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ABSTRACT 

Whooping cough caused by an infection with Bordetella pertussis or Bordetella 

parapertussis is a highly contagious respiratory disease. Globally, pertussis is the most 

prevalent vaccine-preventable disease. Even though the introduction of whole-cell (wP) 

and acellular pertussis (aP) vaccines has greatly reduced the burden of the disease, 

whooping cough still remains a problem in neonates and adolescents. B. pertussis is 

responsible for about 30 million cases of the disease each year, 90% of which are found 

in developing countries. About 300,000 of those infected, mostly infants, die from the 

infection. Various countries, especially developing nations, have reported an increase in 

infant morbidity due to pertussis. Recently, a rise in pertussis cases has also been 

observed in developed nations such as United States and Canada. Thus, novel vaccines 

against pertussis are urgently needed that would provide early and life-long protection. 

Neonatal vaccination is challenging due to the presence of maternal antibodies 

(MatAbs) and the bias towards mounting Th2-type immune responses following early life 

vaccination. Our objective was to generate a novel vaccine against whooping cough that 

would offer protection in infancy in the presence of vaccine-neutralizing MatAbs. In 

order to first establish the model of interference, we vaccinated neonatal mouse pups and 

piglets in the presence and absence of passive immunity. Our experiments revealed that 

MatAbs interfered with active immunization using pertussis toxoid (PTd) and the level of 

passively transferred antibodies directly correlated with the level of interference that was 

observed. Nevertheless, we showed that this phenomenon could be overcome by using a 

second booster immunization or by co-formulating the toxoid with innate stimuli such as 

CpG ODN. Moreover, we also demonstrated that vaccination in the presence of MatAbs 

does not prevent responses to booster doses given later in life. 

In order to improve the vaccine efficacy and immunogenicity we co-formulated 

the antigen with a novel adjuvant combination composed of CpG ODN, innate defense 

regulator peptide (IDRP) and polyphosphazene (PP). The model antigen ovalbumin 

(OVA) and adjuvants were formulated into PP microparticle and soluble formulations. 

These formulations were titrated and delivered to neonatal mice via parenteral and 

mucosal routes. Our experiments revealed that co-formulation of the antigen with the 
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novel adjuvant platform resulted in a higher antibody production as compared to 

vaccinating with antigen alone. In addition, both the soluble and microparticle 

formulations composed of the adjuvant combination induced elevated anti-OVA IgG2a 

titers thus indicating a Th1-type response shift in neonatal mice. Intranasal route of 

vaccination was shown to be superior to parenteral vaccination as it resulted in the 

production of high concentrations of systemic IgG2a and IgA antibodies. 

Lastly, we co-formulated PTd and filamentous hemagglutinin (FHA) with the 

novel adjuvant formulation and tested them in the presence and absence of passive 

immunity in the murine and porcine models of pertussis. Vaccines composed of the new 

adjuvant formulations induced an earlier onset of immunity, superior anti-pertussis IgG2a 

and IgA titers, and a balanced Th1/Th2-type responses when compared to immunization 

with Quadracel, one of the commercially available pediatric vaccines for pertussis. 

Most importantly, despite having half of the antigens of the Quadracel, the novel 

vaccine formulations offered protection against challenge infection in the presence of 

passively transferred MatAbs. Taken together our results demonstrate this novel vaccine 

formulation and delivery to be an excellent candidate for neonatal vaccination. 
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1. LITERATURE REVIEW 

1.1 WHOOPING COUGH 

1.1.1 Disease 

Whooping cough or pertussis is a respiratory disease caused by infection with 

Bordetella pertussis or Bordetella paprapertussis. B. pertussis is transmitted via airborne 

aerosol droplets from an infected, coughing, sneezing person [1]. Whooping cough can 

be categorized into three stages [2]. The first catarrhal stage consists of a bacterial 

incubation period of 5-7 days prior to the development of symptoms. Persons are most 

infectious throughout this period. During this stage, the infected individual experiences 

symptoms similar to those of the common cold such as rhinorrhea, light cough and fever. 

The second stage of whooping cough, the paroxysmal stage, is characterized by a dry, 

nonproductive cough. During that time, the coughing attacks may be so severe can cause 

vomiting [3]. The coughing reflex attempts to clear the breathing passage and produces a 

typical whoop, from which the name “whooping cough” derives [4]. Typically, an 

infected individual experiences many intense coughing attacks throughout the day. This 

stage of the infection lasts for two to six weeks. The paroxysmal stage is followed by the 

last stage of pertussis, the convalescent phase, during which coughing spasms decrease in 

both severity and frequency. Complications arising from whooping cough typically occur 

in infants and young children. Most common complications include seizures, 

encephalopathy and secondary bacterial infections such as pneumonia [5-8].  

Symptoms of the disease are most severe in infants and young children. Most 

deaths associated with pertussis take place in non-immunized neonates less than six 

months of age or infants who had not yet received complete series of vaccinations [9-12]. 

The symptoms are milder in older children and adults. Severity of the disease depends on 

the age of the patient as well as the remaining immune status from previous 

vaccination(s) or infection [13]. 

1.1.2 Infection 

 Whooping cough infection requires exposure to B. pertussis or B. parapertussis, 

followed by its attachment to the ciliated respiratory epithelial cells. Replicating bacteria 

causes localized tissue damage and systemic toxicity (Figure 1.1).  Bacterial adhesins 



	
   2	
  

including filamentous hemagglutinin (FHA), pertactin (PRN) and fimbriae (FIM) are 

responsible for attaching the organism to target respiratory cells. Other toxins such as 

pertussis toxin (PT) and adenylate cyclase toxin (ACT) allow the pathogen to damage the 

epithelial lining [14]. In combination, the virulence factors create both localized and 

systemic manifestations of the disease. Bacterial toxins released into the local 

environment result in damage of the respiratory epithelium leading to the cough during 

the catarrhal stage of the disease. ACT aids the bacteria in evading the innate immune 

response and subsequent clearance of the organism [15]. Upon entry into the cell, the 

toxin inhibits the cytotoxic functions of neutrophils, monocytes and natural killer (NK) 

cells [16]. 
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(HEWLETT: Pediatr Infect Dise J, Volume 16(4) Supplement 1. April 1997. S78-S84) 

Figure 1.1 Pathogenesis of pertussis B. pertussis virulence factors contribute to the severity of 

whooping cough by facilitating adherence to the ciliated respiratory epithelial cells and are believed to 

responsible for the clinical disease process. 
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1.1.3 Epidemiology 

According to the WHO (World Health Organization), infections with B. pertussis 

and B. parapertussis cause 20-40 million cases of whooping cough with about 100,000- 

200,000 fatalities annually, mainly in unvaccinated individuals [17]. In 2009, WHO 

estimated 106,207 reported cases of pertussis and 82% coverage with at least three 

primary doses of either whole-cell (wP) or acellular (aP) vaccines (Figure 1.2). The 

organization also estimated that pertussis was responsible for 195,000 deaths globally in 

2008. WHO recognizes whooping cough as one of the ten most common causes of 

infection and death from an infectious agent. 95% of all pertussis cases are seen in 

developing countries. Pertussis is also one of the most common vaccine preventable 

diseases in industrialized nations [11]. In 1993, whooping cough was found to be the 

most common vaccine preventable disease among children five years of age or younger. 

The resurgence of the disease was due to the increasing population of susceptible adults 

[18]. Many European countries including England [19], the Netherlands [20] and 

Germany [21] also reported increased incidence of pertussis in the 1990’s.  
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(WHO/UNICEF coverage estimates 1980-2009) 

Figure 1.2 Immunization coverage with pertussis vaccines in infants, 2009. Vaccination with 

inactivated whole-cell or acellular pertussis combined with diphtheria and tetanus toxoid vaccines, at least 

3 primary doses. 

Crowcroft et al. [22] developed a method, which allowed estimation of the global 

burden of pertussis. The authors assessed the proportion of vulnerable children becoming 

infected in areas with suboptimal vaccination coverage (<70%) in 1999 at 30% by 1 year, 

80% by 5 years, and 100% by 15 years of age and for areas with excellent vaccine 

coverage (> or =70%) at 10% by 1 year, 60% by 5 years, and 100% by 15 years.  

In the past, whooping cough mainly affected infants and young children. 

Recently, however, countries such as Canada and United States which have good 

pertussis control through vaccination, have shown an increase in the occurrence of the 

disease in older age groups (adolescents and adults) [23, 24]. Even though those countries 

have well-developed pertussis immunization programs, whooping cough still remains a 

problem in neonates and adolescents [25, 26]. Neonates suffer from pertussis due to the 

fact that they are either too young to have received their vaccination or have not yet 
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received a full series of vaccinations. Infants contract pertussis from their infected parents 

or members of the household and they cannot be protected by current vaccination 

schedule. An increase in the incidence of pertussis in older children and adults has been 

associated with waning of immunity in those who were vaccinated [27]. It has been 

postulated that increased susceptibility to pertussis infection in adolescents is marked by 

waning immunity from early life vaccination followed by reduced boosting strategies 

[28]. 

Since most infants with pertussis contract the infection from household contact, 

maternal and household vaccination (cocooning strategy) has been proposed in order to 

reduce the incidence of the disease in the neonates [29, 30]. Such cocooning strategy has 

been suggested in some industrialized countries such as Australia, Germany and France 

[14]. In fact, due to an increase of infant pertussis this strategy was recently introduced in 

the Province of Saskatchewan, Canada. The Saskatoon Health Region recommends 

vaccinating mothers and fathers of newborn infants. The cocooning strategy as well as 

vaccinating children and adolescents may indirectly protect newborn infants, however, 

information on the effect of this approach at the population level is quite limited. 

1.2 BORDETELLA PERTUSSIS  

1.2.1 General introduction 

Bordetellae are small, non-motile, Gram-negative coccobacilli initially isolated by 

Bordet and Gengou in 1906. The bacteria infect the ciliated epithelium of the human 

respiratory tract [31]. The genus Bordetella is composed of multiple species including B. 

pertussis, parapertussis and bronchiseptica [32]. B. pertussis is a strictly human 

pathogen and a causative agent of whooping cough. B. parapertussis is responsible for 

causing milder pertussis-like disease in humans. B. bronchiseptica colonizes other 

mammals such as dogs, pigs, rabbits and guinea pigs. The pathogen is responsible for 

causing atrophic rhinitis in pigs [33] and kennel cough in dogs [34]. B. avium infects 

birds and can be associated with turkey coryza. B. hinzii and B. holmensii may 

occasionally cause human infections [4]. 
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Members of the genus Bordetella have been demonstrated to enter and survive 

within phagocytic and nonphagocytic eukaryotic cells [35, 36]. For example, B. pertussis 

has been shown to survive in human macrophages [36] and has been shown to be present 

in the alveolar macrophages of children infected with human immunodeficiency virus 

(HIV) [37]. This intracellular phase of infection has also been demonstrated in mice [38]. 

Intracellular infection and survival by B. pertussis has a great implication for the 

mechanisms of vaccine action since a successful vaccine against whooping cough must 

induce both humoral and cellular immunity. 

B. pertussis is difficult to culture and requires enriched media such as Bordet-

Gengou medium or charcoal blood agar. Charcoal blood agar, which contains 10% sheep 

blood is a nonselective medium and must include an antibiotic such as cephalexin to 

reduce the growth of other bacteria [4]. B. pertussis grows best at 37°C in a humid 

environment. The agar plates might be incubated up to seven days before colonies can be 

seen.  

 

1.2.2 Virulence factors 

1.2.2.1 Pertussis toxin 

PT is a virulence factor responsible for most systemic symptoms of disease in 

individuals infected by B. pertussis [39]. PT is a 105 kDa protein composed of six 

subunits. PT is a classical A-B toxin consisting of two parts: an enzymatically active A 

(S1) subunit and a B oligomer (Figure 1.3), which is responsible for attaching to 

receptors on target cells. The B oligomer binds surface glycoproteins on various 

mammalian cells such as ciliated respiratory epithelial cells [40], macrophages and 

lymphocytes [41, 42]. This nontoxic part of the toxin is made of subunits S2-S5. PT’s A 

subunit is an ADP ribosyl transferase, which increases levels of intracellular cyclic 

adenosine monophosphate (cAMP), which in turn affects signaling pathways of many 

cells. This function has an influence on the cells of the immune system. It disrupts the 

cellular function of phagocytes such as macrophages by decreasing their phagocytic 

activities, chemotaxis, engulfment and bactericidal killing [43]. Increased levels of cAMP 
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result in increased insulin production as well as increased sensitivity to histamine [44, 

45]. In turn, these increased levels of insulin lead to hypoglycemia. Altered levels of 

histamine release are associated with hypotension and can lead to shock.  PT has also 

been associated with inhibition of neutrophil and lymphocyte chemotaxis [46].  

 

(LOCHT, FEBS J. 2011 Jul 9.) 

Figure 1.3 Crystal structure of pertussis toxin. The S1 subunit is responsible for the enzymatic 

activity of the toxin. The remaining subunits (S2-S5) make the B oligomer, which attaches the receptor to 

target cells. 

 

1.2.2.2 Filamentous hemagglutinin 

FHA is a large molecular weight (220 kDa) surface protein and a component of 

the cell envelope. This nontoxic pertussis antigen is involved in the initial colonization of 

bacteria. FHA mediates attachment to ciliated epithelial cells of the upper respiratory 

tract [47]. The protein has also been shown to exhibit immunosuppressive and 

immunomodulatory activities [48]. Following B. pertussis infection, infected mice  

generate FHA-specific T regulatory lymphocytes and antibodies. The T cells produced 

secrete interleukin-10 (IL-10) and suppress Th1 (T helper lymphocyte type-1) responses 

against B. pertussis, which mediates protective immunity against the pathogen [49]. It has 
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also been demonstrated the contact of FHA with macrophage receptors results in 

repression of interleukin-12 (IL-12) through an IL-10 dependent mechanism [50, 51]. It 

has been suggested that FHA might also act as a bridge adhesin allowing the attachment 

of other micro-organisms. Such property may explain the additional infections, which 

typically occur during pertussis infections [52]. 

FHA is a virulence factor included in acellular pertussis vaccines. FHA is quite 

immunogenic as individuals who receive FHA-containing pertussis vaccines mount a 

strong antibody reaction to the protein [53, 54]. Acellular whooping cough vaccines, 

which contain both PT and FHA, have slightly superior effectiveness as compared to 

monocomponent PT vaccines [55].   

1.2.2.3. Pertactin 

PRN, a 69-kDa outer membrane protein plays a function in the bacterial 

adherence to monocytes [56]. The protein, however, does not adhere to epithelial cells 

[57]. Based on vaccine trials, it has been suggested that PRN might be the most vital of 

all B. pertussis adhesins [58]. Cherry et al. [58]  and Storsaeter at al. [59] performed a 

study identifying protective antibodies to B. pertussis antigens following both whole-cell 

and acellular vaccination. The studies concluded that high antibody levels to PRN, FIM 

and PT can be correlated with lowest risk of infection. Data from the trials concluded that 

antibody to PRN was the most significant in inducing protection. Protection against 

infection may be achieved by blocking PRN-mediated attachment of the pathogen to 

target cells [16]. Hellwig at al. have shown that antibodies against this immunoprotective 

antigen are needed for effective phagocytosis of B. pertussis by the host immune cells 

[60].  

1.2.2.4 Fimbriae 

FIM proteins are involved in colonization of the respiratory tract [61]. The 

proteins allow for bacterial adherence to epithelial cells and monocytes [57]. FIM has 

also been shown to induce nitric oxide (NO) production by macrophages [62]. Using in 

vivo studies in mice, it was shown that Fim- B. pertussis strains with a deletion of the Fim 

genes were impaired in their ability to multiply in the trachea and nasopharynx [63]. 
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Using both mouse and rat models, it was shown that FIM was absolutely necessary for B. 

bronchiseptica persistence in the trachea [64]. FIM has immunomodulatory and anti-

inflammatory functions and in mice can inhibit bacterial killing by lung macrophages 

[65]. This virulence factor also exhibits an immunomodulatory activity. FIM can act as a 

T-dependent antigen for an early immunoglobulin M (IgM) response and inducing a T-

helper lymphocyte type 2 (Th-2) host response following Bordetella infection [16]. Data 

from vaccine trials in children showed that FIM contributes to protection against 

infection [58]. A vaccine containing FIM as well as PT, FHA and PRN showed superior 

effectiveness than a vaccine composed of PT, FHA and PRN [66].  

1.2.3 Vaccination against pertussis 

1.2.3.1 Whole-cell pertussis vaccine 

Inactivated wP vaccines have been a part of childhood vaccination for many 

decades. The vaccines introduced in the 1940’s dramatically reduced the public health 

impact of pertussis [67]. Before the introduction of pertussis vaccines, average annual 

incidence rates of whooping cough in industrialized countries were 150-200/100,000. 

Introduction of an extensive pertussis vaccination during the 1950s-1960s dramatically 

reduced (> 90%) whooping cough incidence and mortality [31]. Similarly, the 

introduction of the wP vaccine rapidly reduced the number of whooping cough cases in 

Canada (Figure 1.4) Pertussis vaccines have been part of the WHO Expanded Programme 

on Immunization since its launch in 1974. According to the WHO, since the end of the 

1980’s, around 80% of infants worldwide have received at least the three primary doses 

of the pertussis vaccines [31]. Most wP vaccines exist in combination with tetanus and 

diphtheria toxins (DTwP). DTwP vaccines contain aluminum salt as the adjuvant. wP  

vaccines are thought to be > 80% efficacious in eliminating symptomatic pertussis [3]. 
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(Public Health Agency of Canada; www.publichealth.gc.ca) 

Figure 1.4 Pertussis- reported cases, Canada (1924-2004).  

Immunization of infants with the wP vaccine is frequently (1 in 2-10 injections) 

related with slight adverse reactions including swelling, local redness, pain, anorexia, 

irritability and fever [31, 68]. In rare cases, the vaccine is associated with hypotonic-

hyporesponsive episodes (<1 in 1000-2000) [31, 69]. Lipopolysaccharide (LPS) is the 

main contributor of reactogenicity to the wP vaccines. The lipid A region of LPS, which 

contains most of the endotoxin activity, is the most likely source of reactogenicity of 

whole-cell vaccines [70]. Because of the reaction and concerns regarding vaccine safety, 

aP vaccines were developed in 1970. These vaccines are now being used in many 

countries including Canada.  

Combination vaccines composed of wP vaccine combined with tetanus and 

diphtheria toxoids were the fundamentals of all other infant combination vaccines. DTwP 

vaccines have been combined with the following antigens: H. influenzae type b 

polysaccharide (Hib), Hepatitis B surface antigen (HBs-antigen), and inactivated polio 

vaccines (IPV).  
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1.2.3.2 Acellular pertussis vaccine 

Concerns regarding adverse side effects of wP vaccines led to development of aP 

vaccines. These vaccines include virulence factors such as PT, FHA, PRN and FIM. aP 

vaccines displayed less side effects and their safety profile was the main driver that led to 

the replacement of wP vaccines. Another advantage of aP vaccines is their reproducible 

manufacturing process. The vaccine is composed of purified antigens, with removal of 

non-protective, toxic components such as LPS and other unwanted parts of the bacterial 

cell wall. When manufacturing wP vaccines the process and strains differ from 

manufacturer to manufacturer. Significant differences may be found in the amount of PT 

and FHA in different wP vaccines. On the other hand, the dose of antigens is more easily 

controlled during the manufacture of aP. 

The first aP vaccines developed in Japan in 1981 were prepared using a co-

purification process. The first vaccine, also called Takeda-type vaccine was produced by 

Takeda Chemical Industries in Osaka. This vaccine contained a higher dose of FHA as 

compared to PT and agglutinins [71]. The vaccine was created as a trivalent DTaP 

vaccine by Wyeth and Lederle Laboratories. The vaccine was extensively studied in the 

United States [72] and Japan [71]. The second type of aP vaccine used in Japan was 

produced by Biken (Research Foundation for Microbial Diseases of Osaka University). 

The antigens used in this vaccine were purified separately and contained the same 

concentrations of both PT and FHA. In a study performed by Aoyama at al. vaccine 

efficacy estimates were 88%, 77% and 78% for the Takeda-type vaccine, Biken-type 

vaccine  and a wP vaccine, respectively [73].  

Most aP vaccines contain four to five separately purified  pertussis antigens (PT, 

FHA, PRN and FIM type 2 and type 3). The vaccines also differ in the bacterial clone 

used for antigen manufacturing methods, purification and detoxification of PT, and type 

of adjuvant/preservative used [14]. The standard dose of pertussis vaccine used to 

vaccinate infants and young children is 0.5 ml of volume. One such vaccine is the 

Quadracel vaccine produced by Sanofi Pasteur Limited, which contains 15 Lf 

Diphtheria toxoid, 5 Lf Tetanus toxoid, acellular pertussis [20 µg chemically detoxified 

PTd, 20 µg FHA, 3 µg PRN, 5 µg FIM types 2 and 3], inactivated poliomyelitis vaccine 
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(IPV) 40 D-antigen units type 1 (Mahoney), 8 D-antigen units type 2 (MEF-1) and 32 D-

antigen units type 3 (Saukett) with 1.5 mg aluminum phosphate used as the adjuvant. The 

vaccine is administered intramuscularly in the anterolateral thigh of young children aged 

less than one year. In older age group and adults, the vaccine is delivered in the deltoid 

muscle [14]. The adult vaccines, such as the Adacel vaccine, contain lesser amounts of 

detoxified PT (2.5 µg) and FHA (5 µg). Administration and schedule for pertussis 

vaccines vary considerably between counties. The WHO recommends a three-dose 

primary series for infants. The first dose should be administered at six weeks with 

subsequent doses at four-eight weeks apart, at age 10-14 weeks, and 14-18 weeks. The 

dose of the advised primary series should be concluded by the age of six months. A 

booster dose is recommended for children around the second year of life [14]. In Canada, 

routine series of immunization of infants occur at two, four and six months of life. The 

children are then boosted at 18 months and between four-six years of life (Public Health 

Agency of Canada).  

As previously mentioned, the switch from wP to aP vaccines was mainly driven 

by safety concerns. Many studies have demonstrated the increased safety following 

immunization with aP vaccines [66, 74]. Although aP vaccines are associated with lower 

reactogenicity, some cases of local reactions such as leg swelling and redness have been 

reported, especially following multiple booster doses of the vaccine [75, 76]. Evidence 

suggests that the leg swelling is a product of immunoglobulin-E (IgE)-mediated 

angioedema as opposed to an Arthus reaction [75]. It was shown that booster 

immunization of children with aP vaccine was associated with enhanced Th-2 type 

cytokine production [77]. The increased production of interleukin-4 (IL-4) and 

interleukin-5 (IL-5) increase IgE production and leading to IgE-dependent mast cell 

degranulation. These cells, in turn, release mediators such as Th2-type cytokines and 

chemokines that boost leukocyte recruitment to the site of injection. The local reaction 

induced by a booster shot of aP vaccine could be a type of an anaphylactic reaction 

produced by increased levels of Th2 cytokines and IgE [77]. A decrease in the number 

and frequency of immunization doses may lessen the severity of local reactions. This, 

however, could intensify the risk of acquiring whooping cough due to waning immunity. 
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Like wP vaccines, aP vaccines were primarily co-delivered with diphtheria and 

tetanus toxoids. Similarly, the vaccines were as well formulated with other antigens such 

as Hib polysaccharide, HBs-antigen and IPV vaccines. These combination vaccines are 

used as primary immunization for infants. Combination vaccines used as booster vaccines 

have reduced concentrations of antigens to further decrease the reactogenicity of booster 

doses. Recently, a study concluded that reduced dose combination vaccines with pertussis 

components are as effective as their equal non-combined vaccines [78].  

The elimination of most non-protective, toxic components such as LPS 

throughout the purification process became the main advantage of the aP vaccine as 

compared to the wP vaccine. With the development of novel pertussis vaccines, quickly 

came a general agreement for the need of a safer pertussis toxin. This key virulence factor 

was then properly treated to obliterate its toxicity but maintaining its immunogenicity. It 

soon became clear that detoxified pertussis toxin (transformed into PTd) and FHA should 

be part of all aP vaccines (WHO).  

 In order for PT to be a part of aP vaccines it must be completely detoxified 

without losing its immunogenicity. Detoxification of the toxin is performed by genetic or 

chemical means. Chemically detoxified toxins are treated with either hydrogen peroxide 

or formaldehyde [79]. The S1 peptide of the toxin does not contain lysine making it 

unable to be detoxified with low doses of formaldehyde. In order to achieve total 

detoxification, the protein must be extensively treated with formaldehyde [80]. Usage of 

chemically detoxified toxins is associated with possible side effects. The procedure of 

chemical detoxification comes with a risk of reversion to toxicity or incomplete 

detoxification [81]. These reasons lead to the replacement of chemically inactivated to 

genetically inactivated toxoids for the use in pertussis vaccines. Most licensed 

multivalent aP vaccines, however, contain a chemically detoxified pertussis toxin.  

