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Abstract

Visualization has long been an important method for conveying complex information.

Where information transfer using written and spoken means might amount to 200-250

words per minute, visual media can often convey information at many times this rate.

This makes visualization a potentially important tool for education. Athletic instruction,

particularly, can involve communication about complex human movement that is not easily

conveyed with written or spoken descriptions. Video based instruction can be problematic

since video data can contain too much information, thereby making it more difficult for

a student to absorb what is cognitively necessary. The lesson is to present the learner

what is needed and not more. We present a novel use of motion capture animation as an

educational tool for teaching athletic movements. The advantage of motion capture is its

ability to accurately represent real human motion in a minimalist context which removes

extraneous information normally found in video. Motion capture animation only displays

motion information, not additional information regarding the motion context. Producing

an automated coach would be too large and difficult a problem to solve within the scope

of a Master’s thesis but we can perform initial steps including producing a useful software

tool which performs data analysis on two motion datasets. We believe such a tool would

be beneficial to a human coach as an analysis tool and the work would provide some useful

understanding of next important steps towards perhaps someday producing an automated

coach.
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Chapter 1

Introduction

This work began as an effort to apply computer graphics in the context of athletic

instruction. This is a broad topic, and could include anything from simple diagrams to

photorealistic rendering of sports events. It could also include some ideas from smart

graphics, incorporating expert system type constructs to understand and explain motion

and, furthermore, give advice to a novice how to improve the motion. There was also a

pragmatic wish to provide a ”proof of concept” that the idea was within the state of the

art of current hardware and software - that is, that there was reason to believe that an

intelligent analysis of motion could be done in real time, and that the results could be

conveyed clearly.

Eventually, we defined the thesis project as follows. A software system would be built

that would process motion capture data recorded from a learner by comparing the motion

with motion capture information of an expert, and then showing the novice where the

novice’s motion differed from that of the expert. This idea in itself proved to be consid-

erable. Commercial products like Microsoft’s Kinect, Sony’s Move and Nintendo’s Wii

obviously required enormous investments of resources to produce and hit the market while

this work was being done. As a result, certain aspects of the problem had to be simpli-

fied. As well, the solution drew from several areas of computer science and mathematics,

including graphics, visualization, intelligent tutoring and functional analysis[128]. Com-

puter graphics and visualization are related but separate disciplines. Computer graphics

encompasses all forms of production of graphical media using a computer. Visualization in

the context of computer science is specific to producing graphics that provide additional

understanding to the viewer of an underlying set of data. The area of intelligent tutoring

studies types of systems that provide direct customized instruction or feedback to students

without the intervention of human beings, while performing a task[126]. Functional anal-

ysis is a particular analysis approach which involves breaking down a problem into it’s
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functional components. These components can be further broken down until the necessary

level of granularity is achieved.

It is difficult to concisely define visualization since almost any visual entity could be con-

sidered a visualization of some physical or conceptual object. For example, a map visually

represents a subset of the surface of our physical planet. An abstract drawing consisting

of particular shapes and colours could be said to visualize emotion. Typography, such as

the words on this page, can be said to be a visualization of language. Bath[12] describes

debate within the area of typography regarding the use of Roman-style font versus Gothic

script as ”a movement away from the difficult to read Gothic typeface first employed by

Gutenberg and towards clarity and legibility” thus casting typography not just as a matter

of aesthetics, but as a matter of perception, by facilitating the process of reading. Am-

ateurs experimenting with visualization have been known to create visualizations of data

that are visually interesting, but do not convey meaning very well since visual media can

represent almost anything from a physical object to a concept to a process. It is instructive

to look at some classic ideas from visualization that have become so commonplace, we have

forgotten that they are constructs. The first scientific drawings of Copernicus (figure 1.1)

used diagrams to communicate concepts that were difficult to describe outside of formal

mathematical specification. Copernicus’s drawings attempted to visualize that which could

not be seen by humans of that time. Maps now are in everyday use. Some planets can

be viewed by a person in their backyard with an inexpensive telescope. Statisticians like

William Playfair (figure 1.2) used diagrams as a means of communicating abstract concepts

such as statistical summarization of data. Tables of numbers, however organized, can be

cumbersome for humans to fully absorb. Playfair’s diagrams provided a way of visually

summarizing data to, in turn, make it’s meaning more readily comprehensible.

One issue with visualizations at this time was the cost of producing them both in

terms of basic resources and the time and energy expended by whomever would do so.

Modern computer graphic technology has provided the latest evolutionary steps with real-

time animation and three dimensional graphics. Additionally, the technology has become

ubiquitous such that the cost of producing certain types of visualizations has become

negligible apart from labour. These technologies can be especially effective with complex

multidimensional data. As data processing has evolved from the manual calculations of

Playfair’s day to modern data analysis functions built into the common spreadsheet, we

2



Figure 1.1: Diagram of Copernicus’
heliocentric model of the solar system.
(Image courtesy of Wikimedia Com-
mons)

Figure 1.2: Examples of the first pie
and bar charts by William Playfair.
(Image courtesy of Wikimedia Com-
mons)

now have arguably greater means for producing more complex data. This increase in data

complexity in turn drives the need for further advances in visualization techniques.

Modern data visualization takes into account the physiological and neurological bases

of how we perceive things. Ware discusses the concepts of Geon theory and diagrams and

how we perceive meaning in even very simple object primitives. Ware compared Geon

diagrams to traditional Unified Modelling Language(UML) diagrams[159]. UML diagrams

consisted of simple primitives like lines and boxes. Geon Diagrams consisted of stylized

3D primitives. A comparison of the two appears later in figure 2.3. A theme in modern

visualization is that some people in the field (i.e. Tufte) prefer minimalist visualizations

and scorn adornments. Ware’s experiments suggested that stylizing a diagram could make

it more memorable. Geon theory originates with Hummel and Biederman[73]. The authors

describes a hierarchical processing pattern whereby perception of objects begins at a very

high level and progresses through increasing levels of detail. According to this theory, for

example, a human being would first be perceived by their overall shape followed by vertices

and component axes and then three-dimensional primitives such as cylinders and spheres.

Details such as color and texture are secondary albeit still important characteristics. Later

we will see more examples of this. Bateman et al.[11] discuss whether ornaments assist

in understanding or are just chartjunk in statistical graphics. More informally, McCloud

notes a range of levels of details in comic books, from stick figures to highly detailed ones.

Neufeld et al. [114] explored the use of additional visual attributes with graphical

models for the purpose of visualizing multivariate data. That work explored visualizations

of directed networks of random variables. Such graphs are usually visualized as simple
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normal curves. However, colours and images, along with text, can be used to make it

easier to distinguish variables from one another. The authors have found that animated

drawings, where nodes physically changed in response to interventions on other nodes , to

lose context information, and perhaps to be overkill. The authors assert that by careful

selection of specific visual attributes to be used with such models, ’there is a great potential

for quickly conveying statistical relationships among variables to nonexperts.’

One particular animation technology has gained prominence through its use in the

entertainment industry. Motion capture animation involves the recording of real human

motion using sensors and animating the results (figure 1.3). This provides a visualization

of real human movement which can be used creatively or to facilitate the study of human

motion as in Kinesiology. Annotations can be added to these animations to convey more

descriptive information to a viewer.

Figure 1.3: An actor wearing a motion capture suit on the left and the correspond-
ing animations in the following three images.(Image used by permission from École
Polytechnique Fédérale de Lausanne

One advantage of motion capture animation used for pedagogy is that it provides a way

of removing extraneous information. When attempting to study a motion by watching a

real life video, it is necessary to ignore the large amount of additional information the video

contains such as background environment, specific characteristics of actors, etc. Motion

capture animation shows a blank background with a simple visualization representing the

human form. This simplified view allows the viewer to focus on the remaining information,

the actual motion itself, without distraction. Figure 1.4 shows the difference in information

between a motion capture animation and a photograph of the actor the data is derived
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from.

Figure 1.4: An actor wearing a motion capture suit on the left and the correspond-
ing animation on the right.(Image used by permission from École Polytechnique
Fédérale de Lausanne)

An initial version of our system used a figure which was essentially a stick figure. In the

course of our work, we also observed the tradeoff between minimalism and memorability

playing off when it came to designing our avatars. After allowing various individuals

informally view the visualization, it became apparent that a stick figure might be too

simplistic. In almost every case, viewers required some prompting to fully understand the

figure and its motion. By making the figure appear more like a mannequin, we were able

to add enough detail to provide greater clarity without adding back extraneous detail that

might be distracting. We should note that we did not do a formal user study by rather

inferred the additional effectiveness of the new figure anecdotally.

The areas of visualization and motion capture animation were linked together and

combined with graphical annotation by Bouvier-Zappa, et al[21]. The goal of their study

was to produce an interactive system to synthesize a 2D image of an animated character by

generating motion cues derived from three-dimensional skeletal motion capture data (figure

1.5). The authors describe a method for adding visualization techniques to motion capture

animations of human figures to better convey the mechanics of the animated motion to the

viewer. The most prominent visualization object used was the arrow to denote direction

and magnitude of movement. The authors discuss the notion of using their work as a
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pedagogical tool with some further work to solve remaining problems, notably, the ability

to make a comparison of two motions and visualize the difference between them.

Figure 1.5: A 2D image of an actor executing a soccer kick with arrows
added.(Image used by permission from Simon Bouvier-Zappa)

1.1 Overview

Chapter two surveys the current and recent work on motion capture animation and analysis

and describes the state of the art for consumer graphics products. We also describe relevant

research from the area of cognitive science as it pertains to our pedagogical application.

This will establish the context of our contribution to this area of using analysis of motion

capture data for educational purposes.

Chapter three specifies details of our stated problem along with a more detailed expla-

nation of some of the work we are using as a basis.

Chapter four discusses our proposed method of representing motion capture data which

will facilitate analysis and visualization. This section will include a detailed description of

all processing steps necessary. Chapter four will continue with a discussion of our particular

method of visualizing this data. The final sections of chapter four will describe our two

primary outcomes: motion capture data comparison and result visualization.

