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ABSTRACT

Open stoping is a common mining method employed in the Canadian mining industry.  Extracting

large volumes of rock can present stability issues which can affect productivity and safety.  Many

factors such as changing stress states, rock mass structure, and intact rock strength can contribute

to instability.  One factor not commonly assessed when examining stope stability is exposure time.

With increased exposure time, the rock quality of the opening tends to degrade.  Birchtree Mine

located in Thompson, Manitoba, is the focus of this study due to the time dependent instability that

has been observed.

For the proposed project, an empirical method was chosen since these methods can easily be

updated with future case histories to better reflect onsite conditions.  Few empirical methods exist

for assessing exposure time for open stope mining.  The most common method of incorporating

time with stability is Bieniawski’s 1989 RMR Stand-up Time Graph.  As part of this project the

original data used to create the RMR Stand-up Time Graph was reinterpreted so it could be plotted

on the Stability Graph, which is used for open stope design.

Case histories from the Birchtree mine, along with the original database for Bieniawski’s empirical

method, have been examined.  Comparisons were conducted to evaluate the accuracy and validity

of the Bieniawski and Birchtree data.  Other factors that may affect stability and exposure time

were also discussed.  This research has led to the development of a new empirical design method

that incorporates exposure time in the prediction of open stope stability.
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CHAPTER 1
INTRODUCTION

This research involves an assessment of the influence of time on the stability of underground open

stopes.  Multiple factors can have an influence on stability, and therefore affect the stand-up time.

Some of these factors include stress, structure and rock mass properties.  During mining, stresses

can be shed away from, or can be concentrated around opening surfaces.  Both of these situations

can reduce rock mass stability.  Rock mass structure, as well as intact rock strength will also have

a significant impact on overall stability and the stable stand-up time.

The research has been conducted at the Vale Inc. Birchtree Mine in Thompson Manitoba.  The

mine is located approximately five kilometres southwest of Thompson, Manitoba (Figure 1.1), and

is one of three nickel mines currently operating in the area.  Birchtree Mine is approximately 1250m

deep.

1.1 Mine Background

Birchtree Mine has experienced instability in some of their stopes.  The area of concern for this

study is called the Lower 84 Complex.  It extends from the 2750 to the 4000 foot sublevel (Figure

1.2) (840 to 1230 metres below ground surface).  Stope instability at the mine can range from waste

dilution to significant failures that have propagated through multiple levels.  Consequences of

failure include the increased cost of mining dilution to the loss of a significant volume of ore, all

of which can significantly increase mining costs and can cause loss of revenue.

1.1.1 Mining Method

The mining method employed at Birchtree Mine is Vertical Block Mining (VBM).  This is an open

stoping method similar to Vertical Crater Retreat (VCR) mining in that successive layers of the

stope are blasted from bottom to top and ore is left in the stope to provide support.  Stopes are



2

 mined in a transverse direction.  For each crosscut into the orebody, multiple stopes are extracted

in a panel (Figure 1.1b).  The number of stopes in a panel depends on the thickness of the orebody.

Generally, three separate blasts take place to excavate a stope.  Initially a raisebore slot is drilled,

which creates a void for the rock to break into.  The raisebore is drilled from the overcut to the

undercut by first drilling a 0.23 metre diameter pilot hole.  Once the pilot hole breaks through into

the undercut, a 1.1 metre reaming bit is attached to the drill rods.  This bit is then pulled up from

the undercut, towards the overcut creating the slot.  The pilot hole is reamed to within 1.8 metres

of the overcut.  Each blast within a stope starts around this raisebore to increase the initial void for

subsequent blasts.  The first blast is normally small and only contains the breakthrough holes.  The

second blast is generally two to three times larger than the first, as a larger void exists due to the

first blast (Figure 1.1a).  The third blast is used to remove the remaining ore/rock and generally has

the largest tonnage.  The goal of each blast is to optimize the tonnage for the final blast, so that the

void  is  completely  full  with  broken  ore.   This  helps  support  the  walls  while  the  ore  is  being

removed.

Since Birchtree Mine is a deep mine in a high stress environment, they use a pyramidal stress

shedding mining sequence.  The purpose of a pyramidal mining sequence is to push the stress

towards the outer boundary (abutment) of the mining area so stress related instability issues can be

reduced.
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Figure 1.1a)   Isometric view of an average blast sequence for Birchtree Mine, b)   Isometric view of a panel sequence at
Birchtree Mine

Figure 1.2   Location of Birchtree Mine (Google Maps, 2017)
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Figure 1.3   Longitudinal of the Birchtree Lower 84 Complex (Birchtree, 2016)

1.1.2 Regional and Local Geology

Birchtree mine is part of the Thompson Nickel Belt (Figure 1.4 and 1.5), which ranges in thickness

from 8 to 40km and is approximately 160km long (McDowell et al., 2007).  Birchtree Mine is part

of the Pipe Formation, which is made up of three separate sub-units (McDowell et al., 2007):

i. P1 – consists of silicate, iron formation, pelitic schist, and quartzite

ii. P2 – consists of sedimentary sulphide and graphite

iii. P3 – iron formation, magnetite, and chert

The Birchtree nickel deposit is located in the P2 schist (Figure 1.5) (Southern, 2017), the host rock

for the Birchtree orebody, and ranges in thickness from 3 to 91 metres (Southern, 2011).  The ore

is classified as a breccia, and is a mixture of sulphide, ultramafic (peridotite), and schist (Southern,

2017).  The ore tends to be located between the footwall rocks and the ultramafic peridotite

formations, and at times the ore may wrap itself completely around the peridotite formation

(Southern, 2011).
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Figure 1.4   Geological formations surrounding the Birchtree orebody (McDowell et. al., 2007)

Figure 1.5   Regional geology of the Thompson Nickel Belt (Eckstrand and Hulbert, 2007)
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The ultramafic formations are separated into three categories (Southern, 2011):

i. The core peridotite which consists of the larger formations of peridotite and

form the hanging wall of the orebody;

ii. The mineralized peridotite which has sulphide disseminated throughout the

formation and can contain nickel grades considered economical to mine and;

iii. The barren peridotite which is classified as a breccia, has little to no associated

gradable sulphide material, and is generally the largest contributor of internal

dilution within the Birchtree orebody.

The Birchtree orebody is also associated with four major fault zones.  The 780 and 1080 faults are

located on the footwall side of the orebody (Figure 1.6), and are older than the ore deposit

(Southern, 2017).  The 1080 fault is the closest of these two structures to the Birchtree ore deposit

and is commonly encountered underground.  The 1080 fault is generally associated with poor

ground conditions, with blocky, wet ground (Southern, 2017).  The 609 and 906 faults cross the

Birchtree ore deposit, and define the boundaries between the 83, 84, and 85 Complex at the

Birchtree Mine (Figure 1.6) (Southern, 2011).  The 84 complex is located between these two

structures.  The 609 and 906 faults are younger than the Birchtree deposit and are generally tightly

healed, and associated with dry, competent ground conditions (Southern, 2017).
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Figure 1.6   Major faults located in the Birchtree orebody and host rock (Birchtree Mine, 2010)

1.2 Thesis Objective

The main objective of this research is to quantify how exposure time affects stope stability at the

Birchtree Mine.  Many factors simultaneously influence the stability of underground openings

including blasting, opening geometry, stress, geology and rock mass conditions.

Exposure time is not commonly assessed when estimating open stope stability, and is defined as

the length of time an excavation in left open.  The open stopes at Birchtree Mine are backfilled

using cemented and uncemented rockfill approximately 2 to 4 weeks after the first blast.  This

relatively short time between mining and backfilling is due to the significant stope wall instability

that can occur at this mine after limited exposure time.
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Quantifying the effect of exposure time is accomplished through a case history analysis of

multiple stopes including both stable and unstable examples.  The case history analysis consists

of a compilation of the following information:

· Geology (geological structure and rock types)

· Rock mass classification data (RQD, joint properties, joint orientation)

· Rock mechanical properties (UCS and tensile rock strength, rock density, Young’s

Modulus)

· Basic stress analysis for each case history to determine stress conditions

· Stope cycle time (exposure time) from the first blast to backfill

Stress modelling programs exist that can account for some of these factors through rock mass

classification and factor of safety calculations, however, it can be difficult to determine reliable

input data for the programs.  Many of the modelling programs require an understanding of the

rock mass behaviour before they can accurately reflect mine specific conditions.  Empirical

methods can more easily be adjusted to mine specific conditions and updated as case histories

become available.  As the Birchtree project is based on the analysis of case histories, a primarily

empirical approach has been taken for analysis.
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CHAPTER 2
LITERATURE REVIEW

This section discusses rock mass classification systems and methods that are commonly used for

designing underground openings. Both empirical design methods and numerical modelling

approaches for underground design are also discussed.

2.1 Rock Classification for Rock Mass Strength Estimates

The rock mass exposed adjacent to tunnels and mined stopes contains joints, shears, and other

discontinuities and irregularities that affect the behaviour of the rock mass.  Since the volume of

rock required to obtain a representative volume of rock for lab testing should be in the order of

ten times the joint spacing (Milne, 2016), lab testing has limited application.  Rock mass

classification has developed into the standard approach used to estimate rock mass properties.

There are many different rock classification methods.  The main methods applied to Canadian

mines are summarized in this section.

2.1.1  Rock Quality Designation (RQD)

The Rock Quality Designation was originally developed by Deere (1963) for use in civil

engineering projects.  It was later adopted by other geotechnical engineering fields as a way to

classify the rock mass (Li et al., 2009).  RQD is the most common rock mass classification value

used in the mining industry and has been incorporated as a component of the more modern systems.

RQD takes into account the fracture spacing in a rock mass and is defined as the percentage of

intact rock that is greater than 10cm in length for a given core run (Equation 2.1).  Figure 2.1 shows

an idealized drawing of a 3m core run.  The blue areas represent intact core greater than 10cm.  The

RQD for the example in Figure 2.1 would be as follows:
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Figure 2.1   Idealized example of a 3 metre core run for RQD analysis

ܦܴܳ = ௅௘௡௚௧௛	௢௙	ூ௡௧௔௖௧	஼௢௥௘வଵ଴	௖௠
்௢௧௔௟	௅௘௡௚௧௛	௢௙	௧௛௘	஼௢௥௘	ோ௨௡

× 100...................................................................................(2.1)

ܦܴܳ =
282	ܿ݉
300	ܿ݉ × 100

ܦܴܳ = 94%

When calculating the RQD, only natural discontinuities are accounted for.  Any mechanically

induced breaks (i.e. drilling process) are ignored as RQD is used to classify in-situ conditions

(Hutchinson and Diederichs, 1996)

Another method for evaluating RQD was introduced by Palmstrom (1982), and is shown in

Equation 2.2.  This method is used to evaluate RQD based on the number of joints per cubic metre

(Jv) and is used to evaluate RQD directly from a given surface exposure.

ܦܴܳ = 115− ௩...................................................................................................................(2.2)ܬ3.3

55 cm14 cm25 cm

35 cm35 cm24 cm

45 cm 35 cm14 cm



11

RQD can be a very useful value for rock mechanics design, however, it has some drawbacks which

include:

· RQD can vary based on the core orientation (Li et al., 2009).

· RQD does not account for joint properties such as alteration, water content, and rock

strength (Li et al., 2009).

· RQD is insensitive to changes of joint spacing, if the average joint spacing is over

1m.  (Milne et al., 1998).

2.1.2 Rock Quality Tunneling Index (Q)

The Q classification was introduced by Barton et al. (1974) for rock mass classification and tunnel

support design.  The Q value encompasses many factors which can affect stability and is shown in

Equation 2.3, as follows:

ܳ = ோொ஽
௃೙

× ௃ೝ
௃ೌ

× ௃ೢ
ௌோி

.....................................................................................................................(2.3)

Where,

Q - rock quality tunnelling index
RQD - rock quality designation
Jn - number of joint sets
Jr - joint roughness
Ja - joint alteration
Jw - joint water
SRF - stress reduction factor

The values of each of the six variables represented in Equation 2.3 are determined based on

observed conditions of core or of a rock exposure.  Figure 2.2a and 2.2b presents values for each

of these variables, based on descriptions of the rock mass.
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Figure 2.2a   Chart for Q classification from Rocscience document on rock mass classification (From Hutchinson and
Diederichs, 1996)
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Figure 2.2b   Chart for Q classification from Rocscience document on rock mass classification (From Hutchinson and
Diederichs, 1996)
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A more common form of the Q classification used in mining is  known as the modified Q or Q’

value which does not apply for the stress reduction factor and is calculated, as shown in Equation

2.4:

ܳᇱ = ோொ஽
௃೙

× ௃ೝ
௃ೌ

× ௪.....................................................................................................................(2.4)ܬ

The above equation can be broken into three terms for classifying a rock mass.  The RQD/Jn term

represents the block size, Jr/Ja represents the shear strength between the rock joints, and Jw

represents the water pressure (Hoek and Brown, 1980).

2.1.3  Rock Mass Rating (RMR)

The Rock Mass Rating system was developed by Bieniawski (1976, 1989).  This system classifies

rock quality according to five separate categories: rock strength, RQD, joint spacing, joint water

and  joint  condition  (Figure  2.3),  as  well  as,  a  joint  orientation  term.   The  correction  for  joint

orientation is not commonly used in mining, and the RMR term is referred to as the modified RMR

or RMR’ when this correction factor is  ignored.  The RMR value is  the total  sum of the ratings

from each category.  Two RMR systems that are commonly used today are the RMR76 and RMR89

systems.  For the purposes of this thesis, RMR76 was used.
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Figure 2.3   Chart for RMR76 classification ratings (After Bieniawski, 1976)

2.1.4 INCO Rock Mass Rating

The INCO Rock Mass Rating (IRMR) system was developed in the early 1990’s and tried to use

practical aspects of several classification systems currently in use.  The IRMR system is a modified

RMR76 system that combines the Q classification assessment of joint roughness as well as research

developed for block size analysis.  The IRMR system uses the five basic parameters developed to

calculate RMR76, which include factors for RQD, rock strength, joint spacing, joint condition, and

groundwater.  The weighting for RQD, intact rock strength and groundwater are unchanged from

RMR76.  The weighting for spacing is based on a block size defined by the average edge length of

intact rock blocks (D50) (Folmer, 1992).  The joint condition is based upon joint roughness and

alteration and uses the terms developed for the rock quality Q classification system.

The joint roughness (Table 2.1) and joint alteration (Table 2.2) values are important classification

parameters used for determining rock quality Q (Section 2.1.2).  These values are obtained during
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scanline surveys that are conducted by geology staff to estimate support requirements at the

Birchtree  Mine.   Joint  roughness  can  be  determined  using  a  profile  comb  to  obtain  a  Joint

Roughness Coefficient (JRC) value (Figure 2.4).  Joint roughness can also be determined by

measuring the 10cm and 1m joint profiles (Figure 2.5) (Barton, 1982).  These two values are then

multiplied together to obtain Jr (Milne et al., 1991).  In the Q classification system, joint alteration

values are subjectively determined by evaluating the condition of the joint set (infilling,

mineralization, etc.) and comparing that to a set of generally accepted descriptions with associated

values (Figure 2.2a).

Table 2.1   Jr values for 10cm and 1m joint profiles (After Milne et al., 1991)
10 cm Profile Description

1.0 Smooth joint.  Joint Roughness Coefficient less than 10
1.5 Rough joint.  Joint Roughness Coefficient greater than 1.5

1 m Profile Description
1.0 Planar joint.  Amplitude less than 1.0 cm
1.5 Planar to wavy. Amplitude between 1.0 cm and 2.0 cm
2.0 Wavy joints.  Amplitude greater than 2.0 cm

Table 2.2   Joint alteration values (After Milne et al., 1992)
Ja Value Description
1.0 to 1.5 Surface can be scratched with a knife.

2.0 Surface can be scratched with a fingernail.  Surface feels slippery.
4.0 Surface can be dented with a fingernail.  Surface feels slippery.
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Figure 2.4   Joint roughness profiles for determining JRC using a profile comb (After Barton and Choubey, 1977)
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Figure 2.5   Chart for 10 centimetre and 1 metre joint amplitudes for determining JRC (Barton, 1982)

At Birchtree Jr values follow the more commonly used chart for 10 centimetre and 1 metre profile

lengths (Figure 2.5), however, their joint alteration values are obtained from a less commonly used

method generally associated with areas that have undergone heavy shearing/faulting conditions.

For this Ja assessment, the values range from 1-20.  The system that Birchtree uses is a modified

version of this method that uses joint aperture to determine the Ja value.  The Birchtree joint

alteration values (Ja) are classified as follows:

i. 0.75 – tightly healed

ii. 1.00 – parting less than 1mm; no infilling

iii. 4.00 – parting between 1mm and 5mm; infilling less than 5mm

iv. 10.00 – parting between 5mm and 10mm; infilling between 5mm and 10mm

v. 20.00 – parting greater than 10mm; infilling greater than 10mm
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The second term that differs from a standard RMR76 classification is the assessment of joint

spacing.  In the RMR76 system, an average joint spacing is estimated based on the presence of three

joint sets.  If fewer or more than three joint sets are present, a subjective assessment is made.  In

the IRMR system at Birchtree Mine, the average block size D50, is calculated using an AutoCAD

sub-routine.  This sub-routine is called the INCO Blocks program.  This program uses information

from scanlines that are collected by the geological group at the mine.  The data collected from each

scanline is input into the INCO Blocks program which generates a three dimensional estimation of

jointing in the area of the scanline.  It assesses these joints by extending the mapped joint sets into

a defined cubic volume of 22.9m3.  This limited volume is set to avoid creating infinitely long joint

sets as they continue to move away from the scanline area.

