Development and Utilization of Single Nucleotide Polymorphic Markers on *UDP-Glucosyl Transferases* to Develop *Fusarium* Head Blight Resistant Wheat Varieties

Manu Pratap Gangola Department of Plant Sciences

Fusarium head blight (FHB) – New sources of resistance are needed

- Major disease of wheat
- Fusarium graminearum Schwabe
 - most common species

Deoxynivalenol (DON) – virulence factor for FHB

 Mutagenesis can be followed to induce variation in the trait

FHB infected wheat spikes

Healthy grains FHB infected grains

FHB resistance in wheat

- FHB resistance Quantitative trait
- B-genome of wheat (AABBDD) participates predominantly in FHB resistance
- FHB1 major QTL (Quantitative Trait Loci)
 - Present on 3BS
- UGT gene Encodes UDP-glucosyl transferase
 - Present in close vicinity of Fhb1

Deoxynivalenol-3-*O*-glucoside (D-3-G)

Hypothesis

- Ethylmethane sulfonate can induce variation for FHB resistance using *in vitro* spike culture technique.
- Candidate genes for FHB resistance on B-genome of wheat can be targeted to find single nucleotide polymorphic (SNP) markers.

Objectives

- To study FHB resistance in the mutant population.
- To identify SNP markers associated with FHB resistance.
- To utilize FHB resistant genotypes and SNP markers in a breeding program.

Workflow of the project

Wheat spikes of resistant and susceptible SCDV lines

AC Nanda – FHB susceptible control Sumai3 – FHB resistant control

Genome specificity of the primers

2A = Triticum monococcum

2B = Aegilops speltoides

2D = Aegilops Tauschii

2A2B2D = Hexaploid Wheat

Schematic representation of B-genome specific *UGT* genes

Single Nucleotide Polymorphic (SNP) Markers on the genes

SNP markers on *UGTs* can significantly differentiate between FHB -resistant and -susceptible genotypes

Box plot analysis of *UGTs* and FHB severity

High resolution melt curve (HRM) analysis

Expression of *UGTs* correlates with accumulation of Deoxynivalenol

FHB rating in field experiments confirms the reliability of *in vitro* spike culture technique

Location and Trait	Mean Sum of Squares	
	Genotype	Replication
Carmen		
Incidence	260.5***	13.3ns
Severity	285.5*	40.8ns
Visual rating index (VRI)	265.1**	29.5ns
FHB Nursery (University of Saskatchewan)		
Incidence	651.0**	175.2ns
Severity	76.2**	200.2ns
VRI	72.9***	93.2ns

^{***, **} and * are significant at P ≤ 0.001, 0.01 and 0.05, respectively whereas, ns represents non-significant values.

Transcriptome analysis during FHB progression

RNA-seq was performed in FHB resistance (5) and susceptible (3) wheat genotypes

New candidate genes and markers will be identified

Breeding Program

- FHB resistant SCDV lines are being crossed with Saskatchewan elite cultivars.
- SNP markers are being utilized to screen the population.

Conclusions and Future Directions

- An *in vitro* spike culture method was optimized to evaluate FHB resistance in wheat.
- New genetic resources of FHB resistance and associated SNP markers were identified that are being used in the breeding program to develop FHB resistant wheat variety.
- To understand the FHB resistance mechanism, transcriptomics has been done on FHB resistant and susceptible lines and the data is being analyzed.

Acknowledgements

- Ravindra N. Chibbar
- Seedhabadee Ganeshan
- H. Randy Kutcher
- Pierre J. Hucl
- Pallavi Sharma
- Chen Huang

Canada Research Chairs

