
 

 

STANDARD REGRESSION VERSUS MULTILEVEL MODELING OF 

MULTISTAGE COMPLEX SURVEY DATA 

 

 

 

 

 

 

 

A Thesis Submitted to the  

 

College of Graduate Studies and Research 

 

in Partial Fulfillment of the Requirements 

 

for the Degree of 

 

Doctor of Philosophy 

 

 

 

In the Department of Community Health and Epidemiology 

 

College of Medicine 

 

University of Saskatchewan 

 

 

 

 

 

By 

 

MD   ALOMGIR   HOSSAIN 

 

 

 

 

© Copyright Md Alomgir Hossain, November 2011. All rights reserved.



 i 
 

 

PERMISSION TO USE 

 

 

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree 

from the University of Saskatchewan, I agree that the Libraries of this University may make it 

freely available for inspection. I further agree that permission for copying of this thesis in any 

manner, in whole or in part, for scholarly purposes may be granted by the professor or 

professors who supervised my thesis work or, in their absence, by the head of the Department 

or the dean of College in which my thesis work was done. It is understood that any copying or 

publication or use of this thesis or parts thereof for financial gain shall not be given to me and 

to the University of Saskatchewan in any scholarly use which may be made of any material in 

my thesis. 

 

Request for permission to copy or to make other use of material in this thesis in whole or part 

should be addressed to: 

 

Department Head 

Community Health and Epidemiology 

College of Medicine 

University of Saskatchewan 

107 Wiggins Road 

Saskatoon, Saskatchewan 

S7N 5E5 

 



 ii 
 

ACKNOWLEDGEMENTS 

 

            I would like to express my sincere gratitude to my supervisor Dr. Punam Pahwa for 

her motivation, intelligent supervising, consistent support, and encouragement. I greatly 

appreciate all her contributions of time, advice, thought, and patience during the entire process 

of completing my PhD thesis. I could not have imagined having a better supervisor for my 

PhD study. 

           I would like to thank to all of my committee members: Dr. June Hyun-Ja Lim, Dr. 

Bruce Reeder, Dr. Nazeem Muhajarine, Dr. Ivan Kelly, and Dr. Bonnie Janzen (chair) for 

their expertise, encouragement, and taking effort in reading my thesis and providing me the 

valuable suggestion in completing my PhD thesis. 

         My sincere thanks also go to Dean, the College of Medicine, University of 

Saskatchewan for offering scholarship during my PhD program. 

            I would like to thank to CIHR funded Canadian Heart Health Surveys New Emerging 

Team  Grant for providing me the one year scholarship, computer and financial support to 

attend national and international conferences. I would specially like to  thank  the Canadian 

Centre for Health and Safety in Agriculture (CCHSA) for providing me the founding chair 

funding to attend several national and international conferences and  own office space during 

my entire training period.  

           I would like to sincerely thank Dr. Bruce Reeder   to allow me to use the Canadian 

Heart Health Surveys (CHHS) data, and Statistics Canada Research Data Centre (RDC), 

University of Saskatchewan, for providing me the access to use the National Population 

Health Survey (NPHS) data for my PhD thesis. 

 



 iii 
 

 

DEDICATION 

          This PhD thesis is dedicated to my family whose cooperation and 

sacrifices helped me to achieve my goal.  Specially, my two daughters, Afra 

Nawar and Nazeefa Afreen missed me the most while I was busy with my PhD 

thesis work. I am also grateful to my father Golam Sarwar and mother Rashida 

Sarwar for their unconditional love and encouragement.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv 
 

ABSTRACT 

           Complex surveys based on multistage design are commonly used to collect large 

population data. Stratification, clustering and unequal probability of the selection of 

individuals are the complexities of complex survey design. Statistical techniques such as the 

multilevel modeling – scaled weights technique and the standard regression – robust variance 

estimation technique are used to analyze the complex survey data. Both statistical techniques 

take into account the complexities of complex survey data but the ways are different. 

This thesis compares the performance of the multilevel modeling – scaled weights and the 

standard regression – robust   variance estimation technique based on analysis of the cross-

sectional and the longitudinal complex survey data. Performance of these two techniques was 

examined by Monte Carlo simulation based on cross-sectional complex survey design. 

A stratified, multistage probability sample design was used to select samples for the cross-

sectional Canadian Heart Health Surveys (CHHS) conducted in ten Canadian provinces and 

for the longitudinal National Population Health Survey (NPHS). 

            Both statistical techniques (the multilevel modeling – scaled weights and the standard 

regression – robust   variance estimation technique) were utilized to analyze CHHS and NPHS 

data sets. The outcome of interest was based on the question “Do you have any of the 

following long-term conditions that have been diagnosed by a health professional? – 

Diabetes”. 

            For the cross-sectional CHHS, the results obtained from the proposed two statistical 

techniques were not consistent. However, the results based on analysis of the longitudinal 

NPHS data indicated that the performance of the standard regression – robust variance 

estimation technique might be better than the multilevel modeling – scaled weight technique 
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for analyzing longitudinal complex survey data. Finally, in order to arrive at a definitive 

conclusion, a  Monte Carlo simulation was used to compare the performance of the multilevel 

modeling – scaled weights and the standard regression – robust variance estimation techniques 

. In the Monte Carlo simulation study, the data were generated randomly based on the 

Canadian Heart Health Survey data for Saskatchewan province. The total 100 and 1000 

number of simulated data sets were generated and the sample size for each simulated data set 

was 1,731. The results of this Monte Carlo simulation study indicated that the performance of 

the multilevel modeling – scaled weights technique and the standard regression – robust 

variance estimation technique were comparable to analyze the cross-sectional complex survey 

data. 

           To conclude, both statistical techniques yield similar results when used to analyze the 

cross-sectional complex survey data, however standard regression-robust variance estimation 

technique might be preferred because it fully accounts for stratification, clustering and 

unequal probability of selection. 
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                     CHAPTER 1 

 

INTRODUCTION 

 

1.1 Rationale  

 

Complex surveys based on multistage design are frequently used to conduct large 

population studies. Stratification, clustering and unequal probability of the selection of 

individuals are the complexities of complex survey design that are also known as design 

effects. Sampling units may not be independent because of stratification and clustering in 

complex surveys. Special statistical techniques are required to analyze data obtained from 

complex surveys to take into account the complexities associated with such survey design. 

Statistical analysis conducted without taking into account the characteristics of longitudinal 

data, such as within-subject correlation due to repeated measurements and design effects of 

complex survey design, may lead to bias and invalid parameter estimates and standard errors 

[1, 2]. The selection of sample units from a finite population and the processing of responses 

and measurements are part of complex survey design. The modeling of the variation of data 

due to these processes in complex surveys is part of the inferential process [3].  Several 

studies have indicated that parameter estimates could be inconsistent without taking into 

account the design effects of complex surveys [2, 4-7]. 

Population-based cross-sectional and longitudinal complex surveys are commonly 

conducted to collect huge amounts of information on various health outcomes, such as chronic 

conditions and the associated risk factors. Standard statistical models have been developed 

based on the assumption of simple random sampling. In complex survey design, since 

sampling units are not independent, standard errors, confidence intervals and p-values  
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obtained from the standard approach will be invalid because of the lack of independent 

observations [2, 8, 9].    

A number of statistical methods are proposed to analyze cross-sectional and 

longitudinal complex survey data for continuous and discrete outcomes. The multilevel 

modeling–scaled weights technique and the standard regression–robust variance estimation 

technique (e.g., Taylor linearization, jackknifing, and bootstrapping) are the most frequently 

used techniques for analyzing data obtained from cross-sectional and longitudinal complex 

surveys. Both the multilevel modeling–scaled weights (MM-SW) technique and the standard 

regression–robust variance (SR-RV) estimation technique take into account the complexities 

of complex survey design, but the ways of taking these design effects into account are 

different. In contrast to cross-sectional complex surveys, longitudinal complex surveys have 

an additional characteristic—within-subject correlation due to repeated measurements on each 

individual. This additional feature makes the statistical analysis of longitudinal complex 

survey data more difficult compared with cross-sectional complex survey data. The statistical 

analysis of longitudinal complex survey data must take into account the within-subject 

correlation characteristics of repeated measurements in addition to stratification, clustering 

and unequal probability of selection.  

A Medline search revealed a few studies that attempted to compare the MM-SW 

technique and the SR-RV estimation technique based on multistage complex survey datasets 

[10-13]. However, a definite conclusion about which technique is preferable for analyzing 

complex survey data was not reached in those studies.  

The overall goal of this thesis is to conduct a comparison between the multilevel 

modeling–scaled weights technique and the standard regression–robust variance (such as 
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bootstrapping) estimation technique. The similarities and differences between these statistical 

methods will be explored by applying the proposed techniques to analyze real-life data 

obtained from cross-sectional and longitudinal complex surveys.   

It is important to establish the properties of statistical methods so that researchers and 

statistical analysts can use it with confidence. Real-life survey data rarely satisfy all the 

assumptions required to use most statistical methods. Simulation is a great technique to 

determine the power of statistical methods. Simulation techniques are used in almost half of 

the articles published in the Journal of the American Statistical Association [14]. Today, 

simulation is a less problematic way to test the power of statistical methods because of the 

availability of computer software. 

In this thesis, the Canadian Heart Health Survey (CHHS) (a complex cross-sectional 

survey) and the National Population Health Survey (NPHS) (a complex longitudinal survey) 

datasets will be used to accomplish our objectives. The CHHS and NPHS datasets are unique 

datasets because results based on these datasets can be generalized to the entire Canadian 

population. Monte Carlo simulations are conducted to compare the MM-SW  approach and 

the SR-RV   estimation approach based on cross-sectional complex survey data sets.  

The outcome of interest for application of the proposed statistical methods is type 2 

diabetes. Type 2 diabetes is a complex chronic disease, and the etiology of type 2 diabetes 

is not yet completely understood. The prevalence of type 2 diabetes is increasing rapidly all 

over the world [15]
 
. Indeed, the expected prevalence of type 2 diabetes is 2.4 million by 

the year 2016 in Canada [16]. One of the main causes of cardiovascular disease (CVD), 

blindness, heart disease and kidney failure is type 2 diabetes [17].  
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1.2 Study objectives 

Objective 1: 

To compare the use of the multilevel modeling–scaled weights (MM-SW) technique and the 

standard regression–robust variance(SR-RV) estimation technique to analyze cross-sectional 

complex survey data.  

Objective 2: 

To compare the use of the multilevel modeling–scaled weights (MM-SW) technique and the 

standard regression–robust variance (SR-RV) estimation technique in analyzing longitudinal 

complex survey data.  

Objective 3: 

To investigate which statistical method is optimal for analyzing cross-sectional complex 

survey data using Monte Carlo simulation techniques. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The statistical analysis of survey data depends on the characteristics of the sampling 

design. Simple random sampling (SRS) is a standard sampling design in which individuals are 

assumed to be independent, and each individual has an equal probability of selection [18]. 

SRS is not a preferred sampling design for conducting large population surveys for several 

reasons [19].  It is financially expensive to conduct large surveys based on SRS, and such 

surveys require a longer time to collect data than do multistage complex surveys. A multistage 

complex survey design involves stratification, clustering and unequal probability of selection 

of sampling units. 

Population-based large health surveys frequently use multistage complex survey 

design. There are several reasons to conduct multistage complex surveys: they are 

economical, and they make it easy for interviewers to collect information. There are some 

disadvantages to complex survey design, which are mainly related to the statistical analysis of 

the data obtained from the survey. The sampling units might be correlated within a cluster, 

and the probability of selection of all of the sampling units might not be equal. These features 

of complex survey design, such as stratification, clustering and unequal probability of 

selection  make significant impact in the estimation process. The parameter estimates will be 

invalid if these features of complex survey design are ignored, and the statistical inference 

based on such invalid parameter estimates will be erroneous [101]. 

