
Optimizing Techniques and Cramér-Rao

Bound for Passive Source Location

Estimation

A Thesis Submitted

to the College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering

University of Saskatchewan

by

Sha Li

Saskatoon, Saskatchewan, Canada

July 2017

c© Copyright Sha Li, July 2017. All rights reserved.



Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the Uni-

versity of Saskatchewan, it is agreed that the Libraries of this University may make it freely available for

inspection. Permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes

may be granted by the professors who supervised this thesis work or, in their absence, by the Head of the De-

partment of Electrical and Computer Engineering or the Dean of the College of Graduate and Postdoctoral

Studies at the University of Saskatchewan. Any copying, publication, or use of this thesis, or parts thereof,

for financial gain without the written permission of the author is strictly prohibited. Proper recognition

shall be given to the author and to the University of Saskatchewan in any scholarly use which may be made

of any material in this thesis.

Request for permission to copy or to make any other use of material in this thesis in whole or in part

should be addressed to:

Head of the Department of Electrical and Computer Engineering

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

S7N 5A9

Dean of the College of Graduate and Postdoctoral Studies

Room 116 Thorvaldson Building

110 Science Place

Saskatoon, Saskatchewan, Canada

S7N 5C9

i



Abstract

This work is motivated by the problem of locating potential unstable areas in underground potash mines

with better accuracy more consistently while introducing minimum extra computational load. It is important

for both efficient mine design and safe mining activities, since these unstable areas may experience local,

low-intensity earthquakes in the vicinity of an underground mine. The object of this thesis is to present

localization algorithms that can deliver the most consistent and accurate estimation results for the application

of interest.

As the first step towards the goal, three most representative source localization algorithms given in the

literature are studied and compared. A one-step energy-based grid search (EGS) algorithm is selected to

address the needs of the application of interest.

The next step is the development of closed-form Cramér-Rao bound (CRB) expressions. The mathemat-

ical derivation presented in this work deals with continuous signals using the Karhunen-Loève (K-L) expan-

sion, which makes the derivation applicable to non-stationary Gaussian noise problems. Explicit closed-form

CRB expressions are presented only for stationary Gaussian noise cases using the spectrum representation

of the signal and noise though.

Using the CRB comparisons, two approaches are proposed to further improve the EGS algorithm. The

first approach utilizes the corresponding analytic error estimation variance (EEV) expression presented in

the work of Salt and Daku to derive an amplitude weight expression, optimal in terms of minimizing this

EEV, for the case of additive Gaussian noise with a common spectrum interpretation across all the sensors.

An alternate non-iterative amplitude weighting scheme is proposed based on the optimal amplitude weight

expression. It achieves the same performance with less calculation compared with the traditional iterative

approach.

The second approach tries to optimize the EGS algorithm in the frequency domain. An analytic frequency

weighted EEV expression is derived using spectrum representation and the stochastic process theory. Based

on this EEV expression, an integral equation is established and solved using the calculus of variations

technique. The solution corresponds to a filter transfer function that is optimal in the sense that it minimizes

this analytic frequency domain EEV. When various parts of the frequency domain EEV expression are ignored

during the minimization procedure using Cauchy-Schwarz inequality, several different filter transfer functions

result. All of them turn out to be well known classical filters that have been developed in the literature and

used to deal with source localization problems. This demonstrates that in terms of minimizing the analytic

EEV, they are all suboptimal, not optimal.

Monte Carlo simulation is performed and shows that both amplitude and frequency weighting bring

obvious improvement over the unweighted EGS estimator.

ii



Acknowledgments

The author wishes to thank God for his amazing grace, power, and presence that enabled her to finalize

this research.

The author wishes to thank Prof. Brian Daku for his advice during the course of this work and the

preparation of this thesis. The financial assistance was provided by the University of Saskatchewan as a

scholarship and Prof. Daku as an assistantship.

The author would also like to thank her parents, Li Xianlin and Zhang Xiurong, for their everlasting

support and earnest love. And last but not the least, her sweetheart Vincent Hu, for his understanding,

cooperation, and sincere prayers that helped make this thesis possible.

iii



Dedication

To my dearest God,

Mother, Zhang Xiurong,

Father, Li Xianlin,

and Son, Vincent Hu

iv



Table of Contents

Permission to Use i

Abstract ii

Acknowledgments iii

Dedication iv

Table of Contents v

List of Figures ix

List of Abbreviations xi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Application of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problems Under Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Preferred Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Cramér-Rao Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.3 Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

References 7

2 Literature Review 9

2.1 Two-Step Source Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 TDOA Estimation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Localization Techniques using TDOA . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 One-Step Source Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Cramér-Rao Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

v



2.4 Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Frequency Domain Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

References 17

3 System Model 22

3.1 Source signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Wave Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Sensor System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

References 29

4 Performance Comparison for Three Source Localization Algorithms 30

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Cross-Correlation-Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Approximated Maximum Likelihood Algorithm . . . . . . . . . . . . . . . . . . . . . . 36

4.2.3 Energy-based Grid Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Simulations and Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References 42

5 Cramér-Rao Bound on Passive Source Localization for General Gaussian Noise 44

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Development of the Cramér-Rao Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Second Moment Characterization of the Observations . . . . . . . . . . . . . . . . . . 50

vi



5.3.2 Matrix Format of the CRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.3 Detailed Derivation of CRB(ε) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Application of the CRB expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

References 67

6 Amplitude Weighting for Near-field Passive Source Localization 71

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Proposed Amplitude Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.1 Weighted Total Energy Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.2 Estimation Error Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.3 Optimal Weight Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.4 Non-iterative Weighting Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4.1 Theoretical and Monte Carlo Evaluation Using Generated Source Signal . . . . . . . . 80

6.4.2 Monte Carlo Evaluation Using Real Signal . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Appendices 86

Appendix A Weight Derivation Uing The SNR 86

Appendix B Weight Derivation Using the Error Variance 88

Appendix C Non-iterative Weighting 95

References 96

7 Frequency Weighting to Minimize Source Location Estimation Error Variance for Short

Duration Signals 99

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



7.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3 Proposed Frequency Weighted EGS (FWEGS) Algorithm . . . . . . . . . . . . . . . . . . . . 106

7.4 Derivation of the Performance Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.5 Derivation of Suboptimal EEV filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.6 Derivation of the Filter Minimizing the EEV . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.7 Simulation and Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Appendices 117

Appendix D Derivation of σ2
ε (F ) 117

Appendix E Filter Obtained by Maximizing SNR 121

References 122

8 Summary and Conclusions 125

References 128

viii



List of Figures

3.1 Coordinate system for the sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Three-point two-dimensional simplex. Four mechanisms of movements are indicated: reflec-

tion, expansion, contraction, shrinkage. B = best vertex, W = worst vertex, R = reflected

vertex, E = expanded vertex, C = contracted vertex, and S = shrunken vertex. . . . . . . . . 35

4.2 Sensor configuration and assumed source event locations for simulation 1 . . . . . . . . . . . 39

4.3 Comparison between the three candidate localization algorithms . . . . . . . . . . . . . . . . 39

4.4 Sensor configuration and assumed source event locations for simulation 2 . . . . . . . . . . . 40

4.5 Comparison between the EGS and AML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Monte Carlo simulation of the EGS algorithm vs. CRB for the case of spatially independent

stationary CGN with an unequal covariance at each sensor. . . . . . . . . . . . . . . . . . . . 65

5.2 Monte Carlo simulation of the EGS algorithm vs. CRB for the case of WGN with an equal

covariance at each sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 CRB plots for the two noise cases aforementioned, the spatially independent stationary CGN

and WGN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1 Coordinate system for the sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Sensor configuration for the simulation using generated source signal . . . . . . . . . . . . . . 81

6.3 Calculated and simulated RMS error for different sensor configurations . . . . . . . . . . . . . 82

6.4 Sample sensor signal for the simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5 Simulated RMS error for a real microseismic event signal (fine grid) . . . . . . . . . . . . . . 84

6.6 Simulated RMS error for a real microseismic event signal (coarse grid ) . . . . . . . . . . . . . 85

7.1 Coordinate system for the sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 One common filter for all input sensor signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

ix



7.3 Generated Power Spectrum of Random Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4 Real Statistical Microseismic Event Signal Energy Spectrum . . . . . . . . . . . . . . . . . . . 112

7.5 Real sensor configuration in a potash mine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.6 FWEGS Performance With Various Filter Applied . . . . . . . . . . . . . . . . . . . . . . . . 115

7.7 Optimal Filter Performance Improvement over the other Filters . . . . . . . . . . . . . . . . . 116

x



List of Abbreviations

AEDA Adaptive Eigenvalue Decomposition Algorithm

AML Approxomate Maximum Likelihood

AWEGS Amplitude Weighting Energy-based Grid Search

CGN Coloured Gaussian Noise

CRB Cramér-Rao Bound

DFT Discrete Fourier Transform

DOA Direction of Arrival

EEV Error Estimation Variance

EGS Energy-based Grid Search

FT Fourier Transform

FWEGS Frequency Weighting Energy-based Grid Search

GCC Generalized Cross Correlation

GPS Global Positioning System

LMS Least Mean Square

ML Maximum Likelihood

PHAT Phase Transform

RFID Radio Frequency Identification

RMSE Root Mean Squared Error

SNR Signal-to-Noise Ratio

TDOA Time Difference of Arrival

WGN White Gaussian Noise

xi



1 Introduction

This chapter starts with some background information on various acoustic source localization applications.

Then the specific application and problems under investigation are described. This is followed by the outline

of the thesis.

1.1 Background

Acoustic source localization has been investigated in a variety of research areas. It was probably the

concern for submarine warfare in the deep ocean that initiated the earliest research in the area of acoustic

source localization almost a century ago [1]. Interest has expanded from this deep water application to

include coastal water applications that involve a wide range of targets to locate, such as oil spills and other

pollution that may cause habitat degradation.

Passive underwater acoustic source localization techniques have also been applied in the study of animal

and environmental science to locate whales, dolphins, and other sea creatures that make acoustic sound. It

is also applied to locate and monitor undersea volcanic eruptions, earthquakes, and continental collisions in

the areas of geophysics, geoscience, and other earth sciences.

In most of the above applications, signals that emanate directly from the source or from the disturbance

caused by the source event are usually detected and/or measured using a sensor array deployed underwater

in a uniform arrangement. Using the signals measured, ranging of the source/event can be achieved [2–5].

It was within the last few decades that the technology of robotics witnessed a rapid growth in the area of

undersea exploration [6]. A well-established technology routinely used in the offshore industry today is the

adoption of remotely operated vehicles that are linked to the mother ship by a tether cable. A more recent

technology involves autonomous underwater vehicles (AUV) capable of navigating on their own without

constant intervention by a human operator. AUVs utilize a Global Positioning System (GPS) and a group

of freely floating surface buoys that work together to help the underwater vehicle determine its own absolute

coordinates. These AUVs help make continuous long time exploration missions much easier without imposing

great distress on people.
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Other passive acoustic localization applications have emerged during the last several decades for use on

land as well. Locating and tracking a speaker through the use of an array of microphones has received much

attention due to the increasing demand for video communication/conferencing over the Internet [7–9]. The

goal is to provide the audience, at the other side of the network, with a continuous view of the speaker even

when he moves around freely in the venue. Voice quality can be optimized as well, since the microphones

will always steer towards the speaker.

A microphone array can be also utilized to locate a mobile robot that works and moves around within

a designated area. Another important role a microphone array can have is in the health care industry,

for example, remotely monitoring the elderly or in-home patients who might suddenly fall or faint. Source

localization and tracking techniques are also useful in navigation systems that help in tracking patient

movements in medical wards where knowledge of patient location and movement is critical in providing

faster assistance or preemptive action, and prevent patient mix-ups [10].

Indoor and outdoor wireless device and network-centric positioning is another area where source localiza-

tion techniques are in high demand. The localization accuracy required varies, depending on the application

and the technology adopted for it. Most basic location-based mobile services do not require positioning

of high accuracy. For example, people are usually satisfied with the weather broadcast for their current

city, not their specific neighbourhood. Though, police and medical services demand much more accuracy

in position estimation to locate victims who need rescue promptly. To facilitate such rescuing tasks, quick

and precise localization and tracking of police and medical staff for effective fleet management also becomes

necessary. Various government and industry telecommunications committees have placed strict standards

on the accuracy of positioning for emergency calls. Military applications has been one major force that sets

up high standards and drives the research and development in this area. Another localization application

is mobile gaming, whose performance heavily relies on the speed and preciseness of positioning as well. [1]

and [11] provides an extensive overview on the history of source localization applications and techniques.

The localization application of primary interest here is microseismic event localization using a group of

arbitrarily positioned passive sensors, which is critical to ensure the safety of underground construction and

excavation activities. The specific application of interest that motivates this research is potash mining in

Saskatchewan, Canada. Saskatchewan is “the 2nd largest potash producer” [12] and accounts for “40 percent

of world potash trade” [13]. The immediate section below gives more detailed information about microseismic

event localization using passive sensor arrays for potash mining in the Province of Saskatchewan.

1.2 Application of Interest

Potash, a salt ore that precipitated from an ancient sea that gradually evaporated [14], is of great value

since it contains a fertilizer known as potassium chloride or KCL. KCL is one of three major fertilizers used by

2



farmers around the world, and Saskatchewan is blessed to have a huge deposit of potash salt underground.

The ore, or the potash salt, is mined in a series of large, underground tunnels that may grow in any

direction. According to [12], these mines are approximately one to three kilometers below the sedimentary

rock depending on their geographical locations. The formation is shallower in southern Saskatchewan prairie

compared to that in northern Saskatchewan Prairie. Due to the increasing world market demand for potash

during the past more than half century, the mines in Saskatchewan had been expanding fast, “at a rate of

approximately 500 meters/hour and at maturity, a mine can occupy an area of about 20 kilometers by 20

kilometers and have more than 6000 kilometers of tunnels” [14]. The expansion only slowed down recently

due to the economic setback and big decrease in the price of KCL. However, it is expected that this situation

is temporary, given the increasing population that will drive up the fertilizer demand in the long run.

A good general introduction to mining seismology can be found in [15]. Here some of the most basic

concepts are briefly described. Microseismic events taking place in underground mines are usually induced

earthquakes, resulting from mining operations that put surrounding earth material under high stress. When

the tension of preexisting stress plus what is accumulated from mining activities reaches a certain level,

the material may rupture or shift and there will come a sudden release of this tension. The energy will

then propagate in the form of mechanical waves from the origin. These small induced earthquakes indicate

potentially unstable areas where rock is likely to fall or burst. This is especially true for soft-rock mines,

such as potash mines. A large potash mine can experience ten or even more microseismic events everyday,

and there have been a number of fatalities reported because of rock falls. The aftermath of an accident

due to rock rupture tends to become more devastating as mining operations go increasingly deeper into the

earth to form a continuously growing network of underground tunnels. Therefore, monitoring the times and

locations of microseismic events within the locale of a mine is extremely important to evaluate and prepare

for mining hazards. Locating microseimic events plays a crucial role in maintaining safe mining activities

underground. It can also help with the initial planning or ongoing expansion design of a mine, to avoid

potentially hazardous areas.

The application of microseismic event localization in mines has much in common with those of seismology

and geophysical exploration, though the latter focus on the study of the earthquake itself and the earth

structure. In most cases, seismologists and geophysicists adopt the same type of sensors, usually geophones,

to measure movement or vibration of the earth, because geophones are sensitive enough to respond to very

distant and small ground motion. With the help of a seismic vibrator (most often a truck-mounted device),

and/or some small-amount of dynamite, shock waves can be produced and travel in the earth. They are

monitored by geophones deployed within the vicinity to yield a 3D map that can reveal the formation of

gas, fluid and/or solid beneath the earth surface. Most oil, gas and mining companies often use this method

to ensure that the mineral deposits of interest are present within the targeted area, so that the number of

drilling pads required for site exploration and development can be greatly reduced. However, the concern in
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this work is the location of low-intensity earthquakes in the locality of an underground mine, not the earth

structure itself.

1.3 Problems Under Investigation

In this section, the three major problems studied in this work are described.

1.3.1 Preferred Algorithm

In contrast to many acoustic source signals studied in the literature whose duration can be several minutes

or even longer, a microseismic event most often seen in an underground potash mine only lasts a fraction of a

second [14]. Besides being transient, the emanated signal is a wideband signal made up of lower frequencies,

instead of a narrowband signal of high frequencies [16]. These signal characteristics need to be considered

when a source localization algorithm is being selected. This preferred algorithm should be unbiased, robust,

and easy to implement.

Several representative unbiased estimators presented in the literature for source localization were chosen

as candidates to initiate the work [17]. Then, simulations were done to evaluate the performance of each

candidate to make a comparison among them. The final choice turned out to be the energy-based grid search

(EGS) algorithm proposed in [14]. This preferred algorithm then served as part of the foundation for later

research to be carried out, as mentioned in Section 1.3.2 and Section 1.3.3 below.

1.3.2 Cramér-Rao Bounds

Once a preferred algorithm is selected, it is desirable to know in theory how much room exists for

performance improvement. A corresponding theoretical performance bound is needed to achieve this goal.

One of the most widely used performance bounds is the Cramér-Rao Bound (CRB) [18], which expresses a

lower bound on the variance of any unbiased estimator for an unknown deterministic or statistic parameter.

An unbiased estimator asymptotically approaching the minimum variance bound is an efficient estimator.

Due to its critical role in performance evaluation, CRB development has been of great interest to many

researchers for decades and there have been many CRB expressions developed for various applications. Not

surprisingly, one topic of this thesis is the CRB development for the evaluation of single-step acoustic source

localization algorithms.

1.3.3 Optimization Techniques

Optimal signal processing is of great interest in various research areas, such as telecommunications, image

compression, detection, estimation, and tracking. In both the time and frequency domain, there have been
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good optimization techniques developed by different researchers. Hence, besides the CRB development,

another major part of this thesis is to identify various optimization techniques that can be applied to the

preferred algorithm selected earlier for short-duration signal localization to obtain better estimation accuracy.

1.4 Thesis Organization

The results for the study of optimal passive source localization outlined in Section 1.3 are presented in

the rest of the thesis as follows.

1. Chapter 2 provides a literature review on some classical two-step and one-step source localization

algorithms, CRB development, and optimization techniques available in various but similar application

areas.

2. Chapter 3 presents a general system model that defines the source signal, the noise, the wave propa-

gation, the sensors, and the sensor-source geometry adopted for the study in this thesis.

3. Chapter 4 studies and compares three chosen one-step and two-step source localization algorithms

that are most representative in the literature. It reveals that the one-step EGS algorithm is preferred for

the application of interest due to its robustness and simplicity.

4. Chapter 5 yields a few analytical expressions of the Cramér-Rao performance bound of one-step source

location estimators for the single-path, multi-sensor scenario under consideration. Time continuous signals

are considered instead of time discrete signals to make the work more consistent with that of [14]. Karhunen-

Loève (K-L) expansion is used instead of the Fourier transform to make the mathematical derivation more

general.

5. Chapter 6 proposes an amplitude weighting strategy to optimize the EGS algorithm. An analytical

estimation error variance (EEV) expression of the amplitude weighted EGS algorithm (AWEGS) is developed.

A closed-form optimal weight expression is then derived. A non-recursive method of applying the weights is

proposed after it is mathematically proven to yield unbiased estimates. Monte Carlo simulation is performed

to compare the AWEGS performance against the original EGS algorithm and the CRB developed in Chapter

5.

6. Chapter 7 proposes a frequency weighting strategy to optimize the EGS algorithm. An analytical

EEV expression for the frequency weighted EGS algorithm (FWEGS) is developed. Closed-form optimal

and suboptimal filter expressions are then derived, and their performances are evaluated and compared with

one another using Monte Carlo simulations. The suboptimal filter expressions turn out to be classical filter

expressions that are already given in the literature.

7. Chapter 8 presents and discusses all the results achieved, followed by an outline of some possible future

5



work.
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2 Literature Review

This chapter summarizes acoustic source localization techniques developed mostly during the past half

century that are the most relevant to this work.

The source signal position can usually be estimated by utilizing the time and spatial information contained

within the signals captured by a set of passive sensors deployed at a certain distance away from the signal

origin. Earlier work in this area mainly focused on narrowband sources in the far field, where sensors are

distant from the source but close to each other and the sensors are usually organized in the form of a linear

or circular array. The primary concern in this case is only the source signal’s direction of arrival (DOA), not

its precise geometrical coordinates.

Much of the recent research, including this work, focuses on wideband sources in the near field, where

the distance between the sensors and the distance between the source and sensors are at about the same

order. In this scenario, a good estimate of the source position is often desired. A wideband signal is defined

here as one that has a ratio of the bandwidth to center frequency greater than one.

For mining applications, geophones are preferred for sensor network setup and the reasons will be dis-

cussed in more detail in Chapter 3. They are usually arranged along the mine rooms and are relatively

arbitrary within the vicinity of where potential microseismic events may occur. This classifies these mining

applications into the category of near-field problems.

The next two sections provide a brief review on the most representative acoustic source localization algo-

rithms available in the literature for near-field applications. These algorithms, in general, can be categorized

either as two-step algorithms or single-step algorithms. Then the third section provides some background

information on optimization techniques for signal processing.

2.1 Two-Step Source Localization

To locate an acoustic source, an indirect two-step procedure presents a traditional method that first

estimates the Time Difference of Arrival (TDOA) between any two sensors and then calculates the source

location based on these TDOA estimates.
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2.1.1 TDOA Estimation Techniques

Before any signal processing is performed, the sensors have to be organized in pairs, so that the relative

time delays between each pair of sensors can be estimated using various techniques. All of these techniques

then basically supply the signals received at the sensors as input to a signal processing system. This system

yields a specific value or piece of data at its output, which is in correspondence with a certain TDOA estimate.

Due to the presence of noise in the real world, there will always be some error in these TDOA estimates.

There are three typical TDOA estimation techniques, which are briefly introduced below as examples.

Cross-Correlation Technique

The technique utilizing the cross-correlation function to estimate a TDOA has been well known and

discussed in [1]. It is based on the characteristics of the cross-correlation between two signals with the same

envelope but different arrival times. Theoretically, the value at which the cross-correlation function peaks

represents the real TDOA value between the two signals. The cross-correlation function can be constructed

in both the time and frequency domain.

Least Mean Square (LMS) Algorithm

In [2] It is implemented as an adaptive digital finite impulse response (FIR) filter that minimizes the

mean square difference between its two inputs: a reference input, which drives the filter; and a desired input,

which is a delayed version of the reference input. Its mean response is shown to converge to a discrete Wiener

filter without a priori knowledge of the reference signal spectra [2]. The LMS algorithm has been widely

applied in scenarios where the statistics of inputs are either unknown or at least partially unknown. The

LMS algorithm can be implemented in either the time or frequency domain. The results are a set of weights

at discrete times or frequencies which are used to estimate the time delay between the two inputs. More

discussion on LMS algorithm can be found in [3], [4], [5].

Adaptive Eigenvalue Decomposition Algorithm (AEDA)

[6] proposes an algorithm for time delay estimation in an indoor environment, which is modeled as linear

and time invariant. Therefore, the relation between a pair of sensor-received signals can be described with

a linear system. This method focuses on the impulse responses between the source and microphones [6] in

order to estimate the time delay. It consists of detecting the “direct paths of the two impulse responses

between the source and sensors” [6], which are estimated in the eigenvector corresponding to the minimum

eigenvalue of the covariance matrix of the sensor signals.
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2.1.2 Localization Techniques using TDOA

With the TDOA estimates obtained using the techniques described in the previous section, there are

traditionally two ways to further locate the source position: the hyperbolic intersection technique and the

numerical search technique.

Hyperbolic Intersection

The hyperbolic intersection technique for navigating ships and aircraft has been in use for more than fifty

years. Given the TDOA value estimated for each sensor pair, a set of non-linear equations that define a series

of hyperbolic surfaces can be established and solved to get a solution that represents the source location

estimate desired. When the signal propagation speed is a constant, the TDOA measurement constrains

the source to a hyperboloid. The estimate of the source position is given by the intersection of these

hyperboloids. The assumption originally adopted was that the location could be determined with only three

receivers in two-dimensional scenarios. In 1972, Schmidt [7] recognized that four receivers are required to

give unambiguous estimates for a two-dimensional location when using this hyperbolic technique, due to

the need to account for the error contained within the TDOA estimates. Later, a number of suboptimal

closed-form techniques have been developed based on spherical intersection [8], spherical interpolation [9],

an improved estimation technique using two least square solutions [10], and a linear correction least squares

estimator [11]. In [12], this widely adopted method is also applied to locating a mobile station.

Simplex Method

Besides the closed-form algorithms as mentioned immediately above, an example of using numerical search

for source localization based on a set of TDOA values is given in [13], which uses the simplex algorithm to

locate microseismic events in a mine. The simplex algorithm provides fast convergence and was originally

described by Nelder and Mead in 1965 [14]. The basic idea is to utilize an L+ 1-dimensional general simplex

in a L-dimensional space to minimize a target error function that provides vertex values for the simplex. The

target error function is defined as the difference between the calculated and estimated values of a (group of)

certain parameter(s) of interest. The entire region of the misfit errors is defined [14] as the “error space”.

After the error values at the L+ 1 vertices of the simplex are compared with each other, the vertex with the

highest error value is replaced by some other point in the L-dimensional space with a lower error value. As

the procedure is repeated, the shape of the simplex moves and distorts to converge to the best-fit solution.

For mining applications, each set of coordinates in the L-dimensional “error space” represents a possible

location of the microseismic event to be estimated and is related to a value of the error function for the

TDOAs. The error is calculated by comparing each TDOA value corresponding to a hypothesized source

position with the observed real world TDOA value. If there are K sensor pairs given K TDOA values, a

K-variable misfit error function can be formed and then minimized to locate the source position utilizing
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such a simplex in the corresponding “error space”.

2.2 One-Step Source Localization

The performance of two-step localization algorithms rely heavily on the accuracy of TDOA estimates.

When there are large errors existing in the TDOA estimates, the source location estimate is prone to even

larger error due to its non-linear relationship to the TDOA. Many applications that use TDOA estimates,

for example, underwater sonar, usually involve a very long duration signal. This signal is then truncated for

further processing, but with a length long enough to produce a large time-bandwidth product so that the

system can perform above threshold [15]. Such two-step indirect methods do not work as well for signals

with small time-bandwidth products and low signal-to-noise ratios (SNR) though, such as those encountered

frequently in an underground mine. As a consequence, other techniques that can avoid the TDOA estimation

procedure are desired.

One alternative is a direct procedure named the Approximated Maximum Likelihood (AML) algorithm

proposed in [16], which is implemented in the frequency domain. It approaches the problem using parametric

array processing to fully exploit the underlying data model for good efficiency and robustness, at the cost of

extensive multidimensional search and signal processing.

Another alternative single-step estimator is also a search-based algorithm that maximizes a function over

a grid of hypothesized source locations. It is proposed in [17] with the name Energy-based Grid Search

(EGS), which directly uses the original time-domain signals received at the sensors.