Chapter five demonstrates the results of our software system showing examples of our

visualizations with accompanying description.

6



Chapter six concludes the thesis with a final discussion of the results and future work

which could build from our basis.
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Chapter 2

Survey

2.1 Visualization and Cognition

Written and spoken language convey information at approximately 200-250 words per

minute[62]. Tufte[150] notes that visual media can convey much larger volumes of infor-

mation in as much time. This provides a notable cognitive advantage to visual media when

used for pedagogical purposes.

Tufte’s first book, The Visual Display of Quantitative Information, is, in a certain

sense, his most concise. Printed mostly in black and white, it discusses achieving clarity

and simplicity in displaying multivariate information, where variables range over space,

time, and numerous other quantities. The first part of the book discusses mainly graphs,

including time series, and deriving principles of graphical excellence. He speaks against

visual deception, but also against chart junk (figure 2.1), extraneous embellishments that

convey no data, from 3D bar graphs to editorial cartoons. Other authors such as Gutwin,

et al.[11] have countered that there is value in some amount of embellishment which may

serve to make a graphic more engaging or memorable without directly conveying data

(figure 2.2).

Envisioning Information begins by asking how we can escape flatland, the two-dimensional

world of paper, when depicting the complex and multidimensional world we live in. While

staying true to principles of simplicity and integrity, this second book raises subtle issues

some might call aesthetics. For instance, the Vietnam Veteran’s Memorial has the names

of all soldiers killed in that war, and Tufte reports on the decision to list the names of the

veterans in chronological order of their deaths. An alphabetical ordering would have made

the wall resemble a phone book, with 16 people in a row, named James Jones. Chronolog-

ical ordering enhanced the spirit of the individual. The idea is uplifting, but it is hard to

infer a widely applicable principle from it. Part of the challenge of this work was finding
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Figure 2.1: An example of statistical graphics employing what Tufte refers to as
’Chart Junk’.(Image used by permission from Graphics Press)

Figure 2.2: An example of a statistical graphic with embel-
lishment.(Image used by permission from Dr. Carl Gutwin)

the right level of visual information.

Irani and Ware[75] asserted that the use of 3D primitives in geon diagrams provided a

more effective paradigm. The authors compared two-dimensional Unified Modeling Lan-

guage(UML) diagrams to geon diagrams and conducted experiments to determine the com-

parative effectiveness of the geon diagrams for user recognition of sub-parts represented

in the diagrams. The authors noted recognition times and error rates approaching half of

those measured for the UML diagrams. This supported the hypothesis that geon diagrams

are easier and faster to interpret than 2D UML diagrams. The Geon-UML comparison

shows that there may be additional value in adding a small amount of additional visual

9



information beyond just that which explicitly transmits data. Diagrams such as these may

also facilitate transmitting information that is only implied in the standard UML diagram

such as the organizational hierachy of a particular model. With a Geon diagram, it is

explicitly visible.

Figure 2.3: An example of a Geon diagram with its corre-
sponding UML diagram.(Image used by permission from Dr.
Pourang Irani)

Two of Tufte’s later books explore diverse areas of the human enterprise, including art.

Visual Explanations and Cognitive Style of Powerpoint both study the Challenger disaster

and the response of the US bureaucracy to it. In Cognitive Style of Powerpoint, Tufte

notes the importance of an appropriate amount of detail as demanded by context. In the

Challenger case, much detail was required but little was distributed as seen by the use of

Powerpoint to communicate information of a detailed nature. Tufte’s last book, Beautiful

Evidence, devotes two pages to dance notation, presenting an elaborate set of engravings

of a contredanse showing four couples moving in three dimensions showing floor plans and

music. This complex diagram, shown in figure 2.4, tells a lot on two paper dimensions.
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Figure 2.4: An engraving attempting to combine footstep diagrams with additional

visual information.(Image used by permission from Graphics Press)

There are several visualizations for dancing. The most familiar is the footstep diagram

(figure 2.5). It provides only information about the movement of the feet. This is an

important part of dancing, but the entire rest of the body is left unrepresented. Nonethe-

less, footstep diagrams are common and popular. The following figures show two types of

diagrams used for dance instruction.

Figure 2.5: An example of a footstep diagram
for dance instruction.(Image used by permission
from Dancing4Beginners.com)

Figure 2.7 shows Benesh dance notation which appears to be the standard for dance

notation. However, the notation poses a considerable barrier for a novice. Figure 2.6

suggests that the relation between Benesh notation and the actual positions is not intuitive.

This degree of complexity, if necessary to learn how to dance, would provide a formidable

obstacle to an amateur learner.

Figure 2.5 provides only a little information to its user. Figures 2.6 and 2.7 require
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Figure 2.6: An example showing the correspondence of the no-
tation to actual body movement and position.(Image used by per-
mission from Royal Academy of Dance)

Figure 2.7: An example of Benesh dance notation.(Image used
by permission from Oxford University Press)

considerable training to understand. The engraving in Tufte (below) shows a complex set

of relationships between music, two views of the dance floor, and several couples. The

engraving from Tufte represents another compromise of the kind we have been describing.

The human figures assist the student as regards positions of all parts of the body, and the

perspectives show the relationships of all the dance partners. The ubiquitous arrow implies

the direction of motion within a frame, and the text presumably clarifies other details.

Similarly, many guitar players have difficulty reading formal music notation but, in-

stead, work with tablature notation which provides a simple abstraction of a guitar fret-

board, finger placements and even advanced techniques(figure 2.8). Once again, the two

kinds of notation provide an interesting tradeoff. A guitar (or any stringed instrument) is

different from a piano or horn instrument in that a note of exactly the same pitch may be

found on many places on the instrument. For example, the open high ’E’ string plays a

note with a pitch frequency of 330 Hz. The same note may be found on the 5th fret of the

’B’ string, the 9th fret of the ’G’ string, and so on.
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Figure 2.8: A comparison of formal music notation with tablature notation.

The traditional musical staff does not explicitly tell the guitarist which position to use

when playing any note. This is important because chords of the same notes but at different

positions have a different intonation. However, it gives the player very precise information

about the pitches of notes, their duration, the beat (usually in the time signature 3/4, 4/4,

etc). The tablature notation provides a visualization of the six guitar strings at each point

in the composition by indicating which fret is to be pressed and which strings are to be

sounded. However, the notation does not say much about beat and timing. The combined

notation shown below provides both kinds of information to the student. Interestingly,

the rise of online sharing of tablature (which is easy to produce using typewriter fonts)

among amateur musicians raised a significant legal issue. Tablature became influential as a

representation medium compared to formal musical notation because it made it possible for

so many untrained musicians to share and discuss variations or differing interpretations or

even different understandings of the same piece of music. This resulted in social networks

for sharing tablature. Such was tablature’s influence that it spawned lawsuits because the

sheet music industry felt a threat to royalty revenues.

The engraving shown in figure 2.4, complex in its day, conveys a lot of detail. The

animations we produce are comparable in that they concisely capture key aspects of motion,

using critical points where sensors are places. They allow the user to view the motion from

different angles. Apart from the graphical simplifications, they convey as much detail as

possible about the individual motion.

In 2002, Gutwin[64] asserted the importance of traces added to pointers used in group-

ware applications. A trace is some form of added visual cue to show the immediate move-

ment history of the telepointer in the application. Examples are shown in figure 2.9. The
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author augmented visual pointers with these traces to show the path the pointer had

taken as it was used by a member of the group. After allowing participants to work with

the groupware application using traces, the author interviewed the participants to obtain

feedback on their effectiveness. The author noted that “overall, people felt that traces

improved gestural communication”.

Figure 2.9: Different types of traces added to

a pointer within an application.(Image used by

permission from Dr. Carl Gutwin)

Another example of visualization used to convey information is in comic books. For

example, a sequence of pawprints and overturned flowerpots might imply the path of a

rambunctious puppy. Carmine Infantino’s depiction of “The Flash”, a character who can

run at the speed of light used speed lines, which appear frequently. Scott McCloud discusses

the use of visualization in comics as a means of communication. In his book Understanding

Comics[106], McCloud discusses many examples of common comic iconography which are

used to communicate concepts that cannot be easily represented in a two-dimensional

medium such as time and motion.

Research in cognition has shown that visualization in the form of diagrams can aid

a user in constructing mental models as well as using those models for comprehension.

Novick et al.[119] showed that users were far more successful at performing assembly tasks

using diagrams. The authors conducted an experiment whereby subjects would construct
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Figure 2.10: A comic character depicted in motion via the use of speedlines.(Image
courtesy of digitalcomicmuseum.com)

origami models. The subjects executed this task with instructions in text-only form, text

accompanied by a final assembly diagram and text accompanied by both a final assembly

diagram as well as step-by-step diagrams. The authors noted that both a final assembly

diagram as well as step diagrams were useful but problem complexity directly affected

which diagram was more useful. A global view worked well for simple tasks. For tasks

with increasing complexity, the ability to see individual steps was shown to be a critical

factor in a diagram’s success as a facilitating tool.

Cheng[33] describes how diagrams can play one or more of twelve functional roles in

problem solving. The author describes these roles as ”capacities or features that a diagram

may possess which can support particular forms of reasoning or specific problem solving

tasks”. Three examples are: displaying spatial structure, abstracting complex process

flows and encoding temporal sequences. The author notes that different problem contexts

will necessitate that associated diagrams employ different combinations of roles. These

roles are important from an educational perspective because they also aid in conveying

information to a learner.

It is also important to be able to portray actions, especially longer ones, as being made

up of components. A learner’s initial view of a complex activity may be at a high level but

this view is not conducive to learning the activity. As Novick showed that complex tasks can

be executed more effectively using individual steps, Zacks et al.[165] discuss how individuals
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are biased to perceive activities as being made up of inter-related discrete events. A

system which provides pedagogical visualization should, then, operate within these inherent

bounds. Motion can be segmented accordingly in two distinct ways. A motion can be

temporally segmented into distinct gestures or a motion may be segmented anatomically

by focussing a learner to a particular anatomical portion of a motion animation. Our

system will allow a user to view a motion as a whole or in terms of its discrete component

actions segmented anatomically.

