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Abstract 

 

 

To meet the high demand for supporting and accelerating progress in the breeding of novel 

traits, plant scientists and breeders have to measure a large number of plants and their 

characteristics accurately. A variety of imaging methodologies are being deployed to acquire data 

for quantitative studies of complex traits. When applied to a large number of plants such as canola 

plants, however, a complete three-dimensional (3D) model is time-consuming and expensive for 

high-throughput phenotyping with an enormous amount of data. In some contexts, a full rebuild 

of entire plants may not be necessary. In recent years, many 3D plan phenotyping techniques with 

high cost and large-scale facilities have been introduced to extract plant phenotypic traits, but 

these applications may be affected by limited research budgets and cross environments. This 

thesis proposed a low-cost depth and high-throughput phenotyping mobile platform to measure 

canola plant traits in cross environments. Methods included detecting and counting canola 

branches and seedpods, monitoring canola growth stages, and fusing color images to improve 

images resolution and achieve higher accuracy. Canola plant traits were examined in both 

controlled environment and field scenarios. These methodologies were enhanced by different 

imaging techniques. Results revealed that this phenotyping mobile platform can be used to 

investigate canola plant traits in cross environments with high accuracy. The results also show 

that algorithms for counting canola branches and seedpods enable crop researchers to analyze the 

relationship between canola genotypes and phenotypes and estimate crop yields. In addition to 

counting algorithms, fusing techniques can be helpful for plant breeders with more comfortable 

access plant characteristics by improving the definition and resolution of color images. These 

findings add value to the automation, low-cost depth and high-throughput phenotyping for canola 

plants. These findings also contribute a novel multi-focus image fusion that exhibits a competitive 

performance with outperforms some other state-of-the-art methods based on the visual saliency 

maps and gradient domain fast guided filter. This proposed platform and counting algorithms can 

be applied to not only canola plants but also other closely related species. The proposed fusing 

technique can be extended to other fields, such as remote sensing and medical image fusion.   
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CHAPTER 1 - INTRODUCTION 

 

1.1 A Statement of Objectives 

The sharp increase demand for global food raises the awareness of the public, especially, 

agricultural scientists to the global food security. According to the recent assessment report of the 

future of food and agriculture [1], the world would reach its population of 9.73 billion by 2050 and 

11.2 billion by 2100. To meet the high demand for food in 2050, agriculture will need to produce 

almost 50 percent more food than was produced in 2012 [1]. In Canada, plant scientists are working 

to improve yield of the major crops, including wheat, barley, lentils, and canola. Canola is an 

outstanding agricultural product for Canada. Canola refers to a particular group of rapeseed 

varieties, a species of the much larger mustard family, including mustard, turnips, cauliflower, 

cabbage, and broccoli [2]. Three members of the Brassicaceae family, such as Brassica napus, 

Brassica rapa, and Brassica oleracea (wild mustard), are referred as canola. Canola or rapeseed 

(Brassica napus) was first grown in Canada during the Second World War but almost disappeared 

by 1950 when steam power invented. Due to the demand of oilseeds depending on the imported 

markets, canola was developed by plant breeders in Saskatchewan and Manitoba from the 1960s 

to 1970s [2]. The crop area planted to rapeseed, and a decade later canola has sharply expanded, 

from 143,000 hectares in 1956 to 5 million hectares in 2006. Recently, there are more than 20 

million acres of canola planted, as reported in 2016 [3], with yields of 42.3 bushels (0.959 tonnes) 

per acre [4]. The new target of the Canadian canola industry was set to 26 million tonnes of seeds 

and 52 bushels per acre by 2025 [3]. To response this target, canola productivity must be improved.   

There are many ways of improving yields for canola and other crops. These solutions, such 

as enhancing investment in primary agriculture and promoting technology change, are suggested 

[1]. One of these solutions to meet the high demands for food is to increase breeding efficiency. 

In the past decade, advances in genetic technologies, such as next-generation DNA sequencing, 

have provided new methods to improve plant-breeding techniques. Using these novel technologies, 

plant breeders can increase the rate of genetic improvement through molecular breeding [5]. 

However, the lack of knowledge of phenotyping capabilities limits the ability to analyze the 

genetics of quantitative traits related to plant growth, crop yield, and adaptation to stress [6]. 

Phenotyping creates opportunities not only for functional research on genes, but also for the 
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development of new crops with beneficial features. To fulfill these opportunities, integrated 

approaches are needed that bring together genotypes and phenotypes of all scales to develop 

sustainable plant production with higher yield crops and better use of limited resources of land, 

water, and nutrients.  

Image-based phenotyping methods are those integrated approaches that enable the 

potential to greatly enhance plant researchers’ ability to characterize many different traits of plants. 

As non-invasive techniques, these methods can capture plant traits with a precision that crop 

researchers cannot achieve. In addition, traditional evaluations of plant traits are time-consuming, 

labor intensive, commonly require expertise, and prone to human error. Also, these image-based 

methods can acquire many different traits of plants faster than human beings do. These image-

based techniques can be classified into two categories such as two-dimensional (2D) and three-

dimensional (3D) image-based approaches. 2D image-based approaches are commonly applied 

and provide many benefits in plant phenotyping; however, there are some limitations when 

investigating 3D plant structures. For example, the curved leaf area or plant volume can be 

estimated by 2D image-based techniques, but results are prone to error. 3D image-based techniques 

can overcome the limitations of 2D image-based techniques. These 3D image-based approaches 

are well suited to capture 3D structure of plants. 3D image-based information provides good 

indicators of plant responses to environmental conditions. For example, stresses such as drought 

and extreme temperatures can change the shape, structure, color, and pattern of individual plants. 

Thus, image-based approaches with the potential for high accurate, high throughput and non-

invasive techniques are required for accurate plant phenotyping. 

Recently, there has been increased interest in high-throughput phenotyping approaches in 

controlled environments. There are many image-based techniques used in high-throughput 

phenotyping approaches [6,7], such as visible imaging, spectroscopy imaging, thermal imaging, 

fluorescence imaging, LiDAR, laser, and Time-of-Flight, which can provide quantitative 

morphological measurements of plants. Many studies [8,9,10] have deployed laser systems 

(LemnaTec Scanalyzer) in small-scale research centers, be able to scan both 2D and 3D images of 

the plant surfaces for extracting particular phenotypic traits. Some larger-scale facilities, such as 

the Australian Plant Phenomics Facility, the European Plant Phenotyping Network, and the 

USDA-NIFA, have also adopted robotics, precise environmental controls, and remote sensing 

techniques to assess plant characteristics in both growth chambers and greenhouses. Similarly, 
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authors in [11] adopted a high-resolution 3D laser scanner (PlantEye, Phenospex) to monitor plant 

growth with high precision in challenging environments. In another study, Light Detection and 

Ranging sensor (LiDAR) is the most widely used for 3D canopy reconstruction of plants due to its 

greater robustness, accuracy, and resolution [12]. LiDAR creates accurate and detailed 3D models 

by using a pulsed laser to measure variable distances between the sensor and the object. However, 

these systems are expensive and time-consuming and may not be suitable for field environments 

as they are mainly built for controlled environments. 

In the fields, many phenotyping platforms have been developed, ranging from ground-

based to aerial systems. Most plant phenotyping systems have focused on automated and high-

throughput solutions for data acquisition. A tractor-based high-throughput phenotyping system 

[13] has been developed to determine rice genetic variation of important underlying traits. Many 

research centers, such as the University of Arizona Maricopa Agricultural Center, USDA Arid 

Land Research Station in Maricopa, Arizona, and the Rothamsted Research Centre in the St Albans 

city in the county of Hertfordshire, have implemented phenotyping field scanner systems 

(Lemnatec FIXED GANTRY) to monitor plant traits. These scanner systems are fully automated 

gantry systems designed to capture depth data from crops and other plants growing in field 

environments. In general, these field-based phenotyping platforms perform well in field 

environments, but are still expensive and designed for field purposes only. Ideally, to fulfill the 

requirements of crop research institutions with limited budgets, a 3D mobile phenotyping system 

with low-cost and high-throughput should be developed for use across environments in both 

controlled and field settings.  

Beside many advanced image-based phenotyping techniques, image fusion techniques also 

offer great potential for plant researchers to analyze complex traits by enhancing image resolution.  

In plant science, image fusion techniques aim at combining the data acquired from either many 

different sensors or the same sensor with a different focus length for improving image resolution, 

image segmentation, feature extraction, modeling, and classification. Many studies have deployed 

fusion techniques to detect plant diseases [14], identify the plant location, segment its leaves, and 

measure leaf topology and area [15], and identify and localize plant [16]. These findings imply 

that fusion techniques can offer many benefits for further image processing. 

There are many scholars have investigated canola plant traits and their responses to the 

environmental conditions. Authors in [17] have measured nitrogen status and biomass of oilseed 
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rape by using laser-induced chlorophyll fluorescence. Few years later, authors in [11] have 

investigated the rapeseed growth parameters, such as plant height, leaf area, number of leaves, and 

biomass, by using 3D laser triangulation system, but total leaf area was underestimated.  In the 

interesting analysis of quantifying oilseed rape leaf traits described in [18], leaf area and plant 

height with high accuracy have been extracted by using a high-throughput stereo-imaging system. 

Besides the investigation of plant traits, many studies have been conducted to analyze the plant 

responses to the surroundings. The reaction of oilseed rape (Brassica napus) to fungal species have 

been examined by using hyperspectral and thermal imaging [19]. Similarly, authors in [20] have 

reviewed machine-learning tools using color images for high-throughput stress phenotyping in 

various plants, including oilseed rape. Recently, similar experiments have been performed to 

monitor oilseed rape growth-related traits and plant responses to water stress [21]. These findings 

suggest that there are many high-throughput plant phenotyping techniques to monitor and analyze 

plant traits; however, there are few studies have conducted to count canola branches and seedpods. 

The main objective of this thesis is to propose a low-cost depth high-throughput 

phenotyping mobile platform for cross environments. The second objective is to detect and count 

the number of canola branches and seedpods. The third objective is to monitor canola growth 

stages, such as measuring canola plant height. The fourth objective is to fuse color images to 

enhance image quality and resolution. Some experiments are necessary to meet these goals. The 

first experiment examines the detecting and counting canola branches. The second experiment 

examines the detecting and counting canola seedpods. The third experiment investigates the height 

of individual canola plants. The fourth experiment surveys some image fusion techniques.  

1.2 Contributions 

This study makes five contributions to the canola phenotyping and image processing areas: 

developing a low-cost depth high-throughput phenotyping mobile platform; proposing methods 

for detecting and counting canola seedpods and branches; setting forth a platform for monitoring 

canola growth stages; and developing fusing techniques to improve images resolution from low 

cost cameras.  



5 

 

1.2.1 A Low-Cost Depth High-Throughput Phenotyping Mobile Platform 

A low-cost depth high-throughput phenotyping mobile platform in cross environments is 

proposed. This platform consists of a Raspberry Pi3, an Argos3D P100 camera and a Pi camera. 

The Raspberry Pi3 is used as a mini computer to control the depth (Argos3D P100) and Pi cameras. 

First, this platform is built from a low-cost depth camera with outperform, the Argos3D P100 

camera, for a US $1,200 budget. By providing 3D and grayscale information, the depth camera 

offers excellent potential for 3D modeling and other analyzing plant traits. Multiple 3D images 

from various views are captured to generate point cloud data used to reconstruct the 3D plant 

models. The depth camera also provides grayscale information which is used to monitor canola 

growth stages and to count canola branches and seedpods.  

Besides the low-cost depth advantage, high-throughput phenotyping mobile platform in 

cross environments is also another advantage. This proposed system shows the capability of an 

automated and high-throughput phenotyping system via our experiments. The very high-

performance depth sensor is able to capture a resolution of 160 x 120 pixels and up to 160 frames 

per second (fps). This 3D sensor simultaneously delivers either 3D data and amplitude (intensity 

level) information or depth and amplitude data for each of the 160 x 120 pixels, adding up to 

19,200 independent measuring points for each measurement (https://www.bluetechnix.com). Also, 

this system can be applied in both environments, such as a controlled environment and field 

scenario.  In the field, a tractor arm and a sprayer boom are used to mount the system, enabling 

movement anywhere around plant plots. In the laboratory, the system is fixed on a camera tripod 

or a frame, and the plant is turned on a turntable device. The system can also be moved around the 

canola plant to capture data. Moreover, this system can achieve data either manually via remote 

control and the internet or automatically by pre-configured settings.  

1.2.2 Methods for Detecting and Counting Canola Branches and Seedpods 

 

Although many studies have investigated plant structure and health status structure, few 

studies have detected branch points and counted seedpods. Many studies [22,23,24] have focused 

on leaves, canopy health status and shoots of crop plants (e.g., soybeans, wheat, triticale, maize, 

pepper, sorghum, rice, and barley). Other studies have highlighted findings in detecting flowers 

and counting soybean seedpods [25], as well as detecting branch points to locate the cutting point 

of the rose stem for robotic rose harvesting [26]. To date, however, few studies have detected 

https://www.bluetechnix.com/
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and counted canola branches and seedpods. Canola plants have unique characteristics, such as 

many thin and small seedpods in each plant, making counting seedpods time-consuming. In 

addition, the more branches of a canola plant, the higher the crop yield. Therefore, a non-invasive 

automated process to count canola branches and seedpods is required for crop researchers and 

breeders. The number of canola branches and seedpods is an essential factor in analyzing the 

relationship between genotypes and phenotypes, estimating the crop yield, and for other purposes. 

In this thesis, some techniques for detecting and counting canola branches and seedpods have been 

developed by applying algorithms, such as the fast-marching-method and the Frangi-vesselness 

filter. In the future, these approaches can be deployed to other members of rapeseed family and 

other crop plants. 

1.2.3 Methods for Monitoring Canola Growth Stages 

With the advantages of the proposed platform, the 3D information (point cloud images), 

grayscale data (distance and amplitude images), and color images of canola plants are retrieved 

from multiple views during growth stages. These data are used to monitor canola growth stages, 

such as the height of individual canola plants, the height of canola plots, number of leaves, and 

leaf area.   

To estimate the height of individual canola plants or canola plots, an algorithm using 

grayscale images has been developed. To verify the algorithm, manual measurements of the plant 

height of these individual canola plants are implemented.    

1.2.4 Methods for Fusing Images 

Fusion of multi-color images acquired from any digital camera or low-resolution Pi camera 

can offer many improved results to color-image accuracy. This study focuses on how to fuse multi-

focus color images to enhance resolution and quality of the fused image. The proposed image 

fusion was developed and compared with other state-of-the-art image fusion methods. 

1.3 Description of the Remaining Chapters 

The remain of this thesis is organized as follows. Chapter 2 reviews the background of 

recent different techniques used for plant phenotyping. In this chapter, the literature review focuses 

on the basics of plant phenotyping, the role of imaging techniques in plant phenotyping, image 

acquisition systems, and some high-throughput phenotyping platforms. 
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Chapter 3 describes the requirements and specifications of the proposed methodology, 

proposed approaches for detecting and counting canola branches and seedpods, monitoring canola 

growth stages, and fusing color images.  This chapter also introduces algorithms for removing the 

background and noise, extracting the skeleton of the plant, extracting the area of interest; and 

detecting and counting canola branches and seedpods. Additionally, this chapter introduces plant 

height measurement and multi-focus image fusion algorithm. 

Chapter 4 shows an image acquisition system deployed for canola plant phenotyping. A 

mobile system was built that can be applied in the greenhouse or field. This system includes a 

depth camera and color camera run on a Raspberry Pi3. The advantage of this platform is that it 

enables data to be captured remotely via a remote control key, automatically obtaining data based 

on a pre-set time or remote access via the Internet. 

Chapter 5 illustrates the results of counting canola branches and seedpods, estimating plant 

height, and fusing multi-focus color images experiments. The results show that the proposed 

methods of counting canola branches and seedpods as well as estimating canola plant height are 

state-of-the-art methods of high accuracy, stability, and reliability. On the other hand, the proposed 

multi-focus image fusion reveals competitive performance, which outperforms some state-of-the-

art methods based on the visual saliency metrics and gradient domain fast guided filter. This fusion 

method can be used to improve the results of counting canola seedpods from images captured by 

low-cost cameras or for further study.  

Chapter 6 summarizes the whole study and highlights some future research directions. 
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CHAPTER 2 - LITERATURE REVIEW 

 

 

This section covers the related technologies and methods implemented in automated high-

throughput plant phenotyping. Section 2.1 discusses the basics of plant phenotyping and its role in 

developing high yield crops. Section 2.2 describes the role of imaging techniques for plant 

phenotyping. Section 2.3 introduces various image acquisition systems for plant phenotyping. 

Section 2.4 investigates some high-throughput phenotyping platforms. Finally, Section 2.5 

illustrates current image fusion techniques. 

2.1 Plant Phenotyping 

To understand the relationship between plant phenotypes, plant genotypes, and 

environmental scenarios, for decades, crop researchers have studied plant phenotyping. A plant 

phenotype is formed during plant growth from the complex interaction between the genotype and 

the surrounding environment. Plant phenotyping is the process of quantitatively measuring a set 

of observable characteristics of plants such as plant height, stem diameter, leaf area, number of 

seedpods, and canopy. Measuring observed characteristics is vital for plant breeders to understand 

the plant growth underlying genetic factors and to improve plant-breeding techniques. Accurate 

plant phenotyping plays a crucial role in analyzing different plant traits in different environmental 

scenarios. By accurately measuring phenotypic characteristics during a plant’s growth stages, crop 

breeders can produce crops with higher yields, higher tolerance to drought and stress, and stronger 

disease resistance.  

For many years, traditional plant assessments were labor intensive, prone to errors, and had 

low-throughput. These assessments were performed from a small sample of plants in selected crop 

fields. The low-throughput traditional phenotyping is known as a phenotyping bottleneck in plant 

breeding [8]. The term bottleneck is used because this type of phenotyping both restricts plant 

researchers’ capacity to understand the correlation between phenotypes with underlying genotypes 

and environmental conditions and decreases the progress in vital breeding issues such as drought 

resistance [27]. Due to strong demand from plant breeders for phenotypic information, plant 

phenotyping has become an emerging field of research in plant breeding. In recent years, plant 

phenotyping has progressed from manual to automatic measurement, from destructive to non-

destructive collection, and from low-throughput to high-throughput platforms. High-throughput 
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phenotyping platforms (HTPPs) are automated, non-invasive, and high-volume systems for plant 

phenotyping. Many HTPPs have been recently implemented at all scales in growth chambers, in 

greenhouses and fields [13,23,28,29,30]. Some of these platforms [23,28,29] have applied climate-

controlled growth houses to a conveyor belt system for moving plants to and from fluorescent, 

color, and near-infrared imaging systems to capture and access plant growth. Other platforms 

[13,28,29,30] have deployed unmanned aerial vehicles (UAVs), ground vehicles (tractors or 

robots), and automated gantry systems to monitor plants in fields during growth stages. Together, 

these studies have shown that plant phenotyping plays a crucial role in plant breeding, in which 

HTPPs improve the plant phenotyping process at all scales and across environments.  

2.2  Imaging Techniques in Plant Phenotyping 

Imaging techniques are used in plant phenotyping to measure phenotypic characteristics of 

plants through automated processes non-invasively. With light sources from visible to near-

infrared spectroscopy to computed tomography, imaging and image processing techniques offer 

non-destructive measurements of complex traits. Modern advanced imaging techniques provide 

high-resolution images and enable visualization of multi-dimensional data. These methods allow 

plant breeders and researchers to obtain exact data, speed-up image analysis, bring high-

throughput and high-dimensional phenotype data for modeling, and estimate plant growth and 

structural development during the plant life cycle. The application of advanced imaging 

technologies in plant phenotyping [11,13,16,25] have led to increase in performance such as high-

throughput and offer new prospects to improve breeding efficiency, sustain, and enhance crop 

yields.  