Examples of previous work related in this area include the performance analysis of a multipath, multi-

sensor underwater acoustic algorithm using a summed correlator [18], and a speaker localization problem

addressed using a summed correlator algorithm, referred to as a steered filter-and-sum beamformer, in [19,20].

The two single-step source position estimators that do not require explicit TDOA estimates, AML and

EGS, are of the most interest and farther described below.

Maximum Likelihood Estimation

The well-known and frequently used Maximum Likelihood (ML) method is model-based and requires

a statistical data framework. In many cases, the total noise at each sensor can be modeled as a white

Gaussian random process with a zero-mean and common variance, whereas the signal waveform is treated as

deterministic (arbitrary) and unknown. Then the conditioned likelihood function can be easily determined

with the aid of the probability density function (p.d.f.) of all the observations for the unknown parameter(s),

in either the time or frequency domain. The desired parameter to be estimated under discussion is the source

location, which can then be obtained by solving a minimization problem numerically corresponding to this
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conditioned likelihood function. Given a good initial guess, this method usually converges quickly to a

minimum.

A parametric ML approach to solve for a wideband source location in a near-field scenario is proposed

in [16]. This solution, named as the Approximate Maximum Likelihood (AML) algorithm in [16], is developed

based on the classical maximum-likelihood DOA estimator for narrowband signals. The received wideband

signal is first transformed using the Discrete Fourier Transform (DFT) into the frequency domain, where

the signal spectrum is represented by the narrowband model for each frequency segment. The AML method

is then applied to each positive frequency segment to estimate the source location, and a combination of

the AML metrics for all the frequency segments yields the final location estimate. In addition to the grid

search, a large number of samples is required to perform the DFT well enough. The AML algorithm is hence

calculation intensive. In cases where there is no a prior information to narrow down the size of the possible

region containing the source location, the calculation load becomes even heavier. To reduce the number of

points involved in the calculation required, the likelihood function can be first evaluated only on carefully

selected points on a coarse non-uniform grid that covers a large area. For example, polar coordinates with

non-uniform sampling of the range and uniform sampling of the angle can be used. Also the grid points can

be arranged denser near the array and sparser away from the array. After a crude estimate of the source

location is obtained from one or more coarse grid-point searches, finer grids can be applied within its vicinity

to reach the global minima more accurately.

Energy-based Grid Search Algorithm

The other single-step estimator of interest is an algorithm analyzed in [17] and named Energy-based

Grid Search (EGS) in the context of this study. This EGS algorithm, like the AML, is based upon a global

search of a three-dimensional grid. The grid limits the search to a box of finite dimensions. The grid can

be non-uniform if needed. The EGS algorithm estimates the source location by finding within a given space

the hypothesized position that produces the greatest energy in the sum of all the sensor signals after each of

which has been time-shifted by an amount consistent with the propagation delay of the hypothesized location

of the event. The theoretical bases of this estimator is the cross-correlation and auto-correlation. The total

energy function used is basically the sum of all the cross-correlations and auto-correlations of the sensor

signals. When the sensor signals with the same envelope but different time lags are aligned in time, the sum

of cross-correlations and auto-correlations peaks. This brings an algorithm that works very robustly with

short-time duration signals of a small time-bandwidth product [17]. Due to the presence of random noise,

the location of the prominent peak of the total energy function moves randomly, thus creating estimation

error in practice. One major difference between the EGS and AML algorithm is the domain in which most

data processing takes place. The former is in the time domain while the latter is in the frequency domain.

An analytic expression for the estimation error variance of the EGS localization algorithm is developed
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in [17] and forms the foundation of this study. Both the analysis in [17] and this work utilizes the prominent

peak in the total energy function, which shifts around the actual position of the source in the presence of

noise. Some underlying assumptions made are that the source signal is finite and it has no discontinuity,

which are acceptable for the given application scenario. It is also assumed that the mesh used for the grid

is fine enough or that high order interpolation is used so that the position of the actual peak can be located

with desired precision.

2.3 Cramér-Rao Bounds

For a certain application scenario that can be defined with a set of known and unknown parameters, it

is always desirable to understand what the best estimation accuracy can be achieved in theory for a certain

unknown parameter to be estimated, regardless of which unbiased estimators are used. Such a theoretical

performance bound is also very useful in evaluating algorithms for a specific application environment of

interest. The most widely used performance indicator is the Cramér-Rao Bound (CRB), which provides a

lower bound expression on the variance of any unbiased estimators, for a deterministic or statistic parameter

[21].

Some examples of work on CRB include CRB expressions developed for estimating the channel and

signal parameters, or the signal itself in additive White Gaussian Noise (WGN) scenarios [22–24]. In [25]

and [26], CRB expressions are presented for estimating discrete frequency components in the presence of

special Coloured Gaussian Noise (CGN) that can be represented analytically by functions of WGN. Though

providing good insight into the CRB development procedure, the above references are not directly related

to the application of interest. As for source localization problems, most CRB expressions developed are only

in terms of TDOA or DOA estimation errors, such as in [27–29]. These are not helpful for this study either,

which is interested in the source location estimation accuracy.

[17] suggests that when the time-bandwidth product of a source signal is small, the one-step estimator

that avoids the TDOA estimation procedure is more robust than the two-step estimators that rely on TDOA

estimates. (The unit of the time-bandwidth product is in second · hz). Hence a CRB expression is desired

to provide a performance indicator that can help evaluate all the single-step source location estimators for

the scenario briefly described in 2.2.

[12] gives a CRB expression for the final location estimation error that falls in our area of interest, but

it is derived on the basis of assumptions that the error variance introduced by previous TDOA estimates is

already given. This makes it applicable only to cases where long-signal records are available such that the

TDOA can be estimated with acceptable error. [16] focuses on the source localization application using a

single-step source location estimator, but the corresponding CRB is derived in such a way that the sensor

signal amplitude is independent of the distance between the source and sensors. This is not appropriate for
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most near-field applications. Though [16] states it considers the case where the source position and source

signal samples are both unknown, the contribution of unknown source signal samples to the CRB for the

location estimation error is actually ignored during its derivation. In addition, [16] only considers WGN

and discrete time signals. In this study it is of interest to start with the original continuous signals before

sampling and to consider both WGN and CGN, in order to make the derivation presented here as general

as possible.

2.4 Optimization Techniques

This section provides a brief overview of some optimization techniques for signal processing developed in

the literature that bring insight to this study.

2.4.1 Beamforming

Most of the work devoted to optimal array signal processing has been for far-field applications focused only

on the DOA or TDOA estimation. A widely adopted technique for this is beamforming, which is implemented

with the aid of a linear or circular antenna array whose sensors are usually evenly spaced [30–32].

In these works, the source signal is normally assumed narrowband modulated on a high frequency carrier.

The goal of beamforming is to have the power output of a sensor system maximized after all the sensors are

managed to steer towards the direction of signal arrival, so that more accurate DOA/TDOA estimation can

be achieved. The signal amplitude received across the array is treated equal and this does not significantly

affect the estimation result for far-field cases. Hence the optimal steering vector is determined only by the

DOA and distance between receivers.

In near-field applications, the received signal amplitude being different at each sensor cannot be ignored

and should be utilized to locate the source position. Following the line of thoughts of the beamforming

technique for far-field scenarios, one task of this work is the maximization of the sensor array power output,

after non-uniform sensor signal amplitudes are accommodated in the algorithm.

2.4.2 Frequency Domain Techniques

The beamforming techniques introduced above are mostly rooted in the time and space domain. With

the help of the Fourier transform, optimization techniques in the frequency domain are also considered in

this work. Actually, optimal filter design has been widely studied to improve system performance in many

applications, and most filter design techniques are based firmly on frequency domain concepts. Both one-step

and two-step source localization algorithms can benefit from properly designed filters. In this section, filters

that are optimal in terms of various performance indices for various applications in the literature are briefly
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introduced.

Rough Emphasis on Certain Frequency Bins

A sensor array with predefined spatial and frequency constraints is discussed in [33] and [34]. A wideband

signal is considered and an evenly spaced linear sensor array is constructed so that “maximum energy

concentration can be achieved over a desired spatial ’look’ and some frequency regions” [34], subject to

certain conditions given in the scenario considered.

After the spatial spectral density matrix is obtained, the signal subspace property is exploited. Based on

the Wideband Multiple Signal Classification (MUSIC) algorithm, correct steering vectors that are orthogonal

to the null subspace are found to estimate a single or multiple source locations in [35].

Filters for Optimal Time Delay Estimation

[36] and [37] describe optimal signal processing for passive range and bearing estimation using the

traditional two-step process. Their common focus is on filter design applied during the first step: to optimize

the accuracy of time delay estimation. This is achieved by minimizing the frequency domain ML estimation

error of the TDOAs with the aid of a separate correlator delay measurement system. Incorporating the

sensor geometry, signal spectra and noise spectra, linear combinations of these delays can be weighted to

yield better source range and bearing estimates.

Another means to optimize the TDOA estimation is to prefilter the signals before computing their

correlation. This gives the so-called weighted Generalized Cross-Correlation (GCC) method in the frequency

domain that is well discussed in [38]. The expression of the weighted GCC for two received signals consists

of the crosspower-spectrum between them and a prefiltering function. Identifying the expression for this

prefiltering function is crucial, since by emphasizing specific spectral components, it can affect the TDOA

estimation greatly.

In [1], several frequency weighting strategies are discussed. When there is a priori information about

the source signal characteristics available and the noise can be assumed white Gaussian, the peak of cross-

correlation that brings the TDOA estimate will be sharpen by whitening the input signals, which can be

done very conveniently. A deterministic approach is presented in [1], while a statistical approach to the

signal whitening problem is proposed in [38].

In [39], a weighting technique is introduced as the so-called Phase Transform (PHAT), which works

independently of input signal waveforms. This characteristic enables PHAT to work well for wideband

signals with no a priori information available. It is a different story for narrowband signals though, since

PHAT amplifies the background noise in this case.
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Filters for Minimal Estimation Error Variance

The estimation error variance (EEV) is the most suitable performance index for an estimator if an analytic

expression for the EEV is achievable. None of the above filters was derived to be optimal in terms of the

EEV. Hence in the context of this work, a filter that can minimize the EEV value is defined as the “optimal

filter”.

In [40] and [41], the application of registering a received image (with noise) with a known ideal image

is considered. The authors successfully derived a closed-form expression for the image registration error

variance. Then, they proved that the matched filter is the optimal filter that minimizes this EEV value

under the assumption of additive WGN.

The matched filter has been widely known and discussed extensively in most communications textbooks.

Generally speaking it does not refer to any specific filter structure, but defines what a filter achieves: max-

imizing the system SNR in consideration. In most cases where noises are assumed to be additive and

independent WGN, the matched filter takes the form of the original transmitted signal after it is delayed

and transposed. Using a spectrum representation, the transfer function for the matched filter is the complex

conjugate of the Fourier transform of the original source signal with a delay constant for all the frequency

components.

This work shows that the matched filter is not always the “optimal” one for a certain parameter estimator

of interest.
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3 System Model

In order for the topics presented in Chapter 1 to be investigated, the following basic elements must first

be specified: the source signal, the way the signal is propagated, the noise, the sensors, and the geometry

of the sensor system adopted for data acquisition in this thesis. It is also very important to identify which

parameters are known and which are unknown in the problems under investigation, since they are critical for

the performance bound to be derived correctly and for the proposed theoretical algorithms to be implemented

effectively. Throughout the research work conducted here, the propagation speed and sensor positions are

taken as known parameters. The location of the source signal is assumed to be an unknown parameter; the

noises are assumed to be parameters that are statistically known by their first and second moments.

3.1 Source signal

In this work, the source signal is defined to be one single-point acoustic signal with a low time-bandwidth

product, originating from a microseismic event.

Microseismic events are a type of earthquakes, which can be caused by either natural occurrences or

human triggers. There are various reasons humans “create” small scale earthquakes: for scientific and

experimental purposes or for industrial and commercial purposes. The specific trigger of an human induced

earthquake can be many, such as a dynamite explosion, compressed air gun shot, vibrating device, and/or

regular daily routine mining activity. Most of the time, the induced earthquakes from these man-made

causes are imperceptible to humans a certain distance away from the source, and therefore referred to as

microseismic events.

The Richter magnitude scale was widely used for a long time to classify earthquake sizes quantitatively.

Now the moment magnitude scale is used, since it provides better resolution [1]. In the context of this

thesis, an earthquake with a moment magnitude less than 1 is referred to as a microseismic event, or

microearthquake. In the potash mines of Saskatchewan, Canada, a microseismic event typically generates

only 750 to 1000 joules of mechanical wave energy [2], which is far less than that of a 1-moment-magnitude

earthquake.
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The microseismic event source in consideration is defined as a single point or a monopole source. It is

abstracted as a particle as opposed to other more complex types, such as dipoles or quadrupole sources,

because the possibility of more than one microseismic event taking place side by side at the same time is

extremely low, and the radial distance in concern is much larger than the dimension of the vibration source

generating the acoustic waves. Throughout this study it is assumed that within a given short period of time,

only one microseismic event takes place, which is reasonable considering how short a microseismic signal

usually lasts. Multiple-source localization is therefore not of concern within the scope of this research.

“Acoustic” in the Merriam-Webster dictionary is defined as “of or relating to the sense or organs of

hearing, to sound, or to the science of sounds”. Indeed, it is a broad term that touches on almost the whole

realm of mechanical vibration and waves, whether within the audible spectrum or not, and regardless of the

medium in which the signals travel. For the specific type of microseismic event signals of interest here, the

frequencies are observed to be low and concentrating roughly within the range of 50 - 300 Hz [3] and the

medium is solid rock. Since the time duration of the signal is very short, which is only a fraction of a second,

the time-bandwidth product of the signal is usually less than 50 and considered small.

For a given microseismic event, the source signal can be viewed as deterministic and unknown, or it can

be viewed as one ensemble of a random process. Some statistics of such a random process may already be

known from past events observed, since all the microseismic events induced by the same type of phenomenon

or activity within the same type of medium bear similar properties. The majority of this thesis assumes

the source signal to be deterministic and unknown. Chapter 7 though, investigates the situation where the

source signal is treated as partly known, since its frequency information is statistically available.

3.2 Wave Propagation

Another important element requiring a clear definition in the system model is the wave propagation of a

seismic event.

When an earthquake occurs, transverse and/or longitudinal mechanical waves that originate from the

event source carry the energy burst out and usually propagate outwards omni-directionally. These seismic

waves are able to spread out because the earth material possesses a certain degree of elasticity to transmit

them.

Regular mining activities can cause shear rupture in rocks and puts stress, including compression, tension

and/or shearing, to the surrounding earth material. This, as a consequence, makes the surrounding earth

material undergo strain, which causes deformation in either the volume or shape. The elasticity of a material

is reflected in its strain rate, defined by the length of time the material takes to reach a certain level of

deformation under a given amount of stress. Material with good elasticity recovers from its deformation
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and goes back to its original volume and shape when the stress ceases. The general Hook’s law describes

a linear relationship between the stress and strain in an elastic medium, which is true when the amount of

stress applied to the medium is within a certain range. Beyond this range the material will pass its elasticity

limit and will either respond with brittle fracturing, which is the main cause of sudden falls and bursts in

the rock, or ductile/plasticity behavior, meaning the deformation stays in place even when there is no more

stress present. However, the inelastic behaviour of seismic waves only need to be taken into account for either

very large-amplitude seismic-caused deformations in soft soil, or for extremely long-period of free-oscillation,

neither of which is the case here. More detailed information about seismic wave propagation and earth

models can be found in [4].

In this study, the medium in which seismic waves travel is solid rock and assumed isotropic, which means

waves radiate outwards from the origin uniformly and omni-directionally. In this case, “the number of

independent parameters in the elastic tensor described by the Hook’s law is reduced to just 2 from 21 [4].” If

the properties of the medium vary when measured along the axes in different directions, the medium is called

anisotropic and the wave propagation will be direction-dependent. Although “in some parts of the earth’s

interior, anisotropy on the order of a few percent exists, isotropy has proven to be a reasonable first-order

approximation for the earth as a whole” [5].

Seismic waves are mainly defined as body waves or surface waves, based on their travel paths. As their

names suggest, body waves spread through the lithosphere, the outer part of the earth’s body, while surface

waves only find their way along the surface of the planet, somewhat similar to wavelets often seen on water.

Body waves include P -waves and S-waves, where P stands for primary and S for shear or secondary.

The name “primary” results from the fact that P -waves propagate the fastest among all kinds of seismic

waves generated during a earthquake and hence the first being captured by a seismometer. Similarly, the

name “secondary” is derived from the fact that S-waves are in general the second one to be recorded by a

seismometer. Another name for P -waves is “compressional waves”, because they cause the medium through

which they travel to change volume from being pressed to stretched alternatively by pushing and pulling

the medium particles in the same direction the waves propagate. Depending on the medium being solid,

thick liquid, water-like fluid or gas and the direction of the wave propagation, the P -wave speed varies. In

comparison, S-waves can only travel through the solid at about 60% of the speed of P -waves in the same type

of medium (Wikipedia: Seismic waves). S-waves cause solid particles to have movements that are vertical

to the wave propagation direction. Despite what their names suggest, earthquakes generate much stronger

secondary waves than primary waves according to historical data records. This has also proven to be true

for microseismic events of interest here, since “P -waves are rarely observed on the monitoring systems used

in Saskatchewan potash mines” [6].

Surface waves are the result of body waves interacting with the surface and lithosphere of the earth. It is
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obvious that major damage done in an earthquake is by surface waves, since man-made infrastructures are

mostly built on/beneath the surface of the earth. The dreadful ground shaking a human body can sense is

mostly caused by surface waves as well.

There are also two subcategories under the name “surface waves”: the Love waves and Rayleigh waves.

No introduction is needed for them here, because the microseismic events of interest that can happen a dozen

times a day are not strong enough to produce any such surface waves. Hence they are not part of the system

model that needs to be considered for this study. [7] provides more detailed description for various types

of seismic waves and their characteristics. For different mediums, the mechanical wave characteristics and

behavior can be modeled similarly, but the wave speed and attenuation rate are different depending on the

elastic and inertial factors of the mediums. “Typical S-wave propagation speeds are on the order of 1 to 8

km/sec. The lower value corresponds to the wave speed in loose, unconsolidated sediment, the higher value

is near the base of the earth’s mantle [7].” In the application of interest, the S wave velocity observed in a

potash mine is roughly 2500 m/s [2].

A wave traveling in a heterogeneous material may undergo refraction, reflection, dispersion, diffraction,

and attenuation. Please see [8] for a more in-depth description of seismic wave propagation in heterogeneous

media. However, the medium of the propagation model adopted for this study is assumed homogeneous,

which then excludes refraction, dispersion, and diffraction. This assumption is reasonable since within the

vicinity of a mine usually the subsurface geological characteristics remain the same. Therefore, the only type

of interaction that requires consideration is reflection. Paths involving reflection are longer, which means

the reflected signals are delayed relative to the signal traveling directly from the source to sensor in the same

type of medium. The strengths of the delayed reflected signals are thus usually significantly weaker than the

direct path signal, and it is reasonable to ignore the signals arriving other than those along the direct path.

Therefore, a single path model is suitable to address the problem of interest.

It is also assumed that the wave amplitude decreases inversely proportional to the distance it travels

from the origin and that no energy is lost. Therefore, a system model assuming that a source signal spreads

spherically with a constant propagation speed can be established, provided that the medium considered is

isotropic and homogeneous.

3.3 Sensors

The sensing components considered for the system model in this study is a type of seismometers that

have been widely used: the geophones. These electromechanical devices are constructed based on the physics

stated in Newton’s Law of Inertia: an object tends to remain in whatever state it is currently in, until an

external force causes it to change.
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Microseismic events generate signals that last a short period of time and only cause the earth within the

vicinity to experience limited shaking. The geophones are selected for the application of interest because

they satisfy the desired requirements for sensitivity and operational frequency range. They produce output

signals proportional to velocity instead of displacement or acceleration, with a relatively high sensitivity.

Their cost is relatively low due to the simplicity in their structure.

A typical geophone is made up of a magnetic component, a cylinder wrapped by a copper wire coil, and

a spring. The cylinder hangs from the spring that is attached to the magnetic housing and the housing is

fixed to the earth. When the earth is shaking, the magnetic housing moves along but the cylinder tends to

stay where it is. The relative movement between the copper wire coil on the cylinder and the magnet forms

an electromagnetic field and creates current. The current is then output as voltage, which is proportional to

the velocity of the ground movement, representing the microseismic wave propagation speed.

The geophones with a structure as described above are passive analog devices made up of electrome-

chanical components. Technology advancement has brought into the world a new kind of seismometers that

are made up of microelectromechanical components. Unlike the geophones that track the earth movement,

these new products utilize an active control loop to help a small piece of silicon resist the earth movement

and stay in its original position. By doing so, these devices generate responses proportional to acceleration,

which categorizes them as accelerometers.

Most of the cases, microelectromechanical accelerometers provide wider responsive frequency ranges

compared to geophones. However, the benefit comes at the cost of suffering a much higher noise level, due

to the nature of its structure. The existence of thermal/shot/ 1
f /generation-recombination noise has already

been widely and well observed in microelectronic devices. The use of microcantilevers or membranes to

manufacture a microelectromechanical device makes the situation even worse by introducing special extra

noises. The geometrical prints of these components are so small that they tend to cause problems during the

heat dissipative process. This then causes temperature fluctuation within various vibrational structures of

such accelerometers, which results in additional noises specific to microelectromechanical devices. Therefore,

though these devices may make a great candidate for strong vibration applications with long lasting signals,

they are generally not suitable for microseismic events that are often seen in potash mines.

When dimension is not a concern, traditional geophones with a simple-structure are almost still the best

choice among all seismometers, considering its lower cost with good linearity, dynamic range and lower noise

generation. Modern microelectromechanical accelerometers do not compete well for applications involving

weak and transient signals like microseismic waves.

Readers can find more information about seismometers and geophones in [9].

Given the simple structure, a classical geophone is only able to measure a single-dimensional movement of
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the earth, although in reality seismic pressure waves shake the ground in three dimensions. This can presents

a problem when the full wave needs to be observed and utilized. However, P -waves are rarely observed in

Saskatchewan potash mines [6] and the concern here is only the location of a microseismic event, not the

waves. It is therefore acceptable to adopt and place these single-dimensional geophones on the ceiling of the

mining tunnels to monitor S-waves oscillating along one direction.

For the application of interest, it is assumed that an array of sensors are used to record acoustic pressure

waves produced by a microseismic event. Each sensor includes a classical geophone and a data transmission

system. All the sensors adopted bear the same mechanical and electrical properties.

3.4 Noise

It is reasonable to assume as in [2] that the output of each sensor, which consists of a geophone and a

data transmission system, contains noise that is a combination of ambient vibrations and Johnson noise. It

is acceptable to model the noise as white Gaussian in this case. However, sometimes a stationary coloured

Gaussian noise (CGN) model may better reflect the physical situation, due to the existence of electronic

elements. The spectrum of the actual source noise will be shaped by these elements as the noise passes

through the sensor before entering a signal processing device for source location estimation. Also in some

cases, there may be a certain interfering signal that can be either known or characterized as a Gaussian

process. Therefore, for the investigation covered in this work, either a WGN or stationary CGN model is

adopted for the noise, depending on the scenario of a specific research topic under discussion. However,

regardless of whether the type of noise is WGN or CGN, the noise at all sensors is assumed to be additive

and spatially independent, and to have an identical power spectra. To be more precise, the noise is assumed

to have identical distribution with a zero-mean and common variance.

3.5 Sensor System

In the sensor system adopted for the application of interest, it is assumed that the response of every

sensor is identical,and the output of each sensor is continuous and contains Gaussian noise as described in

Section 3.4.

The spatial coordinate system used here is the three-dimensional x, y, z Cartesian system, similar to the

one used in [2]. The source position is given by ~ps = (xs, ys, zs). There are M sensors placed arbitrarily and

sparsely in the vicinity of the source. The position of sensor m is denoted ~pm = (xm, ym, zm). The distance

from the source to sensor m is denoted dm and is given by

dm = ‖ ~pm − ~ps ‖

=
√

(xm − xs)2 + (ym − ys)2 + (zm − zs)2. (3.1)
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~p1(x1, y1, z1)

Sensor 1

Sensor m

~pm = (xm, ym, zm)

Source
~ps = (xs, ys, zs)

dm =‖ ~ps − ~pm ‖

Figure 3.1: Coordinate system for the sensors

The output of sensor m, denoted rm(t), is a continuous sample function of a stochastic process rm(t)

that is given by

rm(t) = sm(t) + nm(t), (3.2)

where nm(t) is an additive noise random process, and sm(t) is the signal received at sensor m that is

independent of the noise. sm(t) is simply a delayed and attenuated version of the original deterministic

source signal s0(t) and is given by

sm(t) =
s0(t− τm)

dm
, (3.3)

where τm = dm
c is the time for the original signal s0(t) to travel from the source to sensor m, with c being

the propagation speed of the mechanical wave. To accommodate this propagation model, it is assumed that

all the observed waveforms are collected by sensors that are at least one unit distance away from the source.

The geometry of the sensor system is shown in Figure 3.1.

It is reasonable to assume that s0(t), denoting the real source signal, contains no discontinuity and is

finite with a short-time duration T . The start time of the source event is taken as the time origin, and To is

the end of the observation time, which is assumed much greater than T . Mathematically, To may extend to

infinity.
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4 Performance Comparison for Three Source

Localization Algorithms

The content was originally published as:

S. Li and B. L. Daku, “Performance Comparison for Three Source Localization Algorithms,” CCECE,

May 2005, Saskatoon, SK, Canada.

In previous chapters, some background information on the applications, technologies, and system model

for passive acoustic source localization were introduced. As a starting point, this chapter focuses on the

selection of a preferred localization algorithm for the application of interest. There have been numerous

methods proposed during the past century. Here only the most representative and relevant algorithms are

considered. The system model defining the source, sensors, signal, noise, and wave propagation adopted for

all three algorithms compared in this chapter is the same as that given in Chapter 3, though different data

processing techniques are used. A brief description is provided for each algorithm, and then performance

evaluation and comparison are done before the final conclusion is presented.

The manuscript included here has been modified to follow the standard and naming conventions of this

thesis. Some wording changes have been incorporated to present the candidate algorithms proposed in the

literature with better clarity. Some extra simulation done after the original paper was published has also

been added in this chapter with the results being rendered in Fig. 4.5. All results presented in the original

manuscript remain valid.
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Abstract

This paper selects and compares three representative source localization algorithms discussed in the

literature to identify the preferred one for the application of microseismic event localization. One candidate

is a classical two-step location estimator referred to as Cross-Correlation-Simplex in this paper. Another

candidate is a one-step algorithm referred to as Energy-based Grid Search (EGS) here. The other is also

a one-step location estimator named Approximated Maximum Likelihood (AML) proposed in [1]. Monte

Carlo simulations are done, and the results indicate that the EGS algorithm is the most robust choice for

the application of interest.

Keywords — localization; short-time duration; grid search; energy-based.

