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Abstract 

Agricultural drought is a major climate concern which occurs frequently on Canadian prairies. It 
acts negatively on crop production, which directly affects the Canadian economy. The 
Normalized Difference Vegetation Index (NDVI) has been widely used to assess crop yield 
losses related to drought events. However, this index suffers from some shortcomings such as the 
apparent time lag between drought impact due to rainfall deficit and NDVI response. This study 
was undertaken to investigate the effectiveness of the integrated Vegetation Health Index (iVHI) 
for the assessment of spring wheat yield across Canadian prairies. A time series of five years 
from the Advanced Very High Resolution Radiometer (AVHRR) sensor were used to develop a 
spring wheat yield model for three agroclimatic regions: subarid, semiarid and subhumid. The 
results demonstrated that spring wheat yield assessment is feasible through the use of iVHI, 
especially in subarid and semiarid regions where it reached a correlation coefficient of 0.75 and 
0.61, respectively. This finding shows that iVHI can be used to estimate spring wheat yield losses 
due to agricultural drought across the Canadian prairies.  However, in subhumid regions where 
spring wheat growing conditions are favourable because of adequate water supply, the integrated 
NDVI (iNDVI) outperforms iVHI with a correlation coefficient of 0.44 compared to 0.34. 
Consequently, to develop an efficient tool, it suggested coupling the iVHI with iNDVI to better 
estimate spring wheat yield in the Canadian prairies. 
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1. Introduction 
 

The major factor that limits agricultural productivity across the Canadian prairies is the dry 
climate with frequent drought events. Their impact on agriculture can be gradual and cumulative, 
and in some cases occur so slowly that they are not easily discernable. As a result of agricultural 
drought, crop production is reduced, which directly affects the Canadian economy. A preliminary 
analysis of the 2001 and 2002 drought years on the Prairies indicated that agricultural production 
sales dropped to $3.6 billion, with the largest loss occurring in 2002 at more than $2 billion 
(Wheaton et al. 2005). Spring wheat, hereafter referred to as wheat, is the dominant crop on the 
Canadian prairies, with approximately 75% of its total production exported through the Canadian 
Wheat Board (CWB) (Kumar 1999). In the 2001 and 2002 drought years, wheat production 
dropped by approximately 25% across the Canadian prairies (Statistics Canada 2002). In order to 
develop efficient wheat marketing strategies, assess population demand, and plan existing 
resources, early accurate wheat yield estimates are required. Currently, the CWB uses a weather-
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based short term model to forecast wheat yields across the Prairies (Hochheim 1995). This model 
employs monthly precipitation and temperature data recorded at weather-stations to determine an 
average cumulative moisture index which is regressed against the average wheat yield for the 
Prairies. However, weather data often comes from sparse meteorological networks or are not 
always available in a timely manner to allow an accurate and up-to-date wheat yield assessment. 
Recent advances in the application of operational satellites such as the National Oceanic and 
Atmospheric Administration (NOAA) equipped with the Advanced Very High Resolution 
Radiometer (AVHRR) sensor have proven that the AVHRR-derived Normalized Difference 
Vegetation Index (NDVI) is an excellent tool for crop conditions and yield assessment. In spite of 
its usefulness in agriculture, NDVI suffers from some shortcomings for crops monitoring under 
drought conditions (Wang et al. 2001). 
 
Kogan (1995) has developed a method which has been shown to be very useful in arid and 
semiarid conditions. The Vegetation Condition Index (VCI) and the Temperature Condition 
Index (TCI) he proposed are found to be dependant on the vegetation, weather and ecological 
conditions (Singh et al. 2003), and more sensitive for crop yield estimates (Unganai and Kogan, 
1998; Dabrowska-Zielinska et al. 2002; Domenikiotis et al. 2004). Liu et al. (2002) and Kogan et 
al. (2005) also found that the Vegetation Health Index (VHI) which combines contribution of the 
VCI and TCI is an effective tool in estimating productivity of crops and pastures, and can be used 
as an indicator of agricultural losses related to drought. In the present paper, we discuss the 
potential of the Vegetation Health Index in estimating wheat yield under drought for different 
agroclimatic regions of the Canadian prairies. The NDVI was also investigated for comparison 
purposes.  
 