With the rapid development of imaging technologies, a number of imaging methodologies 

have been adapting to capture plants for quantitative research of plant growth during their life 

cycle. These techniques are well known, such as visible light imaging, infrared imaging, 

fluorescence imaging, imaging spectroscopy [6]. While 2D imaging techniques, such as visible 

imaging, infrared imaging, fluorescence imaging, have been successful in plant science for 

extracting morphological phenotype data and physiological information [6,26,31], they remain 

some inherent limitations. For instance, it is difficult to measure the area of a curved leaf from its 

2D images. Another primary source of uncertainty is that 2D approach causes some error-prone 

when computes the volume of the plant.  
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Since 2D imaging techniques have their limitations, 3D based approaches take a chance 

and overcome these bias for plant phenotyping. 3D imaging techniques offer great potential to 

plant scientists to comprehend phenotype. The benefit of these approaches is that, for example, the 

3D area of the curved leaf is more accurately calculated than 2D based approaches. Due to these 

significant advantages of 3D techniques, many high throughput phenotyping platforms have been 

developed. Most of the high-throughput platforms are fully automated, high-speed in greenhouses, 

growth chambers, or fields. For large-scale, high-throughput phenotyping platforms are offered 

for the greenhouses and fields by companies, such as LemnaTec, PhenoSpex, Phenokey, Photon 

System Instruments, and Wiwam. The image-based high-throughput automated system is a perfect 

tool for plant phenotyping due to the capacity to measure complex traits of the plant, such as the 

height of the plant, size of the leaf, and canopy of the plant. Moreover, as a consequence of imaging 

techniques, a set of physical and biochemical traits - provide crop researchers a new approach to 

understand the relationship between phenotypes underlying genotypes and environmental 

conditions of living plants via multiple sensors. 

2.3 Image Acquisition Systems 

This section reviews some techniques for plant phenotyping of aboveground plant organs. 

These techniques, such as visible light imaging, infrared imaging, fluorescence imaging, 

spectroscopy imaging, and other 3D imaging, will be explained in the following section.    

2.3.1 Visible Light Imaging  

The visible light is detectable by human eyes, the wavelengh is ranging from 400 to 

700 nm. This region is located in between ultraviolet (UV) and infrared (IR) regions [32]. Visible 

light imaging is also named RGB (red, green, and blue) color. Using silicon sensors (CCD or 

CMOS arrays), a visible light camera produces two-dimensional (2D) images that become cutting 

edge of the simplest plant phenotyping technique. 

Due to its low cost, simplicity, and low maintenance cost, visible light imaging is 

predominantly used in the agricultural area for analyzing the complex traits with all scales. In 

chambers or greenhouses, authors in [6] have investigated that visible light imaging techniques 

were used to analyze many plant traits, such as leaf morphology, seedling vigor, shoot biomass, 

yield traits, panicle traits, germination rates, and root architecture. In control environments, the 
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authors found that visible images of the plant growth stages were used to monitor drought stress 

response and tolerance of plants. According to the authors [6], canopy cover, leaf area index, and 

light interception information in the fields were extracted from visible images of canopy cover and 

canopy color. In a related research [26], a method was developed that can locate the proper location 

of the cutting point of the rose stem for robotic rose harvesting. Their algorithm for branch 

detection performed quite well to detect and located the position of the point when there occurs no 

overlapping. Recently, a hybrid machine learning approach [25] was presented that enabled 

automatic monitoring to acquire images of soybean flowers and seedpods in the fields. To detect 

flowers and seedpods in a crowd of soybean plants under outdoor environments, some image 

processing and machine learning techniques were deployed. Nevertheless, there are some 

limitations, such as stems and leaves were sometimes wrongly detected as seedpods and seedpods 

were miss-detected in some cases. Even though this approach is popularly used in plant 

phenotyping, the limitations are that visible imaging techniques only offer physiological 

information and cause challenging to extract phenotypic information, such as biomass and leaf 

area by the overlapping of adjacent leaves and soil background in image segmentation [6,7,31]. 

These findings implies that visible imaging approaches enable their potential in plant phenotyping. 

2.3.2 Infrared Imaging  

Infrared imaging is a technology used to measure the temperature and radiation energy of 

an object. Instead of the wavelength ranges from 400 to 700 nm of the visible light camera, the 

range of thermal cameras (IR based) is 3–14 μm. The most commonly used wavelengths for 

thermal imaging are two ranges of 3–5 μm and 7–14 μm because infrared radiation atmospheric 

transmission is close to its maximum value [6]. 

Infrared thermal imaging technology uses infrared detectors to convert invisible infrared 

radiation into a visible image. In plant science, thermal imaging is a very suitable technology for 

plant phenotyping to assess plant health status response to different stress conditions [33,34]. In a 

similar research, authors in [35] highlighted the potential applications of IR sensing for analyzing 

plant responses to water stress. In a study conducted in 2016, the authors showed the ability of 

their sensing system to observe soybean responses to drought stresses [36]. Some other studies 

also used thermal imaging techniques to study plant stress responses in field conditions [37,38].  
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There are many benefits from applying infrared imaging techniques in plant phenotyping. 

These benefits are that they offer high-throughput phenotyping, spatial resolution, and more 

precise measurement under changing environmental conditions [6]. They also enable fast 

collection of data on a single leaf or canopy area. However, a drawback of thermal imaging 

technology in the field is that it may be affected by soil background, wind, and effects of transient 

cloudiness [6,8,35,39]. Overall, these studies highlight the need and advantages of infrared 

imaging techniques in plant phenotyping as well as negative effects of surroundings. 

2.3.3 Fluorescence Imaging  

Fluorescence imaging is a non-destructive technique that uses to detect plant stresses and 

responses from the laboratory to the field. Using this technology, the information about the 

metabolic status of the plant can be obtained [6]. By using charge-coupled device (CCD) cameras, 

fluorescence imaging is sensitive to fluorescence signals that occur by illuminating samples with 

visible or ultraviolet (UV) light. With long-wavelength UV radiation (ranging from 320 to 

400 nm), the excitation of leaves generates four spectral bands such as blue (440nm), green 

(520 nm), red (690 nm), and far-red (740 nm).  

There have been varieties applications of fluorescence imaging technique to detect and 

measure photosynthetic responses, pathogen infections, stress responses, etc. One study examined 

that it is effective to detect stress tolerance in Arabidopsis thaliana and other rosette plants in 

various conditions such as drought stress, chilling stress, heat, and ultraviolet light [40]. This 

technique also successfully examine the impact of fungal pathogens on the photosynthetic 

metabolism of host plants [41]. Numerous studies have attempted to explain that fluorescence 

imaging was deployed for early detection of stress responses to biotic (e.g., insect attack, fungal 

infection, and bacterial infection) and abiotic (e.g., water stress, sun exposure, and chilling) factors 

before a decline in growth [10,39]. As a result, the fluorescence imaging technique becomes a 

powerful diagnostic tool to monitor plant stresses and responses induced by abiotic or biotic 

factors, in which some cases allow to detect of disease before visible symptoms appearing. 

However, the drawback of this technique, such as dark-adaptation for Fv/Fm (maximum quantum 

efficiency of PSII) measurements, makes it difficult to apply in the field [42]. It also may be limited 

to field phenotyping applications because of its power requirements by using short wave laser 

stimulation. Overall, there seems to be some evidence to indicate that fluorescence imaging 
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techniques are powerful approaches to monitor diseases, stresses, and responses of plants. Beside 

their benefits, it is needed to consider restrictions on the power supply or high illumination. 

2.3.4 Imaging Spectroscopy 

Imaging spectroscopy (also known as hyperspectral or spectral imaging) is a promising 

phenotyping tool for accessing plant stresses, biochemical, and structural properties. This 

technique measures the interaction of solar radiation with plants [6]. In the hyperspectral imaging, 

the spectral reflectance of each pixel is obtained for a range of wavelengths that includes the visible 

and infrared regions of the electromagnetic spectra [43]. Depending on the measured wavelengths 

of the reflected signal, various detectors are used, usually visible region (VIS; 300-750nm), near 

infrared region (NIR; 750-1400 nm), and short wavelength infrared region (SWIR; 1400-

3000 nm). The absorption of light by leaf pigments is used for calculations of many vegetation 

indices. These indices reflect the composition and function of a plant. These indices are related to 

different plant properties, such as the plant biomass, photosynthetic size, photosynthetic radiation 

use efficiency, and physiological status. Spectral measurement can be achieved by multispectral 

or hyperspectral cameras. Since obtained data in the VIS-NIR spectral region is used for evaluation 

of several indices (e.g., chlorophyll content, photochemical reflectance, and photosynthetic 

efficiency), the SWIR spectral region is primarily adapted for the investigation water content of 

plants [44]. From these vegetation indices, plant researchers can predict the green biomass, leaf 

area, chlorophyll content, and crop yield of the plant under field conditions [45]. 

Many studies found that imaging spectroscopy techniques are powerful phenotyping tools 

in plant science. First, these techniques have been successfully implemented for predicting 

biophysical and structural features. Surveys such as that conducted by [46] have shown that NIR 

imaging technique to evaluate the tomato water content under drought conditions. In similar 

research [47], both berry yield and quality attributes in rain-fed vineyards were well predicted by 

using hyperspectral reflectance indices related to plant biophysical properties. According to [48], 

imaging spectroscopy enables modeling and predicting plant functional types at the vegetation 

community scale with high accuracy and greater consistency than plant growth forms. In all the 

studies reviewed here, spectroscopy techniques are recognized as highly favorable tools for 

analyzing biochemical and structural traits of plants and plant stresses in controlled environments 



14 

 

and field scenarios. However, the main challenges are the cost and complexity of the spectral 

devices and their related infrastructures.  

2.3.5 3D Imaging 

3D imaging techniques pass over 2D-based approaches and become essential 

methodologies in plant phenotyping. Although 2D imaging techniques are broadly used in plant 

phenotyping as mentioned above, they still have some drawbacks. First, the imaging process can 

be easily interfered by changing of environmental light and caused image degradation. Also, 2D 

image is hard to fully characterize the plant spatial distributions by losing the depth information 

about the scene. By possessing 3D geometry information, 3D imaging techniques deal with these 

issues and become innovative solutions in plant science. There are many ways to construct plant 

traits in 3D, in which plant researchers can gather plant architecture that is fundamental for high 

yield breeding. One of these methodologies is that 3D plant phenotypic traits can be efficiently 

reconstructed by using 2D images. Many authors have developed multi-perspective 2D images 

based approaches to constructing a 3D model of plants [49,50]. In some situations, the size and 

shape of the plant can be reliably measured in 2D. Nevertheless, 3D information is required, for 

example, when the biomass, canopy diameter, or volume of the plant is needed to estimate. In 

these cases, a variety of 3D technologies (such as laser techniques, time-of-flight (ToF) sensors) 

are used, in which, 3D plant traits of interest can be directly derived. These techniques offer great 

potential for automated and high-throughput 3D plant phenotyping.   

There are many 3D imaging techniques are available. Currently, 3D imaging techniques 

such as laser sensor, stereo vision, time-of-flight (ToF) cameras, and Microsoft Kinect sensors are 

popularly used in plant phenotyping. Laser sensor techniques provide precise measurement of 3D 

plant structures. There are some kinds of laser sensors used in plant science, such as light detection 

and ranging (LiDAR), terrestrial laser, and triangulation laser. LiDAR (also named as a laser 

scanner) and laser triangulation are active sensors, in which a light beam (laser line or dot) is 

projected onto plants. The energy scattered from the plant is used for the computation of depth 

maps and 3D point clouds [11]. LiDAR offers measurement and details of 3D distribution of plant 

canopies accurately. Many studies found that 3D data acquired from LiDAR can provide high-

resolution topographic maps and highly accurate estimates of the plant height, cover, and canopy 

structures [51,52,53]. 
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Figure 2-1. LiDAR (https://phenospex.com) 

In addition, detecting and tracking organs in plants (e.g., leaf, stems, flowers, and fruits) 

have been attracting many plant scientists. Automated and high-throughput phenotyping for 

monitoring barley organs was proposed by [51].  Their results showed that this method is capable 

of the detection of water stress in barley. Data from several related studies suggest that LiDAR 

also is a useful tool for the correctly estimating leaf area index [54] and aboveground biomass [55]. 

Together, these studies indicate that, although LiDAR brings many benefits to handle the 

challenges currently in plant phenotyping, it still has some shortcomings of throughput, cost, and 

complex.  

Many studies have also implemented terrestrial laser sensors for 3D biochemical and 

structural features. A terrestrial 3D laser scanner [57] was adopted to measure the aboveground 

biomass and growth stages of some juvenile trees over time in the indoor environment. By using 

a Perceptron V5 laser scanner, authors in [51] illustrated a method of automatically monitoring 

barley plant’s structure of leaves and stems. Their approach also enables applicability for detecting 

and monitoring of drought effects on the 3D structure of plants. Recently, terrestrial laser scanner 

based approaches [53] were presented to measure canopy height growth and architecture of 

different crops (such as maize, soybean, and wheat) under field conditions with a high temporal 

resolution. Moreover, their method can compute and analyze some other plant parameters, such as 

canopy volume, leaf angle distribution, and height positions of leaves and ears. Beside LiDAR and 

terrestrial laser sensors, 3D triangulation laser scanner is also used to measure 3D distributions of 

plants. One study by [58] examined the interactive effects of 3D triangulation laser scanner settings 

(exposure time) and leaf properties. They found that laser triangulation sensors offer the highest 

accuracy and the highest resolution of all currently available 3D imaging techniques for plant 

phenotyping, but their cost is still relatively high and their accuracy can be reduced by non-

https://phenospex.com/
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biological surfaces on the plant. On the other study, 3D triangulation laser scanner [11] was used 

to examine daily changes in plant growth of rapeseed plants with high precision in challenging 

environments. Their results have revealed that this technique is appropriate for high-precision 

phenotyping in plant breeding. Considering all of this evidence, it seems that laser sensor 

techniques are well 3D phenotyping tools with high precision, resolution, and throughput. 

 

Figure 2-2. A draw of the 3D scanner 

Besides the laser sensors, stereo vision techniques also popular deployed in phenotyping 

for measuring 3D geometry information. Stereo vision has two types, passive and active. Passive 

stereo vision offers the depth information by searching the correspondence between the images 

taken by the cameras and then doing triangulation. In contrast to the passive stereo, an active stereo 

vision emits structured light onto the object and then captures the reflected pattern to compute the 

3D geometry of the object surface [6]. Many studies found that stereo vision successfully used to 

reconstruct 3D models of plants in indoor and outdoor environments. A multi-view stereo vision 

system was well deployed to extract 3D features, such as plant height and total leaf area of whole 

plants [49]. This system also offered the capacity to produce high-resolution 3D models to allow 

highly accurate feature extraction of whole plants in indoor and outdoor scenarios. A recent study 

described in [55] involved a low-cost and portable stereo vision system in generating dense and 

accurate 3D imaging of plants in three different environments, including an indoor lab, open field 

with grass, and a multi-span glass greenhouse. 
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Figure 2-3. A stereo camera 

At larger scales in the field phenotyping, a multiple-camera system was successfully 

deployed for 3D plant phenotyping to produce 3D plant models of sunflowers with plant height, 

plant volume, leaf count, leaf size, and internode distance [58]. In field operations, stereo vision 

performance is not only directly affected by the ambient lighting conditions (such as high sunlight, 

overcast sky, or partial clouds), but also limited by the stereo matching process which is not robust 

to all sorts of surfaces and objects expected in the field. This stereo vision reduces its potential and 

limits either the scope or the scale of the application [6]. To deal with these limitations, a shade or 

polarized filter was used. The advantages of the stereo vision are high-resolution color images and 

relatively small and low priced. However, the precision and maximum depths are limited by the 

baseline between the cameras and the distance between the camera and the plant [16]. Collectively, 

these studies outline a critical role for stereo vision techniques in 3D plant modeling with high 

resolution, small size, and low cost, but some limitations of illumination conditions and matching 

process are needed to concern. 

Similar to laser sensor and stereo vision, Time-of-Flight (ToF) technology is also adapted 

to measure 3D plant traits from controlled environments to fields with all scales. A ToF camera is 

a range imaging system that calculates the distance based on the known speed of light, measuring 

the time of the light that travels between the sensor and the targeted object. These ToF cameras use 

near-infrared emitters and mostly offer low-resolution depth images. They can offer a high frame 

rate (up to 160 fps) (e.g., Argos3D-Pxx, https://bluetechnix.com) and are highly suitable for real-

time applications. However, some of them are not suitable to use under intense sunlight.  

https://bluetechnix.com/
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Figure 2-4. The fundamental principle of time-of-flight camera 

In plant science, ToF cameras are used to measure 3D traits of plants. Authors in [60] used 

ToF cameras for automated phenotyping of maize plants under outdoor conditions. Their results 

showed that their approach enables to detect and distinguish different leaves and leaf size. In a 

similar study, authors in [61] investigated a method for monitoring and modeling plant leaves using 

both ToF and color cameras. Their results showed that this approach provides a useful enough 3D 

approximation for automated plant measuring at the high throughput. The study of an inter-plant 

spacing by using a TOF camera was carried out in [62]. They demonstrated that the use of 3D 

vision system could accurately measure the spacing between the corn plants in early growth stages, 

however low resolution and sensitivity to strong sunlight become main obstacles for depth camera 

applications. In another related experiment conducted by [63], a multisensory system, including a 

ToF camera that offered fast acquisition of depth maps, was developed to detect and locate fruits 

from different kinds of crops in natural scenarios. The studies presented thus far provide evidence 

that ToF technique is a powerful tool for 3D plant traits measurements with high frame rate and 

high throughput, but low resolution and high sensitivity of illumination. 

Finally, low-cost depth cameras Microsoft Kinect also were applied for 3D phenotyping in 

controlled environments and field conditions. Many studies have been investigated to assess 

different applications of Kinect sensors in plant science. Authors in [64] used a Kinect V1 to 

capture 3D shapes of sugar beet taproots, sugar beet leaves, and wheatears. The volumetric shape 

of sugar beet taproots and their leaves were reconstructed to compare with the other cameras. They 

suggested that the low-cost depth sensor could replace some alternative high-cost sensors in some 

scenarios. In another study, a Kinect V2 sensor is used for robotic weeding in [13]. This system 

allows the weeding robot to detect ground and single plants in crop rows. In the indoor 

environment, a Kinect sensor was applied for automatically detecting and segmenting stems of 
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tomato plants [65]. In a practical approach, a Kinect-based method was developed for 3D 

measurement of strawberries and investigated the measurement accuracies of plant height, width, 

and the area of leaves using a potted strawberry plant [66]. These studies provide valuable insights 

into the use of Microsoft Kinect cameras for 3D phenotyping, these low-cost depth cameras offer 

some benefits in plant phenotyping, but they still have some limitations such as low resolution and 

highly sensitive to outdoor lighting conditions. 

2.4 Some High Throughput Phenotyping Platforms 

Most of the high throughput phenotyping platforms (HTPPs) around the world have been 

popularly implemented in controlled environments and fields with all scales for measuring overall 

growth and development of different plants. In growth chambers or greenhouses, HTPPs are fully 

automated and high-speed platforms that supported by robotics, precise environmental control, 

remote sensing systems, and high-performance computing systems to monitor and analyze plant 

traits. Although these platforms are definitely deployed for research and large-scale phenotyping 

purposes, they are only used for a limited range of species, including small plants. For example, 

these small plants are Arabidopsis thaliana [67,68] and primary cereal crops such as barley [69]. 

There is a consensus among crop scientists that controlled environments are far from the real 

situation where plants will experience in the field, thus they cannot extrapolate to the field 

situations [70,71,72]. These limitations of environmental factors are known, such as soil volume, 

sunlight, wind speed, CO2 level, air humidity, temperature, and evaporation rate. These obstacles 

lead to unreliable results of accessing plant responses, for example, effects of stresses during plant 

growth stages, especially in reproductive growth. On the other hand, these HTPPs are relatively 

expensive.  