The final difference between the INCO Rock Mass Rating and the modified RMR76 system is in

the assessment of RQD.  In the IRMR system the weighting for RQD is set to a constant value of

19.5, corresponding to an RQD of 98.5%.  This appears to be a significant drawback to the IRMR

system because the average RQD for Birchtree’s rock mass is significantly lower than this, in the

range of 50% to 70%.  It may be that the original developers of the IRMR system determined that

the overall effect of variable joint spacing at the Birchtree Mine was properly assessed with the D50

term and a constant for RQD.  Records documenting the early development and application of the

IRMR system were not available to verify this.

Equation 2.5 is used to calculate IRMR.

ܴܯܴܫ = 19.5 + ܵܥܷ + ହ଴ܦ + ௥ܬ + ௔ܬ + ௪..............................................................................(2.5)ܬ

UCS (Unconfined Compressive Strength) represents the rock strength rating, and the Jr, Ja, and Jw

terms represent the joint conditions as outlined in Section 2.1.2.
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The INCO Blocks program is used to generate the average block size as defined by the D50 value

(Figure 2.6).  This value, along with rock mass classification data collected from scanlines, is then

used to generate an IRMR value that is used to determine rock support requirements.  Data collected

in the scanline includes:

i. Joint Roughness (Jr)

ii. Joint Alteration (Ja)

iii. Rock Type

iv. Structure (joint, shear, schistosity, foliation)

v. Length of feature

vi. Dip, dip direction, and strike
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Figure 2.6   Example output from the INCO Blocks program (Birchtree Scanline Binder, 2002)
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2.2 Stress Based Numerical Modelling Design

Design techniques for underground mining combine estimated rock mass strength properties with

loading conditions acting on the rock mass.  Numerical stress modelling based design methods

consider stress driven failure and apply primarily empirical based failure criteria (often based on

rock classification) to estimate stability.  Stresses induced around underground excavations can be

modelled with many different stress modelling packages, however, complex stope geometries often

require three dimensional stress modelling programs.  Detailed input data on the condition of the

rock  mass,  and  time  related  behaviour  of  the  rock  was  not  available  so  it  was  felt  that  a  more

sophisticated modelling package would not be warranted.  Boundary element programs do not need

the computer resources that discrete element models require and are generally more user friendly.

Two such programs include Map3D and Rocscience’s Examine 3D.  Map3D is the modelling

package used at the mine site, so it was chosen for this research.

Map3D is a three-dimensional boundary element modelling software package.  This program

allows  the  importing  of  stope  geometries  through  the  use  of  AutoCAD  and  the  evaluation  of

individual stopes, or complete mine complexes, by allowing the input of mine sequences.  Map3D

allows users to define their stress contours based on equations that reflect mine specific conditions.

Once induced stresses are calculated by the Map3D boundary element program, failure can be

assessed based on a choice of several failure criteria.

2.2.1 Stress Based Failure Criteria Phi & C

For Mohr Coulomb failure criterion analysis, rock mass classification values are related to phi and

c through RMR classification.  Table 2.3, developed by Bieniawski (1976 & 1989), related RMR76

and RMR89 to  phi  and  c.   Table  2.3  is  separated  into  five  categories,  each  of  which  has  a

corresponding range of cohesion (c) and friction values (φ) based on both RMR76 and RMR89.
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Table 2.3   RMR76 and RMR89 failure criteria (After Bieniawski, 1976 & 1989)

The Mohr Coulomb Failure Criterion is one of the more common methods used for evaluating

stress based failure for underground design.  It is a measure of the peak stress at failure with a given

confining pressure (Figure 2.7).  When evaluating underground designs with stress modelling

software, the Mohr Coulomb Failure Criterion is used to determine a factor of safety (FS) against

stress driven failure.  The factor of safety is calculated using Equation 2.6.

ܵܨ = ௖ାఙయ௧௔௡ఝ
ఙభ

.............................................................................................................................(2.6)

Where:

c is cohesion,

σ3 is the confining stress,

φ is friction; and,

σ1 is the peak stress at failure

35 - 45 25 - 35 15 - 25 < 15

80 - 61 60 - 41 40 - 21 <20

300 - 400 200 - 300 100 - 150 < 100

200 - 300 150 - 200 100 - 150 < 100

40 - 45 35 - 40 30 - 35 < 30

Cohesion
(kPa)

Friction (O)

RMR89

Cohesion
(kPa)

Friction (O)

> 300

> 45

100 - 81

> 400

> 45

RMR76 100 - 81 80 - 61 60 - 41 40 - 21 <20
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Figure 2.7   Mohr Coulomb Failure Criterion (After Goodman, 1989)

2.2.2  M & S Stress Based Failure Criteria

Hoek and Brown (1980) developed the m & s failure criterion, which calculates a factor of safety

for stress based failure in modelling programs.  The m & s failure criterion was developed to

provide a means of combining laboratory results with field observations for the design of

underground openings (Hoek & Brown, 1980).  M & s failure criterion is separated into two

categories; disturbed (Equations 2.7 & 2.8) (Hoek & Brown, 1980) and undisturbed (Equations 2.9

& 2.10) (Hoek & Brown, 1980).  They are calculated with the following equations:

௠
௠೔

= ݌ݔ݁ ቀோெோିଵ଴଴
ଵସ

ቁ...................................................................................................................(2.7)

ݏ = ݌ݔ݁ ቀோெோିଵ଴଴
଺

ቁ...................................................................................................................(2.8)
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௠
௠೔

= ݌ݔ݁ ቀோெோିଵ଴଴
ଶ଼

ቁ.................................................................................................................(2.9)

ݏ = ݌ݔ݁ ቀோெோିଵ଴଴
ଽ

ቁ.................................................................................................................(2.10)

Where (Hoek and Brown, 1980):

m is a rock mass constant

s is a rock mass constant

mi is m for intact rock

In most modern design applications that use the m & s failure criterion, the disturbed equations are

no longer considered, as they are too conservative for underground design.  The most significant

limitation to this evaluation method is that it applies to uniform and isotropic rock masses (Hoek

& Brown, 1988).  The equations for m & s assume that the material properties are the same in all

directions, because they are trying to evaluate a rock mass in a manner similar to soil mechanics,

where the m & s criteria are replacing phi and c.  The m & s failure criterion is used to determine

a factor of safety against stress driven failure.  The factor of safety is calculated using Equation

2.11.

ܵܨ =
ఙయାට௠ఙయା௦ఙ೎మ

ఙభ
....................................................................................................................(2.11)

Where (Hoek and Brown, 1988):

σ’1 is the major principal stress

σ’3 is the minor principal stress

σc is the UCS for the rock
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2.2.3 Time Dependent Failure

Time dependent failure can be thought of as more of a process than a failure criterion.  Failure

occurs when the stresses around an underground opening exceed the peak strength of the rock

mass.  When this occurs, the rock mass can no longer support these stresses and they are shed to

the surrounding rock mass leaving a zone of failed material around the perimeter of the opening.

This zone of failed material will not immediately fall into the opening as the rock mass maintains

some residual strength.  This is called the post peak strength of the rock mass.  The rock mass

will continue to undergo failure, pushing the stresses further away from the opening, until the

maximum induced stress no longer exceeds the rock mass strength.  As stresses are shed further

away from the opening, the zone of failed ground will continue to increase, until the residual

strength can no support it, and it sloughs into the open void.

2.3 Empirical Stope Design Techniques

As with stress modelling design techniques, empirical design techniques combine estimated rock

mass strength properties with loading conditions acting on the rock mass.  Most of the commonly

used empirical design methods incorporate four key input parameters for design:

i. Rock mass classification (Section 2.1)

ii. Opening geometry

iii. Rock mass factors which influence stability (including stress)

iv. Case histories of stable and unstable stopes

2.3.1 Influence of Geometry on Stability

The geometry of underground openings has a significant effect on stability.  As opening size

increases, changes to the stress field will extend farther from the opening.  For varied opening

geometries, the magnitude of stress at the edge of openings will change.  Also, as the surface of an

opening increases in size, the distance to the supporting abutments increases.  Numerical stress

modelling design techniques quantify the stress related changes due to opening geometry.

Empirical modelling techniques consider the distance to supporting abutments.
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2.3.1.1 Opening span / circle span

For the stability of simple excavations, like tunnels, the opening geometry of the roof is defined as

the span or width of the tunnel.  From the centre of a tunnel, the minimum distance to the supporting

tunnel  walls,  or  abutments,  is  half  the  span.   For  more  complex  excavations,  like  tunnel

intersections, a term called circle span is used to define the geometry.  Circle span is the largest

sized circle that can be drawn on the plan view of a tunnel without intersecting supporting rock

(Lang, 1994).  For the intersection of two tunnels, the circle span would be root 2 times the span

(~ 1.4 x span).

2.3.1.2 Hydraulic radius

In underground stopes, opening geometry is more complicated than in tunnels and an opening

surface often obtains significant support  from four walls or abutments,  rather than two as in the

case of tunnels.   The hydraulic radius term can account for support from four abutments and is

calculated from the following Equation 2.12 (Laubscher, 1977).

ܴܪ = ஺௥௘௔
௉௘௥௜௠௘௧௘௥

.........................................................................................................................(2.12)

To show how hydraulic radius is a function of the distance from the center of an opening to the

four supporting abutments in an excavation, hydraulic radius can be expressed as shown in

Equation 2.13 (Milne, 1997)

ܴܪ = ଶ
భ

బ.ఱೌା
భ

బ.ఱೌା
భ

బ.ఱ್ା
భ

బ.ఱ್
..............................................................................................................(2.13)

Where:

a and b is the length of the supporting abutments in an excavation as shown in Figure 2.8.
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Figure 2.8   Hydraulic radius as a function of the distance from the center of an excavation to the supporting abutments
(After Milne, 1997).

The hydraulic radius assesses complex geometries found in underground open stoping, however,

this can still be an over simplification of some stope geometries.

2.3.2  Modified Stability Graph

The stability graph method (Figure 2.9) is a commonly used technique for assessing the stability

of openings in the Canadian mining industry.  Mathews et al. (1981), developed the original

Stability Graph.  The Modified Stability Graph was further developed by Potvin (1988) and was

later updated by Nickson (1992).  As of 2010 at total of 483 case histories had been used in its

development (Suorineni, 2010).  The Modified Stability graph is defined by the following five

separate zones:

· Stable zone

· Unsupported transition zone,

· Stable with support

· Supported transition zone

· Unstable zone
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Figure 2.9   Modified Stability Graph (Nickson, 1992)

Each stope surface is classified into a category by two factors:  the N’ Stability Number and the

Hydraulic Radius.  The hydraulic radius has been discussed in Section 2.3.1.2.  N’ is calculated

using Equation 2.14.

ܰᇱ = ܳᇱ × ܣ × ܤ × (2.14)...............................................................................................................ܥ

Where:

N’ - stability number

Q’- rock quality tunnelling index excluding stress reduction factor

A - stress state factor

B - factor based on the angle between the joint orientation and the excavation surface

analyzed

C - surface dip correction factor

The A factor assesses the stress state of the surface being examined.  The A factor is based on the

ratio of induced stress to the unconfined compressive strength of the rock (Figure 2.10) and ranges
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between a value of 0.1 and 1.  The lower value represents a high stress condition, while the larger

value represents a low or relaxed stress condition.  To obtain a value of 0.1, the induced stress

would be half the UCS or greater.  It should be noted that in Yves Potvin’s thesis (Potvin, 1988),

only 36 of the 154 cases of unsupported wall stability had an A value less than 1.0.  This limited

amount of data for high stress conditions adds uncertainty to the design methods assessment of

high stresses.

Figure 2.10   A factor graph for N' stability (After Potvin, 1988: from Hutchinson and Diederichs, 1996)

The B factor accounts for the angle between the assessed surface and the joint set most likely to

control stability.  It is defined as the angle between the controlling joint set and the surface under

examination. Figure 2.11 shows a sub-horizontal and vertical joint set that demonstrate the two

extremes represented on the B factor graph (Figure 2.12).  If assessing back stability, Figure 2.11a

would represent the worst case scenario.  For the sub-horizontal joint set dipping at 10 to 30 degrees

to a surface, the drop in vertical stress normal to the back, would limit the joint clamping stress,

and the high horizontal  stress would drive shear deformation.  For sub-horizontal  joints dipping

between 20 and 30 degrees, a B factor of 0.2 is used for calculating the N’ Stability Number (Figure

2.12).  A joint set dipping at 90 degrees to a surface will be the most favourable for stability.  For

joints sets perpendicular to a surface, the resulting horizontal stress increase would clamp the joint

set, giving a B factor of 1 for calculating the N’ Stability Number (Figure 2.12).
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Figure 2.11   Favourable and unfavourable joint sets for stope backs

Figure 2.12   B factor graph for N' stability (After Potvin, 1988: from Hutchinson and Diederichs, 1996)
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The C factor is a measure of the dip of the surface under examination.  The values range from 2

for a horizontal surface, to 8 for a vertical surface (Figure 2.13).

The stability graph method is easy to use and gives a general approximation of how an underground

opening will perform; however, some limitations exist.  As stated by Suorineni (2010) the main

problems that exist with the current Stability Graph method are as follows:

· It does not properly classify complex geometries,

· Faults and other geological structures are ignored,

· Stand-up time is not accounted for and;

· It ignores the effect of blast damage.

Another shortcoming of this approach is that instability or stope failure is not quantified.  This is

addressed in graphs that look at stope dilution or depth of surface failure.

Figure 2.13   C Factor for N’ Stability (After Potvin, 1988: from Hutchinson and Diederichs, 1996)
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2.3.3 Design Approaches that Assess the Degree of Failure

The Dilution Graph estimates stability based on the total amount of equivalent linear overbreak

slough (ELOS) (Clark and Pakalnis, 1997).  ELOS represents the total amount of expected dilution

based on the average thickness of slough, acting over the stope hanging wall.  Based on increased

data, in relatively poor ground conditions, the Modified Dilution Graph was developed by Capes

(2006).  This graph, as well as a representation for ELOS, are illustrated in Figure 2.14.  The areas

contained by the red zones outside the arc are assumed to be equal to that of the arc’s top not

encompassed by the rectangle (i.e. even though the shapes are different, the areas will be equal).

Figure 2.14   Modified Dilution Graph and illustration of ELOS definition (Capes 2006)
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2.4 Empirical Design Methods Assessing the Effect of Time on Stability

The Modified Stability Graph and ELOS design approaches are good for determining stability of

an underground opening based on some average exposure time, however, they do not take into

account the potential change in the rock mass stability over time.  These empirical design guidelines

are based upon an average exposure time representative of the data base that the empirical design

method is based upon.  There has been some work done in the past to incorporate exposure time

into empirical design methods (Lauffer, 1958; Bieniawski, 1984; Hutchinson and Diederichs,

1996; Pakalnis, 1986; Wang et al., 2003).  Most of these methods are based on graphs that rely on

span and RMR to determine stand-up time.  They have primarily been developed for tunnel

applications and they are not widely used in the mining industry.

2.4.1 Lauffer’s Design Method

Lauffer (1958) was one of the first to introduce an empirical method for evaluating stand-up time,

shown in Figure 2.15.  This design method relates stand-up time and rock mass condition to the

effective span of an unsupported excavation.  In this application, unsupported excavation span is

defined as the length of exposed excavation between support elements.  The shaded area represents

the most common spans and stand-up times encountered in the tunnels used to generate the stand-

up time graph (Lauffer, 1958).  The letters A-G represent different rock mass conditions (Table

2.4) and are separated by straight lines relating stand-up time to effective span.
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Figure 2.15   Stand-up Time Graph, letters used are described in Table 2.4 (Lauffer, 1958).

Table 2.4   Rock mass classes for Lauffer's (1958) Stand-up Time Graph

2.4.2 Stand-up Time Graph

The stand-up time graph developed by Bieniawski (1989) was a further development of Lauffer’s

1958 empirical method.  In developing this graph, Bieniawski added both civil and mining case

histories, and applied his own classification system (Figure 2.16).  Bieniawski’s database is

presented in Bieniawski’s book, Engineering Rock Mass Classifications (1989).  It includes 352

case histories, of which 123 cases include time to failure and the other 229 cases did not fail.  Only

the 123 points that failed included stand-up times, and are plotted as the rock mass rating RMR76

versus the estimated time to failure (Stand-up Time). These 123 points can be further divided into

categories: 62 from coal mines, 46 from civil tunnels, and 12 from underground chambers.  The

Class Condition
A Stable
B Crumbling
C Very Crumbling
D Friable
E Very Friable
F Subject to Heavy Squeezing
G Subject to Very Heavy Squeezing
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remaining three are from a limestone, metal, and hard rock mine.  The majority of the plotted case

histories were from sedimentary deposits such as shale, mudstone, sandstone, limestone, and

siltstone.  The data points are representative of the backs of the excavations, and the majority

ranged in depth from 8 to 300 metres.