In the last few decades, several statistical methods have been developed to analyze 

complex survey data. However, the most commonly used methods to analyze complex survey 
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data are the multilevel modeling–scaled weights (MM-SW) technique and the standard 

regression–robust variance (SR-RV) estimation technique.  

Few studies have made the comparison between using standard regression and 

multilevel modeling techniques to analyze complex survey data [10, 12, 20-24]. Multilevel 

models are also referred to as mixed-effects or random-effects models, random-coefficient 

models or hierarchical models. A study was conducted by Moerbeek et al  to compare 

between traditional methods used for regression analysis and multilevel models based on the 

analysis of multicenter intervention studies for continuous outcomes [12]. The comparison 

was made based on the estimated regression coefficients and their standard errors. The authors 

found that the standard errors of the regression coefficients were underestimated using 

traditional regression methods. Because of the smaller standard errors, the confidence 

intervals became narrow, and there was a higher possibility of making a type I error. The 

authors preferred multilevel models over traditional methods (i.e. ordinary logistic regression 

for binary outcome). They also observed that the magnitude of the regression coefficients and 

their standard errors were affected by using a multilevel modeling approach for the data of an 

unbalanced design. Several statistical methods have been proposed to analyze longitudinal 

binary data. Most of the methods can be divided into two groups: (i) subject-specific (SS) 

models and (ii) population-averaged (PA) models. The generalized estimating equation (GEE) 

approach (Liang and Zeger) is most commonly used to fit PA models and multilevel models 

based on pseudo maximum likelihood algorithm used to fit random-effects or SS models[14]. 

Standard logistic regression provides biased standard errors (SE) for analyzing the 

longitudinal data because it violates the independence assumption. If regression models ignore 

the dependency of the observations within subjects, then such models tend to overestimate the 



 7 
 

standard errors of time-varying covariates and underestimate the standard errors of time-

invariant covariates [11]. Neuhaus et al. compared a cluster-specific model (i.e., mixed-effect 

logistic model) and a population-averaged model (i.e., GEE) for analyzing correlated binary 

data[10]. Clustering may be due to repeated measurements within-subjects or may be due to 

sub-sampling of a primary sampling unit (PSU). The authors showed that the regression 

coefficients obtained from a mixed-effect logistic model were higher than those from a 

population-averaged model. It was also shown by Liang and Zeger that the regression 

coefficients obtained by using a random-effects model were higher than the regression 

coefficients obtained by using a population-averaged model [38]. Liang and Zeger  also 

showed that there was a mathematical relationship between these two types of regression 

coefficients [38] . 

Marginal models and random-effects models were frequently used to analyze 

longitudinal complex survey data with binary outcomes in epidemiology. Corriere and Bouyer 

discussed how to choose statistical methods based on the analysis of longitudinal binary data 

[21]. The results from the analysis of longitudinal binary data indicated that there were 

substantial differences in the parameter estimates from random-effects models and marginal 

models. The inter-individual heterogeneity was the main reason for the differences between 

the estimates of these two methods. The authors also pointed out that the choice of a model to 

analyze the longitudinal data depends on the research objective. If the research objective is to 

determine the association between the populations mean of the outcome over time and the risk 

factors, then a marginal model is appropriate. If the objective is to study individual risk factors 

for etiological consideration, then the random-effects model is appropriate because this 

method adjusts for the non-observable individual characteristics [25]. After comparing the two 
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methods, the authors recommended that random-effects models were more suitable than 

marginal models for analyzing longitudinal binary data. 

  A large number of simulation studies were conducted by Rodriguez and Goldman to 

assess the estimation procedures for multilevel models with binary outcomes[23]. The results 

of these simulation studies specified that the estimated fixed effects and the variance 

components would be biased if the random effects were sufficiently large and if the number of 

observations within a given level of clustering was small . Rodriguez and Goldman  also 

found that the fixed effect estimates were similar between standard logit models and 

multilevel logit models if the hierarchical structure of the data was ignored [23]. Finally, the 

authors anticipated that an alternative estimation procedure would be required for handling 

hierarchical data with binary outcomes. In a random-intercept logistic model, the 

interdependencies among the repeated observations within-subjects were explicitly taken into 

account [23]. The absolute values of the estimates obtained from random-effects models were 

generally larger than those obtained from GEE models. These differences between the GEE 

and random-effects models depend on the correlation between the repeated measures. Frank 

B. Hu et al   also suggested that the selection of statistical methods to analyze longitudinal 

complex survey data should depend on the research objective [22]. The GEE approach is 

preferable compare to the random-effects models if the research objective involves group 

differences, while the random-effects models are preferable when the research objectives 

involve determining the change in individual responses. The GEE approach provides robust 

variance estimation, whereas the random-effects approach may be sensitive to different 

assumptions about the variance and covariance structure [22]. A comparison was explored 

between marginal and mixed-effects models based on an analysis of human papillomavirus 
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(HPV) natural history data. Xue et al.  found that the parameter estimates obtained using a 

mixed-effects model was higher than those obtained using marginal models [20]. The standard 

errors of the estimated regression coefficients were also higher in the mixed-effects model, but 

the significance levels obtained were similar in both types of models. Some disadvantages, 

such as being computationally intensive and more likely to have problems with convergence, 

are found in the mixed-effect model compared with the marginal model. Therefore, marginal 

models are sometime preferred for analyzing data obtained from epidemiological studies. 

Kuchibhatla  and Fillenbaum  compared random-intercept models and marginal (GEE) models 

based on an analysis of longitudinal data with binary outcomes [24]. Both statistical methods 

were used to analyze longitudinal binary data- their  findings indicated that the estimated 

regression coefficients and their standard errors obtained from random-intercept models were 

larger than those obtained from marginal (GEE) models. The differences in the estimates from 

random-intercept models and GEE models are due to correlations between the repeated 

observations. The authors did not make any comment regarding which method was better for 

analyzing longitudinal data, but they concluded that the marginal (GEE) model was 

appropriate when the research objective was to investigate the between-subject effects and the 

random-intercept model was appropriate when the research objective was to investigate 

subject-specific effects. 

A simulation study is the best way to assess the performance of two statistical 

methods. Masaoud and Stryhn conducted a simulation study to compare the performances of 

random-effects models and marginal (GEE) models to analyze binary repeated measurements 

data [26]. The results based on the analysis of the simulated data using random-effects models 

showed that the parameter estimates were biased when autocorrelation was present in the data, 
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while the marginal models provided estimates close to the marginal parameters. A number of 

studies have been conducted to compare multilevel models/subject-specific models/random-

effects and population-averaged models, but most of the studies did not consider the effects of 

the sampling design characteristics at their analysis stage.   

A literature review related to the multilevel modeling–scaled weights (MM-SW) 

technique and the standard regression–robust variance (SR-RV) estimation technique is 

discussed in sections 2.2 and 2.3, respectively.  The literature review related to simulation 

studies is discussed in section 2.4. Both the MM-SW technique and the SR-RV  estimation 

technique were applied to real-life cross-sectional and longitudinal complex survey data to 

compare these two methods. The significant risk factors for type 2 diabetes among rural and 

urban populations in Canada were determined based on these two methods. A literature 

review related to the epidemiology of type 2 diabetes is given in section 2.5.  

 

2.2 Use of standard regression–robust variance estimation 

 

2.2.1 Cross-sectional complex surveys 

 

In cross-sectional complex surveys, sampling units are measured at single time points. 

Standard regression techniques are generally used to analyze cross-sectional survey data in 

which the response variable can be continuous, categorical or count [27]. Logistic regression 

models introduced by McFadden are widely used to analyze the data for binary responses 

[107].  Let  nyyyY ,...,, 21  be a vector of response variable and   ipiii xxxx ,...,,,1 21



  be a 

vector of explanatory variable where   i=1,2,3,….,n.  Assume the response variable  iy   is 

dichotomous with a value of 1 or 0, where “1” means success and “0” means failure. The 

probability density function of   iy   is      
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


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]1[)|(                                                                                               (2.1) 

where   is the  parameter vector  and )|1( iii xypr


  [27]. 

In general, the mathematical form of the logistic regression is 

logit  
ji

p

j

jii xxypr 



1

0)|1( 


                                                                           (2.2) 

where the regression coefficients  
p ,...,,, 210


    need to be estimated. Based on 

Equation (2.1), the log-likelihood function is written as 

   )(1ln)1()(ln 


i

Si

ii

Si

i xFyxFyL  


                                                      (2.3) 

 where  
)exp(1

)exp(

1

0

1

0














p

j

ijj

p

j

ijj

ii

x

x

xF








 and xij  is the j
th

 covariate (j=1,2,3,..., p) for the i
th

 

subject. The regression coefficient can be estimated by the maximum likelihood estimation 

technique, i.e., the solutions of the score equations
 

0










L

 will provide the regression 

coefficients 


.    

The variance-covariance matrix of the estimated regression coefficients is obtained using the 

Fisher information matrix [36]:   

  


















2

2


 
 L

E , i.e.,    


1Cov .   

There are two basic disadvantages of using the above procedure to estimate the 

parameters and the variance-covariance matrix for complex survey data: 

(i) It does not take into account the unequal probability of selection. 
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(ii) It does not take into account the stratification and clustering of complex survey 

data for variance estimation. 

      If the probability of selection for each individual is not equal, then the above procedure 

is not appropriate for producing valid parameter estimates. In order to obtain the unbiased 

parameter estimates, we have to take into account the unequal probability of selection [25, 

28]. The appropriate sample weight should be used to take into account the unequal 

probability of selection as well as any non-responses to analyze complex survey data. The 

corresponding log pseudo-likelihood function using sampling weight i  [101] is  

      


i

Si

iiii

Si

iw xFyxFyL  


1ln)1(ln                                                    (2.4)  

where  
)exp(1

)exp(

1

0

1

0














p

j

ijj

p

j

ijj

i

x

x

xF








 and S is the set of all observed observations. 

The regression coefficients and their variance-covariance estimators can be obtained 

from the score equations 
 

0










wL

 and   


1

)(


 wCov , where    






















 




w

w

L
E

2

. 

It is not sufficient to account for the unequal probability of selection to estimate the valid 

variance components in analyzing complex survey data. Clustering and stratification in 

complex surveys should also be taken into account because the sampling units may be 

correlated to each other [30]. A consistent variance-covariance matrix of parameter estimates 

can be obtained using Taylor expansion of  


G  at 
̂

 , where   


 





 wL

G  [30].  Binder 
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proposed the theory of variance estimation using Taylor expansion for model parameter 

estimates based on complex survey data [30]. The variance estimator of  
̂

 is 

     













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
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
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

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


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






 T

G
V

G
V









 









1

ˆ
                                                                           (2.5) 

The square roots of the diagonal elements of   







̂

V are called the “robust standard errors” 

[31]. 

Variance estimators of parameter estimates are important to determine the quality of 

estimation of population parameters, and standard errors of parameter estimates can be 

obtained from the variance estimators. Standard errors of parameter estimates are used to 

determine the confidence intervals of parameter estimates. In complex survey data, it is 

complicated to estimate the valid sampling variance because of complexities such as 

clustering, stratification and unequal probability of selection of complex survey data. 

Analytical methods such as the Taylor linearization method and re-sampling methods such as 

jackknifing, balanced repeated replication (BRR), and bootstrapping are the main techniques 

used to estimate the variance estimators of parameter estimates. Re-sampling methods are 

easier to apply to complex survey data than  the Taylor linearization method for determining 

the standard errors [28]. In the Taylor linearization method, the computation of the partial 

derivative of the log-likelihood  function for certain parameters might  be difficult [28, 32].  