By combining advanced in imaging techniques, aerial to ground-based devices, and high-

performance computing facilities, field-based HTPPs are recognized as reliable approaches to 

measure a large number of plants and describe relevant phenotypic traits in natural scenarios. There 

are varieties of vehicle-based HTPPs used for plant phenotyping in the fields, such as ground-

based phenomobiles, stationery phenotowers, and unmanned aerial vehicles. These platforms have 

been recently deployed by plant research institutes or big seed companies, such as: 

- The Australian Plant Phenomics Facility (http://www.plantphenomics.org.au),  

- The International Plant Phenomics Network (https://www.plantphenomics.com), 

http://www.plantphenomics.org.au/
https://www.plantphenomics.com/
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- The USDA (https://nifa.usda.gov,  https://www.ars.usda.gov),  

- The European Plant Phenotyping Network (http://www.plant-phenotyping-

network.eu/eppn/structure),  

- The German Plant Phenotyping Network (http://www.dppn.de),  

- The LemnaTec (http://www.lemnatec.com),  

- PHENOPSIS (http://bioweb.supagro.inra.fr/phenopsis/InfoBDD.php),   

- PhenoFab (http://www.keygene.com).  

A number different ground-based platforms, named as phenomobiles, include farming 

vehicles (e.g., tractors, sprayers, robots) equipped with multiple sensors and a global positioning 

system (GPS), are developed to measure plant architecture, canopy height, reflectance, and 

temperature [13,70,72,73]. Some others focused on phenotyping for tall dense canopy crops such 

as sorghum [74].  The other types of ground-based platforms are known as fixed gantry systems 

[75,76,77]. The fixed gantry systems carrying multiple sensors are used for tall crops that move 

along the designated area in the research field. Although ground-based platforms offer great 

potential to revolutionize the field of plant phenotyping, they still meet several significant 

obstacles such as high cost of construction and operation and are limited in the size of the breeding 

plots.  

As ground-based platforms are impossible to simultaneous measurements of all plots 

within a trial, aerial-based platforms equipped with different sensors are emerging as an alternative 

option. These platforms include small airplanes or helicopters, blimps, and unmanned aerial 

platforms (UAPs). They enable a fast and non-destructive high throughput phenotyping approach 

with high spatial resolution, flexible, and convenient in operation. These systems also provide the 

ability to rapidly phenotype a large number of plots and field traits in relatively short periods of 

time. A number of published studies shown that these platforms have been widely deployed in the 

field for measuring canopy height [78], crop yield forecasting [79], disease and pets detection [79], 

etc.  The current aerial-based platforms are flexible to use for specific phenotyping purposes 

depending on their payload, initial costs, maintenance costs, and control. Aerial platforms 

increasingly become the most popular method of field phenotyping because they are easy to deploy 

and can collect data over a long distance within a short time span. However, they are faced with 

size, weight, power, and sensor resolution. These studies suggest that HTPPs are power tools for 

https://nifa.usda.gov/
https://www.ars.usda.gov/
http://www.plant-phenotyping-network.eu/eppn/structure
http://www.plant-phenotyping-network.eu/eppn/structure
http://www.dppn.de/
http://www.lemnatec.com/
http://bioweb.supagro.inra.fr/phenopsis/InfoBDD.php
http://www.keygene.com/
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automatic and high throughput 3D phenotyping covering all environments and all scales. Each of 

them can be fit for one or several environments and depends on the budget. 

2.5 Image Fusion Techniques 

Image fusion is a technique that combines many different images to generate a fused image 

with highly informative and reliable information. There are several image fusion types, such as 

multi-modal, multi-sensor, and multi-focus image fusion. In multi-modal image fusion, two 

different kinds of images are fused, for example, combining a high-resolution image with a high 

color image. In multi-sensor image fusion, images from different types of sensors are combined, 

for example, combining an image from a depth sensor with an image from a digital sensor. In 

multi-focus image fusion, two or more images captured by the same sensor from the same visual 

angle but with a different focus are combined to obtain a more informative image. For example, a 

fused image with clearer canola seedpods can be produced by fusing many different images of a 

canola plant acquired by the same Pi camera at the same angle with many different focus lengths.  

Image fusion methods can be grouped into several levels depending on the image-fusion 

processing methods. These image fusion methods can be divided into three levels, such as the pixel 

level, feature level, and decision level. Image fusion at the pixel level refers to an imaging process 

that occurs in the pixel-by-pixel manner in which each new pixel of the fused image obtains a new 

value.  At a higher level than the pixel level, feature-level image fusion first extracts the relevant 

key features from each of the source images and then combines them for image-classification 

purposes such as edge detection. Decision-level image fusion (also named as interpretation-level 

or symbol-level image fusion) is the highest level of image fusion. Decision-level image fusion 

refers to a type of fusion in which the decision is made based on the information separately 

extracted from several source images.   

Over two decades, image fusion techniques have been widely applied in many areas, such 

as medicine, mathematics, engineering, and physics. In plant science, many image fusion 

techniques are used to improve the classification accuracy for determining plant features, detecting 

plant diseases, and measuring crop diversification. Authors in [80] well implemented a Kalman 

filtering fusion to improve the accuracy of the prediction on the citrus maturity. In related research, 

a feature-level fusion technique [81] successfully developed to detect some types of leaf disease 

with excellent results. In other similar research, apple fruit diseases were detected by using feature-
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level fusion in which two or more color and feature textures were combined [82]. Besides these 

feature-level fusion techniques, decision-level fusion techniques combined with other techniques 

have been used for early detection and characterization of agricultural food crop contamination 

and infestation in the field. The decision-level fusion technique has resulted in high detection rates. 

While decision-level fusion techniques have been deployed to detect crop contamination and 

plague [83], authors in [84] have also implemented the Ehler’s fusion algorithm (decision level) 

to measure the diversification of the three critical crop systems with the highest classification 

accuracy. These findings suggest that image-fusion techniques at many levels are broadly applied 

in the plant science sector because they offer the highest classification accuracy. 
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CHAPTER 3 - METHODOLOGY 

 

This section describes the related techniques and methodologies deployed in designing a 

low-cost depth mobile platform for canola phenotyping, counting canola branches and seedpods, 

and fusing color images for the thesis as follows: the requirements and specifications of the 

proposed approach (Section 3.1); the proposed approaches for counting canola branches and 

seedpods, estimating canola plant height, and fusing multi-focus color images (Section 3.2); 

image-processing algorithms for counting canola branches and seedpods, estimating canola plant 

height, and fusing multi-focus color images (Section 3.3).  

3.1 Requirements and Specifications 

3.1.1 Project Requirements 

To meet the goal of the project “Field-Based High-Throughput Phenotyping Mobile 

Systems for Crop Monitoring” of the University of Saskatchewan being to develop a high-

throughput mobile platform for the rapid assessment of plant traits, requirements of a mobile 

system were proposed. This system must be a non-invasive plant phenotyping system, which can 

be mounted on mobile vehicles, such as swathers, sprayers, and tractors. In both controlled and 

field environments, the system must operate continuously for at least two hours in the ambient 

temperatures from 5 °C to 45 °C and moving speeds in the range from 1 to 1.5m/s.  

3.1.2 Materials Used 

In this study, a mobile platform, including an Argos3D-P100 camera, a Pi camera, a 

Raspberry Pi3, a remote-control system, and a 12V battery, was developed. In addition, a Kinect 

V2 and a Sony A58 camera were also used in our experiments. For our experiments, the subjects 

of the study are canola plants growing in the controlled environments and in the fields. 

3.1.3 System Requirements 

The proposed mobile platform was designed as shown in Figure 3-1. This system can be 

fixed on a bracket that mounted on the boom of the swather or sprayer. 
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Figure 3-1. A concept design of the proposed phenotyping mobile system 

3.1.4 Energy Requirements 

The system must be operated for at least two hours per day without recharging the battery. 

The currents of the proposed system when starting and capturing images are 0.61 A and 0.95 A, 

respectively. Due to the power requirements of the whole system, at least 2h*12 V*0.95 A = 22.8 

Ah was needed.  

3.1.5 Storage Requirements 

The storage space is required to be large enough for the operating system and data acquired 

from both cameras. The operating system is required to be at least 2 GB. The streams and videos 

acquired from Argos3D P100 and Pi cameras at 10 frames per second are about 1.468MB/s and 

0.92MB/s (with a resolution of 1640 x 1232 pixels). For two hours, a minimum storage space of 

17.2 GB is needed. As the result, at least 19.2 GB of total storage space is required. 

3.2 The Proposed Approaches 

3.2.1 Detection and Counting Canola Branches 

The proposed approach has several advantages: a low-cost depth camera system, a high-

throughput 3D phenotyping system, and multi-platform capability. The low-cost depth camera 

(Argos3D-P100) is used as an imaging acquisition system. Comparing with other advanced depth 

cameras, such as a laser camera, this ToF camera is suitable for our platform due to its cost, size, 

and ability to capture both 3D and 2D images for counting canola branches. With this ToF 

technology camera, phenotypic traits (e.g., canola plant height and number of branches) can be 
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directly extracted and measured. In addition, the ToF Argos3D-P100 camera can capture depth 

map and 160x120 pixels data with up to 160 fps to deliver depth information and grayscale data 

for each pixel simultaneously. The data received from the depth camera is small enough to improve 

phenotyping process as well as increase the storage capacity. Also, the proposed system can be 

deployed on two different imaging platforms: controlled environments (chambers or greenhouses) 

and field scenarios. With the controlled platforms, the proposed system can be fixed, and the plant 

is turned around the camera system, or the proposed system is moved around a stationary plant. In 

the field, the proposed system can be mounted on a vehicle (e.g., swather, sprayer, or tractor) that 

moving over the field plots.  

 

Figure 3-2. The workflow of the proposed approach for counting canola branches 

The process of detecting and counting canola branches includes eight steps as described by 

the workflow shown in Figure 3-2. There are two ways to count the canola branches, using 3D 

point cloud data or using grayscale data acquired from the Argos3D P100 camera. The method of 

counting the canola branches by using 3D point cloud data is described as follows. First, the canola 

depth and grayscale information are acquired by a 3D camera (Argos3D-P100 or Kinect V2) that 

mounted on the tripod while the plant is turned around on the turntable device. In the next step, a 

3D size filter is applied to remove the noise and background. From the filtered 3D images, 2D 

images are extracted in the third step. Before extracting the area of interest (ROI), containing stems 

and branches, the images are converted to grayscale images in step 4 or the distance and grayscale 

information acquired from depth camera can be directly used in step 5. After that, a fast-marching 

method in step 6 is deployed to obtain the skeleton of the plant before detecting and counting 
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canola branches in step 7. Finally, the results of counting number of canola branches are displayed 

in step 8.  

On the other hand, another method of counting the canola branches by using grayscale data 

is simpler than the first one. Instead of implementing first four steps as mentioned above, only two 

steps are implemented, including acquiring grayscale images and removing the noise and 

background steps. These next steps are implemented as similar as the first one did. The diamond 

block indicates the options that each of methods can be done. 

3D point cloud, distance, and grayscale images are taken by using the Argos3D P100 and 

Kinect V2 cameras in an indoor environment. The resolution of images adopted by the Argos 3D 

P100 and Kinect V2 is 160x120 pixels and 512x424 pixels, respectively. These depth images are 

captured under different views with a distance of 50 cm from the plant. Matlab R2016b, Argos3D-

P100 SDK, and Kinect V2 SDK are used to connect the depth cameras with a PC, support to the 

acquiring data process, process the data, and display the results. 

3.2.2 Detection and Counting Canola Seedpods 

To detect and count canola seedpods from single canola plants, a 2D image-based approach 

is to be developed to extract seedpod features from the color side view of the images in the 

laboratory as illustrated by the workflow in Figure 3-3. In this approach, a digital camera is 

employed to capture color side view images of the canola plants. Then, these color images are 

converted to grayscale images. Next, a Frangi 2D vesselness filter algorithm [85] is applied to 

detect tube-like structures of stems and branches from these grayscale images. Although the Frangi 

vesselness filter produces an excellent result, the remaining noise is required to be removed before 

obtaining the skeleton of the canola plant. Following the previous step, a skeleton algorithm – 

multi-stencils fast marching method [100] is adopted to retrieve the skeleton of the plant. After 

that, an algorithm for detecting endpoints of the given skeleton is deployed to find locations of the 

endpoints of the skeleton. Finally, from these end-point locations, canola seedpods can be detected, 

and the number of canola seedpods can be estimated and displayed as well.  
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Figure 3-3. The workflow of the proposed approach for counting canola seedpods 

Color images are taken by the Pi and Sony A58 cameras in the indoor environment. The 

resolution of images acquired by the Pi camera and Sony camera are 1640 x 1232 pixels and 3872 

x 2576 pixels, respectively. These color images are obtained under different side views at a 

distance of 50cm for the Pi camera and 180 cm for the Sony camera. Matlab R2016b is used for 

software development. 

3.2.3 Monitoring Canola Growth Stages 

A hybrid of depth and color cameras system is implemented to monitor individual canola 

plants in early growth stages. The depth, grayscale information, and color images of the canola 

plants grown in the greenhouse are derived from two leaves to green pod stages. From these 

images, estimating the height of individual canola plants or canola plots can be implemented. 

Regularly and accurately monitoring canola plant-growth stages offers a good indication of canola 

plants for crop researchers and breeders to diagnose problems early. 

 

Figure 3-4. Canola growth stages (Taken from www.agsolutions.ca) 

mailto:basf@basf-agsolutions.ca
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To measure plant height of individual canola plants, grayscales or depth images are 

extracted. Each canola plant is placed underneath the depth camera with a distance between 30mm 

and 1500mm. Each measurement is executed from 10 to 30 seconds at a frame rate of 10fps in the 

laboratory. The measurement unit of the depth camera is set to millimeter (mm). To estimate plant 

height of individual canola plants, depth and amplitudes data of each canola plant are first extracted 

from the Argos3D’s stream, then only depth data are used for plant height measurement. Next, the 

background and noise of these depth data is removed before extracting the area of interest (where 

the canola plant is located). Finally, from the depth image, both the distance between the depth 

camera and the ground truth and the distance between the depth camera and the highest point of 

the plant are retrieved to calculate the canola plant height.  

 

Figure 3-5. The workflow of the proposed approach for plant height measurement 

3.2.4 Multi-focus Image Fusion 

Because the Pi camera is limited by its low-resolution, this thesis aims to fuse different 

color images to improve color-image resolution for further plant traits analysis. The Pi camera 

enabled two types of images, focus-based and exposure-based images. Focus-based images are 

images acquired with different focuses, in which some part of the image is well focused, while 

other ones are blurred. Similarly, exposure-based images were those obtained with different 

exposures, in which some portion of the image was properly exposed, whereas other portions were 

under- or over-exposed. Due to time constraints, only multi-focus fusion techniques are inspired 

in this thesis. 

Multi-focus image fusion is a type of adaptive image processing technique, in which 

multiple images with varied focuses are combined to enhance the perception of the scene. The 
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objectives of the multi-focus image fusion are to increase the depth-of-field by extracting partially 

focused regions from multiple source images and combining them together to produce a single 

image in which all regions are well focused. Many studies investigated multi-focus image fusion 

techniques in spatial and frequency domains to improve the outcomes. Authors in [86] proposed a 

method based on the robust principal component analysis in the spatial domain. They developed 

this method to form a robust fusion technique to distinguish focused and defocused areas. The 

method outperforms wavelet-based fusion methods and provides better visual perception, however 

it has a high computation cost. In the similar spatial domain, a multi-focus image fusion method 

based on region [87] was developed, in which, their algorithm offers smaller distortion and better 

reflection the edge information and importance of the source image. Similarly, authors in [88] 

investigated a fusion technique based on dense scale invariant feature transform (SIFT) in the 

spatial domain. The method performs better than other techniques in terms of visual perception 

and performance evaluation but it requires high amount of memory. In the frequency domain, 

authors in [89] conducted a method based on Discrete Cosine Transform. They computed and 

obtained the highest variance of the 8x8 DCT coefficients to reconstruct the fused image. In a 

recently study, the authors in [90] examined a method based on focuses regions detection. Their 

approach provides great quality in respect of visual and objective evaluation.  

To deal with these obstacles, a novel multi-focus image fusion based on the image quality 

assessment metrics is proposed in this thesis. The proposed approach is illustrated in Figure 3-6. 

The proposed method of fusion is developed based on crucial image quality assessment (IQA) 

metrics and a gradient domain fast guided image filter (GDFGIF). This approach is motivated by 

the fact that visual saliency maps, including visual saliency, gradient similarity, and chrominance 

similarity maps, outperform most of the state-of-the-art image quality assessment (IQA) metrics 

in term of the prediction accuracy [91]. Authors in [91] stated that their IQA metrics have the best 

performance and stable. In addition, gradient domain guided filter (GDGIF) [92] and fast guided 

filter (FGF) [93] are adopted in this thesis due to the combination of GDGIF and FGF can offer 

better fused results, especially near the edges, where halo artifacts appear in the original guided 

image filter. The proposed method first measures visual saliency, gradient similarity, and 

chrominance similarity and then calculates weight maps from these metrics. Next, these weight 

maps are refined by a gradient domain fast guided image filter. Then, the source images are 

decomposed into base and detail layers. The base and detail layers contain the large-scale 
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variations in intensity and the small-scale variations in intensity, respectively. Finally, the fused 

image is directly obtained from the refined weight maps and two-layer-decomposed images. The 

workflow of the proposed approach was described in Figure 3-6. The details of the proposed 

algorithm will be introduced in the next section. 

Figure 3-6. The proposed approach for multi-focus image fusion 

3.3 Image Processing Algorithms 

3.3.1 Frangi Vesselness Filter 

Canola seedpods are required to be detected and counted from the acquired color images. 

The color of the canola seedpods, stems, and branches may range from green to brown. They 

appear as significant vessel structures in the acquired images. Property of vesselness is better than 

the property of color for identifying canola seedpods in the color images. Authors in [85] 

developed a method for vessel enhancement filtering based on Hessian matrix eigenvalues to 

identify tube-like objects. Their method has been applied and is popular in medical areas to identify 

such anatomical features as blood vessels, vascular trees, pulmonary vessels, and retinal vascular 

networks from medical images.  In plant science, the Frangi filter was applied for automatically 

detecting and counting Hibiscus branches from color images [94], automatically measuring 

internode length of cotton plants [95] and estimating stem width of sorghum plants [96].  

Due to these advantages of the Frangi vesselness filter mentioned above, the vesselness 

measurement technique is adopted in this study to detect and count the number of canola seedpods. 

From the Frangi’s method, Hessian-based multiscale filtering is adopted for enhancing vascular 

structures in the medical image. This filter is based on eigenvalue analysis of the scale space of 

the Hessian matrix. The eigenvalues and eigenvectors of Hessian matrix are closely related to tube-

like intensity and direction. For 2D images, the Hessian matrix is a 2x2 matrix, including second 

order partial derivatives of the input image, described as below 
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𝐻(𝑥, 𝑦) = [

𝜕2𝐼

𝜕𝑥2

𝜕2𝐼

𝜕𝑥𝜕𝑦

𝜕2𝐼

𝜕𝑦𝜕𝑥

𝜕2𝐼

𝜕𝑦2

]    (3.1) 

where 𝐼(𝑥, 𝑦) =
𝜕2𝐼

𝜕𝑥𝜕𝑦
 is the intensity value of a pixel (x, y) in the image I. To obtain the Hessian 

matrix elements - the second order partial derivatives of the image, I(x, y), I(y, x), and I(y, y) need 

to be computed. The second partial derivatives of an input image I at the pixel (x, y) can be 

calculated by the convolution with derivatives of the Gaussian filter at a standard deviation (σ), as 

defined as  

I(x, y, σ) = G(x, y, σ) * I(x, y)     (3.2) 

𝐺(𝑥,𝑦,σ) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2      (3.3) 

where G(x, y, σ) is a Gaussian convolution kernel at scale σ, as mentioned in Equation (3.3). When 

the standard deviation is changed, vessel structures with different widths can be obtained. When 

increasing the value of sigma (σ), the wider lines of the vessel can be identified. 

