
 

Effect of Perampanel or Amantadine Treatment on Pilocarpine Rat 

Model of Status Epilepticus: Evidence with Seizure Termination, 

Behavioral Alterations, Epileptogenesis and Neuronal Damage. 

 

 

A Thesis Submitted to the College of  

Graduate and Postdoctoral Studies 

 in partial Fulfillment of the Requirements 

 for the Degree of Master of Science  

in the Department of Pharmacology 

University of Saskatchewan 

By 

 

Hanan Mohammad 

 

 

 

“Copyright Hanan Mohammad, December, 2017.  All Rights Reserved” 



  

i 
 

Permission to Use 
 

By presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from 

the University of Saskatchewan, I agree that the Libraries of the University may make it freely 

available for inspection. I further agree that permission for copying for this thesis in any manner, 

in whole or in part, for scholarly purposes may be granted by the professor or professors who 

supervised my thesis work, or in their absence by the head of the department of the Pharmacology 

or by the Dean of the College of Graduate Studies and Research. It is understood that any copying 

or publication or use of this thesis or parts of it for financial gain should not be allowed without 

my written permission. It is also understood that due recognition shall be given to me and to the 

University of Saskatchewan in any scholarly use which may be made of any material in my 

thesis/dissertation. 

Request for permission to copy or to make other uses of materials in this thesis in whole or part 

should be addressed to: 

Head of the Department of Pharmacology 

College of Medicine 

University of Saskatchewan 

107 Wiggins Road 

Saskatoon, Saskatchewan S7N 5E5 

Canada 

OR 

Dean of the College of the Graduate and Postdoctoral Studies 

University of Saskatchewan 

107 Administration Place 

Saskatoon, Saskatchewan S7N 5A2 

Canada 



  

ii 
 

ABSTRACT 
 

 

Persistent activation of ionotropic glutamatergic receptors contributes to seizure sustenance and 

neuronal cell death. Status epilepticus (SE) was induced in adult male Sprague Dawley [12 to 14 

weeks old] rats by treating them with pilocarpine. The efficacy of either perampanel, an α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor blocker, or amantadine, a N-

Methyl-D-aspartic acid (NMDA) receptor blocker, in overcoming pilocrapine-induced SE was 

assessed using electroencephalogram (EEG) recordings. In addition, the alterations in cognitive 

function, development of spontaneous recurrent seizures (SRSs), and hippocampal damage that 

are generally encountered in SE were also assessed at 72 hours and 1 month after pilocarpine 

treatment. Our results show that both early and late treatment with perampanel but not amantadine 

significantly reduced the latency in the termination of seizure as confirmed by EEG recording. 

Perampanel but not amantadine, reversed the memory impairment in SE rats and retarded the 

appearance of SRS. Fluoro-Jade C staining and NeuN immunohistochemistry revealed the 

protective effects of perampanel. Perampanel treatment led to reduced caspase-3 activation in the 

hippocampal sections of brains isolated from SE rats.  In vitro addition of either perampanel or 

amantadine in primary cultures of hippocampal neurons significantly reduced the levels of 

cytotoxicity and caspase-3 activation induced by AMPA and NMDA. Both perampanel and 

amantadine treatment also reduced GAPDH, p53, PTEN, and active SREBP-1 levels expressed in 

nuclear fractions isolated from the primary cultures of hippocampal neurons treated with either 

AMPA or NMDA. Our data might shed some light in the therapeutic approach of perampanel in 

clinical use for status epilepticus.   
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1. Introduction 
 

1.1. Status Epilepticus 
 

Status epilepticus (SE), is a life-threatening emergency that is often referred to as the “extreme 

expression of epilepsy”. The original definitions of SE have evolved into a more narrow and 

specific description that reflects the seriousness of this disease. In 1981, the European 

Electroencephalographic Meeting Defined status epilepticus as seizures that continues for a 

sufficient length of time or are repeated frequently without recovery of consciousness between 

attacks. These concepts, while highly valuable, were inaccurate, as they did not define the duration 

of a seizure. Over the past two decades, the timeline in status epilepticus related clinical trials and 

treatment recommendation moved to 30 min in 1993 (1) then to 20 min in 1998 (2) and to 10 min 

in 1999 (3). Lowenstein in 1999 recommended that a generalized tonic-clonic seizure that persists 

5 minutes is a prolonged seizure and has to be treated as SE (4).  The International League Against 

Epilepsy and the Commission on Epidemiology came out in 2015 with the following definition: 

“Status epilepticus is a condition resulting either from the failure of the mechanisms 

responsible for seizure termination or from the initiation of mechanisms, which lead to 

abnormally prolonged seizures (after time point t1). It is a condition, which can have long-

term consequences (after time point t2), including neuronal death, neuronal injury, and 

alteration of neuronal networks, depending on the type and duration of seizures” (5).  In 

general, time point t1 is the time when treatment for SE should be started, which is at 5 min for 

generalized tonic-clonic status epilepticus, and at 10 min for focal seizures with or without 

impairment of consciousness. Time-point t2 marks the time at which neuronal damage or sustained 

http://www.sciencedirect.com/topics/neuroscience/neuronal-death
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alteration of neuronal networks may begin, and indicates that SE should be controlled by that time 

the latest; 30 min in case of generalized tonic clonic seizures. 

 

1.1.1. SE epidemiology and its high morbidity and mortality despite treatment  
 

Most epidemiological studies have used a traditional 30min duration of seizure to define SE, 

and so the estimates of SE given in those studies are the lowest (currently is 5 min internationally). 

Using the 5min definition, determining the time from the beginning of the seizure to starting 

emergency treatment, the rate in clinical practice has to be much higher than in the rate reported 

in the epidemiologic studies. The overall incidence of SE is 9.9 to 41 per 100,000/year worldwide, 

with peaks among children and elderly (6). It is estimated that there are 54,000 seizure-related 

visits to emergency department per year in Canada, and as many as 3,800 cases are due to SE (7). 

Of these, almost 25% (e.g. 850) result in death (8). Mortality is not evenly distributed across age 

groups; indeed, the mortality is higher in the elderly (60 years and above) at 38% compared to 

younger adults (16-59 years) at 14% (8). Furthermore, SE is three times more common in the 

elderly. Given that the population of Canada and Saskatchewan is aging, SE is likely to become a 

significant social, economic and clinical burden. The morbidity of SE, including permanent 

learning and memory deficits, is seen in up to 70% of patients (9). It is known that prolonged and 

refractory SE is associated with poor outcome (10). The persistent high morbidity and mortality in 

SE demonstrate that current treatments are not fully effective and that improved treatments for SE 

are critically needed. Any new treatment(s) will have to protect neurons from damage induced by 

the ongoing seizures as this will surely improve clinical outcomes, including the preservation of 

normal learning and memory abilities. 
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1.1.2.  Etiology 
 

In adults with chronic epilepsy, the most common causes of SE are low levels of the 

antiepileptic drug, remote symptomatic causes, and stroke (11). In general, approximately 48-63% 

of all SE cases are due to acute symptomatic causes such as SE that occurs after metabolic insult, 

certain infections in the Central Nervous System (CNS), stroke, brain trauma or cerebral 

haemorrhage (12). In the Richmond Virginia Status Epilepticus Study, 41% of adults and 61% of 

the elderly had acute or remote ischemic and haemorrhagic strokes as a cause of SE (9). The 

primary determinants of the mortality and morbidity associated with SE: (1) certain etiologies, (2) 

age >60 years, and (3) prolonged SE (13) (14). 

 

1.1.3.  Mesial Temporal Lobe of Epilepsy (MTLE) 
 

The Temporal Lope of Epilepsy (TLE), is the most common type of epilepsy in adults, can be 

associated with memory deficits and cognitive problems (15). Most patients with TLE have 

experienced a neurological insult that leads to the development of epilepsy. Status epilepticus is a 

major example of brain injury that can lead to the development of TLE (16).   

The main features of TLE are: (1) the localization of seizure origin in the limbic region, particularly 

in the hippocampus, entorhinal cortex and amygdala (17); (2) the frequent finding of an initial 

precipitating insult (IPA) that precedes the appearance of TLE; (3) a latent period during which 

epileptogenic process takes place, which in turn lead to spontaneous recurrent seizures (SRSs); (4) 

a high incidence of hippocampal sclerosis, i.e.; segmental loss of pyramidal neurons, dispersion of 

granular cells and reactive gliosis (18) (19) (20) (21), (5) a high prevalence of behavioural 

disturbances and cognitive impairment (22) (23) (21) (24) (25) (26), (6) MTLE patients are among 

the most refractory to medical treatment (27). 
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Most of the characteristic features of TLE can be replicated in chronic animal models of TLE, 

especially kindling and status epilepticus animal models such as the pilocarpine and kainite animal 

models of SE (28). For the purpose of the current study, we used the pilocarpine rat model to 

recapitulate the events of status epilepticus and the chronic development of temporal lope epilepsy. 

This model appears to be highly isomorphic with the human TLE. The pilocarpine model has been 

used in many laboratories since its description in 1983 to investigate the pathogenesis of TLE and 

to evaluate the efficacy of anti-epileptogenic drugs (reviewed in: (29, 30). 

 

1.2. The pilocarpine rat model  
 

The pilocarpine model was first described in 1983 in rats  (31) (32) and then in mice (33) to 

produce limbic seizures. This model is widely used and has been modified in many laboratories. 

Depending on the aims of the experiments, different laboratories use different dosages of 

pilocarpine, pre-treatment protocols and animal species (29, 30). In addition, the duration of SE 

induced by pilocarpine or the anti-epileptic drugs used to terminate the seizure varies as well. 

Pilocarpine can induce SE in rats after systemic (34), intracerebroventricular (35) and 

intrahippocampal administration (36). For the systemic route of administration, the pilocarpine 

dose necessary to induce SE ranges from 300 to 400 mg/kg in adult rats (37, 38). Lower pilocarpine 

doses (100 - 200 mg/kg) may produce brief and less severe seizures, but do not result in SE (32). 

The dose of pilocarpine administered to induce SE significantly affects the latency to seizure, 

mortality rates, and neuropathology. When compared to lower doses of pilocarpine (300 mg/kg, 

i.p. or less), higher doses (350 – 400 mg/kg, i.p.) have resulted in a reduced latency to SE onset 

and a greater percentage of rats developing SRSs (37, 38). However, higher doses of pilocarpine 
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have also resulted in greater mortality rates, and this may be caused by the more intense seizure 

and brain damage (37, 38). 

 

1.2. 1 Pilocarpine initiates seizure through the activation of M1 Receptors 
 

The systemic administration of the potent muscarinic agonist, pilocarpine, initiates seizure 

through the activation of the muscarinic M1 receptors. Other cholinergic agonists, such as 

carbachol and Bethanechol can induce seizure and seizure induced brain damage in rodents as well 

(39). Furthermore, the pilocarpine induced-SE can be antagonized by the systemic administration 

of the non-selective muscarinic antagonist, atropine  (32, 40). Moreover, M1 knockout mice do 

not develop status epilepticus after pilocarpine administration (39).  

M1 receptors are G protein-coupled receptors (GPCRs), which are in turn coupled to the 

activation of phospholipase C-beta (PLCβ)  (41). PLCβ dependent cleavage of 

phosphatidylinositol 4,5-bisphosphate (PIP2) generates inositol triphosphate (IP3) and 

diacylglycerol (DAG) (Berridge, 2009), resulting in an alteration in a Ca2+ and K+ current and 

increasing the excitability of the brain (42). An alternative mechanism by which M1 receptors may 

generate excitatory action involves Src kinase activation (43). Activation of M1 receptors can 

increase the intracellular Ca2+ levels, which stimulates Src kinase activation (44). Src kinase 

phosphorylates other signaling molecules, including soluble guanylyl cyclase and extracellular 

signal-regulated kinase (ERK) (43), both of which have been implicated in cholinergic excitation 

(43, 45). In addition, in vivo microdialysis studies have revealed that pilocarpine induces an 

elevation in glutamate levels in the hippocampus following SE (46).  

