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ABSTRACT 

 

Purpose: Frequent falls are reported by individuals with spinal cord injury (SCI) suggesting impairments 

in their balance control. This thesis examined balance assessment and balance control in individuals with 

SCI.   

 

Methods and Results: To investigate the effects of light touch on standing balance, center of pressure 

(COP) sway during standing was measured in 16 participants with incomplete SCI (iSCI) and 13 able-

bodied (AB) participants. Participants with iSCI showed reduction in COP sway with light touch similar 

to AB participants.  

 

To study the association between stability during normal walking (NW) and unexpected slip intensity, 

NW behaviour and intensity of an unexpected slip perturbation were assessed in 20 participants with 

iSCI, and 16 AB participants. Participants with iSCI demonstrated greater stability by walking slower, 

taking shorter steps, and more time in double support. Walking slower was associated with lower slip 

intensity in individuals with iSCI.  

 

To study reactive balance control, change in margin of stability with a compensatory step, activation of 

lower extremity muscles, and change in limb velocity trajectories in response to an unexpected slip 

perturbation were studied in 16 participants with iSCI and 13 AB participants. Participants with iSCI 

demonstrated limitations in reactive responses including a smaller increase in lateral margin of stability, 

slower onset of trail limb tibialis anterior activity, and decreased magnitude of trail limb soleus activity. 

 

To identify balance measures specific to individuals with SCI, a systematic review of 127 articles was 

conducted. Thirty balance measures were identified; 11 evaluated a biomechanical construct and 19 were 

balance scales designed for use in clinical settings. All balance scales had high clinical utility. The Berg 

Balance Scale and Functional Reach Test were valid and reliable, while the Mini Balance Evaluation 

Systems Test was most comprehensive. 

   

Conclusions: Individuals with iSCI have impaired balance control, as evidenced by limitations in 

reactive balance; however, they have the ability to modify their balance, as demonstrated by greater 

stability during NW and with light touch while standing. No single balance measure met all criteria of a 

useful measure - high clinical utility, strong psychometric properties, and comprehensiveness in the SCI 

population. Combined, the findings highlight the need for the comprehensive assessment and 

rehabilitation of balance control after iSCI.
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CHAPTER ONE: INTRODUCTION 

Injury to the spinal cord can be catastrophic for any individual, their family, and the 

community. Motor, sensory, and autonomic dysfunctions can lead to various health 

complications such as sarcopenia, spasticity, osteoporosis, bowel and bladder dysfunction, 

cardiovascular problems, pressure ulcers, depression, and a perception of accelerated ageing 

(Elliott & Frank, 1996; Noreau, Proulx, Gagnon, Drolet, & Laramee, 2000; Phillips et al., 1998) 

These health complications can affect overall quality of life of these individuals. Individuals with 

SCI are re-hospitalized 2.6 times more often compared to the general population (Dryden et al., 

2004). The impact is not limited to the individual with the SCI: The caregivers also experience 

physical and emotional stress (Weitzenkamp, Gerhart, Charlifue, Whiteneck, & Savic, 1997). In 

Canada, the annual economic burden from SCI is estimated to be $2.67 billion (Krueger, 

Noonan, Trenaman, Joshi, & Rivers, 2013), which results from direct (such as health care, 

equipment, long-term care, etc.) and indirect (losses from reduction in productivity) costs 

associated with SCI.  

Promoting ambulation among individuals with SCI can be an effective way to improve 

health such as improving muscles mass, preventing loss of bone mass, and functional 

independence among individuals with SCI (Behrman et al., 2005; Fritz et al., 2011; Giangregorio 

et al., 2006; Giangregorio & Blimkie, 2002; Harkema, Schmidt-Read, Lorenz, Edgerton, & 

Behrman, 2012). The ability to walk is also among the top-most priorities of individuals with 

SCI (Simpson, Eng, Hsieh, & Wolfe, 2012), and a majority of individuals with an incomplete 

SCI regain the ability to walk (Dobkin et al., 2006). The challenge is to walk safely without 

falling as 75% of individuals with incomplete SCI (iSCI) report at least one fall in a year and 

48% report recurrent falls (Brotherton, Krause, & Nietert, 2007; Jorgensen et al., 2017). A strong 

emphasis is placed on treadmill training to generate rhythmic and reciprocal stepping of the legs; 

however, walking involves maintaining balance control in addition to stepping (Zehr, 2005). 

Rhythmic stepping is considered to be controlled by a network of specialized inter-neurons 

called a central pattern generator (CPG), which requires input from supraspinal centres such as 

the motor cortex, cerebellum and brain stem, and sensory feedback from the peripheral sensory 

organs for locomotion (Barthélemy, Grey, Nielsen, & Bouyer, 2011; Zehr, 2005). Injury to the 

spinal cord can impair the communication between CPGs, supraspinal centres and peripheral 

feedback, thus impairing walking.  
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The objectives of this thesis are to review how balance is assessed in individuals with 

SCI and to develop a better understanding of balance control in individuals with motor iSCI. 

Chapter one reviews the etiology and classification of SCI, the demographics of those living with 

SCI in Canada, and problem of falls in this population. The first chapter also reviews balance 

control in those with and without SCI. Chapter two investigates the effect of light fingertip touch 

on the standing balance of individuals with chronic iSCI, and the relationships between the effect 

of light touch and the clinical scores of proprioception and cutaneous pressure sensation in the 

extremities. Chapter three investigates walking stability during unperturbed normal walking 

(NW) in individuals with chronic iSCI and studies the association between walking stability and 

slip intensity of an unexpected slip perturbation. Chapter four investigates the reactive responses 

to an unexpected slip perturbation in individuals with chronic iSCI by studying the reactive 

change in margin of stability, and onset and magnitude of electromyography activity. Chapter 

five reviews the current state of balance assessment in the SCI population and provides 

recommendations for balance assessment in clinical settings on the basis of clinical utility, 

psychometric properties, and comprehensiveness of the measures in the SCI population. Chapter 

six discusses the contributions of chapters two to five to the overarching theme of this thesis and 

identifies their strengths and limitations. Chapter six also gives directions for the future research 

in the area of balance control after iSCI. 

1.1 Spinal Cord Injury 

1.1.1 Severity and classification. 

The spinal cord consists of ascending and descending tracts, inputs from different sensory 

modalities, and autonomous circuits capable of producing motor outputs (Rossignol & Frigon, 

2011). The spinal cord extends from the brainstem to the first lumbar vertebra and consists of 31 

segments – eight cervical, 12 thoracic, five lumbar, five sacral, and one coccygeal, which extend 

to the peripheral body as nerve roots (Kirshblum et al., 2011). The most distal part of the spinal 

cord is the conus medullaris and the cauda equina is a bundle of lumbosacral nerve roots that 

originate in the region of the conus medullaris. Internally, the matter within the spinal cord is 

arranged such that the cell bodies of motor and sensory neurons form the central H-shaped gray 

region, whereas the white matter peripheral to the gray matter is formed of the myelinated axons 

of the nerve cells. Injury to the spinal cord disrupts the conduction of information across the 

lesion leading to impairments in motor, sensory and autonomic functions. The extent and 
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severity of impairments depends on the neurological level and completeness of injury, 

respectively. On the basis of neurological level, an injury can be broadly categorized as 

tetraplegia or paraplegia. Tetraplegia refers to injury or damage to the cervical segments of the 

spinal cord, whereas paraplegia refers to injury or damage to the thoracic, lumbar, or sacral 

segments of the spinal cord (Kirshblum et al., 2011). Impairments are observed below the level 

of lesion, typically involving all four extremities and the trunk in individuals with tetraplegia, 

whereas there is sparing of upper extremity function in individuals with paraplegia. Paraplegia 

also includes injury to the cauda equina or conus medullaris, but not injuries to the lumbosacral 

plexus or injuries to the peripheral nerves outside the neural canal.   

The severity of injury depends on the completeness of the injury, which can be rated 

using the American Spinal Injury Association Impairment Scale (AIS). Each SCI is given a 

rating of grade A, B, C, D or E as per the International Standards of Neurological Classification 

of Spinal Cord Injury (ISNSCI) (Kirshblum et al., 2011). Grade A indicates a complete injury, 

with no motor or sensory function preserved below the neurological level of injury, including the 

sacral segments S4-S5. Grade B is an incomplete, or motor complete, injury as there is sensory 

sparing, but no motor function below the neurological level of injury, including the sacral 

segments. Grades C and D indicate motor incomplete injuries. In Grade C, more than half of the 

key muscles below the neurological level of lesion do not have a minimum strength to move the 

body segments against gravity; whereas in Grade D, at least half of these key muscles have such 

strength. Grade E indicates normal motor and sensory function in all the segments in someone 

who had prior deficits. Depending on the location of lesion within the spinal cord, different 

syndromes with characteristic clinical presentations can be observed after an iSCI – central cord, 

Brown-Sequard, anterior cord, posterior cord syndrome, cauda equina, and conus medullaris 

syndrome (Kirshblum et al., 2011; McKinley, Santos, Meade, & Brooke, 2007). Central cord is 

the most common of all clinical syndromes and involves greater weakness in the upper 

extremities than the lower extremities, and motor function is more impaired than sensory 

function (Nowak, Lee, Gelb, Poelstra, & Ludwig, 2009). Brown-Sequard syndrome results from 

a hemisection of the spinal cord such as from a knife wound. This syndrome leads to ipsilateral 

loss of proprioception, vibration sense, and motor control, whereas there is a contralateral loss of 

pain and temperature sensation below the level of lesion (Kirshblum et al., 2011). Anterior cord 

syndrome involves mainly the loss of motor function, and pain and temperature sensation below 
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the level of lesion (Schneider, 1955). Posterior cord syndrome is the rarest of all syndromes and 

leads to a loss of proprioception and vibration sense, but sparing of pain and temperature 

sensation, and motor control (McKinley et al., 2007). Cauda equine syndrome results from injury 

to the lumbosacral nerve roots outside the spinal canal leading to lower motor neuron symptoms 

such as flaccid paralysis, loss of reflexes, and loss of sensation (Gitelman et al., 2008). Conus 

medullaris is an injury to the sacral cord and lumbar nerve roots within the spinal canal, and is 

characterized by both upper and lower motor neuron signs (McKinley et al., 2007). 

1.1.2 Epidemiology.  

In Canada, over 86,000 people are living with a spinal cord injury (SCI) and every year 

4,300 new occurrences of SCI are reported (Farry & Baxter, 2010). The etiology of SCI varies 

between regions and countries: In Canada, about 42% of new injuries result from a traumatic 

event (e.g. motor vehicle accident, falls, etc.), and 58% from non-traumatic causes (e.g. 

degenerative changes, infections, malignancy, etc.). Traumatic injuries are most common in 

adolescent and younger adults due to motor vehicle and sporting accidents, and violence, 

whereas non-traumatic injuries are more common in older individuals over 70 years (Dryden et 

al., 2003; Pickett, Campos-Benitez, Keller, & Duggal, 2006). Males are about three times more 

likely to sustain a SCI compared to females - the sex difference being greater for traumatic 

injuries than non-traumatic causes of SCI (Couris et al., 2009; Dryden et al., 2003). About 43% 

of individuals with SCI are living with a tetraplegia; the other 56% are living with paraplegia 

(Farry & Baxter, 2010). About 35% of the traumatic lesions lead to a complete injury (AIS A) 

(Pickett et al., 2006). Among iSCI, AIS D is most common outcome, followed by AIS C and AIS 

B, respectively, and central cord syndrome is the most common clinical presentation, reported in 

35% of new injuries (Pickett et al., 2006).  

In Canada, the annual economic burden from SCI includes $1.57 billion in direct costs 

associated with injury-related expenditure by the patient and/or the caregivers such as initial and 

subsequent hospitalization, health care practitioners, medication, equipment, home 

modifications, etc. (Krueger et al., 2013). Indirect costs constitute $1.10 billion, and result from 

the losses that occur due to decreased productivity due to associated morbidity and mortality. 

These costs depend on the severity of injury, ranging from $1.5 million (for someone with an 
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incomplete paraplegia) to $3 million (for someone with a complete tetraplegia) (Krueger et al., 

2013). 

1.2 Falls Among Individuals With SCI: A Pressing Concern 

Depending on the neurological level and completeness of injury, varying levels of motor 

and sensory impairments are experienced. The motor and sensory impairments from a SCI limit 

feedback about the body’s orientation from sensory organs, and also reduce the ability to 

generate quick and strong movements, which has the potential to predispose these individuals to 

falls.  

Seventy five percent of ambulatory individuals with iSCI experience at least one fall per 

year (Brotherton et al., 2007); whereas 48% report recurrent falls (Jorgensen et al., 2017). The 

incidence of falls in individuals with iSCI is similar to individuals with stroke (73%) (Forster & 

Young, 1995), and higher than that reported in Canadian seniors (33%))(Do, Chang, Kuran, & 

Thompson, 2015), or Parkinson’s disease (68%; Wood, Bilclough, Bowron, & Walker, 2002). 

Falls are not only a deterrent to the re-learning of walking but also can lead to re-hospitalization 

due to further health complications such as fractures. About 4 to 18% of fallers sustain serious 

injuries such as fractures (Jorgensen et al., 2017) and 45% report reduced community 

participation and engagement in productive activities (Brotherton et al., 2007). Similar to older 

adults (Friedman, Munoz, West, Rubin, & Fried, 2002), falls can lead to a vicious circle of 

injuries, fear of falls, reduced activity participation, reduced functional levels, and higher 

incidence of falls. Individuals with a history of recurrent falls, fear of falling, and a slower 

walking speed have higher chances of experiencing recurrent and injurious falls (Jorgensen et al., 

2017). A majority of falls occur during walking (76%) (Phonthee, Saengsuwan, & Amatachaya, 

2013). Most fallers perceive that limitations in muscle strength,  balance control, and an inability 

to overcome environmental hazards lead to falls (Brotherton et al., 2007; Phonthee et al., 2013), 

suggesting factors internal and external to the individual are responsible for falls. Identifying 

individuals with SCI at risk of falls thus requires a comprehensive understanding of balance 

control in this population. Balance control not only depends on the functional level of these 

individuals, but also on the strategies they use when faced with an external perturbation.  
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1.3 Balance Control: An Important, But Complex Motor Skill 

Stability, balance, balance control and postural control are defined in a variety of 

different ways (including mathematical, mechanical, and clinical) and have been used 

interchangeably in the literature. For the scope of this thesis, the concepts of balance, stability, 

balance control, and postural control are explained. Balance is an instantaneous state of the body 

when the vertical projection of the center of mass (COM; an average position of all the parts of 

the body weighted according to their masses) falls within the base of support (BOS; area of 

support formed beneath an object or person that includes all points of contact) (Pollock, 

Durward, Rowe, & Paul, 2000).  

A body is stable if, due to the net forces acting on the body, it is moving from a state of 

unbalance to a balanced state or it resists becoming unbalanced from a balanced state. Stability 

takes into consideration time and net forces acting on a body, whereas balance is an 

instantaneous state (Loubert, 2011). For example, during walking the COM may be within the 

BOS indicating a balanced state, but the velocity dependent COM (extrapolated COM; XCOM; 

(Hof, Gazendam, & Sinke, 2005) may be outside the BOS, making a body unstable. Stability can 

be quantified in a variety of ways such as displacement of the COM and/or time available before 

the COM leaves the BOS (Hof et al., 2005), or the amount of force needed to unbalance an 

object which is currently in a state of balance (destabilizing forces), or to balance an object 

which is about to lose balance due to non-zero forces acting on it (stabilizing forces; Duclos et 

al., 2009). The margin of stability (MOS) is another measure of stability, which is often defined 

as the distance between the COM or XCOM and the edge of the base of support (Hof et al., 

2005). Similarly, the temporal stability margin is the time in which the COM would reach/exceed 

the boundary of the BOS travelling at its current velocity (Hof et al., 2005). 

Balance control or postural control in humans are synonymous terms and are used 

interchangeably here indicating the inherent ability of an individual to maintain, achieve or 

restore a state of balance during any posture or activity (Pollock et al., 2000). An individual with 

intact balance control should be able to resist any perturbations or should be able to generate 

stabilizing forces once the perturbation(s) has(have) occurred. From a biomechanical 

perspective, this is achieved by maintaining the COM (or XCOM during dynamic conditions) 

within the BOS while performing activities of daily living (Maki & McIlroy, 1997). From a 
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motor control perspective, it is a complex motor skill, which is dependent on how the motor and 

sensory systems of an individual interact with the environment to achieve the task being 

performed such as sitting, standing, walking, or transferring (Horak, 2006).  

1.3.1 Balance control for intact body systems. 

The Systems Framework for Postural Control suggests six essential resources are 

required for effective postural control: (1) sensory strategies (e.g. integration between 

somatosensory, visual, and vestibular systems), (2) orientation in space (e.g. aligning the body to 

gravity on a tilted surface), (3) movement strategies (e.g. taking a compensatory step on 

perturbation), (4) biomechanical constraints (e.g. range of motion, muscle strength, etc.), (5) 

dynamic balance control (e.g., walking balance), and (6) cognitive processing (e.g. dividing 

attention to performing multiple tasks simultaneously) (Horak, 2006). All of these resources are 

inter-related and may not be mutually exclusive in terms of effective postural control. This thesis 

focuses primarily on the sensory integration, movement strategies, and control of dynamic 

aspects of balance control, and thus the remaining section will focus on these three areas. 

Sensory integration. Different sensory systems, including the somatosensory, visual, 

and vestibular systems, interact to provide orientation of the body in three-dimensional space. 

During quiet standing on a stable surface with eyes open, the major contribution in terms of 

postural orientation is provided by somatosensory cues (70%), followed by vestibular (20%) and 

vision (10%); however, with impairments in any one of the sensory systems or a change in task 

conditions, an individual needs to re-weight the contribution of each system to maintain balance 

control (Peterka, 2002). For example, in the presence of somatosensory impairments, a greater 

reliance is seen on the visual system in patients who have had a stroke in order to maintain 

balance control (Bonan et al., 2004). Another way to improve balance control in individuals with 

sensory impairments can be by providing additional sensory input about the body’s orientation in 

relation to surroundings through an intact sensory system. Haptic input, which involves sensory 

input from fingertip contact forces and proprioception in the arms while touching a stable object 

(such as a rail, or anchors which are small weights attached to a cord) fixed in the environment, 

can be one of the ways to improve balance (Holden, Ventura, & Lackner, 1994). Haptic input in 

form of light touch has shown to improve standing balance in AB individuals (Holden et al., 

1994), and individuals with neurological impairments such as stroke (Cunha, Alouche, Araujo, & 
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Freitas, 2012) and Parkinson’s disease (Franzen, Paquette, Gurfinkel, & Horak, 2012). Haptic 

input has also shown short term positive effects on balance such as reduction in variability of gait 

steps and stability (Hedayat, Moraes, Lanovaz, & Oates, 2017; Oates, Hauck, Moraes, & Sibley, 

2017). 

Dynamic balance control during walking. Dynamic balance control during tasks such 

as changing one’s posture and walking is more challenging than quiet standing. Balance control 

during quiet standing can be achieved by controlling the center of pressure (COP; the point of 

application of vertical ground reaction force) within the BOS using lower extremity muscles (e.g. 

ankle plantarflexors and dorsiflexors, or hip abductors) to keep the COM within the BOS; 

however, during dynamic tasks such as walking, balance control becomes more complex 

(Winter, 1995). During walking, the COM is intentionally moved outside the BOS and steps are 

taken to change the size and position of the BOS in order to catch the falling COM. Safe 

walking, in addition to generating alternate and rhythmic stepping movement, requires an ability 

to maintain effective balance control.  

According to the neural control model, a safe walking function is controlled by an 

interrelationship of a tripartite system consisting of neural circuitry between specialized spinal 

neurons, supraspinal centres, and sensory feedback from the muscles and skin  (Barthélemy et 

al., 2011; Zehr, 2005). There are specialized interneurons – CPGs within the gray matter of 

spinal cord that can generate an organized alternate rhythmic pattern (Rossignol & Frigon, 

2011); however, for balance control these CPGs require input from supraspinal centres such as 

the brain stem, motor cortex and cerebellum, and peripheral skin and muscle sensory receptors 

(Barthélemy et al., 2011; Zehr, 2005). The CPGs receive inputs from the supraspinal centres 

through various tracts including reticulospinal, vestibulospinal, and corticospinal tracts 

(Rossignol & Frigon, 2011). In animal models, through their contributions to the CPG, 

reticulospinal and vestibulospinal tracts have shown an important role in initiating locomotion 

and balance control, whereas corticospinal tracts are shown to be involved in goal directed 

aspects of walking (Rossignol & Frigon, 2011). In humans, corticospinal tracts have shown to be 

involved during normal walking using methods such as functional imaging of the brain, near-

infrared spectroscopy, transcranial stimulation, etc.(Barthélemy et al., 2011). For example, 

activation of inhibitory mechanisms of motor cortex using transcranial magnetic stimulation has 
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been associated with suppression of muscle activity in the legs and arms during walking 

(Petersen et al., 2001). Similarly, sensory feedback in the form of electrical stimulation in animal 

models has shown to modulate changes in walking function through its interaction with CPGs 

(Field-Fote, 2004; Forssberg, Grillner, & Rossignol, 1977). In humans, sensory input in form of 

electrical stimulation and whole body vibration has shown to modify the CPGs involved in 

walking  (Field-Fote, 2004; Gurfinkel, Levik, Kazennikov, & Selionov, 1998; Ness & Field-

Fote, 2009).  

Movement strategies. Balance control also depends on the movement strategies adopted 

by the individual, which are related to the biomechanical constraints (BOS, muscle strength, 

range of motion, etc.) and objectives of the task (standing, walking, recovering from a slip, or 

negotiating obstacles). External perturbations (such as slips and trips) add to the challenge of 

balance control, and require proactive or reactive strategies depending on the knowledge of 

perturbation. An individual may develop proactive strategies if there is knowledge of an 

impending perturbation, for example walking slower, with shorter steps and flatter foot-floor 

angle in anticipation of a slippery surface (Marigold & Patla, 2002). If a perturbation is 

unexpected, the strategy used to regain balance is called a reactive strategy, such as a quick onset 

of muscle activation, swinging of the arms, or taking a quick compensatory step in response to an 

unexpected slip (Chambers & Cham, 2007; Marigold & Patla, 2002). Reactive responses result 

from activation of the peripheral nervous system by a perturbation, and can be mediated at the 

level of spinal reflexes or can involve higher centres (Barthélemy et al., 2011). Responses 

involving higher centres are slower than reflex responses but are functionally more relevant 

(Patla, 2003). Proactive balance control is a feed-forward control strategy originating in the 

central nervous system, and is dependent on visual input and knowledge of prior experience with 

the potential perturbation (Barthélemy et al., 2011; Patla, 2003). Proactive strategies have been 

shown to require the involvement of the higher centres (such as the brain stem, cerebellum, or 

motor cortex (Barthélemy et al., 2011).  

Impairments in the sensory system limit the availability of information about the body’s 

orientation in space, which can interfere with accurate estimation of the response by the central 

nervous system to overcome any perturbation. An inability to generate effective motor responses 

can also limit the ability to prepare for or to react to perturbations. When there is a limitation in 
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availability of motor and sensory resources, such as after a SCI, individuals need to adopt 

strategies which are specific to the context of environment and task to maintain stability or else a 

perturbation can lead to a fall. 

1.3.2 Balance control after a spinal cord injury. 

Sensory integration. Depending on the location of a lesion, a SCI can impair different 

sensations such as touch, pressure, and/or proprioception. Limited information from the 

somatosensory system imposes a greater reliance on unimpaired resources such as vision for 

balance control. During quiet standing, an increase in postural sway is observed in individuals 

with iSCI as compared to AB individuals when eyes are closed, indicating a greater reliance on 

vision by individuals with SCI (Lemay et al., 2013). Similarly, during walking, individuals with 

iSCI rely more heavily on vision to cross obstacles as indicated by the adoption of compensatory 

strategies to perform the task when vision is obstructed (Malik, Cote, & Lam, 2017). This shows 

the potential of individuals with iSCI to re-weight the available sensory information and use it 

for balance control during tasks such as standing or walking and negotiating one’s environment. 

It is not known if a reliance on vision can help these individuals to maintain balance control 

during more complex tasks such as stepping over large obstacles or during unexpected 

perturbations. Furthermore, the effect of additional sensory input, such as haptic input using light 

touch, on balance control has not been investigated in individuals with SCI. 

Dynamic balance control during walking. Previous literature has shown that 

individuals with chronic iSCI are more stable than AB individuals during normal walking (Day, 

Kautz, Wu, Suter, & Behrman, 2012; Lemay, Duclos, Nadeau, Gagnon, & Desrosiers, 2014). A 

greater amount of force is required to destabilize individuals (destabilization force) with iSCI by 

moving their COP to the boundary of the BOS during the single stance support phase of gait as 

compared to AB individuals (Lemay et al., 2014). Similarly, individuals with chronic iSCI 

require a smaller amount of force to maintain stability (stabilization force) by stopping both the 

COP and the COM from going outside the BOS (Lemay et al., 2014). The need of greater 

destabilization forces and smaller stabilization forces suggest greater stability during walking 

(Duclos et al., 2009). Greater stability among individuals with chronic iSCI may be due to 

walking at a slower speed (Lemay et al., 2014). One of the possible explanations for adopting a 

slower walking velocity can be to accommodate the limitations in sensori-motor impairments 
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and to avoid a loss of balance during normal walking (Lemay et al., 2014). It is not clear to what 

extent the greater walking stability achieved by walking slower protects individuals with iSCI 

from external perturbations such as unexpected slip. 

Movement strategies. On unexpected surface translations during standing, individuals 

with chronic iSCI show an increase in the magnitude of leg muscle activation, similar to AB 

individuals, indicating effective reactive control (Thigpen et al., 2009). Although individuals 

with iSCI had slower onset of tibialis anterior and soleus muscle during expected and unexpected 

perturbations as compared to AB individuals, the movement responses were adequate for 

maintaining balance control (Thigpen et al., 2009). Both individuals with chronic iSCI and AB 

individuals also show quick (within 1-2 trials) adaptation to repeated perturbations during 

standing indicating good proactive adaptations leading to a smaller increase in leg muscle  

activity upon subsequent perturbations (Thigpen et al., 2009). The reactive responses during 

standing cannot be generalized to that during walking as the mechanisms governing standing and 

walking stability are different (Kang & Dingwell, 2008); however reactive balance during 

walking has not been studied in individuals with SCI.   

1.4 Assessment of Balance Control in Individuals With iSCI 

Despite the high incidence of falls among individuals with SCI, there is a limited 

understanding of balance control in this population. Since balance control consists of different 

domains, it is essential to identify measures that can provide an accurate and comprehensive 

assessment of balance control to identify individuals at risk of falls. According to the Systems 

Framework for Postural Control, balance control involves a complex interaction of multiple 

systems, along with the task(s) and the environment (Horak, 2006). To identify individuals at 

risk of falls, the assessment of balance should be comprehensive (Sibley, Beauchamp, Van 

Ooteghem, Straus, & Jaglal, 2015). Furthermore, the assessment of balance control needs to be 

psychometrically-sound. A measure with sound psychometric properties means the measure has 

established validity (i.e. it measures what is intended to measure), reliability (i.e. it consistently 

yields the same findings), and responsiveness (i.e. the measurement scores change with change 

in the construct being measured) (Roach, 2006). Psychometric properties are specific to the 

population (Roach, 2006); therefore, the measures that have sound psychometric properties for 

measuring balance in populations other than SCI, may not be valid in individuals with SCI. A 
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balance measure should have clinical utility if it is to be used in clinical environments. Clinical 

utility means the measure should be cost effective, quick and easy to administer (Tyson & 

Connell, 2009). In clinical settings, there is a paucity of information regarding what measures are 

available and appropriate for assessment of balance in the SCI population.  

