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ABSTRACT 
 

Microorganisms that colonize the plant rhizosphere and root tissues may provide host 

plants with nutrients, stimulate growth and increase tolerance to abiotic stress. These plant-

microbe associations are also being investigated to assist land reclamation in Alberta’s oil sands. 

However, these newly reconstructed landscapes may be limited by several factors that include 

low soil nutrient levels, reduced microbial activity and the presence of residual hydrocarbons. 

This study was designed to assess the bacterial root microbiome of plants growing in oil sands 

reclamation covers and investigate the potential use of bacterial endophytes in phytoremediation. 

Soil microbial community structure in these areas was mainly driven by soil total and organic 

carbon, NH4+ and organic matter. In addition, an assessment of the bacterial root microbiome 

associated with sweet clover (Melilotus albus) and barley (Hordeum vulgare) strongly suggests 

that plants have the ability to select for certain soil bacterial consortia. Sweet clover plants were 

more selective and mainly associated with Sinorhizobium and Rhizobium, whereas Acholeplasma 

was unique to barley. Furthermore, genera such as Pseudomonas and Pantoea were able to 

successfully colonize both plants. However, due to the presence of residual hydrocarbons in 

these areas, plants may rely on association with hydrocarbon degrading endophytes. Therefore, 

an assessment of unculturable endophytic communities revealed that sweet clover had higher 

CYP153 gene copy numbers when compared to barley. In addition, a total of 42 endophytic 

bacteria isolates tested positive for hydrocarbon degrading genes and were further investigated 

for their application as inoculants. Based on overall growth promoting effects, sweet clover 

plants and four different bacterial strains were selected for phytoremediation experiments. 

Despite plant growth inhibition caused by diesel fuel toxicity, an overall higher plant biomass 

was observed in inoculated plants. However, only at high diesel concentrations did bacterial 

inoculants enhanced soil hydrocarbon degradation. 

In conclusion, bacterial species associated with plants growing in reclamation covers 

were mainly driven by plant factors and this microbiome harbors endophytes that can be 

potentially used in phytoremediation. In particular, bacterial endophytes such as Pantoea and 

Pseudomonas species in association with sweet clover plants were shown to successfully reduce 

petroleum hydrocarbons in soil. 
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1.  INTRODUCTION 
 

Canada’s oil sands in northern Alberta are the world’s third largest proven oil reserves 

after Venezuela and Saudi Arabia (Li et al., 2017). The oil sands are a vital part of the Canadian 

economy and most of these reserves contain an unconventional heavy and viscous form of 

petroleum known as bitumen (Government of Alberta, 2017). Due to increased global demand 

for oil, bitumen production is expected to increase from 2.3 million barrels/day in 2014 to over 6 

million barrels/day by 2030 (Bourgès-Gastaud et al., 2017; Wellstead et al., 2016). However, oil 

sands mining activities creates a landscape scale disturbance that removes vegetation, topsoil, 

parent geologic material, and overburden to a depth that often exceeds 80 m (Aubertin and 

McKenna, 2016). In addition, each cubic meter of mined oil sands requires up to 3 m3 of water 

and produces approximately 4 m3 of mine tailings (Fedorak et al., 2002). Since oil sands 

industries in Alberta operate under a low-discharge policy, mine tailings accumulate in settling 

ponds where tailing sands are precipitated and the water is recycled (Onwuchekwa et al., 2014; 

Yergeau et al., 2012a).  

Following consolidation processes, tailing sands are buried and capped with plant growth 

medium in land reclamation strategies (Allen, 2008). Oil sands reclamation activities include soil 

re-construction and ultimately the re-establishment of vegetation. However, contrary to wildfire 

and logging, oil sands mining activities nearly always affect physical landform attributes, 

causing significant challenges to land reclamation (Audet et al., 2015). These challenges start 

with the nature of the tailing sands, which have low nutrient content, high pH (8–9), low or no 

organic matter and high concentrations of toxic materials including naphthenic acids, polycyclic 

aromatic hydrocarbons, phenolic compounds and trace metals (Kwak et al., 2015; Naeth et al., 

2011; Lefrançois et al., 2010; Onwuchekwa et al., 2014). Therefore, reclamation practices in the 

oil sands region have mainly used a peat-mineral mix (PMM) cover to build soil fertility due to 

the high peat quantities and availability in the mining footprint (Beasse et al., 2015; Quideau et 

al., 2013). After the addition of a peat-mineral (PMM) cover, barley (Hordeum vulgare) is often 
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sown to provide quick vegetation cover and erosion control. Barley is also used because it is a 

poor competitor and is readily invaded by local flora within the first few years (Rowland, 2008). 

The growth and survival of these plant species and a sustainable soil microbial community 

structure is essential for reaching a long-term ecosystem stability. 

Soil microbial communities represent the greatest known reservoir of biological diversity 

and play an important role in ecosystem functioning (Berendsen et al., 2012). Microorganisms 

are key determinants of soil physical, biological and chemical characteristics, biogeochemical 

cycling and other terrestrial ecosystem functions (Prosser, 2015). However, compared to non-

rooted bulk soil, the rhizosphere, which is the narrow zone of soil that is influenced by root 

exudates, is a ‘hot spot’ for numerous organisms and is considered as one of the most complex 

ecosystems (Raaijmakers et al., 2009; Tkacz et al., 2015; Bakker et al., 2013). Soil 

microorganisms are chemotactically attracted by and feed on rhizodeposits, and in turn they can 

have profound effects on plant growth health and nutrition (Philippot et al., 2013). In addition to 

the rhizosphere, microorganisms are also able to colonize most plant compartments and plants 

can also function as filters of soil microorganisms (Chen et al., 2010; Berg et al., 2014). 

Microorganisms that penetrate and colonize the root internal tissues (the endosphere) and that 

spend at least part of their life cycle inside plants are characterized as endophytes (Turner et al., 

2013). Endophytic bacteria colonizing the endosphere can establish beneficial associations and 

are often recognized as symbionts with a unique and intimate interactions with their host plants 

(Hardoim et al., 2008; Berg et al., 2014). Endophytic bacterial species are very diverse and they 

may have the ability to degrade xenobiotics (Phillips et al., 2008), provide protection against 

invading pathogens (either by antibiosis or via induced resistance) (Mazurier et al., 2009), 

promote plant growth (Pavlova et al., 2017) and reduce plant stress under adverse conditions 

(Soleimani et al., 2010; Deng et al., 2011; Khan et al., 2011). Therefore, since tailings sands 

used in oil sands reclamation strategies may contain residual hydrocarbon products (Lefrançois 

et al., 2010), plants growing in these areas may rely on the presence and activity of specific 

plant-associated microorganisms harboring degradation genes required for the enzymatic break-

down of these contaminants. In addition, endophytic bacteria have a great biotechnological 

potential to improve the efficiency of phytoremediation techniques.  

Phytoremediation consists of the use of plants to remove pollutants from the environment 

or to render them harmless (Pilon-Smits, 2005; Salt et al., 1998). This technique uses naturally 
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occurring processes by which organic and inorganic pollutants are degraded and sequestered. 

Due to its environmentally friendly, effective, relatively inexpensive and carbon neutral 

approach for the clean up of toxic pollutants in the environment, phytoremediation has recently 

gained popularity with the industry and government agencies (Germaine et al., 2013; Glick, 

2010). However, the use of plant-based technologies alone has limitations regarding the fact that 

plants are autotrophs and not ideally suited for the metabolism and breakdown of organic 

compounds (Dowling and Doty, 2009). Therefore, the exploitation of plant-microbe interactions 

may overcome these limitations by using plants associated with pollutant-degrading and/or plant 

growth-promoting microorganisms. The use of endophytic pollutant degraders has also the 

advantage that any toxic xenobiotics taken up by the plant may be degraded in planta, therefore 

reducing phytotoxic effects to other organisms (Ryan et al., 2008). 

With continually expanding oil industry and a global dependence on fossil fuel, there is 

an increasing concern with the release of these synthetic compounds into the soil environment. 

Fortunately, natural microbial communities have a high metabolic diversity which can assist in 

degradation of these compounds (Pandey et al., 2016). Hydrocarbon degrading bacterial species 

are also very diverse, which includes Arthrobacter, Burkholderia, Flavobacterium, 

Mycobacterium, Pseudomonas, Rhodococcus and Stenotrophomonas spp. (Deka and Lahkar, 

2016). 

The bacterial root microbiome associated with plants growing in oil sands reclamation 

covers may harbor a unique set of organisms that could be used as biotechnological tools in 

future reclamation strategies and phytoremediation applications. The overall objective of this 

research was to unravel the root associated bacterial microbiome of plants growing in 

reclamation soils and to assess their applicability in phytoremediation. The specific objectives of 

this study were to: (i) assess the diversity of endophytic root bacteria associated with plants 

growing on reclamation soils, (ii) screen endophytic root bacteria for hydrocarbon degrading 

genes and (iii) investigate the potential use of endophytic root bacteria and host plants to degrade 

hydrocarbons. To achieve these objectives, a series of studies were designed to address the 

following hypotheses: 

1) Plants select unique populations of endophytic root bacteria that improve their 

growth and development. 
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2) Endophytic root bacteria of plants growing on reclamation soils have specific 

genes that help host plants improve their growth and development. 

3) Endophytic bacteria-plant associations can be used to remediate contaminants.   

The following research thesis is presented in manuscript-style format in which more than 

one research study may address one of the above hypotheses. This thesis includes a literature 

review (Chapter 2) followed by four research studies (Chapter 3, 4, 5 and 6), an overall summary 

of discussions (Chapter 7), summary of conclusions (Chapter 8) and future work directions 

(Chapter 9). Chapter 3 begins with a broad assessment of the most dominant plant associated 

bacterial communities in an oil sands reclamation area identified by culture dependent and 

independent techniques. Chapter 4 provides an in-depth culture independent analysis of these 

bacterial communities associated with two plant species growing in an oil sands reclamation 

area. Chapter 5 focuses on the quantification of hydrocarbon-degrading genes present within 

these cultured and uncultured bacterial communities. Chapter 6 evaluates growth promotion and 

phytoremediation capabilities of selected bacterial communities in association with their host 

plants. Lastly, Chapter 7, 8 and 9 includes a summary of the major findings in this research and 

suggests future research directions. Each research study chapter has been written to stand alone 

for submission to peer-reviewed journals, however each chapter includes a preface that provides 

a transition from one study chapter to another. Due to the manuscript format, some redundant 

information may occur.  
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2. LITERATURE REVIEW 
 

2.1 The Alberta Oil Sands 

Canada has the world’s third largest proven oil reserves and it is in the top five oil 

producers globally (Wellstead et al., 2016; Natural Resources Canada, 2017). The oil reserves in 

Alberta accounts for 98% of total Canadian oil reserves and approximately 13% of the global oil 

reserves. Most of these oil reserves contain an unconventional dense and extremely viscous form 

of petroleum, which is usually referred to as oil sands or bituminous sands (Government of 

Alberta, 2017). The province of Alberta contains over 169 billion remaining barrels (27x109 m3) 

of this type of bitumen and can supply Canada’s energy demands for next 475 years (Brown and 

Ulrich, 2015; Chastko, 2004). The crude oil production in the oil sands is also expected to 

increase from about 2.3 million barrels per day in 2014 to 3.5–4 million barrels per day in 2025 

and over 6 million barrels per day by 2030 (Bourgès-Gastaud et al., 2017; Wellstead et al., 

2016). In addition, the overall estimated industry investment in Alberta's oil sands reached over 

$21.6 billion in 2011. Economically, the oil sands have substantial impact on Canadian energy 

sector creating a significant number of jobs, a wide variety of cross-disciplinary scientific studies 

to increase bitumen extraction efficiencies and decreasing environmental impacts (Huang et al., 

2016).  

Geographically, the oil sands reserve in northern Alberta underlies a total of 142,200 km2 

and are spread in three regions: the Athabasca (40,000 km2), Cold Lake (22,000 km2) and Peace 

River (8,000 km2) (Natural Resources Canada, 2017). Among these three regions, the Athabasca 

is the largest in size and contains the largest amount of bitumen (Figure 2.1). After research and 

development in the early 1900s, mining activities were initiated in 1967. During this year, The 

Great Canadian Oil Sands Company, later renamed Suncor Energy, began commercial oil 

production at 12,000 barrels per day (Shaughnessy, 2010). Oil production from bitumen 

extraction expanded significantly from 1978 to 2003. Roughly, 500 km2 of the 140,200 km2 oil 

sands deposit is currently undergoing surface mining activity (Audet et al., 2015). 
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Figure 2.1 Outline of oil sands deposits (orange) in Alberta and adjacent provinces (Wellstead et 
al., 2016). 
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Approximately 20% of the bitumen oil reserves in the region are close enough to the 

surface to be mined (CAPP, 2017). The bitumen mining involves the use of shovel excavators 

and haul trucks similar to other types of large scale open pit mines (i.e. coal, copper, iron) 

(Aubertin and McKenna, 2016). However, most of oil sands mines are up to five to ten times the 

size of large open pit mining operations. In addition, the oil sand deposits lie under natural 

forests characterized by bogs and fens dominated by black spruce (Picea mariana), trembling 

aspen (Populus tremuloides) and jack pine (Pinus banksiana) (Lévesque, 2014). Therefore, 

surface mining in the oil sands region creates landscape scale disturbance that removes the 

vegetation, topsoil, parent geologic material, and overburden to a depth that often exceeds 80 m 

(Aubertin and McKenna, 2016).  

Bitumen is extracted from the oil sands using the Clark hot water extraction (CHWE) 

process which consists mainly of blending hot water and caustic soda to separate the bitumen 

from the mineral solids (Lévesque, 2014). Each cubic meter of mined oil sands requires up to 3 

m3 of process water and produces approximately 4 m3 of tailings, which consists of process 

water, sand, clays, organics and residual bitumen (Fedorak et al., 2002). Since oil sands 

companies in Alberta operate under a low-discharge policy, mine tailings are accumulated in 

settling basins known as tailing ponds (Yergeau et al., 2012a). 

 

2.2 Tailings Management 

Mine tailings, which must be retained on-site, are deposited in tailings ponds that 

currently occupy a surface area of approximately 180 km2 containing more than 800 million m3 

of tailings (Yang et al., 2016). Tailing ponds are engineered dam and dyke systems designed to 

keep mine tailings from being released into the environment. These ponds are essentially settling 

basins and as ponds are filled, they are retained indefinitely, pending reclamation (Mohamad 

Shahimin et al., 2016). A major concern with using tailings ponds as a disposal method is the 

slow rate of sedimentation and consolidation of the fine tailings, which could take 125-150 years 

(Fedorak et al., 2002). Initially, sand particles quickly settle to the bottom, then a middle layer of 

fine materials form, known as mature fine tailings (MFT), which comprises about 70% of water 

and 30% of fine clay (Suncor, 2017). To speed up fine tailings sedimentation, the oil sands 

industry has developed the Consolidated tailings (CT) process. CT technology expedites the 
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process of dewatering tailings through the addition of chemical coagulants such as calcium 

sulfate (gypsum) or aluminum sulfate (alum) (Renault et al., 2003). Sodium hydroxide is also 

occasionally added to the separation water to improve bitumen extraction efficiency (Roy et al., 

2016). However, as clarified water is then recycled, this practice can further enhance the salinity 

and hardness of process water and concentrating contaminants (Allen, 2008; Yergeau et al., 

2012a). In addition, important concerns have been raised over oil sands development and tailing 

ponds regarding the size of the disturbed area, which currently occupies 430 km2 and is projected 

to increase to 1767 km2 over the next 10–15 years (MacKenzie and Quideau, 2010). Following 

mine decommissioning and consolidation processes, fine tailings are dewatered, mixed with 

sand, buried, and capped with plant growth medium in land reclamation strategies (Allen, 2008). 

 

2.3 Reclamation Strategies 

Land reclamation is defined as the process of transforming any disturbed land to its 

previous land capacity state or better, considering stability and restoration of biological self-

sustaining processes (Quoreshi, 2008). Oil sands reclamation activities include soil re-

construction and ultimately the re-establishment of vegetation. Contrary to wildfire and logging, 

oil sands mining activities nearly always affect physical landform attributes, causing significant 

challenges to land reclamation (Audet et al., 2015). These challenges start with the nature of the 

tailing sands, which were affected by tailings water and considered generally an inappropriate 

plant growth medium.  

The coarse tailings has low nutrient content, high pH (8–9), low or no organic matter and 

high concentrations of toxic materials including naphthenic acids, polycyclic aromatic 

hydrocarbons, phenolic compounds and trace metals (Kwak et al., 2015; Naeth et al., 2011; 

Lefrançois et al., 2010; Onwuchekwa et al., 2014). These conditions are considered extremely 

harsh for plant development and the addition of a cover material with suitable reclamation 

material is necessary (Naeth et al., 2011; Beaudoin-Nadeau et al., 2016). Approximately 30 cm 

of cover material are applied over tailing sands to support plant growth, supply nutrients and to 

improve soil properties (Kwak et al., 2015).  

Currently, two different types of organic matter commonly used as cover materials 

include the peat mineral soil mix (PMM) and LFH mineral soil mix (Jamro et al., 2014). These 
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materials are generally salvaged from upland boreal forests and peatlands drained before mining 

operations. However, reclamation practices in the Athabasca oil sands region have mainly used 

PMM to build soil fertility, due to high peat quantities and availability in the mining footprint 

and the shortage of forest floor (Beasse et al., 2015; Quideau et al., 2013). The use of PMM as 

cover soils for land reclamation involves the mixing of humic, mesic, and fibric forms of peat 

materials with generally sandy mineral soils collected from tailings extraction processes or from 

the B horizons (Ojekanmi and Chang, 2014). Following a stockpiling period, peat is applied 

based on the regulatory approval from each mining company, most practices use a 20 to 50 cm 

thick PMM cover to cap the reconstructed soils (Quideau et al., 2013). The application of PMM 

in land reclamation has been found to increase water holding capacity, cation exchange capacity 

(CEC), soil organic carbon (SOC) and soil nitrogen (N) dynamics (Ojekanmi and Chang, 2014; 

Quideau et al., 2013). After the addition of an organic cover, barley (Hordeum vulgare) is often 

sown to provide quick vegetation cover and erosion control. Barley also helps to bulk up soil 

organic matter content and supply nutrients to desired planted tree species (Rowland, 2008). The 

growth and survival of these plant species and a sustainable soil microbial community structure 

is essential for reaching a long-term ecosystem stability after anthropogenic disturbance. 

 

2.4 Soil microbial community function and structure 

The soil habitat represents a highly heterogeneous environment in which communities are 

extremely complex and diverse, with millions of species and billions of individual organisms 

being found within a single ecosystem. Those communities range from bacteria and fungi, 

through to larger organisms, such as earthworms, ants and moles (Bardgett and van Der Putten, 

2014). Soil has an estimated 2.6·1029 prokaryotic cells and harbor much of the earth’s genetic 

diversity in which one gram of soil contains kilometers of fungal hyphae and more than 109 

bacterial cells belonging to tens of thousands of different species (Roesch et al., 2007). Although 

soil macrofauna also play an important role in ecosystem functioning, microorganisms are key 

determinants of the soil physical, biological and chemical characteristics, biogeochemical 

cycling, other terrestrial ecosystem functions and the sustainability of soil ecosystems (Prosser, 

2015). The vast majority of nutrient cycling processes such as carbon, nitrogen, phosphorus, and 

sulphur in soil are also carried out by microorganisms (Table 2.1). For example, 
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chemoautotrophic bacteria such as nitrifiers (Nitrosomonas and Nitrobacter) are important for 

nutrient cycling since they oxidize ammonium to nitrate in nitrification processes. Symbiotic 

(Rhizobium) and non-symbiotic free living (Azotobacter, Clostridium) nitrogen-fixing bacteria 

greatly increase N supply to the system (Bardgett, 2005). Microorganisms are also involved in 

decomposition of soil organic matter, degradation of synthetic compounds (i.e. pesticides and 

herbicides) and production of cementing agents that influence soil aggregation (Murphy et al., 

2007). Because of their involvement in such key processes, microorganisms are critical to soil 

function maintenance (Garbeva et al., 2004). Hence, the functional diversity of a microbial 

community has been defined as the occurrence and distribution of physiological and metabolic 

traits among members of that community (van Elsas et al., 2006). 

Microbes have “functional traits” that assign how well they perform under certain 

conditions. All organisms have, to a certain degree, the ability to adjust to the environment, 

however environmental characteristics can impact in their physiology. The environment may 

alter the conformation of proteins and cell membranes, thermodynamic and kinetic favorability 

of biochemical reactions in organisms (Morris and Blackwood, 2014).  
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Table 2.1 Key microbial processes mediating chemical transformations associated with nutrient 
cycling in soil (Murphy et al., 2007). 

Microbial process Examples of microbial groups involved 

 

Nutrient supply 

Mineralization of organic matter 

Solubilisation of minerals 

 

 

Heterotrophic microorganisms (Kalbitz et al., 2000) 

Penicillium sp., Pseudomonas sp., Bacillus sp. (Sharma et al., 2013) 

 

Nutrient Transformations 

Methane oxidation 

Nitrification 

NH3 to NO2
- 

NO2
- to NO3

- 

Non-symbiotic N2 fixation 

 

Symbiotic N2 fixation 

 

Sulphur oxidation 

 

 

Methylococcus sp., Methylobacter sp. (Smith et al., 1997) 

 

Nitrosospira sp. and Nitrosomonas sp. (Bothe et al., 2000) 

Nitrobacter sp. (Lees, 1951) 

Azospirillum sp., Azotobacter sp. (Steenhoudt and Vanderleyden, 

2000) 

Rhizobium sp., Anabaena sp. (van Gorkom and Donze, 1971; 

Wilson et al., 1932) 

Thiobacillus sp., Heterotrophic microorganisms (Parker and J., 

1953) 

 

Loss of Nutrients 

CO2 production 

Methane (CH4) production 

Denitrification (N2, N2O) 

Reduction of SO4
2- to H2S 

 

 

Heterotrophic microorganisms (McGill et al., 1975) 

Methanobacterium sp., Methanosarcina sp. (Sawayama et al., 2004) 

Bacillus sp., Pseudomonas sp., Agrobacterium sp. (Zumft, 1997) 

Desulfovibrio sp., Desulfomonas sp. (Wei et al., 2010) 
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Soil microbial community structure is based on how organisms become distributed in the 

environment (Morris and Dress, 2007). This distribution may rely on resources, such as nutrients 

and energy that could be favorable or inhibitory. Environmental factors that can affect the 

ecology, activity and structure of microorganisms in soil include: carbon and energy sources, 

mineral nutrients, ionic composition, available water, temperature, pressure, air composition, 

electromagnetic radiation, pH, oxidation–reduction potential, surfaces, spatial relationships, 

microorganism genetics and interaction between microorganisms (Nannipieri et al., 2003; Lu et 

al., 2014). Mainly in engineered or disturbed ecosystems, microbial communities encounter an 

ecological challenge. The communities can exhibit ‘resistance’ to their structure after 

disturbance, but when such disturbances cause a change in their structure, the rate at which 

communities recover to their native structure is called ‘resilience’ (Bora et al., 2014). For 

example, MacKenzie and Quideau (2010) observed that microbial community structure and 

mineral nutrient availability were affected by time since reclamation, seasonal variability, inter-

annual variability, and vegetation cover at reclamation sites after bitumen exploitation in Alberta. 

Lefrançois et al. (2010) studied Frankia-inoculated alders planted on and oil sands reclamation 

site, and found positive impacts on indigenous soil microbial community structure and function 

as compared to unplanted soil.  

Therefore, greater knowledge concerning the dynamics of soil microbial community 

structure can benefit the development of new reclamation strategies to enhance plant health and 

soil ecosystem functioning in disturbed ecosystems. 

 

2.5 Plant-microbe interactions 

Microbial development in soil is considered to be inconsistently distributed, where there 

is a tendency of organisms to live in aggregates and to form active hot spots (Paul et al., 2014). 

One of the most important soil hot spot is the portion of the soil influenced by the plant root 

system. Plant roots release a wide variety of compounds into the surrounding soil that create 

unique environments for the microorganisms living in association with plants (Garbeva et al., 

2004). Microorganisms that associate with plants are diverse in their ability to affect plant health, 

their genotypic and phenotypic characteristics, and their phylogeny (Beattie, 2006). Therefore, a 

recent approach consists in characterizing plants as holobionts (i.e. host and associated microbes) 
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and that the associated microbes affect plant fitness (Schlaeppi and Bulgarelli, 2015; 

Vandenkoornhuyse et al., 2015). Other authors (Mercado-Blanco, 2015) have characterized the 

plant and its microbiome as “super organisms” which work coordinately to shape and sustain an 

ecosystem. 

The plant microbiome has the potential to reduce the incidence of plant disease, increase 

plant ability to resist abiotic stress, increase agricultural production, reduce chemical fertilizer 

inputs and reduce greenhouse gas emissions (Turner et al., 2013; Andrews et al., 2010). These 

plant-microbe interactions may occur in the rhizosphere, endosphere and the phyllosphere.  

 

2.5.1 The rhizosphere microbiome 

The rhizosphere is defined as the narrow zone of soil that surrounds and is influenced by 

plant roots and harbors a vast number of microorganisms (Philippot et al., 2013). It is estimated 

that the rhizosphere may contain up to 1011 microbial cells per gram root and more than 30,000 

prokaryotic species, which makes its collective genome much larger than of the plant itself 

(Berendsen et al., 2012). Plants influence the rhizosphere mainly through rhizodeposition of 

exudates, mucilage and sloughed cells. Root exudates include low molecular weight (amino 

acids, organic acids, phenolic acids, sugars, flavonoids, etc.) and high molecular weight 

(carbohydrates, enzymes, etc.) organic compounds released by roots (Pii et al., 2015; Rasmann 

and Turlings, 2016). It is estimated that rhizodeposition account for approximately 11% of net 

photosynthetically fixed carbon and 10–16% of total plant nitrogen depending on plant species 

and plant age (Bulgarelli et al., 2013). Many different organisms including bacteria, fungi, 

viruses and archaea are attracted by and feed on rhizodeposits in a phenomenon is known as the 

“rhizosphere effect” (Philippot et al., 2013; Berendsen et al., 2012).  

Soil bacteria attracted to rhizodeposits are mostly organotrophs as they obtain their 

energy from organic substrates (Bulgarelli et al., 2013). Carbon availability is the most common 

limiting factor for soil bacteria growth and the availability and accessibility of degradable 

organic compounds is limited in most soils (Mendes et al., 2013). Therefore, low molecular 

weight exudates could represent an easy accessible carbon source for these organisms in the 

rhizosphere where the concentration of these compounds is usually much higher than in the bulk 

soil. (Pii et al., 2015). The higher abundance in root exudates reflects in a hot spot for microbial 
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abundance, where the total biomass is 2 to 3 times greater compared to bulk soil (Kuzyakov and 

Blagodatskaya, 2015).  

Proteobacteria usually dominates the rhizosphere microbiota, particularly those of the α 

and β classes. Other major groups include: Acidobacteria, Actinobacteria, Bacteroidetes, 

Firmicutes, Planctomycetes and Verrucomicrobia (Turner et al., 2013; Bulgarelli et al., 2013). 

Although more abundant, the rhizosphere microbiota is in general less diverse than those of bulk 

soil (Berendsen et al., 2012). In addition, microbial abundance in the rhizosphere is influenced 

by plant vegetation cycles, such as annual litter fall in autumn or intensive root growth in spring 

or even diurnal cycles of photosynthesis (Kuzyakov and Blagodatskaya, 2015). However, root 

exudates are not the only component of rhizo-deposition, the sloughing of plant root cells and the 

release of mucilage deposits (including plant cell wall polymers such as cellulose and pectin) are 

a large part of materials in the rhizosphere. For example, the decomposition of pectin releases 

methanol, which can be used as a carbon source by other microbes. In addition, plant roots also 

provide a physical structure where microbes can attach (Turner et al., 2013). 

Most members of the rhizosphere microbiome have neutral effects on the plant, by taking 

advantage of root exudates as nourishment without affecting plants (Raaijmakers et al., 2009). In 

negative interactions, pathogenic microorganisms may produce metabolites with toxic effects on 

plants, which results in detrimental effects on plant growth. These organisms are mostly 

pathogenic fungi, oomycetes, bacteria and nematodes (Raaijmakers et al., 2009; Pii et al., 2015). 

In positive interactions, known beneficial rhizosphere organisms includes nitrogen-fixing 

bacteria, mycorrhizal fungi, plant growth- promoting rhizobacteria (PGPR), biocontrol 

microorganisms, mycoparasitic fungi, and protozoa (Mendes et al., 2013). For example, PGPR 

can stimulate plant growth, increase yield, reduce pathogen infection, as well as reduce biotic or 

abiotic plant stress, without conferring pathogenicity (Compant et al., 2010). Hence, plant 

beneficial microorganisms have been subject of great relevance for agriculture as well as for 

phytoremediation applications. However, to exert their advantageous traits in the root system, 

beneficial rhizosphere bacteria must be capable of competing with other microbes for nutrients 

secreted by roots and for sites that can be occupied on the root (Parray et al., 2016). In addition, 

plant species can strongly influence the composition of the microbiota living in proximity to 

them in which only a subset are capable entering and reside inside plant tissues. 
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2.5.2 The endosphere microbiome 

As previously suggested by Hardoim et al. (2015) plants do not live alone as single 

entities, but instead in closely association with the microorganisms present in their 

neighborhood, and especially with those living internally. Microorganisms that penetrate and 

colonize the root internal tissues (the endosphere) and that spend at least part of their life cycle 

inside plants are characterized as endophytes (Turner et al., 2013). The vast majority of these 

endophytes are arbuscular mycorrhizal fungi (AMF) along with other fungi, bacteria and, to a 

lesser extent, archaea (Vandenkoornhuyse et al., 2015). However, the meaning of the term 

“endophyte” has changed in recent years. After the first definition as “any organism occurring 

within plant tissues” by De Bary (1866), various authors have defined endophytes in different 

ways (Berg et al., 2014). The term initially characterized fungi living inside plants, but later 

researchers realized the existence of bacterial endophytes (Hardoim et al., 2015). One the most 

common definitions of endophytes was described by Hallmann et al. (1997), in which authors 

define endophytes as “microorganisms that can be isolated from surface-disinfested plant tissues 

that do not cause visible harm to the plant”. Endophytes are indeed generally considered to be 

non-pathogenic, but they may include also latent pathogens that, depending on environmental 

circumstances and/or host genotype, may cause diseases (Turner et al., 2013). Hence, the 

definition of an endophyte has now been expanded by many researchers and can include any 

organisms that live in the endosphere whether neutral, beneficial or detrimental (Backman and 

Sikora, 2008). 

Endophytes that benefit from metabolites produced by plants but have no apparent effects 

on plant performance are known as commensal endophytes. Beneficial endophytes include 

microorganisms that confer positive effects to their host plant, such as degradation of xenobiotics 

(Phillips et al., 2008), protection against invading pathogens (either by antibiosis or via induced 

resistance) (Mazurier et al., 2009) and plant growth promotion (Varma et al., 1999). A third 

group of endophytes includes latent pathogens (Hardoim et al., 2015). Other than their effects on 

host plants, endophytes are also classified as “obligate”, requiring plant tissues to complete their 

life cycle, or “opportunistic”, which mainly thrive outside plant tissues and sporadically enter the 

plant endosphere (Hardoim et al., 2015). In addition, there are several ways in which 

microorganisms can gain access to the endosphere. Microbes can colonize the plant interior by 

entering the plant stomata, the leaf surface (by the production of wax degrading enzymes), 
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through flowers, fruits, stems or cotyledons and seeds (Mercado-Blanco, 2015). However, their 

main and most studied colonization route occurs by the plant roots in the rhizosphere (Malfanova 

et al., 2013). Consequently, the density of endophytes is normally higher in roots than other plant 

organs. 

The colonization of endophytes generally starts with the microbial establishment in the 

rhizosphere following the attachment on the root surface, termed “rhizoplane”. While some 

organisms such as ectomycorrhizal fungi (EcM) remain attached to the rhizoplane, others gain 

access to the endosphere (Vandenkoornhuyse et al., 2015). Although little is known about the 

specific sites at which endophytes attach and penetrate into root tissues, it is generally assumed 

that they gain entry passively by cracks or wounds at lateral root emergence (Turner et al., 

2013). Other than lateral root emergence, these cracks can also be formed by arthropod, 

nematode or microbial activities (Mercado-Blanco, 2015). Although generally in lower 

concentrations than plant pathogens, many endophytic bacteria express cell-wall-degrading 

enzymes that facilitate their entry at the endosphere. (Turner et al., 2013). Once inside the plant, 

endophytes either reside in specific plant tissues such as the root cortex or the xylem, or colonize 

other plant compartments by transport through the vascular system or the apoplast (Weyens et 

al., 2009). However, microorganisms that reach the endosphere must contend with triggered 

plant defense responses, which can function as filters of soil microorganisms, selecting those 

successful, competent endophytes (Chen et al., 2010; Beattie, 2006). Differently from the 

rhizosphere microbiota, the plant’s endosphere harbors a highly specific set of microbial 

communities.  

In the endosphere, the microbial community structure is very different from the adjacent 

soil. Overall, diversity is much lower than in the rhizosphere (Vandenkoornhuyse et al., 2015). 

For example, endophytic bacteria once inside plant tissues rarely exceed 107 to 108 CFU·g-1 of 

root fresh weight-1 and can be as low as 103 CFU·g-1 of root fresh weight-1, depending on plant 

age and genotype (Turner et al., 2013). In terms of bacterial community structure, several 

bacteria have been reported to be endophytic in cultivation based studies. Most of these include 

Proteobacteria, but also Firmicutes, Actinobacteria and Bacteroidetes. Archaea however does 

not have an apparent close association with plants (Reinhold-Hurek and Hurek, 2011). In 

addition, an intimate close association is observed between bacterial endophytes and their host 

plants. Bacterial endophytes may access nutrients and water more easily than those on the 
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rhizosphere or the rhizoplane (Beattie, 2006). On the other hand, the beneficial effects of 

endophytes to their host plants are in general greater than those of rhizobacteria., which might be 

intensified when the plant is growing under either biotic or abiotic stress conditions (Ma et al., 

2011a; Compant et al., 2010). Hence, in addition to their beneficial effects on plant growth, 

endophytes have a great biotechnological potential to improve the efficiency and applicability of 

phytoremediation techniques.  

 

2.6 Phytoremediation 

The remediation of soils contaminated with organic pollutants is a global issue that 

consumes considerable economic resources of industries and governments. The estimated costs 

for the clean-up of contaminated sites with conventional techniques such as landfilling and 

incineration are very high (Kuiper et al., 2004; Cunningham et al., 1995). Most soils 

contaminated with organic pollutants are remediated using a diverse set of thermal, chemical, 

and physical methods that strip the contaminants from the soil (Cunningham et al., 1996). In 

addition, the numerous classes and types of many potentially toxic compounds increases the 

challenges on soil remediation (Glick, 2003). Therefore, in the last decades there is an increase in 

the search for alternative techniques using an environmentally friendly, safe, less expensive and 

less labor-intensive approach such as phytoremediation (Kuiper et al., 2004). 

Phytoremediation is the use of plants and their associated microbes to remove pollutants 

or render them harmless to the environment (Salt et al., 1998; Pilon-Smits, 2005). This technique 

uses naturally occurring processes by which organic and inorganic pollutants are degraded and 

sequestered. Organic pollutants are mostly man made and xenobiotic to organisms, in which 

many are toxic and some carcinogenic (Pilon-Smits, 2005). Phytoremediation has been used for 

treating many classes of contaminants including chlorinated solvents (Strand et al., 1998), 

petroleum hydrocarbons (Soleimani et al., 2010), explosives (Hagan et al., 2016), pesticides 

(Azab et al., 2016), heavy metals (Wood et al., 2016), radionuclides (Singh et al., 2016) and 

landfill leachates (Jerez Ch and Romero, 2016). Due to the diverse class of contaminants and 

where they may occur, there a serval different ways in which phytoremediation can be applied. 

According to Salt et al. (1998), this application is currently divided into the following areas: 
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• Phytoextraction: the use of pollutant-accumulating plants to remove metals or organics 

from soil by concentrating them in the harvestable parts. 

• Phytodegradation: degradation of organic pollutants by using plants and associated 

microorganisms. 

• Rhizofiltration: the use of plant roots to absorb and adsorb pollutants, mainly metals, 

from water and aqueous waste streams. 

• Phytostabilization: the use of plants to reduce the bioavailability of pollutants in the 

environment. 

• Phytovolatilization: the use of plants to volatilize pollutants; and the use of plants to 

remove air borne pollutants. 

 

Overall, phytoremediation in general has gained popularity with government agencies 

and industry in the past years. Although this technique has several advantages, it also has 

limitations. 

 

2.6.1 Advantages and disadvantages 

The main advantages of phytoremediation rely on its high public acceptance and its 

environmentally friendly approach. Phytoremediation also provides a natural solar-driven 

technique that is less expensive than physicochemical remediation treatments. Once 

phytoremediation is established, sites usually require little maintenance and transportation costs 

associated with moving the contaminated material to a secondary treatment facility (Pilon-Smits, 

2005). In addition, phytoremediation is faster than natural attenuation, has fewer air and water 

emissions and it conserves natural resources (Susarla et al., 2002). However, phytoremediation is 

frequently slower than conventional physicochemical remediation processes and often limited by 

plant root depth, since plants must be able to reach the pollutant (Taylor and Gomes, 2012; 

Pilon-Smits, 2005). Soil pH, salinity, texture, pollutant concentrations and the presence of other 

toxins must be within the limits of plant tolerance in order for phytoremediation to occur. 

Contaminants that are highly water soluble may also leach outside the root zone and require 

additional containment (Cunningham et al., 1995). Despite these limitations, phytoremediation 

may be suitable for contaminated sites where large surface areas contain relatively immobile 



 

 19 

contaminants. However, the use of plant-based technologies alone has limitations regarding the 

fact that plants are autotrophs and not ideally suited for the metabolism and breakdown of 

organic compounds (Dowling and Doty, 2009). For example, plants can only absorb a minute 

quantity of hydrocarbons from the soil and translocate them into their different parts. Although a 

small fraction can be stored in the vacuole or volatilized into the atmosphere, the majority of the 

hydrocarbons cannot move considerably into plants from the soil (Khan et al., 2013). Therefore, 

the exploitation of plant-microbe interactions may overcome these limitations by using plants 

associated with metal accumulating, pollutant-degrading and/or plant growth-promoting 

microorganisms. 

 

2.6.2 Use of plants and associated microorganisms for hydrocarbon degradation 

Although a few studies have reported that fungi can enhance hydrocarbon degradation 

can in different plant compartments (Rajtor and Piotrowska-Seget, 2016; Soleimani et al., 2010), 

bacteria are most important group capable of hydrocarbon degradation (Table 2.2). The potential 

to degrade organic compounds have been reported in both rhizosphere (Arslan et al., 2014) and 

endophytic (Yousaf et al., 2011) bacteria in association with host plants. Arslan et al. (2014) 

studied the inoculation of annual ryegrass (Lolium multiflorum) with Pantoea sp. strain BTRH79 

previously characterized for hydrocarbon degradation and 1-Aminocyclopropane-1-Carboxylate 

(ACC) deaminase activity. In this study, despite that soil diesel contamination overall reduced 

plant growth and development, hydrocarbon degradation was enhanced in inoculated plants. 

Although rhizosphere bacteria play an important role in phytoremediation, endophytic 

bacteria offer several advantages over rhizosphere bacteria. The bacterial population in the 

rhizosphere is more difficult to control and, unless the pollutant is selective, desired strains are 

often reduced by competition with indigenous microbes (Doty, 2008). In contrast, endophytes 

that naturally inhabit the plant tissues would encounter a less competitive environment. The use 

of pollutant degrader endophytes also has the advantage that any toxic xenobiotics taken up by 

the plant may be degraded in planta, therefore reducing phytotoxic effects to other organisms 

(Ryan et al., 2008). 

Therefore, although relatively a new concept, the unique niche in the endosphere for 

hydrocarbon degradation has been previously reported in the literature. One of the first studies to 
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report different endophytic bacterial strains associated with plants that were able to degrade 

hydrocarbons was conducted by Siciliano et al. (2001). The results in this study indicated that 

plants grown in a soil contaminated with different concentrations of aliphatic hydrocarbons and 

polycyclic aromatic hydrocarbons naturally recruited endophytes with the necessary hydrocarbon 

degrading genes. 

