the same time, ecologists assert a strong need for spatially explicit and 

temporally effective ecosystem health assessment (EHA) based on remote sensing data. 

Currently, remote sensing of ecosystem health is only based on one of a few ecosystem 

attributes: vigor, organization, or resilience. However, an effective ecosystem health assessment 

should be a comprehensive and dynamic measure of all three ecosystem attributes. This chapter 

reviews opportunities for remote sensing including optical, Radar, and LiDAR, to directly 

estimate indicators of the three ecosystem attributes. It discusses the main challenges to 

developing a remote sensing-based spatially-explicit comprehensive ecosystem health protocol 

and the contribution of my NPV research to EHA. Finally, it provides a future perspective. The 



 

106 

 

main challenges to developing a remote sensing-based spatially-explicit EHA system are: 1) 

scale, 2) transportability, 3) data availability; and 4) uncertainties in health indicators estimated 

from remote sensing data. My research on NPV benefits EHA by providing NPV biomass 

estimates and an approach for measuring spatially explicit NPV biomass that is applicable in 

grassland ecosystems. My NPV research also contributes to EHA by providing a solution to 

reducing the uncertainties in quantifying ecosystem vigor and organization.   

5.3 Introduction  

Ecosystems worldwide are threatened by anthropological activities and natural disturbances 

(Tolba and El-Kholy, 1992). Under such pressure, maintaining a healthy ecosystem is essential 

for supplying stable and sustainable goods and services for human societies (Burkhard et al., 

2009). Assessing and monitoring ecosystem health not only provides early warning of 

environmental degradation but also identifies the cause of an existing problem (Rapport et al., 

2009). It is therefore an important early step for ecological conservation and ecological service 

assessment. 

 

Ecosystem health assessment (EHA) as a part of environmental management began in the late 

1980’s. Ecosystem health merged the concept of ecosystem monitoring with health science 

(Rapport et al., 1998) and integrated social and physical science (Patil et al., 2001). The early 

definition of ecosystem health was simply animal health or plant health (Wicklum and Davies, 

1995). However, this definition should consider the complexity of the ecosystem to emphasize 

the connections between community processes and the physical environment (Begon et al., 

2009). Early ecosystem health research evaluated it using keystone species (Costanza et al., 

1992). However, keystone species evaluation cannot fully represent the energy flux, nutrient 

cycle, productivity, diversity, or response capacity to disturbance, although it may indirectly 

reflect interactions among keystone species, other species, or the physical environment in the 

ecosystem. In 1999, Costanza and Mageau defined ecosystem health as “a comprehensive, 

multiscale, dynamic, hierarchical measure of system resilience, organization, and vigor” 

(Costanza and Mageau, 1999). According to this definition, the condition of one specific 

ecosystem can be assessed by measuring its integrated ecosystem attributes: vigor, organization, 
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and resilience (Costanza and Mageau, 1999). Nevertheless, it is impossible to set up multiple 

specific health indicators for all ecosystems to assess their status (Jorgensen et al., 2005).  

 

There is an urgent need to understand and monitor spatial heterogeneity of ecosystem health 

(Nelson et al., 2009) to optimize conservation efforts (Polasky et al., 2008). However, the 

original EHA was conducted based on field ecological data and/or models driven by such field 

data. These cannot be widely applied at a large spatial scale (Chen and Wang, 2005) and have 

difficulty in providing spatially and temporally explicit assessment (Kerr and Ostrovsky, 2003).  

 

Remote sensing data have the potential to assess and monitor ecosystem health at various 

temporal and spatial scales across a broad spatial extent (Kerr and Ostrovsky, 2003; Ludwig et 

al., 2007). They can be used to directly detail ecological health indicators, such as productivity, 

species richness, and resilience, after natural and human-induced disturbance (Kerr and 

Ostrovsky, 2003). They can indirectly provide inputs for spatially explicit ecological process 

modeling (Hilker et al., 2008). To date, the application of remote sensing on EHA or monitoring 

has been focused on single ecosystem attributes, such as productivity (Nayak et al., 2010; 

Brinkmann et al., 2011; Wang and Yang, 2012), species invasion (Naito and Cairns, 2011; 

Mohamed et al., 2011), or response to stress (Dubinin et al., 2010), or climate change (Bao et al., 

2010; Gao et al., 2010). The methods and conclusions of these studies are beneficial to more 

current ecological studies using remote sensing. However, it is challenging if not impossible to 

understand a complex ecosystem through one ecosystem attribute (Costanza and Mageau, 1999). 

A comprehensive and dynamic EHA with the integration of ecosystem vigor, organization, and 

resilience is urgently needed. Establishing such a spatially explicit EHA and monitoring system 

faces lots of challenges (Li et al., 2014) and with them, opportunities. This challenge would 

benefit from the close collaboration of remote sensing specialists and ecologists (Barrios, 2007). 

 

This chapter proposes a framework for developing a remote sensing based EHA system, 

documents opportunities and challenges to develop a comprehensive EHA system, and discusses 

the contribution of my research on quantifying NPV biomass using remote sensing approaches to 

EHA.   
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5.4 A Framework of a Remote Sensing-Based Ecosystem Health Assessment  

The spatially explicit nature of remote sensing data with frequent revisits provides an 

opportunity to assess and monitor the spatial heterogeneity of ecosystem health. Nonetheless, 

concerns have been raised that remote sensing specialists may pay more attention to technology 

than ecological problems (Aplin, 2005; Newton et al., 2009), while ecologists may not have 

sufficient remote sensing background to address ecological problems at relevant scales (Barrios, 

2007). Thus, efforts need to be made to bridge the research gap of the two communities. 

 

To develop a comprehensive remote sensing based EHA system, one might follow the 

procedures proposed in Figure 5-1 with the participation of remote sensing experts and 

ecologists. The cooperation of the experts in both fields allows effective health indicators to be 

identified and ensures that those indicators can be measured using remote sensing data. 

 

Although Figure 5-1 includes indirect estimation of health indicators through modeling using 

remote sensing data as an input, this chapter focuses on the questions Q7a: Are there any routine 

remote sensing products for health indicators? and Q7b: What kind of imagery and approach can 

be used to estimate health indicators? Additionally, I will address challenges and future 

opportunities to develop a remote sensing based spatially explicit EHA and monitoring system. 
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Figure 5-1 Procedures to integrate the expertise of remote sensing experts and ecologists to 

develop a remote sensing based Ecosystem Health Assessment and Monitoring System. The 

questions outlined in dotted lines shows the contribution of ecologists. 
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5.5 Remote Sensing of Ecosystem Health  

Dynamic and integrated measures of ecosystem attributes (vigor, organization, and resilience) 

allow an effective EHA and monitoring. For each ecosystem attribute, there are a number of 

indicators, although those indicators may be different for different ecosystems. This section 

summarizes the potential of remote sensing to estimate indicators of the three ecosystem 

attributes: vigor, organization, and resilience.  

