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ABSTRACT 

Prairie wetlands, also called “potholes”, provide both ecological and hydrological functions and 

have experienced dramatic change over the past century. This research aims to: 1) compare the 

capacity of Landsat and SPOT in mapping open water and wet areas with advanced classification 

methods; 2) monitor and quantify the changes in wetlands and drainage channels, between 1948 

and 2009, with aerial photography; and 3) evaluate Landsat’s ability to extract historical wetland 

coverage data across seasons using a variety of methods. Results indicate that Landsat is capable 

for mapping open water, wet areas and other LULC types in PPR; however only 48.5% of wetland 

areas are identified as compared with air photos. Historical analysis of air photo generated wetland 

and drainage channels show that the whole basin’s wetlands rapidly decreased from 1958 to 1990 

(24% to 13%) and slowly decreased from 1990 to 2009 (13% to 10%) with the least reduction in 

sub basin 1. Drainage channels slowly increased from 1958 to 1990 (119 km to 269 km) and 

dramatically increased from 1990 to 2009 (269 km to 931km). Wetland area is highly correlated 

with accumulated snowfall in the previous three years in sub basin 2 (r=0.91, p<0.05) due to its 

memory effect to previous water conditions. For the full basin, however, there were not enough 

years of data to prove this correlation. Even though the minimum distance algorithm in early spring 

is optimal for mapping wetlands in the Prairie Pothole Region (PPR), comparing with air photos, 

SPOT imagery underestimated wetlands smaller than 1200 m2, while Landsat imagery is not able 

to detect wetlands smaller than 900 m2 and underestimates areas smaller than 1600 m2. Although 

free-archived Landsat can detect water bodies larger than 900 m2, its ability to detect prairie 

wetland is limited due to missing numerous small-scale wetlands and misclassification of seasonal 

wetlands.  
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Chapter 1. Introduction 

1.1 Prairie pothole region 

The North American Prairie Pothole Region (PPR), which includes the southern part of three 

Canadian prairie provinces (Alberta, Saskatchewan and Manitoba) and portion of five U.S. states 

(Minnesota, North Dakota, South Dakota, Montana and Iowa), covers approximately 715,000 km2 

and averages 5 to 60 wetlands per km2 (Euliss et al., 1999; National Wetland Working Group 

(NWWG), 1997). The extent of the PPR is delineated in Figure 1.1, using shapefiles obtained from 

U.S. Geological Survey (USGS) which is originally delineated based on Mann (1974)’s map of 

PPR.  

The topographic base of the PPR was formed during the Late Pleistocene  glacial episode 

(Wisconsin glaciation in North America), which occurred 85,000 to 11,000 years ago. Wisconsin 

glaciation destroyed preglacial terrain and created a large amount of glacial drift. Later, ice buried 

in these drifts melted, forming a heterogeneous knob-and-kettle terrain, which did not have a well-

developed drainage system in North America (Sloan, 1972; Tiner, 2003). The deglaciation process 

shaped many depressions, some of which are associated with scooping, rubbing and abrading of 

glacial ice (Last and Ginn, 2005). Prairie wetlands are formed when water is stored in these 

depressions and low hydraulic connectivity retains water on the land surface (Daniel, 1981; Winter, 

1988, Winter and Woo, 1990).  

1.2 Historical changes in the prairie pothole region 

Pothole wetlands, substantially threatened by land use practices and climate change, have changed 

dramatically in the last century. This is due to limited water input of potholes and the semi-arid 

prairie climate (Conly and van der Kamp, 2001).  
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Figure 1.1: Extent of the North American prairie pothole region (map delineation based on 

Mann, 1974) 

The U.S. has more than 100 years of wetland inventory and monitoring data.  Starting in 1906, and 

again in 1922, the U.S. Department of Agriculture conducted wetland inventories to identify 

wetlands that could be drained for other uses. They were aware that those wetlands could disappear 

because of drainage and conversion to other land cover and land use types (Wilen and Tiner, 1993). 

Beginning in 1983, the National Wetland Inventory began to publish documents on long-term 

wetland losses and gains. The first document reported a net loss of 30,000 out of 730,000 km2, 

from the 1950’s to the 1970’s, over 48 states (Frayer et al., 1983). A subsequent report to Congress 

revealed the loss of over 0.24 km2 of wetlands, on average, for every hour between the 1780's and 
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the 1980's; a decrease of 53% of their original wetlands over the last 200 years (Dahl, 1990). Due 

to these studies and media broadcasting, the public has gradually come to recognize the benefit 

and services provided by wetlands. The U.S government implemented regulations to protect 

wetlands from degradation and deconstruction. Between 2004 and 2009, net wetland loss slowed 

to 252.12 km2 annually (Dahl, 2011). 

Despite provincial and regional wetland conservation plans, such as those put in place by Ducks 

Unlimited Canada (DUC), Canadian wetlands are shrinking. Based on data from Environment 

Canada (1991), a total of 2,000,000 km2 of Canada’s wetland was lost from the 1800’s to 1901. 

Wetland loss and degradation occurred rapidly, in the early 1990’s in southern Canada, due to the 

conversion of wetland to farmland (Rubec, 1994). In city areas, wetland loss is more drastic. In 

Calgary, for example, 78% of wetlands were lost by 1981 and about 90% of wetlands had 

disappeared by 2004 (Wetland Working Committee, 2004).  

The main cause of wetland loss is difficult to pinpoint and changes over time. In the 1970’s, 

wetlands were viewed as an obstacle to land development and were removed so the land could be 

used more productively (Dahl and Allord, 1996). In the 1970’s through 1990’s, wetlands were 

drained to provide farmland and irrigation. Technological development in the early 1990’s 

facilitated the conversion of wetlands to farmland, as governments provided free engineering 

services to farmers for drainage (Dahl and Allord, 1996). Since the 1990’s, wetland conservation 

organizations have brought increasing public awareness to the importance of preserving these 

areas.  The government has also initiated regulations to protect wetlands. Despite these efforts, 

“midnight landscaping” continues. Human activity is not the only cause for wetland destruction; 

climate change has a large impact as well (Withey and van Kooten, 2011).  
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1.3 Hydrological, ecological, social and culture functions of prairie wetland 

Prairie wetlands are a valuable natural resource in North America (Swanson and Duebbert, 1989) 

and provide various hydrological, ecological and cultural functions. Understanding these functions 

is important for managing wetlands, studying connections with landscape change and 

understanding variations in hydrological processes (Leitch and Ekstrom, 1989; Richardson and 

McCarthy, 1994; Robarts and Bothwell, 1992). Wetland hydrologic functions relate wetlands to 

ground water, surface water and atmospheric water (LaBaugh et al., 1998). Prairie wetlands store 

surface water, recharge ground water supplies, hold excess nutrients, purify water and contribute 

to local rainfall (Euliss et al., 1999; Gleason et al., 2008; Murkin, 1998; van der Kamp et al., 1999). 

The prairie wetland ecosystem, one of the most productive ecosystems, alongside rainforests and 

coral reefs provides a variety of ecological functions. First, prairie wetlands provide a habitat for 

wildlife and plant species; their high biodiversity forms the base of the food web (Butcher et al., 

1998). Second, prairie wetlands act as seed banks for vegetation, supporting more than 600 species 

of plants in Alberta (Alberta Environment and Sustainable Resource Development (ESRD), 2014; 

Galatowitsch and van der Valk, 1996). By providing additional foraging sources for animal 

farming, especially during drought periods, prairie wetlands are favoured for animal husbandry 

(Niemuth et al., 2014). Prairie wetlands also advocate social and cultural services for humankind. 

In addition to providing food products, prairie wetlands support recreation, education, research 

and artistic activities, including hunting, fishing, photography, tourism, hiking, boating, wildlife 

learning programs, and research and teaching sites (Butcher et al., 1998). Timber, fruit (blueberries, 

Saskatoon berries, cranberries, etc.) and medicinal herbs are also sourced in these areas (Butcher 

et al., 1998).  
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1.4 Various wetland classification systems 

Several wetland classification systems were designed for various environments and to meet 

different objectives. Early wetland classification systems in the PPR are simply based on one or 

two factors, such as salinity and vegetation, ecological succession, basis of permanency or 

characteristics of marsh plants (Bach, 1950; Hayden, 1943; Kantrud and Stewart, 1977; Metcalf, 

1931; Nord et al., 1951). More physical, ecological, environmental, vegetational, topographical 

and historical factors were later added to the criteria (Evans and Black, 1956; Leitch, 1966; Martin 

et al., 1953; Mason, 1957; Millar, 1964; Stewart and Kantrud, 1963). Stewart and Kantrud (1971) 

investigated ecological characteristics of wetlands in major biogeographical regions in North 

America. They classified natural wetlands by seven major classes based on their ecological 

differentiations, five subclasses according to species composition and four cover types depending 

on spatial relation of emergent plant cover to bare soil or open water. Stewart and Kantrud’s system 

is a good starting point for including subclasses of regional wetlands (Smith et al., 1995).  

Other systems were developed to satisfy national need. Cowardin et al. (1979) formed a 

classification system for wetland and deep-water habitats in the U.S. Their system of five classes 

and six subclasses considered vegetation, soil and flooding regimes. The Cowardin system was 

later used by U.S. Fish and Wildlife Services (USFWS) to conduct a National Wetland Inventory 

and was modified in 2013 (Federal Geographic Data Committee, 2013). In Canada, a 

subcommittee of the National Committee on Forest Lands aimed to build a system for organic 

terrain classification and, in 1973, proposed a hierarchical, four-level wetland classification system 

(Zoltai et al., 1975). In 1987, the NWWG developed a practical national system with three 

hierarchical levels of classification (wetland class, form and type) and 71 wetland forms. This was 

updated to 42 wetland forms and 72 subforms in 1997 (NWWG, 1997). DUC established a remote 
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sensing based schema for wetland classification in the Boreal Plains ecozone of Canada, 

employing vegetation as a key factor for classification (Smith et al., 2007).  

The Canadian Wetland Classification System (CWCS) and DUC Boreal Plains Ecozone 

Classification System both include five wetland classes: bog, fen, marsh, swamp and shallow/open 

water (NWWG, 1997; Smith et al., 2007). On the Canadian prairies, two major classes of wetlands 

are identified: marsh wetlands and shallow water wetlands (NWWG, 1997). Some of these 

wetlands hold water permanently, while others may do so for one or two months in the spring. 

1.5 Difference between wetland, pothole, pond, depression, open water and wet area 

Wetlands may be referred to in various terms: wetland, pothole, pond, depression and open water. 

Wetland, defined by NWWG in 1988, is “land that is saturated with water long enough to promote 

wetland or aquatic processes as indicated by poorly drained soils, hydrophytic vegetation and 

various types of biological activity which are adapted to a wet environment”. A wetland is an 

ecosystem. Studies of wetlands include wetland change and management (Gibbs, 2000), wetland 

function assessment (Adamus and Stockwell, 1983), wetland ecology (Keddy, 2010) and wetland 

economic value (Woodward and Wui, 2001).  

A pothole, also known as a kettle lake, is a special type of shallow wetland in the PPR of North 

America. A pothole is the result from water filling a depression formed during Wisconsin 

glaciation. Although often isolated and poorly drained, evidence reveals increasing artificial 

drainage ditches which try to convert pothole wetlands to land more suited for agriculture 

(Dumanski, Pomeroy, & Westbrook, 2015). Potholes can be found in Alberta, Saskatchewan and 

Manitoba in Canada, and North Dakota, South Dakota, Minnesota and Wisconsin in the United 

States (NWWG, 1997). Most research on potholes focuses on pothole hydrology (Vanderhoof et 
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al., 2016; Winter and Rosenberry, 1998), wildlife habitat (Klett et al., 1988)and pothole detection 

and conservation (Koch and Brilakis, 2011; Reynolds et al., 2001).  

Ponds are defined as “natural or artificial waterbodies between 1 m2 to 1 ha in size, and hold water 

for more than 4 months of the year” (Pond Conservation Group, 1993). Water quality (Curtis et 

al., 1992), pond ecology and pond management (Céréghino et al., 2008) are some key study areas 

of ponds.  

Depression, in geology terms, describes a landform which has lower elevation than the surrounding 

area. Several mechanisms that can form a depression include erosion, collapse, sedimentation and 

volcanism. In hydrology, depressions are formed by glacier transformation (collapse) which 

features a closed elevation contour (Sloan, 1972). Key studies related to depression are depression 

storage calculation (Mohamoud et al., 1990), hydrology and morphology of depression (Day, 1976) 

and depression modeling (Chou et al., 2004). 

The terms wet area and wetland are used interchangeably across studies. (Gala and Melesse, 2012) 

applied a Volumetric Soil Moisture (VSM) value of 0.5 m3/m3 to distinguish wet area based on 

Dingman (2002)’s results for clay-loam soil. Neal et al. (2010) did work with wet areas based on 

data from the National Wetland Inventory. Kaheil and Creed (2009) simply define the term wet 

area as “landscape areas that are permanently or transiently wet”.  

When using remote sensing data to monitor wetlands, each data source detects different types of 

information. For instance, LiDAR DEM detects depressions, while satellite imagery, such as 

Landsat or SPOT, captures inundated areas (open water). For high resolution aerial photography, 

seasonal or dried up portions of wetlands/ponds are detected based on vegetation and soil texture, 

as well as pattern and shape. With such a rapid loss of wetlands in the PPR, it is important that we 
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find a suitable data source and method for monitoring historical wetland changes. Hydrology and 

dynamics of the PPR, possible remote sensing data sources and detection methods and previous 

mapping efforts in the PPR are reviewed in the next chapter. 
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Chapter 2. Literature Review 

2.1 Hydrology of the prairie pothole region 

The unique topographic, geologic and climatic features of the PPR are key for its unique 

hydrological cycle. Due to its long-lasting winters (around 5 months) and cold region climate, the 

prairie hydrological cycle is divided into two stages: winter and summer (Pomeroy et al., 2013). 