4.1 Introduction

Passive source localization that uses sensor array signal processing has been investigated for a variety

of applications, such as radar, sonar, navigation, geophysics and acoustic tracking. Here the application of

interest involves localizing microseismic events caused by rock rupture and shifting in underground potash

mines [2]. Since the possibility of multiple microseismic events occurring at the same time is very low, only

the case of single source localization is considered.

For a far-field radiating source, only the Direction of Arrival (DOA) is observable [3, 4]. However, in

a near-field scenario, where the sensors are located in the vicinity of the radiating source, both range and

bearing direction can be estimated. A classical process for locating a near-field acoustic source involves

two steps: first estimate the Time Difference Of Arrivals (TDOAs) between all sensor pairs, then locate the

source with the aid of a set of non-linear equations defined by these TDOAs [5,6]. This traditional procedure
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does not render satisfying location estimates for signals of short-time duration such as the acoustic signals

generated by microseismic events, which have been observed to last roughly about 0.2 second only. In this

case, obtaining accurate TDOA estimates can be too challenging a task due to the noise present, which may

amplify the error within the TDOA estimates during the following source location estimation procedure.

An alternate approach to the two-step localization mentioned above is discussed in [2], which avoids the

separate time delay estimation procedure but directly searches over a grid of hypothesized source locations

to find the grid point that best explains the observed measurements. The particular approach described

in [2] is given by a function that calculates the total energy from the sum of the sensor signals, each of which

is time-shifted by an amount consistent with the hypothesized location of the event. It results in a very

robust one-step algorithm that works well with short-time duration signals, which in this paper is referred

to as the Energy-based Grid Search (EGS) algorithm. It can be implemented in either hardware or software

to yield real-time estimating results, given the recent technology advances in related areas.

In a recently published paper [1], another one-step estimation algorithm, called the Approximated Maxi-

mum Likelihood (AML) algorithm is proposed. It transforms the data observed in the time domain into the

frequency domain, then based on a traditional maximum likelihood approach for DOA estimation, results

in a function that is explicitly coincident with source locations and implicitly coincident with the source

signals. This algorithm also requires a grid search to find the point that gives the maximum of a function,

a point which corresponds to the estimate of the source location.

In this paper, Monte Carlo simulations are done to compare the performance of three candidate algorithms

for the application where a single source in the near field producing a short-time duration signal, is to be

localized. The two single-step algorithms are then further compared with each other to provide a close-up

look at their performance using a different simulation setup.

It should be noted that the sensor positions and the propagation speed of the signals are both assumed

to be known. In the next section, the three algorithms to be compared are briefly introduced. Then the

simulation model and procedure is described, followed in the last section giving some preliminary performance

results and analysis.

4.2 Algorithm Description

The three candidate algorithms chosen for study in this paper are described in this section.

4.2.1 Cross-Correlation-Simplex Algorithm

As mentioned earlier, a traditional two-step localization algorithm first estimates time delays and then,

based on these time delays estimates the source location. The Cross-Correlation-Simplex, chosen as a
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representative two-step localization algorithm, first requires partitioning of the sensors into pairs, since it

does not estimate the specific time delay of arrival at each sensor, but only the differences between the time

delays, referred to as TDOAs.

The technique adopted to estimate the TDOAs by the Cross-Correlation-Simplex algorithm is a classical

cross correlation technique. The cross correlation between any two sensor signals, denoted ri(t) and rj(t),

can be expressed in the form of the crosspower spectral density function with the aid of widely-known Fourier

transform:

Rij(δτ) =

∫ ∞
−∞

Grirj (f)ej2πfδτdf, (4.1)

where Grirj (f) is the crosspower-spectrum of ri(t) and rj(t). The time argument δτ at which the correlator

achieves a maximum is the TDOA estimate.

In practice, the two sensor signals are usually random processes since they contain additive random noise.

Hence only an estimate Ĝrirj (f) of Grirj (f) can be obtained from finite observations of ri(t) and rj(t) and

the integral

R̂ij(δτ) =

∫ ∞
−∞

Ĝrirj (f)ej2πfδτdf (4.2)

is evaluated and used for estimating the TDOA.

In the case of multiple sensors, the above expression is used for each pair of sensors, and a group of TDOA

estimates results. As pointed out in [7], there is art in how the sensors can be partitioned. Choosing a single

sensor to appear in all sensor pairs puts excessive emphasis on that sensor. This is equivalent to assigning

an 100% observation certainty over the signal received at the reference sensor. If for some reason there is

a large error in the signal arrival time recorded at the reference sensor, the estimate of the source location

can be even more erroneous. To eliminate this problem, the partitioning can be done such that no single

sensor appears in more than one sensor pair. However, there is a shortcoming of this strategy. It limits the

number of TDOAs that can be used later for source localization. Another strategy, as proposed in [7], is to

use the mean of the estimated arrival times as the reference value to be subtracted from the arrival time at

each sensor. Normalizing the estimated arrival times to their respective mean results in a set of values that

bears more statistical consistency.

With the group of TDOAs obtained as described above, the next step is to estimate the source location.

The method selected here to calculate this estimate is called the simplex method, originally proposed by

Nelder and Mead in 1965 [8]. Its basic idea is to use a general simplex that can move and contort to give

a best-fit solution that minimizes a function with K variables in a given error space. For the application of

interest, the K variables are the K TDOAs calculated, the function to minimize is the misfit between the

calculated and estimated TDOAs, and the error space is made up of all the possible values of the misfit.

How the misfit should be calculated is critical since it affects the accuracy of the final location estimation.
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Generally speaking, there are two expressions to use to calculate the error. One is the median value statistic,

or L1 norm, whose expression is given by

ErrL1 =
1

K

K∑
k=1

|δτestk − δτcalk | (4.3)

when ErrL1 is a minimum, and where δτestk and δτcalk are the estimated and calculated TDOA measure-

ments, respectively, K is the number of TDOAs to compare and “| |” denotes absolute value. The other

expression often used is the least squares, or L2 norm, given by

ErrL2 =
1

K

√√√√ K∑
k=1

|δτestk − δτcalk |
2

(4.4)

when ErrL2 is a minimum. However, L2 norm weights each TDOA misfit by the square of its error, hence a

single value with a large error has the potential to introduce a big bias into the location calculation, resulting

in poor location estimates, especially for a limited number of TDOA observations. For example, picking up

noise spikes or confusing S and P wave arrivals at one sensor can lead to such a problem. Hence L2 norm

is not a good choice. L1 norm, in comparison, does not suffer as much a performance degradation in the

minimization procedure even when there are more than one larger errors existing in the TDOA estimates,

so long as the number of good TDOA estimates is greater. This makes it a more robust way to calculate the

source position and is therefore chosen as the error function to be minimized in this paper.

The simplex algorithm has been frequently used to solve all kinds of fitting-curves-to-data problems since

computers were adopted for numerical calculation tasks. A geometric simplex is a figure having one more

vertex than the number of dimensions in which it is defined. A simplex figure is a triangle when defined

within a two-dimensional space and a tetrahedron within a three-dimensional space, etc. The vertices of

a simplex figure represent values in an error space. The numerical searching procedure with the aid of a

simplex for microseismic localization application can be implemented as follows:

1. Pick at least two estimated TDOAs from the results obtained using the cross-correlation technique,

e.g., from the sensors with the highest SNR values.

2. Make an initial guess of the source location at a minimum of three points. Initial position choices

depend on the distance of the event from the geophone array and the dimensions of the array.

3. For each of the three or more test points, obtain the set of calculated TDOAs according to the same

sensor partition used for the TDOA estimation step. Then normalize the set of calculated TDOAs to their

mean.

4. Calculate the ErrL1 for each test point by comparing the calculated TDOAs to the estimated TDOAs.

5. Determine which of these vertices has the highest value for ErrL1 and which has the lowest value.

Replace the high ErrL1 point with another lower error location position. New points for the simplex are
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found by testing “reflected,” “expanded,” “contracted,” and “shrunken” vertices, which are depicted for the

two-dimensional (three-point simplex) case in Figure 4.1.

Figure 4.1: Three-point two-dimensional simplex. Four mechanisms of movements are indicated: reflection,

expansion, contraction, shrinkage. B = best vertex, W = worst vertex, R = reflected vertex, E = expanded

vertex, C = contracted vertex, and S = shrunken vertex.

The pattern of test points is thus moved away from points with larger errors, toward points with smaller

errors.

6. Continue moving the simplex test points until the location point gives the best-fit, or least error, when

compared with the measured data. This is the location where theoretical/calculated TDOAs are very close

to the true TDOAs estimated: the minimum in the error space which represents the best-fit microseismic

event location.

In practice, simplex iteration stops at a point where ErrL1 meets a set of minimum value conditions. The

conditions may be that ErrL1 is less than a certain pre-established value, that the step size in the search has

fallen below a certain value, or that a certain maximum number of trial locations has been reached. Though

establishing a minimum residual error threshold beforehand is a common technique used to stop a numerical

search, the iteration is stopped in the simulation here when the simplex figure has contracted such that all

vertices are physically close enough to one another according to a certain closeness criterion.

35



4.2.2 Approximated Maximum Likelihood Algorithm

The second candidate algorithm to evaluate is proposed in [1] as an optimal parametric approach to

solve the problems of wideband source localization in the near field. This algorithm, called Approximated

Maximum Likelihood (AML) algorithm in [1], is developed based on the classical maximum-likelihood DOA

estimator for narrowband signals. The discrete signal is first mapped into the frequency domain, where its

wideband spectrum is constructed using the narrowband model for each frequency segment predefined. The

AML algorithm is applied to each positive frequency segment to estimate the source location and the AML

metric produces a combination of all the frequency segments that yields the final location estimate.

A block of L discrete samples in each sensor signal can be mapped into the frequency domain with a

DFT of length N . It is known that DFT does circular time shift, which creates error in the actual time

shift when L is small. Hence the impact of the L value being small on the performance of the AML will be

evaluated.

The frequency domain M -sensor array signal model can be given by

~Xr(n) = ~D(n)Xs(n) + ~Xn(n), (4.5)

for n = 0, ..., N−1, where the received signal spectrum is given by ~Xr(n) = [Xr1(n) Xr2(n) ...XrM (n)]T ); the

propagation vector is given by ~D(n) =
[
e−j2πnτ1/N ...e−j2πnτM/N

]T
, τm the fractional time-delay in samples,

as the authors of [1] assume uniform signal gain level at all the sensors in their actual derivation; the source

signal spectrum is given by Xs(n); and the noise spectrum vector ~Xn(n) = [Xn1
(n) Xn2

(n)...XnM
(n)]T ) is

zero-mean complex white Gaussian distributed with variance Nσ2 in each element.

The zero frequency and negative frequencies can all be ignored. Hence by heaping together only the N/2

positive frequency subbands, as defined in (4.5) into a column, all the received data can be rewritten into

a NM/2 × 1 space-temporal frequency vector as ~Xr = g(~Θ) + ~ξ, where ~Θ denotes the unknown parameter

vector [~ps, Xs] for the single source scenario, g(~Θ) = ~D(n)Xs, and E[~ξ~ξH ] = Nσ2INM/2.

The log-likelihood function of the complex Gaussian noise vector ~ξ, after ignoring irrelevant constant

terms, is given by L(~Θ) = − ‖ ~Xr − g(~Θ) ‖2. The maximum-likelihood estimation of the source locations

and source signals is given by the following optimization criterion:

max
~Θ
L(~Θ) = min

~Θ

N/2∑
n=1

‖ ~Xr(n)− ~D(n)Xs(n) ‖2, (4.6)

which is equivalent to finding min
~Θ
f(n) for all n bins, where

f(n) =‖ ~Xr(n)− ~D(n)Xs(n) ‖2 . (4.7)

The minima of f(n) with respect to the source signal vector Xs(n) must satisfy ∂f(n)
∂Xs(n) = 0; hence after
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some further arrangement, the AML source location estimate in the single-source case becomes J(~ps) =
N/2∑
n=1
|B(n, ~ps)|2, where B(n, ~ps) is the beam-steered beamformer output in the frequency domain [9].

[5] shows that the AML approach is identical to the maximum weighted cross-correlation approach for

the single-source and near-field case when using frequency spectrum representation, and that the maximum

weighted cross-correlation criterion, denoted Jwcc, maximizes the sum of the weighted cross-correlation

functions with the relative time delays for different parameters ~ps, the source positions.

Jwcc(~ps)

=
1

N

N−1∑
n=1

M∑
m=1

Xrm(n)e−j2πtm(~ps) n
N

M∑
l=1

Xrl(n)e−j2πtl(~ps) n
N ,

=
1

N

N−1∑
n=1

|B(n, ~ps)|2. (4.8)

4.2.3 Energy-based Grid Search Algorithm

The third candidate to evaluate is the so-called Energy-based Grid Search algorithm that has been

studied in [2]. The microseismic event is assumed to take place within a finite three-dimensional space to be

investigated. The algorithm performs a global search over a grid defined within such a finite space, which

can be abstracted as a three-dimensional box. The grid points represent hypothesized source positions. An

energy function is then computed for each grid point inside the box, and the point that maximizes the energy

function yields the estimate of the actual source position. The energy function is given by

W (~̃ps) =

∫ T

0

[
M∑
m=1

rm(t+ τ̃m)

]2

, (4.9)

where ~ps represents the real source position, ~̃ps the hypothesized source position, and τ̃m, given by τ̃m =

‖~̃ps−~pm‖
c , the time an acoustic wave takes to reach sensor m from its assumed origin, the hypothesized

position. The integration limits in practice can be obtained from the strongest signal received at the sensor

closest to the event, hence the assumption of the integration limits having negligible estimation error is

reasonable.

(4.9) indicates that the received sensor signals, rm(t), m = 1,..., M , are shifted back in time by τ̃m,

m = 1,..., M , according to the distance between the grid point ~̃ps and sensor position ~pm. The shifted

sensor signals are then summed, squared, and integrated to give the final output value. The grid point ~̃ps

at which (4.9) achieves its maximal value represents the estimate of the true source position ~ps. (4.9) is a

function of the grid point, but the shifted signal is not scaled in its amplitude accordingly. The mathematical

foundation of this algorithm lies in the properties of signal auto-correlation. Though in fact (4.9) is cross-

correlation between sensor signals, it can be interpreted as auto-correlation between two copies of the source

signal though with different amplitudes. When there is no noise, cross-correlation peaks when the time lag
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between two signals is zero. For (4.9), this happens only where the hypothesized source position falls onto

the true one, when each sensor signal is shifted a correct amount of time back to the origin.

This total energy approach given by (4.9) is conceptually easy and does not distort any original data

during calculation but makes direct use of them. This feature makes it much more robust and reliable,

compared with other algorithms that require various types of preprocessing of the data.

4.3 Simulations and Performance Evaluation

In the simulation model, the passive sensors are assumed to be omnidirectional, having identical responses

and the same i.i.d. white Gaussian noise. Compared with the original source signal, sensor signals experience

time delays, as well as amplitude degradation that is inverse to the distance, and the additive noise.

All the simulations are done using Matlab. A signal with random phases but fixed-frequency components

and energy is generated to serve as the source signal. The number of data samples is 200, and the sampling

frequency is set at 1 kHz, which makes the duration of the signal 0.2 second. The frequency components

are set to range from 5 to 100 Hz, reflecting common components of actual microseismic source signals in

the application of interest. The speed of propagation used is 345 m/s. At the arbitrarily placed sensors, all

signals received are simulated with appropriate time delays and amplitude attenuation. For the EGS and

the Cross-Correlation-Simplex algorithms, conventional time delays are applied, while circular-shift delays

are introduced for the AML algorithm.

The first simulation scenario considers five arbitrarily placed sensor and various source locations along a

line. This source-sensor geometry is depicted in Figure 4.2.

Appropriate values of SNR are set for all the sensors for each source location along the line in Figure 4.2,

based on the assumption that the SNR at the closest sensor always equals 0 dB. For each source position

indicated in Figure 4.2, 1000 iterations of simulation are run to obtain the location estimate. The root mean

square(RMS) of the estimation error is then calculated and plotted in Figure 4.3.

Results presented in Figure 4.3 show that the two-step Cross-Correlation-Simplex algorithm yields the

worst performance among the three. For the Cross-Correlation-Simplex method, the accuracy of the solution

depends on two factors. The first is the closeness between the true source position and the initial guessed

source positions to start the iteration. The simplex can be trapped in a local minimum if the initial points

are too far away from the real source point, or there are simply too many local minimums existing around

the true source position. The second factor is the closeness between the observed data (estimated TDOA

values) and the real data (true TDOA values), since the solution converges at the point reflected only by the

observed data. The closer the observed data are to the real data, the more accurate the final solution will

be. The simplex method represents a non-linear relationship between the TDOAs and the source position.
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Figure 4.2: Sensor configuration and assumed source event locations for simulation 1

Figure 4.3: Comparison between the three candidate localization algorithms

39



−1000 −500 0 500 1000
−800

−600

−400

−200

0

200

400

600

800

x

y

 

 

SourceTrack
sensor

Figure 4.4: Sensor configuration and assumed source event locations for simulation 2

When only 200 data samples from a source signal lasting only 0.2 second are available, as in the simulation

scenario here, or when the SNR is quite low, poorly estimated TDOA values may well be seen. Hence even

if a good guess of the true source location for the initial iteration can be made in such cases, an even poorer

source location estimate is still likely to result since the errors in the TDOA estimates can be enlarged during

the non-linear procedures of the simplex method. The simulation results confirmed this, and the need for

alternative methods to estimate the source location consistently with more accuracy is also validated.

As for the other two single-step algorithms, the EGS algorithm demonstrates an overall better perfor-

mance compared with the AML in Figure 4.3.

As discovered in [1], the AML algorithm introduces a few artifacts, such as the edge-effect problem for

the actual linear time shift due to the inherited circular-shift property of the DFT, and the loss of the

orthogonality of the DFT transform when zero padding is done to the original signals. In the latter case,

the white Gaussian noise shows correlation across the frequency domain. The situation tends to get worse

when the SNR is low. In comparison, the EGS algorithm does not have these problems since it only deals

with the original time-domain data. So, theoretically, the EGS algorithm is expected to demonstrate a more

robust performance. To verify this, a second simulation is run solely to evaluate the two one-step algorithms

for a series of SNR values, assuming a specific source position. The source sensor geometry for the second

simulation scenario is depicted in Figure 4.4. For each SNR value, 1000 iterations of simulation are done
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Figure 4.5: Comparison between the EGS and AML

to obtain the location estimate, and the RMS of the estimate error is then calculated to give the results as

plotted in Figure 4.5.

Figure 4.5 shows that the EGS algorithm does outperform the AML algorithm. This is primarily because

that the number of data adopted in the simulation is only 200, which is not enough for the AML to do DFT

with only negligible numeric errors. The EGS algorithm, on the contrary, does not require any preprocessing

of the data, which makes it a more robust source localization algorithm even under low SNR values and with

a small number of data available. The two algorithms are both unbiased and are supposed to converge at

high SNR values without a significant difference in their performances, so simulations are not performed for

SNR values higher than 5 dB.

4.4 Conclusion

In this chapter, the one-step EGS localization algorithm is compared with the two-step Cross-Correlation-

Simplex algorithm and the one-step AML algorithm. The simulation results show that all three algorithms

are capable of estimating the source position, though with varying accuracy. The performances of all three

algorithms degrade when the source gets further away from the sensor array. This indicates that the more

symmetrically the sensors are arranged around the source, the more accurate the source location tends to
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be, given the same SNR value. It is seen that for short-time duration signals, the two one-step algorithms do

a better job in estimating the source location than the two-step Cross-correlation-Simplex algorithm does.

The AML algorithm requires DFT processing of the received data, thus it risks larger computational errors

when the number of data samples is limited, while the two-step algorithm risks introducing extra TDOA

estimation errors that have a non-linear relationship with the source position. Though the AML algorithm

is a good one-step algorithm when the signals last longer or the SNR is higher, the EGS demonstrates an

overall more stable and robust performance than the AML, as indicated by the simulation results obtained

here. Also, the EGS algorithm is conceptually easy and straightforward to implement in both software and

hardware. Therefore, the EGS is selected as the preferred algorithm for the application of interest.
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The previous chapter presents the preferred localization algorithm for the application of interest after

comparing three representative candidate algorithms given in the literature. The EGS is chosen as preferred

due to its robustness and therefore becomes the foundation of the work carried in chapters 5 - 7 to follow.

This chapter focuses on the development of closed-form CRB expressions for stationary Gaussian noise cases,

though the mathematical procedure can be applied to non-stationary Gaussian noise cases as well.
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Cramér-Rao Bound on Passive Source Localization for

General Gaussian Noise

Sha Li* and Brian L.F. Daku

Abstract

This paper focuses on the development of Cramér-Rao Bound (CRB) expressions for passive source lo-

cation estimation in various Gaussian noise environments. The scenarios considered involve an unknown

deterministic source signal with a short time duration, and additive general Gaussian noise. The mathe-

matical derivation procedure presented is applicable to non-stationary Gaussian noise problems. Specifically,

explicit closed-form CRB expressions are presented using the spectrum representation of the signal and noise

for stationary Gaussian noise cases.

Keywords — CRB, source localization, estimation error variance

5.1 Introduction

There has been great interest in source localization using passive sensor arrays in various applications,

such as underwater acoustic applications [1], video conferencing [2, 3], and geophysics applications [4, 5].

A variety of algorithms have been developed to cater to these applications. The corresponding Cramér-

Rao Bounds (CRBs), widely known as the theoretical lower performance bounds for estimation algorithms,

have also been developed for these applications. For source localization in far-field cases, only the direction

of arrival (DOA) can be estimated. For near-field cases, exact source locations can be determined using

traditional two-step localization techniques that rely heavily on time difference of arrival (TDOA) [6, 7]. In

the cases of using TDOA estimates, the least square and hyperbolic intersections techniques [8–11] are the

most popular methods for obtaining the final source location estimate. Hence, it is not surprising that many

CRB expressions developed for source localization problems in the literature, such as [12–14], are in terms

of TDOA/DOA estimation errors.

Both authors are with the University of Saskatchewan, Department of Electrical Engineering, 57 Campus Drive, Saskatoon,

SK, Canada, S7N 5A9. Emails: sha.li@usask.ca brian.daku@usask.ca.
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In all of the applications mentioned above, the source signals being localized are assumed to have a

time duration long enough, which is a condition necessary for those algorithms to work above threshold.

In contrast, the object of study here is signals with a short-time duration and finite energy. The specific

application of interest is the positioning of local, low-intensity earthquakes that are referred to as microseismic

events in the surrounding area of an underground mine [15]. Hence, it is categorized as a near-field problem.

Though similar to other geophysics applications involving ordinary seismic events, a different signal model is

required, since microseismic events usually last much less than a second. It has been found in [15] that the

one-step estimator avoiding the TDOA estimation procedure is more robust than the two-step estimators

relying heavily on TDOA estimates, when the time-bandwidth product of the source signal is fairly small.

Naturally, a CRB expression needs to be developed to evaluate this class of one-step, direct algorithms for

localization of the source signal concerned. Since the mining rooms of interest are straight tunnels that

expand in an arbitrary direction, this paper focuses on the source location estimation in a given direction.

There have been explicit CRB expressions presented for various parameter estimation problems besides

TDOA/DOA. For example, CRB expressions for estimation of channel and signal parameters or of the signal

itself are considered for additive white Gaussian noise (WGN) in [16–18]. In [19] and [20], CRB expressions

are presented for estimating discrete frequency components in the presence of special coloured Gaussian

noise (CGN) that can be represented linearly by functions of WGN. Though providing some insight into the

CRB development procedure, the above references are not directly related to the application of interest in

this paper. [21] gives a CRB expression for the final location estimation error that falls in this paper’s area

of interest, but it is derived using the assumption that the error variance introduced by previous TDOA

estimates is a given. This makes it applicable only to cases where long signal records are available such that

the TDOA values can be estimated with acceptable error. [22] focuses on the source localization application

using a single-step source location estimator based on maximum likelihood techniques. However, it treats

the problem in such a way that the sensor signal amplitude is independent of the distance between the source

and the sensor. This is not appropriate for most near-field applications. Though [22] tates it considers the

case where the source position and source signal samples are both unknown, the contribution of unknown

source signal samples to the CRB for the distance error between the estimated location and the true source

location is actually ignored during the derivation. In addition, [22] only considers WGN and discrete time

signals.

One important feature of the source localization problem lies in the characterization of the noise assumed

for each observed sensor signal. If there is no a priori information available about the noise or if the noise

is known to be WGN, it is sufficient to adopt the white Gaussian model. But in many cases, a stationary

CGN model may better reflect the physical situation. For example, in cases where there exist electronic

elements, such as antennas or radio frequency/microwave filters, which shape the original noise spectrum

before the noise enters the data-processing part, and also, in cases where there is an interfering signal that
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can be characterized as a Gaussian process. When these unwanted random processes can be estimated and

characterized statistically or, in the best situation, when they are simply already known, proper filters should

be developed accordingly to reduce such noise in order to improve the estimation/detection accuracy. As a

consequence, a corresponding CRB expression to evaluate an estimator applied to the stationary CGN case

is highly desirable.

For WGN, discrete-time samples can be utilized directly to construct the probability density function

(p.d.f.) of the observations and hence the log-likelihood function can be easily generated. The independence

between samples greatly simplifies the CRB expression derivation. However, for continuous sensor signals

that contain coloured noise components, the sampling procedure will not help simplify the procedure leading

to the CRB expression, since the samples are not independent of one another. Obviously, some means are

needed to ease the difficulty raised by the more complex characteristics of CGN. Here the Karhunen-Loève

(K-L) expansion is the technique chosen.

The well known Fourier transform (FT) resembles the K-L expansion. Its fundamental purpose is to

decompose a signal into the sum of weighted sinusoidal functions that extend from negative infinity to

positive infinity in time [23] Despite its simple interpretation of pure frequencies, the FT is not always the

best tool to analyze the majority of real life signals. The classical linear FT and the square of the FT do not

reveal the important characteristics of the signals whose frequency component alters over time. Common

examples for such signals that are usually of finite or even relatively shorter duration include biomedical

signals [24–27] and seismic signals [28]. Microseismic signals of interest here, usually last a fraction of one

second. For estimation problems involving such signals, the sinusoidal functions are not good models. Hence

a mathematical technique other than the FT is needed to address this issue. Such a technique shall also be

useful in the derivation of a corresponding theoretical lower performance bound for the purpose of localization

algorithm evaluation. To meet this goal, the major mathematical approach presented here is applicable to

CRB development for transient source signals in the presence of non-stationary Gaussian noise. However,

deriving a set of orthonormal basis functions to expand an arbitrary non-stationary Gaussian process in

order to obtain an analytical CRB is beyond the scope of this paper.

In this work, the sensor noise is initially assumed spatially correlated and the corresponding CRB devel-

opment procedure is presented first. Since sparse sensor placement is employed in the specific application of

microseismic event localization, spatially uncorrelated sensor noise is then considered, demonstrating more

compact analytical CRB expressions, as expected. These closed-form CRB expressions are presented as func-

tions of the spectrum representation of the signal and noise for three cases: stationary CGN with a different

spectrum envelope at each sensor, stationary CGN with the same spectrum envelope at each sensor, and

WGN at each sensor.