Let the eigenvalues of Hessian matrix be λ1, λ2 and |λ1| ≤ |λ2|, and their corresponding 

eigenvectors are e1 and e2, respectively.  The relationships between λ1, λ2, and orientation of 

different structures in the images are described in Table 3-1. 

Table 3-1. Eigenvalues and orientation patterns 

Eigenvalues Orientation pattern 

λ1 λ2 

L H- Tubular structure (bright) 

L H+ Tubular structure (dark) 

H- H- Blob-like structure (bright) 

H+ H+ Blob-like structure (dark) 

L = Low, H = High, and +/- indicate the sign of eigenvalues. The eigenvalues are ordered by |λ1| ≤ |λ2|. 

Eigenvalues of the Hessian matrix (H) are calculated to extract about contrast and principal 

direction information from the image. They can be used to detect the vessel region [85]. The 

eigenvalues decide which pixel belongs to a ‘tubular structure’ or a ‘blob-like structure’ of the 

vessel. Since λ1 is the eigenvalue of smallest magnitude, pointing in the direction of smallest 

curvature and λ2 is the eigenvalue of largest magnitude, pointing in the direction of the largest 

curvature. For example, a combination of a small value of λ1 and a large value of λ2 indicates that 

this pixel belongs to a tubular structure. However, if λ1 changes to a large value, that pixel will 
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belong to a blob-like structure. Eigenvalues have two signs (+) and (-) that they indicate the 

darkness and brightness of the tube structure, respectively.   

The vesselness is a measurement of the probability of the pixel belonging to the stem, 

branches, and seedpods of the plant, which similar to the blood vessel as described in [85]. The 

vesselness measure includes two factors, blobness measure - Ɍβ and the second order structureness 

- S. Based on the eigenvalues λ1 and λ2, Ɍβ and S are calculated as follows  

𝑅𝛽 =  
𝜆1

𝜆2
        (3.4) 

𝑆 =  √𝜆1
2 + 𝜆2

2
     (3.5) 

where Ɍβ is the blobness measurement in 2D images and accounts for the eccentricity of the second 

order ellipse. It has low value for tubular structures than blob-like structures. S is the second order 

structureness. S is defined by a Frobenius norm of the Hessian matrix to reduce the response of the 

background [85]. The second order structureness will be low in the background where no structure 

is present, and the eigenvalues are small for the lack of contrast. In regions with high contrast 

compared to the background, the norm will become larger since at least one of the eigenvalues will 

be large [85]. The vesselness measure can be calculated from blobness measure and the second 

order structureness as given by 

𝑣0 = {
0,                                                          𝑖𝑓  𝜆2 > 0,

exp (−
𝑅𝛽

  2

2𝛽2) (1 − exp (−
𝑆2

𝑐2)) ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
  (3.6) 

where β and c are weight factors, which control the sensitivity of the filter to the measures Ɍβ and 

S. Authors in [85] integrated the vesselness measure provided by the filter response at different 

scales to obtain a final estimate of vesselness. According to authors in [85], the idea behind this 

expression is to map the features in Equations (3.4) and (3.5) into probability-like estimates of 

vesselness according to different criteria. They combined the different criteria using their product 

to ensure that the response of the filter is maximal only if all three criteria are fulfilled. In their 

experiments, β was fixed to 0.5. The value of the threshold c depends on the grey-scale range of 

the image and half the value of the maximum Hessian norm has proven to work in most cases [85]. 

As a result, the maximum response is accepted to be a final measurement of vesselness, is defined 

by 

𝑣0(ɤ) = max
𝜎𝑚𝑖𝑛≤𝜎≤𝜎𝑚𝑎𝑥

 {𝑣0(𝜎, ɤ) }   (3.7) 
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where 𝜎min and 𝜎max are the minimum and maximum scales at which relevant structures are 

expected to be found. They can be chosen that they will cover the range of vessel widths. This 

filter can be used at different scales that are able to offer a result in a larger range of line sizes. 

However, its performance depends on the scales (𝜎min and 𝜎max) to be chosen.  

3.3.2 Multi-stencils Fast Marching Method 

Because the branches and seedpods of the canola plants are too small and thin, detecting 

and counting canola branches and seedpods bring many obstacles for crop researchers. From their 

characteristics, an idea to deal with this is to find the skeleton of the canola plant, then apply other 

detecting and counting algorithms. The skeleton describes simple and compact shapes of a plant 

with all features of the original plant. An example of the skeleton of a plant is shown in Figure 3-

7.  

 

Figure 3-7. General concept of skeleton 

Skeletonization algorithms can be classified into four main categories, morphological 

thinning algorithms, Voronoi diagram based algorithms, distance transform based algorithms, and 

mathematical morphology based on algorithms [98]. These morphological thinning methods 

iteratively remove the boundary layer by layer and can preserve the object topology. However, 

they are sensitive to the boundary noise and do not generate a true skeleton. Geometric approaches 

calculate the Voronoi diagram of a discrete polyline like a sampling of the boundary. These 

methods result in an accurately connected skeleton by increasing the sampling rate, but relatively 

complicated to implement as well as computationally expensive. Authors in [99] reviewed some 

algorithms used mathematical morphology for skeleton calculation, such as using influence zones 

and setting operations to transform a discrete binary image using parts of its skeleton containing 

complete information about its shape and size. The limitations of such methods are that their 
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outcomes depend on structure elements used for mathematical morphology operations. Also, the 

resulting skeletons may not preserve connectedness. The distance transform methods calculate the 

shortest distance from a given point to the object boundary. Approaches based on distance 

transform are expected to show a better performance under rotation and at sharp corners due to the 

robust underlying strategy of using the distance transform or depth measure, in defining the peel 

sequence [99]. Therefore, distance transform-based approaches have been studied, especially; a 

high accuracy fast marching method was used. 

Fast marching methods are techniques designed to solve the Eikonal equation ( 𝑇𝑖
2 + 𝑇𝑗

2 =

1/𝐹{𝑖,𝑗)
2  , where 𝑇 is travel time, ij represent Cartesian coordinates) for detecting the evolution of 

a monotonically advancing front. These approaches produce consistent, accurate, and highly 

efficient algorithms due to entropy-satisfying upwind schemes and fast sorting techniques. There 

are several improved fast marching methods, such as the Higher Accuracy Fast Marching, Untidy 

Fast Marching, Shifted Grid Fast Marching, and Multi-stencils Fast Marching (MFM) methods. 

These methods have been introduced to enhance the accuracy of predictions. Most of all 

algorithms, except the MFM algorithm, ignore information of nodes in the diagonal direction while 

considering only the 4-connected neighboring nodes in the 2D plane; therefore, they cause 

significant numerical errors along the diagonal directions. By utilizing information from all 

neighboring nodes (8-connected neighbors), the MFM algorithm solves this obstacle. The 

algorithm proposed by [100] is applied in this study because this technique improves version of 

the MFM that is highly accurate. This method computes the solution at each grid point by solving 

the Eikonal equation along several stencils that cover the entire nearest neighbors of the point and 

then picks the solution that satisfies the upwind condition. In addition, the accuracy of the MFM 

approach is further improved by using second-order finite difference schemes from the Eikonal 

equation. 

In the MFM algorithm, the computation of the arrival time Ti, j includes two different 

equations; the nearest neighbor points are covered by S1, whereas the diagonal neighbor ones are 

covered by S2.  
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Figure 3-8. The stencils for the 2D Cartesian domain. (a) S1 stencil and (b) S2 stencil 

•      S1 stencil computation: Assuming we have a regular grid, the first-order equation 

of this stencil aligned with the natural coordinate system is solved by the following 

equation: 

∑ max (
𝑇𝑖,𝑗 − 𝑇𝑣

ℎ
, 0)

2

= 1/𝐹𝑖,𝑗
22

𝑣=1 ,    (3.8) 

where ∆𝑖 = ∆𝑗 = ℎ is the distance between nodes and 

𝑇1 = min(𝑇𝑖−1,𝑗, 𝑇𝑖+1,𝑗),    (3.9) 

𝑇2 = min (𝑇𝑖,𝑗−1, 𝑇𝑖,𝑗+1).    (3.10) 

On the other hand, for a second-order approximation of the directional derivative, this 

equation must be solved: 

∑ max (
3

2ℎ
[

𝑇𝑖,𝑗 − 𝑇𝑣

ℎ
], 0)

2

= 1/𝐹𝑖,𝑗
22

𝑣=1    (3.11) 

where 

𝑇1 = min (
𝑇𝑖−1,𝑗 − 𝑇𝑖−2,𝑗

3
,

𝑇𝑖+1,𝑗 − 𝑇𝑖+2,𝑗

3
)   (3.12) 

𝑇2 = min (
𝑇𝑖,𝑗−1 − 𝑇𝑖,𝑗−2

3
,

𝑇𝑖,𝑗+1 − 𝑇𝑖,𝑗+2

3
)   (3.13) 

•    S2 stencil computation: Similar to the previous case, for a first-order 

approximation of the diagonal equations, the following equation is solved: 

∑ max (
𝑇𝑖,𝑗 − 𝑇𝑣

√2ℎ
, 0)

2

= 1/𝐹𝑖,𝑗
22

𝑣=1 ,   (3.14) 

where 

𝑇1 = min(𝑇𝑖−1,𝑗−1, 𝑇𝑖+1,𝑗+1),    (3.15) 

𝑇2 = min (𝑇𝑖+1,𝑗−1, 𝑇𝑖−1,𝑗+1).    (3.16) 

and the second order equation is given by: 
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∑ max (
3

2√2ℎ
[𝑇𝑖,𝑗 − 𝑇𝑣], 0)

2

= 1/𝐹𝑖,𝑗
22

𝑣=1   (3.17) 

where 

𝑇1 = min (
𝑇𝑖−1,𝑗−1 − 𝑇𝑖−2,𝑗−2

3
,

𝑇𝑖+1,𝑗+1 − 𝑇𝑖+2,𝑗+2

3
)  (3.18) 

𝑇2 = min (
𝑇𝑖+1,𝑗−1 − 𝑇𝑖+2,𝑗−2

3
,

𝑇𝑖−1,𝑗+1 − 𝑇𝑖−2,𝑗+2

3
)  (3.19) 

For both stencils S1 and S2, if 

𝑇𝑖,𝑗 > max(𝑇1, 𝑇2)     (3.20) 

then (3.8), (3.11), (3.14), and (3.17) can be simplified to  

𝑔(ℎ) ∑ 𝑎𝑣(𝑇𝑖,𝑗)
2

+ 𝑏𝑣 𝑇𝑖,𝑗 + 𝑐𝑣 =
1

𝐹𝑖,𝑗
2

2
𝑣=1   (3.21) 

where  

[𝑎𝑣     𝑏𝑣     𝑐𝑣] = [1     −2𝑇𝑣      𝑇𝑣
2]   (3.22) 

The value of g(h) for the first and second-order numerical schemes, as well as the 

stencil orientation, is given in Table 3-2. 

Table 3-2. Values of first and second-order schemes 

Stencil First order scheme Second order scheme 

𝑆1 𝑔(ℎ) = 1 ℎ2⁄  𝑔(ℎ) = 9 4ℎ2⁄  

𝑆2 𝑔(ℎ) = 1 2ℎ2⁄  𝑔(ℎ) = 9 8ℎ2⁄  

 

•    Upwind condition: As a result, the upwind condition is given by the following 

equation: 

|𝑇1 − 𝑇2| <
𝑓(∆𝑖,∆𝑗) sin ∅

𝐹𝑖,𝑗
   (3.23) 

The value of 𝑓(∆𝑖, ∆𝑗), for the first and second-order numerical schemes, as well as 

the stencil orientation, is given in Table 3-3. 

Table 3-3. Coefficients of the upwind condition for both S1 and S2 

Stencil First order scheme Second order scheme 

𝑆1 𝑓 = min (∆𝑖, ∆𝑗) 𝑓 = 2 min (∆𝑖, ∆𝑗) 

𝑆2 𝑓 = √∆2𝑖 + ∆2𝑗 𝑓 = 2 √∆2𝑖 + ∆2𝑗 
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3.3.3 Size Filter 

Even though the Frangi vesselness filter offers excellent results for detecting vessel in 

images, it still leaves unwanted small objects in the outputs. To remove these unwanted small 

objects, a morphological size filter is applied.  

3.3.4 Finding the Area of Interest (ROI) 

Before finding the skeleton of stems and branches of the canola plant, the other parts of the 

plant are not necessary to keep, and then they must be removed. Simply, a bottom-most pixel will 

be found, and then a region of interest polygon will be converted to a region mask. From that 

region mark, regions of stems and branches are selected. 

3.3.5 Detecting and Counting Number of Branches 

Detecting and counting number of branches are based on the skeleton of the given ROI of 

the plant that obtained by using a multi-stencils fast marching method. This fast marching 

algorithm is used to find the skeleton of the ROI, including stems and branches and to mark them 

by different colors. From these findings, the number of canola branches is estimated. This 

algorithm is illustrated, as shown in Figure 3-9. 
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Figure 3-9. The proposed algorithm for detecting and counting canola branches 

3.3.6 Detecting and Counting Number of Seedpods 

To detect and count the number of canola seedpods, the color images of the canola plant 

are acquired by different views. Then, the Frangi-vesselness and size filters to remove the 

background and noise are applied to these color images. Next, by applying the multi-stencils fast 

marching method, a skeleton of the canola plant is obtained. From this skeleton, an algorithm is 

developed to find the end-points of the skeleton, in which the number of seedpods can be estimated. 

The algorithm for determining end-points of the skeleton finds the locations of endpoints in the 

given skeleton, in which, all coordinates are extracted. All of the coordinates are tested to 

determine which one is an island that had only one neighbor pixel. Finally, these island pixels are 

collected that all of them are seedpods and spikes. To obtain more accurate results of the counting 

canola seedpods, the number of canola spikes should be estimated. Motivated from this point of 
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view, another technique is applied to eliminate these spikes. The idea to calculate the number of 

canola spikes is to count the number of canola spikes by manual. From these manual counting 

number of canola spikes, an average percentage of spikes is calculated. Since the results of 

automatic counting canola seedpods including spikes, the estimated spikes are identified, and the 

number of seedpods can be calculated. This algorithm is described in Figure 3-10.  

 

Figure 3-10. The proposed algorithm for detecting and counting canola seedpods 

3.3.7 Measuring Plant Height 

To measure the height of individual canola plants, each canola plant is placed underneath 

the proposed camera system in the laboratory, then depth images of the canola are captured and 

processed. The workflow of the plant-height measurement process, including two different parts, 

acquiring data and processing image is described in Figure 3-11.  
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Figure 3-11. The proposed algorithm for plant height measurement 

In the acquiring data process, the depth data are captured in term of stream data, then 

converted to a text file in the Raspberry Pi3. In the imaging process, the text file from the previous 

process is extracted from multiple MAT files, then extracted the area of interest (ROI) contained 

the plant. From ROI, the ground point and maximum point values are obtained, and the plant height 

is directly calculated as 

𝑝𝑙𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚𝑚) = 𝑔𝑟𝑜𝑢𝑛𝑑𝑝𝑜𝑖𝑛𝑡(𝑚𝑚) − 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑝𝑜𝑖𝑛𝑡(𝑚𝑚)       (3.24) 

where groundpoint is the distance from the depth camera to the ground and maximumpoint is the 

distance from the depth camera to the highest point of the plant. These distance values are extracted 

directly from the depth images. The color image, depth image and depth image histogram of the 

canola plant are depicted in Figure 3-12.  
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(a) Color image 

 

(b) Depth image 

 

(c) the histogram of the 

depth image 

Figure 3-12. An example of the canola plant-height measurement. 

3.3.8 Multi-focus Image Fusion 

In the proposed fusion approach, three IQA metrics: visual saliency similarity, gradient 

similarity, and chrominance similarity (or color distortion) are measured to obtain their weight 

maps. Then these weight maps are refined by a gradient domain fast guided filter in which, a 

gradient domain guided filter proposed by [92] and fast guided filter proposed by [93] are 

combined. The workflow of the proposed multi-focus image fusion algorithm is illustrated in 

Figure 3-13. The detail of the proposed algorithm is described as follow.  

First, each input image is decomposed into a base and detail components, which contain 

the large-scale variations in intensity and the small-scale variations in intensity, respectively. A 

Gaussian filtered is used for each source image to obtain its base component, and the detail 

component can be easily obtained by subtracting the base component from the input image, as 

given by: 

 𝐵𝑛 = 𝐼𝑛 ∗ 𝐺𝑟,𝜎     (3-25) 

 𝐷𝑛 = 𝐼𝑛 − 𝐵𝑛     (3-26) 

where 𝐵𝑛 and 𝐷𝑛are the base and detail components of the 𝑛𝑡ℎ input image, respectively. ∗ denotes 

a convolution operator, and 𝐺𝑟,𝜎 is a 2-D Gaussian smoothing filter.  

Then, several measures are used to obtain weight maps for image fusing. According to 

[91], visual saliency similarity, gradient similarity, and chrominance maps are vital metrics in 

accounting for the visual quality of image fusion techniques. In most cases, changes of visual 

saliency (VS) map can be a good indicator of distortion degrees and thus, VS map is used as a 

local weight map. However, VS map does not work quite well for the distortion type of contrast 

change. Fortunately, the image gradient can be used as an additional feature to compensate for the 
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lack of contrast sensitivity of the VS map. In addition, VS map does not work quite well for the 

distortion type change of color saturation. This color distortion cannot be well represented by 

gradient either since usually gradient is computed from the luminance channel of images. To deal 

with this color distortion, two chrominance channels are used as features to represent the quality 

degradation caused by color distortion. Motivated from these metrics, an image fusion method is 

designed based on the measurement of three key visual features of input images: visual saliency 

similarity, gradient similarity, and chrominance similarity. 

 

Figure 3-13. The workflow of the proposed algorithm for multi-focus image fusion 
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a. Visual Saliency Similarity Maps 

A saliency similarity detection algorithm proposed by [101] is adopted to calculate visual 

saliency similarity in this thesis due to its higher accuracy and low computational complexity 

comparing with other current algorithms. This algorithm is constructed by combining three simple 

priors: frequency, color, and location. The visual saliency similarity maps are calculated as 

𝑉𝑆𝑛
𝑘 = 𝑆𝐹𝑛

𝑘 . 𝑆𝐶𝑛
𝑘. 𝑆𝐷𝑛

𝑘      (3-27) 

where 𝑆𝐹𝑛
𝑘, 𝑆𝐶𝑛

𝑘, 𝑆𝐷𝑛
𝑘 are the saliency at pixel k under frequency, color and location priors. 𝑆𝐹𝑛

𝑘 

is calculated by 

 𝑆𝐹𝑛
𝑘 = (𝐼𝐿𝑛

𝑘 ∗ 𝑔)2 + (𝐼𝑎𝑛
𝑘 ∗ 𝑔)2 + (𝐼𝑏𝑛

𝑘 ∗ 𝑔)2)1/2   (3-28) 

where 𝐼𝐿𝑛
𝑘 , 𝐼𝑎𝑛

𝑘, 𝐼𝑏𝑛
𝑘 are three resulting channels transformed from the given RGB input image, 𝐼𝑛  

to CIE L*a*b* space. CIE L*a*b* (CIELAB) is a color space specified by the Commission 

internationale de l'éclairage (CIE). This color space describes all the colors visible to the human 

eye and is an opponent color system that L* channel indicates lightness, a* channel represents 

green-red information while b* channel represents blue-yellow information. If a pixel has a smaller 

(greater) a* value, it would seem greenish (reddish). If a pixel has a smaller (greater) b* value, it 

would seem blueish (yellowish). Then, if a pixel has a higher a* or b* value, it would seem warmer; 

otherwise, colder. The color saliency 𝑆𝐶𝑛 at pixel k is calculated using 

𝑆𝐶𝑛
𝑘 = 1 − exp (−

(𝐼𝑎𝑛
𝑘)2 +(𝐼𝑏𝑛

𝑘)2

𝜎𝐶
2 )    (3-29) 

where 𝜎𝐶 is a parameter. (𝐼𝑎𝑛
𝑘) =  

𝐼𝑎𝑛
𝑘 −min𝑎

𝑚𝑎𝑥𝑎−𝑚𝑖𝑛𝑎
 , (𝐼𝑏𝑛

𝑘 =  
(𝐼𝑏𝑛

𝑘−minb

𝑚𝑎𝑥𝑏−𝑚𝑖𝑛𝑏
, 𝑚𝑖𝑛𝑎(𝑚𝑎𝑥𝑎) is the 

minimum (maximum) value of the 𝐼𝑎 and minb (maxb) is the minimum (maximum) value of the 

𝐼𝑏. 