Over the past two decades, research has elucidated a serious of maladaptive changes that 

contribute to the transition from a single seizure initiated through muscarinic receptor activation 
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to status epilepticus. As mentioned in the above paragraph, in-vivo microdialysis has shown that 

pilocarpine induces an elevation in glutamate levels in the hippocampal formation after the 

induction of seizures (46, 47). The glutamate propagated neuronal excitability can accelerate the 

internalization of the inhibitory Gamma-Amino Butyric Acid A (GABAA) receptors (48). Once 

seizures are initiated, their maintenance depends on mechanisms different in nature from the 

muscarinic receptors, since muscarinic antagonist become ineffective in terminating established 

seizures (49).  The elevated glutamate levels suggest an excessive excitatory drive during the acute 

phase of pilocarpine model. Substantial evidence now supports the idea that following the 

activation of muscarinic receptors, SE is maintained by activation of glutamate receptors (50). 

 

1.2. 2 Behavioral and clinical features of seizure development in the pilocarpine model  
 

The epidemiologic study reported that up to 42% of patients who experienced SE as their first 

seizure (mean age 39.7) developed epilepsy in the form of TLE over the next 10 years (51). The 

pilocarpine model closely mimics some important features of TLE, in which an initial precipitating 

brain insults like SE, is frequently followed by a latent phase followed by the development of 

recurrent seizures. An acute episode of SE serves as the IPI (29, 30). The three stages of seizure 

development in response to pilocarpine administration are described below. These are the acute 

phase, epileptogenesis, and the chronic phase.  
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1.2.2. 1 The acute phase 

 

Following the pilocarpine administration, rodents experience a series of frequent seizures, 

including SE. 

i. Behavioral seizures during the acute phase  

According to Turski et al. (1983a), behavioral manifestations increase with time following 

pilocarpine till the development of generalized tonic clonic seizure. After 5-10 min of pilocarpine 

intraperitoneal injection, animals were motionless followed by peripheral cholinergic stimulation 

symptoms such as salivation, piloerection, eye blinking and urination. During this period animals 

are able to be distracted by tactile or auditory stimulation (52). These cholinergic symptoms remain 

to be observed for approximately 45 min following pilocarpine injection. Then subside as the 

limbic motor seizure in the upper extremity clonus start to develop within 30-40 min after 

pilocarpine injection. Four limb clonus, rearing and falling, typically develops soon following the 

initial limbic seizures. During SE seizure, rats are unresponsive to external touch and sound 

stimulation (37). In the absence of specific measures to terminate SE, seizure spontaneously 

continues within 5 to 6 hours (32, 37). Animals lose their consciousness for the 24 hour period 

following cessation of SE. Body weight decreased after SE (10–20%) but recovered quickly after 

approximately 1 week (see figure 13). 

Mortality rates after pilocarpine induced status epilepticus have been reported to be around 

30–40% for male Wistar rats treated with 300–400 mg/kg pilocarpine (31, 53). As an alternative 

approach to reducing mortality, we have aimed to terminate the SE duration to 60-90 min using 

pentobarbital. Indeed, reduction of the SE length does result in a significant decrease in mortality 

rate. However, it must be noted that SE duration of 60-90 min is crucial for the development of 

the full syndrome including SRS. Furthermore, pentobarbital is widely used to limit SE duration 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518220/#bib108
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518220/#bib110
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in post-SE models of TLE in order to reduce SE-associated mortality and to avoid the variability 

in long-term consequences of SE arising from differences in SE duration among individual rats 

(Goodman, 1998). When the SE duration is of sufficient length to produce neuronal damage and 

development of epilepsy,  pentobarbital does not seem to exert any obvious neuroprotective effect. 

 

ii. Electrographic activity in the acute phase of pilocarpine rat model of SE. 

EEG recording after pilocarpine produces both ictal and interictal epileptiform correlate well 

with the behavioral changes described in section 1.4.1.1. Immediately following pilocarpine 

injection, low-voltage, fast activity reading appears in the cortex while a clear theta rhythm appears 

in the hippocampus. As the behavioral features of SE become more intense, high voltage, fast EEG 

activity take over the hippocampal theta rhythm. Electrographic seizures characterized by high 

voltage, fast activity and prominent spiking precede limbic motor seizures, and are proposed to 

result from M1 receptor activation (54). It has been proven that this activity arises in the 

hippocampus and spread to the cortex(32) (53) (55). If not terminated, sustained electrographic 

activity lasts 4-5 hours followed by periodic discharges on a relatively flat background.  

iii. Scoring of pilocarpine induced seizures 

In this thesis, we used Racine criteria (56), which at first was developed to score kindled 

seizures in adult rats. The seizure scoring was as follows: Stage 1, immobilization, eye blinking, 

twitching of vibrissae and mouth movements; Stage 2, head nodding, often accompanied by severe 

facial clonus, piloerection; Stage 3, straub tail, forelimb clonus; Stage 4, rearing; Stage 5, rearing, 

falling and generalized convulsions some animals may develop wild running and jumping with 

vocalization. 

http://www.sciencedirect.com/science/article/pii/S0028390806001468#bib21
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1.2.2. 2 The latent phase 

 

The latent phase also referred to as epileptogenesis, is the period between the brain insult and 

the onset of spontaneous seizures. During this stage, animals show normal behavior and no seizure 

activity. It is believed that during the latent period, pathophysiological changes take place within 

the neurons and end up by the appearance of spontaneous seizure (57). The duration of the latent 

period varies depending on the experimental protocol used. Several research have examined the 

latency to develop SRS. After a high single systemic dose of pilocarpine, the latent period range 

between 4-44 days in different species of rats (58, 59).  

A minimum duration of SE is required for the development of chronic epilepsy. For instance, 

using the pilocarpine rat model, Lemos and Cavalheiro (1995) were able to detect SRS in rats 

experienced SE duration of 60 min, but not in rats with only 30 min of SE (60). Furthermore, 

Biagini (2006) found that the rats experience a short SE duration 1-2h had a progressively shorter 

latent period than animals with longer SE (3-6h), and this was suggested to be related to the 

increased levels of neurosteroids produced by glial cells. Since neurosteroids, such as 

allopregnanolone, act as modulators of the inhibitory Gamma-Amino Butyric Acid A (GABAA) 

receptor, which may delay the appearance of SRSs (61). 

 

1.2.2. 3 The chronic phase  

 

The chronic phase pilocarpine rat model starts by the appearance of SRSs, which continues for 

the lifetime of the animal, same happens in patients who develop TLE after a severe brain insult 

such as SE. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518220/#bib9
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i. Behavior during the chronic phase  

The behavioral observations of pilocarpine-induced seizures can be classified by referring to 

stages 1-3 as partial seizures, and stages 4-5 as tonic component (62). The seizure seen during SRS 

are usually characterized by facial automatism, four limb clonus, rearing, falling followed by tonic 

clonic seziures. Once SRSs (stage 5 seizure) appears, they start to recur in clusters with cyclicity, 

peaking every 5 to 8 days (62). The frequency of SRSs increases within the first weeks of SRS 

appearance and then remains constant 2 months after SE and persists throughout the lifetime of 

the animal (62, 63). Aggressive and anxious behaviour is usually observed before the beginning 

of SRSs and wane during the seizure period. In addition, rats with aggressive behavior tend to 

develop early-onset spontaneous seizures and are also likely to have refractory seizures (64). 

Immediately after the seizure, animals are usually frightened and may experience drawsiness. 

 

ii. Electroencephalographic patterns observed during SRSs  

The first spontaneous seizures are partial seizures characterized by paroxysmal activity in the 

hippocampus that does not appear in cortical recordings (65). Subsequent seizures show a gradual 

spreading of paroxysmal activity from the hippocampus to cortical recordings and longer duration 

of ictal events. The fully developed generalized seizures are characterized by bursts of spiking 

activity in the hippocampus that spread to the cortex (65, 66). Electrographic seizures during RSR 

unusually last more than 60 sec and are followed by depressed background activity with frequent 

interictal spikes.  
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1.3.  Histopathological changes of SE induced TLE 
 

1.3.1. SE-induced neurodegeneration  

Status epilepticus is consistently associated with widespread brain damage in the hippocampus 

and other brain regions. Most of the neuronal damage happens in the few days following SE (67, 

68). It is not clear weather SRSs contribute to the neurodegeneration in the chronic period, or the 

detected neuronal loss in this stage is due to a chronic effect from the initial SE. While no 

connection between the neuronal injury and the frequency of SRSs was reported in some 

studies(69) (57, 70), other studies showed a more progressed loss of neurons in the chronic stages 

after SE (71).  

The majority of patients with TLE develop epilepsy after brain damage secondary to an initial 

precipitating insult such as, SE (19). While some TLE patients show no obvious brain lesions, 

approximately 70% shows hippocampal sclerosis. All of these features were found in specimens 

resected from patients undergoing surgery for medically intractable TLE, and it is characterized 

by; (1) loss of pyramidal cells and synaptic reorganization, (2) mossy fiber sprouting and granular 

cell dispersion, (3) gliosis, (4) dysfunction of the blood-brain barrier (5) and neuroinflammation   

(72, 73) (74) (75). A similar pattern of neuronal damage is seen the pilocarpine rat model (76) 

(77). The most obvious change in  hippocampal sclerosis is the significant pyramidal cell loss in 

the hippocampal subfield CA1 and CA3, with lesser extent of neuronal loss in CA2 (78) (79). In 

the dentate hilus, many excitatory mossy cells are lost (18) (80). Granular cell layer of the dentate 

gyrus show lesions in 50 % of TLE patients.The lesions in this structure range from mild changes 

such as granular cell dispersion to severe damage such as a significant cell loss (81) (82). In 

addition, reorganization of the inhibitory neuropeptide Y (NPY) fiber networks in the dentate 

gyrus have been reported  (83). 
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1.3.2. Reactive gliosis 

Neuronal cell death is accompanied by extensive gliosis in the epileptic brains of TLE patients  

(84). This phenomenon is the same in animal models of TLE. Reactive gliosis is characterized by 

hypertrophy of astrocytes exhibiting upregulation of the intermediate filament protein, as well as 

a proliferation of astrocyte and microglia (85). Astrocytes perform a variety of tasks including, 

synaptic formation and homeostasis, regulation of neuronal glutamate subunit expression, 

regulation of blood brain barrier and blood flow, neuronal ionic homeostasis, neurogenesis and 

neuroprotective properties (86). Alterations in astrocytic properties have been best described in the 

specific case of human temporal lobe epilepsy. Numerous studies reported the role of glial cells in 

epilepsy are available (87) (74) (88). Some studies showed that reduced or dysfunctional glial 

glutamate transporters GLT-1 in the hippocampus increase extracellular glutamate levels and may 

contribute in triggering SRSs in patients with temporal sclerosis  (89). In addition, astrocytes were 

found to participate in the delayed neuronal damage following pilocarpine induced status 

epilepticus (90). The seizure induced rise in the astrocyte intracellular Ca2+ operates  Ca2+-

dependent ion channels and induce glutamate release from astrocytes (91). 

 

1.4.  Cognitive deficits after SE 
 

Cognitive impairment problems are common in patients with epilepsy (92). A survey by the 

International Bureau for Epilepsy (IBE) found that 44% of patients with epilepsy have difficulty 

in learning and memory formation, 45% felt that they were slow thinkers, 59% felt sleepy or tired, 

and 63% of patients receiving antiepileptic drug (AEDs) found that the side effects of AEDs 

prevented them from achieving normal activities (93). The origin of those deficits remains 
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uncertain. However, several contributing factors have been proposed, including antiepileptic drugs  

(94) seizures (95), abnormal epileptiform charges (96) and neuronal circuit reorganization (97). 

