

M. Khakbazan, J. Huang, P. Michiels

Study Issue

- Land management, cropping systems, and nutrient management significantly affect nutrient use efficiency and profitability.
- Over use of fertilizer cause significant environmental and economic impacts.
- With the significant attention to precision agriculture in recent time, more research is needed to assess the effectiveness of this technology

Importance of precision agriculture

Research Question: Can variable rate N
management be used to improve efficiency of
fertilizer use and farm economy?

Objective

 Evaluate the economic and environmental viability of precision agriculture to improve N use efficiency and profitability at the farm and watershed scale.

Study Area

- South Tobacco Creek (STC)
 Watershed
- 150 km² SW of Winnipeg,
 Manitoba, Canada

Study Area - Crop Management

Spatial distribution of crops in 2016

Wheat and canola are common crops in STC

About 35 farms and 350 fields

Methodology

- Agronomic, yield and soil data were compiled by field for the STC from 2006-2016.
- These data and productivity Index (MASC)
 based on a 10-year moving average were used
 to delineate management zones in the
 watershed.
- GIS and Limdep (NLOGIT 4.0) Econometric Software was used to analyze the data because Limdep is more suited for the STC panel data analysis.

Methodology

- A yield function and net revenue were estimated taking into account zones, temporal trends, and individual management practices.
- Zone (spatial), time (temporal), and other conservation management effects (X_i):
- Yield =a+bN+cN²+ $\beta_i X_i + \lambda^* Zone + \theta^* Time$
- Quadratic and linear was tested to find the fit

Average yield per zone for wheat

Average N per zone for wheat

Effects of input variables, zones, and years on wheat yield

			Esti	Estimated fixed effects			Estimated fixed effects			
Variables	Coefficient	t-ratio	Zone	Coefficient	t-ratio	Period	Coefficient	t-ratio		
N	22.73	3.85	5D	36.05	2.08	2006	-415.64	-5.94		
N2	-0.04	-1.77	5E	-56.75	-2.28	2007	-519.25	-5.73		
P	2.98	1.54	5F	-607.40	-2.97	2008	154.04	2.57		
K	0.72	0.45	12D	215.08	0.97	2009	393.39	5.67		
S	0.50	0.20	12E	52.54	0.87	2010	110.07	2.23		
Res Cov	328.18	2.09				2011	-995.29	-16.17		
Constant	1486.52	4.21				2012	126.94	2.45		
						2013	76.02	1.06		
						2014	512.02	10.34		
						2015	280.57	4.34		
• Zone (spatial) and time 2016								-2.86		

 Zone (spatial) and time (temporal) effects:

Yield = $a+bN+cN^2+\beta_iX_i+\lambda^*Z$ one

- $+\theta*Time$
- Quadratic and linear was tested to find the fit

Quadratic response of wheat yield to applied N rate in STC

D: 1	H C CITIC MARCO NI CO						ulation model: yield=a+bN+cN ²				
Risk		# ofSTC		MASC	N			iei: yieia=a+bin+cin			
zone	Farm ID	land	Kg ha ⁻¹ -		-1		b	c	Optimum N		
5D	24	15	3049	3578	101	-7573	164	-0.57	144		
						(0.148)	(0.146)	(0.323)			
	41	71	3279	3578	107	-257	53	-0.182	145		
						(0.846)	(0.065)	(0.224)			
	47	42	3213	3578	89	-3109	111	-0.419	132		
						(0.173)	(0.022)	(0.073)			
	101	46	3681	3578	103	-10202	237	-0.984	121		
						(0.012)	(0.002)	(0.007)			
	All farms	470	3579	3578	103	-2923	107	-0.415	129		
						(0.002)	(<0.001)	(<0.001)			
5E	47	14	3426	3540	84	-9581	278	-1.42	98		
						(0.001)	(<0.001)	(<0.001)			
	49	69	3529	3540	102	-2763	102	-0.393	130		
						(0.429)	(0.144)	(0.254)			
	62	26	3298	3540	100	-4058	122	-0.461	132		
						(0.019)	(<0.001)	(0.001)			
	All farms	318	3540	3540	105	-2254	93	-0.352	132		
						(0.007)	(<0.001)	(<0.001)			

Note: P value for each parameter of the model is listed in the parenthesis and optimum N is calculated based on the model.

Effects of input variables, management, and years on wheat yield in Soil Zone 5D

			Estin	nated fixed ef	fects	Estimated fixed effects			
Variables	Coefficient	t-ratio	Farmers	Coefficient	t-ratio	Period	Coefficient	t-ratio	
N	54.74	3.24	1	-578.33	-4.52	2006	-281.77	-2.66	
N2	-0.19	-2.32	2	-66.01	-0.69	2007	-420.91	-3.37	
K	5.93	2.19	3	-529.30	-3.43	2008	72.79	1.02	
Constant	-66.50	-0.08	4	699.35	9.14	2009	314.40	3.58	
			5	-331.12	-6.18	2010	63.10	0.90	
			6	-14.93	-0.18	2011	-1190.65	-16.32	
			7	-78.85	-1.21	2012	60.40	0.93	
			8	4.97	0.08	2013	192.24	1.80	
			9	-4.29	-0.06	2014	733.26	11.12	
			10	882.33	8.83	2015	284.78	2.93	
						2016	-95.20	-1.38	

Results

- There were generally no productivity differences between zones when analysis was done over years but when period was assumed as fixed effect there were differences between zones.
- Both spatial (zone) and temporal (time) variability had effects on crop productivity, but temporal trends had the greater effect.
- Also, conservation tillage had positive effects on crop yield and economics.

Economic results

- More productive land showed higher yield and nearly \$40 ha⁻¹
 more net revenue than less productive land within the STC with
 the same N rate applied.
- However, the probability of crop loss occurrence due to extreme temporal variability was 36% for the past 11 years for wheat, and average crop loss when it occurred was about 15%.
- Excessive moisture (i.e., 2011) or drought (i.e., 2006) in the past 11 years have caused, on average, about 6% per ha per year yield loss for wheat.
- The average net loss was about \$44 ha⁻¹ yr⁻¹ for wheat and \$60 ha⁻¹ yr⁻¹ for a wheat-canola cropping system.
- The effect of temporal trends highlights the importance of other management practices like "tile drainage" in Manitoba.

Acknowledgements

- Agriculture and Agri-Food Canada (AAFC)
 Growing Forward for providing financial support for this project
- Deerwood Soil and Water Management Association for collecting data
- Manitoba Agriculture Service Corporation for providing crop yield and N fertilizer data
- We also greatly acknowledge technical contributions from the Lake Winnipeg Watershed Project team.