Phillips et al. (2008) also studied the endophytic bacteria associated with plants growing 

on a hydrocarbon contaminated site. These authors found that hydrocarbon degradation was 

associated to dominant endophytic bacterial species. Bacterial community structure in the 

endosphere dominated by Pseudomonas sp. revealed an increased hydrocarbon degradation 

potential and activity. In addition, most of the isolated endophytic bacteria in this study exhibited 

the potential to degrade both aromatic and aliphatic hydrocarbons. Differently from Siciliano et 

al. (2001) and Phillips et al. (2008), Barac et al. (2004) intentionally inoculated yellow lupine 

(Lupinus arboreus) plants with engineered Burkholderia cepacia G4. Results in this study 

indicated that Burkholderia cepacia not only could increase plant tolerance to toluene, but also 

improve the overall degradation of the contaminant.  

Other studies with endophytic bacteria that assessed hydrocarbon degradation were 

conducted with Enterobacter spp. In Yousaf et al. (2011), despite a strong reduction in shoot and 

root biomass due to the presence of diesel, inoculation with Enterobacter ludwigii strains 

significantly reduced this effect compared to non-inoculated plants. This study also assessed 

CYP153 hydrocarbon degrading genes within E. ludwigii strains and found that the expression of 

this gene varied distinctly between different strains, plants species, plant developmental stages 

and plant compartments. Soils amended with diesel have also been used by Andria et al. (2009) 

to study to test activities and plant colonization of the endophyte Pseudomonas sp. strain ITRI53 

in which hydrocarbon degrading alkane monooxygenase (alkB) gene abundance and expression 

was investigated. Plants inoculated with Pseudomonas sp. strain ITRI53 showed higher growth 

and survival in the presence of diesel. Although the increase in diesel concentration decreased 

the number of culturable bacteria, the inoculation of endophyte strains resulted in higher plant 

survival. In addition, bacterial strains expressed alkB genes indicating their active role in diesel 

degradation.  

Pseudomonas spp. have also been used by Germaine et al. (2009) in the 

phytoremediation of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, fluorene 
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and phenanthrene. This study investigated the ability of an endophytic naphthalene degrading 

bacterium, Pseudomonas putida VM1441 (pNAH7), to protect pea plants from the phytotoxic 

effects of naphthalene, along with its ability to enhance naphthalene removal from contaminated 

soil. Inoculation with this strain not only resulted in higher (40%) naphthalene degradation rates 

but also protected plants from the toxic effects of naphthalene. Andreolli et al. (2013) inoculated 

hybrid poplar (Populus deltoids and Populus nigra) plants with Burkholderia fungorum DBT1, a 

bacterial strain that indicated PAH degradation and plant growth promotion but it was never 

identified before as an endophytic strain. Results in this study indicate that B. fungorum DBT1 

can infect the roots of poplar and improve the phytoremediation efficiency of PAHs. The 

absence of the strain B. fungorum DBT1 in the rhizosphere samples implies that PAH removal 

by this strain occurred within the root tissue.
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Table 2.2 Examples of phytoremediation of hydrocarbon contaminated soil by combined use of microbes. 
Plant used Microorganism Habitat Microorganism characteristics Reference 

Tall fescue (Festuca arundinacea) 

and meadow fescue (Festuca 

pratensis) 

Neotyphodium Endosphere Plant growth promotion (Soleimani et al., 

2010) 

Ryegrass (Lolium perenne) Pantoea sp. strain 

BTRH79 

Rhizosphere Alkane degradation (CYP153 

gene) and ACC deaminase activity 

(Arslan et al., 2014) 

Yellow lupine (Lupinus arboreus) Burkholderia cepacia 

G4 

Endosphere Toluene-degrading endophyte. (Barac et al., 2004). 

Italian ryegrass (Lolium 

multiflorum), birdsfoot trefoil 

(Lotus corniculatus) and alfalfa 

(Medicago sativa) 

Enterobacter ludwigii. Endosphere Alkane degradation (CYP153 

gene) 

(Yousaf et al., 2011) 

Italian ryegrass (Lolium 

multiflorum) 

Pseudomonas sp. strain 

ITRI53 

Endosphere Alkane degradation (alkB gene) (Andria et al., 2009) 

Pea (Pisum sativum) Pseudomonas putida 

VM1441 (pNAH7) 

Endosphere PAH degradation (nahY gene) (Germaine et al., 

2009) 

Hybrid poplar (Populus deltoids 

and Populus nigra) 

Burkholderia fungorum 

DBT1 

Endosphere Capacity of degrading several 

PAHs 

(Andreolli et al., 

2013) 

Wheat (Triticum aestivum) 
 

Pseudomonas sp. GF3 Endosphere Phenanthrene-degrading bacteria 
 

(Sheng and Gong, 

2006) 

Wheat (Triticum sp.) and corn (Zea. 
mays) 

 

Burkholderia cepacia 
strain FX2 
 

Endosphere Toluene degrading bacteria 
 

(Wang et al., 2010b) 
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2.7 Ecology of hydrocarbon degrading bacteria 

Petroleum (crude oil) is a complex mixture that includes several different chemical 

components which are mostly hydrocarbons. Bacteria are the most active agents in petroleum 

degradation. Most hydrocarbon degrading bacteria are widespread in oil-polluted environments 

but they also occur in pristine environments (Afzal et al., 2013b). These bacterial species are 

heterotrophic organisms (i.e. requiring an organic substrate to feed on) and petroleum derived 

hydrocarbons can be used as nutrient source by hydrocarbon degrading bacteria. The 

composition of these hydrocarbons in crude oil can be divided in saturated aliphatic 

hydrocarbons, aromatic, resins and asphaltenes (Mbadinga et al., 2011). 

Most hydrocarbons that are metabolized by bacteria are either aliphatic or aromatic 

hydrocarbons. Aliphatic hydrocarbons includes both linear or branched chain hydrocarbons, 

which may be unsaturated (alkenes and alkynes) or saturated (alkanes) (Pandey et al., 2016). 

Hydrocarbon degrading bacterial species are very diverse, although in the case of alkane-

degrading bacteria, almost all bacteria belong to α-, β-, and γ-Proteobacteria and 

Actinomycetales (Afzal et al., 2013). Based on the number of research studies, the most 

important alkane-degrading bacteria in both marine and soil environments are Achromobacter 

(Tanase et al., 2013), Acinetobacter (Fatima et al., 2016), Alcaligenes (Kim and Cho, 2006), 

Arthrobacter (Ferrera-Rodríguez et al., 2013), Bacillus (Tao et al., 2016), Burkholderia (Tara et 

al., 2014), Flavobacterium (Turner et al., 2015), Mycobacterium (Kim et al., 2015), 

Micrococcus (Dellagnezze et al., 2014), Nocardioides (Hamamura et al., 2006), Nocardia (Ali et 

al., 2012) , Pseudomonas (van Beilen et al., 2006), Rhodococcus (Stancu, 2015), Ralstonia 

(Kubota et al., 2008), Sphingomonas (Liu et al., 2016) and Stenotrophomonas spp. (Tebyanian et 

al., 2013). 

 Aromatic hydrocarbons include mono (i.e. benzene, toluene, phenol, etc.) and polycyclic 

aromatic hydrocarbons (PAHs). Among PAHs, Benzo(a)pyrene (BaP) is considered as the most 

carcinogenic and toxic (Haritash and Kaushik, 2009). However, different studies have shown 

bacterial degradation of BaP by Mycobacterium sp. (Schneider et al., 1996; Moody et al., 2004). 

Several other bacterial species are known to degrade PAHs, which most are isolated from 

contaminated soil or sediments (Haritash and Kaushik, 2009). The simplest and most soluble 

PAH is Naphthalene. General naphthalene-degrading bacteria include Pseudomonas (Jin et al., 
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2016), Vibrio (Geiselbrecht et al., 1996), Mycobacterium (Daane et al., 2001), Marinobacter 

(Deppe et al., 2005)., Sphingomonas (Pinyakong et al., 2003)., Rhodococcus (Allen et al., 1997) 

and Micrococcus spp. (Jegan et al., 2010). 

Pseudomonas spp. are the most predominant group of soil bacterial taxa that biodegrade 

complex organic compounds which includes aliphatic and aromatic hydrocarbons. Hydrocarbon 

degradation by Pseudomonas spp. is a result of different processes that typically requires the 

collaborative efforts of several different enzymes (Glick, 2010). Phillips et al. (2008) isolated 

endophytic bacteria from different plant species growing in an oil contaminated soil and found 

that Pseudomonas spp. dominated endophytic communities. The presence of Pseudomonas spp. 

was also associated with high alkane degradation potential and activity. 

 

2.7.1 Hydrocarbon degradation 

With continually expanding oil industry and a global dependence on fossil fuel, there is 

an increasing concern with the release of these synthetic compounds into the soil environment. 

The novel chemical structures in these compounds are often recalcitrant to microbial degradation 

since microorganisms have not had time to adjust their metabolism to respond and degrade those 

compounds (Leung et al., 2006). Fortunately, natural microbial communities have a high 

metabolic diversity which can assist in degradation of these compounds. In addition, many 

synthetic compounds are similar to naturally-occurring compounds, so that, given the right 

conditions and adequate time, they can be degraded by bacterial communities. (Leung et al., 

2006). Hence, upon exposure to crude oil, virtually any soil or water habitat can ultimately 

enhance a bacterial population capable of degrading hydrocarbons.  

Hydrocarbon degradation by bacteria may occur in anaerobic or aerobic conditions. 

Although several studies have reported the occurrence of anaerobic degradation (Heider et al., 

1998; Aitken et al., 2004), most microbial hydrocarbon degradation occurs in the presence of 

oxygen.  

2.7.1.1 Aerobic degradation of aliphatic compounds 

One of the most important aspects that limits biodegradation of oil pollutants in soil is 

their limited availability to microorganisms. Petroleum hydrocarbons bind to soil components 

and often have low water solubility (Das and Chandran, 2011). As hydrocarbon molecular 
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weight increases, water solubility decreases. Although low molecular weight hydrocarbons are 

sparingly soluble in water to ensure a sufficient transfer to bacterial cell, high molecular weight 

(medium and long chain n-alkanes) alkanes are virtually water insoluble (Singh et al., 2012). 

However, solubility of long chain hydrocarbons can be enhanced by the production of 

biosurfactants, which increase dispersion and solubility of organic compounds in water. Many 

soil bacteria produce biosurfactants, such as mono-rhamnolipids, which is produced by a 

Pseudomonas aeruginosa strain (Rahman and Gakpe, 2008). Other than biosurfactant 

production, microorganisms are equipped with metabolic machinery to use both aliphatic and 

aromatic compounds as a carbon and energy source.  

Aliphatic hydrocarbons are in general more readily biodegradable when compared to 

aromatic. Within aliphatic compounds, branched chain structures (e.g. 2-Methylpentane) and 

substituted compounds such as halogenated ones (e.g. Chloroethane) are more persistent to 

microbial degradation, while medium-sized straight-chain compounds (e.g. n-alkanes in the 

range of C10–C18) are more readily degraded (Leung et al., 2006).  

Metabolism of hydrocarbons by microorganisms is a complex process in which consists 

on converting these metabolically inactive molecules to more active forms for further catalysis 

(Abbasian et al., 2015). Aerobic alkane degraders can use alkanes as an electron acceptor, an 

electron donor, as energy source, or as an precursor for other molecules (Afzal et al., 2013b). 

According to Leung et al. (2006), the most common pathway on alkane degradation depends on 

the action of monooxygenase enzymes which are specific for n-alkanes. This reaction results in 

the addition of an oxygen atom to the terminal methyl group, producing an alcohol. 

Subsequently, the alcohol formed is converted first to an aldehyde and then to a fatty acid, which 

is further metabolized via β-oxidation and the citric acid cycle, a common catabolic pathway in 

most living cells (Leung et al., 2006; van Hamme et al., 2003). In a second pathway, a 

dioxygenase enzyme acts on the terminal methyl group of an n-alkane by adding two oxygen 

atoms. This results in the formation of a peroxide compound that is further converted into a fatty 

acid (Leung et al., 2006) (Figure 2.2).
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Figure 2.2 Biodegradation of alkanes (Leung et al., 2006). 
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2.7.1.2 Aerobic degradation of aromatic compounds 

Aromatic hydrocarbons are less biodegradable than saturated hydrocarbons and therefore 

are associated with higher risks to the environment and life forms (Varjani, 2017). Although 

simple hydrocarbons with one aromatic ring (e.g. BTEX) are also present in petroleum, aromatic 

compounds with two or more aromatic rings, i.e. polycyclic aromatic hydrocarbons (PAHs), are 

a group of significant environmental concern (Leung et al., 2006). The electrochemical stability, 

persistency, carcinogenic index and resistance towards biodegradation of PAHs increase with an 

increase number of aromatic rings. Similar to alkanes, hydrophobicity also tends to increase with 

high molecular weight (Ghosal et al., 2016). Generally, PAHs with low molecular weight (< 3 

rings) are more susceptible to biodegradation than those with high molecular weight (> 4 rings). 

Even though bacteria may also use aromatic hydrocarbons as sole sources of carbon and energy, 

these are not degraded as easily as alkanes (Leung et al., 2006). 

A key step in the degradation of aromatic compounds is the cleavage of the aromatic ring 

by an initial oxidative attack, which is carried out by dioxygenase enzymes with molecular 

oxygen as reactant. This results in the formation of cis-dihydrodiols by incorporation of both 

oxygen atoms of an oxygen molecule and then to formation of catechols (Varjani, 2017). After 

this step, the benzene ring is cleaved by microorganisms in different ways by appropriate 

enzymes. Mainly, catechol cleavage can subsequently follow one of two pathways: (i) ortho- 

cleavage, in which the ring is cleaved between the two carbon atoms with hydroxyl groups and 

the (ii) meta- cleavage, in which the ring splits between adjacent carbon atoms with and without 

a hydroxyl group (Leung et al., 2006; Abbasian et al., 2015). After catechol cleavage, 

metabolites such as acetate, succinate, pyruvate or acetaldehyde subsequently enter the 

tricarboxylic acid cycle (TCA) cycle and then are available as energy and carbon sources to the 

cell (Leung et al., 2006). Essentially, polyaromatic hydrocarbons are degraded one ring at a time, 

following the same degradation step (Ghosal et al., 2016) (Figure 2.3). 
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Figure 2.3 Biotransformation of benzene to catechol followed by the ortho-cleavage of catechol. Modified from Leung et al. (2006). 
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2.7.1.3 Hydrocarbon degrading genes 

 The initial intracellular attack of organic pollutants is an oxidative process (Varjani, 

2017). In this process, mono and dioxygenases are key enzymes in the biodegradation of a wide 

range of hydrocarbons and other environmental pollutants. Genes encoding these enzymes have 

been characterized in several organisms (Rojo, 2009) (Table 2.3). Most of the genes required for 

the breakdown of hydrocarbons can often be found on plasmids, which facilitates genetic transfer 

and acquisition in oil-polluted environments (Brooijmans et al., 2009). 

Monooxygenases are classified into rubredoxin-dependent enzymes and in most bacterial 

species this enzyme is encoded by the gene alkB while some bacteria, such as Acinetobacter sp., 

express the enzyme encoded by the alkM gene (Abbasian et al., 2016). The best-characterized 

alkane-degradation pathway (the alk system) is encoded by the OCT plasmid of Pseudomonas 

putida GPo1 to convert n-alkanes (C6–C10) into their fatty acids (van Beilen et al., 2001). Other 

genes encoding for rubredoxin-dependent monooxygenases have been also reported in 

Rhodococcus sp. strain Q15 (Rh alkB1,Rh alkB2) (Whyte et al., 2002), P. putida ATCC 17484 

(ndoB) (Margesin et al., 2003), P. putida F1 (todC1) (Furukawa et al., 1993), P. putida ATCC 

33015 (xylE, cat23) (Luz et al., 2004), and P. pseudoalcaligenes KF707 (bphA) (Tairazf et al., 

1992). Although the alkB gene has been the predominant gene in most studies for metabolism of 

alkanes (Liu et al., 2015b; Wasmund et al., 2009; Wallisch et al., 2014), a second alkane 

hydroxylase that is alternatively found in bacteria belongs to the CYP153 family of the 

cytochrome P450 monooxygenases (Kloos et al., 2006; Rojo, 2009). 

CYP153 is an enzyme of the CYP superfamily that can also catalyze the hydroxylation of 

alkanes (Yergeau et al., 2012b). According to van Beilen et al. (2006), several strains such as 

Gordonia sp. and Rhodococcus rhodochrous were able to degrade hydrocarbons, but did not 

contain alkB homologs. Therefore, these authors identified that many of these strains contain 

cytochrome P450 enzymes belonging to the CYP153 family. Wang et al. (2010a) reported more 

than 250 alkB homologues in 45 bacterial species and approximately 60 homologues of CYP153 

in 18 bacterial species have been discovered to date. 
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Table 2.3 Examples of hydrocarbon degrading genes and bacterial taxa. 
Gene name Source Organism Reference 

Alkane monooxygenase 
  

alkB Pseudomonas putida GPo1 (van Beilen et al., 2001) 

alkM Acinetobacter sp. (Ratajczak et al., 1998) 

Rh alkB1, Rh alkB2 Rhodococcus sp. strain Q15 (Whyte et al., 2002) 

Naphthalene dioxygenase   

ndoB Pseudomonas putida ATCC 17484 (Margesin et al., 2003) 

nah Pseudomonas putida G7 (Simon et al., 1993) 

phnA Burkholderia sp. strain RP007 (Laurie and Lloyd-jones, 

1999) 

Toluene dioxygenase   

todC1 Pseudomonas putida F1 (Zylstra and Gibson, 1989) 

Biphenyl dioxygenase   

bphA Pseudomonas pseudoalcaligenes KF707 (Tairazf et al., 1992) 

Cytochrome P450   

CYP153 Pseudomonas putida GPo12 (van Beilen et al., 2006) 

Catechol dioxygenase   

C12O Pseudomonas sp. strain EST1001 (Kivisaar et al., 1991) 

xylE,  Pseudomonas putida ATCC 33015 (Nakai et al., 1983) 

cat23 Pseudomonas putida ATCC 33015 (Laramee et al., 2000) 
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Aromatic hydrocarbons have limited chemical reactivity are normally biodegraded by 

bacteria with the help of O2 by oxygenases which forms intermediate compounds such as 

catechols (Fuchs et al., 2011). A few bacteria (e.g. Mycobacterium sp.) are capable of oxidizing 

aromatic rings via cytochrome P450 monooxygenase enzyme, however most of the PAHs- 

degrading bacteria oxidize naphthalene using dioxygenases (Ghosal et al., 2016). While the nah 

gene encodes for naphthalene dioxygenases associated with degradation of low-molecular weight 

PAH (e.g. naphthalene, phenanthrene), the pdo1 gene encodes for pyrene dioxygenases 

associated with the degradation of high-molecular weight PAHs (e.g. pyrene, benzo(a)pyrene) 

(Han et al., 2014). Other genes involved in PAH degradation are C12O and ndoB. The gene 

C12O encodes for catechol 1,2- dioxygenase associated with cleavage of the last aromatic ring in 

the degradative pathway of PAHs (Han et al., 2015). The ndoB gene, located on the NAH7 

plasmid of Pseudomonas putida, also encodes for naphthalene dioxygenase, the first enzyme in 

the naphthalene degradation pathway (Luz et al., 2004). In addition, Laurie and Loyd-Jones  

(2000) found that phnA genes of Burkholderia sp. also encodes for naphthalene dioxygenase 

despite that this gene has a low level of sequence homology with nah genes.  

Although several genes have been used to investigate both aliphatic and aromatic 

hydrocarbon degradation. Alkane monooxygenase (alkB) and naphthalene dioxygenase gene 

(nah) are the main genes corresponding to the metabolism of aliphatic and aromatic 

hydrocarbons respectively (Liu et al., 2015b). 
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3. MICROBIAL COMMUNITIES ASSOCIATED WITH ANNUAL 
BARLEY PLANTED ON OIL SANDS RECLAMATION SITES IN 

ALBERTA, CANADA. 
 

3.1 Preface 

Plant associated endophytic root bacteria colonize plant tissues and play a key role in 

supporting plant health and growth in both managed and natural ecosystems. In northern Alberta, 

oil sands mining activities result in a large disturbance footprint that causes significant 

challenges for land reclamation strategies. Therefore, plant-microbe associations can aid the 

enhancement and establishment of a sustainable plant community cover in these areas. However, 

the potential use of bacterial endophytes to assist plant growth on oil sands reclamation covers 

requires an understanding of the diversity and metabolic potential of these endophytes. In order 

to begin to elucidate how root endophytic bacteria can be used as biotechnological tools to 

improve land reclamation, we must first investigate the overall bacterial community profile 

associated with plants currently growing in these areas. In this study, the root associated 

microbial communities of annual barley (Hordeum vulgare) grown at one of the oil sands 

reclamation areas was investigated. 

3.2 Abstract 

Microbial communities that colonize plant rhizosphere and the root interior can 

ameliorate plant stress and promote growth. The use of plant-microbe associations is being 

investigated as a strategy to assist in reclamation of disturbed soils in northern Alberta. This 

study assessed the diversity of bacterial endophytes and rhizosphere bacteria associated with 

annual barley growing at an oil sands reclamation area. Plants and peat-mineral samples were 

collected at different slope positions in two different reclamation cover managements. Root 

associated microbial communities were assessed by culture dependent and culture-independent 

techniques including phospholipid fatty-acid analysis (PLFA) and denaturing gel gradient 

electrophoresis (DGGE). Results indicate that available nutrients and total hydrocarbons varied 
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mainly by slope positions. However, no slope effect was observed for most soil chemical 

parameters. The data in this study also suggests that microbial community structure was mainly 

driven by soil total and organic carbon, NH4+ and organic matter. Rhizosphere and endophytic 

bacterial community structure analysed by culture independent techniques varied depending on 

slope positions and cover type. While most bulk and rhizosphere soils differentiated mainly by 

cover management, endophytic profiles did not cluster by either cover or slope positions. 

Selected endophytic bacteria bands from DGGE gel closely matched those of growth promoting 

bacteria and potential hydrocarbon degraders. Culture dependent techniques assessing 

endophytic bacteria revealed a dominance of the class Gammaproteobacteria, in which 

Enterobacteriaceae (44%), Xanthomonaceae (30%) and Pseudomonaceae (26%) were the most 

abundant families in this class. Several endophytic isolates also matched those from DGGE 

profiles. Hence, the results in this study suggest that plants growing on oil sands reclamation 

covers host a wide range of bacterial endophytes, which potentially could be used to assist plant 

establishment and growth in these areas. 

3.3 Introduction 

The oil sands deposits in northern Alberta, Canada contain an estimated 1.7 trillion 

barrels of recoverable oil within the Peace River, Cold Lake, and Athabasca River regions 

(Audet et al., 2015; Hsu et al., 2015). These deposits represent the third largest oil reserve in the 

world and a major resource within Canada's energy sector (Kannel and Gan, 2012). However, the 

Athabasca’s oil sands region are different from other oil deposits, as it predominantly consists of 

bitumen, which is a dense and extremely viscous form of petroleum found in combination with 

sand, clay, and water (Yergeau et al., 2012a). Bitumen extraction in the Athabasca was initiated 

in 1967, expanded significantly from 1978 to 2015, and it is expected to more than double over 

the next two decades (Audet et al., 2015; CAPP, 2017). Alberta's oil sands lie under a total area 

of 142,000 km2 of natural boreal forest and muskeg (peat) which needs to be removed during 

mining operations (MacKenzie and Quideau, 2010). 

In addition to the removal of existing vegetation, top soil and overburden (stockpiled for 

later use in land reclamation), the current bitumen extraction process is based on a hot water and 

steam with added sodium hydroxide (NaOH) that separates the bitumen from the sand 

(Lévesque, 2014). These processes use large quantities of water and generate large volumes of 
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fine tailings, which consist of sand, clay, organics, and residual bitumen (Greer et al., 2011; 

Yergeau et al., 2012a). After bitumen extraction, mine tailings are discharged into ponds or 

dykes where tailing sands settle to the bottom and clarified water is pumped back to processing 

plant in order to be re-used in bitumen extraction (CAPP, 2017). 

Reclamation strategies in the oil sands are considered a long-term endeavor as it takes 

several years to successfully reclaim disturbed areas to equivalent land capability prior to 

disturbance. However, land reclamation efforts are challenging due to the nature of the tailing 

sands, a generally inappropriate plant growth medium with low nutrient content, high pH, low or 

no organic matter and residual hydrocarbon products (Naeth et al., 2011; Lefrançois, 2009). To 

improve land reclamation, industries have focused on covering tailing sands with suitable 

reclamation material. The use of peat–mineral soil mix (PMM) as cover material for land 

reclamation has become a common practice. Peat-mineral mix (PMM) is used to create a suitable 

plant growth medium and to provide a source of native plants that can facilitate natural recovery 

of vegetation in the disturbed areas (Shaughnessy, 2010). In addition, peat-mineral mix will also 

add organic C-content, improve water-holding capacity and permit aggregation of tailings sands 

(Rowland, 2008). Planting of seedlings of the dominant boreal forest tree species and the 

colonization by pioneer species that can tolerate harsh conditions is also essential to improve 

reclamation strategies and allow the re-establishment of a natural forest (Renault et al., 2004; 

Lefrançois et al., 2010). 

Where soil erosion is likely to occur, annual barley (Hordeum vulgare) is often planted in 

reclamation landscapes to provide a quick vegetation cover and erosion control. Barley is used 

because it is a poor competitor and is readily invaded by local flora within the first few years 

(Rowland, 2008). Barley also helps to bulk up soil organic matter content and supply nutrients to 

the secondary crops; however, due to harsh environmental conditions, plant growth in 

reclamation areas may depend on symbiotic relationships with microbes. 

Plant-associated bacteria may stimulate plant growth, promote stress resistance, suppress 

diseases and influence plant growth by nutrient mobilization and transport (Berg et al., 2014). 

The plant microbiome is a key determinant of plant health and growth and has received 

substantial attention in recent years (Turner et al., 2013). Bacteria that live in the rhizosphere are 

attracted by and feed on nutrients, exudates, border cells and mucilage released by the plant root 

(Philippot et al., 2013). Root exudates contain a variety of compounds, predominately organic 



 

 35 

acids and sugars, that are key determinants of rhizosphere micro biome structure (Turner et al., 

2013). However, plants can also function as filters of soil microorganisms, while selecting those 

successful, competent endophytes (Chen et al., 2010). 

Endophytic bacteria are those that reside for at least part of their lives within plant tissues 

and often recognized as symbionts with a unique and intimate interaction with the plant (Berg et 

al., 2014; Hardoim et al., 2008). Endophytes are thought to be a sub-population of the 

rhizosphere microbiome, generally considered to be non-pathogenic and once inside their hosts 

they change their metabolism and become adapted to their internal environment (Turner et al., 

2013; Germida et al., 1998). Numerous studies have shown that bacterial endophytes can 

promote their host plant establishment as well as improve plant growth under adverse conditions 

(Soleimani et al., 2010; Deng et al., 2011; Khan et al., 2011). Endophytic bacteria also may have 

the ability to control plant pathogens, insects and nematodes, which make them suitable as bio-

control agents (Hallmann and Berg, 2006). Recent studies suggest that they may also play an 

important role in remediation of contaminated soils and water (Chen et al., 2010; Guo et al., 

2010; Xiao et al., 2010; Mastretta et al., 2013). However, interactions between microbes and 

model plants, such as in Rhizobium-legume symbioses, are well understood in agriculture, 

although the diversity in plant microbiome interactions in engineered soils is not yet well 

defined.  

Therefore, the aim of this study was to assess mechanisms driving annual barley root 

associated bacterial community structure in an oil sands reclamation area. Specific objectives in 

this study were to determine the impact of (i) cover management (ii) slope positions and (iii) soil 

parameters on microbial community structure. Additionally, this study aimed to assess the 

diversity of endophytic bacteria associated with these plants. 

 

3.4 Materials and Methods 

3.4.1 Sample collection and processing 

Annual barley (Hordeum vulgare) was collected at an oil sands reclamation area of 

approximately 2.2 km2 near Fort McMurray, Alberta. Three biological replicates of each plant, 

attached rhizosphere soil, and bulk soil (0-20 cm depth) were collected at different slope 
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positions along two transects (20 sampling locations) (Figure 3.1, Table 3.1). The first transect 

consisted of 10 sampling locations (S1-S10) in the standard cover, which is a cover management 

area consisting of a 40 cm of peat mineral mixture and 10 cm of sandy loam on the surface of 

100 cm of tailing sands. The second transect also consisted of 10 sampling locations (E1-E10) in 

the engineered cover, an area of 50 cm of a peat mineral mixture on top of 120 cm of tailing 

sands separated from the bottom 30 cm of tailing sands by a geo-clay liner (GCL). The main 

objective of the GCL added by the industry is to retain the moisture on the top of the cover to 

improve plant growth and to prevent seepage from compounds on the bottom of the tailing sands 

from reaching the surface of the plant cover. Samples were collected during the summer of 2013, 

transported at 4 °C and stored at -20 °C until processing within the next 48 h.  

3.4.2 Soil Chemical Analyses 

Soil samples were analyzed for soil total organic carbon (TOC) and total carbon (TC) by 

the method from Dhillon et al. (2015) using a LECO C632 Analyzer (LECO Corporation, St. 

Joseph, MI, United States). Soil organic Matter (OM), was analyzed using the dry-ash method 

(McKeague, 1978). Soil pH was measured in a 1:2 soil: water slurry. Soil available ammonium 

was extracted using a 2 N KCl solution, NH4+ in the extract was mixed with hypochlorite and 

salicylate to form indophenol which was determined colorimetrically at 660 nm (Laverty and 

Bollo-Kamara, 1988). Soil available nitrate was extracted using a calcium chloride solution and 

determined colorimetrically at 520 nm according to Laverty and Bollo-Kamara (1988). Available 

phosphorus and potassium were measured using a modified Kelowna extraction (Qian et al., 

1994) and available sulfate by a calcium chloride extraction (McKeague, 1978). Soil total 

hydrocarbons were measured in accordance with the "Reference Method for the Canada-Wide 

Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of 

the Environment, December 2000. A subsample of the sediment/soil was extracted with a 1:1 

hexane: acetone solution using a rotary extractor. The extract was purified using a silica gel 

clean-up to remove polar compounds. The F2, F3 and F4 fractions were analyzed by Gas 

Chromatography with a Flame Ionization Detector (GC/FID).
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Figure 3.1 Transects of sampling locations along the engineered (E1-E10) and standard cover (S1-S10) at an oil sands reclamation 
area.
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Table 3.1 Landforms, elevation and GPS coordinates of sampling locations (UTM Zone 12N). 

Location Cover Elevation (m) Landform Northing Easting 

S1 Standard 307.89 Midslope 6316283.7 472129.03 

S2 Standard 308.25 Midslope 6316064.9 472198.00 

S3 Standard 304.14 Depression 6315945.91 472237.29 

S4 Standard 304.00 Upslope 6315834.43 472288.00 

S5 Standard 305.72 Crest 6315750.54 472284.68 

S6 Standard 307.21 Level 6315604.83 472265.09 

S7 Standard 304.02 Upslope 6315482.47 472245.15 

S8 Standard 304.05 Midslope 6315401.69 472197.33 

S9 Standard 308.45 Level 6315276.51 472127.36 

S10 Standard 312.23 Upslope 6316462.32 472017.46 

E1 Engineered 310.04 Level 6316998.48 471762.05 

E2 Engineered 305.23 Crest 6316873.28 471677.31 

E3 Engineered 306.00 Lower slope 6316775.94 471614.32 

E4 Engineered 310.94 Upslope 6316723.92 471583.75 

E5 Engineered 315.26 Crest 6316773.00 471549.08 

E6 Engineered 310.04 Midslope 6316615.75 471487.61 

E7 Engineered 306.43 Lower slope 6316561.74 471469.25 

E8 Engineered 307.16 Level 6316481.71 471438.36 

E9 Engineered 305.54 Level 6316411.41 471395.80 

E10 Engineered 306.17 Level 6316288.47 471332.41 
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3.4.3 Survey of rhizosphere bacteria community 

Plant roots (entire root system) and adhering soil (5 g) were placed into an Erlenmeyer 

flask containing 195 mL of phosphate-buffered saline (PBS) (1.2 g of Na2HPO4·L-1, 0.18 g of 

NaH2PO4·L-1, 8.5 g of NaCl·L-1) buffer and shaken on a rotary shaker (150 rpm) at 22 °C for 25 

min. After shaking, dilutions (1:10) in sterile PBS were used for culturable techniques, and the 

remaining slurry was transferred to a 50 mL Falcon centrifuge tube and centrifuged at 2,000 g 

for 5 min (Dunfield and Germida, 2003). The supernatant containing PBS buffer was discarded 

and the rhizosphere soil stored -80 °C for DNA extractions.  

3.4.4 Survey of endophytic bacteria community 

Root material was recovered and transferred into an Erlenmeyer flask containing 100 mL 

NaClO (1.05 % v·v-1) in PBS and placed on a rotary shaker (150 rpm) at 22 °C for 15 min. To 

remove the remaining NaClO solution, roots were rinsed 10 times with sterile water and 0.1 mL 

of the final wash was spread on Trypticase soy agar (TSA) plates to check for contamination 

(Siciliano and Germida, 1999). Sterile roots were chopped aseptically and subdivided in samples 

for culturable dependent techniques and remaining roots stored in sterile tubes at -80 °C for 

DNA extraction. 

3.4.5 Survey of culturable rhizosphere and endophytic bacteria 

Rhizosphere culturable bacteria, from soil/buffer solutions obtained previously and 

endophytic culturable bacteria, obtained by macerating 2.5 g surface-sterile root in 9 mL of 

(PBS) buffer using a sterile mortar and pestle, were serially diluted in PBS buffer and spread 

plated onto 1/10 strength TSA plates containing 0.1 g·L-1 of cycloheximide. Plates were 

incubated for 3 days at 28 °C. After the incubation, endophytic bacteria plates from each 

treatment replicate and dilution were selected and isolates in varying morphology were streaked 

twice on new plates to obtain purified strains. Purified isolates were then inoculated on 9 mL of 

soy broth (TSB) medium. Pure bacterial cultures were stocked in 50% glycerol at -80 °C prior to 

microbial DNA extractions.  

3.4.6 Phospholipid fatty acid (PLFA) analysis 

PLFA analysis of soil samples was based on a modified protocol from Helgason et al. 

(2010). Soil samples were sieved, freeze-dried and ground with mortar and pestle to maximize 
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lipid recovery. Fatty acids were extracted from 4.0 g of lyophilized, ground soil in a 

methanol/chloroform mixture and then dried down under constant N2 flow. Neutral, glyco- and 

phospho- lipids were separated using solid phase extraction columns (0.50 g Si; Varian Inc. 

Mississauga, ON), sequentially eluted with chloroform (CHCl3), acetone ((CH3)2CO) and 

methanol (MeOH) respectively, and the phospholipid fraction dried under N2 flow. With a 

solution of 1:1 methanol/toluene and methanolic potassium hydroxide (KOH) at 35 °C the 

phospholipid fraction was methylated. After methylation, the resulting fatty acid methyl esters 

(FAMEs) were analyzed using a Hewlett Packard 5890 Series II gas chromatograph with a 

25mUltra 2 column (J&W Scientific). Peaks were identified using fatty acid standards and MIDI 

identification software (MIDI Inc., Newark, DE) and quantified based on the addition of a 

known concentration of the internal standard methyl nonadecanoate (19:0) (Helgason et al., 

2010a; Drenovsky et al., 2004). 

Bacterial biomass was determined by biomarker abundance calculated based on the peak 

area detected for each fatty acid, relative to that of a known quantity of the internal standard. 

Biomarkers used to represent gram positive bacteria (Gr+) were i14:0, i15:0, a15:0, i16:0, i17:0, 

a17:0. For gram negative bacteria (Gr-), biomarkers used were 16:1 ω7t, 16:1ω9c, 16:1ω7c, 

18:1ω7c, 18:1ω9c, cy17:0, and cy19:0 (Macdonald et al., 2004). Physiological stress biomarker 

was reported as the ratio of cy19:0 to 18:1ω7c. All biomass values were reported based on dry 

soil weight in units of nmol·g-1 soil derived from individual molecular weights of each fatty acid 

(Helgason et al., 2010a; Hynes and Germida, 2012). 

3.4.7 DNA Extraction 

Total endophytic community DNA was extracted from surface disinfected root samples 

using the PowerPlant® Pro DNA Isolation Kit (MoBio Laboratories Inc., Carlsbad, CA). 

Rhizosphere and bulk soil community DNA was extracted using the MoBio PowerSoil® 

extraction kit (MoBio Laboratories Inc., Carlsbad, CA). In addition, DNA from microbial 

cultures in culture dependent techniques was extracted using the UltraClean® Microbial DNA 

Isolation Kit (MoBio Laboratories Inc., Carlsbad, CA). All DNA exactions were conducted 

following the manufacture’s protocols. DNA yield was quantified using a NanoDrop2000 

Spectrophotometer (Thermo Scientific, Ottawa, ON) and in a SYBR® Safe (Invitrogen) 1% 

agarose gel by comparison with a high DNA mass ladder (Invitrogen) using a Bio-Rad Gel Doc 
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XR System (Bio-Rad Laboratories, Mississauga, ON). Microbial DNA was amplified using the 

primer set EUB 338 (ACTCCTACGGGAGGCAGCAGATT) and EUB 518 

(ATTACCGCGGCTGCTGG) (Fierer et al., 2005) and purified PCR products were sequenced by 

Macrogen Inc. (Seoul-Rep. of Korea). 

3.4.8 DNA Amplification 

Bulk soil, rhizosphere and endophytic community structure were examined by PCR-

amplified bacterial gene 16S rRNA using a primer set U341f-gc (5’-GCG GGC GGG GCG 

GGG GCA CGG GGG GCG CGG CGG GCG GGG CGG GGG _CCT ACG GGAGGC AGC 

AG-3’) and U758r (3’-CTACCAGGG TATCTAATCC-5’) (~417 bp fragment) (Helgason et al., 

2010a; Phillips et al., 2010). The optimized PCR reaction consisted of 1 µL of DNA extract; 1 

µM of primers U341-gc and U758; 6.25 µg BSA (Invitrogen); and 25 µL units of Hot Start Taq 

Master Mix (Qiagen); 21.38 µL of RNase-Free H2O to make a total reaction volume of 50 µL. 

Amplification of the targeted gene was accomplished using touchdown PCR. Ten cycles of 1 

min denaturing at 94 °C, 1 min annealing at 65 to 55 °C and 1 min extension at 72 °C were 

carried out, followed by 18 repeated cycles using an annealing temperature of 55 °C (Helgason et 

al., 2010a). PCR amplification product were confirmed with 1.4 % agarose gel stained with 

SYBR® Safe (Invitrogen) and visualized using a Bio-Rad Gel Doc XR System (Bio-Rad 

Laboratories, Mississauga, ON). Final DNA concentration was determined using a 

NanoDrop2000 Spectrophotometer (Thermo Scientific, Ottawa, ON) and corresponding software 

(Hynes and Germida, 2012). 

3.4.9 Denaturing Gel Gradient Electrophoresis (DGGE) 

DGGE was performed on 16S rRNA PCR product using a Bio-Rad DCode system (Bio-

Rad, Mississauga, ON) as described by Hynes and Germida (2012). Approximately 600 ng of 

DNA was loaded onto an 8% polyacrylamide gel with a 40–60% denaturing gradient of 

formamide and urea. Electrophoresis was carried out for 16 h at 80 V and 60 °C. The resulting 

gels were stained with SYBR® Safe (Invitrogen, Burlington, ON) in 1 × TAE buffer (Tris, acetic 

acid and EDTA mixture) for 0.5 h, de-stained for 0.5 h and photographed using a Bio-Rad Gel 

Doc XR System with Image Lab Software (Bio-Rad, Mississauga, ON). Gel picture was 

analyzed for banding patterns using Bionumerics v.5.1 (Applied Maths, Austin, TX). 
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Dominant DNA bands were excised, using a sterile scalpel, and eluted in sterile H2O for 

45 min at 37 °C as described in Phillips et al. (2009). Eluted DNA was re-amplified using the set 

of primers (U341f and U758r) and temperature program as in the DNA amplification section 

above. Confirmation of re-amplified fragments was carried out on 1.5% agarose gel, followed by 

PCR purification with the QIAquick PCR Purification Kit (Qiagen, Mississauga, ON, Canada) 

following the manufacturer’s recommendations. Finally, purified PCR products were sequenced 

by Macrogen Inc. (Seoul-Rep. of Korea). Nucleotide sequence similarities were determined by 

Basic Local Alignment Search Tool (BLAST). 