Cognitive deficits may include difficulty in learning and memory retrieval (98), in addition, other 

comorbid psychiatric disorders profoundly impact this patient population such as depression, 

stress, aggression and anxiety (99). 

Impairment of learning and memory has been described in adults and children following 

SE (100), and in patients with TLE (101). More specifically, patients with TLE frequently showed 

deficits in declarative memory (ability to acquire facts and events related to one ‘s personal past, 

which is often compared with visual-spatial learning in rats) (102), and in the performance of 

visuospatial tasks (103).  

Prolonged seizures lead to neuronal cell death and permanent changes in hippocampal 

anatomy. The physiology of the limbic system, and particularly the hippocampus, plays a crucial 

role in episodic and working memory. Within the hippocampus, local field oscillations in the theta 

frequency range (5–12 Hz in the rat) are critical in the formation of short-term and episodic 

memory (104), as well as spatial working memory (105) and spatial memory (106). 

The development of chronic epilepsy induced in rats by systemic administration of pilocarpine 

reproduces most clinical and neuropathological features of human TLE (32). Previous studies 

demonstrated severe impairment of hippocampus-dependent spatial memory in pilocarpine-treated 

rats early after the induction of seizure (107), at the latent period  (108) (107), and during the 

chronic period  (109) (110) (111). 
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1.5.  Mechanisms underlying SE- induced cell death 
 

1.5.1. Glutamate and neuronal injury in SE 

 Status epilepticus induced cell death is believed to be initiated by excitotoxicity (112). 

Excitotoxicity occurs when glutamate receptors are excessively stimulated. Glutamate 

receptors are generally divided into subtypes referred to ionotropic and metabotropic. Of the 

ionotropic receptors, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 

(AMPAR) and N-Methyl-D-aspartic acid (NMDAR) seem to play a significant role in SE 

(113). Importantly, the AMPAR and NMDAR are also critical for normal learning and memory 

formation (114), as they stimulate the synaptic plasticity to maintain memory circuits in the 

brain (115). Plasticity depends on glutamate receptor trafficking to postsynaptic membrane, 

where they can participate in synaptic activity (115). SE increases the glutamate levels in the 

hippocampus after seizure (89). SE increases the turnover and trafficking of glutamate 

receptors, particularly NMDA and AMPA receptors, to the postsynaptic membrane (116) 

(117). This leads to rapid calcium influx and a significant increase in intracellular calcium 

levels. As a result, several calcium-dependent enzymes including neuronal nitric synthase, 

phospholipases, endonucleases, and cysteine proteases (i.e., calpains and caspases) are 

activated by SE in an unrestrained manner. These enzymes subsequently damage cell structures 

such as components of the cytoskeleton, membrane and DNA (118) (119). Furthermore, this 

excess intracellular calcium activates several signaling pathways leading to mitochondrial 

swelling, low ATP levels, and accumulation of reactive oxygen species (ROS) (116). In 

addition, due to dysfunctional mitochondria, a large amount of glycolysis occurs in SE along 

with overproduction of lactic acid (120). Any accumulation of lactic acid will produce cerebral 

lactic acidosis, which leads to further increases in the production of ROS and more 
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mitochondrial dysfunction (120). Eventually, excessive calcium and ROS lead to the collapse 

of mitochondrial membrane potentials, the activation of mitochondrial matrix enzymes, and 

the opening of mitochondrial permeability transition pores, which decreases ATP production 

and induces neuronal cell death. As glutamate is the primary excitatory neurotransmitter in the 

brain, associated receptors have been deemed a logical target for antiepileptic activity. As 

glutamate receptor activation occurs at the beginning of this cascade of deleterious events, we 

propose that targeting glutamate receptors in SE with antagonists would protect from the SE-

induced neuronal cell loss.  

 

1.5.2. AMPA receptors (AMPAR) and SE 

AMPARs are the principal molecular units for fast excitatory synaptic transmission in the 

central nervous system and are composed of four subunits, GluR1–GluR4 (121). High expression 

of GluR2 favors the formation of calcium-impermeable AMPARs. Any combination of GluR1/-

3/-4 subunits that lacks GluR2 is calcium-permeable, which increases sensitivity to the excitatory 

effects of glutamate (Santos et al., 2009). This forms the basis of the “GluR2 hypothesis”, which 

predicts that a relative reduction in the expression of GluR2 enhances calcium influx through 

newly synthesized AMPAR, thereby increasing neurotoxicity of endogenous glutamate (122). 

Recent observations have revealed a reduction in GluR2 expression and the formation of calcium-

permeable AMPAR’s in hippocampal neurons in a model of SE (123). It is also shown that 

AMPAR-mediated excitation is progressively increased during SE (116). Furthermore, status 

epilepticus was found to potentiate AMPAR-mediated excitatory transmission of CA1 pyramidal 

neurons followed by increased surface expression and dephosphorylation of the GluA1 subunits  

(124). 

http://www.sciencedirect.com/topics/neuroscience/hippocampus-anatomy
http://www.sciencedirect.com/topics/neuroscience/pyramidal-cell
http://www.sciencedirect.com/topics/neuroscience/pyramidal-cell
http://www.sciencedirect.com/topics/neuroscience/dephosphorylation
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1.5.3. NMDA receptors (NMDAR) and SE 

In many in vivo and in vitro animal models, the use of pilocarpine induced over expression of 

NMDA subunits in hippocampal neurons (125). It was reported that NR2A containing NMDARs 

activation was required for the development of limbic epilepsy in kindling and pilocarpine models 

(126).  NMDAR overexpression leads to neuronal hyperexcitability and the prolongation of 

seizures. Therefore, NMDAR antagonists remain highly efficient in ending SE, even late in its 

course (127). NMDA receptor antagonists administered to rats before or after SE provide 

significant neuroprotection (52) (128). In an in-vitro model of SE, specific entry of Ca2+ through 

NMDA receptors results in more cell death as opposed to Ca2+ entering through non-NMDA 

glutamate receptors or voltage-gated calcium channels (50). Similar findings have been 

demonstrated in other models of glutamate neurotoxicity (129). 

1.6.  Mechanism of cell death initiated by SE 
 

Although it is generally acknowledged that neuronal loss following SE is excitotoxic in nature 

(50), it is not clear whether the widespread neuronal cell death phenotype after SE is mainly 

necrotic or apoptotic in nature  (112). A detailed discussion mechanism of neuronal death is beyond 

the scope of this thesis, but various reviews of this topic are available (130) (131). Briefly, necrosis 

results from severe mitochondrial dysfunction and cell membrane rupture. Therefore, necrosis 

refers to morphological characteristics seen after the cell has already died and reached into 

equilibrium with the surroundings (131).  

Apoptosis is a distinct morphological type of cell death characterized by leakage of the cellular 

membrane, degradation of DNA nucleosome, the formation of condensed chromosome and 

formation of membrane-bound apoptotic bodies (132). Apoptosis and/or necrosis can be initiated 

by a countless number of neurotoxic signaling pathways, and numerous reviews of these pathways 
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are available (133) (134). This part briefly explains the roles of caspases and calpains in apoptosis 

and necrosis. Apoptosis is mediated by specific caspases which can be activated by either intrinsic 

(receptor-mediated) or extrinsic (mitochondria-mediated) pathways (135). After receiving a death 

stimulus, the initiator caspases (e.g., caspase-8 and caspase-9) activate some effector caspases such 

as caspase-3, which in turn stimulate a programmed signaling pathway end up by apoptosis (135). 

On the other hand, elevated intracellular Ca2+ activated calpain enzymes which stimulate the 

cleavage of multiple cytoskeletal proteins, kinases, phosphatases, membrane receptors and 

transporters. The breakdown of cytoskeletal proteins accelerates cell death and contributed to the 

characteristic morphology of necrotic cells (136).  However, assuming the involvement of caspases 

and calpains to a specific cell death morphology is not straightforward. Alternatively, a widely 

more accepted view is that excitotoxic cell death is a mixed form of necrosis and apoptosis (137) 

(119).  

The morphological features of cell death after status epilepticus imply that cells die of necrosis  

(112). Regardless of the primary necrotic morphology of dying neurons after SE, recent studies 

found that DNA degradation, chromatin condensation and fragmentation, activation of caspases 

were observed, indicating dying neurons also exhibit apoptotic features (138). In many instances, 

a heterogenous form of neuronal death with apoptotic and necrotic features following SE were 

reported (139) (140).  Autophagosomes and secondary lysosomes were also detected in dying 

neurons after SE, indicating that autophagy contributes to neuronal death following prolonged 

seizures as well (141). Autophagy is usually initiated with increased oxidative stress  (142).  
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1.7.  The role of neurodegeneration in epileptogenesis  
 

Prolonged seizures result in widespread injury to the brain. However, the contribution of 

neuronal loss in the development of epilepsy remains debatable (143). Two points suggest that 

neurodegeneration after SE is not needed for the development of SRSs. First, numerous studies 

indicated that complete neuroprotection of the hippocampus, amygdala and cortical formations did 

prevent the development of epilepsy after a brain insult. For example, the administration of MK801 

90 min after kainite induced-SE can prevent most of the hippocampal and para-hippocampal 

degeneration but did not prevent the development of epilepsy (144). Similarly, a prolonged 

treatment with valproate was successful in preventing cell loss but has no effect on the 

development, severity or the frequency of SRSs (16). 

Second, many animal models of epilepsy can lead to the development of SRSs with no 

significant neurodegeneration. For example, prolonged electrical stimulation of specific brain 

region such as the hippocampus or the amygdala can lead to the development of SRSs after a latent 

period without neuronal loss. In addition, febrile seizures in immature rats can lead to SRSs 

without neuronal death (145). Third, it has been observed that SRS in some patients with TLE 

were successfully controlled by partial removal of hippocampal tissue that exhibited no neuronal 

loss (146) (147). However,  some studies suggest that removal of hippocampal tissue might disrupt 

the critical neuronal pathways responsible for epileptogenesis induced by neuronal loss in other 

parts of the hippocampus or other regions of the brain (148). 

Despite that, some studies found that SE-induced neuronal loss aggravates the process of 

epileptogenesis. For instance, Gorter et al., (2001) investigated the development of spontaneous 

seizure in a rat model after a long electrical stimulation. 67% of the rats that underwent SE, 

developed SRSs after a latent period of 1 week. The remaining rats did not develop that progression 
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of seizure. Gorter compared weather different pattern of SRSs development could be related to 

neuronal changes in the hippocampus. Though both groups underwent SE, the majority of cell 

damage, decreased parvalbumin and somatostatin immunoreactivity and progressive mossy fiber 

sprouting were seen among the group that developed SRSs with in short latent period (149). 

Similar findings that correlate neuronal loss and the development of epilepsy were found in other 

studies (150) (151). Therefore, it remains possible that neuronal loss is a mechanism among many, 

that underlie the genesis of TLE; for example, neurogenesis (152), changes in the balance of 

excitatory and inhibitory processes (153), or alterations in the release or postsynaptic effects of 

neurotransmitters (154). Thus, although it seems that neurodegeneration is not essential for the 

development of epilepsy, neuroprotective strategies may have a role in modifying the disease 

outcome (155) (156) (157). 

 

1.8.  Decreased benzodiazepines efficacy with seizure progression in SE  
 

Status epilepticus is a commonly encountered medical emergency (158). SE quickly becomes 

self-sustaining, independent of its initial trigger and resistance to multiple antiepileptic drugs (9). 

While researchers have made considerable progress in controlling epilepsy, status epilepticus 

remains a therapeutic challenge that still carries a 27% mortality and a high morbidity. Despite the 

treatment guidelines, many SE sufferers end up with permanent brain damage, especially in the 

limbic system, resulting in memory impairment, cognitive deficits, epilepsy and other neurological 

morbidities.  