During winter, water inputs occur as snowfall, which accounts for approximately one third of the 

annual precipitation (Gray and Landine, 1988). Snow is redistributed by wind, creating a highly 

heterogeneous accumulation on the ground. Wind redistribution is primarily impacted by 

topography and land cover (Fang el al., 2007; Pomeroy and Gray, 1995). Of this snowfall, 15% to 

40% will sublimate to water vapor while the remaining snowfall infiltrates frozen soil and 

contributes to spring melt runoff (Fang et al., 2007). Snowmelt runoff is the major surface runoff 

event on the Canadian prairies. Before 1994, snowmelt runoff contributed to more than 80% of 

annual surface runoff (Dumanski et al., 2015). From 1995 to 2010, this number dropped to 71% 

and continued to drop to 47% during 2011 to 2014 (Dumanski et al., 2015). Summer hydrological 

processes on the Canadian prairies have rainfall as input and evaporation and transpiration as 

output. From 2011 to 2014, summer runoff volume increased and created second peaks in the 

summer months, along with a 14-fold increase in annual stream flow volume from 1975 to 2014 

(Dumanski et al., 2015). Dumanski et al. (2015) suggested that this rapid change was most likely 

due to changes in climate and prairie land use, as well as drainage channel increase. 

Another significant feature in Canadian prairie hydrology is that the contributing drainage area 

varies by season and year (Stichling and Blackwell, 1957). Drainage area is the most obvious 

factor in understanding basin hydrology, as most hydrological relationships are developed based 

on basin runoff (Dingman, 2002; Stichling and Blackwell, 1957). Due to numerous depressions in 



10 

 

the flat terrain of Canadian prairies, however, the contributing drainage area of basins is unknown 

(Stichling and Blackwell, 1957). Generally, prairie drainage channels are not well developed 

(Brunet, 2011) when compared, for instance, to equivalent areas in mountains. Much of the water 

in wetlands does not contribute to whole drainage volumes under normal climate conditions. Based 

on “fill and spill” mechanics (Tromp-van Meerveld and McDonnell, 2009), the contributing area 

will increase under wet conditions (Stichling and Blackwell, 1957) whereas the whole drainage 

area will decrease in dry seasons or in dry years. Shaw et al. (2012) proved that dynamic pond 

runoff volumes increase by at least 20% during wet years at the outlet of the St. Denis basin. 

Plant growth, soil moisture, evaporation and runoff are all very low from mid-summer through to 

fall (Fang et al., 2007; Granger, 1989) in the prairie region of Canada due to low precipitation. As 

a result of this, vegetation growth in prairie biomass is highly dependant on and regulated by 

growing season precipitation (Yang et al., 2012). 

2.2 Remote sensing data source for wetland study 

An accurate and updated understanding of historical change plays a key role in the management 

of prairie pothole regions, as well as the study of interactions between human and natural 

phenomena. Historically, in situ surveying and inventories were popularly used to characterize 

wetlands (Mann, 1964), and they continue to provide information as ancillary data. Subsequently, 

aerial photography was combined with ground measurements to delineate simple boundaries, and 

to monitor vegetation biomass and productivity (Hardisky et al., 1986; Mann, 1964). With the 

rapid development of remote sensing in the 1970’s, different types of remotely sensed data, 

including optical imagery, LiDAR, Radio Detection and Ranging (RADAR) and topography data, 

have also been applied to improve the efficiency of wetland mapping (Brisco, 2015; Hogg and 

Holland, 2008; McCarthy et al., 2015; Rutchey and Vilchek, 1999). The literature review is 
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grouped into three categories based on data sources and reviews the common characteristics of 

remote sensing data applied to wetland identification (Table 2.1).  

2.2.1 Optical imagery 

The word “optical” refers to remote sensing systems with dominant wavelengths in visible and 

reflective infrared (Marcus et al., 2012). Prior to the 1970’s, black and white aerial photography 

and color-infrared photography were the main remote sensing data sources for geomorphological 

mapping (Gilvear and Bryant, 2003; Hart and Myers, 1968). Seher and Tueller (1973) compared 

color and color-infrared air photos to delineate marsh wetland vegetation in Nevada and found that 

the scale is more important than the type of photo used in mapping. Klemas et al. (1974) applied 

multispectral data processing systems to color-infrared air photos, which lead to enhanced photo 

maps containing a few spectral classes during Delaware’s wetland inventory. Since the 1970’s, 

many optical imaging satellites have been launched (e.g. Landsat, SPOT, ASTER, IKONOS, 

Quickbird) (Jensen, 2009). These platforms provide nearly continuous data at a variety of spatial 

and spectral resolutions, allowing for improved efficiently in characterizing wetlands (Bertoldi et 

al., 2014; Gilvear and Bryant, 2003; McCarthy et al., 2015). For extracting drainage channels, 

visual interpretations of Landsat TM and SPOT 4 PAN images have shown better results than in 

situ surveyed topographic maps (Astaras et al., 1990). Recent high-resolution satellite imagery, 

such as Quickbird and IKONOS, can provide even more accurate information for wetland mapping 

(Mui et al., 2015; Rapinel et al., 2015). High resolution satellite imagery, however is expensive 

and has limited availability  (Jensen, 2009). To conduct change-over-time analysis, satellite 

imagery with archived databases and a longer history is required. Among these optical data sources, 

aerial photography has the longest history, first being used by airplane in 1909, and a high 

resolution, but the information obtained is not historically archived. Landsat series are historically 
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archived, but it is not certain if Landsat is able to provide accurate information for historical 

wetland change analysis in the PPR. 

2.2.2 Light detection and ranging (LiDAR) 

LiDAR is an active remote sensing system that does not rely on passive solar illumination (Jensen, 

2009). The LiDAR system consists of a laser that emits pulses towards targeted objects and a 

receiver to measure reflected pluses. LiDAR is one of the four main sources for obtaining elevation 

data, the others being: Interferometric Synthetic Aperture Radar (InSAR), aerial photography and 

in situ surveying  (Bossler et al., 2004). 

LiDAR can provide accurate and timely elevation data for characterizing depressions and could 

improve estimation of slope extraction, depression storage, stream connectivity, flood modelling 

and wetland vegetation (Genc et al., 2004; Huang et al., 2011; Lane and D’Amico, 2010; Lang et 

al., 2012). Not only is LiDAR effective for depression extraction in open areas (Huang et al., 2014; 

Millard and Richardson, 2013; Tang et al., 2014), but it is also effective for extraction through a 

forest canopy (Huang et al., 2014; Lang et al., 2013; Lang and McCarty, 2009). Additionally, its 

capacity to determine wetland plant community types and biomass (Riegel et al., 2013; Ward et 

al., 2013) or ditch network delineation (Rapinel et al., 2015). LiDAR also has the ability to 

characterize channels in areas of subtle topographic variability (Lang et al., 2012). LiDAR focuses 

on modeling topography to provide accurate information on prairie depressions. The topography 

base of the PPR, however, has not changed significantly since glacial times. The main changes are 

the amount and distribution of surface water. Although hydrological models, such as topographic 

parameterization (TOPAZ) (Martz and Garbrecht, 1999) and wetland DEM ponding model 

(WDPM) (Shook et al., 2013), were developed to simulate surface open water area from 

topographical data, they are not able to define wetland areas, especially for areas without water 
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content. In addition, LiDAR data is expensive and not historically archived. Therefore, LiDAR is 

not yet sufficient to map historical wetland changes in the PPR of Canada. 

Table 2.1: Characteristics of commonly used remote sensing data in wetland extraction 

Data Characteristics Case studies Limitations 

LiDAR 

active system, multi-

returns, high resolution and 

accurate DEM data source 

(Maxa and Bolstad, 

2009; Rapinel et al., 

2015; Töyrä et al., 

2003)  

no historical data, 

high cost, 

map depression 

Optical 

imagery 

Aerial imagery 

long history, high 

resolution  

 

(Barrette et al., 

2000; Cox, 1992; 

Kull, 2012; Murphy 

et al., 2007; Tiner, 

1990) 

low frequency, 

high cost 

Satellite 

imagery 

(Landsat 

TM/ETM+ 

SPOT 

IKONOS 

Worldview) 

repetitive cycles  

(Chidley and 

Drayton, 1986; 

Hassan et al., 2014; 

Soille and Grazzini, 

2007; Svoray, 2004) 

low resolution or 

high cost 

RADAR 

active system with high 

resolution, passive system 

with low accuracy 

(Clark et al., 2009; 

Dingle Robertson et 

al., 2015; Hess et al., 

2015; Ramsey et al., 

2015; Seyler et al., 

2009)  

low spectral 

resolution, limited 

archive data 

Others 

Topographic 

map, 

Combination 

 

no subsequent data, 

segmented time period 

 

(Gala and Melesse, 

2012; Ramsey and 

Rangoonwala, 2015; 

Svoray, 2004; 

Vanderhoof et al., 

2017)  

uncertainty, 

infeasible for long 

time change 

analysis 

2.2.3 Other data sources 

Several other remotely sensed data sources have been used for characterizing wetlands, including 

active microwave RADAR. Active microwave RADAR is an active remote sensing technique 
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similar to LiDAR, but instead of using visible or infrared bands, it operates in microwave 

wavelengths (1-100 cm) (Bailly et al., 2012; Jensen, 2009). RADAR’s ability to detect water is 

based on two mechanisms: sensitivity of RADAR to soil moisture content and low backscattering 

over open water areas (Clark et al., 2009). Popular RADAR platforms include European Remote 

Sensing (ERS) satellites, Japanese Earth Resources Satellite 1 (JERS-1), RADARSAT and 

Sentinel 1. Based on its two detection mechanisms, RADAR is good at separating wet and dry 

biomass due to its sensitivity to moisture content (Henderson and Lewis, 2008). Costa (2004) 

found that RADAR reached over 93% accuracy for detecting flooded wetland and only 53% 

accuracy when those wetlands were dry in November. This indicates it is extremely useful for 

detecting open water and wet areas; however, if a seasonal wetland is completely dry or with a low 

water level, RADAR would misclassify the dried section of wetland. Some studies have combined 

a variety of data sources to improve information value (Allen et al., 2013). Gala and Melesse (2012) 

integrated Landsat ETM+ and RADARSAT-1 SAR data with LiDAR to generate wet area maps 

in Saskatchewan. Based on their research, Landsat performed better than RADARSAT-1 SAR. 

The overall accuracy and Kappa coefficient can be improved to 83% and 63%, respectively, 

through combining both images and LiDAR.  The user’s accuracy of wet areas is 66%, which is 

quite low and needs further improvement. 

2.3 Classification methods for wetland identification 

Classification methods can be divided into several categories: either parametric or nonparametric, 

supervised or unsupervised, hard or soft (fuzzy) and per-pixel based or object-oriented (Figure 2.1) 

(Jensen, 2009). Oftentimes a hybrid method is used to combine the advantages of different 

algorithms. This section will review the main methods in identifying and distinguishing wetlands. 
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2.3.1 Visual interpretation 

Photographic interpretation is “the act of examining photographic images for the purpose of 

identifying objects and judging their significance” (Colwell, 1960). The main interpretation 

elements include location, size, shape, shadow, tone, texture, pattern, height/depth and association. 

It enables the identification of distinguishing features in aerial photos and remote sensing images 

(Jensen, 2015). 

Early work in wetland mapping mainly used visual interpretation and manual delineation to 

capture wetland boundaries, monitor wetland species’ diversity and estimate wetland biomass 

(Best and Moore, 1979; Hardisky et al., 1986; Mann, 1964) using aerial photography and satellite 

imagery. Steward et al. (1980), after applying three classification schemes on both color-infrared 

and black and white orthophotos in Florida, concluded that the “Cowardin System”, which was 

later used for the U.S. National Wetland Survey, is the best. Chopra et al. (2001) visually 

interpreted Indian remote sensing satellite imagery to prepare maps of the Harike wetland 

ecosystem. Visual interpretation or manual digitization of imagery allows the capture of pothole 

wetlands based on the vegetation ring or soil characteristics. Although visual interpretation is a 

powerful technique to identify wetlands, especially for aerial photography, it has been upgraded 

to computerized classification methods to reduce processing time.  

2.3.2 Unsupervised classification 

Unsupervised classification groups pixels with similar spectral reflective characteristics into 

distinct clusters. Clusters are then manually labeled with information classes based on field 

knowledge and ancillary information (Jensen, 2009). This method is very fast due to the 

elimination of time-consuming training processes. The computerized clusters, however, may not 

truly reflect the field environment and do not satisfy all information requirements.  
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Unsupervised classification separates clusters based on statistical algorithms. Two of the most 

frequently used algorithms are ISODATA (Dunn, 1973) and K-means (Trivedi and Bezdek, 1986). 

These algorithms use flat clustering and iterative procedures; K-means uses an initialized number 

of clusters whereas ISODATA allows different numbers of clusters. Due to their sensitivity to 

initial starting points, and a stopping rule, the ability to reproduce classifications is very low 

(http://www.wu.ece.ufl.edu/books/EE/communications/ UnsupervisedClassification. html). 