Re-sampling methods are often used to estimate the variance estimators of parameters. The 

jackknife re-sampling approach has fewer computational problems compared with the 

linearization method. The BRR re-sampling method provides consistently better variance 

estimation of parameters than do jackknifing and the linearization method [32]. 
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Among all the re-sampling methods (jackknifing, bootstrapping and BRR), bootstrap re-

sampling offered the best estimation of standard errors after taking into account the design 

features of complex survey data [7].  The bootstrap re-sampling technique was first developed 

by Efron  for independent and identically distributed (iid) data [33].  Rao and Wu proposed an 

extension of the bootstrap technique for complex survey data [28]. Rao, Wu and Yue modified 

the bootstrap technique for complex survey data so that it can take into account the design 

features and unequal probability of selection [34]. This modification of the bootstrap 

technique involved the scale adjustment of the survey weights [35]. The current bootstrap re-

sampling technique takes into account the effect of design features (stratification and 

clustering) and weight adjustments [7]. A bootstrap variance estimation technique was also 

proposed for multilevel modeling using the Rao and Wu bootstrap technique [36]. 

The bootstrap re-sampling method generates artificial data sets of the same size and structure 

as the original data set. Let 
*ˆ

b


 be the parameter estimator for both artificial data sets where 

b=1,2,3 ….B. 

The bootstrap variance estimator of  
̂

 is defined by 

2

1

* ˆˆ

1

1ˆˆ 










 










B

b

bBS
B

V 


                                                                                        (2.6) 

 where 



B

b

b
B 1

** ˆ1ˆ



 and B is the number of repetitions. 
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2.2.2 Longitudinal Complex Surveys 

In longitudinal complex survey data, sampling units are measured repeatedly over 

time. Analyses of longitudinal data are complicated compared to cross-sectional data because 

the repeated measurements obtained for a given subject are correlated. The estimation of 

parameters will be biased if the within-subject correlations are ignored. 

Generalized linear models (GLMs) were first introduced by Nelder and Wedderburn to fit 

observed data in which the distribution of outcome variables  belongs to an exponential family 

(e.g., normal, binomial, poisson and gamma) [18, 37]. The regression coefficients in GLMs 

are obtained from the maximum likelihood (ML) method [18, 38]. The distribution of 

outcome variables is necessary to determine the maximum likelihood (ML) function. The 

quasi-likelihood function, introduced by Wedderburn , is an alternative to the ML function in 

which it is not necessary to specify the distribution of outcome variables [37]. It requires only 

the relationship between the mean and the variance of the outcome [1, 37, 38]. 

Liang and Zeger  proposed the generalized estimating equations (GEE) as an extension of 

generalized linear models to analyze longitudinal data [14, 38, 39].  

The GEE approach is used mainly for marginal models based on the quasi-likelihood 

theory, which was introduced by Wedderburn [40]. Quasi-likelihood and pseudo likelihood 

are not the same function [40].  Bahadur first proposed the marginal model for discrete data 

that takes into account within-subject correlation based on likelihood inference [1, 38]. The 

GEE based on marginal models is widely used to analyze longitudinal data because it is not 

necessary to know the distribution of the outcome variable and it takes into account the 

within-subject correlations. The GEE is also used to analyze the clustered data, which takes 

into account the intra-cluster correlation, but it may provide overstated type I errors [41].  The 
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advantage of GEE is that the regression coefficient estimates are consistent and efficient, even 

though the within-subject correlation structure is specified incorrectly [14, 38, 39].  

Suppose  Tiriii yyyY ,....,, 21  is a  1r  vector of dichotomous response for the i
th

 

subject (i=1, 2,…, n)  where r  indicate the number of repeated measurements within i
th

 

subject  and   Tirii  ,...,1 denotes the mean vector for the i
th

 subject. The GEE is an 

alternative approach to standard likelihood equations for estimating parameter estimators [1, 

38]. The estimator 
̂

  of  


 can be obtained by solving the following set of score equations 

[1, 19, 39]: 

  0
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where 
T

i
iD




̂




 ,  i  is the mean function, 2

1
2

1

)( iiii AAV   is a working covariance 

matrix of the response variable  Tiriii yyyY ,....,, 21  vector of i=1, 2,…, n   individuals 

observed at the r
th

 occasion,  T
ipii XXX ,.....,1 is a matrix of covariates for individual i, p 

indicate the number of covariates, )]var(),.....,[var( 1 irii YYdiagA  , )()( ii Ycorr  is a 

working correlation matrix, and   is a vector of parameters associated with a specified model 

for corr(Yi).  The variance estimators of 
̂

 can be estimated by the following expression [1, 

31, 38]: 
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The above estimation is also known as the “sandwich” estimator. The variance of 
̂

 

obtained by the sandwich estimator is consistent [1, 31]. Statistical methods for Gaussian 

outcome variables are well established, but few statistical methods are available for non-

Gaussian outcomes [14]. 

 The GEE approach is widely used to analyze longitudinal survey data, especially data 

with discrete outcomes [1, 38]. The model-based GEE  approach does not take into account 

the effect of complex survey design (i.e., stratification, clustering, unequal probability of 

selection, etc.), but it does take into account the intra-class correlation. Liang and Zeger have 

shown that parameter estimates are asymptotically normal and consistent when the number of 

clusters increases [42]. Most software has implementations of the GEE approach and the 

sandwich estimator of variance-covariance matrix of 
̂

 ,  which makes it a very popular 

technique for discrete data [43]. The GEE approach has many robust properties for analyzing 

longitudinal data, but it has some drawbacks when analyzing longitudinal count data [44]. The 

most commonly used correlation structures are available, such as exchangeable (EXCH) or 

compound symmetry (CS), first-order auto-regressive (AR(1)), Toeplitz (TOEP), exponential 

and unstructured (UN) . There is no straightforward way to choose the working correlation 

structure, even though the GEE approach provides a consistent estimate of the regression 

parameters when the working correlation structure is misspecified. The working correlation 

structure, which provides smaller standard errors of parameters, might be the appropriate 

correlation structure [45]. The log-likelihood ratio test (LRT) can also be used to compare 
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between two nested correlation structures [38].  A recent study found that the efficiency of the 

parameter estimates obtained from the GEE approach can be affected by the choice of the 

working correlation structure [46]. The GEE technique needs to be modified in order to be 

utilized for statistical analysis of longitudinal complex survey data for the following reasons: 

stratification, clustering and unequal probability of selection of individual are common 

features of longitudinal complex survey data, including within-subject repeated 

measurements. Sampling units may not be independent because of the longitudinal complex 

survey design. The standard errors, confidence intervals and p-value obtained from standard 

computer software (SAS, STATA, SPSS) can be invalid because of a lack of independence of 

within-subject sampling units in longitudinal complex survey data [43, 47].  Rao introduced 

the quasi-score test for longitudinal survey data using Taylor linearization and jackknife 

methods, which take into account the complexities of the complex survey design [8].   

 Let the survey population of size M with S individuals be selected using a stratified 

multistage sampling design. Let h be the strata (h=1, 2,…., L), k be the cluster (k=1, 2, …., 

Kh), i denote the individuals and hki  denote the longitudinal weights to the i
th

 individual in 

the k
th 

cluster from the h
th

 stratum. The survey independent estimating equations (IEE) of 

estimators are [7, 48] 

  )(ˆ 1
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l
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






                                                                            (2.8) 

where Sl denotes the longitudinal sample. The survey GEE estimator proposed by Rao  is of 

the following form [8]: 
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The regression parameter estimators GEE
̂

 can be obtained from the survey GEE, which takes 

into account the effects of complex survey design. 

The variance of  GEE
̂

 can be consistently obtained at  GEE
̂

  using the following formula: 
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 . 

The survey GEE approaches have been used in several studies to analyze longitudinal 

complex survey data [48]. Wald and quasi-score tests were proposed by Rao  for longitudinal 

survey data using Taylor linearization and jackknife resampling methods, which were taken 

into account because of the nature of complex survey design, including within-subject 

correlation [8,48]. The formula for estimating variance is 
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where h denotes the h
th

 stratum, k denotes the k
th

 cluster within the h
th

 stratum and 
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2.3 Use of multilevel modeling–scaled weights  

In real-life multistage complex survey data, there is a hierarchical structure of 

population. For example, individuals are grouped within households, and households are 

grouped geographically. Repeated measurements of a subject are nested within-subject, and 

within-subject measurements might be correlated in longitudinal complex survey data. The 



 20 
 

dependency between subjects or within subjects or both between and within subject can occur 

frequently either in cross-sectional or longitudinal complex survey data because of complex 

survey design. The sampling units are not independent in complex survey data. Traditional 

statistical methods that are based on the assumption that sampling units are independent are 

not appropriate for analyzing complex survey data. To analyze large population-based 

complex survey data (cross-sectional or longitudinal), statistical methods should consider 

these dependencies between subjects and within subjects in the analysis stage.  Observations 

are assumed to be independent in traditional statistical methods, which might produce biased 

estimates of parameters in complex survey data analysis [49]. The idea and technique of 

analyzing multilevel data was first introduced by Mason et al. [107].  To analyze complex 

survey data, Goldstein  proposed multilevel models, which take into account the dependency 

among individuals as well as the sampling design effects of complex survey data [51].  

A number of statistical methods have been developed to analyze complex survey data 

with hierarchical structures. The multilevel modeling approach is a commonly used statistical 

method to analyze cross-sectional and  longitudinal complex survey data. Goldstein and 

Raudenbush have made significant contributions to expanding multilevel models for 

analyzing multistage complex survey data for linear outcomes [51].  Multilevel models are 

also suitable for discrete outcomes, such as binary and count complex survey data [52].  

The term ‘multilevel’ refers to the random variables in the model that vary between units at 

different levels of the hierarchy [49]. Randomization at the individual level provides more 

efficient estimates, i.e., smaller standard errors, smaller confidence intervals and more power 

[53]. Multilevel models are more flexible, and they provide variation between clusters and 

more efficient parameter estimators compared with traditional techniques [49]. The 
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individuals may not be independent within clusters in complex survey data, which contradicts 

the traditional model assumption of independence. Traditional methods (or naïve regression) 

ignore the dependency between individuals within a cluster [53]. In the multilevel modeling 

approach, parameter estimation can be biased if the number of level 1 units nested within level 

2  is relatively small [54]. 

In longitudinal complex surveys, there are repeated within-subject measurements, and 

the data can be unbalanced. The multilevel modeling approach can handle the more realistic 

missing-at-random (MAR) type, and it might provide unbiased regression coefficients and 

standard errors for regression coefficients in unbalanced data [53]. Cross-level interaction can 

also be analyzed by multilevel models.  The standard errors of parameter estimators will be 

smaller and the confidence intervals will be narrower when the dependency between 

individuals is ignored [13]. Longitudinal data has a hierarchical structure in which repeated 

measures can be nested within subjects and subjects can be nested within geographical area 

such as a PSU. Structural equation models (SEMs) based on the multilevel modeling approach 

can be used to analyze longitudinal complex survey data [9, 55]. Hierarchical linear models, 

random-intercept or random-coefficient models and variance component models are all known 

as multilevel models. In multilevel models, the response variable is measured at the lowest 

level and the explanatory variables can be measured at all levels. Multistage complex survey 

data arises routinely in different types of fields in which individuals are nested within higher 

levels. For example, in public health, patients are nested within physicians and physicians are 

nested within hospitals.  Multistage complex survey data may have two or more stages that 

correspond to the levels of the multilevel models. In order to take into account the unequal 

probability of selection and non-responses in samples obtained from complex survey data, 
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probability weights are required to be incorporated in statistical methods. The parameter 

estimates obtained from complex survey data can be severely biased if the sampling weights 

are ignored [56]. Weights that are usually available in publicly used complex survey data are 

not appropriate for multilevel modeling [57]. Unequal probability of selection of sampling 

units is a common feature of large, complex surveys.  Probability weight variables, derived by 

statistical methodologists, are used to take into account the effect of an unequal probability of 

selection and the non-response of individuals. It is necessary to have the probability weights 

for each level of complex survey data in order to use multilevel modeling techniques [6, 25].  