 Genetically detoxified PTd contains two amino acid replacements (Arg9 → Lys 

and Glu129 → Gly) in the active site of the enzyme [82]. This replacement of amino acids 

inactivated the catalytic part of the enzyme making it non-toxic. Multiple in vivo and in 

vitro studies have been performed to compare the immunogenicity of chemically and 
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genetically detoxified pertussis toxins. The studies concluded that genetically inactivated 

recombinant toxoid was superior immunogenically with an increased protective efficacy 

[82]. The PT9K/129G molecule increased the quality of the antibody response following 

vaccination. It was demonstrated that the genetic detoxification of PT maintains B and T 

cell epitopes of naïve PT, unlike chemical means of detoxifying which alter protein 

immunogenicity [83, 84]. 

A study published by Per Ibsen in 1996 assessed the effect of chemical and 

genetic detoxification of PT on epitope detection by a large collection of murine 

monoclonal pertussis toxin antibodies [79]. Ibsen concluded that toxin-neutralizing 

epitopes were conserved in the genetically detoxified PT, however, they were destroyed 

in the chemically detoxified PT. A study performed by the National Institute of Allergy 

and Infectious Diseases (NIAID) compared 13 aP vaccines [54]. This phase II clinical 

trial carried out in infants demonstrated the increased magnitude of the immune response 

following vaccination with aP vaccines composed of the recombinant PT. The study 

concluded that the genetically detoxified PTd induced 10-20 times greater anti-PT 

response as compared to vaccines composed of chemically inactivated toxoid. Another 

vaccine efficacy trial was performed in Italy and involved a large number of infants [82, 

85]. The study demonstrated the vaccine composed of the recombinant PT was highly 

efficacious. During the first 30 months of the study lesser cases of pertussis were 

observed in children vaccinated with genetically detoxified toxin than children vaccinated 

with an aP vaccine composed of chemically inactivated toxin. 

As previously mentioned, wP vaccines produced enhanced cellular immune 

responses, which were associated with increased vaccine efficacy [86]. WP vaccines, 

however, were associated with side effects, which led to their replacement with aP 

vaccines. WP vaccines induced Th1-type cells, while aP vaccines induce T cells with a 

Th2-type bias [86]. Cellular immune responses to pertussis are longer lasting than 

antibodies and it seems that T cells have an effect in long-term whooping cough 

protection [87]. wP vaccines were associated with interferon-gamma (IFN-γ) production, 

which was demonstrated to play a significant role in innate and adaptive immunity to B. 

pertussis [88]. Vaccination with aP vaccines does not induce IFN-γ and is mediated by 
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the production of immunoglobulin-G1 (IgG1) antibodies in mice [89]. Protective Th1-

type responses induced via wP vaccines or previous infection are associated with IL-12 

production by antigen presenting cells such as macrophages and dendritic cells. Vaccine 

components responsible for these responses are LPS and active PT [90].  

 

1.2.3 Immune response to infection with B. pertussis  

Estimates of the human duration of immunity against pertussis following natural 

infection range from 7-10 years [91, 92] to 20 years [28]. Estimates of the extend of the 

immunity gained after wP vaccination range from 4 [93, 94] to12 years [19, 95]. A study 

performed by Simondon et al. demonstrated a difference in vaccine efficacy between the 

aP and wP vaccines [96]. The trial concluded that vaccination of 18 month- 4 year old 

children with aP resulted in a higher incidence of pertussis as children vaccinated with 

wP vaccine. There was no difference, however, in the incidence rate in children younger 

than 18 months. The data suggested a longer duration of protective immunity against 

infection following vaccination with wP than by aP vaccine. Natural infection of humans 

with B. pertussis results in the production of cellular immune responses [97]. A Th1-type 

immune responses to PT, FHA and PRN are produced shortly following infection. 

Vaccination with wP vaccine also resulted with a Th1-type response production. Unlike 

natural infection and wP immunization, vaccination with aP vaccine is recognized by  

superior stimulation of Th2 cells. 

Recovery from natural B. pertussis infection or immunization of mice with wP 

vaccine induces a Th1-type response. Immunization of mice using aP vaccines elicits 

Th2-type responses [98]. Native infection and vaccination with wP but not aP vaccines 

results in the induction of IL-12 [90]. Using the murine respiratory challenge model, 

Mills and colleagues have demonstrated the model to be a good correlate for protection 

following wP and aP vaccination in humans. The studies also concluded that both 

humoral and cell-mediated immunity (CMI) are required to obtain protection against 

infection following vaccination [89]. Antibody-mediated immune responses limit the 

degree of infection and reduce the destruction of the respiratory epithelia and immune 

cells. However, in order to achieve complete bacterial clearance, CMI responses must be 
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induced [99]. Using the murine respiratory challenge model, it was shown that 

immunization with an aP vaccine resulted in production of Th2-type responses, which 

were associated with delayed bacterial clearance. In contrast, natural infection and 

vaccination with a wP vaccine induced Th1-type responses, which were associated with 

rapid bacterial clearance [99]. Studies in mice primed either by a prior infection or by 

immunization with a wP vaccine (encourage strong Th1-type responses) have shown a 

prompt influx of neutrophils and lymphocytes with a lesser significant influx of 

macrophages. Priming of mice with an aP vaccine (producing Th2-type response) was 

associated with a less dramatic influx of neutrophils or T cells into the lungs following a 

challenge [86, 100].  

As depicted in Figure 1.5 both vaccine types produce different types of immunity 

using distinct mechanisms. wP vaccines contain inactivated cell extracts and remaining 

bacterial toxins like LPS. The endotoxin activates macrophages to produce interlukin-1β 

(IL-1β), tumor necrosis factor-α (TNF-α), interlukin-18 (IL-18) and IL-12. These pro-

inflammatory cytokines control the formation of Th1 cells from the precursor T cell 

(Thp). In addition, LPS contributes to the adverse side effects following immunization 

with wP vaccines. The cytokines produced allow B cells to secrete immunoglobulin G2a 

(IgG2a). Cytokines produced by Th1 cells such as IFN-γ, allow for the production of 

opsonizing antibodies and triggering neutrophils and macrophages to engulf intracellular 

bacteria. aP vaccines do not have residual bacterial toxins, but included antigens 

including FHA that encourage IL-10 production, which induces Th2 cells. The Th2 cells 

produced, in turn, allow murine B cells to produce IgE and IgG1, to facilitate the 

neutralization of toxins [86]. 
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(K. H. Mills, Microbes and Infection, 2001 Jul;3(8):655-77.) 

Figure 1.5 Mechanisms of  pertussis immunity induced wP and aP vaccines Whole-cell 

vaccine containing residual toxins such as LPS stimulate Th1 responses via the production of IL-12, TNF-α 

and IL-1β. In contrast, acellular vaccines, which contain virulence factors like FHA, encourage IL-10 

induction thus resulting in Th2 responses.  

It has been demonstrated that Toll-like receptor 4 (TLR4) is required for 

successful clearance of primary infections with B. pertussis [101]. The receptor mediates 

IL-10 production, which triggers antigen-specific regulatory T cells that leads to the 

resistance to B. pertussis by inhibiting inflammatory pathology. It was also shown that 

TLR4 plays a vital role in protective cellular immunity following vaccination with wP 

vaccines. The immunity involves interlukin-23 (IL-23) and IL-1-driven interlukin-17 (IL-

17) that improves the bactericidal activity of macrophages [102]. Genetically detoxified 

PTd (PT9K/129G) is the superior aP vaccine antigen candidate as it has been shown to 

induce Th1/Th17 immune responses [103]. The study also demonstrated the mutant’s 

utilization of TLR4/TLR2 (Toll-like receptor 2) engagement. Through IL-10, PTd favors 
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the expansion of Th1/Th17 lineages, which as mentioned above are involved in 

mediating host immunity to B. pertussis infection. 

Natural infection and vaccination with wP vaccines induce cellular immune 

responses mainly mediated by IFN-γ, which are required to inhibit the spread of the 

disease. Ironically, the components of the vaccine that contribute to its efficacy are also 

responsible for its reactogenicity. aP vaccines do not contain the toxic components and 

are much safer to use. These vaccines result in the induction of Th2-type responses with 

immunity enduring for about 6-10 years. Thus, new types of pertussis vaccines are 

required which are safe to use, modify the immune response into a Th1-type and offer 

long-lasting immunity. Because most cases of whooping cough are observed in young 

infants, better vaccines are needed for early life vaccination. As the majority of the 

disease occurs in developing counties, more affordable vaccines with fewer doses would 

be ideal to stop the spread of pertussis in those regions of the world. 

	
  

1.2.4 Animal models 

1.2.4.1 Murine model  

 Even though humans are the biological host for B. pertussis, a considerable 

attempt has been made to reproduce the disease in mice, rats, rabbits and non-human 

primates. Mice are the most commonly used species to study pertussis infections. Murine 

models have greatly contributed to the existing knowledge of immunity to B. pertussis. In 

addition, mice have been utilized to study the safety and efficacy of both wP and aP 

vaccines. The intracerebral (i.c.) Kendrick test was used to analyze the effectiveness of 

wP vaccines [104]. The Kendrick model was originally developed in 1950’s. Since then, 

both an intranasal (i.n.) and an aerosol models have been developed.  

The response to infection depends on the age of mice as well as the dose of the 

challenge infection. Adult mice typically do not develop severe clinical symptoms, 

neonatal mice, however, depending on their age can get reasonably sick and exhibit 

weight loss, hypoglycemia and leukocytosis [105]. Because mice are unable to cough, 

they do not show the paroxysmal coughing upon B. pertussis challenge. Mice also cannot 
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spread the infection to other mice. The murine model bears resemblance to the human 

infection as neonatal, sucking mice have a higher susceptibility to infection than adult 

mice. Following a respiratory challenge by an intranasal administration or aerosol, mice 

resemble similar systemic symptoms as human infants caused by PT such as 

hypoglycemia, leukocytosis and histamine sensitization [105-107]. Upon respiratory 

pertussis infection, immunocompetent adult mice can recover from the disease. 

Immunodeficient [88] and neonatal/infant mice, however, succumb  to the infection with 

mostly fatal outcomes [108]. 

Mills and colleagues demonstrated that adult mice immunized with wP and aP 

vaccines are able to clear the bacterial infection following challenge [89]. The results 

suggest that the mouse respiratory challenge corresponds with vaccine efficacy in 

children [89, 109]. It was also shown that the murine intranasal challenge model could 

distinguish between divalent and trivalent aP vaccines from the same producer having 

varying effectiveness [110]. Taken together, the studies propose the murine respiratory 

challenge models are useful in the development of new pertussis vaccines, correlates of 

protection and mechanisms of immunity against B. pertussis. 

1.2.4.2 Porcine model  

Our laboratory developed a new pertussis disease model in newborn piglets [111]. 

Piglets were intrapulmonary infected with 5 x 109 colony-forming units (CFU) of B. 

pertussis strain Tohama 1. After a few days, nasal discharge, breathing complications, 

coughing and loss of weight were observed in the piglets. Post mortem examinations 

reveled severe lung lesions associated with pertussis as well as bronchopneumonia. 

Immunohistochemical analysis demonstrated an influx of B. pertussis bacteria within the 

airways. These cells were adhered to the respiratory epithelia lining or phagocytosed by 

immune cells including macrophages and neutrophils. Systemic effects included 

hypoglycemia and lymphocytosis. In a separate study Elahi et al. described that B. 

parapertussis can infect older piglets and cause pertussis-like illness when delivered 

intrapulmonarily [112]. Elahi et al. also demonstrated the presence of protective maternal 

antibodies (MatAbs) in piglets born of vaccinated sows [113] (Fig. 1.6). The study 

revealed pertussis specific IgG and secretory immunoglobulin-A(sIgA) in the serum and 
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bronchoalveolar lavage fluid (BAL) in offspring born of vaccinated mothers. The 

development of this new model will allow a better understanding of the disease and assist 

in the development of more successful vaccines against whooping cough. Moreover, 

these findings enable the study of pertussis vaccine efficacy in the neonate in the 

presence of maternal antibodies (MatAbs).  

 

(Elahi S. et al. Infection and Immunity, May 2006, p. 2619-2627, Vol. 74, No. 5) 

Figure 1.6 Lungs of piglets born to primed and non-vaccinated sows. Piglets were infected 

with 5 x 109 CFUs B. pertussis strain Tohama 1. Piglets were born either from PBS-treated control sows  

(A) and (C) or sows vaccinated with heat-inactivated B. pertussis (B) and (D). Piglets were euthanized two 

(A and B) and four (C and D) days post infection. 

The pig model might be the superior model for studying pertussis as pigs and 

humans share numerous physiological characteristics [114] including many functions of 

the innate and adaptive immune responses. Additionally, the porcine model allows access 

to various immune compartments and samples including serum, colostrum, milk and 

bronchoalveolar lavage fluid. High concentration of immunoglobulin G (IgG), 
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immunoglobulin A (IgA) and IgM antibodies are transferred through porcine colostrum 

and milk, which allows the study of the effects of MatAbs on neonatal vaccination. In 

both humans and rodents, maternal immunoglobulin-G (IgG) is transferred through the 

placenta [115]. Since immunoglobulins cannot cross the placenta in pregnant sows [116] 

[117], piglets born of naïve and vaccinated sows can be exchanged between litters shortly 

after birth. This effort allows to eliminate the sow effect when studying the influence of 

MatAbs.  

1.2.5 Maternal immunization 

The discovery of the effective placental transfer of maternal anti-pertussis IgG 

and the fact that vaccine-specific antibodies in infants reflected levels of their mothers 

[118, 119], maternal immunization was identified as another means of preventing 

neonatal pertussis. It was shown that vaccinating pregnant women during pregnancy with 

wP vaccine resulted in the increase of agglutinin antibodies [120]. A study performed by 

Cohen et al. investigated the occurrence of pertussis in 100 infants born of mothers 

vaccinated during pregnancy with wP vaccine. The study identified zero cases of 

pertussis following documented exposures in infants born of vaccinated mothers. Three 

of the six infants exposed to pertussis and born of non-vaccinated mothers developed 

whooping cough [121]. A recent study demonstrated that immunization with TDaP 

vaccine during pregnancy had a profound effect on maternal and neonatal serum 

antibodies [122]. The study revealed newborns born of mothers vaccinated during 

pregnancy had significantly higher antibody concentrations to all antigens. However, 

even though it is possible to measure passively acquired antibodies in infants, the amount 

of antibodies needed to offer protection following pertussis infection is unknown [120].  

Healy et al. [123] and Gall [124] encourage the importance of immunizing 

pregnant women with the acellular pertussis vaccine, which would offer better passive 

immunity to their infant. Kathryn Edwards found that elevated concentrations of 

maternally transferred antibodies to PT were related with a lesser pertussis toxin antibody 

responses to wP. This trend, however, was not associated following vaccination with aP 

vaccine [125]. Edwards suggested that maternal vaccination is a valid method for 

protecting the newborn from pertussis until active immunity is present. Pre-existing 
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pertussis antibody titers seem not to interfere with infant immune responses to the aP 

vaccine [126]. These findings provide a rationale for administering aP vaccines to 

pregnant women in order to decrease the pertussis burden in neonates.  

 The Canadian Center for Vaccinology at Dalhousie University in Halifax is 

currently performing a clinical trial in order to evaluate to potential for immunological 

protection of the neonate via maternal immunization. The trial involves immunization of 

pregnant women with DTaP (Adacel®) vaccine during the mid third trimester of 

pregnancy to evaluate the possibility of offering immunological protection to the 

newborn by supplying passive placentally transported serum, colostrum and breast milk 

antibodies against pertussis. The study will determine the rate of MatAb decay from the 

time of immunization until a year postpartum. The trial will also establish the 

concentrations of antibody passed to the neonate. Additionally, the objectives include 

establishing whether maternal immunization obstructs the active antibody induction 

following DTaP-IPV-Hib vaccination of infants born of mothers boosted at some stage of 

the third trimester of pregnancy. 

Protection of neonates induced by passive immunity was also demonstrated using 

animal models of pertussis. Suckling mice born of vaccinated mothers showed protection 

against infection with B. pertussis [127]. Our group has also shown a potential benefit in 

vaccinating mothers in order to reduce neonatal whooping cough. Sows were vaccinated 

with heat-inactivated B. pertussis during pregnancy. Neonatal piglets were encouraged to 

suckle colostrum and milk after birth before they were challenged with B. pertussis. 

Considerable concentrations of specific IgG and sIgA were identified in the serum and 

BAL of piglets born of primed sows. After infection with B. pertussis, clinical symptoms, 

pathological alterations, and bacterial shedding were substantially decreased in piglets 

that had obtained passively acquired immunity. These findings provide more evidence 

that maternal immunization could provide an option to offer protection against pertussis 

in neonates [113]. Identifying maternal immunization as a method to prevent neonatal 

pertussis, poses another need for neonatal vaccines, which will be able to elicit protection 

in the presence of high levels of MatAbs. 
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1.3 INFANT IMMUNE SYSTEM 

1.3.1 Neonatal immune system 

Infants are highly susceptible to infectious diseases due to their “immature” 

immune system. An important challenge of neonatal vaccination includes the immaturity 

of the infant’s immune system, particularly its predisposition to mounting Th2-type 

responses [128, 129]. Neonatal dendritic cells (DCs) seem to be skewed against mounting 

Th1-type immune responses [130]. It has been postulated that the absence of sufficient 

co-stimulatory pathways may play a role in this polarization of T cells by antigen 

presenting cells thus resulting in a selective activation of the Th2 lineage [130]. Studies 

of neonatal mice established a higher necessity for accessory T cell signals in contrast to 

adult mice [131]. Newborn lymphocytes have also shown a reduced presence of the 

CD40 ligand [132]. Limiting the CD40/CD40L interaction in vivo reduces the priming of 

Th1 cells by reduction of IL-12 production [133]. The low level of CD40/CD40L 

interaction could result in deficient neonatal IL-12 production consequently leading to the 

development of interleukin-4 (IL-4) secreting Th2 cells. Thus, successful neonatal 

vaccines would need to overcome the innate neonatal polarization towards mounting 

Th2-like responses. This bias might be modulated by the immunological environment at 

the time of priming through the use of Th-1 response stimulating adjuvants in early life 

vaccines. 

Kollmann et. al assessed TRL mediated cytokine response of neonatal and adult 

human blood monocuclear cells [134]. The study found differences among blood samples 

from neonates and adults. As compared to adults, neonatal blood monocytes produced 

less interferon-α (IFN-α), IFN-γ and IL-12 subunit p70. Infant cells also showed a 

superior capacity to produce IL-10 and IL-17 producing helper T cells (Th17). 

Additionally, infant cells showed an inability to produce multiple cytokines 

simultaneously in response to Toll-like receptors (TLR) agonists [134]. The production of 

Th17 cells and IL-10 may be a factor in enhanced Th2 responses. Neonatal human DCs 

have been shown to be incapable of expressing the IL-12(p35) gene following stimulation 

with TLR agonists such as LPS and poly(I:C) [135]. Similarly, neonatal human DCs are 
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also incompetent at producing the cytokine following stimulation with pertussis toxin or 

with genetically detoxified PTds [136].  

This neonatal Th2-type response skewing may be a result of Th2 response 

predominance during pregnancy. Th1-type responses are inhibited during pregnancy as 

they could lead to a miscarriage. Th1-derived cytotoxic immune responses could 

distinguish the developing fetus as an allograft and try to eliminate it by executing an 

attack. Factors generated in the placenta during pregnancy skew maternal immune 

regulation towards a Th2-type phenotype in order to protect the fetus [137]. The factors 

which skew the maternal immune system to guard the developing fetus in utero in 

addition imprint the immune system of the neonate towards mounting Th2-like responses 

following vaccination. These immunological alterations in the mother during pregnancy 

have a profound effect on how neonatal immune cells respond to antigens. For instance, 

human monocytes present in the umbilical cord blood are to a lesser amount responsive 

upon stimulation with bacterial products such as lipopeptides and lipopolysaccharide than 

cells obtained from adult blood [138]. Neonates have low levels of Th1 cytokines (TNF, 

IL-12p70, IFN-γ) and human neonatal plasma includes increased concentrations of Th-2 

cytokine interleukin-6 (IL-6) [139]. In addition, neonatal cells have impaired T-cell and 

antigen presenting cell interface, particularly the ligation of CD40 and CD40L [140]. 

Therefore, the mixture consisting of the immaturity of the neonatal immune system as 

well as presence of vaccine neutralizing maternal antibodies become clear obstacles to 

effective vaccination during the neonatal period. One means of overcoming such 

obstacles is by incorporating Th1-type skewing vaccine adjuvants. A successful neonatal 

vaccine should contain adjuvant systems which can redirect the Th2 bias and induce 

balanced or Th1-type responses. Such vaccines should also contain specialized vaccine 

delivery vehicles that protect the antigen from being neutralized by MatAbs and safely 

deliver it to neonatal APCs.  

 

1.3.2 Neonatal vaccines 

 Even though neonatal vaccination is challenging, vaccines delivered to neonates 

have been proven safe and effective [141]. Currently approved vaccines administered at 
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birth include Hepatitis B vaccine (HBV), Bacille Calmette-Guerin (BCG) and the oral 

polio vaccine (OPV). HBV vaccine made using a recombinant DNA technology to 

produce the hepatitis B surface antigen (HBsAg) is the only vaccine given throughout the 

first month of life in the United States [141].  

 BCG, which signals via Toll-like receptor-2 (TRL-2) and TLR-4 [142] and 

induces Th1-type immune responses at birth [143] is the most extensively used vaccine 

globally [144]. Bourin Trunz et al. determined that during 2002 the 100.5 million BCG 

vaccines administered at birth inhibited about 30,000 cases of tuberculous meningitis and 

around 11,500 cases of miliary disease [145]. The efficacy of the neonatal BCG 

vaccination is a result of its capability to produce Th1-type immune responses [146]. 

Interestingly, BCG vaccination had an effect on antibody and cytokine responses to 

unrelated antigens (HBV and oral polio) in early life [147]. Early BCG vaccination 

encouraged the induction of Th1 and Th2-type cytokines following immunization with 

unrelated antigens. BCG boosts both Th1 and Th2-type responses to unrelated antigens 

most likely via its manipulation of DC maturation.  

 OPV vaccine given at birth has an ability to induce both mucosal and humoral 

antibody responses [141]. The vaccine administered at birth provides protection in parts 

of the world where poliomyelitis has not been controlled [148]. A study performed by 

Halsey et al. tested the effectiveness of the trivalent oral polio and DTP vaccines given to 

human neonates early in life [148]. It was concluded that even though MatAbs may alter 

the immune responses during early life, the priming dose of DTP could be given in the 

first month of life. A study by Knuf et al. demonstrated that vaccination with aP vaccine 

within the first week of life was safe and induced antibody responses to pertussis by three 

months of life [149]. Currently, the first dose of pertussis vaccine is administered at two 

months of life. The authors suggest that administering the vaccine at birth would further 

reduce the risks associated with pertussis during the window when infants are most 

vulnerable to the disease. 

 The increasing evidence suggesting that neonates can successfully respond to 

early life vaccination is leading to the development of novel vaccine strategies. One of 

such vaccines is the attenuated Listeria monocytogenes vaccine, which has shown 
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promise in neonatal mice [150]. A single immunization during early life induced strong 

primary and secondary CD4 and CD8 Th1 responses without the need for boosting. The 

vaccine protected young mice from a lethal infection with a wild-type pathogen. 

1.3.3 Interference with maternal antibodies 

In humans, MatAbs are transferred via placenta or through the colostrum and 

milk. The most effectively transferred immunoglobulin subclass is IgG1 [151], with little 

IgM, IgA and IgE transferred. Transfer of antibodies is facilitated by active transport 

using Fc receptors (FcγRs) [152]. Placental transfer of antibodies is mediated by binding 

of maternal IgG to Fc receptors in the placenta, which contains many FcRs, including the 

most important to antibody transfer, the neonatal FcR (FcRn). It is believed that by 

regulating the IgG transport, the FcRn greatly contributes to the control of serum IgG 

concentration [153]. In humans, transfer of antibodies via the placenta  starts at 28 weeks 

gestation and the concentration of MatAbs in fetal circulation amplifies until birth [152]. 

At 33 weeks of gestation maternal and fetal antibody levels are of similar levels [154]. In 

fact, it was demonstrated that at birth fetal and maternal antibody concentrations are 

similar, and sometimes, the antibody levels in neonates exceed the mother’s titer [155]. 

Some of the factors contributing to the transport of vaccine-specific MatAbs include 

placental abnormalities, concentration of specific antibodies in maternal circulation, the 

time between maternal vaccination and delivery as well as the gestational age of the fetus 

[154]. 

Human breast milk is abundant in antibodies, especially sIgA, which have been 

transferred into breast milk via the polymeric immunoglobulin receptor (pIgR) [156]. 

SIgA transferred via breast milk is specific for a number of common respiratory and 

intestinal infectious agents [157]. These secretory antibodies target pathogens present in 

the mother’s environment, which the neonate will most probably encounter throughout its 

infancy. Breast-feeding is a perfect example of the exchange of mucosal immunity 

among the mother and her infant. During breast-feeding primed B cells migrate from the 

mother’s Peyer’s patch through the lymph and peripheral blood to the lactating mammary 

gland [158].  
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Presence of MatAbs is the most significant challenge for infant vaccination [159] 

[160]. MatAbs are produced due to the mother’s previous exposure to the pathogen or 

vaccination. This passive immunity is transferred from mother to infant transplacentally 

or through the colostrum and breast milk. MatAbs offer short-lived protection against 

disease, but also hinder early vaccination of neonates [161]. Ironically, passive immunity 

protects the young from disease, but also interferes with immunization of the infant. 