 

5.5.1 Remote sensing of vigor  

Vigor can be measured through metabolism, yield, and soil fertility (Rapport et al., 1999). The 

most commonly used vigor indicator is the NPP or Gross Primary Production (GPP) of an 

ecosystem (Costanza and Mageau, 1999; Boesch, 2000). Other indicators that are directly or 

indirectly associated with NPP are green vegetation cover, green vegetation biomass, NPV cover 

or biomass, green ratio (green/dead vegetation cover or biomass), bare soil cover and BSC cover 

in semiarid and arid regions, and vegetation biochemical properties (chlorophyll, nitrogen, 

phosphorous, and moisture content, among others). In addition, an increase in NPP sometimes 

does not mean an improved ecosystem if that increase is attributed to the expansion of invasive 

plant species (Boesch, 2000). Therefore, distribution of invasive plant species is another 

potential indicator of ecosystem vigor.  

 

5.5.1.1 NPP or GPP 

Changes in NPP are often used to evaluate environmental degradation in the context of 

desertification, pollution impacts, climate change, and deforestation (Running et al., 2004). NPP 

has been estimated and monitored using optical remote sensing images since the 1970’s (Feng et 

al., 2010), yet remote sensing derived daily global NPP products were not operationally 

produced until the mid-2000’s (Turner et al., 2006). The modeling approach for predicting NPP 

is based on the light use efficiency (LUE) concept proposed by Monteith (Monteith, 1972) and 

modified by Prince (Prince, 1991). Based on their concept, the GPP of one ecosystem can be a 

function of the absorbed Photosynthetically Active Radiation (PAR) or absorbed solar radiation 

at 400 to 700 nm wavelengths and the photosynthetic efficiency that is specific for an individual 
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plant type. NPP is the product of GPP by subtracting respiration. This LUE-based modeling 

approach has been applied to produce MODIS global 8-day GPP and annual NPP at 1 km spatial 

resolution products (MOD17; Turner et al., 2006) that have been available for monitoring 

ecological conditions and environmental changes (Zhao et al., 2005) since the mid-2000’s. 

 

For studies at regional or smaller scales, a statistical empirical model of GPP or NPP and a 

vegetation index, such as Normalized Difference Vegetation Index (NDVI), is more practical, 

considering the large number of parameters of LUE model which greatly affect the accuracy of 

GPP (or NPP) (Feng et al., 2010). A good NDVI-GPP (or NPP) relationship has been observed 

in low biomass vegetated areas, such as the Arctic tundra (Boelman et al., 2003) and the steppe 

(Wylie et al., 2003). However, NDVI becomes saturated at high vegetation biomass (Myneni et 

al., 1995) including areas of dense grass, forest, and cropland, and thus results in a significant 

difference in spatial distribution of NDVI and NPP (Xu et al., 2012). The enhanced vegetation 

index (EVI) was thus developed for MODIS and has shown an ability to overcome the saturation 

limitation of NDVI (Olofsson et al., 2008). In addition, the accuracy of GPP estimation from the 

empirical relationship with vegetation indices is influenced by the spectral resolution of remote 

sensing data. For example, NDVI derived from EO-1 Hyperion and MODIS with higher spectral 

resolution yielded more accurate GPP estimation than Landsat ETM+ with lower spectral 

resolution in a mountainous meadow ecosystem (Gianelle et al., 2009). 

 

5.5.1.2 Green vegetation, NPV, BSC, and bare soil cover 

The fractional cover of green vegetation, NPV, and bare soil can be estimated simultaneously 

using an SMA approach (e.g., Roberts et al., 1993; Gill and Phinn, 2009; Guerschman et al., 

2009), or using the empirical relationships between cover and spectral indices (e.g. Nagler et al., 

2003; Carlson and Ripley, 1997). Green vegetation cover and bare soil estimation will not be 

discussed in depth here, as the former has been routinely produced as remotely sensed products 

from MODIS, AVHRR, and SPOT-VGT, etc., and the latter can be estimated together with NPV 

and PV. NPV is a significant component of vegetation productivity in grasslands, savannas, 

shrublands, dry woodlands (Asner, 1998), as well as wetlands (Schile et al., 2013). BSC is 

present in semiarid and arid areas worldwide (West, 1990). Both NPV and BSC are ecologically 

important, yet estimating their abundance using remote sensing methods is still very challenging. 
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The theory, approaches, opportunities, and challenges of remote sensing of NPV were discussed 

in Chapter 1.  

 

The spectral characteristics of BSC have been investigated by many researchers (e.g., Graetz and 

Gentle, 1982; O'NEILL, 1994; Karnieli et al., 1996; Zhang et al., 2007) using field 

measurements. Although an absorption feature at approximately 680 nm has always been 

observed in BSC samples, there is a noticeable difference in the spectra as dominant BSC species 

change (Karnieli, 1997; Zhang et al., 2007). A recent study found that water absorption features 

at approximately 1450 nm can be used to differentiate BSC from green vegetation and the 

spectra of the most developed BSCs is characterized by a steeper slope between about 680 and 

750 nm (Chamizo et al., 2012). Based on spectral characteristics, many efforts have been made 

to detect and map BSC using Landsat MSS, TM, or ETM+ images (Tsoar and Karnieli, 1996; 

Karnieli, 1997; Lewis et al., 2001; Chen et al., 2005; Zhang et al., 2007). These studies have 

demonstrated that remote sensing has great potential to detect and map the spatial distribution of 

BSC at a large spatial extent in a timely and efficient manner (Karnieli et al., 2001; Chen et al., 

2005). However, spectral variation of different BSC communities makes the derived spectral 

indices less universally applicable for mapping BSC cover. The crust index developed for 

mapping cyanobacteria-dominated BSC (Karnieli, 1997) is not suitable for lichen-dominated 

BSC covering large areas of cool and cold deserts (Belnap, 2003). Another BSC index (BSCI) 

was proposed to discriminate lichen-dominated BSC from land surfaces of bare sand and dry 

plant material in a desert (Chen et al., 2005). However, its use was highly influenced by the 

predetermined lower and upper thresholds of BSCI. Besides the crust indices, continuum 

removal (Weber et al., 2008), SMA approaches (Ustin et al., 2009), and partial least squares 

regression-linear discriminant analysis (Chamizo et al., 2012) have also been used for BSC 

investigation. The conclusions of these studies are not always consistent among study areas. For 

instance, hyperspectral images were thought to not be able to effectively differentiate BSCs 

when there was a mixed pixel with plants (Hill et al., 1998). Nevertheless, Weber et al. (2008) 

concluded that hyperspectral images could work reliably for BSC identification in the presence 

of both plants and plant litter using the continuum removal crust identification algorithm 

(CRCIA). Also, Ustin et al. (2009) asserted the application of hyperspectral images for 

monitoring local or even regional changes of BSC in the southwestern deserts of the United 
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States. The inconsistency in findings indicated that further research is needed in more arid and 

semiarid ecosystems, such as mixed grasslands using ground hyperspectral data.  