Figure 2.16   RMR Stand-up Time Graph (From Bieniawski, 1989)
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2.4.3 Revised Stand-up Time Graph

To further align the stand-up time graph with modern systems, Hutchinson and Diederichs

exchanged  the  x-axis  (stand-up  time)  with  the  rock  mass  rating.   RMR76 is a value that can be

collected prior to failure and can be used to predict stand-up time.  In most design methods, the

measured values are on the axes, while the predicted values are incorporated into the graph.  The

graph in Figure 2.17, is the most recent iteration of the stand-up time graph.  No new data was used

to create this version of the graph.

Figure 2.17   RMR Stand-up Time Graph (from Hutchinson and Diederichs, 1996)

2.4.4 Excavation Rate and Exposure Rate

Pakalnis (1986) introduced a new term related to the time taken to excavate a stope.  The term

excavation rate is a measurement of the square metres of stope hanging wall exposed per month of

mining, expressed as thousands of square metres exposed per month (Equation 2.15).  This term,

as well as the hanging wall RMR value and total area exposed, were combined in an equation that

could be used to estimate the total percent hanging wall dilution predicted.  This equation was
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developed specifically for the Ruttan Mine in northern Manitoba.  Equation 2.16 shows this

relationship for predicting dilution for isolated stopes (Pakalnis, 1986).

݁ݐܴܽ	݁ݎݑݏ݋݌ݔܧ = (௅ଵ×ு)/ଵ଴଴଴
௠௢௡௧௛௦

.................................................................................................(2.15)

Where:

H is the up dip hanging wall length

L1 is the stope strike length

݊݋݅ݐݑ݈݅ܦ	݀݁ݐܿ݅݀݁ݎܲ = 8.6− (ܴܯܴ)0.09 − (2.16)...........................(Area Exposed) + (݁ݐܴܽ.݌ݔܧ)	13.2

Where:

Predicted Dilution is the average depth of failure expressed as a percent of the ore thickness.

RMR is the Rock Mass Rating (1976)

Exp. Rate is the Exposure Rate

Area Exposed is the final area of the stope hanging wall

2.5 Other Factors Contributing to Stability

Many factors can contribute to the influence of time on stability, as well as the degree of instability

or dilution, in open stope mining.  In most cases, multiple factors will contribute to any

instabilities/slough that is experienced. The design methods presented in the previous sections

accounted for factors that include rock strength, joint properties, stress, and opening geometry.

Some of the other factors that may contribute to failure, the degree of failure, and time to failure

may include:

i. Blast damage – type of explosive and powder factors

ii. Undercutting of a stope’s surface

iii. Variable rock mass properties

Of the three points mentioned above, some engineering control exists for undercutting and blast

damage.
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2.5.1  Blast Damage

Blast damage can be a significant contributor to dilution and potential instability in an open stope.

When  holes  become  too  confined,  a  significant  portion  of  the  blast  energy  may  impact  the

surrounding host rock, causing fractures in the surrounding rock mass.  Confined holes are created

when the break angle towards an open void is less than 60 degrees, or when the burden between

the loaded hole, and the open void, is two times greater than the loaded column length (length of

powder placed in a production hole) (Figure 2.18).  Confined holes may also cause energy to be

released up, or down, the production hole, rather than towards the void.  This can cause damage to

the surrounding rock and lead to potential instability and slough during the blasting process.

Figure 2.18a)   Short column charge.  Energy goes up or down the hole.  b)   Long column charge.  Energy
moves sideways toward the open void.
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2.5.2 Undercutting of the Hanging Wall

Undercutting occurs when the abutment supporting a surface is partially excavated.  This primarily

refers to the hanging wall of stopes and occurs when the undercut drift for a stope is excavated past

the boundary of the hanging wall.  When this occurs, the hydraulic radius of the hanging wall may

not adequately account for the surface geometry.  Undercutting of the hanging wall can cause

instability by “increasing the zone of relaxation as well as by reducing abutment support” (Wang,

2004).  An example is shown in Figure 2.19.  The extent of potential instability and sloughing

depends on the degree of undercutting and the condition of the hanging wall rock (Wang, 2004).

Deviation of the blasting holes can also lead to undercutting of a stope surface (Figure 2.20)

Figure 2.19   Effects of undercutting on HW stability (Wang, 2004)
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Figure 2.20   Effect of undercutting due to drill hole deviations
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CHAPTER 3
DEVELOPMENT OF A STOPE STAND-UP TIME GRAPH

The previous section introduced the stand-up time graph for tunnel or drift stability (Bieniawski,

1989).  This method is the most commonly used design approach that incorporates the influence of

time on stability.  Unfortunately, this approach can only be applied to simple tunnel geometries

that can be adequately described with the tunnel span term.  The technique cannot be applied to

varied surface orientations or stress related instability.  The Stability Graph Method for stope

design accounts for the factors ignored by the Stand-up Time Graph and has been widely used for

underground stope design.  Unfortunately, this approach does not account for the length of time

exposed.

The following section proposes an empirical design method that applies the advantages of both

techniques for the assessment of open stope geometries.  To correct the shortcomings to the Stand-

up Time Graph, modifications were made to allow the empirical design method to use input

parameters applied to the Stability Graph design method for open stoping.

3.1  Converting Parameters between Design Methods

To combine the Stand-up Time Graph with the Open Stope Stability Design approach, some

assumptions and simplifications needed to be applied to the database used to develop the Stand-up

Time Graph.  The Stand-up Time Graph is based on opening span rather than hydraulic radius.

The RMR76 classification is used instead of Barton’s (1974) rock quality Q classification system.

Only tunnel backs are designed in the Stand-up Time method and stress is not considered.  The

following sections discuss conversions, and assumptions, required for converting span and RMR

to HR and N’ respectively.
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3.1.1 Conversion of Span to HR

The Stand-up Time graph uses opening span to quantify the geometry of the tunnel case histories

used for design.  When openings have a consistent geometry, with the length substantially greater

than the width, span adequately assesses opening geometry.  When two-way spanning exists, such

as most open stope geometries, the hydraulic radius term is required to adequately assess opening

geometry.  Figure 3.1 shows the relationship between the length and width of an opening surface

(aspect ratio) and hydraulic radius.  As shown in Figure 3.1, as the length of an opening becomes

much greater than the span, the hydraulic radius converges to a value equal to half the span.  As

the majority of the data points from Bieniawski’s RMR Stand-up Time Graph (Figure 2.16) are

from backs in coal mining operations and civil tunnel openings, it can be assumed that the aspect

ratio (ratio of length to span of the opening) is relatively large.  Figure 3.1 suggests that

approximating half the span as an estimate for the hydraulic radius for the case histories in the

Bieniawski data base will be reasonable.

Figure 3.1   Aspect ratio vs. maximum hydraulic ratio graph (Milne, 1997)
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3.1.2 Approximating an N’ Value from the Stand-up Time Database

To align the RMR Stand-up Time Graph with the Stability Graph design method, data for the

calculation of the Modified Stability Number (N’) is required.  The N’ Stability Number, is based

on Q’ and the A, B, and C factors discussed in Section 2.3.2.  Data required to calculate these

values was not readily available in the original Bieniawski database.  As such, assumptions had

to be made about the surface orientation (C factor), joint orientation relative to the opening

surface (B factor) and the stress state relative to the strength of the intact rock (A factor).  As

well, Q’ had to be determined using RMR76, as these were the only values available for the case

histories in the original database.

3.1.2.1 Rock Mass Rating to Q’

The  Stand-up  time  graph  uses  RMR76 to estimate rock mass conditions, whereas, the Stability

Graph is based upon Q’.  To calculate N’, the Q’ value is required.  The Q’ value is calculated by

converting RMR76 to Q’.  For this conversion, the following equation is used (Bieniawski, 1984):

ܴܯܴ = 9݈݊(ܳ′) + 44.................................................................................................................(3.1)

ܳ′ = ݁
ೃಾೃషరర

వ .............................................................................................................................(3.2)

The  use  of  this  equation  for  equating  RMR76 and  Q  is  not  ideal  (Milne  et  al.,  1998)  and  an

assumption that stresses are not influencing the Q’ value (Q ~ Q’) is required.  Since the empirical

database does not have the data upon which the RMR76 value was based, Equations 3.1 and 3.2 are

the only options for estimating values for Q’.
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3.1.2.2	A,	B,	and	C	factors	for	N’	Stability	

The other components required to estimate N’ include the stress (A), critical joint (B), and surface

dip (C) factor.  To estimate the A, B, and C factors, the following assumptions were made:

i. Low stress conditions are present as all but five of the unstable openings in Bieniawski’s

graph were from openings at a depth of less than 300 metres (A factor ~ 1);

ii. The majority of the data points are for openings in civil tunnels and coal mines,

commonly in shallow dipping sedimentary deposits, where the major controlling joint

set would be parallel to the backs (B factor ~ 0.3) and;

iii. Case histories were for near horizontal backs (C factor = 2.0)

The A factor requires an estimate of both the average intact rock strength and the induced stresses

near the opening surface.  To estimate average rock strength, the Bieniawski database was

reviewed.  Since 95 of the 123 cases of failure were in sedimentary rocks, an approximate UCS of

75 MPa was estimated based on general strength values for sedimentary rocks from Goodman

(1989).

To estimate an A value for the case histories, it was assumed that low stress conditions were

present, as all but one of the case histories for sedimentary rocks were from a depth of 300 metres

or less.  Assuming an average specific gravity of 2.5 for sedimentary rock, the stress state at an

average depth of 150 metres would be approximately 3.8 MPa.  If the hydrostatic virgin stresses

are assumed, an induced stress in the drift backs would be approximately twice the virgin stress

levels for a value of 7.6 MPa (based on Kirsch equations for stresses induced around a cylindrical

tunnel,  (Kirsch,  1898).   This  is  shown  in  the  example  below.   From  this  example,  the  ratio  of

Uniaxial Compressive Strength to Induced Compressive Stress is approximately 10, corresponding

to an A Factor value of approximately 1 for average depths and rock strengths for 96 of the 123

case histories (Figure 3.2).
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ߪ = ௪݃ℎ...............................................................................................................................(3.3)ߩܩܵ

ߪ = (2.7)(1000݇݃/݉ଷ)(9.8݉/ݏ)(300݉)

ߪ = ܽܲܯ	7.9

ܣ = 	 ଻ହ	ெ௉௔
଻.ଽ	ெ௉௔

≈ 9.5.......................................................................................................................(3.4)

Where:

σ=stress

SG = specific gravity

ρw = unit weight of water

g = gravity

h = depth

Figure 3.2   Stress Factor A graph for N' stability (Potvin, 1988)
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To estimate the B factor for the N’ Stability Number, it was assumed that the major controlling

joint set in most of the case histories is horizontal, as many sedimentary deposits have horizontal

or near horizontal bedding.  Figure 3.3 shows the assumed conditions for the B factor conversion.

From the B factor graph (Figure 3.4), the joint orientation corresponds to a B factor of 0.3.  Sub-

horizontal joint sets ranging from 10 to 30 degrees will have a slightly larger effect on stability

with a B factor rating of 0.2.  It is likely that many drifts would assume a shanty back geometry

(parallel to jointing), if a joint set was present at an angle of 10 or 20 degrees to horizontal.  Since

the joint sets were assumed to be horizontal, the value of 0.3 was used for the derivation of the N’

Stability Number.

Figure 3.3   Unfavourable joint orientation for shallow dipping sedimentary deposits

Figure 3.4   Joint orientation B Factor for N' stability (Potvin, 1988)
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The C factor is based on the dip of the surface being examined.  For shallow excavations in flat

lying sedimentary deposits, shallow dipping backs can be assumed.  A C value of 2 was used based

on these assumptions (Figure 3.5).  If a shanty back, dipping at 10 to 20 degrees from horizontal

was in the data base, this would not have a significant effect on the C value.

Figure 3.5   Surface dip C Factor for N' stability (Hutchinson and Diederichs, 1996)

3.2 Modified and Bieniawski RMR Stand-up Time Graph

Based on the assumptions and correlations described in the preceding sections, the axes on the

Bieniawski RMR Stand-up Time Graph (Figure 2.17) were changed to correspond to the Modified

Stability Number N’ vs. Hydraulic Radius as shown in Figure 3.6.  This new graph is called the

Modified Stand-up Time Graph.  The lines on the graph were transferred to the Modified Stand-up

Time Graph using the procedure described in the previous section.

Gravity
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Figure 3.6   Modified Stand-up Time Graph

The original Stand-up Time Graph is a plot of tunnel span versus stand-up time, with predicted

RMR zones delineated on the graph.  The Modified Stand-up Time Graph plots the Stability

Number N’ versus the hydraulic radius, with the predicted stand-up time delineated on the graph.

The new Modified Stand-up Time Graph follows the graphing convention used by the Modified

Stability Graph (Figure 2.9) (Potvin, 1988) and the re-plotted Stand-up Time Graph (Figure 2.17)

(Hutchinson and Diedrichs, 1996).

A comparison has been made between Bieniawski’s data plotted on the original RMR Stand-up

Time Graph and the same data plotted on the Modified Stand-up Time Graph.  The original RMR

Stand-up Time Graph was plotted on individual graphs representing six RMR intervals ranging

from less than 30, increasing in intervals of 10, to values greater than 70 on the final graph (Figures

3.7 to 3.12).  These graphs highlight the scatter in RMR values for measured spans and stand-up

times.  It is interesting to note that the data supporting the original Stand-up Time graphs were

never previously plotted with the RMR data shown.
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The Graph originally created by Bieniawski has zones defined by RMR rather than stand-up time.

Each zone exists for a range of stand-up times and spans.  For example, an RMR of 40 to 50 (Figure

3.9) is defined by stand-up times ranging from 8 hours for larger spans, to 29 days for smaller

spans.  The way in which Bieniawski presents the data, the scatter indicates how well the RMR

value corresponds to the predicted range of values for the span and stand-up time.

Figure 3.7   Bieniawski data plotted on the RMR Stand-up Time Graph for RMR values less than 30
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Figure 3.8   Bieniawski data plotted on the RMR Stand-up Time Graph for RMR values of 31 to 40

Figure 3.9   Bieniawski data plotted on the RMR Stand-up Time Graph for RMR values of 41 to 50
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Figure 3.10   Bieniawski data plotted on the RMR Stand-up Time Graph for RMR values of 51 to 60

Figure 3.11   Bieniawski data plotted on the RMR Stand-up Time Graph for RMR values of 61 to 70
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Figure 3.12   Bieniawski data plotted on the RMR Stand-up Time Graph for RMR values greater than 70

Some of the scatter in the plotted data may be attributed to other factors that influence failure that

are not accounted for in RMR and span.  Introducing N’ and Hydraulic Radius is an attempt to help

account for more factors influencing failure, and potentially reduce the scatter of future data sets.

To plot the data points on the Modifed Stand-up Time Graph (MST Graph), N’ and HR had to be

calculated.  A few of the case histories had associated Q’ values, but for the majority, Q’ had to be

calculated using Equation 3.2.

Figure 3.13 to Figure 3.18 show that there appears to be a significant amount of scatter in the data

points, however, the individual graphs warrant discussion.  Figure 3.13 shows cases of failure that

occurred in one day or less.  Only 20 of the cases plotted such that failure would be predicted in 1

day or less, however, a total of 38 of the 46 cases plotted such that failure could be expected in 1

week or less.  Figure 3.14 shows 24 cases where failure occurred between 1 day and 1 week.  Of

these 24 cases, 15 plotted within the expected failure lines.  Figure 3.15 shows 15 cases that failed

between 1 week and 1 month.  Of these 15 cases, only 4 plotted in the expected stand-up time limits
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and there is significant scatter.  Figure 3.16 supports the proposed design lines as the 6-month line

approximates the median of the data cluster.

Figure 3.13   Bieniawski data plotted on the Modified Stand-up Time Graph for the time interval 0 to 1 day
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Figure 3.14   Bieniawski data plotted on the Modified Stand-up Time Graph for the time interval 1 day to 1 week

Figure 3.15   Bieniawski data plotted on the Modified Stand-up Time Graph for the time interval 1 week to 1 month
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Figure 3.16   Bieniawski data plotted on the Modified Stand-up Time Graph for the time interval 1 to 6 months

Figure 3.17   Bieniawski data plotted on the Modified Stand-up Time Graph for the time interval 6 months to 1 year
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Figure 3.18   Bieniawski data plotted on the Modified Stand-up Time Graph for time interval greater than 1 year

There is very little data supporting the lines representing stand-up times greater than 6 months

(Figures 3.17 and 3.18).  A total of only seven data points were available in the original data.  The

four data points that help define the 1 year trendline support it very well, however, more data would

be required to justify any trend based on this data alone.   For the remaining 5 and 10 year time

lines, none of the data supports the trend lines for this time period.  It is likely that trend lines

greater than 6 months were drawn to resemble trends observed for the 1 day to 6-month trend lines.