Many studies found that regions near the image center are more attractive to human visual 

perception [101]. It can thus be suggested that regions near the center of the image will be more 

likely to be “salient” than the ones far away from the center. The location saliency at pixel k under 

the location prior can be formulated by 

𝑆𝐷𝑛
𝑘 = exp (−

‖𝑘−𝑐‖2

𝜎𝐷
2 )    (3-30) 

where 𝜎𝐷 is a parameter. c is the center of the input image 𝐼𝑛. Then, the visual saliency was used 

to construct the visual saliency (VS) maps, given by 

    𝑉𝑆𝑚 = 𝑉𝑆 ∗ 𝐺𝑟,𝜎     (3-31) 

https://en.wikipedia.org/wiki/Color_space
https://en.wikipedia.org/wiki/Color_vision
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where 𝐺𝑟,𝜎 is a Gaussian filter. 

b. Gradient Magnitude Similarity 

The gradient is usually computed by convolving an image with a linear filter. The gradient 

magnitude similarity algorithm proposed by [102] is adopted. This algorithm used Scharr gradient 

operator, which has been proved very powerful in their previous study. With the Scharr gradient 

operator, the partial derivatives 𝐺𝑀𝑥𝑛
𝑘 and 𝐺𝑀𝑦

𝑛
𝑘 of an input image 𝐼𝑛 are calculated as: 

                    𝐺𝑀𝑥𝑛
𝑘 =

1

16
[

3 0 −3

10 0 −10

3 0 −3

]*𝐼𝑛
𝑘               

𝐺𝑀𝑦
𝑛
𝑘 =

1

16
[

3 0 −3

10 0 −10

3 0 −3

]*𝐼𝑛
𝑘        (3-32)           

The gradient of the image 𝐼𝑛 is calculated by 

𝐺𝑀𝑛  =  √𝐺𝑀𝑥2 +  𝐺𝑀𝑦2      (3-33) 

The gradient is computed from the luminance channel of input images that will be introduced in 

the next section. Similar to the visual saliency maps, the gradient magnitude (GM) maps is 

constructed as 

𝐺𝑀𝑚 = 𝐺𝑀 ∗ 𝐺𝑟,𝜎     (3-34) 

c. Chrominance Similarity 

The RGB input images are transformed into an opponent color space [102], given by 

[
𝐿
𝑀
𝑁

] = [
0.06 0.63 0.27
0.30 0.04 −0.35
0.34 −0.6 0.17

] [
𝑅
𝐺
𝐵

]   (3-35) 

The L channel is used to compute the gradients introduced in the previous section. The M and N 

(chrominance) channels are used to calculate the color distortion saliency, given by 

 𝑀𝑛 = 0.30 ∗ 𝑅 + 0.04 ∗ 𝐺 − 0.35 ∗ 𝐵  (3-36) 

 𝑁𝑛 = 0.34 ∗ 𝑅 − 0.6 ∗ 𝐺 + 0.17 ∗ 𝐵   (3-37) 

𝐶𝑛 = 𝑀𝑛. 𝑁𝑛      (3-38) 

Finally, the chrominance similarity or color distortion saliency (CD) maps is calculated by 

𝐶𝐷𝑚 = 𝐶 ∗ 𝐺𝑟,𝜎     (3-39) 

d. Weight Maps 
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Using three measured metrics above, the weight maps are computed as given by 

𝑊𝑛 = (𝑉𝑆𝑚)𝛼. (𝐺𝑀𝑚)𝛽 . (𝐶𝐷𝑚)ɤ   (3-40) 

where 𝛼, 𝛽, and ɤ are parameters used to control the relative importance of visual saliency (VS), 

gradient saliency (GM), and color distortion saliency (CD). From these weight maps, 𝑊 at each 

location k, the overall weight maps of each input image can be obtained. 

𝑊𝑛
𝑘 = {

1, 𝑖𝑓  𝑊𝑛
𝑘 = max (𝑊1

𝑘, 𝑊2
𝑘 , … , 𝑊𝑁

𝑘),
0,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

  (3-41) 

where N is number of input images, 𝑊𝑛
𝑘 is the weight value of the pixel 𝑘 in the 𝑛𝑡ℎ image. Then 

proposed weight maps are determined by normalizing the saliency maps as follows: 

𝑊𝑛
𝑘 =

𝑊𝑛
𝑘

∑ 𝑊𝑛
𝑘𝑁

𝑛=1
, ∀n = 1, 2,..., N   (3-42) 

These weight maps then are refined by a gradient domain guided filter that introduced in the next 

section. 

e. Gradient Domain Fast Guided Filter 

The gradient domain guided filter that proposed by [92] is adopted to optimize the initial 

weight maps. By using this filter, the halo artifacts can be more effectively suppressed the other 

traditional or guided filter algorithms. It also less sensitive to its parameters while has the same 

complexity as the guided filter. The gradient domain guided filter has good edge-preserving 

smoothing properties like the bilateral filter, but it does not suffer from the gradient reversal 

artifacts. The filtering output is a local linear model of the guidance image [92].  According to the 

authors, the gradient domain guided filter performs very well in many applications, including 

image smoothing or enhancement. It is one of the fastest edge-preserving filters. Therefore, the 

gradient domain guided filter can apply in image smoothing to avoid ringing artifacts. The gradient 

domain guided filter can be summarized as bellow.  

It is assumed that the filtering output 𝑄 is a linear transform of the guidance image 𝐺 in a 

local window 𝑤𝑘 centered at the pixel 𝑘.  

𝑄𝑖 = 𝑎𝑘𝐺𝑖 + 𝑏𝑘, ∀𝑖 ∈ 𝑤𝑘     (3-43) 

where (𝑎𝑘, 𝑏𝑘) are some linear coefficients assumed to be constant in the local window 𝑤𝑘with 

the size of (2 𝜁1+1)×(2 𝜁1+1). The linear coefficients (𝑎𝑘, 𝑏𝑘) can be estimated by minimizing the 

cost function in the window 𝑤𝑘  between the output image Q and the input image P 

𝐸(𝑎𝑘,𝑏𝑘) = ∑ [(𝑄𝑖 − 𝑃𝑖)
2 +

𝜆

Ґ̂𝐺(𝑘)
(𝑎𝑘 − 𝛾𝑘)2]𝑖∈𝑤𝑘

  (3-44) 
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where 𝛾𝑘 is defined as 

𝛾𝑘 = 1 −
1

1+𝑒ɳ(𝜒(𝑘))−𝜇𝜒,∞
     (3-45) 

𝜇𝜒,∞ is the mean value of all 𝜒(𝑘). ɳ is calculated as 4/(𝜇𝜒,∞ − min (𝜒(𝑘))). 

Ґ̂𝐺(𝑘) is a new edge-aware weighting used to measure the importance of pixel k  with respect to 

the whole guidance image. It is defined by using local variance of 3x3 windows and 

(2𝜁1 + 1) 𝑥 (2𝜁1 + 1) windows of all pixels by 

Ґ̂𝐺(𝑘) =
1

𝑁
∑

𝜒(𝑘)+𝜀

𝜒(𝑖)+𝜀

𝑁
𝑖=1      (3-46) 

where 𝜒(𝑘) = 𝜎𝐺,1(𝑘)𝜎𝐺,𝜁1(𝑘). 𝜁1 is the window size of the filter.  

The optimal values of 𝑎𝑘 and 𝑏𝑘 are computed by 

𝑎𝑘 =  
𝜇𝐺⊙𝑋,𝜁1(𝑘)−𝜇𝐺,𝜁1(𝑘)𝜇𝑋,𝜁1(𝑘)+

𝜆

Ґ̂𝐺(𝑘)
𝛾𝑘

𝜎𝐺,𝜁1
2 (𝑘)+

𝜆

Ґ̂𝐺(𝑘)

   (3-47) 

𝑏𝑘 = 𝜇𝑋,𝜁1(𝑘) − 𝑎𝑘 𝜇𝐺,𝜁1(𝑘)    (3-48) 

The final value of 𝑄𝑖̂ is calculated by 

𝑄𝑖̂ =  𝑎̅𝑘𝐺𝑖 + 𝑏̅𝑘      (3-49) 

where 𝑎̅𝑘 and 𝑏̅𝑘 are the mean values of 𝑎𝑘and 𝑏𝑘 in the window, respectively. 𝑎̅𝑘 and 𝑏̅𝑘 are 

computed by 

𝑎̅𝑘 =
1

|𝑤𝜁1(𝑘)|
∑ 𝑎𝑘𝑖∈𝑤𝜁1(𝑘)     (3-50) 

𝑏̅𝑘 =
1

|𝑤𝜁1(𝑘)|
∑ 𝑏𝑘𝑖∈𝑤𝜁1(𝑘)     (3-51) 

where |𝑤𝜁1(𝑘)| is the cardinality of 𝑤𝜁1(𝑘). 

f. Refining weight maps by the gradient domain guided filter 

Due to these weight maps are noisy and not aligned with object boundaries. The proposed 

approach deploys a gradient domain guided filter to refine the weight maps. The gradient domain 

guided filter is used at each weight map 𝑊𝑛 with the corresponding input image 𝐼𝑛. However, the 

weigh map 𝑊_𝐷𝑛 used 𝑊_𝐵𝑛 as the guidance image to improve the 𝑊_𝐷𝑛, is calculated by 

𝑊_𝐵𝑛 = 𝐺𝑟1,Ɛ1(𝑊𝑛, 𝐼𝑛)     (3-52) 

𝑊_𝐷𝑛 = 𝐺𝑟2,Ɛ2(𝑊_𝐵𝑛, 𝐼𝑛)    (3-53) 

where 𝑟1, Ɛ1 𝑎𝑛𝑑 𝑟2, Ɛ2 are the parameters of the guided filter. 𝑊_𝐵𝑛 and 𝑊_𝐷𝑛 are the refined 

weight maps of the base and detail layers, respectively. Both weight maps 𝑊_𝐵𝑛 and 𝑊_𝐷𝑛 are 
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deployed mathematical morphology techniques to remove small holes and unwanted regions in 

the focus and defocus regions. The morphology techniques are described as bellow, 

      𝑚𝑎𝑠𝑘 = 𝑊𝑛 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

      𝑡𝑒𝑚𝑝1 = 𝑖𝑚𝑓𝑖𝑙𝑙(𝑚𝑎𝑠𝑘,′ ℎ𝑜𝑙𝑒𝑠′) 

       𝑡𝑒𝑚𝑝2 = 1 − 𝑡𝑒𝑚𝑝1 

      𝑡𝑒𝑚𝑝3 = 𝑖𝑚𝑓𝑖𝑙𝑙(𝑡𝑒𝑚𝑝2,′ ℎ𝑜𝑙𝑒𝑠′)   

 𝑊𝑛(𝑟𝑒𝑓𝑖𝑛𝑒𝑑)   = 𝑏𝑤𝑎𝑟𝑒𝑎𝑜𝑝𝑒𝑛(𝑡𝑒𝑚𝑝3, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)   (3-54) 

Then, the values of the N refined weight maps are normalized such that they sum to one at each 

pixel k. Finally, the fused base and detail layer images are calculated and blended to fuse the input 

images, as given by 

 𝐵̅𝑛 = 𝑊_𝐵𝑛 ∗  𝐵𝑛     (3-55) 

𝐷̅𝑛 = 𝑊_𝐷𝑛 ∗  𝐷𝑛     (3-56) 

 𝐹𝑢𝑠𝑒𝑑𝑛 = 𝐵̅𝑛 + 𝐷̅𝑛     (3-57) 

The fast guided filter is improved of the guided filter proposed by [93]. This algorithm is 

adopted for reducing the processing of gradient domain guided filter time complexity. According 

to [93], before processing gradient domain guided filter, the rough transmission map and the 

guidance image employ nearest neighbor interpolation down-sampling. After gradient domain 

guided filter processing, the gradient domain guided filter output image uses bilinear interpolation 

for up-sampling and obtains the refining transmission map.  Using this fast guided filter, the 

gradient domain guided filter performs better than the original one. Therefore, the proposed filter 

was named as the gradient domain fast guided filter.    
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CHAPTER 4 - A LOW-COST DEPTH MOBILE PLATFORM  

 

This section describes the proposed platform and its components for the thesis as follows: 

the proposed system design (Section 4.1); an Argos3D P100 camera and its specifications (Section 

4.2); A Kinect V2 and its specifications (Section 4.3); a digital camera and its specifications 

(Section 4.4); a Pi camera and its specifications (Section 4.5); a Raspberry Pi3 and its 

specifications (Section 4.6); a wireless remote control system and its specifications (Section 4.7); 

DC to DC converters and their specifications (Section 4.8); a power supply and its specifications 

(Section 4.9); a set of tools used for developing software of the proposed platform (Section 4.10); 

developed software of the proposed platform (Section 4.11).  

4.1 Phenotyping Mobile Platform 

From the concept design mentioned in the previous section, a low-cost high throughput 

phenotyping mobile system has been developed as illustrated in Figure 4-1. This system includes 

an Argos3D-P100 camera, a Pi camera, a Raspberry Pi3, two DC converters (one for Raspberry 

Pi3 and other for the Argos3D P100), a 12V battery, and a remote control. Canola plants were used 

in our experiments. In addition, a Kinect V2 camera and a Sony A58 camera were also used to 

compare the performance of detection and counting branches and seedpods with this system (see 

Figure 4-2). 

 

a) Front side 

 

b) Back side 

Figure 4-1. The proposed low-cost depth mobile phenotyping system 
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Figure 4-2. Kinect V2 and Sony A58 cameras 

4.2 Argos3D-P100  

The Argos3D - P100 is a depth sensor, operating on the Time-of-Flight (ToF) principle, 

developed by Bluetechnix (Wien, Austria; www.bluetechnix.at). By equipping a PMD 

PhotonICs® 19k-S3 Time-of-Flight 3D chip, this sensor is able to capture a resolution of 160 x 

120 pixels and up to 160 fps. This smart sensor simultaneously delivers depth information and 

intensity level for each pixel. This sensor adds up to 19,200 independent measuring points of each 

measuring cycle. Therefore, it is possible to analyze scenes based on only 3D data or in 

combination with grayscale information.  

 

Figure 4-3. An Argos3D – P100 

The Argos3D – P100 includes four main components: depth sensor, lens, active infrared 

light (IR) illumination and a Central Processing Unit (CPU) as illustrated in Figure 4-4. The active 

illumination module determines modulated IR in the near-infrared. The object is projected via the 

lens onto the depth sensor. Taking the angular phase shift into consideration, the distance data 

between the depth sensor and the object of each pixel will be individually calculated. As a result, 

a 3D point cloud and intensity data per pixel or depth and intensity level are produced at the same 

time.   

http://www.bluetechnix.at/
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Figure 4-4. Structure of the Argos3D P100 sensor (www.bluetechnix.at) 

With a power supply of 5V@2.6A, an operation range of 3m, a field of view of 90 x 67.5 

degrees, supported Windows and Linux OS, and a size of 75 x 57 x 26 mm, this depth camera can 

be suitable for a mobile phenotyping system as listed in Table 4-1. 

Table 4-1. Argos3D –P100 specifications (Taken from www.bluetechnix.at) 

 

Examples of a 3D image (point cloud) and grayscale information (Distance and Amplitude 

information) captured by the Argos3D P100 during in experiments are shown in Figure 4-5.  

http://www.bluetechnix.at/
http://www.bluetechnix.at/
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Figure 4-5. An example of 3D and 2D images 

4.3 Kinect V2 

Kinect v2 is an RGB-D acquisition device designed by Microsoft as a contact-free 

controller for Xbox One. The Kinect sensor consists of an infrared projector, an infrared camera, 

and an RGB camera (see Figure 4-6). The RGB and IR cameras are equipped with a 400-800nm 

bandpass filter and 850–1100nm bandpass filter, respectively.  

 

Figure 4-6. Kinect V2 Sensor 

The Kinect sensor simultaneously acquires depth and color information at a frame rate of 

up to 30 fps. The integration of depth and color data results in a colored point cloud that contains 

about 300,000 points in every frame. It captures a depth image with 512 x 424 pixels at a 

measurement rate of 30 fps. Since an infrared laser beam is divided into multiple beams onto the 

scene, the infrared camera records this pattern. The measurable distance range from 500 mm to 

maximum 4500 mm. Figure 4-7 displays some 3D image and 2D images captured from the Kinect 

V2 sensor. 

 

 

 



52 

 

Table 4-2. Kinect V2 specifications 

 

 

a) RGB image 
 

b) 3D image 

 

c) Depth image 

 

d) Infrared image 

Figure 4-7. Examples of 3D image and 2D images taken by the Kinect V2 sensor 

4.4 Digital Camera 

Sony A58 camera is selected due to its low price and high-quality image. The basic price 

is about CAD $500. This camera offers a high resolution of 20.1 effective megapixels. It is 

equipped with a redesigned DT 18-55mm F3.5-5.6 SAM II kit lens that offers quieter autofocus. 

It also provides remote control function that very useful for capturing without any direct touch to 

the camera.   

 

Figure 4-8. Sony A58 
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Table 4-3. Sony A58 key specifications 

 

4.5 Pi Camera 

The Pi camera module with adjustable-focus shown in Figure 4-9 was used. The board of 

Pi camera is tiny, at around 25mm x 23mm x 9mm and it weighs just over 18g (including LED 

lights). It connects to Raspberry Pi by using the dedicated CSi interface. The Pi camera, equips 

with the 5 megapixels OV5647 sensor. It is able to capture 2592 x 1944 pixel static images, and 

also supports to capture video of 1080 p at 30 fps, 720 p at 60 fps and 640 x 480 p at 60/90 formats. 

 

Figure 4-9. A Pi camera module with adjustable focus 
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Table 4-4. Kuman Pi camera module specifications (Taken from https://www.amazon.ca) 

 

4.6 Raspberry Pi 3 

From the beginning, a series of small single-board computers - Raspberry Pi- was 

developed by the Raspberry Pi Foundation for educational purposes. The main advantages of 

Raspberry Pi computers are small and low cost. There are several generations of Raspberry Pi, 

such as Raspberry Pi 1 with some models (such as B, A, A+, and B+), Pi Zero (smaller size and 

reduced input/output (I/O), and general-purpose input/output (GPIO) capabilities), that have been 

released from 2012 to 2015. From 2017, newest models (such as Pi 3 Module B and Pi Zero W) 

have been equipped Wi-Fi and Bluetooth functionality.  In our study, a Raspberry Pi 3 Module B 

was adopted. The Raspberry Pi 3- Model B equips a quad-core 64-bit ARM Cortex A53 clocked 

at 1.2 GHz (see Figure 4-10). This makes the Pi 3 roughly 50% faster than the Pi 2. The Pi 3 still 

uses 1GB of LPDDR2-900 SDRAM and Broadcom VideoCore IV for graphics capabilities, but it 

includes onboard 802.11n Wi-Fi and Bluetooth 4.0. (https://www.raspberrypi.org). 