2. Study Area 
 

The Canadian prairies extend northwards from 49o N (Canada-US border) to 54o N, and east-west 
from eastern Manitoba, across Saskatchewan to western Alberta (Figure 1). Topographically, the 
prairies are a large area of relatively flat sedimentary land stretching throughout western Canada 
between the Canadian Shield in the east and the Canadian Rockies. The Canadian prairies regions 
soils are dominated by brown soils in southern Saskatchewan and Alberta, dark brown soils occur 
in a broad arc through Saskatchewan and Alberta, and black soils from southern Manitoba 
through mid-central Saskatchewan to western Alberta (Hochheim 1995). These soils are typical 
of subarid, semiarid and subhumid continental climates respectively. The productivity of subarid 
regions is severely limited by moisture deficits during the growing season. Semiarid regions are 
dominated by moderately to severe annual soil moisture deficits, while subhumid areas are 
characterized by low soil moisture deficit. Spring wheat is the dominant crop on the Prairies with 
48% grown in the subhumid regions, 32% in the semiarid regions and the less cropped areas are 
the subarid regions with only 19%. Statistics Canada compiled crops statistics based on Census 
Agricultural Regions (CARs) covering the wheat growing regions. The official Statistics Canada 
yields and levels of production by province are estimated before harvest based on field survey 
(Statistics Canada, 2002).   
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Figure 1: Map of the Canadian Prairies showing the Census Agricultural Regions (CARs) 

 
 

3. Methods 
3.1 NOAA/AVHRR Data 
 

The NOAA/AVHRR sensor collects data in five spectral channels, and three of those have been 
used in this study to calculate the vegetation indexes. The channels used are the red (0.58-0.68 
µm), the near infrared (0.725-1.10 µm) and the thermal channel (10.3-11.3 µm). Five years of 
data (2001-2005) with a 1-km spatial resolution were processed and geometrically registered to 
the Lambert conformal conic projection by the Canadian Center of Remote Sensing (CCRS) 
using the AVHRR data processing system called Earth Observation Data Manager (EODM) 
(Latifovic et al. 2005). In order to minimize cloud effects and haze contamination, the data were 
composited over a 10-day period by saving those radiances that had the largest difference 
between the visible and near infrared. Residual cloudy and hazy pixels remaining in the images 
were detected and corrected by comparing the previous and next composite NDVI values to the 
current NDVI for the same location.  If a sudden drop was followed by sudden increase, the pixel 
was corrected to the average value of the preceding and the following image composite based on 
a specific threshold value. In addition to cloud masking, high frequency noise in the 10-day 
composites was removed by applying a 3 x 3 median filter to the yearly times series data. From 
these processed composites, the NDVI was calculated using the equation 1:  
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Where Ch1 and Ch2 are the near-infrared and red channels, respectively. 
 
Kogan (1997) suggested the use of Vegetation Health Index (VHI) which characterizes soil 
moisture and thermal conditions based on the combined contributions of the Vegetation 
Condition Index (VCI) and Temperature Condition Index (TCI). It varies in the range of 0 and 1 
with higher values corresponding to favourable soil moisture and unstressed vegetation (non-
drought conditions). The VHI algorithm is given by the equation 2: 
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Where NDVIi, NDVImax and NDVImin are the seasonal 10-day NDVI and its multi-years absolute 
maximum and minimum, respectively, while BTi, BTmax and BTmin are the seasonal 10-day 
brightness temperature, its multi-years absolute maximum and minimum, respectively. 
 
The main idea behind the VCI and indirectly VHI is that it separates the short-term weather-
related NDVI fluctuations from the long-term ecosystem changes (Kogan 1995, 1997). For a 
specific location for example, the maximum amount of vegetation corresponds to years of 
optimal weather conditions, while the minimum vegetation amounts develop in years with 
extremely unfavourable weather. This means that the absolute maximum and minimum of NDVI 
values computed over several years contain the extreme weather events (non-drought conditions 
and drought conditions), which can be used as criteria for quantifying contributions of 
geographical areas (non-weather effects). Therefore, for a given 10-day period, this index is a 
measurement of the impact of weather alone on the local wheat vegetation. The use of TCI in the 
vegetation health index allows determining temperature-related vegetation stress and also stress 
caused by excessive wetness (Singh et al. 2003).  TCI is based on the thermal channel 4 (Ch 4) 
radiances converted to brightness temperature (BT). The channel Ch 4 was selected because its 
measured radiance is more representative of drought conditions and less sensitive to the amount 
of water vapour in the atmosphere compared to the channel 5 (Kogan 1995).  
 