3.4.10 Statistical Analysis 

Analysis of variance (ANOVA) for PLFA profiles was performed using SAS (version 

9.3). Non-metric multidimensional scaling (MDS) analysis of PLFA community composition 

was carried out using PCOrd v.5.10 (MjM Software Gleneden Beach, OR). PLFA data was 

transformed to log (mol% + 1) and Sørensen distance measure was selected using the autopilot 

slow and thorough analysis option in PCOrd V.5.0 (Helgason et al., 2010b; McCune and Grace, 

2002). A random starting point was used for initial analysis and then optimized in previous 

ordinations to achieve the lowest stress. The Monte Carlo test of significance and Multi-

Response Permutation Procedure (MRPP) were subsequently used to test for differences between 

groups.  

Analysis of DGGE gel profiles was carried out using Bionumerics v.5.1 software 

(Applied Maths, Austin, TX). The detection of bands was carried out using a minimum profiling 

of 5%, a position tolerance of 1.5% and with optimization of 2.0%. Based on densiometric 

curves and the Ward linkage method, cluster analysis was performed using the Pearson 

correlation coefficient. Band matching was performed on DGGE profiles and a presence-absence 

matrix was created. This binary matrix was used in further non-metric multidimensional scaling 

(MDS) using the same parameters for PLFA profiles (Helgason et al., 2010a; Hynes and 

Germida, 2012). 
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3.5 Results 

3.5.1 Soil Physical-chemical properties 

Although soil physical-chemical properties in samples collected at an oil sands 

reclamation area indicated no significant differences in soil properties between cover 

managements, significant differences were observed between slope positions at each cover 

(Table 3.2). The highest organic matter content was observed in the upslope (15.7 %) followed 

by level ground (12.9 %) at the engineered cover. Overall, soil organic and total carbon were 

higher in the lower slope at the engineered cover (13.3 and 14.1 % respectively) followed by the 

midslope at the standard cover (13 and 14.2 % respectively). In addition, analysis of overall 

available nutrients revealed higher nutrient content in the engineered lowerslope followed by the 

standard midslope.  

The peat mineral samples were also characterized for total concentration of hydrocarbons 

(Table 3.3). Although not statistically significant, higher concentrations of hydrocarbons in the 

standard cover when compared with the engineered cover. Also, differences in the total 

hydrocarbon concentration by slope positions were observed. In general, samples collected at 

level ground exhibited higher concentrations in both covers; the samples in the crest and upslope 

had the lowest concentrations of hydrocarbons.
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Table 3.2 Soil chemical proprieties of peat mineral samples (0-20 cm) collected in the engineered and standard cover at an oil sands 
reclamation area. 

Different letters indicate significant differences (LSD p ≤ 0.05). OM = organic matter, TOC = total organic carbon, TC = total carbon. 
 

 

 

        Available 
Cover Slope Texture OM TOC TC NH4+ NO3- SO42- PO42- K+ 

   ----------------- (%) ------------------- ------------------- (mg�kg-1of soil) ---------------- 
Standard Crest Sandy Loam 11.4ab 7.7abc 8.2abc 3.15 ab 6.0a 70.7ab 7.1b 87.0a 

 Level Sandy Loam 4.1b 3.2c 3.7c 2.10b 1.3a 181.3a 7.3b 74.5a 

 Midslope Sandy Loam 11.3ab 13.0a 14.2a 5.17ab 5.3a 43.3b 8.1b 135.7a 
 Upslope Sandy Loam 8.6ab 7.6abc 7.9abc 2.57b 6.3a 96.5ab 4.8b 88.3a 

 Depression Sandy Loam 5.7ab 5.1bc 5.3bc 2.20b 1.6a 33.0b 3.2b 63.0a 

Engineered Crest Sandy Loam 11.2ab 10.5abc 11.2abc 3.30 ab 12.4a 52.1b 3.3b 76.5a 

 Level Sandy Loam 12.9a 9.7abc 10.2abc 3.60 ab 4.9a 22.4b 7.9b 99.7a 
 Midslope Sandy Loam 7.2ab 6.3abc 5.7bc 2.75 ab 4.2a 20.2b 4.8b 57.0a 

 Upslope Sandy Loam 15.7a 6.8abc 6.9abc 5.80a 12.2a 21.0b 5.5b 62.5a 

 Lower slope Sandy Loam 10.8ab 13.3ab 14.1ab 3.45 ab 8.3a 23.4b 23.6a 94.0a 
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Table 3.3 Total hydrocarbon analysis of samples collected in the engineered and standard cover at an oil sands reclamation area. 

  CCME Total Hydrocarbons (mg·kg-1) * 

Cover Slope 
F1 

(C6-C10) 
F1 

BTEX 
F2 

(C10-C16) 
F3 

(C16-C34) 
F4 

(C34-C50) 
Total 

(C6-C50) 

Standard Crest <10 <10 <30 326 328 654 
 Level <10 <10 <30 635 609 1240 

 Midslope <10 <10 <30 342 287 629 
 Upslope <10 <10 <30 599 531 1130 

 Depression <10 <10 <30 975 813 1790 

Engineered Crest <10 <10 <30 281 306 587 

 Level <10 <10 <30 618 609 1230 
 Midslope <10 <10 <30 277 318 595 

 Upslope <10 <10 <30 217 262 479 
 Lowerslope <10 <10 <30 486 482 968 

 
*Analysis according to the Canadian Council of Ministers of the Environment (CCME). 
BTEX: six compounds, benzene, toluene, ethylbenzene, and ortho, meta and para-xylene. 
F1- nC6 to nC10 (hexane to decane range). 
F2- nC10 to nC16 (decane to hexadecane range). 
F3- nC16 to nC34 (hexadecane to tetratriacontane range). 
F4- nC34 to nC50 (tetratriacontane to pentacontane range).
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3.5.2 PLFA Analysis 

Total PLFA microbial biomass varied significantly between different cover managements 

and slope positions. At the crest, microbial biomass was 53% higher in the standard cover when 

compared with the engineered (Figure 3.2). However, in the upslope no difference was observed 

between covers. The highest biomass in the standard cover was detected at the crest (34.9 

nmol·g-1 soil) and at level ground in the engineered cover (32.89 nmol·g-1 soil). On level ground, 

the largest difference between the two covers was observed. The highest total microbial biomass 

was detected in the engineered cover and the lowest in the standard cover (9.92 nmol·g-1 soil). 

Although significant differences were observed in total PLFAs, analysis of variance (Table 3.4) 

indicated no significant differences in most PLFA biomarkers by cover type and slope. However, 

differences in microbial profiles were mainly observed between the interaction of cover and 

slope positions (C x S) as significant differences were observed (p ≤ 0.01) for Gr+, Gr-, AMF, 

Stress, Fungal and total PLFA biomarkers.  

Absolute values of Gr+, Gr-, AMF and Fungal biomarkers were 4.2, 2.7, 3.5 and 3.5-fold 

higher in the engineered cover when compared to the standard cover respectively (Table 3.4). 

Overall, as total PLFA biomarkers increased, Gr+ and Gr- biomarkers also significantly 

increased. However, with the exception of samples from the level ground at both covers, no 

significant differences were observed between slope positions in AMF and Fungal biomarkers. 

Although Gr+ and Gr- biomarkers varied by slope and cover, no significant differences was 

observed for the relative abundance of these biomarkers (Gr+ mol% and Gr- mol%). 

Multi-dimensional scaling (MDS) analysis for PLFA profiles resulted in a 2-dimensional 

solution and final stress of 11.91 (Figure 3.3). Axis 1 from the ordination analysis represented 

83.8% of variability and Axis 2 10.7%. Ordination and MRPP analysis indicated that both cover 

type and slope positions were a significant determinant of community composition. Although no 

evident cluster was observed by cover type, MDS analysis indicated a clear division between 

cover management with a higher variability in samples from the standard cover were when 

compared to the engineered. Based on slope positions, only samples from crest at the engineered 

cover clustered.  

Significant correlations where observed between soil parameters and microbial PLFAs 

(Table 3.5). Most positive correlations were observed between Gr+, Gr-, AMF, fungal and total 
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PLFAs with TOC, TC and NH4+. In addition, Gr+ biomarkers also correlated positively with OM 

(R2 = 0.342, p ≤ 0.01) and K+ (R2 = 0.280, p ≤ 0.05). However, the F:B ratio indicated negative 

correlations with OM (R2 = -0.335, p ≤ 0.01) and NO3- (R2 = -0.453, p ≤ 0.01). Similarly, 

physiological stress biomarkers indicated negative correlations (p ≤ 0.01) with TOC, TC, NH4+. 

In addition to the absolute PLFA abundance, the relative abundance of Gr+ bacterial biomarkers 

also indicated positive strong correlations with OM (R2 = 0.373, p ≤ 0.01); however, the relative 

abundance of Gr- bacterial biomarkers indicated no positive correlations with soil parameters.
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Figure 3.2 Boxplot of total PLFA biomarkers concentrations at different slope positions at the 
standard and engineered cover at an oil sands reclamation area. Median values are indicated by 
the horizontal bar within the box. The first and third quartiles are denoted by the lower and upper 
box limits respectively, and the 5th and 95th percentiles by the bars at the end of the vertical bars 
projecting from the box. Different letters indicate significant differences (Tukey HSD p ≤ 0.05). 
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Table 3.4 Soil PLFA analysis of peat mineral samples (0-20 cm) collected in the engineered and standard cover at an oil sands 
reclamation area. Different letters indicate significant differences (Tukey HSD p ≤ 0.05) among the interaction of cover type and slope 
positions in the soil microbial community. 

Cover Slope Gr+ Gr- AMF Fungal Stress Gr+ Gr- 

    -----------------------  (nmol·g-1 soil)  -----------------                                      --------- (mol %)--------- 

Standard Crest 7.09a 7.10ab 1.36ab 1.75ab 0.23b 28.74a 35.07a 
 Level 1.48c 2.65b 0.42b 0.57b 0.79a 20.33a 49.42a 
 Midslope 4.64ab 6.57a 1.11ab 1.43ab 0.33b 21.34a 37.69a 
 Upslope 4.00abc 5.66ab 1.01ab 1.60ab 0.42b 25.90a 42.65a 
 Depression 4.09abc 6.37ab 1.44ab 1.96ab 0.21b 22.28a 43.31a 
Engineered Crest 3.80bc 6.21a 1.06ab 1.34ab 0.36b 23.55a 47.20a 
 Level 6.25a 7.26a 1.49a 2.01a 0.26b 26.03a 38.55a 
 Midslope 3.13bc 4.42ab 0.97ab 1.18ab 0.38b 22.96a 40.13a 
 Upslope 4.02b 4.79ab 1.01ab 1.24ab 0.40b 26.07a 38.76a 
 Lowerslope 5.28ab 6.34a 1.30ab 1.62ab 0.28b 26.46a 39.53a 
ANOVA  
 Cover (C) 0.9747 0.7554 0.2779 0.6548 0.0325 0.6953 0.9847 
 Slope (S) 0.0488 0.3196 0.4606 0.7363 0.0006 0.2851 0.5766 

 C*S <0.001 0.0001 0.0030 0.0074 <0.0001 0.0984 0.0102 
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Figure 3.3 Non-metric multidimensional scaling (MDS) analysis Non-metric multidimensional 
scaling (MDS) analysis and multiple response permutation procedure (MRPP) of PLFA profiles 
from peat-mineral mix (PMM) samples collected in the engineered and standard cover at an oil 
sands reclamation area. 
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Table 3.5 Correlation indicating Spearman’s rank R2 values relating soil PLFAs and soil parameters. Statistically significant 
correlations are indicated in bold type, * and ** denote p values ≤ 0.05 and ≤ 0.01, respectively. THC = total hydrocarbons, OM = 
organic matter, TOC = total organic carbon, TC = total carbon, F:B = fungal/bacterial ratio. 

 

 
Gr+ Gr- AMF Stress Fungal F:B Gr+ (mol %) Gr- (mol %) 

Total 
PLFAs 

THC 0.076 -0.055 0.140 0.002 0.085 0.212 -0.076 -0.183 -0.017 

TOC 0.427** 0.407** 0.331** -0.344** 0.330** -0.103 0.271* -0.146 0.294* 

TC 0.413** 0.393** 0.317** -0.332** 0.319** -0.113 0.259* -0.150 0.281* 

NH4+ 0.503** 0.403** 0.349** -0.419** 0.346** -0.100 0.310* -0.316** 0.379** 

pH 0.003 0.017 0.052 -0.090 0.091 0.096 0.077 -0.059 0.103 

OM 0.342** 0.191 0.111 -0.219 0.072 -0.335** 0.373** -0.262* 0.156 

NO3- 0.025 -0.061 -0.171 0.080 -0.188 -0.453** 0.256 -0.017 -0.112 

SO42- -0.283* -0.123 -0.218 0.250 -0.161 -0.053 -0.310* 0.234 -0.137 

PO42- 0.079 -0.115 -0.086 -0.024 -0.086 -0.115 0.227 -0.119 -0.061 

K+ 0.280* 0.240 0.092 -0.210 0.157 -0.171 0.184 0.015 0.205 
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3.5.3 DGGE Analysis 

3.5.3.1 DGGE profiles of bulk soil microbial community 

Dendrogram analysis of bulk soil microbial fingerprints indicated a high variability by 

slope position and cover management (Figure 3.4). However, clustering was observed in a few 

banding patterns. For instance, samples S1 and S2 both from midslope position at the standard 

cover clustered at 90%. Clustering of the same cover and slope position was only observed at the 

lower slope and level ground in the engineered cover. In the engineered cover, sampling points 

E3 and E7 both from the lower slope landform grouped at 60% similarity. This also occurred 

with samples E9 and E10 both at level ground. Samples E4, E5 and E6 also clustered at 60% 

similarity as these three sampling points are geographically in the field. Samples E5 and E6, both 

at midslope landform, have also clustered at 60% similarity. In general, the DGGE profiles from 

the engineered cover indicated higher similarity by sampling locations when compared the 

standard cover. In fact, although from different slope positions, a few sampling locations 

geographically close to each other on the field were somewhat clustered in the standard cover.  

Multi-dimensional scaling (MDS) analysis for bulk soil samples resulted in a 3-

dimensional solution and final stress of 6.83. Axis 1 from the ordination analysis of 16S DGGE 

fingerprints represented most variability (65.6%) (Figure 3.5). Axis 2 and 3 accounted for 17.2 

and 10.6% respectively of the data variability. Samples were mainly grouped by cover type. In 

addition, similar to PLFA MDS analysis, bulk soil samples from the standard cover were more 

variable when compared with the engineered cover. MRPP results indicate that only cover 

management affected microbial community structure (A = 0.170, p = 0.000). 



 

 

53  

 

 

 

Figure 3.4 Dendrogram analysis using Pearson’s correlation coefficient for bulk soil DGGE banding patterns of bacterial 16S 
rRNA communities.
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Figure 3.5 Non-metric multidimensional scaling (MDS) analysis of DGGE banding patterns from bulk soil bacterial 16S rRNA 
communities.
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3.5.3.2 DGGE profiles of rhizosphere microbial community 

Rhizosphere DGGE profiles mainly clustered by cover type. In some profiles, the 

banding patterns from the same cover and slope position clustered at approximately 85% of 

similarity (S7, S10) (Figure 3.6). In other profiles, DGGE banding patters clustered also by 

slope, but at different cover management, or by the geographical proximity of sampling points in 

the field. In the standard cover, sampling points S1 and S8 both from midslope position were 

clustered at approximately 90% similarity. Samples S10 and S7 both from upslope in the 

standard cover clustered in 85%. Similar to bulk soil, clustering in rhizosphere microbial 

community profiles were in general based mostly by cover management and in some cases by 

slope position.  

In addition, MDS ordination analysis of rhizosphere profiles resulted in a 3-dimensional 

solution and final stress of 8.14 in which most variability of the data was accounted in Axis 1 

(44.9%) (Figure 3.7). Axis 2 and 3 accounted for 30.3 and 15.7% of the variability in the data. 

Similar to bulk soil profiles, samples from the standard cover were more variable when 

compared to the engineered cover. As indicated by the significant MRPP results, only cover 

management affected the microbial community structure. However, when analyzed by cover 

type and slope, only one cluster containing samples from the midslope at the standard cover was 

observed.  
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Figure 3.6 Dendrogram analysis using Pearson’s correlation coefficient for rhizosphere soil DGGE banding patterns of bacterial 
16S rRNA communities.
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Figure 3.7 Non-metric multidimensional scaling (MDS) analysis of DGGE banding patterns from rhizosphere soil 
bacterial 16S rRNA communities.
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3.5.3.3 DGGE profiles of endophytic microbial community 

Different from rhizosphere and bulk soil profiles, where microbial profiles were mainly 

clustered by cover type, endophytic DGGE community profile dendrogram analysis indicated a 

high variability between samples and no clustering was observed by slope positions or cover 

(Figure 3.8). In some profiles, banding patterns from the same cover and slope position clustered 

together at approximately 60% of similarity. In other profiles, endophytic profiles also clustered 

by geographical proximity of the sampling points on the field. Sampling points E8 and E10 had a 

60% similarity and both collected at level ground. This also occurred with profiles from the 

points E9 and E1 which had a 65% similarity and were categorized by the same cover and slope 

position, i.e. engineered cover at level ground. In the engineered cover, sampling points E6 and 

E7, geographically close in the field, clustered at a 60% similarity. 

Multi-dimensional scaling (MDS) analysis from endophytic profiles resulted in a 3-

dimensional solution and final stress of 8.69 (Figure 3.9). Axis 1 from the ordination analysis of 

16S DGGE fingerprints represented most variability (52.2%). Axis 2 and 3 accounted for 16.7 

and 20.6% respectively of the data variability. Similar to the dendrogram analysis, samples from 

both engineered and standard cover were highly variable and no evident grouping was observed 

either by cover type or slope positions. In addition, MRPP analyses indicated non-significant 

results.  

DGGE fingerprints from endophytic community indicated a high variability between 

samples (Figure. 3.10). Select DGGE gel bands that were excised and successfully re-amplified 

were sequenced and their closest identities compared using the Basic Local Alignment Search 

Tool (BLAST) (Table 3.6). As expected, most DGGE gel bands were identified as rhizosphere 

and endophytic associated bacteria. In addition, similar bands could be observed between the 

samples analyzed. For instance, an uncultured Proteobacterium clone from agricultural soils 

(Band 16, Figure. 3.10) was observed in all the profiles analyzed. Other bands identified as 

Phytoplasmas (Band 1, 4, 10, Figure. 3.10), Actinomycetes (Band 20, 21, 22, Figure. 3.10), 

Flavobacterium spp. (Band 2, 5, Figure. 3.10) were unique to specific samples. 
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Figure 3.8 Dendrogram analysis using Pearson’s correlation coefficient from DGGE banding patterns of endophytic bacterial 16S 
rRNA communities.
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Figure 3.9 Non-metric multidimensional scaling (MDS) analysis of DGGE banding patterns from endophytic 
bacterial 16S rRNA communities. 
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Figure 3.10 Representative DGGE of PCR-amplified 16S rRNA gene fragments from 
endophytic bacteria associated with annual barley roots growing on the standard and engineered 
cover at an oil sands reclamation area. Arrows indicate sequenced bands whose closest identities 
are provided in Table 3.6. 
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Table 3.6 Phylogenetic affiliation of selected endophytic bacteria based on 16S rRNA gene sequences re-amplified from DGGE bands 
(Figure 3.10). 

DGGE 
Band 

Accession # Closest match Similarity 
(%) Notes on Original Source Reference 

1 U96616.1 Phytoplasma spp. STRAWB2 16S ribosomal RNA 
gene 

98 Phytoplasmas associated with diseases of 
strawberry in Florida 

(Jomantiene et al., 1998) 

2 KM035977.1 Flavobacterium spp. THG-DN8.5 16S ribosomal 
RNA gene 

99 Bacteria isolated from rhizosphere of 
wild strawberry plant. 

Unpublished. 

3 JQ374133.2 Uncultured bacterium clone NT61d2_21281 16S 
ribosomal RNA gene, 

95 Bacteria isolated from soils exposed to 
elevated atmospheric CO2. 

(Dunbar et al., 2012) 

4 HQ589192.1 Psammotettix cephalotes' flower stunt Phytoplasma 
strain BVK 16S ribosomal RNA gene 

98 Determination of 16S rRNA of various 
Phytoplasma strains 

Unpublished. 

5 JQ977374.1 Flavobacterium spp. Eab5 16S ribosomal RNA 
gene 

100 Diversity of culturable plant-associated 
bacteria 

Unpublished. 

6 EU133393.1 Uncultured bacterium clone FFCH13347 16S 
ribosomal RNA gene 

91 Novelty and uniqueness patterns of rare 
members of the soil 

(Elshahed and Youssef, 
2011) 

7 DQ279372.1 Sphingobacterium spp. TM14_4 16S ribosomal 
RNA gene 

97 Bacteria associated with ectomycorrhizal 
symbiont fungus. 

(Barbieri et al., 2007) 

8 FQ658649.1 Uncultured bacterium 16S ribosomal RNA gene 
clone P1AB111 

100 PAH degrading bacteria. Unpublished. 

9 FJ448595.1 Uncultured bacterium clone 
D1_KR_030507_A09_65_01 16S ribosomal RNA 
gene 

96 Isolate from earthworm gut microbiota. (Rudi et al., 2009) 

10 HG764368.1 Leafhopper (Deltocephalinae) aster yellow 
Phytoplasma partial 16S rRNA gene 

100 Phytoplasma (Perilla-Henao, 2013) 

11 KM067138.1 Pseudomonas fluorescens strain CL14 16S 
ribosomal RNA gene 

100 Rhizosphere bacteria of turmeric plants Unpublished. 
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Table 3.6 cont. 

DGGE 
Band Accession # Closest match Similarity 

(%) Notes on Original Source Reference 

12 KM125762.1 Uncultured bacterium clone 
LNH_9_9_11_Pumice.233571 16S ribosomal RNA 
gene, partial sequence 

91 Microbial communities associated with 
pumice. 

Unpublished. 

13 
EF516828.1 Uncultured bacterium clone FCPP661 16S 

ribosomal RNA gene 93 Bacteria isolated from grassland soil. 
(Cruz-Martínez et al., 
2009) 

14 HF678325.1 Uncultured Burkholderiales bacterium partial 16S 
rRNA gene, DGGE band IT_B03 

90 Grapevine root-associated bacterial 
communities. 

(Marasco et al., 2013) 

15 AY799982.1 Uncultured bacterium clone cwr253 16S small 
subunit ribosomal RNA gene, partial sequence 

100 Sulfate-Reducing and Cellulose-
Degrading Bacteria in Wetlands and 
Rhizosphere Environments. 

Unpublished. 

16 EF664750.1 Uncultured Proteobacterium clone GASP-
MB1W1_C05 16S ribosomal RNA gene, partial 
sequence 

99 Agricultural soil bacteria. (Jangid et al., 2011) 

17 EU133393.1 Uncultured bacterium clone FFCH13347 16S 
ribosomal RNA gene, partial sequence 

96 Bacterial community in tallgrass prairie 
soil. 

(Elshahed and Youssef, 
2011) 

18 GU550525.1 Micromonospora spp. I08A-00459 16S ribosomal 
RNA gene, partial sequence 

99 Endophytic Actinobacteria from 
Mangroves. 

Unpublished. 

19 FJ448589.1 Uncultured bacterium clone 
D1_KR_030507_G03_23_13 16S ribosomal RNA 
gene, partial sequence 

100 Isolate from earthworm gut microbiota. (Rudi et al., 2009) 

20 KF447933.1 Actinoplanes digitatis strain OKG1 16S ribosomal 
RNA gene, partial sequence 

100 Soil Actinomycete. Unpublished. 

21 EU593726.1 Lentzea violacea strain 173540 16S ribosomal RNA 
gene, partial sequence 

100 Isolated soil Actinomycetes. Unpublished. 

22 KJ425224.1 Actinoplanes auranticolor strain INA01094 16S 
ribosomal RNA gene, partial sequence 

99 Endophytic Actinomycetes isolated from 
medicinal plants. 

Unpublished. 
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3.5.4 Survey of Endophytic bacterial communities by culture dependent techniques 

Total culturable rhizosphere bacteria associated with annual barley were higher in 

locations E1 and E9 (8.52 and 8.47 Log CFU·g-1of dry soil respectively) in the engineered cover 

(Table 3.7). Endophytic bacteria also indicated similar results as the highest culturable bacteria 

were observed in locations E5 and E9 (6.42 and 6.38 Log CFU·g-1of dry root respectively) 

(Table 3.8). Although the interaction of cover and slope indicated significant differences, no 

relationship in the number of culturable rhizosphere bacteria by slope position or cover alone 

was observed (Table 3.9). Differences in culturable endophytic bacteria were both significant by 

cover and slope, however the interaction between cover and slope indicated no significant 

differences. A total of 316 endophytic bacteria isolates were selected based on different 

morphology. Of these isolates, seven isolates from each sampling location (total of 140) were 

randomly selected and sequenced (Figure 3.11, Appendix A, Table A1). The identification of 

endophytes was tentatively allocated to species for some isolates, but mostly by genera. Bacteria 

from the class Gamma-Proteobacteria dominated most of the isolates selected, which 

corresponded to 54% of the total sequenced. This class included 16% of Enterobacter spp., 11% 

of Xanthomonas spp. and 26.6% of Pseudomonas spp. The class Flavobacteria corresponded to 

12% of the isolate collection with 61% of Chryseobacterium spp., 33% of Flavobacterium spp. 

and 6% Riemerella spp. The class Sphingobacteria represented 10% of the total isolates. In this 

class, all the isolates selected matched Pedobacter spp. in the database. The class Actinobacteria 

represented 7% of the total collection in which it mostly matched Arthrobacter spp. (50%) and 

only 20% of Microbacterium spp. The class Bacilli corresponded to 12% of the isolates; in this 

class most of the isolates (47%) matched Bacillus pumilus spp. The class Alphaproteobacteria 

corresponded to only 2% of the total endophyte culture collection. Gram negative bacteria 

represented most of the isolated identified (80%), in which 28% of those were Enterobacter spp. 

Gram positive bacteria corresponded to 20% of total isolates and 44% of these matched Bacillus 

spp. Hence, the endophytic bacteria exhibiting 16S rRNA sequence similarities matched most 

closely the sequences of species of the genus Pseudomonas. This genus corresponded to a total 

of 20 isolates in which most were closely related to Pseudomonas fluorescens (4), Pseudomonas 

syringae (2), Pseudomonas poae (2), Pseudomonas koreensis (1), Pseudomonas tolaasii (1) and 

unidentified (10). 
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Table 3.7 Total culturable rhizosphere bacteria associated with annual barley (Hordeum vulgare) 
plants growing on the standard and engineered cover at an oil sands reclamation area (Log 
CFU·g-1of soil dry weight ± standard deviations). 

Cover Location Slope Log CFU 

Standard S1 Midslope 8.26 ± 0.05 

 S2 Midslope 7.02 ± 0.04 
 S3 Depression 7.46 ± 0.04 

 S4 Upslope 7.95 ± 0.04 
 S5 Crest 8.04 ± 0.05 

 S6 Level 6.73 ± 0.02 
 S7 Upslope 7.00 ± 0.04 

 S8 Midslope 6.97 ± 0.04 
 S9 Level 7.97 ± 0.04 

 S10 Upslope 7.59 ± 0.03 

Engineered E1 Level 8.52 ± 0.08 
 E2 Crest 8.29 ± 0.34 

 E3 Lowerslope 7.70 ± 0.07 
 E4 Upslope 7.68 ± 0.05 
 E5 Crest 7.48 ± 0.08 

 E6 Midslope 8.39 ± 0.03 
 E7 Lowerslope 8.24 ± 0.05 

 E8 Level 7.36 ± 0.11 
 E9 Level 8.47 ± 0.01 

 E10 Level 8.03 ± 0.02 
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Table 3.8 Total culturable endophytic bacteria associated with annual barley (Hordeum vulgare) 
plants growing on the standard and engineered cover at an oil sands reclamation area (Log 
CFU·g-1of soil dry weight ± standard deviations). 

Cover Location Slope Log CFU 

Standard S1 Midslope 5.75 ± 0.09 

 S2 Midslope 4.34 ± 0.03 
 S3 Depression 6.03 ± 0.03 

 S4 Upslope 5.64 ± 0.15 
 S5 Crest 5.27 ± 0.11 

 S6 Level 5.29 ± 0.22 
 S7 Upslope 5.38 ± 0.02 

 S8 Midslope 5.98 ± 0.08 
 S9 Level 5.86 ± 0.03 

 S10 Upslope 6.35 ± 0.02 

Engineered E1 Level 5.01 ± 0.15 
 E2 Crest 5.06 ± 0.65 

 E3 Lowerslope 6.28 ± 0.01 
 E4 Upslope 5.25 ± 0.22 
 E5 Crest 6.42 ± 0.02 

 E6 Midslope 4.45 ± 0.19 
 E7 Lowerslope 6.33 ± 0.04 

 E8 Level 5.86 ± 0.07 
 E9 Level 6.38 ± 0.02 

 E10 Level 5.37 ± 0.15 

 
Table 3.9 Analysis of Variance (ANOVA) for total culturable endophytic and rhizosphere 
bacteria associated with annual barley grown in reclamation areas. 

 Rhizosphere Bacteria Endophytic Bacteria 
(Log CFU.g-1 of dry soil) (Log CFU.g-1 of dry root) 

Cover (C) p = 0.178 p = 0.012 

Slope (S) p = 0.118 p = 0.001 
C*S p = 0.005 p = 0.227 
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Figure 3.11 Relative abundance of 140 randomly selected bacterial endophyte isolates (total=316) associated with annual barley and 
identified by 16S rRNA Sanger sequencing.
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3.6 Discussion 

This study assessed the diversity of dominant endophytic, rhizosphere and bulk soil 

bacterial communities associated with annual barley currently growing at two different cover 

managements at an oil sands reclamation area. Nutrient availability (N-P-K-S) are of great 

importance in the initial stages of reclamation as they can be readily used by plants. In this study, 

different slope positions at the two cover managements affected nutrient availability; however, 

the data in this study suggest no linkage between microbial community for most available 

nutrients. For instance, no slope effect was observed for NO3-, which is highly mobile in soils, 

indicating that soil structure is not yet well established on these sites. Overall the results 

presented here are in agreement with MacKenzie and Quideau (2010) as these authors also found 

no slope and available nutrient effect on the microbial community. According to MacKenzie and 

Quideau (2010), reclamation areas are usually built with heavy equipment at an industrial scale 

resulting in large variability in PMM placement and depth, which may lead to inconsistent 

topographical effects. In addition, Leatherdale et al. (2012) found that soil water patterns did not 

respond to slope effects due to heterogeneity of soil physical properties and vegetation. 

According to these authors, PMM is generally placed on site while still frozen and broken up and 

evened out to the prescribed application depth, which can create immense spatial variability in 

the area. 

An important soil management practice in oil sands reclamation is the use of peat as a 

cover material. Peat is available in large areas of the mining footprint and is used to improve soil 

physical, chemical, and biological properties (Ojekanmi and Chang, 2014; Shaughnessy, 2010). 

High organic matter content is one of the main reasons peat is often added as capping material in 

the tailing sands (Mackenzie, 2011). Organic matter and organic carbon content analyzed the 

current study indicated similar results from the literature (MacKenzie and Quideau, 2010). 

According to Rowland (2008), peat mineral mixes usually have 2 to 17% of organic C. Similar to 

MacKenzie and Quideau (2010), significant correlations were observed between TOC, OM and 

microbial PLFAs. Bradford et al. (2017) also observed positive correlations between total PLFA 

abundance and TOC. Total organic carbon has an important effect on water retention in soils and 

it has great practical significance in reclamation (Moskal et al., 2001). Smith et al. (2014) 

studied the effects of how microbial communities respond to changes in C pools and nutrient 

availability and suggested that the abundance of microbial groups is influenced by the 
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distribution of soil organic matter pool. In the current study, total PLFAs, Gr+ and Gr- bacterial 

biomarkers were higher at sampling locations where TOC and OM were also high. Wang et al. 

(2016) also found that soil TOC was the major factor influencing bacterial biomass on 

subtropical forests. Gram-positive bacteria in soil are mainly associated with two phyla, 

Firmicutes (low G+C) and Actinobacteria (high G+C) (McCaig et al., 1999). Although 

Firmicutes are considered the second most abundant bacterial phylum in soil, Actinobacteria are 

involved in important processes that includes the decomposition of organic materials in soil (e.g. 

lignin and other recalcitrant polymers) and thereby playing a vital part in the carbon cycle (Heuer 

et al., 1997; Filippidou et al., 2015). Similar to the current study, Howell and MacKenzie (2017) 

also found that Actinobacteria dominates organic rich peat mixes in reclamation areas. However, 

soil carbon is also often associated with the presence of gram negative bacteria (Hopkins et al., 

2014). According to Koranda et al. (2014) labile C substrates are predominantly metabolized by 

gram-negative bacteria and fungi. One of the largest divisions within gram-negative bacteria 

comprises the phylum Proteobacteria, which contains organisms with a vast level of 

morphological, physiological and metabolic diversity (Gupta, 2000; Spain et al., 2009). 

Although significant differences by slope and cover type in absolute PLFA values were 

observed, the data in this study indicated no differences in the relative abundance of Gr+ and Gr- 

biomarkers (mol%). Overall, soil organic matter and organic carbon were slightly higher in the 

engineered cover, which also has the (GCL) membrane to retain moisture on the surface of the 

cover, when compared to the standard cover. However, these differences were not significant 

enough to reflect shifts in the microbial community. These results are in agreement with Bachar 

et al. (2010), in which the authors have suggested that although bacterial abundance is highly 

associated with soil carbon and moisture, this may not lead to shifts in the microbial community 

structure. In addition, PLFA physiological stress biomarkers results indicated negative 

correlations with TOC, TC, NH4+ and OM, which may suggest nutrient limiting conditions for 

microbial growth in these areas as previously suggested by Helgason et al. (2010a) in Canadian 

prairie agroecosystems. 

In addition to PLFA, Denaturing Gel Gradient Electrophoresis (DGGE) is a technique 

that has been extensively used in the characterization of microbial communities associated with 

plants growing in reclamation soils (Lefrançois et al., 2010; Phillips et al., 2010). Culture 

independent DGGE analysis of bulk soil microbial profiles in the current study indicated 
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significant differences by cover management but not by slope positions. Similar results were also 

observed by MacKenzie and Quideau (2010), in which the authors found inconsistent 

topographical for soil microbial communities in an oil sands reclamation area. According to 

MacKenzie and Quideau (2010), this may be due to that reclamation sites are built with heavy 

equipment at an industrial scale resulting in large variability in PMM placement and depth.  

In the rhizosphere DGGE fingerprints, no clustering was observed by slope position, 

although these profiles were highly differentiated by cover management. This may be due to 

similar effects influencing bulk soil samples, however more pronounced by plant cover influence 

in the rhizosphere. In both the bulk soil and rhizosphere samples, only a few strong bands were 

identified, which is most likely due to the high presence of low-abundance amplicons. Since 

DGGE detects mostly dominant members of the community, less abundance members might be 

shown as smears (Jousset et al., 2010). In the three different microbiomes in this study (bulk soil, 

rhizosphere and endosphere), most rhizosphere and bulk soil DGGE profiles were shown as 

smears with only a few dominant bands observed. In endophytic gels however, more dominant 

bands were observed.  

DGGE gels from endophytic communities revealed that all sampling locations developed 

unique endophytic communities containing at least one dominant endophytic bacterium. Most of 

these bands were re-amplified and identified as endophytic bacteria from other plants. In the 

endophytic DGGE gel profile, most of bands closely matched DNA from soil and plant 

associated bacteria. Band 16 (Figure. 3.10) was observed in all the profiles analyzed. There 

original source from this sequence is a Proteobacteria isolated from a successional forest 

abandoned in 1951 (Jangid et al., 2011). In addition, excised bands (Bands 18, 20, 22, Figure. 

3.10) matched endophytic Actinomycetes, which were also isolated in culture dependent 

techniques. The results presented here are consistent with Nimnoi et al. (2010), who studied the 

diversity of Actinomycetes endophytes. According to Sardi et al. (1992), since Actinomycetes 

live abundantly in the rhizosphere, they have great potential for passive penetration in cracks of 

root tips, easily infecting plant roots.  

Also, in the endophytic bacteria DGGE gels, several bands matched Phytoplasma species 

(Bands 1, 4 and 10, Figure. 3.10). Phytoplasmas are recognized as pathogens and are widespread 

mainly in Europe and North America (Kamińska et al., 2010). Also, Phytoplasmas are obligate 

intracellular parasites of insects, including leafhoppers (Band 10, Figure. 3.10) (Lee et al., 2000). 
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Despite the progress in molecular biology of these uncultured species, it is still largely unknown 

how these pathogens manipulate plant host physiology (Cettul and Firrao, 2011). In fact, 

Phytoplasmas may occur in very low concentrations in plant species and may provoke no harm 

or only mild pathogenic symptoms to host plants (Kamińska et al., 2010).  

Flavobacterium spp. (Band 2 and 5, Figure. 3.10) and Pseudomonas spp. (Band 11, 

Figure. 3.10) re-amplified from the DGGE gels correspond to a large number of bacteria isolated 

and characterized that can potentially metabolize PAHs (Xu-xiang et al., 2006; Germaine et al., 

2009). Phillips et al. (2009) suggested that when the dominant endophytic population consisted 

of Pseudomonas spp., the ability of plants to metabolize alkane pollutants also improved. Since 

reclamation sites may contain residual hydrocarbons (Greer et al., 2011), the association of 

plants with these endophytes could reduce plant stress under the presence of hydrocarbons. 

Dendrogram analysis of endophytic bacteria profiles indicated a very diverse community 

by slope position and cover (Figure 3.8). In some profiles the presence of several bands were 

observed while in others only a single band was detected. In the dendrogram analysis only few of 

the profiles where clustered, as these corresponded to the same slope positions or sampling 

points next to each other. However, for most of the fingerprints no clustering was observed by 

cover type or slope. In addition, clusters in endophytic microbial profiles were unique when 

compared to banding patterns from rhizosphere and bulk soil DGGE profiles.  

The DGGE banding pattern represents a good approximation of the most dominant 

bacterial species biodiversity, but it also has limitations such as the co-migration of DNA 

fragments and low resolution for less abundant microbes (Zheng et al., 2013). However, PCR-

DGGE is still currently a powerful method for determining shifts in microbial community 

composition and rapid method to profile the phylogenetic structure of environmental microbial 

community without artifacts of culture based techniques. The screening of microbial community 

profiles using culture independent methods are relevant to improve understanding in the overall 

community which is highly important for oil sands reclamation strategies. Nevertheless, these 

strategies may depend on the culturable endophytic bacteria that not only can have beneficial 

effects on host plants but also can be manipulated and further used in reclamation.  

Culturable endophytes selected phenotypically have been analyzed and characterized 

genotypically using Sanger sequencing and compared those sequences with the BLAST 
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database. Most of the endophytic bacteria isolated from annual barley plants growing on oil 

sands reclamation soils corresponded to Enterobacter, Flavobacterium, Pseudomonas and 

Xanthomonas spp. Moore et al. (2006) isolated endophytic bacteria from poplar trees growing on 

a BTEX-contaminated site. These authors selected 60 bacterial isolates and Pseudomonas spp. 

was numerically predominant among the isolates collected. In this study, Arthrobacter, 

Enterobacter and Acinetobacter spp. were isolated from root material. In the current study, most 

of the genera identified were similar to those found by Moore et al. (2006). In addition, bacterial 

form the genus Flavobacterium and Pseudomonas were identified in both culture dependent and 

independent techniques. These two genera contain species know to be hydrocarbon degraders 

(Lee et al., 2006), plant growth promoters (Shcherbakov et al., 2013) and to control plant 

pathogens (Mazurier et al., 2009).  

3.7 Conclusions 

This study revealed that soil microbial communities in oil sands post-mining landscapes 

are mainly driven by total and organic carbon, NH4+ and organic matter. The results in this study 

also highlight the limitations in correlating slope effects to nutrient availability and microbial 

profiles in reclamation areas. Therefore, confirming that slope effects and the potential 

differences between the two cover managements are not yet well established on these sites. 