3.3 Comparing the Modified Stand-up Time Graph and the Modified Stability Graph

As part of the study, the Modified Stand-up Time Graph was compared to the Modified Stability

Graph.  The original Bieniawski RMR stand-up time graph is based on both civil and mining case

histories, has been applied only to excavation backs, and is primarily based on case histories under

a depth of 300 metres.  The Modified Stability Graph was developed solely based on mining case

histories for use in the mining industry, primarily considers stope hanging walls and backs, and is

based on case histories at depths over 500 metres.  To make it easier to compare the two design

graphs, they are superimposed in Figure 3.19.  Three zones are defined in the graph; zone 1 includes
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HR values less than 4 metres, zone 2 has HR values between 4 and 8 metres and zone 3 has HR

values greater than 8 metres.  Within each zone, the Modified Stability Graph and the Modified

Stand-up Time Graph are compared:

· In zone 3, the unsupported transition zone on the Modified Stability Graph corresponds

to a stand-up time between a few months to one year, and the hydraulic radius exceeds

8 metres.  This suggests that a stope with an HR of 8 metres or more requires at least a

few months, to a year to mine.

· In zone 2, the unsupported transition zone on the Modified Stability Graph corresponds

to a stand-up time under one week to one year and the hydraulic radius is between 4

and 8 metres.  This suggests that a stope with an HR of 4 to 8 metres requires at least a

week to just under a year to mine.

· In zone 3, the transition zone on the Modified Stability Graph corresponds to a stand-

up time of under one month and the hydraulic radius is less than 4 metres.  This suggests

that a stope with an HR of less than 4 metres requires less than a month to mine.

In general, larger stopes, with a larger hydraulic radius, will require a longer time to complete

mining.  The unsupported transition zone within the modified stability graph method incorporates

a rough measure of exposure time with the surface hydraulic radius.  The Modified Stand-up Time

Graph appears to be a promising approach for combining the need for assessing the stability of

mining openings, with the addition of exposure time from the combined civil and mining database
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Figure 3.19   Modified Stand-up Time Graph compared to the Modified Stability Graph

ZONE 1 ZONE 2 ZONE 3
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CHAPTER 4
FIELD DATA

Field data on the mining and stability of open stopes was collected from a total of ten case histories

from various areas of the Birchtree Lower 84 Complex (Figure 4.1).  The purpose of collecting the

field data was to help determine factors influencing stability of open stopes, and the exposure time

prior to the stope experiencing instability.

Figure 4.1  Longitudinal view of the Birchtree Lower 84 Complex (Birchtree, 2016)
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4.1 Stope Mining Records

At the Birchtree Mine, paper copies of information relating to each mined stope are kept in what

are called block books.  These block books contain information which can include:

· Blast letters à  includes information such as total feet loaded, powder factor, energy

factor, blast timings, charge length information for each production hole, a long-section

of the stope, and cross-sections of each ITH (in the hole) blasting ring.

· Cablebolt summariesà includes information pertaining to total footage drilled, length

of cables, total footage completed per shift, number of cables and straps installed,

grouted and tensioned.

· Dilution assessments à includes information on total tons extracted, grade, total

pounds of nickel, tons of planned and unplanned dilution, total dilution, and minability.

· Blast hole length à after each blast, holes are cleaned and measured for depth.  This

allows the mine engineer to determine if there was any underbreak/overbreak, and make

adjustments to the blasting plan accordingly.

· ITH summary sheets à includes information on which blast holes were drilled, total

feet drilled, feet drilled per shift, and total feet cleaned per shift after a blast.

· Muckbase report à contains a summary of total tons of ore and waste removed from

the block on a daily basis.  Also includes information on planned tons, actual tons, and

it may also contain notes from engineers and geologists pertaining to the stope.

· Fill letters à contains information on type and amount of fill required to backfill the

stope.  It will also contain instructions for each stage of the filling process.

· Stope cavity monitoring survey data (CMS data)à  this data records the geometry of

the blasted stopes, which may be conducted more than once during the blasting of a

stope.

It should be noted that the block books can contain a mixture of the above information, however,

all this data is not necessarily contained in each record of the stope’s history.  The information most

commonly found in these block books are the Blast Letters, in the hole percussion drilling

summaries (ITH), cablebolt summaries, muckbase reports, and fill letters.
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The ten case histories used for the study contained all the necessary information for classifying the

stopes using common empirical design methods.  This includes information that could be used to

calculate the N’ Stability number and hydraulic radius.  For these ten case histories, eight were

considered to be unstable, while two were considered stable.  The case histories are summarized in

sections 5.1 and 5.2.  Each case history is labelled by the level, the last 3 numbers of the northing

coordinate, and then the stope number (i.e. 29-864.1 would be the 2950 level on an 864 northing,

and it will be the first stope out of the block).

To classify stability for each case history, five different surfaces were examined.  These surfaces

included the back, hanging wall, footwall, and the north and south shoulders. Table 4.1 summarizes

the case histories used for this project. It should be noted that a back instability can also include

the lift back (i.e. after blast 2, when the stope is not yet fully open, and the temporary back sloughs).

Figure 4.1 summarizes the location of each case history within the Lower 84 Complex.

Table 4.1   Summary of case histories by stable and unstable surfaces

29-864.1 Unstable Back
30-848.1 Unstable Raisebore
32-872.1 Unstable S. Shoulder
32-928.1 Stable N/A
33-840.1 Unstable S. Shoulder
33-848.1 Unstable FW
33-848.2 Unstable Back
33-916.2 Unstable N. Shoulder
33-916.3 Stable N/A
33-936.2 Unstable Back

Stope Stable/Unstable Failure Surface

The north and south walls were not considered as possible surfaces for the case histories as the

shoulders for Birchtree stopes have an average dip of approximately 78 degrees to the north or

south.   This  means  that  the  majority  of  the  north  and  south  walls  are  considered  as  part  of  the

shoulders (Figure 4.2).
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This study considers exposure time from the point at which the last blast is taken in an open stope.

This is a reasonable approach when considering the back of an open stope.  For the case of a stope

hanging wall, foot wall, and shoulders, it can be argued that the exposure time should be measured

from the time when the stope walls are exposed by mucking (removing the broken ore from the

stope) as the broken material provides confinement to the stope walls.  This broken material will

generally not fill the block enough to support the back.  Mucking records were available for this

study, but they were not accurate enough to properly track the incremental exposure of the stopes

surface.  The mucking records rely on bucket factors (tons per bucket removed from the stope)

which can vary based on the grade of the block and operator mucking from the stope.  The muck

(broken ore) is also not drawn down at a consistent rate along each wall and can vary over time.  It

would be recommended that any future study use cavity monitoring scans (CMS) at various

intervals of the mucking process, to gather accurate data on the effect of incremental exposure of

the stope walls.

Additional sources of data include lab testing, geotechnical data, and peridotite concentrations, and

are presented in the following sections.

Figure 4.2   General Shape of Stopes at the Birchtree Mine
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4.2 Laboratory Strength Properties

For this research, a small lab testing program was conducted on two separate rock types.  These

rock types included ore samples labelled MASU (massive sulfide) and peridotite samples labelled

PRDT.  The results for the UCS testing are shown in Table 4.2.  A summary of historic rock testing

values used at the Birchtree Mine area shown in Table 4.3.

Table 4.2   Summary of unconfined compressive strength (UCS) testing for massive sulphide and peridotite samples
Core ID Sample # Rock Type UCS (MPa)
742 UCS1 Sulphide 56.7
743 UCS3 Sulphide 51.0
743 UCS2 Sulphide 55.7
762 UCS2 Peridotite 151.6
746 UCS3 Peridotite 33.3
746 UCS1 Peridotite 113.5

Table 4.3   Rock mechanical properties for various rock types at the Birchtree Mine (After Birchtree Material Properties
Table, 2010)

4.3 Geotechnical Data for Stope Analysis

For each case history, the joint sets were determined using scanline data collected for the 84

Complex at Birchtree.  Scanlines are not completed for each stope, so available data is limited.

The closest scanlines on the adjacent level or levels above/below are used to define an area.

Determining the major joint sets is required to estimate the B factor used to calculate N’.  Refer to

Appendix A for scanline data used for each stope.

Stope specific geotechnical data to differentiate conditions between the stope case histories could

only be collected when data was available.  Geotechnical information is dispersed throughout the

mine, and data on the variability of properties between stopes, such as joint information, was not

Mine Rock Type
Sulphide Matrix (Sumx) 3.5 11 67 52 0.30 61 25
Massive Sulphide (Masu) 4.5 4.5 74 58 0.25 - -
Ultramafic 3.1 8.1 158 60 0.30 60 17
Biotite Schist 2.8 10 72 49 0.29 66 10
Quartzite 2.7 9.4 214 72 0.25 68 15

mi

Material Properties Rock Mass Properties
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Density
(g/cm3)

Tensile
Strength

(MPa)
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Young's
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available.  General average properties for most stopes were used for case histories.  The only

comprehensive geotechnical data that could be used to differentiate between stopes included RQD,

peridotite concentrations within stopes, and modelled stress conditions.  The assessment of these

properties is described in the following sections and summarized for individual case histories.

4.3.1 Average Weighted RQD

As discussed is Section 2.1, RQD is the percentage of intact core longer than 10 centimetres in

length, measured for a core run, which is often three metres long. RQD can also be categorized

within each rock type.  If two RQD measurements are available for a rock type, an average RQD

can be based simply on the average of the two values; however, this may not be representative.

For example, one RQD value may represent one metre of core, while the other core run may be

two metres long.  The RQD for the two metre length will have a larger impact on the overall rock

quality as it represents a greater percentage of the length of core drilled.  To account for the various

lengths of the possible RQD intervals, a weighted average system was used to calculate the average

RQD for each case history.

For each stope, the diamond drill holes will generally extend well beyond the stope boundaries.  To

ensure the RQD data is representative, RQD data is obtained up to a maximum of six metres outside

the stope boundaries.  RQD values are separated into ten different category ranges from 1 to 100

(i.e. 0-10, 11-20, 21-30…91-100).  For each of these ranges, weighted average values for RQD are

calculated and multiplied by the total length of core within that range to obtain the RQD factor

(Equation 4.1).  To obtain the average weighted RQD, the sum of the RQD factors for all ranges is

divided by the total length of core (Equation 4.2).  Data from the 32-872.1 case history is shown in

Table 4.4.  An example calculation for the RQD range of 11 to 20 is shown in Equations 4.1 and

4.2.



66

Table 4.4   Example of inputs for calculating average weighted RQD

RQD Range Total Metres
Percentage

of Total Core
Average RQD
within Range Factor

0-10 30.8 23% 1 43
11-20 10.3 8% 15 154
21-30 6.9 5% 25 175
31-40 7.4 5% 35 256
41-50 14.1 10% 45 630
51-60 23.5 17% 55 1300
61-70 12.6 9% 67 843
71-80 10.6 8% 77 823
81-90 10.5 8% 85 899

91-100 9.3 7% 97 903
Total 136.0 6026

Average
RQD 44

		ݎ݋ݐܿܽܨ	ܦܴܳ = ቂ (∑ோொ஽	௜௡	௘௔௖௛	௥௔௡௚௘)
#	௢௙	ோொ஽	ெ௘௔௦௨௥௘௠௘௡௧௦

ቃ × (4.1).........................................ܦܴܳ	݂݋	ℎݐ݃݊݁ܮ	݈ܽݐ݋ܶ

		ݎ݋ݐܿܽܨ	ܦܴܳ = ቈ
(12 + 15 + 16 + 17)

4
቉ × 10.3݉

= 15 × 10.3݉

= 153.8݉

ܹ݁݅݃ℎ݀݁ݐ	݁݃ܽݎ݁ݒܣ	ܦܴܳ = ∑ோொ஽	ி௔௖௧௢௥
்௢௧௔௟	஼௢௥௘	௅௘௡௚௧௛

...........................................................................(4.2)

= ଺଴ଶ଺௠
ଵଷ଺௠

= 44
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4.3.2 Peridotite Concentrations

Peridotite is an ultramafic rock that can be found at the Birchtree Mine, often within the ore zone.

It has been observed that excavations in peridotite tend to experience instability.  To quantify the

effect of peridotite on stability, peridotite concentrations were determined for each case history

using magnetic probe data from production drill holes.

The magnetic probe is normally used to identify intervals of nickel within each stope to help refine

block designs and estimate stope grades.  Higher positive readings indicate areas of ore, while low

to zero readings indicate intervals of waste rock.  Intervals of peridotite are identified by negative

readings of 1000 or less.  The probe takes a reading every 0.09 meters.  To determine the peridotite

concentrations for each stope surface, holes parallel to that surface (hanging wall, footwall, south

shoulder, and north shoulder) were used.  Peridotite concentrations for the stope backs could not

be collected as no holes were drilled normal to these surfaces.  Data from these holes were copied

into an MS excel sheet to identify peridotite intervals.  An example of this spread sheet is shown

in Figure 4.1.  If a peridotite reading is detected, the MS excel sheet indicates this with a value of

1.  The concentration of peridotite is determined by dividing the total number of detected peridotite

intervals by the total number of readings recorded by the probe.  For example, if there was 90

metres of data recorded, a total number of 1000 data points would be reviewed in the spread sheet.

If 600 of these data points were identified as peridotite, the concentration for that surface would be

(Equation 4.3):

(%)	݁ݐ݅ݐ݋݀݅ݎ݁ܲ	݂݋	݊݋݅ݐܽݎݐ݊݁ܿ݊݋ܥ = ଺଴଴
ଵ଴଴଴

(4.3).....................................................................100ݔ

= 60%
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Table 4.5   Example of Excel sheet used to detect peridotite intervals

4.3.3 Overbreak and Underbreak

After each blast, holes are cleaned to ensure that they are open and ready to load for the next blast.

As part of this process, hole measurements are taken, and that information is given to the stope

planner, so he/she can design their next blast, making adjustments as required due to the differences

in designed depths and actual measurements.  From these measurements, overbreak and underbreak

can be measured.  Various factors can contribute to either overbreak or underbreak, some of which

include:

i. Overloading or under loading a production drill hole

ii. Geological contacts

iii. Rock properties (RQD, joint alteration)

iv. Blast design shapes.  The most stable shape is a dome-like structure.  If the blast

is designed to have a flat back with no taper, as the boundaries are reached, the

blast shape will tend to round out and form the dome-like shape.

v. If one of the production holes do not break to the top of charge, it may cause

any remaining holes behind it to underbreak as the open void in front is now

smaller.
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vi. Drill hole deviations.  If two holes deviate too close to one another, one hole

may cut the other off, not allowing it to blast properly, if at all.  This may in turn

create larger burdens for holes behind it to break, increasing the distance

between the open void and the proceeding production hole.

4.3.4 Stress Modelling with Map3D

Map3D is the stress modelling program that is currently used at the Manitoba Vale Operations for

evaluating the predicted levels of stress surrounding their mining stopes.  This program is a three

dimensional boundary element program.  To determine an A factor for N’ stability, a stress

evaluation was done for each case history (Sections 5.1 and 5.2).  A linear elastic model was chosen

because no data exists for estimating non-elastic parameters.

For each case history, data was imported from Vulcan.  Vulcan is a three-dimensional mine design

program that allows users to draft various mine related activities, and compute ore grades, volumes,

masses, and various other material properties.  From the data, stopes for each case history were

constructed in Map3D.  To determine the magnitude of stress acting on the individual surfaces in

a stope,  stress grids intersecting the stope were constructed in the YZ and XZ planes as seen in

Figure 4.3.  The stress grids were divided into 0.6 metre intervals.  The initial stress state at depth,

for a particular case history, was determined using Equation 3.3 from Section 3.1.2.2.  For the

purposes of this study, principal stresses were assumed to be horizontal and vertical with a

horizontal to vertical stress ratio of 2.  This is a common average value for the Canadian Shield.

Stresses in the horizontal plane were assumed to be uniform.  For each case history the sulphide

material properties were used for model input (Referred to as Sumx in Table 4.3, Section 4.2).  The

ore bearing sulphide has a density of 3.4, which was used to calculate the model’s vertical stress

gradient.  A summary of the input data for each case history is shown in Table 4.6.

Stress modelling was conducted to determine the maximum induced compressive stress acting on

the five potential surfaces.  This value was used to determine the A factor for the N’ Stability

Number (Section 2.5).  To account for past mining, all stopes mined within a four stope radius, up

to two levels above and below the stope of concern, were accounted for.  It was assumed that any
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stopes outside this zone would have minimal effect on the induced stresses around the stope of

concern.

An example output from Map3D for the 33-848.1 Stope is shown in Figure 4.3.  Refer to Appendix

B for stress plots of each case history.

Figure 4.3   Stress contours in the YZ and XZ planes of the major principle stresses for the 33-848.1 from Map3D
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CHAPTER 5

CASE HISTORIES

5.1 Unstable Case Histories

Instability in stopes may occur at any point in the mining process.  Instabilities can occur as the

overcut and undercut are being driven, in the raisebore before blasting has begun, during the

blasting process, or at any point once the stope is completely excavated.  In most cases, instability

will occur during the mining process, or immediately after the stope is fully exposed.  Depending

on the extent, and severity of the instability, the stope may continue to be mined as long as it is safe

to do so, and the ore being extracted is economical.  The following sections summarize a few

examples of stable and unstable stopes that were excavated at the Birchtree Mine.  For additional

rock classification data for refer to Appendix C.

5.1.1 Case History 29-864.1

The 29-864.1 stope was classified as unstable.  Following the first blast in this block, rows 5 and 6

were measured during hole cleaning and it was discovered that they had begun to slough as hole

measurements came back shorter than designed for the first blast (Figure 5.1).  When measurements

of the production hole depths after the blast were taken, it was found that rows 5 and 6 had sloughed

to 5.2 and 0.6 meters respectively below the drillroom bench.  The remaining ore was later

recovered using the remaining blast holes, and no further issues were encountered.  As this stope

experienced instability after only one blast was taken, the unstable surface was a temporary back.