 

Figure 4-10. Raspberry Pi 3 - Module B 

 

 

 

https://www.amazon.ca/
https://www.raspberrypi.org/
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Table 4-5. Raspberry Pi 3 Module B specifications (Taken from https://www.raspberrypi.org) 

 

4.7 Wireless Remote Control 

A wireless remote-control system, as shown in Figure 4-11, INSMA DC 12V 4 channels, 

433 MHz with 2 transmitter switch, is used to start and stop capturing images from the Argos3D 

and Pi cameras. This system can be purchased from the Amazon, about CAD$ 55/piece.  

 

Figure 4-11. A wireless remote control system 

The receiver and transmitter have key features as follow: a) Receiver: Operating supply 

DC 7mA@12V, frequency: 433Mhz, quiescent condition: 6mA, receiver sensitivity: more than -

105dBm, output voltage: AC and DC is optional, output current: 3A, size: 72mm (L) x 52mm (W) 

x 26mm (H). b) Remote control transmitter: Remote distance: 200m, operating voltage: DC 12V, 

operating current: 13mA, frequency: 433Mhz, code type: Fixed code / Learning code, size: 55mm 

(L) x 30mm (W) x 10mm (H). The receiver was configured to operate in Self–lock mode, which 

https://www.raspberrypi.org/
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uses one channel switch and one remote button control. In the Self-lock mode, pressing one button 

for one time is ON; pressing the same button again is OFF. 

4.8 DC to DC Converters 

Two small size step-down converters (5A, 350 KHz, 25V, DC to DC) were used for 

Raspberry Pi3 and Argos3D P100 camera to convert 12V to 5V/5A (see Figure 4-12). These 

modules were bought from the Robotshop.ca, about CAD $11/piece.  These converters have the 

following features: input voltage range: 3.6V to 25V, output adjustable range: 3.3V to 25V, 

constant output current: 5A@5V, max output power: 25W, switching frequency: 350KHz, three 

different output interfaces, size: 46x50x20mm. 

 

Figure 4-12. A DC-DC Step Down Converter 

4.9 Power Supply 

A 12V, 7.2Ah sealed lead acid rechargeable battery (UPS TLV1272 model) was equipped 

to supply power for the proposed phenotyping mobile system. This battery is a small size sealed 

battery with free maintenance, long service life, wide operating temperature range, and high 

discharge rate. By setting the Argos3D’s frame rate to 10 fps, the power consumption has lowered. 

Because the power of this battery can offer up to 12V*7.2A = 86.4 VAh, it is able to supply the 

proposed mobile system for at least 86.4 VAh/12V*0.95A = 7.5hr continuous working.   

4.10 Tools 

4.10.1 Argos3D P100 APIs 

To create a common interface for their products, Bluetechnix developed the interfaces 

between a ToF device and applications as shown in Figure 4-13. The heart of this interface is the 

BltTofApi, which is written in C for platform independence. The BltTofSuite, including the 
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BltTofApi interface, is compatible with any device with existing lib implementing the BltTofApi 

(https://support.bluetechnix.at). 

 

Figure 4-13. Argos3D P100’s interfacing concept 

The main interfaces of the BltTofApi are listed as in Table 4-6. In this thesis work, a 

package of BtaP100Lib was used as an interface between the USB camera and a Python-based 

application running on Raspbian OS to capture depth and intensity data.  

Table 4-6. Argos3D P100 BltTofApi interfaces (Taken from www.bluetechnix.com) 

 

4.10.2 Raspbian Operating System 

The Raspberry Pi operating system used in this study is the Raspbian Jessie 4.1. It is the 

Raspberry Pi Foundation’s official supported operating system available for free to download and 

use. Based on the Debian computer operating system, Raspbian is highly optimized to work 

efficiently with Raspberry Pi computers. Raspbian has plenty of pre-installed software for 

education, programming, and general purposes. While Debian is very lightweight and makes a 

https://support.bluetechnix.at/
http://www.bluetechnix.com/
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great choice for the Pi computers, Raspbian consists of tools for browsing, python programming, 

and a GUI desktop.  

4.10.3 Python 

Python is a powerful high-level and object-oriented programming language created by 

Guido van Rossum, released in 1991. Due to its easy-to-use syntax, Python allows programmers 

to read and write concepts much easier than other languages such as C++, Java, and C#. Python 

can run on almost all platforms including Windows, Mac OS X, and Linux. It also can easily 

combine with other languages (C/C++ or other languages). When compiling Python code, it 

automatically converts the code to the machine language that it does not need to concern about 

memory management. Furthermore, Python is equipped a number of standard libraries that make 

programmers much more comfortable since they do not have to write all the code 

(https://www.python.org). In this study, through Integrated Development Environment or 

Integrated Development and Learning Environment (IDLE) – an integrated development 

environment for Python - from the Desktop of the Raspbian operating system, Python 3 was used 

to code applications of connecting Arogos3D P100 and Pi camera to Raspberry Pi 3, image 

acquisition, and remote control of start and stop capturing images. 

4.10.4  Matlab 2016b 

Matlab 2016b was used to develop applications for extracting Argos3D-P100’s streams 

and Pi’s videos, detection and counting number of canola branches and seedpods, measuring the 

height of canola plots, and estimating canola density.  

4.10.5  C++ Language 

IPC socket server and acquiring streams from the Argos3D camera in term of 3D point 

cloud and intensity level or depth and intensity level were developed in C++ to use BltTofApi 

library for the Argso3D camera. In addition, extracting encoded stream files into text files was 

written in C++.  

4.11  Developed Software 

A client-server model was developed to concurrent capture images from depth and Pi 

cameras via remote control. In this model, Inter-Process Communication (IPC) socket client and 

https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Java_(programming_language)
https://www.python.org/
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server were developed to connect between independent processes running on the Raspberry Pi 3. 

Due to this IPC sockets, start or stop capturing data from both a Pi camera and an Argos3D camera 

is initiated via a remote control. A general concept view of the data acquisition process is given as 

in Figure 4-14. 

 

Figure 4-14. Data acquisition process 

4.11.1 Control Data Acquisition 

Control Data Acquisition manages two processes of capturing images from the Pi camera 

and the Argos3D camera via a remote control. This module consists of some functions, such as 

controlling image acquisition from the Pi camera and Argos3D camera, remote control, and inter-

process communication between the module of Control Data Acquisition and the module of 

acquire streams from the Argos3D camera. In this module, Pi camera, GPIO pins for remote control 

status, and IPC socket client and server were declared and configured.  

When the button on the remote control is pressed (flashing red LED for each camera), a 

“START” command is sent to the Control Data Acquisition module via a wireless protocol, in 

which, the Argos3D and Pi cameras simultaneously start to record stream and video. When 

pressing the second time (turn off red LEDs), a “STOP” command is sent to the Control Data 

Acquisition module, all stream and video are stopped and then stored into the SD card. The stream 

(e.g., 3D point cloud and intensity level or depth and intensity level) acquired from the Argos3D 

– P100 is stored into the bltstream format encoded by Bluetechnix. The video obtained from the 

Pi camera is stored in the h.264 format. The delay time for starting or stopping record stream cycle 
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is about one second because of the integration time of the Argos3D camera. This module can be 

set up the timeout to automatically shut down the system for a long time unused.  

4.11.2 IPC Socket Client and Server  

IPC socket Client and Server provide point-to-point, two-way communication between two 

processes. In this study, IPC socket Client and Server are used to communicate between two 

modules, Control Data Acquisition and Acquire Streams from the Argos3D, which are written in 

different languages. While IPC socket client integrated into the Control Data Acquisition module 

and written in Python, IPC socket server is combined into the module of Acquire streams from the 

Argos3D using C++ based BltTofApi library.  

In operating, the Client and Server processes are started when turning on the Raspberry Pi 

3. Then, the Client process is automatically connected to the Server process. On the Server side, 

the Server process goes to sleep waiting for a request from the Client process. When the Client 

process sends a request (i.e., start or stop command) across the network to the Server, the Server 

process receives a message and executes some actions (start or stop capturing data). After finishing 

its service, the Server goes back to sleep, waiting for the next request from the Client. The diagram 

of IPC socket Client and Server interaction is shown in Figure 4-15. 

 

Figure 4-15. The complete IPC socket Client and Server interaction 
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4.11.3 Acquiring Streams from the Argos3D Camera 

The module of Acquiring Streams from the Argos3D was deployed to manage image 

acquisition from the Argos3D camera as well as communicate with the module of Control Data 

Acquisition. This hybrid module is written in C++, in which IPC socket Server and Acquiring 

streams from the Argos3D modules are combined. When the Control Data Acquisition receives a 

message from the remote control, it concurrently allows the Pi and Argos3D cameras execute an 

action (start or stop capturing data). In this case, the module of Control Data Acquisition works as 

an IPC socket Client, while the module Acquiring Streams from the Argos3D works as an IPC 

socket Server. Therefore, a command (START or STOP) from the remote control is transferred to 

the Argos3D camera via IPC sockets to start or stop acquiring images. This process can be repeated 

forever with the minimum interval time between the start and stop signals about 2 seconds. The 

workflow of acquiring streams from the Argos3D is given in Figure 4-16. 

 

Figure 4-16. The workflow of acquiring streams from the Argos3D 

In operation, this module works as an IPC socket Server, waiting for a request from the 

Client, then executes that request, after that goes to sleep waiting for next request. When the Server 



62 

 

process receives a message from the Client process, the Server process will transfer that message 

to the module of Acquiring streams. Based on the received message, the module of Acquiring 

streams will start or stop capturing data from the Argos3D camera. For example, when the Server 

process obtains a message of “START,” that message will be sent to the module of Acquiring 

streams, in which the depth camera already initiated and immediately starts capturing data. If the 

Client process send a message of “STOP,” the capturing stream process will be stopped instantly, 

and the data will be stored in a bltstream-based file.  The bltstream file is only one of two kinds of 

data, 3D point cloud and intensity level or depth information and intensity level. This kind of data 

format is able to declare in the configuration of the Argos3D camera.  

4.11.4 Acquiring Video from Pi Camera 

The function acquiring video from Pi camera was embedded into to module of Control 

Data Acquisition and written in Python. By using pure Python library existing in the Raspbian OS, 

acquiring video from Pi camera is very simple. For example, to start or stop recording a video, 

calls a function start_recording() or stop_recording(), respectively. In the module of Control Data 

Acquisition, GPIO pins are declared and set to the Broadcom SOC channel (BCM) mode, in which, 

remote input and Pi camera’s LED are set to pin number 17 and 27, respectively. The frame rate 

of Pi camera is set to 10 fps, the resolution is set to 1640 x 1232 pixels, and the video format is set 

to h.264 to minimize the video size.  

 

Figure 4-17. The workflow of acquiring videos from the Pi camera 
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When this module receives a message from the Remote Control, for example, “START” 

message, the Pi camera immediately starts recording video. It will stop recording and store video 

when receives “STOP” message. The workflow of the Pi camera’s acquiring videos is 

demonstrated in Figure 4-17. 

4.11.5 Extracting Argos3D’s Stream Files 

The module of extracting the Argos3D stream was developed to convert stream files based 

on bltstream format encoded by Bluetechnix to text-based files. This module is written in C++ due 

to extracting process depends on BltTofApi library and live Argos3D camera.  

 

Figure 4-18. The workflow of extracting the Argos3D stream into text files 

The process of extracting data from the bltstream files is implemented as a reverting of the 

capturing data process from Argos3D camera. First, the Argos3D camera’s headers and parameters 

are declared, and the depth camera is connected. Then, the depth camera is configured, and a target 

stream file is pulled out. By using functions of BTAgetXYZcoordinates and BTAgetAmplitudes 

or BTAgetDistances and BTAgetAmplitudes linking to the BltTofApi library, the outputs of the 

3D point cloud and intensity level or depth information and intensity level are obtained after that. 
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Finally, these data mentioned above are written into text-based files, in which each text file is a 

frame of the original data. The following workflow of extracting data from a stream file to multi 

text-based files is outlined in Figure 4-18. 

4.11.6 Convert Text Files into MAT Files 

After the data extracted from the Argos3D stream files, the text-based data are then 

converted to MAT files to be used in later imaging processes. The outputs of this converting 

process are multiple MAT files. These MAT files are used instead of image files because they are 

convenient for analyzing images in the later steps. This converting process is implemented in 

Matlab 2016 environment.  

4.11.7 Extracting Pi Camera’s Videos  

The module of extracting Pi’s video is implemented to extract all frames from a video file. 

A simple way is that to use FFMPEG to extract all frames from a video file to image files. In the 

experiments, a FFMPEG software is deployed in Ubuntu. After installing FFMPEG package, all 

frames are extracted by using a command of ffmpeg –i inputvideo.h264 –vf fps=10 

$outputfilename%03d.jpg.  
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CHAPTER 5 - EXPERIMENTAL RESULTS AND DISCUSSION 

 

 

This section describes and discusses experiment results for the thesis as follows: the 

settings of the proposed platform for measuring canola plants in both field and laboratory 

environments (Section 5.1);  the counting of canola branches (Section 5.2);  the counting of canola 

seedpods  (Section 5.3); the estimation of canola plant height (Section 5.4); the experiment results 

for fusing multi-focus images (Section 5.5).   

5.1 Testing in Cross Environments 

In this study, the Argos3D-P100, Kinect V2, Sony A58, and Pi cameras were used in the 

laboratory-based environment. First, a combination of the Argos3D-P100 and Sony A58 was used 

to compare with the other combination of the Kinect V2 and Sony A58. Then, a proposed mobile 

platform, in which the Argos3D P100 and Pi cameras combined, was deployed in both controlled 

environment and field scenarios. After applying these methodologies, the best approach would be 

proposed. The experimental results are shown below.  

5.1.1 Field Tests 

The measurements in the field were conducted at dusk (8.30 – 9.30PM). This time period 

was chosen because this low level of brightness has the least effect on the Argos3D P100 camera, 

making the measurements of canola growth most reliable at this time. In the canola field of the 

University of Saskatchewan (Figure 5-1), canola plant images were captured from the top view 

and side view by using a portable low-cost depth plant phenotyping system mounted on the boom 

of a swather or a sprayer as shown in Figure 5-2.  

 

Figure 5-1. Canola field (August 2017) 
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Figure 5-2. The designed system mounted on a swather (left) and a sprayer (right) 

The proposed system allows the capture of plant images in video stream format by using a remote 

control. The raw data were stored on the 32GB SD card in the Raspberry Pi3, then transferred to 

the PC for further imaging processes.   

5.1.2 Laboratory Tests 

To capture images of canola plants for detecting and counting the seedpods, a digital 

camera (Sony A58) was used. Five side views 3872 x 2576 resolution RGB images were taken of 

every plant in the lab. The raw images were stored in ARW format. A total of thirty (30) canola 

plants were used for this study to develop the model and ensure sufficient variation. The plants 

were randomly selected in the canola field of the University of Saskatchewan. The experiments 

were conducted in the summers of 2016 and 2017. 

To count the number of canola branches and seedpods and to compare the results with other 

methodologies (for example using a Kinect V2 instead of using an Argos3D P100), a proposed 

mobile phenotyping platform was used. The laboratory test set-up is illustrated in Figure 5-3. The 

methods described in this study were tested on canola datasets. Most of the canola plants were 

grown in the field, while some were grown in the greenhouse.  

 

(a) 

 

(b) 

Figure 5-3. A setting of the proposed mobile platform (a) and Kinect V2 (b) 
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5.2 Detection and Counting Canola Branches 

Two approaches were used to detect and count canola branches in indoor by using the Argos3D 

camera and Kinect V2 camera. A comparison of each camera performance is shown in the next 

section. 

5.2.1 Using an Argos3D Camera 

To detect and count the number of canola branches, two approaches using 3D point cloud 

and grayscale information acquired from the Argos3D camera were used. Each approach had 

advantages and disadvantages. Although using 3D point cloud results in some advantages for 

extracting the targeted object or removing the background by using size filters, the quality image 

of the targeted object was too low. The grayscale information offers a higher quality image than 

3D point cloud, but it is more difficult to remove the background. A 3D point cloud-based approach 

to detect and count canola branches was used through several steps. First, a 3D point cloud of the 

canola plant was extracted from the Argos3D-P100 by using APIs mentioned in the 

MatlabSDK_BtaP100 package. Then, the noise and background of this depth image was removed 

by applying a size filter as illustrated in Figure 5-4.  

 

a) 

 

b) 

Figure 5-4. The original 3D point cloud (a) and its filtered point cloud (green color) (b) 

From the 3D cleaned point cloud above, a 2D image was extracted and then converted to 

grayscale, as illustrated in Figure 5-5.  
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Figure 5-5. 2D image and its grayscale image 

Based on the grayscale image, a skeleton of the canola plant was obtained, which was then 

applied to a tubeness filter to make the skeleton smoother before investigating the area of interest 

(ROI). The ROI, containing stem and branches, was examined to remove unwanted parts of the 

canola plant. Therefore, the remaining parts consisted of a stem and branches, as illustrated in 

Figure 5-6. Finally, based on the ROI information, an algorithm for counting the number of 

branches was deployed, the results of which are illustrated in Figure 5-6(c). This approach met 

some obstacles, for example, less number of points for each canola branch leading to the difficulty 

to obtain plant’ 3D skeleton or 2D skeleton. This is the reason why the 3D skeleton algorithm was 

not investigated in this research.  

 

Figure 5-6. Skeleton, tubeness, and ROI of the canola plant 

Another significant finding was that instead of using 3D point cloud, depth and intensity 

level information can be beneficial for detecting and counting canola branches. Depth data and 

intensity information were examined and offered promising approaches. The workflow of this 

approach is described in Chapter 3. First, either a distance (depth) image or an amplitude image 

(intensity level) was acquired from the Argos3D camera. Next, this image was applied to some 
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filters (size filter and Gaussian low pass filter) to remove the background and noise and then to 

smooth the image as shown in Figure 5-7. These depth and intensity-level images provided higher 

quality than 3D-point cloud images.  

 

a) Original depth image 

 

b) Original intensity level 

 

c) Filtered depth image 

 

d) Filtered Intensity level 

Figure 5-7. Depth and intensity level images before and after filtered 

In this approach, environmental surroundings needed to be known to reduce the noise and 

backgrounds appearing in the acquired images. To gain the best quality of distance information, 

the common procedure is to remove any background that reflects infrared radiation (e.g., metal 

materials). To determine the intensity level, a solid background with at least 50 centimeters from 

the object was the best choice in our experiments. The noise and background was perfectly 

removed by an empirical threshold of intensity level (threshold T = 600). 

 

(a) Original grayscale image 

 

b) Histogram of the original image 

 

c) Filtered image with T = 400 

 

d) Filtered image with T = 600 

Figure 5-8. An example of the filtering background noise by empirical thresholds. 
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When the threshold was less than 600, for example, T = 400, the output contained unwanted 

objects in the background; however, these unwanted objects were removed in the output when the 

threshold was increased to 600, as shown in Figure 5-8(c) and Figure 5-8(d), respectively. The 

original grayscale, the histogram of the original image, and the filtered image with different 

thresholds are illustrated in Figure 5-8. In addition to removing the background and noise, the 

Gaussian smoother filter greatly contributes to the outcomes of this branch-detection algorithm. In 

the experiments, the standard deviation (σ = 1.7) was applied. When this standard deviation 

increased, the output image became smoother, but the detection of branches was affected by the 

large standard deviation. Figure 5-9, for example, demonstrates the output after applying a 

Gaussian smoother filter with a different value of standard deviation.  

 

Figure 5-9. The results after applying a Gaussian smoother filter with a different value of σ=1.7, 

5, and 7 

From these filtered images after removing the background and noise, a ROI was retrieved 

and then applied to a fast matching algorithm to find the skeleton. Finally, the number of canola 

branches was calculated, as shown in Figure 5-10.  