 

5.5.1.3 Vegetation biochemical properties 

Vegetation biochemical properties, such as chlorophyll, nitrogen, and phosphorous are strongly 

related to ecosystem functioning, and thus are important indicators of ecosystem health 

assessment (Homolová et al., 2013). Chlorophyll controls photosynthesis and is thus an indicator 

of plant health and GPP (Leith, 1975). Phosphorous, as an indicator of the nutrient quality of 

plant and plant growth rate (Homolová et al., 2013), can also be an indicator of plant health. 

Nitrogen, being an important component of chlorophyll, is also strongly associated with plant 

health and GPP. Remote sensing of vegetation biochemical properties has been successfully 

conducted at a leaf level for several decades using narrow band spectral indices derived from 

ground and space hyperspectral data. Efforts have been made to scale up biochemical content to 

canopy level using remote sensing data in crops, forests (He and Mui, 2010) and semiarid mixed 

grassland (Wong and He, 2013). Methods used for scaling up biochemical contents from leaf to 

canopy level were summarized by He and Mui (2010). Biochemical content estimation at a 

landscape level remains challenging despite recent and promising advances (He and Mui, 2010; 

Mitchell et al., 2012).  

 

Due to its importance, chlorophyll has drawn the particular attention of both ecologists and 

remote sensing scientists. Chlorophyll has been estimated using red edge position (REP) based 

on the finding that an increase in chlorophyll content will be reflected on the spectra as the 

wavelength edge of red absorption features move to even longer wavelengths (Curran, 1989). 

However, REP cannot accurately measure high chlorophyll content (Curran, 1989; Munden et 

al., 1994). In addition, spectral indices developed for chlorophyll estimation were summarized 

and compared by Haboudane et al. (2002) and Wu et al. (2008), and a red-edge based vegetation 

index has demonstrated more potential for chlorophyll content estimation in a semiarid mixed 

grassland ecosystem of Canada (Wong and He, 2013). The estimation of chlorophyll mainly uses 

continuous wavelength ranges or narrow band spectral indices. However, space sensed data with 

fine spectral resolution, including the Medium Resolution Imaging Spectrometer (MERIS) and 

the upcoming new satellite Sentinel-2A, have also demonstrated great potential for chlorophyll 
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estimation (Dash and Curran, 2004; Delegido et al., 2011). The terrestrial chlorophyll index 

(MICI) was developed based on bands 8, 9, and 10 of the MERIS, and global composites of 

MICI at a 300 m spatial resolution, as a unique terrestrial chlorophyll product that has been 

produced under the support of the ESA since 2006 (Curran et al., 2007).  

 

There are some remote sensing studies of vegetation nitrogen at leaf and canopy levels that have 

high accuracy (Homolová et al., 2013). There has only been limited research on phosphorous 

estimation and this has proven less successful than nitrogen estimation (Ramoelo et al., 2011). 

The commonly used approach for estimating these vegetation biochemical properties are 

empirical methods based on in situ measures of biochemical content using remotely sensed data. 

The most widely used wavelengths for measuring nitrogen and phosphorous are the NIR and 

SWIR regions (Ramoelo et al., 2011). This suggests that estimates of these biochemical 

properties are highly influenced by canopy water content. To minimize water absorption effects 

and other influences from atmospheric, soil, redundancy of hyperspectral data, spectral indices, 

first derivative, continuum removal, and log-transformed spectra have been used to boost the 

absorption features of vegetation biochemical properties. Water-removed spectra constructed, 

based on a nonlinear combination of dry-matter and leaf water spectra (Gao and Goetzt, 1995) 

increased the accuracy of nitrogen and phosphorous estimation of savanna grass compared to 

first derivative and continuum removal spectra (Ramoelo et al., 2011). The commonly used 

empirical models for predicting biochemical properties based on biochemical spectra features are 

simple linear regression, partial least-squares regression (PLSR), and stepwise multiple linear 

regression (SMLR). The spectral indices used for nitrogen estimation can be found in Tian et al. 

(2011) but are used mainly for crops, while no vegetation index has yet been specifically 

designed for phosphorous estimation (Homolová et al., 2013).  

 

5.5.1.4  Invasive plant species 

Invasive plant species in diverse ecosystems can be shrubs, trees, and herbs that alter the 

biodiversity, structure, and function of ecosystems (He et al., 2011). Identification of invasive 

tree and shrub species using remote sensing was successfully demonstrated (Fuller, 2005; Asner 

et al., 2008; Lawes and Wallace, 2008; Walsh et al., 2008) using multispectral medium spatial 

resolution Landsat images, high spatial resolution IKONOS, or hyperspectral images. Remote 
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sensing of herb species is much more difficult and highly dependent on their separation from 

surrounding species and the background (Mullerova et al., 2013). Due to its difficulty, 

identification of herb species was largely conducted using hyperspectral images (reviews by 

Huang and Asner, 2009; He et al., 2011). However, high spatial resolution IKONOS (4 m) with 

texture information (Laba et al., 2010) and very high spatial resolution aerial photography (Jones 

et al., 2011; Mullerova et al., 2013) also mapped herb invaders with high accuracy. Therefore, 

one should be cautious to select remote sensing data with suitable spatial and spectral resolution 

for specific species recognition (for review see Huang and Asner, 2009). Methods used for 

invasive species identification mainly include visual interpretation and pixel-based and object-

oriented image classification (Huang and Asner, 2009). The spatial resolution issue may be 

overcome through methods that include SMA of one pixel (Walsh et al., 2008) and combinations 

of other ancillary data. Spectra resolution limitations may be overcome by selecting appropriate 

periods or by using time series data to maximize differences in spectra between invasive species, 

native species, and backgrounds.  

 

5.5.2 Remote sensing of organization  

Ecosystem organization represents both species diversity and the interactions among species 

within that ecosystem (Costanza, 1992). Indicators of organization can be species richness, 

landscape diversity, and structural traits including canopy height, LAI, canopy morphology, and 

horizontal structure represented by the spatial arrangement of green vegetation, NPV, and bare 

soil. Since remote sensing of green vegetation, NPV, and bare soil has been reviewed in the last 

section, species richness and biodiversity, and structural traits are the focus in this section. 