A summary of the rock mass and stress conditions for the temporary back is presented in Table 5.1

and a plot of the predicted stand-up times is shown in Figure 5.2.  Figure 5.3 is an isometric sketch

showing the relative location of the stope in the mining panel.
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Table 5.1   Rock classification data for stope 29-864.1

29-864.1 N.
Shoulder

S.
Shoulder Hanging Wall Footwall Back

Critical Joint Orientation (o) 45 45 45 25 5
Maximum Induced Stress (MPa) 59 59 62 58 96
Unconfined Compressive Strength
(MPa) 67 67 67 67 67

Q' 9.0 9.0 9.0 9.0 9.0
A Factor 0.1 0.1 0.1 0.1 0.1
B Factor 0.2 0.2 0.5 0.85 0.25
C Factor 5.8 6.1 8 8 2
N' Stability Number 1.0 1.1 3.6 6.1 0.5
Hydraulic Radius (m) 3.7 3.8 2.5 3.7 2.4
Peridotite Concentration (%) 66 51 61 35 -
Surface Condition Stable Stable Stable Stable Unstable
Exposure Time > 1 day > 1 day > 1 day > 1 day < 1 day

Figure 5.1   Longsection and cross-section of the 29-864.1 stope
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Figure 5.2   Modified Stand-up Time Graph: 29-864.1

Figure 5.3   Isometric of the standard stope panel at Birchtree Mine showing the location of the 29-864.1 stope in relation
to other stopes in the panel

N

Stope 2 & 3
not Mined

29-864 General isometric
of the stope panel
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5.1.2 Case History 30-848.1

The 30-848.1 stope was classified as unstable.  While drilling the In The Hole (ITH) blast rings in

the stope, the driller heard noise coming from the raisebore and decided to check the holes on row

7.  After checking these holes, the driller found that a void was encountered at approximately 12.8

metres.   The driller  reported that  the raisebore had begun to slough.  The raisebore sloughed to

approximately 6.1 metres wide (Figure 5.4).  Poor ground conditions were also reported in rows 8

and 9 during the drilling of ITH blast rings for the stope and geology noted that the block consisted

mostly of massive peridotite.  For additional information on all the stopes surfaces, refer to

Appendix C.  Table 5.2 summarizes the rock classification data for the 30-848.1 Stope and a plot

of the predicted stand-up times is shown in Figure 5.5.  Figure 5.6 is an isometric sketch showing

the relative location of the stope in the mining panel.

Table 5.2   Rock classification data for stope 30-848.1

30-848.1 N.
Shoulder

S.
Shoulder

Hanging
Wall Footwall Back Raisebore

Critical Joint Orientation (o) 81 81 81 81 8 81
Maximum Induced Stress
(MPa) 74 63 82 78 91 74

Unconfined Compressive
Strength (MPa) 67 67 67 67 67 67

Q' 9.3 9.3 9.3 9.3 9.3 9.3
A Factor 0.1 0.1 0.1 0.1 0.1 0.1
B Factor 0.3 0.3 0.2 0.2 0.2 0.2
C Factor 7.1 7.1 8 8 2 8
N' Stability Number 2.0 2.0 1.5 1.5 0.4 1.5
Hydraulic Radius (m) 4.3 3.5 3.7 3.5 3.2 1.7
Peridotite Concentration (%) - - - - - -
Surface Condition Stable Stable Stable Stable Stable Unstable
Exposure Time > 3 days > 3 days > 3 days > 3 days > 3 days < 3 days
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Figure 5.4   Longsection and cross-section for the 30-848.1 stope

Figure 5.5   Modified Stand-up Time Graph: 30-848.1
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Figure 5.6   Isometric of standard stope panel at Birchtree Mine showing the location of the 30-848.1 stope in relation to
other stopes in the panel

5.1.3 Case History 32-872.1

The first blast letter for this block was issued on December 6th, 2009.  There was a total of three

blasts for this stope, with the last blast letter issued on December 17, 2009.  After the final stope

blast, the south shoulder sloughed approximately 4.6 metres; as such, this block was classified as

an unstable case history.  Rock classification data for the stope is summarized in Table 5.3 and

Figure 5.8 shows a plot  of the predicted stand-up times.   Figure 5.7 is  a longsection and cross-

section showing the 32-872.1 stope.  Figure 5.9 is an isometric sketch showing the relative location

of the stope in the mining panel.

30-848 General isometric
of the stope panel

N

Stope 2 & 3
not Mined
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Table 5.3   Rock classification data for stope 32-872.1

32-872.1 N.
Shoulder

S.
Shoulder

Hanging
Wall Footwall Back

Critical Joint Orientation (o) 81 75 75 81 22
Maximum Induced Stress (MPa) 66 66 83 72 104
Unconfined Compressive Strength
(MPa) 67 67 67 67 67

Q' 7.0 7.0 7.0 7.0 7.0
A Factor 0.1 0.1 0.1 0.1 0.1
B Factor 0.02 0.3 0.25 0.2 0.2
C Factor 5.8 6.3 6.1 8 2
N' Stability Number 0.8 1.3 1.1 1.1 0.3
Hydraulic Radius (m) 2.8 3.9 3.2 3.3 2.4
Peridotite Concentration (%) 40 68 56 64 -
Surface Condition Stable Unstable Stable Stable Stable
Exposure Time > 3 days < 3 days > 3 days > 3 days > 3 days

Figure 5.7   Longsection and cross-section of the 32-872.1 stope

SECTION LOOKING SOUTH
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Figure 5.8   Modified stand-up time graph: 32-872.1

Figure 5.9   Isometric of standard stope panel at Birchtree Mine showing the location of the 32-872.1 stope in relation to
other stopes in the panel

N

Stope 2 & 3
not Mined

30-848 General isometric
of the stope panel
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5.1.4 Case History 33-840.1

For the 33-840.1 Stope, a total of three blast were taken.  The first blast letter was issued on August

15, 2010 and blast 3 was issued on August 22nd, 2010.  After the final stope blast, all stope surfaces

appeared to be stable.  There were no signs of potential slough up to this point.  As ore was removed

from the block, the south shoulder and footwall of the block began to slough, eventually going

above the back of the drill room (overcut) (Figure 5.10).  Mucking of the block was stopped on

August 29th, 2010.  A small amount of cemented rock fill was placed in the block, but due to

continuing slough, filling was stopped and the remaining void was allowed to choke itself off and

fill with the sloughed material.  Table 5.4 summarizes the rock classification data and Figure 5.11

shows a plot of the predicted stand-up times for the 33-840.1 stope.

Table 5.4   Rock classification data for stope 33-840.1

33-840.1 N.
Shoulder

S.
Shoulder

Hanging
Wall Footwall Back

Critical Joint Orientation (o) 71 61 71 59 59
Maximum Induced Stress (MPa) 60 62 58 57 103
Unconfined Compressive Strength (MPa) 67 67 67 67 67
Q' 9.1 9.1 9.1 9.1 9.1
A Factor 0.1 0.1 0.1 0.1 0.1
B Factor 0.3 0.2 0.2 0.2 0.8
C Factor 6.2 6.5 8 8 2
N' Stability Number 1.7 1.2 1.5 1.5 1.5
Hydraulic Radius (m) 3.1 3.2 3.7 4.3 2.9
Peridotite Concentration (%) 27 43 28 41 -
Surface Condition Stable Unstable Stable Unstable Stable
Exposure Time > 1 day < 1 day > 1 day > 1 day > 1 day
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Figure 5.10   Longsection and cross-section of the 33-840.1 stope

Figure 5.11   Modified Stand-up Time Graph: 33-840.1

840.1

840.1
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Figure 5.12   Isometric of standard stope panel at Birchtree Mine showing the location of the 33-840.1 stope in relation to
other stopes in the panel

5.1.5 Case History 33-848.1

For the 33-848.1 Stope, a total of three blast were taken.  The first blast was issued on March 17th,

2010, with the final blast issued on the 21st.  No issues were encountered while blasting this stope,

however, when extracting the ore after blast 3, the footwall began to slough (Figure 5.13).  The

block was never completely emptied due to the sloughing and the remaining void was filled with

cemented rock fill.  The last ore mucked from the block was on March 26th, 2010.  A summary of

the rock classification and a plot of the predicted stand-up times for the 33-848.1 stope is shown in

Table 5.5 and Figure 5.14 respectively.  Figure 5.15 is an isometric sketch showing the relative

location of the stope in the mining panel.

N

Stope 2 & 3
not Mined

33-840 General isometric
of stope panel
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Table 5.5   Rock classification data for stope 33-848.1

33-848.1 N.
Shoulder

S.
Shoulder

Hanging
Wall Footwall Back

Critical Joint Orientation (o) 71 61 71 59 59
Maximum Induced Stress (MPa) 75 52 75 93 125
Unconfined Compressive
Strength (MPa) 67 67 67 67 67

Q' 9.5 9.5 9.5 9.5 9.5
A Factor 0.1 0.1 0.1 0.1 0.1
B Factor 0.2 0.2 0.2 0.2 0.8
C Factor 5.2 6.5 8 8 2
N' Stability Number 1.0 1.2 1.5 1.5 1.5
Hydraulic Radius (m) 2.6 2.7 2.7 3.4 2.5
Peridotite Concentration (%) 61 66 33 51 -
Surface Condition Stable Stable Stable Unstable Stable
Exposure Time > 1 day > 1 day > 1 day < 1 day > 1 day

Figure 5.13   Longsection and cross-section of the 33-848.1 stope
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Figure 5.14   Modified Stand-up Time Graph: 33-848.1

Figure 5.15   Isometric of standard stope panel at Birchtree Mine showing the location of the 33-848.1 stope in relation to
other stopes in the panel

N

Stope 2 & 3
not Mined

33-848 General isometric
of the stope panel
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5.1.6 Case History 33-848.2

The 33-848.2 block was classified as an unstable case history.  There were a total of three blasts

that were taken from this block.  The first blast was issued on April 30th, 2010 and the final blast

was issued on June 20th, 2010.  After the first blast, there was a minor instability that did not cause

concern.  After blast 2 was taken, the temporary back for the remaining drill room floor sloughed

along rows 7 and 8, exposing an opening in the bench.  After it was safe to continue mining, the

remaining drill room floor was taken on the 20th of June and the stope was mucked until July 5th.

The block was never completely emptied and the remaining void was filled with cemented rock

fill.  A summary of rock classification values for the stope surfaces are presented in Table 5.6 and

a plot of the predicted stand-up times are shown in Figure 5.17.  Peridotite concentration along the

hanging wall was not collected as it was the second stope in the panel (i.e. 33-848.1 was mined out

in front of it).  A pillar was left between the 33-848.1 stope and the hanging wall of the 33-848.2

stope (Figure 5.16).  Figure 5.18 is an isometric sketch showing the relative location of the stope

in the mining panel.

Table 5.6   Rock classification data for stope 33-848.2

33-848.2 N.
Shoulder

S.
Shoulder Hanging Wall Footwall Back

Critical Joint Orientation (o) 71 61 71 59 59
Maximum Induced Stress (MPa) 51 53 0 94 127
Unconfined Compressive Strength
(MPa) 67 67 67 67 67

Q' 6.5 6.5 6.5 6.5 6.5
A Factor 0.1 0.1 1 0.1 0.1
B Factor 0.3 0.2 0.2 0.2 0.8
C Factor 6 6.9 8 8 2
N' Stability Number 1.2 0.9 10.4 1.0 1.0
Hydraulic Radius (m) 3.8 3.6 3.1 2.8 3.0
Peridotite Concentration (%) 55 70 N/A 28 -
Surface Condition Stable Stable Stable Stable Unstable
Exposure Time > 1 day > 1 day > 1 day > 1 day < 1 day
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Figure 5.16   Longsection and cross-section for the 33-848.2 stope

Figure 5.17   Modified Stand-up Time Graph: 33-848.2
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Figure 5.18   Isometric of standard stope panel at Birchtree Mine showing the location of the 33-848.2 stope in relation to
other stopes in the panel

5.1.7 Case History 33-936.2

The 33-936.2 stope was classified as an unstable case history.  The instability occurred in the back

of the drawpoint before any stopes were taken in the 936 panel (Figure 5.19).  Due to the instability

in the back, the first stope (936.1) could not be mined, as such, the 936.2 stope was then scheduled

to be taken.  This stope was laid out to encompass the void created by the instability in the back of

the drawpoint that experienced the sloughing.  No other issues were encountered once the 936.2

stope began blasting.  A total of 2 blasts were taken with the first and last blasts being conducted

on April 20th and 25th, 2010 respectively.  The block was emptied on May 5th and was completely

filled with cemented rock fill on May 21st.  A summary of the rock classification data and a plot of

the predicted stand-up times are shown in Table 5.7 and Figure 5.20 respectively.  Figure 5.21 is

an isometric sketch showing the relative location of the stope in the mining panel.

N

Stope 1 Mined.
Stope 3 not Mined.

33-848 General isometric
of the stope panel
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Table 5.7   Rock classification data for stope 33-936.2

33-936.2 N.
Shoulder

S.
Shoulder

Hanging
Wall Footwall Back

Critical Joint Orientation (o) 70 63 59 59 10
Maximum Induced Stress (MPa) 92 123 35 35 87
Unconfined Compressive
Strength (MPa) 67 67 67 67 67

Q' 12.9 12.9 12.9 12.9 12.9
A Factor 0.1 0.1 0.1 0.1 0.1
B Factor 0.25 0.23 0.2 0.2 0.2
C Factor 6 5.8 5.9 5.9 2
N' Stability Number 1.9 1.7 1.5 1.5 0.5
Hydraulic Radius (m) 4.4 3.7 3.3 2.8 3.2
Peridotite Concentration (%) - - - - -
Surface Condition Stable Stable Stable Stable Unstable
Exposure Time > 1 day > 1 day > 1 day > 1 day < 1 day

Figure 5.19   Longsection and cross-section of the 33-936.2 stope
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Figure 5.20   Modified Stand-up Time Graph: 33-936.2

Figure 5.21   Isometric of standard stope panel at Birchtree Mine showing the location of the 33-936.2 stope in relation to
other stopes in the panel

N

Stope 1 & 3
not Mined.

33-936 General isometric
of the stope panel
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5.1.8 Case History 33-916.2

The 33-916.2 stope was considered unstable.  Three blasts were taken in this stope and it was

completely mucked out before sloughing of the north shoulder occurred (Figure 5.22). The first

blast letter was issued on September 7th, 2010 and the final blast letter was issued on September

15th.  The last of the ore was removed from the stope on September 21st and the stope was filled

with cemented rock fill.  Rock classification data is presented in Table 5.8.  A plot of predicted

stand-up times for the 33-916.2 stope is shown in Figure 5.23.  Figure 5.24 is an isometric sketch

showing the relative location of the stope in the mining panel.

Table 5.8   Rock classification data for stope 33-916.2

33-916.2 N.
Shoulder

S.
Shoulder Hanging Wall Footwall Back

Critical Joint Orientation (o) 71 61 71 59 59
Maximum Induced Stress (MPa) 200 152 0 35 138
Unconfined Compressive Strength
(MPa) 67 67 67 67 67

Q' 4.8 4.8 4.8 4.8 4.8
A Factor 0.1 0.1 1.0 0.1 0.1
B Factor 0.3 0.2 0.2 0.2 0.8
C Factor 6.0 5.8 8.0 8.0 2.0
N' Stability Number 0.9 0.6 7.6 0.8 0.8
Hydraulic Radius (m) 3.3 3.2 3.4 3.5 3.2
Peridotite Concentration (%) - - - - -
Surface Condition Unstable Stable Stable Stable Stable
Exposure Time < 6 days > 6 days > 6 days > 6 days > 6 days
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Figure 5.22   Longsection and cross-section of the 33-916.2 stope

Figure 5.23   Modified Stand-up Time Graph: 33-916.2
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Figure 5.24   Isometric of standard stope panel at Birchtree Mine showing the location of the 33-916.2 stope in relation to
other stopes in the panel

5.2 Successful Case Histories

5.2.1 Case History 32-928.1

For the 32-928.1 case history, a total of 3 blasts were successfully taken.  The first blast letter was

issued  on  May  7th, 2010 with the final blast letter issued on May 13th, 2010.  The block was

completely emptied by May 16th, 2010 and filling began on the 23rd of the same month, ending on

the 29th.  This block was blasted and completely filled in less than one month.  A longsection and

cross-section is shown in Figure 5.25.  A summary of the rock classification data and a plot of the

predicted stand-up times for the 32-928.1 stope are shown in Table 5.9 and Figure 5.25

respectively.  Figure 5.27 is an isometric sketch showing the relative location of the stope in the

mining panel.

N

Stope 1 Mined.
Stope 3 not Mined.