Many examples have demonstrated important inhibitory effects on infant antibody 

responses. MatAb interference has been shown following vaccination with vaccines 

against measles [152, 162], Haemophilus influenzae type b conjugate vaccine [163], 

hepatitis A [164], influenza A [165], tetanus [166], and varicella-zoster [160]. Many 

studies have demonstrated the issue of MatAb interference following whooping cough 

vaccination [167-170]. Transplacental and transcolostral MatAbs to pertussis antigens 

can obstruct the infant’s ability to mount antibody responses following immunization 

with either the wP or aP pediatric vaccines [128, 168, 169, 171, 172].  

MatAbs’ inhibitory effects are thought to be a result of formation of immune 

complexes between antibodies and antigen and include the neutralization of antigen, 

phagocytosis of MatAb-coated antigen, inhibition of B cell activation by Fcγ-receptor 

mediated signals and epitope masking by MatAbs and as a result inhibiting antigen 

binding to infant B cells [129, 171] (Figure 1.7). The most important determinant of 

infant antibody responses is found in the MatAb: vaccine antigen ratio. Neonatal 

antibody responses may only be initiated once MatAbs have declined beneath a particular 

threshold, and secondary responses may be obtained once this threshold is reached [129, 

152, 171]. MatAbs have an effect on infant B cell responses but leave T cell responses 

unaffected [128, 171, 173]. In the presence of MatAbs, the neonatal antibody response to 

the specific antigen is repressed. Consequently, successful vaccines against pertussis 

must be able to overcome the interference of MatAbs. 
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(Siegrist CA; Vaccine. 2001 May 14;19(25-26):3331-46. ) 

Figure 1.7 Influence of maternal antibodies on early life vaccination. High levels of MatAbs 

could neutralize viral vaccine concentration thus inhibiting viral replication and decreasing the 

effectiveness of the vaccine. MatAbs also mask immunodominant specific B-cell vaccine epitopes, 

inhibiting contact with neonate’s B cells. Despite the inhibition of B cell responses, CD4/CD8 priming is 

unaffected by MatAbs. 

A few strategies have been used in order to overcome maternal antibody 

inhibition of responses following early life vaccination. One such strategy is to use 

repeated immunization doses. Such an approach has been used with DTP vaccines. 

Another method that reduces the inhibitory effects of passive immunity takes advantage 
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of the progressive decline of MatAbs. Delaying the age of first immunization until 

MatAbs have waned has been used in measles vaccination. Neither method permits for 

successful early initiation of protection of neonates [174]. Thus, novel vaccine 

formulations and approaches able of inducing protection in the presence of MatAbs are 

needed. Future vaccine strategies and formulations for infant immunization must take full 

advantage of the concept of vaccine adjuvanticity. Vaccine enhancing adjuvants can be 

divided into two categories: immunomodulators and antigen delivery systems. 

Immunomodulatory adjuvants directly activate APC or lymphocytes to enhance and 

modulate immune responses following vaccination. This class of adjuvants would allow 

the induction of desired, protective immunity. Antigen delivery systems integrate the 

antigens thus promoting their uptake, processing and presentation by APCs to B and T 

lymphocytes. Microspheres of biodegradable polymers are examples of such vaccine 

delivery adjuvants. Another exciting feature of micoparticles is their incorporation of the 

antigen, which could allow to protect the vaccine from being recognized and 

consequently neutralized by MatAbs.   

  

1.4 STRATEGIES TO OVERCOME INTERFERNCE / FUTURE 
VACCINES 

1.4.1 Adjuvants 

1.4.1.1. CpG ODN 

Originally, adjuvants were used to increase the magnitude of antibody production. 

Most recent adjuvants are designed to tailor the immune response, which is needed for 

protection. Adjuvants can be divided into two classes: delivery of antigens and 

immunostimulatory. Vaccine delivery adjuvants act by targeting adjuvants to antigen 

presenting cells. These adjuvants may also protect the antigen from being degraded as 

well as encourage the depot effect, which is thought to enhance antigen uptake. Thus, 

adjuvants are used to improve the quality and quantity of immune responses elicited by 

vaccines. Adjuvants are incorporated into vaccines in order to induce favorable type of 

immunity, for example: to induce Th-1 or Th-2-type immunity. Adjuvants not only allow 
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for generation of T cell memory, but also modify the specificity and affinity of the 

response [175]. 

 Pathogen recognition relies mainly on the innate system. Microbes contain 

pathogen-associated molecular patterns (PAMPs), which are recognized and activated by 

pattern recognition receptors (PRRs) expressed on immune cells such as DCs [176]. 

Immunostimulatory adjuvants are mostly PAMPS, which are recognized by PRRs 

including Toll-like receptors (TLRs) and NOD-like receptors (NLRs). These TLRs and 

NLRs are the most studied members of the PRR family. TLRs recognize unique patterns 

that are not present in the host, which allows them to sense danger and activate the innate 

immune system. TLRs recognize lipids, nucleic acids and proteins. Intracellular NLRs 

detect pathogens and stress signals such as flagellin, toxins and  degradation products of 

peptidoglycans [177]. Most PRRs trigger the transcription factors such as nuclear factor- 

κB (NF-κB) and interferon regulatory factor (IRF) via pathways composed of adaptor 

molecules such as myeloid differentiation factor 88 (MYd88) and Toll/IL-1 receptor 

(TIR)-domain-containing adaptor inducing IFN-beta (TRIF). These, in turn, are 

responsible for induction of genes encoding cytokines and chemokines, which shape the 

adaptive responses.  

 Cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODN) motifs are an 

example of PAMPs that function to alert the innate immune system of possible infections. 

Vertebrates have evolved PRRs in order to recognize pathogen structures such as 

unmethylated DNA [176]. Akira et al. have shown that in mice Toll-like receptor 9 

(TLR9) recognizes CpG motifs in immune cells [178]. It was also demonstrated that 

TLR9 is responsible for recognizing bacterial DNA in humans [179]. The primary human 

cells expressing TLR9 are B cells and plasmacytoid DCs (pDCs) [178]. Most members of 

the TLR family are expressed on the cell surface, TLR9, however, is expressed within the 

cell. CpG DNA is internalized by antigen presenting cells where it is recognized by 

TLR9 present in endocytic vesicles [178]. CpG-mediated signalling involves the MyD88 

pathway, whose elements activate transcription factor NF-κB responsible for cytokine 

and chemokine gene expression [180]. 



	
   32	
  

 CpG ODNs are an example of immunomodulatory adjuvants. CpGs are synthetic 

motifs similar to unmethylated CpG dinucleotides present in bacterial DNA. Unlike 

vertebrate DNA, bacterial DNA is composed of a higher concentration of CpG 

dinucleotides that are unmethylated, which makes it highly immunomodulatory [181]. 

Bacterial DNA has a positive effect on B cell proliferation and antibody secretion. Unlike 

vertebrate DNA, bacterial DNA acts on NK cells to lyse tumor cells and secrete IFN-γ 

[182]. Bacterial DNA and synthetic oligodeoxynucleotides composed of unmethylated 

CpG motifs trigger an immunostimulatory cascade responsible for the maturation, 

differentiation as well as proliferation of B and T lymphocytes, DCs, macrophages, 

monocytes and NK cells [183]. The cells stimulated by CpG motifs produce cytokines 

and chemokines which establish a pro-inflammatory (IL-1, IL-6, IL-18, TNF-α) and Th1 

biased (IFN-γ, IL-12) immune environment [184].  

 CpG ODNs can be divided into three classes. Type A ODNs contain a mixed 

phosphodiester/phosphorothioate backbone with a single CpG motif [185]. The 

immunomodulatory activity of Type A CpG ODNs include APC maturation and 

stimulation of pDCs to secrete IFN-α [185]. Class B CpG ODNs are constructed using a 

phosphorothioate backbone and include multiple CpG motifs. This class of CpG ODNs 

are responsible for pDC maturation and favourably increases the induction of TNF-α and 

IL-6. These ODNs are also involved in B cell activation, as well as the induction of IgM 

[183]. The third class of CpG resembles the B type of CpG ODNs as they are completely 

composed of phosphorothioate nucleotides containing multiple CpG motifs. This class of 

ODNs combines the stimulatory and immunomodulatory properties of A and B-class 

ODNs. C type of CpG ODNs directly stimulate B cells and pDCs, which results in the 

production of IL-6 and TNF-α [183, 185].  

 Synthetic 18-25 base ODNs composed of CpG motifs have been tested for their 

adjuvant properties, either soluble or formulated into nanoparticles [186]. CpG ODNs 

have been shown to improve antibody responses and strongly augment Th1 responses 

[187]. Incorporation of CpG ODN into numerous experimental vaccines showed 

improved protection against pathogens such as Cryptococcus neoformans [188] and 

intracellular bacteria such as Francisella tularensis and Listeria monocytogenes [189]. 
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CpG ODN has also been tested in clinical trials as an adjuvant for human vaccines [190, 

191]. CpG has been tested and shown to induce IFN-γ and circumvent Th2 polarization in 

vaccines against Hepatitis C Virus (HCV) [192], Haemophilus influenzae type b vaccine 

[193], measles virus [194], anthrax [195, 196] and smallpox [197].	
   CpG ODNs are 

optimal adjuvants for neonatal vaccines. These synthetic motifs can improve antibody 

responses following vaccination and more importantly overcome the  obstacle of  the 

Th2-type bias associated with neonatal immunization. 

1.4.1.2 Innate defense regulator peptides (IDRPs) 

 Synthetic cationic IDRPs are similar to host defense peptides (HDPs), which are 

antimicrobial innate host defense molecules found in animals, insects and plants [198]. 

These antimicrobial peptides are normally short (12-100 amino acids) and have a net 

positive charge (+2 to +9) [199]. The peptides have been isolated from a variety of 

sources including unicellular microorganisms, plants, insects, amphibians, birds, fish and 

mammals [200]. Besides displaying antibacterial and antifungal properties, the peptides 

can exhibit antiviral and anticancer activities. Moreover, IDRPs are involved in 

inflammation, healing of wounds, cytokine release and chemotaxis [201]. These peptides 

are also able to improve phagocytosis, neutralize the septic effects produced by LPS as 

well as support the recruitment of a number of immune cells to the site of inflammation 

[202, 203]. Mammalian peptides have been shown to be present during the induction of 

adaptive immunity by exhibiting their chemotactic properties for human monocytes [204] 

and T cells [205]. 

 Positively charged IDRPs display immunomodulatory functions such as 

recruitment and activation of APCs [206]. The human cathelicidin peptide LL-37 and the 

murine cathelin-related antimicrobial peptide (CRAMP) induce chemokine production 

for human neutrophils, macrophages, monocytes and T cells [207]. LL-37 has a profound 

effect on adaptive immune responses. The peptide allows precursor DCs to go through 

phenotypic and functional changes that enhance their antigen sampling activity [208]. As 

these cells mature, they display an enhanced ability to promote Th1 responses. LL-37-

primed DCs produce Th1 stimulatory cytokines and significantly enhanced T cell IFN-γ 

responses [208]. Unlike LL-37 and CRAMP cathelicidins, the 12-mer bactenecin 2a 



	
   34	
  

(Bac2a) and indolicidin (13 amino acids) are smaller peptides found in the cytoplasmic 

granules of bovine neutrophils [209, 210]. Indolicidin has anti-endotoxin activity 

displayed by its inhibition of LPS-induced TNF-α secretion. The peptide also displays a 

capacity to produce chemokine interleukin-8 (IL-8) in a human bronchial cell line [211]. 

The Bac2a derivative named HH2 [212] combined with C-class CpG ODN links innate 

and adaptive immunity by its production of cytokines and chemokines  in human 

mononuclear cells as well as upregulation of surface marker expression in human DCs 

[213]. Most interestingly, co-formulation of HH2 and CpG with PTd antigens, 

considerably improved toxoid-specific antibody titers in contrast to vaccination with 

toxoid alone [213]. 

 Defensins are the second group of mammalian antimicrobial peptides [214, 215]. 

These cyclic peptides are divided into three groups based on their disulfide bond 

distribution (α-, β- and θ-defensins) [199]. The α and β-defensins are extensively 

distributed throughout the vertebrate species. θ-defensins, however, have much more 

limited distribution [216]. α and β-defensins are the only two classes of defensins found 

in humans [217]. These two classes of defensins are present in various cells including: 

neutrophils, macrophages, NK cells, intestinal cells, epithelial tissues, skin, mucosa, 

respiratory and urinogenital tracts [199]. Four α-defensins have been isolated from 

human neutrophils (HNP-1 to 4) [217]. Human β-defensin 1 (hBD-1) is expressed 

constitutively in most tissues including lung, mammary gland, salivary gland, kidney, 

pancreas and prostate [218]. Expression of human β-defensin 2 (hBD-2) is inducible 

following exposure to bacteria, LPS or pro-inflammatory cytokines including TNF-α or 

IL-1β [219]. In addition to their antimicrobial activity, defensins also show 

immunomodulatory functions. The peptides act as chemoattractants of immune cells such 

as monocytes [204] and stimulate cytokine and adhesion molecule expression [220]. 

 Due to their immunostimulatory functions, short cationic peptides are promising 

candidates as vaccine adjuvants. In fact, IDRPs coupled with CpG ODN have been tested 

experimentally by Kovacs-Nolan et al. Indolicidin and CpG ODN co-administered with 

ovalbumin (OVA) or hen egg lysozyme (HEL) demonstrated synergistic activity between 

the adjuvants [221, 222]. In mice, incorporation of the two adjuvants enhanced humoral 
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OVA-specific immunity, but not CMI [223]. In cattle, when formulated with HEL, the 

adjuvants increased cell-mediated but not humeral immune responses following 

vaccination [222].  

1.4.1.3 Polyphosphazenes (PPs) 

 Polyphosphazenes (PPs) are a class of synthetic, water-soluble, biodegradable 

polymers composed of a backbone with alternating phosphorus and nitrogen atoms with 

organic side groups connected to each phosphorus [224]. The most studied 

polyphosphazene polyacid is poly[di(sodium carboxylatophenoxy)phosphazene] (PCPP) 

[225]. Recently, a new polyphosphazene polyelectrolyte has been developed 

poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) (Figure 1.8). Due to 

their physio-chemical properties, nontoxic degradation products, simplicity of 

manufacture and matrix permeability, polyphosphazenes are an exceptional choice for a 

platform used for controlled vaccine/drug release [226]. 

 

 

 

Figure 1.8 Structure of the polyphosphazene PCEP and PCPP polyelectrolytes  

  

One of the most significant potential applications of these synthetic 

polyelectrolytes is that when delivered with vaccine antigens they act as powerful 



	
   36	
  

immunostimulants. For example, PCPP was demonstrated to have an adjuvant property to 

a variety of vaccine antigens including influenza [227], rotavirus [228] and cholera [229]. 

Mutwiri et al. demonstrated that in comparison to PCPP, PCEP was shown to be a more 

powerful vaccine adjuvant in trials with influenza virus X:31 [230] and HBs-antigen 

[231]. Vaccination of mice with influenza X:31 antigen and PCPP produced Th2-type 

immunity as evident by IL-4 production. In contrast, mice immunized with the same 

antigen and PCEP more balanced Th1/Th2-type antigen-specific responses as indicated 

by the production of IFN-γ and IL-4 cytokines [230]. 

A mechanism explaining polyphosphazene immunostimulatory activity has been 

suggested [232]. It is believed that the polymer-antigen combination targets the cell 

surface receptor of the B lymphocyte. Polyelectrolyte is able to cluster membrane 

proteins, which consequently results in the enhanced immune responses [232]. 

Multivalent receptor clustering can activate signaling pathways having an important role 

in biological activity and induction of immune responses [233]. Biological properties of 

PCPP are a result of its capacity to form water-soluble noncovalent complexes with 

vaccine antigens thus permitting their presentation to immune cells [232]. These water-

soluble complexes of polyphosphazene and protein allow the polymer to play a role in 

antigen transporting. This action can also stabilize and protect protein ligands. 

Polyphosphazenes have been combined with other adjuvants such as CpG ODN 

to increase their immunostimulatory properties. In mice, co-administration of PCPP or 

PCEP with CpG ODN and HBsAg resulted in a substantial increase of HBsAg-specific 

antibody responses. More significantly, it was observed the formulation of adjuvants 

changed the type of the immune response (Th1 vs. Th2) [231]. Administration of CpG 

ODN alone induced largely Th1-type immunity as seen by the superior IgG2a and lower 

IgG1 antigen-specific antibody production. A vaccine containing PCEP as the only 

adjuvant induced mixed Th1/Th2-type immune responses suggested by a mixed IgG2a 

and IgG1 antibody induction. Lastly, vaccination with PCPP alone resulted in the 

induction of Th2-type immunity, which was associated with production of IgG1 

antibodies [231]. Mutwiri et al. confirmed the responses induced by the combination of 

adjuvants was at least 100-fold higher than responses induced by individual antigens, 



	
   37	
  

which might lead to the conclusion that CpG ODN and PPs might act through separate 

signalling pathways [234].  

In order to increase vaccine efficacy by improving antibody and cell-mediated 

immunity induction, a novel adjuvant formulation was developed, which is composed of 

CpG ODN, cationic host defense peptides and polyphosphazenes. The novel adjuvant 

platform was co-formulated with various vaccine antigens and studied experimentally. 

For example, when co-formulated with OVA, the mixture of CpG ODN, indolicidin and 

PP resulted in improved antibody and CMI in mice [235]. The study also indicated the 

novel adjuvant’s ability to prolong antigen preservation at injection site. Similarly mice 

immunized with bovine respiratory syncytial virus fusion protein and the combination of 

adjuvants resulted in development of enhanced humoral and cellular immune responses 

[222]. Vaccination with OVA co-formulated with CpG, indolicidin and PP increased the 

production of TNF-α, IL-12, and IL-6 by bone marrow-derived DCs [223]. This vaccine 

adjuvant formulation co-formulated with HEL was also tested in cattle. The experiments 

concluded enhanced humoral and cell-mediated immunity. In addition, it was mentioned 

that the adjuvant combination improved the production of IFN-α, TNF-a and IFN-γ in 

vitro thus suggesting the ability of the three adjuvants to work synergistically [221]. Most 

importantly, as described by Gracia et al. this  adjuvant combination co-formulated with 

PTd was tested in neonatal and adult mice. This novel adjuvant  induced a superior anti-

PTd IgG2a response in both adult and neonatal mice. Moreover, this response was 

initiated early and, with a long duration [236].  

1.4.2 Microparticulate vaccine delivery 

Particulate delivery of vaccine antigens is a highly efficacious method for antigen 

delivery to APC.  Microparticles containing antigens can safely deliver the vaccine by 

being phagocytosed by cells such as macrophages and DCs. An example of such 

microparticles are poly (D,L-lactic-co-glycolic acid) (PLGA) nanospheres, which were 

shown to be phagocytosed by human DCs and macrophages in vitro [237]. When inside  

an APCs, antigen is freed from the microparticles followed by loading onto major 

histocompatibility complex II (MHC II presentation). Poly-lactide-co-glycolides (PLG) 

microparticles were demonstrated to be successful adjuvants. Biodegradable PLG 
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microparticles increased staphylococcal enterotoxin B toxoid levels of neutralizing 

antibodies following vaccination [238]. Another great characteristic of PLG 

microparticles as vaccine delivery systems is their controlled release of antigens [239, 

240]. Such controlled release of antigen may continue to stimulate the immune system 

over time thus allowing for fewer doses of the vaccine. 

Microparticle-based vaccination has advantages over vaccination with soluble 

formulations. Vaccine antigen and adjuvant could be more efficiently taken up by APCs 

and the microparticles can amplify the retention of the vaccine at the site of its 

administration or the nearby draining lymph node [234]. As a result B and T cell 

responses may be enhanced because of the persistence of the antigen. Microparticles are 

also ideal for mucosal vaccination. Antigens delivered via mucosal routes may be cleared 

by non-specific mechanisms, be degraded by enzymes or perhaps be affected by extreme 

pH before successfully reaching target cells [241]. Encapsulating the antigen was 

demonstrated to protect it from being degraded before reaching APCs. Most importantly, 

hiding the antigen within the particles may decrease the recognition and neutralization of 

antigen by MatAbs. Microparticles have been co-formulated with adjuvants such as CpG 

ODN to increase vaccine efficacy [242-244]. This method resulted in the involvement of 

endosomal TLR-9 followed by cytokine secretion by APCs and antigen cross-

presentation [245]. Another well known vaccine adjuvant muramyl dipeptide (MPD), 

which is a component of bacterial peptigoglycan, when encapsulated into gelatin 

microspheres was successfully able to activate macrophages [246]. Formulating MDP 

into microparticles also resulted in an enhanced immune response. 

Polyphosphozenes can also be formulated into microparticles via ionic 

crosslinking in the presence of divalent cations [247]. In fact, as described by Eng at al. 

the prospective of polyphosphazene usage to deliver vaccine antigens was demonstrated 

when encapsulation of CpG ODN into these microspheres increased the immune 

responses when compared to the aqueous formulation [248]. Furthermore, Garlapati et al. 

showed that encapsulating OVA and CpG ODN into PCPP microparticles resulted in a 

potent Th1 immune response [249]. These formulations more efficiently enhanced the 

immune system responses as compared to the soluble formulations. These novel 
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formulations were also superior to the soluble vaccines at delivering the antigen to the 

local draining lymph nodes. 

Soluble polyphosphazene microparticles can be made into microparticles by 

coacervation with monovalent salt solutions such as NaCl followed by stabilization by 

divalent cations such CaCl2 [247]. Using this method, Garlapati et al. encapsulated 

bovine serum albumin (BSA) and OVA. The technique resulted in spherical 

microparticles in the range of 0.7 -3 µm in diameter [250]. Furthermore, using 

fluorescein isothiocyanate	
  (FITC) labelled OVA and Alexafluor-546 labelled CpG ODN 

(Figure 1.9) we determined the incorporation ranged from 70% for OVA and > 90% for 

CpG. When lyophilized, the particles can retain their activity for a long time. When re-

suspended after storage at room temperature for two months, the particles seemed to 

preserve their integrity. 

 
(modified from Garlapati et al. ,Vaccine  Dec 6;28(52):8306-14.) 
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Figure 1.9 Confocal laser scanning microscope images of FITC-OVA/ALEXAFLUOR-546-

CpG PCPP microspheres. Top left panel shows green fluorescent FITC-OVA and the top right panel 

represents red fluorescent CpG-ALEXAFLUOR. The bottom image shows superimposed images. 

 

 

 



	
   41	
  

2. HYPOTHESIS AND OBJECTIVES 

2.1 OVERALL GOALS AND RATIONALE 

 Although vaccination against B. pertussis has significantly reduced the incidence 

of whooping cough, some 20-40 million cases of pertussis still occur worldwide each 

year, with 90% occurring in the developing parts of the world. Mortality is highest in 

infants and young children resulting in more than 200,000 deaths every year [17, 22, 

251]. Rise in whooping cough cases have recently been observed in developed countries 

such as Canada and United States [23, 25, 252, 253]. A dramatic increase in disease has 

been detected in older children and adults, who can transmit the infection to young 

infants who are most susceptible to the disease. This trend is due in part to waning 

immunity over time in vaccinated individuals. In Canada a booster immunization is 

recommended for all adults to limit transmission to their newborns. Thus, more effective 

vaccines are urgently needed that provide protection at an early age of life and that can 

overcome the challenges of infant immunization including interference of maternal 

antibodies (MatAbs) and the infants’ bias towards mounting Th-2-type immune responses 

following early life vaccination.   

The challenges for neonatal vaccines include the “immaturity” of the immune 

system in early life, particularly its bias for mounting Th2-type [254] responses and most 

importantly the interference with MatAbs [159-161]. These MatAbs come from previous 

exposure or vaccination of the mother. MatAbs interfere with infant immunization by 

neutralizing the vaccines in the case of live-attenuated vaccines and formation of immune 

complexes between antibodies and vaccine [129, 171]. A number of mechanisms have 

been suggested to describe the interference between MatAbs and active vaccination of 

newborns including the neutralization of viral vaccines, phagocytosis of MatAb-coated 

antigen, reduction of B cell activation by Fcγ-receptor mediated signals and epitope 

concealment by MatAbs, therefore inhibiting antigen recognition by infant B cells [171]. 

However, the major determinant of infant antibody responses is found in the maternal 

antibody: vaccine antigen ratio. Antibody responses may only be obtained when MatAbs 

have dropped below a particular threshold (ratio of MatAbs to vaccine antigen), and 

secondary responses may be acquired when this threshold is reached. During pregnancy, 
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the fetus and the mother show reduced Th1 responses to avoid a fetal-maternal immune 

attack which could potentially result in a miscarriage [254]. Due to this phenomenon 

neonates are programmed to mount Th2-like immune responses following early life 

vaccination. Novel neonatal vaccines against whooping cough which can overcome these 

challenges are urgently needed. 