There are over 50 measures validated for the assessment of balance in clinical 

environments for adult populations (Sibley et al., 2015). The measures that are used to evaluate 

balance in SCI are unknown; however, the Rick Hansen Institute’s SCI Standing and Walking 

Toolkit (Verrier, Gagnon, & Musselman, 2017) and the American Physical Therapy 

Association’s Evaluation Database to Guide Effectiveness (EDGE) task force (Kahn et al., 2016) 

have suggested some measures for the SCI population such as the  Berg Balance Scale (BBS), 

Functional Reach Test (FRT), Timed Up and Go (TUG), Activities Specific Balance Confidence 

Scale (ABC), Spinal Cord Injury Functional Ambulation Profile (SCI-FAP), Mini-Balance 

Evaluation Systems Test (MiniBESTest), 6-Minute Walk Test, and 10-meter Walk Test. Three 

of these measures are generally accepted to measure balance control – BBS, FRT, & mini-

BESTest. It is likely that a greater number of balance measures have been used with individuals 

with SCI, and need to be identified through systematic searching. 

In summary, there are gaps in the literature regarding the understanding of balance 

control in individuals with SCI and the assessment of balance in this population. The studies that 

will be carried out for this thesis address some of these gaps. The next four chapters of this thesis 

will focus on the: (1) effect of haptic input on standing balance in individuals with iSCI; (2) 

walking stability during normal walking and its association with slip intensity following an 

unexpected slip perturbation among individuals with an iSCI; (3) reactive responses following an 

unexpected slip perturbation in individuals with iSCI; and (4) current state of balance assessment 

among individuals with SCI.
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CHAPTER TWO: EFFECT OF HAPTIC INPUT ON STANDING BALANCE AMONG 

INDIVIDUALS WITH INCOMPLETE SPINAL CORD INJURY 

(Arora, T., Musselman, K. E., Lanovaz, J., & Oates, A. (2017). Effect of haptic input on standing balance 

among individuals with incomplete spinal cord injury. Neuroscience Letters, 642, 91–96. 

https://doi.org/10.1016/j.neulet.2017.02.001) 

 

2.1. Introduction 

Seventy-five percent of individuals with incomplete spinal cord injury (iSCI) report at 

least one fall a year (Brotherton, Krause, & Nietert, 2007) and most of the falls in this population 

are reported while standing and walking (Amatachaya, Wannapakhe, Arrayawichanon, 

Siritarathiwat, & Wattanapun, 2011). Falls can lead to health complications, such as fractures, 

soft tissue injuries, a fear of falling, and subsequent restriction of activities and community 

participation (Amatachaya et al., 2011; Brotherton et al., 2007). Standing balance is also one of 

the major determinants of walking function in this population (Scivoletto et al., 2008); therefore, 

discovering effective strategies to improve standing balance in individuals with iSCI is 

important. 

Standing balance is maintained by keeping the center of mass within one’s base of 

support (BOS) by voluntarily moving the center of pressure (COP) (Hof, Gazendam, & Sinke, 

2005). Characteristics of COP movement are commonly used measures of standing balance 

(Ruhe, Fejer, & Walker, 2010) and represent the complex interactions between visual, 

somatosensory, vestibular, and motor functions to maintain balance. Impairment in one system 

can lead to more reliance on the other systems. For example, individuals with iSCI show a 

greater reliance on vision for maintaining standing balance likely because of somatosensory 

impairments (Lemay et al., 2013). 

One mechanism to improve standing balance can be through haptic input, which refers to 

the perception of sensory inputs from fingertip contact forces and proprioceptors in the arms 

while touching a stable object fixed in the environment (e.g., railing) (Holden, Ventura, & 

Lackner, 1994). During postural sway, mechanoreceptors located in the fingertip sense the shear 

forces between the finger and the touched object, whereas proprioceptors sense the change in 

configuration of the arm relative to the torso (Holden et al., 1994). The CNS uses this added 
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sensory information to reduce the postural sway. The amount of mechanical support using light 

touch (< 1N) can reduce body sway by only about 2.3% (Holden et al., 1994), which is 

considerably less than the reductions in body sway seen with light touch in AB individuals, 

individuals with balance disorders due to aging (Baccini et al., 2007), Parkinson’s disease 

(Franzen, Paquette, Gurfinkel, & Horak, 2012) and stroke (Cunha, Alouche, Araujo, & Freitas, 

2012). These findings suggest that the improvements in postural control are due to mechanisms 

other than mechanical support. In fact, the spatial information provided by the light touch can 

improve postural stability by as much as vision (Holden et al., 1994). 

In individuals with iSCI, haptic input in form of light touch may improve standing 

balance by compensating for the sensory deficits in the lower extremities (LE); however, the 

extent of improvement may depend on the magnitude of somatosensory impairments in the upper 

extremities (UE) and LE. Loss of cutaneous and/or proprioceptive information in the UE may 

negate the effect of added haptic input as the individual will not perceive relevant information; 

whereas, individuals with greater sensory loss in the LE may benefit more from additional 

sensory information in the form of light touch as the added UE sensory input can be used in 

place of the reduced LE input. The effect of light touch on standing balance of individuals with 

iSCI has not been studied. Furthermore, the relationship between the extent of impairment in 

somatic sensation and the effect of light touch has not been studied; therefore, the objectives of 

this study were to: (a) investigate the effect of light touch on the standing balance of individuals 

with iSCI; (b) understand the relationship between the effect of light touch and UE and LE 

proprioception, and cutaneous pressure sensation.  We hypothesize that individuals with iSCI 

will: (a) show a reduction in quiet standing postural sway with light touch, and; (b) show a 

significant correlation between the effect of light touch and clinical measures of cutaneous 

pressure and proprioception in LE and UE.    

2.2. Methods 

2.1.1. Participants. 

Participants with iSCI were recruited from regional health centres and advertisements 

within the province of Saskatchewan. Individuals who were at least one-year post iSCI, 

classified as American Spinal Injury Association Impairment Scale (AIS) C or D, and who were 

able to stand independently for sixty seconds were included in the study. Participants were 
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excluded if they had any other disease, injury, or condition that could have affected standing 

balance. Age (±3 years) and gender matched healthy AB participants were recruited from the 

local community through advertisements. This study was approved by the University of 

Saskatchewan Biomedical Research Ethics Board.  

2.1.2. Experimental procedure. 

 Participants were asked to stand for 60 seconds on a force platform mounted flush with 

the floor (18.25 x 20 inches, AMTI OR6-7, Advanced Mechanical Technology, Inc., Watertown, 

MA) under each of the four conditions in the following order: (i) eyes open no touch, (ii) eyes 

closed no touch, (iii) eyes open touch, (iv) eyes closed touch. The eyes closed condition is more 

challenging and discriminating than eyes open condition, and also it can affect the validity and 

reliability of COP measures (Tamburella, Scivoletto, Iosa, & Molinari, 2014), therefore the eyes 

closed condition was included in this study. Participants stood with their shoes on and with their 

feet at a self-selected comfortable position. For the touch conditions, participants lightly touched 

a rail with the tip of their dominant index finger (self-reported). The rail was set on the same side 

as their dominant hand at a standard height of 85 cm above and parallel to the walking surface 

such that the participants received haptic input from the lateral side. The rail was instrumented 

with force sensors (Futek LRF400, Advanced Sensor Technology, Inc., Irvine, CA) to measure 

the amount of vertical touch force in Newtons (N). Before each trial, participants were instructed 

to use less force if they were applying more than 1N of force during the previous trial. If a 

participant had UE sensory and/or motor impairments, he/she used the index finger of the less 

affected side to touch the railing, as determined by their cutaneous pressure sensation and 

proprioception scores (iSCI only). 

Kinematic data were obtained using a 3D motion capture system (Vicon Nexus, Vicon 

Motion Systems, Centennial, CO). Base of support (BOS) was calculated from markers at three 

locations on each foot – heels, tips of first toe, and the most lateral part of the foot at the base of 

the fifth metatarsals. Cutaneous pressure sensation was tested using monofilaments (Baseline® 

Tactile™ Monofilaments) of six different thicknesses for the palmar surface of the index finger 

on the touch side, and for the plantar surface of the first toe bilaterally. The monofilaments were 

applied in order of descending thickness. With the participant’s eyes closed, a researcher applied 
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each monofilament six times. Participants were instructed to say ‘yes’ if they could feel pressure 

being applied.  A score of one was assigned for each correct ‘yes’ response, leading to a total 

possible cutaneous pressure score of 36 for the UE and 72 for both LE combined. Proprioception 

was measured in the touch side upper extremity in the following order - metacarpo-phalangeal, 

wrist, elbow, and then shoulder joints on the touch side, and in both lower extremities at the first 

metatarso-phalangeal and ankle joints. The same researcher moved each joint slowly through 

approximately 10 degrees of extension (plantarflexion) or flexion (dorsiflexion) six times. 

Participants were asked to state the direction of movement (up or down) with their eyes closed 

(Gilman, 2002). A maximum score of six for each joint was recorded, leading to a total possible 

proprioception score of 24 for the UE, and 24 for both LE combined. To describe ambulatory 

status, scores on the Walking Index for Spinal Cord Injury (WISCI II) were also obtained. The 

WISCI II is a 21-item scale of walking capacity that ranks walking according to the amount of 

physical assistance, braces and walking aids required (Dittuno & Ditunno, 2001).   

2.1.3. Data analysis. 

The force platform and 3D kinematic data were collected at sampling rates of 2000 Hz 

and 100 Hz, respectively. The force platform data was filtered at 10 Hz using a 4th order low pass 

Butterworth digital filter (Ruhe et al., 2010). Custom MATLAB (R2006b for PC, MathWorks, 

Natick, MA) routines were used to obtain COP and BOS data. The following measures of COP 

sway were used as indicators of standing balance: (1) medio-lateral root mean square (RMSML), 

(2) antero-posterior root mean square (RMSAP), (3) medio-lateral mean velocity (VelML), (4) 

antero-posterior mean velocity (VelAP), (5) area of an ellipse, centered at the mean, 

encompassing ninety percent of COP samples (Area90%), (6) length of medio-lateral radius of 

the ellipse (RadML), and (7) length of antero-posterior radius of the ellipse (RadAP). Root mean 

square measures are indicators of variability of COP distribution, whereas velocity and area 

measures are indicators of change in COP position with time and the amount of sway, 

respectively. Since, the feet position was determined by the comfort level of the participants and 

was not fixed, the COP measures were normalized to the individual’s BOS: RMSML and RadML 

measures were normalized to the width of BOS, and RMSAP and RadAP measures were 

normalized to the length of BOS, and Area90% was normalized to the area of BOS. These COP 
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measures are shown to be reliable and valid for individuals with iSCI (Tamburella et al., 2014), 

as well as for AB individuals and individuals with other health conditions (Ruhe et al., 2010).  

2.1.4. Statistical analysis. 

Means, standard deviations, and ranges were obtained for participant characteristics. 

Independent t-tests were used to look at the differences in age, mass, height, and touch force 

between the iSCI and AB groups. Repeated measures ANOVA was used to compare average 

touch forces between conditions (eyes open and closed) and groups (iSCI and AB). A two-way 

mixed design MANOVA was used to test the effects of touch, vision, and group on the COP 

measures. Touch (no touch and light touch) and vision (eyes open and closed) were used as 

within-subject factors, and group (iSCI or AB) was used as a between-subject factor. Scheffe’s 

test was used for post-hoc analysis.  

In order to investigate the effect of haptic input on COP movement, differences in each 

COP measure (∆COP) were calculated for touch and no touch conditions such that ∆COP = 

(COP during No Touch Condition) – (COP during Touch Condition) and a positive COP would 

be a positive effect indicating an increase in stability. Pearson’s correlation analysis was used to 

determine the relationship between the ∆COP for each measure and proprioception and 

cutaneous pressure scores in the UE and LE extremities for the participants with iSCI only. 

Correlation analyses were performed separately for the eyes open and eyes closed conditions. 

Alpha was set at 0.05 for all the tests. All statistical analyses were performed using IBM SPSS 

(IBM SPSS Statistics, Version 22). 

2.3. Results 

Sixteen individuals with iSCI (13 males; 61.1 ± 19.9 years) and 13 AB individuals (10 

males; 59.4±19.7 years) participated. Participant demographics are shown in table 2.1. 

Participants with iSCI either had injury from a traumatic (n= 14), or non-traumatic cause (n = 2). 

Eight participants had injuries leading to tetraplegia and all were AIS D impairment level with 

the exception of one participant with an AIS C impairment level. 
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Table 2.1  

Mean characteristics of the iSCI participants 

Participants’ Characteristics SCI (n=16) AB (n=13) 

 Mean ± SD Range Mean ± SD Range 

Mass (kg) 82.36 ± 19.94 60.20 - 131.0 81.10 ± 18.17 58.80 - 120.8 

Height (m) 1.74 ± 0.12 1.50 - 1.92 1.76 ± 0.10 1.57 - 1.88 

Sex (Male : Female) 13 : 3 - 10 : 3 - 

Age (years) 61.1 ± 19.9 29.8 – 95.9 59.4 ± 19.7 29.2 - 94.1 

Time Since Injury (years) 
9.43 ± 11.12 

(Median=6.40) 
2.47 – 47.94 - - 

Tetraplegia: Paraplegia  8 : 8 C1 - L4 - - 

AIS C: AIS D 1 : 15  - - 

Traumatic: Non-Traumatic 14 : 2    

Cutaneous Pressure     

  Unilateral Upper Extremity (/36) 24.88 ± 5.77 8 - 34 - - 

  Bilateral Lower Extremity (/72) 29.38 ± 12.65 7 - 52 - - 

Proprioception     

  Unilateral Upper Extremity (/24) 23.88 ± 0.50 22 – 24 - - 

  Bilateral Lower Extremity (/24) 19.69 ± 4.94 6 – 24 - - 

WISCI II  (/20) 17.88 ± 3.58 9 - 20   

 

All individuals with iSCI had near normal proprioception in the UE ranging from 22-24 

(out of 24); whereas proprioception in the LE extremities ranged from 6-24 (out of 24). 

Cutaneous pressure in UE and LE ranged from 8-34 (out of 36) and 7-52 (out of 72), 

respectively. The mean (±SD) score of touch force was less than 1N for both groups for eyes 

open (iSCI = 0.63 ± 1.00 N; AB = 0.71 ± 0.90 N) and closed (iSCI = 0.80 ± 0.86 N; AB = 0.73 ± 

0.86 N) conditions, and the differences between iSCI and AB individuals or between conditions 

were not significantly different (p>0.05). Comparison of groups for age, mass, and height using 

t-tests did not reveal any significant differences (p > 0.05). Figure 2.1 shows a typical COP 

displacement in the medio-lateral and antero-posterior directions for an AB individual and an 

individual with iSCI.
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Figure 2.1. Typical COP displacements (in mm) during 60 seconds of quite standing in X 

(medio-lateral) and Y (antero-posterior) direction for age and gender matched (a) able bodied 

individual, and (b) individual with iSCI 

Eyes Open Eyes Closed 

(a) Able-bodied 

(b) iSCI 

No Touch 

Touch 

Touch 

No Touch 
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Multivariate results revealed significant main effects for touch (F (7, 21) = 10.47, p < 

0.001), vision (F (7, 21) = 8.31, p < 0.001), and group (F (7, 21) = 3.65 p = 0.01) (Table 2.2). 

Interactions were found to be significant between vision and group (F (7, 21) = 3.34, p = 0.015), 

but not for touch and group (F (7, 21) = 1.77, p = 0.147) (Table 2.2). Univariate results revealed 

significant main effects for touch, vision, and group for all seven COP measures indicating 

significantly higher values with (1) no touch condition, (2) eyes closed condition, and (3) for 

iSCI group. Figure 2.2 shows the group mean COP medio-lateral velocity values for all 

participants. During eyes open condition, AB and iSCI groups reduced COP velocity in ML 

direction on touch by 23.39% and 12.59%, respectively. The decrease in velocity with touch was 

greater during eyes closed conditions for both AB and iSCI groups – 29.87% and 24.05%, 

respectively.  Interactions between vision and group were found to be significant only for 

RMSML, VelML, RadML, and Area90% (Table 2.3). Since the vision and group interaction was 

found to be significant only in ML direction, Figure 2.3 shows results of the variables in ML 

direction. There was greater increase in COP variability (50.9%), mean velocity (81.8%), and 

amount of sway (50.8%) in ML direction, respectively, with eyes closed in individuals with iSCI 

as compared to almost none (for variability and amount of sway) to a small (43.0% for mean 

velocity) change in AB individuals. 

 

(a)                                                                                  (b) 

Figure 2.2. Group COP mean velocity (Mean, SE) in ML direction for no touch and touch 

conditions for (a) able bodied individuals, and (b) individuals with iSCI for eyes open and eyes 

closed conditions 
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Figure 2.3. Significant interaction between vision and group for three COP measures in ML 

direction - COP RMS (variability of COP distribution), COP Rad (amount of sway), and COP 

Vel (change in COP position over time).  RMSML and RadML measures were normalized to the 

width of BOS.

 For the eyes open condition, scores for proprioception and cutaneous pressure were not 

significantly correlated with ∆COP for any measure. For the eyes closed condition, LE 

proprioception was found to have a significant, negative correlation with ∆COP for RMSAP (r = -

0.712, p = 0.002) and RadAP (r = -0.659, p =0.005) (Table 2.4). UE cutaneous pressure was 

significantly positively correlated with ∆COP for RMSAP (r = 0.583, p = 0.018), Area90% (r = 

0.555, p = 0.026), and RadAP (r = 0.546, p = 0.029) during the eyes closed condition.  

 

Table 2.2  

Repeated measures MANOVA multivariate results 

 F (7, 21) p 

Touch 10.47 <0.001* 

Vision 8.31 <0.001* 

Group 3.65 0.010* 

Vision*Group 3.34 0.015* 

Touch*Group 1.77 0.147 

* Note. Significant at the p < 0.05 level. 
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Table 2.3 

Scheffe’s post-hoc results for Vision * Group interaction 

COP Measure F                                            p 

RMSML 10.606 0.003* 

RMSAP 0.488 0.532 

VelML 6.187 0.019* 

VelAP 4.174 0.051 

Area90% 4.572 0.042* 

RadML 10.214 0.004* 

RadAP 0.155 0.697 

* Note. Significant at the p < 0.05 level.  

 

 

Table 2.4 

Correlation, r (p) Value Between ∆COP and Lower Extremity Proprioception and Upper 

Extremity Cutaneous Pressure Sensation with Eyes Closed 

* Note. Significant at the p < 0.05 level, r: Pearson’s correlation coefficient, LE: Lower extremity, UE: 

Upper extremity, ∆COP = COP measure calculated for No Touch Condition – COP measure calculated 

for Touch Condition 

 

2.4. Discussion 

The results of this study show that individuals with iSCI can reduce postural sway, and 

hence be more stable during standing, by adding haptic input through light touch. Overall, the 

reduction of postural sway with light touch in individuals with iSCI was found to be similar to 

AB individuals; however, individuals with iSCI showed a greater increase in postural sway with 

eyes closed compared to AB individuals similar to previous research (Lemay et al., 2013).  

 LE_Proprioception UE_Cutaneous Pressure 

UE_Cutaneous Pressure -0.289 (0.277) 1 

RMSML -0.005 (0.984) 0.299 (0.260) 

RMSAP -0.712* (0.002) 0.583* (0.018) 

VelML -0.383 (0.144) 0.334 (0.206) 

VelAP -0.358 (0.173) 0.384 (0.143) 

Area90% -0.443 (0.086) 0.555* (0.026) 

RadML 0.054 (0.844) 0.251 (0.347) 

RadAP -0.659* (0.005) 0.546* (0.029) 
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Results of this study are similar to the findings from studies on individuals with other 

neurological disorders such as Parkinson’s disease (Franzen et al., 2012) and stroke (Cunha et al., 

2012). Individuals with Parkinson’s disease can use light touch to reduce their sway velocity 

(Franzen et al., 2012). Similarly, individuals who have had a stroke can reduce sway amplitude 

and velocity using light touch (Cunha et al., 2012). Reductions in sway in individuals with 

Parkinson’s and stroke were not significantly greater than AB individuals (Cunha et al., 2012; 

Franzen et al., 2012). In our study, the interaction between group and touch was not significant 

indicating there was a similar reduction in postural sway in AB individuals and individuals with 

iSCI. As a reduction in sway is dependent on both the sensory feedback from the finger tips and 

arm orientation (Rabin, Bortolami, DiZio, & Lackner, 1999), it is possible that, in this study, 

participants with iSCI could not use light touch to reduce postural sway if there were 

impairments in UE cutaneous pressure sensation. Previous research has shown that after post-

stroke hemiparesis, individuals who have had a stroke use somatosensory information from the 

unimpaired side more efficiently than the impaired side (Cunha et al., 2012). The positive 

relationship between cutaneous pressure sensation and ∆COP for RMSAP, RadAP and Area90% 

(Table 2.4) in our study confirms that those participants with iSCI who had better cutaneous 

pressure sensation showed a greater reduction in postural sway variability and amount of sway 

during the more challenging eyes closed condition.  

Our study also found that LE proprioception was negatively correlated to the ∆COP for 

RMSAP and RadAP (Table 2.4) during the eyes closed condition. This indicates that participants 

with more significant impairments in LE proprioception used light touch to a greater extent to 

reduce postural sway variability and the amount of sway in the AP direction. These findings are 

unique as no other study has looked at the correlation between COP sway and lower extremity 

sensory scores in individuals with iSCI. 

In AB individuals, fingertip contact beside the individual was previously found to be 

more effective during tandem (heel to toe) stance, and fingertip contact in front of the individual 

to be more effective during duck (heel to heel, toes-outward and knees-bent) stance (Rabin et al., 

1999). In our study, individuals with iSCI showed a stronger correlation of UE cutaneous 

pressure and LE proprioception to improvements of sway in AP direction. Participants were also 

more unstable in the AP direction as indicated by higher mean COP values in the AP direction as 
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compared to the ML direction, and smaller length than width of the base of support. These 

findings suggest a greater use of light touch during a more complex (eyes closed) condition in a 

more unstable (AP) direction. Similar results were observed in previous research with 

individuals who have had a stroke; improvements were observed only in a more unstable (AP) 

direction when participants touched a laterally placed external surface with their paretic side, 

whereas, when the surface was touched with non-paretic limb, postural sway reduced both in the 

AP and ML directions (Cunha et al., 2012). 

No significant correlations were found between UE proprioception and ∆COP for any 

measure, which could be due to near normal UE proprioception in the participants. We found 

minimal deficits in UE proprioception in all participants, which could be because the clinical 

tools for measuring proprioception might not have been sensitive enough to capture slight 

impairments in proprioception (Suetterlin & Sayer, 2014). 

Most participants were able to maintain a touch force less than 1N, but six of the 

participants (four for each condition) who had an iSCI could not maintain a mean level of force 

less than 1N. The level of touch was still less than 4N, which is similar to a previous study in 

individuals who had a stroke (Boonsinsukh, Panichareon, & Phansuwan-Pujito, 2009) suggesting 

that the level of touch in the current study is still considered “light”. Unlike previous studies 

(Holden et al., 1994), the height of the rail was fixed in this study and could not be moved to 

each participant’s comfort level; however, the railing was set at a standard building code height 

and was likely a familiar height to individuals.  

In conclusion, individuals with iSCI improved their standing balance with light touch 

similar to AB individuals. Without vision, postural sway was reduced to a greater extent in 

individuals with more intact UE cutaneous pressure sensation and more impaired LE 

proprioception. In addition, individuals with iSCI seemed to rely more on vision for standing 

balance than AB individuals, confirming previous work (Lemay et al., 2013). Individuals with 

and without intact UE sensation responded differently to light touch suggesting that the 

level/extent of injury (i.e., tetraplegia or paraplegia) must be considered. The current findings 

suggest light touch has promise as an intervention for balance impairments in individuals with 

iSCI, and further research is warranted.
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RELEVANCE OF CHAPTER TWO TO THE THESIS  

Sensory information about the body’s orientation in space is essential for a balance 

control (Peterka, 2002). According to Systems Framework for Postural Control, the ability to 

weight and reweight sensory information from different systems and to put the available 

information to use is crucial for balance control (Horak, 2006). This study adds to the existing 

information on integration of visual and haptic information in form of light touch in individuals 

with chronic iSCI. Previous studies have shown that individuals with iSCI rely more on vision 

during quiet standing (Lemay et al., 2013) and walking (Malik et al., 2017). Our study confirmed 

the greater reliance on vision during quiet standing in individuals with iSCI, and also established 

that individuals with iSCI can benefit from additional haptic input in the form of light 

touch during quiet standing. This study also examines the relationship between improvements 

in standing balance and upper and lower extremity sensation and show that people with greater 

lower extremity impairments can benefit (i.e. show reduced postural sway) more if they have 

intact sensation in the area where additional haptic input is added. This information opens up 

avenues for studying the effects of light touch during walking balance and designing strategies to 

provide additional sensory input for improving balance in individuals with iSCI.  
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CHAPTER THREE: WALKING STABILITY DURING NORMAL WALKING AND ITS 

ASSOCIATION WITH SLIP INTENSITY AMONG INDIVIDUALS WITH 

INCOMPLETE SPINAL CORD INJURY 

 

3.1 Introduction 

The act of maintaining, achieving or restoring center of mass (COM) position relative to 

the base of support (BOS) during any posture or activity has been defined as balance control 

(Pollock, Durward, Rowe, & Paul, 2000). Damage to the spinal cord can disrupt sensorimotor 

and/or reflexive pathways leading to motor and sensory impairments contributing to diminished 

balance control and a high incidence of falls reported by individuals with incomplete spinal cord 

injury (iSCI). Approximately 75% of these individuals report at least one fall per year 

(Brotherton, Krause, & Nietert, 2007)  while 48% report recurrent falls (Jorgensen et al., 2017). 

The consequences of falls can vary from minor injuries to severe complications requiring re-

hospitalization and reducing functional community participation (Musselman, Arnold, Pujol, 

Lynd, & Oosman 2016; Krause, 2004). The high incidence and severity of falls warrant 

interventions that could improve balance control in people with iSCI.  