33-916 General isometric
of the stope panel
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Table 5.9   Rock classification data for the 32-928.1 stope

32-928.1 N.
Shoulder

S.
Shoulder

Hanging
Wall Footwall Back

Critical Joint Orientation (o) 81 75 81 81 20
Maximum Induced Stress (MPa) 75 79 68 68 79
Unconfined Compressive Strength
(MPa) 67 67 67 67 67

Q' 9.0 9.0 9.0 9.0 9.0
A Factor 0.1 0.1 0.1 0.1 0.1
B Factor 0.25 0.3 0.3 0.2 0.2
C Factor 6.5 6.4 7.2 7.2 2.0
N' Stability Number 1.5 1.7 1.9 1.3 0.4
Hydraulic Radius (m) 3.2 2.8 2.1 3.5 2.5
Peridotite Concentration (%) 2.0 14 4.0 22 -
Surface Condition Stable Stable Stable Stable Stable
Exposure Time > 16 days > 16 days > 16 days > 16 days > 16 days

Figure 5.25   Longsection and cross-section of the 32-928.1 stope
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Figure 5.26   Modified Stand-up Time Graph: 32-928.1

Figure 5.27   Isometric of standard stope panel at Birchtree Mine showing the location of the 32-928.1 stope in relation to
other stopes in the panel

N

Stope 2 & 3
not Mined

32-928 General isometric
of the stope panel
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5.2.2 Case History 33-916.3

The 33-916.3 Stope was classified as a stable case history.  No major sloughing was recorded.  A

total  of three blasts were taken for this block, with the first  and last  blast  letter  being issued on

November 4th and  8th, 2010 respectively.  The last of the ore was removed from the stope on

November 11th and the block was filled with uncemented rock.  A longsection and cross-section of

the stope is shown in Figure 5.28.  Rock classification data is summarized in Table 5.10 and a plot

of the predicted stand-up times are shown in Figure 5.29.  Figure 5.30 is an isometric sketch

showing the relative location of the stope in the mining panel.

Table 5.10   Rock classification data for the 33-916.3 stope

33-916.3 N.
Shoulder

S.
Shoulder

Hanging
Wall Footwall Back

Critical Joint Orientation (o) 81 75 75 81 22
Maximum Induced Stress (MPa) 125 100 0 45 125
Unconfined Compressive Strength
(MPa) 67 67 - 67 67

Q' 7.0 7.0 - 7.0 7.0
A Factor 0.1 0.1 - 0.1 0.1
B Factor 0.2 0.2 - 0.3 0.3
C Factor 4.5 5.3 - 8.0 2.0
N' Stability Number 0.6 0.7 - 1.6 0.4
Hydraulic Radius (m) 2.9 2.3 3.6 4.1 3.0
Peridotite Concentration (%) 33.0 39 55.0 8.0 -
Surface Condition Stable Stable Stable Stable Stable
Exposure Time > 10 days > 10 days > 10 days > 10 days > 10 days
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Figure 5.28   Longsection and cross-section of the 33-916.3 Stope

Figure 5.29   Modified Stand-up Time Graph: 33-916.3
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Figure 5.30   Isometric of standard stope panel at Birchtree Mine showing the location of the 33-916.3 stope in relation to
other stopes in the panel

N

Stope 1 & 2
Mined

33-916 General isometric
of the stope panel
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CHAPTER 6
ANALYSIS

6.1 Birchtree Case Histories

Case histories from the Birchtree Mine were gathered to see how well actual stand-up times

compared to predicted stand-up times based on the newly developed Modified Stand-up Time

(MST) Graph.  A total of ten case histories were collected.  Each case history provided five data

points, one for each exposed surface.  The total number of data points for stable and unstable

surfaces is 43 and 8 respectively.  It should be noted that a stope could contain both unstable and

stable surfaces.  If only one surface experienced instability, all other surfaces were considered to

be stable.  Figure 6.1 and 6.2 show the stable and unstable case histories plotted on the MST Graph.

Figures 6.1 and 6.2 show that the majority of the data points are concentrated in the one day to one

month predicted stand-up time range.  For the stable case histories only 6 of the 43 data points plot

above a one month predicted stand-up time, and for the unstable cases, all data points plot below

approximately two weeks.  The small range in which the data is concentrated reflects conditions

observed at the Birchtree Mine, as most stopes remain fully exposed for relatively short periods of

time.  Filling usually begins immediately or shortly after all recoverable ore has been removed

from the stope, to help limit potential instabilities.
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To better classify the Birchtree data, a plot showing the relationship between predicted and actual

stand-up times for stable case histories is shown in Figure 6.3.  The following comparisons were

made:

i. Actual recorded stand-up time is less than or equal to the predicted stand-up

time (predicted stability and remained stable) and;

ii. Actual recorded stand-up time is greater than predicted stand-up time

(remained stable but predicted instability).

Figure 6.1   Birchtree 43 stable case histories
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Figure 6.2   Birchtree 8 unstable case histories

Figure 6.3, shows the stand-up time for the case histories that did not experience instability and

were exposed for less time than the predicted stand-up time (grey dots).  These case histories do

not support or disagree with the MST Graph.  The case histories that were stable longer than the

predicted stand-up time (red squares) disagree with the MST Graph.  Table 6.11 shows the

predicted and recorded stope stability for these cases.  These comparisons show that 23 percent of

case histories disagreed with the MST Graph and predicted less stand-up time than was achieved

(Figure 6.3). The unstable case histories plotted in Figure 6.2 also show all unstable cases plotted

with a predicted stability of 2 weeks or less.  This figure suggests that any case histories that plot

below the two-week line on the Modified Stand-up Time Graph have a higher probability of

instability; however, this may be misleading, as only 21% of the data points that plotted below the

two-week line were considered unstable.
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Figure 6.3   Actual stand-up times vs. predicted stand-up times for stable case histories
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Table 6.1   Summary of stope surface information for actual and predicted stand-up times (Peridotite = PRDT)

29-864.1 Back 0.5 2.4 < 1 day 2 +1 89 N/A
N. Shoulder 1 3.7 > 1 day 4 - 85 69.22
S. Shoulder 1.1 3.8 > 1 day 5 - 85 59
HW 3.6 2.5 > 1 day 180 - 84 -
FW 6.1 3.7 > 1 day 195 - 84 -

30-848.1 Back 0.4 3.2 > 3 days 0 -3 100 -
N. Shoulder 2 4.3 > 3 days 17 - 92 -
S. Shoulder 2 3.5 > 3 days 21 - 98 -
HW 1.5 3.7 > 3 days 10 - 92 -
FW 1.5 3.5 > 3 days 12 - 92 -
Raisebore 1.5 1.7 < 3 days 90 +87 98 -

32-872.1 Back 0.3 2.4 > 3 days 0 -3 100 -
N. Shoulder 0.8 2.8 > 3 days 5 - 91 40.09
S. Shoulder 1.3 3.9 < 3 days 6 +3 91 68.13
HW 1.1 3.2 > 3 days 7 - 91 56.18
FW 1.1 3.3 > 3 days 6 - 91 65.8

32-928.1 Back 0.4 2.5 > 16 days 0 -16 79 -
N. Shoulder 1.5 3.2 > 16 days 16 0 75 0
S. Shoulder 1.7 2.8 > 16 days 26 - 79 0
HW 1.9 2.1 > 16 days 105 - 68 3
FW 1.3 3.5 > 16 days 7 - 68 21

33-840.1 Back 1.5 2.9 > 1 day 19 - 100 -
N. Shoulder 1.7 3.1 > 1 day 21 - 91 27
S. Shoulder 1.2 3.2 < 1 day 7 +6 91 37
HW 1.5 3.7 > 1 day 12 - 91 27
FW 1.5 4.3 > 1 day 7 - 91 41

33-848.1 Back 1.5 2.5 > 1 day 25 - 125 -
N. Shoulder 1 2.6 > 1 day 7 - 125 58
S. Shoulder 1.2 2.7 > 1 day 12 - 130 66
HW 1.5 2.7 > 1 day 21 - 120 54
FW 1.5 3.4 < 1 day 14 +13 125 52

33-848.2 Back 1 3 < 1 day 6 +5 165 62
N. Shoulder 1.2 3.8 > 1 day 6 - 92 70
S. Shoulder 0.9 3.6 > 1 day 4 - 83 55
HW 10.4 3.1 > 1 day 1095 - 0 51
FW 1 2.8 > 1 day 7 - 148 54

33-916.2 Back 0.8 3.2 > 6 days 4 - 150 -
N. Shoulder 0.9 3.3 < 6 days 4 -2 270 55
S. Shoulder 0.6 3.2 > 6 days 2 - 190 50
HW 7.6 3.4 > 6 days 330 - 0 55
FW 0.8 3.5 > 6 days 3 - 40 46

33-916.3 Back 0.4 3 > 10 days 0 -10 125 -
N. Shoulder 0.6 2.9 > 10 days 2 -8 125 38
S. Shoulder 0.7 2.3 > 10 days 5 -5 100 39
HW 11.2 3.6 > 10 days 910 - 0 55
FW 1.6 4.1 > 10 days 10 0 45 21

33-936.2 Back 0.5 3.2 < 1 day 1 0 115 13
N. Shoulder 1.9 4.4 > 1 day 14 - 120 9
S. Shoulder 1.7 3.7 > 1 day 16 - 160 7
HW 1.5 3.3 > 1 day 14 - 70 4
FW 1.5 2.8 > 1 day 21 - 40 24

Error (days) % PRDTMax Stress
(Mpa)

Stope Surface N' HR Actual Time
(days)

Predicted
Time (days) (MPa)
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6.2 Actual vs. Predictied Stand-up Times

Figure 6.4 is a graph of actual stand-up times of Birchtree case histories vs. predicted stand-up

times.  As part of the graph, a 1:1 line has been drawn showing the line at which actual stand-up

times would be equal to the predicted stand-up times.  Figure 6.4 shows all the stable data points.

All data points above the prediction line represent surfaces where predicted stand-up times were

longer than actual stand-up times.  All data points below the prediction line, represent surfaces

where predicted stand-up times were less than actual stand-up times.  It should be noted that the

majority of the data points represent surfaces from stopes where at least one surface experienced

insability.  As noted previously, once a single surface experienced instability, all other surfaces

were considered stable, as the influence of the unstable surface on those remaining, could not be

predicted.  As such, actual stand-up times may have been greater than what is reflected in the Figure

6.4.

Figure 6.5 is a graph of actual stand-up times vs. predicted stand-up times for unstable case histories

at the Birchtree Mine.  Data points above the prediction line represent surfaces that experienced

instability before predicted.  Data points below the prediction line represent surfaces where

predicted stand-up times were less than actual stand-up times.  The raisebore instability cannot be

seen in Figure 6.5 as the predicted stand-up time was 90 days, which is well outside the maximum

value of the x and y axis.  This case history plots well above the prediction line.  A summary of the

data used in Sections 6.1 and 6.2 is shown in Table 6.1.
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Figure 6.4   Minimum Observed vs. Maximum Predicted Stand-up Time for Stable Case Histories

Figure 6.5   Actual vs. Maximum Predicted Stand-up Time for Unstable Case Histories

Minimum Observed vs. Maximum Predicted Stand-up Time:
Stable Cases

Actual vs. Maximum Predicted Stand-up Time:
Unstable Cases

Actual = Maximum
Predicted Stand-up
Time (1:1 line)

Observed = Maximum
Predicted Stand-up
Time (1:1 line)
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6.3 Birchtree Data vs. Bieniawski Data

Figure 6.6 includes data from both Birchtree case histories and Bieniawski’s (1989) RMR Stand-

up Time Graph.  Not all data was included.  Data was limited to Bieniawski’s case histories, with

stand-up times of 2 weeks or less, and the unstable surfaces from the Birchtree case histories.  Only

unstable surfaces from Birchtree were included as these surfaces were observed until instability

occurred.  Stand-up time for stable surfaces is at least the surface exposure time, but could be much

longer as these surfaces could only be observed until the stope was backfilled.  Bieniawski’s data

was limited to stand-up times of 2 weeks or less, as all unstable Birchtree case histories occurred

within that time frame.  Figure 6.6 shows how Birchtree case histories compare to Bieniawski’s

data (1989).  As shown in this graph, the predicted stand-up times for the unstable case histories fit

very well when compared to Bieniawski’s data (Bieniawski, 1989).

Figure 6.6   Unstable Birchtree Case Histories plotted with Bieniawski data points with stand-up times of 2 weeks or less
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6.4 Time Factor Analysis

The MST Graph only considers the final geometry of an opening surface.  The graph works by

assessing three general factors which are felt to influence the stand-up time for an opening surface:

· Rock mass conditions, joint orientation, surface orientation, and stress (Stability

Number N’)

· Opening geometry as expressed by hydraulic radius.

· Exposure time

For assessing drifts and tunnels, this approach is valid since the total tunnel span is usually exposed

by a single blast.  In mining where large stopes are excavated, an individual excavation surface

will often be exposed by a series of blasts.  The exposure time for a sequentially exposed surface

is not straight forward.  To account for the incremental exposure of an opening surface by a series

of blasts, an overall stand-up time was developed, which is a weighted average based on hydraulic

radius and exposure time.  This method incorporates the use of the MST graph for each blast

geometry.  For this method, each blast’s hydraulic radius and stability number is plotted on the

MST graph to obtain a predicted stand-up time.  For each step, the actual exposure time is divided

by the predicted time to failure, which can be expressed as a percentage of the time to failure.

These incremental failure percentages are added to obtain a total percent time to failure, producing

a time factor.  For example, if the hydraulic radius of sequential blasts are 2.2, 4.7, and 15 metres,

with a modified stability number of 3.0, the corresponding predicted stand-up times for each

geometry would be 180, 30, and 7 days respectively.  With corresponding exposures times of 10,

8, and 3 days respectively, the Time Factor would be as follows:

Time	Factor = ୅ୡ୲୳ୟ୪	ୗ୲ୟ୬ୢି୳୮	୘୧୫ୣౄ౎భ
୔୰ୣୢ୧ୡ୲ୣୢ	ୗ୲ୟ୬ୢି୳୮	୘୧୫ୣౄ౎భ

...................................................................................(6.1)

+ ୅ୡ୲୳ୟ୪	ୗ୲ୟ୬ୢି୳୮	୘୧୫ୣౄ౎మ
୔୰ୣୢ୧ୡ୲ୣୢ	ୗ୲ୟ୬ୢି୳୮	୘୧୫ୣౄ౎మ

+ ୅ୡ୲୳ୟ୪	ୗ୲ୟ୬ୢି୳୮	୘୧୫ୣౄ౎మ
୔୰ୣୢ୧ୡ୲ୣୢ	ୗ୲ୟ୬ୢି୳୮	୘୧୫ୣౄ౎య
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Time	Factor = 	
10	days

180	days +
8	days

30	days +
3	days
7	days

= 0.75

This approach suggests the surface is three quarters of the way to failure for the current predicted

stand-up time of 7 days.  This means that it should be stable for an additional 1.75 days at the final

stope geometry (Equation 6.2).

Remaining	Stability = 	 (1 − (6.2)...........................................................................ݏݕܽ݀	7	ݔ	(0.75

= 1.75

Many factors contribute to the stability of an opening, and the time that an opening will remain

stable.  The next section discusses some of the factors not considered in this approach, such as

exceptionally high stress levels and other factors that may have a significant effect on stand-up

time.

6.5 Other Factors that may Affect Stability

Peridotite is one of the common rock types found at the Birchtree Mine.  It is an ultramafic rock

that tends to have stability issues when mining occurs within or near this rock type.  As part of the

analysis, peridotite concentration was compared to various rock properties and conditions, to try

and identify a correlation between the amount of peridotite present and the stability of open stopes.

Section 4.4.2 gives a detailed description of how peridotite concentrations were determined.  The

analysis included the following:

i. Peridotite concentration vs. stable and unstable surfaces

ii. Peridotite concentration vs. RQD

6.5.1. Peridotite Concentration vs. Stable and Unstable Surfaces

To better understand how peridotite affects stability, peridotite concentration was estimated for the

HW, FW, South Shoulder, and North Shoulder for various stopes where data was available.  Figure

6.7 shows the actual vs. predicted stand-up times for stable surfaces’, with each surfaces’ associated

peridotite concentration.  Not all surfaces had available data to determine peridotite concentrations.
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In Figure 6.7, it would be expected that any data that plots below the 1:1 line would have decreasing

peridotite concentrations (zone 2), and above the 1:1 (zone 1), would have an increasing peridotite

concentration.  From Figure 6.7, there is no trend showing peridotite concentration decreasing for

points further below the 1:1 line.  An average peridotite concentration in this area for six case

histories is 42%.

Figure 6.8 shows the actual vs. predicted stand-up time for the unstable case histories with each

surfaces’ associated peridotite concentration.  This graph contains very few data points, and only

four of those have associated peridotite concentrations.  A lot of the unstable surfaces were

associated with the backs and temporary backs of the open stopes, which do not have data available

to determine peridotite concentrations.  It should be noted that some of the data is not visible in

Figures 6.7 and 6.8, as the predicted stand-up times were significantly larger than those currently

displayed.  This would have made the data very difficult to observe in both of these figures.  These

data points and their associated peridotite concentrations can be found in Table 6.1.

Figure 6.8 shows the unstable case histories, where higher peridotite concentrations would be

expected.  An average value, for the three case histories, is 52%.  Where lower peridotite is

expected (zone 2), the concentration of the only case history is 55%.  In summary:

· Stable cases, Figure 6.7, Zone 2 – case histories stable longer than expected, low

peridotite expected, 42% average peridotite concentration (6 case histories).

· Unstable cases, Figure 6.8, Zone 1 – Predicted stability longer than actual, high

peridotite concentration expected, 52% average peridotite concentration (3 case

histories).