In [29], the CRB expression is derived using Fourier-transformed observations in the frequency domain
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from the beginning. This implies that the result is applicable to the spatially uncorrelated coloured station-

ary Gaussian noise case, a case considered in this paper. However, the derivation procedure adopted in [29]

is based strictly on the FT, which cannot be generalized to treat non-stationary Gaussian noise problems. In

contrast, the mathematical technique presented in this paper, which is based on the Karhunen-Loève (K-L)

expansion, can be used to address such problems, since Mercer’s theorem ensures the existence of a certain

orthonormal function set that can expand a positive definite kernel bilinearly with uniform convergence.

Analytical orthonormal functions have already been solved in the literature [30] and [23] for some special

forms of non-stationary processes, like the Wiener-Levy and the Brown-Bridge processes, though solving

analytical orthonormal functions is not always possible. Also, [29] treats the source signal as a Gaussian

random process and focuses on far-field applications, which are quite different from the application of interest

here. Furthermore, it assumes that the source signal and noise are both known, which simplifies the math-

ematical derivation but cannot satisfactorily reflect the application scenario considered here. In the work

here, closed-form CRB expressions will only be developed for the case of stationary Gaussian processes using

the adopted mathematical technique. CRB expressions for the case of non-stationary Gaussian processes

will be discussed in future work to limit the length of this writing.

The paper is arranged in the following manner. A basic system model description concerning the noise,

signal, signal propagation, and sensor configuration is given first. Next, the detailed CRB development for

source position estimation in a given direction is presented. This includes second moment characterization

of the observations, discussion of the special format of the Fisher information matrix (FIM), and derivation

leading to the final closed-form CRB expressions for the aforementioned specialized noise environments. Then

after a graph of the mathematical results is presented, the paper ends with a summary and conclusions.

5.2 System Model

The basic physical model adopted in this paper makes similar assumptions as in [15]: the signal source is a

single-point; the propagation medium is homogeneous and elastic (lossless) that enables spherical spreading,

where the signal energy attenuates proportionally to the square of distance in all directions; all indirect-path

signals are weak enough not to be considered; all the sensors adopted respond identically; the output of each

sensor is continuous and contains additive Gaussian noise that can be spatially correlated; and the noise at

each sensor has a zero-mean but a different unknown auto-covariance function.

The spatial coordinate system used here is the three dimensional x, y, z Cartesian system. The source

position is generally given by ~ps = (xs, ys, zs) = εs~es, where the unit vector ~es indicates the source angle

and the scalar εs indicates the source distance.

There are M sensors that are placed arbitrarily and sparsely in the system. The position of sensor m is
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denoted ~pm = (xm, ym, zm). The distance from the source to sensor m is denoted

dm = ‖ ~pm − ~ps ‖

=
√

(xm − xs)2 + (ym − ys)2 + (zm − zs)2. (5.1)

The output of sensor m, denoted rm(t), is a continuous sample function of the stochastic process rm(t),

which is given by

rm(t) = sm(t) + nm(t), (5.2)

where sm(t) is the signal received at sensor m, and nm(t) is an additive random noise process. sm(t) is

simply a delayed and attenuated version of the original unknown deterministic source signal s0(t), which

is independent of nm(t). nm(t) is Gaussian noise with a zero-mean and unknown covariance. The random

noise process at each sensor may be non-stationary and spatially correlated. However, when sensors are

sparsely positioned, the noise can be taken as approximately spatially uncorrelated.

It is assumed that all received signals are collected by sensors that are at least one unit distance away from

the source to accommodate the signal attenuation model adopted in this paper. The unit can be arbitrary so

long as it is in accordance with the distance measure system used for the mathematical derivation procedure.

Now define

sm(t) =
s0(t− τm)

dm
, (5.3)

where τm = dm
c is the time for the unknown signal s0(t) to travel from the source location to sensor m, and

c is the propagation speed of the mechanical wave.

It is physically reasonable to assume that the source signal s0(t) is real, contains no discontinuity, and

is finite with a time duration T . The start time of the source event is taken as the time origin, and To is

the end of the observation time, which is assumed to be much greater than T . To facilitate mathematical

development, To may be extended to infinity. nm(t) and rm(t) are both real functions and denote sample

functions of nm(t) and rm(t) respectively. Expressed in column vectors, the following definitions are given

~N(t) = [n1(t) n2(t) · · · nM (t)]T ,

~S(t) = [s1(t) s2(t) · · · sM (t)]T ,

~R(t) = [r1(t) r2(t) · · · rM (t)]T .

With “E[ ]” representing the expected value, the noise mean vector denoted ~M(t), and the matrix of

noise cross covariance functions denoted CNS(t1, t2), are given below respectively,

~M(t) = E[ ~N(t)] = 0,

CNS(t1, t2) = E
[
~N(t1) ~N(t2)T

]
.
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The covariance between nm(t) and nn(t) at times t1 and t2 respectively makes an element of the matrix

CNS(t1, t2), and is referred to as Cmn
NS(t1, t2).

In the rest of the study, superscript “∗” is used to represent the complex conjugate, superscript “T”

and “H” to represent the simple transpose and conjugate transpose respectively, “diag[ ]” to represent a

diagonal matrix, and “./”, “.×” and “.2” to represent element-wise division, element-wise multiplication and

element-wise square, respectively.

5.3 Development of the Cramér-Rao Bound

In general source localization applications, the parameter to be estimated is the coordinate of the source

position. Hence the CRB in correspondence is a vector. In the application of microseismic event localization

for mining safety, the long and straight mine rooms or tunnels involved may expand in any direction, along

which the evaluation of the source location estimation error is critical. In this scenario, the desired CRB

becomes just a scalar that reflects how close the estimated and true source positions can be in the given

direction.

Denote ~̂ps the estimated ~ps, ~e the arbitrary mine room direction, and ε the estimation error along direction

~e, to give ε =‖ ~ps− ~̂ps ‖. Since only ε, not εs or ~es, is of interest, the origin of the coordinator can be moved

to the true source location to give ~ps = (0, 0, 0), and hence

ε =‖ ~̂ps ‖=
√
x̂2
s + ŷ2

s + ẑ2
s , (5.4)

dm =‖ ~pm ‖=
√
x2
m + y2

m + z2
m. (5.5)

In this section, three issues are treated given (5.4) and (5.5). The first is to prepare the observed

continuous waveforms, so that the joint p.d.f. can be constructed. This is achieved by mapping a continuous

random process from the time domain to a new domain whose coordinates are represented by a set of

orthonormal functions. In this new domain, a set of individual random variables is obtained to equivalently

represent the original time process. The second issue is to study the structure of the FIM under specified

conditions given in this paper in order to avoid unnecessary mathematical derivation. Finally, the detailed

CRB development is presented.

In the sequel, without special notification, indices i, k are used to number the axes of the new coordinate

system and m,n are used to number the sensors, or equivalently, noise random processes.

5.3.1 Second Moment Characterization of the Observations

Continuous random processes are not easy to handle using classical approaches for CRB development

in detection and/or parameter estimation problems. In cases where the noise can be modeled as a WGN
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process, sampled data are useful, since they are discrete and independent random variables. However, for a

more general Gaussian random process that can be stationary coloured or even non-stationary, its covariance

bears no such favourable feature and its discrete-time samples are not as useful as those of a WGN process.

A more general continuous-to-discrete transformation approach other than the sampling procedure is needed

and the Karhunen-Loève decomposition is found to serve this purpose very well.

The basic idea of the Karhunen-Loève decomposition [23] is to break up a continuous random process given

in the time domain into a series of independent discrete random variables in a new domain. This is realized

with the aid of orthonormal basis functions that represent the coordinate axes of the new domain. The

resulting discrete random variables are projections of the continuous-time random process on all axes of the

new coordinate system and they are obviously orthogonal to each other. The second-moment characterization

for an arbitrary continuous-time random process can be easily achieved in terms of such uncorrelated random

variables in the new domain, a critical step in simplifying the CRB development procedure in general.

Assume that there is a complete set of orthonormal basis functions {φk(t)} (k = 1, 2, · · · K) that spans

the two-dimensional complex space and the continuous-time variable t ∈ (0, To). Note that K might be

finite or infinite.

For a vector of random noise sample functions, ~N(t), the following pair of expressions exist:

~Nk =

∫ To

0

~N(t)φk(t)dt, (5.6)

~N(t) =

K→∞∑
k=1

~Nkφ
∗
k(t), (5.7)

where ~Nk is the projection of ~N(t) on the axis represented by φk(t).

The set of {φk(t)} (k = 1, 2, · · · K) has to satisfy the following integral equation

Λkδik = E[ ~Ni ~N
H
k ] (5.8)

=

∫ To

0

φi(t1)

∫ To

0

CNS(t1, t2)φ∗k(t2)dt2dt1,

where Λk is an M×M eigenvalue matrix and φk(t) represents a scalar eigenfunction of the integral equation;

δik is the Kronecker Delta.

It is physically reasonable to assume that the noise has non-zero energy. Hence each element of the

noise covariance function, CNS(t1, t2), is positive definite and expandable bilinearly according to standard

results from linear integral equation theory. In addition, Mercer’s theorem promises absolute and uniform

convergence of such series expansion. Hence all the noise covariance functions can be written in the matrix

format as

CNS(t1, t2) =

K→∞∑
k=1

Λkφk(t1)φ∗k(t2). (5.9)
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For Gaussian noise, the matrix of eigenvalues Λk is independent of one another for k = 1, 2, · · · K.

Now the noise can be characterized easily in the new domain formed by {φk(t)} (k = 1, 2, · · · K) with

the first and second moments that are necessary and complete for Gaussian random processes. As mentioned

in section 5.2, nm(t) has a zero-mean and thus the mean of the equivalent discrete representation of the

noise { ~Nk} (k = 1, 2, · · · K) is zero.

The source signal s0(t) is modeled as an unknown deterministic signal with finite energy. This enables it

to be expanded by the same set of eigenfunctions that are determined by the integral equation whose kernel

is CNS(t1, t2). The vector of sensor-received signals, ~S(t), containing delayed versions of the original s0(t),

can be expanded accordingly. It is defined that

sk =

∫ To

0

s0(t)φk(t)dt, (5.10)

s0(t) =

K→∞∑
k=1

skφ
∗
k(t), (5.11)

~Sk =

∫ To

0

~S(t)φk(t)dt, (5.12)

~S(t) =

K→∞∑
k=1

~Skφ
∗
k(t). (5.13)

Now the observations have the following expressions

~Rk = ~Sk + ~Nk

=

∫ To

0

~R(t)φk(t)dt, (5.14)

~R(t) =

K→∞∑
k=1

~Rkφ
∗
k(t). (5.15)

{~Sk} (k = 1, 2, · · · K) are deterministic, { ~Nk} (k = 1, 2, · · · K) are Gaussian random variables with

zero-means and variances denoted {Λkδik}, (i = k = 1, 2, · · · K). It follows that

E[~Rk] = ~Sk, (5.16)

E[(~Ri − E[~Ri])(~Rk − E[~Rk])H ] = Λkδik, (5.17)

.

5.3.2 Matrix Format of the CRB

The distance error ε along a given direction ~e, deterministic source signal components {sk} (k = 1, 2,

· · · K), and the independent noise covariance matrices {Λk} (k = 1, 2, · · · K) make up the elements of a
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column vector ~Θ, denoting the unknown parameter vector, as defined below

~Θ = [~Θs
~Θn]T , (5.18)

~Θs = [ε s1 s2 · · · sK ]T , (5.19)

~Θn = [Λ1 Λ2 · · · ΛK ]T , (5.20)

where ~Θs and ~Θn are the unknown vector parameters related to the signal and noise respectively. Due to the

assumption of independence between the signal and the noise, s0(t, ~Θ) = s0(t, ~Θs) and ~N(t, ~Θ) = ~N(t, ~Θn).

The FIM is defined based on the first and second derivatives of the conditional log-likelihood function

with respect to each element of ~Θ. In a scenario where both the signal and the noise are unknown but

parameterized independently, as assumed here, the FIM has a block matrix form as

J(~Θ) =

 Js 0

0 Jn

 ,

where the matrices Js = J(~Θs) and Jn = J(~Θn) are the FIM’s corresponding to the signal and the noise

respectively. Hence

CRB(~Θ) =

 CRBs 0

0 CRBn


=

 J−1
s 0

0 J−1
n

 . (5.21)

Since just the CRB for source location estimation error in a certain direction is of interest and (5.21) is a

diagonal matrix, only the J−1
s term needs to be considered.

5.3.3 Detailed Derivation of CRB(ε)

In this subsection, the detailed procedure of finding the lower bound of the source location estimation

error in a given direction, denoted CRB(ε) or CRBs(ε) equivalently, is presented. From (5.21) and the

definition of ~Θs given by (5.19), it is known that

CRB(ε) = J−1
s (1, 1), (5.22)

which will not be contingent on Jn.

Given (5.17), it is seen that in the new coordinate system defined by {φk} (k =1, 2, · · · , K), the joint
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p.d.f. of the observations conditioned on unknown ~Θs is given by

p{R|~Θs}

=
K

Π
k=1

p{~Rk|~Θs}

=
K

Π
k=1

1√
2π ‖ Λk ‖

exp

[
−1

2
(~Rk − ~Sk)HΛ−1

k (~Rk − ~Sk)

]
,

(5.23)

where R = [~R1
~R2 · · · ~RK ] is an M ×K matrix.

Taking the logarithm of the above equation gives

ln p{R|~Θs}

=
K∑
k=1

[
ln

1√
2π ‖ Λk ‖

− 1

2
(~Rk − ~Sk)HΛ−1

k (~Rk − ~Sk)

]
.

(5.24)

This log-likelihood function is a random variable in the form of the natural logarithm of the conditional

density function of the transformed observations.

It is well known that Js is Hermitian, since

Js = E

[
∂ln p{R|~Θs}

∂~Θs

· ∂ln p{R|~Θs}
∂~ΘH

s

]
. (5.25)

For easier manipulation, another equivalent form of the FIM is used:

Js = −E

[
∂2ln p{R|~Θs}
∂~Θs∂~ΘH

s

]
. (5.26)

Before CRB(ε) can be calculated according to (5.22), each element of Js has to be obtained to find its

inverse, J−1
s . First observe elements Js(i+ 1, k + 1), 1 ≤ i, k ≤ K. It is seen that

Js(i+ 1, k + 1)

= −E

[
∂2 ln p{R|~Θs}

∂~Θs(i+ 1)∂~Θs(k + 1)

]
= −E

[
∂2 ln p{R|~Θs}

∂si∂sk

]

=

 −E
[
∂2 ln p{R|~Θs}

∂s2k

]
, i = k;

0, i 6= k.
(5.27)

This reduces the Js matrix into the following form

Js =


Js(1, 1) Js(1, 2) . . . Js(1,K + 1)

Js(2, 1) Js(2, 2) 0 . . . 0
...

...
. . .

...

Js(K + 1, 1) 0 . . . 0 Js(K + 1,K + 1)


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which can be easily partitioned into a 2× 2 block matrix

Js =

 J11
s J12

s

J21
s J22

s

 , (5.28)

where

J11
s = Js(1, 1), (5.29)

J12
s = J21

s
H

= [Js(1, 2) Js(1, 3) . . . Js(1,K + 1)], (5.30)

J22
s = diag [Js(2, 2) Js(3, 3) · · · Js(K + 1,K + 1)] , (5.31)

where “diag[ ]” represents a diagonal matrix.

For the 2× 2 matrix (5.28), it is convenient to represent the (1,1) element of its inverse matrix as:

J−1
s (1, 1) =

(
J11
s − J12

s

(
J22
s

)−1
J21
s

)−1

. (5.32)

J22
s is a diagonal matrix, hence its inverse,

(
J22
s

)−1
, is also diagonal with each element the reciprocal of the

original J22
s diagonal element. Inserting (5.29) - (5.31) into (5.32) gives

CRB(ε) = J−1
s (1, 1) (5.33)

=

(
Js(1, 1)−

K∑
k=1

|Js(1, k + 1)|2

Js(k + 1, k + 1)

)−1

.

Equation (5.26) indicates that the first and second derivatives of the conditional log-likelihood function

with respect to each unknown parameter must be determined first.

Start with the first derivative of ln p{R|~Θs} with respect to ε to give

∂ ln p{R|~Θs}
∂ε

= −
K∑
k=1

(~Rk − ~Sk)HΛ−1
k

∂(−~Sk)

∂ε
. (5.34)

Then take the second derivative of ln p{R|~Θs} with respect to ε to give

∂2ln p{R|~Θs}
∂ε2

= −
K∑
k=1

[
∂(−~Sk)H

∂ε
Λ−1
k

∂(−~Sk)

∂ε

+(~Rk − ~Sk)HΛ−1
k

∂2(−~Sk)

∂ε2

]
. (5.35)

Given (5.16), (5.18), and (5.26), and then taking the expected value of (5.35), (5.29) can be written as

J11
s = Js(1, 1) = −E

[
∂2 ln p{R|~Θs}

∂ε2

]

=

K∑
k=1

∂~SHk
∂ε

Λ−1
k

∂~Sk
∂ε

. (5.36)
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Next evaluate J12
s and J21

s . Taking the derivative of (5.34) with respect to sk, and then taking the

expected value, the elements of J12
s and J21

s are given by

Js(1, k + 1) = Js(k + 1, 1)

= −E

[
∂2 ln p{R|~Θs}

∂~Θs(1)∂~Θs(k + 1)

]

= −E

[
∂2 ln p{R|~Θs}

∂ε∂sk

]

=
∂~SHk
∂sk

Λ−1
k

∂~Sk
∂ε

. (5.37)

Similarly, the J22
s elements represented by (5.27) become

Js(i+ 1, k + 1)

=


∂~SH

k

∂sk
Λ−1
k

∂~Sk

∂sk
, i = k, 1 ≤ i, k ≤ K;

0, i 6= k, 1 ≤ i, k ≤ K.
(5.38)

If s0(t) is known, the time delayed and attenuated source signal at each sensor is known. Hence the

unknown parameter vector ~Θs only needs to include {sk} (k = 1, · · · , K), denoting the components of the

original source signal s0(t). In contrast, the relationship between sk and ~Sk is not as clear as that of s0(t)

and sm(t) in the time domain. As everything now has to be manipulated in the domain defined by {φk(t)}

(k = 1, · · · , K), it is necessary to find out how sk and ~Sk are related to each other.

Perform the element-wise division, denoted “./”, on both sides of (5.11) by ~d = [d1 d2 · · · dM ]T and

replace t with

~t = [t1 t2 · · · tM ]T

= [t− τ1 t− τ2 · · · t− τM ]T , (5.39)

to give

~S(t) =

K→∞∑
k=1

skφk(~t)∗.
/
~d. (5.40)

Comparing (5.40) with (5.13), it is seen that the left sides of both equations are equal, which means the

right sides of both must also be equal. Thus

~Skφk(t)∗ = skφk(~t)∗.
/
~d, (5.41)

which gives

∂~Sk
∂sk

= φk(~t)∗.
/

[φk(t)∗~d]. (5.42)
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With both ~d and φk(~t) being functions of ε, the chain rule for composite functions can be applied to (5.41)

to derive ∂~Sk

∂ε , which gives

∂~Sk
∂ε

=
sk

φk(t)∗
∂ ~d

∂ε
.×
[
φ′k(~t)∗.

/
(c~d)− φk(~t)∗.

/
(~d.2)

]
,

(5.43)

where

φ′(~t)∗ = dφ(~t)∗./d~t, (5.44)

∂ ~d

∂ε
= [

∂d1

∂ε

∂d2

∂ε
· · · ∂dM

∂ε
]T , (5.45)

with
∂dm
∂ε

= −~e · ~pm
dm

, (5.46)

“.×” and “.2” denoting the element-wise multiplication and the element-wise square.

Now substitute (5.42) and (5.43) back into (5.36) - (5.38) to give

Js(1, 1)

=

K∑
k=1

M∑
m=1

Λ−1
k (m,m)

∣∣∣∣ sk
φk(t)

∣∣∣∣2(∂dm∂ε
)2

×

[
|φ′k(tm)|2

c2d2
m

− φ′k(tm)∗φk(tm)

cd3
m

−φ
′
k(tm)φk(tm)∗

cd3
m

+
|φk(tm)|2

d4
m

]

+2

K∑
k=1

M∑
m=1

M∑
n=m+1

Λ−1
k (m,n)

∣∣∣∣ sk
φk(t)

∣∣∣∣2 ∂dm∂ε ∂dn
∂ε

×
[
φ′k(tm)∗φ′k(tn)

c2dmdn
− φ′k(tm)∗φk(tn)

cd2
mdn

−φ
′
k(tm)φk(tn)∗

cdmd2
n

+
φk(tm)φk(tn)∗

d2
md

2
n

]
, (5.47)

Js(1, k + 1)

=

M∑
m=1

skφk(tm)Λ−1
k (m,m)

|φk(t)|2 dm
∂dm
∂ε

[
φ′k(tm)∗

cdm
− φk(tm)∗

d2
m

]

+2

M∑
m=1

M∑
n=m+1

skφk(tn)Λ−1
k (m,n)

|φk(t)|2dn
∂dm
∂ε

×
[
φ′k(tm)∗

cdm
− φk(tm)∗

d2
m

]
, (5.48)
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Js(i+ 1, k + 1)

=



M∑
m=1

Λ−1
k (m,m)

∣∣∣ φk(tm)
φk(t)dm

∣∣∣2
+2
∑M
m=1

∑M
n=m+1 Λ−1

k (m,n)

× φk(tm)φk(tn)∗

φk(t)φk(t)∗dmdn
, i = k;

0, i 6= k,

(5.49)

where 1 ≤ i, k ≤ K.

If the class of functions for {φk(t)} (k = 1, · · · , K) satisfy the following features,

φk(a+ b) = φk(a)φk(b), (5.50)

∂φk(cka)

∂a
= ckφk(a), (5.51)

where a, b, and ck are arbitrary complex values, (5.42) and (5.43) become

∂~Sk
∂sk

= φk(~τ)./~d, (5.52)

∂~Sk
∂ε

= sk
∂ ~d

∂ε
.×
[
ckφ
′
k(~τ)./(c~d)− φk(~τ)./(~d.2)

]
, (5.53)

where ~τ = [τ1 τ2 · · · τM ]T . Hence (5.47), (5.48), and (5.49) are reduced to

Js(1, 1)

=

K∑
k=1

M∑
m=1

|skφk(τm)|2 Λ−1
k (m,m)

(
∂dm
∂ε

)2

×

[
|ck|2

c2d2
m

− c∗k
cd3
m

− ck
cd3
m

+
1

d4
m

]

+ 2

M∑
m=1

M∑
n=m+1

|sk|2φk(τm)φk(τn)∗Λ−1
k (m,n)

∂dm
∂ε

×∂dn
∂ε

[
|ck|2

c2dmdn
− c∗k
cd2
mdn

− ck
cdmd2

n

+
1

d2
md

2
n

]
,

(5.54)

Js(1, k + 1)

=

M∑
m=1

sk |φk(τm)|2 Λ−1
k (m,m)

dm

∂dm
∂ε

[
ck
cdm

− 1

d2
m

]

+2

M∑
m=1

M∑
n=m+1

skφk(τm)φk(τn)∗Λ−1
k (m,n)

dn

×∂dm
∂ε

[
ck
cdm

− 1

d2
m

]
,

(5.55)
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Js(i+ 1, k + 1) =

M∑
m=1

Λ−1
k (m,m)

∣∣∣φk(τm)
dm

∣∣∣2
+2
∑M
m=1

∑M
n=m+1

φk(τm)φk(τn)∗

dmdn

×Λ−1
k (m,n), i = k;

0, i 6= k;

(5.56)

where 1 ≤ i, k ≤ K.

In order to evaluate CRB(ε), the basis function set {φk(t)} (k = 1, · · · , K) has to be specified. In

most signal processing applications, it is preferred to analyze signals in the frequency domain using the

well-known Fourier techniques. However, the two-dimensional Fourier transform of a non-stationary kernel

results in a function of two frequency variables. This indicates that the basis function set {ej2πft}, where f

is a continuous real valued variable, is not a simple direct solution to the integral equation given by (5.8).

Instead, some other closed-form solution is needed. For positive definite kernels, as given in the matrix of

covariance functions of random noise processes denoted CNS(t1, t2), Mercer’s theorem ensures that there

exists a certain set of eigenfunctions that can expand the kernels bilinearly with uniform convergence. This

means that the corresponding eigenvalues form the desired uncorrelated coefficients in the new coordinate

system represented by these eigenfunctions, and analytic CRB expressions shall be achievable in this new

system. However, derivation of possible analytic CRB expressions for non-stationary processes is left for

future work to limit the length of this paper.

The focus of the following context is on kernels that satisfy the special feature of CNS(t2− t1) = CNS(τ).

The matrix of covariance functions, CNS(t2 − t1), stands for a group of stationary processes, for which the

basis function set {ej2πft}, f ∈ R is known [23] to satisfy the integral equation (5.8) and the additional

requirements defined by (5.50) and (5.51) at the same time. However, this classical FT performed over

continuous signals gives continuous eigenvalues, which are not desirable for the construction of the log-

likelihood function. Thus a modified set of basis functions that still satisfies the requirements is desired to

give discrete eigenvalues. A natural choice to try is

{
φk(t) = e−j2πfkt

}
, k = 1, 2, · · · , K., (5.57)

where the difference between fk and fk+1 is a constant ∆f Hz. It is apparent that (5.57) asymptotically

approaches {ej2πft} when ∆f → 0, and it is a solution to (5.8).
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It is obvious that

φk(t1 − t2) = e−j2πfkt2e+j2πfkt1 , (5.58)

ck = −j2πfk, (5.59)

c∗k + ck = 0. (5.60)

Examining the source signal, it can be expanded and written explicitly as

s0(t) =

K→∞∑
k=1

∆f→0

ske
j2πfkt, (5.61)

where

sk =

∫ ∞
−∞

s0(t)e−j2πfktdt. (5.62)

Though (5.57) produces a solution to (5.8), the completeness remains a question. Let Xs(f) denote the

classical continuous Fourier transform of s0(t),

s0(t) =

∫ ∞
−∞

Xs(f)ej2πftdf, (5.63)

which can also be represented by a sum of infinitesimal increments

s0(t) =

K→∞∑
k=1

∆f→0

Xs(fk)ej2πfkt∆f. (5.64)

Comparing the right sides of (5.61) and (5.64) gives

sk = ∆fXs(fk). (5.65)

This step ensures that the energy in the original source signal is conserved and thus the condition of com-

pleteness is met.

Note that if there is only a finite number of K basis functions given a certain ∆f , the accuracy of

approximating a waveform by the group of
{
e−j2πfkt

}
(k = 1, · · · , K) is affected by the smoothness of the

waveform envelope in the frequency domain. The truncation error can be large.