Balance control is necessary for fall prevention, and is a complex motor skill that 

involves maintaining the COM within the BOS as well as the ability to increase the BOS if 

unable to maintain postural control (Hof et al., 2005). If the COM moves outside the BOS due to 

volitional movement or an external perturbation, it needs to be brought back within the BOS or a 

new BOS needs to be created to avoid falling. During dynamic conditions such as walking, 

balance control is even more challenging as it involves controlling a moving COM within the 

changing BOS (Patla 2003; Hof 2005). This precise motor skill relies on sensory feedback and 

impairments in the motor and sensory systems can challenge the ability to control balance. Under 

more challenging conditions – such as limitations in sensory feedback or an unstable external 

environment, individuals may adapt different strategies to achieve greater stability such as 

walking slowly, spending more time in double stance, walking with a flatter foot, or co-

contracting the muscles to achieve greater stability in lower extremity joints (Chambers & Cham, 

2007; Marigold & Patla, 2002). In able-bodied (AB) individuals, knowledge of an external 

slippery surface leads to such adaptive strategies, which helps them to reduce slip-fall potential 

(Chambers & Cham, 2007; Marigold & Patla, 2002).  
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In terms of forces required to stabilize or destabilize, individuals with iSCI may be more 

stable than AB individuals during normal unperturbed walking (Lemay et al., 2014). This greater 

stability is thought to be achieved from walking slower. Their walking also demonstrates an 

increased foot placement variability as compared to AB individuals which is thought to be a 

compensatory mechanism to avoid falling during walking (Day et al., 2012). It is still not known 

if individuals with iSCI demonstrate other strategies to increase stability, such as walking with 

shorter and wider steps, larger stability margins, a flatter foot at heel strike, or increased muscle 

co-contraction during unperturbed conditions. It is also not clear to what extent the increased 

stability during unperturbed walking may help individuals with iSCI avoid external perturbations 

such as unexpectedly stepping on a slippery surface. 

Limited knowledge about balance control during walking among individuals with iSCI 

constrains our ability to develop effective interventions for this population. The objectives of this 

study were to: (1) compare balance control of individuals with iSCI to individuals without iSCI 

during normal unperturbed walking; and (2) to study the relationship between stability during 

normal unperturbed walking and slip intensity during a subsequent unexpected slip perturbation. 

We hypothesized that (1) measures of balance control during normal walking will show a greater 

stability among individuals with iSCI as compared to AB individuals; and (2) walking stability 

will be significantly correlated to slip intensity in individuals with iSCI such that a greater 

stability will be associated with a less intense slip. 

3.2 Methods 

3.2.1 Participants. 

Adults with chronic iSCI (i.e. more than one-year post-injury) were recruited through 

regional health centres, the University of Saskatchewan, the provincial physical therapy 

association, and Spinal Cord Injury Saskatchewan. Individuals were included if their injury was 

classified as American Spinal Injury Association Impairment Scale (AIS) C or D, and who were 

able to walk 10 m without physical assistance from another person (walking aids and braces 

permitted). Participants were excluded if they had any other disease, injury, or condition that 

affected walking or balance ability (e.g. vestibular disturbance, joint pain, etc.). Age (± 3 years) 

and sex matched AB individuals were recruited from the local community through 

advertisements. This study was approved by the Institution’s Research Ethics Board. 
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3.2.2 Data collection. 

All participants were asked to walk unassisted without any walking aids (braces were 

allowed) at a self-selected speed for 10 m wearing comfortable shoes. Ten of the AB participants 

were also asked to walk at slower than their normal pace to more closely match their walking 

speed to that of individuals with iSCI. A slip device consisting of a set of low friction steel 

rollers (0.46 x 0.51 m; coefficient of static friction in unlocked state = 0.09) was embedded in the 

middle of the walkway, flush with the floor surface. For normal unperturbed walking (NW), the 

rollers were locked in place but could be unlocked to promote a slip in the antero-posterior (AP) 

direction. Participants were secured in a safety harness attached to a fall-prevention system, 

which did not limit any intended movement, and allowed free movement along the walkway. To 

avoid fatigue in participants with iSCI, no familiarization trials were included in the protocol. At 

least three normal walk (NW) trials in both iSCI and AB groups, and at least three slow walking 

trials in 10 AB participants were obtained with the slip device locked. Following the NW trials, 

the slip device was unlocked without the participant knowing to obtain one unexpected slip trial. 

After the slip trial, participants were asked if the slip was unexpected or not. For NW trials (self-

selected and slow speeds), the last three trials before the unexpected slip were used and the 

middle 2-5 steps of each trial were analyzed to represent steady state walking and eliminate any 

gait initiation/termination behaviours. 

Two force plates (0.46 × 0.51 m, AMTI OR6-7, Advanced Mechanical Technology, Inc., 

Watertown, MA, USA) were embedded in the walkway (one under the slip device and the other 

diagonally adjacent to the slip device), which were used to collect GRF (fs = 2000 Hz) (Figure 

3.1). A telemetered EMG (2400GT2, Noraxon Inc, Scottsdale, AZ, USA) system was used to 

collect surface EMG signals (fs = 2000 Hz) from tibialis anterior (TA) and soleus (SOL) muscles 

bilaterally. The lab was equipped with an eight-camera 3-D motion capture system (Vicon 

Nexus, Vicon Motion Systems, Centennial, CO, USA) that collected kinematic data at a 

sampling rate of 100 Hz. A marker set consisting of 63 reflective markers (14 mm diameter, 22 

calibration and 41 non-calibration) were placed on the participant using landmarks. The marker 

set was used to collect kinematic information from 12 segments – head, trunk, and right and left 

upper arms, forearms, thighs, shanks, and feet. Kinematic data combined with anthropometric 

data for older (>60 years; Hanakova et al., 2015; Jensen & Fletcher, 1994; Pearsall, Reid, & 

Ross, 1994; Yeadon, 1990) and younger (de Leva, 1996) adults was used to calculate the 
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segmental and total body COM during walking trials. Total body extrapolated COM (XCOM) 

was calculated based on the velocity of COM (Young & Dingwell, 2012; Hof, Gazendam, & 

Sinke, 2005), and was used to calculate the margin of stability in the AP direction.  

 

Figure 3.1.  Schematic representation of the lab setting for data collection 

In addition to the biomechanical measures, the 10-Meter Walk Test (10mWT) was 

administered to calculate self-selected and fast walking speeds (Bohannon, 1997; van Hedel, 

Wirz, & Dietz, 2005). For the self-selected 10mWT, participants were asked to walk at their 

preferred walking pace, whereas for the fast version of the test, participants were instructed to 

walk as fast as possible. Time(s) was recorded over the middle 10 m of a 14 m walkway, and 

speed (m/s) was calculated. Walking Index for Spinal Cord Injury II (WISCI II) scores were also 

obtained to describe ambulatory status. The WISCI II is a measure of walking capacity and 

consists of 21 items that rank walking according to the amount of physical assistance, braces and 

walking aids required (Ditunno et al., 2007).  

3.2.3 Data analysis. 

The following measures of walking stability were calculated from the self-selected and 

slow NW trials: (1) required coefficient of friction (RCOF), (2) co-contraction index (CCI), and 

(3) kinematic measures (i.e. margin of stability in the anterior-posterior plane (MOS_AP), 
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sagittal plane foot angle at foot contact, percentage of stride time in double support (%DS), 

average walking velocity, step length, and step width). For the unexpected slip trial, peak post-

slip heel velocity (PSV) was used to determine the intensity of the unexpected slip, with a higher 

PSV indicating a more intensive slip. The foot contact and foot-off events of each gait cycle 

were identified using the resultant velocity signals from the heel and toe (Ghoussayni, et al., 

2004; Bruening et al., 2014). The values obtained from the calculations were compared with the 

videos of several individuals and thresholds were adjusted in order to obtain consistent 

detections.  

Required coefficient of friction. The RCOF value was calculated using the GRF signal. 

Raw GRFs were extracted from the steps in all NW trials that had a full foot contact on either 

force plate with either foot (confirmed by visual observation). Forces in the AP (Fy) and vertical 

(Fz) directions were low-pass filtered at 100 Hz using a 4th order Butterworth filter. The ratio of 

Fy to Fz signal at the time of the greatest posterior GRF (i.e. braking force) was used as the 

RCOF value.  

Co-contraction index.  The CCI was calculated using the EMG data from three NW 

trials. The raw EMG signal was full-wave rectified and low pass filtered at 10 Hz with a 4th order 

Butterworth filter. EMG data were obtained for each stance duration for all NW trials and 

normalized to the peak value of all NW trials (Figure 3.2). Ankle joint CCI was calculated using 

these peak normalized signals from TA and SOL muscles by integrating the signal obtained by 

multiplying the ratio of the less active to the more active EMG signal with the sum of both 

signals from -20% to +20% of average stance duration with 0% being foot contact (Chambers & 

Cham, 2007; Rudolph, Axe, Buchanan, Scholz, & Snyder-Mackler, 2001): 
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Figure 3.2. Raw EMG obtained during a typical NW trial of an AB participant from: (a) tibialis anterior 

(TA), and (b) soleus (Sol) with solid and dotted demarcation lines indicating beginning and end of stance, 

respectively. Filtered and peak normalized EMG activity around heel contact (0%) for each NW stance 

for a participant from (c) TA, and (d) Sol muscles. The co-contraction index (CCI) was calculated using 

(c) and (d). 

 

Kinematic variables. Raw kinematic marker data were low-pass filtered at 8 Hz using a 

4th order Butterworth filter before being used to calculate variables. Kinematic variables included 

average sagittal plane foot angle and MOS_AP at foot contact, and average walking velocity, 

%DS, step width, and step length throughout all NW trials.   

Sagittal foot angle was calculated as the angle between the long axis of the foot formed 

by the ankle joint center and second metatarsal, and the horizontal. Average right and left foot 

angles at foot contact were obtained for all gait cycles. Preliminary statistical analysis revealed 

no significant differences between right and left foot angles so an average of right and left foot 

angles was used in analysis. The distance between the XCOM and the anterior foot boundary at 

foot contact on each side was averaged for each trial to obtain MOS_AP (Oates et al., 2008). The 

percentage of stance time with both feet on the ground over the entire stride was calculated to 

obtain %DS, which tells the proportion of time spent balancing on both legs during a stride, with 
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more time in double stance an indication of attempt to increase stability (Maki, 1997). Step width 

was calculated as the shortest distance between right and left heel markers at foot contact for 

each stride. Step length was calculated as the distance between right and left heel markers at the 

start of double support. Foot angles, MOS_AP, %DS, step width, and step length values obtained 

from all strides were averaged to obtain the final value. Walking velocity was obtained for each 

NW trial by differentiating the AP COM position with respect to time, and a mean value of three 

trials was calculated. 

Post-slip heel velocity. Heel velocity was calculated by finding the derivative of the heel 

marker position with respect to time. The PSV was identified as the maximum anterior heel 

velocity of the slipping foot occurring after foot contact on a slippery surface before the foot 

came to a complete stop. Using a threshold of 1 m/s, slips were categorized as hazardous (PSV > 

1m/s) or non-hazardous (PSV ≤ 1m/s) (Moyer, Chambers, Redfern, & Cham, 2006). 

3.2.4 Statistical analysis. 

Means, standard deviations, and ranges were calculated for participant characteristics. 

NW data were compared between three groups – (i) iSCI, (ii) AB at a self-selected speed 

(AB_SS), and (iii) AB at a slower speed (AB_slow). Assumption of normality of distribution of 

all the variables for iSCI and AB groups was tested using a Shapiro-Wilk test. Group differences 

were compared using multiple ANOVAs if the variables were normally distributed or else 

independent Kruskal-Wallis tests were used. If the differences were significant, follow-up 

independent t-tests or Mann-Whitney U-tests were carried out for parametric and non-parametric 

data, respectively. Demographics (including age, mass, and height) and measures of walking 

balance control were compared for significant differences between the iSCI and both AB groups. 

Self-selected and fast walking speeds of individuals with iSCI during the 10mWT were also 

compared for significant differences to assess if participants with iSCI had the potential to vary 

their walking speed. 

Pearson’s correlation coefficient was used to find significant correlations between PSV 

and the measures of walking stability if the variables were normally distributed or else 

Spearman’s Rho coefficient was used. A chi-square test was used to compare the incidences of 

no slip, hazardous and non-hazardous slips between iSCI and AB groups. A conservative alpha 
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was set at 0.01 for all the tests due to the multiple comparisons. All statistical analyses were 

conducted using IBM SPSS (IBM SPSS Statistics, Version 24). 

3.3 Results 

Twenty individuals with iSCI (15 males; age: M=60.05, SD=17.77 years) and 16 AB 

individuals (12 males; age: M=58.92, SD=17.10 years) were included in the study. All 

individuals were able to walk independently without the need of assistive devices, indicating 

none of the participants with injuries below L1 had a flaccid paralysis that could impair walking. 

Ten of the 16 AB participants also walked at a slower walking velocity (8 males; age: M=51.99, 

SD=16.94 years). Although the slip device was visibly placed in the walkway, all participants 

reported the slip was unexpected, except one participant with iSCI, who was expecting a slip 

perturbation throughout the testing. One AB participant did not have a slip trial; therefore, the 

slip data for the AB group are from 15 individuals. Participant characteristics are shown in Table 

3.1. Fourteen participants with iSCI had a traumatic injury including 11 with injuries leading to 

tetraplegia. All participants had an AIS D impairment level. Age, mass, and height were not 

significantly different between the two groups. Amongst individuals with iSCI, there was a 

significant difference between self-selected (M=1.00, SD= 0.29 m/s) and fast (M=1.38, SD=0.44 

m/s) 10mWT speeds, (t (19) = -7.62, p < 0.001, n = 20), indicating they had the potential to walk 

faster than their self-selected speed. 

Some of the walking stability measures in some participants could not be calculated due 

to error in the collected data (poor EMG signals, GRF, or kinematic data) leading to differences 

in numbers for each variable (Table 3.2). During NW trials, the number of steps that had a full 

foot contact on either of the force plates, ranged from two to ten for each participant. The GRF 

data from these steps were used for the calculation of RCOF.   

Among measures of walking stability, Ankle CCI, walking velocity, MOS_AP, step 

width and step length were normally distributed and were compared using multiple ANOVAs. 

Average foot angle, %DS, and RCOF were not normally distributed and were compared using 

Kruskal-Wallis test.
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Table 3.1  

Mean characteristics of the iSCI and AB participants 

Participant Characteristics iSCI (n=20) AB (n=16) 

 Mean (SD) Range Mean (SD) Range 

Mass (kg) 84.1 (19.4) 60.2 - 131.0 81.2 (16.0) 58.8 - 120.8 

Height (m) 1.74 (0.11) 1.50 - 1.92 1.75 (0.09) 1.57 - 1.88 

Sex (Male : Female) 15 : 5 - 12 : 4 - 

Age (years) 60.1 (17.8) 29.8 – 95.9 58.9 (17.1) 29.2 - 94.1 

Time Since Injury 

(years) 

8.6 (10.2) 

(Median=6.4) 

2.01 – 47.9 - - 

Tetraplegia: Paraplegia 11: 9 C1 - L4 - - 

Traumatic: Non-Traumatic 14 :6     

WISCI II  (/20) Median = 20 17 - 20   

Note: WISCI: Walking Index for Spinal Cord Injury 

 

Mean and standard deviation of the stability measures are shown in Table 3.2. For main 

effects, there were significant differences between the iSCI, AB_SS, and AB_slow groups for 

walking velocity, step length, AP_MOS, RCOF, average foot angle and %DS (Table 3.2). On 

follow-up tests, AB_slow group had a significantly smaller values for walking velocity, step 

length and average foot angle, and a significantly higher values for AP_MOS, RCOF and %DS 

than AB_SS group.  The AB_slow group also had a significantly higher AP_MOS and a 

significantly smaller RCOF than the iSCI group. Individuals with iSCI had a significantly slower 

velocity and a shorter step length, and a significantly higher %DS as compared to AB_SS group. 

The incidence of no slip, hazardous, or non-hazardous slips was not found to be 

significant on a chi-square test (χ² (2) = 3.61, p = 0.165); however, three individuals with iSCI 

did not slip when unexpectedly exposed to the slip perturbation. Thirty-five percent of 

individuals with iSCI (7/20) had a hazardous slip, and 50% (10/20) experienced a non-hazardous 

slip. In the AB group, all individuals experienced a slip; 60% (9/15) experienced a hazardous slip 

and 40% had a non-hazardous slip. Pearson (for normally distributed variables) and Spearman 
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(for non-normally distributed variables) correlation coefficients are reported in the table 3.3. 

Only average walking velocity during NW trials of individuals with iSCI was significantly 

correlated with the post-slip velocity on unexpected slip. 

Table 3.2 

Descriptive characteristics reported as Mean (SD), n, and independent t-test information for 

walking stability measures during normal walking in individuals with iSCI and AB individuals 

Proactive Measure SCI AB_SS AB_slow 

Ankle CCI  13.0 (5.7), 19 12.7 (3.4), 13 12.6 (4.8), 9 

Walking Velocity m/s* 0.68 (0.32), 19  0.95 (0.22), 16   0.42 (0.09), 10 

MOS_AP, mm # 221.2 (61.4), 19 194.5 (79.2), 16  316.5 (32.4), 10  

Step Width, mm 109.1 (44.5), 19 82.9 (38.6), 15 92.8 (35.9), 10 

Step Length, mm * 482.1 (157.1), 19 608.5 (75.1), 15 425.6 (59.2), 10 

RCOF # 0.11 (0.04), 19 0.14 (0.03), 14 0.08 (0.02), 9 

Foot Angle, degree † 19.4 (9.0), 20 24.4 (3.8), 16 16.4 (3.5), 10 

%DS * 42.2 (11.1), 19 33.7 (4.8), 15  46.7 (5.1), 10 

Note: Significant differences (p <0.01) are indicated. * = AB_SS different from SCI and 

AB_slow; # = AB_slow different from SCI and AB_SS; † = AB_SS different from AB_slow  

CCI: Co-contraction index; RCOF: required coefficient of friction; MOS_AP: antero-posterior 

margin of stability; %DS: percentage of time in double support. 

 

Table 3.3 

Correlation coefficients between peak post-slip heel velocity and walking stability measures 

 iSCI AB 

 Correlation Coefficient (p) n Correlation Coefficient (p) n 

CCI Ankle 0.48 (0.06) 16 -0.64 (0.03) 12 

Walking Velocity 0.61 (0.01)* 16 0.39 (0.15) 15 

MOS_AP - 0.58 (0.02) 16 -0.28 (0.32) 15 

Step Width -0.37 (0.16) 16  -0.06 (0.82) 14 

Step Length 0.56 (0.02) 16 0.16 (0.58) 14 

RCOF# 0.47 (0.06)  17 0.39 (0.17)  14 

Foot Angle# 0.53 (0.03) 17 0.20 (0.46) 15 

% DS# - 0.51 (0.04) 16 -0.11 (0.70) 14 

Note: Significance level set at p = 0.01 and indicated with *. # Spearman Correlation Coefficient reported 

as data were not normally distributed. CCI: Co-contraction index; RCOF: required coefficient of friction; 

MOS_AP: antero-posterior margin of stability; %DS: percentage of time in double support. 
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3.4 Discussion 

Individuals with iSCI experience frequent falls, with a majority of outdoor falls occurring 

while walking on an uneven or slippery surface (Jorgensen et al., 2017) warranting a deeper 

understanding of walking balance strategies used by these individuals. In this study, we 

confirmed that individuals with iSCI demonstrated a greater stability when walking at their self-

selected speed by walking slower, with a shorter step length, and spending a longer percentage of 

time in double stance as compared to age and sex matched AB individuals. This greater stability 

was mediated by walking slower, as AB participants also demonstrated similar stability-related 

changes when walking at a slower speed. The magnitude of walking velocity for slow walking 

AB participants was 0.26 m/s slower than participants with iSCI. Although this difference was 

not statistically significant, a slower walking velocity contributed to more protection against an 

unexpected slip perturbation as indicated with a larger MOS, and a smaller RCOF among slow 

walking AB participants. Previous studies have also shown a greater stability during NW in 

individuals with iSCI to be mediated by walking slower (Lemay et al., 2014). In comparison with 

an AB population, individuals with iSCI required a lower stabilizing force for maintaining 

stability during NW by controlling the velocity of the center of mass, while greater destabilizing 

forces were required to perturb the individual by moving the center of pressure to the limit of 

base of support (Lemay et al., 2014).   

Our study extended previous research to examine the effectiveness of this greater stability 

during NW in the prevention of hazardous slips. Walking velocity during NW in individuals with 

iSCI was found to have a moderate, but significant correlation with slip intensity, such that 

walking at a slower velocity was associated with less hazardous slips. There were no significant 

differences in the incidences of no-slip/hazardous/non-hazardous slips; however, all AB 

participants had a slip as compared to three participants experiencing no slip in iSCI group. 

Furthermore, a higher percentage of AB participants had hazardous slips indicating they are at a 

greater risk for hazardous slips when exposed to an unexpected slippery surface. In contrast to 

individuals with iSCI, AB individuals can rely on their intact reactive response to regain 

stability. Compared to AB participants, individuals with iSCI demonstrated greater stability 

during NW, which may be indicative of an avoidance to rely on their reactive responses that may 

be diminished due to sensori-motor impairments from their injury. Older individuals also 

demonstrate a greater walking stability by taking shorter and wider steps, walking slower, and 
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with a greater time in double stance during NW; however, the wider steps were found to be 

associated with a greater risk of falls (Maki et al., 1997). So, a greater stability during NW does 

not ensure that individuals with iSCI will regain stability once their balance has been perturbed 

but rather may indicate an increased risk of falling.   

The slower velocity among participants with iSCI can also be due to lower functional 

levels. For example, in previous studies, individuals with iSCI were unable to lengthen their 

steps when needed to clear relatively large (4 cm and 8 cm long) obstacles suggesting functional 

limitations which is even more evident in individuals with lower functioning levels (incomplete 

tetraplegia vs. incomplete paraplegia, and AIS C vs AIS D) (Amatachaya et al., 2015; 

Amatachaya, Pramodhyakul, & Srisim, 2015). These reported functional limitations, however, 

are during a considerable challenge (stepping over relatively long and/or high obstacles) and not 

during normal, unobstructed walking conditions and so may not be evident in our testing 

protocol. In summary, individuals with iSCI are more stable during NW as they walk slowly, 

with shorter step length, and a greater percentage of time in double stance compared to AB 

individuals. Slower walking velocity during NW among individuals with iSCI was correlated 

with lesser slip intensity after an unexpected perturbation.  

3.4.1 Limitations. 

This study has a small sample size and some of the measures in some participants could 

not be calculated due to error in the collected data. To avoid fatigue among individuals with 

iSCI, no familiarization time with the laboratory set up and space was given to the participants, 

which may have affected the first few NW trials. To avoid any learning effect, the last three of 

all available NW trials before the unexpected slip perturbation were examined. Since all 

participants with iSCI had AIS D impairment level, the results of this study can only be 

generalized to individuals with iSCI who have high functioning levels.  One participant with 

iSCI, who experienced a non-hazardous slip, reported anticipating the slip, which might have led 

him/her to develop strategies to achieve greater stability than if he/she was not expecting the slip. 

Slow walking AB participants were much slower than the participants with iSCI which limits our 

ability to distinguish velocity related versus balance related changes. 

The slip device used for perturbation was relatively small and may have limited the 

amount of slip by stopping the sliding foot at the edge of the slip device; however, PSV was 
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reached at an average of 0.20 s, SD=0.08 s (range = 0.03 s–0.36 s) after foot contact, which is 

comparable to previously reported values for non-hazardous (M=0.12, SD=0.01 s) and hazardous 

(M=0.17, SD=0.03 s) slips on an oily surface (Cham & Redfern, 2002b). Poor reactive control 

among individuals with iSCI, which are not reported in this study, can be a contributor to the 

adoption of more stable walking and is currently being investigated in our laboratory. To ensure 

participants were as comfortable walking as possible, we asked them to wear shoes they were 

comfortable wearing which resulted in a variety of shoe types. We did not take into account the 

differences in the type of shoes (or soles) selected by the participants during walking in which 

may have affected the RCOF values and walking behaviours calculated (Li & Chen, 2004). We 

used a safety harness for fall prevention, which may have made participants feel more secure 

compared to walking without the harness and may have changed their walking behaviour. 

3.5 Conclusion 

Individuals with iSCI normally walk slower, with shorter step length, and with a greater 

percentage of time in double stance leading to more stable walking than AB individuals. The 

greater stability thus obtained by walking slower helps reduce the effect of unexpected 

perturbations as walking velocity correlated with the unexpected slip intensity among 

participants with iSCI. Despite greater stability during NW, individuals with iSCI experience a 

high incidence of falls highlighting the need to investigate reactive balance strategies in this 

population.  



 
 

 48 

References 

Amatachaya, S., Pramodhyakul, W., & Srisim, K. (2015). Failures on obstacle crossing task in 

independent ambulatory patients with spinal cord injury and associated factors. Archives of 

Physical Medicine and Rehabilitation, 96, 43-48. doi:10.1016/j.apmr.2014.07.411. 

Amatachaya, S., Pramodhyakul, W., Wattanapan, P., & Eungpinichpong, W. (2015). Ability of 

obstacle crossing is not associated with falls in independent ambulatory patients with spinal 

cord injury. Spinal Cord, 53, 598-603. doi:10.1038/sc.2015.22.  

Bohannon, R. W. (1997). Comfortable and maximum walking speed of adults aged 20-79 years: 

Reference values and determinants. Age and Ageing, 26(1), 15-19. 

Brotherton, S. S., Krause, J. S., & Nietert, P. J. (2007). Falls in individuals with incomplete 

spinal cord injury. Spinal Cord, 45, 37-40. doi:10.1038/sj.sc.3101909. 

Bruening, D. A., & Ridge, S. T. (2014). Automated event detection algorithms in pathological 

gait. Gait & Posture, 39(1), 472–477. https://doi.org/10.1016/j.gaitpost.2013.08.023. 

Cham, R., & Redfern, M. S. (2002a). Changes in gait when anticipating slippery floors. Gait & 

Posture, 15, 159-171. 

Cham, R., & Redfern, M. S. (2002b). Heel contact dynamics during slip events on level and 

inclined surfaces. Safety Science, 40, 559-576. 

Chambers, A. J., & Cham, R. (2007). Slip-related muscle activation patterns in the stance leg 

during walking. Gait & Posture, 25, 565-572. doi:10.1016/j.gaitpost.2006.06.007. 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd edition). Hillsdale, 

NJ: Lawrence Earlbaum Associates. 

Day, K. V., Kautz, S. A., Wu, S. S., Suter, S.P., & Behrman, A. L. (2012). Foot placement 

variability as a walking balance mechanism post-spinal cord injury. Clinical Biomechanics, 

27, 145-150. doi:10.1016/j.clinbiomech.2011.09.001. 

de Leva, P. (1996). Adjustments to zatsiorsky-seluyanov's segment inertia parameters. Journal of 

Biomechanics, 29, 1223-1230. 

Ditunno, J. F., Barbeau, H., Dobkin, B. H., Elashoff, R., Harkema, S., Marino, R. J.,…for the 

Spinal Cord Injury Locomotor Trial (SCILT) Group. (2007). Validity of the walking scale 

for spinal cord injury and other domains of function in a multicenter clinical trial. 

Neurorehabilitation and Neural Repair, 21, 539-550. doi:10.1177/1545968307301880. 