Unsupervised classification performs best when a large number of clusters are used. These spectral 

clusters are put into information groups (classes). After determining the advantage of having a 

large number of clusters when conducting unsupervised classification, cluster busting algorithms 

were developed to iteratively “bust-up” spectrally mixed classes and reach a maximum number of 

clusters (Jensen et al., 1995). Sawaya et al. (2003) used cluster busting techniques with IKONOS 

satellite imagery to extract water features in Minnesota. When Sader et al. (1995) compared cluster 

busted unsupervised classification methods with three other approaches to extract forest wetlands 

in Maine, they found that the GIS model and hybrid method reach much higher accuracy than 

unsupervised classification. Therefore, unsupervised classification can reach high accuracy when 

classifying simple landscapes or simple target objects (e.g. waterbody). For prairie pothole 

wetlands, its spectral signal is complex due to vegetation signal disturbance and changing water 

levels. As a result, it is hard to separate wetland from other classes using only the unsupervised 

method. Because unsupervised classification is more effective with larger number of clusters, it is 

not optimal for use in the PPR, a region with few wetland clusters. 

2.3.3 Supervised classification 

Supervised classification requires some prior knowledge of the remotely sensed data. This 

knowledge could be acquired through a combination of field surveys, aerial photo interpretation, 
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map analysis and personal experience. Supervised classification includes two stages: training and 

classification. The training stage identifies pixels within the image that belong to particular land 

cover types (e.g. wetland, urban, forest). Then, the spectral properties of these pixels are analyzed 

and summarized. The classification stage classifies all the pixels within the image based on 

information (multivariate statistical parameters) and rules extracted from the training stage. The 

advantage of supervised classification is that desired information is classified directly and self-

assessment information is generated after classification. Disadvantages include the fact that 

desired information classes may not be associated with homogenous imagery and training sites 

may not represent particular spectral classes. In addition, acquiring training information and 

conducting training processes may be time consuming and expensive. Popularly applied 

supervised classification algorithms include minimum distance to means (Wacker and Landgrebe, 

1971), maximum likelihood (Strahler, 1980) and parallelepiped (all named as box decision rules) 

(Jensen, 1979, 2009). The first two classifiers are parametric methods: parallelepiped is a 

nonparametric method. 

In 1992 to 2002, Rebelo et al. (2009) applied a refined supervised classification and decision tree 

to Landsat TM in the Muthurajawela Mash and Negombo Lagoon, Sri Lanka for change detection. 

Rebelo et al. (2009) reached an overall accuracy of 86% for Land Use and Land Cover ( LULC) 

mapping, but the accuracy for marsh wetlands and open moist areas was low. MacAlister and 

Mahaxay (2009) used supervised classification on Landsat ETM images in five wetland sites 

located in three countries: Thailand, Cambodia and Lao PDR. The average accuracy for their 

wetland classes ranged from 54.3%- 86.6% and minimum wetland class accuracy at five various 

locations ranged from 0% (flooded forest) to 66.7% (natural channel and salty paddy) (MacAlister 

and Mahaxay, 2009). Supervised classification with Landsat imagery can reach high accuracy for 
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LULC mapping; the accuracy for wetland classes highly depends on type of wetland. 

2.3.4 Indices (Vegetation, hydrology, soil moisture, band ratio, etc.) 

Vegetation and hydrology indices are helpful to distinguish wetlands from other land cover types 

based on vegetation or water patterns, especially in certain landscapes and during certain seasons. 

Johnston and Barson (1993) found that density slicing of Landsat TM bands, corresponding with 

physical parameters of vegetation biomass/productivity (NDVI), soil moisture (middle infrared 

band) and water depth/turbidity (blue band), provide more competitive results than other 

classification methods when examining wetlands in Australia. Raabe and Stumpf (1997) combined 

the Normalized Difference Vegetation Index (NDVI), wetness index, temperature and water 

reflectance for costal wetland classification in the U.S.. Davranche et al. (2010) discriminated reed 

marshes and macrophyte from other land cover types with the Optimized Soil Adjusted Vegetation 

Index (OSAWI) of December, NDVI, Normalized Difference Water Index (NDWI) of September 

and the Simple Ratio index of March in Camargue (Rhône Delta) near the Mediterranean Sea, and 

reached an accuracy of over 85%. Also in Camargue, Poulin et al. (2010) combined the Soil 

Adjusted Vegetation Index (SAVI), OSAVI, NDWI, the Differential Vegetation Index (DVI) and 

the Moisture Stress Index (MSI) with ground data to predict reed bed features of wetlands. Dong 

et al. (2014) used Landsat data, NDVI and the Land Surface Water Index (LSWI) of different 

vegetation growth stages in a decision tree model. They used this model to map the lakes, ponds, 

rivers and wetlands in West Songnen Plain, China, achieving an overall accuracy of 92.4%. In the 

PPR, Huang et al. (2011) integrated Palmer’s Drought Severity Index (PDSI) and remote sensing 

data to develop a Wetland Water Area Index (WWAI) and to simulate wetland water surfaces in 

Cottonwood Lake, North Dakota. Huang et al. (2011) were able to correlate WWAI with aerial 

photography digitized water bodies with r2 value up to 83%. NDVI was also used as a parameter 
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in a rule-based method to classify Canada’s wetlands (Li and Chen, 2005). Mui et al. (2014) also 

linked NDVI, modified simple ratio (MSR), SAVI, transformed vegetation index (TVI), NDWI 

and modified NDWI with water and vegetation characteristics in Ontario. 

Other indices used include the Landsat TM band ratio band 4/band 2 for separating coastal 

wetlands from other features , as well as the band radio of near infrared (NIR)/red and transformed 

vegetation index (TVI) for evaluating wetlands in Africa with SPOT imagery (Ringrose et al., 

2003). Johnson and Barson (1993) found that the density slice of Landsat Thematic Mapper bands 

that corresponds with physical parameters of vegetation biomass/productivity (NDVI), soil 

moisture (middle infrared band) and water depth/turbidity (blue band), provide competitive 

classification results when compared with other methods (Johnson and Barson, 1993)) . They also 

used a density slice of band 5 (Shortwave Infrared) to track seasonal variability in water and 

vegetation of Australian wetlands. 

2.3.5 Subpixel classification 

Non-subpixel classification of remote sensing image is built on one fundamental rule: every pixel 

represents one single class. In reality, however, this rule is not true, especially for imagery with a 

low spatial resolution. Fisher (1997) and Cracknell (1998) attempted to solve this problem with 

mixed pixels in remote sensing when integrating with GIS platforms. Using high-resolution 

imagery reduces this problem by decreasing the area one pixel cover and thus reduce mixed 

spectral information within one pixel.  Spectral unmixing and sub-pixel classification techniques 

further reduce this issue (Eastman and Laney, 2002; Foody, 2004).  

Sub-pixel classification considers heterogeneity and imprecision in the real world. In this approach, 

one pixel may be assigned to multiple or partial classes (Jensen, 2009). For example, a soft (sub-



20 

 

pixel) classification may classify a pixel to 70% wetland and 30% woodland, which reflects more 

information than per-pixel based classification. Latifovic and Olthof (2004) quantified limiting 

factors for LULC mapping with coarse resolution remote sensing data (1 km) and sub-pixel 

fractional error matrices over a Canadian landmass. Latifovic and Olthof (2004) concluded that 

the maximum accuracy of coarse spatial resolution remote sensing data is limited by homogeneity 

which relies heavily on both the spatial resolution of the data and landscape features. Frohn et al. 

(2012) applied the sub-pixel method to multi-temporal Landsat ETM+ to detect isolated wetland 

(≥2000 m2) in Cuyahoga County, Ohio, and achieved an overall accuracy of 92.8%. Robertson et 

al., (2015) used Spectral Mixing Analysis (SMA) with temporal Landsat TM imagery to 

characterize and monitor disturbance and changes in the wetlands of eastern Ontario, Canada.  

2.3.6 Rule-based methods 

Rule-based methods classify each pixel using classification rules that can be built directly from 

data or indirectly from other classification models. Rules may integrate band reflectance, indices 

and ancillary or attribute data. The advantages of rule-based methods are that they consider any 

attributes surveyed, as well as showing which attributes are most powerful. Rule-based methods 

also provide the opportunity to edit rules based on specific requirements. A commonly used rule 

approach is the decision tree. When target variables of tree models are a finite set of values, they 

are called classification trees. When the target variables of tree models are continuous values, they 

are called regression trees. In the tree structure, leaves would be class labels and branches represent 

the conjunction of features determining a certain class. When a number of decision trees are used 

together to improve classification accuracy, this is known as a random forest classifier. 

Sader et al. (1995) compared a GIS rule-based method with three other methods (unsupervised, 

tasseled cap transformation and hybrid) for mapping forest wetlands in marine environments with 
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Landsat TM imagery. The results showed that the GIS rule-based method achieves the highest 

accuracy (80% and 82%, respectively, for two tested locations). Tasseled cap was the less accurate 

(74% and 75%, respectively, for two tested locations) and the unsupervised method was the least 

accurate (72% and 74%, respectively, for two tested locations). Li and Chen (2005) chose a rule-

based method to combine the advantages of the optical satellite, RADAR and DEM to map 

wetlands in Canada and improved accuracy to 71-92%. Even though accuracy for their study was 

high, the quality of the ground reference data is inconsistent (a mix of aerial photography, field 

data and land cover inventory maps). Baker et al. (2006) applied a classification tree and a 

decision-tree based method to Landsat ETM+ for mapping wetlands and riparian areas in southwest 

Montana, U.S. They achieved an overall accuracy of 73.1% and 86%, respectively. Corcoran (2013) 

used a random forest method combined with optical satellite imagery (Landsat TM), RADAR 

(RADARSAT-2), topographic data and soil attributes to extract wetlands in northern Minnesota. 

Their results showed that when using all data sources, the best overall accuracy that could be 

achieved for a full season was 85% with a random forest model. 

2.3.7 Object-oriented methods 

An object is a set of pixels of similar spectral and spatial properties in remote sensing imagery. 

Applying an object-oriented paradigm to image analysis refers to analyzing the image in object 

space rather than in pixel space. This means objects, rather than pixels, are the primitives for image 

classification. An object-oriented classification contains two processes: image segmentation and 

object classification. The key part of image segmentation is to group pixels, which have similar 

spectral values, shape, texture, and morphology into objects. The objects would be grouped into 

different classes based either on training data or visual interpretation. Object-oriented methods 

work best with high resolution remotely sensed data due to their use of shape, texture and 
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morphology. When the scale of the observed features is lower than the spatial resolution of the 

data, however, this approach will not achieve high accuracy. Frohn et al. (2009)  applied the object-

oriented method to Landsat ETM+ imagery for the detection of isolated wetlands in Florida and 

achieved an overall accuracy of 89% for all wetlands and 95% for wetland size > 2000 m2. Harken 

and Sugumaran (2005) selected 60 cm resolution hyperspectral imagery to classify Iowa wetlands 

and achieved a classification accuracy of 92.3% for the object-oriented method and 63.53% for 

Spectral Angle Mapper (SAM) method 

2.3.8 Hybrid methods 

Hybrid classification methods involve a combination of different methods. Sader et al. (1995) 

combined unsupervised cluster and supervised training statistics to define forest wetlands. They 

achieved an accuracy comparable to their GIS rule based method. Stuckens et al. (2004) integrated 

contextual information with per-pixel classification to extract land use and land cover information 

in the Twin Cities metropolitan area of Minnesota. They improved the overall accuracy and Kappa 

coefficient by 5.8% and 6.5%, respectively, when combining contextual information. Quinn and 

Burns (2015) combined per-pixel based classification and object-oriented classification to 

QuickBird imagery for seasonal wetlands’ habitat degradation assessment (plant species 

identification) in California and reached an overall accuracy of 60%. Tian et al. (2015) integrated 

object-oriented image segmentation and human-expert visual classification with Landsat and 

FORMOSAT imagery to monitor wetland loss in Shanghai, China, and estimated  505.2 km2 

(13.4%) of wetland loss from 2003 to 2013 (Tian et al., 2013).  
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Figure 2.1: Categories and approaches of classification methods 
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2.4 Change detection methods 

Timely and up-to-date change detection of the earth’s surface provides a strong understanding of 

dynamic physical and human processes. “Change detection is the process of identifying differences 

in the state of an object or phenomenon by observing it at different times” (Singh, 1989). Jensen 

(2015) described a typical approach to perform change detection: 1) state the nature of the change 

detection problem; 2) apply a remote sensing system and environmental consideration of 

significance when performing change detection; 3) process remote sensing data to extract change 

information; 4) perform accuracy assessment; 5) accept or reject stated hypothesis; 6) distribute 

results if accuracy is acceptable. A significant amount of effort has been placed into the ongoing 

agenda of developing change detection methods using remotely sensed data (step 3 in Jensen’s 

framework). Many of these change detection methods have been summarized, reviewed and 

published by various authors (Coppin et al., 2004; Hussain et al., 2013; Jianya et al., 2008; Lu et 

al., 2004; Singh, 1989). Peiman (2011) grouped change detection techniques into pre-classification 

and post-classification. Chan et al. (2001) separated them as change enhancement techniques and 

nature of change methods when measuring the nature of change in an urban environment. Lu et al. 

(2004) categorised them into seven categories: algebra, transformation, classification, advanced 

models, GIS approaches, visual analysis and other approaches. 

The threshold method, a commonly used pre-classification method, includes thresholding image 

bands, band ratio, vegetation or other indices, change vector analysis and transformed results (e.g. 

Principal Component Analysis (PCA), Gramm Schmidt, Chi-square). The advantages of the 

threshold method are that its ease to perform and time efficiency. Difficulties in choosing suitable 

parameters to threshold and finding the exact threshold number are disadvantages. Rokni et al. 

(2014) produced change detection maps for Lake Urmia, Iran, using PCA results of multi-temporal 
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NDWI. Baker et al. (2007) applied change vector analysis to Landsat imagery and monitored the 

changes of wetland ecosystems in the Gallatin Valley of southwest Montana. 