Maternal immunization has recently been identified as another means of preventing 

neonatal pertussis [120]. It is believed that it would be beneficial to immunize pregnant 

women with the acellular pertussis vaccine, which would offer greater levels of passive 

immunity to their newborns [122]. Identifying maternal immunization as a method to 

prevent neonatal pertussis poses another need for neonatal vaccines, which will be able to 

elicit protection in the presence of high levels of MatAbs. Novel neonatal vaccines 

against whooping cough are urgently needed. Such vaccines would offer long time 

protection, work in the presence of MatAbs and be able to  induce mixed Th1/Th2 

immune responses needed for protection against whopping cough. We are developing 

such novel vaccine formulations containing PTd, FHA and novel immunomodulators 

such as CpG ODN, IDRP and PP.  

Our overall goal of this research project was to develop novel vaccine 

formulations against whooping cough, which can induce long lasting immune 

responses in the presence or absence of MatAbs in newborn infants following early 

life vaccination. The rationale of this project was to assess novel pertussis vaccine 

formulations based on a combination of PTd and FHA and a novel adjuvant platform in 

the presence of MatAbs. 

2.2 HYPOTHESIS 

Vaccine containing PP delivery vehicles with PTd and FHA and a 

combination of CpG ODN and IDRP will elicit long-lasting protection in neonates 

when administered in the presence of B. pertussis-specific MatAbs. 

2.3 OBJECTIVES 

Our main objective was to develop novel vaccine formulation against whooping 

cough and assess these formulations in the presence of MatAbs. 
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The following four aims were designed to achieve this goal: 

Aim 1. Assess maternal antibody interference when vaccinating with vaccine 

antigen alone. 

To test and prove that MatAb interference occurs when vaccinating both mothers 

and offspring with the vaccine antigen alone. 

 

Aim 2. Evaluate different strategies of maternal immunization and assess the 

levels of MatAbs in mice and piglets. 

To titrate the levels of MatAbs and study the effects of high and low 

concentrations of MatAbs on infant immune responses. 

 

Aim 3. Test novel vaccine formulations in the presence of MatAbs in mice 

and piglets. 

To test various novel vaccine formulations in the absence and presence of various 

amounts of MatAbs. 

 

Aim 4. Assess protection against challenge infection with B. pertussis . 

To test the efficacy of the potential whooping cough vaccine candidate against 

bacterial challenge infection in the presence and absence of MatAbs. 
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3. INFLUENCE OF MATERNAL ANTIBODIES ON ACTIVE PERTUSSIS 

TOXOID IMMUNIZATION OF NEONATAL MICE AND PIGLETS 

(Vaccine. 2011 Oct 13;29(44):7718-26.) 

3.1 INTRODUCTION 

B. pertussis, the causative agent of pertussis (whooping cough), is a Gram-

negative bacillus. This serious respiratory infection is easily transmitted by close contact, 

mainly through droplets [16]. Although vaccination with whole cell and acellular 

vaccines has significantly reduced the incidence of the disease, some 20–40 million cases 

of pertussis occur globally each year, 90% of which are found in developing countries. 

About 200 000–400 000 of those infected, mostly infants, die from the disease [17] [251]. 

Numerous countries, especially developing nations, have reported an increase in infant 

morbidity due to pertussis [5]. A rise in pertussis cases has also been observed in 

developed countries such as the United States [253] [25] and Canada [23]. Recently there 

has been a dramatic increase in disease in older children and adults [25] [123] [255] 

[256], who can transmit the infection to young infants who are most susceptible to the 

disease [257]. This trend is due, in part, to waning immunity over time in vaccinated 

individuals [258] [12] [259].  

Whooping cough is most severe in neonates who are too young to have been 

immunized and in infants who have not been completely immunized [260] [11]. Most 

deaths occur in the first 3 months of life [151], before administration of the first dose of 

the pertussis vaccine [151], which is given at two months of age. In most European and 

North American countries, pertussis vaccines are currently administered at two, four and 

six months of age, at a time when MatAbs (MatAbs) are declining [123] [125] [261]. 

Multiple doses of the vaccine are needed for protection as MatAbs pose an 

important challenge for infant vaccination [159] [160]. MatAbs result from the mother’s 

previous exposure to disease or vaccination and are transferred from mother to infant 

transplacentally or through the colostrum and breast milk. The most efficiently 

transferred immunoglobulin subclass is IgG1 [151]. Passive immunity provides short-

lived protection against disease, but also interferes with vaccination of neonates [161]. 
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Thus, passive immunity is a double-edged sword; it protects the young from disease, but 

also interferes with immunization of the infant. For example, important inhibitory effects 

on infant antibody responses have been observed following immunization with vaccines 

against measles [162] [152], Haemophilus influenzae type b conjugate vaccine [163], 

hepatitis A [164], influenza A [165], tetanus [166], and varicella-zoster [160].  

Numerous studies have addressed the issue of MatAbs following whooping cough 

vaccination [167] [168] [169] [170]. Transplacental MatAbs to pertussis antigens can 

interfere with the infant’s ability to mount antibody responses following immunization 

with either the whole cell (DTwP) or acellular (DTaP) pertussis pediatric vaccines [169] 

[168] [171] [128] [172]. MatAbs that possess such inhibitory effects are thought to be a 

result of the formation of immune complexes between antibodies and antigen and include 

the neutralization of antigen, phagocytosis of MatAb-coated antigen, inhibition of B cell 

activation by Fcγ-receptor mediated signals, and epitope masking by MatAbs thus 

preventing antigen binding to infant B cells [171] [129]. However, the major determinant 

of infant antibody responses is found in the ratio of the antigen concentration to the 

MatAb concentration. Antibody responses may only be obtained when MatAbs have 

fallen below a specific threshold, and secondary responses may be elicited as soon as this 

threshold is reached [171] [129] [152]. MatAbs influence infant B cell responses but 

leave T cell responses unaffected [171] [173] [128]. In the presence of MatAbs, the 

neonate’s antibody response to the specific antigen is repressed. Consequently, successful 

vaccines against pertussis must be able to overcome the interference of MatAbs.  

Mice are the most commonly used animal model for studying pertussis [106] 

[104, 109]. Murine immunization followed by a respiratory challenge has been used to 

evaluate efficacy of diphtheria-tetanus-pertussis acellular (DTaP) and whole cell (DTwP) 

vaccines [86, 110]. When infected with B. pertussis, neonatal mice show show symptoms 

such as weight loss and hypoglycemia [105]. Furthermore, the mouse model is not ideal 

as it is limited in which samples can be collected.  We developed a new pertussis disease 

model in newborn piglets [111, 113]. Pigs and humans share many physiological 

characteristics [114], including specific functions of the innate and adaptive immune 

response. The model also provides access to various immune compartments and samples 
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such as serum, colostrum, milk and bronchoalveolar lavage (BAL) fluid. Large amounts 

of IgG and IgA antibodies are transferred through porcine colostrum and milk, which 

allows us to study the effects of MatAbs. In humans and rodents, maternal IgG is 

transferred through the placenta [115]. Since immunoglobulins cannot cross the placenta 

in pregnant sows [116] [117], we are able to exchange piglets between sows to eliminate 

the mother effect. 

In the present study two animal species were used to examine the effect of MatAb 

on infant pertussis toxoid (PTd) vaccination. We investigated the interference of MatAbs 

on PTd vaccination as well as the role of a booster dose and adjuvants as a means of 

trying to overcome such interference. Pregnant mice and sows were vaccinated with PTd 

and the offspring were immunized within the first week of life either in the presence or 

absence of MatAbs. While interference with vaccination was observed after a single 

immunization with PTd, co-formulation with adjuvants and a booster immunization was 

able to overcome this interference and resulted in the successful immunization of both 

neonatal mice and pigs. The level of interference was dependent on the immunization 

regimen for the mother and directly correlated with the amount of MatAbs present at the 

time of neonatal vaccination. 

3.2 MATERIALS AND METHODS 

3.2.1 Animals 

Male and female BALB/c mice were purchased from Charles River (Montreal, 

Quebec, Canada). All female mice were housed in separate cages. Breeding cages were 

checked on a daily basis and births were recorded. Offspring were kept with their 

mothers until weaned at about four weeks. At that time, the pups were separated 

according to sex. 

Sows were pre-screened for cross-reactive antibodies to B. bronchiseptica. 

Pregnant Laundrace sows were purchased from the Saskatoon Prairie Swine Centre, 

University of Saskatchewan. The animals were stimulated to farrow by intramuscular 

(i.m) injection of 2 ml prostaglandin (Planate; Schering-Plough Canada Inc., Pointe-

Claire, Quebec, Canada) at 113th day of gestation and another 1 ml at 114th day. Piglets 
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were born on day 114 and 115 of gestation. Nursing piglets were kept in the same 

isolation rooms in separate pens. All experiments were performed according to the 

guidelines of the University of Saskatchewan and the Canadian Council for Animal Care. 

 

3.2.2 Vaccination of mice and pigs 

Both mice and sows and their offspring were immunized with genetically 

detoxified pertussis toxoid (PTd) kindly provided by Novartis Vaccines and Diagnostics 

(Siena, Italy). This antigen was shown to be completely safe with an antigenic profile 

comparable to wild-type PT, and an immunogenicity that is greater than chemically 

detoxified PTd [82].  Dams were immunized one week prior to becoming pregnant with a 

subcutaneous injection of 1µg PTd in Phosphate Buffered Saline (PBS, pH=7.2, 1.54 mM 

KH2PO4, 155.17 mM NaCl, 2.71 mM Na2HPO4-7 H20) (Gibco). One week into the 

pregnancy (two weeks before delivery) dams were boosted in the same manner. The 

control animals were subcutaneously treated with 100 µl PBS prior to pregnancy. 

Pregnant sows were vaccinated intramuscularly on each side of the neck (trapezius 

muscle) behind the ear with 5 µg of PTd in 1 ml of PBS and 30 % Emulsigen (MVP 

Laboratories, Ralston, NE; oil-in-water emulsion) resulting in a total dose of 10 µg/per 

sow. The control sow received the same volume of PBS and Emulsigen in each side of 

the neck. Neonatal mice were randomly assigned and vaccinated at 7 days of age. At that 

time, the development of the immune system is comparable to that of a newborn human 

[262, 263]. Pups were either vaccinated with 1 µg of PTd diluted in PBS or were injected 

with PBS. All vaccinations were 50 µl in volume and injected subcutaneously. Neonatal 

piglets were randomly assigned and immunized at 3-5 days of age with 10 µg PTd plus 

150 µg CpG ODN 10101 (Pfizer Canada, Kirkland, Quebec) in 1 ml of PBS or treated 

with 1 ml of PBS. All piglets were vaccinated i.m. in the side of the neck. 

3.2.3. Sample collection  

Blood samples were collected from mouse dams before vaccination and at the 

time of vaccination of their pups. In order to evaluate immunity in the offspring 

following vaccination, serum samples of neonatal pups were collected 2, 4, 6 and 8 
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weeks post vaccination. All blood samples were centrifuged (4547 x g) and serum stored 

at – 20 °C. 

Sows were bled before priming, boosting and after farrowing. Sow colostrum and 

milk samples were collected. Rennet tablets (Sigma-Aldrich) were added to samples and 

incubated overnight at 37 °C. Once clots were formed, the samples were centrifuged at 

1349 g for 20 minutes. Centrifugation resulted in the formation of three layers. The 

middle layer (whey) was removed and stored in –20 °C.  Newborn piglets were bled 

before vaccination as well as 1, 2, 3 and 4 weeks past vaccination.  

 

3.2.4. ELISA  

Polystyrene microtiter plates were coated with 0.25 µg/ml (100 µl per well) PTd 

for analysis of murine serum samples. The antigen was diluted in coating buffer (sodium 

carbonate buffer, (15 mM Na2CO3 and 35 mM NaHCO3, pH 9.6). The plates were 

incubated overnight at 4 °C. Sera were diluted four-fold, starting with 1:100 dilution. 

Biotin-conjugated goat anti-mouse immunoglobulin G (IgG; 1:10,000 dilution; 

Invitrogen, Camarillo, CA) was used for the detection of PTd specific IgG. Detection was 

carried out by addition of streptavidin peroxidase (1:500 dilution; Jackson Laboratories). 

Serum samples and antibodies were diluted in TBST gelatin (Tris Buffered Saline pH 

7.3) containing 0.5% Tween and 0.5 % gelatin (Sigma). The reaction was visualized by 

p-nitrophenylphosphate. No anti-PTd IgA was detected in pup serum. 

Polystyrene microtiter plates were coated with 0.5 µg/ml (100 µl per well) PTd 

for analysis of porcine serum and colostrum samples. The antigen was diluted in coating 

buffer. The plates were incubated overnight at 4 °C. The plates were washed and blocked 

with TBST gelatin. Sera, colostrum and milk were diluted four-fold, starting with 1:40 

dilution. Alkaline-phosphatase-conjugated goat anti-pig immunoglobulin G (IgG; 1:5,000 

dilution; Kirkegaad & Perry Laboratories, Gaithersburg, MD) was used for the detection 

of PTd specific IgG. The reaction was visualized by p-nitrophenylphosphate (Sigma-

Aldrich). The plates were read at 450 nm with an iMark Microplate Reader (Bio-Rad 

Laboratories). PTd-specific antibody titers were calculated by Microplate Manager 6.0 
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(Bio-Rad Laboratories). To assess Bordetella bronchiseptica specific antibodies, 

polystyrene microtiter plates (Immulon 2HB; Dynex Technologies, Chantilly, VA) were 

coated with 2 µg/ml (100 µl per well) sonicated, heat-inactivated B.  bronchiseptica. The 

ELISA was performed as described above. 

 

3.2.5. Statistical analysis 

All statistical analyses were carried out using GraphPad Prism software, version 

5.0b.  The data from the experiments were not normally distributed and therefore, the 

Mann-Whitney test was used to examine differences between two experimental groups. 

 When experiments involved more than two groups, data were rank transformed and then 

analyzed by one-way analysis of variance (ANOVA).  In those instances where the F 

ratio was significant, differences among the means of the ranks of the experimental 

groups were assessed using the Tukey test.  Differences were considered statistically 

significant when P < 0.05. 

 

3.3 RESULTS 

 3.3.1 Interference with MatAbs in mice 

In order to establish the model and ensure that high and low levels of MatAbs 

could be induced, dams were divided into three groups. Six dams were primed and 

boosted during pregnancy with 100 µl of PTd (1µg/animal). Another set of dams (n=6) 

were vaccinated subcutaneously only once during pregnancy. Six control dams were 

injected subcutaneously with 100 µl PBS four weeks before delivery. Serum was 

collected prior to priming, at the time pups were born, and when pups were weaned at 

four weeks of age. At four weeks post immunization, primed and boosted dams 

developed 6-8 fold higher anti-PTd IgG titers compared to primed only dams.  Control 

dams did not generate any anti-PTd IgG antibodies (Fig. 3.1). To confirm that maternal 

anti-PTd antibodies from vaccinated mouse dams were transferred to their offspring, 

control pups were bled and evaluated for the levels of antibodies against PTd. 

Throughout the experiment, the levels of anti-PTd IgG antibodies were significantly 
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higher in pups born of primed and boosted mothers (Fig. 3.2A) compared to offspring 

born of only primed mothers (Fig. 3.2B). No antibodies were detected in pups born of 

PBS vaccinated dams (Fig. 3.2C). Pups of control dams responded well to PTd 

vaccination and showed a ten-fold increase in anti-PTd IgG levels between 4 and 8 weeks 

post vaccination (Fig. 3.2C). In contrast, anti-PTd IgG antibody concentrations remained 

at the same or lower level in vaccinated pups born of high and low titer dams, indicating 

an impairment of the immune response in those pups (Fig. 3.2A and 3.2B). No significant 

differences in the level of antibodies were observed between vaccinated and non-

vaccinated pups. Thirteen out of 16 pups born of low titer dams (Fig. 3.2B) and all of the 

pups born of high titer dams did not respond to a single PTd vaccination between four 

and eight weeks post immunization (Fig. 3.2A). Anti-PTd IgA antibodies were not 

detected in dam or pup serum.  
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Figure 3.1. Induction of IgG antibodies in the serum of dams. Dams were subcutaneously 

primed and boosted with 1 µg PTd (●), primed with 1 µg PTd () or PBS (▲). Dams (six per group) were 

primed four weeks prior to delivery and one group (●) boosted two weeks later. Serum samples were 

collected prior to prime (week 0), at the time pups were born (week 4) as well as at the time the pups were 

weaned (week 8). Serum samples were analysed using an ELISA assay. Data sets with differing subscripts 

indicate statistical difference.(p < 0.05). 
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Figure 3.2 Induction of IgG antibodies in the serum of mouse pups. Neonatal pups were 

subcutaneously primed with 1 µg PTd (●) or PBS (). Pups were born to three groups of mothers: primed 

and boosted with 1 µg PTd (A), primed with 1 µg PTd (B) or PBS vaccinated (C). Pups were primed at 

seven days of age. Serum samples were collected 2, 4, 6 and 8 weeks post vaccination and analysed using 

an ELISA assay (p < 0.05). 

 

3.3.2 High and low MatAb titers interfere with PTd vaccination of neonatal 

mice 

To determine the effect of the total level of MatAbs on infant vaccination, dams 

were primed and boosted with either 0.05 or 1 µg of PTd or PBS. At seven days of age, 

half of the pups from each mother were vaccinated with 1 µg of PTd and the other half 

treated with PBS. Immunization with 0.05 and 1 µg PTd resulted in induction of anti-PTd 

antibodies in dams (Fig. 3.3). Anti-PTd IgG titers in pups born to 0.05 µg PTd vaccinated 

dams (Fig. 3.3B) were about twenty-fold lower than PTd-specific antibodies in pups born 
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of 1 µg PTd vaccinated dams (Fig. 3.3A). There were no anti-PTd antibodies transferred 

to pups born of PBS vaccinated dams (Fig. 3.3C). However, in the presence of lower 

titers of MatAbs, three out of seven pups seem to respond to PTd vaccination where none 

of the pups born of high titer dams respond. The results indicate that the level of 

interference directly correlated with the level of MatAbs. 

 

Figure 3.3. Induction of IgG antibodies in the serum of mouse pups. Neonatal pups were 

subcutaneously primed with 1 µg PTd (●) or PBS (). Pups were born to three groups of mothers: primed 

and boosted with 1 µg PTd (A), primed and boosted with 0.05 µg PTd (B) and PBS vaccinated (C). Pups 

were primed at seven days of age. Serum samples were collected 3, 4, 6 and 8 weeks post vaccination and 

analysed using an ELISA assay (p < 0.05). 
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3.3.3 Single vaccination with high and low amounts of PTd cannot overcome 

interference of MatAbs 

To test whether vaccination of the neonate with different concentrations of PTd 

can overcome the interference with MatAbs, pups were vaccinated with various amounts 

of PTd. Dams were immunized with PTd or PBS. Half of the pups from each dam were 

subcutaneously vaccinated with 50 µl of either: 0.05 µg PTd, 0.1  µg PTd or 0.5 µg of 

PTd and other half with PBS (50 µl) at seven days of age. The pups were bled at four 

different times: 2, 4, 6 and 8 weeks post vaccination for ELISA analysis. PTd-specific 

antibodies were detected in serum of vaccinated and control mouse pups. There were no 

anti-PTd antibodies (IgG) detected in pups vaccinated with 0.05 and 0.1 µg of PTd (data 

not shown). Vaccination of pups with 0.5 of PTd resulted in production of anti-PTd IgG 

antibodies four weeks following immunization (Fig. 3.4B). Using 1 µg of PTd for 

vaccination of dams and 0.5 µg for pups (Fig. 3.4A) there were no differences in anti-

PTd titers in vaccinated pups as compared to non-vaccinated pups (both groups born of 

vaccinated mothers).  

 

Figure 3.4 Induction of IgG antibodies in the serum of mouse pups. Neonatal pups were 

subcutaneously primed with PTd (●) or PBS (). Pups were primed with 0.5 µg PTd (A and B). Pups were 

born to two groups of mothers: PBS vaccinated (B) and primed with 1 µg PTd (A). Pups were primed at 

seven days of age. Serum samples were collected 2, 4, 6 and 8 weeks post vaccination and analysed using 

an ELISA assay. (p < 0.05). 
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3.3.4 A booster immunization can overcome MatAb interference in the 

presence of low titers of MatAbs but not in the presence of high titers of MatAbs 

Previous experiments showed that vaccination of neonatal mice with 1 µg of PTd 

without adjuvants was not able to overcome the interference of MatAbs. We introduced a 

booster shot of PTd to see if this could overcome this interference. Neonatal pups born of 

high MatAb titer dams and low MatAb titer dams were either immunized once or twice. 

Control pups were injected with PBS. Pups were bled 3, 4, 6 and 8 weeks post 

vaccination.  

Passive transfer of antibodies to pups born to vaccinated dams (Fig. 3.5B) was 

about 10-fold lower than the passive transfer of PTd specific antibodies to pups born of 

vaccinated and boosted dams (Fig. 3.5A). There were no anti-PTd antibodies transferred 

to pups born of PBS vaccinated dams (Fig. 3.5C). Waning of MatAbs was evident in both 

groups at eight weeks at which time the levels of maternal anti-PTd antibodies were still 

high in offspring born to high titer dams. Vaccinating and boosting pups born to naïve 

mothers resulted in superior antibody production one week after the boost. All of the six 

animals had anti-PTd antibodies following the boost (Fig. 3.5C). It was evident that a 

boost immunization of pups was not able to overcome interference of high titers of 

MatAbs. Twice immunized pups had similar anti-PTd IgG serum concentration as 

compared to PBS vaccinated pups (Fig. 3.5A). Booster immunization of pups with PTd 

was able to overcome interference in the presence of lower concentrations of MatAbs 

(single vaccinated dams). Following the boost, anti-PTd antibody titers were about 100-

fold higher than in single vaccinated pups or control pups (Fig. 3.5B). 
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Figure 3.5 Induction of IgG antibodies in the serum of mouse pups. Neonatal pups were 

subcutaneously primed and boosted with 1 µg PTd (●), primed with 1 µg PTd () or PBS (▲). Pups were 

born to three groups of mothers: primed and boosted with 1 µg PTd (A), primed with 1 µg PTd (B) and 

PBS vaccinated (C). Pups were primed at seven days and boosted at thirty one days of age. Serum samples 

were collected 3, 4, 6 and 8 weeks post vaccination and analysed using an ELISA assay. (p < 0.05). 

 

3.3.5 Priming occurred in the presence of MatAbs  

To test if it would be possible to prime an immune response in the presence of 

MatAbs, neonatal pups were vaccinated in the presence of MatAbs and boosted once 

MatAbs waned. Dams were vaccinated once or twice with PTd or PBS during pregnancy. 

At seven days of age, a third of the pups of each dam were subcutaneously vaccinated 

with 1 µg of PTd and a third of all pups with PBS. Throughout the experiment pup serum 

was analysed for the presence of maternal anti-PTd antibodies. Once MatAbs were no 

longer detectable in pup serum (16 weeks), animals were boosted. Pups not primed as 

neonates were vaccinated for the first time once MatAbs were no longer detectable. Pups 
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born to naïve dams had high anti-PTd IgG titers following a single vaccination. Antibody 

titers increased significantly following the boost (Fig. 3.6C), as expected for a secondary 

response. Similarly, titers in pups born of vaccinated dams and boosted at 16 weeks of 

age significantly increased following the boost (Fig. 3.6A and Fig. 3.6B). Primed and 

boosted pups (Fig. 3.6A) had much higher antibody titers at 18 and 20 weeks of age than 

singly vaccinated pups (Fig. 3.6B), demonstrating that this was a result of a secondary 

response. 

 

Figure 3.6 Induction of IgG antibodies in the serum of mouse pups. Neonatal pups were 

subcutaneously primed as neonates and boosted with 1 µg PTd once MatAbs waned (●), primed with 1 µg 

PTd once MatAbs waned () or PBS (▲). Pups were born to three groups of mothers: primed and boosted 

with 1 µg PTd (A), primed with 1 µg PTd (B) and PBS vaccinated (C). Pups were primed at seven days and 

boosted at thirty one days of age. Serum samples were collected every two weeks. Pre boost, 16, 18 and 20 

weeks post boost bleeds were analysed using an ELISA assay (p < 0.05). 
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3.3.6 Porcine model of MatAb interference 

To study MatAb interference in pigs, sows were vaccinated intramuscularly with 

PTd (10 µg) and emulsigen four weeks prior to farrowing, and boosted after two weeks. 

The control sow was treated at the same time points with the same volume of PBS. Sow 

serum samples were taken before each vaccination and before farrowing. After 

farrowing, sow colostrum and milk samples were collected and analysed for anti-PTd 

IgG antibodies. PTd-specific antibodies were detected in serum and colostrum of 

vaccinated sows (Fig. 3.7). These MatAbs were passively transferred to the offspring 

(Fig. 3.8A).  

 

 

Figure 3.7 Anti-PTd IgG serum and colostrum levels in PTd vaccinated and control sow. 

Serum was collected at day -28, which represents pre bleed/day of priming and day -14, which represents 

pre boost. Colostrum samples were collected at day zero, which is the day piglets were born and day four at 

which time the piglets were vaccinated. 
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To assess interference with transferred MatAbs half of the piglets of each sow 

were intramuscularly vaccinated at three days of with 10 µg of PTd and 150 µg CpG 

10101. Control pigs received PBS. All vaccinated animals were boosted with 10 µg of 

PTd and 150 µg CpG 10101 at two weeks of age. As shown in figure 8, immunization 

and boosting with PTd and CpG ODN induced anti-PTd specific antibodies in the 

presence of MatAbs (Fig. 3.8A). Thus, use of an adjuvant and a second booster 

immunization was able to overcome interference with MatAbs. Primed and boosted 

piglets had about twelve-fold higher anti-PTd serum antibody titers then their PBS 

vaccinated littermates.  