Examining the noise, let SmnNS(f) denote the result of applying the classical continuous FT to the covari-

ance Cmn
NS(τ) of the random noise processes at sensor m and sensor n,

SmnNS(f) =

∫ ∞
−∞

Cmn
NS(τ)e−j2πfτdτ. (5.66)

The inverse transform is given by

Cmn
NS(τ) =

∫ ∞
−∞

SmnNS(f)ej2πfτdf, (5.67)
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and its representation by a sum of infinitesimal increments is

Cmn
NS(τ) =

K→∞∑
k=1

∆f→ 0

SmnNS(fk)ej2πfkτ∆f. (5.68)

Now refer back to (5.9). Given (5.57), (5.68) can be also written as

Cmn
NS(t1, t2) =

K→∞∑
k=1

∆f→ 0

Λk(m,n)e−j2πfkt1ej2πfkt2 . (5.69)

Similarly, in order to ensure the completeness in the expansion using (5.57), (5.69) needs to be compared

with (5.68). Given τ = t2 − t1 and Cmn
NS(t1, t2) = Cmn

NS(τ), it is seen that

Λk(m,n) = ∆fSmnNS(fk). (5.70)

Obviously when ∆f approaches zero, the results given in (5.65) and (5.70) are identical to those obtained

after performing the integrated Fourier transforms of the corresponding input, as shown in [23] .

By now, the CRB for spatially correlated stationary CGN can be calculated trivially for certain signal

and noise given in the forms of Xs(fk) and SmnNS(fk). Next, the derivation leading to more compact CRB

expressions for spatially uncorrelated stationary Gaussian noise cases is presented in terms of continuous

signal energy spectrum and noise power spectrum.

In many source localization applications, the sensor placement is sparse. This implies that the correlation

between the sensors can be neglected and accordingly, Λk becomes a diagonal matrix given by

Λk = diag[λk1 λk2 · · ·λkM ], (5.71)

and accordingly

SmnNS =

 0, m 6= n;

SmNS , m = n.
(5.72)

With (5.60), (5.65), (5.70), and (5.72), (5.54) becomes

Js(1, 1)

=

M∑
m=1

(
∂dm
∂ε

)2 K→∞∑
k=1

|Xs(fk)∆f |2

SmNS(fk)∆f
×∣∣∣∣ (2πfk)2

c2d2
m

+
1

d4
m

∣∣∣∣ . (5.73)

To determine (5.33), |Js(1, k)|2 has to be found. Square |Js(1, k)| given by (5.55) and then substitute
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with (5.57) to give

|Js(1, k + 1)|2

=

M∑
m=1

M∑
n=1

|sk|2

λkmλkn

∂dm
∂ε

∂dn
∂ε
×[

ckc
∗
k

c2d2
md

2
n

− ck
cd2
nd

3
m

− c∗k
cd2
md

3
n

+
1

d3
md

3
n

]
. (5.74)

Substituting (5.60), (5.65), (5.70), and (5.72) into (5.74) gives

|Js(1, k + 1)|2

=

M∑
m=1

M∑
n=1

|Xs(fk)∆f |2

SmNS(fk)∆fSnNS(fk)∆f
×

∂dm
∂ε

∂dn
∂ε

[
(2πfk)2

c2d2
md

2
n

+
1

d3
md

3
n

]
, (5.75)

since

M∑
m=1

M∑
n=1

− j2πfk
cd2
nd

3
m

− −j2πfk
cd2
md

3
n

= 0. (5.76)

Substituting (5.57) , (5.70), and (5.72) into (5.56) gives

Js(i+ 1, k + 1)

=


∑M
m=1

1
d2mS

m
NS(fk)∆f , i = k,1 ≤ i, k ≤ K;

0, i 6= k, 1 ≤ i, k ≤ K.
(5.77)

Hence,

K∑
k=1

|Js(1, k + 1)|2

Js(k + 1, k + 1)

=

{ K∑
k=1

[ M∑
m=1

M∑
n=1

|Xs(fk)∆f |2

SmNS(fk)∆fSnNS(fk)∆f
×

∂dm
∂ε

∂dn
∂ε

(
(2πfk)2

c2d2
md

2
n

+
1

d3
md

3
n

)]}
/

M∑
m=1

1

d2
mS

m
NS(fk)∆f

. (5.78)

Substituting (5.46) into (5.73) and then letting ∆f → 0 and K →∞ gives a continuous function of the

signal energy spectral density and noise power spectral density in the frequency domain

Js(1, 1)

=
1

2π

∫ ΩB

−ΩB

M∑
m=1

q2
m

SSIG(ω)

SmNS(ω)

(
ω2

c2
+

1

d2
m

)
dω, (5.79)
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where ω = 2πf , SSIG(ω) = |Xs(ω)|2 is the energy spectrum of s(t) with a finite bandwidth ΩB in radians,

SNS(ω) is the power spectrum of the noise and

qm = −~e · ~pm
d2
m

. (5.80)

Similarly, (5.78) can be expressed as

K∑
k=2

|Js(1, k + 1)|2

Js(k + 1, k + 1)

=
1

2π

∫ ΩB

−ΩB

{ M∑
m=1

M∑
n=1

SSIG(ω)

SmNS(ω)SnNS(ω)

qmqn
dmdn

×

[
ω2

c2
+

1

dmdn

]}/ M∑
m=1

1

d2
mS

m
NS(ω)

dω . (5.81)

Substituting (5.79) and (5.81) into (5.33) gives the CRB expression, CRB(ε)CGN−dif in (5.82). Here

the noise is stationary coloured Gaussian with a different power spectrum at each sensor. It is also spatially

uncorrelated from sensor to sensor.

CRB(ε)CGN−dif =

2π

{∫ ΩB

−ΩB

M∑
m=1

q2
m

SSIG(ω)

SmNS(ω)

(
ω2

c2
+

1

d2
m

)
dω

−
∫ ΩB

−ΩB

[ M∑
m=1

M∑
n=1

SSIG(ω)

SmNS(ω)SnNS(ω)

qmqn
dmdn

×

(
ω2

c2
+

1

dmdn

)]/ M∑
m=1

1

d2
mS

m
NS(ω)

dω

}−1

. (5.82)

If the stationary CGN power spectrum at each sensor is equal and all denoted SNS(ω), the CRB expression

in (5.82) is reduced to

CRB(ε)CGN−sme =

2π


∫ ΩB

−ΩB

ω2SSIG(ω)

c2SNS(ω)
dω

 M∑
m=1

q2
m −

(∑M
m=1

qm
dm

)2

∑M
m=1

1
d2m



+

∫ ΩB

−ΩB

SSIG(ω)

SNS(ω)
dω

 M∑
m=1

q2
m

d2
m

−

(∑M
m=1

qm
d2m

)2

∑M
m=1

1
d2m



−1

. (5.83)

Further simplification of the noise to identical WGN random process, where SNS(ω) is flat and equals
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πσ2

ΩB
with σ2 being the common variance of nm(t), m = 1, 2, · · · , M , in the time domain, gives

CRB(ε)WGN

=


 M∑
m=1

q2
m −

1∑M
m=1

1
d2m

(
M∑
m=1

qm
dm

)2
 ×

ΩB
∫ ΩB

−ΩB
ω2SSIG(ω)dω

2π2σ2c2

+

 M∑
m=1

q2
m

d2
m

− 1∑M
m=1

1
d2m

(
M∑
m=1

qm
d2
m

)2
×

ΩB
∫ ΩB

−ΩB
SSIG(ω)dω

2π2σ2

}−1

. (5.84)

If a certain set of orthonormal basis functions can be found for a kernel representing a non-stationary

Gaussian noise covariance, the continuous eigenvalues corresponding to the eigenfunctions may be defined

as, e.g., Qs(ρ) and Qn(ρ) for the signal and noise, respectively. If this basis also satisfies (5.50) and (5.51),

a CRB expression in the form of (5.82) may be reached for cases of non-stationary Gaussian noise using the

signal and noise representation of Qs(ρ) and Qn(ρ) in the new domain.

5.4 Application of the CRB expressions

In this section, an example of using the derived CRB expressions for algorithm evaluation purpose is

demonstrated. An energy-based grid search (EGS) localization algorithm [15] is chosen and Monte Carlo

simulation is performed. The EGS algorithm estimates the source location with the hypothesized location

that produces the greatest energy in the sum of sensor output signals. These sensor signals have been time-

shifted by amounts consistent with the propagation delays of hypothesized locations of the event. The source

location estimation error of the EGS algorithm calculated from the Monte Carlo simulation result can then

be evaluated against the corresponding CRB expressions in the form of root mean squared error (RMSE).

The source signal used was recorded by a reference sensor placed in the Lanigan Mine in Saskatchewan,

Canada. The DC bias has been removed, and the negligible noise is taken as part of the original source

signal. The sensors are arbitrarily placed within the mine, and their coordinates are given. The CGN is

generated by filtering white Gaussian noise. Since the source signal energy is concentrated in the frequency

band of 50–200 Hz, the simulated sensor signals are assumed to have been filtered by a corresponding low

pass filter. The signal propagation speed adopted for the simulation is 2581 m/s, which is the sound speed

through rocks.
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Figure 5.1: Monte Carlo simulation of the EGS algorithm vs. CRB for the case of spatially independent

stationary CGN with an unequal covariance at each sensor.

Figure 5.1 shows that with the value of signal-to-noise ratio (SNR) increasing, the performance of the

EGS localization algorithm for spatially uncorrelated stationary CGN cases approaches the theoretical CRB

values calculated from (5.82).
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Figure 5.2: Monte Carlo simulation of the EGS algorithm vs. CRB for the case of WGN with an equal

covariance at each sensor.

Figure 5.2 shows the correspondence between the EGS performance and the CRB calculated from (5.84)
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for WGN cases. The same trends for the EGS and CRB curves are seen, as expected. The Monte Carlo

simulation performed to generate Figure 5.1 and Figure 5.2 used 1000 iterations to produce the RMSE at

each SNR value.
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Figure 5.3: CRB plots for the two noise cases aforementioned, the spatially independent stationary CGN

and WGN.

In Figure 5.3, the CRB curves for the two noise cases considered in the simulation are plotted together

for easier comparison. It indicates that for the type of source signal and sensor configuration adopted for

the simulation and calculation done in this paper, better estimation accuracy can be obtained in WGN

environment than in CGN environment.

In either CGN or WGN scenarios, the EGS performance asymptotically converges to the CRB, which

proves that the EGS is truly an unbiased estimator, as expected. Then by comparing the EGS performance

curve with that of the CRB under low SNR, it is shown clearly that there is room for the EGS algorithm

to be optimized. In summary, the CRB expressions derived in this paper are very useful in theoretically

evaluating a class of localization algorithms, such as the EGS algorithm.

5.5 Conclusion

In this paper, Cramér-Rao Bound derivation for source localization in a given direction for various forms

of Gaussian noise is presented with closed-form CRB expressions arrived for several specialized cases.

The derivation is based on continuous-time sensor signals observed, instead of their discrete-time samples.

The mathematical technique [23] used is applicable to the more general estimation/detection problems
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that may involve coloured or even non-stationary Gaussian noise. Few researchers have considered this

approach since a common idea is to consider only WGN, which significantly simplifies the mathematical

issues. However, there are cases for which this model is not suitable, as discussed earlier. Though not as

efficient as for WGN, discrete-time samples can still be used for stationary CGN. An additional “whitening”

process will be needed to remove the correlation between the samples. It can be realized through the

eigenvalue decomposition, a special case of the more general singular value decomposition [31]. Complex

matrix calculation is required to find the corresponding orthogonal matrix that can diagonalize the covariance

matrix of a CGN random process. Therefore, this paper deals with continuous signals directly. Doing so

also makes it consistent with [15], which motivates this work.

To give an example of the application of the mathematical result presented in this paper, Monte Carlo

simulation of the energy-based grid search algorithm has been performed for several specialized noise cases

under study and then evaluated using the corresponding CRB expressions derived in this work.
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6 Amplitude Weighting for Near-field Passive

Source Localization

The content was originally published as:

S. Li and B. L. Daku, Optimal Amplitude Weighting for Near-field Passive Source Localization, IEEE

Trans. on Signal Processing, vol. 59, pp. 6175–6185, August 2011.

The previous chapter presented the CRB for the class of estimators that uses the sum of cross-correlation

between the sensor signals. The derivation is mathematically applicable to non-stationary Gaussian noise

problems. However, closed-form expressions have been developed only for stationary Gaussian noise, either

white or coloured.

The EGS algorithm, evaluated using the CRB obtained in the previous chapter, is shown that it can

use some improvement. Therefore, this chapter proposes an amplitude weighting strategy that takes into

account the difference between the sensor signal strengths when the EGS algorithm is applied to locate the

source. A new way of implementing the amplitude weighted EGS algorithm in order to avoid additional

calculations is also proposed.

For performance evaluation purposes, stationary Gaussian noise is adopted in this chapter. Note though

that the amplitude weighted EGS algorithm is also applicable to non-stationary Gaussian noise cases, because

no frequency components of the source signal or the noise plays a role in the algorithm.

71



Optimal Amplitude Weighting for Near-field Passive

Source Localization

Sha Li* and Brian L.F. Daku, Member, IEEE

Abstract

In this paper, an optimal amplitude weight expression is derived and presented in closed form. The

minimal error variance for location estimation of a near-field source signal that has a low time-bandwidth

product is also presented. A noniterative method to calculate and apply weights is proposed to yield more

robust estimation results at a lower calculational cost when compared with the traditional iterative method.

Besides a theoretical evaluation, the proposed algorithm is also verified through Monte Carlo simulation.

The weight expression derived also optimizes the system signal-to-noise ratio (SNR), and therefore it can be

applied to improve the performance of any estimator/detector that utilizes the energy in the sum of sensor

output signals.
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Index Terms

Acoustic source localization, grid search, location estimation, microseismic.

6.1 Introduction

Passively locating an acoustic source is of great interest in a variety of applications, such as the tracking

of underwater vehicles, video conferencing, mobile robot navigation and seismic event localization. Many

traditional source location estimation techniques require a time difference of arrival (TDOA) estimation

procedure [1] [2] since the source location is estimated with hyperbolic intersection or least square techniques

[3–6], using the TDOA estimates. Such algorithms are referred to here as two-step algorithms and they

assume that the acoustic signals emanated from various sources are either infinite or at least long enough

to guarantee that the algorithms can perform as expected [7]. However, for a source that produces a short

duration signal with a small product of the time duration and bandwidth, these two-step algorithms have

difficulty performing above threshold, because they produce TDOA estimates with a larger error variance.

Thus a more robust algorithm is needed for applications that involve localizing such a source.

One such algorithm is a single-step estimator utilizing an energy-based grid search (EGS) [8]. The

comparison between the EGS algorithm, another one-step localization algorithm, and a classical two-step

algorithm [9] indicates that the EGS yields the most robust performance and preferable for the application of

interest. When the performance of the EGS algorithm is evaluated using the Cramér-Rao bound developed

in [10], better estimation accuracy seems possible if some optimizing technique can be applied. Therefore,

an amplitude weighted EGS (AWEGS) algorithm is proposed here. The primary contribution of this paper

includes a closed-form amplitude weight expression derived using the error variance expression of the algo-

rithm. And then the weights are applied to the EGS algorithm in a simple non-iterative way. The primitive

idea of non-iterative weighting was first mentioned in the paper [11]. Further research was done afterwards,

and this paper presents the latest results that are very important.

The specific application that motivated this study is microseismic event localization for safer underground

mining. Microseismic events are usually human induced local earthquakes of low intensity, which are often

resulted from rock rupture and shifting when the surrounding is under high stress caused by mining operations

[8]. They may occur more than ten times per day within the locale of an underground mine, hence serve as

a good indication of a potentially unstable area. Microseismic events usually last only a fraction of a second

and are classified as near field occurrences, since monitoring sensors are normally deployed within the mine

area. Monte Carlo simulation is used to evaluate the performance of the AWEGS algorithm using a real

microseismic event signal recorded in the Lanigan potash mine in Saskatchewan, Canada. The performance
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of the algorithm is also compared with the CRB from [10].

The paper is organized as follows: the system model used is described first, followed by a description

of the AWEGS algorithm proposed and of the estimation error variance expression developed for it. Next,

the signal-to-noise ratio (SNR) and error variance approaches to derive optimizing amplitude weights are

investigated, and then the simple non-iterative way of applying the weights is introduced. Finally the original

EGS and the proposed AWEGS algorithms are evaluated and compared, and brief conclusions are presented

at the end.

6.2 System Model

In this paper, the system model is made as general as possible to be consistent with that of [10]. The

model assumes the following: the signal is originated from a single-point source; the propagation medium

is homogeneous and elastic (lossless); the propagation can be modeled as spherical spreading; any signals

traveling along other than the direct path are sufficiently weak when they arrive at the sensors so that they

can be ignored; the response of all the sensors are identical; and the output of each sensor is continuous

and contains additive stationary Gaussian noise that is spatially independent with a zero-mean and common

variance. All the sensor output signals are to be converted to lowpass signals by taking the magnitude of

the analytic signal [12].

The spatial coordinate system used here is the three-dimensional x, y, z Cartesian system. The source

position is given by ~ps = (xs, ys, zs). There are M sensors placed arbitrarily and sparsely in the system. The

position of sensor m is denoted ~pm = (xm, ym, zm). The distance from the source to sensor m is denoted

dm and given by

dm = ‖ ~pm − ~ps ‖

=
√

(xm − xs)2 + (ym − ys)2 + (zm − zs)2. (6.1)

The output of sensor m, denoted rm(t), is a continuous sample function of a stochastic process rm(t)

that is given by

rm(t) = sm(t) + nm(t), (6.2)

where nm(t) is an additive noise random process, and sm(t) is the signal received at sensor m that is inde-

pendent of the noise. sm(t) is simply a delayed and attenuated version of the original unknown deterministic

source signal s0(t) and is given by

sm(t) =
s0(t− τm)

dm
, (6.3)

where τm = dm
c is the time for the original signal s0(t) to travel from the source to sensor m, with c being

the propagation speed of the mechanical wave. To accommodate this propagation model, it is assumed that
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~p1(x1, y1, z1)

Sensor 1

Sensor m

~pm = (xm, ym, zm)

Source
~ps = (xs, ys, zs)

dm =‖ ~ps − ~pm ‖

Figure 6.1: Coordinate system for the sensors

all the observed waveforms are collected by sensors that are at least one unit distance away from the source.

The geometry of the sensor system is shown in Figure 6.1.

s0(t), denoting the real source signal, is assumed to be continuous with finite amplitude and a short-time

duration T that can be estimated with negligible error at the closest sensor. The start time of the source

event is taken as the time origin.

6.3 Proposed Amplitude Weighting

With each sensor signals amplitude being weighted, the original EGS algorithm becomes the amplitude

weighted EGS algorithm. The idea proposed is to utilize the amplitude difference among the received

signals, which is a reflection of the sensor-source distance. In this section, the weighted total energy function

is introduced, followed by the presentation of the closed-form error variance expression derived for it. The

SNR and error variance approaches to obtain weights are then investigated before the noniterative way to

implement the AWEGS algorithm is presented.

6.3.1 Weighted Total Energy Function

The AWEGS method is based on the total energy function computed with the variable of the hypothesized

source position, just as the EGS algorithm [8]. The difference is that each sensor signal is weighted, and

hence a “weighted” total energy function results. The peak of this function indicates the estimate of the

true source position. When optimal weights are applied, the peak becomes the sharpest, and the estimation
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error variance will be minimal. The weighted total energy function is given by

W (~̃ps, ~w) =

∫ T

0

[
M∑
m=1

wmrm(t+ τ̃m)

]2

dt, (6.4)

where ~̃ps is the hypothesized source position, wm is the weight assigned to the mth sensor, ~w = [w1 w2

· · · wM ] the weight vector, and τ̃m, given by τ̃m = ‖~̃ps−pm‖
c , is the time required for a mechanical wave

to propagate from the hypothesized source position to sensor m. The limits of integration in practice are

assumed to be estimated from the strongest sensor signal (i.e., the sensor closest to the event) and will have

negligible error. It is seen that the original EGS algorithm [8]. is a special case of the AWEGS, where

wm = 1 for m = 1, 2, · · · , M .

Since the noise at each sensor is assumed independent and identical Gaussian, and the grid search utilizes

the phase difference between the delayed source signals across all the sensors, weights are applied to address

only the amplitude difference. The goal is to weigh a stronger signal more than a weaker signal without

changing the phase or frequency components of the signal during the localization process. Therefore, weight

values should be positive and real, as weighting the amplitude with a negative or complex value does not

help achieve the goal in this case. Thus weighting is applicable to any type of source signals.

6.3.2 Estimation Error Variance

An error analysis for the AWEGS estimator in a given direction in the presence of Gaussian noise as

assumed was performed. Though the derivation is lengthy, a closed-form error expression for the AWEGS

algorithm, denoted σ2
ε (~w), is reached after signal amplitude weighting is accommodated based on the work

of [8].

Defining “E[ ]” to represent the expected value, and ε̂ the source position estimation error in a given

direction denoted ~e, there is

σ2
ε (~w) = E[ε̂2] ≈ (A+B)/D2, (6.5)
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where

A = IA

[ M∑
k=1

w2
k

( M∑
m=1

wm
dm

qm

)2

−2

M∑
m=1

wm
dm

qm

M∑
k=1

w2
kqk

M∑
l=1

wl
dl

+

(
M∑
m=1

wm
dm

)2 M∑
k=1

(wkqk)2

]
, (6.6)

B = IB

[ M∑
m=1

w2
m

M∑
k=1

(wkqk)2 −
( M∑
m=1

w2
mqm

)2]
, (6.7)

D = ID

M∑
m=1

M∑
k=1

wmwk
dmdk

(qm − qk)2, (6.8)

and

IA =
4

2πc2

∫ ∞
−∞

ω2Sss(ω)Snn(ω)dω, (6.9)

IB =
4T

2πc2

∫ ∞
−∞

ω2S2
nn(ω)dω, (6.10)

ID = − 1

2πc2

∫ ∞
−∞

ω2Sss(ω)dω, (6.11)

qm =
~pm · ~e
‖ ~pm ‖

, (6.12)

with Snn(ω) representing the common noise power spectrum for all the sensors and Sss(ω) the source signal

energy spectrum.

This expression is meaningful in that it not only reflects the performance of the considered estimator,

but also provides the means to optimize it. By minimizing (6.5), optimal amplitude weights can be found

analytically for the AWEGS algorithm.

6.3.3 Optimal Weight Expression

References [13–18] discuss various optimization approaches in application areas such as time delay es-

timation, bearing and range estimation, and image registration, etc. Though their specific applications of

interest are not the same, their approaches to problem solving follow the same pattern. By defining a proper

quantitative measuring index for the application, e.g., the system SNR, the peak width of the system output,

or the system error variance, one can improve the performance of an estimation system in terms of these

different indices, either numerically as in [8] and [19], or analytically, if possible, as in [13–15]. It is natural

that the analytical approach is preferred for realtime applications in practice, since it requires less time

and/or resources, compared to numerical approaches.
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In this subsection, the SNR approach is studied first as it is intuitive. To decide if the closed-form weight

expression obtained is optimal or just suboptimal, the error variance approach is then investigated.

The SNR Approach

When an analytical error variance expression for an estimation algorithm is not available, the SNR is

widely used to study the system performance.

With each sensor signal being weighted, a system signal-to-noise ratio denoted SNR(~w) can be defined

as a function of weights, and a weight expression that maximizes this SNR(~w) is obtained:

wm
wl

=
dl
dm

, m, l = 1, 2, · · · M. (6.13)

Please refer to Appendix A for detailed derivation.

In [20], the problem of sensor array gain optimization is considered preliminarily using the system SNR.

However, near-field and far-field cases are not distinguished in its general model. The difference between

various signal processing procedures is not considered, either. The solution given by (4.18) in [20] is hence

far from being ready for practical use. As a result, (6.13) can be viewed as complementary to [20].

Since there is no mathematical expression available to link the SNR to the error estimation variance,

whether (6.13) is optimal in terms of error variance which directly defines the performance of an estimator

remains a question.

The Error Variance Approach

Being the most suitable performance indicator, the error variance will reach its minimum when optimal

weights are applied to weight sensor signals. This minimum is defined with the assumption that the weights

only take on positive real values. To obtain the closed-form optimal weight expression, the derivative of the

error variance expression, given by (6.5), needs to be taken with respect to each wm and equated to zero.

Then the desired solutions might be reached by solving the resulting M nonlinear simultaneous equations,

which, however, are not always promised to be solvable. To verify that the extremum obtained is a minimum

of σ2
ε (~w), the second derivative of (6.5) with respect to each wm has to be positive when the solution of wm

is applied.

Differentiating (6.5) directly will result in an extremely complex expression. Therefore, rearrangement

of the terms in (6.5) according to the order of a certain wp is done first, where p takes the value from 1 to

M . A closed-form optimal weight expression is then derived and given by

wm =
1

dm

√∑M
m=1

1
d2m

, m = 1, 2, ..., M. (6.14)

More detailed derivation leading to (6.14) is presented in Appendix B.
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Obviously (6.14) is one form of (6.13). It shows that for amplitude weighting using positive real valued

weights, maximizing SNR(~w) is equivalent to minimizing σ2
ε (~w) in the presence of noise as assumed here.

This may seem intuitive, but due to the lack of a direct mathematical relationship between the SNR and the

error variance expression, no firm conclusion can be drawn until the above analysis is performed. The equiv-

alence between the two approaches means the obtained weights can be applied to improve the performance

of any estimation/detection system that utilizes the energy in the sum of sensor output signals.

6.3.4 Non-iterative Weighting Technique

With the closed-form optimal weight expression available, how to calculate and apply the weight values

effectively is another challenge. (6.14) uses the parameter to be estimated to calculate the optimizing

parameter, which is a common contradiction in the field of optimal signal processing. Traditionally this is

dealt with iteratively, where the optimizing parameters themselves have to be estimated first, as indicated

in [21] and [22]. Here for example, each wm has to be given the value of “1” to initialize a grid search. A

source location estimate is then reached and applied back to (6.14) to calculate weights that will be used in

the next iteration. The search will be stopped when some predefined criteria is met after a certain number

of iteration are done. Grid search itself is already calculation intensive, and extra iterations simply worsen

the situation even further.

In some cases, the initial estimate of the location can be quite inaccurate. For example, the SNR is not

high enough, e.g. lower than -30 dB, and/or the grid is coarse, e.g., greater than 100 m, which is common for

an initial search across an area of several tens of square kilometers. In these scenarios, the final estimation

result can be quite unsatisfactory even after a number of iteration, because the original estimation error can

be enlarged during the iterative process. This compromises much of the benefit brought by the proposed

amplitude weighting algorithm.

To address these issues, an alternate non-iterative weighting method is proposed, which was first men-

tioned primitively in [11]. It brings optimal performance with just one iteration for a given grid search since

it does not depend on any estimates. The technique is to associate each hypothesized source location with

a different set of weights.