Endophytic bacteria successfully colonized barley plants, although bacterial profiles are highly 

variable at different sampling locations. Whereas bulk soil and rhizosphere DGGE bacterial 

profiles differentiated mainly by cover type, endophytic profiles did not clustered either by slope 

or cover type. In addition, most of selected bacterial endophyte bands from DGGE gel closely 

matched rhizosphere and soil bacteria from agricultural and grassland soils. Few bands selected 

from endophytic DGGE profiles matched growth promoting bacteria and potential hydrocarbon 

degraders, suggesting they may assist plant growth on reclamation covers. Several endophytic 

isolates from culture dependent techniques also matched those from DGGE profiles. These 

contain species know to be hydrocarbon degraders and plant growth promoters. Therefore, this 

study provides an initial screening of dominant bacteria associated with barley plants growing in 

an oil sand reclamation cover. Further research is required to determine a more detailed 

characterization of these communities and how they may be influenced by soil or plant related 

factors. 
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4. BACTERIAL ROOT MICROBIOME OF PLANTS GROWING IN 
OIL SANDS RECLAMATION COVERS 

 

4.1 Preface 

Chapter 3 provided an initial screening of dominant bacteria associated with barley plants 

growing in an oil sands reclamation area using culture dependent and independent methods. The 

results presented indicated that soil microbial communities were driven mainly by total and 

organic carbon, NH4+ and organic matter. Additionally, it was demonstrated that endophytic 

bacteria successfully colonized barley plants and that a few bacterial profiles matched those of 

plant growth promoting and potential hydrocarbon degraders. Since barley is commonly planted 

in reclamation covers, its associated bacterial communities are of high importance to future 

native plant species. However, an in-depth analysis of bacterial profiles associated with barley 

and naturally occurring pioneer plant species is still required. To address this, annual barley and 

white sweet clover were sampled in the following year and 16S rRNA amplicon sequencing was 

used to characterize the bacterial root microbiome associated with these plants. 

4.2 Abstract 

Oil sands mining in northern Alberta impacts a large footprint, but the industry is committed 

to reclaim all disturbed land to an ecologically healthy state in response to environmental 

regulations. However, these newly reconstructed landscapes may be limited by several factors 

that include low soil nutrient levels and reduced microbial activity. Rhizosphere microorganisms 

colonize plant roots providing hosts with nutrients, stimulating growth, suppressing disease and 

increasing tolerance to abiotic stress. High-throughput sequencing techniques can be used to 

provide a detailed characterization of microbial community structure. This study used 16S rRNA 

amplicon sequencing to characterize the bacterial root microbiome associated with annual barley 

(Hordeum vulgare) and sweet clover (Melilotus albus) growing in an oil sands reclamation area. 

The results in this study indicate that Proteobacteria dominated the endosphere, whereas other 

phyla such as Acidobacteria and Gemmatimonadetes were restricted to the rhizosphere 
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suggesting that plants have the ability to select for certain soil bacterial consortia. The bacterial 

community in the endosphere compartments were less rich and diverse compared to the 

rhizosphere. Furthermore, it was apparent that sweet clover plants were more selective, as the 

community exhibited a lower richness and diversity compared to barley. Members of the family 

Rhizobiaceae, such as Sinorhizobium and Rhizobium were mainly associated with clover, 

whereas Acholeplasma (wall-less bacteria transmitted by insects) was unique to barley. Genera 

from the Enterobacteriaceae family, such as Yersinia and Lentzea were also mostly detected in 

barley, while other genera such Pseudomonas and Pantoea were able to successfully colonize 

both plants. Endophytic bacterial profiles varied within the same plant species at different 

sampling locations; however, these differences were driven by factors other than slope positions 

or cover management. The results in the current study suggest that bacterial endophytic 

communities of plants growing in land reclamation systems are a subset of the rhizosphere 

community and selection is driven by plant factors. 

4.3 Introduction 

Soil microbial communities represent the greatest known reservoir of biological diversity 

(Berendsen et al., 2012). However, compared to non-rooted bulk soil, the rhizosphere, which is 

the narrow zone of soil that is influenced by root exudates, is a ‘hot spot’ for numerous 

organisms and is considered as one of the most complex ecosystems (Raaijmakers et al., 2009; 

Tkacz et al., 2015; Bakker et al., 2013). The increased microbial abundance and activities in the 

rhizosphere environment are due to the release of organic carbon by plant root exudation (Bakker 

et al., 2013). Soil microorganisms are chemotactically attracted to root exudates, which allow 

them to proliferate in this carbon rich environment (Raaijmakers et al., 2009). In turn, 

rhizosphere microbiota can also directly and/or indirectly affect the composition and biomass of 

plant communities in natural and agricultural ecosystems (Philippot et al., 2013). The complexity 

of plant-microbe interactions has resulted in a number of studies that revealed profound effects 

on plant growth, development, nutrition, diseases, and productivity (Mendes et al., 2013). 

Although the majority of research in plant-microbe interaction focuses on the rhizosphere, 

microorganisms are also able to readily colonize most plant compartments and plants can also 

function as filters of soil microorganisms (Chen et al., 2010; Berg et al., 2014). 
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Microbes residing within plant tissues (the endosphere) for at least part of their lives, 

whether in leaves, roots or stems, are considered endophytes (Kobayashi and Palumbo, 2000; 

Turner et al., 2013). Endophytes are thought to be a sub-population of the rhizosphere 

microbiome and/or that once inside their hosts they change their metabolism and become 

adapted to their internal environment (Turner et al., 2013; Germida et al., 1998). The best 

evidence suggests that microbial endophytes enter at lateral root junctions, most likely at 

naturally occurring cracks, however they also have characteristics distinct from rhizosphere 

inhabiting bacteria, suggesting that not all rhizosphere bacteria can enter plants (Turner et al., 

2013). Numerous studies suggest that bacterial endophytes can promote host plant establishment 

and improve plant growth under adverse conditions (Soleimani et al., 2010; Deng et al., 2011; 

Khan et al., 2011). Bacterial endophytes may also have the ability to control plant pathogens, 

insects and nematodes, which make them suitable as biocontrol agents (Hallmann and Berg, 

2006). In addition, recent studies also suggest that endophytes may play an important role in 

remediation of contaminated soils and water (Chen et al., 2010; Guo et al., 2010; Xiao et al., 

2010; Mastretta et al., 2013). 

Plants and microbes have both adapted to use their close association for their mutual 

benefit (Edwards et al., 2015). Due to the importance of these associations, interactions between 

microbes and model plants, such as in Rhizobium-legume symbiosis, have been extensively 

reported in the literature (Child, 1975; Freiberg et al., 1997). However, the diversity of root 

associated microorganisms in reclamation soils after mining operations are not well understood.  

The Athabasca’s oil sands region in northern Alberta are unconventional petroleum 

deposits where bitumen, a dense and extremely viscous form of petroleum, is found in 

combination with sand, clay, and water (Yergeau et al., 2012a). Covering an area of over 

100,000 km2, the oil sands yielded 2.3 million barrels of bitumen per day in 2014 (Government 

of Alberta, 2017). These oil deposits, estimated at 169 billion barrels represent the third largest 

oil reserve in the world and a major resource within Canada's energy sector (Kannel and Gan, 

2012). However, bitumen lies under a total area of 142,000 km2 of natural boreal forest, which 

needs to be removed during mining operations (MacKenzie and Quideau, 2010). Following 

bitumen extraction, mine tailings are accumulated in ponds where tailing sands are settled and 

the water is recycled (Onwuchekwa et al., 2014; Yergeau et al., 2012a). Land reclamation 

strategies in the oil sands are challenging due to the nature of the tailing sands, a generally 
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inappropriate plant growth medium with low nutrient content, high pH, low or no organic matter 

and residual hydrocarbon products (Naeth et al., 2011; Lefrançois et al., 2010). Hence, land 

reclamation strategies in the oil sands have focused on covering the tailing sands with suitable 

reclamation material to improve vegetation establishment. A common practice has been the use 

of peat-mineral soil mix (PMM) to create a suitable plant growth medium and to provide a 

source of native plants that can facilitate the vegetation natural recovery (Shaughnessy, 2010). 

Planting of seedlings of the dominant boreal forest tree species and the colonization by pioneer 

species is essential to improve reclamation strategies and allow the re-establishment of a natural 

forest (Renault et al., 2004; Lefrançois et al., 2010). In addition, annual barley (Hordeum 

vulgare) is often planted in reclamation landscapes to provide a quick vegetation cover and 

erosion control (Audet et al., 2015). 

Previous studies on oil sands reclamation sites have focused on the shifts in soil microbial 

community structure and nutrient profiles (MacKenzie and Quideau, 2010) and the impact of 

nitrogen fixing Frankia-inoculated alders on soil quality and dominant root associated microbial 

communities (Lefrançois et al., 2010). However, given the challenges of land reclamation in the 

Alberta’s oil sands, and the importance of root associated microbiota for a successful vegetation 

cover, an in-depth characterization of these microbial profiles is essential to improve current 

reclamation strategies.  

In this study, high-throughput 16S rRNA amplicon sequencing was used to characterize 

bacterial communities associated with two plant species growing on an oil sands reclamation 

area. In addition, this study investigated the influences of host plants and landforms on the 

bacterial community composition and structure. Specifically, this study aimed to determine 

whether soil or plant specific factors were the main source influencing bacterial colonization in 

these plants. 

4.4 Materials and Methods 

4.4.1 Sample collection and processing 

Annual barley (Hordeum vulgare), as a planted species, and white sweet clover 

(Melilotus albus), as an unplanted native species, were collected at an oil sands reclamation area 

of approximately 2.2 km2 near Fort McMurray, Alberta, Canada. Three biological replicates of 

each plant and attached rhizosphere soil (0-20 cm depth) were collected at different slope 
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positions along two transects (20 sampling locations) previously mentioned in Chapter 3. The 

first transect consisted of 10 sampling locations (S1-S10) in the standard cover, which is a cover 

management area consisting of a 50 cm of peat mineral mixture on the surface of 100 cm of 

tailing sands. The second transect also consisted of 10 sampling locations (E1-E10) in the 

engineered cover, an area of 50 cm of a peat mineral mixture on top of 120 cm of tailing sands 

separated from the bottom 30 cm of tailing sands by a geo-clay liner (GCL). The main objective 

of the GCL added by the industry is to retain the moisture on the top of the cover to improve 

plant growth and to prevent seepage from compounds on the bottom of the tailing sands from 

reaching the surface of the plant cover. Samples were collected during the summer of 2014, 

transported at 4 °C and stored at -20 °C until processing within the next 48 h. Soil samples were 

analyzed for soil total organic (TOC) and total carbon (TC) by the method from Dhillon et al. 

(2015) using a LECO C632 Analyzer (LECO Corporation, St. Joseph, MI, United States). Soil 

organic Matter (OM), was analyzed using the dry-ash method (McKeague, 1978). Soil pH was 

measured in a 1:2 soil: water slurry. Soil available ammonium was extracted using a 2 N KCl 

solution, NH4+ in the extract was mixed with hypochlorite and salicylate to form indophenol 

which was determined colorimetrically at 660 nm (Laverty and Bollo-Kamara, 1988). Soil 

available nitrate was extracted using a calcium chloride solution and determined colorimetrically 

at 520 nm according to Laverty and Bollo-Kamara (1988). Available phosphorus and potassium 

were measured using a modified Kelowna extraction (Qian et al., 1994) and available sulfate by 

a calcium chloride extraction (McKeague, 1978) (Chapter 3). 

4.4.2 Survey of rhizosphere and endophytic bacteria community 

Plant roots (entire root system) and adhering soil (5 g) were placed into an Erlenmeyer 

flask containing 195 mL of phosphate-buffered saline (PBS) (1.2 g of Na2HPO4·L-1, 0.18 g of 

NaH2PO4·L-1, 8.5 g of NaCl·L-1) buffer and shaken on a rotary shaker (150 rpm) at 22 °C for 25 

min. After shaking, the remaining slurry was transferred to a 50 mL Falcon centrifuge tube and 

centrifuged at 2,000 g for 5 min. The supernatant containing PBS buffer was discarded and the 

rhizosphere soil stored at -80 °C for DNA extraction (Dunfield and Germida, 2003). Root 

material was recovered and transferred into an Erlenmeyer flask containing 100 mL NaClO 

(1.05% v·v-1) in PBS and placed on a rotary shaker (150 rpm) at 22 °C for 15 min. To remove 

the remaining NaClO solution, roots were rinsed 10 times with sterile water and 0.1 mL of the 

final wash was spread on Trypticase soy agar (TSA) plates to check for contamination (Siciliano 
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and Germida, 1999). In addition, a PCR was conducted on the final wash using the 520F/799R2 

bacterial primers to ensure root sterilization. Sterile roots were chopped aseptically and stored in 

sterile tubes at -80 °C for DNA extraction. Root nodules from sweet clover plants were removed 

prior to DNA extraction.  

4.4.3 DNA extraction 

Total endophytic community DNA was extracted from surface disinfected root samples 

using the PowerPlant® Pro DNA Isolation Kit (MoBio Laboratories Inc., Carlsbad, CA) and the 

rhizosphere soil community DNA was extracted using the MoBio PowerSoil® extraction kit 

(MoBio Laboratories Inc., Carlsbad, CA). DNA exactions were conducted following the 

manufacture’s protocols. The DNA yield was quantified using Qubit® Fluorometric Quantitation 

(Invitrogen) and in a SYBR® Safe (Invitrogen) 1% agarose gel by comparison with a high DNA 

mass ladder (Invitrogen) using a Bio-Rad Gel Doc XR System (Bio-Rad Laboratories, 

Mississauga, ON). 

4.4.4 High-throughput 16S rRNA amplicon sequencing 

To determine the diversity and bacterial community composition in the endosphere and 

the rhizosphere, DNA samples were submitted for high throughput sequencing at McGill 

University and Génome Québec Innovation Centre using Illumina technology. The primer set 

and PCR protocol used were as described in Edwards et al. (2007). Briefly, PCR amplifications 

were conducted using the 520F (5`-AGCAGCCGCGGTAAT-3`) /799R2 (5`-

CAGGGTATCTAATCCTGTT-3`) primer set that amplifies the V4 region of the 16S rRNA 

gene. Amplicons with attached Illumina flow cell adapter sequences were added in Illumina 

MiSeq 2.0 platform in equimolar concentrations. Sample libraries were prepared according to the 

MiSeq reagent kit preparation guide (Illumina, San Diego, CA), and the sequencing protocol 

from Caporaso et al. (2010b). 

4.4.5 Bioinformatics and statistical analysis 

Sequence reads were analyzed using Mothur v. 1.36.0 (Kozich et al., 2013) and the 

MiSeq standard operating procedure developed by the same laboratory. This analysis process 

involves the formation of contigs, removal of error sequences and chimera removal. High-quality 

reads were down-sampled to the smallest sample size and classified with naïve Bayesian 
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classifier implemented in MOTHUR (classify.seqs) using SILVA taxonomy provided by the 

authors. Sequences from chloroplasts, archaea, eukaryotic organisms were also removed before 

taxonomic classification. All operational taxonomic units (OTUs) were clustered at a cutoff of 

0.03 (97% similarity). Rarefaction curves values and Simpson diversity were also generated 

using Mothur software. Chao1 richness, Shannon diversity and principal coordinate analysis 

(PCoA) were performed using QIIME (Quantitative Insights Into Microbial Ecology) 1.9.1 

(Caporaso et al., 2010a). Heatmap and ternary plots were conducted using by R v.2.15.2 (R 

Foundation for Statistical Computing; available at http://www.R-project.org) using the VEGAN 

package (version 2.0–7) and ggtern (version 2.1.4) respectively. Analysis of variance followed 

by Tukey post hoc test and Spearman's rank correlations were performed using SAS v 9.3 (SAS 

Institute Inc., Cary, NC, United States). 

4.4.6 Data deposition 

 Metagenomic datasets were deposited in the NCBI sequence read archive (SRA) under 

the submission ID SUB2526072. The metagenomic project can also be accessed in NCBI under 

GenomeProject ID 381225 (accession PRJNA381225, 

http://www.ncbi.nlm.nih.gov/bioproject/381225). 

4.5 Results 

After quality filtering, all OTU sequences assigned to chloroplast and mitochondrion 

origins were removed from the dataset according to Caporaso et al. (2010b). Taxonomy was 

assigned to bacterial OTUs against a subset of the Silva database resulting in in the recovery of 

5,013,100 sequences and 13,107 unique OTUs (3% dissimilarity) across 120 endophytic and 120 

rhizosphere bacterial community samples (Appendix B).  

The bacterial community consisted of 19 different phyla; however, for most bacterial 

communities analyzed, only four different phyla represented at least 80% of the profile. 

Proteobacteria and Actinobacteria were the most abundant phyla observed in all samples 

analyzed (Figure 4.1). In barley plants, Proteobacteria represented on average 56% of the 

endosphere and 49% of the rhizosphere community, whereas they represented 84% and 69% for 

clover plants, respectively. Although Proteobacteria was more abundant in the endosphere, the 

Actinobacteria relative abundance was 24% higher in the rhizosphere for barley and 1.6-fold 
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higher for clover. At phylum level, the two plants analyzed harboured different bacterial 

communities. Whereas endophytic profiles for barley plants indicated high abundance of 

Tenericutes, sweet clover plants harboured a low abundance of this phylum. Tenericutes 

corresponded to 12% of barley endosphere profiles whereas less than 1% in the rhizosphere and 

in both rhizo-compartments (endosphere and rhizosphere) of sweet clover plants. However, 

sweet clover associated bacterial communities also indicated a higher abundance of Firmicutes 

when compared with barley. Overall the rhizosphere communities showed similar profiles 

between the two plant species analyzed. In addition, although soil physical and chemical 

properties indicated differences between sampling locations, no significant strong correlations 

were observed between the most abundant bacterial endophyte phyla and soil chemical 

parameters (Table 4.1). However, in rhizosphere communities, the phyla Actinobacteria 

indicated significant positive correlations with organic matter (R2 = 0.434, p ≤ 0.01) total organic 

carbon (R2 = 0.370, p ≤ 0.05), total carbon (R2 = 0.348, p ≤ 0.05), available ammonium (R2 = 

0.347, p ≤ 0.05) and nitrate (R2 = 0.351, p ≤ 0.05) (Table 4.2). The phylum Nitrospira, although 

not highly abundant in the rhizosphere compared to Actinobacteria, indicated similar positive 

correlations with soil parameters. Nitrospira indicated positive correlations with organic matter 

(R2 = 0.595, p ≤ 0.01) total organic carbon (R2 = 0.381, p ≤ 0.05), total carbon (R2 = 0.382, p ≤ 

0.05), available ammonium (R2 = 0.480, p ≤ 0.05) and nitrate (R2 = 0.452, p ≤ 0.05).
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Figure 4.1 Analysis of root associated bacterial communities (endosphere and the rhizosphere 
compartments) at phylum level in barley and sweet clover growing in oil sands reclamation 
areas. 
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Table 4.1 Correlation indicating Spearman’s R2 values relating endophytic bacterial phyla and soil parameters. Statistically significant 
correlations are indicated in bold type, * and ** denote p values ≤ 0.05 and ≤ 0.01, respectively. OM = organic matter, TOC = total 
organic carbon, TC = total carbon and EC = electrical conductivity. 
 pH OM TOC TC NH4

+ NO3
- SO4

2- PO4
2- K+ EC 

Proteobacteria 0.093 0.044 -0.024 -0.015 0.151 0.105 0.112 -0.216 0.091 0.052 

Actinobacteria 0.013 0.031 -0.147 -0.162 -0.140 0.028 -0.085 0.007 -0.158 0.132 

Bacteroidetes 0.060 -0.050 -0.146 -0.148 -0.093 0.033 0.309 -0.051 0.175 0.160 

unclassified -0.148 0.003 -0.195 -0.202 -0.064 0.033 0.062 0.033 0.070 0.006 

Gemmatimonadetes -0.120 0.192 -0.139 -0.154 0.037 0.161 0.106 -0.172 0.143 0.164 

Firmicutes 0.142 0.009 -0.195 -0.202 0.044 0.143 -0.066 -0.215 -0.244 0.167 

Acidobacteria 0.060 0.107 -0.059 -0.066 0.014 0.287 0.119 -0.114 0.350* 0.102 

Verrucomicrobia 0.019 -0.134 -0.268 -0.276 -0.266 -0.011 0.097 0.069 0.292 0.138 

Tenericutes -0.148 0.085 -0.021 -0.016 0.022 0.063 -0.031 0.124 -0.144 -0.115 

Armatimonadetes -0.064 0.045 -0.009 0.005 0.017 0.106 0.069 0.023 0.167 0.076 

Nitrospira -0.089 0.266 0.247 0.246 0.243 0.132 0.076 -0.036 0.318* -0.186 

Chlamydiae -0.094 -0.055 0.115 0.137 -0.006 0.110 0.145 0.109 0.116 -0.045 

Chloroflexi 0.007 0.118 -0.078 -0.091 0.063 0.081 0.097 -0.193 0.002 -0.055 

Planctomycetes 0.004 -0.049 -0.017 -0.017 -0.055 -0.170 0.087 -0.126 -0.076 -0.002 

TM7 0.027 -0.014 0.037 0.050 -0.043 0.019 0.127 -0.012 0.179 -0.087 

Spirochaetes 0.016 -0.183 0.047 0.047 -0.243 -0.063 -0.067 0.176 0.035 -0.095 

Deinococcus–Thermus -0.008 0.087 -0.003 -0.003 0.340* 0.105 0.116 -0.328* -0.057 -0.180 

Fusobacteria -0.209 -0.125 -0.208 -0.236 -0.209 -0.153 0.042 0.236 0.097 -0.266 
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Table 4.2 Correlation indicating Spearman’s R2 values relating rhizosphere bacterial phyla and soil parameters. Statistically 
significant correlations are indicated in bold type, * and ** denote p values ≤ 0.05 and ≤ 0.01, respectively. OM = organic matter, 
TOC = total organic carbon, TC = total carbon and EC = electrical conductivity. 
 pH OM TOC TC NH4

+ NO3
- SO4

2- PO4
2- K+ EC 

Proteobacteria 0.134 -0.115 -0.027 -0.036 -0.034 -0.054 -0.103 0.122 0.092 -0.113 

Actinobacteria -0.098 0.434** 0.370* 0.348* 0.347* 0.351* -0.237 -0.155 0.072 -0.124 

Bacteroidetes 0.169 -0.019 -0.025 -0.026 0.065 -0.027 0.070 -0.191 0.077 0.039 

unclassified 0.064 0.030 -0.023 -0.008 0.107 -0.058 0.206 -0.240 0.040 0.040 

Gemmatimonadetes 0.067 0.039 -0.043 -0.020 0.026 0.108 0.177 -0.183 -0.126 0.206 

Firmicutes 0.073 0.023 -0.108 -0.113 0.163 -0.050 -0.017 -0.044 -0.031 -0.195 

Acidobacteria -0.068 0.156 0.167 0.184 0.158 0.002 0.060 0.021 0.137 -0.154 

Verrucomicrobia 0.086 0.090 0.006 0.025 0.269 0.034 0.173 -0.317* 0.002 0.014 

Tenericutes 0.254 -0.259 -0.209 -0.202 -0.050 -0.212 0.194 -0.097 -0.096 0.082 

Armatimonadetes 0.158 -0.063 0.041 0.062 0.068 -0.035 0.220 -0.106 0.184 -0.087 

Nitrospira -0.323 0.595** 0.381* 0.382* 0.480** 0.452* -0.249 -0.134 -0.009 -0.275 

Chlamydiae 0.045 0.040 0.140 0.129 0.065 0.064 -0.013 -0.082 0.059 0.015 

Chloroflexi -0.022 -0.070 -0.101 -0.097 -0.104 -0.126 0.289 -0.097 0.036 0.102 

Planctomycetes -0.142 0.119 0.021 0.018 -0.036 0.057 0.045 -0.003 0.055 0.026 

Chlorobi 0.006 0.325* 0.205 0.205 0.308 0.344** -0.220 -0.220 -0.145 0.153 

TM7 -0.034 0.063 0.101 0.102 0.055 0.121 0.210 0.276 0.238 -0.290 

Spirochaetes 0.028 -0.199 -0.074 -0.093 0.007 -0.178 0.162 -0.019 0.180 -0.278 
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A Venn diagram revealed that 1,132 OTUs (which represents 8% of the total number of 

OTUs) were common to all endophytic and rhizosphere bacterial communities (Figure 4.2). 

However, 1,717 OTUs (13% of total number of OTUs) were shared only in the different 

rhizosphere communities and only 57 OTUs (0.4% of total) were shared between endophytic 

communities. The number of shared OTUs among the two endophytic communities was also the 

lowest number of OTUs shared between communities. In addition, a total of 8,586 OTUs were 

unique for rhizosphere samples whereas 1,459 OTUs were unique to the endosphere. As 

expected, the rhizosphere harboured most of the unique OTUs, in which 4,145 and 2,724 where 

associated only with barley and sweet clover plants, respectively. Within endophytic 

communities, 532 OTUs were unique for clover plants and 870 for barley.  

Similar to Venn diagram, PCoA also indicated differences between bacterial 

communities (Figure 4.3). PCoA resulted in a 3-dimensional solution in which, PC1 accounted 

for 9.55% of the variation and PC2 and PC3 for 12.38 and 27.17% respectively. Based on the 

different communities, rhizosphere samples were clustered in two regions, one which 

corresponded to sweet clover associated rhizosphere soil only and another with both barley and 

sweet clover rhizosphere soil. Overall, results indicate a clear division between the endosphere 

and rhizosphere compartments. Endophytic communities however were more variable between 

sampling locations when compared to the rhizosphere. In addition, sweet clover endosphere 

compartments indicated a higher variation among samples when compared to barley. Although 

clustering was observed based on plant species, no clustering was observed based on cover type 

and slope positions (Figure 4.4).
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Figure 4.2 Venn diagram for endosphere (BE) and rhizosphere (BR) bacterial communities 
associated with barley and endosphere (CE) and rhizosphere (CR) bacterial communities 
associated with sweet clover. Numbers indicated shared unique OTUs at 0.03 dissimilarity 
distances after removing singletons involved.
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Figure 4.3 Principal Coordinate Analysis (PCoA) based on Bray-Curtis dissimilarity between 
samples for barley endosphere (BE), clover endosphere (CE), barley rhizosphere (BR) and clover 
rhizosphere (CR). 
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Figure 4.4 Principal Coordinate Analysis (PCoA) based on Bray-Curtis dissimilarity between 
samples at different slope positions (a) and cover managements (b). 

 

 



 

 
 

88 

Based on shared OTUs between different communities (Figure 4.2) and on PCoA (Figure 

4.3), the results in this study indicate that although there are differences in the rhizosphere 

compartments among the two plants analyzed, most of the differences were within the 

endosphere. Therefore, the data in this study was analyzed using ternary plots based on three 

main environments: (i) the soil rhizosphere microbiota of both plants, (ii) the endosphere 

compartment of sweet clover and (iii) the endosphere of barley (Figure 4.5, Figure 4.6). 

According to the most abundant families (Figure 4.5), barley plants harboured a high abundance 

of Xanthomonadaceae, whereas clover plants had a high abundance of Rhizobiaceae. Genera 

from the family Enterobacteriaceae were mostly associated with the endophytic communities, 

whereas Pseudomonadaceae, Sphingomonadaceae were associated with both the rhizosphere 

and endosphere bacterial communities. A ternary plot was used to assess in which compartment 

each genus is most abundant or restricted (Figure 4.6). Here, each genus was categorized based 

on whether there was a 10% increase or decrease on its relative abundance in endosphere 

compared with rhizosphere. The results in the current study suggest that only a few genera were 

restricted by rhizo-compartment, since most of genera can be found in both compartments. 

Interestingly, barley was more effective at recruiting bacterial genera to its rhizosphere and 

endosphere than clover. 

Chao richness and Shannon diversity indices indicated significant differences between 

rhizo-compartments (Table 4.3). Both indexes show a lower diversity and richness in the 

endophytic communities. Additionally, barley rhizosphere and endosphere microbiota had higher 

richness and diversity when compared to sweet clover. 
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Figure 4.5 Ternary plot representing the relative occurrence of individual genus (circles) that are members of the five 
most abundant families in root samples of sweet clover and barley compared with rhizosphere soil. Genera enriched in 
different compartments are colored by taxonomy of the most abundant families. The size of the circles is proportional 
to the mean abundance in the community. 
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Figure 4.6 Ternary plot representing the relative occurrence of individual genus (circles) in root samples of sweet clover 
and barley compared with rhizosphere soil. Genera enriched in different compartments are colored according to habitat in 
which each genus is most frequently associated based on at least 10% enrichment or depletion of soil microbiota in the 
endosphere. The size of the circles is proportional to the mean abundance in the community.
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Table 4.3 Alpha richness and diversity of endophytic and rhizosphere communities associated 
with barley and sweet clover plants. Different letters indicate significant differences (Tukey HSD 
p ≤ 0.05). 

    Chao Shannon 

Rhizosphere 
Barley (BR) 714.9a 4.90a 
Clover (CR) 611.6b 3.73b 

Endosphere 
Barley (BE) 244.0c 3.00c 
Clover (CE) 136.4d 1.91d 

 

To investigate the main genera driving differences in the endophytic communities, a heat 

map using hierarchical cluster based on Bray–Curtis distance was generated using the 2% most 

abundant genera (Figure 4.7). The results in this study suggest that bacterial profiles mainly 

clustered by plant species and not by cover type or by different slope positions.  

Six main clusters were observed after a 70% dissimilarity cut off between endophytic 

community profiles. Based on the cluster profiles, indicator species analysis was conducted to 

confirm the main genera influencing differences in the bacterial community. The first cluster (A) 

(left to right) consisted on barley endophytic communities from one sampling location at the 

upslope in the standard cover. This was the smallest cluster detected and on average the 

endophytic profiles consisted mainly on Yersinia (57%), Pseudomonas (7.5%), Lentzea (5.6%), 

Rhizobium (2.28%) and Sphingmononas (1.49%). The main indicator genus of this cluster was 

Yersinia, which in some samples corresponded to 60% of the profile. Cluster B was limited to 

barley endophytic communities only, in this cluster the most abundant genera were 

Acholeplasma (46.8%), unclassified genus from the family Enterobacteriaceae (8.5%), Lentzea 

(4.3%), Pseudomonas (3.1%) and Amycolatopsis (2.7%). Acholeplasma was the indicator genus 

for this cluster, which in some samples it could represent up to 80% of the profile. Cluster C 

corresponded mainly to Lentzea (10.4%), Pseudomonas (6.4%), unclassified genus from the 

family Microbacteriaceae (4.3%), Rhizobium (4.3%) and Acholeplasma (3.88%). In this cluster 

Lentzea was the indicator genus for this cluster which it could represent up to 50% of the 

bacterial profile in some samples. In addition, cluster C was one of the clusters that represented 

most of the endophytic profiles for barley plants. With the exception of a few samples, no 

particular genus corresponded to more than 50% of the community structure in this cluster. 

Cluster D consisted of 76% of sweet clover plants and 24% of barley. On average the most 
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abundant genera in this cluster were Pseudomonas (50.1%), Sinorhizobium (7.8%), Pantoea 

(7.5%), Enterococcus (4.3%) and Arthrobacter (3.8%). Pseudomonas was also detected as the 

indicator genus of cluster D. Cluster E was detected as a small cluster limited to sweet clover 

plants with Pantoea as the indicator genus. On average, this cluster mainly consisted by Pantoea 

(45.7%), Sinorhizobium (13.4%), Pseudomonas (6.87%), Xanthomonas (6.71%) and Rhizobium 

(6.61%). Cluster F also was limited to sweet clover plants, however with a dominant 

Sinorhizobium endophytic community. Sinorhizobium was the main indicator genus of this 

cluster and it represented up 90% of the bacterial profile in some samples. The most abundant 

genera of this cluster were Sinorhizobium (44.2%), Rhizobium (12.9%), Pseudomonas (6.2%), 

Hansschlegelia (2.9%) and unclassified genus from the family Comamonadaceae (2.1%). 

To investigate rhizosphere associated bacterial communities, a heat map was also 

generated using hierarchical cluster based on Bray–Curtis distance (Figure 4.8). Rhizosphere 

bacterial profiles also clustered mainly on different plant species. As expected, clustering 

dissimilarities were much lower when compared to endophytic communities. Three main clusters 

were observed after a 40% dissimilarity cut off. Cluster A was limited to sweet clover plant 

species only, the most dominant genus in this profile is Pseudomonas (58%), followed by 

Arthrobacter (12.3%) and Pantoea (9.1%). Cluster B also was limited to sweet clover species; 

however, this cluster was mainly detected by an equal abundance of unclassified genus from the 

order Bacillales (17%) Pantoea (15%) and Acinetobacter (14%). However, most of rhizosphere 

profiles were represented in cluster C and interestingly all barley profiles were on this cluster. In 

cluster C, the most abundant genera detected were Arthrobacter (6.5%), Sphingomonas (5.3%) 

and an unclassified genus from the order Rhizobiales (4.6%). Also, in this cluster none of the 

genera identified represented more than 40% of the profile and no dominant genus could be 

observed. This cluster also included a group of sweet clover associated rhizosphere bacterial 

profiles mainly differentiated from other samples within the cluster by the abundance of 

Stenotrophomonas (9.1%).  
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Figure 4.7 Heatmap based on relative abundance of sweet clover and barley associated 
endophytic communities. Vertical columns represent samples; horizontal rows represent genera 
that are 2% most abundant in at least one sample. Clustering of samples (top) is based on genera 
co-occurrence by Bray-Curtis dissimilarity. Letters (A-F) indicate different clusters at a 70% 
dissimilarity cut off.
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Figure 4.8 Heatmap based on relative abundance of sweet clover and barley associated 
rhizosphere communities. Vertical columns represent samples; horizontal rows represent genera 
that are 2% most abundant in at least one sample. Clustering of samples (top) is based on genera 
co-occurrence by Bray-Curtis dissimilarity. Letters (A-C) indicate different clusters at a 40% 
dissimilarity cut off.
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4.6 Discussion 

The data presented here provides new insights on plant microbe interactions in 

reclamation sites, as most previous studies have focused on the microbial communities in tailing 

ponds (Yergeau et al., 2012a) and on the overall soil microbial biomass in oil sands reclamation 

sites (MacKenzie and Quideau, 2010). Furthermore, very few studies focused on endophytic 

communities in oil sands reclamation covers using culture-independent methods (Lefrançois et 

al., 2010). In an attempt to unravel the root associated bacterial microbiome of plants growing in 

reclamation soils, 16S rRNA high-throughput amplicon sequencing was used to characterize 

endophytic and rhizosphere bacterial communities associated with two plant species in one of the 

Athabasca oil sands reclamation sites. However, a common challenge in the assessment of 

bacterial endophytes using molecular methods has been amplification of plant chloroplast 16S 

rRNA gene by universal bacterial primers (Chelius and Triplett, 2001). Therefore, in order to 

reduce the number of plant chloroplast sequences, a primer set previously designed by Edwards 

et al. (2007) was used as they have been proven to be successful in removing these sequences. 

Illumina MiSeq of PCR amplicons and sequence analyses revealed that both endophytic 

and rhizosphere bacterial profiles varied considerably across the different sampling locations. 

The data in this study also suggest that changes in the microbiome are mainly due to different 

rhizo-compartments (rhizosphere and endosphere) and host plants. Similar results were observed 

by Ofek-Lalzar et al. (2014), who studied the rhizoplane bacterial communities associated with 

wheat and cucumber and found that variability was correlated with rhizo-compartment at a 

higher extent and different host plant at a lesser extent. In the current study, it was observed a 

lower diversity in the endosphere compartment compared to the rhizosphere. Hence, as 

previously reported in Germida et al. (1998) and Edwards et al. (2015), the data presented here 

also suggests that endophytic root colonization is not a passive process and that both sweet 

clover and barley plants have the ability to select for certain soil microbial consortia. The 

enrichment for a subset of selected dominant phyla in the endosphere compartment was also 

consistent with Shannon diversity and the Chao richness analysis. Siciliano and Germida (1999) 

also reported changes in the abundance of certain genera in the endosphere when compared to 

the rhizosphere and a lower diversity in the endosphere. 
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Differences in bacterial community profiles in this study were detected at a broad 

taxonomic level such as at the phylum level. The results presented here indicate that there was an 

increase in the relative abundance of Proteobacteria in the endophytic community of both plants 

when compared to the rhizosphere. Proteobacteria were previously described as effective 

rhizosphere and root colonizers in several plants such as rice (Edwards et al., 2015), smooth 

cordgrass (Hong et al., 2015) and wheat (Ai et al., 2015) due to their high ability to utilize root 

exudates (Fierer et al., 2007). Proteobacteria are known to respond rapidly to carbon sources, 

and are generally considered to be r-strategists and fast-growing bacteria (Peiffer et al., 2013). 

The enrichment of Proteobacteria spp. in root compartments, mostly in sweet clover plants, was 

previously suggested in the literature in tomato (Yao and Allen, 2006) and in grapevine 

(Zarraonaindia et al., 2015) as a response to chemotaxis via photoassimilates secreted by root 

cells (Bulgarelli et al., 2013). 

Similar to other studies using Arabidopsis thaliana (Lundberg et al., 2012) and rice 

plants (Edwards et al., 2015), the current study revealed that several phyla common in the 

rhizosphere (Acidobacteria, Verrucomicrobia and Gemmatimonadetes), were almost absent in 

the endosphere. In fact, the results presented here indicate that relative abundance of 

Acidobacteria is below 1% in endophytic profiles at some sampling locations. However, 

differently from Edwards et al. (2015) and Hong et al. (2013), the present study found a high 

abundance of Actinobacteria in all rhizosphere profiles, which is in agreement with 

Bodenhausen et al. (2013) and Sugiyama et al. (2014). According to Bulgarelli et al. (2013), 

Actinobacteria is considered a specific bacterial taxon that responds favorably to organic carbon 

substrate addition and the high abundance of this phylum has been observed in both rhizosphere 

and endosphere compartments of different plant species. Also, differently from the Arabidopsis 

thaliana root microbiome studied in Lundberg et al. (2012), the present study found that both 

sweet clover and barley plants harboured a higher relative abundance of Firmicutes in 

rhizosphere profiles when compared with the endosphere. According to Bulgarelli et al. (2013), 

Firmicutes dominate both rhizo-compartments, however the dominance in the endosphere can 

only be observed in certain plants. Furthermore, it was observed that the phylum Tenericutes was 

only detected in the endosphere compartment of barley plants. Tenericutes is a phylum that 

contains the class Mollicutes, characterized by the absence of a cell wall (Montagna et al., 2015). 
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Recently, Rivera-Tapia et al. (2002) have reported that Tenericutes are known to colonize the gut 

of animals, insects and plants.  

Although soil chemical analysis revealed significant differences between sampling 

locations, strong correlations were only observed between these parameters and bacterial phyla 

in the rhizosphere. Some of these correlations have been previously suggested in the literature, 

such as positive correlations between soil organic matter, total organic carbon and the abundance 

of Actinobacteria (Li et al., 2012b; Embarcadero-Jiménez et al., 2015). However, in endophytic 

profiles, the results presented here suggest that these communities may be driven by factors other 

than the soil chemical parameters analyzed in this study. 

The number of shared unique OTUs in shown by Venn diagram suggests that rhizosphere 

samples contained the majority of OTUs in the dataset, which confirms that soil serves as a 

primary reservoir for potential endophytes (Germida et al., 1998; Zarraonaindia et al., 2015). 

Furthermore, differences in rhizo-compartments were also observed in PCoAs. Here, rhizosphere 

soil samples differentiated from its respective endophytic bacterial communities, as previously 

reported in the literature (Zarraonaindia et al., 2015; Lundberg et al., 2012). Additionally, 

bacterial community profiles analyzed by PCoA indicated clustering regions containing a low 

variability between samples in rhizosphere profiles and a high variability in endophytic profiles. 

During land reclamation activities, no soil or seed inoculation was conducted, hence bacterial 

profiles in all rhizo-compartments studied here corresponded to naturally occurring indigenous 

communities.  