 

5.5.2.1 Species richness and biodiversity 

Species richness is a primary measure of regional or community biodiversity (Gotelli and 

Colwell, 2001). Due to the ecological importance of biodiversity, considerable research and a 

few reviews (Gould, 2000; Nagendra, 2001; Turner et al., 2003; Gillespie et al., 2008; Olofsson 

et al., 2008) have been completed on the topic of remote sensing of species richness. To date, 

species richness studies have largely used imagery of one sensor at a specific time (Gillespie, 

2005). Only more recently have researchers used images of multiple passive sensors over 
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multiple time periods (Levin et al., 2007). Remote sensing of species richness can be classified 

as direct mapping and indirect modeling approaches (Nagendra, 2001; Gillespie et al., 2008). 

Direct mapping of species distribution using remote sensing is similar to mapping invasive plant 

species in terms of approaches, potential and limitations. Indirect modeling approaches have 

been widely used to predict species richness based on the empirical relationships between field 

species distribution and information derived from remote sensing, such as land cover, landscape 

metrics, NPP, and spectral variation (Nagendra, 2001; Gillespie et al., 2008).  

 

The rationale on why land cover and landscape metrics can be correlated with species richness or 

biodiversity is that land cover and landscape metrics, including fragmentation (Kerr and 

Ostrovsky, 2003), have certain associations with species distributions. Such land cover 

information has been used for predicting species richness (Luoto et al., 2002; Kerr and 

Ostrovsky, 2003). This method may be suitable for species richness investigation at large spatial 

scales. However, prediction accuracy of species richness using such methods has been 

questioned on three levels: 1) environmental factors including temperature, precipitation, 

disturbance, and others were neglected (Griffiths and Lee, 2000), 2) the method is highly 

affected by spatial resolution of remote sensing imagery (Saura, 2004), and 3) the derived 

landscape-metrics do not contain internal information of the metrics (Gillespie, 2005).  

 

The relationship between NPP and species richness was established based on the species-energy 

theory which hypothesizes that species richness is correlated with NPP (Currie, 1991). Thus, 

NDVI in close relationship with NPP (Prince, 1991) has been widely used to predict species 

richness (Nagendra, 2001; Kerr and Ostrovsky, 2003). The utilization of NDVI is primarily 

based on NDVI variation, and a positive relationship between NDVI and species richness was 

found in Fairbanks and McGwire (2004) and Levin et al. (2007). However, there are inconsistent 

conclusions that attribute little correlation between NDVI variation and species richness. 

Research indicated that NDVI variation has a negative relationship with species richness 

(Gillespie, 2005), and the hypothesis of the research is that low NDVI variation and higher 

homogeneity consequently result in higher species richness (Mackey and Currie, 2001). 

Although there are inconsistent conclusions, using NDVI for species richness prediction is still 

an effective method at large spatial scales (Mackey and Currie, 2001). 
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The application of spectral variation to predict species richness is based on the spectral variation 

hypothesis (SVH) proposed by Palmer et al. (2002) which assumes that higher variation in 

spectra, the higher heterogeneity of habitats allowing coexistence of more species, and 

consequently higher species richness (Rocchini et al., 2007). In this domain, spectral indices, 

land-cover heterogeneity, and spectral variability derived from optical remote sensing data have 

been used to predict species richness (Rocchini, 2007). SVH approaches will be an important 

direction for optical remote sensing of species richness (Gillespie et al., 2008).  

 

Overall, landscape metrics and NDVI approaches are more suitable for species richness 

estimation at large spatial scales, while SVH can be used at a fine scale. However, prediction of 

species richness is affected by both spatial and spectral resolutions of satellite imagery 

(Rocchini, 2007). For the SVH approach, multispectral imagery has difficulty to provide 

sufficient information for species richness prediction as is hard use for retrieving biochemical 

and canopy structure information (Cohen et al., 1990). Hyperspectral images have an advantage 

as they can provide information on canopy biochemical elements including chlorophyll, 

nitrogen, and cellulose content (Jacquemoud et al., 1996). In addition, ancillary data, such as 

temperature, precipitation, and topography, can significantly contribute to species richness 

estimation (Camathias et al., 2013).  

 

5.5.2.2 Structural traits  

Structural traits including canopy height, LAI and canopy morphology can be derived from 

optical remote sensing data through empirical relationships with vegetation indices or image 

texture metrics (Wulder et al., 2004; Falkowski et al., 2009). Global LAI products have been 

produced using MODIS and Cyclopes remote sensing data (Fang et al., 2012). Nevertheless, 

more accurate estimation of these structural parameters can be achieved through LiDAR (e.g., 

Van Leeuwen and Nieuwenhuis, 2010; Asner et al., 2012) and Radar data (e.g., Kasischke et al., 

1997; Andrew et al., 2014). For example, global tree height has been mapped using point 

samples from the spaceborne LiDAR GLAS data, and spatial continuity of tree height has been 

measured via MODIS reflectance data (Lefsky, 2010).     
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5.5.3 Remote sensing of resilience  

Ecosystem resilience refers to an ecosystem’s ability to remain in its current state and return to 

that state following disturbance (Costanza, 1992). Disturbances principally consist of natural 

climate change, wildfire, and anthropological activities, such as grazing and prescribed fire. 

Resilience at a given time may be assessed based on the ratio of a given ecosystem health 

indicator, such as aboveground biomass, measured before and after a disturbance (Tilman and 

Downing, 1996). Remote sensing with a capacity for ecosystem health indicator retrieval also 

provides an opportunity to estimate ecosystem resilience to disturbances. However, such remote 

sensing data should be frequently acquired in a long time series to cover the regeneration time.  

 

NDVI data have been widely used to evaluate ecosystem resilience to climate change (e.g., Li 

and Guo, 2012; Pravalie et al., 2014), fire (e.g., Díaz-Delgado et al., 2002; Van Leeuwen, 2008; 

van Leeuwen et al., 2010), and grazing (e.g., Numata et al., 2007; Paudel and Andersen, 2010; 

Yang et al., 2012). Other vegetation indices (e.g. Adjusted Transformed Soil-Adjusted 

Vegetation Index, ATSAVI) have been frequently used. Considering the requirement for time-

series data, Landsat MSS, TM, ETM+, and OLI, MODIS, AVHRR, and SPOT-VEG NDVI data 

are normally options for resilience estimation. Nevertheless, precautions should be taken to 

minimize the effects of seasonal and inter-annual variation of phenology and climate when using 

these NDVI data for evaluating resilience (Díaz-Delgado et al., 2002). To minimize such effects, 

the quotient NDVI (average NDVI measured in the disturbed area divided by the average NDVI 

measured in the surrounding undisturbed area) was calculated for resilience evaluation (Díaz-

Delgado et al., 2002). However, the surrounding undisturbed area should have similar 

vegetation, topography, and geology to the disturbed area (Díaz-Delgado et al., 2002). In many 

instances, although the surrounding undisturbed area can be a good reference, it is difficult to 

find suitable benchmarks (Bastin et al., 2012). Thus, a dynamic reference-cover method was 

proposed to separate grazing and rainfall effects in rangelands using remote sensing imagery 

(Bastin et al., 2012). 
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5.6 Challenges to Developing a Remote Sensing-based EHA System 

Remotely sensed data can be used to retrieve a variety of ecosystem health indicators as 

surveyed above. However, different indicators may require different remote sensing data for 

higher estimation accuracy. Hence, there are multiple challenges to combining indicators of 

vigor, organization, and resilience for establishing a comprehensive, temporally and spatially 

explicit EHA system. In addition to the lack of a good solution to estimate NPV and BSC cover 

using remote sensing data as reviewed, there are other challenges such as 1) scale, 2) 

Transportability difficulty, 3) data availability, and 4) uncertainties in retrieved ecosystem health 

indicators from remotely sensed data. 