· Unstable cases, Figure 6.8, Zone 2 – Predicted stability less than actual, low peridotite

concentration expected, 55% average peridotite concentration (1 case history).

Figure 6.9 shows the prediction error for stand-up time versus the peridotite concentration.  The

raisebore instability was not included on this graph since it appeared to be an outlier with a

prediction error of 87 days.  This graph shows a tendency of stope instability prior to the predicted

failure with increasing peridotite concentration; however, there is significant scatter in the

peridotite concentrations and limited data.
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To try and get additional data on peridotite, overbreak and underbreak data from blast holes were

investigated for stopes outside the database of stopes for this study.  Unfortunately, no trends were

observed.

Figure 6.7   Peridotite concentration vs. stable surfaces

Minimum Observed vs. Maximum Predicted Stand-up Time:
Stable Cases

Observed = Maximum
Predicted Stand-up
Time (1:1 line)



110

Figure 6.8   Peridotite concentration vs. unstable surfaces

    Figure 6.9   Influence of peridotite on time to failure prediction (Note: the raisebore failure has not been included;
    prediction error was 87 days)

Actual vs. Maximum Predicted Stand-up Time:
Unstable Cases

Actual = Maximum
Predicted Stand-up
Time (1:1 line)
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6.5.2 Peridotite Concentration vs. RQD

From the previous two sections, it appears that the concentration of peridotite has little effect on

the time to failure.  Another possible reason why the presence of peridotite may appear to create

issues for stability is if a higher peridotite concentration corresponds to a lower RQD.  In order to

test this possibility, peridotite concentrations were compared to RQD for various diamond drill

holes.

For this analysis, a total of 11 stope case histories were used.  Each stope contains 2 to 16 diamond

drill holes, with an average of 5.  It should be noted that the diamond drill holes may not fully

define the entire stope as they pass through at various dips and locations.  This also means that the

portion of the diamond drill hole passing through each stope will vary in length.

RQD was recorded for the peridotite and for all other rock types in each stope.  The assumption

was that if peridotite effected RQD, it should be apparent in a stope by stope assessment.  Figure

6.10 shows that the RQD values for peridotite range from 25 to 75%.  The average RQD for

peridotite for these case histories is 59.  The RQD values for the non-peridotite rocks range from

38 to 64.  The average RQD value for non-peridotite rock types for these case histories is 52.  As

instabilities are observed more often in peridotite than other rock types (Southern, 2017), ideally

the RQD values would be less than those found in the non-peridotite rock types.  For drill holes

assessed, this is not the case.  For the majority of the case histories presented in Figure 6.10, the

RQD values for peridotite are actually higher than the non-peridotite rock types.  Only three of the

eleven (27 percent) non-peridotite case histories had RQD values higher than their peridotite

counterparts.  From these 11 stopes, there is no indication that RQD plays a role in the instabilities

observed in peridotite.
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Figure 6.10   RQD comparison for peridotite and combined RQD of remaining rock types

6.5.3 Stress Effects on Time to Failure

Stress is assessed in the MST graph with the A factor used in the Modified Stability Graph (Potvin,

1988) shown in Figure 6.11.  For the Birchtree case histories, the unconfined compressive strength

of the rock is 67 MPa and the induced stress for all but three of the case histories is over 40 MPa

(Table 6.1).  This results in an A factor of 0.1, which is the maximum influence possible for high

stress.  This does not allow for any differentiation between the magnitude of high stress experienced

by the case history stope surfaces.  To determine if the prediction error for the case histories was

influenced by the stresses present, a graph of induced stress versus the stand-up time prediction

error is shown in Figure 6.11.  This graph shows a tendency of stope failure prior to the predicted

failure with increasing induced stress; however, there is significant scatter in the results and limited

data.
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As was stated previously in Section 2.3.2, most of case histories from the Yves Potvin’s thesis

(Potvin, 1988), had an A value of 1.0, indicated low stress conditions.  Most of the data presented

in this thesis was for case histories with high stress conditions, or A values of 0.1.  This difference

can likely be attributed to the differences in the HR radius of the case histories for each data set.

The majority of the data in Potvin’s thesis (1988) was for open stopes with larger hydraulic radii

than those for the Birchtree case histories.  Larger openings will push stress further away from the

openings surface, creating larger zones of relaxation, and lower stresses.  Smaller openings will

tend to experience stresses closer to the opening’s surface, and thus undergo higher stress

concentrations.

      Figure 6.11   Influence of stress on time to failure prediction (Note: the raisebore failure has not been included;
      prediction error was 87 days)
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CHAPTER 7
CONCLUSIONS

The main goal of this research has been to assess the influence of exposure time on open stopes at

Birchtree Mine.  Quantifying the effect of exposure time on stope stability will enable the engineer

to alter stope designs to avoid time dependant instability.

To initiate this research, a technique for assessing exposure time, primarily from civil engineering

applications for tunnel roof design, was investigated.  The RMR Stand-up Time Graph for

tunnelling (Bieniawski, 1989) formed the basis of a new methodology to assess the effect of time

on open stope stability for mining.  The Modified Stand-up Time Graph (MST) was the result of

incorporating assessment factors more commonly used in modern mine design to Bieniawski’s data

base for stand-up time.  As part of the development of the MST Graph, Bieniawski’s original stand-

up time graph was analyzed to determine the accuracy of the time lines incorporated into the

method.

7.1 Modified Stability Graph and Bieniawski

As discussed in Section 3.3, the Modified Stand-up Time graph was developed to incorporate

standards more commonly used in the mining industry.  This involved the conversion of multiple

variables to produce equivalent N’ values from RMR and hydraulic radius values from span.  The

Bieniawski data base consisted primarily of case histories from a shallow depth, usually in

sedimentary rock.  Due to the predominance of civil structures and coal mining cases from the

Eastern United States, near horizontal bedding was assumed.  The case histories all investigated

roof stability which was also assumed to correspond to sub-horizontal roofs.  This, coupled with

established conversions between RMR and Q classification values, allowed approximations to be

made, which allowed estimation of the N’ value for the stability graph design method (as discussed

in Section 3.1.2).  Since the hydraulic radius of a long tunnel is approximately equal to one half the

tunnel span, this parameter was easily estimated.  The Modified Stand-up Time Graph was

developed using the format of the Stability Graph design method, coupled with the data and
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interpretation approach of Bieniawski’s Stand-up Time Graph.

In Section 3.3, the MST Graph was compared to the commonly used Modified Stability Graph by

overlaying the two graphs on one another (Figure 3.20).  The Modified Stability Graph has a built

in assessment for stand-up time and this is highlighted in Figure 3.20.  If you consider a hydraulic

radius of 10, this corresponds to a stand-up time of 6 months to 1 year.  If you consider a hydraulic

radius of 4, this corresponds to a stand-up time of 1 day to 1 month.  The difference in stand-up

times is a function of the time it will take to mine out a stope.  A smaller stope with a hydraulic

radius of 4, will take less time to mine than a larger stope with a hydraulic radius of 10.

As  another  means  of  testing  the  validity  of  the  proposed  empirical  design  method,  data  from

Bieniawski’s RMR Stand-up Time Graph was plotted on the MST Graph.  From Figures 3.7 to

3.12, it can be seen that the data for stand-up times of less than one month is rather scattered.  This

is not surprising as the time periods within this interval are relatively small, and small variations

are easily observed.  For stand-up times of one month to one year, the data appears to fit these lines

very well.  Small variations in data will no longer be apparent as the time intervals are becoming

much larger (i.e. instead of tracking stand-up time in days, it is now being plotted in intervals of

weeks and months).  For time intervals greater than one year, the available data is very limited.  It

is likely that these stand-up times were inferred based on the data from the previous time intervals

and the limited data available for stand-up times greater than one year.  Any data for stand-up times

greater than one year will generally be limited, as most open stopes will not remain open for this

period of time.  Mines generally do not like to leave these voids open for extended periods of time,

as this will drastically increase the risk of a failure occurring, creating issues for safety and

production.

To further assess the effectiveness of the MST graph, ten case histories from Birchtree open stopes

were assessed.  Each case history included the assessment of five, or in one instance, six, stope

surfaces.  As part of each case history, opening geometry, estimated stress conditions, rock

mechanical properties, and geological factors that could affect stability were determined.  To assess

the accuracy of the MST Graph, the case history data was used to predict stand-up time.  These

predicted times were compared to the actual stand-up times of the case histories to determine the

difference between predicted and actual stand-up times.
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From Figures 6.1 and 6.2, it could be seen that most of the case history data was concentrated in a

small time interval of one month or less.  This is generally because Birchtree Mine has various

restrictions on stope sizes that limit the range of hydraulic radius values.  This is also due to stope

conditions at the Birchtree Mine, as stopes are generally not left open for long periods, due to

previously observed stope stability issues.  It was also observed that the stand-up times for the

unstable case histories were generally predicted to experience some form of instability within two

weeks or less.  This again reflects actual observations from unstable case histories.  The majority

of failures that occur at Birchtree generally happen within a short period of time after stope blasting.

Assessing any one factor for stope design, such as exposure or stand-up time, is challenging

because there are many highly variable factors influencing stability in the field.  This may account

for some of the observed discrepancy between predicted and actual stope surface stand-up times.

Some of  these  variables,  such  as  post  mining  stress,  the  orientation  of  structure,  and  rock  mass

classification, were quantified and assessed in the MST design method, though often with limited

reliability.  Other variables, such as blasting, blast hole deviation, and pre-mining stress are usually

not measured and are not assessed with current design methods.

Differences between the MST graph and the RMR Stand-up Time Graph may be a result of

converting RMR to N’.  To convert RMR, Equation 3.2 was used to calculate Q’, as this data was

not available in the original data set for the RMR Stand-up Time Graph.  Since the Q’ data was not

available, this was the best means for calculating this value at the time.

7.2 Other Factors Influencing Stability

Peridotite was assessed as part of this study to determine if there was a link between peridotite and

stability as reported at the Birchtree Mine (Section 6.4).  As part of the assessment, peridotite was

compared to RQD, overbreak/underbreak, and stable/unstable surfaces.  From these analyses, no

trend was observed that linked peridotite to stability.  High stress, in excess of the stress levels that

are differentiated using the stability graph design techniques, were encountered at the Birchtree

Mine.  High stress levels were compared to the observed error in stand-up time predicted using the

MST graph, however, no trends were observed.
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7.3 Future Work

To further develop the MST Graph for use in underground applications, more case histories need

to be gathered and tested with the proposed method.  The current data set is relatively small and

lacks some detailed data, particularly information concerning joint conditions from scan lines.

Ideally, each case history included on the MST Graph would have its own scan line for that

particular stope, to reduce the number of assumptions required for analysis.  This would require

significant time and resources, but could be conducted over an extended period of time, and added

to the MST Graph as the data becomes available.  Once a larger data set is available, it would be

possible to make adjustments to the MST graph to better represent mine specific conditions.

Further data would allow for more refinement to the time intervals included on the MST Graph.

Outside of the current scope of the project, other factors such as blast damage, undercutting, and

geological influences also need to be accounted for as they can have a significant impact on

stability.  These factors were briefly discussed, but not incorporated into the MST Graph.  Ideally,

these factors could be incorporated in the MST design graph to improve the predictability of the

design method.  Each of these factors could be a study on their own, and once again, would require

significant resources to complete.  There have been numerous research projects conducted at

various mine sites pertaining to these particular subjects, but very few, if any, studies exist that

account for the combined effects of these factors.

7.4 Summary

As part of the research, a new approach has been developed to assess stand-up time for open

stopes.  There is currently no reliable approach for predicting time to failure for mine stopes and

this method provides mine engineers with a valuable planning tool.  This approach incorporates

the N’ and HR variables, which are commonly used in the current mining industry.  It is hoped

that other factors influencing stability will be added to this design method.  As this technique is

applied by industry, it is expected that added case histories will improve the accuracy and

reliability of this design method.
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APPENDIX A
SCANLINE DATA

Location: 2950 South Ext (2007).

Applied to the following stopes:

· 30-848.1

Table A.1  Scanline data used for the 30-848.1 Stope (After Birchtree Scanline Binder, 2010)

IF JNT 0.03 312 29 222 1.00 0.75
IF JNT 0.03 112 9 22 1.00 0.75
IF JNT 0.6 32 79 302 1.00 0.75
IF JNT 0.9 172 58 82 1.00 0.75
IF JNT 1.2 182 36 92 1.00 0.75
IF JNT 1.2 332 65 242 1.50 0.75
IF JNT 1.5 312 27 222 1.50 4.00
IF JNT 2.1 282 81 192 1.00 20.00
IF JNT 3.0 12 74 282 1.50 10.00
IF JNT 3.2 72 76 342 1.00 10.00
IF JNT 3.7 177 49 87 1.50 0.75
IF JNT 3.9 242 79 152 1.00 10.00
IF JNT 7.3 322 40 232 1.50 1.00
IF JNT 6.1 122 9 32 1.00 4.00
IF JNT 8.6 297 84 207 1.00 0.75
IF JNT 9.9 292 3 202 1.00 0.75
IF JNT 12.5 329 28 239 1.00 0.75
IF JNT 13.1 192 62 102 1.00 10.00
IF JNT 13.7 327 40 237 1.00 0.75
IF JNT 14.0 168 46 78 1.50 10.00
IF JNT 15.6 297 81 207 1.00 4.00
IF JNT 16.5 112 15 22 1.00 0.75

Jr Ja

Distance
(m)

Rock
Type

Structure
Type

Dip
Direction (O) Dip (O) Strike (O)



122

Location: 3200 928

Applied to the following stopes:

· 30-848.1, 32-872.1, 32-928.1, 33-916.2, 33-916.3

Table A.2  Scanline data used for the 30-848.1, 32-872.1, 32-928.1, 33-916.2, and 33-916.3 Stope (After Birchtree Scanline
Binder, 2010)

SCH JNT 105 37 15 1.50 0.75
SCH JNT 2.7 44 88 314 1.00 4.00
SCH JNT 4.0 20 20 290 1.50 4.00
SCH JNT 6.1 10 88 280 1.50 10.00
SCH JNT 6.7 165 86 75 1.00 10.00
SCH JNT 9.1 140 65 50 1.50 20.00
SCH JNT 11.1 150 58 60 1.00 4.00
SCH JNT 12.2 130 81 40 1.50 10.00
SCH JNT 12.8 315 82 225 1.50 0.75
SCH JNT 14.6 265 88 175 1.00 0.75
SCH JNT 15.8 130 65 40 1.00 0.75
SCH JNT 17.7 315 67 225 1.50 20.00
SCH JNT 18.0 151 56 61 1.50 0.75
SCH JNT 18.6 128 80 38 1.00 4.00
SCH JNT 19.2 260 86 170 1.00 4.00
SCH JNT 19.2 130 75 40 1.50 0.75
SCH JNT 19.8 313 85 223 1.50 4.00
SCH JNT 20.7 10 82 280 1.00 10.00
SCH JNT 21.6 40 20 310 1.50 0.75
SCH JNT 22.3 100 30 10 1.50 0.75
SCH JNT 22.9 120 75 30 1.50 4.00

Strike (O) Jr Ja

Rock
Type

Structure
Type

Distance
(m)

Dip
Direction (O) Dip (O)
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Location: 3325 South

Applies to the following stopes:

· 33-840.1, 33-848.1, 33-848.2, 33-936.2

Table A.3  Scanline data used for the 33-840.1, 33-848.1, 33-848.2, and 33-936.2 Stopes (After Birchtree Scanline Binder,
2010)

AMPT JT 0.3 37 62 307 1.50 4.00
AMPT JT 0.5 152 60 62 1.50 4.00
AMPT JT 0.7 152 68 62 1.50 4.00
AMPT JT 1.1 267 75 177 1.50 4.00
AMPT JT 1.2 269 75 179 1.50 10.00
SCH FOTN 1.5 297 72 207 1.50 10.00
SCH FOTN 1.8 287 70 197 1.00 4.00

AMPT JT 1.8 57 65 327 1.00 4.00
SCH FOTN 2.1 287 72 197 1.50 4.00
SCH FOTN 2.4 277 60 187 1.50 4.00

AMPT JT 4.0 57 35 327 1.00 4.00
SCH FOTN 4.3 277 60 187 1.50 4.00

AMPT JT 4.4 22 70 292 1.50 4.00
AMPT JT 4.6 22 70 292 1.50 1.00
AMPT JT 4.9 22 70 292 1.50 4.00
AMPT JT 5.2 22 70 292 1.50 1.00
AMPT JT 5.5 262 60 172 1.50 4.00
AMPT JT 5.9 147 60 57 1.50 4.00
AMPT JT 6.1 147 60 57 1.50 4.00
AMPT JT 6.4 47 65 317 1.50 4.00
AMPT JT 7.0 77 30 347 1.00 4.00
AMPT JT 7.6 77 30 347 1.00 4.00
AMPT JT 7.9 77 30 347 1.00 4.00
AMPT JT 8.4 37 80 307 1.00 4.00
SCH FOTN 10.4 257 30 167 1.50 1.00
SCH FOTN 11.0 257 30 167 1.50 1.00
SCH FOTN 11.3 257 30 167 1.50 1.00
SCH JT 11.8 177 60 87 1.50 4.00
SCH JT 12.3 147 70 57 2.25 10.00
SCH FOTN 12.8 277 45 187 1.50 1.00
SCH FOTN 13.1 277 45 187 1.50 1.00
SCH FOTN 13.7 277 45 187 1.50 1.00
SCH JT 13.8 162 55 72 1.50 4.00
SCH JT 14.9 277 50 187 1.00 4.00
SCH FOTN 15.2 62 40 332 2.25 1.00
SCH FOTN 17.1 267 60 177 2.25 1.00
SCH FOTN 17.2 267 60 177 2.25 1.00
SCH FOTN 18.3 267 60 177 2.25 1.00
SCH FOTN 18.4 267 60 177 2.25 1.00