Previous studies (Germida et al., 1998; Ofek-Lalzar et al., 2014) suggested that plant 

factors play a dominating role in the endophytic community composition and bacterial 

communities vary between plant species. Several studies have suggested that different root 

exudates produced by different plant species may affect distinct root associated microbial 

populations (Phillips et al., 2012). Based on these evidences, ternary plots were generated using 

the mean relative abundance from each genus in each root endosphere compartments and the 

rhizosphere soil of both plants combined. Here, although plant factors may actively select for 

certain soil microbial consortia, the results presented here indicate that sweet clover plants were 

more restrictive when compared to barley. In addition, sweet clover plants were more closely 

associated with members of the family Rhizobiaceae while barley plants harboured a high 

abundance of Xanthomonadaceae. The economic importance of Rhizobiaceae and its potential in 
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nitrogen fixation have been extensively reported in the literature (Ludwig, 1980; Long, 1996) as 

well as their ability to colonize the root interior of leguminous plants (e.g. alfalfa and sweet 

clover plants) (Bromfield et al., 2010). Nitrogen fixers associated with naturally occurring plant 

species can facilitate vegetation development through addition of atmospheric nitrogen to the 

system and could alleviate potential nutrient limitation in reclamation areas (Lefrançois et al., 

2010). In the dataset of the current study, the family Xanthomonadaceae contains the genus 

Xanthomonas, which some are known as plant pathogens (Soares et al., 2010), but mainly 

Stenotrophomonas, which are capable of great metabolic versatility and are colonizers of soil and 

plants (Ryan et al., 2009). Stenotrophomonas were previously isolated in barley rhizosphere soil 

(Caesar-TonThat et al., 2007), reported as a multifunctional plant growth-promoting 

rhizobacterium (PGPR) (Alavi et al., 2013) and to induce antagonistic behaviour against soil-

borne plant pathogens (Dunne et al., 1998). The results presented here also suggest a high 

abundance of the family Enterobacteriaceae associated with both endosphere plant 

compartments. Members of the Enterobacteriaceae family are often associated as human 

pathogens, however this family consists of a large group distributed in many environments 

(Yousaf et al., 2011). Enterobacteriaceae are widespread in several plant systems and some have 

been suggested as beneficial plant-associated bacteria that can promote plant growth (Kämpfer et 

al., 2005) and biocontrol activity (Chernin et al., 1995). Therefore, the data presented in the 

current study strongly suggest that the two plants analyzed supported the enrichment of different 

bacterial taxa. Alternatively, plant factors such as root exudation, may drive the selection of 

different bacterial taxa (Phillips et al., 2012). 

Since most of data presented here indicated differences occurring mainly in endosphere 

compartments, a heat map analysis was used for a finer and more specific comparison between 

profiles. The results in this study using heat map also support previous analysis in the dataset in 

which endophytic bacterial profiles differentiated mainly among plant species. Although these 

profiles varied within the same plant species at each sampling location, differences in these 

profiles may be driven to factors other than slope positions or cover managements. Within the 

endophytic community, Sinorhizobium, Pseudomonas, Rhizobium, Acholeplasma, Lentzea, 

Pantoea and Yersinia were the main genera driving these differences. Sinorhizobium have been 

previously reported as nitrogen-fixing bacterial endophytes of alfalfa, beans and sweet clover 

(Dudeja et al., 2012; Bromfield et al., 2010). Sweet clover is a fast-growing legume and the 
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results presented in this study suggest that Sinorhizobium corresponds to a significant share of 

endophytes associated with this plant. Sinorhizobium can be free-living in the soil or form 

nitrogen-fixing nodules on the roots of leguminous plants such as the genera Melilotus (Biondi et 

al., 2009). Sweet clover plants in the current study may rely on the association with 

Sinorhizobium spp. to grow in reclamation soils. However, the high dominance of this genus is 

not always observed in sweet clover endophytic profiles analyzed in this study. Pseudomonas 

species can successfully colonize both barley and clover plants, although most of the profiles 

with a high relative abundance of Pseudomonas were observed in sweet clover plants. These 

results were expected, as it was previously observed that Pseudomonas ssp. are common 

colonizers of the plant interior (Moore et al., 2006; Ofek-Lalzar et al., 2014). Although this 

genus contains pathogenic species, a wide range of Pseudomonas ssp. are known for PAH 

degradation (Germaine et al., 2009), potential heavy metal extraction enhancement (Rajkumar et 

al., 2009) and PGPR (Bhattacharyya and Jha, 2012). Rhizobium species were most commonly 

found in sweet clover plants and with Sinorhizobium, whereas Acholeplasma species were 

restricted to barley plants. Acholeplasma are wall-less bacteria from the phylum Firmicutes and 

close relatives of Phytoplasmas, whereas Acholeplasmas are not known to be pathogenic (Kube 

et al., 2014). Acholeplasmas are also known to colonize the guts and hemolymph of insects 

(Tully et al., 1988) and transmission to plants occurs when these insects feed on plant tissues 

(Bonnet et al., 1991). In the current study, barley plants may be more susceptible to insect 

feeding than clover plants and, hence, a higher incidence of Acholeplasma species in barley. 

Although most of endophytic profiles analyzed corresponded to clusters mainly driven by 

Sinorhizobium, Pseudomonas, Rhizobium and Acholeplasma, it was also observed smaller 

clusters with a high incidence of Pantoea, Lentzea and Yersinia. Pantoea is a gram-negative 

bacteria of the family Enterobacteriaceae first identified by Gavini et al. (1989), which can be 

human and clinical strains, epi- and endophytes or merely present in water and soil samples 

(Brady et al., 2008). Previous studies have also demonstrated the application of Pantoea in 

heavy metal biosorption (Ozdemir et al., 2004), plant growth promotion (Feng et al., 2006) and 

phenolic compounds degradation (Dastager et al., 2009a). Similar to Pantoea, Lentzea and 

Yersinia are also members of the family Enterobacteriaceae. Lentzea is a genus of mesophilic 

Actinomycetes first identified by Yassin et al. (1995) and later identified as capable of 

biodegradation of aliphatic polyester poly(lactide) (Tokiwa and Jarerat, 2004; Jarerat et al., 
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2002). The genus Yersinia, although commonly known as human pathogens (Perry and 

Fetherston, 1997), consists of 15 species of mostly harmless environmental organisms residing in 

the plant interior, soil and water (Ayyadurai et al., 2010; Hallmann and Berg, 2006). Lawson and 

Afenu (2013) have also identified Yersinia spp. isolates with potential capabilities of degrading 

diesel oil. Both Yersinia and Lentzea were mostly detected in barley endophytic profiles, which 

may suggest these organisms are adapted to survive as part of their lifecycle in barley, but 

encounter a less favorable environment in sweet clover. 

4.7 Conclusions 

This study provided an in-depth analysis of bacterial endophytic profiles of plants 

growing in oil sands reclamation areas. Consistent with prior findings based on high-throughput 

amplicon sequencing (Ofek-Lalzar et al., 2014; Bulgarelli et al., 2012), the results presented here 

confirm that rhizo-compartments produce the strongest differentiation of root associated bacterial 

communities. In addition, host plants also account as main driving factors affecting the 

endophytic microbiome. A lower diversity in the endosphere compartment and the depletion or 

enrichment of certain bacteria strongly suggests that plant factors select for certain soil bacterial 

consortia. Endophytic profiles studied here also revealed that sweet clover plants were more 

selective than barley. Whereas members of the family Rhizobiaceae, such as Sinorhizobium and 

Rhizobium were mainly associated with clover, Acholeplasma was unique to barley. Yersinia and 

Lentzea were also mostly detected in barley, although Pseudomonas and Pantoea were able to 

successfully colonize both plants. Endophytic bacterial profiles also varied within the same plant 

species at different sampling locations; however, these differences were driven by factors other 

than the soil parameters analyzed in this study. Future studies will be focused on determining the 

mechanisms driving root associated communities and functional aspects within this microbiome 

to improve plant growth in reclamation areas. 
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5. HYDROCARBON DEGRADING GENES IN ROOT ENDOPHYTIC 
COMMUNITIES ON OIL SANDS RECLAMATION COVERS 

 

5.1 Preface 

An in-depth analysis of barley and sweet clover root associated bacterial profiles at an oil 

sands reclamation area was provided in Chapter 4. These results suggested that sweet clover 

plants were more selective than barley in recruiting bacterial endophytes. Although certain 

endophytes (e.g. Pseudomonas and Pantoea spp.) colonized both plants, overall, different plants 

harboured different bacterial communities. Previous research showed that due to water recycling 

efforts by the oil sands industry, tailings sands used in land reclamation may contain residual 

hydrocarbons. Hence, plant-microbe associations in these areas may be associated with the 

hydrocarbon degrading potential within endophytic bacteria. To date, little is known about the 

hydrocarbon degradation potential in endophytic communities associated with plants growing in 

oil sands reclamation areas. To address this gap, this study identified the presence and abundance 

of three hydrocarbon degrading genes (CYP 153, alkB and nah) in endophytic bacterial 

communities previously studied in Chapters 3 and 4.   

5.2 Abstract 

The Canadian oil sands industry has expanded rapidly in the recent years resulting in a 

large disturbance footprint. The industry is however committed to reclaim such disturbed lands 

to an equivalent land capability before mining. Overburden materials or tailing sands used in 

reclamation are not suitable for plant growth due to their low nutrient capabilities and high 

concentrations of toxic materials including naphthenic acids, polycyclic aromatic hydrocarbons, 

phenolic compounds and trace metals. Therefore, peat-mineral mix (PMM) is a commonly used 

cover material in reclamation strategies to regulate water content, increase organic matter content 

and promote the establishment of microorganisms and vegetation. Whereas chemical fertilization 

can be used to increase plant growth on a short-term basis, plants growing in this area may rely 

on their associated microbiota for degradation of potential toxic compounds such as residual 
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hydrocarbons. Endophytic bacteria are known to ameliorate plant stress and to improve 

phytoremediation technologies, however little is known about the potential of hydrocarbon 

degrading endophytic bacteria in oil sands reclamation. In this study, three hydrocarbon 

degrading genes (CYP 153, alkB and nah) were quantified in endophytic bacterial communities 

associated with two plant species growing in an oil sands reclamation area. The aims of this 

study were to (i) to quantify the total hydrocarbon potential of unculturable endophytic bacteria 

and (ii) to assess culturable endophytic bacteria for the presence of hydrocarbon degrading 

genes. Results revealed higher CYP153 gene copy numbers in sweet clover endophytic 

communities compared to barley. Conversely, both plants indicate a similar abundance of 16 

rRNA, alkB and nah genes. Analysis of variance indicated significant differences for most 

variables (cover, slope and sampling locations) and genes analyzed. In addition, results also 

suggest that total hydrocarbons, pH, soil carbon and nitrogen play an important role in 

determining hydrocarbon degrading bacterial communities. The assessment of hydrocarbon 

degrading genes in culturable bacteria previously isolated in Chapter 3 revealed isolates positive 

for all functional genes analyzed. Out of a total of 316 isolates, 42 isolates were positive for at 

least one hydrocarbon degrading gene. Most of these isolates were positive for alkB, and closely 

match the database for Pantoea, Pseudomonas and Enterobacter spp. Future studies will 

investigate plant growth promoting and hydrocarbon degradation effects of these isolates when 

inoculated to host plants.  

5.3 Introduction 

The oil sands region in northern Alberta corresponds to the largest known crude bitumen 

deposits (Audet et al., 2015) and contains the world’s second largest petroleum reserve 

(Wellstead et al., 2016). Oil production in these areas expanded significantly in the last decades 

and it is projected to double, increasing from 3 million barrels per day in 2010 to over 6 million 

barrels per day, by 2030 (Audet et al., 2015; Wellstead et al., 2016). Open pit bitumen mining in 

the oil sands creates landscape scale disturbance which involves a deep and complete removal of 

vegetation, soil, and subsoil. (Mollard et al., 2013; Beasse et al., 2015). During bitumen 

extraction, the hot water oil sands treatment produces large volumes of process-affected tailings 

that are deposited in large basins (tailings ponds) where they are retained until reclamation 

(Mohamad Shahimin et al., 2016; Dobchuk et al., 2013). These tailing ponds contain oil sands 
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process water (OSPW) combined sand, slits and clays in suspension as well as soluble organic 

chemicals such as naphthenic acids (NAs), ammonia, heavy metals and salts (Pouliot et al., 

2012; Kovalenko et al., 2013). After settlement, the remaining water in tailing ponds is re-used 

in bitumen extraction and tailing sands are further used in reclamation strategies (CAPP, 2017). 

Reclamation strategies in the oil sands region requires building an ecosystem with 

equivalent land capability relative to pre-disturbance conditions (Brown and Naeth, 2014). 

However, tailing sands materials used in reclamation have low nutrient content, high pH, low or 

no organic matter and contain residual hydrocarbon products (Lefrançois et al., 2010). Due to the 

nature of the tailings sands, a peat-mineral mix (PMM) is typically used as a surface cover (20 to 

50 cm thick organic amendment). Peat is highly available on the mining footprint and it is 

usually salvaged from nearby upland boreal forests and peatlands drained before the onset of 

mining (Quideau et al., 2013). Lowland organic peat and underlying mineral soil deposits are 

then mixed forming a peat-mineral mix (PMM) which is used in reclamation. Peat-mineral mixes 

have a high organic matter content and a high water holding capacity which may makes it an 

ideal substrate for seedling establishment (Ojekanmi and Chang, 2014). After the placement of 

PMM, fertilization is also commonly used to ameliorate soil nutrient deficiencies (Pinno and 

Errington, 2015). Although nutrient deficiencies may be initially addressed with fertilizer 

addition, plants growing in these areas rely on the activity of local microbiota to overcome 

potential stress caused by the presence of residual hydrocarbons. 

Soil microorganisms are key to soil health and terrestrial ecosystems functioning since 

they mediate essential biogeochemical processes responsible for nutrient cycling (Quideau et al., 

2013). Symbiotic relationships with microbes may influence how plant species respond to 

environmental change. Plant-associated microbial communities may also help plants by 

stimulating growth, suppressing diseases, increasing nutrient acquisition and promoting stress 

resistance to petroleum hydrocarbons (Berg et al., 2014; Siciliano et al., 2001). In turn, microbes 

benefit by the deposition of plant mucilage and root exudates (Turner et al., 2013; Hardoim et 

al., 2008). 

Nearly all plant tissues host microbial communities; however, most studies have focused 

on plant-microbial associations in the rhizosphere and endosphere (Turner et al., 2013; Philippot 

et al., 2013). Bacteria colonizing the endosphere (endophytic bacteria) can establish beneficial, 

neutral or detrimental associations and are often recognized as symbionts with a unique and 



 

 104 

intimate interaction with the plant (Hardoim et al., 2008; Berg et al., 2014; Turner et al., 2013). 

In addition, endophytic bacteria may produce several hydrolytic enzymes that are involved in the 

decomposition of plant compounds. Many of these enzymes have a similar chemical structure to 

organic toxic pollutants such as petroleum hydrocarbons. (Kukla et al., 2014). These bacteria 

would likely protect plants from the phytotoxic effects of contaminants (Siciliano et al., 2001). 

Hence, the efficiency of reclamation processes may rely on the presence and activity of plant-

associated microorganisms carrying degradation genes required for the enzymatic break-down of 

contaminants (Yousaf et al., 2011).  

Several hydrocarbon degrading genes have been previously detected in bacterial 

endophytic communities (Kukla et al., 2014; Oliveira et al., 2014). Among these genes, alkB has 

been extensively studied in hydrocarbon contaminated environmental samples (Wallisch et al., 

2014; Wasmund et al., 2009) and microbes harboring the alkB gene are described as key players 

in alkane degradation (Wallisch et al., 2014). The alkB gene codes for a subunit of the bacterial 

alkane monoxygenase enzyme and it is an general indicator for alkane degradation in the 

environment (Pérez-de-Mora et al., 2011). In addition, alkane-degrading bacteria may also 

contain CYP153 genes encoding cytochrome P450 alkane hydroxylase (van Beilen et al., 2006). 

Both alkB and CYP153 hydroxylase genes are known as the most important genes in the 

degradation of long chain length alkanes (Yousaf et al., 2010a; Arslan et al., 2014; Wasmund et 

al., 2009). However, naphthalene dioxygenase gene (nah) is also an important PAH-degrading 

gene which have been detected widely from environments contaminated by aromatic compounds 

(Baldwin et al., 2003; Yang et al., 2014). 

In this study, endophytic bacterial communities associated with two plant species in an 

oil sands reclamation area were quantified for three hydrocarbon degrading genes (CYP 153, 

alkB and nah). The aims of this study were to (i) quantify the total potential of unculturable 

hydrocarbon degrading endophytic bacteria using qPCR and (ii) assess culturable endophytic 

bacteria for the presence of hydrocarbon degrading genes using PCR.  
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5.4 Materials and Methods 

5.4.1 Sample collection and processing 

Annual barley (Hordeum vulgare) a planted species and white sweet clover (Melilotus 

albus) an unplanted native species were collected at an oil sands reclamation area (UTM Zone 

12N, 6316207N 471907E). Three biological replicates of each plant were collected at different 

slope positions along two transects (Chapter 3). The first transect consisted of 10 sampling 

locations (S1-S10) in the standard cover, which is a cover management area consisting of a 40 

cm of peat mineral mixture and 10 cm of sandy loam on the surface of 100 cm of tailing sands. 

The second transect also consisted of 10 sampling locations (E1-E10) in the engineered cover, an 

area of 50 cm of a peat mineral mixture on top of 120 cm of tailing sands separated from the 

bottom 30 cm of tailing sands by a geo-clay liner (GCL). The main objective of adding the GCL 

to the cover management is to retain the moisture on the top of the cover to improve plant growth 

and to prevent seepage from compounds on the bottom of the tailing sands to reach the surface of 

the plant cover. Samples were collected with help of a shovel, transported at 4 °C and stored at -

20 °C until processing within the next 48 h.  

Soil samples were analyzed for soil organic (TOC) and total carbon (TC) by the method 

from Dhillon et al. (2015) using a LECO C632 Analyzer (LECO Corporation, St. Joseph, MI, 

United States). Soil organic Matter (OM), was analyzed using the dry-ash method (McKeague, 

1978). Soil pH was measured in a 1:2 soil: water slurry. Soil available ammonium was extracted 

using a 2 N KCl solution, NH4+ in the extract was mixed with hypochlorite and salicylate to form 

indophenol which was determined colorimetrically at 660 nm (Laverty and Bollo-Kamara, 

1988). Soil available nitrate was extracted using a calcium chloride solution and determined 

colorimetrically at 520 nm according to Laverty and Bollo-Kamara (1988). Available 

phosphorus and potassium were measured using a modified Kelowna extraction (Qian et al., 

1994) and available sulfate by a calcium chloride extraction (McKeague, 1978). Soil total 

hydrocarbons were measured in accordance with the "Reference Method for the Canada-Wide 

Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of 

the Environment, December 2000. A subsample of the sediment/soil was extracted with a 1:1 

hexane: acetone solution using a rotary extractor. The extract was purified using a silica gel 
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clean-up to remove polar compounds. The F2, F3 and F4 fractions were analyzed by Gas 

Chromatography with a Flame Ionization Detector (GC/FID). 

5.4.2  Survey of unculturable endophytic bacteria community 

Root material (entire root system) collected was transferred into an Erlenmeyer flask 

containing 100 mL NaClO (1.05% v·v-1) in PBS (1.2 g of Na2HPO4·L-1, 0.18 g of NaH2PO4·L-1, 

8.5 g of NaCl·L-1) and placed on a rotary shaker (150 rpm) at 22 °C for 15 min. To remove the 

sodium hypochlorite solution, roots were rinsed 10 times with sterile water and 0.1 mL of the 

final wash spread in TSA plates to check for contamination after 72h (Siciliano and Germida, 

1999). 

5.4.3 DNA Extraction 

Total genomic DNA was extracted from surface disinfected root samples using the 

PowerPlant® Pro DNA Isolation Kit (MoBio Laboratories Inc., Carlsbad, CA). Purified isolates 

from culture dependent techniques in Chapter 3 were re-inoculated on 9 mL of soy broth (TSB) 

and DNA from microbial cultures was extracted using the UltraClean® Microbial DNA Isolation 

Kit (MoBio Laboratories Inc., Carlsbad, CA). DNA yield was quantified using Qubit® 

Fluorometer (Qubit 2.0 Fluorometer, Life Technologies). Total genomic DNA was analyzed for 

total 16S rRNA abundance and the presence of hydrocarbon degrading genes using a one-step 

quantitative PCR (qPCR) (Kim and Gu, 2006). DNA extracted from bacterial isolates were 

analyzed for the presence of hydrocarbon degrading genes using PCR techniques (Table 5.1). 

5.4.4 Synthesis of qPCR standards 

Total bacterial 16s rRNA standards were synthesized from Pseudomonas stutzei 

previously obtained from the culture collection of the Soil Microbiology Laboratory at the 

Department of Soil Science, University of Saskatchewan. Using microbial DNA from these 

isolates, the 16S rRNA gene was amplified using PCR (Fierer et al., 2005) and subsequently 

verified in a 1.0% agarose gel. The bands of interest were excised under UV light and gel 

purified using the Qiagen QIAquick gel extraction kit (Qiagen Inc., Toronto, Ontario) following 

the manufacturer’s instructions. The target insert was then quantified using a Qubit Fluorometer 

(Qubit 2.0 Fluorometer, Life Technologies). Target 16S rRNA genes were subsequently ligated 

in a vector using TOPO TA Cloning Kit® (Thermo Fisher Scientific Inc., Waltham, MA). 
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Standards for alkB, CYP153 and nah were synthesized by Biomatik (Cambridge, Canada), 

including flanking restriction sites for subcloning into PUC18 plasmids (Appendix C). After the 

plasmid containing the desired insert was prepared, it was ligated into the plasmid vector using 

Invitrogen TOPO TA Cloning Kit® (Thermo Fisher Scientific Inc., Waltham, MA) with One 

Shot ® MAX efficiency™ DH5α –T1R Escherichia coli. Transformed E. coli cells were then 

spread on liquid broth (LB) media with 50 µg·mL-1 of ampicillin and X-gal for 16 h at 37 ºC. 

Successful ligation was confirmed as white colonies which were grown in 3 ml LB broth (16 h at 

37 ºC, 150rpm) containing 50 µg·mL-1 of ampicillin. Plasmid for E. coli cells were extracted 

using the Qiagen QIAprep Spin Miniprep kit (Qiagen Inc., Toronto, Ontario). After plasmid 

purification, the plasmid products were sequenced by Macrogen Inc. (Seoul-Rep. of Korea) to 

validate the target gene. Prior to use as standards, plasmids with inserts were linearized using 

HindIII (EUB, alkB, nah) and SphI (CYP153) as a restriction enzymes (Thermo Fisher Scientific 

Inc., Waltham, MA). The linearized product was verified in an agarose gel and bands of interest 

were excised and purified using the Qiagen QIAquick gel extraction kit (Qiagen Inc., Toronto, 

Ontario). Linearized and purified plasmids containing the inserts were quantified using Qubit 

Fluorometer (Qubit 2.0 Fluorometer, Life Technologies), and subsequently used in a dilution 

series to form a standard curve. 

Efficiency of qPCR (E) and correlation coefficient (R2) were determined based on the 

slopes of the standard curves generated using serial 10-fold dilutions of DNA standards. All 

qPCR efficiencies were calculated as follows: E (%) = (10(−1/slope) − 1) × 100. A five-point 

standard curve using technical triplicates was generated along with triplicate negative controls 

for each run. 

5.4.4.1 qPCR amplification 

Serial plasmid dilutions (carrying the 16S rRNA gene) from 107 to 102 gene 

copies·µL−1 were used as standards. Quantitative PCRs were performed in three technical 

replicates for each sample. The PCR master mix contained 0.75 µL of each primer (10 µM), 0.4 

µL of Rox reference dye (1:10), 0.625 µL of bovine serum albumine (BSA) (10 µg·µl−1) 

(Thermo Fisher Scientific Inc., Waltham, MA), 10 µL of Platinum SYBR 2X mix (Invitrogen, 

Burlington, ON), 4 µL of template DNA (10 µg·µL-1) and ultra-pure H2O for a total volume of 

20 µL. The number of copies of the target CYP 153 gene was determined according to Arslan et 
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al. (2014) in which serial dilution were prepared from 107 to 102 gene copies·µL−1. Reaction 

mixtures contained 10 µL of Platinum SYBR green qPCR SuperMix-UDG (Invitrogen), 2 µL of 

BSA (10 mg·mL-1), 0.4 µL of each primer (10 µM), 0.4 µL of Rox reference dye (1:10), 4 µL of 

template DNA (10 µg·µL-1) and ultra-pure H2O for a total volume of 20 µL. For the alkB gene, 

serial plasmid dilutions from 106 to 101 gene copies·µL−1 were used as standards. Real-time PCR 

assays was carried out according to Wallisch et al. (2014). Real time PCRs was performed using 

the Platinum SYBR green qPCR SuperMix-UDG kit (Invitrogen). The PCR mix contained 10 

µL of Platinum SYBR green qPCR SuperMix-UDG (Invitrogen), 0.4 µL of MgCl2 (50 mM), 0.4 

µL of each alkB specific forward and reverse primers (10 µM), 0.4 µL of purified BSA (10 

mg·mL-1), 0.4 µL of Rox reference dye (1:10), 4 µL of template DNA (10 µg·µL-1) and ultra-

pure H2O for a total volume of 20 µL. Copy numbers of nah gene in endophytic microbial 

communities was assessed according to Han et al. (2014). Standard dilutions were prepared from 

concentrations 107 to 102 gene copies·µL−1. The PCR reaction mix contained 10 µL of Platinum 

SYBR green qPCR SuperMix-UDG (Invitrogen), 0.4 µL of purified BSA (10 mg·mL-1), 0.4 µL 

of each primer (10 µM), 0.4 µL of Rox reference dye (1:10), 4 µL of template DNA (10 µg·µL-1) 

and ultra-pure H2O for a total volume of 20 µL. 

The assays for q-PCR were conducted using three technical replicates for each sample 

(Table 5.2). In addition, PCR products were checked on a 1% agarose gel to ensure there was no 

contamination and that gene fragments were the expected sizes. The amplification data was 

expressed as gene copy number per gram of fresh root weight.
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Table 5.1 List of primers used for quantitative real-time polymerase chain reaction (qPCR) to assess hydrocarbon degrading genes 
present within unculturable endophytes and polymerase chain reaction (PCR) for the screening cultured hydrocarbon degrading 
endophytic bacteria. 

Primer Target Sequence (5`-3`) 
Expected 

fragment size 
(bp) 

Reference 

EUB 338 
16S rRNA 

ACTCCTACGGGAGGCAGCAGATT 
200 (Fierer et al., 2005) 

EUB 518 ATTACCGCGGCTGCTGG 

alkB-F 
Alkane monooxygenase (alkB) 

AAYACIGCICAYGARCTIGGICAYAA 
550 (Wasmund et al., 2009; 

Wallisch et al., 2014) alkB-R GCRTGRTGRTCIGARTGICGYTG 

P450fw1 Cytochrome P450 hydroxylase 
(CYP153) 

GTSGGCGGCAACGACACSAC 
339 (Yousaf et al., 2011; 

Arslan et al., 2014) P450rv3 GCASCGGTGGATGCCGAAGCCRA 

nah-F 
Naphthalene dioxygenase (nah) 

CAAAARCACCTGATTYATGG 
377 (Han et al., 2014; 

Baldwin et al., 2003) nah-R AYRCGRGSGACTTCTTTCAA 
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Table 5.2 Quantitative real-time polymerase chain reaction (qPCR) conditions to assess hydrocarbon degrading genes present within 
unculturable endophytes in an oil sands reclamation area. 

Target qPCR conditions Reference 

16S rRNA 

95 °C for 2 min followed by 40 cycles (denaturation at 
95 °C for 1 min, annealing at 53 °C for 30s, and extension at 72 °C for 1 min) 
with fluorescence signal data acquisition in an additional step of 80 °C for 1 min 
at the end of each cycle. 

(Fierer et al., 2005) 

Cytochrome P450 
hydroxylase (CYP153) 

95 °C for 2 min followed by 40 cycles (94 °C for 30 s, 58 °C for 30 s, and 72 °C 
for 45 s). with fluorescence signal data acquisition in an additional step of 80 °C 
for 1 min at the end of each cycle. 

(Yousaf et al., 2011; 
Arslan et al., 2014) 

Alkane 
monooxygenase (alkB) 

95 °C for 2 min followed by a touchdown PCR (5 cycles of 45 s 95 °C, 1 min 62 
°C (stepwise reduced to 57 °C) and 45 s 72 °C, followed by 40 cycles of 45 s 95 
°C, 1 min 57 °C and 45 s 72 °C; final extension of 10 min at 72°C. 
 

(Wasmund et al., 
2009; Wallisch et al., 

2014) 

Naphthalene 
dioxygenase (nah) 

94 °C for 1 min followed by a touchdown PCR (5 cycles of 94 °C for 20 s, 60 °C 
(reduced by 1 °C per cycle) for 30 s, 72 °C for 30 s; and 35 cycles of 94 °C for 
20 s, 55 °C for 30 s, 72 °C for 30 s). 
 

(Han et al., 2014; 
Baldwin et al., 2003) 

Real-time PCR cycling conditions included an initial UDG incubation step at 50 °C for 2 min before enzyme activation step and a 
melting curve analysis consisting of 95 °C for 15 s, 60 °C for 1 min, and 95 °C for 15 s.
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5.4.5 PCR Amplification of culturable isolates 

Polymerase chain reaction was used to assess the presence of hydrocarbon degrading 

genes in bacterial endophytes previously isolated in culture dependent techniques (Chapter 3). 

As a positive control, DNA plasmids linearized from qPCR assays containing each gene of 

interest were used. In addition, the same primers used for qPCR were used (Table 5.1). DNA 

from bacterial cultures positive for at least one hydrocarbon degrading gene were further 

sequenced by Macrogen Inc. (Seoul-Rep. of Korea). 

PCR reaction mix for the analysis of CYP153 gene consisted of 12.5µL of Hot Start 

Master Mix (Qiagen), 1 µL of each primer (25mM), 0.625 of purified BSA (10 mg·mL-1), and 1 

µL purified genomic DNA and purified PCR grade water to 25µL (van Beilen et al., 2006). For 

the detection of alkB gene, PCR mix contained a total of 12.5 µL of Hot Start Master Mix 

(Qiagen), 2.8 µL of each primer (25mM), 0.625 of purified BSA (10 mg·mL-1), 10 ng of purified 

genomic DNA and purified PCR grade water to 25µL (Tanase et al., 2013). In addition, PCR 

nah gene analysis was conducted as previously described by Baldwin et al. (2003). Briefly, the 

PCR reaction mix consisted of 12.5 µL of Hot Start Master Mix (Qiagen), 1 µL of each primer 

(25mM), 0.625 of of purified BSA (10 mg·mL-1) and 1µL purified genomic DNA and purified 

PCR grade water to 25µL.
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Table 5.3 PCR conditions to assess hydrocarbon degrading genes present within culturable endophytes in an oil sands reclamation 
area. 

Target PCR conditions Reference 

Cytochrome P450 
hydroxylase (CYP153) 

Initial denaturation step of 5 min at 95 °C; 25 cycles of 45 s at 95 °C, 1 
min at 58 °C, and 1 min at 72 °C and a final elongation step of 10 min at 
72 °C. 

(van Beilen et al., 2006).  

Alkane monooxygenase 
(alkB) 

Initial denaturation for 5 min at 95 °C, followed by 25 cycles of 60 s at 
90 °C; 60 s at 50 °C, 2 min at 72 °C; and with a final elongation for 10 
min at 72 °C. 

(Tanase et al., 2013).  

Naphthalene dioxygenase 
(nah) 

Initial denaturation step of 10 min at 95 °C; 30 cycles of 1 min at 95 °C, 
1 min at 47 ºC and 2 min at 72 °C, and a final extension step of 10 min 
at 72 °C 

(Baldwin et al., 2003). 
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5.4.6 Statistical Analysis 

Statistical Analysis for qPCR gene copy numbers was performed using SAS (version 

9.3). The Shapiro-Wilk statistic was used to test the normality of the data. Analysis of variance 

(ANOVA) and Student’s two-sample t-test was used to determine significant differences 

between the variables analyzed. Spearman’s rank correlation was used to determine relationships 

between gene abundance of 16S rRNA, CYP153, alkB, nah and soil properties. After sequencing 

of culturable isolates, multiple sequence alignment of the sequences was conducted using 

CLUSTAL X 2.0 (Larkin et al., 2007) and a phylogenetic tree was constructed using MEGA 7.0 

(Kumar et al., 2016). The phylogenetic and evolutionary relations were inferred by using the 

Maximum Likelihood method based on the Tamura-Nei model. Nodal robustness of the tree was 

assessed using 1000 bootstrap replicates. 

5.5 Results 

Real-time PCR was used to quantify the 16S rRNA gene and three hydrocarbon 

degrading genes (CYP153, alkB, nah). In addition, the relative abundance of hydrocarbon 

degrading genes compared with 16S rRNA was also considered (i.e. the ratio between functional 

genes and 16S rRNA). The results in this study indicated an overall reaction efficiency of 85 to 

100% for 16S rRNA qPCR assays, 90-100% for CYP 153, 85-95% for alkB and 90-95% for nah. 

In addition, all standard curves were linear (R2 >0.99). The gene copy numbers ranged from 103 

to 104 for 16S rRNA, 102 to 104 for CYP 153, 102 to 104 for alkB and 0 to 104 for nah.  

Analysis of variance (ANOVA) revealed significant differences in the genes analyzed by 

most variables (cover, slope, plant species and sampling locations) (Table 5.4). Differences in 

CYP 153 gene copy numbers were also significant either at p ≤ 0.05, p ≤ 0.01 or at p ≤ 0.001 for 

all variables analyzed. However, no significant differences were observed between different 

plant species and gene copy numbers of 16s rRNA, alkB, nah and the relative abundance of alkB 

and nah. Cover type was also not significant for gene copy numbers of 16S rRNA and nah. In 

addition, significant differences in the interactions between variables were observed in all genes 

analyzed.  

Overall, functional genes CYP, alkB and nah indicated a lower gene copy number when 

compared to 16s rRNA (Figure 5.1). However, the average CYP153 gene copy number was 3% 

higher than 16s rRNA in sweet clover and 22% lower in barley. In sweet clover plants, alkB gene 
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copy numbers were 17% lower when compared to CYP153. Similar to 16 rRNA and CYP153, 

alkB gene copy numbers were also more variable in sweet clover endophytic bacteria when 

compared to barley. Analysis of nah gene copy numbers indicated the lowest values among all 

genes analyzed. The variability of each sample can be observed in the high standard deviations 

(Figure 5.1) as nah gene quantification for most of the sampling locations was below detection 

levels and, in some locations, it was detected up to 104 gene copy numbers. Analysis of gene 

copy numbers using a two-sample t-test in indicated significant differences (p ≤ 0.001) between 

different plant species only for CYP153. Overall, CYP 153 gene copy numbers were 27% higher 

in sweet clover plants when compared to barley. However, no statistical differences were 

observed for 16s rRNA, alkB and nah gene copy numbers by plant species. 
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Table 5.4 Analysis of variance (ANOVA) for Log gene copy number·g-1 of plant of 16s rRNA, CYP153, alkB, nah and the ratio of all 
of hydrocarbon degrading genes relative to 16s rRNA (n=120). 

*, **, *** Significant at p ≤0.05, 0.01, and 0.001, respectively. 
 

 

 16s CYP 153 alkB nah Ratio (CYP/16s) Ratio (alkB/16s) Ratio (nah/16s) 

Cover (C) NS * *** NS *** *** NS 
Slope (S) *** ** *** *** *** *** ** 
Plant (P) NS *** NS NS *** NS NS 
Location (L) *** *** ** *** *** *** *** 
C x S *** *** *** *** ** *** *** 
P x C *** *** *** *** *** *** *** 
P x S *** *** *** *** *** *** *** 
P x L *** *** *** *** *** *** *** 
L x S *** *** *** *** *** *** *** 
L x C *** *** *** *** *** *** *** 
P x C x S *** *** *** *** *** *** *** 
P x L x C *** *** *** *** *** *** *** 
P x L x S *** *** *** *** *** *** *** 
P x L x S x C *** *** *** *** *** *** *** 
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Figure 5.1 Abundance of gene copy numbers within endophytic microbial communities 
associated with barley (n=60) and sweet clover (n=60) growing in oil sands reclamation soils. 
Error bars represent standard deviation, and *** indicate significance at p ≤ 0.001 at Student’s 
two-sample t-test.   
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In order to investigate hydrocarbon degradation potential among endophytic bacterial 

communities, this study also analyzed the ratio of each hydrocarbon degrading gene relative to 

16 rRNA. The results suggest that, similar to absolute gene copy numbers, significant differences 

were only observed in the ratio CYP153/16s rRNA, which was 30% higher in sweet clover 

plants when compared to barley (Figure 5.2). Although not statistically significant, sweet clover 

endophytic communities exhibited a higher ratio of alkB/16s rRNA (4%) and nah/16s rRNA 

(39%) when compared to barley. 

Since previous analyses indicated differences in gene copy numbers by plant species, a 

correlation analysis between soil physical-chemical parameters and endophytic communities was 

conducted for each plant (Table 5.5, 5.6). Overall, no significant correlations were observed 

between sweet clover endophytic 16s rRNA gene copy numbers and soil parameters; however, 

the abundance of this gene negatively correlated with organic matter (OM) (R2 = -0.27, p ≤ 0.05), 

NO3- (R2 = -0.30, p ≤ 0.05), NH4+ (R2 = -0.36, p ≤ 0.01), total organic carbon (TOC) (R2 = -0.28, 

p ≤ 0.05) and total carbon (TC) (R2 = -0.26, p ≤ 0.05) in barley plants. In addition, CYP153 also 

negatively correlated to NH4+ (R2 = -0.41, p ≤ 0.01) in barley plants. Conversely, CYP 153 

correlated negatively with THC (R2 = -0.28, p ≤ 0.05), but positively with OM (R2 = 0.29, p ≤ 

0.05), TOC (R2 = 0.23, p ≤ 0.05) and TC (R2 = 0.25, p ≤ 0.05) in sweet clover plants.  

Correlations between alkB gene copy numbers and soil parameters also indicated 

differences between plants. Whereas barley plants indicated positive correlations with pH (R2 = 

0.34, p ≤ 0.01) and total hydrocarbons (THC) (R2 = 0.46, p ≤ 0.01), sweet clover plants exhibited 

significant correlations with organic matter (R2 = 0.33, p ≤ 0.05), TOC (R2 = 0.26, p ≤ 0.05) and 

TC (R2 = 0.28, p ≤ 0.05). Similar to alkB, nah gene copy numbers indicated positive correlations 

with THC (R2 = 0.30, p ≤ 0.05) in barley plants, but negative correlations (R2 = -0.47, p ≤ 0.01) 

in sweet clover plants. In addition, positive correlations between nah gene copy numbers and 

NH4+ (R2 = 0.61, p ≤ 0.01), TOC (R2 = 0.43, p ≤ 0.01) and TC (R2 = 0.44, p ≤ 0.01) were also 

observed in sweet clover plants. 
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Figure 5.2 Abundance of relative ratio of hydrocarbon degrading genes compared with 16s 
rRNA in endophytic microbial communities associated with barley (n=60) and sweet clover 
(n=60) growing in oil sands reclamation soils. Error bars represent standard deviation, and ** 
indicate significance at p ≤ 0.01 at Student’s two-sample t-test. 
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Table 5.5 Spearman’s rank correlation coefficients (n = 60) between 16s rRNA and Hydrocarbon degrading gene abundance and soil 
physico-chemical parameters for barley endophytic community. Statistically significant correlations are indicated in bold type, * and * 
and ** denote p values ≤ 0.05 and ≤ 0.01, respectively. THC = total hydrocarbons, OM = organic matter, EC = electrical conductivity, 
TOC = total organic carbon, TC = total carbon. 