The current first-line therapy for SE is based on compounds that potentiate the inhibitory 

GABAA receptor complex (such as, diazepam, lorazepam. Midazolam and phenobarbital) or 
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blocks Na+-channels (e.g., phenytoin, fos-phenytoin). However, this first line treatment is 

effective in discontinuing SE in merely up to 65% of patients (159). 

Time-dependent pharmacoresistance is a major therapeutic problem in SE. As seizures 

continue, pharmacoresistance develops progressively. The anticonvulsant potency of 

benzodiazepines can decrease 20-fold in 30 min of seizures (160). In adult animals, diazepam was 

effective in controlling seizures in all animals when it was given 10 minutes after the onset of SE 

but failed after 45 min. Phenytoin and barbiturates also lose potency, but more slowly (161). 

Studies have revealed that GABAR-mediated inhibitory synaptic transmission is reduced in the 

hippocampi of animals in SE, due in part to the internalization of synaptic GABA receptors (162) 

(163).   

As previously described in section 1.5, excitotoxicity mediated via the glutamate receptors 

is recognized as a major mechanism in neurodegeneration resulting from SE. Consistent with a 

critical role of NMDARs in SE-induced neurodegeneration, previous studies showed that 

systematic administration of NMDA antagonists is neuroprotective in rodent models of epilepsy, 

even when given after the onset of SE (164) (128). Furthermore, AMPA antagonists are potent 

anticonvulsants and are neuroprotective in case of SE (123) (123) (165). 

In this preclinical research project, we will use glutamate receptor antagonists that are 

currently used in patients for indications other than SE. For example, Amantadine is an antiviral 

drug routinely used in humans for the treatment of Parkinson’s disease (166). Amantadine also 

inhibit the NMDA receptors by accelerating the channel closure during the channel block (167). 

Amantadine has been found to improve cognitive outcomes and neuronal survival after traumatic 

brain injury in rats via blocking glutamate-induced excitotoxicity (168). Furthermore, amantadine 

was found to be effective as adjuvant therapy for refractory absence epilepsy (169) (170) (171).   

http://www.sciencedirect.com/topics/medicine-and-dentistry/neurotransmission
http://www.sciencedirect.com/topics/neuroscience/hippocampus
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 Perampanel is a novel antiepileptic drug that has affinity for excitatory post-synaptic AMPA 

receptors where it acts as a selective non-competitive antagonist (172). Perampanel is the first-in-

class antiepileptic agent approved by the FDA for use as monotherapy for partial seizures, and as 

adjunctive therapy for primarily generalized tonic–clonic seizures (173) (174). It has a long half-

life that ranges between 52-129 hours, and a 100% bioavailability after an oral dose (175). The 

long half-life makes it an ideal choice for an individual who may have issues with adherence. 

Among the antiepileptics, the drug is generally well tolerated, with dizziness and somnolence 

being the most common adverse events experienced by users (176). We intend to evaluate the 

efficacy of perampanel and amantadine in a pilocarpine rat model of SE. The effect of these 

compounds on learning and memory performance and neuroprotection will be assessed.  
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2.  Hypothesis and objectives: 
 

The primary hypothesis driving the proposed research is that glutamate receptor antagonists might 

be effective in the treatment of SE. 

Hypothesis: Glutamate receptor blocking agents can prevent neuronal death following SE. In 

addition, these agents can also preserve cognitive function.  

We will test our hypothesis according to the following objectives: 

Objective 1:  

To determine whether perampanel, amantadine can prevent cell death in a primary hippocampal 

in vitro model of glutamate excitotoxicity. 

Objective 2:  

To determine whether perampanel, amantadine can suppress early and late seizure activity in a 

pilocarpine rat model of SE. 

Objective 3:  

To determine whether perampanel, amantadine can prevent the development of acute and long-

term memory impairment after SE. 

Objective 4:  

To determine whether perampanel, amantadine can prevent the development of spontaneous 

recurrent seizures. 

Objective 5:  

To determine whether perampanel, amantadine can prevent SE induced neuronal cell loss. 
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3. Materials and Methods: 
 

 3.1 In vitro experiments 
 

3.1.1. Rat primary hippocampal culture 

Hippocampal neuronal cultures were prepared from E18 fetuses of Sprague-Dawley rats 

(Charles River Canada, Montreal, PQ, Canada) as described before with some modifications (177). 

In brief, the hippocampus was dissected in Ca2+- and Mg2+-free HBSS supplemented with 

penicillin (100 U/ml)-streptomycin (100 μg/ml). The hippocampal tissues were then digested at 

37°C with 1% trypsin-EDTA for 15 min. The reaction was quenched with fetal bovine serum 

(FBS) and tissues were rinsed with HBSS to remove FBS. The dissociated cell suspension was 

centrifugated at 800 g for 5 min; the supernatant was removed, and pelleted cells were resuspended 

in a chemically defined serum-free Neurobasal medium supplemented with 0.5% sodium pyruvate, 

2% B27, 0.1% L-glutamine, 0.5% HEPES, 10 U/ml penicillin, and 10 µg/ml streptomycin. Cells 

were plated on Poly-D-Lysine coated coverslips or plates, and grown at 37°C with 5% CO2-

humidified atmosphere. Culture media were changed every 3 to 4 days. Ninety-five percentage of 

cultured cells were MAP2 reactive cells in this culture condition. 

 

3.1.2. Induction of Excitotoxicity  

Excitotoxicity was induced to the hippocampal neurons at DIV 12-14 using AMPA, NMDA 

or glutamate. All antagonists including the experimental glutamate antagonist, perampanel (10 

µM) and amantadine (100 µM) were added for a period of 30 min before the agonists. Neurons 

were exposed to AMPA (100 µm), under non-desensitizing conditions, in the presence of 

cyclothiazide (CYZ) 30 µM (a preferential blocker of AMPA receptor desensitization) and the 

non-competitive NMDA antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-
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5,10-imine hydrogen maleate (MK-801)10 µm, for 1 hour in supplemented Neurobasal medium 

(178). Cells were then washed with pre-warmed media and incubated for 24 h in supplemented 

neurobasal medium. In another set, neurons were exposed to NMDA (100 µm) and glycine 

(10 µm) in Mg2+-free medium with NBQX (50 µm), an AMPA- receptor antagonist, added 30 min 

before NMDA. All drugs were applied directly to the medium and neurons were maintained at 

37 °C with 5% CO2 for further experiments. Doses of perampanel and amantadine were chosen 

based on dose response curve. Doses of NBQX, MK801, Cyclothiazide and glycine was chosen 

according to previously published papers. 

 

3.1.3. Lactate dehydrogenase (LDH) activity 

LDH is a cytoplasmic enzyme that catalyzes the interconversion of lactate and pyruvate with 

concomitant interconversion of nicotinamide adenine dinucleotide (NAD) and NADH (the 

reduced form). LDH is released from cells into the culture medium when the plasma membrane 

integrity is compromised. Therefore, the amount of released LDH represents the degree of cell 

death. The extracellular LDH level was measured using an LDH assay kit obtained from Sigma-

Aldrich. The intensity of color developed was measured using spectrophotometric microplate 

reader at 490 nm wavelength.  

3.1.4. 3-[4,5-dimethylthiazol-2-yl]-2,5diphenyltetrazolium bromide (MTT) assay 

In live cells, mitochondrial enzymes have the capacity to reduce the tetrazolium dye MTT into 

its insoluble formazan which presents a purple color after being dissolved in acidic solvent. The 

MTT assay is for assessing the integrity of mitochondrial enzymes and may, under defined 

conditions, reflect the number of viable cells in cultures. Following the induction of excitotoxicity, 
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cells were incubated with MTT (0.5 mg/ml) for 3 h at 37ºC. The intensity of purple color developed 

was measured at 570 nm wavelength using spectrophotometric microplate reader.  

 

3.1.5. Immunofluorescence and Hoechst staining 

Neuronal cell death by apoptotic pathway was assessed by using the fluorescent Hoechst 33258 

staining (179). Briefly, neurons grown on coverslips were incubated with primary mouse anti-

microtubule-associated protein 2 (MAP2) antibody overnight at 4°C. After being washed three 

times with PBS, neurons were incubated with goat anti-mouse Alexa Flour 488 conjugate 

secondary antibody for one hour and then incubated with 5 μg/ml Hoechst 33342 at room 

temperature for 10 min. The coverslips were mounted onto slides in fluorescent mounting medium 

and observed under a confocal laser scanning microscope (Olympus Fluoview). The percentage of 

cells showing chromatin condensation (fragmented nuclei) to evenly stained nuclei was calculated 

by counting nuclei in six randomly selected fields per coverslip in each experimental condition. 

Data were obtained from three coverslips in each experimental condition with total four 

independent experiments. 

 

3.1.6. Western blot and ELISA 

Cultured neuronal cells or hippocampal tissues were homogenized in lysis buffer (25 mM Tris, 

150 mM NaCl, 0.1% sodium deodecyl sulphate, 0.5% sodium deoxycholate and 1% Triton X-100, 

pH 7–8). The homogenates were kept on ice for 15 min and centrifuged at 15,000 rcf for 10 min 

at 4ºC. The supernatant was collected and used for western blot. Samples consisting of the same 

amount of total proteins were separated on 12% SDS-PAGE and transferred onto polyvinylidene 

difluoride (PVDF) membranes. Membranes were incubated with 5% fat-free milk for 1 h at room 
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temperature to block nonspecific background. The target proteins were immunoblotted with 

primary antibodies against caspase-3 (cell signaling, cat# 9662, 1:1000), Bcl-2 (Abcam cat# 

ab59348, 1:1000) and Bax (abcam ab104156, 1:1000) overnight at 4°C and then with 

corresponding HRP-conjugated secondary antibody for 1 h at room temperature. Membranes were 

reprobed with Actin (Santa cruz sc12, 1:200) on the same blot to verify consistency of protein 

loading. Protein bands of interest were analyzed using NIH ImageJ software and data were 

expressed as the percentage of the intensity of target protein to that of corresponding Actin or 

Histone controls. Total caspase 3 and activated caspase 3 activity were measured using RayBio® 

ELISA kit method (cat# PTE-CASP-D175-T). Data were presented as ratios of the activated 

caspase 3 to total caspase 3 within each treatment group. 

 

3.1.7. Isolation of nuclear enriched fraction 

Primary neuronal cultures or freshly dissected hippocampal tissues were homogenized using 

buffer A (10 mM HEPES-KOH, 10 mM KCl, 10 mM EDTA, 1.5 mM MgCl2, 0.2% BSA, 1 mM 

DTT, 0.4% NP40 and protease inhibitors). The homogenate was incubated for 15 min on ice and 

then centrifuged at 850 g for 10 min at 4C. The supernatant was saved as suspension 1. Buffer A 

was added to the pellet again and the suspension was centrifuged at 15,000 g for 3 min at 4C. The 

supernatant was added to suspension 1 and centrifuged at 15,000g for 15 min at 4C to remove 

any nuclei contaminations. The resulting supernatant was stored as cytosolic fraction. The pellets 

obtained from two spins were suspended in buffer B (20 mM HEPES-KOH, 400 mM NaCl, 10% 

glycerol, 1 mM DTT and protease inhibitors). The suspensions were incubated for 2 h on ice with 

occasional shaking, and then centrifuged at 15,000 g for 5 min at 4C. The resulting supernatants 

(the nuclear enriched fractions) were collected and applied to western blot. The relative purity of 
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subcellular fractionation was assessed by blotting with subcellular markers, e.g. Histone H2A for 

nucleus (Abcam cat# 18255, 1:1000), 14-3-3 for cytoplasmic (Abcam cat# 9063, 1:1000), insulin 

receptor for cell membrane (Santa Cruz 1:200), Stearoyl-CoA desaturase-1 (SCD1) for 

endoplasmic reticulum (Cell Signaling cat# 2438S, 1:1000), Cytochrome C for mitochondria 

(Santa Cruz cat# sc-13156, 1:200), and as well as nuclear death markers, Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) (Cell Signaling cat#, 1:5000) , Phosphatase and tensin 

homolog (PTEN) (Santa Cruz cat#, 1:500), p53 (Abcam cat# 187820) and  sterol regulatory 

element-binding protein 1 (SREBP-1) (Novus Biological cat# NB 100-2215, 1:500).   