A probability-weighted procedure was revealed by Grilli and Pratesi for multilevel binary and 

ordinal models to reduce the biasing of parameter estimates based on the pseudo maximum 

likelihood approach [58].  The scaling of weights has a significant influence on parameter 

estimates and reduces computational problems such as convergence when using multilevel 

modeling techniques [57, 59]. Several studies have shown that the scaling of weights provides 

consistently better estimates of parameters, but no gold standard scaling method has been 

found for the scaling of weights [6, 57, 60].  The scaling of weights is an important tool for 

decreasing the bias in the estimation of parameters  [6, 25]. The ratio between two weights of 

individuals from different clusters can illustrate oversampling. If the ratio is a meaningful 

quantity, then scaling might be required [57]. In multilevel modeling based on multilevel 

pseudo maximum likelihood (MPML), scaling of individual weight levels (level 1) has an 

influence on parameter estimation but is independent of the scale of level 2 weights [6, 25].  

In multilevel data sampling, the units are no longer independent within and between 

levels. Multistage clustered survey sampling design is used in large health surveys, and the 

modeling of sampling design is the key issue in estimating the parameters from this type of 
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sample. Sampling units may not be independent within a cluster. Model-based analyses based 

on complex survey design provide a biased estimation of parameters [61]. The final sampling 

or single weights may not approximate the targeted population with the sampled population. 

Graubard and Korn pointed out that weighted estimation obtained from multistage complex 

survey data using between-cluster and within-cluster sample weights can be improved [61]. A 

multilevel modeling technique might be the appropriate approach to incorporate the 

probability weights for each level of complex surveys. 

The standard errors of parameter estimates have a special influence in making valid 

statistical inference. The impact of cluster sampling on standard errors was investigated by 

Skinner et al. for longitudinal complex survey data [42]. The findings from the study indicated 

that the standard errors of regression coefficients can be increased if the impact of the cluster 

in longitudinal surveys is ignored. The authors also suggested that if the impact of clustering 

represented by additive random effects in multilevel modeling is used to analyze longitudinal 

complex survey data, then standard errors can be underestimated. An alternative approach 

might be to use the GEE to handle the impact of clustering in longitudinal complex surveys. 

The survey sample selected from a hierarchical population using complex survey design 

cannot be considered an iid sample because of within-group and between-group correlations 

between sampling units. 

The probability of selection of a sampling unit cannot be equal at different levels of 

complex survey data. In order to analyze such data using a multilevel modeling approach, the 

probability weights for sampling units at different levels are required. For example, g  is the 

number of groups (i.e., number of PSUs) selected from G  groups and gs  is the collection of 

gn  sampling units selected from the thg  group. Let g be the probability weights for group-
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level units and gi|  be the conditional sample weights for individuals units. Both probability 

weights g  and  gi|  are required to analyze complex survey data, whereas only the final 

probability weights gi  are commonly available to use for analysis purposes in publicly 

available complex survey data. Kovačević and Rai  described this problem of obtaining the 

appropriate probability weights for sampling units at different levels and suggested that g is 

equal to 1 and gi  is equal to gi|  [55].  Asparouhov proposed the multilevel pseudo 

maximum likelihood (MPML) estimation method for multilevel modeling [57], which is an 

extension of pseudo maximum likelihood (PML) defined by Skinner  MPML is a two-level 

version of the PML estimator. Missing data can be handled by MPML, with the standard 

missing-at-random (MAR) assumption.  The MPML method produces unbiased parameter 

estimation, including asymptotic covariance [57]. Several factors have an impact on parameter 

estimation in multilevel models: cluster sample sizes, informativeness of within-level weights, 

unequal weighting effects and intra-class correlation (ICC). Kovačević and Rai  have shown 

that if  ICC decreases, then biasness of parameter estimates increases [55]. This finding was 

also supported by Asparouhov  [57]. The computational burden increases when the number of 

random components increases in random-effects or multilevel models. 

           Weighted estimation using multilevel models is approximately unbiased with larger 

cluster sizes but severely biased with smaller clusters [57]. The estimation of parameters is 

more influenced by individual unit levels. This means the probability of inclusion of 

individuals at each level depends on the response, which may provides the bias estimators of 

the parameters in standard maximum likelihood estimates [57]. 
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Let yik be the observed  vector of the response variable in cluster  k=1, 2,….., K of 

individual i=1, 2,…., nk and  xik and xk be the individual level  which indicated level 1 and the 

cluster level which indicated level 2 covariates, respectively. The level 2 random effect is ηk 

in cluster k. Let ),,|( 1kikik xyf and ),|( 2 kk x  denote the density function of yik and ηk, 

respectively and  21, 


 be the vector parameters where 1  indicate individual and 2  

indicate cluster level parameter. The sampling weights for the cluster level and the individual 

level are 
k

k
p

1
   and 

ki

ki
p |

|

1
 , where kp  and kip |  are the probability of selection at the 

cluster level and the individual level, respectively. The MPML can be defined using the 

sampling weights of each level as follows: 
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where ks1   and ks2  are the scaling constant in level 1 and level 2, respectively [57]. Variance 

estimators can be obtained by the asymptotic covariance matrix as follows: 
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kk , where ´ and ˝ indicate the first and second derivative of 

the weighted log-likelihood )log(lL    [57]. 

 

 

2.4 Monte Carlo Simulation Technique 

 

Simulation techniques are often used to test particular hypotheses, to assess the 

performance of statistical methods and to identify the true estimation of parameters using 

computer software [62, 63]. Simulation technique is a numerical method for conducting the 

experiments based on hypothetical data generated by computer-based software [6, 62, 64]. 
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Researchers commonly perform the simulation studies to  (i) assess  the properties of 

parameter estimators, (ii) determine  sample sizes, and (iii) test  various hypotheses to 

establish the confidence levels of the results obtained from the analysis of data using statistical 

methods [62, 65, 66]. Almost half of the articles in the Journal of the American Statistical 

Association (JASA) used simulation techniques to accomplish their objectives [65]. 

Simulation studies are widely conducted to assess the performance of a variety of statistical 

methods in literature [21, 63, 66, 68]. Monte Carlo simulation study is a popular simulation 

technique that was first studied by De Forest and Stigler (1987), who described Monte Carlo 

simulation in detail [69]. The usages of the Monte Carlo simulation technique are rapidly 

expanded because of the widespread availability of computer software. It became an important 

tool in the development of statistical theory. For example, if the properties of a statistical 

theory or formula could not be proven analytically, then the Monte Carlo simulation technique 

would be used to assess the properties of that method.  

The third objective of the thesis is to assess the performance of the multilevel 

modeling–scaled weights technique and the standard regression–robust variance estimation 

technique to analyze cross-sectional complex survey data. The RANTBL function in SAS
®
 

program is commonly used to generate categorical data and the power of statistical methods 

are assessed based on the analysis of the generated data [65]. RANBIN and RANPOI are also 

used to generate categorical data from binomial and poisson distributions  respectively in the 

SAS
®
 program for simulation purposes [67].  Up to date analyzing complex survey data by 

utilizing two different statistical methods (MM-SW technique and SR-RV estimation 

technique) does not provide the answer to the question adequately which method performs 
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relatively better. In order to answer this question the simulated data is generated and analyzed 

utilizing the both statistical techniques.  

 

2.5 Epidemiology of type 2 diabetes 

Type 2 diabetes is a complex chronic condition that occurs when the body does not 

produce enough insulin or the body cannot properly use the insulin it does produce. There are 

different types of diabetes, such as type 1, type 2 and gestational. The most common type of 

diabetes is type 2, which is usually developed among adults. Type 2 diabetes is also known as 

non–insulin-dependent diabetes. Type 2 diabetes is associated with many life-threatening 

complications. The most common long-term complications are kidney disease, eye disease, 

cardiovascular disease (which lead to heart attack and stroke) and diabetic neuropathy (of the 

feet and lower limbs) [70]. Diabetes is a global epidemic with devastating human, social and 

economic consequences. It was estimated by the International Diabetes Federation (IDF) in 

2007 that 246 million people were suffering from diabetes, and the expected number of 

diabetic people will be 380 million by 2025 worldwide.  According to an IDF report in 2007, 

the prevalence rate was highest in the Eastern Mediterranean and Middle East Region (9.2%), 

followed by the North American Region (8.4%). The prevalence of type 2 diabetes was 

increasing rapidly worldwide. At least 3.8 million deaths occurred directly linked to type 2 

diabetes-related causes, including cardiovascular disease. A huge amount of money was spent 

for treatment of type 2 diabetes globally [70]. Type 2 diabetes was the fifth leading cause of 

death worldwide [70]. Type 2 diabetes is one of the most important causes of medical 

expenditures, disability and lost economic growth worldwide. 
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The etiology of type 2 diabetes is not yet completely known.  Studies in India, West 

Algeria, United Arab Emirates, Qatar, Iran and Brazil reported that the associated risk factors 

for type 2 diabetes are income, age, smoking status, education, occupation, body mass index, 

waist circumference, ethnicity and lack of physical activity [15, 71-76]. A study in the USA 

reported that the prevalence of type 2 diabetes among rural African-American residents was 

higher than among urban residents [77]. The prevalence of type 2 diabetes is increasing 

rapidly all over the world as well as in Canada [17, 73]. The health care costs for diabetic 

people is substantially higher in Canada [78]. In 1996, type 2 diabetes was the cause of death 

for 5,447 Canadian adults (2,701 males, 2,746 females) [17]. The expected prevalence of type 

2 diabetes is 2.4 million by the year 2016 in Canada [16].  Canadian studies have reported that 

the prevalence of type 2 diabetes was higher among the less educated and in lower earning 

groups [74].  Studies in Canada have shown that aboriginals are more likely to have type 2 

diabetes compared with non-aboriginals. The National Diabetes Surveillance System (NDSS) 

reported in 2005–2006 that approximately 1.9 million Canadians have type 2 diabetes, with 

prevalence rate is 5.9%. Among Canadian adults, the death rate was two times higher for 

those with diabetes than for those without type 2 diabetes, according to an NDSS report. A 

study in Canada indicated that the age-adjusted mortality rates increased from 12  to 18  

deaths per 1000 [17]. Type 2 diabetes is the 7
th

 leading cause of death in Canada [17].  

The prevalence of type 2 diabetes varies by country, area (rural/urban), and gender.  Limited 

research has been conducted to determine the prevalence, incidence and trends in type 2 

diabetes among the Canadian population. The potential risk factors for type 2 diabetes are sex, 

age, location of residence (urban/rural), BMI (body mass index), socioeconomic status, 
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physical activity, education level, etc. Further research is needed to identify the relationship 

between these risk factors and the prevalence or incidence of type 2 diabetes.  
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CHAPTER 3 

METHODS 

Multistage complex surveys are often used to collect data on a large scale to reduce the 

cost, time and travel of data collection, but this increases the complexity of the statistical 

analysis [101] . Clustering, stratification, multiple stages of selection, and unequal probability 

of selection are common features of complex survey design [2]. Statistical methods should 

take these features into account to obtain valid parameter estimates. Researchers have 

frequently used standard regression–robust  variance (SR-RV) estimation techniques and 

multilevel modeling–scaled  weights (MM-SW) techniques to analyze complex survey data. 