 
 
 
 
 

 
16s CYP 153 alkB nah 

Ratio:  
CYP 153/16s 

Ratio: 
alkB/16s 

Ratio: 
nah/16s 

pH 0.15 0.11 0.34** 0.19 0.09 0.32* 0.19 
THC 0.16 0.11 0.46** 0.30* 0.10 0.43** 0.28* 
OM -0.27* -0.24 -0.09 -0.23 -0.21 0.04 -0.23 
NO3- -0.30* -0.24 -0.34** -0.13 -0.18 -0.22 -0.11 
SO42- 0.05 0.14 -0.05 0.15 0.19 -0.10 0.16 
PO43-  0.08 0.03 0.24 0.26* -0.05 0.19 0.24 
K+  -0.08 -0.09 0.19 0.33* -0.12 0.19 0.35** 
NH4+ -0.36** -0.41** -0.21 -0.16 -0.42** -0.08 -0.14 
EC  -0.05 -0.02 -0.24 0.00 0.06 -0.24 0.01 
SAND 0.14 0.07 -0.02 0.06 -0.03 -0.05 0.05 
SILT -0.25 -0.14 0.05 0.12 0.02 0.10 0.14 
CLAY 0.16 0.10 0.07 -0.08 0.06 -0.01 -0.07 
TOC -0.28* -0.24 -0.16 -0.23 -0.18 -0.08 -0.21 
TC -0.26* -0.22 -0.18 -0.26* -0.15 -0.10 -0.23 
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Table 5.6 Spearman’s rank correlation coefficients (n = 60) between 16s rRNA and Hydrocarbon degrading gene abundance and soil 
physico-chemical parameters for sweet clover endophytic community. Statistically significant correlations are indicated in bold type, * 
and ** denote p values ≤ 0.05 and ≤ 0.01, respectively. THC = total hydrocarbons, OM = organic matter, EC = electrical conductivity, 
TOC = total organic carbon, TC = total carbon. 

 
16s CYP 153 alkB nah 

Ratio:  
CYP 153/16s 

Ratio: 
alkB/16s 

Ratio: 
nah/16s 

pH -0.18 -0.17 -0.20 -0.24 0.00 -0.24 -0.16 
THC -0.19 -0.28* -0.24 -0.47** -0.17 -0.27* -0.37** 
OM -0.06 0.29* 0.33* 0.43** 0.48** 0.53** 0.46** 
NO3- -0.01 0.20 0.21 0.39** 0.28* 0.30* 0.40** 
SO42- 0.39** 0.02 -0.04 -0.14 -0.53** -0.41** -0.26* 
PO43-  0.06 0.12 0.03 -0.29* 0.19 0.08 -0.34 
K+  0.04 0.02 0.15 0.03 -0.01 0.15 0.03 
NH4+ -0.09 0.19 0.30 0.56** 0.36** 0.53** 0.61** 
EC  -0.30* -0.26* -0.23 -0.21 0.01 -0.20 -0.09 
SAND 0.05 0.07 -0.02 -0.08 0.04 0.03 -0.15 
SILT -0.06 -0.10 -0.03 0.00 -0.13 -0.07 0.06 
CLAY -0.16 -0.19 -0.11 -0.18 -0.02 -0.11 -0.08 
TOC 0.20 0.23* 0.26* 0.43** 0.07 0.26* 0.35** 
TC 0.24 0.25* 0.28* 0.44** 0.06 0.25 0.34** 
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Assessment of functional genes using endpoint PCR revealed barley bacterial isolates 

positive for all genes analyzed. A total of 316 isolates were tested for the presence of 

hydrocarbon degrading genes and purified PCR products from positive isolates were sequenced 

by Sanger sequencing. The identification of endophytes was tentatively allocated to species, but 

mostly by genera. Out of 316 isolates, 42 (13%) were positive for at least one hydrocarbon 

degrading gene. Among these isolates, 16 harbor only the alkB gene, 12 the CYP 153 gene and 

12 the nah gene. Interestingly, two isolates were positive for both the CYP153 and nah gene, 

these isolates were identified as Serratia liquefaciens and Rahnella sp. 

Most of these isolates closely match the database for Pantoea spp. (6 isolates), followed 

by Pseudomonas spp. (5 isolates), Enterobacter spp. (5 isolates), Chryseobacterium spp. (4 

isolates), Serratia spp. (4 isolates), Bacillus spp. (3 isolates), Ewingella spp. (2 isolates), 

Flavobacterium spp. (2 isolates), Pedobacter spp. (2 isolates) Rahnella spp. (2 isolates), 

Staphylococcus spp. (2 isolates), Stenotrophomonas spp. (2 isolates), Kluyvera sp. (1 isolate) and 

Xanthomonas sp. (1 isolate) (Figure 5.3, Appendix D, Table D.1). 
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Figure 5.3 Neighbor-Joining tree using the Maximum Composite Likelihood method. Symbols 
represent isolates positive for � alkB, p CYP 153, ¢ nah and u both CYP153 and nah.

 Bacillus subtilis strain 168
 42 EA1-37
 24 EA4-35

 Bacillus pumilus strain KH1
 10 EA3-1

 17 EA4-2
 Staphylococcus hominis strain AW10

 27 EA5-5
 Staphylococcus aureus strain NBRC 100910

 14 EA3-18
 Pseudomonas syringae strain ATCC 19310

 33 EA6-5
 34 EA6-12
 40 EA7-11

 19 EA4-8
 Pseudomonas sp. PR9 H09

 18 EA4-6
 21 EA4-27
 28 EA5-8

 Serratia plymuthica strain NBRC 102599
 29 EA5-9
 30 EA5-10

 Ewingella sp. strain 3-24
 31 EA5-11

 Serratia sp. J54
 41 EA1-34

 Rahnella sp. strain AU16
 25 EA4-38

 Serratia quinivorans strain LMG 7887
 Pantoea intestinalis strain 29Y89B

 4 EA1-36
 6 EA2-19
 8 EA2-24

 Enterobacter cloacae strain ATCC 13047
 20 EA4-13
 22 EA4-32
 23 EA4-34
 26 EA4-40
 35 EA6-37

 Enterobacter sp. D310-5
 36 EA6-38
 37 EA6-40

 Enterobacter sp. RC15
 38 EA7-1

 Pantoea theicola strain QC88-366
 39 EA7-4

 Xanthomonas campestris strain ATCC 33913
 15 EA3-25

 3 EA1-17
 Stenotrophomonas chelatiphaga strain LPM-5

 5 EA2-9
 11 EA3-10

 Arthrobacter sp. StRD369
 16 EA4-1

 Chryseobacterium nakagawai strain G41
 Chryseobacterium hominis strain NF802

 13 EA3-17
 2 EA1-15
 12 EA3-16

 7 EA2-20
 Pedobacter ginsengisoli strain Gsoil 104

 Pedobacter alluvionis strain NWER-II11
 1 EA1-1
 9 EA2-30

 Flavobacterium aquidurense strain Bsw-19
 32 EA5-20

 Flavobacterium sp. strain THG-AG6.4

0.1



 

 
 

123 

5.6 Discussion 

Most studies that have investigated the potential hydrocarbon degrading bacterial 

communities focused on soil (Yang et al., 2014; Jurelevicius et al., 2012; Wallisch et al., 2014; 

Bell et al., 2013) or water (Wasmund et al., 2009; Wang et al., 2010a) habitats. A few studies 

have assessed hydrocarbon degraders on the plant interior (Yousaf et al., 2010a, 2011; Siciliano 

et al., 2001). 

This study investigated the presence of hydrocarbon degrading genes in culturable 

isolates from annual barley plants isolated in Chapter 3. Furthermore, a finer analysis assessing 

the abundance of unculturable endophytic hydrocarbon degraders in sweet clover and barley 

plants was conducted based on samples collected in Chapter 4. To analyze for the hydrocarbon 

degrading bacterial endophytes associated with these plants, qPCR was the method of choice for 

nucleic acid quantification due to its common use for the investigation of hydrocarbon degrading 

functional genes (Wasmund et al., 2009; Yergeau et al., 2012; Arslan et al., 2014). Several genes 

such as ndoB (Margesin et al., 2003), todC1 (Furukawa et al., 1993), bphA (Tairazf et al., 1992) 

and C120 (Kivisaar et al., 1991) have been previously studied in bacterial hydrocarbon 

degradation. However, this study focused on three hydrocarbon degrading genes most commonly 

reported in the literature (CYP 153, alkB, nah) with the addition of a total bacterial 16S rRNA 

gene.  

Overall, the results in this study indicates that potential hydrocarbon degrading bacterial 

endophytes are highly dependent on plant factors and may behave differently than soil bacterial 

communities previously investigated in the literature. Although not significant, analysis of 16s 

rRNA revealed higher gene copy numbers in barley plants when compared to sweet clover. In 

Chapter 4 it was suggested that sweet clover species were more restrictive in selecting bacterial 

endophytes when compared to barley. In this study, except for plant species and cover type, 

significant differences of 16s rRNA gene copy numbers were observed for all variables analyzed. 

However, no significant correlations were observed between this gene and soil THC. Yergeau et 

al. (2009) conducted studies in an ex-situ and in-situ bioremediation treatment soils in the 

Canadian high Arctic and found no significant differences in the amount of 16S rRNA between 

contaminated and uncontaminated soils. In contrast to Wu et al. (2017), who investigated 

agricultural soils impacted by acidification and PAH pollution, and Clark et al. (2012), who 
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assessed the influence of different long-term fertilization in soils, the current study indicated 

negative correlations between barley endophytic communities and soil C, N and OM. However, 

these effects were not observed in sweet clover. Previous studies in Chapter 4 suggested that 

plant factors play a key role in determining the endophytic community composition and soil 

parameters had no significant effect in endophytic communities. In this study, although both 

plants harbor equal 16S rRNA gene abundance, these communities interact differently with soil 

parameters.  

The primers designed by van Beilen et al. (2006) were used to assess CYP153 genes in 

alkane-degrading bacterial strains. This gene encodes for cytochrome P450 enzymes that have 

been characterized as alkane hydroxylases responsible for bacterial oxidation of n-alkanes. 

Several organisms including Mycobacterium spp., Sphingomonas spp. and Proteobacteria spp. 

are known for the presence of this gene (van Beilen et al., 2006) and several studies have used 

CYP for assessing hydrocarbon degrading communities (Arslan et al., 2014; Yousaf et al., 

2010a; Khan et al., 2013). In addition, CYP 153 has been previously studied in endophytic 

communities (Yousaf et al., 2011) and in rhizoplane of grasses (Tsuboi et al., 2015). In the 

current study, a few samples of sweet clover endophytic DNA indicated higher gene copy 

numbers of CYP153 when compared to 16s rRNA. This is most likely due to the presence of 

multiple alkane hydroxylases (AH) in one single strain, as previously been documented by van 

Beilen et al. (2006). For the integral membrane AHs; the majority of strains actually contains 

more than one AH. In addition, endophytic communities from sweet clover plants harbored 

significantly higher absolute and relative abundance of CYP153 when compared to barley. 

Similar to Yousaf et al. (2010) and Siciliano et al. (2001), the data in the current study suggests 

that the enrichment of selected hydrocarbon-degrading bacteria in the endosphere compartment 

depends on the presence of the contaminant and on different plant species. Plant root exudates 

can determine which microorganisms colonize the endosphere and also affect phytoremediation 

(Phillips et al., 2012). Therefore, these results suggest that the root interior of sweet clover 

species permitted a more suitable habitat for bacteria containing the CYP153 gene.  

Based on previous studies assessing bacterial community structure in these plants 

(Chapter 4), sweet clover endophytic community profiles are mainly associated with a high 

abundance of Pseudomonas and Sinorhizobium spp. Pseudomonas spp. has been extensively 

reported in the literature for alkane degradation (Kukla et al., 2014; Germaine et al., 2009; 



 

 125 

Milcic-Terzic et al., 2001). However, since Pseudomonas spp. are also common colonizers of the 

root interior, they could be associated with several functions other than hydrocarbon degradation 

(Hardoim et al., 2012; Ma et al., 2011b). Unlike Pseudomonas, Sinorhizobium spp. are most 

commonly associated with nitrogen fixation. However, Muratova et al. (2014) have used 

Sinorhizobium meliloti isolated from the surface of roots of Phragmites australis for 

phenanthrene degradation. 

ANOVA revealed significant effects in CYP153 gene copy numbers by all parameters 

analyzed. In barley plants, no significant correlations were observed between CYP153 and THC, 

which is in agreement with Powell et al. (2010) who found no difference in hydrocarbon gene 

abundance between an unaffected and a fuel affected sub Antarctic soils. In addition, Margesin et 

al. (2003) suggested that hydrocarbon derived from gram negative bacteria such as Pseudomonas 

and Acinetobacter spp. are enriched following hydrocarbon contamination, however these 

authors found no significant correlation in gram-positive bacteria such as Rhodococcus and 

Mycobacterium spp. Previous studies in Chapter 4 revealed that barley endosphere root 

compartments harbor higher abundance of Actinobacteria spp. when compared to sweet clover. 

Therefore, most of CYP153 degrading genes in barley may be associated with Actinobacteria 

spp. which these results suggest that the abundance of this phylum is less affected by the 

presence of hydrocarbons in soil. Unlike barley plants, sweet clover endophytic communities 

harboring the gene CYP153 indicated negative correlations with THC, which may indicate an 

inhibition of hydrocarbon degraders. However, the ratio CYP153/16s rRNA indicated no 

significant correlations with THC, which was also observed in barley plants. In addition, 

CYP153 gene abundance indicated negative correlations with soil NH4+ in barley plants. Yang et 

al. (2014) also found similar results with hydrocarbon degrading genes and total-N. However, 

Powell et al. (2010) found positive correlations between NH4+ and the presence of alkane mono-

oxygenase genes, which is in disagreement with the results for barley endophytes in this study 

but in agreement with sweet clover. According to Powell et al. (2010), although the levels of 

hydrocarbons may influence the overall microbial community structure, other factors, such as 

nutrients, are key in selecting for alkane-degrading micro-organisms. Therefore, although 

CYP153 is an important gene used for the detection of hydroxylase genes in recent studies 

(Yousaf et al., 2010a), most studies have used the alkB gene (Wasmund et al., 2009; Wallisch et 

al., 2014; Pérez-de-Mora et al., 2011; Jurelevicius et al., 2013). 
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Degenerate alkB primers designed by Kloos et al. (2006) based on Pseudomonas putida, 

Bacillus subtilis and E. coli were used in the current study as it has been proven to be successful 

for the detection of the alkane monooxygenase. Analysis of variance of alkB gene copy numbers 

revealed significant differences for all variables analyzed with the exception of plant species. 

Similar to other genes investigated in this study, although no significant differences were 

observed in alkB gene abundance, barley and sweet clover endophytic communities indicated 

different correlations with soil parameters. Whereas overall alkB barley endophytic gene 

abundance indicated positive correlations with soil THC, the ratio alkB/16s rRNA in sweet 

clover endophytes indicated negative correlations. Positive correlations between alkB with 

hydrocarbons have been previously observed in the literature (Powell et al., 2010; Jurelevicius et 

al., 2012; Schulz et al., 2012). According to Jurelevicius et al. (2012), THC is a key factor 

influencing alkB diversity in soils with similar physicochemical properties. However, in the 

current study, although both plant species were collected at the same sampling locations, 

different effects were observed between alkB endophytes and soil THC depending on plant 

species. In addition to THC, barley plants indicated positive correlations with soil pH. Soil pH is 

a key determinant of bacterial community diversity and composition which has significant 

impacts on soil ecological processes driven by bacteria (Wu et al., 2017). Yang et al. (2014) and 

Pérez-de-Mora et al. (2011) also found positive, although not significant, correlations between 

hydrocarbon degrading genes and soil pH. Barley endophytic alkB gene abundance indicated no 

significant correlations with soil carbon, which is in agreement with Wasmund et al., (2009). 

However, similar to CYP513, sweet clover endophytic communities containing alkB positively 

correlated to OM, NO3- , NH4+, TC and TOC. According to Powell et al. (2010), the combination 

of TC and pH is the most influential for microbial communities as TC also determines soil water 

holding capacity which influences soil oxygen availability.  

Naphthalene dioxygenase (nah) primers previously designed by Baldwin et al., (2003) 

has been widely used in environments with a high incidence of aromatic compounds. The nah 

gene encodes naphthalene dioxygenases associated with degradation of low-molecular weight 

polycyclic aromatic hydrocarbons (PAHs) (Han et al., 2014; Baldwin et al., 2003). However, the 

information on the abundance of PAH metabolic genes in soil (Yang et al., 2014) and among 

endophytic communities are very limited. In this study, a high variability of this gene was 

observed throughout sampling locations. In addition, no significant differences in the overall or 
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relative (nah/16S rRNA) gene abundance was observed between plant species and cover 

management. These results also indicate similar correlations between nah and soil parameters 

compared to CYP153 and alkB. Although mostly no significant correlations between nah and 

soil nutrients was observed in barley endophytic communities, several positive correlations were 

found between both absolute and relative nah gene abundance in sweet clover plants with 

nitrogen and carbon. Han et al. (2014) also found significant positive correlations between nah 

with total carbon and nitrogen in soils contaminated with PAH in a coke factory area. Li et al. 

(2012) has previously suggested that the efficiency of remediation in PAH-polluted soils depends 

on the application of organic substances and thus increasing inputs of TC, TN, and OM. 

Although significant positive correlations for other hydrocarbon degrading genes and OM were 

also observed in sweet clover plants, nah absolute gene abundance correlated at p ≤ 0.01 with 

OM. According to Han et al. (2014), in addition to providing nutrients for microorganisms, OM 

may increase the solubility and bioavailability of PAHs which may be a key factor determining 

PAHs degrading bacteria. Although the overall assessment of hydrocarbon degrading genes in 

uncultured endophytes are important for future reclamation and remediation strategies, this study 

assessed culturable hydrocarbon degrading endophytes as these can be used as potential 

inoculants in contaminated sites.  

Analysis of the presence of hydrocarbon degrading genes in culturable barley endophytic 

isolates revealed that most of these isolates closely match the database for Pantoea, 

Pseudomonas and Enterobacter spp. Pantoea is a known genus of hydrocarbon degrading 

bacteria (Phillips et al., 2012; Oliveira et al., 2014; Khan et al., 2013). Arslan et al. (2014), 

investigated diesel fuel phytoremediation using ryegrass inoculated with Pantoea sp. BTRH79. 

These authors found that Pantoea enhanced plant growth and development in contaminated soils 

which was further enhanced by the application of nutrients. In addition, Tara et al. (2014) also 

inoculated carpet grass (Axonopus affinis) with Pantoea sp. BTRH79 (positive for CYP153 

genes and also showing ACC deaminase activity) in a diesel-polluted soil and found an increase 

plant biomass and phytoremediation activity in inoculated plants. In the current study, although 

isolate (4) EA1-36 was positive for CYP153, most of the isolates closely related to Pantoea spp. 

where positive for alkB. 

Previous studies (van Beilen et al., 2006; Wallisch et al., 2014) identified alkB in 

Pseudomonas spp. This genus have been used in several inoculation studies assessing 
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hydrocarbon degradation (Tara et al., 2014; Khan et al., 2014; Gałazka et al., 2012; Tang et al., 

2010). Ivanova et al. (2015) studied barley inoculation with Pseudomonas putida F701 

previously isolated from oil contaminated soil samples and found that Pseudomonas putida F701 

is a good colonizer of plant roots and effective in hydrocarbon degradation when plants are 

grown in soils mixed with oil. In addition, Ivanova et al. (2015) also concluded that hydrocarbon 

degradation is enchanced when P. putida is inoculated in combination with other hydrocarbon 

degrading bacteria. 

Endophytic Enterobacter ssp. containing the CYP153 gene has been previously assessed 

for hydrocarbon degradation (Yousaf et al., 2011). The genus comprises a range of beneficial 

plant-associated bacteria showing plant growth promotion and hydrocarbon degradation (Yousaf 

et al., 2011). Sheng et al. (2008) studied pyrene degradation using Wheat (Triticum aestivum) 

and corn (Zea mays) inoculated with Enterobacter sp. 12J1 and concluded that Enterobacter was 

able to promote plant biomass and pyrene removal. In addition, the survival of Enterobacter sp. 

12J1 strains was higher when in association with plants. 

5.7 Conclusions 

This study assessed hydrocarbon degrading genes in endophytic communities associated 

with plants growing in oil sands reclamation soils. Three hydrocarbon degrading genes 

(CYP153, alkB and nah) were quantified using qPCR and significant differences between plant 

species, cover management and sampling locations were observed. The results in this study 

suggest that whereas both plants analyzed indicated similar 16s rRNA, alkB and nah gene 

abundance, sweet clover species harbor a higher abundance of CYP153. In addition, this study 

suggests that total hydrocarbons, pH, soil carbon and nitrogen play an important role in 

determining hydrocarbon degrading communities. However, since previous studies indicated that 

the two plants analyzed harbor different bacterial endophytes, plant factors may also play an 

important role in selecting hydrocarbon degrading bacteria. The assessment of potential 

culturable hydrocarbon degrading bacteria previously isolated from barley plants revealed a that 

total of 42 isolates were positive for at least one hydrocarbon degrading gene. Most of these 

isolates were positive for the presence of alkB and closely match the database for Pantoea, 

Pseudomonas and Enterobacter spp. Future studies will assess the application of these isolates in 

phytoremediation.
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6. POTENTIAL USE OF ENDOPHYTIC ROOT BACTERIA AND HOST 
PLANTS TO DEGRADE HYDROCARBONS 

 

6.1 Preface 

Chapter 5 provided an assessment of hydrocarbon degrading genes in endophytic 

communities associated with plants growing in oil sands reclamation soils. The results suggested 

that although both plants analyzed had similar 16s rRNA, alkB and nah gene abundance, sweet 

clover plants harbored bacterial species with a higher abundance of CYP153 genes. In addition, a 

total of 42 bacterial isolates were positive for at least one hydrocarbon degrading gene analyzed. 

Most of these isolates closely match the database for Pantoea, Pseudomonas and Enterobacter 

spp. Since one of the main objectives of my research was to determine the potential use of 

endophytic root bacteria and host plants to degrade hydrocarbons, this study was designed to 

assess the feasibility of these applications. Therefore, Chapter 6 is focused on evaluating (i) plant 

growth promotion effects of selected isolates and (ii) their soil hydrocarbon degradation potential 

in association with plants. 

6.2 Abstract 

Microbe-assisted phytoremediation depends on competent root associated 

microorganisms that enhance remediation efficiency of organic compounds. Endophytic bacteria 

are a key element of the root microbiome and may assist plant degradation of contaminants. The 

objective of this study was to (i) investigate plant growth promotion and compatibility of 

selected endophytic hydrocarbon degrading bacteria in barley (Hordeum vulgare) and sweet 

clover (Melilotus albus) plants and (ii) investigate the application of plant-bacterial associations 

in a phytoremediation experiment using soils amended with diesel at 5,000, 10,000 and 20,000 

mg·kg-1. Seed germination experiments revealed that specific associations between endophytic 

bacteria (used as inoculants) and host plants varied from plant growth stimulation to inhibition. 

Since most growth promotion effects were observed in sweet clover, this plant was selected for a 
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root elongation and long-term growth promotion assays. After 65 days, sweet clover inoculation 

with EA1-36 (Pantoea sp.) and EA3-16 (Chryseobacterium sp.) exhibited a significant increase 

in the number of secondary shoots and root biomass respectively. Based on overall growth 

promoting effects, bacterial strains: EA1-17 (Stenotrophomonas sp.), EA2-30 (Flavobacterium 

sp.), EA4-40 (Pantoea sp.) and EA6-5 (Pseudomonas sp.) were selected for a phytoremediation 

experiment. In that study plant growth inhibition caused by diesel fuel toxicity was overcome in 

inoculated plants, which showed significantly higher plant biomass. Analysis of soil F2 and F3 

hydrocarbon fractions also revealed that these soils were remediated by inoculated plants when 

diesel was applied at 10,000 mg·kg-1 and 20,000 mg·kg-1. Thus, plants inoculated with select 

hydrocarbon degrading bacteria could be a strategy to increase plant tolerance and hydrocarbon 

degradation in contaminated (e.g. diesel fuel) soils. 

6.3 Introduction 

Petroleum derived fuels and chemicals are extensively used by modern society (Singh et 

al., 2012; Khan et al., 2013; Margesin et al., 2003). However, the processes of extraction, 

refining, transport, use and storage of petroleum and its derivatives are prone to leaking and/or 

spilling accidents, resulting in widespread environmental contaminations (Meyer et al., 2014). 

Besides its harmful effects on human health, hydrocarbon contamination also affects plant 

growth and development (Saraeian et al., 2017). Therefore, a broad range of physical, chemical 

and biological methods are used for remediation of water and soil contaminated with 

hydrocarbons (Khan et al., 2014). Conventional physicochemical soil remediation techniques, 

although highly efficient, are often expensive and environmentally invasive, causing changes in 

soil structure, decreasing microbial activity and the depletion of essential nutrients for plant 

development (Rajtor and Piotrowska-Seget, 2016; Afzal et al., 2014). To overcome these 

challenges, one of the most promising technologies for cleaning up hydrocarbon contaminated 

soils is phytoremediation (Płociniczak et al., 2017). 

Phytoremediation is defined as the use of plants to remove pollutants from the 

environment or to render them harmless (Pilon-Smits, 2005; Salt et al., 1998). This technology 

provides an environmentally friendly, effective, relative inexpensive and carbon neutral approach 

for the clean up of toxic pollutants in the environment (Germaine et al., 2013; Glick, 2010). In 

order to be suitable for phytoremediation, plants should be adapted to the polluted environment, 
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however, the presence of soil organic pollutants normally reduces plant growth and subsequent 

phytoremediation efficiency (Afzal et al., 2014). After uptake, organic compounds may be 

metabolized by plants; however, plants can only absorb minute quantities of soil hydrocarbons 

and translocate them into their different compartments, where they can be stored or volatilized 

into the atmosphere (Khan et al., 2013). In addtion, one of the main disadvantages of using plans 

alone for phytoremediation is that by being photoautotrophic, plants do not rely on organic 

molecules as a source of energy or carbon (McCutcheon and Schnoor, 2003). Unlike 

microorganisms, plants have not developed the ability to degrade recalcitrant molecules, 

resulting in a more limited spectrum for their use in remediation of contaminated soils (Weyens 

et al., 2009). Therefore, exploitation of plant–bacteria partnerships may overcome these 

limitations. 

The plant microbiome includes fungal, archaeal and bacterial communities associated 

with their host plants in the rhizosphere (narrow zone of soil that surrounds and is influenced by 

plant roots), phyllosphere (aerial surface of plants) and endosphere (interior tissue of plants) 

(Tardif et al., 2016). Bacteria isolated from the rhizosphere and the endosphere (endophytic 

bacteria) are known to enhance the accumulation of heavy metals and degradation of organic 

compounds (Germaine et al., 2013; Sessitsch et al., 2013). Plants release exudates from their 

roots that enhance microbial bioremediation in the rhizosphere, i.e. phytoremediation ex-planta 

(Salt et al., 1998). Microbial abundance and activity can be 5–100 times greater in the 

rhizosphere when compared to bulk soil (Germida et al., 2002). Therefore, competent 

microorganisms that produce hydrocarbon degrading specific enzymes are also enriched in the 

rhizosphere. Although rhizosphere bacteria have been sucessfully used to degrade hydrocarbons 

(Al-Baldawi et al., 2017; Liu et al., 2015a), endophytic bacteria have a more intimate 

relationship with their host plants, which may result in a higher phytoremediation efficiency (Li 

et al., 2012a). 

Endophytic bacteria reside at least part of their lives within plant tissues (Turner et al., 

2013). These microorganisms, while actively colonizing plant tissues, may enhance the plant’s 

adaptation and growth in polluted soils (Tardif et al., 2016; Afzal et al., 2014). Endophytic 

bacteria are also known to provide direct plant growth promoting mechanisms such as nitrogen 

fixation (Knoth et al., 2014), auxin (Shi et al., 2011), siderphore (Rungin et al., 2012) and 1-

aminocyclopropane-1-carboxylate (ACC) deaminase (Barnawal et al., 2016) prodution. 
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Moreover, endophytic bacteria can indireclty benefit plant growth by acting as biocontrol agents 

(Chen et al., 1995), increasing heavy metal accumulation (Sheng et al., 2008a) and by 

hydrocarbon degradation (Andreolli et al., 2013; Phillips et al., 2008).  

Although a few studies report that fungi can colonize different plant compartments and 

enhance HC degradation (Soleimani et al., 2010; Dai et al., 2010), bacteria are the most 

important group capable of enhancing phytoremediation of petroleum hydrocarbons (Khan et al., 

2013). Previous studies also report that endophytic bacteria harboring hydrocarbon degrading 

genes are able to promote plant growth and degrade hydrocarbons in soil (Yousaf et al., 2011; 

Andria et al., 2009). For example, Andria et al. (2009) studied two bacterial strains (containing 

the alkB hydrocarbon degrading gene) islolated from the endosphere and rhizosphere of Italian 

ryegrass (Lolium multiflorum) and found that inoculation of the endophytic strain resulted in 

better establishment of plants growing in hydrocarbon contaminated soils. Khan et al. (2013) and 

Tara et al. (2014) also suggested that bacteria having pollutant-degrading and/or plant growth-

promoting activities can play an important role in phytoremediation of contaminated soils. 

Therefore, the objectives of this study were to (i) assess plant growth promotion and 

compatibility of selected endophytic hydrocarbon degrading bacteria inoculated in barley 

(Hordeum vulgare) and sweet clover (Melilotus albus) plants and (ii) evaluate their use as 

inoculants to enhance phytoremediation of soils amended with diesel fuel.  

6.4 Materials and Methods 

6.4.1 Inoculum preparation 

Forty-two bacterial isolates positive for hydrocarbon degrading genes (Chapter 5) were 

grown in 300 mL Erlenmeyer containing 1/2 strength Trypticase Soy Broth (TSB) medium at 

28˚C for 48 h on a rotary shaker (150 rpm) until a density of 109 CFU·mL-1 was reached (OD660 

of 1). Cells were harvested by centrifugation (15 min at 6000 g), washed three times in sterile 

phosphate-buffered saline (PBS) (1.2 g of Na2HPO4·L-1, 0.18 g of NaH2PO4·L-1, 8.5 g of NaCl·L-

1) buffer and re-suspended in sterile tap water to 1/10 of the original volume of PBS buffer to 

obtain an inoculum with a cell density of 1010 CFU·mL-1 (Barac et al., 2004; Ho et al., 2013).  
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6.4.2 Seed inoculation 

Seeds were surface sterilized by soaking in ethanol (65% v·v-1) for 3 min and in a NaClO 

solution (10% v·v-1) for 5 min, followed by 10 rinses in sterile water (Vincent, 1970). Surface 

sterilized seeds were placed in a bacterial suspension for 4 h, allowing the bacteria to penetrate 

the seed ruptures in order to ensure colonization during seed germination. Seeds and bacterial 

suspensions were placed in sterile plastic bags containing 3 mL of 1 % (w·v-1) methylcellulose 

and mixed with 15 g of talc. Subsequently, seeds were mixed in this formulation until uniformly 

coated and air dried overnight (de Freitas et al., 1993). This procedure resulted in a final 

bacterial concentration of 108- 109 CFUs per seed. Control seeds were coated as previously 

described using a mixture of autoclaved bacterial strains. 

6.4.3 Plant growth promotion experiments 

6.4.3.1 Seed germination and vigor 

Bacterial isolates were assessed for seed germination by placing coated seeds onto sterile 

filter paper moistened with 4 mL of sterile distilled water (10 seeds per plate and 5 replicates) 

and incubated at 10 and 25 ºC. Germination rate (%) was estimated according to Wu et al. 

(2016): (Gt/T) × 100, where Gt is the total number of germinated seeds within 7 days and T is 

the total number of seeds. Germination vigor (%) was determined as: (Gmax/T) × 100, where 

Gmax is the maximum number of seeds germinated in the first day during the 7 days of 

germination assay and T is as defined previously. 

6.4.3.2 Root Elongation 

The root elongation assays were conducted using growth pouches as described previously 

(Belimov et al., 2002; de Freitas et al., 1993). Plastic pouches (16.5 × 18 cm) containing 

chromatographic filter paper (Mega International, Minneapolis, MN, United States) and 20 mL 

of sterile 1/5 strength Hoagland’s nutrient solution (Hoagland and Arnon, 1938) were wrapped in 

aluminum foil and autoclaved prior to seeding. Ten inoculated seeds were placed in each seed-

pack growth pouch and five replicate pouches were used for each treatment and control. After 

germination, pouches were thinned to 5 seeds per pouch. Growth pouches were covered with 

aluminum foil to prevent light in plant roots and incubated upright on a wooden tray in a growth 

chamber with a 16 h/25°C day (1500 µmol.m-2) and 8 h/15°C night cycle. The moisture content 
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in the pouches was kept constant throughout the experiment by two treatments: (i) additions of 

sterile distilled water when required or (ii) additions of sterile distilled water alternated with 1/5 

strength Hoagland’s nutrient solution every 2 days. All water/nutrient solution additions were 

conducted under aseptic conditions. After 20 days, plants were removed from the pouches for 

root length measurement. The roots were scanned using an Epson (Perfection V700) scanner 

with a resolution of 600 dpi and processed using WinRhizo 2013e (Regent Instruments, Canada). 

6.4.3.3 Long-term pot experiment 

 Plants were grown in pots containing 1.5 kg of Dark Brown Chernozem silty clay 

agricultural soil mixed with silica sand (1:2 ratio). The properties of the soil and silica sand mix 

were as follows: 23.5 mg·kg−1 available inorganic N (NO3−+ NH4+); 5.3 mg kg−1 of NaHCO3 

extractable phosphorus; 88.5 mg·kg−1 of CH3COONH4 extractable K; and 1.42% of K2Cr2O7–

H2SO4 determined organic matter content (ALS Laboratory Group, Saskatoon, Canada). 

Inoculated and control plants were thinned to 1 plant per pot and arranged in a randomized 

complete block design (RCBD). Each treatment was replicated six times. Pots were rotated daily 

and watered to maintain approximately 50% gravimetric water content. Plants were harvested at 

flowering stage (65 days) and the number of flowering buds, number of secondary shoots, plant 

height, shoot and root biomass was measured. 

6.4.4 Phytoremediation experiment 

6.4.4.1 Experimental setup 

Plants were grown in 1.5 kg pots containing a Dark Brown Chernozem silty clay 

agricultural soil amended with 5,000, 10,000 and 20,000 mg·kg-1 of diesel fuel purchased from a 

gasoline station. The four best performing bacterial strains in previous assays (section 6.4.3) 

were selected for a phytoremediation experiment using the seed inoculation method previously 

described in section 6.4.2. Uninoculated control plant (CU) treatment consisted of seeds coated 

with a mixture of autoclaved bacterial strains in equal amounts. Control soil (CS) treatment 

consisted of contaminated soil with diesel amendments without plants or addition of inoculants. 

Each treatment combination was replicated five times. Pots were arranged in a fully randomized 

block design (RCBD), rotated daily and watered to maintain approximately 50% gravimetric 

water content. One week after seed germination, pots were thinned to two plants per pot and an 

additional 100 ml inoculant suspension (109 CFU·mL-1) was added to ensure bacterial 
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inoculation (Yousaf et al., 2011; Afzal et al., 2013a). The CU treatment was inoculated with a 

suspension (109 CFU·mL-1) of a mixture containing equal numbers of the autoclaved bacterial 

strains. The CS treatment was watered with additional 100 mL of sterile tap water. Pots were 

maintained in growth chamber conditions with a 16 h/25°C day (1500 µmol.m-2) and 8 h/15°C 

night cycle and harvested after 65 days. After harvest, plants were analyzed for plant height, 

number of secondary shoots, root and shoot biomass. Soils collected from each pot were 

analyzed for F2-F3 hydrocarbon fractions.  

6.4.4.2 Hydrocarbon analysis 

Diesel fuel contains three fractions differential based on component molecular weight: F1 

(nC6 to nC10), F2 (nC10 to nC16) and F3 (nC16 to nC34) hydrocarbons. The F1 fraction 

consists of volatile hydrocarbon mixtures and are usually lost in the sample collection and 

preparation processes. Consequently, soils were only analyzed for the F2 and F3 fractions using 

the modified method from Schwab et al. (1999) and Siddique et al. (2006) followed by GC-FID 

analysis. Briefly, 2 g of soil sample was added into a 45 mL glass vial and mixed 2 g with 

anhydrous Na2SO4 treated with dichloromethane and 30 mL of a hexane/acetone solution (1:1, 

v·v-1). Glass vials were sealed with a Teflon-lined cap and shaken overnight on an orbital 

shaking incubator (200 rpm). After shaking, samples were centrifuged for 10 min (1,000 rpm) 

and the extract was recovered using a glass pipette. The extracts were cleaned using a column 

procedure to remove polar organic compounds (Siddique et al., 2006). A silica gel column was 

prepared for each treatment using approximately 63.5 mm of 70–230 mesh Grade 60 Å activated 

(heated to 101°C for 12 h) silica gel followed by approximately 24.5 mm of anhydrous Na2SO4 

(dried at 400°C for 4 h). After conditioning the column with hexane, the extract was passed 

through the silica gel column, and the column was flushed with additional solvent to ensure all 

compounds of interest were collected. Samples were dried under N2 flow and diluted to a final 

volume of 1.5 mL with hexane to fit the GC calibration range. The F2 and F3 hydrocarbon 

fractions were measured using a Hewlett Packard 5890 Series II gas chromatograph equipped 

with a flame ionization detector (FID). The capillary column was a Zebron™ ZB-FFAP, 30 m 

long × 0.32mm width × 0.25 µm film thickness (Phenomenex Inc., Torrance, CA, United States). 

The carrier gas was helium (purity = 99.999%). The injector and detector temperature were 

250°C and 320°C, respectively. The oven temperature program consisted of an initial 

temperature of 40°C for 2 min, which was increased at a rate of 12°C min−1 to 320°C, and held 
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for 10 min. The quantification of F2 and F3 fraction were accomplished by an eight-point 

external calibration curve using peak area. External standards consisted of serial dilutions of 

Diesel Range Organics (DRO) GC grade (Sigma-Aldrich, Oakville, ON, Canada). In addition, a 

reference matrix blank (silica sand + solvent) and a matrix spiked (silica sand + a known diesel 

concentration) was analyzed every 20 samples to confirm extraction efficiency. 

6.5 Results 

6.5.1 Seed germination 

As an initial screening for plant compatibility, barley and sweet clover seeds were 

inoculated with hydrocarbon-degrading endophytic bacteria (n=42) and their effects on seed 

germination rate evaluated (Table 6.1, Appendix E). In general, inoculants had no significant (p 

≤0.05) stimulation on barley seed germination. However, 20 strains significantly inhibited barley 

seed germination.  

Inoculation of sweet clover seeds with strain EA3-25 (Xanthomonas sp.) significantly 

increased germination, with 98% of the seeds having germinated after 7 days compared to 86.6% 

in control treatments. Almost all bacterial strains tested (40/42) had no significant effect on seed 

germination rate; however, strain EA5-9 (Rahnella sp.) inhibited seed germination (i.e. 54% 

germinated). 

Overall, while most inhibitory effects due to bacterial inoculation were observed in 

barley, stimulation of seed germination was only observed in sweet clover. Therefore, sweet 

clover was selected as the test crop. Based on their overall effects on sweet clover, a total of 30 

hydrocarbon-degrading endophytic strains were selected for further studies. 

6.5.2 Root Elongation 

Root elongation was assessed in experiments with water and alternate additions of 

Hoagland nutrient solution. Bacterial strains EA1-1 (Pedobacter sp.), EA2-30 (Flavobacterium 

sp.), EA4-40 (Pantoea sp.), EA6-5 (Pseudomonas sp.) and EA7-4 (Pantoea sp.) significantly (p 

≤ 0.05) increased sweet clover root length by 42 to 68% (Figure 6.1, Appendix F). Although not 

significant, inoculation with 14 other strains resulted in an average root length greater than 

control plants. In contrast, strains EA4-1 (Chryseobacterium sp.), EA4-6 (Serratia sp.), EA4-13 

(Enterobacter sp.) and EA4-27 (Ewingella sp.) inhibited (p ≤ 0.05) root elongation (Figure 6.1).
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Table 6.1 Effect of endophytic bacteria on barley and sweet clover seed germination rate 
(%) (total of 10 seeds) at 25ºC. Symbols indicate treatments significantly (LSD p ≤ 0.05) 
higher (*) and lower (†) when compared to the control. 