 

5.6.1 Scale issue 

Species distribution and ecological processes are dependent on scale and the growing conditions 

of the species (Vannier et al., 2011) that is partially controlled by soil and topography. Spatial 

scale issues have been identified as a major challenge in ecological assessment of remote sensing 

(Vannier et al., 2011). In part, the accuracy of the retrieval of vegetation properties using remote 

sensing depends on sensor spatial resolution (Numata et al., 2008). Using remote sensing data, 

especially low spatial resolution data such as the 1 km spatial resolution AVHRR for ecosystem 

health assessment may introduce uncertainties resulting from land surface heterogeneity and 

mixed pixels containing more land cover types (Li et al., 2012). GPP calculated using the Region 

Production Efficiency Model (REG-PEM; Li et al., 2008) with all model inputs obtained from 

AVHRR 1 km remote sensing data, is significantly different from the GPP calculated using 

Landsat TM 30 m data (Li et al., 2012). However, finer spatial resolution remote sensing data 

cannot guarantee the higher accuracy of ecosystem assessment (Feng et al., 2010). For example, 

MODIS EVI at 250 m resolution cannot be used for estimating GPP of coniferous forests, while 

MODIS 1 km EVI can (Olofsson et al., 2008). It was also found that when the spatial resolution 

of remote sensing data is higher than 60-80 m, the accuracy of forest classification decreases 

(Woodcock and Strahler, 1987). At the same time, a suitable spatial scale or satellite image at 

optimal spatial resolution can improve vertical vegetation structure estimation (e.g. LAI) in 

grasslands because the land surface heterogeneity is minimized (Rahman et al., 2003; He et al., 
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2006; Li and Guo, 2013). An optimum resolution for a specific research goal can be determined 

using wavelet or semivariogram analysis. 

 

In addition, some retrieval algorithms and models for ecosystem health indicators, such as 

biochemical properties, are derived at small scales for homogeneous land surface (Wu and Li, 

2009). Applying these algorithms and models to large scales (typically implying a heterogeneous 

land surface), may incur scale effects. Besides heterogeneity, the linearity or nonlinearity of 

retrieval models is the other influence on scale effects, and the former may result in smaller scale 

effects than the latter for mixed pixels with an unknown mixture of different land covers (Chen, 

1999). Therefore, precautions should be taken to select up-scaling approaches for the purpose of 

minimizing scale effects. Some scaling methods have been summarized, although no universal 

scaling method has been found (Wu and Li, 2009). More recently, a conceptual framework was 

proposed to scale up biochemical content in semi-arid mixed grassland from leaf to canopy level 

(He and Mui, 2010), and the estimation of grassland chlorophyll content at leaf, canopy, and 

landscape scales is reasonably accurate (Wong and He, 2013).   

 

Besides spatial resolution and scaling methods, the accuracy of ecological assessment using 

optical remote sensing also relies on spectral and temporal resolutions of sensors (Numata et al., 

2008; Vannier et al., 2011). Some ecological health indicators may be retrieved from remote 

sensing using high spatial resolution imagery, while others may need higher spectral resolution 

or temporal resolution data. Thus, to develop a comprehensive EHA and monitoring system, data 

fusion can be a solution. The fused imagery can provide the maximum amount of useful 

information (Welch and Ehlers, 1987), and thus have significant advantages over independent 

source data (Hall and Llinas, 1997).  

 

5.6.2 Transportability issue 

The approaches used to retrieve health indicators from remotely sensed data are commonly 

empirical relationships between the predicted variables and reflectance (or spectral indices) of 

optical sensors, backscatter (or variables derived from backscatter, such as canopy water content 

and cross-polarized ratio) of Radar, or LiDAR intensity. Indicators retrieved from empirical 

relationships can be difficult to transfer to different sensors and study areas (Andrew et al., 
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2014). Nevertheless, efforts have been made to develop general models with promise in 

estimating foliar nitrogen (Martin et al., 2008) and biomass (Asner et al., 2012). 

 

The other approaches used for retrieving health indicators from optical sensors are inversion of 

radiative transfer models and SMA approaches. Radiative transfer models provide better 

transportability for estimating health indicators. However, inversions of radiative transfer models 

are difficult to implement due to having many input parameters, and are difficult to invert even 

with approaches such as neural networks (Trombetti et al., 2008). SMA approaches are also 

more general to operate, while the temporal and spatial variability of end members may reduce 

their generality (Somers et al., 2011).  

 

5.6.3 Data availability 

Ecosystem health indicators, such as biochemical properties and invasive species identification, 

require hyperspectral images. Others, including canopy height and canopy morphology, may 

need LiDAR data. Hyperspectral and LiDAR sensors usually are not activated until requested. In 

addition, the imagery acquired has a very small footprint and consequently does not provide 

global coverage, and are usually costly (Ayanu et al., 2012). 

 

5.6.4 Uncertainties in ecosystem health indicators 

Uncertainties in the estimated ecosystem health indicators are one of the most important factors 

to be accounted for while developing an EHA system. There are still potential uncertainties in 

indicator estimation even if the most appropriate remotely sensed data and approaches are used. 

  

5.6.4.1 Optical data for estimating health indicators 

Selecting appropriate optical images with suitable spatial, temporal, and spectral resolution is 

expected to yield better estimation of health indicators (Andrew et al., 2014). However, the 

accuracy of quantifying or mapping ecosystem health indicators is still hindered by the existence 

of NPV, BSC, and bare soil in sparsely vegetated areas due to their contribution to the spectra 

(Huete, 1988; Karnieli et al., 1996; Van Leeuwen and Huete, 1996) (Figures 1-2,1-3). Also, 
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optical data are only sensitive to top-of-canopy in densely vegetated environments (Blanchard et 

al., 2011). 