Both statistical techniques take into account the design effects of complex survey design in 

order to determine the unbiased parameter estimates. However, the ways in which these two 

statistical methods take into account these design effects at the analysis stage are different. A 

few studies have been conducted to determine the advantages and disadvantages of standard 

regression–robust  variance estimation technique and multilevel modeling–scaled  weights 

technique in order to analyze multistage complex survey data, but no definite conclusions 

have been drawn [10, 12].  

The primary goal of this thesis was to compare the SR-RV estimation technique with 

the MM-SW technique after taking into account the common features of complex survey 

design, including weight adjustments. In this chapter, the standard regression–robust variance 

estimation technique (i.e., Taylor linearization and bootstrapping) and the multilevel 

modeling–scaled weights technique are discussed in detail.  
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3.1 Statistical methods to accomplish Objective 1  

To explore the usage of the multilevel modeling–scaled weights technique and the 

standard regression–robust variance estimation technique to analyze cross-sectional complex 

survey data.  

 

3.1.1 Standard regression for cross-sectional complex survey data 

Let  nyyyY ,...,, 21  be the vector the response variable and  ipiii xxxx ,...,,,1 21


 

denotes  the covariates for the i
th

 individual where  i=1,2,3,…, n,. Let the response variable of  

interest yi be dichotomous (0 or 1) where ‘0’ represents ‘has no disease’ and ‘1’ represents 

 ‘has disease’,  the probability of  yi  having a value of 1 is i .  

The logistic regression models with n data points can be written as 

Logit  ]|1[Pr ii xy
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 = log 
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ix                                                                          (3.1) 

where  
p ,.....,, 10


 is the vector of the regression coefficients. 

 

3.1.1.1 Parameter Estimation 

The maximum likelihood estimation (MLE) technique is used to estimate the 

regression parameters.  The log likelihood function for a binary outcome can be written as  

   )(1ln)1()(ln 
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where 
)exp(1

)exp(
)(




 



i

i

i
x

x
xF


  and S is the set of all observed individuals. 
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            The vector of the regression coefficients  
p ,.....,, 10


 can be estimated from 

the p likelihood equations, which are obtained by differentiating the log likelihood function 

(3.2) with respect to the regression coefficients. The set of score equations are as follows:  
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The regression coefficients and their variance and covariance estimates can be obtained from 

the score equations 
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The pseudo likelihood function is a special type of likelihood function. The sampling 

weights for sample elements are required to construct the pseudo likelihood function. Let i  

be the sampling weights for the i
th

 individual. The log pseudo likelihood function can be 

written as   
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 . The vector of the regression coefficients  

p ,.....,, 10


 

can be estimated from the p likelihood equations or the score equations, which are obtained by 

differentiating the log pseudo likelihood function with respect to the regression coefficients. 

The set of score equations are as follows:  
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 The regression coefficients and their variance and covariance estimates can be 

obtained from the score equations 0
)(

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3.1.1.2 Variance-covariance estimation 

It is essential to estimate the correct standard errors to make valid inferences because 

they play a key role in testing the null hypotheses. Ignoring design effects may lead to 

underestimation of the standard errors of parameter estimates and consequently to the 

inaccurate rejection of the null hypotheses.  

The standard errors will be large and the confidence intervals will be wide if the 

effects of stratification are ignored when analyzing complex survey data [1, 2]. The standard 

errors will be small and the obtained results will often be significant if the effects of clustering 

are ignored in multistage complex survey data [2].  Taylor linearization and resampling 

methods (i.e., jackknifing, balanced repeated replications (BRR) and  Rao-Wu bootstrapping) 

are commonly used to estimate the variance of parameter  estimators, which are discussed in 

detail in sections 3.1.1.2.1 and 3.1.1.2.2. 
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3.1.1.2.1 Taylor linearization  

Let  


L  be a smooth function of  

p ,...,,, 210
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function. The variance can be obtained by linearization using a Taylor expansion of  
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Ĝ  at 


̂

 , where  


 







L
G )(ˆ   .  Binder presented the theory of variance estimation using 

Taylor expansion for complex survey design [30]. Let 
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Ĝ  at 
̂

 , where 


 is the regression parameter vector value. 
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Taking the variance both sides of (3.6), we obtain 
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Stratum and PSU identifiers are not commonly available in publicly used data files for 

confidentially reasons; these identifiers are required for variance estimation.  

 

3.1.1.2.2 Bootstrap variance estimation 

Bootstrapping is a re-sampling technique that produces artificial simple random 

sampling data from observed data with the same sample size [33]. Rao, Wu and Yue  [28] 

extended the bootstrap procedure for multistage complex surveys; their approach can take into 

account the design features (i.e., stratification, clustering). The bootstrap variance estimation 

procedure derived from the following steps is used to determine the variance of parameter 

estimates for multistage complex survey data. 

Step 1: Let the total number of bootstrap independent samples from the observed sample be B 

(for example, B=500) and the bootstrap weights can be calculated for each sampled unit with 

the replacement of Kh-1 clusters from Kh sampled clusters for each stratum by 

hkihk
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1
                                                                                                          (3.8) 

where  hkm*  is the number of times the (hk)
th 

 cluster appears. 

Step 2:  Replace the bootstrap weights )(bhki with the sampling weights in the estimating 

equations or the score equations and calculate the bootstrap estimate *ˆ
b


 where b=1,2,...,B. 

Step 3: Repeat step1 and step2 B times, and calculate the bootstrap estimates  
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Step 4: Obtain the bootstrap variance estimators for  
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 [7] with the following equation: 
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3.1.2 Multilevel models for cross-sectional complex survey data 

Multilevel models are often used to analyze multistage complex survey data when 

clustering, stratification, and unequal probability of selection are involved. The responses can 

be correlated because of the unobserved heterogeneity between clusters, which should be 

taken into account in order to make valid statistical inferences. In multistage complex survey 

data, the sample units may not be independent within a cluster or between clusters. In this 

thesis, the response variable is binary. The logistic random-intercept model or the logistic 

random-coefficient model can be used to analyze complex survey data based on multilevel 

pseudo maximum likelihood (MPML). We may require the sample weight for each level to 

analyze multistage complex survey data. The unequal probability of selection is taken into 

account using the sampling weights of individuals at each level of multistage complex survey 

data. Parameter estimates obtained from the analysis of complex survey data can be severely 

biased if the sampling weights are ignored [56].  

Let us consider the binary response variable yik, which was measured at the lowest 

level in hierarchical data structures and ikx


 , which is the explanatory variable on the i
th

 unit in 

level 1 within the k
th

 unit in level 2.  Let  ikx


      be the vector of covariates, and let  


 be the 

vector of fixed regression coefficients.  Let  2

k
)
 be the random effects varying over clusters k,  

where    ),0~2  k  . A two-level generalized linear mixed model with linear predictors can 

be defined as  
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Logit     2)2(,|1 kikikkikik xxxypr 


                                                                         (3.10) 

The following two types of multilevel models are commonly used for binary outcomes: 

i) Multilevel logistic random-intercept models, discussed in section 3.1.2.1. 

ii) Multilevel logistic random-coefficient models, discussed in section 3.1.2.2. 

 

3.1.2.1 Multilevel logistic random-intercept models 

The models in which the overall level of response is considered to vary over clusters 

after adjusting for potential covariates are known as multilevel random-intercept models.  

Consider the multilevel (two-level) logistic random-intercept model for unit i (level 1) within 

the cluster k (level 2). For example, in the Canadian Heart Health Survey (CHHS), level 1 is 

an individual and level 2 is a primary sampling unit (PSU), also known as a cluster. The 

multilevel logistic random-intercept model is [25] 

Logit    2,|1Pr kikik xy 


  

        ik  

         2

kikx  


 

       )2(

22110 ... kpikpikik xxx    

         pikpikikk xxx   ...2211

)2(

0                                                                   (3.11) 

where  )2(

k are the random intercepts and are considered random variables. The effects of 

unobserved heterogeneity can be represented by the random parameters 
)2(

k , with  ikk x|)2(  ~ 

 ,0N . The random intercepts )2(

k   are independent across the level 2 units. The random-

intercept model is assumed to capture the combined effects of the fixed effects  


  and the 
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random effects )2(

k . The random-intercept models are parallel to each other because of the 

constant slope  


 for every model.  

 

3.1.2.2 Multilevel logistic random-coefficient models 

The models where the overall level of response and the effects of covariates are 

considered to vary over clusters after controlling for covariates are known as multilevel 

random-coefficient models.  Consider the multilevel (two-level) logistic random-coefficient 

model for unit i (level 1) within the cluster k (level 2). As mentioned above, in the CHHS, 

level 1 corresponds to an individual and level 2 corresponds to a PSU. The multilevel logistic 

random-coefficient model is as follows [25]: 

Logit    2,|1Pr kikik xy 


  

         ik  

         )( 2

kikx  


 

       pikkikkkpikpikik xxxxx )2(

1

)2()2(

22110 ......    

                 pikkpikkikkk xxx )2(

2

)2(

21

)2(

1

)2(

0 ...                        (3.12) 

where  ikx


 are uncorrelated with )2(

k and  )2(

k  are independent across level 2 units (k).The 

term ikk x
)2(  indicates the interaction between the clusters and the covariates. The random 

intercept and the random slope have a bivariate normal distribution with a mean of zero and a 

covariance matrix   .  
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3.1.2.3 Parameter Estimation for the Multilevel Model 

3.1.2.3.1 Maximum Likelihood Estimation (MLE) 

Let 


 be the vector of regression parameters. The usual marginal maximum log-

likelihood function can be written as 

  )2()2(

1

)2(

1

)()|(logexplog

)1(

kk

n

i

kik

K

k

dgyfL
kj














 







                                                  (3.13) 

where      ,0~)2( Nk  and   )( )2(

kg   is the normal density function. 

In multistage complex surveys, the probabilities of selection of units at the corresponding 

levels are unequal. The usual maximum log-likelihood estimates are biased without taking 

into account the unequal probability of selection [6]. The pseudo maximum log-likelihood 

algorithm can accommodate the probability weights and reduce the bias of parameter 

estimates. 

 

3.1.2.3.2 Multilevel Pseudo Maximum Likelihood (MPML)  

Let us consider the two-stage sampling design in which πk (k= 1, 2, …,K) is the 

probability of selection of a level 2 unit and  πi|k (i=1, 2, ….., n
(1)

) is the probability of 

selection of the i
th

  unit  in level 1 within the k
th 

 cluster in level 2. Let ωk = 1/ πk and  ωi|k = 1/ 

πi|k  be the inverse probability of selection of the k
th

 unit in level 2 and the i
th

 unit in level 1 

within the k
th

  unit in level 2, respectively. The multilevel pseudo log-likelihood can be 

defined [6] as  

  )2()2(

1

)2(

|

1

)()|(logexplog

)1(

kk

n

i

kikki
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k

k dgyfL
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


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







 







                                           (3.14) 



 40 
 

where )( )2(

kg   is the normal density function,    ,0~)2( Nk  and 


 is the vector of 

parameters.  

         The probability weights of units for each level are incorporated in the above multilevel 

pseudo maximum log-likelihood algorithm. The level 1 weight can be varied between 

elementary units, and the parameter estimates can be biased. The scaling of level 1 weight has 

an effect on the estimates of the regression coefficients and their variances, especially when 

the responses are binary [57]. The likelihood function  which is the joint probability of 

responses with given all potential covariates does not have a closed form in generalized linear 

mixed models, and approximate methods are required to evaluate it. A procedure is described 

in the next section. 