 

	
  

Figure 3.8 Induction of IgG antibodies in the serum of piglets. Neonatal piglets were 

intramuscularly primed and boosted with 10 µg PTd plus 150 µg CpG 10101 (●) or PBS (). Piglets were 

born to two groups of sows: primed and boosted with 10 µg PTd (A) and PBS vaccinated (B). Piglets were 

primed at four days of age and boosted two weeks after. Serum samples were collected pre vaccination, 1, 

2, 3 and 4 weeks post vaccination and analysed using an ELISA assay (p < 0.05). 

 

3.4 DISCUSSION 

The overall goal of our research program is to develop novel vaccine formulations 

against pertussis that can induce protection in newborn infants following early life 

vaccination. The vaccine should elicit protection even when administered in the presence 
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of MatAbs [128, 168, 169, 171]. Thus, it was necessary to dissect the role of MatAbs in 

interference with the neonatal response to active immunization.  

Pertussis vaccines have been tested previously in the presence of MatAbs. In 

these studies, it was shown that the aP vaccines performed better than the wP vaccine 

[126, 167, 264]. These findings were confirmed by studies in which infants with high 

levels of MatAbs mounted lower levels of anti-PT IgG antibodies after whole cell 

vaccination than infants with lower levels of MatAbs [126, 167-169, 172]. Thus, it was 

speculated that aP vaccines might be less affected by MatAbs than wP vaccines following 

early life vaccination [126, 167, 172, 264]. This might be because of the higher 

concentration of pertussis-specific antigens in the pediatric aP vaccine than in the wP 

vaccine relative to the concentration of MatAbs [171, 261]. It was also postulated that 

MatAbs induced by wP vaccination of the mother might have less specificity for the five 

recombinant antigens in the aP vaccine [79, 82, 120, 171, 265]. This was confirmed by 

the observation that most new mothers would have received aP vaccine as a series of 

their childhood vaccinations.  Here, we demonstrated that MatAbs produced by a 

monovalent aP vaccine interfere with neonatal aP pertussis vaccination. We also showed 

the importance of the ratio of MatAb to the vaccine antigen. Responses in the neonate 

may only be elicited when MatAbs have fallen below a specific threshold, which is 

defined by MatAb: vaccine antigen ratio. 

Most pertussis MatAb studies in mice have been performed with multiple aP and 

wP antigens [127, 266]. Here, we assessed MatAb interference with a single antigen only. 

Dams were immunized during gestation with varying amounts of the antigen, resulting in 

high or low levels of MatAbs. Mothers were either immunized once or twice with PTd to 

increase the levels of passively transferred antibodies, which directly correlated to the 

amount of antibodies in dam serum. Vaccination of pups confirmed that the induction of 

specific antibodies in the offspring directly correlated to the level of passively transferred 

MatAbs. Interference was observed with doses as low as 0.05 and 1 µg of PTd for 

vaccination of mothers and 1 µg for pups. Single PTd vaccination did not provide enough 

antigen to skew the MatAb: vaccine antigen ratio [129] [171]. Similarly, immunization 

with 0.5 and 1 µg PTd for pups resulted in anti-PTd titers similar to those seen in non-



	
   61	
  

vaccinated pups. We next tested whether booster vaccination in pups can overcome the 

interference with MatAbs in the presence of high and low levels of MatAbs. Priming and 

boosting pups with 1 µg of PTd did not overcome interference in the presence of high 

titers of MatAbs. However, this strategy was able to overcome interference in the 

presence of lower concentrations of MatAbs (single vaccinated dams). Our results are not 

surprising as the major determinant of infant antibody responses is controlled by the ratio 

of MatAb levels to the concentration of vaccine antigen [129, 171]. Importantly, we 

showed that it is possible to prime in the presence of MatAbs. Mice primed as neonates 

had higher anti-PTd IgG titers following a second immunization at 16 weeks of age than 

their littermates who were immunized once as adults. We did not detect any anti-PTd IgA 

antibodies in the dam and pup serum. This might be due to the systemic route of 

vaccination of dams. 

In order to enhance anti-PTd antibody induction in piglets, we included an 

adjuvant in our vaccine formulation and added a booster shot.  At three days of age, half 

of the piglets per sow were vaccinated and boosted with 10 µg of PTd and 150 µg CpG 

10101 and another half with PBS. Use of 10 µg PTd and CpG 10101 as an adjuvant for 

priming and boosting piglets was able to overcome interference by MatAbs.  

The current study was performed to examine the interaction between PTd and 

MatAbs. We established the negative impact of MatAbs and their interference on 

neonatal murine and porcine vaccination. We determined that including an adjuvant in 

our vaccine formulations or adding a booster vaccine can overcome the negative effects 

of passive immunity. Our next goal is to use novel adjuvants such as CpG ODN, innate 

defense regulator peptides and PTd in our vaccine formulations as well as new delivery 

mechanisms that could potentially protect the vaccine antigen from neutralizing MatAbs. 

In subsequent experiments we plan to measure the priming of the immune response in 

neonates in the presence of MatAbs and the degree of protection against challenge 

infection. 
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4. NOVEL ADJUVANT COMBINATION CO-FORMULATED WITH OVA INTO 

MICROPARTICLE AND SOLUBLE VACCINES INDUCES EARLIER AND 

TH1/TH2 BALANCED IMMUNITY IN NEONATAL MICE  

4.1. INTRODUCTION 

Adjuvants are incorporated into vaccines in order to increase vaccine 

immunogenicity. They were originally used to increase the magnitude of antibody 

production. Most recent adjuvants are designed to tailor the immune response, which is 

needed for protection. Adjuvants can be divided in two classes: antigen delivery and 

immunostimulators. Vaccine delivery adjuvants act by targeting adjuvants to antigen 

presenting cells. These adjuvants may also protect the antigen from being degraded as 

well as encourage the depot effect, which is thought to enhance antigen uptake. Thus, 

adjuvant usage provides the link between innate and adaptive immune systems. 

Originally, adjuvants were used in order to increase the extent of the immune 

response to vaccines, which was measured by antibody production or protection against 

infection. As the understanding of the immune system and vaccination became more 

complete, adjuvants were starting to be designed in order to provide better adaptive 

responses ie. to produce a good quality immune response. For example: to induce Th1-

type or Th2-type immunity. Adjuvants do not only allow for generation of T cell 

memory, but also modify the specificity and affinity of the response [175]. Thus, 

adjuvants are used to improve both the quality and quantity of immune responses elicited 

by vaccines. Adjuvants allow for seroconversion in populations with decreased ability to 

respond to vaccines such as neonates and elderly [175]. Recently, a novel approach to 

vaccination has been based on the usage of combination of adjuvants. Combining various 

TLR (Toll like receptor) agonists or delivery systems with immunostimulatory adjuvants 

have shown a synergistic effect in vaccination [234]. 

The major focus of our research is the development of novel vaccine formulations 

and delivery systems for vaccinating neonates. Vaccination of young infants is 

complicated due to two factors: interference of MatAbs (MatAbs) and the “immaturity” 

of the infant’s immune system, mainly its bias towards mounting T helper 2 (Th2)-type 
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responses [129]. We took advantage of the immunostimulatory and the antigen delivery 

properties of adjuvants and developed a novel adjuvant platform to help overcome the 

difficulties associated with neonatal vaccination. The adjuvant combination is composed 

of novel adjuvants including CpG ODN, IDRP and PP.  

CpG ODNs are TLR-9 agonists. CpG ODN motifs are synthetic unmethylated 

peptides containing repeating sequences of cytosine and guanosine. CpG ODN mimics 

microbial DNA resulting in the induction of Th-1 responses and upregulation of 

molecules involved in antigen presentation and co-stimulation [267, 268]. The second 

component of the adjuvant platform, IDRPs are synthetic host defense peptides, which 

are involved in inflammation, proliferation, healing of wounds, cytokine release and 

chemotaxis [201]. These cationic peptides (net positive charge +2 to +9) are also able to 

increase phagocytosis, neutralize the septic effects produced by LPS as well as sustain the 

recruitment of a number of immune cells to the site of inflammation [202, 203]. 

The final adjuvant component, PPs are a class of synthetic, water-soluble, 

biodegradable polymers composed of a backbone with alternating phosphorus and 

nitrogen atoms with organic side groups attached to each phosphorus [224]. PTd are 

powerful immunostimulants and demonstrated to have a strong adjuvant property to a 

variety of viral and bacterial antigens including influenza [227], rotavirus [228] and 

cholera [229]. One of the greatest features of this adjuvant, however, is the fact that it can 

be formulated into microparticles using easy and inexpensive methods [269]. 

Encapsulating the vaccine antigen and adjuvants may hide the components from vaccine 

neutralizing MatAbs and safely deliver it to neonatal antigen presenting cells. The novel 

adjuvant formulation might also enhance the Th1-type response shift following 

administration. 

In the current study, we formulated OVA with CpG ODN, IDRP and 

poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) PP into soluble and 

microparticle vaccines. We titrated the adjuvant dose in neonatal mice and studied the 

effect of various routes of delivery such as subcutaneous (s.c.), intramuscular (i.m). and 

intranasal (i.n.) on neonatal immune responses. Following vaccination, the pup sera were 

analyzed for the concentration and kinetics of OVA-specific antibodies produced. 
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4.2. MATERIALS AND METHODS 

4.2.1 Animals 

Male and female BALB/c mice were purchased from Charles River (Montreal, 

Quebec, Canada). Animals were bred, and taken care of by the Animal Care staff at the 

Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan 

(Saskatoon, SK). Breeding cages were set up and each dam was housed in a separate 

cage. The cages were checked daily for new births. Offspring were kept with their 

mothers until weaned at about four weeks of life at which time the pups were separated 

according to sex. Animals were maintained in compliance with the ethical guidelines if 

the University of Saskatchewan as well as the Canadian Council for Animal Care.  

4.2.2 Vaccine components 

OVA Grade V (Sigma, USA) was used as a model antigen. CpG-ODN 10101 

(TCGTCGTTTTCGCGCGCGCGCCG)	
  was	
  obtained	
  from	
  Pfizer	
  (Ottawa, ON).	
   IDRP	
  

1002	
   (VQRWLIVWRIRK) was manufactured by Genscript (Picataway, NJ). The 

polyphosphazene PCEP was synthesized by the Idaho National Laboratory (Idaho Falls, 

ID) by a method previously described [230] including minor modifications. Lyophilized 

PTd were dissolved in Dulbecco’s PBS (pH 7.4; Sigma-Aldrich, MO) to a concentration 

of 3 mg/ml and stored in the dark at room temperature.  

4.2.3 Vaccine formulation 

All adjuvant formulations consisted of PCPP, IDRP 1002 and CpG ODN at a ratio 

of 1:2:1. Standard formulations consisted of 2.37 µg CpG ODN 10101, 4.74 µg IDRP 

1002 and 2.37 µg of PCEP (EP3). In an adjuvant dose titration experiment the standard 

dose was referred to as the High dose. The Medium dose consisted of half of the normal 

dose: 1.19 µg CpG ODN 10101, 2.37 µg IDRP 1002 and 1.19 µg of PCEP. The low dose 

of the adjuvant combination was composed of: 0.6 µg CpG ODN 10101, 1.19 µg IDRP 

1002 and 0.6 µg of PCEP.  

The negatively charged CpG ODN was first complexed with cationic IDRP in a 

ratio of 1:2 (w/w) for 30 minutes at 37ºC. Following incubation the rest of the 

components were added such as OVA and PCPP. This procedure yielded the soluble 
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(SOL) vaccine formulation. Microparticle (MP) formulations were obtained by addition 

of PCPP and 6.2% NaCl to the complexed CpG ODN and IDRP. The mixture was 

incubated at room temperature for 20 minutes after which 8.8% CaCl2 was added and 

incubated for 20 minutes on a nutator. Microparticles were then centrifuged at 1340 g for 

10 minutes at room temperature. Before collection, the particles were washed once with 

ddH20 and centrifuged once again. 

4.2.4 Immunization of mice 

Neonatal BALB/c mice were primed at two weeks of life and boosted four weeks 

later. Various routes of immunization were used to prime and boost the animals. Routes 

of immunization included: s.c., which resulted in an 50 µl injection between the shoulder 

blades, i.m. 12.5 µl into each quadricep muscle and i.n., which delivered 12.5 µl into 

each nostril. Blood samples were taken from neonatal mice at 2, 4, 6 and 8 weeks post 

primary vaccination. All blood samples were centrifuged (4547 x g) and serum stored at 

– 20 °C.  

4.2.5 OVA-specific antibody detection by an ELISA  

 Polystyrene microtiter plates (Immulon 2 HB; Thermo, Milford, MA) were coated 

overnight at 4 °C with 10 µg/ml (100 µl per well) OVA for analysis of murine serum 

samples. The antigen was diluted in coating buffer (15 mM Na2CO3 and 35 mM NaHCO3 

pH 9.6). The plates were washed between each step with Tris-Buffered Saline (pH 7.3) 

containing 0.5% Tween (TBST). Sera and detection antibodies were diluted in TBST 

containing 0.5% gelatin (TBSTg). Sera were diluted four-fold, starting with 1:100 

dilution. For the detection of antigen-specific IgA, sera were diluted starting with 1:4 

dilution. Biotin-conjugated goat anti-mouse immunoglobulin G, G1, G2a and A 

(1:10,000 dilution; Invitrogen, Camarillo, CA) was used for the detection of OVA-

specific antibodies The plates were incubated for one hour at 37ºC. Following the 

incubation, the plates were washed and alkaline phosphatase conjugated with streptavidin 

(Jackson ImmunoResearch;	
  West Grove, PA) diluted 1:5000 was added and incubated for 

another hour. The plates were then washed five times and p-nitrophenylphosphate 

(PNPP) (Sigma-Aldrich, St. Louis, MO; dilution 1 mg/ml) added to each well. The 



	
   67	
  

reaction was allowed to develop until yellow color appeared. The plates were read using 

the microplate reader (Bio-Rad iMark Microplate Reader; Philadelphia, PA) at 405 nm 

with a reference of 490 nm.  

4.2.6 Statistical analysis 

 Because data was not normally distributed it was rank transformed followed by 

analysis by one-way analysis of variance (ANOVA).  In instances where the F ratio was 

significant, differences among the means of the ranks of the experimental groups were 

assessed using the Tukey test.  Differences were considered statistically significant when 

P < 0.05. Statistical analysis was carried out using GraphPad Prism software, version 

5.0b. 

4.3 RESULTS 

4.3.1 Novel adjuvant combination microparticle vaccine significantly 

increases antibody titers compared to vaccinating with antigen alone 

 In order to assess the adjuvanticity of the novel adjuvant combination, neonatal 

mice were vaccinated with antigen alone as well as three microparticle vaccines 

composed of OVA and various concentrations of adjuvants. Neonatal mice were primed 

at two weeks of life and boosted four weeks later. The vaccines were delivered by two 

routes: intramuscular and intranasal. The mice were bled throughout the experiment and 

their serum analysed for various antibody isotypes using an ELISA assay. 

 The results revealed that both OVA alone and OVA adjuvanted with the novel 

CpG ODN and IDRP formulated into polyphosphazene microparticle vaccines induced 

high anti-OVA IgG (Fig. 4.1A) and IgG1 (Fig. 4.2A) antibody titers following 

intramuscular vaccination. The adjuvanted vaccines delivered intramuscularly induced an 

earlier onset of immunity and resulted in all animals responding to the immunization after 

a single dose of the vaccine unlike vaccinating with antigen alone (Fig. 4.1A and Fig. 

4.2A). Mice vaccinated intranasally were able to induce earlier and higher IgG (Fig. 

4.1B) and IgG1 (Fig. 4.2B) antibody concentrations than mice vaccinated with antigen 

alone. The adjuvanted vaccines induced higher antigen specific IgG2a titers in 

intramuscularly (Fig. 4.3A) and intranasally (Fig.4.3B) vaccinated mice as compared to 
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vaccinating with OVA alone. In fact, half of the intramuscularly vaccinated with antigen 

alone mice did not induce anti-IgG2a antibodies at the time the final bleed (Fig. 4.3A). 

Two out of nine intranasally vaccinated mice did not produce anti-IgG2a following 

vaccination with OVA alone (Fig.4.3B). Parenteral route of vaccination did not result in 

significant anti-OVA serum IgA production following vaccination with any of the 

vaccines. Mucosal vaccination, however, resulted in much higher anti-OVA IgA (Fig. 

4.4B) antibody production compared to vaccination with antigen alone.  
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Figure 4.1 Induction of anti-OVA specific IgG serum antibodies in pups. Antibody induction 

following intramuscular (A) and intranasal (B) vaccination. Neonatal mice were primed and boosted with 

10 µg OVA (●), 10 µg OVA plus high adjuvant concentration (2.37 µg CpG 10101, 4.74 µg IDRP 1002, 

2.37 µg EP3) microparticle vaccine (), 10 µg OVA plus medium adjuvant concentration (1.19 µg CpG 

10101, 2.37 µg IDRP 1002, 1.19 µg EP3) microparticle vaccine (▲) or 10 µg OVA plus low adjuvant 

concentration (0.6 µg CpG 10101, 1.19 µg IDRP 1002, 0.6 µg EP3) microparticle vaccine (■). Pups were 

primed at two weeks of life and boosted four weeks later. Serum samples were collected throughout the 

experiment and analysed using an ELISA assay. Data sets with different subscripts are significantly 

different (p < 0.05). 
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Figure 4.2 Induction of anti-OVA specific IgG1 serum antibodies in pups. Antibody induction 

following intramuscular (A) and intranasal (B) vaccination. Neonatal mice were primed and boosted with 

10 µg OVA (●), 10 µg OVA plus high adjuvant concentration (2.37 µg CpG 10101, 4.74 µg IDRP 1002, 

2.37 µg EP3) microparticle vaccine (), 10 µg OVA plus medium adjuvant concentration (1.19 µg CpG 

10101, 2.37 µg IDRP 1002, 1.19 µg EP3) microparticle vaccine (▲) or 10 µg OVA plus low adjuvant 

concentration (0.6 µg CpG 10101, 1.19 µg IDRP 1002, 0.6 µg EP3) microparticle vaccine (■). Pups were 

primed at two weeks of life and boosted four weeks later. Serum samples were collected throughout the 

experiment and analysed using an ELISA assay (p < 0.05). 
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Figure 4.3 Induction of anti-OVA specific IgG2a serum antibodies in pups. Antibody 

induction following intramuscular (A) and intranasal (B) vaccination. Neonatal mice were primed and 

boosted with 10 µg OVA (●), 10 µg OVA plus high adjuvant concentration (2.37 µg CpG 10101, 4.74 µg 

IDRP 1002, 2.37 µg EP3) microparticle vaccine (), 10 µg OVA plus medium adjuvant concentration 

(1.19 µg CpG 10101, 2.37 µg IDRP 1002, 1.19 µg EP3) microparticle vaccine (▲) or 10 µg OVA plus low 

adjuvant concentration (0.6 µg CpG 10101, 1.19 µg IDRP 1002, 0.6 µg EP3) microparticle vaccine (■). 

Pups were primed at two weeks of life and boosted four weeks later. Serum samples were collected 

throughout the experiment and analysed using an ELISA assay (p < 0.05). 
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Figure 4.4 Induction of anti-OVA specific IgA serum antibodies in pups. Antibody induction 

following intramuscular (A) and intranasal (B) vaccination. Neonatal mice were primed and boosted with 

10 µg OVA (●), 10 µg OVA plus high adjuvant concentration (2.37 µg CpG 10101, 4.74 µg IDRP 1002, 

2.37 µg EP3) microparticle vaccine (), 10 µg OVA plus medium adjuvant concentration (1.19 µg CpG 

10101, 2.37 µg IDRP 1002, 1.19 µg EP3) microparticle vaccine (▲) or 10 µg OVA plus low adjuvant 

concentration (0.6 µg CpG 10101, 1.19 µg IDRP 1002, 0.6 µg EP3) microparticle vaccine (■). Pups were 

primed at two weeks of life and boosted four weeks later. Serum samples were collected throughout the 

experiment and analysed using an ELISA assay (p < 0.05). 
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4.3.2 Intranasal route of immunization is superior to parenteral vaccination 

 In a separate experiment the novel microparticle and soluble adjuvant 

formulations were titrated and various routes of immunization compared. Soluble and 

microparticle vaccine formulations composed of OVA and various concentrations of 

novel adjuvants were used to vaccinate two-week old mice. The vaccines were delivered 

by parenteral (subcutaneous and intramuscular) and mucosal (intranasal) routes.  

Both microparticle and soluble vaccine formulations induced similar levels of 

anti-OVA IgG (Fig. 4.5) and IgG1 (Fig. 4.6) antibodies following parenteral and mucosal 

vaccination routes. Decreasing the concentration of adjuvants did not significantly effect 

the levels of anti-OVA IgG and IgG1 produced. Even the lowest concentration of 

adjuvants allowed the neonatal system to respond to vaccination. All vaccines and routes 

of immunization were successful at inducing anti-OVA IgG2a (Fig. 4.7) antibodies and 

all three concentrations of adjuvants produced similar titers. Intramuscular (Fig.4.7B) and 

intranasal (Fig. 4.7C) vaccination with microparticle vaccine formulations produced the 

most tight data points. Only microparticle vaccines delivered intranasally induced  

significant anti-OVA IgA serum titers (Fig. 4.8C). In this case, the concentration of the 

adjuvant platform had an effect on the levels of antibodies produced. The highest 

concentration of the adjuvants resulted in the highest levels of anti-OVA IgA produced. 
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Figure 4.5 Induction of anti-OVA specific serum IgG antibodies in pups. Antibody induction 

following subcutaneous (A), intramuscular (B) and intranasal (C) vaccination with microparticle vaccine 

formulations as well as subcutaneous vaccination with soluble vaccine formulations (D). Mouse pups were 

primed and boosted with 10 µg OVA plus high adjuvant concentration (2.37 µg CpG 10101, 4.74 µg IDRP 

1002, 2.37 µg EP3) vaccine (●), 10 µg OVA plus medium adjuvant concentration (1.19 µg CpG 10101, 

2.37 µg IDRP 1002, 1.19 µg EP3) vaccine (■) or 10 µg OVA plus low adjuvant concentration (0.6 µg CpG 

10101, 1.19 µg IDRP 1002, 0.6 µg EP3) vaccine (▲). Pups were primed at two weeks of life and boosted 

four weeks later. Serum samples were collected throughout the experiment and analysed using an ELISA 

assay (p < 0.05). 
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Figure 4.6 Induction of anti-OVA specific serum IgG1 antibodies in pups. Antibody induction 

following subcutaneous (A), intramuscular (B) and intranasal (C) vaccination with microparticle vaccine 

formulations as well as subcutaneous vaccination with soluble vaccine formulations (D). Mouse pups were 

primed and boosted with 10 µg OVA plus high adjuvant concentration (2.37 µg CpG 10101, 4.74 µg IDRP 

1002, 2.37 µg EP3) vaccine (●), 10 µg OVA plus medium adjuvant concentration (1.19 µg CpG 10101, 

2.37 µg IDRP 1002, 1.19 µg EP3) vaccine (■) or 10 µg OVA plus low adjuvant concentration (0.6 µg CpG 

10101, 1.19 µg IDRP 1002, 0.6 µg EP3) vaccine (▲). Pups were primed at two weeks of life and boosted 

four weeks later. Serum samples were collected throughout the experiment and analysed using an ELISA 

assay (p < 0.05). 
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Figure 4.7 Induction of anti-OVA specific serum IgG2a antibodies in pups. Antibody 

induction following subcutaneous (A), intramuscular (B) and intranasal (C) vaccination with microparticle 

vaccine formulations as well as subcutaneous vaccination with soluble vaccine formulations (D). Mouse 

pups were primed and boosted with 10 µg OVA plus high adjuvant concentration (2.37 µg CpG 10101, 

4.74 µg IDRP 1002, 2.37 µg EP3) vaccine (●), 10 µg OVA plus medium adjuvant concentration (1.19 µg 

CpG 10101, 2.37 µg IDRP 1002, 1.19 µg EP3) vaccine (■) or 10 µg OVA plus low adjuvant concentration 

(0.6 µg CpG 10101, 1.19 µg IDRP 1002, 0.6 µg EP3) vaccine (▲). Pups were primed at two weeks of life 

and boosted four weeks later. Serum samples were collected throughout the experiment and analysed using 

an ELISA assay (p < 0.05). 
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Figure 4.8 Induction of anti-OVA specific serum IgA antibodies in pups. Induction of titers 

following subcutaneous (A), intramuscular (B) and intranasal (C) vaccination with microparticle vaccine 

formulations as well as subcutaneous vaccination with soluble vaccine formulations (D). Mouse pups were 

primed and boosted with 10 µg OVA plus high adjuvant concentration (2.37 µg CpG 10101, 4.74 µg IDRP 

1002, 2.37 µg EP3) vaccine (●), 10 µg OVA plus medium adjuvant concentration (1.19 µg CpG 10101, 

2.37 µg IDRP 1002, 1.19 µg EP3) vaccine (■) or 10 µg OVA plus low adjuvant concentration (0.6 µg CpG 

10101, 1.19 µg IDRP 1002, 0.6 µg EP3) vaccine (▲). Pups were primed at two weeks of life and boosted 

four weeks later. Serum samples were collected throughout the experiment and analysed using an ELISA 

assay (p < 0.05). 
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4.4 DISCUSSION 

 In the present study we compared parenteral and mucosal delivery of novel 

vaccine formulations in neonatal mice. Both soluble and microparticle formulations 

containing OVA co-administered with a novel adjuvant formulation composed of CpG 

ODN, IDRP and PCPP were assessed for their induction of systemic immunity. The 

adjuvant formulation was titrated to test the effectiveness of lower doses on the 

adjuvanticity of the novel formulation. Our results demonstrate that the route of 

immunization and formulation into microparticles had a substantial impact on the degree 

and quality of the immune response.  