 

The presence of NPV, BSC, and bare soil affect spectral indices derived from optical remote 

sensing data and designed for the estimation of biophysical variables (Van Leeuwen and Huete, 

1996), such as LAI, green vegetation biomass, and fAPAR, all of which are important attributes 

of EHA. LAI, fAPAR could be overestimated for ecosystems with randomly distributed sparse 

PV and NPV mixtures, while underestimated for dense mixtures, due to the effects of NPV (Van 

Leeuwen and Huete, 1996). NPV accounts for the similar variation in spectral indices that 

include NDVI and Modified Soil-adjusted Vegetation Index (MSAVI) (Li and Guo, 2010) as 

green vegetation in semiarid mixed grassland.  

 

The presence of live BSC can increase NDVI values by as much as 0.30 units in semiarid 

environments, which may result in overestimation of ecosystem productivity and 

misinterpretation of vegetation dynamics (Karnieli et al., 1996; Belnap, 2003).  

 

Effects of bare soil on spectra have been extensively investigated since the early 1970’s 

(Colwell, 1974; Huete et al., 1985). The exerted influence on the spectra significantly affects 

NDVI and further affects LAI estimation (Huete, 1988) and green vegetation cover with the 

largest errors in grassland and shrub areas (Montandon and Small, 2008). Thus, many efforts 

have been made to develop vegetation indices (e.g. a soil-adjusted vegetation index (SAVI; 

Huete, 1988) and a modified soil adjusted vegetation index (MSAVI; Qi et al., 1994) to 

minimize soil brightness effects. Minimizing bare ground effects improved r
2
 values by 0.23 in 

estimating N in semiarid shrubland using HyMap hyperspectral data (Mitchell et al., 2012).  

 

However, little research has been conducted to study the total effects of NPV, BSC and bare soil 

on vegetation indices, evaluate their effects on the determination of a single EHA attribute (e.g. 

LAI and productivity, etc.), and further identify their effects on a comprehensive EHA. 
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5.6.4.2 SAR data 

SAR data have been widely used for structure and moisture content related ecosystem health 

indicators. However, estimation accuracy is dependent on many factors, such as instrument 

characteristics, including frequency or wavelength, polarization, incident angle, look direction, 

and spatial resolution (Ghasemi et al., 2010). The properties of the land surface, including 

surface roughness and moisture content also have an influence on estimation accuracy (Zheng et 

al., 2014).  

 

5.6.4.3 LiDAR data 

LiDAR data have also been used for retrieving ecosystem health indicators. The application of 

LiDAR data is based on the structure information LiDAR data can detect. The way LiDAR data 

are received (discrete return and full waveform LiDAR) and the footprint (Jensen, 2009) may 

cause uncertainties in estimating health indicators. Full waveform LiDAR can provide more 

structural details than discrete LiDAR data. Small footprint LiDAR has an advantage over 

detailed local mapping, and large footprint LiDAR is more suitable for investigating interactions 

with multiple vertical structures and taking more ground samples 

(http://web.pdx.edu/~jduh/courses/geog493f11/Week04.pdf). 

 

5.7 My NPV Research Contribution to EHA  

NPV is an indicator of ecosystem vigor and a component of ecosystem organization measures in 

diverse ecosystems, including savannah and grasslands. NPV quantification using remote 

sensing methods has demonstrated certain success in savannah and croplands. However, 

quantifying NPV biomass in semiarid grasslands remains challenging (Chapter 1). My research 

provided a solution to quantify NPV biomass using optical Landsat 8 OLI and Sentinel-2A 

images, or fully polarimetric Radarsat-2 images in semiarid grasslands. This approach is also 

applicable in other grassland ecosystems.  

 

NPV, together with BSC and bare soil, reduces the accuracy of estimating biophysical and 

biochemical variables using optical remote sensing data because of their contribution to the 

canopy spectra (Figures 1-2 and 1-4). My NPV research explored the best timing for NPV 

http://web.pdx.edu/~jduh/courses/geog493f11/Week04.pdf
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estimation, which can indirectly contribute to improving the accuracy of biophysical and 

biochemical estimates with optical remote sensing tools. This contribution is made by providing 

the quantity of NPV biomass that can be used to estimate NPV effects on spectra and 

information on when the influence of BSC and bare soil on the spectra is the least. In this regard, 

my NPV research indirectly contributes to grassland EHA and management. 

  

My research to quantify NPV biomass using quad-pol Radarsat-2 images showed the great 

potential of C-band SAR data for grassland EHA and management. Radarsat-2 data not only 

provided better NPV biomass estimates even in the middle growing season when the application 

of optical remote sensing such as Landsat 8 OLI and Sentinel-2A was constrained, but also 

yielded improved estimates of LAI and canopy height (Li and Guo, 2017). In this regard, my 

NPV research contributes grassland EHA through investigating the potential of C-band SAR data 

for retrieving ecosystem vigor and organization.  

 

My research to estimate vegetation phenology and climate effects on vegetation growth in 

Chapter 2 not only provides phenology information used for quantifying NPV biomass with 

remote sensing approaches, but also supported grassland ecosystem resilience studies as an 

important component of EHA.  

 

5.8 Discussion and Conclusion  

A healthy ecosystem can provide the best quality ecological services to human beings, yet 

ecosystems worldwide have been impacted by climate change and anthropogenic activities. A 

comprehensive and dynamic ecosystem health assessment with the involvement of both 

ecologists and remote sensing specialists is needed.   

 

The intrinsic temporal and spatial properties of remote sensing data provide an opportunity to 

developing a spatially explicit health ecosystem assessment and monitoring system. Currently, 

the issue of utilizing remote sensing to assess ecosystem health is that the assessment is only 

based on a single indicator of one ecosystem attribute. However, a comprehensive assessment 

should be a dynamic measure of three key ecosystem attributes: vigor, organization, and 

resilience. The retrieval of different ecosystem health indicators may need diverse remote 
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sensing data sources including optical, Radar, and LiDAR data, or optical data with different 

temporal, spectral, and spatial resolutions. To develop a comprehensive health ecosystem process 

with indicators of ecosystem vigor, organization, and resilience retrieved from different remote 

sensing imagery. Currently one must face the challenges of scale, transportability, data 

availability, and uncertainties in the estimation of indicators. Moreover, retrieval of some 

indicators, such as Non-Photosynthetic Vegetation (NPV) biomass and Biological Soil Crust 

(BSC) cover, is still challenging.  

 

As the technology in developing LiDAR, Radar, and multi-angle optical sensors and 

methodologies for information retrieval improve; the uncertainties of estimation of health 

indicators should decrease (Koch, 2010). The integration of multi-sensor data provides an 

opportunity to relieve the effects of scale. As the methods to develop integrated models increase, 

the advantages of multiple sensors can be used while minimizing disadvantages of each data 

source (Koch, 2010). The multi-sensor data may provide an opportunity to minimize scale issues 

and reduce uncertainties surrounding health indicators. In addition, newly operational sensors 

and upcoming sensors will provide more opportunities for remote sensing of ecosystem health. 