 

 3.2  In vivo experiments 
 

3.2.1. Animals 

Adult male Sprague-Dawley (SD) rats weighing 250-400 g were used in the study. Animal 

care protocols and guidelines were approved by the University of Saskatchewan Animal Research 

Ethics Board, following the Canadian Council on Animal Care. Rats were group housed (2 per 

cage) in standard polypropylene cages in a temperature controlled (21°C) colony room on a 

12/12 h light/dark cycle. Experimental procedures were carried out during the light phase. Rats 

were divided into 6 groups:  

Group 1: Vehicle control (n=24). 

Group 2: Perampanel control (n=8). 

Group 3: Amantadine control (n=8). 

Group 4: Pilocarpine + Vehicle (n=24). 

Group 5: Pilocarpine + Perampanel (n=38). 

Group 6: Pilocarpine + Amantadine (n=38). 
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Fig.1.  Schematic illustration of the protocol to investigate the effects of perampanel and 

amantadine in a pilocarpine induced rat model of Status Epilepticus. Status epilepticus was 

induced by scopolamine methyl bromide, followed by injection of a high dose of pilocarpine. 

Drugs or vehicle were injected 10 or 60 min after seizure onset. Animals were planted with 

electrodes 1 week prior to SE induction. Rats were tested with Y maze and NOR 72 hours or 1 

month after SE onset, and then sacrificed to assess neuronal injury. In long term study, rats from 

different treatment groups were monitored for the detection of spontaneous recurrent seizures 2 

weeks after SE induction. 
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3.2.2. Electrode implantation and Electroencephalography (EEG) 

All surgeries were performed as described before with some modifications (180). The animal 

was anesthetized using 5% isoflurane and positioned in a Kopf stereotaxic instrument. Anesthesia 

was maintained throughout the surgery with isoflurane gas (2% isoflurane delivered in O2). The 

incisor bar was adjusted until bregma was leveled with lambda.  

One unipolar stainless-steel depth electrodes (E363-1-SPC stainless steel electrode, bare 

diameter 0.25 mm, insulated diameter 0.28 mm, Plastics One, Roanoke, VA) was introduced into 

the brain parenchyma to record intrahippocampal EEG activity. The stereotaxic coordinates  

relative to bregma according to the atlas of Paxinos and Watson (2007) were (Anterior Posterior 

(AP)=–3.3mm, Medial Lateral (ML)=2mm and Distal Ventral (DV)=–3.4 mm). Another unipolar 

electrode was implanted into the cortex (AP + 0.5 mm, ML 4.0, DV − 1.2). A third depth electrode 

was positioned in the white matter of the cerebellum (AP=–11mm, ML=5.3mm, DV=–5.6mm) to 

serve as the reference. A fourth screw electrode was positioned in the occipital bone to serve as 

the ground. The other end of the electrodes was inserted into a plastic pedestal (Plastics One) and 

the entire setup was secured by acrylic adhesive. The wound was closed with surgical sutures and 

Anafen was given on the surgery site for postoperative analgesia as follows: one dose 30 min prior 

to surgery (5 mg/kg s.c.) The same dose was repeated for 3 days after surgery. Animals were 

allowed to recover for a period of 1 week. 

 

3.2.3. Induction of seizure  

Animals were injected with methyl-scopolamine (1 mg/kg, s.c) 15 min prior to pilocarpine 

injection to minimize peripheral cholinergic effects. Pilocarpine (380 mg/kg, i.p) was dissolved 

freshly in 0.9% saline. The beginning of status epilepticus (SE) was considered when the animal 

http://www.sciencedirect.com/science/article/pii/S0028390811002590#bib32
http://topics.sciencedirect.com/topics/page/Status_epilepticus
http://topics.sciencedirect.com/topics/page/Status_epilepticus
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suffered a stage 4-5 motor seizure in Racine's scale and high frequency spikes on EEG. SE was 

terminated one hour after the development of SE by using pentobarbital injection (25 mg/kg i.p. 

for rats in group II and IV). Seizures were monitored for five hours by recording EEG. Perampanel 

(8 mg/kg i.p-dissolved fresh in 1:1:1 (v/v) distilled water, dimethyl sulfoxide, and polyethylene 

glycol 300) or amantadine (45 mg/kg i.p-dissolved fresh in saline) was administered 10 or 60 min 

after the onset of seizure. Since perampanel has longer half-life, the drug was given in tapering 

down plan (4 mg/kg for week I, 2 mg/kg for week II and 0.5 mg/kg for week III) whilst amantadine 

was given twice daily and stopped a week before the behavioral assessment. Two hours after 

pentobarbital injection, rats were given subcutaneous injections of 5% dextrose and 0.9% saline 

(2 ml/rat) for hydration and were monitored daily for adequate food and water intake by measuring 

body weight.  

 

3.2.4. Assessment of Behavioral seizures 

Following pilocarpine injection, the animals were observed for seizure scoring according to 

Racine criteria with slight modification (181). The seizure scoring was as follows: Stage 1, 

immobilization, eye blinking, twitching of vibrissae and mouth movements; Stage 2, head 

nodding, often accompanied by severe facial clonus, piloerection; Stage 3, straub tail, forelimb 

clonus; Stage 4, rearing; Stage 5, rearing, falling and generalized convulsions. 

 

3.2.5. Spatial memory test  

Y-maze apparatus with three enclosed arms (60 cm length × 16 cm width × 30 cm height) was 

used for spatial memory as described previously (182). Visual cues outside but around the maze 

were used to assess hippocampal-dependent spatial recognition memory. The test consisted of two 

http://topics.sciencedirect.com/topics/page/Epileptic_seizure
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trials with a ninety minutes interval in between. Rats were transported to the behavioral testing 

room in their home cages at least 1 h before testing. In the first training (acquisition) trial, rats 

were placed in the maze facing the end of a randomly chosen arm (start arm) and allowed to explore 

the maze for 15 min with one arm closed (novel arm). Rats were returned to their home cages until 

the second (retrieval) trial, during which they could explore freely all three arms of the maze. The 

time spent in each arm was measured using video recordings. Rats entering an arm with all four 

paws was counted as an entry. Data were presented as the percentage of the time spent in the novel 

arm to the total time in all three arms during the 5-min retrieval trial. The maze was cleaned with 

40% ethanol between trials to ensure that animal’s behavior was not guided by odor cues.  

                                             

3.2.6. Novel Object Recognition test 

The novel object recognition task was used to evaluate recognition memory (183). This task 

consisted of two phases, a learning phase and a memory phase. During the learning phase, rats 

were placed into the behavioral arena for a period of 15 min and allowed to explore two identical 

stimulus objects before being placed back into the home cage. After a ninety-minute delay, rats 

were placed back into the arena where one of the two identical objects were replaced by an entirely 

new stimulus object. The recognition index (RI, representing the time spent investigating the novel 

object (T novel) relative to the total object investigation) was used as the main index of retention, 

which was calculated according to the following formula: RI = T novel / (T novel + T familiar). The 

arena and objects were cleaned with 40% ethanol between the trials to prevent the existence of 

olfactory cues.     
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3.2.7. Recording for Spontaneous Recurrent Seizures (SRSs) 

Arida et al (1999) and Hoexter et al (2005) previously demonstrated that the average latency 

onset to SRSs in rats treated with the pilocarpine protocol was 11-18 days (59) (184). In the present 

study, rats were observed for behavioral and electrographic seizure for 8-12 hour / day for 2 weeks 

starting three weeks after the induction of seizure. Because the frequency of SRSs in rats after 

pilocarpine-induced SE is much higher during the light (diurnal) compared to the dark (nocturnal) 

period (62) (63), all recordings for spontaneous seizures were done during the light period (7 a.m. 

– 6 p.m.). Electrographic seizures were analyzed offline and seizure was confirmed by manual 

review of the tracing morphology of EEG recording and of the taped videos. Since most SRSs 

following pilocarpine-induced SE are generalized (185), only the occurrence of class 4/5 

behavioral seizures was included in the spontaneous seizure analysis. A rat was considered 

epileptic after exhibiting one or more SRSs. Outcome measures were the percentage of animals 

that developed SRS and the number of SRS recorded per week.                                          

 

3.2.8. Fluoro-Jade C staining (FJC) 

To examine the degree of dying neurons in brains of above animal models, rats were deeply 

anesthetized with sodium pentobarbital (50 mg/kg, i.p.) and perfused transcardially with 1× PBS, 

followed by phosphate buffered (pH 7.4) 4% paraformaldehyde (PFA). The brains were removed 

immediately and immersed in 4% PFA for another 24 hours. The brain samples were then cut into 

30 µm thick sections using a vibratome. To visualize the degenerative neurons, FJC staining was 

carried out in the following standard procedures: (1) pre-incubation with alcohol-sodium 

hydroxide mixture, the sections were immersed in a solution containing 1% sodium hydroxide in 

80% alcohol for 5 min, followed by 70% alcohol and distilled water each for 2 min; (2) pre-stained 
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with potassium permanganate, the sections were then transferred into a solution of 0.06% 

potassium permanganate for 10 min, and rinsed in distilled water for 2 min; (3) FJC staining, the 

sections were immersed into 0.0001% solution of FJC dye dissolved in 0.1% acetic acid vehicle 

and stained for 10 min; (4) post-staining with distilled water wash, after incubation in the FJC 

working solution, the slides were washed three times in distilled water each for 1 min and left to 

dry overnight in darkness at room temperature; (5) Examination under fluorescent microscope, 

sections were air-dried, cleared in xylene for at least 1 min and then cover slipped with DPX. 

Finally, FJC-stained brain sections were examined under a fluorescence microscope (Olympus, 

BX-60). The FJC-positive staining structures exhibited bright green color. Four sections were used 

from each brain from 6 rats n=6. The fluorescent cells were counted using Image J software. 

 

3.2.9. NeuN and GFAP immunohistochemistry 

Immunohistochemistry on PFA fixed free-floating sections was performed on brains sectioned 

at a thickness of 30 µm. Briefly, the sections were treated with 0.1 M Tris buffer (TB) containing 

1% hydrogen peroxide for 30 minutes. The slices were washed in phosphate-buffered saline 

solution (PBS 0.1 M, pH 7.4) containing 0.1% Triton X-100. Then incubated in blocking solution 

(0.5% Triton X-100, 10% bovine serum albumin for 1 hour. Sections were incubated overnight at 

4°C in the primary antibody diluted in 0.1% Triton X-100, 2% bovine serum albumin. The 

antibodies used were as follows: rabbit anti-glial fibrillary acidic protein (GFAP) (1:200, 

Thermofisher) and mouse anti-neuron-specific nuclear protein (NeuN) (1:500, Chemicon). 

Biotinylated secondary antibodies (goat anti-rabbit, goat anti-mouse, all from Vector Laboratories, 

Burlingame, CA), diluted at 1:200 for 2 hours, followed by standard avidin-biotin complex (ABC; 

Vector).  The tissue-bound peroxidase was then developed using 3,3-diaminobenzidine (DAB) 
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visualization procedure (1-3 min). The sections were mounted on slides, and cover slipped with 

DPX. The same brain sections of CA1, CA3 and DG regions were imaged using a magnification 

of 400x.The numbers of positive cells were counted. The data were presented as mean and standard 

deviation. All measurements were repeated three times and the mean value was used. 