Ghoussayni, S., Stevens, C., Durham, S., & Ewins, D. (2004). Assessment and validation of a 



 
 

 49 

simple automated method for the detection of gait  events and intervals. Gait & Posture, 

20(3), 266–272. https://doi.org/10.1016/j.gaitpost.2003.10.001 

Hanakova, L., Kutilek, P., Socha, V., Skoda, D., Takac, P., Schlenker, J., & Svoboda, Z. (2015). 

An evaluation method of complex movement of the arm during walking based on gyroscope 

data and angle-angle diagram. 38th International Conference on Telecommunications and 

Signal Processing (TSP), Prague, 397-402. doi:10.1109/TSP.2015.7296291. 

Hanson, J. P., Redfern, M. S., & Mazumdar, M. (1999). Predicting slips and falls considering 

required and available friction. Ergonomics, 42, 1619-1633. doi:10.1080/001401399184712.  

Hof, A. L., Gazendam, M. G., & Sinke, W. E. (2005). The condition for dynamic stability. 

Journal of Biomechanics, 38, 1-8. doi:S0021929004001642. 

Horak, F. B. (2006). Postural orientation and equilibrium: What do we need to know about 

neural control of balance to prevent falls? Age and Ageing, 35 Suppl 2, ii7-ii11. 

doi:10.1093/ageing/afl077. 

Jensen, R. K., & Fletcher, P. (1994). Distribution of mass to the segments of elderly males and 

females. Journal of Biomechanics, 27(1), 89-96. doi://dx.doi.org/10.1016/0021-

9290(94)90035-3. 

Jorgensen, V., Forslund, B. E., Opheim, A., Franzen, E., Wahman, K., Hultling, C., . . . 

Roaldsen, K. S. (2017). Falls and fear of falling predict future falls and related injuries in 

ambulatory individuals with spinal cord injury: a longitudinal observational study. Journal of 

Physiotherapy, 63, 108-113. doi:10.1016/j.jphys.2016.11.010. 

Krause, J. S. (2004). Factors associated with risk for subsequent injuries after traumatic spinal 

cord injury. Archives of Physical Medicine and Rehabilitation, 85, 1503-1508. 

doi:10.1016/j.apmr.2004.01.017. 

Lemay, J. F., Duclos, C., Nadeau, S., Gagnon, D., & Desrosiers, E. (2014). Postural and dynamic 

balance while walking in adults with incomplete spinal cord injury. Journal of 

Electromyography & Kinesiology, 24, 739-746. 10.1016/j.jelekin.2014.04.013. 

Lemay J. F., Duclos, C., Nadeau, S., & Gagnon, D. H. (2015). Postural control during gait 

initiation and termination of adults with incomplete spinal cord injury. Human Movement 

Science, 41, 20-31. doi:10.1016/j.humov.2015.02.003. 



 
 

 50 

Maegele, M., Muller, S., Wernig, A., Edgerton, V. R., & Harkema, S. J. (2002). Recruitment of 

spinal motor pools during voluntary movements versus stepping after human spinal cord 

injury. Journal of Neurotrauma, 19, 1217-1229. doi:10.1089/08977150260338010. 

Maki, B. E. (1997). Gait changes in older adults: predictors of falls or indicators of fear. Journal 

of the American Geriatrics Society, 45(3), 313–320. 

Maki, B. E., Edmondstone, M. A., & McIlroy, W. E. (2000). Age-related differences in laterally 

directed compensatory stepping behavior. The Journals of Gerontology: Series A, Biological 

Sciences and Medical Sciences, 55, M270-7.  

Marigold, D. S., & Patla, A. E. (2002). Strategies for dynamic stability during locomotion on a 

slippery surface: Effects of prior experience and knowledge. Journal of Neurophysiology, 

88, 339-353. doi:10.1152/jn.00691.2001. 

Moyer, B. E., Chambers, A. J., Redfern, M. S., & Cham, R. (2006). Gait parameters as predictors 

of slip severity in younger and older adults. Ergonomics, 49, 329-343. 

doi:10.1080/00140130500478553. 

Musselman, K. E., Arnold, C., Pujol, C., Lynd, K., Oosman, S. Falls after spinal cord injury: an 

exploratory study using photovoice. (2016). Poster session presented at: The 55th ISCOS 

Annual Scientific Meeting, Vienna, Austria.  

Nagai, K., Yamada, M., Tanaka, B., Uemura, K., Mori, S., Aoyama, T., . . . Tsuboyama, T. 

(2012). Effects of balance training on muscle coactivation during postural control in older 

adults: A randomized controlled trial. The Journals of Gerontology: Series A, Biological 

Sciences and Medical Sciences, 67, 882-889. doi:10.1093/gerona/glr252. 

Oates, A. R., Frank, J. S., Patla, A. E., VanOoteghem, K., & Horak, F. B. (2008). Control of 

dynamic stability during gait termination on a slippery surface in Parkinson's disease. 

Movement Disorders, 23, 1977-1983. doi:10.1002/mds.22091. 

Patla, A. E. (2003). Strategies for dynamic stability during adaptive human locomotion. IEEE 

Engineering in Medicine and Biology Magazine, 22(2), 48-52.  

Pearsall, D. J., Reid, J. G., & Ross, R. (1994). Inertial properties of the human trunk of males 

determined from magnetic resonance imaging. Annals of Biomedical Engineering, 22, 692-

706. doi:10.1007/BF02368294. 

Pollock, A. S., Durward, B. R., Rowe, P. J., & Paul, J. P. (2000). What is balance? Clinical 

Rehabilitation, 14, 402-406.  



 
 

 51 

Rudolph, K. S., Axe, M. J., Buchanan, T. S., Scholz, J. P., & Snyder-Mackler, L. (2001). 

Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surgery, Sports 

Traumatology, Arthroscopy, 9, 62-71. doi:10.1007/s001670000166. 

Thigpen, M. T., Cauraugh, J., Creel, G., Day, K., Flynn, S., Fritz, S., . . . Behrman, A. (2009). 

Adaptation of postural responses during different standing perturbation conditions in 

individuals with incomplete spinal cord injury. Gait & Posture, 29, 113-118. 

doi:10.1016/j.gaitpost.2008.07.009. 

van Hedel, H. J., Wirz, M., & Dietz, V. (2005). Assessing walking ability in subjects with spinal 

cord injury: Validity and reliability of 3 walking tests. Archives of Physical Medicine and 

Rehabilitation, 86, 190-196. doi:S0003-9993(04)00305-3. 

Yeadon, M. R. (1990). The simulation of aerial movement - II. A mathematical inertia model of 

the human body. Journal of Biomechanics, 23, 67-74. doi:10.1016/0021-9290(90)90370-I. 

Young, P. M. M., & Dingwell, J. B. (2012). Voluntary changes in step width and step length 

during human walking affect dynamic margins of stability. Gait Posture, 36, 219-224. doi: 

10.1016/j.gaitpost.2012.02.020. 

 

 



 
 

 52 

RELEVANCE OF CHAPTER THREE TO THE THESIS  

  Individuals with chronic iSCI have shown to be more stable than AB individuals using a 

stabilizing and destabilizing force paradigm (Lemay et al., 2014). This study adds to the 

knowledge on dynamic control of balance among individuals with iSCI. Greater stability during 

walking was confirmed among individuals with iSCI, which was achieved by walking slower, 

with a shorter step length, and spending a greater percentage of the gait cycle in double 

stance. Walking slower helps individuals with iSCI in having a less hazardous slip as compared 

to AB individuals. It is not clear whether walking slower is due to functional limitations or due to 

avoidance of a fall. Similar strategies are reported in older individuals, which are found to be 

correlated with a fear of falling (Maki, 1997). Furthermore, the presence of such strategies does 

not necessarily ensure protection from falls as, once balance is perturbed, the ability to maintain 

balance depends on reactive balance control. The results of our study combined with the 

previous literature indicates that the presence of more stable walking may indicate a 

compensation for the impairments in other aspects of balance such as reactive balance control or 

the inability to generate postural adjustments to perform challenging tasks, which will be 

discussed further in the next chapter.
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CHAPTER FOUR: REACTIVE RESPONSES FOLLOWING AN UNEXPECTED SLIP 

PERTURBATION IN INDIVIDUALS WITH INCOMPLETE SPINAL CORD INJURY 

 

4.1 Introduction 

Each year, approximately three-fourths of individuals with incomplete spinal cord injury 

(iSCI) experience at least one fall (Brotherton, Krause, & Nietert, 2007), while one half report 

recurrent falls (Jorgensen, Opheim, Halvarsson, Franzen, & Roaldsen, 2017). Half of these falls 

occur while walking outdoors, and the majority of outdoor falls occur while walking on an 

uneven or slippery surface (Jorgensen et al., 2017).  Falls can lead to injuries, a fear of falling, 

and subsequent restriction of activities and community participation (Amatachaya, Wannapakhe, 

Arrayawichanon, Siritarathiwat, & Wattanapun, 2011; Brotherton et al., 2007), thereby lowering 

the quality of life of individuals with iSCI. Furthermore, the costs associated with SCI are an 

economic burden on the health care system (Krueger, Noonan, Trenaman, Joshi, & Rivers, 

2013). The incidence of falls in the SCI population must be reduced in order to prevent fall-

related injuries and associated healthcare costs. Impaired balance is a modifiable fall-risk factor 

(Musselman, Arnold, Pujol, Katie, & Oosman, 2018; Rose & Hernandez, 2010) so to reduce falls 

and fall-related injuries, there is a need for a better understanding of how these individuals 

control balance while walking.  

Individuals with chronic iSCI tend to be more stable during unperturbed walking because 

they walk with a slower speed, with shorter steps, and a greater percentage of the gait cycle spent 

in double support (Arora et al., 2018). A greater amount of force is required to destabilize these 

individuals during normal walking suggesting greater walking stability, which is achieved by 

walking at a slower speed (Lemay, Duclos, Nadeau, Gagnon, & Desrosiers, 2014). Greater 

stability during normal walking may indicate that proactive balance strategies are used to 

mitigate threats to stability when faced with a perturbation (Arora, Musselman, Lanovaz, & 

Oates, 2017; Lemay et al., 2014; Maki, 1997). In contrast, we know little about reactive balance 

responses during walking in individuals with SCI. During quiet standing, when their balance is 

perturbed, individuals with iSCI and an American Spinal Injury Association Impairment Scale 

(AIS) rating of D showed adequate reactive responses to regain balance (Thigpen et al., 2009); 
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however, balance responses are context specific such that reactive responses during standing 

cannot be extended to that during walking (Shimada et al., 2003).  

When exposed to an unexpected slip during walking, able-bodied (AB) individuals 

rapidly activate their lower extremity muscles, swing their arms, and take a compensatory step to 

regain stability and avoid a fall (Chambers & Cham, 2007; Marigold & Patla, 2002; Tang & 

Woollacott, 1998). Reactive responses should be scaled in magnitude and timing to the 

perturbation to maintain stability and avoid falls (Chambers & Cham, 2007; Inglis, Horak, 

Shupert, & Jones-Rycewicz, 1994). A very high or low magnitude of response may indicate 

impairment in reactive balance control and may predispose an individual to falls. The reactive 

activation of muscles, swinging of arms, and/or compensatory steps in response to an unexpected 

slip perturbation during walking has not been studied in individuals with iSCI.  

The objective of this study was to use an unexpected slip paradigm to compare reactive 

responses between individuals with and without iSCI. Specifically, we examined the (a) ability 

to increase the margin of stability (i.e. distance between center of mass and boundaries of base of 

support) after a compensatory step; (b) reactive onset of changes in the trajectories of the arms 

and trail heel; and (c) reactive onset timing and magnitude of lower extremity EMG muscles. We 

compared the reactive responses in individuals with iSCI to that in age-and sex-matched AB 

individuals. We hypothesized that individuals with iSCI would have a reduced ability to increase 

the margin of stability with a compensatory step, a slower onset of changes in limb trajectories, 

and a delayed onset and a smaller magnitude of reactive muscle activity compared to AB 

individuals.  

4.2 Methods 

4.2.1 Participants. 

 Adults with chronic iSCI (> one-year post injury) were recruited through regional health 

centres and advertisements within the province. Inclusion criteria included individuals with 

injuries classified as AIS C or D, and the ability to walk 10 m without physical assistance from 

another person (walking aids and brace(s) permitted). Age- and sex-matched AB individuals 

were recruited through local advertisements. Exclusion criteria for both groups included any 

disease or injury that could affect walking or balance ability (e.g. vestibular conditions, joint 
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pain, etc.), with the exception of SCI for those in the SCI group. The study was approved by the 

institution’s research ethics board. 

4.2.2 Experimental procedure. 

 Participants walked along a 10 m walkway at their self-selected speed wearing 

comfortable shoes and a safety harness which was attached to a fall prevention system in the 

ceiling. A set of low friction steel rollers (coefficient of friction = 0.09; 0.46 x 0.51m) were used 

to provide a slip perturbation. The rollers were placed in the middle of the walkway, flush with 

the floor surface, and could be unlocked without any visible changes to provide a slip 

perturbation in the anterior-posterior (AP) direction. No familiarization trials were included to 

prevent any fatigue in individuals with iSCI. Three to five normal walk (NW) trials were 

obtained with the slip device locked (i.e., no slip perturbation), following which the slip device 

was unlocked without the participant knowing for an unexpected slip trial. Following the slip 

trial, participants were asked if the slip was unexpected or not. Data were not included if the 

participant indicated they were expecting the slip in order to include only purely unexpected slip 

responses.  

Biomechanical data were collected bilaterally, with the upper and lower extremities on 

the side that initiated foot contact labelled as the lead extremities, and those on the contralateral 

side labelled as the trail extremities. Ground reaction force (GRF; fs = 2000 Hz) data were 

obtained using two force plates (0.46 × 0.51 m, AMTI OR6-7, Advanced Mechanical 

Technology, Inc., Watertown, MA) embedded in the walkway (one under the slip device and the 

other diagonally adjacent to the slip device) (Figure 4.1).  Surface electromyography data (fs = 

2000 Hz) were collected from tibialis anterior (TA), soleus (SOL), and gluteus medius (GM) 

using a telemetered EMG system (2400GT2, Noraxon Inc, Scottsdale, AZ). Accurate electrode 

placement was confirmed with voluntary contractions. Kinematic data (fs = 100 Hz) were 

obtained using an eight-camera 3D motion capture system (Vicon Nexus, Vicon Motion 

Systems, Centennial, CO). Sixty-three reflective markers (14 mm diameter, 22 calibration) were 

placed on the participant to capture kinematic data from 12 segments (head, trunk, and right and 

left upper arms, forearms, thighs, shanks, and feet). Anthropometric data for older (>60 years) 

(Hanakova et al., 2015; Jensen & Fletcher, 1994; Pearsall, Reid, & Ross, 1994; Yeadon, 1990) 

and younger (de Leva, 1996) adults according to the age of the participant were used to calculate 
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segmental and total body COM . Peak heel marker slip velocity in the AP direction was obtained 

after the first contact on the slip device for the unexpected slip trial and was used to categorize 

the slip as hazardous (> 1 m/s) or non-hazardous (< 1m/s)  (Moyer, Chambers, Redfern, & 

Cham, 2006). Total body extrapolated COM (XCOM) was calculated based on the position and 

velocity of COM (Hof, Gazendam, & Sinke, 2005; McAndrew Young & Dingwell, 2012), and 

was used to calculate the margin of stability by comparing the XCOM position to the posterior 

(defined by the heel marker of the stance foot during unilateral support or heel marker of the trail 

foot during double support stance) and lateral (defined by the marker on most lateral aspect of 

lead foot at the base of fifth metatarsal) edge of the base of support (BOS), respectively. 

Observation of the reactive step was used to categorize the response as a compensatory step (a 

premature end of the stance with a step or toe touch down), aborted step (preventing lift-off of 

the trail limb), or swing through (continuation of the regular swing with change in trajectory) 

(Bhatt, Wening, & Pai, 2005; Marigold & Patla, 2002). 

The 10-meter Walk Test was administered to the individuals with iSCI to measure self-

selected (10mWT-SS) and fast (10mWT-Fast) walking speeds (Bohannon, 1997; van Hedel, 

Wirz, & Dietz, 2005). Participants walked in a 14 m hallway, first at a self-selected speed and 

then at their fastest, safe speed. Time taken over the middle 10 m was recorded and speed in 

meters per sec (m/s) was calculated. Scores on a measure of walking capacity – the Walking 

Index for Spinal Cord Injury II (WISCI II) were also obtained. The WISCI II consists of 21 items 

that rank walking according to the required amounts of physical assistance, braces, and walking 

aids (Ditunno Jr et al., 2007).  

4.2.3 Data analysis. 

All kinematic data were low pass filtered at 10 Hz with a 4th order Butterworth filter. EMG 

data were full-wave rectified and low pass filtered at 6 Hz with a 4th order Butterworth filter. A 

kinematic data based algorithm was used to detect foot-contact (i.e. the time point when any part 

of the foot came in contact with the supporting surface) and foot-off (i.e. the time point following 

foot contact when no part of the foot was in contact with the supporting surface) events 

(Bruening & Ridge, 2014; Ghoussayni, Stevens, Durham, & Ewins, 2004). This algorithm was 

based on the resultant velocity signal from the heel and toe. The values obtained from the 

calculations were adjusted after comparisons with the videos of various individuals to get 



 
 

 57 

consistent detections. Walking velocity of all walking trials was obtained by calculating the 

average velocity of the COM for each trial and the average of the NW trials was calculated.  All 

kinematic and EMG data were examined over the stance period of each leg (foot-contact to foot-

off). Kinematic data were interpolated over a 100-points, whereas EMG data were interpolated 

over a 1000- points. An average stance time was calculated using all the stance periods from the 

NW trials. This average NW stance time was also used as the slip stance time when examining 

the kinematic and EMG data, as slip stance is typically interrupted prematurely with a 

compensatory step (Tang & Woollacott, 1998).  
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(a) 

 

(b) 

 

Figure 4.1. (a) Schematic representation of the lab setting for data collection; (b) slip device 

used to provide slip in the antero-posterior direction when rollers are unlocked 

 

The following variables were extracted to quantify the reactive response: (1) Changes in 

margin of stability; (2) Onset of arm and trail heel response; (3) Onset of muscle activity 
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response; and (4) Magnitude of muscle activity response. Reactive changes in the margin of 

stability were calculated only for those participants who had a compensatory or aborted step. 

Changes in the lateral (∆MOS_Lat) and posterior (∆MOS_Post) MOS values were calculated by 

subtracting the value at foot-off of the compensatory step from the value at foot contact of the 

compensatory step of the trail limb (Salot, Patel, & Bhatt, 2016). The ∆MOS_Lat and 

∆MOS_Post were normalized to the average NW step width and step length, respectively, as step 

width is related to lateral MOS and step length is related to posterior MOS (McAndrew Young & 

Dingwell, 2012). For calculation of the onset of arm and trail heel reactive responses, data from 

both wrists and the trail limb heel markers were used. Arm and trail heel position trajectories in 

the AP, ML, and vertical directions for the NW and slip stance durations were obtained. Three-

dimensional position vectors were calculated from the summation of the AP, ML, and vertical 

direction components of the position trajectories. Velocity trajectories were then calculated by 

taking a first-order derivative of the position trajectories relative to time separately for the slip 

side arm, trail side arm, and the trail side heel.  An average NW stance velocity arm and heel 

trajectory was obtained by calculating the mean of all velocity trajectories of NW stance periods. 

Similar to a previous study, reactive onset of arm and trail heel reactive response was the point 

when the velocity trajectory during the slip stance period went beyond two standard deviations of 

the average NW stance velocity trajectory in any direction and remained outside for at least 5% 

(32ms - 61ms) of the slip stance duration (Marigold & Patla, 2002).  The reactive onset point 

was visually confirmed by examining the kinematic data and recorded as both the absolute time 

(ms) and percentage of the average NW stance time for that participant. A delay in these 

responses may indicate balance impairments and may predispose individuals to falls (Patla, 

2003).  

The EMG data for all NW stances were averaged and compared to slip stance data to obtain 

onset and magnitude of reactive muscle activity. The onset of reactive muscle activity was the 

point when the slip stance EMG exceeded three standard deviations of the average NW stance 

EMG in either direction and remained there for at least 5% (32ms - 61 ms) of the total stance 

time (Marigold & Patla, 2002). Three standard deviations appeared to be sensitive enough and 

more reliable in detecting reactive EMG onset than two standard deviation for these data. The 

onset was recorded as the absolute time (Reactive EMG Onset Time) and also relative to the 

percentage of stance in percent (Reactive EMG Onset Percent). Percentage of stance was used to 
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identify at what percentage of the gait cycle the onset was experienced. Reactive Integrated 

EMG (RiEMG) was used as an indicator of the magnitude of the reactive EMG response and was 

obtained by calculating the difference between the integrated EMG of slip stance from the 

integrated EMG of the average NW stance. The RiEMG values were divided into three regions: 

0-100ms (Area0-100), 100-200ms (Area100-200), and 200-500ms (Area200-500) based on previous 

literature (Patla, 2003) representing different types of motor control – Area0-100 represents 

reflexive activity, Area100-200 represents functionally relevant behavioural responses, and Area200-

500 represents recovery responses. A higher value of RiEMG in a specific time region indicated a 

greater amplitude of muscle activation during the reactive slip response.  

4.2.4 Statistical analysis. 

Normality was tested using a Shapiro-Wilk test. If non-normally distributed, data were 

transformed using a two-step approach for transforming continuous variables (Templeton, 2011). 

Height, and mass were compared using a multivariate general linear model between iSCI and AB 

groups. Average walking velocities were compared using a repeated measure general linear 

model with NW and Slip conditions as within-subjects and iSCI/AB groups as between-subjects 

factors. Separate analyses were performed for ∆ MOS, onset of arm and trail heel response, 

reactive EMG Onset, and RiEMG. A multivariate general linear model was used to compare ∆ 

MOS_Lat and ∆ MOS_Post between the iSCI and AB groups. Arm trajectory onsets were 

compared using a repeated-measures general linear model with slip and trail sides as within-

subjects factors and iSCI and AB as between-subjects factors. As there were no significant main 

effects or interactions, an average for the right and left arms was calculated and used. A 

multivariate general linear model was used to compare arm and heel reactive onset time and 

percentage between iSCI and AB groups. Onset percent and time of reactive muscle activity 

were compared using a repeated-measures general linear model with iSCI/AB group as between 

group factors and slip/trail side as within-subjects factor. Separate analyses were performed for 

each muscle. A repeated-measure general linear model with iSCI/AB group as between group 

factors and slip/trail side and three regions of area – Area0-100/Area100-200/Area200-500 as within-

subjects factors was used to compare RiEMG.  

The assumption of equality of variance for the multivariate analyses was tested using 

Box’s Test. Pillai’s Trace values were used with the multivariate analyses if Box’s test was not 
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significant; Wilk’s Lambda were used if it was significant. Follow-up repeated measures 

ANOVA or t-tests were used depending on the level of interactions. Alpha was set at 0.05 and 

Bonferroni corrections were applied during multiple follow-up tests.  

4.3 Results 

Twenty individuals with iSCI and 15 age- and sex-matched AB individuals participated 

in the study (Table 4.1). One participant with iSCI stated he was expecting a slip throughout the 

data collection. His walking velocity for all trials that was slower than the mean velocity of the 

iSCI group, supporting his claim, and so his data were excluded. Three participants with iSCI did 

not report expecting the slip trial, but did not slip at all, hence their data and the data from their 

AB matches were excluded from the analysis.  

This left data from 16 participants with iSCI (all AIS D, 8 with tetraplegia, 10 had a 

traumatic onset, and time since injury = 2.01 years - 16.11 years; median = 5.3 years). Not all 

individuals with iSCI had age-and-sex matched AB participants, which left 13 AB participants to 

be included in the study. Participants with iSCI had high walking capacity as indicated by high 

scores on the WISCI II (median = 20, range = 18-20). Height and mass were not significantly 

different between the iSCI and AB groups. 

Nine participants with iSCI (56%) had a non-hazardous slip, and seven (44%) had a 

hazardous slip. Four AB participants (31%) experienced a non-hazardous slip, while the 

remaining nine (69%) had a hazardous slip. During the unexpected slip, 20 participants (12 

(75%) iSCI and 8 (62%) AB) took a compensatory step, five (two (12%) iSCI and three (23%) 

AB) had an aborted step, and four (two (12%) iSCI and two (15%) AB) had a trail limb swing 

through response. There were no significant between-subjects or within-subjects effects for 

walking velocity, indicating individuals with iSCI and AB participants walked at similar speeds 

for both NW and the Slip trials. There was a significant difference in ∆ MOS_Lat between 

groups (F (2, 20) = 4.62, p = 0.022, partial eta squared = 0.316, observed power = 0.71). On 

follow-up t-tests, participants with iSCI were found to have a significantly (t (21) = -2.49, 

p=0.021) smaller (n=13, M= -0.05, SD=0.24 vs n=10, M = 0.18, SD = 0.18) ∆MOS_Lat values 

than AB participants (Figure 4.2). The ∆MOS_Post between the iSCI and AB groups were not 

significant.
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 Not all participant’s data showed an onset of EMG, or change in arm and heel trajectory 

as per our criteria of selection of onset. The typical change in arm trajectory was in the anterior, 

superior, and lateral direction for both iSCI and AB groups. The heel moved inferiorly and 

posteriorly (Figure 4.3). The velocity vectors showed an increase in arm trajectory velocity and a 

decrease in trail heel velocity for the slip trials as compared to NW trials. There were no 

significant (p > 0.05) differences between iSCI and AB groups in the onset of arm and trail heel 

reactive responses (Table 4.2). Figure 4.4 shows the typical reactive EMG onset for all muscles. 

For the TA muscle, there was a significant main effect of group, (F (2, 20) = 3.61, p = 0.046), 

indicating significantly faster onset of the TA in the AB individuals (Table 4.3). On follow-up 

independent t-tests, the differences alone in the onset percent or the onset time of reactive TA 

muscle activity were not found to be significantly different between groups. 

 

 

 
Figure 4.2. Mean and Standard Error of the reactive percentage changes in margin of stability in 

Posterior and Lateral directions in iSCI and AB groups 

* indicates significant differences 
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Table 4.2  

Average Upper Extremity Reactive Onset Percent and Time with respect to contact on the slip 

device 

 Heel Reactive Onset 

(Mean + SD) 

Arm Reactive Onset 

(Mean + SD) 

n Percent (%) Time (ms) n Percent (%) Time (ms) 

iSCI 12 40.00 + 8.59 376.95 + 100.52 14 36.97 + 5.67 345.48 + 69.98 

AB 11 34.38 + 9.03 301.73 + 82.01 11 30.88 + 8.63 281.44 + 79.20 

Reactive Onset: time point when the heel or arm velocity trajectory for the slip stance went beyond two 

standard deviations of the average NW stance velocity trajectory in any direction and remained outside 

for at least 5% of the stance 

No significant differences between AB and iSCI groups 

 

 

Figure 4.3.  Left heel marker trajectories for an individual with 

iSCI starting from right heel strike (0%) on the slip device to the 

end of the stance (100%) in (a) position trajectories in AP and 

vertical directions; (b) combined 3-D position and velocity 

trajectories.   