Newly operational 10-day syntheses PROBA-V 333 m NDVI products since November 2013 are 

free for use and fill the gap of data discontinuity of SPOT 4 and SPOT vegetation-1 and 

vegetation-2 sensors (http://proba-v.vgt.vito.be/). The newly operational WorldView-3 satellite, 

Sentinel-2A, the proposed Radarsat-2 constellation, and NovaSAR-S at low cost will provide 

more opportunities for developing a spatially explicit ecosystem health assessment. For example, 

my research on quantifying NPV biomass using Landsat 8 OLI and Sentinel-2A, and Radarsat-2 

has shown the advantages of the newly operational remote sensors for EHA. As technological 

innovations in acquiring Radar, LiDAR, hyperspectral and multi-angle optical remote sensing 

data improved, and algorithms and methods for retrieving information and integrating multi-

sensor data advance, developing a comprehensive, dynamic, and spatially explicit ecosystem 

health assessment and monitoring system will face even fewer challenges. 

 

New sensors and upgraded technology for data processing will increase the availability of remote 

sensing data and provide ecologists with remote sensing products (e.g., biophysical parameter 

estimation, canopy structure, NPV biomass and BSC cover estimation, etc.) with fewer 
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uncertainties. This is expected to contribute to ecological knowledge by providing more accurate 

temporal and spatial details of ecological indicators, and thus aid ecologists in selecting more 

representative ecosystem health indicators. In turn, the progress of ecological studies to 

understand ecosystem health will provide feedback on the application of remote sensing data that 

may facilitate the design of remote sensors and the processing of remote sensing data. Through 

close collaboration, ecologists can obtain useful information on remote sensing data with regard 

to data attributes, application, limitation, and cost, while remote sensing specialists can acquire 

the most effective ecosystem health indicators in an efficient way. This will gradually bridge the 

research gap between ecologists and remote sensing specialists.    

  

Policy makers and environmental scientists, as well as economists, play an important role in 

maintaining a sustainable environment while maximizing ecological services, according to the 

conceptual frame-work used by the Millennium Ecosystem Assessment (MEA) (MEA, 2005 a-

e). The conceptual frame-work of MEA focuses on the ecological services an ecosystem can 

provide, the benefits the ecological services have for human, and how human activities affect 

ecosystems and ecological services (Carpenter et al., 2009). Thus, understanding the dynamics of 

coupled social–ecological systems and investigating the relationships between ecosystem 

services and humans are critical for comprehensive ecosystem assessment.  

5.9 Addendum 

I removed a review of NPV remote sensing to avoid repitition and added a statement on the 

contribution of my NPV research to ecosystem health assessment. I also deleted statements on 

future opportunities for data acquisition in the original paper because the scheduled platforms 

have now been launched.  
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CHAPTER 6: CONCLUSIONS, LIMITATIONS, AND FUTURE RESEARCH 

6.1 Summary 

The hypothesis that remote sensing can provide a solution for quantifying NPV biomass in semi-

arid mixed grassland where NPV estimation is not only affected by the presence of PV and bare 

soil, but also by BSC, is accepted based on the results of this dissertation. Below is a summary of 

chapters 2, 3, 4, and 5: 

 Chapter 2 fulfilled Objective 1 - estimating vegetation phenology as well as climate impacts 

on vegetation phenology and productivity. Both temperature and precipitation have a 

significant effect on intra-annual vegetation growth. Estimating vegetation phenology was 

the initial step towards investigating the potential for NPV prediction using multispectral and 

Radarsat-2 images in Chapter 3 and Chapter 4.  

 Newly operational multispectral imaging sensors, including Landsat 8 OLI and Sentinel-2A 

MSI can provide reasonable NPV biomass estimation at different growing stages, except for 

green-up. Quantifying spatial variations of NPV biomass using Landsat 8 OLI images is 

possible (Chapter 3).  

 Fully polarimetric C-band SAR (i.e. Radarsat-2 in this study) images can quantify NPV 

biomass at different vegetation stages (Chapter 4). Nevertheless, careful consideration should 

be given to imaging incidence angle and SAR parameters.  

 Remote sensing, including optical, SAR, and LiDAR has provided substantial opportunities 

for quantifying or mapping ecosystem attributes in the context of EHA and monitoring 

(Chapter 5). However, challenges remain that can be alleviated with improved imaging 

acquisition technology and data processing algorithms. My research contributes to grassland 

EHA and management in three respects. First, my research found a solution for quantifying 

NPV biomass as an indicator of ecosystem vigor and component of ecosystem organization. 

Second, my research findings can be used to reduce uncertainties for estimating other 

indicators of ecosystem vigor and organization. Third, my research explored the potential of 

C-band SAR data for quantifying grassland ecosystem vigor and organization.  
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6.2 Contribution 

6.2.1 Scientific contribution 

Scientifically, a critical gap was addressed in quantitatively estimating NPV biomass in mixed 

grassland using both optical and radar remote sensing approaches. The results of this research 

identified the most suitable spectral bands and spectral indices of optical remote sensing for 

quantifying NPV biomass in grasslands. This research also explored the most useful Radarsat-2 

SAR parameter(s) for estimating NPV. In addition, the results of this research will provide inputs 

to the modeling of terrestrial ecosystems, hydrology, and climate with the expectation of 

improving model predictability.  

 

6.2.2 Practical contribution 

Practically, this research contributes to grassland Ecosystem Health Assessment (EHA), 

monitoring and grassland management by providing temporally and spatially explicit NPV 

biomass data. It provides an opportunity to improve the accuracy of remote sensing (C-band 

SAR data) for measuring ecosystem vigor and organization using NPV as additional information 

in the application of optical remote sensing data in semiarid grasslands. In addition, this research 

attempts to investigate grassland ecosystem resilience to climate change using a low spatial 

resolution (1km) AVHRR NDVI product.  

  

Broadly, this research is important for natural resource management and environmental 

management by quantifying NPV biomass as well as developing approaches for estimating NPV 

biomass. The presence of NPV contributes to soil nutrition which is indispensable for 

maintaining ecosystem vigor and essential for maintaining soil stability (Arsenault and Bonn, 

2005). Soil stability not only affects air and water quality, but also exerts influence on habitat 

conservation of wildlife. In Saskatchewan, species at risk, including Hairy Prairie-clover, 

Western Spiderwort, and Small-flowered Sand-verbena, benefit from NPV biomass. In addition, 

NPV as a carbon source has impacts on global climate that, in turn, affect the environment (air, 

water, and soil). 
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6.2.3 Value added to previous GNP research 

In Grasslands National Park, optical remote sensing data have been used to measure grassland 

growth and productivity (Yang et al., 2012, 2013; Xu and Guo, 2015), evaluate grassland 

condition in response to climate change (Piwowar, 2011; Li and Guo, 2012, He et al. 2012, a & 

b), grazing, and fire (Yang et al., 2011, 2013; Xu and Guo, 2015), map wildlife habitat (Shen et 

al., 2013, a & b), and estimate forage quality (Guo et al., 2010) and leaf CO2 exchange rate (Guo 

et al., 2011). While these studies have advanced our understanding of how to monitor specific 

elements of the grassland community, the accuracy of retrieved biophysical variables (e.g., leaf 

area index and productivity) using optical remote sensing was limited by the presence of non-

photosynthetic vegetation (NPV), biological soil crust (BSC), and bare soil. This is because of 

their unique spectral properties (Van Leeuwen and Huete, 1996). Research has been conducted 

in GNP to study the influence of NPV on vegetation indices (Yang and Guo, 2014; Xu et al., 

2014). Nevertheless, these studies have all focused on green vegetation. NPV, as an essential 

grassland ecosystem health indicator and a vital input for wild fire prediction, has been rarely 

studied because of the difficulty in separating NPV from green vegetation, biological soil crust, 

and bare soil.  