 

 3.3  Statistical analyses 
 

    Significance was set at p < 0.05 and assessed by one-way or two-way ANOVA with post hoc 

analyses relying on Tukey’s test (GraphPad Prism v5.0). Data are represented as mean ± SD 

(standard deviation). 
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4. Results: 
 

4.1. In vitro results: 

4.1.1. Perampanel and amantadine reversed cytotoxicity induced by AMPA or NMDA, 

respectively, in primarily cultured hippocampal neurons.  

 

    Changes in neuronal viability associated with the stimulation of AMPA receptors under 

desensitizing or non-desensitizing conditions were analyzed by the MTT assay (Fig. 2a) and the 

release of LDH (Fig. 2b). Activation of AMPA receptors under non-desensitizing conditions in 

the presence of AMPA (100 µM) plus CYZ (30 µM), was associated with a significant decrease 

in cell viability (by about 45%; P<0.001). Substantial prevention of cell death induced by AMPA 

in the presence of CYZ was observed after incubation with Perampanel as evidenced by increased 

percentage of live cells (P < 0.001) and decreased (P < 0.01) LDH levels in media (Figs 2a and b).  

In order to evaluate the role of NMDA receptor activation in hippocampal neuronal death, we 

examined the effect of NMDA receptor stimulation upon exposure to NMDA (100 µM) plus 

glycine (10 µM) in Mg2+-free medium. The medium contained NBQX to eliminate the effect of 

AMPA receptors. Under these conditions, the percentage of viable cells were greatly decreased (P 

< 0.01), and increased the release of LDH (P < 0.05). Furthermore, specific blockade of NMDA 

receptors with the experimental drug (amantadine) enhanced the percentage of viable cells (P < 

0.05) and decreased LDH release (P < 0.05) in media compared to the NMDA exposed cells. 

 

 

http://onlinelibrary.wiley.com/doi/10.1046/j.1471-4159.2003.01898.x/full#f1
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Fig.2. Effect of perampanel or amantadine on the viability of primary hippocampal neurons. Cell 

viability was assessed by (a) MTT assay and (b) LDH assay. Results were expressed as percentage 

live cells for MTT and enzyme activity (nM/min/ml media) for the LDH assay. Group 

abbreviations (Ctl= Control, A= AMPA, AP= AMPA+Perampanel, N= NMDA, NA= 

NMDA+amantadine, G= Glutamate, G+A+P= Glutamate+Amantadine+Perampanel). Values 

were expressed in mean ± SD. Data were obtained from five independent experiments with 

triplicates in each. ##, ###, p < 0.01 and 0.001 vs control respectively; *, **, p < 0.05 and 0.01 vs 

the corresponding agonist stimulus groups.   
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4.1.2. Perampanel and amantadine reduced apoptosis induced by AMPA or NMDA, 

respectively, in primarily cultured hippocampal neurons.  

 

    Features of apoptotic cells were examined by counting the number of hippocampal cell nuclei 

labelled with the fluorescent probe Hoechst, a method used to analyze chromatin condensation 

and/or fragmentation. Compared with the control cells, selective activation of AMPA receptors 

under non-desensitizing conditions induced by CYZ, and in the presence of MK-801 increased the 

number of apoptotic cells. Furthermore, hippocampal neuronal death was attenuated upon 

blockade of AMPA receptors in the presence of perampanel. NMDA exposed cultures in the 

presence of glycine and the AMPA antagonist (NBQX) showed high number of apoptotic nuclei, 

which was significantly attenuated by amantadine. The number of neurons undergoing apoptosis 

was almost completely prevented upon blockade of both NMDA and AMPA receptors, 

respectively, in the presence of perampanel and Amantadine (Fig. 3). 

    Features of apoptosis were also examined by measuring caspase 3 activation using western blot 

and caspase-3 ELISA. Neurons treated with AMPA, NMDA or glutamate showed increased 

caspase 3 activation when compared to normal control cells. Treatments with perampanel (P < 

0.001), amantadine (P < 0.01), and their combination (P < 0. 001) significantly decreased the level 

of caspase-3 activation when compared to AMPA, NMDA and glutamate alone, respectively, 

which were consistence with the ELISA results (Fig. 3c).  

  

 

 

 

http://onlinelibrary.wiley.com/doi/10.1046/j.1471-4159.2003.01898.x/full#f6
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Fig.3. Effect of perampanel or amantadine on hippocampal neuronal death in glutamate induced 

excitotoxicity. Representative images of primary hippocampal cells stained with MAP2 (Green) 

as a neuronal marker and Hoechst 33258 as a nuclear marker. Total cells and cells with condensed 

/fragmented nuclei were counted in six random fields from each coverslip. The results represent 

the mean ± SD from four independent experiments and were expressed as percentage of condensed 

nuclei. Mean difference between the groups were analyzed using one-way ANOVA followed by 

tukey’s multiple comparison test in graphpad prism 5.0. ##, ###, P < 0.01 and 0.001 vs control 

respectively; *, **, P < 0.05 and 0.01 vs the corresponding agonist stimulus group. 
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Fig.4. Effect of perampanel or amantadine on caspase 3 activation induced by glutamate 

excitotoxity in hippocampal neuronal culture. (a) Representative western blot for caspase 3 from 

three independent experiments and histogram, (b) graph representing the percentage of active 

versus total caspase 3 ratio as normalized to the loading control. (c) graph representing active/pro-

caspase-3 ratio using ELISA technique. Values were expressed in mean ± SD. Mean difference 

between the groups were analyzed using one-way ANOVA followed by tukey’s multiple 

comparison test in graphpad prism 5.0.  ###, p < 0.001 vs control; **, ***, p < 0.01 and 0.001, vs 

respective agonist group. 
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4.1.3. Perampanel and amantadine inhibited the AMPA and NMDA induced expression 

of nuclear death markers in the nucleus. 

 

    Analysis of subcellular markers:  The nuclear enriched fractions and cytosolic fractions of 

neuronal homogenate were blotted with various subcellular protein markers like histone, 14-3-3, 

cytochrome C, SCD1 and insulin receptor and it was observed that nuclear enriched fraction 

prepared in this experiment was selectively higher in histone confirming nuclear enrichment with 

little subcellular contaminations (Fig.5a). Similar data were observed in three separate 

experiments.  

    Nuclear enriched fractions were isolated from hippocampal cell cultures and studied for cell 

death signals. Cells treated by AMPA, NMDA showed increased expression of apoptotic markers 

like p53 (P<0. 01, P<0.05 for AMPA and NMDA treated cells respectively), GAPDH (P<0.01, 

P<0.01 for AMPA and NMDA treated cells respectively) when compared to control levels. 

Perampanel or Amantadine treatment significantly reduced the levels of those markers (Fig.5b, c). 

PTEN and the SREBP1 expression was higher in the nuclear fractions of AMPA or NMDA treated 

cells but not statistically significant in comparison to the control levels due to variation in standard 

error values (Fig.5c)
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Fig. 5. Effect of perampanel or amantadine on the nuclear death markers in hippocampal neuronal 

cultures. (a) Representative western blot for subcellular markers indicating the absence of 

significant contamination in nuclear fractions (NF=nuclear fraction, CF=cytosolic fraction). (b) 

Western blot representative images of the following proteins (a) GAPDH (b) P53 (c) PTEN (d) 

SREBP-1 (c) Histone (H2A), in NF isolated from primary hippocampal cells treated with AMPA 

or NMDA with or without perampanel or amantadine. (c) Graphs representing the ratio of the 

above protein levels to H2A. Group abbreviations (Ctl= Control, A= AMPA, AP= 

AMPA+Perampanel, N= NMDA, NA= NMDA+amantadine). Data were obtained from three 

independent experiments. Mean difference between the groups were analyzed using one-way 

ANOVA followed by tukey’s multiple comparison test in graphpad prism 5.0. #, ##, p<0.05 and 

0.01, respectively vs control. *, ** p < 0.05 and 0.01 vs the corresponding agonist stimulus groups.   
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4.2.  In vivo results: 

4.2.1. Perampanel, not amantadine terminated pilocarpine-induced status epilepticus in 

rats 

    In order to quantitatively compare the responses to the different treatments administered 

after 10 min duration of status epilepticus, the latency to seizure termination was monitored from 

EEG recordings. Figure 6 illustrated a typical EEG recording of perampanel or amantadine 

treatment in which status epilepticus had been induced by i.p. injection with a 380 mg/kg dose of 

pilocarpine. Treatments were initiated 10 min after induction of seizure. Perampanel (8mg/kg) 

caused a cessation of seizure behavior rapidly with sustained suppression of electrographic 

seizures, as illustrated in Figure 6. The latency of seizure termination in the perampanel treated 

group was 8.5 ± 4.3 min. In contrast, amantadine (45mg/kg) showed no anti-seizure effect. 

Conversely, amantadine treated animals showed very intense behavioral seizure with 

hyperlocomotion, jumping, rearing and falling and more intense seizure on EEG recording. In a 

pilot experiment (n = 4), amantadine alone failed to stop or reduce the intensity of seizure, and rats 

were found dead the next day. In order to reduce the mortality rate in this group, a dose of 10 

mg/kg of pentobarbital was given 2 hours after the amantadine dose was given. In a separate series 

of experiments, the treatments were administered 60 min after continuous electrographic seizure 

activity. Such late administration of perampanel still presented high efficiency in terminating 

electrographic status epilepticus (latency, 18.2 ± 3.6 min) with only minimal recurrence of seizure. 

Late administration of amantadine alone was not effective to terminate electrographic status 

epilepticus (latency, 126.3 ± 17.9 min); it has to be in conjunction with pentobarbital and even 

though there was modest recurrence of high electrographic waves in this treatment group. Overall, 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535693/figure/F1/
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when administered early or late, perampanel was more effective than amantadine in suppressing 

seizure activity. 
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Fig. 6.  Effect of perampanel or amantadine on terminating ongoing seizures. (a) Representative 

EEG recording from hippocampal and cortical electrodes. The left panels show the compressed 

EEG from SE, perampanel and amantadine animals up to 75 min following treatment. The right 

panels show the magnified 6 secs prior to SE, during SE, 10 min post-treatment and 1-hour post-

SE. EEG traces prior to SE or following to SE (marked by vertical lines a-c at 0.5 mV, horizontal 

bar=1 sec). (b) graph shows the effect of early and late treatment (10 and 60 min after onset of 

status epilepticus) with perampanel and amantadine on the duration of EEG seizure activity. The 

Y axis represents the mean time to the first termination of continuous seizure activity. N= 12 

animals. Values were expressed in mean ± SD. Mean difference between the groups were analyzed 

using one-way ANOVA followed by tukey’s multiple comparison test in graphpad prism 5.0. ***p 

< 0.001 indicate comparisons with SE group. 

      Ctl SE          Perampanel          Amantadine 

b 
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4.2.2. Perampanel, but not amantadine attenuated cognitive deficits in SE rats 

    In order to examine the efficiency of perampanel or amantadine on attenuation of cognitive 

impairment induced by SE, Y maze and NOR were performed in rats. Figure 2. A showed that the 

performance in the Y maze was significantly impaired in the SE group compared to the sham 

control at 72 h and 1 month after SE initiation. When rats were treated with perampanel either in 

early (10 min post-SE) or late (60 min post-SE), the performances were improved significantly 

after 72 hours or 1-month treatment compared with the SE group (p < 0.05). On contrast, SE rats 

treated with amantadine did not show any improvement on exploring the novel arm in 72-hour and 

1 month after SE. Similarly, in the NOR test, rats in perampanel treated group spent more time on 

exploring novel object than the SE rats, significantly after 1-month treatment showed in figure.7b 

(p<0.05). Again, rats with amantadine treatment did not show any improvement on NOR 

performance. Together, these observations indicate that perampanel attenuated both short and 

long-term memory deficit in pilocarpine-induced SE rats. This might be an important facet of 

perampanel that attributed to block the progress of SE and improve the quality of life.  
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Fig. 7. Effect of perampanel or amantadine on cognitive function in pilocarpine induced status 

epilepticus rat model using Y-maze and NOR. (a) Cartoon represents Y-maze (left) and graph 

(Right) represents the time spent in novel arm (seconds) during retrieval trial at 72 hrs and 1 month 

after initiation of SE. Groups include control (Ctl), pilocarpine (SE), perampanel + pilocarpine 

(per) and amantadine + pilocarpine (Aman.). (b) Cartoon represents NOR (left) and graph (Right) 

represents the recognition index of NOR test from the above-mentioned groups. Values were 

expressed as mean ± SD. N=12, Mean difference between the groups were analyzed using two-

way ANOVA followed by Bonferroni posttest in graphpad prism 5.0. #, ## p < 0.05 and 0.01, 

respectively vs control; *, p < 0.05 vs seizure group. 
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4.2.3. Perampanel, not amantadine exerted the antiepileptogenic effect in SE rats  

 

    We then examined whether perampanel and amantadine treatment has a long-term effect on the 

development of SRSs. Neither of rats treated with perampanel 10 min after SE developed SRSs. 