Mean Normal 

Walk 
Slip 

+/- 2 Standard 

Deviation 
Reactive 

Onset 

(a) 

(b) 
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 There were no significant differences between the slip and trail side for the TA onset 

percent or time (Table 3). For the RiEMG of TA muscle, there was a significant interaction 

between the slip/trail side and the Area0-100/Area100-200/Area200-500 regions, (F (2, 26) = 3.69, p = 

0.039, partial eta squared = 0.221, observed power = 0.63), indicating an overall greater 

magnitude of activation in the slip side TA as compared to the trail side TA. On follow-up 

dependent t-tests between slip and trail sides for the three regions, the slip side TA was found to 

have a significantly greater magnitude of activation than the trail side TA for the Area200-500 

region (p = 0.024). There were no significant differences between groups (Table 3).  For the SOL 

muscle activity, there was a significant main effect for slip/trail side for onset percent and time 

(F (2, 17) = 8.89, p = 0.002, partial eta square = 0.511, observed power = 0.94). On follow-up 

dependent t-tests, SOL activation was significantly faster both in percentage and time (n=20, 

Figure 4.4.  Reactive EMG onset for an individual with 

iSCI starting from left heel strike (0%) on the slip device to 

the end of the stance (100%) for lower extremity muscles 

Mean Normal 

Walk 
Slip 

+/- 3 Standard 

Deviation 
Reactive 

Onset 
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M=23.77%, SD=7.41% or M=215.50ms, SD=78.12ms) on the trail side as compared to the slip 

side (n=20, M=33.13%, SD=10.59% or M=300.64ms, SD=111.57ms) (Table 3). There were no 

significant differences between groups for SOL onset percent and time. For the SOL muscle 

RiEMG, there was a significant interaction between iSCI/AB group, Area0-100/Area100-200/Area200-

500 regions, and slip/trail side, (F (26, 2) = 4.53, p = 0.021, partial eta square = 0.258), observed 

power = 0.72. On follow-up repeated measures ANOVA for individual area regions, a significant 

interaction was noted between iSCI/AB group and slip/trail side only for the Area200-500, (F (1, 

27) = 8.15, p = 0.008, partial eta square = 0.232, observed power = 0.85). On follow-up paired t-

tests for the Area200-500 region, there was a significantly greater activity on the trail side as 

compared to the slip side in both iSCI (p = 0.013) and AB participants (p < 0.001). On 

independent t-tests, AB participants were found to have a significantly (p = 0.006) greater 

magnitude of trail side SOL activity than participants with iSCI for the Area200-500 region (Table 

3).  

 For the GM muscle, there was a significant main effect for slip/trail side for onset percent 

and time (F (2, 18) = 8.80, p = 0.002, partial eta square = 0.494, and observed power = 0.94; 

Table 3). On follow-up paired t-tests, GM muscle activation was significantly (p = 0.001) faster 

in percentage and time (n=21, M=22.13%, SD=10.29% or M=195.23ms, SD=86.72 ms) on the 

trail side as compared to the slip side (n=21, M=31.47, SD=9.10% or M=280.94, SD=85.76 ms). 

For GM muscle RiEMG, there were no significant main effects or interactions; however, the 

interaction between slip/trail side and Area0-100/Area100-200/Area200-500 regions was approaching 

significance (F (2, 26) = 3.23, p = 0.056, partial eta square = 0.199, observed power = 0.56). 

Comparing the mean onset scores of different muscles, on the slip side, the TA muscle was 

activated the fastest and the SOL muscle was the last to be activated in individuals with iSCI and 

AB individuals. On the trail side, a similar pattern to the slip side was seen in AB participants; 

however, iSCI group activated their GM muscle first and TA muscle last.  
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4.4 Discussion 

This study investigated the reactive balance responses in response to an unexpected slip 

perturbation in individuals with iSCI. Specifically, the study looked at the ability to change the 

margin of stability using a compensatory step response, activate lower extremity muscles, and 

change arm and trail heel velocity trajectories in response to an unexpected slip. It was 

hypothesized that individuals with iSCI would have a reduced ability to increase the margin of 

stability with a compensatory step, have a delayed onset and a smaller magnitude of reactive 

muscle activity, and a slower onset of changes in limb trajectories compared to AB individuals. 

Our hypothesis was partially supported by a significantly smaller increase in the margin of 

stability in the lateral direction in individuals who took a compensatory step, slower onset of TA 

EMG activity, and a smaller magnitude of EMG activation in the trail side SOL muscle between 

200-500 ms post slip in individuals with iSCI as compared to AB individuals. The other 

responses, such as ∆MOS_Post, onset of arm and trail heel response, and reactive EMG onset 

and RiEMG of other muscle groups were similar between iSCI and AB groups, which could 

have been due to high functioning levels (AIS D, median WISCI II = 20) of participants with 

iSCI. 

4.4.1 Change in dynamic margin of stability. 

We used ∆MOS to capture the ability to regain stability after a perturbation. 

Conceptually, this measure evaluates the control of the COM/BOS relationship during a 

compensatory step. Previous research has found a limited ability in individuals with chronic 

stroke to regain stability using a compensatory step after an unexpected slip in the posterior 

direction (Salot et al., 2016). In our study, individuals with iSCI were able to increase their 

margin of stability in the posterior direction similar to AB individuals; however, in the lateral 

direction, individuals with iSCI had a limited ability compared to AB individuals. The 

differences between this and previous studies could be due to the differences in the populations 

and the methods of perturbations used: In addition to the previous study examining individuals 

who have had a stroke (Salot et al., 2016), it also used a motorized treadmill for the perturbation 

which is different from a slip induced with a low-friction surface. Surface translation provides 

more control for the researcher over the magnitude of perturbation but there is no displacement 

of the foot relative to the surface. Results of our study confirm limitations in ability of 
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individuals with iSCI to regain COM/BOS relationship during a compensatory step following 

unexpected perturbation, which indicate limitations in their reactive balance control.  

4.4.2 EMG onset pattern and timing and locus of control – slip side vs trail side 

EMG. 

A rapid onset of reactive response in the lower extremity muscles was observed in all 

participants. Although there is no clear agreement on the pattern of lower extremity muscle 

activation, most studies have reported fastest activation of the TA on the lead side (Chambers & 

Cham, 2007; Marigold & Patla, 2002; Tang & Woollacott, 1998), which is similar to what we 

found in our study for both iSCI and AB groups. Both groups also showed slower activation of 

SOL muscle in the lead lower extremity than the lead TA and GM muscles. On the trail side, a 

difference in activation pattern was observed between iSCI and AB groups, with the iSCI group 

activating the GM muscle first and TA muscle last. In contrast, the AB group activated the TA 

muscle first and the SOL muscle last. The differences between the lead and the trail sides can be 

due to the differences in the responsibilities of the slip and trail sides, with the trail side more 

involved in initiating stepping and weight bearing (Marigold, Bethune, & Patla, 2002; Pai & 

Bhatt, 2007). Previous research suggests the trailing limb plays an important role in balance 

control after a slip perturbation as indicated by a comparable or even faster EMG onset of the 

trail limb muscles as compared to the slipping limb (Marigold et al., 2002; O’Connell, 

Chambers, Mahboobin, & Cham, 2016). In our study, there was a significantly faster onset of 

SOL muscle on the trail side as compared to the lead side, irrespective of group. The differences 

were also observed in the magnitude of muscle activation mainly between 200-500 ms, which is 

the region for voluntary reactive responses (Patla, 2003). For both groups, a greater activation of 

the TA muscle was seen on the slip side, whereas a greater activation of SOL muscle was seen 

on the trail side. The TA muscle activation on the slip side has been shown to be important for 

slip recovery in healthy young and older adults (Chambers & Cham, 2007). A greater activation 

of SOL on the trail side may be indicative of a preparation for weight bearing. Individuals with 

iSCI were not able to generate as much activation in the trail side soleus muscle in the Area200-500 

region as compared to that generated by AB individuals, indicating a limitation in voluntary 

activation of the SOL muscle following an unexpected slip.  
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Older individuals tend to have slower onset and smaller magnitude of activation of lower 

extremity muscles in response to an unexpected slip as compared to younger individuals (Tang & 

Woollacott, 1998). A slower onset can be compensated by a stronger response; however, a 

combination of slow muscle onset and a smaller magnitude of muscle activation indicates 

ineffective reactive balance control (Tang & Woollacott, 1998). Individuals with iSCI 

demonstrated both a slower onset of TA activation, and smaller magnitude of SOL muscle 

activation indicating limitations in their reactive balance control following an unexpected slip 

perturbation. 

4.4.3 Reactive change in trajectory. 

A typical response to the slip in all participants was elevating the arms forward and 

laterally. Similar reactive arm responses have been reported previously in AB (Marigold & Patla, 

2002) and older adults (Tang & Woollacott, 1998). Raising the height of arms in any direction 

helps to prevent lowering of the COM resulting from the slip, while forward movement of the 

arms helps to counteract the backward movement of the COM. Forward and upward movement 

of arms are important to control the COM position to prevent the backward loss of balance from 

the slip (Marigold & Patla, 2002). No iSCI/AB group differences were observed in reactive arm 

or heel trajectory onset time or percentages indicating both groups were able to move their limbs 

equally fast.  

4.4.4 Limitations.  

The limited size of the slip device, and providing a perturbation under only one foot 

could have limited the extent of the slip; however, the peak velocity of the slip achieved was 

comparable to that reported in a previous study (Cham & Redfern, 2002). The participants with 

iSCI had an AIS D impairment level, which prevents the generalizability of results to individuals 

with lower functioning levels (AIS C). 

4.5 Conclusion 

This study examined the reactive responses of individuals with iSCI and AB individuals 

using an unexpected slip perturbation during walking. Like AB individuals, individuals with 

iSCI demonstrated a greater magnitude of TA activation on the slip side and SOL activation on 

the trail side. The onset of changes in arm and trail heel trajectory were similar in individuals 

with iSCI and AB individuals. The ability to regain stability in the antero-posterior direction was 
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also comparable between the two groups. Unlike AB individuals, individuals with iSCI 

demonstrated a limited ability to increase the margin of stability in the lateral direction during a 

compensatory step. Individuals with iSCI also had a slower onset of TA and a smaller magnitude 

of reactive SOL activity as compared to AB individuals. These results suggest there are 

limitations in the reactive balance control of individuals with iSCI; therefore, it is important to 

include reactive balance control in the assessment of individuals with iSCI and to further 

investigate efforts to improve reactive balance control in this community. 
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RELEVANCE OF CHAPTER FOUR TO THE THESIS  

Reactive responses, following an unexpected perturbation are important to maintain 

stability and avoid falls (Chambers & Cham, 2007; Patla, 2003). This study assessed the reactive 

balance responses to an unexpected slip perturbation in individuals with iSCI. Individuals with 

iSCI demonstrated a limited ability to regain lateral stability with a compensatory step, a slower 

onset of tibialis anterior (TA) muscle activity, and a smaller magnitude of reactive SOL activity 

as compared to AB individuals. These findings confirm there are limitations in the reactive 

responses to an unexpected slip perturbation in individuals with iSCI. These results, combined 

with the results of our previous study about walking stability (Chapter 3), support the idea that 

individuals with iSCI adopt proactive strategies during normal walking to compensate for the 

limitations in their ability to generate reactive responses. The importance of assessing the 

reactive component during balance assessment is highlighted again in this study. 
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CHAPTER FIVE: CURRENT STATE OF BALANCE ASSESSMENT FOR THE SCI 

POPULATION: A SYSTEMATIC REVIEW 

 

5.1 Introduction 

 Over 280,000 Americans are living with a spinal cord injury (SCI) (National Spinal Cord 

Injury Statistical Center, 2016). The injury can cause sensorimotor deficits that frequently 

manifest as impaired balance, which in turn can lead to falls. The rate of falls for individuals 

with SCI who are ambulatory (75% in one year (Brotherton, Krause, & Nietert, 2007)) is higher 

than those individuals with SCI who use a wheelchair (33% in one year (Nelson et al., 2010)). 

Wheelchair-users typically fall during transfers (Nelson et al., 2003), whereas ambulatory 

individuals fall while performing an upright activity like walking (Amatachaya, Wannapakhe, 

Arrayawichanon, Siritarathiwat, & Wattanapun, 2011). Falls can lead to injuries (Jorgensen, 

Butler Forslund, et al., 2017), costly hospital admissions (Dryden et al., 2004), a fear of falling, 

and subsequent restriction in community participation (Musselman, Arnold, Pujol, Lynd, & 

Oosman, 2016). 

Balance or postural control involves maintaining, achieving, or restoring a state of 

stability during any posture or activity (Pollock, Durward, Rowe, & Paul, 2000). Effective 

balance control is essential for avoiding falls and is dependent on the integration of various 

sensory inputs, and the interaction of the body with the changing environment (Sibley, 

Beauchamp, Van Ooteghem, Straus, & Jaglal, 2015).  A modified version of the Systems 

Framework for Postural Control (Horak, 2006; Sibley et al., 2015) identifies nine major 

components for the maintenance of balance – 1) functional stability limits (e.g. size of base of 

support (BOS)  (Lemay & Nadeau, 2013)), 2) underlying motor systems (e.g. muscle strength), 

3) static stability (e.g. maintaining center of mass (COM) within BOS (Lemay & Nadeau, 

2013)), 4) verticality (e.g. orienting the body parts relative to gravity, the support surface, visual 

surround, and internal references (Bisdorff, Wolsley, Anastasopoulos, Bronstein, & Gresty, 

1996)), 5) reactive postural control (e.g. hip or ankle movement to regain body equilibrium after 

balance is perturbed (Thigpen et al., 2009)), 6) anticipatory postural control (e.g. modulation of 

lower extremity muscle activity in anticipation of a perturbation (Thigpen et al., 2009)), 7) 

dynamic stability (e.g. maintaining body equilibrium in situations when the BOS is changing 
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(Lemay, Duclos, Nadeau, Gagnon, & Desrosiers, 2014)), 8) sensory integration (e.g. re-

weighting the contributions of somatosensory, visual and vestibular inputs depending on the 

context and sensory capabilities of the individual (Lemay & Nadeau, 2013; Peterka, 2002)), and 

9) cognitive influences (e.g. how attentional resources are allocated to maintain balance while 

performing a task (Teasdale & Simoneau, 2001)). The postural strategies selected by individuals 

are context-specific and depend on functional abilities, environmental conditions, and the task 

demands (Horak, 2006). Acknowledging the different components of postural control is 

important for the assessment of balance, the identification of individuals at increased risk of falls, 

the design of effective fall prevention programs, and the monitoring of changes in balance 

control over time. A comprehensive balance assessment measure should capture all components 

of balance (Horak, 2006). 

Compared with older adults and other neurological populations (Noohu, Dey, & Hussain, 

2014; Tyson & Connell, 2009; Whitney, Poole, & Cass, 1998), there is a paucity of information 

regarding what measures of balance are available and appropriate for the SCI population (Kahn 

et al., 2016). The SCI EDGE Task Force recently published recommendations concerning 

outcome measurement in SCI rehabilitation practice and teaching (Kahn et al., 2016). Through a 

consensus-based approach and non-systematic literature searching, the Task Force identified 

seven measures of balance for the SCI population with one, the Berg Balance Scale (BBS), 

receiving ‘recommended’ ratings (Kahn et al., 2016). The recommendation was based on the 

clinical utility and psychometric properties of the outcome measures, but did not consider 

comprehensiveness; an important consideration for any measure of balance. Further, given that 

>50 measures have been validated for the assessment of standing balance in clinical 

environments in adult populations (Sibley et al., 2015), it is likely that a greater number of 

balance measures have been used with the SCI population, and would be identified through 

systematic searching.  

This systematic review was designed to provide guidance to clinicians and researchers 

regarding what balance measures are comprehensive, psychometrically-sound and clinically 

feasible for individuals with SCI.  The objectives were threefold: 1) identify what balance 

control measures have been used to assess balance during transfers, sitting, standing, and 

walking in individuals with SCI; 2) evaluate the comprehensiveness (i.e. extent to which 
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measures are inclusive of the components of the Systems Framework for Postural Control) and 

psychometric properties of the identified measures; and 3) provide recommendations for the 

assessment of balance control in individuals with SCI in clinical settings. 

5.2 Methods 

 The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 

guidelines were used to conduct a systematic review (Moher, Liberati, Tetzlaff, Altman, & 

Group, 2009). There is no registered protocol for this review.  A research question was 

formulated systematically by using a modified patient population, intervention or indicator, 

comparator, outcome, and study design (PICO) framework (Santos, Pimenta, & Nobre, 2007). 

The population was adults with SCI. The indicator was any measure of balance during sitting, 

standing, walking, or transferring. There was no comparator. The outcome was balance control 

or ability to maintain balance. There were no restrictions on the study design with the exception 

of systematic reviews and meta-analyses. 

5.2.1 Search strategy. 

Medline, PubMed, Embase, Scopus, Web of Science, and the Allied and Complementary 

Medicine Database were searched from the earliest record to October 19, 2016 (appendix A) 

using keywords and controlled vocabulary (as appropriate). Articles were not restricted on the 

basis of language, date, or type of publication. The reference lists of the articles that were 

included were screened to identify any relevant studies not returned in the systematic search of 

the databases. 

Abstracts were de-duplicated using a research management tool (RefWorks-COS), and 

then reviewed independently by two researchers to identify those to be included for full-text 

screening. The inclusion criteria for full-text screening were as follows: (a) article included a 

measure of balance, and (b) article included participants with a SCI that were rated an A, B, C or 

D on the American Spinal Injury Association Impairment Scale (AIS). The acute, sub-acute and 

chronic stages of SCI were included, as were traumatic and non-traumatic causes of SCI. The 

exclusion criteria for full-text screening were as follows: (a) article included a measure of 

mobility, and not balance per se (such as 10-Meter Walk Test, 6-Minute Walk Test, Timed Up-

and-Go), (b) conference abstracts, (c) review articles not presenting original data, and (d) animal 
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studies. In the case of a disagreement regarding inclusion, a third researcher reviewed the 

abstract to make a final decision. Screening of full-texts for inclusion was divided between all 

four researchers, with one researcher (TA) reviewing all full-texts to ensure consistency. The 

same inclusion and exclusion criteria used for the abstract screening were used for the screening 

of full-texts. 

5.2.2 Data extraction. 

Data from included full-text articles were entered into a data extraction table. Extracted 

data included information on participant characteristics, study design, and descriptions of the 

balance measures used including psychometric properties (explicitly tested validity, reliability 

and responsiveness). In the case of full-texts written in a language other than English, individuals 

proficient in that language assisted with data extraction. 

Methodological quality was evaluated by adapting the methods of Bisaro et al. (Bisaro, 

Bidonde, Kane, Bergsma, & Musselman, 2015) and Dobson et al. (Dobson, Morris, Baker, & 

Graham, 2007). Articles were evaluated on the adequacy of the description of the following: 

research participants, inclusion/exclusion criteria, sampling methods, method of data collection 

(i.e. prospective/retrospective), and psychometric properties of the balance measures used in the 

study. These categories were rated as adequate/partial, stated/not stated or yes/no, depending on 

the question (see Table 1). 

5.2.3 Data synthesis. 

The extracted data were synthesized to describe the use of balance measures in 

individuals with SCI. First, the total number of studies in which each measure was used was 

counted to identify the most frequently used measures. As the number and variety of measures 

directly assessing a biomechanical construct were large, these measures were grouped into the 

following categories to facilitate description: (a) measures related to center of pressure (COP) or 

COM, (b) electromyography (EMG), (c) forces or torques, (d) joint angles using motion capture, 

(e) instrumented reaching distance, (f) instrumented gait variables (e.g., foot placement 

variability), (g) reaction time or movement time, (h) others including fall threshold based on 

peak velocity and size of excursion, damping factor, and linear momentum.
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Table 5.1 

Study quality evaluation tool (Adapted from Bisaro et al. (2015) and Dobson et al. (2007) 

*Participants included patients from the local hospital; ƚParticipants recruited from ≥1 local hospital or 

organization with the aim of reaching all potential participants in the area; ǂAs per community-based, but 

geographical area larger (e.g., country- or state/province-wide) 

 

Next, the task(s) performed during each balance measure/grouping was identified to 

provide further description. Categories of tasks included sitting (e.g. supported/unsupported quiet 

sitting, reaching), standing (e.g. with eyes opened/closed, on stable/unstable surfaces, reaching), 

walking (e.g. with head turning, changing speed, tandem walk), and transferring (e.g. changing 

postures as during sit-to-stand or lateral transfers with or without arm use). 

Question Decision Rules 

Are participants characteristics adequately 

defined, including age, sex, level of injury, 

AIS level, time since injury? 

- Adequate = all details 

- Partial = 1 or 2 missing 

- Inadequate = more than 2 missing 

  

Are inclusion/exclusion criteria stated? - Stated = Clear list of both 

- Limited = 1 or 2 points only 

- Not Stated = no details of either 

  

What was the sampling method used? - Convenience* 

- Community-based ƚ 

- Population-basedǂ 

- Not stated 

  

Was the balance assessment performed 

prospectively or retrospectively? 

- Prospective = balance assessed at the time 

of study 

- Retrospective = balance assessed before 

beginning of the study, e.g. chart review 

  

Was the reliability of the measure stated or 

demonstrated? 

- Yes (list type[s], e.g. inter-rater, test-retest, 

internal consistency) 

- No 

  

Was the validity of the measure stated or 

demonstrated? 

- Yes (list type[s], e.g. concurrent, criterion, 

and content) 

- No 

 

Was the responsiveness of the measure stated 

or demonstrated? 

- Yes 

- No 
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The clinical utility of the balance measures was evaluated according to Tyson and 

Connell (Tyson & Connell, 2009) on the basis of (a) tool administration, analyses, and 

interpretation time (3: <10minutes; 2: 10-30minutes; 1: 30-60minutes; 0: >1hour), (b) associated 

cost (3: <£100; 2: £100-£500; 1: £500-£1000, 0:  >£1000 or unknown), (c) need of specialized 

equipment and training (2: no; 1:yes, but simple and clinically feasible; 0: yes, and not clinically 

feasible), and (d) ease of portability (2: easily; 1: portable in a briefcase or trolley; 0: no or very 

difficult). According to Tyson and Connell (2009), a score of >9/10 suggested a balance measure 

could be recommended for clinical use (i.e. high clinical utility). As balance consists of many 

components (Sibley et al., 2015), and may be evaluated during different tasks (e.g. sitting, 

standing, walking, transferring), one would expect some clinically useful measures to take more 

than ten minutes to complete. Hence, we have lowered the cut-off score to 8; measures scoring 

8/10 or greater had high clinical utility. 

For measures with high clinical utility, the following information was synthesized: (a) the 

psychometric properties (i.e. validity, reliability, and responsiveness) established in the SCI 

population, and (b) the comprehensiveness of each measure. Comprehensiveness was evaluated 

using the nine operational definitions of balance (Sibley et al., 2015) that were adapted from the 

original six domains of the Systems Framework for Postural Control (Horak, 2006). If the 

balance components of a measure were previously identified by Sibley et al. (Sibley et al., 2015), 

those identified components were reported here. For measures not assessed by Sibley et al. 

(Sibley et al., 2015), comprehensiveness was evaluated independently by two researchers (TA 

with AO) with a third researcher resolving any discrepancies (KM). 

5.3 Results 

A total of 2820 abstracts were obtained after de-duplication, and 222 were retained for 

full-text screening (Figure 2.1). Following full-text review, 127 articles were included. One of 

the articles was written in Korean (Kim, Chung, & Shin, 2010) for which data extraction was 

completed with the help of a person proficient in Korean. The supplementary tables S1 and S2 

summarize the data extracted from each study. Participants in these studies had a wide range of 

characteristics in terms of neurological level of injury (C1 to L5), time since injury (0.1 – 48 

years), and age (15.0 – 85.7 years). Forty-two percent of included studies (n = 54) involved 

individuals with motor incomplete injuries (i.e. AIS C and D), 29% of studies (n = 36) included 
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motor complete injuries (i.e. AIS A and B), and 22% of studies (n=28) included both motor 

incomplete and motor complete injuries. The remaining 7% of studies (n=9) did not specify 

completeness level of the participants. The majority of studies included individuals with SCI 

solely, whereas 6% of studies (n=7) also included other populations, such as traumatic brain 

injury (Betker, Desai, Nett, Kapadia, & Szturm, 2007; Freivogel, Mehrholz, Husak-Sotomayor, 

& Schmalohr, 2008), labyrinthine loss (Tokita, Miyata, Matsuoka, Taguchi, & Shimada, 1976), 

stroke (Kubota et al., 2013), Parkinson’s disease (Fritz et al., 2011), amputation (Pernot et al., 

2011), and polio (Altmann et al., 2016). 

5.3.1 Quality of studies. 

The majority of studies (n=124, 98%) collected data prospectively; only one study 

reported data from a retrospective chart review (Chan et al., 2017). Two studies (Tamburella, 

Scivoletto, Iosa, & Molinari, 2014; Tamburella, Scivoletto, & Molinari, 2013; Wirz, Muller, & 

Bastiaenen, 2010) used a mix of prospective and retrospective data collections (i.e., asking 

participants about falls experienced in the past was considered a retrospective collection (Wirz et 

al., 2010)). More than half of the studies (n=74, 58%) provided adequate information on 

participant characteristics including age, sex, level of injury, AIS level, and time since injury, 

whereas six (5%) studies did not provide sufficient information (>2 missing items), and 47 

(37%) studies provided partial (1-2 missing items) information. With respect to inclusion criteria, 

72 (57%) studies stated detailed inclusion criteria, whereas 30 (23%) studies provided only one 

to two criteria. Twenty-five (20%) studies did not state any inclusion criteria. Few studies used 

population- or community- based samples (one and six, respectively), with the majority (n=69, 

54%) of studies recruiting participants according to convenience. Forty percent (n=51) of the 

included studies did not report the recruitment strategy used. Thirteen percent (n=17) reported 

the validity, reliability, or responsiveness of the measures being used in the study. The 

supplementary table S3 summarizes the quality evaluation for each study.
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Figure 5.1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 

flow diagram. 

 

5.3.2 Balance measures used with individuals with SCI. 

A total of 30 balance measures were identified in this review. Eleven of these measures 

evaluated a biomechanical construct; for example, COP or COM related measures (Lemay & 

Nadeau, 2013; Tamburella et al., 2014) and instrumented gait variables (Day, Kautz, Wu, Suter, 

& Behrman, 2012) (Table 5.2). There was considerable heterogeneity in how the biomechanical 

constructs were measured; however, all measures fit into one of the groupings listed in Table 5.2. 
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The most commonly used biomechanical grouping was COP or COM (n=59, 46%), followed by 

EMG (n=12, 9%) and forces or torques (n=9, 7%). Measures of COP or COM were used to 

assess balance during all four tasks – sitting (Chaffin, Woolley, Dickerson, & Parkinson, 2004; 

Gauthier et al., 2012; Karatas, Tosun, & Kanath, 2008; Shin & Sosnoff, 2013), standing (Lemay 

& Nadeau, 2013; Middleton, Sinclair, Smith, & Davis, 1999), walking (Day et al., 2012) and 

transfers (Bahrami, Riener, Jabedar-Maralani, & Schmidt, 2000). EMG was utilized to evaluate 

muscle activity during sitting (Bahrami et al., 2000; Bjerkefors, Carpenter, Cresswell, & 

Thorstensson, 2009; Janssen-Potten, Seelen, Drukker, Huson, & Drost, 2001) and standing 

(Liechti, Muller, Lam, & Curt, 2008; Thigpen et al., 2009). Direct (e.g., ground reaction forces 

and torques) and indirect (e.g., stabilization and destabilization forces) measures of forces or 

torques were used to assess balance during sitting (Altmann et al., 2016; Triolo, Bailey, Miller, 

Lombardo, & Audu, 1766; Triolo RJ. Boggs L. Miller ME. Nemunaitis G. Nagy J. Nogan 

Bailey, 2009), walking (Desrosiers, Nadeau, & Duclos, 2015; Lemay et al., 2014; Lemay, 

Duclos, Nadeau, & Gagnon, 2015), and transfers (Gagnon, Duclos, Desjardins, Nadeau, & 

Danakas, 2012). 