Another recent area of cognitive research pertains to the effectiveness of animation as

an educational tool. Jones and Scaife[80] assert that the usefulness of animation for edu-

cational purposes may be limited. The authors conducted an experiment using animated

and static graphics to instruct two groups of learners about a dynamic process. The learn-

ers were taught about the function of a heart valve with one group being shown a static

graphic depicting the subject matter. The other group were shown an animation of the

valve function. Afterwards, the learners were tested on their newly acquired knowledge.

The authors found from the test results no particular advantage to using animation. The

authors did note, however, that ability of animation to depict more information regarding

changes in motion and temporal sequencing. Tversky et. al.[153] conducted a metastudy

analyzing results from several experiments to address the question of whether animation

can facilitate learning. The authors were selective in their choice of experiments to review

because they note ’some of what has been called animation has involved other aspects of

communication situations, especially interactivity, which is known to benefit learners on

its own’. The authors primarily review the use of animation to teach complex systems.

The authors note some limitations to the use of animation but also noted some important

exceptions to this view. For instance, they describe the problem of finding static graphics

which were equivalent to the animations since many animations contain additional infor-

mation that a static graphic cannot. One could argue that this observation may support

the notion of an inherent advantage of animation over static graphics based on the ani-

mation’s ability to carry more information. The authors also note that animations lend

themselves better to incorporating interactivity which they note as a known cognitive aid.

The authors close the paper with a caveat to their work where they note that animation

may be beneficial in instances where the purpose is to convey spatiotemporal changes and

reorientations.
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2.2 Motion Capture

A formal discussion to define motion capture can be difficult. Generally, the idea is to

record the motion of a set of points on an object. A common use of this data is to retarget

the motion onto animated characters. This eliminates the need for talented animators who

can recreate such movements, or, the design of mathematical formalisms that describe

the spatiotemporal movements for objects in a complex world. Doing this in real time

requires a technological solution. As well, the set of points chosen must be representative

of the whole object. There have been various terms used to refer to it such as performance

animation, performance capture, virtual theater, digital puppetry[46], real-time animation

or even the contracted version of the original ’motion capture’ to mocap. These last two

seem to have become the accepted nomenclature but while the name may be settled, the

technology continues to change and advance.

An optical motion capture environment is a type of lab environment. It requires con-

siderable space as well as a significant financial investment for the system and associated

support staff. Figure 2.11 shows an example of how such a setup would typically be imple-

mented. Six to ten motion capture cameras are mounted near the ceiling and angled down

towards the location where an actor would be positioned. The actor must be fitted with

reflective markers which work in conjunction with the cameras. The cameras are actually

a combination transmitter/receiver of infrared flashes. The cameras emit an infrared flash

which is reflected off of the markers. This reflection is then recorded by one or more of

the cameras in the setup which can then calculate the location of the marker based on the

reflection recorded. This process is repeated some number of times per second for each

marker and this becomes the framerate for that recording session.

This traditional methodology has seen some competition in recent years with the advent

of other types of motion capture, namely, video-based motion capture and inertial motion

capture systems. Liu et al.[101] proposed a method of markerless motion capture which

they refer to as video-based motion capture involving the use of a human model which

is used to track the motion of an actor within a video. The authors leverage their a

priori knowledge of this model to calculate body positions and construct a capture. The

obvious advantage with this method is the elimination of equipment and space requirements

and their associated cost. However, accuracy for video-based motion capture has been a
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Figure 2.11: A motion capture lab. Note the track-mounted motion capture cam-
eras in upper part of the image.(Image used by permission from the Human Balance
and Ambulation Research Laboratory at the University of Missouri - Kansas City)

significant concern. Gleicher et al.[58] noted in an analysis of video based motion capture

that ’incorrect reconstructions are not only possible but inevitable’. Still there may be

applications for which this type produces enough accuracy.

A more recent development in motion capture is inertial motion capture. This type

makes use of inexpensive accelerometers and gyroscopes to infer the three-dimensional

location of the actors body during motion. Zhang et al.[166] describe an inertial system

using such devices to track the location of a actor’s limb. By recording angular velocities

from gyroscopes and acceleration information from the accelerometers, the authors were

able to construct location information using quaternion based methods.

Such an inertial system has some distinct advantages. First, it can make a form of direct

measurement of motion rather than trying to approximate location information as in the

case of video-based or optical methods. Because of this, accuracy is largely dependant

on advances of the hardware being used. That is, improvements to the gyroscopes and

accelerometers to provide more accurate information. Additionally, systems such as xSens

MVN c© also employ wireless technology for data transmission which gives the system

a certain amount of mobility not available in a traditional setup. Finally, this type of

equipment boasts a much lower hardware cost than traditional lab-based systems as seen

by its inclusion in devices such as the Nintendo Wii system as well as in Apple Computer’s
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Figure 2.12: A motion capture camera used by an optical motion capture system.

iPod, iPad and iPhone devices. Because of this cost factor, inertial systems could eventually

be within reach of the average consumer.

A great deal of work has been done in the area of motion capture regarding segmentation[10]

of captured motion and retargetting[25] captured motion to new actors. Motion capture

does entail a cost factor. While some new systems do not require the laboratory-like setup

that many systems employ, there is still overhead. There is a need to hire an actor and

have the desired motion planned and scripted for the actor to perform. As with all acting,

this process is subject to human error which requires re-executing the desired motion until

acceptable results are produced. Consider also that this process may be necessary to repeat

even for motions which have subtle differences from existing motion capture data. There

is a clear advantage of being able to synthesize motion from existing data. This is done

by segmenting existing motions into small individual actions, synthesizing new motions by

transitioning a sequence of these components together and retargetting the result to a new

actor. This allows for a potentially large number of new motion sequences to be generated

from existing data.

Automated segmentation of motion capture data is an important processing step for

data used in games, animations and commercials. Segmenting a motion sequence into

small discrete component actions makes the data more easily applied to retargetting. Seg-

menting longer motion sequences manually is accurate but tedious and labour intensive.

Barbic et al. discuss methods of automatically segmenting motion sequences into distinct

behaviours[10]. The authors employ three methods for segmentation and compare the

results to determine which displays the best performance. They show that using a prob-
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abilistic principal component analysis(PCA) method produces resulting accuracy above

ninety percent. The authors hypothesize that the probabilistic method’s performance is

due to its ability to track changes in the distributions that characterize motions.

Motion capture segments are used to synthesize new behaviours. Of primary concern

is how to seamlessly join discrete motion segments. Kovar et al.[90] describe a method of

creating motion graphs. Motion data is viewed as individual clips of motion that can be

joined together. A motion graph is a directed graph where motions are the edges of the

graph and nodes are the joins between the motions. The primary issue here is transitions.

Any two motions are unlikely to join together seamlessly without an appropriate transition.

A transition is another type of motion clip and so therefore is another edge in the graph

placed between two motion segments to join them together. By constructing a graph of

motion clips, the clips can be “sewn” together to create longer motion sequences.

Retargetting is another important area of research. Bregler et al.[25] describe a tech-

nique called cartoon capture. The authors describe a process for extracting motion informa-

tion from cartoon animation and retargetting the motion to different animated characters.

This is accomplished by parameterizing the motion in terms of affine and key-shape defor-

mations. The affine parameters describe the coarse or global motion in terms of translation,

rotation, scaling, etc. while the key-shapes capture more local deformations. For exam-

ple, a frog can move from point to point as a global translation. Part of this movement,

however, involves localized deformations like the frogs legs extending and contracting as

it jumps. The authors retarget this captured motion to different characters that have also

had their own localized key-shapes identified. For example, the frog jumping can be re-

targetted to a rabbit. The rabbit’s key shapes are unique to itself but there must be some

retargetting from one set of key shapes to the other.

A particular issue with retargetting motion is differing scale in the target actor. The

target may be identical proportionately but a different size or the target may be the same

size but proportionately different. This issue is discussed by Gleicher[55] who proposes

a method which accounts for this scaling issue by first capturing parameters of the mo-

tion, scaling them and identifying a center for scaling. This center is context specific and

therefore not necessarily the origin.

The issue of differing scale in actors is also a consideration if one is to compare two

examples of the same motion captured from two different actors.
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Figure 2.13: An example of a motion retargetted from
a frog to a rabbit.(Image used by permission from Dr.
Lorie Loeb)

2.3 Comparison and Analysis of Motion Capture Data

Comparison of two examples of the same motion is not a common research area. Maekawa

et al.[103] describe a learning system whereby captured motion of a learner can be compared

to that of an expert. The authors create a system which records motion data from a learner

and the software displays the animation of this data along with the expert data for visual

comparison. While this provides a useful educational tool, it is limited. The learner must

discern the differences in the motion visually and determine what is necessary to make

corrections. We propose a system which will compare the data and display an animated

visualization of the differences for the learner.

Another shortcoming of this method is the naive scaling used. The authors calculate a

simple ratio based on differences in the actors’ height. This ratio is then applied to all body

segments equally. The problem with this method is it assumes all actors to have identical

body proportions. When comparing datasets from two different actors, we would propose

that a method of normalizing all learner data to the expert data segment by segment

be utilized. This would require a scaling factor to be used for each body segment but

would result in a more accurate comparison since this form of normalizing will account for

differences in proportions between expert and learner.

Motion capture data can be analyzed for a particular purpose. Assa et al.[8] describe

a method for producing an overview video based on analysis of motion capture data. The

author’s method involves analyzing motion data to determine salient motion segments and

limbs within these segments. This analysis is then used to determine the optimum camera
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viewpoint and path for the video. The authors note the difficulty in determining saliency

since there can be considerable subjectivity in what constitutes a salient motion segment.

Two of the authors, Assa and Cohen, have done previous work in pose selection[7] where the

authors describe a method of selecting key poses based on analysis of skeletal animation.