Another commonly applied change detection method is classification. This approach falls into the 

post-classification category where results are based on classified imagery; accurately classifying 

imagery is a crucial step. Compared with the pre-classification method, this method provides more 

information on land cover and land use type change. It also removes the atmospheric and 

environmental impact of multi-temporal imagery due to pre-processing techniques. Jensen et al. 

(1995) used Landsat and SPOT generated wetland maps to conduct change detection for Florida 

inland wetlands. Huang et al. (2014) created a wetland inundation model using airborne LiDAR 

and Landsat imagery and conducted a change detection analysis using results from their model. 

Jin et al. (2017) used Landsat and LiDAR intensity data to derive subpixel water fraction (SWF) 

maps (overall accuracy of 93%) in the Delmarva Peninsula on the East Coast of the United States, 

to analyze wetland inundation dynamics from 1985 to 2011. 

2.5 Previous wetland related mapping efforts in the PPR 

Numerous wetland related mapping studies in the PPR using GIS and remote sensing techniques 

exist (Egan, 1971; Seher and Tueller, 1973). The mapping objectives of these studies include the 

study of depressions, open water, wet areas, wetlands and others (e.g. vegetation, soil). 

2.5.1 Depression locating 

Dynamic contributing area and depression storage are key challenges for depression identification 

in the PPR (Shaw et al., 2013). Early attempts to extract the topographic structure from DEM or 

DTM were based on the assumption that 100% of the basin contributed to every runoff event 

(Martz and De Jong, 1988; Martz and Garbrecht, 1992; O'Callaghan and Mark, 1984). Fang et al. 
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(2010) used an ArcGIS-based method to extract the initial depth, area and volume of surface 

depression. The values were input into a depth-area-volume relation to generate the final depth, 

area and volume (Fang et al., 2010). Shaw et al. (2013) proposed a Simple Pothole Terrain Analysis 

Algorithm (SPILL) based on the fill-spill mechanism to quantify the effective drainage area 

(contributing area) with high-resolution DEM. Shook et al. (2013) also considered the variable 

contributing area and storage dynamics in their Wetland Digital Elevation Model (DEM), Ponding 

Model (WDPM) and Pothole Cascade Model (PCM). Wu and Lane (2016) developed another 

strategy: after quantifying the complexity of LiDAR DEM depressional results with the localized 

contour tree method, determine standing water data in each depression and compare the results to 

existing area and volume data. Wu and Lane (2015) also successfully applied the contour tree 

method based on the fill-and-spill mechanism to Little Pipestem Creek, North Dakota. 

2.5.2 Open water detection 

Detection of waterbodies with remote sensing data relies on the fact that open water absorbs most 

infrared radiation and has a low reflectance when compared with other targets. Main techniques 

used to detect waterbodies include manual delineation (e.g. air photo), band threshold (e.g. Red 

band), spectral indices (e.g. NDVI, NDWI, MNDWI, AWEI), pattern recognition (e.g. 

classification methods) and linear unmixing (Hood and Bayley, 2008; Kim et al., 2016; Sethre et 

al., 2005). The majority of these techniques reach accuracy higher than 90%, with high to medium 

resolution imagery on a regional scale (Kim et al., 2016; Sethre et al., 2005) , and higher than 95% 

(Ji et al., 2015; Xu et al., 2006)  on a local scale.  

2.5.3 Wet area extraction 

Despite the inconsistent definition of wet area (Gala and Melesse, 2012; Kaheil and Creed, 2009; 

Niemuth et al., 2010), it can be used interchangeably with wetland, or represent the moist part of 
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a wetland. Wet area distinguishes other land cover types mainly by soil moisture. For remote 

sensing detection, spectral signatures of wet areas have a lower reflectance than dry soil in the 

whole wavelength range and lower reflectance in the near-infrared band compared with green 

vegetation. Kaheil and Creed (2009) classified wet area by applying support vector machines 

(SVM) to LiDAR derived terrain topography, SAR and Landsat TM. Niemuth et al. (2010) 

determined the portion of wetland containing water (wet area) by buffering NWI data and air photo 

interpretation. Gala and Melesse (2012) defined a wet area by soil moisture and detected it based 

on the fact that water in a wet area absorbs electromagnetic radiation in the near-infrared and mid-

infrared portion of the spectrum. Gala and Melesse (2012) applied PCA indices, including 

infrared/visible band ratio and density slicing of Landsat ETM band 5 (shortwave infrared), to 

separate inundated areas with optical imagery.  

2.5.4 Wetland delineating 

Wetlands consist of two main portions: water covered and non-water covered. Delineating water 

covered portions of wetlands are similar to mapping open water or wet areas. The accuracy of the 

results is often higher than 90% on a regional or local scale with high or medium resolution 

imagery (Haas et al., 2009) and lower accuracy at a global scale (Santoro et al., 2015; Yamazaki 

et al., 2015). On the other hand, mapping non-water covered wetlands with remote sensing data is 

more difficult due to its spectral similarity with the surrounding area. One approach to minimize 

this issue is to collect data during the wet season (Ji et al., 2014; Jin et al., 2016); another approach 

is to find data sources that separate non-water covered wetland to the maximum extent (Euliss and 

Mushet, 1999; Halabisky et al., 2016). 
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2.6 Research gaps and objectives 

Monitoring the historical change of the prairie pothole wetland requires easy access to historical 

data. Of the available data, the Landsat series, which is historically archived as far back as the 

1970’s, is the perfect match for this study; its capability in detecting wetland with water cover has 

been proven by numerous studies (Gala and Melesse, 2012). In contrast, the performance of 

Landsat in detecting non-permanent and seasonal wetlands, especially wetlands without water 

coverage in dynamic landscapes such as the PPR, is not well studied. 

Additionally, historical aerial photography data could be used to delineate higher resolution and 

near real condition wetland maps, despite its limited availability. These photos and maps play a 

key role in historical change analysis and accuracy evaluation for other maps. In Smith Creek, 

DUC generated wetland and drainage channel maps from aerial photography in the years 1958, 

2000, and 2009. Dumanski et al. (2015) analyzed pond area and drainage channel change in those 

three years; what happened prior to 1958 and during the 42-year gap between 1958 and 2000 is 

uncertain. In addition, the variation in wetland distribution and size structure was not studied. 

To address these gaps, this research aims to examine the ability of Landsat data to characterize and 

reconstruct a historical archive of potholes in the Canadian prairies, to delineate more historical 

wetland maps and to conduct a spatial change analysis. This work can be divided into three sub-

objectives (Figure 2.2):  

1) test the ability of Landsat in mapping open water and wet areas in the PPR with the object-

oriented method and decision tree method in comparison to SPOT imagery. 

2) delineate wetland and drainage channel maps from 1948 and 1990 using aerial photography 

to fill the gap between 1958 and 2000 in Smith Creek. The research also aims to analyze 
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historical wetland spatial change and size structure variation in Smith Creek in the years 

1948, 1958, 1990, 2000 and 2009.  

3) evaluate Landsat’s ability to map wetlands in the PPR with various methods and seasons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Flow chart for thesis objectives 
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Chapter 3. Methodology 

3.1 Study area 

The study was conducted in the Smith Creek Research Basin (SCRB), located about 60 km 

southeast of the city of Yorkton, SK, Canada (Figure 3.1). The SCRB covers 393 km2 (Figure 3.1), 

according to a DUC survey, and represents a mosaic of cropland, pasture, wetland, native grassland 

and woodland (Pomeroy et al., 2009). The elevation of this basin ranges from 490 m in the south 

to 548 m in the north, with gentle slopes varying from 2 to 5 degrees (Pomeroy et al., 2009). The 

SCRB is characterized by an average annual air temperature of 1.6 °C (Yorkton Airport, 1971-

2000), with a monthly mean of -17.9 °C in January and +17.8 °C in July (Environment Canada, 

2010). The 30 year (1971-2000) average of data from the Yorkton airport shows an annual total 

precipitation of 450.9 mm, of which 104.5 mm occurs as snow during winter (November-April) 

(Environment Canada, 2010).  Snowmelt runoff contributes to the peak runoff component of 

annual stream flow in this research basin, usually occurring during early spring, with peak runoff 

happening in late April (Pomeroy et al., 2009). In the last 50 years, many water control structures 

have been developed by local farmers in the basin area. Climate and surface hydrology of this area 

have also changed, including temperature increase, annual rainfall increase, snowfall decrease and 

annual streamflow volume increase (Dumanski et al., 2015). 

The SCRB is divided into five sub basins (Figure 3.1). Sub basin 1, in the north part of the SCRB, 

covers the largest area while sub basin 5, located on the southeast, is the smallest. Among all of 

them, sub basin 1 has sustained the least impact by human-caused drainage due to conservation 

efforts by DUC, sub basin 2 is an agriculture dominated sub basin. 
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Figure 3.1: Study site (Basin area of SCRB)  

3.2 Data sources 

A variety of remotely sensed data was acquired for the study: air photos, wetland maps, LiDAR 

data and satellite imagery. The remote sensing data resolution varies from 0.625 m to 30 m and 

the period covers the years 1948 through 2013. Table 3.1 identifies the characteristics of each 

dataset. Ground Control Points were collected by the Centre for Hydrology and confirmed by local 

farmers in 2008. Landsat data from 1987 to 2013 were downloaded from the USGS website; the 

wetland maps (from aerial photography analysis) of 1958, 2000 and 2009 were obtained from Lyle 

Boychuk, DUC; annual precipitation data of the SCRB from 1942 to 2014 were obtained from 

Stacey Dummanski, Centre for Hydrology. Historical Landsat imagery, LiDAR, SPOT 5 and aerial 

photos were used for wetland or depression delineation and change detection; field collected 
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ground data were used for accuracy assessment; precipitation data was analyzed with wetland area 

data to explore their relationship.   

Table 3.1: Characteristics of data source in this study 

Data Type Spatial Resolution (m) Date 

Field data 500 ground points NA 2008/10 

 

Remote sensing 

SPOT 5 MS 10 2008/10 

Landsat TM and 

Landsat OLI 
30 1987-2013 

Air photos 0.625 

 

1948, 1990 

 

Wetland maps 

(from air photo) 
NA 1958, 2009, 2012 

Precipitation data snowfall and rainfall NA 1942-2013 

The Landsat program is the world’s longest running continuous platform for acquisition of 

moderate resolution satellite imagery. Since 1972, it has provided millions of free images for 

researchers and governments. This project is a joint initiative of the U.S. Geological Survey (USGS) 

and the National Aeronautics and Space Administration (NASA). Landsat 1, first launched on July 

23, 1972, was called the Earth Resources Technology Satellite (ERTS-1). ERTS currently has 

eight generations of Landsat. Notable among them, Landsat 5 was operational for 29 years, 

terminating as recently as June 5, 2013, making it the longest earth observation satellite in history. 

Landsat 6 failed to orbit. Landsat 7 was successfully launched in 1999, but has shown scan line 

corrector failure appearing starting in May, 2003. Landsat 8, which was originally called Landsat 

Data Continuity Mission (LDCM), was launched on February 11, 2013. Landsat 8 is still active, 
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ensuring the data continuity of the Landsat project, especially after Landsat 5 was terminated 

(Figure 3.2).  

Landsat series could help to monitor changes in the Canadian prairie based on both accessibility 

and its longevity in providing over 40 years’ data. The prairie has also experienced major land 

cover changes during this time. Additionally, the resolution of the Landsat series changed from 79 

m in 1972 to 30 m in 1984. Last, Landsat continues to develop and improve data quality, spectral 

resolution, band numbers, etc.  

     

Figure 3.2: Landsat mission history (information cited from Landsat USGS website) 

SPOT, short for Satellite Pour l’Observation de la Terre in French (Satellite for Observation of 

Earth), is commercial, high-resolution satellite imagery that was launched by the CNES (Centre 

national d'études spatiales). Since the launch of SPOT 1 on February 22, 1986, it has undergone 
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seven generations. SPOT 7 was launched on June 30, 2014, with a resolution of 1.5 m for 

panchromatic bands and 6 m for multispectral bands. 

Table 3.2: Landsat TM bands and application (Cited USGS website) 

Band Wavelength Useful for mapping Case studies 

Band 1 - blue 0.45 - 0.52 

Bathymetric mapping, 

distinguishing soil from 

vegetation and deciduous from 

coniferous vegetation 

(Baban, 1993; Ghitter 

et al., 1995) 

Band 2 - green 0.52 - 0.60 

Emphasizes peak vegetation, 

which is useful for assessing 

plant vigor 

(Ferwerda et al., 2005; 

Tennakoon et al., 1992) 

Band 3 - red 0.63 - 0.69 Discriminates vegetation slopes 

(Anderson et al., 1993; 

Elvidge and Chen, 

1995) 

Band 4 - Near 

Infrared 
0.77 - 0.90 

Emphasizes biomass content 

and shorelines 

(Doraiswamy, 2004; Li 

et al., 2005; McFeeters, 

1996) 

Band 5 - Short-

wave Infrared 
1.55 - 1.75 

Discriminates moisture content 

of soil and vegetation; 

penetrates thin clouds 

(Hagolle et al., 2010; 

Healey, 2006; Potapov, 

2012) 

Band 6 - 

Thermal 

Infrared 

10.40 - 12.50 
Thermal mapping and 

estimated soil moisture 

(Chander and 

Markham, 2003; 

Jiménez-Muñoz, 2009) 

Band 7 - Short-

wave Infrared 
2.09 - 2.35 

Hydrothermally altered rocks 

associated with mineral 

deposits 

(Carranza and Hale, 

2002; Gad and Kusky, 

2006)  

 

For this study, satellite remote sensing platforms, including Landsat 4, Landsat 5, Landsat 8 and 

SPOT 5 were chosen, based on data availability. Landsat TM (4 and 5) has seven bands, covering 

blue, green, red, NIR, two short wave infrared (SWIR) and thermal infrared. All seven bands are 

useful for identifying multiple features of interest (Table 3.2). 
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Table 3.3: Comparison of spectral, temporal and spatial resolution of Landsat 4, Landsat 5, 

Landsat 8 and SPOT 5 imagery 

Spectral (µm) Landsat 4, 5 Landsat 8 SPOT 5 

Band 1 0.45-0.52 0.43-0.45  

Band 2 0.52-0.60 0.45-0.51 0.5-0.59 

Band 3 0.63-0.69 0.53-0.59 0.61-0.68 

Band 4 0.76-0.90 0.64-0.67 0.78-0.89 

Band 5 1.55-1.75 0.85-0.88  

Band 6 10.4-12.5 1.57-1.65  

Band 7 2.08-2.35 2.11-2.29  

Band 8  PAN 0.50-0.68 PAN 0.48-0.71 

Band 9  1.36-1.38 1.58-1.75 

Band 10  10.6-11.19  

Band 11  11.5-12.51  

Radiometric (bits) 256 256 256 

Temporal 16 days 16 days 26 days 

Spatial 
30 m, 

120 m for band 6 

30 m, 15 m for PAN, 

100 m for Band 10-11 

 

10 m MS,  

2.5 m or 5 m PAN, 

20m SWI 
First Launched 1982 2013 2002 

Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) images increased 

bands to eleven by adding one coastal aerosol band, one cirrus band and one thermal infrared band. 