 Barley Sweet clover 
 --------------------------------------------------- (%)--------------------------------------------------- 

Strain Mean SD Mean SD 
Control 92.0 8.4 86.0 7.5 
EA1-1 78.0 21.7 84.0 5.5 
EA1-15 60.0† 21.2 90.0 14.1 
EA1-17 72.0 27.8 88.0 11.0 
EA1-36 80.0 7.1 82.0 11.0 
EA2-9 78.0 23.9 88.0 8.4 
EA2-19 66.0 27.0 80.0 10.0 
EA2-20 66.0† 16.1 80.0 15.8 
EA2-24 84.0 20.7 84.0 15.2 
EA2-30 92.0 8.4 76.0 15.2 
EA3-1 84.0 11.4 92.0 8.4 
EA3-10 60.0† 18.7 92.0 13.0 
EA3-16 92.0 8.4 92.0 8.4 
EA3-17 62.0 27.6 92.0 8.4 
EA3-18 48.0† 14.8 88.0 11.0 
EA3-25 18.0† 13.0 98.0* 4.5 
EA4-1 18.0† 14.8 94.0 5.5 
EA4-2 4.0† 5.5 90.0 10.0 
EA4-6 14.0† 15.2 77.0 31.3 
EA4-8 22.0† 8.4 72.0 24.9 
EA4-13 6.0† 8.9 80.0 7.1 
EA4-27 58.0† 17.9 73.0 8.9 
EA4-32 58.0† 11.0 82.0 4.5 
EA4-34 30.0† 30.0 88.0 8.4 
EA4-35 54.0 39.1 86.0 11.4 
EA4-38 24.0† 13.4 94.0 5.5 
EA4-40 92.0 13.0 90.0 10.0 
EA5-5 66.0 27.0 90.0 7.1 
EA5-8 70.0 18.7 84.0 11.4 
EA5-9 18.0† 13.0 54.0† 8.9 
EA5-10 12.0† 16.4 74.0 11.4 
EA5-11 74.0 27.0 68.0 13.0 
EA5-20 60.0 25.5 86.0 8.9 
EA6-5 70.0† 10.0 88.0 4.5 
EA6-12 74.0 15.2 92.0 4.5 
EA6-37 36.0† 11.4 82.0 19.2 
EA6-38 68.0 30.3 84.0 16.7 
EA6-40 72.0 24.9 78.0 13.0 
EA7-1 88.0 16.4 84.0 15.2 
EA7-4 66.0 34.4 96.0 5.5 
EA7-11 88.0 13.0 88.0 11.0 
EA1-34 64.0† 16.1 82.0 8.4 
EA1-37 46.0† 23.0 82.0 11.0 
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Figure 6.1 Effect of endophytic bacteria on root length of sweet clover plants measured at 20 days. Plants were supplemented with 
water and alternate additions of Hoagland nutrient solution. Error bars represent standard deviations and * indicate significance at 
LSD (p ≤ 0.05) compared to control. 
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6.5.3 Long-term growth promotion 

Based on seed germination results, 30 endophytic bacterial strains were tested for plant 

growth promotion assessed at 65 days post treatment (Figure 6.2). Inoculation with strain EA1-

36 significantly increased the average number of secondary shoots (n=16) compared to control 

plants (n=14.3) (Figure 6.2a). The number of flowering buds; however, was not affected by plant 

inoculation, and none of the bacterial inoculants increased plant height (Figure 6.2b, Figure 

6.2c). Moreover, inoculation with strains EA4-34 and EA7-1, both Pantoea sp., significantly 

reduced plant height by 17 and 18%, respectively.  

Overall, most bacterial strains had no effect on shoot fresh and dry weight (Figure 6.3a, 

Figure 6.3b). Inoculation with strain EA7-1 (Pantoea sp.), however, inhibited root and shoot 

growth. Inoculation of sweet clover with strains EA6-5 (Pseudomonas sp.), EA6-12 

(Pseudomonas sp.), EA6-37 (Enterobacter sp.) and EA6-38 (Kluyvera sp.) also led to a 

significant decrease in shoot fresh weight. Whereas strains EA1-15 (Chryseobacterium sp.), 

EA1-17 (Stenotrophomonas sp.), EA6-12 (Pseudomonas sp.), EA6-37 (Enterobacter sp.) and 

EA7-1 (Pantoea sp.) significantly decreased root dry weight, strain EA3-16 (Chryseobacterium 

sp.) significantly increased root fresh and dry weight by 42 and 55%, respectively.  

Based on plant growth promotion, seven endophytic bacterial strains [EA1-17 

(Stenotrophomonas sp.), EA2-30 (Flavobacterium sp.), EA3-1 (Bacillus sp.), EA3-16 

(Chryseobacterium sp.), EA3-25 (Xanthomonas sp.), EA4-40 (Pantoea sp.) and EA6-5 

(Pseudomonas sp.)] were selected for further study. Among these strains, isolates EA3-1 

(Bacillus sp.), EA3-16 (Chryseobacterium sp.) and EA3-25 (Xanthomonas sp.) tested positive 

for the nah gene, which is involved in the degradation of aromatic hydrocarbons (Chapter 5). 

Since most studies on hydrocarbon degradation use diesel fuel as a model compound (which 

contains mostly aliphatic hydrocarbons) the subsequent phytoremediation experiment focused on 

bacteria capable of enhancing degradation of aliphatic hydrocarbons. Thus, three isolates 

positive for the alkB gene [EA2-30 (Flavobacterium sp.), EA4-40 (Pantoea sp.), EA6-5 

(Pseudomonas sp.)] and one isolate positive for the CYP153 gene [EA1-17 (Stenotrophomonas 

sp.)] were tested in a phytoremediation experiment.
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Figure 6.2 Plant secondary shoots (A), number of flowering buds (B) and height (C) of sweet 
clover plants inoculated with endophytic bacteria after 65 days. Error bars represent standard 
deviations and * indicate significance at LSD (p ≤ 0.05) compared to control. 
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Figure 6.3 Shoot fresh (A) and dry weight (B), root fresh (C) and dry (D) weight of sweet 
clover plants inoculated with endophytic bacteria after 65 days. Error bars represent standard 
deviations and * indicate significance at LSD (p ≤ 0.05) compared to control.
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6.5.4 Phytoremediation experiment 

As expected, an increase in soil diesel concentration led to a decrease in plant biomass 

(Table 6.2, Appendix H). However, plants inoculated with endophytic bacteria had an overall 

greater plant biomass compared to control treatments. Inoculation with most bacterial strains 

increased the number of secondary shoots in diesel contaminated soil, but had no effect on the 

number flowering buds (Table 6.3). In soils amended with diesel at 5,000 mg·kg-1, all inoculated 

plants had a significantly greater average number of secondary shoots compared to control 

plants. At this diesel concentration, plants inoculated with strain EA1-17 (Stenotrophomonas sp.) 

exhibited the highest average number of secondary shoots (N=12.7) followed by plants 

inoculated with strains EA4-40 (Pantoea sp.) (N=12.3) and EA2-30 (Flavobacterium sp.) 

(N=12.2). In soils amended with diesel at 10,000 mg·kg-1, a significant increase in the number of 

secondary shoots was also observed in all inoculated plants except for plants inoculated with 

strain EA4-40 (Pantoea sp.). However, only plants inoculated with strains EA1-17 

(Stenotrophomonas sp.) and EA6-5 (Pseudomonas sp.) had a significantly higher number of 

secondary shoots in soils amended with diesel at 20,000 mg·kg-1. Strain EA1-17 

(Stenotrophomonas sp.) also enhanced the number of flowering buds in plants grown in soils 

amended with diesel at 5,000 mg·kg-1, but there was no significant difference in plants grown in 

soils amended with 10,000 and 20,000 mg·kg-1 diesel (Table 6.4). 

Overall, inoculation of plants with hydrocarbon degrading endophytic bacteria led to an 

increase in plant height, shoot and root fresh weight (Figures 6.4, 6.5, 6.6 and 6.7). For example, 

all inoculated plants had significantly greater plant height and shoot fresh weight compared to 

control plants in soils amended with 5,000 mg·kg-1 diesel. Strains EA1-17 (Stenotrophomonas 

sp.) and EA4-40 (Pantoea sp.) significantly increased root fresh weight, and plant height was 72, 

60, 75 and 60% higher in plants inoculated with strains EA1-17 (Stenotrophomonas sp.), EA2-30 

(Flavobacterium sp.), EA4-40 (Pantoea sp.) and EA6-5 (Pseudomonas sp.), respectively. In 

addition, inoculation of plants with strains EA1-17 (Stenotrophomonas sp.) and EA4-40 

(Pantoea sp.) led to a 2-fold increase in shoot fresh weight. 

Inoculation with sweet clover with hydrocarbon degrading endophytic bacteria enhanced 

plant biomass in soils amended with diesel at 10,000 mg·kg-1 and statistical differences between 

inoculated treatments were also observed. For example, plant height, shoot and root fresh weight 
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were greater in plants inoculated with EA1-17 (Stenotrophomonas sp.), and EA6-5 

(Pseudomonas sp.) compared to control plants and other inoculated treatments. The average 

plant height in sweet clover inoculated with strains EA1-17 (Stenotrophomonas sp.) and EA6-5 

(Pseudomonas sp.) was 21.4 and 18.5 cm, respectively, compared to 5.67 cm to control plants.  

Among all diesel concentrations, the lowest plant biomass was observed in soils amended 

with diesel at 20,000 mg·kg-1. At this concentration, the inoculation with strains EA4-40 

(Pantoea sp.) and EA6-5 (Pseudomonas sp.) increased plant height (p ≤ 0.05). In addition, 

whereas shoot fresh weight was greater in all inoculated treatments, no statistical differences in 

root fresh weight were observed. 
 

Table 6.2 Sweet clover plant parameters grown in soils amended with diesel after 65 days. 
Different letters indicate significance at LSD (p ≤0.05). 

Soil diesel 
Concentration 

(mg·kg-1) 

Number of 
Secondary 

Shoots 

Number of 
Flowering 

Buds 

Shoot Fresh 
Weight 

(g) 

Plant Height 
(cm) 

Root Fresh 
Weight 

(g) 
5,000 11.2a 1.0a 13.14a 50.86a 6.81a 

10,000 4.8b 0.1b 1.57b 13.13b 0.59b 
20,000 0.8c 0.0b 0.05c 4.77c 0.04c 

 

Table 6.3 Effect endophytic bacterial inoculants on the number of secondary shoots and 
flowering buds of sweet clover plants grown in soils amended with diesel after 65 days. Different 
letters indicate significance at LSD (p ≤ 0.05). 

Soil diesel 
Concentration 

(mg·kg-1) 
Inoculant Number of 

Secondary Shoots 
Number of 

Flowering Buds 

5,000 

Control 8.4c 0.0b 
EA1-17 12.7a 4.4a 
EA2-30 12.2a 0.0b 
EA4-40 12.3a 0.5b 
EA6-5 10.5b 0.0b 

10,000 

Control 2.0c 0.0a 
EA1-17 6.4ab 0.0a 
EA2-30 4.6ab 0.0a 
EA4-40 4.1bc 0.0a 
EA6-5 6.9a 0.4a 

20,000 

Control 0.0cd 0.0a 
EA1-17 1.1ab 0.0a 
EA2-30 0.0d 0.0a 
EA4-40 0.9bc 0.0a 
EA6-5 1.8a 0.0a 
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Figure 6.4 Effect of endophytic bacterial inoculants EA1-17 (Stenotrophomonas sp.), EA2-30 (Flavobacterium sp.), EA4-40 
(Pantoea sp.) and EA6-5 (Pseudomonas sp.) on sweet clover (Melilotus albus) plant parameters after 65 days. Error bars represent 
standard deviations (n=5) and different letters indicate significant differences (LSD p ≤ 0.05).
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Figure 6.5 Effect of endophytic bacterial inoculants EA1-17 (Stenotrophomonas sp.), EA2-30 (Flavobacterium sp.), EA4-40 
(Pantoea sp.) and EA6-5 (Pseudomonas sp.) on sweet clover plants (Melilotus albus) growing in soils amended with diesel (5,000 
mg·kg-1) at 65 days after planting. 
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Figure 6.6 Effect of endophytic bacterial inoculants EA1-17 (Stenotrophomonas sp.), EA2-30 (Flavobacterium sp.), EA4-40 
(Pantoea sp.) and EA6-5 (Pseudomonas sp.) on sweet clover plants (Melilotus albus) growing in soils amended with diesel (10,000 
mg·kg-1) at 65 days after planting.
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Figure 6.7 Effect of endophytic bacterial inoculants EA1-17 (Stenotrophomonas sp.), EA2-30 (Flavobacterium sp.), EA4-40 
(Pantoea sp.) and EA6-5 (Pseudomonas sp.) on sweet clover plants (Melilotus albus) growing in soils amended with diesel (20,000 
mg·kg-1) at 65 days after planting.
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In a preliminary experiment (Appendix G), analysis of the soil F2 and F3 hydrocarbon 

fractions immediately after soil amendment with diesel at 10,000 and 20,000 mg·kg-1 revealed a 

recovery of 10,930 and 21420 mg·kg-1 respectively. After 65 days, phytoremediation 

experiments revealed that all plants reduced soil hydrocarbons to some extent (Table 6.4, Figure 

6.8). However, the overall soil hydrocarbon concentration was significantly lower in inoculated 

treatments.  

In soils amended with diesel at 5,000 mg·kg-1, there was no significant difference in total 

soil hydrocarbon concentration between treatments. In contrast, all inoculated treatments caused 

a significant decrease in total soil hydrocarbon concentration in soils amended with 10,000 

mg·kg-1 diesel (Table 6.4). This decrease was a specific reduction in the F3 hydrocarbon fraction, 

which was 60 to 68% lower in inoculated treatments compared to uninoculated control plants 

(CU) (Figure 6.8b). In soil amended with diesel at 20,000 mg·kg-1, significantly lower total 

hydrocarbon concentrations were observed in treatments inoculated with strains EA4-40 

(Pantoea sp.) and EA6-5 (Pseudomonas sp.), in which the final hydrocarbon concentration was 

7625 and 4163 mg·kg-1, respectively, compared to 12952 mg·kg-1 in the CU treatments (Table 

6.4). There was no significant reduction in the F2 hydrocarbon fraction in most inoculated 

treatments, except for treatments inoculated with strain EA6-5 (Pseudomonas sp.) where a 

significant 71% reduction in this F2 fraction was observed. In addition, the F3 fraction 

concentration was 48 and 66% lower (p ≤ 0.05) in treatments inoculated with strains EA4-40 

(Pantoea sp.) and EA6-5 (Pseudomonas sp.), respectively. 
 
Table 6.4 Total extractable hydrocarbons in soil after 65 days growth of sweet clover plants 
inoculated with hydrocarbon degrading endophytic bacteria. Different letters indicate significant 
differences (Tukey HSD p ≤ 0.05). 

 
Diesel Concentration (mg·kg-1) 

 
5,000 10,000 20,000 

Treatment --------------- Total extractable hydrocarbons (mg·kg-1) ---------------- 

CS 430.69a 5086.69a 12974.22a 
CU 418.70a 4882.57a 12952.72a 
EA1-17  429.78a 1849.09b 10976.27ab 
EA2-30  468.93a 1877.28b 10261.35ab 
EA4-40  431.32a 2010.31b 7625.73bc 
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Figure 6.8 The F2 and F3 hydrocarbon fractions in soils initially amended with diesel at 5,000 
(A), 10,000 (B) and (C) 20,000 mg·kg-1 after phytoremediation experiment. Error bars represent 
standard deviations (n=5) and different letters indicate differences (Tukey HSD p ≤ 0.05).
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6.6 Discussion 

 This study investigated the use of hydrocarbon degrading endophytic bacteria to enhance 

phytoremediation. In an initial screening to select bacteria better suited for phytoremediation, 

endophytic isolates were assessed for their effects on seed germination rate. A total of 42 isolates 

were inoculated on barley and sweet clover seeds, some of which stimulated or inhibited seed 

germination. This is a common phenomenon as other researchers found similar effects. For 

example, Long et al. (2008) studied plant growth promotion effects of bacterial endophytes 

associated with black nightshade (Solanum nigrum) and found that, out of 37 isolates, 22 

significantly stimulated seed germination, but one isolate inhibited seed germination. Moreover, 

previous studies have also investigated the effects of bacterial inoculation on barley seed 

germination (Cardinale et al., 2015; Harper and Lynch, 1980; Kang et al., 2007; Guglielmetti et 

al., 2013). Guglielmetti et al. (2013) reported that whereas barley inoculation with Luteibacter 

rhizovicinus had no effect on seed germination, Pseudomonas chlororaphis inhibited seed 

germination. Kang et al. (2007) also observed significant inhibitory effects of P. chlororaphis on 

barley seed germination, but no inhibition in cucumber or rice seeds. In the current study, 

bacterial inoculation mostly inhibited barley seed germination; however, strain EA3-25 

stimulated sweet clover seed germination. This strain, previously identified as Xanthomonas sp., 

tested positive for the presence of naphthalene dioxygenase (nah) gene (Chapter 5). 

Xanthomonas is most commonly known to cause plant diseases (Soares et al., 2010), but this 

genus also contain species known for polycyclic aromatic hydrocarbons (PAHs) degradation 

(Deka and Lahkar, 2016).  

Barley plants have been used for phytoremediation of oil contaminated soils (Mikolasch 

et al., 2016; Asiabadi et al., 2015); however, most studies used other gramineous (Afzal et al., 

2011; Arslan et al., 2014) and leguminous (Yateem et al., 2000; Muratova et al., 2010) plants. 

Sweet clover are forage legumes that fix nitrogen in symbiotic association with Sinorhizobium 

meliloti (Bromfield et al., 2010). According to Hall et al. (2011) and Franco and Balieiro (2000), 

members of Fabaceae family, such as sweet clover, might be better suited to phytoremediation 

of petroleum hydrocarbons due to their low implementation costs and high capacity for 

adaptation in nutrient limited, degraded and oil contaminated soils. In the current study, sweet 

clover responded more favorably than barley to bacterial inoculants tested and, therefore, it was 



 

 
 

151 

selected for additional growth promoting (i.e. root elongation and long-term growth chamber 

experiments) and phytoremediation experiments. 

Several studies have investigated the effects of bacterial inoculation on root elongation 

(Sheng et al., 2008a; Bal et al., 2013; Glick et al., 1994). In this study, five bacterial strains 

stimulated root elongation in sweet clover plants. Among these isolates, the highest growth 

promoting effects were observed with EA2-30 (Flavobacterium sp.) and EA7-4 (Pantoea sp.). 

Pant et al. (2016) studied Flavobacterium inoculation in physic nut (Jatropha curcas) and found 

that this genus exhibited multiple plant growth promoting traits and improved biodegradation of 

1,4-dichlorobenzene. Gontia-Mishra et al. (2016) also reported that inoculation of 

Flavobacterium sp. may increase drought tolerance in wheat plants. In addition, plant growth 

promotion by endophytic Pantoea spp. have also been reported in sugarcane (Quecine et al., 

2012), rice (Feng et al., 2006) and pepper (Kim et al., 2012) plants. Pantoea spp. may promote 

plant growth by increasing nitrogen supply (Asis and Adachi, 2004; Feng et al., 2006), 

solubilizing phosphorus (Chen et al., 2014; Wang et al., 2016a) and producing phytohormones 

(Apine and Jadhav, 2011; Omer et al., 2004). As both Flavobacterium sp. and Pantoea sp. 

enhanced root elongation in in sweet clover, these results indicate that, in addition to 

hydrocarbon degrading genes, these bacteria may possess plant growth promoting traits that 

could improve phytoremediation of contaminants. If true, this could be a strategy to enhance 

phytoremediation. 

 In addition to growth promotion at early stages of plant development (i.e. seed 

germination and root elongation), a long-term growth chamber experiment was used to assess 

growth promoting effects at plant flowering stage. In this study, while no significant differences 

in the number of flowering buds were observed between control and inoculated plants, 

inoculation of sweet clover with strain EA1-36 (Pantoea sp.) significantly increased the number 

of secondary shoots. Bakhshandeh et al. (2017) studied the inoculation of phosphate-solubilizing 

Pantoea spp. in rice and reported that Pantoea promoted plant growth in all parameters analyzed. 

According to Dastager et al. (2009), Pantoea also has significant growth inhibitory activity 

against phytopathogenic fungi and a wide tolerance to environmental conditions such as 

temperature, salt concentration and pH. However, Chen et al. (2017) reported that although some 

Pantoea species may confer beneficial effects to their plant hosts, other species may inhibit plant 

growth. In the current study, although sweet clover inoculation with EA1-36 (Pantoea sp.) 
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significantly increased the number of secondary shoots, strain EA4-34 (Pantoea sp.) 

significantly decreased plant height. According to de Souza et al. (2015) and Hol et al. (2013), 

the effect of bacteria on plant growth promotion depends on many factors, which not only 

depend on plant species and nutrient availability but also on bacterial species and strains. In 

some cases, variation in these factors can even lead to opposite effects on plant traits (Hol et al., 

2013). In the current study, inoculation with EA3-16 (Chryseobacterium sp.) also enhanced 

sweet clover root biomass. Since plant essential soil nutrients are taken up by roots, root growth 

is considered a prerequisite for the enhancement of plant development (Mills and Jones, 1996). 

Hence, many plant growth promoting bacteria stimulates root growth (Adesemoye et al., 2009). 

Marques et al. (2010) found significant root growth in Zea mays plants when inoculated with 

Chryseobacterium sp. This genus has been previously known for its ability to solubilize 

phosphate (Chen et al., 2006) and has been reported to increase root and shoot biomass, 

chlorophyll content, nitrate reductase activity, phosphorus content and crop yield in horse gram 

(Macrotyloma uniflorum) (Singh et al., 2013). Therefore, plant growth promotion of sweet 

clover observed after inoculation with Pantoea sp. and Chryseobacterium sp. in this current 

study might be associated with the ability of these strains to solubilize phosphate. 

Bacterial strains EA1-17 (Stenotrophomonas sp.), EA2-30 (Flavobacterium sp.), EA4-40 

(Pantoea sp.) and EA6-5 (Pseudomonas sp.) were selected for the phytoremediation experiment 

based on their ability to promote plant growth in the absence of hydrocarbons. Diesel fuel was 

selected as the model compound as other studies have used it to assess hydrocarbon degradation 

(Andria et al., 2009; Ferrera-Rodríguez et al., 2013; Arslan et al., 2014). The results in this study 

revealed that plant growth decreased as soil diesel concentrations increased. Similar results were 

observed by Wang et al. (2011) in reed (Phragmites australis) plants growing in soils amended 

with diesel concentrations ranging from 1,000 to 20,000 mg·kg-1. These authors concluded that 

root growth and total chlorophyll content significantly decreased in soils amended with diesel at 

concentrations higher than 10,000 mg·kg-1. According to Tara et al. (2014) and Chen et al. 

(2013), plant growth inhibition in the presence of petroleum hydrocarbons might be due to 

hydrocarbon toxicity and hydrophobicity, which can adversely affect plant health and 

development.  

In addition, the C:N ratio in hydrocarbon contaminated soils is typically high due to the 

high input of carbon (C) into the system (Bento et al., 2012). As nitrogen is essential for plant 



 

 
 

153 

and bacterial growth, large inputs of carbon sources results in a rapid depletion of nitrogen pools. 

This imbalance may cause adverse effects on soil microbial populations, as well as on the ability 

of plants to survive in contaminated soils (Hall et al., 2011). However, sweet clover plants, due 

to their association with N-fixing bacteria, may withstand those adverse conditions in 

contaminated soils and also support the survival of hydrocarbon degrading bacteria (Hall et al., 

2011). In the current study, inoculation of sweet clover with hydrocarbon degrading endophytic 

bacteria enhanced plant growth in diesel amended soils, even though diesel concentration 

inhibited plant growth without the inoculant. 

At low diesel concentration (soils amended with diesel at 5,000 mg·kg-1), inoculation of 

plants with endophytic bacteria significantly enhanced plant biomass, however, no significant 

differences in soil F2-F3 hydrocarbons concentrations were observed between control and 

inoculated treatments. Kaimi et al. (2007) also studied phytoremediation efficiency of twelve 

plant species in diesel-contaminated soils without the addition of bacterial inoculants. These 

authors found a significant hydrocarbon reduction in most planted soils; however, treatments 

with alfalfa (Medicago sativa) at flowering stage exhibited similar hydrocarbon concentrations to 

unplanted control soils. According to Liu et al. (2011), soil hydrocarbon reduction in control 

treatments are mainly due to volatilization, eluviation, photolysis and biodegradation by 

indigenous microorganisms. Therefore, the results in the current study suggests that although 

bacterial inoculants might alleviate plant stress, hydrocarbon reduction in soils amended with 

diesel at 5,000 mg·kg-1 might be attributed to volatilization and/or biodegradation by indigenous 

microorganisms. In addition, a noticeable diesel smell was observed throughout the duration of 

this experiment suggesting hydrocarbon volatilization.  

Similar to soils amended with diesel at 5,000 mg·kg-1, bacterial inoculation also enhanced 

plant biomass in soils amended with diesel at 10,000 mg·kg-1. These results are in agreement 

with Tara et al. (2014), in which the authors studied the inoculation of hydrocarbon degrading 

bacteria in carpet grass (Axonopus affinis) growing in soils amended with diesel at 10,000 mg·kg-

1. These authors found that plant inoculation with Pseudomonas sp. and Pantoea sp. led to an 

increase in plant biomass. In the current study, inoculation of sweet clover with bacterial strains 

EA1-17 (Stenotrophomonas sp.) and EA6-5 (Pseudomonas sp.) enhanced plant biomass. 

Pseudomonas spp. are well known to dominate the rhizosphere and several studies have shown 

their ability to improve phytoremediation (Germaine et al., 2009; Afzal et al., 2011). 
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Stenotrophomonas spp. also have been previously used in phytoremediation (Binks et al., 1995) 

and are highly adaptable to nutrient-limited environments (Ryan et al., 2009). In addition to 

differences in plant biomass, bacterial inoculation also improved soil F3 hydrocarbon 

degradation. Hydrocarbons in the non-volatile F3 fraction (C16-C34) are more resistant to 

microbial degradation, while the F2 (C10-C16) fraction consisting of semi-volatile medium-sized-

chain compounds are more bioavailable and therefore more readily degraded (Leung et al., 2006; 

Gomez and Sartaj, 2013). Gomez and Sartaj (2013) compared microbial biodegradation 

efficiency of different hydrocarbon fractions and their results indicated that F2 fractions had 

considerably higher biodegradation rate compared to F3 fractions. In the current study, analysis 

of soils amended with diesel at 10,000 mg·kg-1 suggests that whereas F2 fraction degradation 

might have been achieved by indigenous soil microorganisms, degradation of the F3 fraction was 

significantly enhanced only by bacterial inoculants. Moreover, although all inoculated treatments 

significantly reduced soil F3 hydrocarbons, inoculation of sweet clover with EA1-17 

(Stenotrophomonas sp.) and EA6-5 (Pseudomonas sp.) also enhanced overall plant biomass.  

Plant growth inhibition was observed in all plants grown in soils amended with diesel at 

20,000 mg·kg-1, thus suggesting that diesel at this concentration may be excessive for sweet 

clover development. Similarly, Hou et al. (2016) reported that nut grass (Cyperus rotundus) 

growth was inhibited in soils amended with diesel at concentrations greater than 15,000 mg.kg-1. 

According to Hou et al. (2016), high diesel amendments could change soil physical properties 

(e.g. soil aeration and water infiltration), thus affecting plant root development, which is 

essential for stimulating hydrocarbon-degrading microbes in the rhizosphere (Germida et al., 

2002). 

In this study, bacterial inoculants were applied following the procedure reported by Afzal 

et al. (2013), who compared several inoculation methods including soil, seed and foliar 

inoculation in diesel phytoremediation studies. Afzal et al. (2013) concluded that soil inoculation 

of Burkholderia phytofirmans PsJN resulted in greater ryegrass (Lolium multiflorum) biomass, 

bacterial colonization and hydrocarbon degradation. Other authors e.g. Sheng and Gong (2006), 

Gałazka et al. (2012), Tara et al. (2014) and Shabir et al. (2016) also reported a significant 

increase in phytoremediation activity when soil was inoculated with hydrocarbon-degrading 

bacteria. In the current study, soil inoculation with EA1-17 (Stenotrophomonas sp.) and EA2-30 

(Flavobacterium sp.) had no significant effects on sweet clover biomass and hydrocarbon 
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degradation. Similarly, inoculation with strains EA4-40 (Pantoea sp.) and EA6-5 (Pseudomonas 

sp.) had no effect on plant biomass, but significantly reduced total soil hydrocarbon 

concentration. Yousaf et al. (2010) reported similar results when Italian ryegrass (Lolium 

multiflorum var. Taurus) was inoculated with Pantoea sp. and Pseudomonas sp. Therefore, the 

results in the current study suggests that hydrocarbon reduction in inoculated treatments occurred 

exclusively by bacterial degradation in soil, and not as a result of phytoremediation activity. 

Additionally, although strains EA4-40 (Pantoea sp.) and EA6-5 (Pseudomonas sp.) may be 

competitive and/or efficient hydrocarbon degraders, their application as inoculants may be 

limited in soils with high diesel concentrations, as they were unable to reduce plant hydrocarbon 

toxicity. According to Yousaf et al. (2010), introduced inoculants undergo competition with the 

native microflora following introduction into the soil. The introduced inoculant is rapidly out-

competed by indigenous soil microorganisms, thus, in addition to their degradation capacity, 

their competitive ability is an important criterion for phytoremediation applications. 

Overall, the endophytic strain EA6-5 (Pseudomonas sp.), which harbored hydrocarbon-

degrading genes, was the most effective candidate in phytoremediation experiments. 

Pseudomonas spp. are considered useful for biotechnological applications due to their ease in 

cultivation and stress resistance (Louvado et al., 2015). Additionally, Pseudomonas are 

ubiquitous in various environments and contain species that play important roles in hydrocarbon 

degradation (Liu et al., 2016). The alkB gene organization found in strain EA6-5 encodes for 

enzymes required in alkane degradation. In Pseudomonas spp., the alkB gene as well as other 

hydrocarbon degrading genes (e.g. nah, pah and phn) can often be found on plasmids, which 

facilitates genetic transfer and acquisition by other bacteria in oil-polluted environments 

(Brooijmans et al., 2009; Abbasian et al., 2016). Therefore, the results of the current study 

suggest that strain EA6-5, which tested positive for the alkB gene, potentially could transfer its 

hydrocarbon degrading genes to other indigenous soil microbes. 

6.7 Conclusions 

In order to obtain bacterial strains better suited for phytoremediation applications, this 

study investigated plant compatibility and growth promoting effects of previously isolated 

hydrocarbon degrading endophytic bacteria. The results demonstrate that inoculation of seeds 

with specific endophytic bacterial strains increased seed germination rate, whereas some bacteria 
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inhibited seed germination. As sweet clover plants responded more favorably than barley to 

bacterial inoculants tested, this crop was selected for further root elongation and a long-term 

growth chamber study. Whereas a total of 7 bacterial strains enhanced sweet clover root 

elongation, plant inoculation with EA1-36 (Pantoea sp.) and EA3-16 (Chryseobacterium sp.) 

resulted in a significant increase in the number of secondary shoots and root biomass, 

respectively after 65 days. Based on overall growth promoting effects, four different bacterial 

strains, EA1-17 (Stenotrophomonas sp.), EA2-30 (Flavobacterium sp.), EA4-40 (Pantoea sp.) 

and EA6-5 (Pseudomonas sp.), were selected for phytoremediation studies. These bacterial 

inoculants enhanced overall plant biomass even though soil diesel concentrations inhibited plant 

growth. In addition, whereas no significant differences in total hydrocarbon concentrations were 

observed in soils amended with diesel at 5,000 mg·kg-1, a significant F3 hydrocarbon fraction 

reduction was observed in soils amended with diesel at 10,000 mg·kg-1. Inoculation with strains 

EA4-40 (Pantoea sp.) and EA6-5 (Pseudomonas sp.) also significantly reduced F2 and F3 

hydrocarbons in soils amended with diesel at 20,000 mg·kg-1. Therefore, these results indicate 

that hydrocarbon degrading bacteria could be used as inoculants to increase plant tolerance and 

hydrocarbon degradation (e.g. diesel fuel) in soils. 
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7. OVERALL DISCUSSION 
 

Most of Canada’s vast oil reserves are in the form of oil sands, a mixture of sand, water, 

clay and bitumen. Oil sands mining operations impacts a large footprint, but the industry is 

committed to reclaim all disturbed land to an ecologically healthy state in response to 

governmental regulations. The challenges of oil sands reclamation start with the nature of the 

tailing sands, a remaining waste product after bitumen extraction, which is affected by tailings 

water and considered generally an inappropriate plant growth medium. Therefore, a successful 

vegetation reestablishment in these areas may depend on natural, synergistic relationships among 

plants, microorganisms and the environment. Root associated microorganisms colonize plant 

roots and may provide hosts with nutrients, stimulating growth, suppressing disease and 

increasing tolerance to abiotic stress. The potential use of plant-microbe interactions to assist 

plant growth on oil sands reclamation covers requires an understanding of the diversity and 

metabolic potential of these root associated organisms. To date, most studies have focused on the 

microbial communities in tailing ponds (Yergeau et al., 2012a) and on the overall soil microbial 

biomass in oil sands reclamation sites (MacKenzie and Quideau, 2010). Thus, the primary 

objective in the current study was to unravel the root associated bacterial microbiome of plants 

growing in reclamation soils. 

This study investigated root associated microbial communities of annual barley 

(Hordeum vulgare) grown at one of the oil sands reclamation areas (Chapter 3). Since an 

important soil management practice in oil sands reclamation is the use of peat as a cover material 

to increase soil carbon, significant positive correlations were observed between organic carbon, 

organic matter and soil microbial PLFAs. Rhizosphere and bulk soil DGGE fingerprints were 

highly differentiated by cover management. However, only a few dominant bands were 

identified in these profiles as other less abundant communities were shown as smears. This is in 

agreement with Jousset et al. (2010), who suggested that DGGE detects mostly dominant 

members of the community. Conversely, barley endophytic bacterial profiles indicated less, 

although more dominant bands, compared to those of soil profiles. Most of these bands were re-
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amplified and closely matched DNA from bacteria found in agricultural soils and plant 

associated bacteria. Several bands matched Phytoplasma spp., which causes mildly pathogenic 

symptoms to host plants or may cause no harm (Kamińska et al., 2010). Bands also matched 

those of Flavobacterium and Pseudomonas spp., which may contain potential PAHs degraders 

(Xu-xiang et al., 2006; Germaine et al., 2009). Culturable bacterial endophytes isolated from 

annual barley plants growing on oil sands reclamation soils corresponded mostly to 

Enterobacter, Flavobacterium, Pseudomonas and Xanthomonas spp. In addition, 

Flavobacterium and Pseudomonas spp. were identified in both culture dependent and 

independent techniques. These two genera contain species know to be hydrocarbon degraders 

(Lee et al., 2006), plant growth promoters (Shcherbakov et al., 2013) and to control plant 

pathogens (Mazurier et al., 2009).  

Although DGGE banding pattern represents a good approximation of the most dominant 

bacterial species biodiversity, this technique limited the resolution of low abundance microbes 

due to the co-migration of DNA fragments (Zheng et al., 2013). Hence, annual barley (as a 

planted species) and white sweet clover (as an unplanted native species) were sampled in the 

following year and 16S rRNA amplicon sequencing was used to characterize the bacterial root 

microbiome associated with these plants (Chapter 4). The results of this study suggests that 

changes in the microbiome were mainly due to different rhizo-compartments (rhizosphere and 

endosphere) and host plants. As previously reported in Germida et al. (1998), endophytic root 

colonization is not a passive process and the current study suggests that both sweet clover and 

barley plants have the ability to select for certain soil microbial consortia. Differences in 

bacterial community profiles were detected even at broad taxonomic levels such as phylum level, 

in which there was an increase in the abundance of Proteobacteria in the endosphere 

compartment of both plants. Proteobacteria have been previously described as effective 

rhizosphere and root colonizers due to their high ability to utilize root exudates (Fierer et al., 

2007). In addition, sweet clover plants were more restrictive than barley, which confirms 

previous findings by Germida et al. (1998) and Ofek-Lalzar et al. (2014), in which the authors 

suggest that plant factors play a dominating role in selecting bacterial endophytes. Members of 

the family Rhizobiaceae were more closely associated with sweet clover plants, while barley 

plants harboured a high abundance of Xanthomonadaceae. The family Rhizobiaceae contains 

known nitrogen fixing bacteria that could alleviate potential nutrient limitation in reclamation 
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areas (Lefrançois et al., 2010). Xanthomonadaceae contains the genus Xanthomonas, but mainly 

Stenotrophomonas, which are capable of great metabolic versatility and are colonizers of soil and 

plants (Ryan et al., 2009). At genus level, most differences within endophytic bacterial profiles 

were due to the abundance of Sinorhizobium, Pseudomonas and Acholeplasma. The association 

with Sinorhizobium, a nitrogen-fixing bacteria (Bromfield et al., 2010), was restricted to sweet 

clover, suggesting that these plants may rely on this association to grow in reclamation soils. In 

addition, only barley plants harboured Acholeplasma endophytes. Acholeplasma are wall-less 

bacteria known to colonize the guts and hemolymph of insects and their transmission to plants 

occurs when these insects feed on plant tissues (Bonnet et al., 1991; Tully et al., 1988). 

However, Pseudomonas species successfully colonized both plants. Pseudomonas ssp. are 

common colonizers of the plant interior (Ofek-Lalzar et al., 2014) and contain species with a 

wide range of metabolic capabilities including PAH degradation (Germaine et al., 2009) and 

plant growth promotion (Bhattacharyya and Jha, 2012). Therefore, analyzes in Chapter 4 

revealed that different plants harboured distinct bacterial communities which may have essential 

metabolic capabilities that can improve plant growth in reclamation areas. 

Previous studies have shown that tailings sands used in land reclamation may contain 

residual hydrocarbons (Quoreshi, 2008; Lefrançois et al., 2010) and therefore, plant microbial 

selection in these areas may be associated with the presence of hydrocarbon degrading bacteria. 

Hence, Chapter 5 investigated the abundance of hydrocarbon degrading genes (CYP 153, alkB, 

nah) and bacterial 16S rRNA gene. Overall, significant differences between plants were only 

observed in the quantification of the CYP153 gene, in which sweet clover endophytic bacterial 

communities harbored a higher abundance of this gene compared to barley. Whereas overall alkB 

gene abundance in barley endophytic bacteria indicated positive correlations with soil THC, 

negative correlations were observed between THC and the alkB/16s rRNA ratio in sweet clover 

endophytes. According to Jurelevicius et al. (2012), THC is a key factor influencing alkB 

diversity in soils with similar physicochemical properties. Sweet clover endophytic bacterial 

communities containing alkB also positively correlated to OM, NO3- , NH4+, TC and TOC. 

According to Powell et al. (2010), the combination of TC and pH is the most influential for 

microbial communities as it determines soil water holding capacity which influences soil oxygen 

availability. In addition to unculturable endophytes, the current study assessed the presence of 

hydrocarbon degrading genes in previously isolated barley endophytic bacteria. Most of these 
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isolates were identified as Pantoea, Pseudomonas and Enterobacter spp. Tara et al. (2014) 

studied carpet grass (Axonopus affinis) inoculation with Pantoea sp. BTRH79 in diesel-polluted 

soils and observed an increase plant biomass and phytoremediation activity in inoculated plants. 

Pseudomonas spp have also been used in several inoculation studies that assessed hydrocarbon 

degradation (Tara et al., 2014; Khan et al., 2014). Endophytic Enterobacter ssp. containing the 

CYP153 gene has been previously investigated for hydrocarbon degradation (Yousaf et al., 

2011) as this genus comprises a range of beneficial plant-associated bacteria with plant growth 

promotion and hydrocarbon degradation effects (Yousaf et al., 2011).  