Motion capture analysis and processing has also seen elements of signal processing

applied. Bruderlin and Williams[28] describe a system for modifying animated motion by

treating the motion as a signal. By converting the original information to this format,

the authors can then apply various signal-based transformations on the data to produce

different effects. This is not a new technique in itself as it has been used in computer vision

for some time. It is novel for these techniques to be applied to motion capture data.

2.4 Annotation

Annotation of data is a common operation in various contexts. The ability to attach

additional semantic information to data can have considerable benefits for processing.

We concern ourselves with annotation pertaining to graphics. Research in this area has

revolved around annotating static graphics to provide additional meaning to the viewer.

Sonnet et al.[144] describe a method of adding dynamic text annotations to exploded

diagrams(figure 2.14).

Figure 2.14: An example of an exploded diagram with an an-
notation added.(Image used by permission from Dr. Thomas
Strothotte)

The author’s system not only provides the annotation mechanism but also maintains

readability in spite of user manipulation of the model components. Preim et al.[124]

also describe the use of text-based caption annotations in visual interfaces ranging from

anatomical models to cartography.
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Annotation does not have to be strictly text-based. Graphics-based cues can be added

to graphical models to demonstrate importance of certain components. Isenberg et al.[76]

describe a method for adding emphasis to particular parts of line drawings by using different

types of line effects. Visual cues can also be used to annotate text as in a paper by Bouvin

et al.[22] where the authors describe a method for producing annotations for hypermedia.

Graphical cues have been shown to be beneficial within a strictly graphical context as

well. Agrawala et al.[2] describe a system which employs visual primitives such as arrows

and dashed lines to imply assembly direction to the viewer of assembly instructions. The

system works by first choosing an assembly sequence and then presenting the sequence in

a series of static images annotated with the above primitives.

Visual cues and the data to be annotated can both be animated. In the case of motion

capture animation, it is possible to provide visual cues derived from the captured motion.

Bouvier-Zappa et al.[21][20] developed a system that analyzes motion capture data to

produce both static and animated annotations. The static annotations are created as part

of static images. The animated annotations are produced in the context of an animation

Figure 2.15: An example of a key
frame sequence.(Image used by permis-
sion from Simon Bouvier-Zappa)

Figure 2.16: An example of a foot
sequence diagram.(Image used by per-
mission from Simon Bouvier-Zappa)

of the motion capture data. The authors determined that a reasonably small visualization

vocabulary was necessary, producing compelling results using arrows, noise waves and

stroboscopic effects. The system is also capable of producing key frame illustrations and

foot sequence diagrams(figures 2.15 and 2.16).

The authors note a potential extension to their work would be annotating a comparison

of expert and learner motions to provide greater learner insight and therefore improvement.

This extension will be the subject of the remainder of this thesis.
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2.5 Graphics

It is difficult to believe that as recently as 1980, computer graphics was taught from a purely

theoretical point of view at many universities, because hardware was simply too expensive.

In fact, relatively ordinary computers by today’s standards were expensive, and devices

for printing images were beyond the budgets of most universities. The development of

computer graphics hardware has been fuelled and subsidized by the huge demand of video

gamers for increasingly detailed real time animations. Even with modern graphics cards,

there are important tradeoffs, and we review some background.

The earliest concepts of computer graphics were based on ray tracing, that is, tracing

the activity of light through a scene, into a viewer’s eye. There is far too much light bounc-

ing around the real world to make this problem tractable, so the problem was simplified

as follows. First imagine that the retina/back of the viewer’s eye is a rectangular grid of

pixels (picture elements) each of which can contain exactly one colour. For each pixel on

the retina, a ray is cast through the lens of the eye, into the scene, until it intersects with

some geometry in the scene. All intersections are recorded, and for the nearest intersection,

the colour of the surface at the point of intersection is determined, and the pixel on the

retina is painted accordingly. The colour of the surface takes into account, to the greatest

extent possible, the lighting in the scene. This may get very complicated where mirrors

and translucent objects exist, and when light bounces off coloured objects to a surface,

but makes possible an arbitrarily complex level of visual detail. Another advantage of this

form of rendering is that curved surfaces may be represented using conics and other exact

geometry, which allows a high level of surface realism[51].

Rasterization is a very different approach. In this system, surfaces are represented as

meshes of planar polygons, typically triangles. Triangles have many surprising properties

that make them ideal for work in real time computer graphics. For example, imagine

placing values at the vertices of a triangle, and linearly interpreting those values on the

interior. For quadrilateral and other shapes, the interpolation is not stable under rotation.

When the interpolated value represents a colour, this gives an image stability as the object

moves about. For each triangle, the colour of light is computed only at the vertices, and

interpolated using simple linear interpolation at interior points. Each triangle is rendered

into a frame buffer, which almost exactly corresponds to the buffer of pixels in ray tracing.

24



The difference here is that every single pixel of every triangle is rendered. Occlusion is

handled by rendering the triangles from back to front, or by using a technique called the

z-buffer, which provides an assist by only rendering pixels known to be nearer than the

previously rendered pixel. In the worst case, where triangles are presented to the renderer

back to front, all pixels will still be rendered in any case. Whereas ray-tracing is still typi-

cally implemented in software, it is possible to design very fast hardware implementations

of rasterization.

Thus, rasterization was the basis of the OpenGL API, which was originally sold by

Silicon Graphics Ltd., and eventually released free with many operating systems in the

1990s. What makes rasterization appealing is that it is easy to render animations of simple

scenes in real time. As well, it is possible to turn certain features of the OpenGL engine

on and off as needed, if hardware cannot keep up to the desired frame rate. For example,

at one time, programming manuals recommended that specular illumination (highlights,

such as the reflection of a light source on a marble) be turned off for realtime animation,

as this component of the lighting equation was the most expensive to compute and the

other components permitted a satisfactory image. Hardware advances have made this

unnecessary in all but extreme situations[140].

A recent development that has changed the rendering game considerably is the recent

advent of GPU(graphics processing unit) cards, where, in essence, an entire (but limited)

processor is placed at each pixel, and all processors act in parallel. Given access to geometry

for the entire scene, this could make hardware-based ray-tracing feasible. This is not

necessarily an issue for the present work, as we felt photorealistic animations were not

necessary for the instructional goals pursued here.
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Chapter 3

Problem Statement

In this work, we present a proof-of-concept prototype for visualizing datasets represent-

ing expert and learner data in a way that would provide learners with a useful training tool.

We believe that by providing a learner with this tool, this could help to accelerate or at

least facilitate athletic learning. This work is exploratory research intended to demonstrate

the potential of using motion capture data in a pedagogical tool that helps student athletes

to compare their performance to that of virtualized world experts. Additionally, the scope

of the work involved to design and produce the prototype was sufficiently extensive that it

was not possible to both build the prototype, and perform classical user studies.

An ideal product would observe the student learner and, if the product believed the

student was exhibiting buggy behaviour, it could so advise the student. If the behaviour

was correct, but containing errors of degree, it could also advise the student. The purpose of

this work was to take some initial steps in this direction, by way of determining feasibility of

building a real time system of this nature. To do this, we had to make many simplifications.

First we decided to proceed with a prototype which compared two full datasets and

visualized the results rather than attempt comparisons to a stored ’bug library’. This was

necessary since either of these two types of operations could constitute a full scale project

and therefore would be too much to fit into the scope of this work.

Secondly, it was necessary to put our recorded data into a strict form for input into

the system. Our data is truncated at the beginning and end to ensure temporal alignment

of motion sequences. This was necessary to avoid problems with trying to detect the

precise start and end of a motion in two separate datasets as this also would prove to be

a significant problem in itself.

This work is an extension of work done by Bouvier-Zappa et. al [20][21]. The authors

produce a system to process motion capture data in order to produce visualizations of the

data. The visualizations are static images or animations created from a combination of the
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input motion capture data and particular visual cues to provide the user with additional

insight into the viewed motion. Examples are shown in figures 3.1 and 3.2.

Figure 3.1: A motion illustrated using
motion arrows and stroboscopic mo-
tion.(Image used by permission from Si-
mon Bouvier-Zappa)

Figure 3.2: A motion illustrated using
motion arrows and noise waves.(Image
used by permission from Simon
Bouvier-Zappa)

The authors base their system on a hierarchical view of the motion data. By subdividing

the human body into a tree structure, the authors can produce animations at varying levels

of their hierarchy. Higher levels represent more general groupings such as upper and lower

body. Lower levels represent more detailed grouping such as right or left hand. This allows

for producing animations at varying levels of detail depending on what the user requires.

Another important component of Bouvier-Zappa’s work is the notion of motion cues.

The authors define a small set of significant visual cues for conveying information about

properties of a particular motion. The cues used are motion arrows, noise waves, strobo-

scopic motion, pose illustration and foot step illustration.

These cues provide varying degrees of information about a motion. Motion arrows

are simply arrows added to an animation or static image to show linear, curvilinear or

rotational motion. Arrows are noted as a very powerful indicator of motion and are the

primary indicator used in this system. Noise waves are a type of action line drawn as

a repetition of the actor’s silhouette outline. The purpose of a noise wave is to express

motion that is too subtle to be expressed with an arrow.

Other motion cues provide different ways of viewing a motion. Stroboscopic motion is a

repetition of several poses of an animation taken at time intervals to display a progression

of motion within a single static image. Key pose illustration itself juxtaposes several poses

of a motion within an image. The important difference is key pose illustration requires

that the system chooses what the key poses are. Foot sequence illustration provides a
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means for illustrating foot sequence patterns that may be difficult to capture using arrows

or other cues.

To indicate a motion using a particular cue requires that the motion be analyzed and

a particular cue fitted. All motions are represented with motion curves and quaternion

data. A motion curve represents a motion as a progression of locations for a particular

control point over time. A control point might be a location at a joint or a location at

the midpoint between two consecutive joints (see figure 3.4). While this representation

works well for translational movement it cannot capture rotational movement. Quaternion

data is used in certain cases where rotational movement is to be described. A quaternion

is a three dimensional vector coupled with a rotation angle. The angle is the amount of

rotation occurring around the vector.