It allowed for increased capacity of coastal and aerosol studies, better detection of cirrus clouds 

and sharper imagery when compared to Landsat TM. 

SPOT 5 includes four multispectral bands (green, red, infrared and SWIR) and one panchromatic 

band. The spatial resolution for its multispectral band is much higher than the Landsat TM and 
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Landsat OLI. The number of spectral bands, however, is much lower than Landsat, especially with 

the lack of blue band when producing LULC maps (Table 3.3). Another disadvantage is that SPOT 

is a commercial satellite; it will not archive the imagery unless purchased or ordered. Therefore, it 

is harder to conduct historical change detection without a regular purchase of data. 

Since the Landsat time series is the dominant historical data source for this study, detailed date 

information for all the cloud cover free imagery of the SCRB is shown in Table 3.4. In 1990 and 

2002, continuously cloud-free images present for at least four images per year from April to 

September (no snow cover period).  These two years were initially used to determine a good season 

for generating LULC maps in a wetland-dominated basin. After concluded suitable method and 

season for LULC mapping, the selected classification method (decision tree) was applied to 

selected season (spring melt time) Landsat to generate historical LULC archive. Ground data of 

2008 was used for training and evaluation of all the time series Landsat data. This historical archive 

(1987-2013) of LULC maps for the SCRB with in spring was late analysed to track historical 

change of each LULC class. 
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Table 3.4: Date of cloud-free Landsat TM and LDCM imagery (1987-2015) 

Year April May June July August September 

1987  5     

1990  29 30   2,18 

1993  5     

1998  3     

2002  14  1,17 2 3 

2005 20      

2008     18  

2010 18      

2013      17 

3.3 Data processing and analysis 

This section outlines the procedures (Figure 3.3) used to compare the accuracy of the data sources 

and classification methods, to find the best season for data classification and change detection and 

to perform historical change analysis. 

3.3.1 Preprocessing of the satellite imagery and air photos 

One scene of SPOT 5 multispectral Level 2A image, from October 1, 2008, was acquired by the 

Centre for Hydrology, University of Saskatchewan. Sarah Lee, a previous master student in the 

Department of Geography and Planning, University of Saskatchewan, has preprocessed 

(atmospheric and geometric correction) this SPOT scene for  a prairie hydrological model study 

project (Guo et al., 2011). The preprocessed 10 m resolution SPOT 5 imagery was extracted by a 

basin boundary shapefile for further analysis.  

For Landsat data, the first step is data inquiry. Clear cloud and snow free Level 1 GeoTIFF Landsat 

data (row/path 34/24 and 34/25), from 1987 to 2015, were downloaded from the USGS website. 
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To improve the accuracy of spectral reflectance of the image, atmospheric correction was done 

with the ATCOR 2 algorithm, German patent P4102579 (Ritcher, 2004). This algorithm is based 

on the radiative transfer model, in PCI Geomatica 2013. Next, an image-to-image rectification, 

with corrected finer resolution SPOT 5 imagery of the same study area, was used to remove 

geometric distortion of the historical Landsat imagery. Finally, row/path 34/24 and 34/25, on the 

same date, were mosaicked and subsetted with the basin boundary shapefile. All the pre-processed 

cloud-free Landsat imagery were sorted and prepared for classification (Table 3.4).  

A set of colored, ortho-corrected aerial photos from November 2009, containing townships 21-31-

1, 22-21-1, 22-32-1, were downloaded from the Flysask website (https://www.flysask2.ca/). They 

were mosaicked together using PCI Geomatica and extracted to the sub basin 2 area. This set of 

air photos was used as image-to-image registration for other historical air photos. A set of air 

photos from 1990, covering the whole basin, was collected from the National Air Photo Library, 

Natural Resources Canada, and stored in the Centre for Hydrology, University of Saskatchewan. 

These hard-copy air photos were scanned, orthorectified and saved as digital copies. The tiles were 

then mosaicked and masked with a basin boundary shapefile. Another set of hard-copy air photos, 

taken in 1948, covering sub basin 2 of the Smith Creek Basin, was found in the University of 

Saskatchewan Library. These photos were scanned, orthorectified using 2009 air photos, 

mosaicked and subset to the sub basin 2 area.  
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Figure 3.3: Work flow of this study 
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3.3.2 Open water and wet area mapping with high and medium resolution imagery 

To compare the performance of open water and wet area detection using  medium resolution 

Landsat and high-resolution SPOT, two classification methods – the decision tree method and the 

object-oriented method - were selected based on the literature review. A classification scheme that 

included open water, wet area, cropland, grassland, towns/roads and woodlands was selected, 

based on former research in the SCRB (Guo et al., 2012) and land cover schema recommended by 

USGS. Based on the availability of SPOT imagery (October 01, 2008), all cloud-free Landsat 

images from 2008 (Table 3.4) were examined. The only cloud-free Landsat image pair (row/path 

34/24 and 34/25) covering the study area was from August 18, 2008. Next, object-oriented and 

decision tree classification  were applied to both Landsat and SPOT images. Field data from 2008 

was used as training and evaluation data for classifications. First, visual quality control of 500 

ground control points with air photo and satellite imagery was conducted. Then, two thirds of 

ground control points were used as a training set with a stratified random sampling approach. The 

remaining one third were applied for evaluation.  

 

Figure 3.4: Classification tree of SPOT 5 October 1, 2008 
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Figure 3.5: Classification tree of Landsat TM August 18, 2008 

For the decision tree classification method, parameters including bands reflectance, NDVI, NDWI, 

LiDAR DEM and road/town layer were included in the tree analysis. All parameters were trained 

by the field data training set, then calculated and analyzed with the Tree model in R (R code in 

Appendixes C and D) (R Core Team, 2013). The results of the tree model became a classification 

tree (Figures 3.4 and 3.5). Figures 3.4 and 3.5 show how the decision tree method works with 

Landsat and SPOT imagery. B5 (SPOT 5) and B8 (Landsat TM) are town and road layers derived 

and revised from SPOT and aerial photography. For SPOT 5, B4 SWIR (1.58-1.75 µm), plays a 

key role in separating both wet area/open water and woodland/cropland features (Figure 3.4) due 

to its sensitivity to water content (Table 3.3). For Landsat TM, B2 (0.52-0.60 µm), B3 (0.63-0.69 

µm) and B4 (0.76-0.90 µm) are the main parameters for dividing each class (Figure 3.5). Neither 

of the classification trees use NDVI and NDMI as rules in these two cases.  The tree models were 

applied to subject imagery with ENVI’s decision tree classification algorithm. The object-oriented 

B2 < 24.5 
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classification method contained two processes: segmentation and classification. Imagery was 

initially segmented in eCognition Developer (Lang and Tiede, 2007), with various scales (5 to 50). 

The best scale was processed into a classification procedure. Rule sets were built to separate 

various classes based on training results for SPOT 5 and Landsat TM.  

An accuracy assessment was applied to four results to evaluate the performance of two 

classification methods with both high and medium resolution satellite imagery. A confusion matrix 

(Table 3.5) and Kappa coefficient of agreement for each classification map were calculated.  “Khat 

Coefficient of Agreement: Kappa analysis yields a statistic, which is an estimate of Kappa. It is a 

measure of agreement or accuracy between the remote sensing–derived classification map and 

reference data as indicated by a) the major diagonal, and b) the chance agreement, which is 

indicated by the row and column totals (referred to as marginal)” (Jensen, 2009). 

Kappa coefficient of agreement is calculated as follows: 

 
𝐾̂  =  

𝑁 ∑ 𝑥𝑖𝑖
𝑘
1 − ∑ (𝑥𝑖+ × 𝑥+𝑖)𝑘

1

𝑁2 − ∑ (𝑥𝑖+ × 𝑥+𝑖)𝑘
1

 
(Eq. 3.1) 

where: 

 𝑁 refers to the total number of observations in the entire error matrix, 

𝑘 refers to the total number of classes or categories, 

𝑥𝑖𝑖  refers to the number of observations correctly classified for a particular category, and 

𝑥𝑖+ and 𝑥+𝑖 refer to the marginal totals for row i and column i associated with the category. 
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Taking the LULC map from SPOT imagery with the decision tree method as an example, points 

of each class were calculated based on both ground reference data and classified image. Then the 

user’s and producer’s accuracies for each class were calculated to form the confusion matrix. Last, 

the Kappa coefficient of agreement was calculated to reflect classification accuracy. 

Table 3.5:  Example of how Confusion matrix and Kappa is calculated (LULC maps from SPOT 

5 imagery with decision tree method) 

SPOT DT  Ground reference data User's 

accuracy 

C
la

ssified
 im

a
g
e 

  CL GL OW TR WE WO Row total 

CL 92 5 
    

97 94.8% 

GL 
 

23 
   

2 25 92.0% 

OW 
  

27 
 

1 1 29 93.1% 

TR 2 
  

11 
  

13 84.6% 

WE 
 

3 
  

30 6 39 76.9% 

WO 
 

1 
  

3 38 42 90.5% 

Column 

total 

94 32 27 11 34 47 245   

Producer’s 

accuracy 
97.9% 71.9% 100.0% 100.0% 88.2% 80.9%    90.2% 

*CL stands for cropland, GL stands for grassland, OW stands for open water, TR stands for 

towns/roads, WE stands for wetland, WO stands for woodland. 

            where N = 245 

∑ 𝑥𝑖𝑖
𝑘
1  = 92+23+27+11+30+38 = 221 

            ∑ (𝑥𝑖+ ×  𝑥+𝑖)𝑘
1  = 97 × 94+25 × 32+29 × 27+13 × 11+39 × 34+42 × 47 = 14144 

therefore   

𝐾̂= [(245×221)-14144] / (2452-14144) = 87.2 % 
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Accuracy assessment with error matrix and Kappa coefficient assisted with evaluation of decision 

tree and object-oriented classification method. This evaluated better classification method for 

processing moderate resolution Landsat imagery was applied to years 1990 and 2000 and to 

identify a good season for LULC mapping in the PPR. These years were chosen because they have 

continuous cloud-free images for non-snow-covered months. An accuracy assessment was then 

conducted to evaluate the results using historical wetland maps from aerial photography analysis. 

Finally, the selected classification method and selected season of mapping were applied to the 

entire cloud-free Landsat time series, creating an archive of historical LULC maps in the SCRB 

from 1987 to 2013. 

3.3.3 Wetlands and drainage channels extraction from aerial photography 

Aerial photography records visible features on the Earth’s surface. High-resolution (less than 1 

meter) aerial photography is regarded as ground reference data. In this study, wetland and drainage 

channels were the two main targets to extract. To test the possibility of automating this extraction 

process, unsupervised ISODATA classification was applied to both black and white air photos 

(1948) and colored air photos (2009). Then, visual interpretation was conducted on all the 

preprocessed aerial photos of 1948, 1990 and 2009, with careful consideration of the main 

elements of image interpretation (location, size, shape, shadow, tone, texture, pattern, height/depth 

and association). The manual digitization included both seasonal and permanent wetlands based 

on DUC’s wetland mapping schema. Resulting wetland and drainage maps (1948 and 1990) of 

manual digitization were analyzed, together with wetland and drainage channel maps (1958, 2000 

and 2009), from DUC. 
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3.3.3 Characterizing wetland from satellite remote sensing data 

Based on data availability of Landsat imagery (Table 3.4) and aerial photo digitized wetland maps 

(monthly cloud-free Landsat images from May to September and air photo digitized wetland maps 

in 1990), the year 1990 was selected to determine the best season for mapping Canadian prairie 

wetlands, as well as to compare the accuracy of different classification methods. ENVI version 5.1 

(Harris Geospatial Solutions, 2013) was used to conduct image classification, accuracy assessment 

and post-classification processing for this step. Wetland maps, generated from 1990 air photos, 

were used as ground reference data for training and accuracy assessment. First, 3000 random 

points (two thirds for training, one third for accuracy evaluation) were selected from the wetland 

map of 1990. Next, six classifiers, including binary coding, Mahalanobis distance, maximum 

likelihood, minimum distance, parallelepiped and SVM, were selected for the classification 

process. Accuracy assessment and spatial analysis results of classified maps were compared to 

determine the best season for wetland extraction with Landsat imagery. 