The proposed alternate to calculate the weights is thus given by

w̃m =
1

d̃m
√∑M

m=1
1
d̃2m

, m = 1, 2, ..., M, (6.15)

where w̃m is the weight assigned to the mth sensor according to the current hypothesized ~̃ps whose corre-

sponding total energy is to be calculated. Note that (6.15) is similar to (6.14), except that the two variables

w̃m and d̃m in (6.15) represent the hypothesized instead of the true values.
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The total energy can then be calculated using

W (~̃ps, ~̃w) =

∫ T

0

[
M∑
m=1

w̃mrm(t+ τ̃m)

]2

dt. (6.16)

It is seen that (6.15) promises that the unique set of optimal weights is applied to the grid point coinciding

with the true source position. The closer the hypothesized point is to the true source point, the closer the

value of (6.15) is to (6.14) . This means (6.15) converges to (6.14) at the true source location. In addition,

Appendix C theoretically proves why utilizing (6.15) itself does not cause the peak of (6.4) to move around

and that it actually brings unbiased source position estimates. The underlying basis of this technique is that

only when correctly weighting and shifting the sensor signals simultaneously, can the purpose of magnifying

the stronger signals and reducing the weaker signals be achieved optimally. Other than that, any wrong

shifting according to ~̃ps 6= ~ps will cause some sensor signals to be weighted either in the wrong direction, or

in the correct direction but not to an optimal extent. Therefore, non-iterative weighting can take the place

of iterative weighting to avoid unnecessary calculation for a given grid and the performance becomes more

robust. Monte Carlo simulation has verified this, as seen in Figures 6.3, 6.5 and 6.6.

6.4 Performance Evaluation

In this section, the CRB given in [10] and the closed-form estimation error variance expression developed

are used to evaluate and compare the original EGS and proposed AWEGS algorithm theoretically using a

generated source signal, regardless how the weights are calculated and applied. Monte Carlo simulation is

also performed on the EGS, iterative AWEGS and non-iterative AWEGS algorithms to further demonstrate

their behaviors using both the generated and a real microseismic signal.

6.4.1 Theoretical and Monte Carlo Evaluation Using Generated

Source Signal

In this evaluation, the source location estimation accuracy is observed along with the change of a sensor’s

position. The evaluation is done for the scenario where there are four sensors configured as ~p1 = (75, 140, 0)

m, ~p2 = (xp2, 140, 0) m, ~p3 = (-125, -60, 0) m, ~p4 = (75, -60, 0) m, and the source ~ps is located at (-25, 40,

0) m. The procedure is to place the second sensor ~p2 at different locations along a horizontal line defined by

y = 140 m, from the point x = −1425 m to the point x = 75 m. The configuration is depicted in Figure 6.2.

For any Sensor 2 position, the SNR at Sensor 1 is kept the same and set to be 0 dB. Given a certain error

direction ~e = [0.53 0.848 0], which can be arbitrary in practice but is calculated using the source position

here, the performance of the EGS and AWEGS is plotted as well as the corresponding CRB in Figure 6.3.

This result is generated assuming a flat signal spectrum with a bandwidth of 152.5 Hz, and a signal duration

of 0.33 second. The grid search step is 0.16 m.
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Figure 6.2: Sensor configuration for the simulation using generated source signal

The comparison in Figure 6.3 shows the EGS and AWEGS performance is very similar at the right

most 5 points. The overlapping of the root mean square (RMS) error occurs at the point where the X -

coordinate of Sensor 2 is -125 m, since the four sensors are symmetrical around the source, meaning that

the AWEGS is equivalent to EGS at this point. The AWEGS curve is still pessimistic compared with that

of the corresponding CRB, due to the SNR value adopted for the evaluation being only about 0 dB.

It is seen that there is a small gap between the theoretical and Monte Carlo simulation results. This

is because the system SNR is only about 0 dB and the time-bandwidth product about 50, which causes

some approximation error during the theoretical EEV calculation. The gap is larger for the EGS than the

AWEGS, since weighting improves the system SNR, which makes the error analysis more accurate. The gap

is also larger when Sensor 2 is further away from the source, since it results in lower system SNR, and hence,

poorer theoretical approximation accuracy.

6.4.2 Monte Carlo Evaluation Using Real Signal

This section presents the Monte Carlo simulation performed using more practical parameters. The source

signal used for this simulation, as given in Figure 6.4, is a sensor signal recorded in the Lanigan potash mine

in Saskatchewan, Canada. The DC component has been removed. Ten sensors that are arbitrarily placed in

the Lanigan mine are adopted for the simulation. Their locations are given by (37834, 32438, 0) m, (36200,

33491, 0) m, (35874, 33166, 0) m, (34320, 33834, 0) m, (37136, 33143, 0) m, (34531, 31822, 0) m, (35189,

34891, 0) m, (34434, 32002, 0) m, (35570, 32876, 0) m, and (37386, 34680, 0) m. The sound propagation

speed is 2581 m/s. The microseismic event is assumed to take place at the location (26000, 34299, 0) m.

The particular direction of the mine tunnel considered in the study, denoted as a unit vector ~e, is assumed

81



−1600 −1400 −1200 −1000 −800 −600 −400 −200 0 200

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

 

 
MC: EGS
MC: iterative AWEGS
MC: non−iterative AWEGS
Theoretical: EGS
Theoretical: AWEGS
CRB

Figure 6.3: Calculated and simulated RMS error for different sensor configurations

to be [0.7240 0.6898 0]. For each SNR value at the nearest sensor, as shown in the plots below, a Monte

Carlo simulation of 1000 iteration is performed.

It is seen from Figure 6.5 (taken from [11] for easy reference) that the original EGS algorithm provides

good estimation accuracy, with the RMS error being only about 1 m when the SNR is 0 dB. Though the

improvement brought by amplitude weighting is large in terms of percentage, the absolute value does not

seem to be significant enough to justify its importance. However, it should be noted that the above evaluation

is done specifically to demonstrate how close the algorithm performance can reach the CRB in theory. Exact

optimal weights that are calculated directly using the true source location and a 10-point interpolation on the

source signal are adopted to enable a search over a very fine grid. When the SNR is above 0 dB, the step of

the grid is set as small as 0.04 m for the simulation. In practice, this usually takes place only after a smaller

area believed to contain the true source position has been identified using coarser grid searches. In addition,

the true source position is artificially made to coexist with a grid point in the simulation, which is not always

the case in reality. During a coarse grid search, the absolute difference between the unweighted and weighted

algorithm in estimation accuracy can be significant. To show this, Monte Carlo simulation is performed for

a coarse grid scenario and the result is plotted in Figure 6.6 for non-iterative weighting, iterative weighting

with all weights equal to 1 (the first iteration), and iterative weighting using an inaccurate source position

estimate that is 51 m away from the true source position (the second iteration). In this simulation, the step

of the grid is set at 103 m and the true source position is assumed to be located at the midpoint of two

adjacent grid points. In this case, the error variance is much worse than the CRB, and hence the CRB is

not plotted together with the simulation results in Figure 6.6.

Non-iterative weighting is demonstrated to outperform the original EGS algorithm by several tens of
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Figure 6.4: Sample sensor signal for the simulation

meters in terms of the RMS. Also, the error in the estimated source position is seen to make iterative

weighting much less effective than non-iterative weighting under low SNR’s, as expected. It is noticed as

well that when the SNR value is greater than a certain value, the RMS error of either non-iterative or iterative

weighting becomes zero. The reason is that the grid step of 103 m is too large to reflect the smaller real

estimation error under comparatively higher SNR values. Despite that the RMS error is zero, an estimation

error of about 51 m exists since the source position is assumed to be at the mid point of two grid points.

In practice, the likelihood of the true source position not being overlapped by any grid point is high when a

coarse grid is adopted. When an erroneous source estimate, either due to low SNR’s or the grid being too

coarse, is applied to initialize the following finer grid search, the result can be unsatisfactory.

In summary, the simulation results indicate that both the iterative and non-iterative AWEGS estimators

can bring great improvement over the original EGS algorithm. Though in Figure 6.5 the performance plots

of the two almost overlap, what is indicated there represents the best possible performance the iterative

AWEGS may achieve after a certain number of iteration in practice. Figure 6.6 demonstrates how much

difference there can be between them when the grid is coarse. The non-iterative weighting is preferred in the

real world because it does not require the true source position to be known in order to perform weighting.

This eliminates extra calculation as well as estimation error that can be introduced by iterative weighting.

6.5 Conclusion

This paper focuses on optimal amplitude weighting for source location estimation involving signals of small

time-bandwidth product using sparsely placed passive sensors. A closed-form optimal weight expression is
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Figure 6.5: Simulated RMS error for a real microseismic event signal (fine grid)

developed and a simple way of weight application is proposed for practical usage.

Based on [8], an analytical error variance expression is presented for the AWEGS algorithm. The tradi-

tional functional minimization method involving the concept of multivariate polynomials is used to derive

analytically the weight expression by directly minimizing the error variance expression of the AWEGS algo-

rithm.

Based on the proof that there is only one set of optimal weights, the alternate non-iterative amplitude

weighting method is proposed to optimize the source estimation accuracy without having to estimate the

source position first. Compared with traditional iterative amplitude weighting that is prone to introducing

extra error when the SNR is low or the grid is coarse, the alternate one is more attractive for practical

implementation. Monte Carlo simulation performed verified this conclusion.

Since an analytical estimation error variance expression is not always available and the SNR is closely

linked to system performance, it is intuitive that the weights maximizing the SNR can at least improve

the estimation accuracy. This is why the SNR approach was investigated initially. Derivation shows that

the SNR and error variance approach are equivalent under the assumed system model. Hence the optimal

weights obtained are applicable to improving any algorithms that utilize the energy in the sum of sensor

output signals, besides the particular EGS localization algorithm.

The algorithms are evaluated and compared with the corresponding CRB in several scenarios. Both the

theoretical evaluation and Monte Carlo simulation results demonstrate that the optimal weights improve the

estimation accuracy effectively and can bring it fairly close to the CRB.
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Figure 6.6: Simulated RMS error for a real microseismic event signal (coarse grid )

Similar ideas of using “weighted sum of cross-correlation” and “gain ratios of arrival” are presented in

[21] and [22] for different applications using different system models. Compared with them, this work is

necessary and unique in that it uncovers the mathematical relationship between the SNR and estimation

error variance, in addition to the simple technique of applying the optimal weights.
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A Weight Derivation Uing The SNR

Given (6.2) and (6.3), expand (6.4) and take the expected value to get

W (~̃ps, ~w) =

∫ T

0


[
M∑
m=1

wm
dm

s0(t+ ∆τ̃m)

]2

+ 2

M∑
m=1

M∑
k=1

wm
dm

s0(t+ ∆τ̃m)wknk(t+ ∆τ̃k)

+

[
M∑
m=1

wmnm(t+ ∆τ̃m)

]2
 dt, (A.1)

E[W (~̃ps, ~w)] =

∫ T

0


[
M∑
m=1

wm
dm

s0(t+ ∆τ̃m)

]2

+

[
M∑
m=1

E[wmnm(t+ ∆τ̃m)]

]2
 dt. (A.2)

Shifted versions of the independent noise processes nm(t) are used above to make derivation below more

compact. Introducing a shift of τm does not affect the statistics of the noise and therefore does not change

the model.

Since s0(t) is sensitive to shifting while nm(t) is not, maximizing the ratio between the signal component

and the noise component of (A.2) when ∆τ̃m = 0 is expected to bring a larger decrease in the value of

W (~̃ps, ~w) when ∆τ̃m 6= 0, and eventually improve the system performance. Hence an SNR is defined as

SNR(~w) =

∫ T
0

[∑M
m=1

wm

dm
s0(t)

]2
dt

E

{∫ T
0

[∑M
m=1 wmnm(t)

]2
dt

} . (A.3)

Under the signal and noise model assumed, SNR(~w) becomes

SNR(~w) = C ·

(∑M
m=1

wm

dm

)2

∑M
m=1 w

2
m

, (A.4)

where

C =

∫ T
0
s2

0(t)dt∫ T
0
E[n2

m(t)]
. (A.5)

To maximize SNR(~w), ∂SNR(~w)
∂wp

needs to be equated to zero, which gives

M∑
i=1

w2
i ·

2

dp

M∑
i=1

wi
di
−

(
M∑
i=1

wi
di

)2

· 2wp = 0,

p = 1, 2, ..., M. (A.6)
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followed by

wp =

1
dp

∑M
i=1 w

2
i∑M

i=1
wi

di

, p = 1, 2, ..., M. (A.7)

(A.7) represents M simultaneous equations that are not completely independent. Observe that whatever

value each wp is, both
∑M
i=1 w

2
i and

∑M
i=1

wi

di
are constant for each of the M equations, (A.7) can be simplified

as
wm
wl

=
dl
dm

, m, l = 1, 2, · · · M, (A.8)

whose number of linearly independent equations is M − 1, instead of M .
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B Weight Derivation Using the Error Variance

Due to the complexity of (6.5), terms are rearranged according to the order of wp (p = 1, 2, ..., M). The

terms of wp with orders higher than two all combine to zero. The lengthy procedure of term arranging is

omitted to limit the length of the paper. Taking the first derivative of the rearranged (6.5) with respect to

each wp and equating it to zero, the following M simultaneous equations result:

[2C0
D(IAC

2
A + IBC

2
B)− IAC1

DC
1
A]wp + IAC

0
DC

1
A

−2C1
D(IAC

0
A + IBC

0
B) = 0,

p = 1, 2, ..., M, (B.1)

where

C2
A =

 M∑
m=1,m 6=p

wmqm
dm

2

+

(
qp
dp

)2 M∑
k=1,k 6=p

w2
k

+

 M∑
m=1,m 6=p

wmqp
dm

2

+

M∑
k=1,k 6=p

(
wkqk
dp

)2

−2

M∑
l=1,l 6=p

wl
dl

M∑
m=1,m 6=p

wmqm
dm

qp

−2

M∑
k=1,k 6=p

w2
kqk

qp
d2
p

,

(B.2)

C1
A = 2

 M∑
m=1,m 6=p

wmqm
dm

M∑
k=1,k 6=p

w2
k

qp
dp

+
1

dp

M∑
m=1,m 6=p

wm
dm

M∑
k=1,k 6=p

(wkqk)2

−

 M∑
l=1,l 6=p

wl
dl

qp
dp

+

M∑
l=1,l 6=p

wlql
dldp

 M∑
k=1,k 6=p

w2
kqk

 ,
(B.3)
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C0
A =

 M∑
m=1,m 6=p

wmqm
dm

2
M∑

k=1,k 6=p

w2
k

+

 M∑
m=1,m6=p

wm
dm

2
M∑

k=1,k 6=p

(wkqk)2

−2

 M∑
l=1,l 6=p

wl
dl

M∑
m=1,m 6=p

wmqm
dm

M∑
k=1,k 6=p

w2
kqk

 ,

(B.4)

C2
B = q2

p

M∑
l=1,l 6=p

w2
l +

M∑
m=1,m 6=p

(wmqm)2

−2

M∑
m=1,m 6=p

w2
mqmqp, (B.5)

C0
B =

M∑
m=1,m 6=p

(wmqm)2
M∑

l=1,l 6=p

w2
l

−

 M∑
m=1,m 6=p

w2
mqm

2

, (B.6)

C1
D =

M∑
m=1,m 6=p

wmq
2
m

dmdp
+

M∑
l=1,l 6=p

wl
dl

q2
p

dp

−2

M∑
m=1,m 6=p

wmqm
dm

qp
dp
, (B.7)

C0
D =

M∑
m=1,m 6=p

wmq
2
m

dm

M∑
l=1,l 6=p

wl
dl

−

 M∑
m=1,m6=p

wmqm
dm

2

. (B.8)

Further assorting (B.1) gives

[(2C0
DC

2
A − C1

DC
1
A)wp + (C0

DC
1
A − 2C1

DC
0
A)]IA

+[(2C0
DC

2
Bwp)− (2C1

DC
0
B)]IB = 0,

p = 1, 2, ..., M. (B.9)

The AWEGS algorithm given by (6.4) implies that the features of specific signal and noise are not relevant.

Thus the optimal weights will be applicable to an arbitrary type of source signals, which means (B.9) has to
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hold true for any IA and IB . As a result, the single equation (B.9) can be broken down into two, (B.10-i)

and (B.10-ii):  2C0
DC

2
Bwp − 2C1

DC
0
B = 0; (i)

(2C0
DC

2
A − C1

DC
1
A)wp + (C0

DC
1
A − 2C1

DC
0
A) = 0. (ii)

p = 1, 2, ..., M. (B.10)

If (B.10-i) and (B.10-ii) are linearly independent, an unwanted extra constraint will be introduced and (B.10)

will be unsolvable. To avoid this, (B.10-i) and (B.10-ii) must have at least one solution in common.

It is noticed that the left side expressions of (B.10-i) and (B.10-ii) are both multivariate polynomials of

wp with the same degree of 5. For notation simplicity, the two multivariate polynomials are denoted f(~w)

and g(~w) for (B.10-i) and (B.10-ii), respectively, in the following context.

One way to make (B.10) solvable is to have

λf(~w) = g(~w), (B.11)

where λ bears an arbitrary real value. (B.11) represents the equality between two polynomials, which by

definition is the equality between corresponding terms of the two polynomials. If this is the case, roots of

f(~w) will be all and the only roots to g(~w), and the coefficients of all the corresponding terms in the two

polynomials are only different by a constant factor of λ.

Start with f(~w) since it looks simpler than g(~w). Since the value of wp is limited to be real positive, it is

expected that it may help solve the problem if every term of f(~w) is positive. Observing C0
D given by (B.8)

indicates

C0
D =

M∑∑
m,l=1;m,l 6=p

wmwl
dmdl

qm(qm − ql). (B.12)

(B.12) seems to be in its simplest form already, but its sign has not been clear to tell yet. Further observing

(B.12), a symmetric pattern is revealed among the terms of the double summation and can be used to

rearrange (B.12) into

C0
D =

1

2

M∑∑
m,l=1;m,l 6=p

wmwl
dmdl

(qm − ql)2, (B.13)

which guarantees the positivity. Similarly, C0
B given by (B.6) can be rewritten as

C0
B =

1

2

M∑∑
m,l=1;m,l 6=p

w2
mw

2
l (qm − ql)2. (B.14)
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Comparatively easier, C2
B and C1

D given by (B.5) and (B.7) respectively are sorted into

C2
B =

M∑
m 6=p
m=1

[wm(qp − qm)]2, (B.15)

C1
D =

M∑
m 6=p
m=1

wm
dmdp

(qm − qp)2. (B.16)

Substitute (B.13)–(B.16) above into (B.10-i) to give

f(~w) =

M∑∑∑
m,l,k=1;m,l,k 6=p

(
wpwk
dmdl

− wmwl
dkdp

)
×wmwlwk(qm − ql)2(qk − qp)2,

p = 1, 2, ..., M. (B.17)

Due to the existence of C0
A given by (B.4), manipulation on g(~w) shows that g(~w) does not have exactly

the same terms as f(~w) does. This indicates that there exists no such λ with a real value to make (B.11)

true. The procedure of arranging g(~w) is omitted due to its straightforwardness.

The other way to have (B.10-i) and (B.10-ii) bear a common solution is to force f(~w) and g(~w) to have

at least one common zero or equivalently, one common factor. This means both f(~w) and g(~w) have to be

capable of being factored. Since in general q1 6= q2 6= · · · 6= qM , the factor
(
wpwk

dmdl
− wmwl

dkdp

)
must be equal for

each term contained in the triple summation for (B.17) to be capable of being factored. What are looked for

are roots of f(~w), hence this factor has to equal zero. The remaining wmwlwk(qm − ql)2(qk − qp)2 is always

positive except when m = l, and hence there will be no root coming out of it. Therefore

wkwp
dmdl

=
wmwl
dkdp

, k, l,m, p = 1, 2, ..., M. (B.18)

(B.18) stands for the unique root of f(~w). It represents M − 1 independent simultaneous equations

that make the original (B.10-i) true. It implies that only the relative relation between weights matters.

The specific value of wm can be determined by any constraint one wants to put on the weights. Observing

k, l,m, p = 1, 2, . . ., M gives

wldl = wmdm = a, m, l=1, 2, . . ., M, (B.19)

where a is a constant with an arbitrary real positive value.

So far, it is revealed that (B.19) represents the only root of f(~w). It is expected to be the root of g(~w)

as well, even if it might not be the only one.

Substitute (B.19) into the expression of C0
A given by (B.4) to give

C0
A = a4

M∑
k=1,k 6=p

1

d2
k

M∑∑
m,l=1;m,l 6=p

qm(qm − ql)
d2
md

2
l

. (B.20)
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Attributed to the same symmetric property appeared earlier in (B.13) and (B.14), (B.20) becomes

2C0
A = a4

M∑
k=1,k 6=p

1

d2
k

M∑∑
m,l=1;m,l 6=p

(
qm − ql
dmdl

)2

, (B.21)

after being multiplied by a factor of 2 on both sides.

Substituting (B.19) into C1
D given by (B.7) gives

C1
D =

M∑
m6=p
m=1

a

d2
mdp

(qm − qp)2. (B.22)

Therefore,

−2C1
DC

0
A

= −a
5

dp

M∑
k=1,k 6=p

(
qk − qp
dk

)2 M∑
n=1,n6=p

1

d2
n

×
M∑∑

m,l=1;m,l 6=p

(
qm − ql
dmdl

)2

. (B.23)

Similarly, (B.13) and (B.3) can be resorted to give the product

C0
DC

1
A

=
a5

dp

M∑
k=1,k 6=p

(qp − qk)(qn − qk)

d2
kd

2
n

M∑∑
m,l=1;m,l 6=p

(
qm − ql
dmdl

)2

.

(B.24)

Hence

C0
DC

1
A − 2C1

DC
0
A

= −a
5

dp

M∑∑
m,l=1;m,l 6=p

(
qm − ql
dmdl

)2

 M∑
k 6=p
k=1

qp − qk
d2
k


2

.

(B.25)

The following step is to show that (2C0
DC

2
A − C1

DC
1
A)wp has the same absolute value as that given by

(B.25), but with a positive sign. First look at C1
A given by (B.3). Taking advantage of the factor 2, C1

A can

be rewritten in the form of a sum consisting of two identical parts, as indicated in the two square brackets
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below, where index m in one part corresponds to index l in the other part,

C1
A =

[ M∑∑
m,l=1;m,l 6=p

wmw
2
l qmqp

dmdp
+

M∑∑
m,l=1;m,l 6=p

wmw
2
l q

2
l

dmdp

−
M∑∑

m,l=1;m,l 6=p

wmw
2
l qlqp

dmdp
−

M∑∑
m,l=1;m,l 6=p

wmw
2
l qmql

dmdp

]

+

[ M∑∑
m,l=1;m,l 6=p

wlw
2
mqlqp
dldp

+

M∑∑
m,l=1;m,l 6=p

wlw
2
mq

2
m

dldp

−
M∑∑

m,l=1;m,l 6=p

wlw
2
mqmqp
dldp

−
M∑∑

m,l=1;m,l 6=p

wlw
2
mqlqm
dldp

]
.

(B.26)

(B.26) can be further arranged into a more compact form

C1
A =

M∑∑
m,l=1;m,l 6=p

wmwlqp
dmdldp

(dlwl − dmwm)(qm − ql)

+

M∑∑
m,l=1;m,l 6=p

wmwl
dmdpdl

(dmwmqm − dlwlql)(qm − ql).

(B.27)

(B.19) makes the first double summation term in (B.27) equal to zero and hence (B.27) is reduced to

C1
A =

M∑∑
m,l=1;m,l 6=p

a3(qm − ql)2

d2
md

2
l dp

. (B.28)

Next observe C2
A given by (B.2), which can also be arranged into a more compact form made up of two

positive parts,

C2
A =

 M∑
m6=p
m=1

wm
dm

(qm − qp)


2

+

M∑
m6=p
m=1

[
wm
dp

(qp − qm)

]2

.

(B.29)

Now put (B.13), (B.16), (B.28), and (B.29) together and substitute with (B.19) to give

(2C0
DC

2
A − C1

DC
1
A)wp

=
a5

dp

M∑∑
m,l=1;m,l 6=p

(
qm − ql
dmdl

)2

 M∑
k 6=p
k=1

qp − qk
d2
k


2

, (B.30)

which combines together with (B.25) to yield a zero.

By now it has been proven that (B.19) is also the solution to (B.10-ii). Hence (B.19) brings the only

extremum of (6.5). However, it is not certain yet if this extremum is the desired minimum or the undesired
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maximum of σ2
ε (~w). To complete this minimization problem mathematically, next it is proven that the slope

sign of the line determined by (B.1), as given by the second derivative of the rearranged (6.5), is always

positive when (B.19) is applied.

Since IA, IB , C
2
B , and C2

A 1 (the first square term in C2
A given by (B.29)) are all greater than 0, there is

2C0
D(IAC

2
A + IBC

2
B) > 2C0

DIAC
2
A

> 2IAC
0
DC

2
A 2, (B.31)

where C2
A 2 denotes the second square term in (B.29). It is found that 2IAC

0
DC

2
A 1−IAC1

DC
1
A = 0 by utilizing

(B.19), and hence

∂2σ2
ε (~w)

∂w2
p

= 2C0
D(IAC

2
A + IBC

2
B)− IAC1

DC
1
A

> 2IAC
0
DC

2
A 2

> 0,

p = 1, 2, ..., M. (B.32)

The inequality given by (B.32) proves that the solution given by (B.19) will bring the only global minimum

of σ2
ε (~w).

Applying the constraint of
∑M
m=1 w

2
m = 1 leads to (6.14). It keeps the noise component of W (~̃ps, ~w)

statistically unchanged for each grid point, as indicated in Appendix C.
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C Non-iterative Weighting

Similar to (9)–(11) of [8], there is

W (~̃ps, ~̃w) = Ws(~̃ps, ~̃w) +Wn(~̃ps, ~̃w), (C.1)

where Ws(~̃ps, ~̃w) and Wn(~̃ps, ~̃w) are the signal and noise components, respectively, given by

Ws(~̃ps, ~̃w) =

M∑
m=1

M∑
k=1

∫ T

0

w̃mw̃k
dmdk

s0(t+ ∆τ̃m)s0(t+ ∆τ̃k)dt, (C.2)

Wn(~̃ps, ~̃w) =

M∑
m=1

M∑
k=1

∫ T

0

w̃mw̃k

[
1

dm
s0(t+ ∆τ̃m)nk(t+ ∆τ̃k) (C.3)

+nm(t+ ∆τ̃m)
1

dk
s0(t+ ∆τ̃k)

+ nm(t+ ∆τ̃m)nk(t+ ∆τ̃k)
]
dt.

Since w̃m = 1
d̃m

is simple and satisfies (B.19), it is used to analyze how the value of w̃m changes when

the value of ε̃ changes. According to (5) in [8],

d̃m ≈ dm − qmε̃, (C.4)

there is

dw̃m
dε̃

=
−qm

(dm − qmε̃)2
. (C.5)

When |ε̃~e| � dm, dw̃m

dε̃ is very small and negligible. Therefore, based on (14) of [8], the signal component

given by (C.2) can be approximated for small ε̃ for any ~e by the second order Maclaurin polynomial

Ws(~̃ps, ~w) ≈ c0 + c2ε̃
2, (C.6)
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where

c0 = Ws(~̃ps, ~w)
∣∣∣
ε̃=0

(C.7)

=

(
M∑
m=1

wm
dm

)2 ∫ T

0

s2
0(t)dt,

c2 =
d2Ws(~̃ps, ~w)

dε̃2

∣∣∣∣∣
ε̃=0

(C.8)

= − 1

2πc2

∫ ∞
−∞

ω2Sss(ω)dω

M∑
m=1

M∑
k=1

wmwk
dmdk

(
~pm · ~e
|~pm|

− ~pk · ~e
|~pk|

)2

< 0.