Some biomechanical groupings captured balance during a single activity: Instrumented 

reaching distance (de Abreu, Takara, Metring, Reis, & Cliquet Jr, 2012; Field-Fote & Ray, 

2010), reaction/movement time (Janssen-Potten, Seelen, Drukker, Spaans, & Drost, 2002; 

Seelen, Janssen-Potten, & Adam, 2001), damping factor (Bernard, Peruchon, Micallef, Hertog, 

& Rabischong, 1994), and trunk stiffness (Audu & Triolo, 2015) were utilized to assess balance 

during sitting, and mainly in individuals with motor complete injuries. Instrumented gait 

variables and linear momentum were utilized to capture balance during walking (Day et al., 

2012; Tamburella et al., 2013; Wu, Landry, Schmit, Hornby, & Yen, 2012) and transfers 

(Bahrami et al., 2000), respectively. Walking balance was assessed only in individuals with AIS 

D classification. Nineteen balance measures identified in the review were balance scales, many 

of which were intended for use in clinical environments. Some balance scales assessed balance 

during a single activity (e.g. Functional Reach Test (FRT), Romberg sign, Dynamic Gait Index 

(DGI)), whereas other balance scales included more than one task (e.g. BBS, mini-Balance 

Evaluation Systems Test (mini-BESTest)) (Table 5.2). 
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Table 5.2  

Clinical utility and tasks evaluated by balance measures 
Balance Measure Number of 

studies 

Clinical Utility 

Score (/10) 

Tasks 

Evaluated 

Groupings By Biomechanical Construct    

a) COP/COM 59 0 (Si, Sa, W, T) 

b) EMG 12 1 (Si, Sa) 

c) Forces/Torques 9 2 (Si, W, T) 

d) Joint Angles using motion capture 7 0 (Si, Sa) 

e) Instrumented Reaching Distance 5 0 (Si) 

f) Instrumented Gait Variables 3 0 (W) 

g) Reaction/Movement Times 4 0 (Si) 

h) *Others (4) 4 0 (Si, Sa, T) 

    

Balance Scales    

a) Berg Balance Scale 43 8 (Si, Sa, T) 

b) Functional Reach Test 21 10 (Si, Sa) 

c) Dynamic Gait Index 3 8 (W) 

d) Tinetti Scale 2 9 (Si, Sa, W, T) 

e) Mini-BESTest 1 8 (Sa, W, T) 

f) Activity Based Level Evaluation 1 8 (Si, Sa, W, T) 

g) Clinical Test of Sensory 

Organization and Balance 

1 9 (Si) 

h) Test Table Test 1 10 (Si) 

i) Motor Assessment Scale 1 10 (Si) 

j) Sitting Balance Score 1 10 (Si) 

k) Romberg Test 1 10 (Sa, W) 

l) Community Balance and Mobility 1 8 (Sa, W) 

m) Balance CAT 1 10 (Si, Sa, T) 

n) Body Sway using Sway Meter 1 8 (Si, Sa) 

o) Standardized Obstacle Clearing 

Tests 

2 9 (W) 

p) T-shirt test 3 10 (Si) 

q) Timed Standing 1 10 (Sa) 

r) Timed Tandem Stance 1 10 (Sa) 

s) Seated Reaction to Perturbation 1 10 (Si) 

Si=sitting; Sa=standing; W=walking; T=transfers; *Others include Damping Factor, Linear 

Momentum, Trunk Stiffness, Fall Threshold. 
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The most commonly used balance scale was the BBS (n=43, 34%), followed by the FRT 

(n=21, 17%), performed in sitting (n=18, 14%), standing (n=2, 2%) or both sitting and standing 

(n=1, 1%). The remaining balance scales identified were used infrequently (i.e. in <3 studies) 

with individuals with SCI (see Table 5.2). 

Twelve balance scales evaluated sitting balance. Eight of these assessed the task of sitting 

alone (i.e. seated FRT, Test Table Test, Motor Assessment Scale, Sitting Balance Score, Sway 

Meter, Clinical Test of Sensory Organization and Balance, T-shirt Test, and Seated Reaction to 

Perturbation), with the seated FRT most commonly used (n=19, 15%). The seated FRT was used 

to assess sitting balance in individuals with motor complete injuries, with the exception of two 

studies (Srisim, Saengsuwan, & Amatachaya, 2015; Wall, Feinn, Chui, & Cheng, 2015) that 

included individuals with motor incomplete injuries. Four scales (BBS, Activity-Based Balance 

Level Evaluation (ABLE), Tinetti, and Balance CAT) assessed sitting balance along with 

balance during other tasks and were used with individuals with complete and incomplete injuries. 

Similarly, 11 balance scales evaluated standing balance in SCI; five scales examined standing 

balance in isolation (standing FRT, Traditional Romberg, Sway Meter, Timed Standing and 

Timed Tandem Stance) and six examined standing along with other tasks (BBS, ABLE, Tinetti, 

mini-BESTest, Community Balance & Mobility Scale (CB&M), and Balance CAT). All of these 

scales were used in individuals with incomplete injuries, except the BBS and ABLE, which were 

also used in individuals with complete injuries. 

Seven scales included an assessment of balance ability during walking; three of which 

focused solely on this task (DGI, Walking Romberg, Obstacle Clearance Test). As walking 

requires some lower extremity motor output, the DGI and Obstacle Clearance Test were used in 

individuals with motor incomplete injuries only. The severity of injury of the participants who 

completed the Walking Romberg test was not specified (Findlay, Balain, Trivedi, & Jaffray, 

2009). Scales that included an assessment of balance during walking along with other tasks were 

the ABLE, Tinetti, Mini-BESTest, and CB&M. 

The review did not identify any balance scale that assessed balance during a transfer task 

only; however, balance ability during some transfer activities such as lateral seated transfers, sit-
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to-stand and/or stand-to-sit was assessed as part of the BBS, ABLE, Tinetti, mini-BESTest, and 

Balance CAT. 

5.3.3 Clinical utility of the balance measures. 

Of the 30 balance scales and balance groupings, 19 scored ≥8 on the clinical utility scale 

(Tyson & Connell, 2009), and thus were considered to have high clinical utility (see Table 5.2 

for total scores, supplementary table S4 for score breakdown). The measures with high clinical 

utility were all balance scales intended for use in clinical environments such as the BBS, mini-

BEST, and FRT. These measures are inexpensive and do not require specialist training or 

equipment; however, some require structures such as stairs and ramps, and this reduced their 

portability rating. All measures based on biomechanical constructs scored 0-2 on the clinical 

utility scale suggesting low clinical utility. 

5.3.4 Comprehensiveness of clinical measures. 

Components of balance captured by each balance scale are shown in Table 3. Some of the 

measures did not provide enough information to evaluate comprehensiveness, such as the T-shirt 

Test (Boswell-Ruys et al., 2009, 2010; Chen et al., 2003), Timed Standing (Chisholm et al., 

2014), Timed Tandem Stance (Moriello et al., 2014), and Seated Reaction to Perturbation 

(Vilchis-Aranguren, Gayol-Merida, Quinzanos-Fresnedo, Perez-Zavala, & Galindez-Novoa, 

2015). All other scales captured at least two components of balance and none captured all nine 

components.  The mini-BESTest was the most comprehensive scale, as it captured all 

components except Functional Stability Limits. Each balance component was captured by at 

least one of the scales. Static stability was the most commonly assessed component (12 scales), 

whereas verticality was captured by only the mini-BESTest. 

5.3.5 Psychometric properties. 

At least one type of validity (construct, concurrent, discriminative, predictive, 

convergent, content, or criterion) and at least one type of reliability (test-retest, interrater, intra-

rater, or internal consistency) was established in the SCI population for seven balance scales 

including BBS, FRT, ABLE, Test Table Test, Motor Assessment Scale, Sitting Balance Score, 

and CB&M (see Table 4). Reliability, but not validity, was established for the Tinetti Scale 

(Tamburella et al., 2014) in the SCI population.  The psychometric properties of the BBS and 
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FRT have been established in individuals with wide spectrum of injury characteristics. For 

example, both measures have been validated in individuals with subacute (Boswell-Ruys et al., 

2009; Datta, Lorenz, & Harkema, 2012; Lemay & Nadeau, 2010; Sprigle, Maurer, & Holowka, 

2007) and chronic injuries (Sprigle, Wootten, Sawacha, & Thielman, 2003; Srisim et al., 2015; 

Wirz et al., 2010). Since most BBS items require standing without aids or braces, it has been 

used and validated in individuals with motor incomplete (AIS C & D) injuries. In contrast, FRT 

has been validated in individuals with motor complete (AIS A & B) (Adegoke, Ogwumike, & 

Olatemiju, 2002; Lynch, Leahy, & Barker, 1998) and incomplete (Field-Fote & Ray, 2010; 

Srisim et al., 2015) injuries. The BBS was shown to have interrater (Wirz et al., 2010) and 

intrarater (Tamburella et al., 2014) reliability, as well as construct (Datta et al., 2012) and 

concurrent (Lemay & Nadeau, 2010; Wirz et al., 2010) validity. However, the BBS was unable 

to predict those at risk of falls (Srisim et al., 2015; Wirz et al., 2010) or discriminate between 

those with tetraplegia and paraplegia (Lemay & Nadeau, 2010). The FRT was shown to have 

test-retest reliability by multiple researchers (Boswell-Ruys et al., 2009; Sprigle et al., 2007) and 

to possess interrater reliability (Srisim et al., 2015). With respect to validity, the FRT has 

convergent (Sprigle et al., 2007) and concurrent (Field-Fote & Ray, 2010) validity, and could 

predict those at risk of falling (Srisim et al., 2015).   Only four (3%) studies evaluated the 

responsiveness of a balance scale in individuals with SCI (Datta et al., 2012; Datta, Lorenz, 

Morrison, Ardolino, & Harkema, 2009; Forrest et al., 2012; Tamburella et al., 2014). All four of 

these studies established the responsiveness of BBS in individuals with subacute or chronic 

motor incomplete (AIS C or D) SCI.  Another study found the responsiveness of the Tinetti 

Scale to be low compared to that of the BBS in individuals with chronic AIS D SCI (Tamburella 

et al., 2014). In addition, one study also established the responsiveness of the seated FRT in 

individuals with early stages of their recovery; however the scale may have a ceiling effect 

(Forrest et al., 2012). 
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Table 5.4 

Types of validity and reliability tested for different non-biomechanical measures 
Scale Study Population Validity  Reliability  

BBS Datta et al., 

2012 

Subacute - 

chronicb  

AIS C - D  

 

 Construct 

 Principal Component 

Analysis 

 

 Lemay & 

Nadeau, 2010  

Subacute - 

chronicb 

AIS D 

 

 Concurrent 

 Correlation with walking 

tests 

 Discriminative 

 No significant difference 

between individuals with paraplegia 

and tetraplegia 

 

 Wirz et al., 

2010 

Chronicb 

AIS A – D 

 

 

 Concurrent 

 Correlated with mobility 

measures, fear of falling and motor 

scores 

 Predictive 

 Could not differentiate 

fallers from non-fallers 

 Interrater 

 

 Srisim et al., 

2015 

Chronica 

AIS C - D  

 Predictive 

 No significant difference 

between non-multiple fallers and 

multiple fallers 

 Interrater 

 Tamburella et 

al., 2014 

Sub-acute - 

chronica 

AIS D 

 

  Intra-rater 

FRT Sprigle et al., 

2007 

Sub-acute - 

chronicb 

 AIS levels 

not 

reported 

 Convergent 

 Correlation with ADL tasks 

 

 Discriminative  

 Differentiate between Cx 

from Tx and Lx impairment levels 

 Test-retest 

 BoswellRuys 

et al., 2009 

Subacute - 

chronica 

AIS A –D  

 

 Discriminative  

 Differentiate between higher 

(AIS A, C6-T7) from lower (AIS A-

D, T8-L2) level impairments 

 Differentiate between acute  

and chronic lesions 

 Test-retest 
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 Lynch et al., 

1998 

Chronicity 

not 

reportedc 

AIS A-B 

 Discriminative 

 Differentiate between 

individuals with C5-6 and T10-12, 

and between T1-4 and T10-12, but 

not between C5-C6 and T1-T4  

 

 Test-retest 

 Adegoke et al., 

2002 

Subacute – 

chronicb 

Complete 

and 

Incomplete 

(unable to 

stand) 

 Discriminative 

 No significant difference 

between three groups based on level 

of injury (C5-T1, T6-T8 and T10-L1) 

 Test-retest 

 Field-Fote & 

Ray, 2010 

Chronic 

AIS C – Da 

 

 Concurrent 

 Correlation with COP 

excursion 

 Test-retest 

 Srisim et al., 

2015 

Chronic 

AIS C – Da 

 Predictive 

 Prediction of falls with 73% 

sensitivity and 75% specificity 

 Interrater 

 Sprigle et al., 

2007 

Chronica 

AIS level 

not 

reported 

  Test-retest 

ABLE Ardolino et al., 

2012 

Chronicity 

not 

reportedc 

AIS C - D 

 Content  

 Through experts’ opinion 

 Construct 

 Principal Component 

Analysis 

 Discriminant 

 Differentiate between 3 

different groups – “walker”, 

“stander”, and “wheelchair-user”  

 Internal 

Consistency 

TTT Pernot et al., 

2011 

Chronica 

AIS A – D 

 Criterion  

 Correlation with “gold 

standard” balance perturbation task 

and COP excursion 

 

 Interrater 

MAS Jorgenssen et 

al., 2011 

Subacute – 

chronica 

AIS A-D 

 Convergent 

 Correlation with injury level, 

AIS, and FIM scores 

 Interrater 
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SBS Jorgenssen et 

al., 2011 

Subacute – 

chronica 

AIS A-D 

 Convergent 

 Correlation with injury level, 

AIS, and FIM scores 

 Interrater 

CB&

M 

Chan et al., 

2017 

Subacute 

AIS C - Da 

 Convergent 

 Correlation with BBS, 

6MWT, and 10mWT 

 Internal 

Consistency 

Tinett

i  

Tamburella et 

al., 2014 

Subacute – 

chronica 

AIS D  

  Intra-rater 

(*clearly defined by authors; ƚ=not clearly defined by authors but defined based on time since injury data 

provided in study; ǂ=not defined in study nor were time since injury data provided).  indicates that 

psychometric property was established.  indicates that psychometric property was tested, but not 

established. a= clearly defined by authors; b=not clearly defined by authors but defined based on time 

since injury data provided in study; c=not defined in study nor were time since injury data provided. 

BBS= Berg Balance Scale; FRT=Functional Reach Test; ABLE=Activity-Bases Level Evaluation; 

TTT=Test Table Test; MAS=Motor Assessment Scale; SBS=Sitting Balance Score; CB&M=Community 

Balance and Mobility; TSI = time since injury (< 6 months: subacute; >6months: chronic).  

Please refer to the publication for evidence and levels of psychometric properties 
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5.4 Discussion 

Falls are a common occurrence among individuals with SCI, especially those with some 

sensorimotor function below the level of injury (Brotherton et al., 2007). A comprehensive and 

psychometrically-sound assessment of balance is crucial for the identification of those at risk of 

falling, and for the development and progression of rehabilitation programs. Here we completed 

a systematic review following PRISMA guidelines to describe the current state of the use of 

balance measures among the SCI population. A total of 127 studies were found to assess balance 

in individuals with SCI with all levels of neurological damage and injury severity represented. 

Thirty balance measures were identified; 11 measured a biomechanical construct, and 19 were 

balance scales primarily intended for use in clinical environments. The majority of studies were 

prospective assessments that provided adequate information about study inclusion and 

participant characteristics; however, about half of the studies recruited samples of convenience, 

thereby increasing the risk of bias in the research.  

Among the studies that evaluated a biomechanical construct, measures of COP or COM 

were the most common and were used to evaluate balance across all tasks – sitting, standing, 

walking and transferring. Not surprisingly, all groupings of biomechanical constructs rated 

poorly on the scale of clinical utility (≤2/10) thereby limiting the likelihood of use in clinical 

environments. Among the balance scales identified in this review, the BBS was the most 

frequently used, followed by the FRT. Both had high clinical utility, but they were not the most 

comprehensive scales. Although both BBS and FRT have support for their validity (Datta et al., 

2012; Lemay & Nadeau, 2010; Lynch et al., 1998; Sprigle et al., 2007), reliability (Lynch et al., 

1998; Tamburella et al., 2014; Wirz et al., 2010) and responsiveness (Datta et al., 2012, 2009) 

among individuals with subacute and/or chronic SCI, the BBS was unable to predict falls in 

individuals with incomplete SCI (Srisim et al., 2015; Wirz et al., 2010). The FRT may have more 

promise as a means to predict falls in individuals with SCI as compared to the BBS (Srisim et al., 

2015).  

Ideally, a measure of balance for the SCI population will be comprehensive, 

psychometrically-sound and have high clinical utility. All balance scales identified in this review 

had high clinical utility (i.e. ≥8/10), but few had established psychometric properties in the SCI 

population, with the exception of the BBS and FRT, as detailed above. Further, most scales were 

lacking in comprehensiveness. The balance scales found to be the most comprehensive were the 



 
 

 95 

Tinetti Scale, the mini-BESTest and the ABLE.  The Tinetti Scale and ABLE evaluated seven of 

the nine domains of postural control, while the miniBESTest addressed eight. In contrast, most 

other balance scales used with individuals with SCI included five or fewer domains of postural 

control. As found in previous literature (Sibley et al., 2015), some balance domains (i.e. static 

stability, underlying motor systems, anticipatory postural control and sensory integration) were 

included in most scales. The domains of verticality, reactive postural control, and cognitive 

influences were less frequently incorporated into the balance scales, with only the mini-BESTest 

including all three. The mini-BESTest, however, lacks as assessment of sitting balance, whereas 

the Tinetti Scale and ABLE captured balance during all four tasks - sitting, standing, walking, 

and transferring. 

Despite the comprehensiveness and high clinical utility of the mini-BESTest, ABLE and 

Tinetti Scale, their psychometric properties among the SCI population are not well-established.  

The Tinetti Scale does have high interrater reliability, but has low responsiveness among 

individuals with sub-acute and chronic AIS D SCI (Tamburella et al., 2014). One study 

established the validity (content, construct and discriminant) and internal consistency of the 

ABLE among individuals with incomplete and complete SCI (Ardolino, Hutchinson, Pinto Zipp, 

Clark, & Harkema, 2012). Another study published in June 2017 (i.e. after this review’s search 

date) demonstrated internal consistency and high construct validity of the mini-BESTest among 

individuals with chronic AIS D SCI (Jorgensen, Opheim, Halvarsson, Franzen, & Roaldsen, 

2017). Hence, the mini-BESTest and ABLE are promising measures of balance for clinical use 

with individuals with SCI, and the SCI-specific psychometric properties of these scales should be 

further established. 

This systematic review evaluated 19 balance scales for the SCI population, whereas the 

SCI EDGE Task Force reviewed only seven balance measures (Kahn et al., 2016). The 

discrepancy likely resulted from the differing methodology used to identify balance measures 

used with this population and the differing search dates (i.e. our review includes more recent 

literature). As a result, our recommendations concerning the best-available balance measures to 

use clinically, as well as what knowledge gaps exist, differ from the SCI EDGE Task force 

(Kahn et al., 2016).     

With respect to knowledge gaps, the results of this review highlight the need for further 

research and development in several areas of balance assessment for the SCI population. 
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However, our review has identified differing and more specific gaps than the work by Kahn and 

colleagues (Kahn et al., 2016). For example, Kahn et al. (Kahn et al., 2016) suggested that the 

field lacked a measure of ambulatory balance; however, our review identified seven scales that 

include assessment of walking balance. From the results of our systematic review, we have 

identified three gaps in balance assessment for individuals with SCI. First, the psychometric 

properties of the most comprehensive balance scales (i.e. Tinetti Scale, mini-BESTest and 

ABLE) should be further evaluated in individuals with sub-acute and chronic SCI. Second, as 

few studies to date have investigated the responsiveness of balance scales in individuals with SCI 

(Datta et al., 2012, 2009; Forrest et al., 2012; Tamburella et al., 2013), there is a need to identify 

balance scales that are responsive to change. Third, the development of a scale that evaluates 

balance during transfers in isolation is warranted. Transferring is an important functional task 

that is known to place wheelchair-users with SCI at risk of falls (Nelson et al., 2003). A measure 

of transfer skill for the SCI population was returned in the search (the Transfer Assessment 

Instrument (Tsai, Rice, Hoelmer, Boninger, & Koontz, 2013; You, Huang, & Huang, 2003)); 

however, it was excluded as it was deemed not to assess balance ability.  

5.4.1 Study limitations. 

There are a few study limitations to note. First, the reliance on samples of convenience in 

54% of the studies places the findings at a greater risk of bias. Second, all but one of the included 

studies were written in English, even though we did not restrict the language in the search. This 

observation may suggest that the generalizability of the results is limited geographically. 

5.5 Conclusion 

In this review we identified the measures of balance that have been used with the SCI 

population, as well as areas of balance assessment for SCI in need of further research. To-date no 

single balance scale meets all criteria of a useful balance scale – high clinical utility, strong 

psychometric properties and inclusive of all domains of postural control (i.e. comprehensive). 

Following further evaluation of their psychometric properties in SCI population, the mini-

BESTest and ABLE may fill this need. 
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RELEVANCE OF CHAPTER FIVE TO THE THESIS 

 

 After understanding sensory integration, dynamic walking control, and reactive balance 

control in individuals with iSCI in the previous chapters, this chapter describes the current state 

of balance assessment measures available for individuals with SCI. An accurate and 

comprehensive assessment of balance control in clinical settings is necessary for identifying 

people at risk of falling and to monitor changes with rehabilitation over time; results of this study 

throw light on the clinical utility, psychometric properties, and different aspects of balance 

assessed by the currently available balance control measures in SCI population. Some clinical 

measures, like the Berg Balance Scale (Datta, Lorenz, & Harkema, 2012; Wirz, Muller, & 

Bastiaenen, 2010) and the Functional Reach Test (Boswell-Ruys et al., 2009; Sprigle, Maurer, & 

Holowka, 2007), have sound psychometric properties; however, they do not assess all balance 

domains as identified by the Systems Framework for Postural Control. The mini-Balance 

Evaluation Systems Test was found to be the most comprehensive measure (Sibley et al., 2015); 

however, further psychometric evaluation in the SCI population is required. The findings of this 

study also call for biomechanical validation of clinical measures, which is currently tested only 

by a few studies (such as Field-Fote & Ray, 2010; Pernot et al., 2011). This study clearly 

identifies gaps in the assessment of balance control in individuals with SCI in clinical settings.   
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CHAPTER SIX: GENERAL DISCUSSION AND CONCLUSIONS 

Safe walking and fall prevention among individuals with SCI is likely to improve their 

quality of life and reduce the economic burden on the health care system. The goal for this thesis 

was to develop a better understanding of balance control in individuals with iSCI and to review 

how balance is assessed in individuals with SCI. A better understanding of balance assessment 

and control in the SCI population is a first step toward improved rehabilitation services for 

individuals with SCI. 

The first, second and third objectives were focussed on understanding the potential of 

individuals with chronic iSCI to use different domains of balance control. Balance control is 

complex, and studying all the components of balance was beyond the scope of this thesis. We 

selectively chose to study the sensory integration, dynamic balance control, and movement 

strategies domains of Systems Framework For Postural Control (Horak, 2006). 

The second chapter investigated the sensory integration component of balance control 

during quiet standing. This study looked at the effects of haptic input in the form of light 

fingertip touch on standing balance in individuals with chronic iSCI. The results of this study 

suggest that individuals with chronic iSCI have the potential to utilize the visual and additional 

haptic input to compensate for the loss of lower extremity sensations during quiet standing. 

Furthermore, the beneficial effect of light touch is correlated with the intact sensory function in 

the touch finger and the extent of impairment in the lower extremity sensation.  

The third and fourth chapters investigated dynamic stability during walking, and reactive 

responses after an unexpected slip in individuals with chronic iSCI, respectively. The results 

suggest individuals with chronic iSCI are more stable than AB individuals due to their slower 

walking velocity, shorter step length, and the greater percentage of the gait cycle spent in double 

stance. Slower walking velocity was also found to be associated with a lower intensity of slip on 

an unexpected slip perturbation. This greater stability was observed only during normal walking 

and does not necessarily meant protection from falls once balance was perturbed as individuals 

with chronic iSCI were found to have less effective reactive responses including a slower onset 

of TA muscle activity and a smaller magnitude of trail side SOL muscle as compared to AB 

individuals. Strategies to achieve a greater stability during normal walking and limitations in 
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reactive responses among individuals with iSCI highlight limitations in their balance control, and 

a greater risk of falls. 

To identify individuals at risk of falling, there is a need for comprehensive measures of 

balance control that have established psychometric properties and can be easily implemented in a 

clinical environment. The study in the fifth chapter systematically searched and reviewed all 

studies that have used a measure to assess balance control in individuals with SCI. Nineteen 

measures were found to have high clinical utility in terms of associated time, cost, specialized 

equipment/training, and portability. These measures can be easily used in clinical settings; 

however, our study identified gaps in the comprehensiveness and psychometric properties of 

these measures. The most commonly used measures (Berg Balance Scale and Functional Reach 

Test) have established psychometric properties but are not the most comprehensive. The more 

comprehensive measures (Mini-Balance Evaluation Systems Test and the Activity Based Level 

Evaluation Scale) need to be evaluated for their psychometric properties in individuals with SCI. 

The findings from this thesis have a direct impact on SCI rehabilitation. The results 

emphasize the importance of comprehensive balance assessment and training for people with 

SCI who are at risk of falls. Assessment of stability during normal walking such as step width, 

percentage of gait in double stance, etc. can lead to a false impression of better balance control 

and lower chances of falls among individuals with iSCI. For example, older individuals with 

strategies for greater stability during walking were found to be at a greater risk of falls (Maki, 

1997). Assessing reactive balance control; therefore, is of utmost importance to accurately 

identify individuals at risk of falls. Researchers and clinicians can benefit from the findings of 

the first study in selecting appropriate balance measures depending on the type(s) of activity 

(sit/stand/walk/transfer), and domain(s) of balance to be assessed. By establishing limitations in 

reactive balance, this study also opens up the avenues for testing the effectiveness of 

perturbation-based reactive balance training in individuals with iSCI, which has proven to be 

successful in older individuals (Pai & Bhatt, 2007), and individuals with stroke (Mansfield, 

Wong, Bryce, Knorr, & Patterson, 2015) and Parkinson’s disease (Mansfield et al., 2015). 