 

3.1.2.3.3 Adaptive Quadrature 

The likelihood function generally does not have a closed form in generalized linear 

mixed models. It is often complicated to estimate parameters from the likelihood function 

because of the intractable integral. The Gauss–Hermite quadrature approach is commonly 

used to maximize the likelihood function. In random-effects models, the computational burden 

increases when the number of random components increases [79]. This technique provides 

biased estimates with large cluster sizes [25]. The alternative of Gauss–Hermite quadrature is 

the adaptive quadrature approach, which consists of scaling and translating the quadrature 

locations. 

       Let  knkk k
yyyY ,...,, 21  be the vector of response and kx


 be the vector of covariates. 

The likelihood function—the joint probability of all responses, given the covariates—is  
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   



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kknkk xyyyprL
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1

21 |,...,,


                                                                                   (3.15) 

where  

 kknkk xyyypr
k


|...,, ,21  =     )2()2()2(

2,1 ,0;,|,..., kkkkknkk dgxyyypr
k




                       (3.16) 

and     
 



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The normal density function of )2(

k  is   ,0,)2(

kg , with a mean zero and variance  . 

The right hand side of Equation (3.15) can be approximated by a sum of R terms with re (r = 

1, 2,…, R) for )2(

k  and by replacing r  with   ,0,)2(

kg :  

 kknkj xyyypr
k


|...,, ,21  = rrkkkn

R

r

kk exyyypr
k

 ),|,...,,( )2(

1

21 



  

where  re  and r  are the Gauss–Hermite quadrature locations and the weights respectively.        

The locations are rescaled and translated as rqqrq ebae  , where qa  and qb are cluster-

specific constants. These transformations go along with the weights r , which also depend on 

qa  and  qb . The adaptive quadrature approximate approach uses the GLLAMM procedure in 

STATA. The probability weights of units for each level are incorporated in the above 

multilevel pseudo-likelihood algorithm. The level 1 weights can vary between elementary 

units, and the parameter estimates can be biased. The scaling of level 1 weights has an effect 

on the estimates of the regression coefficients and their variances, especially when the 

responses are binary [57]. 
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3.1.2.3.4   Relationship between regression coefficients obtained from multilevel 

modeling and standard regression 

 

The relationship between the regression coefficients obtained from multilevel models 

(random-effects models) and standard regression can be defined as
23.01 





 ml

sr ,  

sr  is estimated using a marginal model (standard regression)  , ml  is estimated using a 

random-effects model (multilevel modeling)  and  2 is  estimated between-subject variation 

[38].  The above relationship indicates that regression coefficient estimates can be higher in 

the multilevel modeling–scaled weights technique than in the standard regression–robust 

variance estimation technique.  If the between-subject variation ( 2 ) is higher, then the 

regression coefficient estimates ( ml ) obtained from the multilevel modeling–scaled weights 

technique will be almost always higher than the regression coefficient estimates ( sr ) 

obtained from the standard regression–robust variance estimation technique. 

 

3.1.2.3.5 Scaling of weights 

The purpose of scaling is to reduce the bias of parameter estimators [57]. There are 

several types of scaling methods available for the scaling of level 1 weights [6].  

Method 1:   

Let ki| be the level 1 weights. The scale factors are defined as 








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ki
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)1(
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|

1

|
)1(

1

)(
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. The scaling 

of weights is equal to ki
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k a |
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

 , 
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where  1,...,2,1 ni   denotes  level 1 units  and Kk ,...,2,1  denote the level 2 units. 

Method 2:   

The scaling factor 
kkna
|

)1(1

   sets the apparent cluster size 
a

k|  equal to the actual 

cluster size 
)1(

kn . 

Method 3: 

The new level 2 weights are created as k

n

i

kik

j

 




)1(

1

|

*
, and the level 1 weights are 1

*

| ki . 

 

3.1.2.4 Variance estimation 

3.1.2.4.1 Sandwich estimator of the standard errors 

The form of the covariance matrix can be defined [6] as  

  11cov  JII


                                                                                                              (3.17) 

where I  is the Fisher information matrix and 
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where 


 is the vector of the parameters and the pseudo log-likelihood function is  
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The gradient of the pseudo log-likelihood function is the sum of the independent 

clusters:
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where q  denote the level. 
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Let  hktS  be the weighted score vector of  the top-level unit t in stratum 

),...,2,1( Hhh   and cluster  ),...,2,1( hKkk   where hkNt ,...,2,1  individuals within stratum 

h  and cluster k . The gradient of the pseudo log-likelihood can be written as 
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After taking stratification and clustering into account, the covariance matrix will be [6] 
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The statistical methods used to analyze the data based on complex surveys are shown in the 

flow chart in figure 3.1. 

 

3.1.3 Goodness-of-fit test for logistic regression 

A logistic regression model is used to determine the probability of an event (type 2 

diabetes) for a dichotomous (yes, no) outcome as a function of the covariates. It is necessary 

to investigate how well the predicted logistic regression model fits the data after fitting a 

logistic regression model. The goals of the goodness-of-fit test are to see whether the model 

fits the observed data adequately and to describe the association between the outcome and the 

potential risk factors. The goodness-of-fit that is measured based on residuals tests the overall 

differences between the observed and fitted values. The small differences between the 

observed and fitted values indicate that the model fits observed data adequately.  Any 

conclusions or results obtained from the regression analysis might be incorrect or misleading 
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if the goodness-of-fit test for the estimated model is not performed. Several methods are 

available to assess the goodness-of-fit test for the predicted logistic regression model. The 

Hosmer–Lemeshow goodness-of-fit test is commonly used to assess the model fit, but it is not 

implemented in all publicly used statistical software programs for survey data. The F-adjusted 

mean residual test is implemented in STATA for survey data. The F-adjusted mean residual 

test procedures are discussed below. 

 

3.1.3.1 Goodness-of-fit test for survey sample 

Let iky  be the observed outcome for the i
th

 individual within the k
th

 primary sample 

unit (PSU) and  )(ˆ
ikx  be the predicted values. The residuals )(ˆˆ

ikikik xyr  , which are the 

differences between the observed and predicted values, will indicate the lack of fit. Small 

differences between the observed and predicted values indicate a better fit. In this approach, 

the observations are grouped into deciles based on their estimated probabilities. Let 

)ˆ,...,ˆ,ˆ(ˆ
1021 MMMM   be the vector of estimates of the mean residuals, where 


k i

ikik

k i

ik rM  /ˆˆ
1  for the smallest 10% of the ikr̂  values, 


k i

ikik

k i

ik rM  /ˆˆ
2  for the second smallest 10% of the  ikr̂  values, and 

krM
i k

ikik

k i

ik   /ˆˆ
10 for the largest 10% of the ikr̂ values. Here, ik represents the 

sampling weights for the indicated deciles of risk. The F-corrected Wald statistic  can be  

defined as W
fg

gf
F

)(

)2( 
 , which is approximately F-distributed with 1g  numerator 

degrees of freedom and 2 gf  denominator degrees of freedom [80]. Here, f  represents 
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the number of sampled clusters minus the number of strata, g  (here g=10) represents the 

number of categories, and   )ˆ()ˆ(ˆˆˆ 1 MMVMW gg

T 

 , which is also known as the Wald test 

statistic [80]. The variance-covariance matrix    ggMV 
ˆˆ   can be obtained based on first-order 

Taylor series approximation.
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                             Figure 3.1 Flow chart of statistical methods used to accomplish Objective 1  
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3.2 Statistical Methods to accomplish Objective 2 

3.2.1 Standard regression for longitudinal complex survey data 

Longitudinal studies are great resources for understanding the development of disease 

among individuals. Genetic, environmental, social, and behavioral factors are common sources of 

heterogeneity among individuals who develop diseases. Longitudinal studies can help determine the 

change in health outcomes among individuals over time. The primary goal of longitudinal studies is 

to determine the longitudinal changes over time in the outcome variables of interest and the 

associated risk factors. Repeated measurements of responses for the same individuals over time are 

a special feature of longitudinal studies. The repeated measurements of responses for the same 

individual can be correlated. Between-individual heterogeneity, within-individual biological 

variation, and measurement errors can be sources of variability that contribute to correlations 

between pairs of response measurements for the same individual. Statistical methods should take 

into account the within-individual correlations among repeated measurements of responses, 

including the effect of complex survey design (i.e., stratification, clustering and unequal probability 

of selection) to obtain valid parameter estimates. There are several statistical methods available to 

analyze longitudinal complex survey data. The MM-SW  technique and the SR-RV  estimation 

technique are commonly used to analyze longitudinal complex survey data. Both statistical methods 

take into account the effect of complex survey design, including within-subject correlations. 

The second objective was to compare the MM-SW technique and the standard regression–robust 

variance estimation technique to analyze longitudinal complex survey data.  In this section, we have 

discussed the MM-SW technique and the SR-RV estimation technique in detail. 
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3.2.1.1. Marginal models for binary outcome 

The special characteristic of a longitudinal study is the repeated measurement of responses 

for the same individual over time, whereas a single measurement is taken per individual in a cross-

sectional study. The repeated measurements of responses for the same individual are not 

independent, which should be taken into account when fitting longitudinal data. Marginal models 

are one of the standard regression techniques used to fit longitudinal complex survey data.  

Marginal models, an extension of generalized linear models (GLM), are commonly used to 

analyze longitudinal data. Marginal models determine the mean response, depending on the 

covariates of interest, and are also known as population-averaged (PA) models. The advantage of 

marginal models is that no distributional assumptions are required for the vector of responses [1]. 

The usual likelihood function is not useful for estimating parameters because of the need to avoid 

distributional assumptions in the vector of responses. Generalized estimating equations (GEE) based 

on the quasi-likelihood function are an alternative to the usual likelihood equations and can be used 

to estimate the regression parameters without knowing the distribution of the response vector [38, 

81].  

In longitudinal data, the vector of  response variable and the  vector of covariates for each 

individual are defined as:  Tirii YYY ,....,1  (i=1, 2,…, n) and  T
irpiririr xxxX ,...,, 21 = 
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 (i=1, 2,…, n;   r=1, 2,…, R), respectively, 

where r=1,2,…,R denotes  the number of repeated measurements within individual  i=1,2,…,n. 
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The response variable of interest iY could be continuous, binary or count. Let n be the observed 

number of individuals repeatedly measured over time. The main purpose of marginal models is to 

make inferences about the population mean of the response vector as conditioned by the vector of 

the covariates and the within-individual correlation from repeated measurements. The general 

specification of a marginal model for longitudinal data is that the conditional expectation of each 

response    iririr XYE |  can be connected with the vector of covariates by using appropriate link 

function   


ir
T

irir Xg  ,  where  T
p ,...,,, 210


 is the vector of regression 

coefficients. The variances of each response irY , given covariates irX , are defined as  

)()|( iririr vXYVar  , where   is known as the scale parameter, which may be known or need to 

be determined, and the variance function  irv   depends on the mean responses. The last 

component of marginal models is the within-subject association due to the repeated measurement of 

responses from the same individual, and it can be determined by the covariance matrix. 

In this thesis, our response variable of interest ir  is binary (0, 1), where ‘0’ represents ‘failure’ and 

‘1’ represents ‘success’. The probability of  ir  with value ‘1’ (success) is ir , i.e., 

iririrE  )1Pr()(  . 

The marginal models are specified by the following logistic regression models: 

logit it
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log)]1[Pr(                                                                  (3.19) 

where r=1, 2,…, R (occasions) and i=1, 2,…., n (individuals), 
T

s


is a vector of stationary 

covariates, 
T

t


  is a vector of time-varying covariates, isX   is a design matrix of stationary 

covariates and itX     is a design matrix of time-varying covariates. The variance of the response 
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depends on the mean response, i.e., )1()( iririrVar   .  The within-subject association can be 

defined by an appropriate covariance structure. 