Since (6.15) becomes (6.14) at the true source position where ε̃ = 0, c0 is the same with either (6.15) or

(6.14) applied. Actually using Lagrange multiplier,
(∑M

m=1
wm

dm

)2

in c0 is only maximal at the true source

position with the constraint of
∑M
m=1 w

2
m = 1 applied. Also c2ε̃

2 is always non-positive for any grid point,

the value of Ws(~̃ps, ~w) at ε̃ = 0 is always greater than that at hypothesized points where ε̃ 6= 0, whether the

value of wm is calculated from (6.15) or (6.14).

Taking the expected value of the noise component given by (C.3) leads to

E[Wn(~̃ps, ~w)] = E

[
M∑
m=1

∫ T

0

w2
mn2

m(t+ ∆τ̃m)

]
dt (C.9)

=

M∑
m=1

w2
m

∫ T

0

E[n2
m(t)]

=

∫ T

0

Rnn(0),

where E[n2
m(t)] = Rnn(0) for m = 1, 2, ..., M . Obviously the value of E[Wn(~̃ps, ~w)] remains unchanged for

any grid point, whether wm is calculated from (6.15) or (6.14), since both of them satisfy
∑M
m=1 w

2
m = 1.

So far it is proven statistically that W (~̃ps, ~w) will always peak at the true source position, with either

(6.15) or (6.14) applied. Both non-iterative weighting and iterative weighting bring unbiased source position

estimates. Given the results in Appendix B, it is known that both of them bring minimal error variance in

the end.
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7 Frequency Weighting to Minimize Source

Location Estimation Error Variance for Short

Duration Signals

The original manuscript was conditionally accepted by IEEE Trans. on Signal Processing in Dec. 2013.

The revised manuscript included here is to be submitted again to IEEE Trans. on Signal Processing.

In Chapter 6, an amplitude weighting strategy, using a set of real positive values, was proposed to improve

the EGS algorithm performance by increasing the passive source localization accuracy. In this chapter, a

frequency weighting strategy for the same purpose is proposed and realized in the frequency domain using

a filter. The source signal and noise are both assumed stationary in this chapter to ensure that the Fourier

transform is applicable to the mathematical derivation. Theoretical derivation of several classical filters given

in the literature are also presented. Monte Carlo simulation is performed to compare the performance of all

the filters investigated.
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In this paper, frequency domain optimization techniques are investigated for passive acoustic source

localization to yield more accurate source location estimates. An analytic frequency weighted estimation

error variance (EEV) expression is derived using the spectrum representation and stochastic process theory.

With this EEV expression, an integral equation is established and solved using the calculus of variations

technique. The solution to the equation gives the expression of a filter transfer function that minimizes

this frequency domain EEV derived. Ignoring various parts of the EEV expression, during the minimization

procedure using Cauchy-Schwarz inequality, leads to several well known classical filter transfer functions that

have been developed to deal with source localization problems in the literature. This paper demonstrates

that unlike the case of amplitude weighting proposed in one of the authors’ earlier papers, the SNR approach

and the EEV approach are not equivalent when frequency weighting is used to minimize the EEV. Monte

Carlo simulation is performed to evaluate all the filters of interest in this work. The results confirm that the

filter obtained by minimizing the analytic EEV expression derived in this paper outperforms all the other

filters considered.
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7.1 Introduction

The task of passively locating an acoustic source is required in a variety of applications, such as the

tracking of underwater vehicles, video conferencing, mobile robot navigation and seismic event localization.

Traditional two-step source location estimation techniques require a time difference of arrival (TDOA) es-

timation procedure, since they calculate the source location using these TDOA estimates. For example,

the well-known technique utilizing the classic generalized cross-correlation (GCC) function to estimate the

TDOA is discussed in [1]. A number of suboptimal closed-form techniques have been developed using spher-

ical intersection [2], spherical interpolation [3] and numerical simplex algorithm [4] to identify the source

location using the TDOA estimates. For these two-step algorithms to operate above threshold, the received

signals need to have sufficient duration. However, for a source that emanates a short duration signal with a

small time-bandwidth product, such as a microseismic event, these two-step algorithms cannot consistently

guarantee desired performance. Thus alternative approaches must be considered for applications involving

this type of source signal. One such approach is the Energy-based Grid Search (EGS) algorithm discussed

in [5] that avoids TDOA estimation. The work presented in this paper further improves the estimation

accuracy of the original EGS algorithm.

Optimization techniques can be developed in both the time and frequency domain based on various

performance indices. The most direct index is the estimation error variance (EEV), which in many cases

is difficult to obtain. However, an explicit EEV expression for the EGS algorithm has been given in [5],

which was also used to develop an amplitude weighted EGS (AWEGS) algorithm, proposed in [6]. In [6], a

closed-form expression is derived to yield real positive weight values that minimizes this EEV expression in

the context of amplitude weighting. While the amplitude weighting works regardless of the source signal or

additive noise components, a major prerequisite for frequency domain optimization techniques to be practical

is that the spectrum information for both the source signal and noise are known or can be estimated with

acceptable accuracy.

During the last half a century, many optimization techniques have been developed, most of which are

rooted firmly on fundamental frequency domain concepts. An optimal digital filter design based on Capon’s

minimum variance principle is proposed in [7] to do fundamental frequency estimation. Another optimal

filter design based on the Kalman-Bucy filter is proposed in [8] for linear systems with state delay over linear

observations. Neither of the filters proposed in [7] and [8] are applicable to the EGS algorithm directly, due

to the different parameters that are estimated.

A linearly spaced broadband-sensor array is employed in [9] and [10], to provide “rough maximum energy

concentration over some desired spatial ‘look’ and frequency regions, with user imposed spatial and frequency

attenuation constraints”. This is a very simple and effective frequency weighting method, but it is proposed

for far-field applications, where the direction of arrival (DOA) and the signal strength across the sensor array
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is deemed identical. Since the microseismic events considered here take place in comparatively close vicinity

to the sensors, the difference in source signal attenuation across the sensor array cannot be ignored, and the

DOA of the source signal at each sensor should not be taken as the same.

In many cases, the spectrum information for both the source signal and noise can be estimated quite

precisely by observing past events. Under such circumstances, roughly selecting the energy-dominant fre-

quency regions of the signal as described in the previous paragraph is not sophisticated enough to take full

advantage of all the information available.

There have been a few optimal signal processing techniques developed in the literature for TDOA/DOA

estimation using various kinds of filters. Ideally, with optimized TDOA estimates, optimal passive range and

bearing estimation is expected. However, the non-linear relationship between the TDOAs and the source

position, and the lack of accommodation for the amplitude differences across the sensors, imply that the

filters producing optimal TDOAs for far-field applications may not be the best choice for the application

here. Still, it is of interest to see by how much these filters may possibly improve the location estimation

accuracy, if they can be applied as the common filter to the EGS algorithm described in Figure 7.2.

One means of optimal TDOA estimation is to pre-filter signals before computing their generalized cross-

correlation. When there is no a priori information about the source signal and noise spectrum, the most

convenient way to sharpen the cross-correlation peak is to whiten the received signals. A deterministic

approach is presented in [1] and leads to the so-called phase-correlation technique [11]. A statistical approach

to the whitening problem has been discussed in [12], though the application of interest is image registration.

Another alternative way to optimize the time delay estimation is to minimize the maximum likelihood (ML)

estimate of the TDOA with the aid of a separate correlator delay measurement system [13]. A representative

TDOA optimizing filter from [13] is evaluated in this paper.

There has been some work done to study ambient seismic noise to date, e.g. [14] and [15]. However,

developing an analytic filter expression for optimal signal processing for the problem of near-field source

localization involving seismic signals has received little attention compared to the far-field source application.

The application of registering a received image (with noise) with a known ideal image is investigated

in [16–18]. The authors analyzed image registration errors according to different performance measures,

such as the overlay quality, the peak-to-sidelobe ratio of the cross-correlation function, and the covariance of

the registration error that is influenced by the presence of both pure noise and signal distortion. Based on

these measures, the authors derived several filter transfer functions for optimal image registration. In [19],

optimal filters are derived for signal detection purpose based on three performance measures, namely: the

SNR, localization, and suppression of multiple peaks.

Though, the results presented for the applications mentioned in the paragraph above are different, the

102



general procedure used in this work is the same: determine a target measure to be optimized, develop its

analytic expression, and then optimize this expression that results in a desired filter. As a complementary

work to [6], this work follows the same approach to obtain such a filter. It focuses on optimal signal weighting

in the frequency domain that can be applied to the EGS algorithm. The major contribution of this paper

includes the proposition of a frequency weighted EGS (FWEGS) algorithm for the application of interest,

development of an analytic expression that closely approximates the actual FWEGS EEV, and derivation of

a filter transfer function optimal in terms of minimizing this closed-form EEV expression given the adopted

system model.

The FWEGS algorithm can be applied to a variety of acoustic source localization applications where

known or estimated source signals and/or noise exist, such as radar and sonar. In this paper, the FWEGS

algorithm performance is evaluated when the following classical filters of interest are applied. Some of the

filters below can be obtained using the FWEGS EEV expression arrived in this paper.

Matched Filter. The matched filter has been discussed in great detail in most communications textbooks

for systems where the signal to process is a copy of a known signal. The classic matched filter gives the

maximum signal-to-noise ratio at a particular time t0 when the noise is additive white Gaussian. Using

spectrum representation, its transfer function is the complex conjugate of the Fourier transform of the

known signal with a delay coefficient t0 constant for all the frequency components.

Noise Whitening Filter. When the transmitted source signal is corrupted with additive wide-sense-

stationary coloured Gaussian noise at a receiver, a filter can be used to whiten the noise if the power

spectrum of the noise is known. It helps optimize the system performance even when the source signal

spectrum is unknown.

Eckart Filter. The Eckart filter is named after the author of [20]. It “maximizes the deflection criterion,

i.e., the ratio of the change in mean correlator output due to signal present to the standard deviation of

correlator output due to noise alone” [1]. When the noise is white Gaussian or the SNR is very high, the

Eckart filter becomes the matched filter. When the SNR is very low, the Eckart filter becomes the noise

whitening filter.

Filter for suboptimal Time Delay Estimation. A suboptimal filter expression for time delay estimation

with an example involving two sensors is presented in [13]. The expression is modified to accommodate

more than two sensors, so it can be applicable under the given system model of this paper and evaluated

against other filters of interest. It takes both signal and noise spectrum into consideration, as does the filter

minimizing the EEV expression, but is different in terms of mathematical details.

The outline of the paper is as follows: Section 7.2 briefly describes the system model adopted for this

study. Section 7.3 discusses how to apply the filter(s). Section 7.4 presents how the analytic expression of the
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selected performance measure, the EEV, has been developed. Section 7.5 provides the derivation procedure

for several filter transfer functions using this EEV expression and the SNR expression. Then a filter transfer

function is derived in Section 7.6 by minimizing the same EEV expression developed in Section 7.4. The

performance evaluation for all the filters considered in this work is presented in Section 7.7. A conclusion is

provided in Section 7.8.

7.2 System Model

The signal considered in this paper is similar to that in [5], which is a very short duration acoustic wave

that is set in motion by a sudden shift or rupture of rock and may only last a fraction of a second. This

means multi-path signals received at the sensors within the vicinity of the event are unlikely to overlap,

and the signals arriving along indirect paths can be easily identified. The indirect-path signals caused by

reflection are much weaker than the direct-path signal and hence the system model adopted in this paper

considers only the direct-path scenario.

The possibility of more than one microseismic event taking place side by side at the same time is extremely

low, and the radial distance to the sensors is much larger than the dimension of the vibration source generating

the acoustic waves. Throughout this paper it is assumed that within a given short period of time, only one

microseismic event takes place, which is reasonable considering the length of a microseismic signal. Multiple-

source localization is therefore not of concern within the scope of this research.

It is thus assumed that the microseismic signal originates from a single-point; the propagation medium

is homogeneous and elastic, where there is no energy loss from friction so the signal energy attenuates

proportionally to the square of distance; all the indirect-path signals are ignored; the response of every

sensor is identical; the output of each sensor contains additive independent noise; and the noises at all

sensors are stationary Gaussian stochastic processes with an identical power spectra.

The geometry of the sensor system is shown in Figure 7.1. The source position is given by ~ps = (xs, ys,

zs). There are M sensors that are placed arbitrarily and sparsely in the system. The position of sensor m

is denoted ~pm = (xm, ym, zm). The distance from the source to sensor m is denoted

dm = ‖ ~pm − ~ps ‖

=
√

(xm − xs)2 + (ym − ys)2 + (zm − zs)2. (7.1)

The output of sensor m, denoted rm(t), is a continuous sample function of the stochastic process rm(t),

which is given by

rm(t) = sm(t) + nm(t), (7.2)

where nm(t) is an additive random noise process and sm(t) is the signal received at sensor m. nm(t) is
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~p1(x1, y1, z1)

Sensor 1

Sensor m

~pm = (xm, ym, zm)

Source
~ps = (xs, ys, zs)

dm =‖ ~ps − ~pm ‖

Figure 7.1: Coordinate system for the sensors

Gaussian noise with zero-mean and unknown covariance. Since the sensors are sparsely positioned in the

application of interest, the noise can be taken as spatially uncorrelated. sm(t) is simply a delayed and

attenuated version of the original unknown deterministic source signal s0(t), which is independent of nm(t).

It is assumed that all the received signals are collected by sensors that are at least one unit distance away

from the source so that in mathematical calculation the received sensor signal is not amplified. The unit can

be arbitrary so long as it is in accordance with the distance measure system adopted for the mathematic

derivation procedure. Now define

sm(t) =
s0(t− τm)

dm
, (7.3)

where τm = dm
c is the time for the unknown signal s0(t) to travel from the source location to sensor m and

c is the propagation speed of the mechanical wave.

It is also assumed that the real source signal s0(t) contains no discontinuity, is finite, lasts for a time

duration T , and has a bandwidth Ω. Its energy spectrum is denoted Sss(ω). The start time of the source

event is taken as the time origin, and To is the end of the observation time, which is assumed to be much

greater than T . To may be extended to infinity to ensure that no statistical information of the random

process is lost. nm(t) and rm(t) are both real functions and are used to denote sample functions of nm(t)

and rm(t), respectively. The noise at all sensors has a common auto-correlation function Rnn(τ) and power

spectrum Snn(ω). In addition, for noise processes at sensor l and m, there is

E[nl(t)nm(t)] = 0, l 6= m, (7.4)

where “E[ ]” represents the expected value.
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7.3 Proposed Frequency Weighted EGS (FWEGS) Algorithm

This section discusses possible optimization techniques by taking into account the frequency components

of the source signal and the noise. The amplitude weighted EGS algorithm [6] is given by

W(~̃ps) =

∫ T

0

[
M∑
m=1

wmrm(t+ τ̃m)

]2

dt, (7.5)

where ~w = [w1 w2 ... wM ], wm is the weight for mth sensor signal, ~̃ps is the hypothesized source position, and

τ̃m is the hypothesized delay for the signal to travel from ~̃ps to the mth sensor. Uniform amplitude weight

values are assumed within the scope of this paper to focus on frequency weighting, thus wm = 1 for m = 1,

..., M .

According to the system model presented in Section 7.2, the noises at all the sensors are assumed inde-

pendent Gaussian noise processes with the same distribution. In this case, the FWEGS can be implemented

as depicted in Figure 7.2, where only one common filter is applied. First, the input sensor signal sm(t) is

mapped into the frequency domain using a Fourier Transform (FT), weighted and delayed by τ̃m that is con-

sistent with the hypothesized source position ~̃ps. Then, the weighted and shifted sensor signals are summed

before the common filter, denoted F (ω), is applied. This is followed by the squaring and integration steps.

The final output is the frequency weighted total energy as a function of the hypothesized source position

~̃ps. F (ω) is the Fourier transform of the impulse response of the common filter denoted f(t). Note that an

increase in the number of sensors does not affect the way the filter is designed and applied, since the noise

at the sensors is assumed to be independent with the same stochastic characteristics.

The FWEGS algorithm proposed, as shown in Figure 7.2, is given by

W(~̃ps) =
1

2π

∫ ∞
−∞

∣∣∣∣F (ω)

M∑
m=1

wm

[
ejω(τ̃m−τm)Xs(ω)

dm
+ ejωτ̃mXnm

(ω)

]∣∣∣∣2dω, (7.6)

where Xs(ω), Xnm(ω), and F (ω) are the Fourier transforms of s0(t), nm(t) and f(t), respectively. It is seen

that the FWEGS algorithm proposed here is simply the EGS algorithm with a filter applied.

7.4 Derivation of the Performance Measure

As mentioned earlier, various performance measures can be used to optimize an algorithm. The two most

widely used measures are the system SNR and the EEV, with the EEV being the most direct performance

measure for a parameter estimator. Hence EEV is selected as the target performance measure to optimize

in this work. A closed-form EEV expression for the EGS algorithm is presented in [5]. An analytic EEV

expression for the FWEGS algorithm as indicated in Figure 7.2 is presented using spectrum representation

in (7.7), whose detailed derivation is provided in Appendix D.

σ2
ε (F ) =

A(F ) +B(F )

D2(F )
, (7.7)
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Figure 7.2: One common filter for all input sensor signals

where

A(F ) = CA
∫ ∞
−∞
|F (ω)|4ω2Sss(ω)Snn(ω)dω, (7.8)

B(F ) = CB
∫ ∞
−∞
|F (ω)|4ω2S2

nn(ω)dω, (7.9)

D(F ) =
√
CD

∫ ∞
−∞
|F (ω)|2ω2Sss(ω)dω, (7.10)

with Sss(ω) being the source signal energy spectrum, Snn(ω) being the noise power spectrum, and

CA =
2

π

M∑
m=1

M∑
l=1

M∑
n=1

wmw
2
l wn

dmdn
(tm − tl)(tn − tl), (7.11)

CB = 2

M∑
m=1

M∑
l=1

w2
mw

2
l (tm − tl)2, (7.12)

CD =

[
1

2π

M∑
m=1

M∑
l=1

w2
mw

2
l

dmdl
(tm − tl)2

]2

, (7.13)

tm = −~e · ~pm
dmc

. (7.14)

where ~e denotes the estimation error direction, ε the estimation error along ~e, and σ2
ε (F ) the estimation

error variance.

It is seen that B(F ) represents the pure noise and A(F ) represents a distorted signal, which can also

be viewed as a mixed noise of the original noise and signal. These two factors together contribute to the

estimation error, and therefore a truly effective filter must address the two components at the same time.

Though the EEV has been selected as the measure for performance evaluation, the SNR approach to improve

the system performance is also investigated due to its popularity. The results are presented at the end of

107



the next section.

7.5 Derivation of Suboptimal EEV filters

According to (7.6), it is reasonable to define F (ω) as a low pass filter with a frequency range of [−Ω,Ω],

which is the same as the source signal bandwidth so that the noise energy can be limited in order to increase

the SNR. Then based on (7.7), several suboptimal filter expressions can be derived after the integration

limits in A(F ), B(F ) and D(F ) are changed from (−∞,∞) to [−Ω,Ω]. The term “suboptimal EEV filters”,

is used here to indicate that these filters do not meet the performance, in terms of minimizing the EEV

expression (7.7), of the filter presented in Section 7.6.

Since the value of σ2
ε (F ) is determined by the sum of A(F )

D2(F ) and B(F )
D2(F ) , the first term to consider is the

cross term, A(F )
D2(F ) , representing the mixed noise of pure additive Gaussian noise and the signal. The term

B(F )
D2(F ) , whose numerator represents the pure noise, is left unattended for the moment. Observing A(F ),

rewrite the denominator D2(F ) as

D2(F ) = CD

(∫ Ω

−Ω

|F (ω)|2ω
√
Sss(ω)Snn(ω)ω

√
Sss(ω)

Snn(ω)
dω

)2

,

then apply Cauchy-Schwarz inequality,

D2(F ) ≤ CD
∫ Ω

−Ω

|F (ω)|4ω2Sss(ω)Snn(ω)dω

∫ Ω

−Ω

ω2 Sss(ω)

Snn(ω)
dω,

where the equality above holds iff

|F (ω)|2 =
1

Snn(ω)
. (7.15)

Note that (7.15) is equivalent to the expression of the so-called noise whitening filter given in [13]. Substitute

(7.15) into A(F )/D2(F ) and B(F )/D2(F ) to give

A(F )

D2(F )
≥ CA

CD
∫ Ω

−Ω
ω2 Sss(ω)

Snn(ω)dω
, (7.16)

B(F )

D2(F )
=

CB
∫ Ω

−Ω
|F (ω)|4ω2S2

nn(ω)dω

CD
(∫ Ω

−Ω
ω2 Sss(ω)

Snn(ω)dω
)2 . (7.17)

Though the filter given by (7.15) minimizes term A(F )/D2(F ), the same effect on B(F )/D2(F ) does not

occur, since F (ω) still exists in it. Obviously the noise whitening filter is a suboptimal solution. Substituting

(7.15) into B(F )/D2(F ), the corresponding theoretical EEV value can be calculated. Furthermore, when

the noise is simply white Gaussian, this filter has no impact on σ2
ε (F ) at all.

Similarly, B(F )/D2(F ) can be minimized while A(F )/D2(F ) is left unattended, which gives

|F (ω)|2 =
Sss(ω)

S2
nn(ω)

, (7.18)
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the same as the expression for the Eckart filter. Due to its incapability to minimize the term A(F )
D2(F ) , it is

also a suboptimal solution.

The two suboptimal filters presented so far are both derived through the use of the EEV expression. For

applications where a closed-form EEV expression is unavailable, the signal-to-noise ratio provides a good

alternative to evaluate and improve the system performance. Maximizing the SNR has been proven an

equivalent approach to minimizing directly the EEV in [6], when amplitude weighting is used to optimize

the system performance. Hence, before the filter that can minimize the value of (7.7), is derived in the next

section, it is desirable to study what the SNR approach can contribute to frequency weighting.

Maximizing the SNR expression given by the right-hand side of (E.4) in Appendix E gives the following

filter transfer function:

|Fbound(ω)| =
∑M
m=1

wm

dm∑M
m=1 w

2
m

∣∣∣∣ Xs(ω)

Snn(ω)

∣∣∣∣ . (7.19)

Fbound(ω) brings an upper bound value for the SNR defined by (E.1). It is equivalent to the Eckart filter

when applied to the FWEGS algorithm, since the coefficient
∑M

m=1
wm
dm∑M

m=1 w
2
m

in (7.19) is constant for all grid points

and cancels out in (7.7).

7.6 Derivation of the Filter Minimizing the EEV

The previous section discussed several filters that can reduce the value of (7.7). In this section, a filter

that minimizes (7.7) is derived.

With F (ω) being defined as a filter transfer function over ω ∈ [−Ω, Ω], the classical method to obtain the

optimal F (ω) expression is through the minimization of σ2
ε (F ), using the calculus of variations technique. It

is reasonable to assume that (7.7) is a quasiconvex function that has an unambiguous unique global minimum

under certain amount of noise, because the work carried out has been centered around small error analysis,

which implies that the total energy function has only one global maximum around the actual peak. Its first

and second order conditions are expected to be met when the minimizer is applied.

Let

K(ω) = CAω2Sss(ω)Snn(ω) + CBω2S2
nn(ω), (7.20)

L(ω) =
√
CDω2Sss(ω), (7.21)

F2(ω) = |F (ω)|2. (7.22)

thus (7.7) can be written as

σ2
ε (F ) =

∫ Ω

−Ω
K(ω)F 2

2 (ω)dω[∫ Ω

−Ω
L(ω)F2(ω)dω

]2 . (7.23)
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Now the problem is formulated to find the variation of the functional given by (7.23) with respect to

F2(ω). Based on the Euler Equation, a minimizer for σ2
ε (F ) can be found, which is defined as the filter that

is “optimal” in the context of this work.

The variation of σ2
ε (F ) is given by

δσ2
ε = 2

Ω∫
−Ω

δF2(ω)

K(ω)F2(ω)dω

Ω∫
−Ω

L(ω)F2(ω)dω

−L(ω)
Ω∫

−Ω

K(ω)F 2
2 (ω)

 dω/ Ω∫
−Ω

L(ω)F2(ω)dω

3

. (7.24)

Since δF2(ω) is arbitrary and continuous, and the filter will be designed as a band pass filter that satisfies

F2(−Ω) = F2(Ω) = 0, there has to be

K(ω)F2(ω)

Ω∫
−Ω

L(ω)F2(ω)dω − L(ω)

Ω∫
−Ω

K(ω)F 2
2 (ω)dω = 0. (7.25)

Solving (7.25) above and then substituting with (7.20), (7.21) and (7.22) leads to

|F (ω)|2 = λ
Sss(ω)

CASss(ω)Snn(ω) + CBS2
nn(ω)

, λ > 0. (7.26)

Substitute solution (7.26) into (7.7), λ cancels out. Therefore, λ can be assigned with the value of 1 to

simplify calculation when (7.26) is applied to the FWEGS algorithm, where λ is a constant for all grid

points.

7.7 Simulation and Performance Comparison

In this section, the performance of each filter is evaluated using Monte Carlo simulation consisting of

1000 iterations using a series of system SNR values. The system SNR is defined as the total energy ratio

between the signal and noise across all the sensors, given by (E.1). The EEV values for each filter under

each SNR are then plotted as functions of SNR to have each filter performance visualized.

The suboptimal filters derived in Section 7.5 are equivalent to two well-known filters given in the literature:

the noise whitening filter and Eckart Filter. The filter developed for optimal time delay estimation in [13]

and the simplest form of a traditional matched filter are also chosen to be evaluated and compared here.

They have been briefly introduced earlier in Section 7.1. All the filters considered for simulation in this
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section are listed below in their spectrum representation:

|FMch| = |Xs(ω)|, (7.27)

|FEck|2 = Sss(ω)/S2
nn(ω), (7.28)

|FWh|2 = 1/Snn(ω), (7.29)

|FSuboptD|2 =
Sss(ω)/S2

nn(ω)

1 +M [Sss(ω)/(Snn(ω))]
, (7.30)

|FOpt|2 =
Sss(ω)

Snn(ω) [CASss(ω) + CBSnn(ω)]
, (7.31)

where FMch represents the matched filter, FEck the Eckart filter, FWh the noise whitening filter, FSuboptD

the filter proposed for optimal time delay estimation in [13] that is modified to be applicable here, and FOpt

that minimizes the analytic EEV expression given by (7.7). FSubOptD is chosen to be part of this simulation

because it also considers the signal-noise cross term as FOpt does. The difference is that the former adopts

the number of sensors while the latter uses theoretically derived coefficients. It is desirable to see if more

accurate coefficients can actually make a difference. Only the magnitude of the filters has been considered,

since phase information is unknown from the statistically obtained source signal energy spectrum. Also the

algorithm given by (7.6) itself just considers energy, which means only the magnitude of F (ω) is important.