Figure 3.3: The amplitude of a mo-
tion is represented as d.(Image used by
permission from Simon Bouvier-Zappa)

Figure 3.4: A motion curve comprised
of locations of the midpoint between
two joints.(Image used by permission
from Simon Bouvier-Zappa)

Motion arrows are used to represent most obvious motions as translations and rotations.

A particular motion curve from a movement is analyzed according to the length, velocity

and acceleration of the curve to find if the motion is translation or rotation. The authors’

system attempts to fit an arrow to the motion curve based on this analysis. Longer and

faster curves are favored to be viewed as translations. In cases where the motion curve

does not have an appropriate fit to denote the motion as a translation, the system can

then attempt to calculate a roll angle from the quaternion data at a skeletal node. Either

type of arrow is illustrated such that it is always visible and therefore never occluded by

the animation actor.

To produce a noise wave, the system calculates an amplitude for a particular motion

(see figure 3.3). Noise wave motions will have an amplitude significantly less than that
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of a motion described by motion arrows but greater than that of simply noisy data. The

amplitude is calculated as the length of the diagonal of the three-dimensional bounding

box of the motion curve. If the amplitude of the motion curve is in an appropriate range

noise waves will be added.

Stroboscopic motion is determined by simply drawing successive poses of an animation

and illustrating prior poses with increasing transparency. Key pose illustration involves

a combination of illustrating particular poses deemed as key poses and motion arrows to

display the progression of the poses. Foot sequence illustration makes use of research into

foot plant retrieval and the foot skating artifact in motion capture animation [54] as well

as research in motion graphs [90]. Footplant locations are determined on a 2D ground and

again further illustrated using motion arrows.

Annotations, however, do not directly instruct the learner. The annotations provide

cues to inform the user of the mechanics of what the user is viewing. To instruct the

learner it is necessary to provide additional information to direct the learner towards a

particular desired outcome. Traditionally this would be executed by the expert verbalizing

or demonstrating an important difference between the learner’s action and their own. Doing

so allows the expert to provide feedback which is directive or corrective to the learner to

guide the learner toward the intended outcome. Cho et. al[37] define directive feedback

as ”explicit suggestions of specific changes”’ and note it as being particularly beneficial

for learners albeit in another area of pedagogy. We propose building upon the work of

Bouvier-Zappa by producing a system that is able to process two datasets comparatively.

The output of this system is a third dataset representing the salient differences between the

original datasets as well as additions to the original motion capture animation to visualize

these differences for the user.
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Chapter 4

Data Collection and Visualization Procedure

4.1 Outline

The first step for this experiment was data gathering. This was done using motion capture

equipment made available by the College of Kinesiology. Actor volunteers performed four

motions. Those motions were:

1) weightlifting movement: arm curl

2) martial arts front kick

3) martial arts cross punch

4) a golf swing

The actors executed these motions two times. The first was the correct motion and the

second was a specific incorrect motion. We determined, in advance, what the intentional

mistakes were to be. Our actors performed the following incorrect motions:

1) weightlifting movement: arm curl - lean back instead of remaining straight

2) martial arts front kick - kicking by only hinging the knee joint as opposed to moving

the entire leg appropriately

3) martial arts punch - leaning forward to reach towards a target

4) a golf swing - this was executed once without a corresponding error and was eventually

used for temporal difference detection

This phase was completed at the PAC facility at the University of Saskatchewan campus.

Optical motion capture systems capture human motion using reflective markers. Sev-

eral infrared cameras transmit infrared light which reflects off of the markers and is reg-

istered by other cameras to triangulate the markers location in 3D space. An actor will
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have several markers placed on him/her to capture a desired motion as shown in figure 4.1.

The particular marker setup and marker locations is dependent on what sort of output is

desired. For our work, we wanted joint center data in an (x, y, z) format. By joint center,

we mean the point that would exist at the physical center of an actor’s joint such as a

knee or elbow. This meant that actors would have markers placed on them such that joint

center locations could be inferred from the marker locations. As an example, we would

place markers on either side of the wrist and the joint center inferred from this would be

the point halfway between them which should approximate the center of the wrist joint.

The locations of these markers are recorded over time at a predetermined frame rate. For

our data collection, we used 100 frames per second. Post-recording processing results in

a set of data which represents specific joint centers. The set of locations over time for a

particular joint center forms a curve in 3D space. We will refer to these as motion curves

in our discussion.

Figure 4.1: An example of a marker setup which would allow for approximation of
elbow and wrist joint centers.

Once the data was gathered, it was processed by our software tool. In our case, each

actor has a correct and incorrect dataset. We found, upon comparing different actors, that

there was additional noise that was otherwise unnoticeable but manifested itself when we

attempted to normalize different actors. As a result, we use correct and incorrect datasets

for the same actor. Normally, the learner and expert would be different actors and this

would necessitate a normalization step. We would not be able to assume that physical
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proportions of various actors will match so we would need to normalize the actor datasets

to the expert dataset. The normalized datasets could then processed using spline methods

to convert them to a canonical form appropriate for direct comparison. The two canonical

datasets are compared for spatial and/or temporal data differences in their individual data

points. Any differences are stored as a third dataset. Temporal differences in particular

are difficult to process and quantify. Some assumptions are necessary here to facilitate

being able to produce an initial result. For instance, it must be assumed that we know

what the start and end points of the motions are.

This difference data will be visualized by the software tool as a pausable animation

with visual cues added to represent the differences stored in the third dataset.

4.2 Normalization

As noted above, we are not comparing different actors so a normalization is not necessary.

However, since it would be necessary in practice, we have included a short description of

it here. Normalization of datasets is an essential process step. The data we are comparing

represents different actors characterized by different body shapes, scales and proportions.

In a purely raw form, the data could not be directly compared. We use a normalization

step to normalize learner datasets to the expert dataset as a first processing step.

We start by ensuring correspondence in the actor’s core location. The core location

can be defined as one central point that can be said to define the actor’s location as a

whole. We will use the center of the chest as the actor’s core location. So we ensure that

the learner’s core is centered to be the same as the expert’s. Normalization will then work

analogously to a tree traversal where the core location is equivalent to the root of the tree.

We start by adjusting the distance between the core location and the hip center. we can

then progress outwards moving to hips/shoulders followed by elbows/knees, and so forth.

Once this step is complete, we can then parameterize the datasets for comparison.

4.3 Parameterization

There is an important problem in comparing two datasets consisting of samples that are

independent of each other. We cannot assume that sample points will line up precisely.

Such an assumption could lead to an erroneous comparison as shown in figure 4.2. To solve
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this problem, we will parameterize the data. The process we use is fairly straightforward

and fast. First, we assume that each set of points is generated by a continuous function.

Many functions could generate such data, so we approximate each function as a piecewise

polynomial. We then use the two functions to generate new datasets of points that are

temporally aligned. Each marker such that a motion curve comprised of a set of (x,y,z )

coordinate points will be decomposed into three subcomponents: the sets of x, y and z

values.

Figure 4.2: The second sample point
in different locations of curves which
are the same.

The conversion of the datasets to a canonical form involves using spline methods to

treat the motions as signals. The first step in this process is to create a list of 3D points

corresponding to temporally ordered data from each marker. We then subdivide this list

into three constituent listings for each dimension, that is, a list of x values, a list of y

values and a list of z values in the same temporal order. We treat these subsets as samples

of one dimensional signals. Each sample is processed using spline interpolation to produce

a canonical format which can be used for later comparison.

The particular type of spline used here is a uniform non-rational b-spline. These splines

consist of curve segments whose polynomial coefficients are dependant on a small number

of control points. In our case, the coefficients for each curve segment are dependant on

four control points. This method has the advantage of lower computation time for the

coefficients compared to natural cubic splines. This is of particular importance for this work

as our software tool is intended to work in realtime. B-splines have the same continuity as

natural splines but do not interpolate their control points.

B-splines approximate a series of m+1 control points P0, P1, ...Pm,m ≥ 3, with a curve
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that consists of m − 2 cubic polynomial curve segments. Where m > 3, and thus more

than a single curve segment, there is a joint point or knot between each curve segment.

Further, the initial and final points of a segment are also considered to be knots. There

are m− 1 knots. This arrangement is shown in figures 4.3 and 4.4. These examples might

make our approximation method appear crude but, in fact, it is highly accurate. Since we

are recording one hundred frames per second, one could imagine that these diagrams, by

analogy, represent an extreme close up of those points. Figure 4.5 and its accompanying

information regarding our error demonstrate this.

Figure 4.3: A simple spline consisting
of one curve segment defined by four
control points.

Figure 4.4: A longer spline consisting
of several control points and segments.

The name of this type of spline warrants some concise explanation. The term uniform

refers to the fact that knots are spaced at equal intervals of a parameter t. This parameter

can be thought of as a temporal parameter, thus indicating the points are a fixed time

apart. The term non-rational is meant to differentiate these splines from rational cubic

polynomial curves where x(t), y(t) and z(t) are ratios of two cubic polynomials. The ”B”

stands for basis. This refers to the fact the splines can be represented as a weighted sum

of polynomial basis functions.

The mathematical descriptions of these curves is straightforward. The following closely

follows the explanation provided by Foley et al.[51]. The equations express the combination

of the control points, basis functions and values of the parameter t. The first curve segment,
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C3 is defined by control points P0, P1, P2 and P3 over a range of parameter t of t3 to t4.

The next curve segment, C4, is defined by control points P1, P2, P3 and P4 over a range

of parameter t of t4 to t5. The final curve segment, Cm, will be defined by control points

Pm−3, Pm−2, Pm−1 and Pm over a range of parameter t of tm = m − 3 to tm+1 = m − 2.

We can note that, in general, a given curve segment Ci will begin somewhere near Pi−2

and end somewhere near Pi−1.