Establishing the beneficial effects of light touch on standing balance paves the way to study the 

effects of haptic input during walking in individuals with iSCI and can help to design strategies 

and devices to provide additional sensory input for improving balance.  For example, in patients 
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with stroke, a light touch cue provided through a cane can improve walking stability similar to 

that seen during heavy touch, but allows greater weight bearing through lower extremities 

(Boonsinsukh, Panichareon, & Phansuwan-Pujito, 2009). Effectiveness of haptic input in form of 

light touch in improving balance also call for further studies to try different forms of haptic input 

such as haptic anchors that consist of small weights connected to a cord and dragged on the floor   

(Hedayat, Moraes, Lanovaz, & Oates, 2017) for improving stability in individuals with iSCI.  

6.1 Strengths, Limitations and Future Directions 

Overall, these studies provide valuable information about balance control in individuals 

with iSCI. Including age-and-sex matched AB individuals as a control group allowed us study 

the effect of impairments on balance controlling for age and sex. We were able to obtain an 

unexpected slip in all participants except one, which allowed us to study true reactive responses. 

Unlike other studies that provide perturbations with a moving platform (Thigpen et al., 2009), 

our study used a slip device which is more similar to slips in real-life settings as the extent of 

perturbation is dependent on the walking behaviour of the individual. To study balance, we used 

various analyses - kinetic, kinematic, and EMG, which adds to the comprehensiveness of balance 

assessments that were included in this study.  

There were some limitations in the studies, such as a small sample size due to the smaller 

population of individuals with iSCI in Saskatchewan. We also had difficulty finding age matched 

AB controls especially males over the age of 70 years. A small sample size could have led to a 

lack of significance in some of our between iSCI/AB group comparisons; however, the effect 

size for most of the comparisons was medium to large in our studies. In future, studies can 

involve multiple sites to obtain a larger sample size. The fear of falls being a predictor of future 

falls in individuals with iSCI (Jorgensen et al., 2017) means it can potentially have an effect on 

their balance control, which was not controlled for in our study. Future studies should measure 

and include the presence or absence of fear of falls in the participants, and include that in the 

analysis. The dimensions of the slip device may have limited the displacement of the slip; 

however, as compared to a previous study, participants appeared to have reached their maximum 

heel velocity post slip perturbation, which should have elicited the true reactive response (Cham 

& Redfern, 2002). The slip occurred only under one foot which makes it similar to stepping on a 

small patch of slippery surface, but it is different from stepping on other slippery surfaces (e.g., 
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wet floors, skating/curling rinks, etc.) due to the size of slippery surface. In our studies we did 

not look at other forms of perturbations such as trip, which can be studied in the future studies. 

There is also a need of studying walking stability in environments that mimic the real world. A 

lot of biomechanical variables used to measure balance are dependent on velocity, so differences 

between the groups might be mediated by slower velocity in iSCI group; however, that is the 

normal behaviour of both groups which we wanted to study. All of the participants with iSCI had 

AIS D levels; therefore, the results cannot be generalized to all ambulatory individuals with iSCI. 

There is a need in future to study other sub-groups of SCI. 

This thesis studied sensory integration, walking stability, and reactive strategies for 

balance control in individuals with iSCI. There are other components of balance such as 

proactive strategies, cognitive processing (involving attention and learning), limits of stability, 

orientation in space, etc. that need to be explored in this population. Future studies are also 

needed to see the effect of perturbation-based balance training to improve reactive balance in 

individuals with iSCI (Unger et al., 2018).  

Overall, there is no single comprehensive measure with high clinical utility and 

established psychometric properties to assess balance in SCI population in clinical settings; 

however, the mini-BESTest and ABLE, upon establishment of psychometric properties in SCI 

population, may fill this gap. Individuals with chronic iSCI have the potential to use additional 

sensory information in form of light touch to improve standing balance. Clinicians can use this 

information to provide additional sensory information in form of light touch to improve standing 

balance in their patients who have adequate muscle strength to stand, but lack necessary sensory 

input about their body’s orientation in space. Individuals with chronic iSCI adopt strategies for 

greater stability while walking, which could be to compensate for the limitations in their reactive 

balance. Clinicians can benefit from these findings by including assessment of reactive 

component of balance control. Assessing balance control during unperturbed walking may miss 

identifying individuals at risk of falls as individuals with iSCI are more stable when walking at a 

self-selected speed; however, when their balance is perturbed, they have limitations in their 

reactive responses. The findings of this thesis highlight the need for the assessment and 

rehabilitation of balance control after iSCI. 
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APPENDIX A. Sample Search Strategy for the Systematic Literature Review
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PubMed 

("Spinal Cord Injuries"[ MeSH Terms] OR "spinal cord injuries" OR "spinal cord injury") 

AND ("Postural Balance"[ MeSH Terms] OR "stability" OR "static balance" OR "dynamic 

balance" OR "walking balance" OR "sitting balance" OR "standing balance" OR "posture" 

OR "body equilibrium" OR "body posture" OR "unsteadiness" OR "balance impairment" OR 

"balance disorder" OR "balance") AND ("Humans"[ MeSH Terms])  
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Citation Reason for Balance Assessment
Biomechanical or Non-

Biomechanical Measure

Biomechanical Measure Category 

1) Gait variables: speed, cadence, stride/stride 

length, stride/stride length variability, stance 

phase, double-support time)

2) COP/COG related measures:  COP distance 

measure ---- COP area measure --- COP velocity  

measure --- COP variability measure (RMS) --- 

COP frequency measure ---  Margin of Stability --- 

other measures derived from COP/COM

3) Joint angles

4) EMG

5) Reaching distance

NON-BIOMECHANICAL measure(s) used

Adegoke et al.
1 > to investigate differences in dynamic balance of patients with different levels of spinal cord injury

> to investigate intraclass coefficient of the modified functional reach test
Non-Biomechanical N/A > FRT

Alexeeva et al.
2 > to compare the effect of 3 forms of training (TRK, TM and PT) on balance (along with other measures) Non-Biomechanical N/A > Tinetti Scale

Allison & Singer 
3 > to investigate the biomechanical and functional adaptations during reaching and transfer tasks Biomechanical

> COP distance measure

> COP frequency measure N/A

Altmann et al.
4 to validate the Trunk Impairment Classification (TIC) by comparing sitting balance scores between participants of different 

impairment groups
Biomechanical

> COP distance measure

> COP area measures

> Forces/Torques: maximum isometric force in trunk 

muscle strength

N/A

Amatachaya, Pramodhyakul  & Srisim 
5 > to compare balance ability between participants who pass and failon an obstacle crossing task Non-Biomechanical N/A > Ability to Cross Obstacles

Amatachaya, Pramodhyakul, Wattanapan, & 

Eungpinichpong.
6 to test the relationship between failure on obstacle clearing and occurrence of falls Non-Biomechanical N/A > Ability to Cross Obstacles

Arazpour et al.
7 > to investigate the influence of ankle joint motion on postural stability and walking in people with SCI when using an 

orthosis
Biomechanical > COP distance measure N/A

Ardolino et al.
8 > to develop a new balance outcome measure speficic to SCI population

> to determine psychometric properties of the new scale using Rasch analysis
Non-Biomechanical N/A > ABLE

Audu & Triolo.
9 to determine the extent of active and passive control mechanisms of seated balance Biomechanical

> Joint angles: pelvic and trunk angle

> others: trunk stiffness
N/A

Audu et al.
10 > to test a FNS based feedback control system that was developed for control of seated balance in individuals with SCI Biomechanical

> Joint angle: Trunk tilt as obtained using 

accelerometers and time taken to bring the angle back 

to a certain state

N/A

Baardman et al.
11 > to compare functional standing performance in the Advanced Reciprocating Gait Orthosis (ARGO)  with and without hip 

joint link
Biomechanical

> COP distance measure

> other measures derived from COP: time taken to 

return the position signal value to close to the value 

just prior to the perturbation

N/A

Bahrami et al.
12 > to compare stability (among other measures) during the sit-to-stand transfer in the healthy and paraplegic subjects. Biomechanical

> COP/COM distance measure

> others: linear momentum in vertical and horizontal 

directions

N/A

Barthelemy et al.
13 > To determine correlation between a balance measure (in addition to other measures) and maximum toe elevation during 

walking
Non-Biomechanical N/A > BBS

Barthelemy, et al.,
14 to correlate transmission in descending pathways using imaging and electrophysiological techniques with balance measures 

(among other  measures)
Non-Biomechanical N/A > BBS

Behrman et al.
15 > to evaluate baseline variability in performance and recovery in balance (along with other measures) measures following a 

therapeutic intervention 
Non-Biomechanical N/A > BBS

Benedetti et al.
16 > to evaluate the effect of training on postural control in the upright position in paraplegic patients who were using advanced 

reciprocating gait orthoses
Biomechanical

> others: fall threshold based on peak velocity and 

size of the platform excursion
N/A

Bernard et al.
17 > to assess the ability of paraplegics to obtain trunk balance under dynamic stresses, and 

> to analyze the various balance strategies according to the level of lesion
Biomechanical

> others: dampning factor - subject's ability to 

maintain head at the lowest level of acceleration 

following a perturbation

N/A

Betker et al.
18 > to describe rehabilitation protocol using COP-controlled video game-based tool for the maintenance of balance in a short-

sitting position in individuals with SCI
Non-Biomechanical N/A > CTSIB

Bishop et al.
19 > to document benefits ofrobotic  gait training on BBS scores (among other functional measures) in an individual with iSCI Non-Biomechanical N/A > BBS

Bjerkefors et al.
20 > to determine the influence of training on a modified kayak ergometer on postural responses to support surface translations in 

persons with long-standing SCI 
Biomechanical

> Joint angles: trunk angular and linear displacement 

in AP and ML directions
N/A

Bjerkefors et al.
21 >  to investigate activation of upper body muscles, including deep abdominal muscles in reaction to unexpected balance 

perturbations
Biomechanical

> EMG (surface and intra-muscular): onset times and 

patterns
N/A

Bolin et al.
22 to study the effect of sitting position on sitting balance (along with other measures) Non-Biomechanical N/A > FRT

BoswellRuys et al.
23 > to evaluate the effectiveness of a 6-week task-specific training programme on ability to sit unsupported Non-Biomechanical N/A

> FRT

> Timed Dressing/Undressing

BoswellRuys, et al.
24

>  to devise a battery of tests to assess abilities of individuals with SCI to sit unsupported  

> to examine the reliability of these tests in people with SCI

> to assess the correlation of the measures 

> to determine the validity of the tests by assessing their ability to detect differences in neurologic level of SCI and time since 

injury 

Non-Biomechanical N/A

> using the Lord Sway Meter to calculate sway and 

reach

> FRT

> Timed Dressing/Undressing

Braz et al.
25 > to evaluate stability during  FES neuroprosthesis assisted standning in order to compare different strategies of stimulation   - 

hand controlled operation and using kinematic feedback strategies 
Biomechanical

> other measure derived from COP: stability zones 

based on COP position relative to the base of support 

area

N/A

Buehner et al.
26

> to identify the effect of locomotor training on BBS (among other measures) and 

> as a secondary objective to see if pretraining ISNCSCI measures are related to locomotor and balance performance after 

locomotor training

Non-Biomechanical N/A > BBS

Chaffin et al.
27 > Describe "motion dynamics" when seated and moving weighted objects in workspace Biomechanical > COP distance measure N/A

Chan et al.,
28 to validate the Community Balance and Mobility Scale (CB&M) and establish it's internal consistency in individuals with 

iSCI during inpatient rehabilitation 
Non-Biomechanical N/A > BBS

> CB&M

Chen et al.
29

> to compare the sitting stability between patients with high and low thoracic SCI 

> to determine factors that can predict sitting stability; and 

> to examine the relation between injury level, sitting stability, and functional performance. 

Both
> COP distance measure

> COP variability measure > Timed Dressing/Undressing

Chisholm et al.
30 > to evaluate the feasability of a sensory tongue stimulation with balance and gait training on balance(along with other 

functional outcomes) in people with iSCI. 
Non-Biomechanical N/A > Timed Standing

Cybulski & Jaeger
31 > to quantitatively measure standing balance under different conditions and studying how vision and upper extremity 

information contribute to maintenance of upright posture in healthy and paraplegic subjects
Biomechanical

> COP distance measure

> COP frequency measure
N/A

Datta et al.
32 > to perform principal components analysis of the BBS in patients with motor incomplete (AIS C or D) SCI in order to  

evaluate it utility in the SCI population
Non-Biomechanical N/A

> BBS

Datta et al.
33

> to evaluate the utility of the Berg Balance Scale among patients with motor incomplete spinal cord injuries (SCIs)

> to determine how the utility of the Berg Balance Scale changes over time with activity- based therapy, 

> to identify differences in scale utility across patient groups defined by status of  recovery.

Non-Biomechanical N/A > BBS

Day et al. 
34

> Examine walking balance through foot placement variability 

 > Assess relationship between measures of variability & clinical balance assessments 

 > Determine if spatial parameter variability can be used as a clinical correlate for complex balance measurements

Both

> Gait variables: Step length/width variability

> other measure derived from COP: Margin of 

Stability

> BBS

> DGI

de Abreu et al.
35 > to evaluate the influence of different types of wheelchair seats on postural control of individuals with paraplegia Biomechanical Reaching Distance: Trunk anterior displacement N/A

Desrosiers, Nadeau, & Duclos.
36 > to study the postural adaptations during overground walking on level and inclined surfaces. Both

> Forces/Torques: Stabilizing and Destabilizing 

forces calculated from kinematic and kinetic data
> BBS

Ditunno et al.
37 > to correlate improvements in BBS (in addition to other measures of walking function) with WISCI scores Non-Biomechanical N/A > BBS

Field-Fote & Ray.
38 > to test validity and reliability of the SRT (seated reach test) in measuring seated postural control in individuals with motor 

iSCI
Biomechanical

> COP distance measure

> Reaching distance: wrist and trunk excursion N/A

Findlay et al.
39 > to determine if performing the Romberg while walking is more sensitive than the traditional Romberg test for identifying 

cervical myelopathy.
Non-Biomechanical N/A > Romberg's Sign

Forrest et al.
40

>  to examine the relationships among the 6-minute walk, 10-meter walk, Berg Balance Scale, and Modified Functional 

Reach in response to standardized locomotor training in individuals with incomplete SCI

> to assess whether the relationships among the measures are dependent on the level of functional ability as assessed using 

Neuromuscular Recovery Scale (NRS)

Non-Biomechanical N/A
> BBS

> FRT

Foster et al.
41 to describe the effects of backward walking training on balance (along with other measures) Both> other measure derived from COP: sensory organization test using computerized dynamic posturography (CTSIB components)> BBS

Freivogel et al.
42

> to evaluate effects of a newly developed electromechanical gait device (LokoHelp, Medburg Basel) on postural control and 

balance (in addition to other parameters) Non-Biomechanical N/A > BBS

Fritz, S. et al.
43 > to evaluate the effects of intensive mobility training on gait, balance, and mobility in individuals with iSCI Non-Biomechanical N/A

> BBS

> DGI
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Fritz, S., et al.
44 > to see improvements in balance (along with other gait and mobility) with intensive mobility training Non-Biomechanical N/A

> BBS

> DGI

Gagnon et al.
45 > to measure dynamic stability requirements during sitting pivot transfers Biomechanical

> Forces/Torques: Stabilizing and Destabilizing 

forces calculated from kinematic and kinetic data
N/A

Gao et al.
46

> to assess dynamic sitting balance using a newly developed tool, and

> to test the reliability and validity of the new tool for measuring the dynamic sitting balance of wheelchair users with spinal 

cord injury

Biomechanical
> COP distance measure

> other measures derived from COP: directional 

control of COP and reaction time

N/A

Gauthier et al.
47 > Determine the direction of trunk inclincation that predicts multidirectional postural stability while seated Biomechanical 

> COP distance measure

> COP area measure

> other measures derived from COP: specific stability 

index and overall stability indexes

N/A

Gauthier et al.
48

> to compare multidirectional seated postural stability between individuals with and without SCI 

> to evaluate the effects of back and abdominal muscles on multidirectional seated postural stability by comparing 

individiduals who have partial or complete innervations of their low back and abdominal muscles to those who have complete 

paralysis

> to verify if individuals with SCI who have partial or complete innervations of their low back and abdominal muscles had 

multidirectional seated postural stability ability similar to healthy controls. 

Biomechanical 

> COP distance measure

> COP area measure

> other measures derived from COP: direction 

specific stability index and overall stability index

N/A

Gillette et al.
49

> to document a variety of COP measures during standing

> to compare AB and FNS standing

> to relate various measures to overall quality of standing performance

Biomechanical
> COP distance measure

> COP velocity measure

> COP frequency measure

N/A

Gillette et al.
50 > to compare postural parameters during quiet standing between able-bodied individuals, and individuals with SCI that stood 

using functional neuromuscular stimulation.
Biomechanical > COP distance measure N/A

Gorgey et al.
51 > to determine the effects of locmotor training programs on BBS (along other measures) Non-Biomechanical N/A > BBS

Granat et al.
52 > to evaluate theapeutic effects of an FES gait programme on standing balance measure (among other measures) in iSCI 

patients
Biomechanical

> COP velocity measure

> COP area measure
N/A

Grangeon et al.
53

>  to compare quasi-static postural stability between individuals with SCI and healthy controls during short-sitting positions 

> to evaluate the association between demographics and clinical measures (sensorimotor impairments and time since injury), 

and quasi-static seated postural stability measures 

Biomechanical 

> COP distance measure

> COP velocity measure

> COP area measure

> COP frequency measure 

N/A

Grigorenko et al.
54 > to compare sitting balance in SCI and AB individuals and to evaluate the effects of a period of open sea kayak training on 

sitting balance in a group of people with SCI
Biomechanical

> COP distance measure

> COP velocity measure

> COP variability measure

> COP frequency measure

N/A

Harel et al.
55 > to measure the sensitivity of a computerized posturography system (Neurocom Smart EquiTest) to injury and lesion level in 

comparison to other commonly used clinical tests inclduing BBS and MFRT.
Both

> COP distance measure

> other measures derived from COP: limits of 

stability + CTSIB components

> BBS

> FRT

Harkema et al.
56 > to evaluate the effects of intensive locomotor training on balance and ambulatory function in individuals with iSCI Non-Biomechanical N/A

> BBS

Harvey et al.
57 > to assess the effects of an "intensive motor training program directed at improving the ability to sit unsupported" Non-Biomechanical N/A > FRT

Janssen_Potten et al.
58

> to study the effect of seat tilting on balance  control measure (amont other measures) in  persons  with a thoracic spinal cord 

injury Both
> COP distance measure

> EMG

> Joint angle (pelvic tilt)

> FRT

Janssen-Potten et al.
59 > to study whether chair configuration influences sitting balance in persons with spinal cord injury Both

> COP distance measure

> EMG: mean rectified activity 
> FRT

Janssen-Potten et al.
60 > to investigate if foot rests contribute to active control of sitting balance Both

> COP distance measure

> EMG: mean rectified activity over fixed time 

intervals

> others: reactiontime/movement time

> FRT

John, L. et al.
61 > to estimate the effect of fear of falling on postural control of individuals with paraplegia using KAFO

> to explore the relationship between postural conrol and gait parameters in individuals with paraplegia 
Biomechanical

> COP distance measure

> COP velocity measure
N/A

Jorgensen et al.
62 > to assess inter-rater reliability and validity of two measures - the Motor Assessment Scale and the Sitting Balance Score Non-Biomechanical N/A

> MAS 

> SBS

Kamper, Barin et al.
63 > to examine the lateral postural stability of seated individuals with SCI in dynamic environment Biomechanical

> COP distance measure

> COP velocity measure

> other measures derived from COP: FLCOP and 

DFLCOP

> Forces/Torques: estimates of joint torques, segment 

angles and trajectories

N/A

Kamper, Parnianpour et al.
64 > to examine postural stability of individuals with spinal cord injury when exposed to external perturbation Biomechanical

> COP distance measure

> other measures derived from COP: fraction of limit 

of COP
N/A

Karatas et al.
65 > Evaluate center-of-pressure displacement in sitting  

> Investigate relationship between dynamic sitting stability & pressure ulcers
Biomechanical > COP distance measure N/A

Karcnik & Kralj 
66 > to discuss mutual dependance of crutch-assisted gait velocity and stability from a biomechanical perspective Biomechanical

> other measures derived from COP - Relative 

Kinematic Stability Index and Absolute Dynamic 

Index

N/A

Karimi et al.
67 > to evaluate the standing performance of individuals with paraplegia whiled using a new orthosis -  Mohammad Taghi 

Karimi Reciprocal Gait Orthosis (MTK-RGO)
Biomechanical

> COP distance measure

> COP velocity measure
N/A

Kim et al.,
68 to evaluate correlation between K-BBS with WISCI and SCIM Non-Biomechanical N/A > BBS

Kim, Chung, & Shin. 
69 > to examine the effect of goal-oriented training on an unstable surface on the sitting balance ability of patients with spinal 

cord Injury
Both

> COP velocity measure

> COP area measure

> other measures derived from COP: angle of sway 

from COM (results not reported)

> FRT

Kizony et al.
70 >  to examine relationships between static balance test performance and performance within the virtual environments (VEs) 

> to compare performances within the VEs between participants with SCI and able-bodied participants
Non-Biomechanical N/A > FRT

Kubota et al.
71 >  to assess changes in balance ability after a rehabilitation training with a new robot to evaluate the feasibility of the training Non-Biomechanical N/A > BBS

Labruyere & van Hedel.
72 > to investigate immediate and longitudinal effects of two interventions on balance (among other measures) in patients with 

chronic iSCI
Both > COP distance measure > BBS

Lee et al.,
73 to investigate factors that influence quiet standing balance Both > other measure derived from COP: stability index and weight distribution index > BBS

Lemay & Nadeau
74 > to document the concurrent validity of the BBS with various walking parameters for an SCI population Non-Biomechanical N/A > BBS

Lemay & Nadeau
75

>  to investigate the concurrent validity of the Smart Balance Master (SBM) tests for measuring static and dynamic standing-

balance in individuals with AID D iSCI by assessing the level of association between the BBS, walking speed and SBM test

> to identify the most valuable test of the SBM for SCI population

> to verify whether SBM scores for paraplegia and tetraplegia differ

Both

> COG distance measure

> COG area measure 

> other measures derived from COG: limits of 

stability and movement time 

> BBS

Lemay, Duclos, Nadeau, Gagnon & Desrosiers
76 > to characterize balance in individuals with and without an iSCI Biomechanical

> Forces/Torques: Stabilizing and Destabilizing 

forces calculated from kinematic and kinetic data
N/A

Lemay, Duclos, Nadeau, & Gagnon
77 > to compare and describe postural control during bipedal and single-support phases of gait initiation and termination in 

individuals with iSCI
Both

> Forces/Torques: Stabilizing and Destabilizing 

forces calculated from kinematic and kinetic data
> BBS

Lemay, Gagnon, Duclos, Grangeon, Gauthier, & 

Nadeau
78

> Compare use of visual inputs to maintain standing posture between participants with SCI to AB participants                                                                                                                                                                   

> Quantify relationship between visual contribution to standing posture & a clinical balance scale
Both

> COP velocity measure

> COP area measure

> COP variability measure (RMS)

> other measures derived from COP: Romberg ratios

> miniBESTest

Lemay, Gagnon, Nadeau, et al.
79 > to quantify standing dynamic postural balance by comparing lab-based dynamic postural balance test and quasi-static 

postural stability tests individuals with iSCI and AB individuals
Biomechanical

> COP distance measure

> COP velocity measure

> COP area measure

> COP variability measure (RMS)

N/A

Liechti et al.
80 > to investigate changes in postural responses following galvanic vestibular stimulation Biomechanical

> EMG

> COP distance measure
N/A

Lin, K., et al.
81 > to investigate the postural control in SCI subjects with stable stance and unstable stance followed by a rapid reach-and-

grasp balance reaction
Biomechanical

> other measures derived from COP: COM -COP 

difference

> EMG: normalized average root mean square per 

unit and onset times

N/A

Lorenz et al.
82 > to evaluate progression of BBS (among other measures) in individuals with incomplete SCI receiving standardized 

locomotor training
Non-Biomechanical N/A > BBS

Lu, Lien, and Hsieh.
83 to validate the Balance Computerized Adaptive Testing (Balance CAT) by testing its correlation with BBS and Barthel Index 

in long-term care facilities
Non-Biomechanical N/A

> BBS

> BalanceCAT

Lynch et al. 
84 > to test reliability  of Functional Reach Test for assessing sitting balance in people with SCI Non-Biomechanical N/A > FRT

Matjacic 
85 > to test a new apparatus that enables dynamic walking balance during walking on treadmill for improving balance in 

individuals with SCI
Non-Biomechanical N/A > BBS

Matsubara, Wu & Gordon 
86 > to quantify the metabolic energy demands of maintaining lateral stability during gait Non-Biomechanical N/A > BBS

Middleton et al.
87 > Evaluate the effect of the Walkabout device (medial linkage joint that attaches to KAFO) on "dynamic postural stability and 

regulatory postural control during standing"
Biomechanical > COP distance measure N/A
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Mihelj & Munih 
88 > to evaluate posture control system performed in a simulation-based study and on a paraplegic patient Biomechanical

> other COP/COM measure: COM in relation to 

ankle joint axis

> Forces/Torques: GRF and joint torques

N/A

Milosevic et al.
89 > to compare postural control of individuals with cervical SCI and able-bodied individuals; and 

> to investigate the effects of foot support and trunk fluctuations on postural control during sitting 
Biomechanical

> COP distance measure

> COP velocity measure

> COP area measure

> COP frequency measure 

N/A

Moriello et al.
90 > to compare effect of forward versus backward walking using body weight supported treadmill training on measures of 

balance (in addition to other measures)
Non-Biomechanical N/A > Tandem Stance Component of SPPB

Moriello et al.
91 to document outcomes of a yoga program Non-Biomechanical N/A

> BBS

> FRT

Musselman et al.
92 > to determine the effectiveness of skill training in a small group of people with iSCI and to compare skill training with body-

weight–supported treadmill training (BWSTT) in the same individuals, with BBS as one of the study outcomes
Non-Biomechanical N/A > BBS

Nataraj et al.
93

> to use COM acceleration feedback for improving performance of a functional neuromuscular stimulation (FNS) control 

system to restore standing function Biomechanical > other measures derived from COM: COM acceleration N/A

Parkinson, Reed & Chaffin.
94 > to study seated reaching behaviour of people with spinal cord injury Biomechanical

> COP length data

> other COP measure: trajectories
N/A

Pernot et al.
95 > to assess the interrater reliability and validity of the test-table-test (TTT) by correlating it with balance perturbation tests and 

COP displacement measurements
Both > COP distance measure > Test Table Test

Potten et al.
96 > to investigate dissimilarities in postural control strategies between the SCI and non-SCI subjects Both