 

(a) ROI  

      

(b) The skeleton and results  

Figure 5-10. The area of interest (ROI) (a) and the skeleton of the canola plant (b) 

Overall, these results suggest that the Argos3D P100 camera can be used to detect and 

count the number of branches in many ways, depending on how the data are acquired.  
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To evaluate the performance of the proposed algorithm for detecting and counting canola 

branches, thirty individual canola plants were captured and processed. To provide a referenced 

number of canola branches, a method of manually counting the number of canola branches was 

used as a ground truth. In addition, a relative error rate was used to express the accuracy of these 

experiment results, given by: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  
|𝑀𝑎𝑛𝑢𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡−𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡|

𝑀𝑎𝑛𝑢𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡
∗ 100% (5.1) 

The comparisons of the automatic and manual counting the canola branches are presented 

in Table 5-1.  

Table 5-1. Results of automatic and manual counting the canola branches from the Argos3D 

P100 
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The estimated results are very close to the manual results, 95.6% accuracy on average. As 

the results illustrate in Table 5-1, the average error rate is small, about 4.4%, in which, 6/30 results 

were inaccurate. These inaccurate results may be caused by some uncontrolled factors, such as 

adjacent, overlapping branches and background noise. The main difficulty of detecting and 

counting branches was to detecting branches in merging regions that are partially overlapped or 

stuck to one another. Although the branches could be easily identified by human sight, these 

overlapping branches were difficult to detect by image processing techniques. This issue occurred 

because the level of pixels in the region of the overlapping branches did not change in intensity. 

For example, the canola plant number 22nd had seven branches; however, only five were detected 

instead of seven branches because one branch was overlapped another and another branch was 

adjacent to a second branch. 

Similarly, one of the branches was stuck to another; therefore, the number of branches was 

counted as three-fourth (3/4) and four-fifths (4/5) branches for plant number 6th and plant number 

8th, respectively. These obstacles should be resolved to improve the accuracy rate of the algorithm 

for detecting and counting branches. 

 

a) The result before applying horizontal 

resizing of the image 

b) The result after applying horizontal 

resizing of the image 

Figure 5-11. An example of the solution for sticking branches  

Fortunately, there are some worthwhile solutions to these problems. First, each canola plant 

should be captured by multiple views, in which, the overlapping branches can be identified. 

Second, in the case of adjacent branches, the horizontal size of the image needs to be increased, so 

the adjacent branches can be separated, and easily recognized, as shown in the results depicted in 

Figure 5-11. Third, any other surrounding objects should be moved out of the camera’s field of 

view. Finally, the image with and without the plant should be retrieved and the background 
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removed by subtracting these images with and without the plant. Overall, the data from this study 

suggest that the algorithm for detecting and counting canola branches offers a high accuracy 

measurement and can be achieved through grayscale information or 3D point cloud obtained from 

the Argos3D P100 camera. 

5.2.2 Using a Kinect V2 Camera 

In contrast to the Argos3D P100, which can acquire depth information without light, the 

Kinect V2 requires precise illumination to capture a point cloud of the canola plant. However, in 

this research, the 3D images had better resolution quality than the Argos3D P100, as shown in 

Figure 5-12. From the 3D point cloud, a 3D size filter was applied to remove the noise and 

background, as seen in Figure 5-13.  

 

a) A 3D point cloud 

     

b) The Filtered 3D point cloud 

Figure 5-12. A 3D point cloud acquired from the Kinect V2 camera 

After the noise and background were removed, the 2D image was retrieved from the 

cleaned 3D point cloud. After that, grayscale and binary images of the 2D image were converted 

before obtaining the ROI of the canola plant, as shown in Figure 5-14. Because the input image 

had jagged edges, a dilation algorithm was used to enlarge and smooth the ROI. 
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(a) 2D image 

 

(b) Binary image 

 

(c) ROI 

Figure 5-13. Extracting 2D image (a), binary image (b), and ROI of the canola plant (c) 

Based on the ROI information, the skeleton of the ROI was examined. The results of the 

detection and counting of the branches are given in Figure 5-14.  

 

(a) The skeleton 

 

(b) Results 

Figure 5-14. The skeleton (a) and results of counting canola branches (b) 

Similar to the algorithm for detecting and counting canola branches shown in Section 5.2.1, 

this algorithm can use depth or infrared images acquired from the Kinect V2 camera to detect and 

count canola branches. Figure 5-15 illustrates the outputs of this detection algorithm. 
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(a) RGB image 

 

(b) Depth image 

 

(c) Infrared image 

 

(d) Binary 

 

(e) ROI 

 

(f) The results 

Figure 5-15. The results of the branches detection algorithm 

Similar to the evaluation of the detection algorithm performance in the Argos3D’s data set, 

thirty individual canola plants were captured by the Kinect V2 camera and processed. To provide 

referenced numbers of canola branches, the canola branches were counted manually. A relative 

error rate was used to show the accuracy of these experiment results, as given in Equations (5.2) 

and (5.3). The comparisons of the automatic and manual counting of canola branches are presented 

in Table 5-2.  
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Table 5-2. Results of automatic and manual counting of canola branches from the Kinect V2 

 

The estimated results are very close to the manual count results, an average of 97.1% 

accuracy is obtained. Based on the outputs shown in Table 5-2, the average error rate is smaller 

than the average error rate using the Argos3D’s dataset, about 2.9%, in which, three of thirty cases 

(10%) are inaccurate. This average error rate is lower than the average error rate based on the 

Argos3D dataset because the input images acquired from the Kinect V2 have a higher resolution. 

The average error rate from the Kinect’s data set had some inaccurate results, caused by reasons 

described in Section 5.2.1. Adjacent branches, as seen in plants number 8, 9, and 17, were one 

cause. To deal with inaccurate results, the solutions investigated in Section 5.2.1 can be used. The 

evidence from this research suggests that the Kinect V2 can be used to detect and count canola 

branches through 3D point cloud or infrared images.  
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From the results mentioned above, it can be seen that, due to its characteristics and system 

set-up, the Argos3D P100 camera is more suitable for phenotyping mobile device than is Kinect 

V2. The Argos3D P100 consumes less power and uses the small computer Raspberry Pi with a 2.0 

USB port to operate. The Kinect V2 requires a higher power requirement and a desktop or laptop 

computer with a 3.0 USB port. In addition, the dimensions and weights of the Argos3D P100 are 

much smaller than those of the Kinect V2. Therefore, the Argos3D P100 was chosen instead of the 

Kinect V2 for the depth camera of the proposed platform. 

5.2.3 Limitations 

The counting branches method is limited by the quality of the source images, plant structure 

and applicable only on single plants in indoor conditions. The results show that higher accuracy 

was achieved if the canola branches were counted by using clear images and fewer branches 

overlapping. However, the proposed method has certain limitations in counting more complex 

plants or dealing with background noise. If a canola plant has many branches that occlude each 

other, the algorithm will have great difficulty detecting them. In addition, because of the use of 

infrared lights, the Argos3D-P100 images suffered from strong ambient light and a metal-

background. To avoid these problems, the images should be taken in low ambient light and with a 

non-metal background or surroundings. This method is also limited to laboratory phenotyping 

because it can only deal with a single plant. Canola plants in the field are lodged together and the 

branches counting method requires further developing. 

5.3 Detection and Counting Canola Seedpods 

5.3.1 Using a High-Resolution Digital Camera 

To count canola seedpods in the lab setting, images of thirty individual canola plants were 

taken by the Sony A58 with different view angles. As seen in the workflow introduced in Chapter 

3, each color image was converted into a grayscale image and then tube-like structures (vessels) 

were distinguished by applying the Frangi 2D Vesselness filter, as shown in Figure 5-16. By using 

the result after applying the Frangi filter, the skeleton of the plant was extracted. Finally, the 

skeleton was refined before the endpoints in the skeleton of the canola were detected. With these 

endpoints, the seedpods were detected, and then the number of seedpods was estimated. This 

process is shown in Figure 5-17. 
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Figure 5-16. The original image (a), the grayscale image (b), and the filtered image 

 

Figure 5-17. The skeleton and the results of counting canola seedpods 

Similar to the algorithm for detecting and counting canola branches, a methodology of 

quantitative performance evaluation for counting canola seedpods was examined. Thirty individual 

canola plants with three different angle view images were captured and automatically processed. 

To provide referenced numbers of canola seedpods, manual counting the canola seedpods was 

applied. To express the accuracy of these experiment results, a relative error rate was used: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  
|𝑀−𝐴𝑣𝑔|

𝑀
∗ 100%   (5.2) 

where M is the manual counting result, Avg is the average of the automatic counting result. In this 

formula, the average of automatic counting results was calculated by: 

𝐴𝑣𝑔 =  
∑ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡3

1

3
   (5.3) 

The comparisons of the automatic and manual counting of canola seedpods are presented 

in Table 5-3. The manual results and estimated results are very close, with an average of 91.4% 
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accuracy. Because the algorithm detected and counted all canola ‘spikes’ and seedpods, the number 

of canola ‘spikes’ contributes to the relative errors in counting. Spikes are the sharp points located 

at the end of the stems and branches, but they not are the seedpods. Since the percentage of canola 

spikes is quite high, about 9.1 %, the average error rate reaches 8.6 %. The results of counting 

canola seedpods and the percentage of canola spikes and seedpods are shown in Table 5-3 and 

Table 5-4, respectively. 

Table 5-3. Results of the automatic and manual counting of canola seedpods 
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Table 5-4. Percentage of canola spikes 

 

The accuracy of the proposed algorithm is presented in Table 5-5. It can be seen that the 

accuracy of the proposed counting algorithm reached about 92%. To deal with this drawback, an 

improvement to the algorithm was proposed. To reduce these error rates in counting canola 

seedpods, the number of canola spikes must be eliminated.  It is possible to hypothesize that the 

result of each measurement for counting canola seedpods was estimated by: 

𝑅 =   {
𝐴 − 𝑆𝑝,           𝑖𝑓 𝐴 > 𝑀
𝐴 + 𝑆𝑝,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (5.4) 

where R is the result of estimating a number of seedpods after eliminating spikes, A is the average 

result of the automatic counting of canola seedpods, M is the result of manual counting number of 

canola seedpods, and Sp is the estimated number of spikes based on the relationship between A 

and the percentage of canola spikes. Sp was calculated by: 
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𝑆𝑝 = 𝐴 ∗ 𝑛     (5.5) 

where n is the percentage of canola spikes.  

Table 5-5. The accuracy of the automatic counting of canola seedpods 

 

As a result, the error rates of the proposed algorithm for counting seedpods are significantly 

decreased after eliminating the number of spikes. The error rate is lowered to 3.2% on average 

after applying Equations (5.4) and (5.5), as presented in Table 5-6. The outputs of this algorithm 

are shown in Figure 5-18. The results of these experiments support the idea that the proposed 

algorithms have the potential to highly and accurately detect and count canola seedpods.  
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Table 5-6. The refined results of automatic counting the canola seedpods 

 

 

Figure 5-18. Comparing the refined results of the proposed algorithm to the actual results 
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5.3.2 Limitations 

The method for counting seedpods was limited by the quality of the source images (e.g., a 

clear image, clear seedpods, and a clear background level), the overlapping seedpods, and 

computational costs. The experiment’s results show that the error rate increased for several 

reasons, such as unclear canola plant images, a complex background, and overlapping seedpods. 

The clearer the back-ground and seedpods, and the less the seedpods overlap, the fewer the errors. 

To deal with these problems, a clear image and clear background are required and each canola 

plant must be captured from different views. A promising solution to the problems might be to 

capture the plant with different focuses and then to use an image fusion technique, which will be 

introduced in the next section. The images this technique produces would be fused to obtain clear 

seedpods.  

5.4 Monitoring Canola Growth Stages 

This section described a non-contact method of canola plant growth measurement using 

the proposed mobile platform. The proposed system measures canola plant growth parameters, 

such as plant height. If plant growth parameters are precisely measured on each plant growth cycle, 

a detailed model of plant growth can be developed. As well, the system can accurately predict and 

control the plants for high yield. This section describes how a calibration of the Argos3D camera 

was first performed before the canola plant heights’ were measured. The depth camera must be 

calibrated to examine the canola plants’-growth stages using distance information. The distance 

information depends on several Argos3D’s parameters, such as a data frame rate and integration 

time.  

5.4.1 Calibration of the Argos3D P100 

To calibrate the Argos3D P100, the depth camera was fixed at a distance of 1,631mm, a 

frame rate of 10fps, and an integration time of two milliseconds (ms). A distance of 300 mm to 

1631 mm was explored due to the low resolution (160x120 pixels). The highest accurate 

measurement recorded was at the distance of 1,000mm, as seen in Table 5-7. Table 5-7 describes 

the accuracy of distances acquired by the Argos3D P100 at 1,500mm and at an integration time of 

1.5ms. In addition, while the frame rate was set at 10fps to reduce the amount of output data 

without affecting the output quality, the integration time was set at 2ms. This rate and time ensured 
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there was sufficient to measure gray or green objects. The scene of the calibration is shown in 

Figure 5-19. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-19. Calibrations of the Argos3D with a camera tripod (a) and frame (b). 

The process of the depth camera calibration was performed in several steps. First, the offset 

distance was set at -2,300 (mm). Then, this empirical offset was used for the global offset of the 

depth camera. Finally, the referenced objects (solid wood and carton boxes) with different 

distances were used to measure and then to compare the automatic measurements to the actual 

distances. Furthermore, to increase the accuracy of the automatic measurement process, three 

automatic measurement results were used to calculate the average of the distance per referenced 

object. Then the relative error rate was calculated by Equations (5.2) and (5.3). 

To increase the accuracy of the height measurement, ten samples with different heights 

were selected, and the average of each estimated result was calculated from 30 to 50 frames. Table 

5-7 shows only the average of estimated results due to its limited space. As a result, the average 

error rate of the distance measurements is reduced by the calibration process. These results are 

illustrated in Table 5-7, in which every relative error is reduced more than 5%. The range of low 

error rates, from 0.07% to 1.65%, occurred at a distance from 1,000mm to 1,400mm, but it 

gradually increased to 4.05% when the distance from 1,000mm to 418mm was decreased. It can 

thus be suggested that the best range for measuring plant height is from 1,000mm to 1,400mm, 

providing the error rate is less than 2%. 
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Table 5-7. Results of the Argos3D P100’s calibration 

 

Table 5-8. Accuracy of distances at 1500mm and an integration time of 1.5ms 

 

5.4.2 Measuring Height of Individual Canola Plants 

Due to the limited canola samples in the winter season, only thirteen canola plants were 

used to measure plant height. Each canola plant had a different height, ranging from 130 mm to 

1319mm (including pod). To expand the height range of these canola plants, some different boxes 

were added underneath the pods of the canola plants. These plants were directly placed underneath 

the camera that fixed on the frame at a distance of 1,631mm (see Figure 5-19). Depth data of each 

plant were extracted from the stream acquired from the Argos3D camera, then converted into 

MAT.files (Matlab format files) before distance information from the depth camera to the plant 

was obtained. From the MAT.files, an average of 30 measurements was retrieved. These 

experiments were conducted in the laboratory, and their results are shown in Figure 5-20. The 

results of the measurements plant height are presented in Table 5-9. The results reveal that the 

relative error is quite low, less than 5%, with the high distance between the depth camera and the 

plant, between 850mm and 1,300mm. However, the relative errors gradually increase up to 12% 

when the distance between the depth camera and the plant extend greater than 1300mm. This 

investigation has identified that plant height is easily measured with high accuracy up to nearly 



86 

 

98% by using depth images with a distance from 1,000mm to 1,100mm. Overall, this plant height 

measurement technique offers an acceptable result with an average error of 8.9%.  

(a) Color image (b) Depth image (c) depth values in 3D 

  

 

  

 

  

 

  

 

Figure 5-20. Some results of the plant height measurements 
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Table 5-9. Results of the canola plant height measurements 

 

5.4.3 Limitations 

The plant-height measurement approach is limited by the distance between the plant and 

the depth camera. When the plant is placed too close (less than 300 mm) or too far (greater than 

1,300 mm), the error rate increased because the depth camera is limited by the range of activity, 

from 100 mm to 3,000 mm. The solution to this problem is that to place the plant under the depth 

camera - between 850 mm to 1,300 mm, to achieve a more accurate measurement. 

5.5 Multi-Focus Image Fusion 

To capture images of the canola plants, canola plants were directly placed underneath the 

Pi camera that fixed on the frame at a distance of 1,000 mm (see Figure 5-19). Each canola plant 

was recorded at 10fps for 3 seconds. The time between each changing the focal length is 10 

seconds. Only frame number 20 of each video stream acquired from Pi camera was extracted. The 

reason is that the plant and the camera are needed to stable before capturing the images. Then, only 

the regions contain the plant in the selected images were cropped and used for multi-focus image 

fusion methods that will be introduced in this section. 

To evaluate and verify the performance of the proposed approach, comprehensive 

experiments were conducted. The proposed method was compared with five other good multi-

focus image fusion methods, such as the multi-scale weighted gradient based method (MWGF) 

[103], the DCT based Laplacian pyramid fusion technique (DCTLP) [104], the image fusion with 
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guided filtering (GFF) [105], the gradient domain-based fusion combined with a pixel-based fusion 

(GDPB) [106], and the image matting (IM) based fusion algorithm [107]. The MWGF method is 

based on the image structure saliency and two scales to solve the fusion problems raised by 

anisotropic blur and miss-registration. The image structure saliency is used because it reflects the 

saliency of local edge and corner structures. The large-scale measure is used to reduce the impacts 

of anisotropic blur and miss-registration on the focused region detection, while the small-scale 

measure is used to determine the boundaries of the focused regions. The MWGF algorithm is 

available from https://github.com/lsauto/MWGF-Fusion. The DCTLP presents an image fusion 

method using discrete Cosine transform (DCT) based Laplacian pyramid (LP) in frequency 

domain. The authors in [104] imply that the higher level of pyramidal decomposition, the better 

quality of the fused image. The DCTLP algorithm is available at https://www.mathworks.com/ 

-matlabcentral/file-exchange/40302-dct-laplacian-pyramid-based-image-fusion. The GFF method 

is based on fusing two-scale layers through using a guided filter based weighted average method. 

This method measures pixel saliency and spatial consistency at two scales to construct weight 

maps for the fusion process. The GFF enables a fast and effective image fusion method for multi-

focus, multi-spectral, multi-exposure, and multimodal images. The GFF algorithm is available at 

http://xudongkang.weebly.com/uploads/1/6/4/6/16465750/gff_1.0.7z. In gradient domain, authors 

in [106] present a multi-exposure and multi-focus image fusion (GDPB). This method fuses 

luminance and chrominance channels separately. The luminance channel is fused by using a 

wavelet-based gradient integration algorithm coupled with a Poisson Solver at each resolution to 

attenuate the artifacts. The chrominance channels are fused based on a weighted sum of the 

chrominance channels of the input images. This algorithm is available at 

https://www.mathworks.com/matlabcentral/fileexchange/48782-multi-exposure-and-multi-focus-

image-fusion-in-gradient-domain?focused=6354746&tab=function. The image mating fusion 

(IM) method is based on of three steps: obtaining the focus information of each source image by 

morphological filtering, applying an image matting technique to achieve accurate focused regions 

of each source image, and combining these fused regions to construct the fused image. The IM 

algorithm is available at http://xudongkang.weebly.com/uploads/1/6/4/6/16465750/ifm.rar. These 

methods were downloaded and run on the same computer to compare to the proposed method.   

All these methods used the same input images as the ones applied in the proposed 

technique. Ten multi-focuses image sequences were used in the experiments. Four of them are 

http://https/github.com/lsauto/MWGF-Fusion
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canola images captured by setting well-focused and manual changing focal length of the Pi camera; 

the others are selected from the general datasets used for many image fusion techniques. These 

general datasets are available at [108,109]. In the first four-canola database sets, three of them are 

artificial multi-focus images obtained by using LunaPic tool (https://www.lunapic.com), one of 

them is multi-focus images acquired directly from the Pi camera after cropping the region of 

interest. The proposed algorithm was developed to fit many types of multi-focus images captured 

by any digital camera or Pi camera.   