However, when given 60 min after SE, 2 out of 10 rats developed SRSs after the termination of 

treatment. No rats experienced SRSs during perampanel dosing period. 

    On contrast, during the 2 weeks observation for SRSs, rats treated with either vehicle or 

amantadine, spontaneous seizures were noted in 64% of vehicle treated SE rats and 52% and 63% 

of amantadine treated rats 10 and 60 min post-SE respectively. (Fig. 3b). The first spontaneous 

seizure was recorded after SE induction at 17 days in the vehicle treated rats, and 19 days in the 

amantadine treated rats. The frequency of seizure was significantly different in the two groups in 

that less frequent seizure were observed in the amantadine treated groups during the 1-month 

study. Thus, under our experimental conditions, the prophylactic treatment with amantadine during 

or after SE exerted no effect on the occurrence of spontaneous seizures.  

    Some rats in the vehicle SE group experienced stage 5 seizure during handling and daily 

observation before the start of the EEG and videotape recording for SRS. It should be noted that 

no EEG/video recording was performed during the first 2 weeks of treatment immediately after 

SE, so that seizure data from this period relate to all spontaneous seizure which occurred during 

handling of animals. In the last 2 weeks of the study, all the seizure data were from 8-12hours 

EEG/video recording daily for 14 days. 
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Fig.8. Effect of perampanel or amantadine on epileptogesesis in pilocarpine induced status 

epilepticus rat model. (a) The upper panel shows the compressed 120 sec. EEG of a Spontaneous 

Recurrent Seizures (SRSs). The lower panel shows the magnified 6 sec. EEG traces marked by 

horizontal lines a,b. Vertical bar = 0.5 mV, horizontal bar = 20 sec. (b) graph showing the  number 

of SRSs per week. Values were expressed as mean ± SD. N=12, Mean difference between the 

groups were analyzed using one-way ANOVA followed by tukey’s multiple comparison test in 

graphpad prism 5.0. *, *** p < 0.005 and 0.001 respectively versus the SE group. (c) the graph 

represents the percentage of rats developed SRSs in the different treatment groups.  
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4.2.4. Perampanel, not amantadine inhibited SE-induced neuronal loss in SE rats 

    In order to investigate the mechanism perampanel exerted on anti-epileptogenesis, brain 

sections in the hippocampal regions from each group were applied to FluoroJade C staining (FJC) 

and NeuN immunohistochemistry analysis. Visual inspection of FJC stained sections indicated 

severe neuronal degeneration in the CA1, CA3 and hilar regions of rat brains 72 h and 1 month 

after initiation of SE (Fig. 9). In addition, NeuN immunohistochemistry revealed neuronal loss in 

these parts of the hippocampus (Fig. 10).  In contrast, there was no obvious neuronal damage in 

the hippocampal formation of perampanel treated rats when given 10 min after SE. This was 

confirmed by counting of neurons in the CA1, CA3 and hilar regions. When given 60 min after 

SE onset, the protective effect of perampanel was compromised only within the CA1 and hilar area 

in 56 % of rats. Nevertheless, no FJC positive cells were seen in the CA3 region. 

    Amantadine, in contrast, showed a different profile in hippocampal cell death in SE rats. When 

given amantadine 10 min post SE, 75 % of treated rats showed degenerating neurons in the CA1, 

CA3 and the hilar region. The degree of damaged neurons was more profound one month after SE 

in the amantadine treatment group. Treatment of rats with amantadine 60 min post SE did not exert 

obvious neuroprotective effect at all sections examined.
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Fig. 9. Effects of perampanel or amantadine on neuronal survival in pilocarpine induced SE rat 

model. Upper panels represented the Fluorojade C (FJC) positive staining in bright green color, 

indicating degenerated neurons. Representative images of FJC stained hippocampus in control, 

SE, perampanel (Per.) and amantadine (Aman.)-treated rats at (A) 72 hr. and (B) 1 month after SE 

induction. Lower panels represented histograms showing number of FJC positive cells in the CA1 

and CA3 regions. (1) 72 hours group (treatment started 10 min post-SE); 1-month group (treatment 

started 10 min post-SE); 72 hours group (treatment started 60 min post-SE); 1-month group 

(treatment started 60 min post-SE). Values are expressed as mean ± SD. Mean difference between 

the groups were analyzed using one-way ANOVA followed by tukey’s multiple comparison test in 

graphpad prism 5.0. ###, p< 0.001 vs control. *, **, ***, p < 0.05, 0.01, 0.001 respectively vs SE 

group. 

  



  

 
 

5
7 



  

 
 

5
8 



  

 
 

5
9 



  

60 
 

Fig. 10. Effects of perampanel or amantadine on neuronal nuclei (NeuN) expression in pilocarpine 

induced SE rat model. Upper panel represented images of NeuN immunohistochemistry of the 

CA1, CA3 and DG regions of the hippocampus in control, SE, perampanel (Per.) and amantadine 

(aman.)-treated rats at (a) 72 h and (b) 1 month after SE induction. (C) Lower panel represented 

histograms showing the number of NeuN immune-positive cells in the CA1 and CA3 regions. (1) 

72 hours group (treatment started 10 min post-SE); (2) 1-month group (treatment started 10 min 

post-SE); (3) 72 hours group (treatment started 60 min post-SE); (4) 1-month group (treatment 

started 60 min post-SE) Values are expressed mean ± SD. Mean difference between the groups 

were analyzed using one-way ANOVA followed by tukey’s multiple comparison test in graphpad 

prism 5.0.  ###, P < 0.001 vs control group; **, ***, p < 0.01 and 0.001, respectively vs seizure 

group. 
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4.2.5. Effect of perampanel and amantadine treatment on the activation of astrocytes. 

 

    GFAP is regarded as a marker of reactive gliosis. It is well known that following brain lesions, 

astrocytes become reactive and release numerous proinflammatory cytokines that play an 

important part in secondary injury. Control rats showed few GFAP positive cells in the CA1, CA3 

and the dentate hilar regions (Fig.11) and these cells had a typical morphology of resting 

astrocytes. At 72 hours after the induction of SE, the pilocarpine treated seizure group showed 

profound gliosis demonstrated by higher number of GFAP immunoreactivity. GFAP positive 

astrocytes showed enlarged soma size (hypertrophy) and longer projections together with 

increased GFAP expression. Compared to the SE group, the SE + perampanel group (10 min 

group) had significantly less GFAP positive astrocytes while amantadine treatment 10 min failed 

to significantly suppress the SE induced gliosis.  

    Administration of perampanel 60 min after SE, reduced gliosis from the CA3 and the hilar 

region, but not from the CA1 area. Compared to the SE group, amantadine treatment 60 min post 

SE was not effective in reducing the degree of gliosis. 
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Fig.11. Effect of perampanel or amantadine on astrocyte activation in hippocampus of pilocarpine 

induced status epilepticus (SE) rat model at 72 h. and 1 month after SE. (A) Representative images 

of GFAP immunohistochemistry of Lower magnification images (4x) showing the astrogliosis in 

the entire hippocampus in control, SE, perampanel (Per.) and amantadine (aman.)-treated rats at 

72 h and 1 month of SE induction. (B) Graphs showing number of GFAP immune-positive cells 

in the CA1 and CA3 regions. Values are expressed mean±SD.  Mean difference between the groups 

were analyzed using one-way ANOVA followed by tukey’s multiple comparison in graph pad 

prism 5.0. ### represents P value < 0.001 vs control; **, *** represents P value < 0.01, 0.001 

respectively vs seizure group. 

 

 

 

4.2.6. Perampanel, not amantadine inhibited caspase-3 expression in SE rats.  

    In order to explore the underlined mechanism exerted by perampanel, western blot analysis was 

applied to detect activated caspase-3 levels in hippocampal region from all treatment groups. The 

immunoreactivity of caspase-3 cleaved bands at 18 kDa, representing active caspase-3, was 

increased in hippocampal regions from SE rat brains (P < 0.001); this enhanced expression was 

significantly reduced by perampanel, not amantadine treatment (Fig.12).   
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Fig. 12. Effect of perampanel or amantadine on apoptotic markers in pilocarpine induced status 

epilepticus (SE) rat model. Representative western blot showing the expression levels of caspase 

3, bcl2 and bax protein in control, vehicle SE, perampanel and amantadine treated rats at 72h and 

1 month after the induction of seizure. Graphs showed the changes of those protein expression in 

different treatment groups; (1) Active/proactive caspase-3 ratio; (2) Bax/tubulin ratio; (3) 

Bcl2/tubulin ratio. Data are expressed mean ± SD. Mean difference between the groups were 

analyzed using one-way ANOVA followed by tukey’s multiple comparison test in graphpad prism 

5.0. #, ###, p < 0.05 and 0.001, respectively vs control group. *, p < 0.05 vs SE group. 
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4.2.7. Side effects of perampanel and amantadine treatment after SE 

 

i. Neurological responsiveness:  

 In clinical settings, the reliable assessment of a patient’s neurological status becomes 

problematic under the influence of benzodiazepines or barbiturates due to their sedative and 

muscle relaxant effects. AMPA antagonists are also known to have mild sedative and muscle 

relaxant side effects. In order to determine whether perampanel and amantadine administered 

under the treatment conditions used in these experiments produced impairment of neurological 

responsiveness, we assessed the responsiveness of the mice to mechanical stimulation of the 

vibrissae 10 min after the treatment bolus. Perampanel-treated rats exhibited clear sedation and 

immobility. Nevertheless, 80% of rats treated with perampanel showed a motor reaction upon 

mechanical stimulation of the vibrissae. Rats in the amantadine treated group and the SE group 

continued to exhibit motor seizures and were not tested for responsiveness to mechanical 

stimulation as seizure-related and reflex movements were not distinguishable. 

 

ii. Body temperature:  

The adverse effects observed after perampanel and amantadine following SE were more severe 

than observed in the perampanel and amantadine control rats without SE. All SE rats showed slight 

increase in body temperature (38 ± 1.4 °C; values expressed in mean±SD). Perampanel treated 

animals after SE showed decrease in body temperature (34.2 ±1.3 °C; values expressed in 

mean±SD) and sedation. Two perampanel treated rats died within 2 hours following induction of 

SE. However, none of perampanel treated rats in the control group showed no significant decrease 
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in body temperature. Amantadine treated rat showed a slight elevation of body temperature similar 

to the SE group. 