The filter expressions themselves indicate that under white Gaussian noise, the noise whitening filter will

bring no performance improvement and the Eckart filter will become equivalent to the matched filter. Hence

in this simulation colored noise is used. Its power spectrum is generated using Matlab filter function block

and shown in Figure 7.3.

The FWEGS algorithm is motivated for microseismic event localization for the potash mining industry.

Hence the source signal used in the simulation, depicted in Figure 7.4, is the energy spectrum obtained

statistically [21] using the data collected at Lanigan Potash Mine, Saskatchewan, Canada. The sensor

coordinates are indicated as numerically labeled in the mine map given in Figure 7.5, demonstrating that

the sensors are not deployed in a typical regular array form of a line or circle as seen in most studies in the

literature.

In this simulation, it is assumed that coarse grid searches are already done and a small area that is believed

to contain the true source position has been identified, within which finer grid searches are performed. The

sampling frequency fs adopted for this simulation is 1000 Hz; the grid step adopted is 2 m; the error direction

e = [1, 0]; and for each SNR value a Monte Carlo simulation consisting of 1000 iterations is performed.

The simulation results are plotted in Figure 7.6 using four subplots so that the performance differences

between the filters can be seen more clearly. The Whitening filter, FWh, and the filter aiming for optimal

delay, FSubOptD, yield very close performance as shown in subplots (a) and (b) of Figure 7.6. Neither filter

truly brings improvement in this scenario, probably because as they suppress the noise, the signal is also

suppressed to almost the same degree, given the noise and signal shapes adopted in this simulation. Filters
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Figure 7.3: Generated Power Spectrum of Random Noise
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Figure 7.4: Real Statistical Microseismic Event Signal Energy Spectrum
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Figure 7.5: Real sensor configuration in a potash mine

FEck, FMch, and FOpt demonstrate much better performance as a group compared to FWh and FSubOptD

in subplots (c) and (d) of Figure 7.6. As expected, the filter minimizing the analytic EEV expression given

by (7.7) also brings the lowest actual EEV among all the filters considered in this paper, though all of the

others converge to similar performance with increasing SNR. This indirectly proves that the analytic EEV

derived closely approximates the actual EEV.

To further demonstrate the performance difference between the filter minimizing (7.7) and the other

filters considered, the same simulation results are replotted in Figure 7.7 to indicate the percentages by

which the EEV values of the other filters are higher than that of FOpt.

It is seen that when the noise is high but still within the range for the filters to work, the performance

improvement brought by FOpt can be as high as almost 400%. It is interesting to note that when the SNR

gets higher, even though all the filters start performing better, FOpt experiences much greater performance

improvement. It is understandable, since neither FEck, nor FMch considers as FOpt does, the signal-noise

cross term, which can be much more significant relative to the pure noise term.
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7.8 Conclusion

Following the work in [6], where the sum of cross-correlation technique and grid search are used for

microseismic source localization in the mining industry, this paper has investigated optimal filtering for the

application of interest to achieve better location estimate accuracy.

It is demonstrated that when information about the source signal and noise characteristics is available,

the use of properly designed filters can help improve the source location estimation accuracy. All the filters

derived in previous sections are low pass filters with different magnitudes to limit the noise energy and/or

magnify the source signal energy so that a better system SNR can be achieved.

It is intuitive to assume that when the system SNR is maximized, the performance will be optimized as

well. This has been theoretically proven to be true in the case of amplitude weighting in [6], which shows that

maximizing the defined SNR is equivalent to minimizing the σε(F ). However, the SNR and EEV approaches

are not theoretically equivalent for frequency weighting investigated in this paper. There can be more than

one definition for the system SNR, but only one for the EEV. Hence maximizing an SNR expression does

not necessarily produce a minimum for the source location EEV.

When applied to the FWEGS algorithm described by (7.6), Fbound(ω) derived by dealing with the SNR

is equivalent to FEck. This filter expression does not address the signal-noise cross term that also contributes

to the estimation error variance. In cases that the value of the signal-noise cross term is not negligible but

comparable to or even much greater than that of the pure noise term, FOpt is expected to outperform all

the other filters considered, which has been demonstrated in the simulation results. For scenarios where the

signal-noise cross term is small enough to be ignored, FOpt may yield similar performance as FEck. Stating

that minimizing the EEV is equivalent to maximizing the SNR in case of frequency weighting may seem true

in effect in certain scenarios, but not generally true.

According to the theoretical derivation and simulation results obtained in this paper, suboptimal filters

such as FWh and FMch, may sometimes serve as good replacements for FOpt because they are comparatively

simpler to implement. FWh may be adopted when the noise statistical characteristics are known but the

source signal is unknown, while FMch may be adopted when the noise is white and the source signal energy

spectrum is known.
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Figure 7.6: FWEGS Performance With Various Filter Applied
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D Derivation of σ2ε (F )

Based on the work of [5], similar analysis can be performed in the frequency domain. With arguments

of the hypothesized source position ~̃ps and a filter F (ω) whose time domain expression denoted f(t), a total

energy function in the frequency domain can be defined as

W(~̃ps) =
1

2π

∫ ∞
−∞

∣∣∣∣F (ω)

M∑
m=1

wm

(
ejω(τ̃m−τm)Xs(ω)

dm
+ ejωτ̃mXnm

(ω)

) ∣∣∣∣2dω
= Ws + Wsn + Wn, (D.1)

where

Ws =
1

2π

∫ ∞
−∞
|F (ω)|2

M∑
m=1

M∑
l=1

w̃mw̃l
dmdl

ejω(∆τm−∆τl)|Xs(ω)|2dω; (D.2)

Wsn =
1

2π

∫ ∞
−∞
|F (ω)|2

M∑
m=1

M∑
l=1

[
wmwl
dm

ejω(∆τm−τ̃l)Xs(ω)X∗nl
(ω)

+
wmwl
dl

ejω(τ̃m−∆τl)X∗s (ω)Xnm(ω)

]
dω;

=
1

2π

∫ ∞
−∞
|F (ω)|2

M∑
m=1

M∑
l=1

wmwl
dm

[
ejω(∆τm−τ̃l)Xs(ω)X∗nl

(ω)

+ejω(τ̃l−∆τm)X∗s (ω)Xnl
(ω)

]
dω; (D.3)

Wn =
1

2π

∫ ∞
−∞
|F (ω)|2

M∑
m=1

M∑
l=1

w̃mw̃le
jω(τ̃m−τ̃l)Xnm

(ω)X∗nl
(ω)dω. (D.4)

with ∆τm = τ̃m − τm.

Similar to the analyzing procedure carried out in [5], it is found that the EEV of the FAWEGS algorithm

σ2
ε (F ) can be expressed in the frequency domain as

σ2
ε (F ) =

A(F ) +B(F )

D2(F )
, (D.5)

where A(F ) = E
[(
dWsn

dε̃

)2]∣∣∣
~̃ps=~ps

, B(F ) = E
[(
dWn

dε̃

)2]∣∣∣
~̃ps=~ps

, and D2(F ) = d2Ws

dε̃2

∣∣∣
~̃ps=~ps

.
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Finding that

d∆τm
dε̃

=
dτ̃m
dε̃

= −~e · ~pm
cdm

, (D.6)

and ∆τm|~̃ps=~ps
= 0, (D.7)

it is easy to obtain that

D(F ) =
d2Ws

dε̃2

∣∣∣∣
~̃ps=~ps

=
1

2π

∫ ∞
−∞
|F (ω)|2ω2Sss(ω)dω

M∑
m=1

M∑
l=1

w̃mwl
dmdl

(tm − tl)2. (D.8)

where Sss(ω) = |Xs(ω)|2 is the energy spectrum of the source signal and

tm = −~e · ~pm
dmc

. (D.9)

Next the term A(F ) is to be found. Given (D.3) and (D.9), there is(
dWsn

dε̃

)2
∣∣∣∣∣
~̃ps=~ps

=
1

4π2

∫ ∞
−∞

∫ ∞
−∞
|F (ω1)|2|F (ω2)|2(jω1jω2)

M∑
m=1

M∑
l=1

M∑
n=1

M∑
k=1

wmwlwnwk
dmdn

(tm − tl)(tn − tk)×(
Xs(ω1)Xs(ω2)X∗nl

(ω1)X∗nn
(ω2)e−jω1τl−jω2τn

−Xs(ω1)X∗s (ω2)X∗nl
(ω1)Xnn

(ω2)ejω2τn−jω1τl

−X∗s (ω1)Xs(ω2)Xnl
(ω1)X∗nn

(ω2)ejω1τl−jω2τn

+X∗s (ω1)X∗s (ω2)Xnl
(ω1)Xnn

(ω2)ejω1τl+jω2τn

)
dω1dω2. (D.10)

Apparently that the expected values of the above four terms inside the double integrals are only nonzero

when n = l. Hence taking the expected value of
(
dWsn

dε̃

)2
brings

A(F ) = E

[(
dWsn

dε̃

)2
]∣∣∣∣∣
~̃ps=~ps

=
1

4π2

∫ ∞
−∞

∫ ∞
−∞
|F (ω1)|2|F (ω2)|2(jω1jω2)×

M∑
m=1

M∑
l=1

M∑
n=1

wmw
2
l wn

dmdn
(tm − tl)(tn − tl)×(

Xs(ω1)Xs(ω2)E[X∗nl
(ω1)X∗nl

(ω2)]e−j(ω1+ω2)τl

−Xs(ω1)X∗s (ω2)E[X∗nl
(ω1)Xnl

(ω2)]e−j(ω1−ω2)τl

−X∗s (ω1)Xs(ω2)E[Xnl
(ω1)X∗nl

(ω2)]ej(ω1−ω2)τl

+X∗s (ω1)X∗s (ω2)E[Xnl
(ω1)Xnl

(ω2)]ej(ω1+ω2)τl

)
dω1dω2. (D.11)
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Substitute E[Xnl
(ω1)Xnl

(ω2)], E[Xnl
(ω1)X∗nl

(ω2)], E[X∗nl
(ω1)Xnl

(ω2)], and E[X∗nl
(ω1)X∗nl

(ω2)] utilizing

(12-68), (12-71) and (12-75) in [22], and noticing that X∗s (ω) = Xs(−ω), there is

A(F ) = E

[(
dWsn

dε̃

)2
]∣∣∣∣∣
~̃ps=~ps

=
1

4π2

∫ ∞
−∞

∫ ∞
−∞
|F (ω1)|2|F (ω2)|2(−ω1ω2)×

M∑
m=1

M∑
l=1

M∑
n=1

wmw
2
l wn

dmdn
(tm − tl)(tn − tl)×[

2πSnn(ω1)δ(−ω1 − ω2)Xs(ω1)Xs(ω2)ej(−ω1−ω2)τl

− 2πSnn(ω1)δ(−ω1 + ω2)Xs(ω1)X∗s (ω2)ej(−ω1+ω2)τl

− 2πSnn(ω1)δ(ω1 − ω2)X∗s (ω1)Xs(ω2)ej(ω1−ω2)τl

+ 2πSnn(ω1)δ(ω1 + ω2)X∗s (ω1)X∗s (ω2)ej(ω1+ω2)τl

]
dω1dω2

=
2

π

∫ ∞
−∞
|F (ω)|4ω2Sss(ω)Snn(ω)×

M∑
m=1

M∑
l=1

M∑
n=1

wmw
2
l wn

dmdn
(tm − tl)(tn − tl)dω. (D.12)

Finally, B(F ) is to be determined. Given (D.9), take the derivative of (D.4) with respective to ε̃, square

and then take the expected value to give(
dWn

dε̃

)2
∣∣∣∣∣
~̃ps=~ps

=
1

4π2

∫ ∞
−∞

∫ ∞
−∞
|F (ω1)|2|F (ω2)|2jω1jω2 ×

M∑
m=1

M∑
l=1

M∑
n=1

M∑
k=1

wmwlwnwk ×

(tm − tl)(tn − tk)ejω1(τm−τl)ejω2(τn−τk) ×

E
[
Xnm

(ω1)X∗nl
(ω1)Xnn

(ω2)X∗nk
(ω2)

]
dω1dω2. (D.13)

The four random variables in the expectation of (D.13) are all zero mean and jointly normally distributed
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[22] [23], and we get

B(F ) = E

[(
dWn

dε̃

)2
]∣∣∣∣∣
~̃ps=~ps

=
1

4π2

∫ ∞
−∞

∫ ∞
−∞
|F (ω1)|2|F (ω2)|2(−ω1ω2)×

M∑
m=1

M∑
l=1

M∑
n=1

M∑
k=1

wmwlwnwk
(tm − tl)(tn − tk)×(

E[Xnm
(ω1)X∗nl

(ω1)]E[Xnn
(ω2)X∗nk

(ω2)] +

E[Xnm(ω1)Xnn(ω2)]E[X∗nl
(ω1)X∗nk

(ω2)] +

E[Xnm(ω1)X∗nk
(ω2)]E[Xnn(ω2)X∗nl

(ω1)]

)
×

ejω1(τm−τl)ejω2(τn−τk)dω1dω2. (D.14)

Since whenever E[Xnm
(ω1)X∗nl

(ω1)]E[Xnn
(ω2)X∗nk

(ω2)] is nonzero, (tm − tl)(tn − tk) is zero, the first

term of (D.14) always equals zero. The second term is only nonzero when m = n and l = k and the third

term is only nonzero when m = k and l = n.

Utilizing (12-68), (12-71) and (12-75) in [22] again, there is

B(F ) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞
|F (ω1)|2|F (ω2)|2(−ω1ω2)×[

2πSnn(ω1)δ(ω1 + ω2)2πSnn(ω1)δ(−ω1 − ω2)×

M∑
m=n=1

M∑
l=k=1

w2
mw

2
l (tm − tl)2ej(ω1+ω2)(τm−τl)

+ 2πSnn(ω1)δ(ω1 − ω2)2πSnn(ω1)δ(−ω1 + ω2)×
M∑

m=k=1

M∑
l=n=1

w2
mw

2
l (tm − tl)(tl − tm)ej(ω1−ω2)(τm−τl)

]
dω1dω2

= 2

∫ ∞
−∞
|F (ω)|4ω2S2

nn(ω)dω

M∑
m=1

M∑
l=1

w2
mw

2
l (tm − tl)2. (D.15)

Now substitute (7.11), (7.12), (7.13) into terms A(F ), B(F ) and D(F ) given by (D.12), (D.15) and (D.8)

respectively, the EEV expression given by (D.5) is arrived

σ2
ε (F ) =

CA
∫∞
−∞ |F (ω)|4ω2Sss(ω)Snn(ω)dω + CB

∫∞
−∞ |F (ω)|4ω2S2

nn(ω)dω

CD
[∫∞
−∞ |F (ω)|2ω2Sss(ω)dω

]2 . (D.16)

120



E Filter Obtained by Maximizing SNR

With s0(t) and nm(t) representing the source and noise signal, a signal-to-noise energy ratio, SNReng,

can be defined as

SNReng =

∫∞
−∞ |f(t) ∗

∑M
m=1

wm

dm
s(t− τm)|2dt

E{
∫∞
−∞ |f(t) ∗

∑M
m=1 wmnm(t)|2dt}

, (E.1)

where wm represents the true amplitude weight and ∗ denotes convolution. This SNR definition results

naturally from the algorithm given by (7.6) that considers the total energy of the received sensor signals.

However, it is very difficult to obtain an analytic expression for the filter transfer function by maximizing

(E.1) directly. Given the non-negativity of the integrated function in the numerator of (E.1), maximizing

(E.1) is mathematically equivalent to maximizing the ratio of the numerator value at any specific time t0 to

the same denominator value. Hence the following can replace (E.1) to be maximized,

SNRp =

∣∣∣f(t) ∗
∑M
m=1

wm

dm
s(t− τm)

∣∣∣2
t=t0

E{
∫∞
−∞ |f(t) ∗

∑M
m=1 wmnm(t)|2dt}

, (E.2)

Rewrite (E.2) using frequency domain representation, apply properties of Fourier Transform to the nu-

merator and Parseval’s theorem to the denominator, there is

SNRp

=

1
4π2

∣∣∣∫∞−∞ F (ω)
∑M
m=1

wm

dm
Xs(ω)ejω(−τm)ejωtdω

∣∣∣2
t=t0

1
2π

∫∞
−∞ |F (ω)|2

M∑
m=1

M∑
l=1

E{Xnm
(ω)X∗nl

(ω)}wmwldω

=

∣∣∣∫∞−∞ F (ω)
∑M
m=1

wm

dm
Xs(ω)ejω(−τm)ejωtdω

∣∣∣2
t=t0

2π
∫∞
−∞ |F (ω)|2Snn(ω)

∑M
m=1 w

2
mdω

, (E.3)

where F (ω), Xs(ω) and Xnm(ω) are the Fourier transforms of the filter transform function, source and noise

signal respectively.

(E.3) resembles the more traditional system SNR definition, which can be further modified into

SNRp < SNRp1 =

∣∣∣∫∞−∞ F (ω)
∑M
m=1

wm

dm
|Xs(ω)|dω

∣∣∣2
2π
∫∞
−∞ |F (ω)|2Snn(ω)

∑M
m=1 w

2
mdω

. (E.4)
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Rearrange the numerator of (E.4) and then apply Cauchy-Schwarz Inequality to it,

SNRp1 ≤

∫∞
−∞

∣∣∣∣F (ω)
√
Snn(ω)

∑M
m=1 w

2
m

∣∣∣∣2dω × ∫∞−∞∣∣∣∣ |Xs(ω)|
∑M

m=1
wm
dm√

Snn(ω)
∑M

m=1 w
2
m

∣∣∣∣2dω
2π
∫∞
−∞ |F (ω)|2Snn(ω)

∑M
m=1 w

2
mdω

. (E.5)

The equality in (E.5) holds iff

∣∣∣∣F (ω)

√√√√Snn(ω)

M∑
m=1

w2
m

∣∣∣∣2 =

∣∣∣∣ |Xs(ω)|
∑M
m=1

wm

dm√
Snn(ω)

∑M
m=1 w

2
m

∣∣∣∣2, (E.6)

which leads to

|F (ω)| =
∣∣∣∣ Xs(ω)

Snn(ω)

∣∣∣∣
∑M
m=1

wm

dm∑M
m=1 w

2
m

. (E.7)

The filter transfer function given by (E.7) maximizes the right-hand side of (E.4), representing an upper

bound of the system SNR defined by (E.1).
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8 Summary and Conclusions

The problem of passive acoustic source localization was investigated in this thesis. It was motivated by

the specific application of microseismic event localization in the vicinity of potash mines in the province

of Saskatchewan, Canada. The application is characterized by the involvement of a source signal with a

small time-bandwidth product and sensors that are arranged in the near field. The major topics of this

thesis are the selection, evaluation and performance optimization of a source localization algorithm with

better consistency but without introducing too much extra calculation load for the application of interest.

In addition, the research results are applicable to a wide range of applications where the sum of cross-

correlation technique is used for signal processing.

The first task accomplished was presented in Chapter 4, which is the selection of a one-step estimation

algorithm for the application of interest. When the source signal lasts long enough for the TDOAs to be

estimated with an acceptable accuracy, classical two-step source localization algorithms are good choices.

After the TDOAs are estimated, the source location can be further estimated using analytic techniques,

such as the hyperbolic intersection, or numeric techniques, such as the simplex search method. However,

the source signal under consideration has a small time-bandwidth product and requires some different treat-

ment. Therefore, three representative algorithms given in the literature for acoustic source localization were

evaluated and compared in Chapter 4. The results led to the choice of the EGS algorithm. Compared

with two-step location estimators, the EGS algorithm avoids the likelihood of introducing extra error into

the final source location estimate by eliminating the step of TDOA estimation. Compared with the AML

estimator, which is also a one-step estimator but processes the original data in the frequency domain, the

EGS estimator suffers no performance degradation when the data samples are limited, or when the signal

is non-stationary. The EGS algorithm can also be implemented more easily in either software or hardware

when compared with the AML algorithm, because the EGS algorithm does not require a signal processing

module to perform the Fourier transform.

The second achievement is the development of the corresponding Cramér-Rao lower bound expressions

using the Fisher information matrix and was presented in Chapter 5. These CRB expressions provide a

critical tool to evaluate the estimators investigated in this study. The derivation starts with the assumption

of the signal and noise being time-continuous. This is to avoid the complex matrix calculation required to
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diagonalize the covariance matrix of a CGN random process when time-discrete data are used. Assuming

the time-continuous signal form also makes it consistent with the work presented in [1]. Many works in

the literature focus only on white Gaussian noise in order to ensure that the Fourier transform of the noise

is orthogonal along the frequency axis. In this thesis, Karhunen-loève decomposition is adopted, so that a

continuous random process given in the time domain can be mapped into a series of independent discrete

random variables in the frequency domain. Therefore, non-white Gaussian noise can be easily accommodated,

where the mathematical handling is similar to that of white Gaussian noise. The derivation procedure is also

applicable to non-stationary Gaussian noise problems. However, explicit CRB expressions have only been

reached for stationary Gaussian noise cases in this thesis.

The EGS algorithm was evaluated in Chapter 6, using the CRB expressions derived in Chapter 5, and was

shown to have room for improvement. Note that the signal attenuation at different sensors is not considered

by the original EGS algorithm. Hence the first optimization strategy investigated was the utilization of the

amplitude difference across the sensors, so that a more accurate source location could be estimated. The

algorithm proposed in Chapter 6 was therefore, named the Amplitude-Weighted EGS algorithm. The noise

model adopted in Chapter 6 was simplified from the general model presented in Chapter 3 and assumes

identically and independently distributed white Gaussian noise at each sensor. This assumption enables the

algorithm to weigh each sensor signal with a real positive value calculated according to the amplitude of the

received signal. The absolute value of the received signal strength at any specific sensor is not critical, but its

relative relationship to everyone else is. The AWEGS EEV was obtained after including weights in the EGS

EEV derivation procedure presented in [1]. A closed-form expression for the set of weights, optimal in terms

of minimizing the analytic AWEGS estimation error, was derived. In reality, an analytic EEV expression

of an estimator is not always available. Therefore, performance optimization through the use of the SNR

was also investigated. A system SNR was defined for the application and a closed-form expression for the

set of weights optimal in terms of maximizing this SNR was then reached. Note that the two approaches,

minimizing the AWEGS EEV and maximizing the SNR, are equivalent in the realm of amplitude weighting

under the assumption of i.i.d white Gaussian noise at each sensor

The optimal weight expression derived suggests that the optimal weights themselves have to be estimated

first. A common practice is to assume all the weights to be “1” to initialize the search. Then an estimated

source location is solved. With this estimated source location, a set of weight values closer to be “optimal”

can be calculated and reapplied to the next iteration. This procedure will repeat until certain predefined

threshold is hit. Grid search itself is already a heavy burden to the EGS algorithm in terms of calculation.

Having to do a number of iterations to obtain the optimal weight values makes the burden even heavier.

These additional calculations required compromise much of the benefit brought by the proposed amplitude-

weighted algorithm. Therefore, an alternate non-iterative weighting method was proposed and brought

optimal performance with just one iteration for a given grid search. Monte Carlo simulation indicates that
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the proposed non-iterative amplitude-weighted algorithm is desirable as expected.

It is worth noting that the AWEGS algorithm proposed is an intuitively and straightforwardly constructed

unbiased estimator for passive source localization, over complete statistics of observed random data. It

utilizes all the available source location information carried in both the time delays and amplitude differences

between sensor signals. This means it is the efficient estimator for near-field scenarios. It is also known that

if an Maximum-likelihood(ML) estimator exists, it is the efficient estimator. Hence the AWEGS algorithm

is essentially the ML estimator for the application of interest, though not constructed using the model-based

approach required by the ML method.

Amplitude weighting can be applied to any applications utilizing the energy in the sum of sensor signals,

regardless of the type of the source signal. It is a good candidate when the source signal and noise are

unknown and the noise can be modeled as WGN. However, in certain situations, the source signal and noise

are both known and a dedicated signal processing technique for them is desired.

To address this, a frequency weighting strategy was proposed in Chapter 7 to yield more accurate source

location estimate. First, the frequency-weighted EGS EEV was derived according to the selected way of

applying a filter to the original EGS algorithm. Then several sub-optimal filters, matching several well-

known classical filters given in the literature, were derived based on the FWEGS EEV expression obtained.

These filters are called “sub-optimal” because they don’t meet the performance of the filter that minimizes

the analytic FWEGS EEV expression developed in this work. The latter one is named the “optimal filter” in

the context of this work. All the filters derived in this chapter are low pass filters with different envelopes to

limit the noise energy and/or magnify the source signal energy so that a better system SNR can be achieved.

It is intuitive to assume that when the system SNR is maximized, the performance will be optimized as

well. This has been theoretically proven to be true in the case of amplitude weighting in Chapter 6, which

shows that maximizing the system SNR given by (A.3) is equivalent to minimizing the EEV given by (6.5).

However, the SNR and EEV approaches are not theoretically equivalent for frequency weighting, and this

has been shown in Chapter 7, due to the fact that there can be more than one definition for the SNR but

only one for the EEV. Therefore stating that minimizing the EEV is equivalent to maximizing the SNR in

case of frequency weighting may seem true in certain scenarios, but not generally true. Fopt outperforms all

the other filters considered when the value of signal-noise cross term is not negligible but comparable to or

even greater than that of the pure noise term, as expected. For scenarios where the signal-noise cross term

is small enough to be ignored, Fopt may yield similar performance as Feck.

According to the theoretical derivation and simulation results obtained in Chapter 7, suboptimal filters

such as Fwh and Fmch, can sometimes be good replacements for Fopt because they are comparatively simpler

to implement in practice. Fwh can be adopted when the noise statistical characteristics are known but the

source signal is unknown, while Fmch can be adopted when the noise is white and the source signal energy
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spectrum is known.

To summarize the above concisely: 1. One-step source localization is more robust compared with two-

step localization; 2. The EGS algorithm performed over the original time domain signals without any extra

frequency domain processing can achieve good estimation results with limited samples; 3. The analytic source

location EEV is minimized in the realm of amplitude weighting when a set of optimal weight values derived

is applied to the AWEGS algorithm, which is an efficient estimator; 4. The amplitude weighting technique

can be realized in a non-iterative way, which greatly reduces the extra calculation burden that is required

by the traditional iterative way of implementation; 5. The analytic source location EEV is minimized in the

realm of frequency weighting when the filter FOpt developed is applied to the FWEGS algorithm. 6. Various

shapes of source and signal spectrum produce various relations between the pure noise and the signal-noise

cross term, both of which contribute to the EEV value. Among all the filters investigated in this study,

FOpt is the only one that addresses the two terms correctly, which results in more consistent localization

performance.

Possible future work can be performed to investigate: 1. The effect of noise and signal spectrum envelopes

on the source location estimation error; 2. Sensor arrangement optimization for near-field source localization;

3. Actual implementation of the FWEGS algorithm with various filters of interest applied.
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