The empirical parameters of the gradient domain fast guided filter and VS metrics were 

adjusted to obtain the best outputs. The parameters of the gradient domain fast guided filter (see 

Equation 3-46) consisted of a window size filter (𝜁1), a small positive constant (Ɛ), subsampling 

of the fast guided filter (s), and a dynamic range of input images (L). The parameters of VS maps 

(see Equation 3-40), including alpha, beta, and gamma, were used to control visual saliency, 

gradient similarity, and color distortion measures, respectively. These empirical parameters of the 

gradient domain fast guided filters were experimentally set as s = 4, L = 9, and two pairs 

of 𝜁1(1) = 4,Ɛ(1) = 1.0𝑒 − 6 and 𝜁1(2) = 4,Ɛ(2) = 1.0𝑒 − 6 for optimizing base and detail 

weight maps. Other empirical parameters of VS maps were set as alpha = 1, beta = 0.89, and 

gamma = 0.31. 

 Surprisingly, when changing these parameters of the VS maps, such as, alpha = 0.31, beta 

= 1, and gamma = 0.31, the fused results had a similar quality to the first parameters’ setting. It 

can be thus concluded that to obtain focused regions, both visual saliency and gradient magnitude 

similarity can be used as the main saliencies. In addition, the chrominance colors (M and N) also 

contributed to the quality of the fused results. For example, when increasing the parameters of M 

and N, the blurred regions appeared in the fused results. Figure 5-21 shown the outputs of the 

proposed algorithm, including visual saliency, gradient magnitude similarity, and chrominance 

colors. The red and green oval denotes the defocused region of the input image (Fig.5-21a). 
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a) A source image                  b) Visual saliency                c)  Gradient saliency        d) Chrominance color (M) 

       

 e) Chrominance color (N)      f)  Weight maps           g) Refined base weight map  h) Refined detail weight map 

Figure 5-21. An example of a source image and its saliencies and weight maps 

5.5.1 Comparisons with other Multi-Fusion Methods 

In this section, a comprehensive assessment, including subjective and objective 

assessments, is used to evaluate the quality of fused images obtained from the proposed and other 

methods. Subjective assessments are methods to evaluate the quality of an image through many 

factors, including viewing distance, display device, lighting condition, vision ability, etc. 

However, subjective assessments are expensive and time consuming. Therefore, objective 

assessments – mathematical models - are designed to predict the quality of an image accurately 

and automatically.     

For subjective or perceptual assessment, the comparisons of these fused images are shown 

from Figure 5-22 to Figure 5-26. The figures show the fused results of the “Canola 1,” “Canola 

2,” “Canola 4,” “Books,” and “Rose flower” image sets. In these five examples, (a) and (b) are 

two source multi-focus images, and (c), (d), (e), (f), (g), and (h) are the fused images obtained with 

the MWGF, DCTLP, GFF, GDPB, IM, and the proposed methods, respectively. In almost all the 

cases, the MWGF method offers quite good fused images; however, sometimes it fails in dealing 

with the focused regions. For example, the blurred regions remain in the fused image as marked 

by the red circle in Figure 5-22(c). The DCTLP method offers fused images as good as the MWGF 
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but causes blurring of the fused images in all five examples. The IM method also provides quite 

good results; however, ghost artifacts remain in the fused images, as shown in Figure 5-22(g), 

Figure 5-24(g), Figure 5-25(g), and Figure 5-26(g). Although the fused results of the GFF method 

reveals good visual effects at first glance, small blurred regions remained at the edge regions (the 

boundary between focused and defocused regions) of the fused results. This blurring of edge 

regions can be seen in the “rose flower” or “book” fused images in Figure 5-25(e) and Figure 5-

26(e). The fused images of the GDPB method had unnatural colors and too much brightness. The 

fused results of the GDPB are also suffered from the ghost artifacts on the edge regions and the 

boundary between focused and defocused regions. It can be clearly seen that the proposed 

algorithm can obtain clearer fused images and better visual quality and contrast than other 

algorithms due to its combination of the gradient domain fast-guided filter and VS maps. The 

proposed algorithm offers fused images with fewer block artifacts and blurred edges. 

     

a) Source image 1      b) Source image 2                          c) MWGF                       d) DCTLP 

     

              e) GFF                              f) GDPB                              g) IM                      h) the proposed method 

Figure 5-22. Source images of “Canola 1” (a, b) and its fused images performed by [103], [104], 

[105], [106], [107] and the proposed algorithm. 
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a) Source image 1      b) Source image 2                          c) MWGF                       d) DCTLP 

     

              e) GFF                              f) GDPB                              g) IM                      h) the proposed method 

Figure 5-23. Source images of “Canola 2” (a, b) and its fused images performed by [103], [104], 

[105], [106], [107] and the proposed algorithm. 

      

a) Source image 1      b) Source image 2                          c) MWGF                       d) DCTLP 

       

              e) GFF                              f) GDPB                              g) IM                      h) the proposed method 

Figure 5-24. Source images of “Canola 4” (a, b) and its fused images performed by [103], [104], 

[105], [106], [107] and the proposed algorithm. 
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 a) Source image 1             b) Source image 2                         c) MWGF                          d) DCTLP       

    

           e) GFF                         f) GDPB                               g) IM                         h) the proposed method  

Figure 5-25. Source images of “books” (a, b) and its fused images performed by [103], [104], 

[105], [106], [107] and the proposed algorithm. 

    

a) Source image 1               b) Source image 2                        c)MWGF                       d) DCTLP 

     

        e) GFF                           f) GDPB                        g) IM                   h) the proposed method 

Figure 5-26. Source images of “a rose” (a, b) and its fused images performed by [103], [104], 

[105], [106], [107] and the proposed algorithm. 

Besides on the subjective assessment, an objective assessment without the reference image 

was also conducted in this thesis. Three objective metrics, including mutual information (MI) 

[110], structural similarity (QY) [111], and an edge information-based metric Q(AB/F) [112] were 

used to evaluate the fusion performance of different multi-focus fusion methods.  

The mutual information (MI) measures the amount of information transferred from both 

source images into the resulting fused image. It is calculated by  
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𝑀𝐼 =  2(
𝐼(𝑋,𝐹)

𝐻(𝐹)+𝐻(𝑋)
+

𝐼(𝑌,𝐹)

𝐻(𝐹)+𝐻(𝑌)
)    (5.6) 

where 𝐼(𝑋, 𝐹) is the mutual information of the input image X and fused image F. 𝐼(𝑌, 𝐹) is the 

mutual information of the input image Y and fused image F. 𝐻(𝑋), 𝐻(𝑌), and 𝐻(𝐹) denote the 

entropies of the input image X,Y, and used image F, respectively. 

 The structural similarity (QY) measures the corresponding regions in a reference original 

image x and the test image y. It is defined as 

𝑄(𝑥, 𝑦, 𝑓|𝑤) =

{
𝜆(𝑤)𝑆𝑆𝐼𝑀(𝑥, 𝑓|𝑤) + (1 − 𝜆(𝑤))𝑆𝑆𝐼𝑀(𝑦, 𝑓|𝑤), 𝑓𝑜𝑟 𝑆𝑆𝐼𝑀(𝑥, 𝑦|𝑤) ≥ 0.75

max{SSIM(x, f|w), SSIM(y, f|w)} , for 𝑆𝑆𝐼𝑀(𝑥, 𝑦|𝑤) < 0.75                              
           (5.7) 

where 𝜆(𝑤) =
𝑠(𝑥|𝑤)

𝑠(𝑥|𝑤)+𝑠(𝑦|𝑤)
 is the local weight, and 𝑠(𝑥|𝑤) and 𝑠(𝑦|𝑤) are the variances of 𝑤𝑥 

and 𝑤𝑦, respectively. 

The edge information based metric 𝑄𝐴𝐵/𝐹 measures the amount of edge information that is 

transferred from input images to the fused image. For the fusion of source images A and B resulting 

in a fused image F, gradient strength 𝑔(𝑛, 𝑚) and orientation 𝛼(𝑛, 𝑚) are extracted at each pixel 

(n,m) from an input image, as given by 

𝑔𝐴(𝑛, 𝑚) = √𝑠𝐴
𝑥(𝑛, 𝑚)2 + 𝑠𝐴

𝑦
(𝑛, 𝑚)2   (5.8) 

𝛼𝐴 = 𝑡𝑎𝑛−1(
𝑠𝐴

𝑦
(𝑛,𝑚)

𝑠𝐴
𝑥(𝑛,𝑚)

)     (5.9) 

where 𝑠𝐴
𝑥(𝑛, 𝑚) and 𝑠𝐴

𝑦
(𝑛, 𝑚) are the output of the horizontal and vertical Sobel templates centred 

on pixel 𝑝𝐴(𝑛, 𝑚) and convolved with the corresponding pixels of input image A.  

The relative strength and orientation values of 𝐺𝐴𝐹(𝑛, 𝑚) and 𝐴𝐴𝐹(𝑛, 𝑚) of the input image A 

with respect to the fused image F are calculated by 

𝐺𝐴𝐹(𝑛, 𝑚) =  {

𝑔𝐹(𝑛,𝑚) 

𝑔𝐴(𝑛,𝑚)
 𝑖𝑓 𝑔𝐴(𝑛,𝑚) > 𝑔𝐹(𝑛,𝑚) 

𝑔𝐴(𝑛,𝑚) 

𝑔𝐹(𝑛,𝑚)
,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (5.10) 

𝐴𝐴𝐹(𝑛, 𝑚) = 1 −
|𝛼𝐴(𝑛,𝑚)−𝛼𝐹(𝑛,𝑚)|

𝜋/2
    (5.11) 

From these values, the edge strength and orientation values are derived, as given by 

𝑄𝑔
𝐴𝐹(𝑛, 𝑚) =

Ґ𝑔

1+𝑒𝐾𝑔(𝐺𝐴𝐹(𝑛,𝑚)−𝜎𝑔)
    (5.12) 
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𝑄𝛼
𝐴𝐹(𝑛, 𝑚) =

Ґ𝛼

1+𝑒𝐾𝛼(𝐴𝐴𝐹(𝑛,𝑚)−𝜎𝛼)
    (5.13) 

𝑄𝑔
𝐴𝐹(𝑛, 𝑚) and 𝑄𝛼

𝐴𝐹(𝑛, 𝑚) model information loss between the input image A and the fused 

image F. The constants Ґ𝑔, 𝐾𝑔, 𝜎𝑔 and Ґ𝛼, 𝐾𝛼, 𝜎𝛼 determine the exact shape of the sigmoid 

functions used to form the edge strength and orientation preservation values (Eq. 5.12 and 

Eq.5.13). Edge information preservation values are formed by 

𝑄𝐴𝐹(𝑛, 𝑚) =  𝑄𝑔
𝐴𝐹(𝑛, 𝑚)𝑄𝛼

𝐴𝐹(𝑛, 𝑚)     (5.14) 

with 0 ≤ 𝑄𝐴𝐹(𝑛, 𝑚) ≤ 1. The higher value of 𝑄𝐴𝐹(𝑛, 𝑚), the less loss of information of the fused 

image.   

The fusion performance 𝑄𝐴𝐵/𝐹 is evaluated as a sum of local information preservations estimates 

between each of the input images and fused image, is defined as 

𝑄𝐴𝐵/𝐹 =
∑𝑁

𝑛=1 ∑ 𝑄𝐴𝐹(𝑛,𝑚)𝑤𝐴𝑀
𝑚=1 (𝑛,𝑚)+𝑄𝐵𝐹(𝑛,𝑚)𝑤𝐵(𝑛,𝑚))

∑𝑁
𝑗=1 ∑ (𝑤𝐴(𝑖,𝑗)+𝑀

𝑗=1 𝑤𝐵(𝑖,𝑗))
  (5.15) 

where 𝑄𝐴𝐹(𝑛, 𝑚) and 𝑄𝐵𝐹(𝑛, 𝑚) are edge information preservation values, weighted by 𝑤𝐴(𝑛, 𝑚) 

and 𝑤𝐵(𝑛, 𝑚), respectively.  

Table 5-10 illustrates the quantitative assessment values of five different multi-focus fusion 

methods and the proposed method. The larger values indicated by the metrics, the better the image 

quality. The values shown in bold represent the highest performance.  From Table 5-10, it can be 

seen that the proposed method produces the highest quality scores for all three-objective metrics, 

except for QY with “Canola 2” datasets and QAB/F with “Book” datasets. These large quality 

scores suggest that the proposed method performed well and is both stable and reliable. Overall, it 

can be concluded that, when compared with previous multi-focus fusion methods, the proposed 

method performs competitively, both in visual perception and objective metrics. 
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Table 5-10. Comparisons of the proposed method with other methods 

 

5.5.2 Comparisons in Computation Efficiency  

Computational cost is also a key metric for fusion performance assessment. In the 

experiments, all the testing fusion methods were implemented in MATLAB R2016b on a computer 

with a 2.9 GHz CPU and 8.0 GB RAM. Two types of source images, one from our laboratory and 

the other from the general datasets, were used for many image fusion techniques. To compare the 

computation efficiency of the proposed method with other fusion methods, these source images 

with these sizes were used: 1024 x 768, 800x800, 768 x768, 768 x 512, 772 x 824, 720 x 644, and 

520 x 520. Table 5-12 illustrates the average running time of different multi-focus image fusion 

methods. The smaller values of the computational time indicate the better fusion performance. The 
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values shown in bold, purple, and green colors in Table 5-11represent the best, the second-best 

and the third-best performance. As has been pointed out, in some cases, the proposed method 

requires less running time than that of the MWGF, IM, GFF, and GDPB methods but only slightly 

more than that of the DCTLP. The reason is that the proposed method adopts the gradient domain 

fast-guided filter. 

Table 5-11. Computational time of different multi-focus fusion methods 

 

5.5.3 Limitations 

The fused results of the proposed method remain as small-blurred regions in the boundaries 

between the focused and defocused regions. More morphological techniques are required to deal 

with this problem.   
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CHAPTER 6 – CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

This thesis shows that the goals of this research are achieved. The thesis presents 

contributions to the canola plant phenotyping and image processing areas, including counting 

canola branches and seedpods in indoor environment, estimating plant height, and fusing multi-

focus images.  Tools developed in the thesis consisted of a low-cost depth plant phenotyping 

mobile device, a plant traits measuring tool, and an image fusion tool. The low-cost depth mobile 

platform was built from a low-cost depth camera (an Argos3D P100), a low-cost Pi camera, and a 

low-cost mini-computer (a Raspberry Pi 3). This mobile platform can help plant researchers to 

capture canola plant images in terms of 2D and 3D across environments. Once the mobile platform 

was built, captured images are used to measure plant traits, such as the number of canola branches, 

canola seedpods, and plant height. This study also developed image fusion tools to support plant 

researchers in improving the description and quality of 2D images for further research, such as 

fusing multi-focus images to obtain clear focused results and using a low-cost camera instead of 

an expensive camera. 

The method to count canola branches uses the Argos3D P100 depth camera instead of the 

Kinect V2 camera to acquire 2D or 3D images with lower background noise. This depth camera 

performs very fast, up to 160fps even in low ambient illumination. The algorithm of the counting 

canola branches was quite simple. First, the 2D or 3D image is converted to grayscale before a 

Gaussian low-pass filter was applied to smooth the input image. Then, the ROI containing the 

branches and stem are obtained, before a fast-marching algorithm was applied to identify the 

skeleton of the ROI. Finally, the end-points of the skeleton or the number of branches and stems 

are retrieved. However, the results remain inaccurate when the canola branches are overlapping. 

To deal with the obstacle of overlapped branches that cause error, a horizontal resizing technique 

was developed. The accuracy of the counting canola branches then improved and achieved up to 

95.6%. Based on the experimental results, it can be stated that using a low-cost depth camera 

(Argos3D P100) is reliable, accurate, and fast in detection and counting canola branches under 

indoor environments. 

To count the canola seedpods in color images, a digital camera was used. Then, the Frangi 

vesselness filter was deployed to remove the background and noise from these images. Next, the 
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skeleton of the canola was extracted and an algorithm for finding end-points was deployed. The 

number of seedpods was quite similar to the number of end-points of the skeleton. Finally, a refined 

technique that eliminated spikes was developed to offer better accurate results. The accuracy of 

the algorithm for counting canola seedpods reached 96.8%. It can thus be clearly seen that the 

counting of canola seedpods is an outstanding method to obtain accuracy, stability, and reliability. 

Besides counting canola branches and seedpods, the height of plants was measured using 

a helpful measurement tool. By using a low-cost depth camera, Argos3D P100, the plant height of 

each canola plant is easily measured with high speed and accuracy. First, the grayscale information 

of the canola plant is obtained. Then, the distance information between the depth camera and the 

plant was directly extracted from the grayscale information. Finally, the plant height is estimated 

based on this information and the distance between the depth camera and ground truth. From the 

experiment’s results, it is evident that the plant height measurement method offers a high-speed 

measurement with high accuracy, up to 91 % on an average.     

To improve the description and quality image, especially images acquired from the digital 

camera or the Pi camera for counting seedpods or further study, an image fusion method is 

required. A novel multi-focus image fusion method was proposed with the combination of the VS 

maps and gradient domain fast-guided filter. In the proposed algorithm, the VS maps are first 

deployed to obtain visual saliency, gradient magnitude similarity saliency, and chrominance 

saliency (or color distortions). Then, the initial weight map is constructed with a mix of three 

metrics. Next, the final-decision weight maps are obtained by optimizing the initial weight map 

with a gradient domain fast-guided filter at two components. Finally, the fused results are retrieved 

by the combination of two-component weight maps and two-component source images that present 

large-scale and small-scale variations in intensity. The proposed method was compared with five 

proper representative fusion methods, both in subjective and objective evaluations. Based on the 

experiment’s results, the proposed fusion method presents a competitive performance with or even 

outperforms some state-of-the-art methods. The proposed method’s success was largely based on 

the VS maps’ measure and gradient domain fast-guided filter. The proposed method can use any 

digital images captured by either a high-end or low-end camera, especially the low cost Pi camera. 

This fusion method can be used to improve the results of counting canola seedpods from the images 

captured by low-cost cameras.  
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6.2 Future Work 

To further enhance the performance of the proposed method, future research directions will 

focus on generating more accurate canola counts and extend the image-fusion method to other 

fields. Although the counting of canola branches reveals quite good results, some limitations such 

as the strong ambient light, overlapping branches and outdoor environment were obstacles. To 

deal with these drawbacks, some ideas can be implemented, such as using another higher depth 

camera and enhancing depth images by fusing depth and color images. Some options for higher 

depth cameras are Argos3D P3xx cameras. Argos3D P330 is the current highest version equipped 

with a high-resolution depth sensor (352x287 pixels) combined with a 2D CMOS sensor. This 

depth camera is less sensitive to strong ambient light and offers a Gigabit Ethernet interface so that 

data streams can be transferred faster to the host. One interesting approach that might solve the 

problem of overlapping branches is to use a technique of enhanced depth images. This technique 

suggests that the current 3D point cloud resolution acquired from the Argos3D P100 can be 

enhanced by fusing depth and color images. From the enhanced depth images, canola branches 

can be more easily identified and are more accurate than the current method. In addition, counting 

canola branches cannot be used for outdoor scenario due to the complex structure of the canola 

plants in the field. For outdoor environment, other applications of this depth camera can be 

pursued, such as detecting canola plants, segmenting individual leave, and measuring leaf area 

index.   

One limitation of the proposed method for counting canola seedpods is the deployment in 

the outdoor environment. Due to overlapping or twisted canola branches and seedpods in the field, 

counting seedpods may not be possible. The solution to deal with this can be started from the 

flowering stage, in which canola flowers can be counted. Further study to count the number of 

flowers can be pursued to address this challenge. 

Other limitations of the proposed multi-focus image fusion, such as small-blurred regions 

in the boundaries between the focused and defocused regions and the computational cost, are 

worthwhile to investigate. Morphological techniques and optimizing multi-focus fusion algorithm 

are also recommended for further study. Finally, 3D modelling from enhancing depth images and 

fusion techniques should be investigated for their application in plant phenotyping and other fields, 

such as remote sensing and medicine. 
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