To compare the effect of image spatial resolution on wetland mapping, results from different 

resolution data, 0.65 m resolution air photos (2009), 10 m SPOT (2008), 30 m Landsat (2008 and 

2010) and 1 m LiDAR DEM derived depression and drainage network (2008), were spatially 

analyzed. Parameters, such as detected minimum and maximum wetland size, total wetland area 

and wetland percentage, were included in the spatial analysis. 
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Chapter 4. Results and Discussion 

4.1 Estimating object-oriented and decision tree classification for open water and wet area 

mapping with Landsat and SPOT imagery 

LULC map results of two classification methods, decision tree and object-oriented, with Landsat 

TM and SPOT 5 multispectral imagery were listed below. The first part showed results of decision 

tree method, the second part showed result of object-oriented method. 

4.1.1 Decision tree classification of SPOT 5 and Landsat TM in the year of 2008 

Figure 4.1 shows map results from SPOT 5 and Landsat TM multispectral imagery, combined with 

two classification methods, the spatial pattern of each class, and the accuracy assessment reflected 

in the four maps found in Tables 4.1- 4.4.  

For 10 m resolution SPOT 5 imagery, the overall results of the decision tree and object-oriented 

classification are comparable (Table 4.5). The decision tree classification is slightly better than the 

object-oriented (overall accuracy of 90.2% vs. 88.2%, 𝐾̂ of 87.2% vs. 84.5%). For open water 

detection, the two methods both performed very well. The decision tree method has a lower user’s 

accuracy (commission) than the object-oriented method (93.1% vs. 96.6%), while the object-

oriented classification had a much lower producer’s accuracy (omission) than the decision tree 

method (77.8% vs. 100.0%).  The accuracy of wet area mapping is lower than open water detection. 

User’s accuracy (commission) of wet area mapping with object-oriented classification is very low 

(56.4%). Therefore, for detecting open water bodies and wet area, the decision tree method 

performs better (especially for wet areas) and is more consistent when using 10 meter resolution 

SPOT 5 multispectral imagery. In terms of other classes, classification for cropland, woodland and 

town/road is quite successful (accuracy higher than 80%), while classification for grassland is not 

as successful, especially with the object-oriented method (producer’s accuracy 64.7%).  The low 
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accuracy for wet area and grassland is likely due to the spectral complexity/heterogeneity and scale 

of these two classes. In October (imagery time), the wet area is often vegetated with various grasses 

or shrubs, which create a mixed spectral signal. 

        

                   

Figure 4.1: Land use and land cover maps of SCRB:  

a) Decision tree classification for SPOT 5, b) Object-oriented classification for SPOT 5, c) 

Decision tree classification method for Landsat TM, and d) Object-oriented classification for 

Landsat TM 

a) b) 

c) d) 
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Table 4.1: Confusion matrix of LULC maps from SPOT 5 imagery with decision tree method 

SPOT DT  Ground reference data 
User's 

accuracy 

C
la

ssified
 im

a
g
e 

  CL GL OW TR WE WO Row total  

CL 
92 5 

    
97 94.8% 

GL 

 
23 

   
2 25 92.0% 

OW 

  
27 

 
1 1 29 93.1% 

TR 
2 

  
11 

  
13 84.6% 

WE 

 
3 

  
30 6 39 76.9% 

WO 

 
1 

  
3 38 42 90.5% 

Column 

total 

94 32 27 11 34 47 245 
 

Producer’s 

accuracy 
97.9% 71.9% 100.0% 100.0% 88.2% 80.9%   

Overall classification accuracy= 90.2%    Kappa coefficient = 87.2% 

*CL stands for cropland, GL stands for grassland, OW stands for open water, TR stands for towns/roads, WE stands for wetland, WO 

stands for woodland. 
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Table 4.2: Confusion matrix of LULC maps from SPOT 5 imagery with object-oriented classification method 

SPOT OBJ  Ground reference data 
User's 

accuracy 

C
la

ssified
 im

a
g
e 

  CL GL OW TR WE WO Row total  

CL 
94 3 

    
97 96.9% 

GL 

 
24 

   
1 25 96.0% 

OW 

  
28 

  
1 29 96.6% 

TR 
1 

  
12 

  
13 92.3% 

WE 

 
6 8 

 
22 3 39 56.4% 

WO 
1 4 

  
1 36 42 85.7% 

Column 

total 

96 37 36 12 23 41 245 
 

Producer’s 

accuracy 
97.9% 64.7% 77.8% 100.0% 95.7% 97.8%  88.2%     

Overall Classification Accuracy= 88.2%    Kappa Coefficient = 84.5% 

*CL stands for cropland, GL stands for grassland, OW stands for open water, TR stands for towns/roads, WE stands for wetland, WO 

stands for woodland.  
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Table 4.3: Confusion matrix of LULC maps from Landsat TM imagery with decision tree classification method 

Landsat DT  Ground reference data 
User's 

accuracy 

C
la

ssified
 im

a
g
e 

  CL GL OW TR WE WO Row total  

CL 102 3 
    

1 
  

106 96.2% 

GL 1 27 
        

28 96.4% 

OW 
    

41 
      

41 100.0% 

TR 1 
    

10 
    

11 90.9% 

WE 
    

9 
  

24 
  

33 72.7% 

WO 1 
        

43 44 97.7% 

Column 

total 
105 30 50 10 25 43 263 

  

Producer’s 

accuracy 
97.1% 90.0% 82.0% 100.0% 96.0% 100.0% 

  
 93.9% 

Overall Classification Accuracy= 93.9%    Kappa Coefficient = 92.0% 

*CL stands for cropland, GL stands for grassland, OW stands for open water, TR stands for towns/roads, WE stands for wetland, WO 

stands for woodland 
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Table 4.3: Confusion matrix of LULC maps from Landsat TM imagery with object-oriented classification  

Landsat OBJ  Ground reference data 
User's 

accuracy 

C
la

ssified
 im

a
g
e 

  CL GL OW TR WE WO Row total  

CL 
41 11 

    
52 78.9% 

GL 
9 7 

    
16 43.8% 

OW 

  
13 

 
1 

 
14 92.9% 

TR 
2 

  
5 

  
7 71.4% 

WE 
5 2 5 

 
10 

 
22 45.5% 

WO 
2 2 

   
14 18 77.8% 

Column 

total 

59 22 18 5 11 14 129 
 

Producer’s 

accuracy 
97.9% 69.5% 31.8% 72.2% 100.0% 90.9% 100.0% 69.8% 

Overall Classification Accuracy= 69.8%    Kappa Coefficient = 60.0% 

*CL stands for cropland, GL stands for grassland, OW stands for open water, TR stands for towns/roads, WE stands for wetland, WO 

stands for woodland. 
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Table 4.4: Comparison of accuracy assessment by using decision tree and object-oriented classification method on 2008 SPOT 5 

method 
accuracy 

% 
cropland grassland 

open 

water 
town/road 

wet 

area 
woodland 

overall 

% 

Kappa 

% 

DT 

User’s 94.8 92.0 93.1 84.6 76.9 90.5 

90.2 87.2 

Producer’s 97.9 71.9 100.0 100.0 88.2 80.9 

OBJCT 

User’s 96.9 96.0 96.6 92.3 56.4 85.7 

88.2 84.5 

Producer’s 97.9 64.7 77.8 100 95.7 87.8 

 

Table 4.5: Comparison of accuracy assessment by using decision tree and object-oriented classification method on 2008 Landsat TM 

method 
accuracy 

% 
cropland grassland 

open 

water 
town/road 

wet 

area 
woodland 

overall 

% 
Kappa 

% 

DT 

User’s 96.2 96.4 100.0 90.9 72.7 97.7 

93.9 92.0 

Producer’s 97.1 90.0 82.0 100.0 96.0 100.0 

OBJCT 

User’s 78.9 43.8 92.9 71.4 45.5 77.8 

69.8 60.0 

Producer’s 97.9 69.5 31.8 72.2 100.0 90.9 
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The scale of the wet area is often smaller than the minimum object scale in the object-oriented 

segmentation (50 m x 50 m). With 10 m spatial resolution, objects of the segmentation process 

may include pixels of different spectral and spatial properties. Among the six classes, wetland has 

the lowest accuracy. User accuracy of the object-oriented method is as low as 56.4%. 

In terms of Landsat imagery classification (Table 4.6), the decision tree method is significantly 

better than the object-oriented method (overall accuracy 93.9% vs. 69.8%). With the object-

oriented method, grassland has the lowest user’s accuracy (43.8%); wetland has the second lowest 

user’s accuracy (45.5%). This is due to the misclassification of other class types to grassland and 

wet area. When employing object-oriented classification, the smallest object consisted of five 

pixels, which is 150 m x 150 m for Landsat TM imagery. This is excessively large for detection of 

relatively small prairie potholes. In addition, the decision tree classification executes better on 

Landsat TM than SPOT 5 imagery, largely due to imagery time and spectral resolution. Landsat 

TM imagery was acquired on August 18, 2008, while SPOT 5 imagery was acquired on October 

1, 2008. Fall months on the Canadian prairie are generally very dry, which means the open water 

area of wetland shrinks and some seasonal wetland converts to shrub and grassland. Precipitation 

analysis of imagery acquisition date of Landsat and SPOT 2008 imagery showed that Landsat 

imagery has higher accumulated 15 day (17.0 mm vs. 6.0 mm) and 30 day precipitation (72.5 mm 

vs. 15.0 mm) than SPOT 5 imagery. The Landsat TM imagery also has three more spectral bands 

(blue band, shortwave infrared band and thermal band) than SPOT 5 (Table 3.4). The advantage 

of the blue band includes separating soil content from vegetation and distinguishing different 

vegetation cover types, which explains why Landsat TM has higher accuracy with SPOT 5 when 

classifying vegetation classes (cropland, grassland and woodland) using the decision tree method.  
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4.1.2 Historical archive simulation with Landsat time series 

Based on field experience and remote sensing indices, early spring is the best time for land cover 

and land use classification. During early spring, the prairie is hydrated with snow melting, so 

wetlands could be readily extracted with unique spectral of water content. Separating vegetation 

cover types (cropland, grassland and woodland) is also easier in early spring due to differences in 

NDVI values. In this time span, woodlands have the highest NDVI value, while cropland has the 

lowest NDVI value.  

To build a historical archive for LULC maps (Figure 4.2) with open water and wet area classes, 

early spring images of 1987, 1990, 1993, 1998, 2002, 2005, 2008, 2010 and fall of 2013 (Table 

3.4), were selected. The same set of field points collected and filtered during 2008 were used to 

simulate ground reference data for all images. Due to the inconsistency of field data with imagery 

dates, this simulation only reflects the possibility to simulate a large dataset, but is not 

representative for map accuracy. For classes which have changed dramatically compared to 2008, 

the classification accuracy is very low. If field data in the same year of imagery could be used for 

training and classification, map results would be more valid and reliable. 

Historical LULC changes for all the spring imagery, depicted in Table 4.7, reveals that the total 

area of open water and wet area has neither a decrease nor increase trend. One reason for this low 

accuracy of historical maps is due to low ground point accuracy. Another reason is the impact of 

various ground moisture conditions on the Landsat detected wet area based on the detection 

mechanism. Last, the 30 m spatial resolution Landsat also misses detecting potholes which are 

smaller than 30 m x 30 m. The results of the Landsat historical archive indicate that a higher 

resolution dataset is needed to monitor historical wetland changes. 
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1987 May 5 1990 May 29 

1993 May 05 1998 May 03 
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2002 July 01 

2002 July 17 

2002 July 01 

2002 August 2 
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2002 August 02 2002 September 03 

2005 April 20 

2010 April 18 

2010 April 18 2011 May 11 

2002 September 3 



 

58 

 

 

Figure 4.2: LULC maps of Smith Creek Research Basin from 1987 to 2013  

2013 September 7 
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Table 4.6: LULC percentage change from historical Landsat maps 

Date 
Open Water 

(%) 

Wet Area 

(%) 

Open 

water+Wet 

Area 

(%) 

Cropland 

(%) 

Grassland 

(%) 

Woodland 

(%) 

Town/Road 

(%) 

1987-05-05 0.7 6.8 7.4 69.5 16.1 5.5 1.4 

1990-05-29 1.2 5.5 6.7 64.5 24.5 3.0 1.3 

1993-05-

05(cloud) 
1.2 11.8 13.1 68.3 13.7 4.0 0.8 

1998-05-03 1.4 4.7 6.1 59.5 27.3 4.2 3.0 

2001-05-11 0.6 20.0 20.6 28.8 44.6 5.0 1.0 

2002-05-14 1.1 6.4 7.5 56.6 28.9 5.7 1.2 

2005-04-20 0.8 10.5 11.3 44.3 39.2 4.0 1.3 

2010-04-18 1.7 6.5 8.1 47.1 37.7 5.8 1.2 
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4.2 Historical wetland and drainage network change between 1948 and 2009 

Due to the low data quality of historical LULC archive developed from Landsat imagery, aerial 

photography and wetland maps generated from aerial photography were used as a high-quality 

data source to monitor historical wetland changes. 

A wetland and drainage channel map, from 1990 (Figure 4.3), fills the gap in monitoring historical 

wetland changes between 1958 and 2000. In 1990, wetland covers 52.0 km2, which is 13% of the 

full basin. The drainage channel of the full basin is 268.8 km in length. 

Historical maps from 1958 to 2009 (Figure 4.4) demonstrate that the wetland area continuously 

decreased while drainage channels increased.  To quantify these changes, the wetland area and 

drainage channel length of each year were calculated in Table 4.8 and graphed in Figure 4.5. 