 Neonatal vaccination is complicated due to the presence of vaccine neutralizing 

MatAbs and the neonate’s innate bias towards mounting Th2-like responses [129, 171]. 

Use of immunostimulating adjuvants such as CpG ODN, IDRPs and PP may shift the 

bias towards Th1 type responses, which was the basis why those adjuvants were chosen 

for our studies. Additionally, PTd can be formulated into microparticle vaccine delivery 

vehicles [247], which made them an attractive candidate as an adjuvant for neonatal 

vaccines. Such microparticles could not only hide the vaccine antigen from MatAbs but 

also safely deliver the vaccine to neonatal antigen presenting cells. Antigens encapsulated 

in microparticle delivery systems are more efficiently taken up by antigen presenting 

cells, which migrate to the nearby lymphoid organs leading to a sustained release of 

antigen over time [249, 270]. Most importantly, co-encapsulation of both antigen and 

adjuvants in microparticles allows for their co-delivery to the same antigen presenting 

cells. This in turn, allows for processing and presentation of antigen in the presence of 

co-stimulatory signals, which is responsible for more powerful immune responses.  
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 The current study demonstrated that the microparticle and soluble vaccine 

formulations composed of a novel adjuvant platform induced high concentrations of 

antigen-specific antibodies. The vaccines induced high anti-OVA IgG (Fig. 4.1 and Fig. 

4.5) and IgG1 (Fig. 4.2 and Fig. 4.6) titers despite the route of their administration to 

neonatal mice. Moreover, antigen co-formulated with the vaccine platform outperformed 

vaccinating with antigen alone in the production of serum IgG2a antibodies (Fig. 4.3) 

The presence of IgG2a isotype of antibodies is indicative of a Th1 shift desired for 

successful neonatal vaccination. Decreasing the concentration of adjuvants did not affect 

the levels of IgG2a antibodies produced, which can make a vaccine more cost effective, 

especially when designing vaccines for use in developing countries. Finally, the 

microparticle vaccines delivered intanasally induced antigen-specific serum IgA (Fig. 

4.4B), while vaccinating with antigen alone did not produce any significant 

concentrations of that particular isotype of antibody. 

This research suggests that vaccinating with a microparticle vaccine formulation 

containing novel adjuvants has a great potential as a vaccine platform for protecting 

during early infancy. Most promising is  intranasal (mucosal) delivery as it produces both 

IgG2a and IgA antibodies. Even though most pathogens enter the host via mucosal 

surfaces, most vaccinations are administered systemically. Systemic vaccination might be 

less than optimal as it does not successfully induce local mucosal responses. Mucosal 

immunity is necessary to prevent the early stages of infection where the pathogen is 

blocked right at its entry point into the host. Mucosal vaccination is believed to be the 

most successful in preventing infections caused by pathogens that enter the host via the 

mucosa. There are several advantages of mucosal vaccination. The vaccination is needle-
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free, which may increase vaccine compliance. Mucosal vaccination can induce strong 

sIgA and cytotoxic lymphocyte responses against pathogens entering via mucosa surfaces 

and also systemic IgG responses [271]. Moreover, the mucosal route of vaccination has 

been hypothesized to circumvent the challenges associated with MatAbs on active 

neonatal vaccination. It is believed that targeting neonatal vaccine delivery to the 

mucosal surfaces such as the respiratory (intranasal) tract or the intestine (oral) may 

overcome the interference of MatAbs as these are the sites where there is a restricted 

transport of MatAbs [152, 272]. 

Due to the fact that mucosal vaccination is noninvasive and needle-free, induces 

mucosal and systemic immunity and has a potential to overcome the interference of 

MatAbs, it is an attractive candidate for neonatal vaccines. Because the mucosal immune 

system can operate independently of the systemic immune system, it might allow 

successful neonatal vaccination in the presence of vaccine-neutralizing MatAbs. The 

optimal (neonatal) mucosal vaccine would most likely be composed of a vaccine delivery 

adjuvant such as microparticles. Antigens delivered via mucosal routes may be cleared by 

non-specific mechanisms, be degraded by enzyme or perhaps be affected by extreme pH 

before successfully reaching target cells [241]. Encapsulating the antigen would protect it 

from being degraded before reaching antigen presenting cells. It might also retain the 

antigen longer within the cells thus continuing to stimulate the system. Thus, the 

microparticle vaccine composed of the novel adjuvant combination might be an excellent 

candidate for neonatal vaccination.  

Our research showed that co-formulating OVA with a combination of CpG ODN, 

IDRP and PCEP allows for the generation of mixed Th1/Th2-type responses in neonatal 
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mice. Intranasal vaccination with the adjuvant platform formulated into microparticles 

induced both IgG2a and IgA tiers. The work presented is done with OVA as the model 

antigen. We are currently using the same adjuvant platform and delivery system to 

develop a novel vaccine against whooping cough. We are testing the formulations in the 

presence and absence of vaccine-neutralizing MatAbs. We believe that encapsulating 

Bordetella pertussis antigens co-formulated with our novel adjuvant formulation and 

delivered by a mucosal route will generate protective immune responses in the whooping 

cough challenge model. This research will lead to the development of novel vaccine 

formulations for neonates in both developed and developing nations. 
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5. NOVEL VACCINE FORMULATIONS AGAINST PERTUSSIS OFFER 

EARLIER ONSET OF IMMUNITY AND PROVIDE PROTECTION IN THE 

PRESENCE OF MATERNAL ANTIBODIES  

 

5.1 INTRODUCTION 

Whooping cough is a serious respiratory disease caused by infection with 

Bordetella pertussis. The disease is responsible for severe respiratory symptoms in 

infants and young children. In rare cases complications can include seizures, pneumonia, 

encephalopathy and death [16]. 20–40 million cases of pertussis occur globally each year, 

most of which are found in developing countries. 200,000–400,000 of these cases, mostly 

infants, die from the disease each year [17, 22, 251]. Pertussis can affect all age groups, 

but is most severe in infants and young children who are either too young to have been 

vaccinated or have not received their full vaccination series [31, 262]. Even though the 

incidence of disease has dramatically decreased with the introduction of wP (inactivated 

bacteria) and aP (purified proteins) vaccines, many cases are still reported even in 

developed nations [23, 25, 252, 253]. In 2010, United States and Canada experienced 

more than 20,000 cases with more than 15 deaths [273-275]. Therefore, more effective 

neonatal pertussis vaccines are needed to reduce the incidence of whooping cough and 

provide long lasting protection.  

The challenges for neonatal vaccines include the so-called “immaturity” of the 

infant’s immune system, particularly its bias towards mounting T helper 2 (Th2) 

responses, and the interference with MatAbs. Throughout pregnancy, both the fetus and 

mother have inhibited T helper 1 (Th1) responses to prevent a fetal-maternal immune 

rejection that could potentially lead to a miscarriage [254]. Thus, neonatal immune 

responses are skewed towards a Th2-type bias following vaccination [128, 129]. These 

passively derived antibodies are a result from previous exposure or vaccination. 

Ironically, while these MatAbs provide short-lived protection against disease they can 

also interfere with active vaccination of neonates [159-161].  
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MatAbs have been demonstrated to form immune complexes with antigen, which 

leads to the neutralization of vaccines, phagocytosis of MatAb-coated antigen and 

inhibition of B cell activation by Fcγ-receptor mediated signals [171]. MatAbs can also 

mask immunodominant vaccine epitopes thus preventing antigen binding to infant B cells 

[129, 171]. In this context, the ratio of the MatAb: vaccine antigen seems to be critical. 

Antibody responses to vaccine antigen may only be produced once MatAbs have fallen 

below a specific threshold [129, 171]. MatAb inhibitory effects on infant antibody 

responses have been observed following immunization with vaccines against measles 

[152, 162], HIB conjugate [163], hepatitis A [164], influenza A [165], tetanus [166], and 

varicella-zoster [160]. MatAb interference has also been observed following neonatal 

vaccination with either wP or aP vaccines [128, 167-172]. Antibodies against B. pertussis 

are transferred from mother to infant transplacentally or through the colostrum and breast 

milk. The IgG1 immunoglobulin subclass is the most efficiently transferred antibody 

[151]. 

The goal of the present study was to evaluate novel vaccine platforms that when 

combined with pertussis antigens would efficiently protect neonates in the presence of 

MatAbs. The adjuvant platform consists of three components that effectively induce both 

innate and adaptive immunity in the neonate. The first component of the novel adjuvant 

formulations are cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODN), 

which operate via signaling through TLR-9 liagands [276]. In humans, CpG motifs bind 

to Toll-like receptor-9 (TLR-9) on dendritic cells (DCs) and B cells, which results in the 

production of interleukin-12 (IL-12) and interferon-α (IFN-α). These CpG ODNs 

stimulate human B cells and plasmacytoid dendritic cells (pDCs), promoting the 

production of Th1 responses and pro-inflammatory cytokines [86, 277]. The second 

component of the platform is a synthetic cationic IDR peptide. These cationic peptides 

are derivatives of host defense peptides, which induce chemokine production and/or act 

as chemokines [278], promote wound healing, cell trafficking and modulate the responses 

of DCs and cells of the adaptive immune response [279-281]. Most recently, it was 

shown that IDRs can act as adjuvants vaccines [282-284].  
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The third component of our vaccine platform are PPs. These synthetic polymers 

are water soluble and biodegradable. PPs are composed of an inorganic backbone of 

alternating phosphorus (P) and nitrogen (N) atoms and two side groups attached to each P 

[226]. PPs are inexpensive to produce, they can be lyophilized and be stored for a long 

time at room temperature. PPs have also been shown to be potent immunomodulators 

[224, 228, 285]. For example, poly[di(sodium carboxylatoethylphenoxy) phosphazene] 

(PCEP) was able to induce balanced or Th1-type immune responses in mice when 

immunized with influenza antigens [230]. Another feature of this adjuvant is the ability to 

form microspheres [247, 269, 286] for vaccine delivery. Coacervation of 

polyphosphazenes with NaCl followed by cross-linking with Ca++ ions results in the 

creation of small particles sized between 1-5 µm [247]. Microparticles protect the vaccine 

antigen from degradation or from being recognized and neutralized by MatAbs. 

Encapsulated antigens may be delivered to infant antigen presenting cells without being 

recognized by MatAbs.  

We previously showed that combining all three adjuvants has a synergistic effect 

on immune responses [221, 223, 234, 236, 250]. The objective of the current study was to 

test whether a vaccine composed of a combination of adjuvants with pertussis antigens 

would be able to overcome interference produced by MatAbs. Novel adjuvants such as 

CpG ODN, IDR peptide and PP delivery systems were tested in combination with PTd 

and FHA pertussis antigens for their ability to induce immunity in neonates despite the 

presence of MatAbs. We tested these vaccines using our novel pertussis disease model in 

newborn piglets [111, 113]. In addition to the porcine model, we also used the murine 

model, which is the most common model for studying pertussis vaccination [104, 106, 

109]. 

 

5.2 MATERIALS AND METHODS 

5.2.1 Animals 

Male and female BALB/c mice were obtained from Charles River (Montreal, 

Quebec, Canada). Animals were kept and cared for by the Animal Care staff at the 
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Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan 

(Saskatoon, SK). Every dam was housed in a separate cage. Offspring were kept with 

their mothers until weaned at around the fourth week of life at which time the pups were 

separated according to sex. 

All sows were pre-screened for cross-reactive antibodies to Bordetella 

bronchiseptica. Pregnant Landrace sows were obtained from the Saskatoon Prairie Swine 

Centre, University of Saskatchewan. The animals were encouraged to farrow by 

intramuscular (i.m.) injection of 2 ml prostaglandin (Planate; Schering-Plough Canada 

Inc., Pointe-Claire, Quebec, Canada) on the 113th day and another 1 ml on the 114th day 

of gestation. Consequently, piglets were born on day 114 and 115 of gestation. Nursing 

piglets were kept in same isolation rooms in separate enclosures. Shortly after birth, half 

of the piglets of each litter were exchanged between sows to decrease the mother effect. 

All experiments were performed in agreement with the guidelines proposed by the 

University of Saskatchewan and the Canadian Council for Animal Care. 

5.2.2 Vaccine components 

Recombinant genetically detoxified PTd was kindly provided by Dr. Rino 

Rappuoli, Novartis. FHA antigen was purchased from List Biological Laboratories, Inc. 

(Campbell, California). CpG-ODN 10101 (TCGTCGTTTTCGCGCGCGCGCCG) was 

acquired from Pfizer (Ottawa, ON). IDR peptide 1002 (VQRWLIVWRIRK) was 

synthesized by Genscript (Picataway, NJ). The PP PCEP (VIDO-EP#3) was synthesized 

by the Idaho National Laboratory (Idaho Falls, ID) by a method previously described 

[230] with minor modifications. Lyophilized PP were dissolved in Dulbecco’s PBS (pH 

7.4; Sigma-Aldrich, MO) and stored in the dark at room temperature.  

The commercial pediatric pertussis vaccine Quadracel was purchased from 

Sanofi Pasteur (Toronto, ON). 0.5 ml human dose of the vaccine contains 15 Lf 

Diphtheria toxoid, 5 Lf Tetanus toxoid, acellular pertussis [20 µg chemically detoxified 

PT, 20 µg FHA, 3 µg pertactin (PRN), 5 µg fimbriae types 2 and 3 (FIM)], inactivated 

poliomyelitis vaccine (IPV) 40 D-antigen units type 1 (Mahoney), 8 D-antigen units type 

2 (MEF-1) and 32 D-antigen units type 3 (Saukett) with 1.5 mg of Aluminum phosphate 
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used as the adjuvant in the vaccine. In order to compare the novel vaccine formulations to 

the commercial vaccine, antigen dose was calculated to contain a matching dose to that in 

the Quadracel vaccine.  

5.2.3 Vaccination of mice 

Dams were subcutaneously (s.c.) immunized between the shoulder blades or 

intranasally (i.n.) with 1 µg (100 µl) of genetically detoxified PTd, PBS (pH= 7.2; 1.54 

mM KH2PO4, 155.17 mM NaCl, 2.71 mM Na2HPO4-7 H20; Gibco, Invitrogen; Carlsblad, 

CA) or the Quadracel (Sanofi Pasteur Limited, Toronto, Ontario, Canada) vaccine. A 

number of dams were boosted in the same manner two weeks following the primary 

vaccination. Seven or 14 day old neonatal mice were vaccinated via numerous routes 

including: s.c (50 µl between the shoulder blades), i.m. (12.5 µl into each quadricep 

muscle) or i.n. (12.5 µl into each nostril). Neonatal mice were boosted in the same 

manner four weeks following the primary vaccination. Vaccines containing CpG ODN 

and IDR peptide required pre-complexing of the two adjuvants. Both components were 

placed in a 1.5 ml Eppendorf tube (VWR; West Chester, PA) and co-incubated for 30 

minutes in a block heater at 37°C. Neonatal mice were vaccinated with 1 µg of both PTd 

and FHA. CpG-ODN, IDR and PCEP were delivered at a ratio of 1:2:1. All formulations 

consisted of 2.37 µg of CpG ODN 10101, 4.74 µg of IDR-1002 and 2.37 µg of PCEP 

(EP3). The vaccines were diluted in phosphate buffered saline (PBS, pH=7, 1.54 mM 

KH2PO4, 155.17 mM NaCl, 2.71 mM Na2HPO4 7 H20) (Gibco). 

5.2.4 Vaccination of pigs 

Pregnant sows were i.m. (side of the neck, trapezius muscle) vaccinated with 2 × 

1010 CFU of whole, heat-inactivated B.	
  pertussis in 2 ml of PBS or PBS alone four weeks 

before farrowing. At three-five days of life neonatal piglets were i.m. vaccinated (1 ml) 

with one of the vaccine formulations. The piglets were boosted in the same manner two 

weeks following the primary vaccination. Neonatal piglets were vaccinated with 10 µg of 

PTd and FHA each. All formulations consisted of 150 µg of CpG ODN 10101, 300 µg of 

IDR-1002 and 150 µg of PCEP (EP3). 
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5.2.5 Microparticle vaccine preparation 

CpG-ODN and IDR peptide were complexed in a ratio of 1:2 at 37°C for 30 min. 

PCEP and the antigen(s) were added, following the incubation. Then 6.2% NaCl was 

added into the mixture and incubated in the dark at room temperature for 20 minutes. 

When the incubation was over, the mixture was added into 8.8% CaCl2 and mixed on a 

nutator for 20 minutes in the dark at room temperature. The microparticles were then 

collected by centrifugation at 1340 g for 10 minutes at room temperature and washed 

once with ddH2O. The vaccine was re-suspended in PBS (pH 7.2) to the desired volume.  

5.2. 6 Sample collection 

Mouse dams were bled pre and post vaccination. Neonatal mice were bled 2, 4, 6 

and 8 weeks (unless otherwise stated) post primary vaccination. All blood samples were 

centrifuged (4547 x g) and serum stored at – 20 °C. Nasal washes were collected four and 

seven days post infection. Nasal lavages were collected by flushing the nasal cavity with 

500 µl of PBS. 

Sows were bled pre and post vaccination. Blood samples were centrifuged at 1349 

g for 10 minutes. Neonatal piglets were bled pre-vaccination as well as 1, 2, 3 and 4 

weeks following the primary vaccination (unless otherwise stated). Piglet serum was 

stored in serum blocks at – 20 °C. 

5.2.7 B. pertussis  challenge 

B. pertussis Tohama I strain was stored at −80°C in Casamino Acids plus 10% 

glycerol. Bacteria were grown on charcoal agar plates containing 10% (vol/vol) sheep 

blood and 40 µg/ml cephalexin (Sigma-Aldrich) at 37°C. Bacteria were harvested into 

Stainer-Scholte (SS) media and inoculated to make puddle plates.  Following a 48-hour 

incubation, bacteria were collected by scraping off and re-suspending in SS medium. 

Bacteria were collected by centrifugation at 4,500 × g for 10 min. The pellets were re-

suspended in PBS and their optical density (OD) at 600 nm was determined using a 

spectrophotometer. The challenge dose viable count was determined by plating serial 
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dilutions of the bacterial suspension onto charcoal blood agar plates and incubation at 

37°C for five to seven days. 

At 9-10 weeks of age the pups were intranasally challenged with 4 x 106 CFU B. 

pertussis. Half of the pups were sacrificed four days post infection and the other half one 

week post infection (unless otherwise stated). The lungs were removed and placed into 

SS media until homogenized, diluted and plated onto charcoal blood agar (Becton, 

Dickinson and Company, Sparks, MD) plates to determine the number of bacteria present 

in the lung.  The plates were incubated at 37 °C for one week before the colonies were 

counted.  

5.2.8 Anti-PTd and FHA ELISA 

 Polystyrene microtiter plates (Immulon 2 HB; Thermo, Milford, MA) were coated 

overnight at 4 °C with 0.25 µg/ml (100 µl per well) PTd or FHA for analysis of murine 

serum samples. The antigen was diluted in coating buffer (sodium carbonate buffer; 15 

mM Na2CO3 and 35 mM NaHCO3, pH 9.6). Sera were diluted four-fold, starting with 

1:100 dilution. TBST gelatin (Tris Buffered Saline pH 7.3 containing 0.5% Tween and 

0.5 % gelatin (Sigma) was used to dilute the samples and antibodies. For the detection of 

nasal wash IgA, ELISA plates were coated with 0.50 µg/ml of antigen. The samples were 

not diluted and added at neat concentration. Biotin-conjugated goat anti-mouse 

immunoglobulin G, G2a and A (1:10,000 dilution; Invitrogen, Camarillo, CA) was used 

for the detection of PTd and FHA specific IgG, IgG2a and IgA antibodies. Amplification 

of the signal was carried out by addition of streptavidin alkaline phosphatase	
   (1:5000 

dilution;	
  Jackson ImmunoResearch;	
  West Grove, PA). The reaction was visualized by p-

nitrophenylphosphate (Sigma-Aldrich, St. Louis, MO; dilution 1 mg/ml).	
  Samples were 

analysed using a microplate reader (Bio-Rad iMark Microplate Reader; Philadelphia, PA) 

at 405 nm with a reference of 490 nm.  

 For the detection of porcine anti-PTd and FHA IgG, the plates were coated 

overnight with 0.5 µg/ml (100 µl per well) of antigen in coating buffer. The plates were 

washed followed by blocking with TBST gelatin for one hour at room temperature. Sera 

were diluted four-fold, starting with 1:40 dilution. Alkaline phosphatase-conjugated goat 
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anti-pig immunoglobulin G (IgG; 1:5,000 dilution; Kirkegaad & Perry Laboratories, 

Gaithersburg, MD) was used for the detection of PTd and FHA specific IgG. The reaction 

was visualized by p-nitrophenylphosphate. Samples were analysed using a microplate 

reader at 405 nm with a reference of 490 nm. 

5.2.9 Statistical analysis 

All statistical analyses were carried out using GraphPad Prism software, version 

5.0b.  The data from the experiments were not normally distributed and therefore, the 

Mann-Whitney test was used to examine differences between two experimental groups. 

 When experiments involved more than two groups, data were rank transformed and then 

analyzed by one-way analysis of variance (ANOVA).  In those instances where the F 

ratio was significant, differences among the means of the ranks of the experimental 

groups were assessed using the Tukey test.  Differences were considered statistically 

significant when P < 0.05. 

 

5.3. RESULTS 

It was previously reported that vaccines against pertussis can be affected by 

maternal antibodies[128, 167-172]. We previously described that vaccination with PTd 

antigen alone was not able to overcome this interference. The goal of the experiments 

presented here was to test the effect of co-formulating pertussis antigens with novel 

adjuvants for their ability to induce protection against challenge infection in neonates in 

the presence of MatAbs. A series of experiments were performed in which mothers were 

vaccinated during gestation and their offspring shortly after birth. Antibody responses 

were compared to neonates born of naïve mothers. 

	
  

5.3.1 Role of novel vaccine adjuvants 

  To study MatAb interference with neonatal vaccination, mouse dams were 

divided into two groups. Ten dams were immunized and boosted with PTd at four weeks 

and two weeks prior to birth. Seven control dams were treated subcutaneously with PBS 
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four weeks before delivery. Pups were bled three weeks following vaccination to assess 

the levels of PTd-specific serum antibodies. Throughout the experiment, levels of 

maternal anti-PTd IgG antibodies were only present in pups born to 2x vaccinated 

mothers. No antibodies were detected in the animals of the control group born of PBS 

vaccinated dams. Newborn mice responded well to pertussis vaccination in the absence 

of MatAbs as demonstrated by an increase in anti-PTd serum IgG. Vaccinating pups with 

PTd and combination of CpG, IDR peptide and PP resulted in earlier onset of immunity 

and higher antibody titer as compared to vaccination with the Quadracel vaccine and 

PTd alone (Fig. 5.1A). Anti-PTd IgG titers were around 500-fold higher following a 

single vaccination with the novel adjuvant combination as compared to the titers 

produced by vaccination with the Quadracel vaccine (Fig. 5.1A).  
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Figure 5.1 Induction of anti-PTd IgG antibodies in the serum of mouse pups. Neonatal pups 

were subcutaneously primed and boosted with Quadracel vaccine (●), 1 µg PTd plus 2.37 µg CpG 10101, 

4.74 µg IDRP 1002, 2.37 µg EP3 soluble vaccine (), 1 µg PTd (■) or PBS (▲). Pups were vaccinated at 

seven days and boosted at thirty-one days of age. Serum samples were analysed using an ELISA assay. 

Different subscripts indicate significant differences between groups. Within each time point (a) is 

significantly different than (b) or (c) (p < 0.05). 
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Analysis of antibody titers in serum of pups born of vaccinated dams indicated 

that responses to both the Quadracel and PTd alone vaccines were impaired by 

MatAbs. Responses in these groups were similar to those in the control group (Fig. 5.1B). 

In contrast, immunization with PTd co-formulated with CpG, IDR peptide and PP 

resulted in enhanced immune responses (Fig. 5.1B).  