This relationship is expressed by the equation

Ci(t) = Ti ·MBs ·GBSi
, ti ≤ t < ti+1 (4.1)

We define Ti as the row vector

Ti =
[
(t− ti)3 (t− ti)2 (t− ti) 1

]
(4.2)

which expresses the individual increments of t to be used between tm = m− 3 and tm+1 =

m− 2. MBs is the b-spline basis matrix as

MBs =
1

6


−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0

 (4.3)

Finally, GBSi
represents the b-spline geometry vector for a curve segment Ci. The geometry

vector is a column vector as

GBSi
=


Pi−3

Pi−2

Pi−1

Pi

 , 3 ≤ i ≤ m (4.4)

This vector is populated from the inputted sample points of each 1D signal to be processed.

The method of population is a sliding window. First, process points 0 to 3, then 1 to 4,

then 2 to 5 and so forth. This is important because it provides for maintaining continuity

across knot points along the curve as any two consecutive curve segments Ci(t) will share

three control points.

The algorithm to perform this function is described by the psuedocode in algorithm 1.

This required input for this process is one 1D signal from any motion curve in the form
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Algorithm 1 Spline Interpolation for Parameterization

Ti[ ],MBs [ ][ ], GBSi
[ ]← 0

Signal[ ]← CurrentSignalV alues

GBSi
[1]← Signal[0]

GBSi
[2]← Signal[1]

GBSi
[3]← Signal[2]

for j = 0 to Signal[].length− 1 do

GBSi
[0]← GBSi

[1]

GBSi
[1]← GBSi

[2]

GBSi
[2]← GBSi

[3]

GBSi
[3]← Signal[j]

for k = 0 to 1 step by a do

Ti[0]← k3

Ti[1]← k2

Ti[2]← k

T i[3]← 1

Result← Ti[ ] ·MBs [ ][ ] ·GBSi
[ ]

end for

end for
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of a one dimensional array. This process will then execute three times for each motion

curve in the current dataset. The output of this process (listed as Result) is another array

consisting of a list of calculated points which represent the original signal in canonical

form.

There is one characteristic of this type of parameterization which warrants discussion.

This type of spline does not directly interpolate its control points. This means that a

certain quantity of error is present in the result. To provide some quantification of this

error, we analyzed one sample 1D signal to calculate the average error imparted. The

difference between the control points and spline points was compared in two different ways:

comparing differences at the control points and comparing differences at the midpoint

between control points. The raw differences were calculated for a dataset consisting of five

thousand control points and fifty thousand generated points. The raw difference was then

divided by the original control point value to express the error as a percentage.

Figure 4.5: Comparison of control points and calculated spline points.
a) and b) represent the location of error calculation. a) mean of interior
control points. b) exact control point value.

Comparing at the control points, we obtain an average difference in value of 0.08mm.
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This value represents an average percentage error of 0.02%. For midpoint comparison,

we calculate an average value of the two middle control points for each group of four.

This value is then compared with the median calculated value of the corresponding curve

segment Ci. The average difference in value in this case was 0.05 which represents a

percentage error of 0.01% (see figure 4.5). These values are well below practical margins

of error.

4.4 Difference Calculations

There are two types of differences that will be analyzed by our software system: spatial

differences and temporal differences. Spatial differences can be calculated in a number

of ways. They can be calculated using the midpoint of a body segment (ie. midpoint of

femur). Rotational motion can also be tracked and compared spatially. We have chosen

to track and analyze the movement of joint centers.

4.4.1 Spatial Differences

The calculation of spatial differences between actor motions is reasonably straightforward

once the datasets have been normalized and parameterized. To perform a spatial compar-

ison of two datasets, we calculate a direct difference between corresponding markers in all

three dimensions for all markers for all frames. This results in a list of vectors for each

marker representing the spatial differences between learner and expert over time.

We start with an expert data set Ae and a learner data set Al. Each data set comprises

the set of joint centers JCα[ ] for that actor. Thus we have

{A[JCα] | α = {ch, rs, re, rw, . . . , α}} (4.5)

The following list gives the joint center locations and their corresponding abbreviation:

1) centre of head (ch)

2) right shoulder (rs)

3) right elbow (re)

4) right wrist pair (rw)

5) right hand (rh)

6) left shoulder (ls)

7) left elbow (le)

8) left wrist pair (lw)

9) left hand (lh)

10) right hip (rh)

11) right knee (rk)

12) right ankle (ra)

13) right heel (rh)

14) right toe (rt)

15) left hip (lh)

16) left knee (lk)

17) left ankle (la)

18) left heel (lh)

19) left toe (lt)
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Each joint center location is itself an ordered list of (x, y, z) coordinates corresponding

to the locations of a particular joint center over time. So any given JCn can be described

as

{JCα[ζ] | ζ = {(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), . . . , (xn, yn, zn)}} (4.6)

To obtain a spatial difference between data sets is to find the difference between each

coordinate in each list of joint center data. This is done as

Ar[ ] = Ae[ ]−Al[ ] (4.7)

Which can be further expressed as

Ae[JCch[], JCrs[], JCre[], . . . , JCα[] ]−Al[JCch[], JCrs[], JCre[], . . . , JCα[] ] (4.8)

The specific operation at the coordinate level can then be described as

Ae[JCch[(x1, y1, z1)]]−Al[JCch[(x1, y1, z1)]],

Ae[JCch[(x2, y2, z2)]]−Al[JCch[(x2, y2, z2)]],

Ae[JCch[(x3, y3, z3)]]−Al[JCch[(x3, y3, z3)]],

. . . ,

Ae[JCch[(xn, yn, zn)]]−Al[JCch[(xn, yn, zn)]] (4.9)

The result set Ar is identical to both Ae and Al in structure and data appearance. There

is one difference with regards to the list of coordinates. In the expert and learner datasets,

the list of triplets represent coordinates. in the case of the result set, these triplets are

actually vectors which represent the difference between the learner and expert motions.

Additionally, the vectors represent the direction in which the learner should adjust their

own motion to match the expert.

4.4.2 Temporal Difference

Temporal comparisons of motion data are more difficult. Two examples of the same motion

could be roughly compared and one shown to take longer but this alone is not particularly

informative. Localized analysis might show the learner’s motion is too fast in one segment

but too slow in another with a net result of the entire motion taking longer. Providing

directive feedback in this case requires that the learner be shown the localized differences.
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The calculation of temporal differences between motion data sets will relate to our

view of the data as motion curves. Looking at a visual example of two one-dimensional

signals, we can see what a temporal difference looks like(figure 4.6). The spatial extents

of the curve are the same but the curve on the left is more compact while the right-most

curve appear stretched out by comparison. It may seem incorrect to state that the spatial

extents are the same but, in terms of human motion, they are precisely the same since they

would move through the same physical locations. What differs is the time of transition

from specific location to specific location and therefore a longer timeframe for the same

motion.

Figure 4.6: Two curves which are the same spatially but differ temporally

To detect temporal differences will first require some means of determining what the

localized motion time periods are. We will divide each motion curve into segments that

can then be individually compared for temporal differences. To determine the subdivision

points, we propose using local extrema. This would allow for temporal segmentation of the

curve at spatially equivalent points. Figure 4.7 shows possible extrema in a motion curve.

It is important to note that there can be other points in the curve that could be viewed as

extrema as well. In fact, in a continuous function there can be infinite extrema. We have

used a threshold value to specify, for the purpose of example, a set of extrema in this case

and this method is used in the software system as well.

To detect these critical points, we propose a method of scanning the list of points to

find particular parts of the list where changes in trend occur. By this method, a trend

of decreasing values followed by a trend of increasing values would be characteristic of a

local minima. There would be a question as to how many consecutive points constitute a

trend. It is a simple matter to choose a value (i.e. five consecutive points) to be considered

necessary to constitute a trend. This value can be parameterized within the software
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Figure 4.7: Three critical points labeled at locations a, b, c.

application and therefore controllable by the user. This would be advantageous as the user

could then control how fine-grained the temporal analysis is.

Temporal processing will follow a similar process as spatial processing. Each joint

center must be analyzed in terms of its three dimensions. For each joint center dimension,

we begin by parsing through the signal values tracking increasing and decreasing trends to

find critical points. This is described by algorithm 2.

The output of this algorithm will be a list of indices which correspond to the locations

of critical points for the processed curve. In addition to this information, the algorithm

also notes the type of the index. That is, does the index represent a peak(P), a valley(V)

or a start(S) or end(E) point? This information is important as it will be used in the next

step of processing.

Another challenge in temporal processing is similar to the sample point alignment prob-

lem. We assume the critical points will not line up and therefore require some matching.

This is due to differences between the rate of execution for the learner and expert. This

problem is similar to a problem in speech recognition. Sakoe and Chiba[137] noted the

requirement of time-normalization of speech signals from different speakers due to non-

linear temporal differences in human speech patterns. The authors describe a dynamic

programming method which normalizes the time component of the speech sequence so

that a comparison can be made for recognition purposes.

To perform dynamic matching, we must first arrange the two sequences to be compared

on the axes of a grid as follows:

We use the type information(V, P, S or E) from the previous algorithm as the sequence
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Algorithm 2 Tracking of Motion Curve Critical Points

x← firstSignalV alue

POScounter,NEGcounter ← 0

for i = 1 to Signal.length do

currSignalV alue← Signal[i]

if currSignalV alue > x then

POScounter + +

if POScounter ≥ Threshold then

if NEGcounter > 0 then

RecordIndexV alue

RecordIndexType

end if

NEGcounter = 0

end if

else

NEGcounter + +

if NEGcounter ≥ Threshold then

if POScounter > 0 then

RecordIndexV alue

RecordIndexType

end if

POScounter = 0

end if

end if

x← Signal[i]

end for
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Figure 4.8: Arrangement of signals for dynamic matching.