3.2 Wheat Yield Model Development 
 

Since the amount of yield produced at the end of the season depends on cumulative weather 
impacts, several studies successfully used the integral of vegetation indexes to assess crop 
conditions and yield (Tucker et al. 1985, Hochheim 1995). For instance, Tucker et al. (1985) 
showed that the integral of NDVI provides a reasonably good estimate of the total above ground 
biomass accumulated during the rainy season. Rasmussen (1992) demonstrated that by limiting 
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the integral of the NDVI to the maximum reproductive phase of millet, yield could be estimated 
from regression models. The main conclusion drawn by these studies is that integrating a number 
of NDVI observations appear to be more robust than single date estimates. In fact, integration 
accounts for both the magnitude and duration of the photosynthetic activity of the crop during the 
growing cycle (Hochheim, 1995). Therefore, in the current study, we applied the integration 
approach to the VHI and NDVI. The data were aggregated to the CAR level and averaged to 
extract VHI and NDVI values for each CARs from 2001 to 2005. The wheat yield was 
normalized by dividing each agroclimatic region yield by the average yield for that region over 
the five years period. The resulting linear regression model between normalized wheat yield and 
integrated vegetation index per agroclimatic region is expressed by equation 5: 
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Where w1 and w2 represent the beginning and the end of the critical reproductive phase, a and b 
are constants determined by regression analysis, and (t) dt represent each 10-day period. Models 
were developed for each agroclimatic region using 75% of the dataset, and wheat yields were 
estimated based on the remaining randomly selected 25%. The accuracy of wheat yield models 
was evaluated using the Mean Absolute Error (MAE) as defined by equation 6 (Willmot 1992):  
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Where yp and yo are the estimated and Statistics Canada reported wheat yields, respectively and n 
is the number of observations used for models development. In this study, a technological trend 
variable was not included in the developed models because of the relatively short five years study 
period.  
 

4. Results 
4.1 Vegetation indexes temporal profiles 
 

Table 1 shows the average wheat yield calculated over the five years periods for each 
agroclimatic regions. As expected, the highest wheat yield was encountered in the subhumid 
regions where crop growing conditions are favourable, while subarid regions are characterized by 
the lower yield. These differences in wheat yield are related to the difference in growing 
conditions due to high variability of rainfall and temperature conditions on the Canadian prairies. 
Figure 2 shows temporal profiles of NDVI values during the wheat growing season from 10-day 
periods 11 to 26 (late April to late September). For all agroclimatic regions, the NDVI increased 
steadily towards a well-defined maximum, thought to be determined by the reproductive phase of 
the wheat crop, and was then followed by a subsequent decrease. The maximum NDVI value of 
0.54 was reached at 10-day period 19 in subhumid regions, while for semiarid and subarid 
regions the maximum NDVI values of 0.47 and 0.37 were reached ten days later (at 10-day 
period 20), respectively.  Figure 2 also indicates that differences in wheat growing conditions 
between agroclimatic regions during the season are well captured by the NDVI. The NDVI 
temporal pattern is consistent with wheat yield variation as illustrated in Table 1. The higher 
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NDVI values occurred in subhumid regions associated with favourable growing conditions, while 
subarid regions dominated by severe soil moisture deficits have the lower NDVI values. 
 
 

Table 1. Average wheat yield over five years period 
Agro-climatic 

regions 
Minimum 

(bu/ac) 
Maximum 

(bu/ac) 
Mean 

(bu/ac) 
Subarid 7.54 37.30 25.30 
Semiarid 8.42 49.80 28.40 
Subhumid 10.86 64.80 36.30 
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Figure 2: Five years time-series NDVI temporal profiles in the agroclimatic regions 

 
The temporal profiles of VHI during the wheat growing season indicate that until the 10-day 
period 17, the weather conditions highly fluctuated on the Canadian prairies (Figure 3). The VHI 
values in subarid regions were below 50% for most of the growing season, suggesting less 
favourable growing conditions. The lower VHI values can be explained by the influence of 2001 
and 2002 drought events. Indeed, during these years, a mix of dry, windy, below-normal 
precipitation and cooler temperature were observed across the Canadian prairies (Statistics 
Canada, 2002). This pattern persisted throughout the spring season, causing delays in wheat 
seeding and plants emergence across the Prairies. The gradual increases observed in VHI values 
between 10-day periods 17 and 23 for semiarid and subhumid regions, and between 10-day 
periods 18 and 23 for subarid regions are explained by the fact that most Prairies regions received 
timely rainfall during the critical reproductive phase of wheat. Therefore, the wheat crop was 
rated as being in good to excellent condition during 2003, 2004 and 2005 years, and yield 
potential was above the average due to adequate rainfall and lack of heat stress. These 
observations show that the VHI dynamic is consistent with the weather conditions recorded 
across the Prairies during 2001-2005 cropping season. The steepest decrease in VHI values at the 
10-day period 24 suggests deterioration in weather conditions latter in the season, probably due 
to heavy rainfall events prior to harvest time. Comparison of Figures 2 and 3 clearly show that 
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changes in VHI profiles due to weather-related fluctuations from year to year are not directly 
captured by NDVI which mainly reflects vegetation greenness. 
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Figure 3: Five years time-series VHI temporal profiles in the agroclimatic regions 