Results of 1958, 2000 and 2009 were credited from Lyle Boychuk’s (DUC) aerial photography 

analysis. From 1958 to 1990, approximately 50% of wetlands have disappeared (96 km2 to 52 km2) 

while the drainage channel length doubled (119.3 km to 268.8 km) from the initial value. After 

1990, the wetland decrease rate slowed down while the drainage channel length increased more 

rapidly. The wetland area dropped gradually to 47 km2 in 2000 and then to 40.3 km2 in 2009. On 

the other hand, the drainage channel length rose significantly to 503.7 km in 2000 and to 931.3 km 

in 2009 (Figure 4.5). 

A wetland and drainage map of sub basin 2, in 1948, expands the time frame (Figure 4.6). The 

drainage channel continues to increase in sub-basin 2 from 1948 to 2009 (Table 4.9, Figure 4.7). 

However, wetland area is not always decrease from 1948 to 2009. More specifically, wetland area 

in 1958 is larger than that in 1948 (9.7 km2 vs. 6.9 km2) and wetland area in 2009 is larger than 
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that in 2000 (3.0 km2 vs. 2.4 km2).  A possible assumption is that the drainage channel is not the 

only influencing factor for the wetland area. There are other factors affect wetland loss in SCRB. 

Figure 4.3: Wetland and drainage network of SCRB in 1990 derived from aerial photography 
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Figure 4.4: Wetland and drainage network of SCRB in 1958, 1990, 2000, and 2009 (1958, 2000 and 2009 data provided by Lyle 

Boychuk from DUC that were derived from aerial photography analysis) 
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Table 4.7: Changes in wetland area and drainage channel length from aerial photography 

analysis in SCRB. Years 1958, 2000 and 2009 provided by Lyle Boychuk from DUC 

 1958 1990 2000 2009 

Wetland area (km2) 96.0 52.0 47.0 40.3 

Wetland area (%) 24 13 12 10 

Drainage channel 

length (km) 
119.3 268.8 503.7 931.3 

 

 

Figure 4.5: Changes in wetland area and drainage channel length from aerial photography 

analysis in SCRB full basin 
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Figure 4.6: Wetland and drainage network of SCRB sub-basin 2 in 1948, 1958, 1990, 2000, and 2009. 1958, 2000 and 2009 data 

provided by Lyle Boychuk from DUC that were derived from aerial photography analysis. 
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Table 4.8: Changes in wetland area and drainage channel length from aerial photography 

analysis in SCRB sub-basin 2. Years 1958, 2000 and 2009 provided by Lyle Boychuk from DUC 

 1948 1958 1990 2000 2009 

Wetland area 

(km2) 
6.9 9.7 3.8 2.4 3.0 

Wetland area 

(%) 
13.3 18.7 7.3 4.6 5.8 

Drainage 

channel length 

(km) 
13.2 19.7 22.0 62.3 116.8 

 

 

 

 

Figure 4.7: Changes in wetland area and drainage channel length from aerial photography 

analysis in SCRB sub-basin 2 
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Fang and Pomeroy (2008) concluded that some wetlands, especially shallow and small wetlands, 

dried out during droughts and converted to other land cover types. Graphed hydrological year 

precipitation and wetland area in full basin (Figure 4.8) showed a R2 of 0.88. However, there were 

only four points and the linear regression is largely affected by the first point (year 1958) (Figure 

4.8 b). In sub-basin 2, linear relationship of hydrological year precipitation and wetland area had 

a R2 of 0.51 (Figure 4.8 c). Shook and Pomeroy (2011) found that wetland has a memory effect of 

previous conditions. Therefore, accumulated precipitation data in SCRB was analysed with 

wetland area data. 
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(b)                                                                          (c) 

Figure 4.8: Relation of wetland area in full basin and sun-basin 2 with hydrological year 

precipitation 

 

 

Figure 4.9: Hydrological year rainfall and snowfall at SCRB from 1942 to 2014 (Data provided 

by Stacey Dumanski, University of Saskatchewan from Langenburg, Yorkton and Tonkin 

stations, Saskatchewan)  
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Annual rainfall and snowfall in SCRB, from 1942 to 2014 (Figure 4.9), shows relatively high 

annual snowfalls from 1953-1957, with 1956 having the highest annual snowfall value (Figure 

4.9). Applying Shook and Pomeroy (2011)’s memory effect theory, accumulated previous years’ 

precipitation data (both rainfall and snowfall) was calculated and correlated to the wetland area in 

both the full basin and sub-basin 2 (Table 4.10, Figure 4.10).  There are, however, only 4 points 

and the linear regression largely depends on the point of 1958 (Figure 4.10 a, b). By adding 1948 

in sub basin 2, the correlation coefficients are higher and linear regressions are more evident 

(Figure 4.10 c, d). Critical value for Pearson’s correlation varies by sample size.  A correlation 

analysis of wetland area at full basin shows correlation coefficient (r) of 0.887 with accumulated 

3 years’ snowfall, r of 0.848 with accumulated 6 years’ snowfall, and r of -0.768 with drainage 

channel length in full basin (Figure 4.11 a, b) (Table 4.11). Therefore, wetland area in full basin 

was positive corelated with accumulated 3 years and 6 years snow fall, and negative correlated 

with drainage channel length in the full basin. Regression analysis results (Table 4.11) showed that 

the relationship between wetland area at full basin is not significant with either previous 

precipitation nor drainage channel length (p value was 0.113, 0.152, 0.232 for 3 years snow, 6 

years snow and drainage channel length, respectively). Correlation analysis of wetland area in sub 

basin 2 shows r of 0.904, 0.864, and -0.637 with accumulated 3 years’ snowfall, accumulated 6 

years’ snowfall and drainage channel length in sub basin 2, respectively (Figure 4.11 c, d) (Table 

4.11). Regression analysis results showed that wetland area in sub basin 2 is significantly 

correlated with accumulated previous 3 years’ snowfall (p=0.035) and accumulated previous 6 

years’ snowfall (p=0.059). Drawing from Table 4.10, 1958 has the highest 3 years’ (600 mm) 

accumulated snowfall among all five years. Year 2009 has a higher accumulated 3 years’ snowfall 
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than year 2000. Therefore, abnormally high values of the wetland area of sub basin 2, in 1958 and 

2000, are reflected by the accumulated previous 3 years’ snowfalls (Figure 4.10). 

From the correlation analysis, the wetland area of sub basin 2 has better correlation and significant 

level with accumulated previous 3 years’ snowfall (Figure 4.11). Change in the wetland area in 

sub basin 2 also fluctuates more than that in the full basin (Figure 4.5 and Figure 4.7). Because 

sub basin 2 is more agriculture dominated, the wetland area transfers to other land cover types 

during droughts (Fang and Pomeroy, 2008).  In the full basin, however, sample size and r value 

are not enough to show a correlation of wetland area with neither accumulated snow and 

precipitation data nor drainage channel length. 

Table 4.9: Wetland area and accumulated 3 and 6 years’ snowfall and total precipitation 

 Wetland area (km2) Precipitation (mm) 

Year Full basin Sub-basin 2 3y snow 3y precipitation 6y snow 6y precipitation 

1948 NA 6.9 439 1243 809 2476 

1958 96 9.7 600 1342 1006 2851 

1990 52 3.8 218 1178 539 2458 

2000 47 2.4 309 1327 679 2739 

2009 40.3 3 330 1345 706 2673 
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Figure 4.10: Relationship between wetland area and 3 and 6 years accumulated snowfall and 

total precipitation 

Table 4.10: Correlation of wetland area with drainage channel and precipitation data 

(*indicate p<0.1, **indicate p<0.05) 

Wetland 

area 

Drainage 

length 
3y snow 

3y 

precipitation 
6y snow 

6y 

precipitation 

r p r p r p r p r p 

Full 

basin 
-0.768 0.232 0.887 0.113 0.204 0.796 0.848 0.152 0.583 0.417 

Sub-

basin 2 
-0.637 0.248 0.904 0.035 

** 
0.094 0.880 0.864 0.059 

* 
0.276 0.654 
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Figure 4.11: Linear regressions of wetland area and accumulated previous years’ snowfall:  

a) wetland area of full basin and accumulated previous 3 years’ snowfall, b) wetland area of full 

basin and accumulated previous 6 years’ snowfall, c) wetland area of sub basin 2 and 

accumulated previous 3 years’ snowfall, and d) wetland area of sub basin 2 and accumulated 

previous 6 years’ snowfall 

4.3 Comparing methods, seasons and remote sensing data source for mapping wetlands 

Landsat generated historical LULC maps are unable to track historical wetland changes due to 

inconsistent selections of ground points.  If we used the same year aerial photography as a ground 

point, would Landsat be able to generate high accuracy wetland maps to track historical trends? 
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Will season and classification methods play a role in wetland mapping accuracy with Landsat 

imagery? 

To test this and to determine the best method and season for mapping wetlands in the prairie 

pothole region using Landsat imagery, map results of six popular classification methods with 1990 

Landsat data were compared to 1990 aerial photographs. The accuracy assessment (Table 4.12) 

indicates that spring imagery with the minimum distance method has the best accuracy (33.7%. 

The accuracy of Landsat classification, however, is very low when compared with aerial 

photograph results because of the low spatial resolution of Landsat imagery. 

Table 4.112: Accuracy comparison of 1990 wetland maps generated from Landsat with various 

methods and seasons 

Method / Date 
1990/05/29 

(%) 

1990/06/30 
(%) 

1990/09/02 
(%) 

1990/09/18 
(%) 

binary coding 27.0 13.0 13.0 13.0 

Mahalanobis 

distance 
27.0 14.0 7.0 7.0 

maximum likelihood 22.3 14.0 8.3 8.3 

minimum distance 33.7 18.0 10.0 10.0 

parallel 11.3 4.0 5.3 5.3 

SVM 21.7 15.3 7.7 7.7 

Figure 4.12 shows best method results from the 1990 Landsat imagery of each month. It visually 

indicates that imagery from May 29 captures the most wetland areas when compared against other 

months. More specifically, this date’s Landsat images captures 25.1 km2 of wetland area, whereas 
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aerial photos capture 51.6 km2 (Table 4.13). Alternatively, late June, early September and mid-

September images only capture 19.8%, 34.6% and 11.3% of the wetland area, respectively, when 

compared to same year aerial photography results (Table 4.13).  

Figure 4.12: Highest accuracy wetland maps of 1990 from different seasons 

After confirming the best season and best method for Landsat classification, the impact of data 

source and spatial resolution on wetland mapping accuracy was analyzed. Map results from 

different resolution imagery, air photos, SPOT and Landsat show that air photos provide the best 

results (Figure 4.13). A LiDAR DEM MA maximum level cut-and-fill result from 2008, which 

was operated by Xing Fang, Centre for Hydrology (Fang et al., 2010), was used to compare with 

other wetland maps of 2008 and 2009. Minimum and maximum wetland size analyses indicate 
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that high-resolution imagery is significantly better than medium-resolution imagery when mapping 

small wetlands (Table 4.14). Wetland area and percentage analysis show that air photos captured 

18.4 km2 of wetlands in SCRB, while 10 m resolution SPOT and 30 m resolution Landsat only 

mapped 4.2 km2 and 2.4 km2, respectively (Table 4.14). When comparing Landsat imagery of 

different seasons, spring imagery (4.8 km2 of wetland) had better performance than fall imagery 

(2.4 km2 of wetland) (Table 4.14). 

Table 4.13: Wetland map comparison of various 1990 wetland maps 

 
Air photo 

1990 
L0529 L0630 L0902 L0918 

Area 
(km2) 

51.6 25.1 10.2 17.9 5.8 

% of air 

photo 
100 48.5 19.8 34.6 11.3 

Table 4.14: Minimum and maximum wetland size of wetland maps generated from source data 

with differing resolution 

 Air photo 

2009 

SPOT 

2008/10 

Landsat 

2008/08 

Landsat 

2010/04 

LiDAR 

DEM cut-

and-fill 2008 

Minimum wetland 

size 

(m2) 

2* 100 900 900 1 

Maximum 

wetland size 

(m2) 

420672 9846 9915 9967 280539737 

Area 
(km2) 

18.4 4.2 2.4 4.8 391.8 

% of air photo 100.0 22.8 13.0 26.1 2129.3 

Map Accuracy 

(%) 
100 27.5 22.3 37.5 ---- 

*data calculated from wetland maps derived from 2000 aerial photography 
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Figure 4.13: Wetland maps generated from source data with differing resolution  

Figures 4.14 and 4.15 show the wetland size and abundance relationship from wetland maps of 

different resolutions. They all follow a power law relationship, with air photos having the 

smoothest line and Landsat results having the most fluctuating trends (Figure 4.14). Zhang et al. 

(2009) used Landsat to map pothole lakes in South Dakota, which resulted in a linear model for 

pothole size and abundance. This research proved that Landsat results exclude about half of the 

pothole lakes and omit the front tail (starting part) of the power law line. Therefore, a simple linear 

model is not sufficient or accurate for understanding pothole size and abundance relationships. 

Regarding air photo generated wetland map as ground reference data, SPOT is able to capture 

small wetlands, but a large number of these small wetlands are discounted due to spectral 
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complexity. Due to the pixel size of Landsat imagery, they detect wetland size only in multiples 

of 900 m2 which causes fluctuation of Landsat power law line (Figure 4.14). When comparing the 

power law lines of Landsat imagery on August 18, 2008 and April 18, 2010, most of the extra 

wetlands detected in 2010 are smaller than 2700 m2 and distribute at the front tail of the power law 

line (Figure 4.14). Therefore, in dry seasons or dry years, smaller wetlands disappear rather than 

larger ones. 