 

iii. Body weight:  

With respect to the changes of body weight, it has to be noted that, after the induction of SE, 

the general condition of all rats was severely impaired, including a decrease in body weight 

(Fig.13a). All the rats after perampanel treatment lost some weight, but it was not significant 

compared to the non-epileptic control group. Interestingly, amantadine seemed to counteract, at 

least in part, the loss of body weight after SE (Fig.13a.). During the 1 month after SE, the body 

weight of rats treated with amantadine was significantly higher compared to SE vehicle rats at 1-

week post-SE. However, this significance was lost during the following weeks. When body weight 

of the SE and the amantadine group was compared to the non-epileptic control rats, both were 

significantly different from the control by the end of the treatment.  

iv. Mortality: 

As illustrated in (Fig.13b) , vehicle treated animals that had received a 380 mg/kg dose of 

pilocarpine exhibited 17% mortality. The mortality rate in animals receiving perampanel at 10 min 

was greater (8.3 % mortality) than in the vehicle group whereas the animals receiving diazepam at 

60 min did not show mortality. In a pilot experiment (n=4), all rats treated with amantadine only 

after 10 min of SE onset died within 12 hours. The administration of pentobarbital increased the 

survival rate and all the amantadine treated rats after SE survived (Fig.13b)   

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535693/figure/F3/
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Fig. 13. Effect of perampanel or amantadine on body weight and survival rate in pilocarpine 

induced status epilepticus (SE) rat model. (a) Body weight of rats in the control (n=24), SE (n=24), 

perampanel (n=24) and amantadine (n=23) groups after the induction of SE. Data are 

means ± SEM. the body weight determined in sham controls on day 3 and 7 and 30 post-SE was 

used for statistical comparison. Mean difference between the groups were analyzed using one-way 

ANOVA followed by tukey’s multiple comparison test in graphpad prism 5.0. ### Significant 

differences (P < 0.001) between the SE group and the control. *** indicated significant differences 

between the perampanel group against the SE group (P < 0.001). The difference between the 

amantadine and the SE was indicated by circle (P < 0.05).  (b)   Comparison of percent survival in 

the different treatment groups. 
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5. Discussion: 
 

The present study investigated the hypothesis that perampanel and amantadine possessed 

therapeutic effects on status epilepticus (SE). Our data showed that perampanel could terminate 

ongoing status epilepticus providing a long-lasting inhibition of the seizure whereas amantadine 

failed to terminate the seizure after the development of SE. Furthermore, for the long-term 

consequences of SE, i.e., the cognitive impairment, development of SRS and hippocampal damage 

in the pilocarpine rat SE model, perampanel prevented memory decline, retarded the appearance 

of SRS and reduced SE induced hippocampal cell death. In contrast to our expectations, the 

consequences of the treatment with amantadine after SE were largely negative. SE rats treated with 

saline or amantadine developed SRSs. Memory impairments were observed in both groups with 

significant cell loss in the hippocampal formations compared to controls.  

It has been shown that prolonged seizures can lead to neurological and systemic complications, 

including pulmonary congestion and edema, cardiac arrhythmias, hypotension, elevation of body 

temperature, hypoglycemia, acidosis and rhabdomyolysis (186) (187). These systemic 

complications tend to be exacerbated as the duration of SE prolonged (188) (189). Refractoriness 

of SE to benzodiazepines also worsens with the passage of time (190). Mortality associated with 

status epilepticus also correlates with the duration of the epileptic seizures (191).  We first chose 

to administer the experimental drugs 10 min post-SE as it is important to terminate SE in a prompt 

manner. As shown in the present study, early administration of perampanel successfully terminated 

ongoing seizure. These results were in agreement with previous studies of AMPA receptor 

antagonists in animal models of SE (192) (193) (194) (195). Our data further showed that early 

administration of perampanel successfully prevented the memory deficit and the neuronal loss 72 
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h and even 1 month after SE. Neither of the rats after early treatment with perampanel developed 

epilepsy in the chronic period. Our data indicated that perampanel exerts the neuroprotective 

effects by interfering with the initial insult and that the long-term consequences of SE can be 

diminished by reducing the severity or the duration of the seizure (192).  

We next investigated whether late treatment with competitive AMPA receptor antagonist will 

prevent the long-term impairment caused by SE. In the pilocarpine rat model, a duration of 60-90 

min SE is needed to induce epileptogenesis and brain damage in the majority of rats (155). There 

was an increase in the latency to terminate the seizure when perampanel was given 60 min post-

SE suggesting a tolerance against perampanel treatment developed. In addition, we found that the 

late administration of perampanel is not as efficacious in protecting CA1 neurons against seizures 

insults as early intervention. It is potentially due to a more sensitive response to AMPA receptors 

or AMPA receptors may not be the primary mediator of seizure to induce cell loss, at least within 

the CA1 neurons as the seizure progresses. When perampanel was given 60 min after the induction 

of SE, 2 out of 10 rats developed SRS. The frequency of seizure was less than that in the SE control 

rats. It is possible that treatment with perampanel has prevented or delayed the development of 

epilepsy, or that the rats with SRS experienced more severe SE than the others. Our data showed 

that late administration of perampanel exerted antiepileptic efficacy, but not as efficient as early 

intervention, indicating that other pathways exist in the progression of SE.   

Amantadine is an antiviral and antiparkinsonian drug. It also an uncompetitive NMDAR open 

channel blocker (167). Studies have shown that amantadine has potential neuroprotective 

properties with a low incidence of side-effects. Wang (2013), found that amantadine improved the 

cognitive function and reduced the neuronal loss after traumatic brain injury in rats. Several studies 

have demonstrated that NMDA antagonists are effective as a therapeutic intervention for the 
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treatment of status epilepticus (196) (197) (198). However, amantadine was the least effective drug 

tested in this study. At a dose of 45 mg/kg, neither 10 nor 60 min after SE onset, amantadine 

showed its ability to terminate SE. In contrast, amantadine increased the intensity of behavioral 

and electrographic seizure.  To our knowledge, the mechanism by which amantadine exacerbated 

the seizure is unknown. This lack of anticonvulsant efficacy of amantadine in the pilocarpine rat 

model was in agreement with some studies that have demonstrated that NMDA antagonist may 

lack potency during the early stage of SE (199) (127).  

Most of the amantadine treated SE rats developed SRS and showed no significant improvement 

in exploring the novel arm in the Y maze test compared to the SE rats. Histology analysis showed 

that amantadine slightly decreased the neuronal loss in the 72-h but not in the 1-month duration. 

The lack of efficacy of amantadine treatment might be due to the ability of glutamate released 

during the seizure to replace amantadine from its binding sites of NMDA receptors. Another 

explanation for the lack of antiepileptogenic or a significant neuroprotective effect of amantadine 

might be that the doses administered were low. Amantadine is more rapidly eliminated in rats than 

in humans (1.2 vs. 18 h, respectively) (200). In our pilot study conducted to adjust the dose of 

amantadine (data not shown), higher doses or more frequent administration of amantadine 

increased the aggressive behavior in treated rats which limited this application. Nevertheless, 

amantadine showed some additive effect in terminating the seizure when combined with 

perampanel (data not shown). 

The impact of pilocarpine induced seizure on the brain is controversial (201) (202). Researches 

have demonstrated that seizure damage neuronal cells by a necrotic or programmed cell death 

pathway (203) (204). In addition, some studies have identified upregulation of bcl-2 family gene, 

DNA fragmentation and some morphological features of programmed cell death (205) (206) . Bcl-
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2 is known to be an antiapoptotic molecules (207). In the present study, we identified significantly 

higher levels of bcl-2 in epileptic brains compared to the control. These data suggest that neuronal 

cells respond to seizure stress by upregulation of this cell death suppressor gene. This was 

confirmed by previous experimental reports that detected elevated bcl-2 levels in neurons in human 

temporal lope epilepsy samples and experimentally induced ischemia, trauma and seizure (208) 

(209) (210) (211). Caspase-3 cleavage was also observed in the SE brains. This finding supports 

studies of caspase-3 activation following experimentally induced SE in different animal models 

(212) (213) (214)  (215). Our data indicate that programmed cell death is activated in pilocarpine 

induced status epilepticus and may contribute to SE neuronal death. Perampanel, reducing the 

seizure intensity, most likely inhibited this apoptotic pathway.  

Using an in vitro primarily cultured rat hippocampal neuron, our present study demonstrated 

that perampanel and amantadine could partially reverse cytotoxicity and inhibit the activation of 

caspase-3 induced by AMPA and NMDA, respectively. Western blot showed that perampanel and 

amantadine could partially reduce levels of GAPDH, p53, PTEN, and active SREBP-1 expressed 

in nuclear fractions of cultured hippocampal neurons treated with AMPA and NMDA, 

respectively.  There is a considerable body of evidence that nuclear translocation of GAPDH is 

involved in the pathogenesis of neuronal cell death (216) (217). GAPDH is also involved in the 

apoptotic process (218). Wang (2012), have suggested that GluA2 forms a protein complex with 

GAPDH and it is co-internalized upon activation of AMPA receptors. The observed increases in 

the levels of nuclear GAPDH hippocampus after AMPA or NMDA excitotoxicity may be due to 

GluR2/GAPDH complex formation that would promote increased hippocampal apoptosis. Also, 

we found higher expression of p53 in nuclear fractions after induced excitotoxicity that may trigger 
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apoptotic events (219). Furthermore, nuclear translocation of GAPDH forms a protein complex 

with the activated form of p53 and initiates cell death as previously reported (220). 

The full-length form of lipid transcription factor, SREBP1 (125KDa) is predominantly 

expressed in the endoplasmic reticulum. However, in conditions of cellular stress and hypoxia, the 

full-length SREBP1 is cleaved and truncated to an activated form of SREBP1 [65KDa] which 

enters the nucleus to induce neuronal excitotoxicity. The data from the present study shows that 

the cleaved SREBP1 (65KDa) but not the full-length 125KDa SREBP1 is elevated in NF AMPA 

and NMDA treated cultures, which confirms it may contribute to the initiation of hippocampal cell 

death. Previous studies using animal models of hypoxic stroke and amyotrophic lateral sclerosis 

and human brain tissues have shown that neuronal excitotoxicity is linked to increased level of 

SREBP1 (65KDa) and disruption of this mechanism reduces brain injury (221) (222). The results 

from the present study support the theory that neuronal cell accumulation of SREBP1 (65KDa) 

could contribute to cell death. While the increase in SREBP1 level failed to reach statistical 

significance in the NF of AMPA/NMDA treated cells, the possibility that SREBP1 may contribute 

to cell death cannot be ruled out, and more studies are warranted to address its participation in 

excitotoxicity.  
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6. Conclusion:  
 

In conclusion, our data demonstrates that perampanel is an effective drug to suppress focal 

electrographic seizures in a pilocarpine rat model of Status Epilepticus. In addition, Prophylactic 

administration of perampanel after SE suppressed the SE-induced neuronal loss and the 

development of Spontaneous Recurrent Seizures (SRSs). The neuro-protective efficacy of 

perampanel makes this antiepileptic drug an interesting tool to examine its value in the long-term 

management of SE-induced neuronal damage in human patients. While it is not possible to draw 

a clinical conclusion from this animal study, our results support the design of future clinical studies 

to assess the role of early administration of perampanel in human SE to save hippocampal-

dependent memory function. In contrast to our expectation, treatment with amantadine was largely 

negative without significant effect on the development of SRSs, behavioral alteration or 

hippocampal damage. This does not mean that amantadine is not a potentially interesting drug in 

the treatment of SE. For instance, amantadine was found to be neuroprotective in a TBI animal 

model. It also showed some additive effect in terminating the seizure when combined with 

pentobarbital. To our knowledge, this is the first study to investigate the long term neuroprotective 

efficacy of perampanel and amantadine in SE-rat model. The present study opens a new vista in 

the consideration of these drugs from the “bench to the bed side” as they likely hold promise in 

offering neuro-protection in brain insults such as SE, stroke and head trauma. 
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7. Future perspectives: 
 

1. To determine whether a combination of amantadine and perampanel can be a potential 

treatment of Status Epilepticus. 

2. To use synchrotron technology to characterize the neuroprotective effect(s) of glutamate 

receptor antagonists on the hippocampal degeneration typically induced by SE. 

3. To investigate the insulin signaling alterations in SE. 

4. To use PET scanning in order to investigate glucose metabolism in Status Epilepticus. 
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