 
 

4.2 Wheat Yield Model 
 

In order to determine the critical reproductive phase of wheat to calculate integrals of NDVI and 
VHI, a correlation analysis was carried out between wheat yield and the seasonal NDVI. Figure 4 
illustrates how the coefficient of correlation varied from the beginning to the end of wheat 
growing season. The relationship between seasonal NDVI and wheat yield peak around 10-day 
period 20 (almost late July) for all agroclimatic regions after which the correlation coefficient 
decline rapidly as wheat crop begin to senesce. Overall, the correlation coefficient is relatively 
small except between 10-day periods 17 and 22 where almost 40% to 60% of the variability in 
yield is explained by the NDVI for subarid and semiarid regions, compared to 20% to 41% for 
subhumid regions. The higher correlation coefficient values are associated with the critical 
reproductive phase of wheat corresponding to the heading and grain production period that 
usually occurs during July. This maximum wheat vegetative period was then selected to calculate 
the integrals of NDVI (iNDVI) and VHI (iVHI) in order to develop wheat yield assessment 
models. Figures 5 and 6 show the variation of the correlation coefficient between wheat and both 
vegetation indexes over the integration period (from 10-day periods 17 to 22, expressed as 17-
22X). As depicted, the correlation gradually increases to a maximum as the integration time 
increases then followed by a subsequent decreasing phase. The best iNDVI estimator reached a 
correlation peak at the integration time corresponding to 17-22X for subarid regions (R2 = 0.59), 
almost late July to early August. For semiarid and subhumid areas, the peak correlation occurred 
at the integration time 17-21X and 17-22X for R2 values of 0.57 and 0.44, respectively.  
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Figure 4: Correlation coefficient between NDVI and normalized wheat yield 
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Figure 5: Correlation coefficient between integrated NDVI (iNDVI) and normalized wheat yield 

 
The strength of the correlation between wheat yield and iVHI was also investigated in order to 
determine the response of wheat crop to moisture and thermal conditions as expressed by the 
vegetation health index. The correlation of yield versus iVHI showed a different dynamic 
compared to iNDVI (Figure 6). The correlation reached a peak at integration period 17-20X (late 
July) for semiarid and subhumid regions, while in subarid regions, the peak correlation is reached 
at 17-22X (early August) almost twenty days later in the season (Figure 6). This delay in wheat 
growing conditions may be related to rainfall deficit coupled with cool temperatures. The best 
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iVHI-based model was obtained in the drought-affected subarid regions where three-quarters of 
the variation in wheat yield (R2 = 0.75) is explained by the model; iVHI peaks correlation values 
of 0.61 and 0.34 were reached for semiarid and subhumid regions, respectively. However, both 
iNDVI and iVHI reached their lowest correlation coefficients in subhumid regions mainly due to 
the amount of water accumulated in the field due to frequent rainfall events. Indeed, the excess 
water affects reflectance values of NOAA/AVHRR channels 1 and 2 and causes a decrease in 
vegetation indexes as observed by Domenikiotis et al. (2004). Therefore, there is an increased of 
cloud contamination and water vapour content in the atmosphere, and those changes induced a 
decrease in both vegetation indexes, which affects their correlation with wheat yields. The higher 
correlation of iVHI in subarid regions indicates that this index is more sensitive to dry climate 
conditions and therefore suitable for estimating wheat yield in drought conditions. The results of 
wheat yield assessment based on the relationships with both vegetation indexes are presented in 
Tables 2 and 3. As shown in these tables, the best standard errors of the estimate yield are 
observed with iVHI-based models, particularly for the subarid and semiarid regions. In terms of 
MAE, iVHI-based model gave values of 2.2 bu/ac and 4.7 bu/ac for subarid and semiarid regions, 
respectively, while in subhumid regions, the lower value of MAE was found with iNDVI model 
(7.5 bu/ac). Overall, the high correlation coefficients observed in subarid and semiarid regions 
show that for the drought-affected areas on the Canadian prairies, wheat yield variability is 
largely explained by the time-integrated VHI. Therefore iVHI can be used to adequately forecast 
wheat yield loss due to agricultural drought on the Canadian prairies and indirectly estimates the 
drought severity.  In regions with sufficient rainfall events, such as the subhumid regions, the 
iVHI plays a minor role in the estimation of wheat yield. The iNDVI reacts in the same way in 
these regions, but it performs better than the iVHI. 
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Figure 6: Correlation coefficient between integrated VHI (iVHI) and normalized wheat yield 
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Table 2. iNDVI-based wheat yield assessment  model coefficients 
Agroclimatic 

regions 
a b R2 Integration period 

Subarid 3.16 0.72 0.59 17-22X 
Semiarid -8.73 0.90 0.57 17-21X 
Subhumid -28.48 1.31 0.44 17-22X 

*Model parameters are significantly different from zero at  95% level. 
 