 

3.2.1.1.1 Generalized Estimating Equations (GEE)  

In marginal models, a distributional assumption for the response variable of interest is not 

required. An alternative estimating equation for usual likelihood equations is required because of the 

avoidance of the distributional assumption of the response variable. Generalized estimating 

equations (GEE) are the alternative estimating equations in marginal models for estimating 

parameters when analyzing longitudinal data [81].  

The generalization and extension of the usual likelihood function for univariate responses by 

incorporating the covariance matrix of the vector of responses for longitudinal data is the main 

reflection of GEE for generalized linear models (GLM). The association among the repeated 

measurements depends on the mean response ( ir ) and the correlations between pairs of responses 

for the same individual. The covariance matrix can be defined as 2

1

2

1

)( iiii ACorrAV  , where iA  is 

a diagonal matrix with )1()()( iririri vVar    and )( iCorr   is the correlation matrix. 

Let the survey population of size M with S individuals be selected using a stratified 

multistage sampling design. Let h be the strata (h=1, 2,…., H), k  be the cluster (k=1, 2, …., Kh), i 

denote the individual’s index and hki  denote the longitudinal weight to the i
th

 individual in the k
th 

cluster from the h
th

 stratum. The survey GEE estimator proposed by Rao  is the solution of the 

following equation: 

    0)()(ˆ)()(ˆ 21121






 


hkihkihkihki

Shki

T

hkihkiGEE YARADU
l

                                   (3.20)  

where Sl denotes the longitudinal sample. 
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The regression parameter estimators GEE
̂

 can be obtained from the survey GEE, which 

takes into account the effects of complex survey design. The generalized estimating equations 

(GEE) have no closed form with the non-identity link function (i.e., logit for binary response). 

Iterative methods are required to determine the regression coefficients GEE
̂

. The iterative procedure 

can be defined as  
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                                               (3.21) 

Estimated regression coefficients  GEE
̂

 obtained by the GEE approach are consistent even if the 

covariance structure is selected incorrectly [1]. 

 

3.2.1.1.2 Variance estimation  

(i) Sandwich variance estimators  

As mentioned above, the standard errors of the regression coefficients 
̂

 play a major role 

in determining the p-value and confidence interval (C.I.) of 
̂

. The p-value and the confidence 

intervals are used to test the null hypotheses. Therefore, unbiased standard errors of 
̂

 are 

necessary to make a valid inference. The sandwich estimator is commonly used to estimate the 

variance of the regression coefficients 
̂

.  This approach provides valid standard errors (SE) of 
̂

 

even if the models and the covariance structure are specified incorrectly [1, 14, 38].  The sandwich 

estimator can be expressed as  
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where 








 i

iD , 2

1

2

1

)( iiii ACorrAV  , and  iriri  |1 . 

3.2.2 Multilevel modeling–scaled weights (MM-SW) 

Longitudinal data can be treated as two-level clustered data in which the repeated 

measurements are nested within individuals. The individuals are clusters, and the repeated 

measurements are units within the cluster in longitudinal data. The clusters or individuals can be 

nested within super clusters in longitudinal studies, which can be treated as three-level clustered 

data. For example, in the National Population Health Survey (NPHS), the repeated measurements 

(units) of the responses are nested within individuals and individuals are nested within primary 

sampling units (PSU = super cluster). The repeated measurement of responses within the same PSU 

may be correlated and may be more correlated within an individual for the same PSU.   

The statistical methods chosen for analysis should take into account within-cluster dependence 

when analyzing longitudinal data. We have already discussed multilevel (two-level) modeling for 

cross-sectional complex survey data in section 3.1.1.2. The additional feature of longitudinal data is 

the repeated measurements of responses for the same individual, making it three-level clustered 

data. 

Let us consider the dichotomous (yes, no) response variable  riky   for three-level clustered 

data (longitudinal) that is measured at the lowest level in the hierarchical data structure and let  rikx  

be the explanatory variable for the r
th

 unit in level 1 within the i
th

 unit in level 2 within the k
th

 unit in 

level 3. Three-level generalized linear mixed models with linear predictors can be defined as 

follows [25]: 

Logit    ),,|1 )3()2()3()2(

krikikrikrikkikrikrik xxxxypr 


                                                  (3.23) 

       Let  )2(

ik  and )3(

k be the random effects varying over clusters i within super-clusters k and over 

super-clusters k, respectively. 
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The following two types of multilevel models are commonly used: 

i) Multilevel logistic random-intercept models.  

ii) Multilevel logistic random-coefficients models. 

 

3.2.2.1 Multilevel logistic random-intercept models 

The multilevel (three-level) logistic random-intercept models, in which units r (level 1) are  

nested within clusters i (level 2) and clusters i (level 2)  are nested within super-clusters k (level 3),  

can be defined as follows:  

Logit   )3()2( ,,|1Pr kikrikrik xy 


  

                            )3(2

kikrikrik x  


 

                                     prikprikrikrikkik xxx   ...2211

32

0                                  (3.24) 

where ζik
(2)

| xrik, ζk
(3)

, ~ N(0, ψ
(2)

)  are varying over level 2 within level 3  and  ζk
(3)

| xrik ~ N(0, ψ
(3)

) 

are varying over level 3 . The model assumes that the random effects ζik
(2)

  and ζk
(3)

  are independent 

of each other and across clusters, and ζik
(2)

  is also independent across units. For example, in the 

National Population Health Survey (NPHS) longitudinal data, repeated measurements r (level 1 

units)  are nested within-individual and individuals i (level 2 units)  are nested  within-PSU  k (level 

3 units) . 

 

3.2.2.2 Multilevel modeling random-coefficient models 

With the same notation, the multilevel (three-level) logistic random-coefficient model can be 

defined as  

Logit      32 ,,|1Pr kikrikrik xy 


  

  )3()3(2)2(

krikikrikrikrik xxx 


   
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                                                                                                                                                      (3.25) 

  

3.2.2.3 Multilevel pseudo maximum likelihood (MPML)  

The multilevel pseudo maximum likelihood (MPML) function for three-level clustered data 

is an extension of the multilevel pseudo maximum likelihood function for two-level clustered data. 

Let us consider the three-stage sampling design for longitudinal complex survey data, where  πk 

(k=1, 2,…, n
(3)

) is the probability of selecting a level 3 unit, πi|k (i= 1, 2, …, n
(2)

) is the probability of 

selecting a level 2 unit within level 3,  and  πr|i,k (r=1, 2, ….., n
(1)

) is the probability of selecting the 

r
th

  unit  in level 1 within the i
th 

 cluster in level 2 within the k
th

  super-cluster in level 3. Let  ωk = 1/ 

πk, ωi|k = 1/ πi|k and  ωr|i,k = 1/ πr|i,k  be the inverse probability of selecting the k
th

 unit in level  3, the 

i
th

 unit in level 2 within the k
th

 unit in level 3, and the r
th

 unit in level 1  within the i
th

  unit in level 2 

within the k
th

 unit in level 3, respectively. The multilevel pseudo maximum log-likelihood function 

can be defined [6] as 
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where  )(*

ikg   and )( kg   are the normal density functions of ik   and k , respectively, and 


 is 

the vector of the parameters.  

 

3.2.2.4 Scaling of weight 

The scaling of weight methods were discussed in Section 3.1.2.3.4 in detail. The same 

scaling methods will be used to scale the weight for longitudinal complex survey data. 
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3.2.2.5 Variance estimation 

The sandwich estimator technique is used to estimate the standard errors (SE) in multilevel 

modeling when analyzing longitudinal complex survey data. We defined the sandwich estimator 

technique in section 3.1.2.4.1 in detail. 

 

3.2.2.6 Goodness-of-fit test 

Akaike’s Information Criterion (AIC) is commonly used as a model-selection criterion. AIC 

is based on the maximum likelihood estimate (MLE) in which the distribution of the outcome is 

known. Generalized estimation equations (GEE) are based on the quasi-likelihood method. 

Therefore, AIC is not appropriate to use as a model-selection criterion for GEE models utilized to 

analyze longitudinal complex survey data. Wei Pan  proposed the QIC (quasi-likelihood under 

independent criterion) method as a goodness-of-fit test for models based on the GEE approach [82].  

The QIC method can be used for selection of any general working correlation structure based on 

quasi-likelihood. The QIC(I) are constructed based on quasi-likelihood under the working 

independent correlation structure (I), and the QICu(R) [QICu(R) ≡ –2Q( ̂ (R); I, D) + 2p, where p is 

the number of parameters in the model]  are constructed  based on quasi-likelihood under a general 

working correlation structure (R) other than the independent structure. For model selection, the 

smaller values of QICu(R) indicate that the models fit the data adequately. If the QICu(R) 

approximates the QIC, then the GEE model fits the observed data perfectly.  



 57 
 

Figure 3.2 Flow chart of statistical methods to accomplish Objective 2  
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3.3 Statistical methods to accomplish Objective 3 

Statistical methods are developed based on certain theoretical assumptions. The efficiency 

and the power of statistical methods depend on those theoretical assumptions. If the data meet all 

the theoretical assumptions, then statistical methods can provide a valid and efficient estimation of 

the parameters estimates from analyses of the survey data [103]. If the data do not meet the 

assumptions, then the validity of the parameters estimates is not guaranteed. Consequently, the 

inferences will be invalid based on the analyses of such data. Complex survey data, including cross-

sectional and longitudinal data, have many complicated features, such as stratification, clustering 

and unequal probability selection of sampling units. It is necessary to take into account the effects of 

these design features to estimate the reliable parameter estimates from the complex survey data. The 

MM-SW technique and the SR-RV estimation technique are frequently used to analyze complex 

survey data and,   these both statistical techniques are taking into account the complicated features 

of complex survey data. 

The aim of the third objective of my thesis is to investigate which statistical method is 

appropriate  to analyze the cross-sectional complex survey data. The Monte Carlo simulation study 

is frequently used to assess the power of statistical methods which might be  the best tool for 

comparing the performance of  these two  statistical methods. It is not possible to assess the 

performance of statistical methods from the analysis of single real-life data due to some limitations. 

As a result, computer-based simulated data might be the best choice for assessing the performance 

of statistical methods. The generation of random numbers is the main part of a simulation study. The 

availability of statistical software has increased the utilization of Monte Carlo simulation studies. 

My primary goal is to compare the following two statistical techniques: 

(1) Multilevel modeling–scaled weights technique and   

(2) Standard regression–robust variance estimation technique 
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based on analysis of  the simulated cross-sectional complex survey data. These two statistical 

techniques are also used to analyze the real life Canadian Heart Health Survey (CHHS) data to 

assess and compare the performance of these two statistical techniques. A Monte Carlo simulation 

study was conducted to generate simulated data with 100 and 1000 number of replications using 

SAS
®
 software program and the sample size of each data set is 1,731. Both statistical techniques 

were applied to analyze each of these simulated data, and the two statistical techniques were 

compared based on the results of the analyses of these simulated data.  

 

3.3.1 Monte Carlo Simulation Technique 

Generating random numbers and simulating samples of random variables from a given 

probability distribution are the main parts of the simulation study [62].  Random numbers are 

generated by SEED in the SAS
®
 software program. SEED can be defined as follows: a non-negative 

pseudo-random integer with values less than 2
31

–1, generated by the random number function and 

call routines, is called SEED.  SEED is necessary to execute the call routine [65, 67]. 