> COP distance measure

> EMG: mean rectified activity 
> FRT

RoopchandMartin & Bateman 
97 > To exlpore improvements in seated balance of two individuals with SCI using a boxing programme on the Nintendo Wii Non-Biomechanical N/A > FRT

Saraf et al.
98 > to study the relationship between daily stepping in ambulatory individuals with SCI and clinical walking performance 

measures, incuding static balance.
Non-Biomechanical N/A > BBS

Sayenko et al.
99 > to evaluate the learning potential and performance improvements during the balance training 

> to determine improvements in static and dynamic stability after balance training
Biomechanical

> COP distance measure

> COP velocity measure

> COP area measure

> COP variability measure (RMS)

> other measures derived from COP: stability zones

N/A

Scivoletto et al.
100 > to evaluate the effects of neurologic and non-neurologic factors on balance (and other parameters) Non-Biomechanical N/A > BBS

Seelen et al.
101 > to study postural muscle use during sitting balance in individuals with a complete thoracic SCI Biomechanical

> COP distance measure

> EMG: mean rectified EMG

> others: reactiontime/movement time

N/A

Seelen et al.
102 > Centre of pressure displacement was assessed to use as an indicator for sitting balance perturbation Biomechanical

> COP distance measure

> others: reactiontime/movement time
N/A

Seelen, Potten, Adam, Drukker, Spaans & Huson.
103 > to investigate the time course of postural reorganization during active, clinical rehabilitation of thoracic SCI patients with 

different SCI levels.
Both > others: reactiontime/movement time > FRT

Seelen, Potten, Drukker, Reulen, & Pons.
104 > to investigate changes in the sitting balance across the clinical rehabilitation process Biomechanical

> COP distance measure

> EMG: mean recitified activity
N/A

Serra-Ano et al.
105 > to analyse the temporal and frequency domains of seated balance

> to explore the centre of pressure (CoP) limits before experiencing a fall
Biomechanical

> COP distance measure

> COP variability measure

> COP frequency measure

> other measures derived from COP: limits of 

stability

N/A

Shin & Sosnoff 
106 > Determine whether postural instability in sitting can be quantified with  the "virtual time to contact (VTC) analysis of seated 

postural control"
Biomechanical 

> COP velocity measure

> COP area measure

> COP variability measure (RMS)

> other measures derived from COP: instability 

indexes and virtual time to contact functional 

boundary

N/A

Shirado et al.
107 > to evaluate and compare the ability to maintain the sitting posture between SCI and AB

> to introduce a method to assess sitting posture
Biomechanical

> COP distance measure

> other measures derived from COP: pattern of trace 

of the COP

N/A

Sprigle et al.
108 to study the effect of 3 cusion types on pelvis and trunk control and upper extremity reach Both

> Joint angles: pelvic and trunk angle

> Reaching distance 
> FRT

Sprigle et al.
109 > To validate 3 clinical measures of postural stability (functional reach, reach area, bilateral reach) against performance of 

ADL tasks
Non-Biomechanical N/A > FRT

Srisim,  Amatachaya & Saengsuwan.
110 > to compare the utility of a balance measure (among other functional measures) to

predict risk of multiple falls (fall !2 times) in individuals with SCI
Non-Biomechanical N/A

> BBS

> FRT

Stevens et al.
111 > to document effects of underwater treadmill training on balance (in addition to leg strength and walking performance) Non-Biomechanical N/A > BBS

Tamburella et al. 
112 > Evaluate the effectiveness of visual biofeedback task-specific balance training (vBFB) to improve balance and gait in 

comparison to conventional overground rehabilitation
Both 

> COP distance measure

> COP velocity measure

> COP area measure

> Gait Variables: speed, cadence, stride length, 

stance phase, double-support time)

> BBS

Tamburella, Scivoletto & Molinari. 
113 > to analyze the effects of KinesioTaping treatment on spasticity, balance and gait. Both

> COP distance measure

> COP velocity measure

> COP area measure
> BBS

Tamburella, Scivoletto, Iosa, & Molinari. 
114 > to analyze the reliability, validity, and responsiveness of COP parameters to assess balance in individuals with iSCI Both

> COP distance measure

> COP velocity measure

> COP area measure

> BBS

> Tinetti Scale

Thigpen et al. 
115 > to investigate anticipatory and reactive balance responses in individuals with iSCI Biomechanical > EMG: mean amplitude and onset latencies N/A

Tokita et al. 
116 > to analyze body sway in standing posture Biomechanical

> COG distance measure

> COG frequency measure
N/A

Triolo et al. 
117 > to evaluate and quantify the effects of activating the paralyzed hip and trunk musculature with FES on the sitting posture, 

stability and functional capacities of a single-subject with C4 AIS A tetraplegia
Biomechanical

> Reaching distance

> Forces/Torques: resistance to externally applied 

disturbances

N/A

Triolo et al. 
118 > Determine whether electrical stimulation to hip & trunk muscles improves seated posture and reach Biomechanical 

> Joint angles: trunk angle and pelvic tilt

> Reaching distance: bimanual relative (elbow joint) 

and absolute (elbow joint and trunk) reach

> Forces/Torques: isokinetic forces exerted by the 

upper extremities in a simulated rowing task

N/A

Tsang et al. 
119 > to investigate the effects of sitting Tai Chi on dynamic sitting balance control Biomechanical

> COP distance measure

> other measures derived from COP: directional 

control of COP and reaction time

N/A

Vilchis-Aranguren et al. 
120 to evaluate the effects of using the INR cushion on trunk control (along with other measures) Non-Biomechanical N/A

> Ability to maintain while reacting to external 

perturbation:

Villiger et al. 
121 > to correlate improvements in training improvement-induced structural brain plasticity in chronic iSCI patients using 

longitudinal MRI with improvements in balance measures (in addition to other measures)
Non-Biomechanical N/A > BBS

Wall et al. 
122 to assess the effects of nintendo wii fit training on balance (along with other measures) Non-Biomechanical N/A > FRT

Wannapakhe et al. 
123 >  to evaluate changes in balance ability  in partcipants with SCI who fell and those who did not fall during the 6-month 

period after discharge
Non-Biomechanical N/A > BBS

Wirz, Muller, & Bastiaenen. 
124

. 

> to determine association between the BBS and number of falls experienced over a period of 5 months

>  to determine association between the BBS and other measures of mobility (including WISCI, gait speed, SCIM), motor 

scores, and the Falls Efficacy Scale - International Version (FES I)

> to explore cut-off scores on the BBS for discriminating people with a risk of falling 

> to assess interobserver reliability of the BBS 

Non-Biomechanical N/A > BBS

Wu et al. 
125 > to determine improvements in balance (among other measures) in individuals with iSCI with robotic resistance training Both > Gait variables: single/double leg support > BBS

Wydenkeller et al. 
126 > to investigate influence of vestibular spinal responses to postural instability in individuals with iSCI Biomechanical

> COP distance measure

> EMG
N/A

Yu et al. 
127 > to analyze standing balance (changes of COP, joint moment, joint angle, and muscle activities during quiet stance) with and 

without arm support in patients with incomplete SCI
Biomechanical

> COP distance measure

> COP area measure

> Joint angles/torques/moments

> EMG

N/A
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Citation

Was the 

assessment 

prospective 

or 

retrospectiv

e 

Subject Definition (Adequate, 

Partial or Inadequate details)  

Inclusion Criteria 

(Stated, Limited or 

Not Stated)

Sampling method (Convenience, 

Community-based,  Population-

based, or not stated)

Validity of non-biomech measures in 

individuals with SCI, stated/tested - type? 

(Stated/tested (type of validity), Not 

stated/tested)

Reliability of non-biomech measures in 

individuals with SCI, stated/tested - 

type?? (Stated/tested (type of 

reliability), Not stated/tested)

Adegoke et al.
1 Prospective Partial Stated Convenience

FRT

Tested (discriminative - did not differ between 

different groups based on level of injury)

FRT

Stated (test-retest )

Tested (test-retest )

Alexeeva et al.
2 Prospective Adequate Stated Population based 

Tinetti Scale:

Not stated/tested

Tinetti Scale:

Not stated/tested

Allison & Singer 
3 Prospective Adequate Not stated Not stated N/A N/A

Altmann et al.
4

Prospective Inadequate Limited Convenience

N/A N/A

Amatachaya, Pramodhyakul  

& Srisim 
5 Prospective Adequate Stated Convenience

Ability to Cross Obstacles:

Not stated/tested

Ability to Cross Obstacles:

Not stated/tested

Amatachaya, Pramodhyakul, 

Wattanapan, & 

Eungpinichpong.
6

Prospective Adequate Stated Convenience

Ability to Cross Obstacles:

Not stated/tested

Ability to Cross Obstacles:

Not stated/tested

Arazpour et al.
7 Prospective Adequate Stated Convenience N/A N/A

Ardolino et al.
8 Prospective Partial Stated Convenience 

ABLE:

Tested (content, construct, discriminant) 

ABLE:

Tested ( internal consistency) 

Audu & Triolo.
9

Prospective Partial Not Stated Not Stated N/A N/A

Audu et al.
10 Prospective Adequate Not Stated Not Stated N/A N/A

Baardman et al.
11 Prospective Adequate Stated Not stated N/A N/A

Bahrami et al.
12 Prospective Partial Not stated Not stated N/A N/A

Barthelemy et al.
13 Prospective Adequate Limited Not stated

BBS:

Stated (concurrent)

BBS:

 Not stated/tested

Barthelemy, et al.,
14

Prospective Adequate Not Stated Not stated

BBS:

Stated (concurrent)

BBS:

Stated (interrater)

Behrman et al.
15 Prospective Adequate Limited Convenience 

BBS:

Not stated/tested

BBS:

Not stated/tested

Benedetti et al.
16 Prospective Partial Limited Convenience N/A N/A

Bernard et al.
17 Prospective Partial Limited Convenience N/A N/A

Betker et al.
18 Prospective Partial Not stated Not stated

CTSIB:

Not stated/tested

CTSIB:

Not stated/tested

Bishop et al.
19 Prospective Adequate Not stated Not stated

BBS:

Not stated/tested

BBS:

Not stated/tested

Bjerkefors et al.
20 Prospective Adequate Stated Not stated N/A N/A

Bjerkefors et al.
21 Prospective Adequate Not stated Convenience N/A N/A

Bolin et al.
22 Prospective Adequate Limited Convenience

FRT:

Not stated/tested

FRT:

Not stated/tested

BoswellRuys et al.
23 Prospective Partial Stated Community-based

FRT: 

stated (construct and discriminative)

Timed Dressing/Undressing:

Not stated/tested

FRT related:

Stated (test-retest)

Timed Dressing/Undressing:

Not stated/tested

BoswellRuys, et al.
24 Prospective Adequate Limited Convenience

FRT

Tested (construct and  discriminative)

Timed Dressing/Undressing:

Not stated/tested

FRT

Stated (test-retest)

Tested (test-rest)

Timed Dressing/Undressing:

Not stated/tested

Braz et al.
25 Prospective Adequate Not stated Not stated N/A N/A

Buehner et al.
26 Prospective Adequate Limited Convenience

BBS:

Stated (concurrent)

BBS: 

Stated (interrater)

Chaffin et al.
27 Prospective Partial Not stated Not stated N/A N/A

Chan et al.,
28

Retrospective Adequate Stated Convenience

BBS:

Stated (concurrent)

CB&M

Tested (convergent) 

BBS:

Not stated/tested

CB&M:

Tested (internal consistency)

Chen et al.
29 Prospective Adequate Limited Convenience

Timed Dressing/Undressing:

Not stated/tested

Timed Dressing/Undressing:

Not stated/tested

Chisholm et al.
30 Prospective Adequate Not stated Not stated

Timed Standing:

Not stated/tested

Timed Standing:

Not stated/tested

Cybulski & Jaeger
31 Prospective Partial Limited Not stated N/A N/A

Datta et al.
32 Prospective Adequate Stated Convenience 

BBS:

Stated (face validity)

BBS:

Not stated/tested

Datta et al.
33 Prospective Adequate Limited Convenience

BBS:

Stated (concurrent; predictive - not good)

Tested (construct)

BBS:

Stated (interrater reliability)

Day et al. 
34 Prospective Adequate Stated Convenience

BBS:

Not stated/tested

DGI:

Not stated/tested

BBS:

 Not stated/tested

DGI:

 Not stated/tested
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de Abreu et al.
35 Prospective Partial Stated Not stated N/A N/A

Desrosiers, Nadeau, & 

Duclos.
36 Prospective Adequate Stated Convenience

BBS:

Not stated/tested

BBS:

Not stated/tested

Ditunno et al.
37 Prospective Partial Stated Convenience

BBS:

Not stated/tested

BBS:

Not stated/tested

Field-Fote & Ray.
38 Prospective Adequate Stated Convenience

FRT 

Not stated/tested

FRT

 Stated: yes (test-retest in motor complete 

injuries) 

Tested (test-retest in motor incomplete 

injuries)

Findlay et al.
39 Prospective Inadequate Stated Convenience 

Romberg's Sign:

Not stated/tested

Romberg's Sign:

Not stated/tested

Forrest et al.
40 Prospective Adequate Stated Convenience 

BBS:

Stated (concurrent)

FRT:

BBS:

Stated (interrater) 

FRT:

Foster et al.
41

Prospective Adequate Not stated Not stated

BBS:

Stated (concurrent)

BBS: 

Stated (interrater)

Freivogel et al.
42 Prospective Adequate Stated Convenience

BBS: 

Not stated/tested

BBS: 

Not stated/tested

Fritz, S. et al.
43 Prospective Partial Stated Convenience

BBS:

Stated (concurrent)

DGI:

Stated (validaty has not been established)

BBS 

Stated (interrater)

DGI

Not stated/tested

Fritz, S., et al.
44 Prospective Partial Stated Community-based

BBS:

Not stated/tested

DGI:

Not stated/tested

BBS:

Not stated/tested

DGI:

Not stated/tested

Gagnon et al.
45 Prospective Adequate Stated Not stated N/A N/A

Gao et al.
46 Prospective Adequate Stated Not Stated N/A N/A

Gauthier et al.
47 Prospective Partial Stated Convenience N/A N/A

Gauthier et al.
48 Prospective Adequate Stated Convenience N/A N/A

Gillette et al.
49 Prospective Partial Not stated Not stated N/A N/A

Gillette et al.
50 Prospective Partial Not stated Not stated N/A N/A

Gorgey et al.
51 Prospective Partial Not stated Not stated

BBS:

Not stated/tested

BBS:

Not stated/tested

Granat et al.
52 Prospective Adequate Stated Convenience N/A N/A

Grangeon et al.
53 Prospective Partial Limited Not stated N/A N/A

Grigorenko et al.
54 Prospective Adequate Limited Convenience N/A N/A

Harel et al.
55 Prospective Adequate Limited Not stated

BBS:

Stated (concurrent)

FRT:

Not stated/tested

BBS:

Stated (type not mentioned)

FRT

Not stated/tested

Harkema et al.
56 Prospective Adequate Stated Convenience

BBS:

Not stated/tested

BBS:

Not stated/tested

Harvey et al.
57 Prospective Adequate Stated Convenience

FRT:

Stated (construct and discriminative)

FRT

Stated (test-retest)

Janssen_Potten et al.
58 Prospective Partial Limited Not stated

FRT:

Not stated/tested

FRT:

Not stated/tested

Janssen-Potten et al.
59 Prospective Partial Limited Not stated

FRT:

Not stated/tested

FRT:

Not stated/tested

Janssen-Potten et al.
60 Prospective Partial Limited Not stated

FRT:

Not stated/tested

FRT:

Stated (test-retest reliability)

John, L. et al.
61 Prospective Partial Stated Convenience N/A N/A

Jorgensen et al.
62 Prospective Adequate Stated Convenience

MAS and SBS:

Tested (convergent: validity found to be variable 

and not so good)

MAS and SBS:

Tested (interrater reliability)

Kamper, Barin et al.
63 Prospective Adequate Limited Not stated N/A N/A

Kamper, Parnianpour et al.
64 Prospective Adequate Limited Not stated N/A N/A

Karatas et al.
65 Prospective Partial Limited Convenience N/A N/A

Karcnik & Kralj 
66 Prospective Partial Not Stated Not stated N/A N/A

Karimi et al.
67 Prospective Partial Limited Not stated N/A N/A

Kim et al.,
68 Prospective Adequate Limited Convenience

BBS:

Not stated/tested

BBS:

Not stated/tested

Kim, Chung, & Shin. 
69 Prospective Partial Stated Convenience 

FRT:

Not stated/tested

FRT:

Stated (test-retest)

Kizony et al.
70 Prospective Adequate Not stated Convenience

FRT:

Not stated/tested

FRT:

Not stated/tested

Kubota et al.
71 Prospective Partial Stated Convenience

BBS:

Not stated/tested

BBS:

Not stated/tested

Labruyere & van Hedel.
72 Prospective Adequate Stated Convenience

BBS:

Not stated/tested

BBS:

Not stated/tested

Lee et al.,
73

Prospective Partial Stated Convenience

BBS:

Not stated/tested

BBS:

Not stated/tested
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Lemay & Nadeau
74 Prospective Partial Stated Convenience

BBS:

Tested (concurrent; discriminative: no significant 

difference between individuals with paraplegia 

and tetraplegia)

BBS:

Not stated/tested

Lemay & Nadeau
75 Prospective Adequate Stated Convenience

BBS:

Stated (convergent and discriminative)

BBS:

Not stated/tested

Lemay, Duclos, Nadeau, 

Gagnon & Desrosiers
76 Prospective Partial Stated Convenience

BBS:

Not stated/tested

BBS:

Not stated/tested

Lemay, Duclos, Nadeau, & 

Gagnon
77 Prospective Partial Stated Convenience N/A N/A

Lemay, Gagnon, Duclos, 

Grangeon, Gauthier, & 

Nadeau
78

Prospective Partial Stated Not stated
miniBESTest:

Not stated/tested

miniBESTest:

Not stated/tested

Lemay, Gagnon, Nadeau, et 

al.
79 Prospective Partial Stated Convenience N/A N/A

Liechti et al.
80 Prospective Adequate Stated Not stated N/A N/A

Lin, K., et al.
81 Prospective Adequate Stated Convenience N/A N/A

Lorenz et al.
82 Prospective Adequate Stated Convenience

BBS: 

Not stated/tested

BBS: 

Not stated/tested

Lu, Lien, and Hsieh.
83

Prospective Inadequate Limited Community-based

BBS:

Not stated/tested

BalanceCAT

Tested in  long term care residents including SCI 

(concurrent and discriminative)

BBS: 

Not stated/tested

Balance CAT:

Tested in long term care residents  

including SCI (interrater)

Lynch et al. 
84 Prospective Partial Stated Convenience

FRT

Tested (face validity - subjectively; and 

discriminative )

FRT:

Tested (test-retest reliability)

Matjacic 
85 Prospective Adequate Not Stated Convenience

BBS:

Not stated/tested

BBS:

Not stated/tested

Matsubara, Wu & Gordon 
86 Prospective Adequate Stated Not Stated

BBS:

Not stated/tested

BBS:

Not stated/tested

Middleton et al.
87 Prospective Adequate Stated Convenience N/A N/A

Mihelj & Munih 
88 Prospective Inadequate Not stated Not stated N/A N/A

Milosevic et al.
89 Prospective Adequate Stated Not Stated N/A N/A

Moriello et al.
90 Prospective Adequate Not stated Not stated

Tandem Stance Component of SPPB: 

Stated: Overall SPPB  (concurrent)

SPPB

Not stated/tested

Moriello et al.
91

Prospective Adequate Not stated Not stated

BBS:

Stated (concurrent) 

FRT : 

used for hams flexibility

BBS:

Stated (interrater)

FRT: 

used for hams flexibility

Musselman et al.
92 Prospective Adequate Limited Community-based

BBS:

Stated (type not mentioned)

BBS:

Not stated/tested

Nataraj et al.
93 Prospective Partial Not stated Not stated N/A N/A

Parkinson, Reed & Chaffin.
94 Prospective Inadequate Limited Not stated N/A N/A

Pernot et al.
95 Prospective Adequate Stated Community-based

Test Table Test:

Tested (criterion)

Test Table Test:

Tested (interrrater reliability)

Potten et al.
96 Prospective Partial Limited Not stated

FRT:

Not stated/tested

FRT:

Not stated/tested

RoopchandMartin & Bateman 
97 Prospective Adequate Stated Convenience

FRT:

Not stated/tested

FRT:

Stated (test-retest)

Saraf et al.
98 Prospective Partial Stated Convenience 

BBS:

Not stated/tested

BBS:

Not stated/tested

Sayenko et al.
99 Prospective Adequate Limited Not stated N/A N/A

Scivoletto et al.
100 Prospective Adequate Stated Not stated

BBS:

Not stated/tested

BBS:

Not stated/tested

Seelen et al.
101 Prospective Partial Limited Not stated N/A N/A

Seelen et al.
102 Prospective Partial Stated Not stated N/A N/A

Seelen, Potten, Adam, 

Drukker, Spaans & Huson.
103 Prospective Adequate Stated Convenience

FRT:

Not stated/tested

FRT:

Not stated/tested

Seelen, Potten, Drukker, 

Reulen, & Pons.
104 Prospective Adequate Stated Convenience N/A N/A

Serra-Ano et al.
105 Prospective Adequate Stated Not stated N/A N/A

Shin & Sosnoff 
106 Prospective Partial Not stated Convenience N/A N/A

Shirado et al.
107 Prospective Adequate Stated Convenience N/A N/A

Sprigle et al.
108 Prospective Partial Stated Not stated

FRT:

Not stated/tested

FRT:

Tested (test-retest reliability)

Sprigle et al.
109 Prospective Partial Stated Convenience

FRT

Tested (convergent and discriminative)

FRT 

Stated: (test-retest reliability - from a test 

chair)

Tested: (test-retestest from subject's own 

chair)

Srisim,  Amatachaya & 

Saengsuwan.
110 Prospective Adequate Stated Convenience 

BBS:

Stated (concurrent)

Tested (predictive - could not differentiate 

between multiple fallers and non-multiple fallers)

FRT:

Tested (predictive)

BBS:

Stated (interrater reliability)

Tested (interrater reliability)

FRT:

Tested (interrater)

Stevens et al.
111 Prospective Adequate Stated Community-based

BBS:

Stated (concurrent)

BBS:

Not stated/tested

Tamburella et al. 
112

Mixed 

prospective/r

etrospective 

Adequate Stated Convenience 
BBS:

Not stated/tested

BBS:

Not stated/tested

Tamburella, Scivoletto & 

Molinari. 
113 Prospective Adequate Stated Convenience 

BBS:

Not stated/tested

BBS:

Not stated/tested
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Tamburella, Scivoletto, Iosa, 

& Molinari. 
114 Prospective Adequate Stated Not Stated

BBS:

Not stated/tested

Tinetti Scale - equilibrium and not locomotor:

Not stated/tested

BBS:

Tested (intra-rater)

Tinetti:

Tested (intra-rater)

Thigpen et al. 
115 Prospective Partial Stated Convenience N/A N/A

Tokita et al. 
116 Prospective Inadequate Not stated Not stated N/A N/A

Triolo et al. 
117 Prospective Adequate Not stated Not stated

FRT 

Not stated/tested

FRT:

Not stated/tested

Triolo et al. 
118 Prospective Adequate Stated Convenience N/A N/A

Tsang et al. 
119 Prospective Adequate Stated Convenience N/A N/A

Vilchis-Aranguren et al. 
120

Prospective Partial stated Convenience

Ability to maintain while reacting to external 

perturbation:

Not stated/tested

Ability to maintain while reacting to 

external perturbation:

Not stated/tested

Villiger et al. 
121 Prospective Adequate Stated Convenience

BBS:

Not stated/tested

BBS:

Not stated/tested

Wall et al. 
122

Prospective Adequate Stated Convenience

FRT:

Not stated/tested

FRT: 

Not stated/tested

Wannapakhe et al. 
123 Prospective Partial Stated Convenience 

BBS:

Stated (concurrent)

BBS:

Stated (interrater) 

Wirz, Muller, & Bastiaenen. 
124

. 

Mixed 

prospective/r

etrospective 

Adequate Limited Convenience

BBS:

Stated: yes, type not mentioned

Tested (concurrent ; predictive: not established)

BBS:

Tested  (interrater)

Wu et al. 
125 Prospective Adequate Stated Not stated 

BBS:

Not stated/tested

BBS:

Not stated/tested

Wydenkeller et al. 
126 Prospective Partial Limited Not stated N/A N/A

Yu et al. 
127 Prospective Adequate Stated Convenience N/A N/A
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Name of the Measure

Time Taken 

(3 = less than 10 

minutes

2 = 10-30 minutes

1 = 30-60 minutes

0 = >1 hour)

Cost

(3 = less than 100 

pounds (CAD 

172.8)

2 = 100-500 pounds 

(CAD 172.8 - 

864.01)

1 = 500-1000 

pounds (CAD 

864.01 - 1728)

0 = >1000 

pounds(> CAD 

1728))

Measurement Tool need 

Specialist Equipment and 

Training to Use?

Time Taken 

(2 = no

1 = yes, but simple and clinically 

feasible

0 = yes, and not clinically 

feasible/unknown)

Portability

(2 = yes easily (can go in 

pocket)

1 = yes, in a briefcase or 

trolley, or large piece 

(e.g. stairs/chair) 

typically found in 

clinical environment

0 = no or very difficult) Total

Groupings By Biomechanical Construct

COP/COM related variables (motion capture/force plates) 0 0 0 0 0

EMG 0 0 0 1 1

Forces/Torques (motion capture/forceplate/isokinetic) 1 0 0 1 2

Joint Angles (motion capture) 0 0 0 0 0

Instrumented Reaching Distance (vicon) 0 0 0 0 0

Instrumented Gait Variables (motion capture/instrumented walkway) 0 0 0 0 0

Reaction/Movement Times (using specialized equipment) 0 0 0 0 0

Others 0

  Fall Threshold (using perturbation platform) 0 0 0 0 0

  Trunk Stiffness (using a specialized sitting surface - with perturbation) 0 0 0 0 0

  Linear Momentum (motion capture) 0 0 0 0 0

  Dampning Factor 0 0 0 0 0

Balance Scales

Berg Balance Scale 2 3 2 1 8

Functional Reach Test 3 3 2 2 10

Dynamic Gait Index 2 3 2 1 8

Tinetti 2 3 2 2 9

Mini-BESTest 2 3 2 1 8

Activity Based Level Evaluation 1 3 2 2 8

Clinical Test of Sensory Organization and Balance 2 3 2 2 9

Test Table Test 3 3 2 2 10

Motor Assessment Scale - balanced sitting component 3 3 2 2 10

Sitting Balance Score 3 3 2 2 10

Romberg 3 3 2 2 10

Community Balance and Mobility 2 3 2 1 8

BalanceCAT 3 3 2 2 10

Body Sway using Lord Sway Meter 3 3 1 1 8

Standardized Obstacle Clearing Tests 3 3 2 1 9

T-shirt Test 3 3 2 2 10

Timed Standing 3 3 2 2 10

Timed Tandem Stance 3 3 2 2 10

Seated Reaction to Perturbation 3 3 2 2 10
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