 
 

Table 3. iVHI-based wheat yield assessment  model coefficients 
Agroclimatic 

regions 
a b R2 Integration period 

Subarid 12.03 0.27 0.75 17-22X 
Semiarid 14.52 0.28 0.61 17-20X 
Subhumid 20.44 0.31 0.34 17-20X 

*Model parameters are significantly different from zero at 95% level 
 
 
 

Table 4. Estimated and observed wheat yields using the best linear models per agroclimatic region 
iVHI-based 
(Subarid) 

iVHI-based 
(Semiarid) 

iNDVI-based  
(Subhumid) Year 

CAR Obs. Pred. Resid. CAR Obs. Pred. Resid. CAR Obs. Pred. Resid. 
2001 S3AS 23.20 24.78 -1.58 S02A 22.60 28.86 -6.26 M011 21.90 36.57 -14.67 
2001 A001 16.90 17.35 -0.45 A04A 32.70 32.49 0.21 S09A 27.90 33.46 -5.56 
2002 S3AS 24.48 25.88 -1.40 S02A 22.82 27.45 -4.63 M011 34.25 40.40 -6.15 
2002 A001 27.13 24.30 2.84 A04A 10.86 16.31 -5.44 S09A 9.72 20.15 -10.43 
2003 S3AS 19.06 15.37 3.68 S02A 16.32 19.09 -2.78 M011 46.35 38.19 8.15 
2003 A001 25.27 23.07 2.21 A04A 33.29 32.30 0.99 S09A 28.07 27.49 0.58 
2004 S3AS 28.64 28.00 0.64 S02A 25.04 28.14 -3.10 M011 45.85 33.95 11.90 
2004 A001 30.66 28.53 2.13 A04A 43.41 32.82 10.59 S09A 34.14 31.08 3.06 
2005 S3AS 28.80 33.58 -4.78 S02A 28.60 39.64 -11.04 M011 19.20 31.71 -12.51 
2005 A001 37.30 34.80 2.50 A04A 41.60 39.90 1.70 S09A 40.20 41.70 -1.50 

 MAE = 2.2 bu/ac MAE = 4.7 bu/ac MAE = 7.5 bu/ac 
 

 
5. Conclusion 

 
The performance of NOAA/AVHRR indexes for wheat yield assessment on the Canadian prairies 
was evaluated. We focused on the relation of time-series of two integral vegetation indexes 
(iNDVI and iVHI) with wheat yield dataset. The aim was to compare the performance of both 
indexes toward an operational implementation of a wheat yield assessment system. We used the 
Mean Absolute Error (MAE) and the correlation coefficient in order to evaluate the assessment 
performance of wheat yield models based on these indexes. Results showed that that although 
NDVI temporal pattern is consistent with wheat yield variations in agroclimatic regions, it does 
not highlight the punctual unfavourable growing conditions occurring during the season. 
Contrary to NDVI which mainly reflects wheat crop greenness, VHI shows weather-related 
fluctuations impacting on the crop conditions. In terms of wheat yield assessment under drought 
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conditions, iVHI demonstrated higher potential when compared to iNDVI in subarid and 
semiarid regions. iNDVI gave better results in estimating wheat yield in subhumid Prairies 
regions characterized by frequent rainfall events. Consequently, to develop an efficient wheat 
yield assessment model for the entire Canadian prairies on an operational basis, the iVCI and 
iNDVI should be coupled in the same model to better account for all agroclimatic regions 
characteristics. This combined model will significantly improve wheat yield assessment on the 
Prairies leading to better wheat marketing strategies and assessing population demand.  
 
Despite the promising results found in this study further investigations need to be carried out to 
improve its predictive performance. The best wheat yield estimates are reached at an integration 
period corresponding to almost six weeks before the harvest, which is too late to take corrective 
actions particularly in Canadian prairies where drought occur frequently. In addition, further 
work will be undertaken to include in the yield model other meteorological parameters that have 
control on the drought conditions. Finally, the wheat yield model should be extent to the MODIS 
(Moderate Resolution Imaging Spectroradiometer) dataset to take advantage of its intermediate 
250-m spatial resolution and its flexibility in image compositing periods. 
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