 

My fundamental research to determine the most suitable wavelength and spectral index for 

quantifying NPV biomass using optical remote sensing data paves the way to comprehensive 

grassland ecosystem health and wild fire prediction and simulation modeling. In addition, most 

remote sensing research has been conducted using optical remote sensing data with limited 

research being conducted on exploring the potential of polarimetric SAR for grassland 

management. The documented literature includes Zhang et al. (2006)’s study on the application 

of Radarsat-1 to assess grassland biophysical heterogeneity and the MSc thesis of Finnigan 

(2013) on evaluating grassland biomass using dual-pol Radarsat-2 images. However, Finnigan’s 

research did not provide a solution for quantifying NPV biomass using dual-pol Radarsat-2 

images. My exploration on the potential of fully polarimetric Radarsat-2 data indicates that the 

best SAR parameters for measuring NPV biomass are cross-polarization ratios, which explained 

why Finnigan’s research with co-polarization Radarsat-2 did not show promise. Overall, my 

investigation of the ability of fully polarimetric Radarsat-2 at different incidence angles to 

retrieve biophysical variables, including NPV biomass, pioneers the application of SAR in GNP. 
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The planned Radarsat constellation (scheduled launch in 2018) will fly over Canadian terrestrial 

ecosystems daily taking high spatial resolution images. This will provide a great opportunity for 

terrestrial ecosystem monitoring.  

 

6.3 Transferability  

Transferability of the methods and findings of this research should be considered. The methods 

used to quantify NPV biomass with optical and Radarsat-2 images can be applied to any 

terrestrial ecosystem. However, the findings of this research are only applicable in GNP-like 

grassland ecosystems that are characterized by large amounts of dead vegetation including 

standing dead plants and surface plant litter, BSC, and bare soil. During the study period, GNP 

has undergone light-intensity grazing and a large wildfire. This may constrain the transferability 

of the findings.   

 

6.4 Limitations 

Although Landsat 8 OLI and Sentinel-2A MSI with improved spectral resolution (narrower 

wavelength ranges) over Landsat TM/ETM+ images have demonstrated potential for NPV 

biomass estimation in this research, their application, particularly in the red-edge bands of 

Sentinel-2A, is limited compared to the red-edge of ground hyperspectral data. Therefore, 

hyperspectral images to fully explore the potential of red-edge wavelength ranges and to better 

identify effects of PV, bare soil, and BSC on NPV biomass would have improved my results. 

 

Additionally, Radarsat-2 images with full beam modes (FQ1-FQ27) would have been interesting 

to include. This is so that the influence of incidence angles on estimating NPV biomass could 

have been comprehensively evaluated. In addition, the lack of high spatial resolution and high 

vertical accuracy digital elevation model (DEM, e.g. LiDAR DEM or SAR DEM) may influence 

the retrieval of radar backscatter coefficients at the scale of a pixel. However, this research used 

the average of backscatter coefficient within a 19 × 19 pixel window for NPV biomass 

estimation that greatly reduced uncertainty of backscatter coefficient retrieval caused by DEM. 
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6.5 Future research 

This research on NPV biomass estimation with remote sensing approaches can be furthered in 

three important ways. First, to further improve NPV estimation using optical remote sensing 

data, quantifying the contribution to the spectra of PV, NPV, bare soil, and BSC using a radiative 

transfer model and/or hyperspectral images using the SMA method is necessary. In addition, 

current studies using optical data on NPV estimation have focused more on spectral resolution of 

sensors, while spatial resolution effects are also worth investigation. The effect of spatial 

resolution can be investigated by comparing the results of this research with the findings using 

high spatial resolution (e.g., the WV-3 satellite with spatial resolution 0.31 m) to quantify NPV 

biomass. The WV-3 satellite sensor has two bands of ASTER for calculating SINDRI that have 

demonstrated better performance for NPV estimation than multispectral indices (Serbin et al., 

2013). In addition, using geostatistical approaches such as semivariogram and wavelet analysis 

to investigate the spatial variation of NPV biomass, and further, to identify the most suitable 

spatial resolution for quantifying NPV biomass is also an important direction.  

 

Second, to advance the quantification of NPV biomass using SAR data, further research is 

needed on improving the accuracy of NPV biomass estimation through investigating and 

minimizing the effects of wavelength, incidence angle, and spatial resolution of SAR data using 

both theoretical scattering models and SAR images. In addition, the effects of PV, BSC, and bare 

soil on NPV biomass estimation with SAR data should be explored using a theoretical scattering 

modeling. Comparing ASTER DEM 30 m with LiDAR DEM 50 cm (or <50 cm) for SAR 

backscatter coefficient retrieval, and evaluating the propagated influence on NPV estimation, is a 

worthy study direction. 

 

Third, it would be interesting to explore the potential of integrated SAR and optical data for NPV 

estimation. Each of these data sources has its own merits and drawbacks and integrated multi-

sensor data can combine advantages of multiple sensors, while minimizing the disadvantages of 

the other (Koch, 2010). With technological innovations in data acquisition, improved algorithms 

for data retrieval and analysis, and a better understanding of the interactions and contributions of 

PV, NPV, and backgrounds to reflectance, backscatter, or laser pulse one sensor, we should 

expect NPV estimation to be quickly operational. 
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APPENDIX B: Radarsat-2 images 

(a) June 2, 2014, FQ1 

 
 

(b) June 8, 2014, FQ27 
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(c) June 12,2014, FQ10 
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(e) June 18, 2014, FQ12 

 
(f) June 19, 2014, FQ5 
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(g) June 28, 2014, FQ3 

 
(h) July 2, 2014, FQ27 
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(i) July 5, 2014, FQ5 

 
(j) July 6, 2014,FQ10 
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(k) July 9, 2014,FQ23 
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APPENDIX C: Landsat 8 OLI images 

(a) June 10, 2016 

 
(b) June 17, 2016 
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