Since the third main objective of this research was to investigate the potential use of 

endophytic root bacteria and host plants to degrade hydrocarbons, Chapter 6 assessed these 

applications with previously selected bacterial isolates. Inoculation of barley and sweet clover 

seeds with bacteria led to either growth promoting or detrimental effects on seed germination 

rate/vigor. Although no positive effects were observed in barley, bacterial strain EA3-25 

(Xanthomonas sp.) enhanced seed germination in sweet clover. Xanthomonas it is mostly known 

to cause plant diseases (Soares et al., 2010), but also contain species known for polycyclic 

aromatic hydrocarbons (PAHs) degradation (Deka and Lahkar, 2016). Since most growth 

promoting effects were detected in sweet clover, this plant was selected for a root elongation, full 

potting experiment and phytoremediation experiments. Sweet clover plants, as forage legumes 

that fix nitrogen in symbiotic association with Sinorhizobium meliloti (Bromfield et al., 2010), 

may be better suited to adapt in nutrient limited and oil contaminated soils (Hall et al., 2011; 

Franco and Balieiro, 2000). In addition, inoculations of sweet clover strains with EA2-30 

(Flavobacterium sp.) and EA3-1 (Bacillus sp.) enhanced root elongation. Pant et al. (2016) 

inoculated Jatropha curcas with Flavobacterium sp. and found that this isolate promoted 

multiple plant growth promoting effects and biodegradation of 1,4-dichlorobenzene. Bacillus 

pumilus have also enhanced plant growth and induced the proliferation of other rhizosphere 

bacteria on root surfaces of Atriplex lentiformis growing in mineral ore mine tailings (de-Bashan 

et al., 2010). In addition to the early stages of plant development, the current study also 

investigated promoting effects at plant flowering stage. At this stage, the results in this study 

highlights the ability of sweet clover plants to develop in nutrient limited conditions. According 

to Ogle et al. (2008), sweet clover, like other legumes, increases nitrogen content in soils and 

have an easy establishment in reclamation areas. The inoculation of sweet clover with EA1-36 
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(Pantoea sp.) and EA3-16 (Chryseobacterium sp.) led to a significant increase in the number of 

secondary shoots and root biomass respectively. Since plant essential soil nutrients are taken up 

by roots, root growth is considered a prerequisite for enhanced plant development (Mills and 

Jones, 1996). Although bacterial inoculants promoted plant growth in soils without the addition 

of contaminants, phytoremediation studies revealed similar results as reported by Arslan et al. 

(2014), in which high diesel concentrations caused detrimental effects to all plants. According to 

Chen et al. (2013), due to its toxicity and hydrophobicity, hydrocarbons can adversely affect 

plant health and development. In addition, the C:N ratio in hydrocarbon contaminated soils is 

typically high due to the high input of carbon (C) into the system (Bento et al., 2012), however, 

due to their association with N-fixing bacteria, sweet clover plants may withstand those adverse 

conditions and also support the survival of hydrocarbon degrading bacteria (Hall et al., 2011). 

Overall, inoculation of sweet clover with hydrocarbon degrading bacteria enhanced plant 

biomass in diesel contaminated soils compared to uninoculated control plants. However only in 

soils amended with diesel at10,000 and 20,000 mg·kg-1 an increase in soil hydrocarbon 

degradation was observed. In soils initially amended with diesel at 20,000 mg·kg-1, inoculation 

with strains EA6-5 (Pseudomonas sp.) and EA4-40 (Pantoea sp.) significantly decreased soil 

hydrocarbon concentrations. Pseudomonas spp., which are considered to be ubiquitous in various 

environments, contains species that play an important role in hydrocarbon degradation (Liu et 

al., 2016). In addition, due to their easy cultivation and stress resistance Pseudomonas spp. are 

ideal candidates for biotechnological applications (Louvado et al., 2015).  

The plant microbiome plays an important role in the growth and development of plants 

growing in reclamation soils. In this context, my research demonstrated that bacteria associated 

with barley and sweet clover were mainly driven by plant factors and this microbiome harbors 

endophytes that can be potentially used in phytoremediation. In particular, bacterial endophytes 

such as Pantoea spp. and Pseudomonas spp. in association with sweet clover plants were proven 

to successfully reduce petroleum hydrocarbons in soil.



 

 
 

162 

 
 
 
 

8. SUMMARY AND CONCLUSIONS 
 

The first objective of this study was to assess the diversity of endophytic root bacteria 

associated with plants growing on reclamation soils. An initial assessment of dominant soil 

microbial communities in oil sands post-mining landscapes revealed that total and organic 

carbon, NH4+ and organic matter are the main factors influencing these communities. 

Additionally, endophytic bacteria also successfully colonized barley plants and most of selected 

bacterial endophytes closely matched rhizosphere and soil bacteria from agricultural and 

grassland soils. However, a few endophytes matched those of growth promoting bacteria and 

potential hydrocarbon degraders, suggesting they may assist plant growth on reclamation covers. 

Since barley is commonly planted in reclamation covers, to provide quick vegetation cover and 

erosion control, its associated bacterial communities are of high importance to future native plant 

species. Therefore, an in-depth analysis of bacterial profiles associated with barley and naturally 

occurring white sweet clover (Melilotus albus) plants was also conducted in order to elucidate a 

better understanding within this research objective.  

Consistent with prior findings in the literature, the results in this study confirmed that 

rhizo-compartments (endosphere and rhizosphere) indicated the strongest differentiation of root 

associated bacterial communities. In addition, plant species account as main driving factors 

affecting the endophytic microbiome. Endosphere compartments also indicated a lower diversity 

and the depletion or enrichment of certain bacteria when compared with the rhizosphere, which 

strongly suggests that plant select for certain soil bacterial consortia. Endophytic profiles also 

revealed that sweet clover plants were more selective than barley. Although Pseudomonas and 

Pantoea were able to successfully colonize both plants, members of the family Rhizobiaceae, 

such as Sinorhizobium and Rhizobium were mainly associated with sweet clover, whereas 

Acholeplasma was unique to barley. Endophytic bacterial profiles also varied within the same 

plant species at different sampling locations; however, these differences were driven by factors 

other than the soil parameters analyzed in in this study.  
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Previous studies have shown that tailings sands used in land reclamation may contain 

residual hydrocarbons (Quoreshi, 2008; Lefrançois et al., 2010). It is possible, therefore, that 

plant selection of root microbial communities might depend on the microbes ability to degrade 

hydrocarbons. Thus, the second research objective of this study was to screen endophytic root 

bacteria for hydrocarbon degrading genes (CYP 153, alkB and nah) and a universal bacterial 

gene (16S rRNA). The abundance of hydrocarbon degrading genes within endophytic 

communities was influenced by the interaction of plant species, cover management and sampling 

locations. Whereas both plants analyzed had similar 16s rRNA, alkB and nah gene abundance, 

sweet clover species harbor higher abundance of CYP153, which suggest that plant factors play 

an important role in selecting hydrocarbon degrading bacteria. In addition, soil total 

hydrocarbons, pH, soil carbon and nitrogen play an important role in determining hydrocarbon 

degrading communities. Previously isolated endophytic bacterial cultures revealed a total of 42 

isolates that were positive for at least one hydrocarbon degrading gene, in which most of these 

isolates were positive for the presence of alkB and closely matched Pantoea, Pseudomonas and 

Enterobacter spp.  

The third objective of this study was to investigate the potential use of endophytic root 

bacteria and host plants to degrade hydrocarbons. In order to obtain bacterial strains better suited 

for phytoremediation applications, plant compatibility and growth promoting effects were 

investigated without the use of contaminants prior to phytoremediation applications. Here, 

unique associations between bacteria strains and host plants varied from seed germination 

stimulations to inhibitions. In addition, most growth promoting effects were observed in sweet 

clover plants and based on overall growth promoting effects, four different bacterial strains, 

EA1-17 (Stenotrophomonas sp.), EA2-30 (Flavobacterium sp.), EA4-40 (Pantoea sp.) and EA6-

5 (Pseudomonas sp.), were selected for phytoremediation experiments. The increase in diesel 

fuel concentration in soils inhibited overall plant growth; however, plants inoculated with 

endophytic bacteria had significantly greater plant biomass. At lower diesel concentrations, 

analysis of soil hydrocarbon fractions revealed no significant reduction in hydrocarbons between 

treatments. However, in soils amended with diesel at 10,000 and 20,000 mg.kg-1 there was a 

significant reduction in hydrocarbons observed in treatments inoculated with EA4-40 (Pantoea 

sp.) and EA6-5 (Pseudomonas sp.).  
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Overall, both barley and sweet clover plant cultivars used in this research harbored a 

diverse group endophytic bacteria, which suggests that despite the adverse conditions in oil sands 

reclamation areas, the root microbiome remains similar to those found in agricultural and natural 

landscapes. Although differences in sampling locations and cover management were observed, 

plant factors played a dominant role in selecting bacterial endophytes. Sweet clover plants were 

more restrictive when compared to barley, supporting the enrichment of select bacterial taxa. 

Sweet clover association with nitrogen fixers (e.g. Sinorhizobium spp.) and Pseudomonas spp. 

(which includes several known hydrocarbon degraders) may play an important role on the ability 

of this plant to successfully colonize reclamation soils. In addition, sweet clover uncultured 

bacterial endophytes harboured a higher abundance of the gene CYP153, which encodes for 

hydrocarbon degrading enzymes. Finally, bacterial endophytes, such as Pantoea spp. and 

Pseudomonas spp. isolated from oil sands reclamation areas can be successfully used in 

association with sweet clover plants in phytoremediation of petroleum hydrocarbons.
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9. FUTURE RESEARCH 
 

Tailing sands are characterized by the presence of residual hydrocarbons, low nutrient 

content and the oil sands process-affected water (OSPW) associated with the tailing sands has 

high salinity. Previous studies have investigated the use of nitrogen-fixing Actinobacteria 

(Lefrançois et al., 2010) and Ectomycorrhizal (ECM) fungi (Beaudoin-Nadeau et al., 2016) in 

association with alders as a way to remediate oil sands reclamation areas. However, little is 

known about how other plants and their associated microbial communities, such as endophytic 

bacteria might perform at mine reclamation sites. Khan et al. (2017) studied inoculation of plants 

with endophytic bacteria in high saline soils and Tara et al. (2014) used a combination of alkane-

degrading and bacteria possessing ACC deaminase activity to enhance diesel phytoremediation. 

Similar studies should be conducted at oil sands reclamation areas.  

Peat mineral mixes are the most commonly used covering material in oil sands 

reclamation; however, the LFH soil horizon is also used by the industry. Mackenzie and Naeth 

(2009) studied the establishment of native boreal plant species on these two covers and found 

that LFH improves plant nutrient availability and creates a more diverse ecosystem. Similarly, 

Howell and MacKenzie (2017) studied soil microbial communities in these two cover types and 

found that although no significant differences were observed in community level physiological 

profiles (CLPP), phospholipid fatty acid (PLFA) profiles indicated significant differences by 

cover materials. These studies, however, failed to address root associated microbial 

communities. Consequently, more studies are needed to assess functional and genetic 

microbiome variability in these covers. For example, future studies might focus on comparing 

the same planted species growing in these two covers to determine how their associated bacterial 

communities differentiate due to cover type. 

Other plants such as jack pine (Pinus banksiana), white spruce (Picea glauca) and 

slender wheatgrass (Elymus trachycaulus) are commonly used in oil sands reclamation strategies. 

Therefore, an analysis of the root microbiome of these plants and other plants growing in these 
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reclamation areas could contribute to a better understanding of the factors controlling microbial 

community structure and function.  

The phytoremediation growth chamber experiments in this study were limited in scope. 

Future studies should assess bacterial inoculant survival on inoculated seeds and in soil. 

Furthermore, fields studies should be conducted to determine if results observed in the lab also 

occur in the field. It would also be important to understand how bacterial inoculants impact 

indigenous microbial communities. Hence, future phytoremediation studies could focus on the 

use of bacterial strains EA1-17 (Stenotrophomonas sp.), EA2-30 (Flavobacterium sp.), EA4-40 

(Pantoea sp.), EA6-5 (Pseudomonas sp.), and a consortium of these isolates, in a field 

phytoremediation experiment. Moreover, different plant species should be tested with and 

without fertilizer applications for their effectiveness as for remediating a variety of soil 

contaminants including crude oil.  

Finally, some of the isolated bacteria used in this study, such as EA3-1 (Bacillus sp.), 

EA3-16 (Chryseobacterium sp.) and EA3-25 (Xanthomonas sp.), tested positive for the nah gene 

and demonstrated promising plant growth promotion effects, but were not used in 

phytoremediation experiments due to time constraints. It would be worthwhile for these and 

other promising endophytic bacteria to be investigated as phytoremediation tools. 
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APPENDIX A: Identification of endophytic bacteria isolates associated with annual barley 
(Hordeum vulgare) growing at an oil sands reclamation area. Identification is based on 16S 

rRNA Sanger sequencing.
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Table A.1 Identification of endophytic bacteria isolates associated with annual barley (Hordeum 
vulgare) growing at an oil sands reclamation area. 

Sample Code Location Accession # Closest match Similarity (%) 

EA1-1 E1 HF936841.1 Pedobacter alluvionis 100 
EA1-10 E1 JF494826.1 Pantoea agglomerans  94 
EA1-13 E1 NR_104943.1 Enterobacter cloacae   100 
EA1-3 E1 KF053337.1 Serratia sp. 97 
EA1-8 E1 KJ482776.1 Pedobacter sp.  96 
EA1-9 E1 KJ482776.1 Pedobacter sp.  96 
EA1-11 E1 NR_025461.1 Curtobacterium herbarum 98 
EA1-15 E2 LK054576.1 Chryseobacterium sp. 100 
EA1-17 E2 NR_074977.1 Stenotrophomonas chelatiphaga 100 
EA1-18 E2 JN699021.1 Bacillus pumilus  91 
EA1-19 E2 KM059525.1 Enterobacter sp. 91 
EA1-26 E2 NR_113627.1 Paenibacillus pabuli 99 
EA1-34 E2 NR_074777.1 Enterobacter sp. 95 
EA1-35 E2 NR_074777.1 Enterobacter sp. 99 
EA1-36 E3 NR_132712.1 Pantoea theicola 100 
EA1-37 E3 NR_118381.1 Bacillus pumilus   100 
EA1-38 E3 NR_116808.1 Serratia glossinae 93 
EA2-6 E3 KJ831451.1 Pseudomonas sp. 93 
EA2-7 E3 JF494826.1 Pantoea agglomerans  93 
EA2-9 E3 NR_132712.1 Stenotrophomonas pavanii 100 
EA2-11 E3 EU375390.1 Pedobacter sp. 89 
EA2-17 E4 JQ966939.1 Serratia sp. 90 
EA2-19 E4 GU413438.1 Pantoea theicola 99 
EA2-20 E4 KT375349.1 Pedobacter ginsengisoli 99 
EA2-21 E4 KJ579161.1 Pedobacter sp. 99 
EA2-22 E4 KJ846483.1 Pseudomonas sp. 94 
EA2-26 E4 GQ254771.1 Bacillus pumilus  99 
EA2-27 E4 AY972422.1 Pseudomonas sp. 93 
EA2-28 E5 NR_102966.1 Pantoea vagans 99 
EA2-29 E5 AF130886.2 Enterobacter agglomerans 99 
EA2-30 E5 KR088356.1 Flavobacterium aquidurense 96 
EA2-33 E5 DQ659031.1 Mesorhizobium sp. 92 
EA2-37 E5 HF566234.1 Enterobacter hormaechei 97 
EA2-38 E5 JN699022.1 Bacillus pumilus  95 
EA2-41 E5 EF123221.1 Bacillus sp. 88 
EA3-1 E6 KC595863.1 Bacillus pumilus 99 
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Table A.1 cont. 
EA3-11 E6 LK021068.1 Pseudomonas koreensis 94 
EA3-12 E6 JX908960.1 Pedobacter sp. 96 
EA3-13 E6 KJ482715.1 Arthrobacter  92 
EA3-14 E6 KM092525.1 Bacillus subtilis    88 
EA3-7 E6 NR_044382.1 Pedobacter alluvionis   98 
EA3-9 E6 AY965083.1 Pseudomonas sp. 92 
EA3-16 E7 NR_126257.1 Chryseobacterium hominis 100 
EA3-18 E7 KP299228.1 Pseudomonas syringae 95 
EA3-21 E7 FR682741.1 Pedobacter sp. 88 
EA3-25 E7 NR_121770.1 Xanthomonas campestris   100 
EA3-26 E7 NR_108537.1 Flavobacterium myungsuense  99 
EA3-27 E7 NR_102514.1 Pseudomonas poae   97 
EA3-32 E7 NR_042647.1 Chryseobacterium gregarium  99 
EA4-1 E8 NR_126257.1 Chryseobacterium nakagawai 100 
EA4-2 E8 NR_134713.1 Staphylococcus hominis 99 
EA4-3 E8 NR_121749.1 Staphylococcus pasteuri 98 
EA4-4 E8 NR_027221.1 Lysobacter antibioticus    89 
EA4-5 E8 NR_044382.1 Pedobacter alluvionis  89 
EA4-6 E8 NR_134019.1 Serratia plymuthica 100 
EA4-8 E8 CP012830.1 Pseudomonas sp. 100 
EA4-25 E9 EF363766.1 Flavobacterium sp. 98 
EA4-32 E9 NR_104943.1 Enterobacter sp. 100 
EA4-34 E9 KT375349.1 Pantoea theicola 100 
EA4-35 E9 FJ973535.1 Bacillus subtilis 100 
EA4-38 E9 NR_102514.1 Serratia quinivorans 100 
EA4-39 E9 NR_102514.1 Pseudomonas poae  98 
EA4-40 E9 EF173381.1 Pantoea theicola 100 
EA4-44 E10 KM009133.1 Chryseobacterium jejuense  97 
EA5-1 E10 GQ148962.1 Rahnella sp. 96 
EA5-2 E10 GQ232463.1 Bacteria unclassified 99 
EA5-3 E10 KM009133.1 Chryseobacterium jejuense   99 
EA5-4 E10 KJ482773.1 Stenotrophomonas sp. 99 
EA5-8 E10 NR_074820.1 Serratia plymuthica 100 
EA5-9 E10 KT862774.1 Rahnella sp. 99 
EA5-12 S1 KC108940.1 Pedobacter sp.  95 
EA5-14 S1 LK021101.1 Pantoea septica 99 
EA5-16 S1 JX657047.1 Flavobacterium pectinovorum   97 
EA5-18 S1 JQ977617.1 Agrobacterium sp. 91 
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Table A.1 cont. 
EA5-19 S1 JX047449.1 Staphylococcus sp. 99 
EA5-20 S1 KM513968.1 Flavobacterium sp. 100 
EA5-27 S1 NR_108382.1 Flavobacterium macrobrachii   92 
EA5-35 S2 EF428995.1 Pseudomonas fluorescens 93 
EA5-36 S2 NR_042647.1 Chryseobacterium gregarium  97 
EA5-37 S2 AY561586.1 Agrobacterium sp. 93 
EA5-38 S2 AB772879.1 Pseudomonas sp. 97 
EA5-39 S2 KJ733896.1 Xanthomonas sp. 92 
EA5-42 S2 LK021199.1 Xanthomonas cynarae 89 
EA5-44 S2 KC108940.1 Pedobacter sp.  94 
EA6-10 S3 NR_074432.1 Riemerella anatipestifer  99 
EA6-11 S3 NR_074716.1 Sanguibacter keddieii   99 
EA6-12 S3 KP259552.1 Pseudomonas sp. 98 
EA6-3 S3 KM009990.1 Escherichia hermannii  98 
EA6-5 S3 KP259552.1 Pseudomonas sp. 100 
EA6-7 S3 NR_121770.1 Xanthomonas fuscans   99 
EA6-9 S3 NR_042252.1 Arthrobacter tecti   99 
EA6-16 S4 KM355416.1 Enterobacter sp. 92 
EA6-20 S4 KF835769.1 Enterobacter aeros  89 
EA6-21 S4 KM458060.1 Lelliottia sp. 96 
EA6-22 S4 NR_044729.2 Hafnia alvei   98 
EA6-25 S4 KM458060.1 Lelliottia sp. 89 
EA6-27 S4 KJ846496.1 Klebsiella sp. 91 
EA6-28 S4 KF516260.1 Lelliottia nimipressuralis  96 
EA6-37 S5 LC034140.1 Enterobacter sp. 100 
EA6-38 S5 JN251781.1 Kluyvera intermedia 91 
EA6-39 S5 JN251781.1 Citrobacter sp. 93 
EA6-40 S5 KP852523.1 Enterobacter sp. 93 
EA7-1 S5 KC834342.1 Pantoea theicola 91 
EA7-2 S5 DQ530153.1 Stenotrophomonas maltophilia 94 
EA7-4 S5 KF679345.1 Pantoea intestinalis  100 
EA7-20 S6 FN386709.1 Arthrobacter nitroguajacolicus 95 
EA7-22 S6 KM035942.1 Microbacterium sp. 92 
EA7-29 S6 KM117168.1 Arthrobacter protophormiae  96 
EA7-30 S6 NR_074977.1 Bacillus pumilus 97 
EA7-31 S6 NR_074977.1 Bacillus pumilus 94 
EA7-36 S6 NR_114481.1 Pseudomonas tolaasii  97 
EA7-37 S6 NR_074977.1 Bacillus pumilus 98 
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Table A.1 cont. 
EA8-12 S7 NR_113713.1 Rhizobium galegae 96 
EA8-14 S7 DQ122300.1 Xanthomonas campestris   97 
EA8-16 S7 HF912854.1 Pseudoalteromonas 99 
EA8-17 S7 JX514422.1 Pseudomonas syringae  96 
EA8-18 S7 KJ481222.1 Enterobacter sp. 94 
EA8-6 S7 DQ530153.1 Stenotrophomonas maltophilia 97 
EA8-8 S7 KJ959612.1 Chryseobacterium   92 
EA8-19 S8 EU434528.1 Pseudomonas fluorescens  91 
EA8-20 S8 AB772879.1 Pseudomonas sp. 95 
EA8-21 S8 EF428995.1 Pseudomonas fluorescens 91 
EA8-22 S8 KJ513869.1 Luteimonas sp. 98 
EA8-23 S8 NR_042647.1 Chryseobacterium gregarium  98 
EA8-25 S8 EU434528.1 Pseudomonas fluorescens   91 
EA8-27 S8 AB772879.1 Pseudomonas sp. 95 
EA8-30 S9 NR_042647.1 Chryseobacterium gregarium   98 
EA8-33 S9 NR_042647.1 Chryseobacterium gregarium   96 
EA8-34 S9 KJ482776.1 Pedobacter sp. 97 
EA8-38 S9 HF566366.1 Xanthomonas campestris   92 
EA8-41 S9 DQ122300.1 Xanthomonas campestris   97 
EA8-43 S9 KJ482776.1 Pedobacter sp. 97 
EA8-44 S9 HF566366.1 Xanthomonas campestris   92 
EA7-22 S10 KM035942.1 Microbacterium sp. 92 
EA7-24 S10 KM023314.1 Bacillus safensis   94 
EA7-25 S10 KM023314.1 Bacillus safensis   90 
EA7-26 S10 FN386709.1 Arthrobacter nitroguajacolicus 94 
EA7-27 S10 FN386709.1 Arthrobacter nitroguajacolicus 96 
EA7-28 S10 NR_112775.1 Dietzia timorensis 91 
EA8-30 S10 NR_121739.1 Stenotrophomonas rhizophila 99 
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APPENDIX B: Rarefaction curves relating the observed number of sequences to the observed 
number of operational taxonomic units (OTUs) at 97% rRNA sequence similarity.
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Figure B.1 Rarefaction curves for bacterial OTUs, clustering at 97% rRNA sequence similarity. Curves represent sequences for each 
sample for endophytic barley (EB), endophytic clover (EC), rhizosphere barley (RB) and rhizosphere clover (RC).
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Figure B.1 cont.
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Figure B.1 cont.
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Fig. B.1 cont.
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Fig. B.1 cont.
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Fig. B.1 cont.  
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APPENDIX C: Sequence genes CYP153 (339 bp) and alkB (548 bp) and nah (377 bp) 

synthesized by Biomatik (Cambridge, Canada).
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CYP153 (339 bp)  
 

1 gtgggcggca acgacaccac tcgaaactcg atgagtggcg gtgtgcttgc gctcaaccgg 

61 ttccccgacc agttcgagaa gctgaaggcg aaccccgacc tgatccccaa catggtctcg 
121 gagatcatcc ggtggcagac cccgctggcc tacatgcgcc ggatcgccaa gaccgacacc 
181 atgctgaagg gccagttcat ccgcaagggc gacaaagtcg tgatgtggta cgcctcgggc 
241 aaccgcgacg aaagcgtgtt cgaacggccc gatgagttga tcatcgatcg gagcaacgcc 
301 cgccaccaca tctccttcgg cttcggcatc caccgctgc   

 
alkB (548 bp)  
 

1 aacacggcgc acgaactagg gcacaagaag accgccatcg aacgctggct ggccaagctg 
61 gccctggcgc cgaccggcta tggccatttc tgtatcgagc acaaccgcgg gcatcaccgg 

121 gacgtggcca cgccggaga ttccgcctca tcacgtatgg gcgagagcta ctatcgcttc 
181 atcaagcgcg agatccccgg ggccttccgc cgcgcctggg ccatcgaggg cgatcgcatg 
241 gcccgcaagg gactgagccg ctggtcgttg cagaacgata tcgtccacac ggccctggta 
301 accgtcgtgc tgtggggcgg gctgattttc tggctgggtc tcgcggtgct gcccttcctg 
361 ctgctgcagg cgctgatcgc ctattcgctg ctttcctccg cgaactacgt agagcattac 
421 ggactgttgc gccagagatt ggccagcggt cgctacgaac gccccgagcc gcgccactcc 
481 tggaacagca atcatgtgct gtcgaacatc ctcctctatc agctccagcg ccactcggac 
541 caccacgc 

      
 
nah (377 bp)  
 

1 caaaagcacc tgattcatgg cgatgaagaa cttttccagc acgaactgag aaccattttt 
61 gcgcggaact ggctttttct cactcatgac agcctgattc catcccccgg cgactatgtt 

121 accgcaaaaa tgggtattga cgaggtcatc gtctctcggc agagcgacgg ttcgattcgt 
181 gccttcctga acgtttgtcg gcaccgtggc aagacgctgg ttaacgcgga agccggcaat 
241 gccaaaggtt tcgtttgcag ctatcacggc tggggcttcg gctccaacgg tgaactgcag 
301 agcgttccat tcgaaaaaga gctgtacggc gagtcgctca acaaaaaatg tctggggttg 
361 aaagaagtcg ctcgcgt 
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APPENDIX D: Identification of endophytic bacteria isolates associated with annual barley 
(Hordeum vulgare) positive for hydrocarbon degrading genes (CYP153. alkB, nah). 

Identification is based on 16S rRNA Sanger sequencing.
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Table D.1 Identification of endophytic bacteria isolates associated with annual barley (Hordeum 
vulgare) positive for hydrocarbon degrading genes (CYP153, alkB, nah). 

# Code Description Gene Similarity (%) Accession # 
1 EA1-1 Pedobacter alluvionis alkB 100% HF936841.1 
2 EA1-15 Chryseobacterium sp.  CYP153 100% LK054576.1 
3 EA1-17 Stenotrophomonas chelatiphaga CYP153 100% NR074977.1 
4 EA1-36 Pantoea theicola CYP153 100% NR132712.1 
5 EA2-9 Stenotrophomonas pavanii nah 100% NR132712.1 
6 EA2-19 Pantoea theicola alkB 100% GU413438.1 
7 EA2-20 Pedobacter ginsengisoli alkB 100% KT375349.1 
8 EA2-24 Enterobacter cloacae alkB 100% KJ579161.2 
9 EA2-30 Flavobacterium aquidurense alkB 100% KR088356.1 

10 EA3-1 Bacillus pumilus nah 100% KC595863.1 
11 EA3-10 Arthrobacter sp. nah 100% NR134699.1 
12 EA3-16 Chryseobacterium hominis nah 100% NR126257.1 
13 EA3-17 Chryseobacterium hominis nah 100% NR126257.1 
14 EA3-18 Pseudomonas syringae nah 100% KP299228.1 
15 EA3-25 Xanthomonas campestris nah 100% NR121770.1 
16 EA4-1 Chryseobacterium nakagawai nah 100% NR126257.1 
17 EA4-2 Staphylococcus hominis CYP153 100% NR134713.1 
18 EA4-6 Serratia plymuthica CYP153 100% NR134019.1 
19 EA4-8 Pseudomonas sp.  CYP153 100% CP012830.1 
20 EA4-13 Enterobacter cloacae nah 100% NR104943.1 
21 EA4-27 Ewingella sp.  CYP153 100% NR133716.1 
22 EA4-32 Enterobacter sp. nah 100%  NR104943.1 
23 EA4-34 Pantoea theicola alkB 100% KT375349.1 
24 EA4-35 Bacillus subtilis alkB 100% FJ973535.1 
25 EA4-38 Serratia quinivorans CYP153 100% NR102514.1 
26 EA4-40 Pantoea theicola alkB 100% EF173381.1 
27 EA5-5 Staphylococcus aureus nah 100% NR074956.1 
28 EA5-8 Serratia plymuthica nah 100% NR074820.1 
29 EA5-9 Rahnella sp. CYP153/nah 100% KT862774.1 
30 EA5-10 Ewingella sp. CYP153 100% NR133716.1 
31 EA5-11 Serratia liquefaciens CYP153/nah 100% KT862774.1 
32 EA5-20 Flavobacterium sp. CYP153 100% KM513968.1 
33 EA6-5 Pseudomonas sp. alkB 100% KP259552.1 
34 EA6-12 Pseudomonas sp. alkB 100% KP259552.1 
35 EA6-37 Enterobacter sp. alkB 100% LC034140.1 
36 EA6-38 Kluyvera intermedia alkB 100% KP852523.1 
37 EA6-40 Enterobacter sp. alkB 100% KP852523.1 
38 EA7-1 Pantoea theicola alkB 100% KC834342.1 
39 EA7-4 Pantoea intestinalis alkB 100% KF679345.1 
40 EA7-11 Pseudomonas syringae alkB 100% JX514422.1 
41 EA1-34 Rahnella sp. CYP153 100% KX450471.1 
42 EA1-37 Bacillus pumilus CYP153 100% KX856184.1 



 

 
 

211 

APPENDIX E: Effect of endophytic bacteria on sweet clover and barley in seed germination 
experiments. 
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Table E.1 Effect of endophytic bacteria on barley and sweet clover seed germination rate (%) 
(Total of 10 seeds) at 10°C. Symbols indicate treatments significantly (LSD p ≤ 0.05) lower 
(†) when compared to the control. 

 Barley Sweet clover 
 ------------------------------------------------ (%) --------------------------------------------------- 

Strain Mean SD Mean SD 
Control 98.0 4.5 73.8 38.1 
EA1-1 86.0 8.9 73.8 37.0 
EA1-15 86.0 16.7 77.3 39.8 
EA1-17 74.0† 15.2 88.0 11.0 
EA1-36 86.0 16.7 58.9 47.4 
EA2-9 76.0† 11.4 80.0 7.1 
EA2-19 82.0 14.8 74.0 16.7 
EA2-20 80.0† 12.2 88.0 8.4 
EA2-24 82.0 13.0 96.0 5.5 
EA2-30 94.0 8.9 69.8 35.0 
EA3-1 84.0 15.2 92.0 11.0 
EA3-10 88.0 8.4 96.0 8.9 
EA3-16 90.0 10.0 92.0 8.4 
EA3-17 34.0† 16.7 84.0 13.4 
EA3-18 46.0† 18.2 88.0 11.0 
EA3-25 32.0† 16.4 90.0 10.0 
EA4-1 22.0† 8.4 88.0 8.4 
EA4-2 40.0† 20.0 67.5 35.4 
EA4-6 48.0† 23.9 94.0 5.5 
EA4-8 30.0† 14.1 72.0 24.9 
EA4-13 8.0† 13.0 82.0 14.8 
EA4-27 62.0† 17.9 74.0 5.5 
EA4-32 50.0† 14.1 78.0 13.0 
EA4-34 24.0† 15.2 94.0 5.5 
EA4-35 20.0† 12.2 94.0 8.9 
EA4-38 36.0† 16.7 94.0 5.5 
EA4-40 92.0 13.0 90.0 10.0 
EA5-5 68.0† 8.4 90.0 7.1 
EA5-8 68.0† 17.9 90.0 10.0 
EA5-9 24.0† 13.4 68.0 23.9 
EA5-10 14.0† 11.4 42.0 29.5 
EA5-11 76.0† 11.4 74.0 8.9 
EA5-20 70.0† 18.7 82.0 8.4 
EA6-5 90.0 10.0 86.0 5.5 
EA6-12 96.0 5.5 82.0 11.0 
EA6-37 82.0† 8.4 84.0 16.7 
EA6-38 88.0 8.4 84.0 18.2 
EA6-40 78.0† 8.4 84.0 15.2 
EA7-1 94.0 8.9 80.0 7.1 
EA7-4 76.0† 5.5 84.0 15.2 
EA7-11 76.0† 5.5 90.0 7.1 
EA1-34 32.0† 20.5 86.0 5.5 
EA1-37 38.0† 11.0 66.0 15.2 
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Table E.2 Effect of endophytic bacteria on barley and sweet clover seed germination vigor 
(%) (Total of 10 seeds) at 25°C. Symbols indicate treatments significantly (LSD p ≤ 0.05) 
higher (*) and lower (†) when compared to the control. 

 Barley Sweet clover 
 --------------------------------------- (%)------------------------------------------ 

Strain Mean SD Mean SD 
Control 68.0 13.0 48.0 15.7 
EA1-1 58.0 11.0 44.0 5.5 
EA1-15 22.0† 8.4 26.0† 5.5 
EA1-17 38.0† 12.8 70.0* 5.5 
EA1-36 62.0 8.4 40.7 15.5 
EA2-9 38.0 19.2 50.0 25.5 
EA2-19 36.0 20.7 46.0 15.2 
EA2-20 34.0† 11.9 58.0 19.2 
EA2-24 54.0 32.1 78.0 17.9 
EA2-30 44.0† 5.2 56.0 15.2 
EA3-1 44.0† 9.7 78.0 16.4 
EA3-10 24.0† 23.0 74.0 21.9 
EA3-16 68.0 17.9 84.0* 11.4 
EA3-17 46.0 42.2 74.0 15.4 
EA3-18 36.0† 8.9 16.0 18.2 
EA3-25 6.0† 5.5 84.0* 11.4 
EA4-1 12.0† 8.4 54.0 18.2 
EA4-2 4.0† 5.5 4.0† 5.5 
EA4-6 10.0† 12.2 45.6 21.5 
EA4-8 10.0† 10.0 0.0† 0.0 
EA4-13 6.0† 8.9 70.0 10.0 
EA4-27 36.0† 18.2 58.0 8.4 
EA4-32 32.0† 14.8 60.0 10.0 
EA4-34 20.0† 18.7 70.0 15.8 
EA4-35 52.0 36.3 76.0 27.0 
EA4-38 10.0† 7.1 54.0 18.2 
EA4-40 46.0† 8.9 48.0 17.9 
EA5-5 50.0 27.4 84.0* 8.9 
EA5-8 52.0 17.9 68.0 4.5 
EA5-9 14.0† 11.4 22.0 17.9 
EA5-10 0.0† 0.0 26.0 15.2 
EA5-11 52.0 21.7 42.0 11.0 
EA5-20 50.0 23.5 74.0* 5.5 
EA6-5 60.0 12.2 62.0 16.4 
EA6-12 56.0 19.5 78.0* 11.0 
EA6-37 32.0† 13.0 42.0 31.1 
EA6-38 48.0 14.8 50.0 17.3 
EA6-40 60.0 25.5 54.0 27.0 
EA7-1 72.0 17.9 62.0 21.7 
EA7-4 62.0 32.7 60.0 12.2 
EA7-11 78.0 17.9 68.0 21.7 
EA1-34 54.0 26.1 68.0 16.4 
EA1-37 22.0† 21.7 50.0 15.8 
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Table E.3 Effect of endophytic bacteria on barley and sweet clover seed germination vigor 
(%) (Total of 10 seeds) at 10°C. Symbols indicate treatments significantly (LSD p ≤ 0.05) 
higher (*) and lower (†) when compared to the control. 

 Barley Sweet clover 
 ------------------------------------------------------ (%) ------------------------------------------ 

Strain Mean SD Mean SD 
Control 76.0 11.4 17.7 13.3 
EA1-1 30.0† 10.0 4.0 8.9 
EA1-15 42.0 28.6 0.0† 0.0 
EA1-17 18.0† 19.2 70.0* 10.0 
EA1-36 42.0† 21.7 0.0† 0.0 
EA2-9 28.0† 26.8 0.0† 0.0 
EA2-19 22.0† 14.8 14.0 11.4 
EA2-20 32.0† 13.0 0.0† 0.0 
EA2-24 18.0† 14.8 2.0 4.5 
EA2-30 24.0† 20.7 39.0* 7.5 
EA3-1 42.0† 20.5 18.0 8.4 
EA3-10 8.0† 8.4 0.0† 0.0 
EA3-16 40.0† 15.8 74.0* 15.2 
EA3-17 8.0† 8.4 12.0 16.4 
EA3-18 32.0† 14.8 16.0 18.2 
EA3-25 12.0† 16.4 0.0† 0.0 
EA4-1 6.0† 5.5 4.0 5.5 
EA4-2 26.0† 23.0 2.0 4.5 
EA4-6 28.0† 27.7 0.0† 0.0 
EA4-8 14.0† 16.7 0.0† 0.0 
EA4-13 2.0† 4.5 32.0 19.2 
EA4-27 28.0† 19.2 20.0 15.8 
EA4-32 26.0† 16.7 4.0 8.9 
EA4-34 22.0† 13.0 6.0 13.4 
EA4-35 14.0† 11.4 18.0 14.8 
EA4-38 0.0† 0.0 0.0† 0.0 
EA4-40 46.0† 8.9 48.0* 7.9 
EA5-5 52.0 17.9 26.0 29.7 
EA5-8 28.0† 13.0 6.0 5.5 
EA5-9 2.0† 4.5 2.0 4.5 
EA5-10 4.0† 5.5 0.0† 0.0 
EA5-11 32.0† 13.0 10.0 12.2 
EA5-20 46.0 26.1 16.0 15.2 
EA6-5 64.0 24.1 54.0* 18.2 
EA6-12 86.0 8.9 22.0 11.0 
EA6-37 34.0† 21.9 50.0* 17.3 
EA6-38 62.0 11.0 14.0 15.2 
EA6-40 40.0 27.4 2.0 4.5 
EA7-1 66.0 19.5 4.0 5.5 
EA7-4 32.0† 8.4 2.0 4.5 
EA7-11 38.0† 21.7 6.0 8.9 
EA1-34 14.0† 16.7 4.0 8.9 
EA1-37 0.0† 0.0 0.0† 0.0 
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APPENDIX F: Effect of endophytic bacteria on sweet clover in root elongation experiments. 
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Figure F.1 Effect of bacteria on root length of sweet clover measured at 20 days. Plants were supplemented only with water. Error 
bars represent standard deviations and * indicate significance at LSD (p ≤ 0.05) compared to control.
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APPENDIX G: Preliminary assessment of total extractable F3 and F4 hydrocarbons in soils.  
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Table 4 Total extractable F3 and F4 hydrocarbons in soils amended with diesel without plants or 
addition of bacterial inoculants. 

 
 
 

   ----------------------  Hydrocarbons (mg·kg-1)------------------ 
Diesel concentration 
(mg·kg-1) Time F2 (C10-C16) F3 (C16-C34) Total (F2 and F3) 

10,000 
(T=0) 6700 4230 10930 

(T= 7 days) 4640 3180 7820 

20,000 (T=0) 13500 7920 21420 

(T= 7 days) 11000 7230 18230 
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APPENDIX H: Photographs of sweet clover plants in phytoremediation growth chamber 

experiments using soils amended with diesel fuel at 5,000, 10,000 and 20,000 mg·kg-1. 
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Figure G.1 Effect of endophytic bacterial strains EA1-17 (Stenotrophomonas sp.), EA2-30 
(Flavobacterium sp.), EA4-40 (Pantoea sp.) and EA6-5 (Pseudomonas sp.) on sweet clover 
plants (Melilotus albus) growing in soils amended with diesel (5,000 mg·kg-1) at 65 days after 
planting.
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Figure G.2 Effect of endophytic bacterial strains EA1-17 (Stenotrophomonas sp.), EA2-30 
(Flavobacterium sp.), EA4-40 (Pantoea sp.) and EA6-5 (Pseudomonas sp.) on sweet clover 
plants (Melilotus albus) growing in soils amended with diesel (10,000 mg·kg-1) at 65 days after 
planting.
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Figure G.3 Effect of endophytic bacterial strains EA1-17 (Stenotrophomonas sp.), EA2-30 
(Flavobacterium sp.), EA4-40 (Pantoea sp.) and EA6-5 (Pseudomonas sp.) on sweet clover 
plants (Melilotus albus) growing in soils amended with diesel (20,000 mg·kg-1) at 65 days after 
planting. 

 
   
 