V P S E

V 1 5 1 1

P 5 1 1 1

S 1 1 0 8

E 1 1 8 0

Table 4.1: Weights for cost calculation.

information that will be processed in this step. The dynamic algorithm will calculate a cost

for every potential match between the learner and expert type sequences. This gives us a

matrix DTW of the resulting costs analogous to figure 4.8. We then calculate the shortest

cost path from the lower left of this grid to the upper right. Whichever path is the lowest

cost will be considered to represent the closest match. A perfect path is shown in the figure

as the greyed area of the grid. The distance calculation is performed by algorithm 3 and

is sometimes referred to as the dynamic time warp distance.

Table 4.1 shows the matrix of weights used for the cost calculation. These weights can

be adjusted and are not fixed for all uses. Essentially, we are calculating a lowest cost path

so we assign low values to the matches i.e. V to V and higher values to obvious mismatches

i.e. V to P. We also use an additional weight in the cost calculation. This weight provides

for a higher cost if two tokens are further away from each other in time and space.

Once the indices are located and matched, we can compare segments in one curve with

the equivalent segment in another curve to see if the segments are temporally longer or
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Algorithm 3 Calculation of Dynamic Time Warp Distance

cost← 0

for i = 0 to Signal1.length do

DTW [i, 0]←∞

DTW [i, Signal1.length]←∞

end for

for i = 0 to Signal2.length do

DTW [0, i]←∞

DTW [Signal2.length, i]←∞

end for

DTW [0, 0]←

for i = 0 to Signal1.length do

for j = 0 to Signal2.length do

cost← (Signal1[i].V alue− Signal2[j].V alue)2

cost←
√
cost+ (Signal1[i].T ime− Signal2[j].T ime)2

cost← cost ∗Weight[Signal1[i], Signal2[j]]

DTW [i, j]← cost+Minimum(DTW [i− 1, j], DTW [i− 1, j − 1], DTW [i, j − 1])

end for

end for
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shorter. We assume that since we are finding critical points in curves which are assumed to

be similar, we can compare the curves segment by segment without concern for wholesale

mismatches.

4.5 Visualization

There are multiple forms of feedback provided in our software system. We provide visu-

alizations of both spatial and temporal differences between learner and expert. We allow

spatial differences to be aggregated so that we can view the differences in differing levels

of detail.

Spatial differences are visualized using arrows. Arrows were chosen in this case as they

are an intuitive way to denote direction[154].

Interestingly, humans seem hard-wired to perceive certain kinds of objects pre-attentively

(i.e., without semantical processing)[154]. Dreyfuss[48] catalogued international graphic

symbols and noted only 14 such symbols, notably the ellipse, the square, blob, line array

and cross. Tversky et al.[154] found it interesting that there were so few such symbols,

and that all were so simple. Such symbols seem to nonetheless provide a rich, expressive

language for diagrams.

Ware[115] observes that humans naturally perceive a closed curve as representative of

an object, and, similarly, that humans naturally interpret a line between two such objects

as signifying a relationship. Thus circles and lines become the basis for organizational

charts.

The origin of arrows in diagrams is not known, though Tversky et al.[154] cite Gombrich[61],

who found them used to indicate direction in the 1700s, which is how they are used in the

present work. Bertin, in his classic Semiology of Graphics[17], states that the arrow is the

“most efficient and often the only formula for representing the complex movement of a

point, and, by analogy, that of a line or an area”. Tversky et al.[154] notes that Horn[71]

found 250 meanings for arrows, including pointing, time and increases and decreases. Given

this analysis, our use of arrows to indicate movement, and differences in movement seems

semantically well-founded.

With spatial differences, we want to visually direct the learner that to correct their

motion requires that they execute the erroneous portion of their motion more so in a
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particular direction i.e. “move your hand more to the right” or “lift your foot higher”. We

do not provide this explicitly but, instead, imply this type of direction visually(figure 4.9).

Our system also allows a user to aggregate the direction arrows. This allows a user

to summarize a group of arrows in one area of the body and represent the motion of that

area with a single aggregated arrow. For example, an actor’s elbow and wrist could be

summarized with one arrow representing the arm as a whole. Figure 4.10 shows an example

of this.

Figure 4.9: An animation with direc-
tion arrows implying necessary correc-
tions to a user.

Figure 4.10: An aggregate arrow
showing a summarization of the arrows
in the figure on the left.

An additional feature is the ability to toggle arrows on and off if a user wishes to focus

on a particular part of a motion. A user can also adjust a sensitivity control which sets a

threshold for what degree of difference will be visualized. By increasing the control, the

user can visualize only the largest spatial differences.

In the case of temporal differences, a different method of visualization was chosen. It is

necessary to direct the user differently for temporal differences to avoid confusion between

the two. Also, while arrows work well for communicating spatial direction, they are not

necessarily effective for communicating movement in time or temporal differences. Instead,

we chose to alter the color of the actor’s body parts to denote when a particular body part

was moving too quickly or too slowly. This method allows for clearly delineating between

the two forms of visualization and could allow for both to coexist with minimal interference

between the two. If a marker is moving too quickly, the corresponding body part will be

colored red. If a marker is moving too slowly, the corresponding body part will be colored

blue.
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Chapter 5

Results

The results of our system are encouraging. We have been able to extend the functional-

ity achieved by Bouvier-Zappa to include direct comparison of two sets of motion capture

data. The first successful comparison type is strictly a spatial comparison. Following that

is spatio-temporal comparison. The figures below show screen captures of the resulting vi-

sualizations. In the following screenshots, the lower half of the window is the learner data

while the upper half is the expert data. The learner data in figures 5.1 and 5.2 contain

specific errors as noted at the beginning of chapter 4.

5.1 Spatial Comparisons

The user needs to receive feedback regarding errors and how to correct them. This requires

first that the software is able to identify those errors, and second, that the software can

communicate errors in an effective way. The previous chapter showed that we can find

critical points in a motion path quickly enough to give back the information in real time.

The question arises - how do we display this to the user? We have discussed the use of the

arrow as a primary visualization object. The red arrows in the expert animation visualize

the movements of the expert’s joint centers. The green arrows in the learner animation

visualize the differences between the expert and learner at particular joint centers.

This type of visualization provides a considerable amount of information for a user so

the interface allows for toggling some of the difference arrows on or off. If a user wanted to

focus on just the learner’s knee, for example, the could turn off all other arrows by simply

clicking on each arrow’s associated joint center leaving only the desired arrow visible.

Figure 5.3 shows how this feature allows a user to focus on a particular portion of the

visualization without being overwhelmed.
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Figure 5.1: A motion capture comparison visualizing spatial differences only.

Figure 5.2: A motion capture comparison visualizing spatial differences only.
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Figure 5.3: A motion capture comparison visualizing spatial differences with some

arrows toggled off.

Additionally, we incorporated three particular techniques: ghosting, aggregation, and

sensitivity adjustment. We explain each in turn.

5.1.1 Ghosting

Initially, we visualized spatial differences using only difference arrows. This proved to be

somewhat less than intuitive as the arrows would extend from a point associated with the

learner avatar out into space. While we did not formally test learners’ understanding of

the arrows, we assume a learner would have to have explained to them what the arrow’s

meaning was. As we have attempted to devise our system to communicate as intuitively as

possible in as many cases as possible, this seemed less than satisfactory. We then decided

to include in the learner animation a ghosted rendering of the expert since this is what

the spatial comparison is done with. By adding this feature, we are able to provide the

viewer with an additional reference point so that the meaning of the difference arrows is

more immediately intuitive.
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Figure 5.4: A close-up of the learner portion of the window showing the ghosting

effect.

Figure 5.5: A motion capture comparison visualizing spatial differences using the
aggregation feature.
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5.1.2 Aggregated Movements

Another feature that can be applied to the arrows in the visualization is aggregation. The

default animation might provide too much information for the viewer. For example, a

learner may not want to see the motion path of each joint from their shoulder to their

hand but perhaps would like to see the general path their arm is following. This is what

the aggregation feature does. By performing weighted averages of joint center locations,

the system approximates paths followed by limbs instead of joint centers. One level of

aggregation of, say, the elbow and wrist gives the approximate path of the forearm. An

additional level will average the three main joint centers of the arm to provide an approx-

imate path of the arm as a whole. By aggregating the trajectories of several markers the

system gives the user a more general sense of the problem. Figure 5.5 shows an example

of this type of visualization.

Figure 5.6: A motion capture comparison visualizing spatial differences and using

the sensitivity threshold.
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5.1.3 Sensitivity

Slight but consistent errors can generate frequent flashes of arrow movement that makes

it difficult for the user to see the real problem - similar to the situation in computer

programming when a single missing semi-colon generates hundreds of error messages. By

adjusting the sensitivity, only differences of a certain magnitude are displayed. As the user

becomes more skilled, the user can focus on smaller details. By moving the slider to the

right, the learner can exclude smaller differences by increasing the threshold. Figure 5.6

shows the resulting visualization after this threshold has been increased.

5.2 Spatio-Temporal Comparisons

The following figures show visualizations of spatio-temporal comparisons. One of the diffi-

culties in visualizing something of a temporal nature was deciding on an appropriate visual

cue that would be separate from the arrows used for spatial differences but immediately

intuitive to the user as a representation of temporal differences. The figures show how

coloring particular body parts was used to convey the messages too slow or too fast since

these are the principle messages necessary. As the animation proceeds, different body parts

are colored either red or blue to note that they are moving too slowly (blue) or too quickly

(red) at that juncture of the motion. Figure 5.10 shows a learner whom is moving too

slowly in certain body parts. The learner in figure 5.8, however, is uniformly moving too

quickly.

Figure 5.7: An actor shaded in varying levels of red to note different temporal

differences.
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Figure 5.8: A spatio-temporal comparison where the learner is moving too quickly.

Figure 5.9: A spatio-temporal comparison where the learner is moving slightly

slowly.
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Figure 5.10: A spatio-temporal comparison where the learner is moving too slowly

in certain parts, particularly torso and upper legs.

5.3 Discussion

In this work we set out to show proof of concept for the use of motion capture technology

in coaching. We did so with certain constraints to ensure the problem scope would remain

manageable. We now make direct comparisons between our results and two previous works

in this area, namely Bouvier-Zappa[20][21] and Maekawa[103].