These results were confirmed in our recently developed pig model. To this end, 

MatAbs were induced by vaccinating with PTd two and four weeks prior to delivery. At 

three days of age, neonatal piglets were intramuscularly vaccinated with PTd co-

formulated with CpG, IDR peptide and PP soluble vaccine or the Quadracel vaccine 

and boosted after two weeks. ELISA results revealed that in the presence of MatAbs, the 

novel vaccine formulation induced significantly higher anti-PTd IgG antibodies 

compared to vaccination with the Quadracel vaccine (Fig. 5.2). 
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Figure 5.2 Induction of anti-PTd IgG antibodies in the serum of piglets. Neonatal piglets were  

intramuscularly primed and boosted with 10 µg PTd plus 150 µg CpG 10101, 300 µg IDRP 1002 and 150 

µg EP3 soluble vaccine (●) or the Quadracel vaccine (■). Piglets were born to intramuscularly PTd 

vaccinated and boosted sow. Piglets were vaccinated at three days of age and boosted two weeks post 

priming. Serum samples were analysed using an ELISA assay (*p < 0.05). 

 

5.3.2 Addition of a second antigen to the novel vaccine formulation increases 

vaccine efficacy 

To improve vaccine efficacy, a second antigen, FHA, was added into the 

formulation. In an effort to mask the antigens from vaccine-neutralizing MatAbs, the 

vaccine was formulated into PP microparticles. Two-week old pups born to PBS 

vaccinated dams were intramuscularly vaccinated with PTd and FHA co-formulated with 

CpG, IDR peptide as PP microparticles, Quadracel or PBS. Four weeks later the pups 

were boosted in the same manner and challenged at ten weeks with B. pertussis to assess 

the efficacy of each vaccine. ELISA results revealed that this microparticle vaccine 
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produced higher anti-PTd (Fig. 5.3A) and anti-FHA (Fig. 5.3B) IgG titers, both pre and 

post boosting, when compared to vaccination with the Quadracel vaccine. The novel 

vaccine, incorporated into a microparticle delivery vehicle, also induced higher anti-PTd 

(Fig. 5.3C) and anti-FHA (Fig. 5.3D) IgG2a antibodies as compared to the commercial 

vaccine. Both pertussis vaccines protected the pups from a challenge of 4 x 106 CFU of 

B. pertussis as demonstrated by the significant reduction of bacteria in mouse lungs four 

and seven days post infection (Fig. 5.3E).  
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Figure 5.3 Induction of anti-PTd and FHA IgG antibodies, anti-PTd and FHA IgG2a 

antibodies and bacterial load (CFU/lung) following challenge infection in pups. Neonatal pups were 

intramuscularly primed and boosted with 1 µg PTd and 1 µg FHA plus 2.37 µg CpG 10101, 4.74 µg IDRP 

1002, 2.37 µg EP3 microparticle vaccine (●), Quadracel vaccine (■), or PBS (▲). Pups were born PBS 

vaccinated dams. Pups were vaccinated at 14 days of life and boosted four weeks later. Serum samples 

were analysed using an ELISA assay. Pups were challenged with 4 x 106 CFU B. pertussis at ten weeks of 

life and sacrificed four and seven days later. Different subscripts indicate significant differences between 

groups. Within each time point (a) is significantly different than (b) or (c) (p < 0.01). 
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Since mucosal vaccination induced both systemic and mucosal immunity and 

could avoid the interference with MatAbs the bivalent vaccine formulations were also 

tested in the presence of passive immunity using an intranasal route of administration. 

Dams were intranasally vaccinated (and boosted) with PTd and PBS during gestation. At 

two weeks of life neonatal pups were intranasally vaccinated with PTd and FHA co-

formulated with CpG, IDR peptide 1002 into PP microparticle or soluble vaccine, 

Quadracel vaccine or PBS. The microparticle and soluble vaccine formulations induced 

high anti-PTd IgG titers, both pre and post boost, in pups born of naïve dams (Fig. 5.4A), 

as well as those born of low (Fig. 5.4C) and high titer dams (Fig. 5.4E). Both soluble and 

microparticle vaccines also induced significant levels of anti-FHA IgG antibodies in the 

absence (Fig. 5.4B) and presence of passive immunity (Fig. 5.4 D, F). When compared to 

the Quadracel vaccine, these novel vaccine formulations also induced higher anti-PTd 

IgG2a serum titers in the absence (Fig. 5.5 A) and presence (Fig. 5.5 C, E) of passive 

immunity. Interestingly, early life vaccination with the novel microparticle and soluble 

vaccine formulation induced around a 1000 fold higher concentration of anti-PTd IgG2a 

in the presence of high titers of MatAbs (Fig. 5.5E) than vaccination with the 

commercially available vaccine. A similar trend was noticed in the production of anti-

FHA IgG2a antibodies. Novel vaccine formulations resulted in superior anti-FHA IgG2a 

titers in the absence (Fig. 5.5B) and presence (Fig. 5.5 D, F) of passive immunity. PTd 

and FHA co-formulated with novel adjuvants protected the pups from B. pertussis 

infection in the presence and absence of MatAbs (Fig. 5.5G). 
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Figure 5.4 Induction of anti-PTd and FHA IgG antibodies in the serum of mouse pups. 

Neonatal pups were intranasally primed and boosted with 1 µg PTd plus 1 µg FHA co-formulated with 

2.37 µg CpG 10101, 4.74 µg IDRP 1002, 2.37 µg EP3 microparticle vaccine (●), 1 µg PTd plus 1 µg FHA 

co-formulated with 2.37 µg CpG 10101, 4.74 µg IDRP 1002, 2.37 µg EP3 soluble vaccine (), 

Quadracel vaccine (■) or PBS (▲). Pups were vaccinated at 14 days of age and boosted four weeks later. 

Serum samples were analysed using an ELISA assay. Different subscripts indicate significant differences 

between groups. Within each time point (a) is significantly different than (b), (c) and (d) (p < 0.05). 
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Figure 5.5 Induction of anti-PTd and FHA IgG2a antibodies in the serum of mouse pups. 

Neonatal pups were intranasally primed and boosted with 1 µg PTd plus 1 µg FHA co-formulated with 

2.37 µg CpG 10101, 4.74 µg IDRP 1002, 2.37 µg EP3 microparticle vaccine (●), 1 µg PTd plus 1 µg FHA 

co-formulated with 2.37 µg CpG 10101, 4.74 µg IDRP 1002, 2.37 µg EP3 soluble vaccine (), 

Quadracel vaccine (■) or PBS (▲). Pups were vaccinated at 14 days of age and boosted four weeks later. 

Serum samples were analysed using an ELISA assay. Pups were challenged with 4 x 106 CFU B. pertussis 

at ten weeks of life and sacrificed four days later. Different subscripts indicate significant differences 

between groups. Within each time point (a) is significantly different than (b), (c) and (d) (p < 0.05). 
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An additional test in mice included vaccinating (and boosting) dams, during 

pregnancy, with the Quadracel vaccine. Unlike previous experiments, these animals 

passed both PTd and FHA antibodies to their offspring. Pups born to these dams were 

intranasally vaccinated and boosted with the novel microparticle and soluble vaccine 

formulations composed of PTd and FHA as vaccine antigens. Immune responses of pups 

born of vaccinated and naïve dams were compared to responses induced by vaccinating 

with the commercial vaccine. Both the Quadracel vaccine and the novel vaccine 

formulations induced high anti-PTd IgG titers in the absence (Fig. 5.6 A) and presence 

(Fig. 5.6 C, E) of MatAbs. Additionally, all pertussis vaccines induced high 

concentrations of anti-FHA titres in the absence (Fig. 5.6 B) and presence (Fig. 5.6 D, F) 

of passive immunity. The vaccines composed of the novel adjuvant platform however, 

induced much higher anti-PTd and FHA IgG2a antibody titers (Fig. 5.7) as compared to 

vaccination with the commercially available vaccine. Vaccination with novel vaccines 

resulted in at least 1000-fold higher production of anti-PTd IgG2a in the presence of high 

titers of MatAbs than vaccination with the Quadracel vaccine (Fig. 5.7E). Similarly, the 

vaccines induced superior anti-FHA IgG2a titers in the presence of passive immunity 

(Fig. 5.7F). Moreover, the soluble vaccine formulation produced the highest nasal lavage 

anti- PTd (Fig. 5.8 A, B) and FHA (Fig. 5.8 C, D) IgA antibody concentration. Both the 

microparticle and soluble pertussis vaccine formulations protected the pups following 

infection (Fig. 5.8 E, F). 
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Figure 5.6 Induction of anti-PTd and FHA IgG antibodies in the serum of mouse pups. 

Neonatal pups were intranasally primed and boosted with 1 µg PTd plus 1 µg FHA co-formulated with 

2.37 µg CpG 10101, 4.74 µg IDRP 1002, 2.37 µg EP3 microparticle vaccine (●), 1 µg PTd plus 1 µg FHA 

co-formulated with 2.37 µg CpG 10101, 4.74 µg IDRP 1002, 2.37 µg EP3 soluble vaccine (), 

Quadracel vaccine (■) or PBS (▲). Pups were vaccinated at 14 days of age and boosted four weeks later. 

Serum samples were analysed using an ELISA assay. Different subscripts indicate significant differences 

between groups. Within each time point (a) is significantly different than (b), (c) and (d) (p < 0.05). 
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Figure 5.7 Induction of anti-PTd and FHA IgG2a antibodies in the serum of mouse pups. 

Neonatal pups were intranasally primed and boosted with 1 µg PTd plus 1 µg FHA co-formulated with 

2.37 µg CpG 10101, 4.74 µg IDRP 1002, 2.37 µg EP3 microparticle vaccine (●), 1 µg PTd plus 1 µg FHA 

co-formulated with 2.37 µg CpG 10101, 4.74 µg IDRP 1002, 2.37 µg EP3 soluble vaccine (), 

Quadracel vaccine (■) or PBS (▲). Pups were vaccinated at 14 days of age and boosted four weeks later. 

Serum samples were analysed using an ELISA assay. Different subscripts indicate significant differences 

between groups. Within each time point (a) is significantly different than (b), (c) and (d) (p < 0.05). 



	
   102	
  

 

 

Figure 5.8 Induction of anti-PTd and FHA IgA antibodies in the nasal washes of mouse 

pups. Neonatal mice were intranasally primed and boosted with 1 µg PTd plus 1 µg FHA co-formulated 

with 2.37 µg CpG 10101, 4.74 µg IDRP 1002, 2.37 µg EP3 microparticle vaccine (●), 1 µg PTd plus 1 µg 

FHA co-formulated with 2.37 µg CpG 10101, 4.74 µg IDRP 1002, 2.37 µg EP3 soluble vaccine (), 

Quadracel vaccine (■) or PBS (▲). Pups were vaccinated at 14 days of age and boosted four weeks later. 

Nasal washes were collected four and seven days post infection and analysed using an ELISA assay. Pups 

were challenged with 4 x 106 CFU B. pertussis at ten weeks of life and sacrificed four and seven days later. 

Different subscripts indicate significant differences between groups. Within each time point (a) is 

significantly different than (b) and (c) (p < 0.05). 
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Finally, these results were confirmed in the pig model. Piglets born of naïve sows 

were intramuscularly vaccinated and boosted with PTd and FHA adjuvant combination 

microparticle vaccine, the Quadracel vaccine or PBS. ELISA analysis of piglet serum 

samples revealed that following the boost our microparticle-formulated vaccine induced 

higher anti-PTd (Fig. 5.9A) and anti-FHA IgG (Fig. 5.9B) antibodies compared to the 

commercial vaccine. 
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Figure 5.9 Induction of anti-PTd and FHA IgG antibodies in the serum of piglets. Neonatal 

piglets were intramuscularly vaccinated and boosted with 10 µg PTd and 10 µg FHA co-formulated 

with150 µg CpG 10101, 300 µg IDRP 1002 and 150 µg EP3 microparticle vaccine (●), Quadracel 

vaccine () or PBS (■). Piglets were born to naïve sow. Piglets were vaccinated at three days of age and 

boosted two weeks post priming. Serum samples were analysed using an ELISA assay. Different subscripts 

indicate significant differences between groups. Within each time point (a) is significantly different than (b) 

and (c) (p < 0.05). 
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5.4 DISCUSSION 

 Whooping cough is one of the most prevalent vaccine preventable disease [287]. 

Globally pertussis is thought to be one of the top ten causes of death in children [22]. The 

goal of our research is to develop novel vaccine candidates which could improve the 

effectiveness of immunization and reduce the burden of pertussis. In the present study, 

various routes of immunization were tested for the induction of B. pertussis immune 

responses in the neonates using novel soluble and microparticle formulations containing a 

combination of adjuvants including CpG-ODN, IDR peptides and PCEP 

polyphosphazene. These studies led to the conclusion that the novel pertussis vaccine 

formulations had a major impact on the magnitude and quality of the immune response in 

neonatal mice and piglets. 

 Use of optimized adjuvants can result in the stimulation of both innate and 

adaptive immunity, leading to stronger and longer lasting immune responses to neonatal 

vaccination. Combining adjuvants often results in stronger immune responses than using 

a single adjuvant [234]. It was previously shown that co-formulating polyphosphazenes 

with CpG-ODN enhanced adjuvanticity and resulted in an enhanced efficacy of vaccines 

[231, 234, 288]. Similarly, co-formulating CpG-ODN with IDRs and PP can greatly 

enhance vaccine immunogenicity [221-223]. In the present study using the murine model, 

we showed that co-formulating PTd with the novel combination of adjuvants resulted in 

higher anti-PTd IgG titers and earlier onset of immunity as compared to vaccination with 

PTd alone or the commercial pediatric pertussis vaccine Quadracel composed of PT, 

FHA, PRN and Fim 2 and 3. These enhanced immune responses were induced in the 

presence of MatAbs. Similar results were also observed in the porcine model. PTd co-

formulated with CpG, IDRP and PCEP resulted in superior anti-PTd IgG responses in 

neonatal piglets in the presence of MatAbs. 

 Polyphosphazenes were used here since they are not only strong immune 

modulators [230] but can also be formulated into microspheres and act as a vaccine 

delivery system [247]. Formulating a vaccine into microparticles protects it from 

degradation while increasing its uptake by antigen presenting cells [249, 250, 270]. 

Microparticles such as polyphosphazenes, liposomes, PLGA particles and ISCOMs are 
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designed to protect the antigen and be phagocytosed by antigen presenting cells [289]. 

Microparticles are intended to deliver the antigen into the phago-endosome of antigen 

presenting cells where it is processed and loaded into MHC molecules. This would be 

greatly assisted by the cationic IDR peptides that act as cell penetrating peptides to 

translocate themselves and cargo into cells [290]. In addition these peptides have a 

profound role in recruiting immune cells through stimulation of local chemokine 

production [291]. Pathogen recognition receptors like TLR9 are present in the phago-

endosome. CpG-ODNs are known intracellular TLR9 ligands. Including CpG-ODN in a 

microparticle vaccine allows for priming the antigen presenting cells into Th1-like 

responses. Thus, we formulated the pertussis antigens and adjuvants into microparticles 

to protect them from degradation as well as recognition of the antigen by MatAbs.  

To further increase the efficacy of these vaccines, another pertussis antigen, FHA, 

was added into the formulation. The efficacy of this bivalent soluble and microparticle 

vaccines was compared to the commercially available pertussis vaccine. Neonatal mice 

intramuscularly vaccinated with PTd and FHA co-formulated with the novel adjuvant 

platform microparticle vaccine showed full protection following B. pertussis challenge. 

As shown in the results, the vaccine also induced higher anti-PTd and FHA IgG 

antibodies as compared to vaccinating with the Quadracel vaccine. Most interestingly, 

the microparticle vaccine formulation induced much higher anti-PTd and anti-FHA 

IgG2a titers, which are indicative of highly sought after Th1 responses during neonatal 

vaccination. 

We also investigated the effect of mucosally delivering the vaccines in the 

presence of low and high titers of MatAbs. The mucosal route of vaccination has been 

hypothesized to circumvent the challenges associated with MatAbs on active neonatal 

vaccination. It is believed that targeting neonatal vaccine delivery to the mucosal surfaces 

such as the respiratory (intranasal) tract or the intestine (oral) may overcome the 

interference of MatAbs as these are the sites where there is a restricted transport of 

MatAb [272]. Microparticle vaccine delivery has an additional advantage in its use in 

mucosal delivery. Integration of antigens and adjuvants into microparticles protects the 

vaccine from degradation at mucosal surfaces. The results demonstrate that intranasally 
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vaccinated neonatal mice induce generous anti-PTd and FHA IgG serum levels even in 

the presence of high titers of MatAbs. Compared to the Quadracel vaccine, soluble and 

microparticle vaccines induced superior anti-PTd and FHA IgG2a antibody titers. It was 

previously demonstrated that a Th-1 shift is crucial for the resolution of B. pertussis 

infection [89, 292]. The efficacy of microparticle and soluble vaccines was proven by B. 

pertussis clearance following the infection. The vaccines protected neonatal pups in the 

presence and absence of MatAbs. The vaccines induced a similar level of protection to 

that of the commercial vaccine, despite having only two of the five pertussis antigens 

present in the Quadracel vaccine.  

In addition, experiments demonstrated that pups born of dams vaccinated with the 

Quadracel vaccine were able to induce high anti-PTd and FHA IgG serum titers 

following vaccination with the novel formulated vaccines. Vaccination resulted in the 

induction of superior anti-PTd and FHA IgG2a serum titers as compared to pups 

vaccinated with the commercially available vaccine. Interestingly, the novel soluble 

vaccine produced the highest concentrations of  anti-PTd and FHA IgA found in the nasal 

lavages. All three vaccines significantly reduced the bacterial load following vaccination. 

In this instance, however, we observed a higher concentration of bacteria in vaccinated 

pups born of high and low titer dams. This could be explained by a higher concentration 

of pertussis specific MatAbs at the time of challenge as this time dams were vaccinated 

with the commercial vaccine containing multiple antigens. In other studies the dams were 

vaccinated with a single antigen, which resulted in a total clearance of bacteria in 

vaccinated pups. The increased lung bacterial counts in pups might be a result of a higher 

concentration of anti-pertussis vaccine-neutralizing MatAbs. Furthermore, the 

microparticle vaccine formulation was also successful in the porcine model. Formulating 

PTd, FHA and adjuvant combination into polyphosphazene microparticles induced 

greater anti-PTd and FHA total IgG than vaccination with the Quadracel vaccine.  

In the present study, it was demonstrated that co-formulating the antigen with a 

triple adjuvant platform increased antibody production in neonates in the presence of 

MatAbs. Formulating the vaccine into microparticles further increased antibody 

production following parenteral immunization. The divalent soluble and microparticle 
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vaccines co-formulated with CpG ODN, IDR peptide and PP protected the neonates from 

infection despite having only two of the five pertussis antigens in Quadracel vaccine. 

The novel vaccine formulations also induced high anti-PTd IgG2a antibodies, which is 

indicative of a Th-1 shift, an outcome much desired of newborn vaccines. Formulating 

the vaccine into microparticles, protected it from degradation and delivered it to antigen 

presenting cells. Another excellent characteristic of encapsulated vaccines are beneficial 

antigen release kinetics. Antigen is released slowly over time thus providing continuous 

stimulation of the immune system. Such a vaccine would be an ideal vaccine candidate 

especially in developing countries where most cases of pertussis occur and vaccine 

coverage is low. Encapsulating a vaccine could reduce the number of doses and/or the 

antigen amounts needed for protection. Fewer antigens in the vaccine would further 

reduce the costs associated with vaccine production. 
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6. GENERAL DISCUSSION AND CONCLUSIONS 

6.1 GENERAL DISCUSSION 

 According to the WHO, infectious diseases globally account for ~ 2 million 

deaths per year in newborns and infants less than six months of age. These diseases are 

mostly caused by infections with Gram-positive bacteria (Group B Streptococcus, S. 

pneumoniae), Gram-negative bacteria (B. pertussis, E. coli) and viral infections such as 

herpes simplex virus (HSV), respiratory syncitial virus (RSV) and rotavirus [293]. The 

increased vulnerability to infections emphasizes the need for more successful vaccines 

for early life vaccination of neonates. Vaccination at birth offers numerous benefits, 

predominantly for non-industrialized nations where birth might be the only connection 

with the healthcare system. Early life vaccination is also correlated with a considerably 

enhanced degree of vaccination coverage compared to immunization administered at later 

time points [294]. Currently, only three vaccines are approved which can be given at 

birth: hepatitis B, tuberculosis and oral polio [141], thus indicating the unmet need for 

improved neonatal adjuvants and vaccines that are capable of requiring fewer doses and 

improving the intensity, rate and longevity of protection. 

The goal of our study was to develop novel vaccine formulations against 

whooping cough, which would provide protection early in life in the presence of MatAbs. 

Early life vaccination must overcome the polarization of fetal and neonatal immune 

responses towards Th2-type immunity [137, 295] and the presence of vaccine 

neutralizing MatAbs [129, 171]. In this context, it was suggested that recovery from a 

natural B. pertussis infection is dependent on the presence of Th1-type responses. Current 

aP vaccines are adjuvanted with alum, which result in a Th2-type immune responses 

following immunization [98]. These suboptimal immune responses might be the reason 

for an early waning of vaccine-induced immunity and the resurgence of the disease in 

countries with vast vaccine coverage [23, 24]. We developed a novel adjuvant platform to 

overcome the challenges associated with neonatal vaccination. The adjuvant formulation 

was based on CpG ODN, IDRP and PP vaccine delivery vehicles. When co-formulated 

with pertussis antigens, the adjuvant platform resulted in the production of both cell-
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mediated and humoral immunity. In addition, when delivered intranasally the vaccine 

produced a mucosal antibody response.  

 The study began with the establishment of the murine and porcine models for 

studying maternal antibody interference. We titrated both the levels of MatAbs and the 

concentration of PTd for neonatal vaccination. Our results concluded that vaccinating 

with PTd alone was not able to overcome the interference of MatAbs, even in the 

presence of low concentrations of passive immunity. A booster dose of the antigen, 

however, was able to overcome this interference in the presence of low levels of passive 

immunity but not in the presence of high levels of MatAbs. Using two animal models, we 

showed that MatAbs interfere with the generation of antibodies during the primary 

immune response in infancy. We also demonstrated that this phenomenon could be 

overcome by the addition of innate stimuli such as CpG ODN. Interestingly, we also 

showed that priming in the presence of MatAbs does not prevent responses to booster 

doses given later in life. Taken together, the experiments revealed the possibility to 

successfully immunize at birth even in the face of MatAb inhibition. 

 In order to achieve a balanced Th1/Th2 immunity following early life vaccination, 

we combined a model antigen OVA with the novel combination of adjuvants. CpG ODN, 

IDRP and PP co-formulated with OVA into soluble and microparticle vaccines were used 

to vaccinate neonatal mice. We titrated the adjuvant formulations and delivered them via 

parenteral and mucosal routes. The vaccines containing the adjuvants induced greater 

concentrations of serum antibodies shortly following the vaccination. Both soluble and 

microparticle vaccines composed of the novel adjuvant platform and delivered 

intranasally resulted in superior IgG2a and IgA serum antibody production as compared 

to vaccinating with antigen alone. Interestingly, decreasing the adjuvant concentration did 

not change the magnitude of IgG2a production. These results indicate that a mucosal 

administration of the novel vaccine formulations has great potential for intranasal early 

life vaccination. 

 Our last set of experiments involved co-formulating pertussis antigens such as 

PTd and FHA with the novel adjuvant platform into microparticle and soluble vaccine 

formulations. The basis for formulating the vaccine into PP microparticle delivery 
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vehicles was the fact that it might protect the vaccine antigens from being recognized and 

consequently neutralized by MatAbs. We tested the vaccine efficacy by a challenge 

infection in the presence and absence of passive immunity. Co-formulation of PTd with 

the combination of novel adjuvants resulted in a higher anti-PTd IgG concentration and 

earlier onset of immunity as compared to vaccination with PTd alone or the commercial  

aP pediatric vaccine. The vaccines based on PTd and FHA as well as the adjuvant 

formulation induced superior levels of IgG2a when compared to vaccination with the 

commercially available vaccine. Furthermore, following intranasal administration the 

soluble vaccine formulation produced high levels of IgA in the nasal wash. The efficacy 

of the novel microparticle and soluble vaccine formulations was confirmed by the total B. 

pertussis clearance following infection. Our studies confirm the possibility of using 

innate adjuvants and delivery vehicles to induce protection following early life 

vaccination in the presence of MatAbs. 

 The goal of numerous studies around the globe is to identify appropriate adjuvants 

for early life vaccination. Adjuvants that induce Th1-polarizing cell-mediated immunity 

are particularly sought after for vaccination shortly after birth. Novel adjuvants could 

enable the production of improved vaccines for the use in neonates thus reducing the 

morbidity and mortality of infections. Our results indicate the possibility of using innate 

adjuvants to enhance immune responses and manipulate the neonatal immune system and 

for driving Th1-type responses. In this context, we showed that neonatal vaccination is 

feasible even in the presence of MatAbs. This approach is expected to expand in the 

future, especially against infections that require early protection.  