Landsat data from April 2010 identifies 26.1% of wetlands compared with same time air photos 

(Table 4.14). SPOT October 2008 identifies 22.8% of wetland, which is much lower than Landsat 

2010. When comparing the power law lines of the two results, however, the line of SPOT 2008 is 

much smother and has a front tail (Figure 4.14). This means that even though wet condition lower-

resolution imagery may have higher overall accuracy compared with dry condition higher-

resolution imagery, high resolution imagery still has advantages in many ways. Wetland size and 

abundance analysis should be included to assist with accuracy assessment when dealing with 

multi-resolution images.  
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Figure 4.14: Power law lines of wetland size and abundance from different resolution remote 

sensing data 

 

 

Figure 4.15: Power law lines of wetland size and abundance from different resolution remote 

sensing data (log10/log10)  
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Chapter 5. Conclusions  

5.1 Summary of research findings 

The first objective of this research was to compare LULC map results from Landsat, with higher 

resolution SPOT, using decision tree and object-oriented approaches. An accuracy comparison 

between SPOT 5 and Landsat TM, with decision tree and object-oriented classification methods, 

revealed that 30 m spatial resolution Landsat can be used for LULC mapping of the PPR. In terms 

of wetlands, decision tree and object-oriented method combined with Landsat were only capable 

of detecting open water and wet areas, but were not suitable for mapping wetlands. For LULC 

mapping, Landsat derived method performed comparably with those using SPOT data, and 

decision tree classification, due to the advantage of having more spectral bands and different image 

acquisition time (different ground moisture condition). An historical archive of LULC maps in 

SCRB, from 1987 to 2013, was also simulated. The simulation, however, used one ground data set 

collected in 2008 for all imagery years and, thus, created low accuracy maps and proved incapable 

of historical wetland change analysis. LULC, on Canadian prairies, has changed dramatically from 

the 1980s to 2013; simulation with one set of ground truth causes errors for spectral signal analysis 

and results in low accuracy result. Regardless of accuracy, this simulation represents the 

practicability of automatic and fast algorithms to build an historical LULC archive.  

Overall, the results from this research have shown that both decision tree and object-oriented 

methods with Landsat time series is not capable of wetland mapping in PPR as it captures 

approximately half of the wetlands as compared to aerial photography based on a later study. The 

Landsat series, combined with decision tree analysis, is capable mapping open water and wet areas 

in the PPR. 
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For the second objective, to monitor wetland and drainage channels in 1948 and 1990 and to 

quantify changes between 1948 and 2009, 1948 and 1990 aerial photos were digitized, and changes 

were analyzed with other historical wetland maps. Between 1958 and 1990, about half of the 

wetlands disappeared in the SCRB. This decline was much slower after 1990. Drainage channels 

increased, doubling from 1958 to 1990, and then increased more dramatically after 1990. Sub-

basin 2 of SCRB follows a similar trend of the full basin with wetland decrease and drainage 

channel increase. In this case, the wetland area declined from 6.9 km2 to 3.0 km2 between1948 to 

2009, while the drainage channel length increased from 13.2 km to 116.8 km. The wetland area in 

sub basin 2 of 1958increased, compared with that of 1948. The wetland area in sub basin 2 of 2009 

was also higher than that of 2000. A correlation analysis, with accumulated previous years’ 

precipitation, showed strong positive correlations between the wetland area in sub basin 2 and 

accumulated previous 3 year of snowfall (r=0.904, p=0.035). 1958 had significantly higher 

accumulated 3 year of snowfall than 1948 (600 mm vs. 439 mm) and 2009 had slightly higher 

accumulated 3 year of snowfall than 2000 (330 mm vs. 309 mm). The correlation between the 

wetland area and accumulated previous 3 years’ snowfall, together with Shook and Pomeroy 

(2011)’s memory effect of wetland to previous conditions, might explain the abnormal 1958 and 

2009 wetland area values in sub basin 2. As 1958 is the earliest year with air photos and accurate 

wetland and drainage channel maps, some studies in Smith Creek regard this as a base year.  With 

air photos dating back to 1948, this research concludes that 1958 had an unusually high wetland 

area due to high accumulated snowfall in previous years. This might cause issues if 1958 is used 

as a base year when involving wetland areas in the analysis. 

The third research objective of this study was to evaluate the ability of Landsat to identify wetlands 

with a variety of methods and determine the optimal season for wetland mapping. A comparison 
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of classification methods and seasons revealed that map accuracy was very sensitive to surface 

water conditions. May imagery, paired with the minimum distance classification method, 

generated the best results (48.5% wetland compared with air photo results). Also, the May (wet 

ground conditions) Landsat image captured more wetland than the October (dry ground condition) 

SPOT image. Therefore, ground conditions (dry or wet) and image resolution both play an 

important role in wetland mapping in PPR. The results show that Landsat is not capable of mapping 

pothole wetlands, due to three main failings. First, some pothole wetlands are too small for the 30 

m spatial resolution required for Landsat to capture. Second, Landsat captures wetlands based on 

spectral signature. Seasonal wetlands, without standing water or with a water area smaller than 

900 m2, are too difficult for Landsat to detect.  Subsequently, Landsat captured predominately 

wetlands with large spans of open water, thereby missing a majority of small and seasonal wetlands 

in the PPR. Third, because ground water conditions of the PPR vary yearly and seasonally, the 

memory effect of previous ground conditions comes into play.  

Another facet of the second objective was to compare map results from Landsat and other remote 

sensing data sources, including air photos, SPOT and LiDAR generated model results. Results 

indicated that minimum wetland size remote sensing data can capture increases when spatial 

resolution increases. Resolution and ground water both play a role in terms of how many wetlands 

a certain data source is able to capture. Wetland size and abundance all followed a power law 

relationship with different imagery sources. When image resolution decreased, the power law line 

appeared to fluctuate more. Highest resolution aerial photography had the smoothest power law 

line. 



 

81 

 

 

5.2 Research limitations 

Limitations appear in this study. The first is inconsistency in detecting objectives from different 

remote sensing data. Air photos captures wetlands (including those both seasonal and dried up), 

while SPOT and Landsat mainly detect water bodies (open water). LiDAR DEM generates 

depressions. This is due to different detecting principles of various data sources. High resolution 

air photos use visual interpretation to delineate wetlands. This method is able to discern a wetland 

even when it is dried out, based on shape, pattern and texture of objects. SPOT and Landsat classify 

wetland based on spectral reflectance; mainly the spectral signature of the waterbody. LiDAR 

DEM fill depressions based on elevation data. 

The second limitation of this study is uncertainty. Despite of the inconsistent detection objectives 

of various remote sensing data types, there are uncertainty for the same type of dataset as well. 

Take Landsat as an example, solar azimuth angel and sensor angle both have an effect of the 

spectral signature of wetland. This variation will affect the classification accuracy, especially when 

an algorithm is built based on one set of imagery and apply it to other images later. In addition, 

wetland is a complex ecosystem, which have five different types in CWCS and it changes across 

seasons. The spectral signature of different types of wetland, same type of wetland in different 

season, same wetland with different water level all differs significantly. These uncertainties all 

contribute to difficulty in detecting wetland in PPR. 

Another limitation is the lack of historical field data to evaluate remote sensing data derived maps. 

Only one set of ground control field points were collected in 2008. These 500 field control points 

consisted of six LULC classes, which are insufficient for wetland classification. Air photo results 

were used as ground reference data to evaluate SPOT and Landsat results in this study.  
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Annual aerial photography for tracking wetlands and drainage networks changes over time. This 

study relied on only two sets of aerial photographs for 1948 and 1990, and three aerial photography 

derived wetland and drainage network maps in 1958, 2000 and 2009. More aerial photography 

would fill the gap between those years or expand the timeline between 1948 to 2009.  

In addition, high resolution satellite imagery is limited. Spatial resolution has a significant impact 

on map accuracy and detection of small wetlands. The only remote sensing data available are 30 

m Landsat, one set of 10 m SPOT 5 imagery and 0.75 m air photos. Greater selection for spatial 

resolution and image date, would enhance map accuracy and lead to better analysis of wetland size 

and abundance distribution. If an image date is certain (not a mosaic of multiple dates), it is also 

possible to create a model to invert the wetland size and abundance power law line of high 

resolution satellite imagery using 30 m Landsat. The historical data availability and expense of 

these platforms is a limitation. 

5.3 Future study  

From the research presented in this thesis, we have concluded that free-archived Landsat is not 

able to capture wetlands in the PPR due to its inability to capture small (<900 m2) and seasonally 

dried-up wetland areas. Thus, an historical wetland trend analysis in PPR with Landsat is not 

reliable. This study also suggests that it is possible to use 30 m resolution Landsat result to invert 

high resolution satellite imagery results (Figure 4.9 and 4.10) with precipitation data. Future 

studies could use free-archived Landsat and higher resolution imagery, such as Worldview, 

Pleiades and GeoEye, to map PPR and investigate the relationship between Landsat and other 

high-resolution satellite imagery. Another approach to increase the minimum wetland size detected 

by Landsat is to resolve the mixed pixel issue and to use sub-pixel unmixing method.  
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The Landsat data base is highly used by researchers for historical trend analysis for other land uses 

and cover types, due to its free-archived access and span of time. Even though the medium 

resolution Landsat series is not suitable for all this study’s objectives, new technology has driven 

the development of new sensors which make remote sensing more powerful. For example, the 

Landsat series by NASA is continuously developing sensors with higher spectral and spatial 

resolutions. The Sentinel series, by the European Space Agency, has also created anther free-

archived data line with 10, 20 and 60 m resolutions and 13 bands. The availability of these higher 

quality products will contribute dramatically to time series analysis and improve the accuracy of 

historical wetland analysis in PPR in the future. 
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APPENDIX C: R code for decision tree analysis with SPOT imagery 

 

> setwd ("C:/Users/Ning/Desktop/spot2008") 

>  water <- read.table("DN_S20081001.txt",header=T,sep="\t",quote="") 

> names(water) 

[1] "class" "B3"    "B2"    "B1"    "B4"    "B5"    "NDVI"  

> attach(water) 

> library(tree) 

> model1= tree(class~B1+B2+B3+B4+B5+NDVI) 

> summary(model1) 

 

Classification tree: 

tree(formula = class ~ B1 + B2 + B3 + B4 + B5 + NDVI) 

Variables actually used in tree construction: 

[1] "B5" "B2" "B3" "B4" 

Number of terminal nodes:  7  

Residual mean deviance:  0.009462 = 35.15 / 3715  

Misclassification error rate: 0.000806 = 3 / 3722  

> plot(model1) 

> text(model1) 
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APPENDIX D: R code for decision tree analysis with Landsat imagery 

 

> setwd ("C:/Users/Ning/Desktop/L20080818") 

> water <- read.table("DN_L20080818.txt",header=T,sep="\t",quote="") 

> names(water) 

 [1] "class" "B1"    "B2"    "B3"    "B4"    "B5"    "B6"    "B7"    "B8"    

[10] "NDVI"  "NDMI"  

> attach(water) 

> library(tree) 

> model1= tree(class~B1+B2+B3+B4+B5+B6+B7+B8+NDVI+NDMI) 

> summary(model1) 

 

Classification tree: 

tree(formula = class ~ B1 + B2 + B3 + B4 + B5 + B6 + B7 + B8 +  

    NDVI + NDMI) 

Variables actually used in tree construction: 

[1] "B2" "B4" "B3" "B8" "B5" 

Number of terminal nodes:  7  

Residual mean deviance:  0.142 = 83.79 / 590  

Misclassification error rate: 0.01843 = 11 / 597  

> plot(model1) 

> text(model1) 
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APPENDIX E: R code for correlation and regression analysis between 

wetland area and accumulated previous precipitation 

 

fullbasin <- read.table("AREA_PRECIP2.txt", header=TRUE) 

head(fullbasin) 

#correlation between wetland of full basin and precipitation variables 

cor(fullbasin) 

subbasin2 <- read.table("AREA_PRECIP.txt", header=TRUE) 

head(subbasin2) 

#correlation between wetland of sub basin 2 and precipitation variables 

cor(subbasin2) 

 

mypar(2,2) 

#full basin 

fullbasin$A 

fullbasin$c 

fullbasin$E 

 

plot(fullbasin$A, fullbasin$C, xlab="wetland area of full basin/km^2", ylab="previous 3 years 

snowfall/mm") 

abline(lm(fullbasin$C~fullbasin$A),col="black") 

text(x=70,y=300, label="r=0.89") 

text(x=75,y=550, label="a)") 

 

plot(fullbasin$A, fullbasin$E, xlab="wetland area of full basin/km^2", ylab="previous 6 years 

snowlfall/mm") 

abline(lm(test2$E~test2$A),col="black") 

text(x=70,y=630, label="r=0.85") 

text(x=75,y=940, label="b)") 
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#subbasin 2 

subbasin2$B 

subbasin2$c 

subbasin2$E 

 

plot(subbasin2$B, subbasin2$C, xlab="wetland area of sub basin 2/km^2", ylab="previous 3 years 

snowfall/mm") 

abline(lm(subbasin2$C~subbasin2$B),col="black") 

text(x=6.3,y=300, label="r=0.91") 

text(x=7,y=550, label="c)") 

 

plot(subbasin2$B, subbasin2$E, xlab="wetland area of sub basin 2/km^2", ylab="previous 6 years 

snowfall/mm") 

abline(lm(subbasin2$E~subbasin2$B),col="black") 

text(x=6.3,y=630, label="r=0.87") 

text(x=7,y=940, label="d)") 
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APPENDIX F: SPOT 5 Imagery on October 1, 2008 (standard false color 

composite) 
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APPENDIX G: Landsat TM Imagery on August 18, 2008 (true color 

composite) 

 

 