Strike (O) Jr Ja

Rock
Type

Structure
Type

Distance
(m)

Dip
Direction (O) Dip (O)
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Location: 3325 South

Applies to the following stope:

· 33-840.1, 33-848.1, 33-848.2

Table A.4  Scanline data for the 33-840.1, 33-848.1, and 33-848.2 Stopes (After Birchtree Scanline Binder, 2010)

SCH JNT 0.6 157 59 67 1.00 4.00
SCH JNT 1.2 207 82 117 1.00 4.00
SCH JNT 1.8 302 31 212 1.00 4.00
SCH JNT 1.8 132 26 42 1.00 4.00
SCH JNT 3.4 152 20 62 1.00 4.00
SCH JNT 4.6 202 86 112 1.50 4.00
SCH JNT 6.1 17 81 287 1.00 10.00
SCH JNT 6.1 112 25 22 1.00 10.00
SCH JNT 6.7 112 34 22 1.00 4.00
SCH JNT 6.7 162 75 72 1.50 4.00
SCH JNT 6.7 302 2 212 1.00 10.00
SCH JNT 9.1 192 84 102 1.00 4.00
SCH JNT 10.7 122 69 32 1.00 20.00
SCH JNT 11.0 157 16 67 1.00 10.00
SCH JNT 11.6 142 79 52 1.00 4.00
SCH JNT 14.6 112 75 22 1.00 20.00
SCH JNT 14.6 172 20 82 1.00 20.00
SCH JNT 15.2 282 54 192 1.00 1.00
SCH JNT 15.2 252 79 162 1.50 4.00

Strike (O) Jr Ja

Rock
Type

Structure
Type

Distance
(m)

Dip
Direction Dip (O)
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Location: 3325 10070

Applies to the following stopes:

· 33-936.2

Table A.4  Scanline data used for the 33-936.2 Stope (After Birchtree Scanline Binder, 2010)

SCH FOL 1.5 0.5 56 70 326 3.00 0.75
SCH FOL 9.2 2.8 286 85 196 3.00 0.75
SCH SHR 11.0 3.4 181 85 91 3.00 10.00
SCH FOL 15.0 4.6 16 80 286 3.00 10.00
SCH FOL 17.0 5.2 236 85 146 3.00 10.00
SCH JNT 19.0 5.8 111 90 21 3.00 1.00
SCH SHR 27.0 8.2 276 80 186 3.00 20.00
SCH SHR 31.0 9.4 276 80 186 3.00 1.00
SCH JNT 20.0 6.1 356 10 266 1.50 1.00
SCH JNT 30.0 9.1 356 10 266 1.50 1.00
SCH JNT 32.0 9.8 16 10 286 1.50 1.00
SCH FOL 33.0 10.1 256 80 166 3.00 1.00
SCH FOL 37.0 11.3 256 85 166 3.00 0.75
SCH FOL 41.3 12.6 271 90 181 2.00 0.75
SCH JNT 54.0 16.5 21 80 291 3.00 0.75
SCH JNT 54.0 16.5 16 10 286 1.50 0.75
SCH JNT 54.0 16.5 346 76 256 2.00 1.00
SCH JNT 72.0 21.9 216 78 126 3.00 1.00
SCH FOL 76.0 23.2 246 80 156 3.00 0.75
SCH JNT 80.0 24.4 356 10 266 1.50 1.00
SCH JNT 81.0 24.7 356 10 266 1.50 1.00
SCH FOL 82.0 25.0 236 75 146 3.00 0.75
SCH JNT 84.0 25.6 96 35 6 2.25 1.00
SCH JNT 85.0 25.9 306 50 216 3.00 1.00
SCH JNT 89.0 27.1 206 85 116 3.00 1.00
SCH FOL 91.0 27.7 236 75 146 3.00 0.75

Strike (O) Jr Ja

Rock
Type

Structure
Type

Distance
(ft)

Distance
(m)

Dip
Direction Dip (O)
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APPENDIX B
MAP3D OUTPUTS
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Open Stope: 29-864.1 Full Stope
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Open Stope: 30-848.1
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Open Stope: 30-848.1 Full Stope
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Open Stope: 32-872.1
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Open Stope: 32-928.1
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Open Stope: 33-840.1
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Open Stope: 33-848.1
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Open Stope: 33-848.2

Fi
gu

re
B

.9
M

ap
3D

ou
tp

ut
fo

r
th

e
33

-8
48

.2
St

op
e



135

Open Stope: 33-916.2
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Open Stope: 33-916.3
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Open Stope: 33-936.2 Undercut

Fi
gu

re
B

.1
2

M
ap

3D
ou

tp
ut

fo
r

th
e

33
-9

36
.2

St
op

e
(U

nd
er

cu
t)



138

Open Stope: 33-936.2 Full Stope
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APPENDIX C
ROCK MASS CLASSIFICATION DATA FOR CASE HISTORIES

Table C.1  29-864.1 Rock Mass Classification Data

Table C.2  30-848.1 Rock Mass Classification Data

29-864.1 N. Shoulder S. Shoulder Hanging Wall Footwall Back
Critical Joint Orientation (o) 45 45 45 25 5
Maximum Induced Stress (MPa) 59 59 62 58 96
Unconfined Compressive Strength (MPa) 67 67 67 67 67
Q' 9.0 9.0 9.0 9.0 9.0
RQD 73.0 73.0 73.0 73.0 73.0
Jr 1.1 1.1 1.1 1.1 1.1

Ja 1.0 1.0 1.0 1.0 1.0

Jn 9.0 9.0 9.0 9.0 9.0
Jw 1.0 1.0 1.0 1.0 1.0
A Factor 0.1 0.1 0.1 0.1 0.1
B Factor 0.2 0.2 0.5 0.85 0.25
C Factor 5.8 6.1 8 8 2
N' Stability Number 1.0 1.1 3.6 6.1 0.5
Hydraulic Radius (m) 3.7 3.8 2.5 3.7 2.4
Peridotite Concentration (%) 66 51 61 35 -
Surface Condition Stable Stable Stable Stable Unstable
Exposure Time > 1 day > 1 day > 1 day > 1 day < 1 day

30-848.1 (Raise Failure) N. Shoulder S. Shoulder Hanging Wall Footwall Back Raisebore
Critical Joint Orientation (o) 81 81 81 81 8 81
Maximum Induced Stress (MPa) 74 63 82 78 91 74
Unconfined Compressive Strength (MPa) 67 67 67 67 67 67
Q' 9.3 9.3 9.3 9.3 9.3 9.3
RQD 70.0 73.0 73.0 73.0 73.0 73.0
Jr 1.2 1.2 1.2 1.2 1.2 1.2

Ja 1.0 1.0 1.0 1.0 1.0 1.0

Jn 9.0 9.0 9.0 9.0 9.0 9.0
Jw 1.0 1.0 1.0 1.0 1.0 1.0
A Factor 0.1 0.1 0.1 0.1 0.1 0.1
B Factor 0.3 0.3 0.2 0.2 0.2 0.2
C Factor 7.1 7.1 8 8 2 8
N' Stability Number 2.0 2.0 1.5 1.5 0.4 1.5
Hydraulic Radius (m) 4.3 3.5 3.7 3.5 3.2 1.7
Peridotite Concentration (%) - - - - - -
Surface Condition Stable Stable Stable Stable Stable Unstable
Exposure Time > 3 days > 3 days > 3 days > 3 days > 3 days < 3 days
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Table C.3  32-872.1 Rock Mass Classification Data

Table C.4  33-840.1 Rock Mass Classification Data

32-872.1 N. Shoulder S. Shoulder Hanging Wall Footwall Back
Critical Joint Orientation (o) 81 75 75 81 22
Maximum Induced Stress (MPa) 66 66 83 72 104
Unconfined Compressive Strength (MPa) 67 67 67 67 67
Q' 7.0 7.0 7.0 7.0 7.0
RQD 49.0 49.0 49.0 49.0 49.0
Jr 1.3 1.3 1.3 1.3 1.3

Ja 1.0 1.0 1.0 1.0 1.0

Jn 9.0 9.0 9.0 9.0 9.0
Jw 1.0 1.0 1.0 1.0 1.0
A Factor 0.1 0.1 0.1 0.1 0.1
B Factor 0.02 0.3 0.25 0.2 0.2
C Factor 5.8 6.3 6.1 8 2
N' Stability Number 0.8 1.3 1.1 1.1 0.3
Hydraulic Radius (m) 2.8 3.9 3.2 3.3 2.4
Peridotite Concentration (%) 40 68 56 64 -
Surface Condition Stable Unstable Stable Stable Stable
Exposure Time > 3days < 3days > 3days > 3days > 3days

33-840.1 N. Shoulder S. Shoulder Hanging Wall Footwall Back
Critical Joint Orientation (o) 71 61 71 59 59
Maximum Induced Stress (MPa) 60 62 58 57 103
Unconfined Compressive Strength (MPa) 67 67 67 67 67
Q' 9.1 9.1 9.1 9.1 9.1
RQD 63.0 63.0 63.0 63.0 63.0
Jr 1.3 1.3 1.3 1.3 1.3

Ja 1.0 1.0 1.0 1.0 1.0

Jn 9.0 9.0 9.0 9.0 9.0
Jw 1.0 1.0 1.0 1.0 1.0
A Factor 0.1 0.1 0.1 0.1 0.1
B Factor 0.3 0.2 0.2 0.2 0.8
C Factor 6.2 6.5 8 8 2
N' Stability Number 1.7 1.2 1.5 1.5 1.5
Hydraulic Radius (m) 3.1 3.2 3.7 4.3 2.9
Peridotite Concentration (%) 27 43 28 41 -
Surface Condition Stable Unstable Stable Unstable Stable
Exposure Time > 1 day < 1 day > 1 day > 1 day > 1 day
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Table C.5  33-848.1 Rock Mass Classification Data

Table C.6  33-848.2 Rock Mass Classification Data

33-848.1 N. Shoulder S. Shoulder Hanging Wall Footwall Back
Critical Joint Orientation (o) 71 61 71 59 59
Maximum Induced Stress (MPa) 75 52 75 93 125
Unconfined Compressive Strength (MPa) 67 67 67 67 67
Q' 9.5 9.5 9.5 9.5 9.5
RQD 66.0 66.0 66.0 66.0 66.0
Jr 1.3 1.3 1.3 1.3 1.3

Ja 1.0 1.0 1.0 1.0 1.0

Jn 9.0 9.0 9.0 9.0 9.0
Jw 1.0 1.0 1.0 1.0 1.0
A Factor 0.1 0.1 0.1 0.1 0.1
B Factor 0.2 0.2 0.2 0.2 0.8
C Factor 5.2 6.5 8 8 2
N' Stability Number 1.0 1.2 1.5 1.5 1.5
Hydraulic Radius (m) 2.6 2.7 2.7 3.4 2.5
Peridotite Concentration (%) 61 66 33 51 -
Surface Condition Stable Stable Stable Unstable Stable
Exposure Time > 1 day > 1 day > 1 day < 1 day > 1 day

33-848.2 N. Shoulder S. Shoulder Hanging Wall Footwall Back
Critical Joint Orientation (o) 71 61 71 59 59
Maximum Induced Stress (MPa) 51 53 0 94 127
Unconfined Compressive Strength (MPa) 67 67 67 67 67
Q' 6.5 6.5 6.5 6.5 6.5
RQD 45.0 45.0 45.0 45.0 45.0
Jr 1.3 1.3 1.3 1.3 1.3

Ja 1.0 1.0 1.0 1.0 1.0

Jn 9.0 9.0 9.0 9.0 9.0
Jw 1.0 1.0 1.0 1.0 1.0
A Factor 0.1 0.1 1 0.1 0.1
B Factor 0.3 0.2 0.2 0.2 0.8
C Factor 6 6.9 8 8 2
N' Stability Number 1.2 0.9 10.4 1.0 1.0
Hydraulic Radius (m) 3.8 3.6 3.1 2.8 3.0
Peridotite Concentration (%) 55 70 - 28 -
Surface Condition Stable Stable Stable Stable Unstable
Exposure Time > 1 day > 1 day > 1 day > 1 day < 1 day
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Table C.7  33-936.2 Rock Mass Classification Data

Table C.8  33-916.2 Rock Mass Classification Data

33-936.2 N. Shoulder S. Shoulder Hanging Wall Footwall Back
Critical Joint Orientation (o) 70 63 59 59 10
Maximum Induced Stress (MPa) 92 123 35 35 87
Unconfined Compressive Strength (MPa) 67 67 67 67 67
Q' 12.9 12.9 12.9 12.9 12.9
RQD 58.0 58.0 58.0 58.0 58.0
Jr 2.0 2.0 2.0 2.0 2.0

Ja 1.0 1.0 1.0 1.0 1.0

Jn 9.0 9.0 9.0 9.0 9.0
Jw 1.0 1.0 1.0 1.0 1.0
A Factor 0.1 0.1 0.1 0.1 0.1
B Factor 0.25 0.23 0.2 0.2 0.2
C Factor 6 5.8 5.9 5.9 2
N' Stability Number 1.9 1.7 1.5 1.5 0.5
Hydraulic Radius (m) 4.4 3.7 3.3 2.8 3.2
Peridotite Concentration (%) - - - - -
Surface Condition Stable Stable Stable Stable Unstable
Exposure Time > 1 day > 1 day > 1 day > 1 day < 1 day

33-916.2 N. Shoulder S. Shoulder Hanging Wall Footwall Back
Critical Joint Orientation (o) 71 61 71 59 59
Maximum Induced Stress (MPa) 200 152 0 35 138
Unconfined Compressive Strength (MPa) 67 67 67 67 67
Q' 4.8 4.8 4.8 4.8 4.8
RQD 33.0 33.0 33.0 33.0 33.0
Jr 1.3 1.3 1.3 1.3 1.3

Ja 1.0 1.0 1.0 1.0 1.0

Jn 9.0 9.0 9.0 9.0 9.0
Jw 1.0 1.0 1.0 1.0 1.0
A Factor 0.1 0.1 1.0 0.1 0.1
B Factor 0.3 0.2 0.2 0.2 0.8
C Factor 6.0 5.8 8.0 8.0 2.0
N' Stability Number 0.9 0.6 7.6 0.8 0.8
Hydraulic Radius (m) 3.3 3.2 3.4 3.5 3.2
Peridotite Concentration (%) - - - - -
Surface Condition Unstable Stable Stable Stable Stable
Exposure Time < 6 days > 6 days > 6 days > 6 days > 6 days
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Table C.9  32-928.1 Rock Mass Classification Data

Table C.10  33-916.3 Rock Mass Classification Data

32-928.1 N. Shoulder S. Shoulder Hanging Wall Footwall Back
Critical Joint Orientation (o) 81 75 81 81 20
Maximum Induced Stress (MPa) 75 79 68 68 79
Unconfined Compressive Strength (MPa) 67 67 67 67 67
Q' 9.0 9.0 9.0 9.0 9.0
RQD 60.0 60.0 60.0 60.0 60.0
Jr 1.3 1.3 1.3 1.3 1.3

Ja 1.0 1.0 1.0 1.0 1.0

Jn 9.0 9.0 9.0 9.0 9.0
Jw 1.0 1.0 1.0 1.0 1.0
A Factor 0.1 0.1 0.1 0.1 0.1
B Factor 0.25 0.3 0.3 0.2 0.2
C Factor 6.5 6.4 7.2 7.2 2.0
N' Stability Number 1.5 1.7 1.9 1.3 0.4
Hydraulic Radius (m) 3.2 2.8 2.1 3.5 2.5
Peridotite Concentration (%) 2.0 14 4.0 22 -
Surface Condition Stable Stable Stable Stable Stable
Exposure Time > 16 days > 16 days > 16 days > 16 days > 16 days

33-916.3 N. Shoulder S. Shoulder Hanging Wall Footwall Back
Critical Joint Orientation (o) 81 75 75 81 22
Maximum Induced Stress (MPa) 125 100 0 45 125
Unconfined Compressive Strength (MPa) 67 67 - 67 67
Q' 7.0 7.0 - 7.0 7.0
RQD 48.0 48.0 - 48.0 48.0
Jr 1.3 1.3 - 1.3 1.3

Ja 1.0 1.0 - 1.0 1.0

Jn 9.0 9.0 - 9.0 9.0
Jw 1.0 1.0 - 1.0 1.0
A Factor 0.1 0.1 - 0.1 0.1
B Factor 0.2 0.2 - 0.3 0.3
C Factor 4.5 5.3 - 8.0 2.0
N' Stability Number 0.6 0.7 - 1.6 0.4
Hydraulic Radius (m) 2.9 2.3 3.6 4.1 3.0
Peridotite Concentration (%) 33.0 39 55.0 8.0 -
Surface Condition Stable Stable Stable Stable Stable
Exposure Time > 10 days > 10 days > 10 days > 10 days > 10 days