The need for improved neonatal vaccines will entail the development of new 

adjuvants able to activate particular PRRs. The current knowledge of PRRs in the neonate 

offers new prospects for developing novel vaccine delivery systems and adjuvants Proper 

use of novel adjuvants might also overcome the challenges associated with the presence 

of passive immunity at the time of vaccination. Our research demonstrated the possibility 

of using microparticles as a strategy to induce protection in early life. Such vaccine 

delivery would not only hide the antigens from being neutralized by MatAbs but also 

protect from the harsh environment at mucosal surfaces. As always with novel vaccines, 
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safety concerns will be a top priority for vaccinating this vulnerable population. As with 

all new drugs, novel vaccine formulations and adjuvants will be required to undergo a 

rigorous safety analysis. Safety and efficacy of early life vaccination in animal models 

must be considered during the development of novel neonatal vaccines. 

 With the need for new methods to improve early life vaccination the applicability 

of neonatal animal vaccination models to humans must be discussed. An important aspect 

to think about understanding animal models is the comparatively large deviation of the 

innate immune systems between species. For instance, the innate immune system of mice 

is different from that of humans [296]. Timing of vaccine administration is a crucial part 

of neonatal animal vaccination models. For example, most studies have concentrated on 

mice that are around one week of age to model neonatal responses [297]. Knowing the 

necessity of creating vaccines active around the time of birth, novel animals models 

might have to be implemented to study vaccination of animals on their first day of life. 

Even though murine models are crucial for immunologic research, results in mice do not 

always convert exactly to that of humans. In addition to the murine model, our research 

showed the porcine model as a great alternative to study neonatal vaccination. Pigs are 

more closely related to humans and their offspring are of similar size of that of neonatal 

humans at birth.  

 All together, our data showed the negative impact of MatAbs on early life 

vaccination. These inhibitory effects, however, can be overcome by co-formulating the 

vaccine antigen with proper Th-1-type response redirecting adjuvants. The results 

indicate that neonatal vaccination can be safe, effective and can become the main 

approach in protecting the vulnerable newborns and infants. Since most vaccine 

formulations to be administered in early life have been adjuvanted with alum, novel 

adjuvants which are more effective at birth might be the solution for developing novel 

and more successful neonatal vaccines [141, 293]. Further research in neonatal and infant 

immunology and ongoing safety trials are needed for the development of novel vaccine 

formulations to meet the challenges of global infections. 

 Early life vaccination against hepatitis B, polio and tuberculosis showed that 

neonatal vaccination is effective, well tolerated and an excellent preventative strategy to 
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limit infection [298]. The focus of future research should aim at better understanding of 

how neonatal vaccines responses are obtained and sustained. This can be accomplished 

by identification of novel adjuvants and vaccine formulations for the use in early life. 

Such strategy could reduce the incidence of current vaccine preventable diseases such as 

pertussis, rotavirus and influenza.  

 

6. 2 GENERAL CONCLUSIONS 

 After summarizing and discussing all results shown in all chapters general 

conclusions would be: 

- We confirmed in two animal models (murine, porcine) that MatAbs interfere with 

the generation of antibodies during the primary immune response in early life. 

 

- Priming in the presence of passive immunity does not prevent responses to 

booster doses given later in life. 

 

- Co-formulation of a model antigen OVA with CpG ODN, IDRP and 

polyphosphazene into microparticle and soluble vaccine formulations induced 

superior antibody responses in neonatal mice compared to vaccination with 

antigen alone. 

 

- By assessing various routes for early life vaccination we concluded that mucosal 

(intranasal) vaccination is superior to parenteral vaccination as it results in the 

production of both systemic and mucosal immunity. 

 

- In neonates, co-formulating PTd and FHA with the adjuvant platform into 

microparticle and soluble formulations resulted in balanced Th1/Th2 response as 

compared to vaccination with the commercially available vaccine Quadracel, 

which produced Th2-type responses. 
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- The novel vaccine formulations composed of the adjuvant platform and pertussis 

antigens provided similar level of protection as the currently available vaccine 

against challenge infection even in the presence of high levels of MatAbs. 
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7. APPENDIX 

7.1 CONTRIBUTIONS TO PEER REVIEWED MANUSCRIPTS 

7.1.1 “Strategies to link innate and adaptive immunity when designing 
vaccine adjuvants. 

Garlapati S., Facci M., Polewicz M., Strom S., Babiuk LA., Mutwiri G.,  Hancock RE., 
Elliott MR., Gerdts V. 

(As published in the Veterinary Immunology and Immunopathology journal, 2009; 

Mar 15;128(1-3):184-91.) 

 Dr. Garlapati and myself established the methods to generate polyphosphazene 

microparticles. Together we tested various methods for preparing microparticles and 

assessed their size. We labeled both the antigen and adjuvant and studied their 

distribution within the microparticle. 

 

7.1.1.1 ADJUVANTS FOR VACCINES 

Adjuvants constitute important components of human and animal vaccines. They 

can be grouped into particle-based delivery systems, such as liposomes, micro- or 

nanoparticles, and molecules that either directly or indirectly induce the expression of 

cytokines and chemokines thereby modulating the local microenvironment for activation 

and stimulation of immune cells. Most of today’s adjuvants have been developed 

empirically and include a wide variety of formulations including cell-wall components, 

alum, QuilA, carbomers, and oil-in water emulsions to name a few. With the recognition 

of pathogen recognition receptors (PRRs) such as Toll-like, mannose and nucleotide-

binding oligomerization domain (NOD)-like receptors (NLR), it has become clear that 

many of these adjuvants signal through highly specific pathways resulting in increased 

NF-κB and/or type I interferon (IFN) production, which subsequently leads to an up-

regulation of chemokines and cytokines needed for maturation of dendritic cells (DCs) 

and improved presentation of the antigen. Since invading microorganisms are likely to 

simultaneously interact with many PRRs, we hypothesize that effective vaccine 

formulations need to stimulate multiple PRRs to both enhance the magnitude and the 
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quality of immune responses to the vaccine antigens. Here, we highlight some of our 

strategies to enhance immune responses against Bordetella pertussis, an important human 

pathogen responsible for more than 300,000 deaths and 50 million cases in infants and 

young children worldwide [22]. We recently demonstrated that newborn piglets are 

highly susceptible to infection with B. pertussis and show severe signs of respiratory 

distress, weight loss and moderate to mild fever. The pathology following infection is 

similar to that seen in human infants including a thickening of the alveolar wall, severe 

influx of macrophages and neutrophils and complete tissue destruction of underlying 

interstitial tissues [111]. Using this model our research is focused on utilizing innate 

immune modulators such as CpG ODN, host defence peptides (HDPs) and 

polyphosphazenes (PPs) to activate and imprint neonatal DCs towards a Th1 type of 

response, which ultimately will help to enhance neonatal immunity against infectious 

diseases such as pertussis. Here, we highlight the potential of some of these immune 

modulators for use as vaccine adjuvants for neonatal vaccines. 

7.1.1.2 HOST DEFENSE PEPTIDES 

HDPs, also called cationic antimicrobial peptides, are innate immune molecules 

found in almost every life form. Their wide spectrum of functions includes direct 

antimicrobial activities, immunostimulatory functions of both innate and acquired 

immunity, as well as involvement in wound healing, cell trafficking, vascular growth and 

both the induction and inhibition of apoptosis [208, 280, 281, 299-301]. For example, 

HDPs have been shown to recruit immature DCs and T-cells, enhance glucocorticoid 

production, macrophage phagocytosis, mast cell degranulation, complement activation, 

and IL-8 production by epithelial cells [207, 279, 302, 303]. Other HDPs have been 

demonstrated to neutralize pro-inflammatory cytokine induction and lethality in response 

to LPS/endotoxin [207, 280, 299, 301, 304-309]. For example, the innate defense-

regulator peptide (IDR-1), which targets monocytes and macrophages, provided 

protection against infection with multi-resistant bacteria in mice, and induced a more 

balanced or controlled immune response by decreasing pro-inflammatory cytokines such 

as TNF-α and IL-6 at the site of infection [290].  
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HDPs can be largely grouped structurally into defensins and cathelicidins based 

on the respective presence of β-sheets and α-helices [310]. They are expressed by a wide 

range of cells including epithelial cells, neutrophils, macrophages and DCs [281]. 

Expression is often regulated by the presence of microorganisms [311] and/or stimulation 

with TLR ligands, such as LPS. HDP may also act as TLR ligands. For example, TLR4 

can directly stimulate the expression of murine β-defensin 1 in immature DCs and lead to 

maturation of these cells [312]. Interestingly, some HDPs such as LL-37 were able to 

modulate the effects of TLR agonists in the presence of LPS by decreasing the amount of 

NF-κB translocation into the nucleus consequently altering patterns of gene expression 

[307]. Furthermore, HDPs have been demonstrated to also enhance adaptive immune 

responses, and thus are considered an important link between innate and acquired 

immunity. For example, the human neutrophil peptides (HNP) 1 to 3, human β-defensins 

(HBD) 1 and 2, as well as murine β-defensins were shown to chemoattract immature 

DCs, lymphocytes, monocytes and macrophages [204, 313-315]. Recruitment of 

immature DCs occurred through signaling via the chemokine receptor 6 [302, 313] and 

other not yet identified receptors [314]. Maturation of DCs was demonstrated following 

co-culture of immature DCs with HDPs [305]. Moreover, fusion of the murine β-defensin 

2 with the gene encoding the human immunodeficiency virus-1 glycoprotein 120 (HIV 

gp120) resulted in specific mucosal, systemic, and CTL immune responses after 

immunization [312, 313]. Ovalbumin-specific immune responses were enhanced after 

intranasal co-administration of ovalbumin and HNP1-3 in C57/Bl mice [282] and 

intraperitoneal injection of HNP1-3 and KLH of B-cell lymphoma idiotype Ag into mice 

enhanced the resistance to subsequent tumor challenge [283]. Fusion of β-defensins 

mBD2 or mBD3 to a B–cell lymphoma epitope sFv38 induced stronger anti-tumor 

immune responses in mice [312, 313]. Thus, these examples provide evidence that HDPs 

have been successfully used as adjuvants to enhance vaccine-specific immunity.  

To investigate the potential of HDPs for enhancing the immune response in 

neonates, we are currently using murine, human and porcine DCs. Screening of HDPs is 

based on the ability to induce expression of chemokine and cytokines in these cells, as 

well as the up-regulation of co-stimulatory markers and MHC class II. For example, two 
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subsets of porcine DCs, namely monocyte-derived DCs (moDC) and blood-derived DCs 

(bDC) are being used which include both myeloid and lymphoid DCs. MoDC were 

generated by isolation of CD14+ cells (monocytes) and subsequent culturing in the 

presence of IL-4 and GM-CSF [316, 317], whereas bDC were isolated based on their 

expression of CD172+[317]. Figure 7.1 shows an example of the expression of pro-

inflammatory cytokines in moDC and bDC following stimulation with HDP. MoDC were 

stimulated at day 6 of culture with 133 µg/ml of the 12 amino acid peptide HH2 

(VQLRIRVAVIRA-NH2). BDC were isolated and rested for 16 hours, after which time 

they were stimulated in the same manner. Twenty-four hours after stimulation, 

supernatants were collected from both moDC and BDC for interleukin (IL)-8 analysis by 

ELISAs. Following an eight-hour stimulation of moDC, cells were collected for qPCR 

analysis. Figure 1a shows that stimulation with HH2 resulted in enhanced expression of 

interleukin IL-8 in moDC but not in bDC. Furthermore, 8 hour stimulation by peptide 

HH2 resulted in a 6- and 8-fold respective increase in the expression of IL-12p40 and IL-

17 in moDC (Figure 7.1b). IL-17 plays a role in the activation of macrophages to kill B. 

pertussis [102], recruitment of neutrophils and in an increase of IL-8 production [318]. 

Thus, this example shows that HDPs can induce the expression of cytokines involved in 

the recruitment and activation of immune cells. Current research is focused on assessing 

potential synergies between CpG ODN and HDPs to further enhance specific immune 

responses against B. pertussis in newborn pigs.  
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Figure 7.1 The effect of peptide stimulation on porcine bDC and moDC. After 24-hour 

stimulation with peptide HH2 (133 µg/ml) IL-8 levels were examined by ELISAs in moDC and BDC (A). 

Following an 8-hour stimulation with HH2, the gene expression of IL-12p40 and IL-17 was examined by 

qPCR in moDC (B). Results are demonstrated as mean ± SEM, (n=4). The following primers were used: 

IL17F:ACGTACGTGCTACGT; IL17R:AGCTGTAACCGGTT; IL12p40-F: GAAATT 

CAGTGTCAAAAGCAGCAG; IL12p40-R: TCCACTCTGTACTTCTTATACTCCC. The IL-8 was 

detected by ELISA using the anti-IL8 antibodies (R&D MAB5531 at 2 ug/ml; R& D BAF 535 at 25 

ng/ml),and recombinant cytokine standards (R&D 533-IN, concentration of highest standard 40ng/ml). 

 

7.1.1.3 CpG ODN  

Bacterial DNA, as well as short oligonucleotides containing ‘CpG motifs’ (CpG 

ODN), are potent immune modulators in both human and animal species. CpG ODN 

signal through TLR9, and their immunomodulatory activity, either as ‘stand alone’-innate 
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immune treatments or as vaccine adjuvants, has been shown by numerous investigators in 

a variety of species. Excellent reviews are available to summarize the activity of CpG 

ODN [190, 276, 319-321]. When used as vaccine adjuvant, CpG ODN promote 

predominantly Th-1 type immune responses in adults, a quality needed for optimal 

protection against pertussis [86, 102, 292, 322-324]. 

The strong ability to skew vaccine-induced immune responses towards a Th-1 

type response make CpG ODN a logical choice to stimulate balanced or Th1-type 

immune responses in the neonate. To date immunomodulatory activities of CpG ODN 

that enhance neonatal immune responses have been demonstrated in a variety of species 

including mice, humans and pigs [139, 325-334]. In the case of a hepatitis B vaccine co-

formulated with CpG ODN, these responses were enhanced even in the presence of 

MatAbs [335]. 

To assess the ability of neonates to respond to stimulation with CpG ODN in vitro 

several studies were performed using either neonatal PBMC or DCs, which were isolated 

from either human cord blood or the blood of animals. For example, comparable amounts 

of IFN-α were found in whole blood from adults and neonates following stimulation with 

CpG both neonatal and adult DCs can elicit Th1 responses [336, 337]. However, in this 

study the response in DCs was down-regulated by IL-10 secretion from CD5+ B cells in 

response to systemic inflammation following TLR9 triggering [337]. It has also been 

demonstrated that stimulation with CpG ODN induced secretion of IgM, up-regulation of 

expression of HLA-DR and CD86, induction of MIP-1 α, and proliferation of adult and 

cord blood B cells [338]. Furthermore, similar amounts of IgM were produced by adult 

and umbilical cord B cells following stimulation with CpG ODN [339]. In contrast, the 

production of IFN-α in response to CpG ODN was dramatically impaired in cord blood 

plasmacytoid DCs [340] whilst it was also demonstrated that immune responses to 

tetanus toxoid, co-formulated with CpG ODN, were higher in adults than in newborns 

[341]. Similarly, evidence exists that neonatal immune responses to CpG ODN differ 

from those seen in adults and indeed Th2-responses to allergens were increased following 

addition of CpG ODN to house dust mite allergens [342]. This contradictory evidence 
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highlights the need for further research to understand CpG ODN activity in the neonate 

and to also assess the long-term consequences of treating neonates with CpG ODN.   

More recent evidence to support the use of CpG ODN in the neonate comes from 

recent observations demonstrating that CpG ODN can stimulate the expression of the 

BAFF-receptor TACI, a factor needed for survival of activated B cells and plasmablasts 

[343]. CpG ODN, therefore, might help to extend the lifespan of neonatal plasma cells 

and induce the earlier development of germinal centres [128]. Stimulation of B2 and B1 

cells with LPS or CpG ODN not only induced MyD88-dependent plasma cell 

differentiation and intracellular expression of BAFF and APRIL [344] but also strongly 

up-regulated the expression of the BAFF-receptor TACI [345, 346] needed for survival 

of activated B cells and plasmablasts  Thus, in addition to skewing the immune response 

towards a Th1 type immune response in the neonate, CpG ODN may help to elicit 

effective cell priming and long term responses in the neonate. 

 

7.1.1.4 POLYPHOSPHAZENES 

PPs are synthetic, water-soluble and biodegradable polymers that can function 

both as vaccine adjuvants as well as delivery-vehicles for vaccines when formulated into 

microspheres. Polyphosphazene polymers have long chain backbones of alternating 

nitrogen and phosphorous atoms with two side groups attached to each phosphorous 

[347]. Different side groups can be substituted at these positions to synthesize polymers 

with different physiochemical properties, such as water solubility and biodegradability, 

which make them amenable for use as biomedical polymers, membranes, hydrogels, 

bioactive and biodegradable polymers (Allcock, 1990). PPs have been used extensively 

for drug and vaccine delivery. For example, poly[di(sodium 

carboxylatophenoxy)phosphazene] (PCPP) displayed strong adjuvant activity in mice 

with a variety of viral and bacterial antigens [227-229] and poly[di(sodium 

carboxylatoethylphenoxy)phosphazene] (PCEP) not only enhanced the magnitude but 

also modulated the quality of immune responses to influenza X:31 antigen towards a Th-

1 type immune responses, resulting in more balanced immunity [230].  PCEP similarly 

induced a balanced Th1/ Th2-type immune response with Hepatitis B surface antigen, 

and the magnitude of antibody responses was much higher than with the conventional 
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adjuvant alum, which induced a predominantly Th2-type response (Mutwiri 2006; Figure 

7.2). Furthermore, PPs are very safe to use. Their water soluble nature reduces the risk of 

injection site reactions, which is often seen when using conventional adjuvants like 

mineral oil and Alum (Payne 1998). Thus, the combined effects of their potent 

adjuvanticity and negligible toxicity make them potential components for commercial 

vaccine formulations. We are currently assessing a panel of modified PPs for their ability 

to enhance specific immune responses against B. pertussis. Indeed, preliminary 

experiments already indicate that the co-formulation of PPs with pertussis toxoid (PTd) 

and CpG ODN leads to higher antibody responses and secretion of PTd-specific SIgA 

into BAL and nasal fluids in mice (data not shown). We expect that these responses can 

be further enhanced by using PP-based microparticles, which contain antigen, CpG ODN 

and HDPs (Figure 7.3).  

 

 

Figure7.2 Adjuvanticity of PCEP. Balb/c mice (n=6) were given a single immunization with 10 

µg HBsAg alone or in combination with alum or PCEP. IgG1 and IgG2a serum antibody responses were 

assessed by ELISA at 12 weeks after immunization. 
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7.1.1.5 MICROPARTICLE-BASED DELIVERY 

Particle-based delivery of antigens has proven to be highly efficacious for antigen 

delivery, especially when compared to the delivery of soluble proteins. Microparticles are 

phagocytosed by a variety of cells including macrophages and DCs [237, 348]. Once 

taken up by these cells, antigen is released and subsequently selected for presentation via 

MHC II. Interestingly, this process occurs in a phagosome-autonomous manner and is 

controlled by the presence of TLR ligands [349]. As a result, DCs can distinguish 

between self and non-self antigens allowing for self/non-self discrimination [349]. 

Furthermore, by being present in either early or late endosomes, various TLRs can be 

stimulated, therefore enhancing the overall response to the antigen [350].  

Particulate delivery systems, such as microparticles and nanoparticles, are 

typically less than 10 µm in size and consist of hydrophobic polymers or polysaccharides 

with the protein of interest incorporated at incorporation efficiencies of between 70 and 

90%. Concerns regarding the use of particle-based delivery systems include inefficient 

incorporation, stability and integrity of the antigen during the formulation process or 

storage [351]. By creating a depot effect, microparticles help to increase the persistence 

of antigens for a longer time, which is important for the induction of efficient protective 

T-cell responses [350, 352]. Furthermore, by masking the antigen inside the particles, 

microparticles help overcome interference with MatAbs, which is a major challenge for 

vaccinating the neonate. Microparticles are typically co-formulated to deliver both the 

antigen and adjuvant to the target cell. Indeed, microparticles and liposomes have been 

successfully used for delivery of a wide range of antigens and adjuvants including CpG 

ODN using models for cancer, allergies and infectious diseases [242, 243, 353-361]. In 

primary human plasmacytoid DCs, CpG ODN was delivered by cationized gelatin 

nanoparticles and this resulted in IFN-α production [362]. Poly(lactic-co-glycolic) 

microspheres have also been used for both the delivery of antigen and CpG ODN to APC, 

and their delivery resulted in the activation of endosomal TLR [245]. Maturation and 

cytokine secretion as well as antigen-cross-presentation was observed. Furthermore, in 

the same study immunization with these microspheres triggered clonal expansion of 

primary and secondary antigen-specific CD4+ and CD8+ T cells in vivo.  
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Many of the currently used microparticles, however, have the disadvantage of 

exposing antigen during the assembly process to harsh conditions such as high 

temperature, organic solvents or low pH levels [363]. The ability of PPs PCPP and PCEP 

to form microspheres under mild conditions either by using spray drying of polymer-

protein mixtures onto CaCl2 solution (Allcock, 1990), coacervation with NaCl and 

subsequent stabilization of microparticle sized coacervates by cross-linking with Ca++ 

ions (Andrianov et al 1998), or by ionic complexation of PP with spermine [269], makes 

them attractive encapsulation agents.  This is particularly useful for encapsulation of 

biologically labile entities, such as proteins, CpG ODN and/or HDPs. Using the 

coacervation technique with bovine serum albumin (BSA) and chicken ovalbumin 

(OVA), we observed spherical microparticles in the range of 0.7 – 3.0 µm in 

diameter,(Figures 7.3 and 7.4). Using FITC labeled OVA and Alexafluor-546 labeled 

CpG ODN we showed that the incorporation ranged from 70% to  >90% respectively. 

The integrity of the particles after lyophilization and resuspension appeared to be normal 

even after storage at room temperature for 2 months. Uptake studies using porcine moDC 

at a ratio of 5 microparticles per DC confirmed that the particle uptake was apparent at 30 

minutes after addition of microparticles (Figure 7.5).  Current research in our lab is 

focused on further improvement of these microparticles using layer-by-layer (LbL) 

microparticles, which consist of colloid sized core particles onto which oppositely 

charged molecules are added [364]. The generation of these particles has several 

advantages including the potential of adding multiple adjuvants onto the outside layers. 
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Figure 7.3 Formation of PCPP-ovalbumin microparticles. Scanned electron microscopy (SEM) 

of PCPP-Ovalbumin microparticles prepared by coacervation method (1,000 X magnification).  The scale 

corresponds to 5 µm. 
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Figure 7.4 Formation of a PCPP-microparticle. SEM of the PCPP-Ovalbumin microparticles at 

10,000 X magnification, showing a spherical structure with smooth surface with frequent blebs on the 

surface. 
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Figure 7.5 Uptake of PCPP-ovalbumin microsheres by MoDC. Monocyte-derived porcine DCs 

were overlaid with PCPP-Ovalbumin-CpG microparticles in 5:1 Mps:DCs.  The ovalbumin was labeled 

with FITC and the CpG ODN labeled with Alexa-Fluor 546 Dye.  The photomicrographs (40X 

magnification) were taken using a Zeiss Fluorescent microscope under transmitted light (A),TRITC (B) and 

FITC (C) filters after 30 min of MP addition. The above results were also confirmed by FACS (results not 

shown). 

7.1.1. 6 CONCLUSION 

Adjuvants are important components of vaccines, both for humans and animals. 

Here, we have highlighted the potential of CpG ODN, HDPs and PPs as adjuvants for 

neonatal vaccines. CpG ODN, HDPs and PPs act via different pathogen recognition 

receptors and signaling pathways, each of them resulting therefore in slightly different 

activation of the innate immune system. By combining these immune modulators and 

thereby providing multiple signals for stimulation of the immune system, we may be able 

to develop highly effective vaccine formulations for both adults and neonates.  
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7.1.2 “Antibody responses in adult and neonatal BALB/c mice to 
immunization with novel Bordetella pertussis  vaccine formulations” 

Gracia A., Polewicz M., Halperin SA., Hancock RE., Potter AA., Babiuk LA., Gerdts V. 

As published in the Vaccine journal, 2011 Feb 11;29(8):1595-604 

 

Aleksandra Gracia and myself worked on the formulation of the vaccine platform. 

Together we established the proper doses of the antigens and adjuvants to result in 

optimal induction of immunity. Jointly, we established a proper dose and protocol for B. 

pertussis challenge infections. 

 

7.1.2.1 SYNOPSIS OF THE MANUSCRIPT 

The manuscript describes the creation and testing of the novel adjuvant 

formulation composed of CpG ODN, IDRP and PP. The adjuvant platform combined 

with PTd into soluble formulations was tested in adult and neonatal mice. Co-formulation 

of the adjuvants with PTd increased the serum IgG2a and IgG1 antibody titers in adult 

mice as compared to vaccination with the antigen alone. These results indicate the 

improvement of the overall, as well as support of a Th1-type immunity. Similar trend was 

observed in neonatal mice. Moreover, the novel vaccine formulation induced superior 

IgG2a response when compared to immunization with the commercially available 

pertussis vaccine. Interestingly, the novel vaccine formulation produced elevated IgG2a 

response even after a single immunization, which is substantially fewer than the three to 

five doses presently needed for commercial pertussis vaccines. The response produced 

following vaccination with the new platform was not only initiated earlier but also 

persisted over a period greater than 22 months. The results indicated that this adjuvant 

technology can be potentially used as a platform for future neonatal vaccines. 
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