As noted previously, the work of Bouvier-Zappa, while important, was lacking an impor-

tant feature for pedagogy: feedback for the learner. The figures below show the difference

between our system and the directive visual feedback it produces compared to the work

of Bouvier-Zappa where visual cues are used to communicate what is happening in an

individual motion.

We can also contrast our results with those of Maekawa. Here we see an attempt at

comparison but there is no processing of the motion capture data to perform the compar-

ison. The comparison is left as a visual exercise for the user and an expert. The authors

note regarding the balloons and points they correspond to that “These points are based
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Figure 5.11: Results of Bouvier-
Zappa.

Figure 5.12: Results from our system
showing directive feedback.

on the experts opinion.” Our system, by contrast, automatically finds differences both

spatially and temporally by performing comparisons on the underlying data and visualizes

these differences to provide directive feedback to the learner.

As stated above, we imposed certain constraints to maintain manageability of the scope

of the work. We now discuss each of those constraints in turn.

The first constraint we imposed was to assume a known start and end for each motion

curve. This eliminated the need for the system to perform additional processing to find

these points as this is a very difficult problem unto itself.

The next constraints we imposed were with regards to the actors and what motions we

would compare. For each comparison, we always compared an actor to themselves. This

was done for a few reasons. By doing the comparison this way, we eliminate anomalies

that might arise from comparing normalized data from individuals with very different

physiques but we also can determine that the differences we have detected are the actual

spatial differences we want to detect as opposed to possibly detecting noise. This was

done in the case of the first three motions for each actor by having the actor repeat each

motion with a specific predetermined error. In the case of our temporal processing, we used
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Figure 5.13: Results of Maekawa. Figure 5.14: Results from
our system showing directive
feedback.

the golf swing and developed our software to allow us to specify a parameter file which

would include parameters for how we might want to slow down or speed up portions of a

learner motion. Again, while we are eliminating noise, we also can determine that what is

detected is temporal difference and we can see that the system is not only detecting it but

also visualizing it appropriately.

Another constraint was the use of (x,y,z) format data rather than velocity based data.

The use of this format and the process of splitting it into individual signals provided

the inspiration to use the segmentation and matching methods we used for our temporal

comparison and made spatial comparison and visualization very straightforward. This is

not to say that velocity based data is without its benefits. For example, all joints are

effectively afforded a full six degrees of freedom using the (x,y,z) format but some joint

movement, like at the elbow, can be expressed with as few as one or two.

Another consideration was to avoid engaging in an evaluation process of the pedagogical

quality of our particular form of feedback. There is importance in asking the question “Does

this type of feedback contribute positively to a learner’s improvement?” Answering this

question can involve a great deal of work unto itself. We would likely do so by performing
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a study of various learners by measuring their motion before and after using our system

and other methods to try to improve. In this manner, we could show empirically that our

system helps to produce a certain improvement compared to other methods. We leave this

type of analysis to future work.
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Chapter 6

Conclusions and Future Work

The purpose of this research was to show proof of concept for a system that could

analyze two motion capture datasets and visualize the differences between them. We

believe that such a system constitutes a useful training tool to a learner but would also be

an important component in a larger coaching system.

We have demonstrated the feasibility of producing such a system. Our system suc-

cessfully analyzes two datasets and visualizes the differences in real time. We are able

to perform strictly spatial comparisons as well as temporal comparisons. The result is a

simple system which produces useful visualizations that may aid a learner.

Our research also presents numerous opportunities for future work. While we have

shown feasibility, we did not purport to produce the best result possible nor did we assume

that our solution would be the final word on this type of system. There is room for

improvement and, therefore, further research in most areas of this system.

The potential for future work can be grouped into two categories: internal function

and pedagogical performance. Some aspects of the system can be further analyzed and

possibly improved to produce better technical or performance results while others could

be analyzed in terms of how effective they are for the learner or coach using the system.

6.1 Internal and Functional Improvements

An initial area of further work is the parameterization method used. Splines are a very

well known method in computer science but that is not to say they are necessarily the

only or best solution. There are other methods that can be used which might be more

optimal in terms of processing cost, especially if the size of the dataset and the number of

markers were to increase substantially. Our models use relatively small amounts of data.

As motion capture systems advance, the possibility of systems to be able to capture very
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large numbers of markers will become more likely. It is difficult to predict how our method

would scale if we were to increase our number of markers or frames by, say, an order

of magnitude. It would be interesting to formally test different methods using varying

dataset sizes and marker counts with specific performance metrics to determine optimal

performance while scaling to potentially very large data sizes. Hamilton et al.[66], for

example, discuss a method of detection for QRS patterns(named for the Q, R and S waves

in an ECG) in encephalocardiograms (ECGs). QRS patterns are a series of deflections

found in a typical ECG. They begin by applying one optimized detection rule and follow

this with additional successive rules. The authors note that their algorithm was efficient

enough to be executed in real time.

Figure 6.1: An encephalocardiogram with QRS complex labeled.

Ramsay and Silverman[128] discuss different methods of function representation using

basis functions such as splines, Fourier analysis and wavelets. The authors also describe

different approaches to curve registration, that is, aligning two curves that are to be com-

pared. They describe using least squares, feature registration and warping functions for

this purpose.

Signal processing is another potential area that could be applied. Interestingly, there

are signal processing methods such as autocorrelation which allow for the detection of a
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small signal pattern within a larger one. This could have some potential application since

our processing method effectively reduces motion data into a collection of 1D signals and

there is some body of work already involving the use signal processing techniques with

motion[28].

It would also be interesting to test different motion capture system types, especially

inertial types, to see if a comparable enough level of detail can be provided. We know that

large scale lab-based setups produce highly accurate data but there may be some question

as to whether this level of accuracy is necessary. While it might be difficult to gain access to

both types of systems for the same study, if it can be shown that inertial systems produce

data which is also of high accuracy, this could show that this type of system is potentially

very accessible since this type of hardware is becoming more affordable and available to

average consumers.

A second area of future work that could be pursued is the addition of intelligence to the

system. Our system is able to visualize differences but it doesn’t perform real intelligent

decision making. The system could be amended to include intelligent comparisons of stored

”common mistakes” to learner motion to determine whether a learner is making a common

error. With most forms of athletic endeavour, there are a set of mistakes that are common

to beginners and novices. We believe that the motion curves of such mistakes would have

unique ”signatures” in the form of a sequence of inflection points. These sequences can be

encoded as strings that one can compare using techniques similar to those already described

within here, and further there are well-known algorithms for sorting out DNA sequences

that could be easily used to this effect. Being able to catalogue these signatures would be

useful in that it would eliminate the requirement for an expert and so make the system

more flexible for the user. This would involve the use of a ”bug library” which would

need to be compiled which would require considerable effort by way of getting experts

to produce the bug library, and by testing these. Such work would require considerable

empirical investment. Niu[117] and Rivera[134] both point to the work of Burton[29] in

proposing a BUGGY model similar to that described above.

Another potential area of investigation regards the way in which we executed our

temporal segmentation. Our method proved to be effective within this context but it

lacked any semantics in the divisions. Our method picked critical points in motion curves

for segmentation but this is somewhat mechanical. In a longer motion sequence like, for
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example, an interpretive dance that might last several minutes would contain a larger

number of particular gestures that would not be detected using our method. A method

of segmentation similar to [10] that uses principle component analysis(PCA) to segment

motion into behaviours could be used instead. This would be applicable for any type of

motion which consists of a longer sequence rather than a short discrete movement. There

might also be some argument for a combination of these two types of methods. One method

which is semantically based for macro-segmentation coupled with another method similar

to ours which is perhaps more suitable for a more mathematical micro-segmentation.

An additional issue when working with motion capture data is the time necessary to

process the data after it has been recorded. Ultimately, we would want a system which

would work completely in real time which would necessitate data from a motion capture

system going directly to a system like ours. This could require substantial work to produce

a digital interface which could allow the software to work with any motion capture system

directly.

Another constraint in allowing the data to proceed directly from the collection system

to our software system is the necessity to manually truncate the data at the beginning and

end to ensure that the start and end line up. If work could be done to provide a solution

for this problem, it would be an important step towards being able to do everything in

real time. As it is now, data is recorded but then requires pre-processing to clean and

adjust it because of some of the issues above. Ideally, we would want to be able to have a

user put on a motion capture suit or some such portable system, turn on our software and

immediately begin getting feedback.

6.2 User and Pedagogical Improvements

The first area of possible work is the graphical user interface of the system. This interface

was developed based on our own perceptions of what constituted an intuitive interface. A

researcher in the area of human computer interaction would be better placed to evaluate

our interface or comment on alternatives for evaluation. Additionally, the use of direct

feedback from potential users would be invaluable to develop the visual interface in such

a way as to maximize its effectiveness and intuitiveness for learners. This is an important

factor for a system whose primary purpose is projecting pedagogical information to a
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learner.

A second area of further work relates to the type of directive feedback we chose to

employ in our system. We chose arrows primarily for their history of use and demonstrated

effectiveness in other areas. However, it would be interesting to implement the same system

with other types of cues for the same visualizations and run a test survey with a group of

learners to explicitly test if these methods produce the best end result pedagogically. As

was noted by Jones and Scaife[80], a learner may enjoy working with a particular system

but that doesn’t automatically imply better results. It would also be useful to obtain some

form of empirical validation of such a comparison. This might involve enhancing the system

to measure the magnitude of differences it detects. Then one could, iteratively, measure a

user’s performance and note any improvements and the magnitude of improvements over

time as means of comparing effectiveness between different forms of visualization.

A third potential idea for future research relates to the type of directive feedback

currently provided and whether it would provide a benefit to be more explicit in the

content of the feedback. That is, instead of showing differences or detecting the presence

of errors, to actually inform the learner explicitly of what they should do rather than simply

displaying what they are doing incorrectly. This might involve verbal directives from the

system or might be accomplished by some other visual means or combination of the two.
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