After generating the sequences of random numbers, these random numbers are transformed to 

simulate a sample of random variables with the given probability distribution. The RANTBL 

functions are used in the SAS 
®
 software program to simulate a sample of random variables from 

the given probability distribution for a categorical variable. The RANTBL functions are defined as 

follows.  

The RANTBL (SEED, P1, P2, P3, …, Pn, X) function updates SEED and generates a random 

variable from the probability mass function using the given probability P1, P2,…., Pn. The inverse 

transformation method is used to simulate the discrete probability distribution of a probability mass 

function. The probability mass function for i
th

  random samples can be defined as 
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where 1
1




n

i

iP ,  nPPPP ,...,, 21 is a vector of probabilities, and n is the largest integer such that n 

is less than or equal to the size or dimension of P. 

 

3.3.2 Monte Carlo Simulation Technique using the CHHS 

The Canadian Heart Health Survey (CHHS) is a cross-sectional complex survey data which 

was conducted on 1986-1992 among ten Canadian provinces. The total numbers of participants 

were 23,129 from ten Canadian provinces. For simplicity, the data only for the Saskatchewan 

province from the Canadian Heart Health Survey were used to conduct the Monte Carlo simulation 

study for this thesis. The sampling design for the simulated data was similar to the Canadian Heart 

Health Survey for the Saskatchewan province. The data collection procedures and sampling design 

for CHHS were discussed in detail in Section 4.1.  

The sample size for the data obtained from the Saskatchewan province was 1,731. Hence, 

the sample size for each of the simulated datasets was 1,731. The response variable of interest was 

the type 2 diabetic status (yes, no), where “yes” means people who had type 2 diabetes and “no” 

means people who did not have type 2 diabetes. The covariates were body mass index (˂25 kg/m
2
, 

≥25 kg/m
2
) and education level (<secondary,   >= secondary) for this simulation study.   

The primary sampling unit (PSU), the probability weight and 500 bootstrap weights  for each 

participant were available in CHHS. The stratification based on area of residence (rural, urban), sex 

(male, female), age group (18–44years, 45–64 years, and 65 years and above) and PSU level were 

used to calculate probability weight and 500 bootstrap weights in the CHHS. These probability 

for i=1, 2, 3,…..,,n 
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weight and 500 bootstrap weights were computed by methodologists in statistics Canada. The 

combination of area, sex, age group, and PSU level were used to generate the simulated data 

according to Saskatchewan data.  The probability weight for each participant from the CHHS was 

used with the combination of area, sex, age group and PSU level for each of  the simulated data sets.  

The 500 bootstrap weights for each participant in the Saskatchewan data were also used with the 

combination of area, sex, age group and PSU level for each of the simulated data sets. The detail 

generating procedures of simulated data based on Saskatchewan data were discussed in section 4.3. 

The outcome variable of interest was type 2 diabetic status (yes, no) , and the covariates were  body 

mass index (˂25 kg/m
2
, ≥25 kg/m

2
)  and education level (<secondary, ≥ secondary).  The covariates 

were generated randomly using the SEED and RANTBL functions in the SAS
®
 software program.  

In order to generate the simulated data using the RANTBL function in the SAS
®
 software program, 

the proportion of each category of each covariate was required.  The proportion for each category of 

each variable was obtained from the Saskatchewan data  to generate the simulated data. The SEED 

and RANTBL functions were discussed in section 3.3.1.  

A total of  100 and 1000 Monte Carlo simulated data sets were generated  based on the 

above setup in SAS
®
 software program separately. The reasons of generating two groups (100 and 

1000) of simulated data with different numbers of replications were to compare the performance of  

MM-SW technique and SR-RV estimation technique as well as to determine the effects of number 

of simulations on parameter estimates. The number of replications is one of the key criteria of the 

Monte Carlo simulation study. It is commonly known that the higher number of replications provide 

usually consistent and precise parameters estimates [100].  To my knowledge, a limited number of 

studies have provided the formula or general criteria to determine the number of 

simulations/replications required for a simulation study. Burton et al.  demonstrated the following 

formula to calculate the approximate number of replications for a simulation study [99]. 
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                                                                                                                       (3.28) 

where   denotes  the level of accuracy, 2   denotes  the variance of regression parameter and 

21 
  is the  21   quintile of the standard normal  distribution.  This formula was used to determine 

the approximate number of replications for this simulation study. The standard regression–robust 

variance estimation technique and the multilevel modeling–scaled weights technique were applied 

to analyze each simulated dataset in STATA. The scaled weight was used in multilevel modeling 

which was discussed in section 3.1.2.3.4. Both statistical techniques were used to analyze two 

groups of simulated datasets separately and evaluated based on following criteria (Table 3.3.1).  
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Table 3.3.1: The statistical formula for the assessment criteria [99] 

Assessment criteria Formula 

Bias of regression coefficient 
truesimu   ˆ  

Relative or percentage bias 

of regression coefficient 

 

100
ˆ














 

true

truesimu




 

Standardized bias 

of regression coefficient 

 

100
)(

ˆ













 

true

truesimu

SE 


 

Means square error (MSE) 

of regression coefficient 

 

 2
2

)(ˆ
simutruesimu SE  





   

Coverage of true regression  

coefficients 

Proportion of times the 95% Confidence 

interval  

 i

simu

i

simu SE  
ˆˆ

2/1   

For i=1,2,3,…,B 

Average 95%  confidence  

interval length 

Relative efficiency                                                      

 
B

SEZ
B

i i  1 2/1
ˆ2 

 

RE )ˆ,ˆ( srml     
)ˆvar(

)ˆvar(

sr

ml




  

 

Note: true    and  
B

B

i

i

simu

simu

  1

ˆ
ˆ


       denote the true value and simulated average value of regression  

coefficients respectively, where B denotes the number of simulations.   
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           The statistical method with less bias, smaller MSE, narrower length of 95% C.I., higher 

coverage of the observed or true regression coefficients in the corresponding  simulated 95% 

confidence intervals obtained from the analysis of simulated data can be considered as a  better 

method. Estimation was performed in the standard regression–robust variance estimation technique 

using the “logit” function with probability weight and 500 bootstrap weights in STATA. Estimation 

was performed in the multilevel modeling–scaled weights technique  by “GLLAMM” with 12-point 

adaptive quadrature in STATA. 
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CHAPTER 4 

DESCRIPTION OF THE POPULATIONS OF STUDY 

4 Introductions 

 Datasets, especially in public health, are valuable sources of information, and these datasets 

provide many types of information, such as disease information, area level measurements, disease 

status, and reasons for the development of disease, which can be very useful for applied researchers.  

Both the Canadian Heart Health Survey (CHHS) and the National Population Health Survey 

(NPHS) are huge datasets and provide unique health information about Canadians.   

Datasets from the Canadian Heart Health Survey (CHHS) and the National Population Health 

Survey (NPHS) were used to accomplish Objective 1 and Objective 2, respectively. Detailed 

descriptions of the CHHS and the NPHS are provided in sections 4.1 and 4.2. The CHHS data set 

was also used to generate simulated data to accomplish the objective 3 which are revealed in section 

4.3. 

 

4.1 Cross-sectional complex survey data: CHHS 

The Canadian Heart Health Survey (CHHS) is a population-based survey that was conducted 

to determine the status of cardiovascular disease (CVD) at the provincial and national levels in 

Canada [83]. This study was collaboratively conducted by the Heart and Stroke Foundation of 

Canada, Health Canada and the Provincial Department of Health in each province. The primary 

objective of this survey was to determine the prevalence of CVD risk factors, the knowledge and 

awareness levels of CVD causes and the consequences of CVD among Canadian. The CHHS 

consists of two sets of integrated data: core information collected by all ten provincial surveys and 

family history (i.e., father, mother, brothers, sisters, etc.) related to heart disease collected by only 

four provinces—Quebec, Ontario, Saskatchewan and Alberta. 
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4.1.1 Study design 

In the CHHS, a multistage stratified probability sampling design was used to select 

independent samples at each province in Canada. The survey was conducted among all Canadian 

provinces, and each province was divided into rural, urban and metropolitan areas. Urban areas 

were stratified into numbers of urban strata based on their population sizes, and rural areas were 

stratified by standard geographic areas (e.g., census division, health units), which were called rural 

stratum. The number of stratum from urban strata and rural strata were selected using probability 

proportional to size (PPS) in each province. Each of these selected areas was further stratified into 

six age/sex (male, female, 18–34 years, 35–64 years, 65–74 years) stratum in each province, and 

independent simple random samples (SRS) were drawn from each stratum. Municipalities, counties, 

census lots, census districts or health units were defined as primary sampling units (PSU).  PSU was 

selected using probability proportional to size (PPS). 

 

4.1.2 Probability weight 

Two probability weights were calculated by statistical methodologist for each participant 

within each province to adjust for the unequal probability of selection and non-responses at the 

home interview (PWGTQ) and clinic visit (PWGTC). The PWGTQ probability weights were used 

for information collected at home interviews and the PWGTC probability weights were used for 

information collected during clinic visits. The PWGTC probability weights were used for analyses 

of the information collected jointly during both home interviews and clinic visits. The following 

formulas were used to calculate these probability weights. 
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The formula for the probability weight (PWGTQ) for respondent from at home interviews 

was [83]: 

phair

pi

pi
phair

P

P *

ˆ 

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









                                                                                                                   (4.1) 

The formulas for the probability weight (PWGTC) for respondent from   both at home interviews 

and clinic visits was [83]: 

phair
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phair t

P

P
t *

ˆ 












                                                                                                                     (4.2) 

where   

p - Province, h- stratum, a- area, i – age/sex group, r – number of replicates from age/sex group, 

phairN    - Number of persons on the medical insurance registers (MIR) of province “p” in stratum 

“h” area “a” and age/sex group  “i”; 

phairn  - Number of persons selected from province “p”; 

phairm  - Number of persons out of ( phairn ) responded to the home interview; 

phairs  - Number of persons out of ( phairm ) came to the clinic; 

pha  - First stage selection probability factor for area “ a ” selected from stratum “h” and province 

“p”; 

piP  - Statistics Canada population estimates (closest to the survey date) of province “p” by age/sex 

“i”; 

piP̂  - Estimate of  piP  from the survey; 

r  - Number of replicates selected from age/sex group “i”; 

    
phairphaiphaphair mN /*    
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4.1.3 Study population 

All male and female participants (23,129), aged 18–74 years, were recruited from ten 

Canadian provinces. In this thesis, the total 21,021 participants from nine Canadian provinces 

(except Nova Scotia) were included. The reason for excluding Nova Scotia was that the location of 

the residence for participants from this province was not recorded.  The people who were living on 

Indian reserves, in military camps, and in institutions such as prisons were excluded from this 

survey. Participants who moved to a new address within the same area were included in the survey. 

 

4.1.4 CHHS data collection 

The CHHS data were collected into two phases, using the medical insurance registers (MIR) 

as a sampling frame from each province. In the first phase, participants were visited into their homes 

by public health nurses and interviewed with a questionnaire. This questionnaire collected 

information on cardiovascular disease (CVD) risk factors, on attitudes and opinions about heart 

health risk factors including basic demographic characteristics and on lifestyle (smoking, physical 

activity, alcohol intake). Information was also collected on chronic disease status, such as diabetic 

status and hypertensive status. Two blood pressure readings were taken at the time of the interview, 

one at the beginning and the other at the end of the interview. In the second phase, participants who 

were interviewed at home were invited to visit a clinic within two weeks after the home interview. 

After at least eight hours of fasting, blood pressure (systolic and diastolic), blood samples, and 

anthropometric measurements were obtained at the clinic visit. The total number of respondents 
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who were attended both the home and clinic visits was 23,129 from ten Canadian provinces. The 

response rates were approximately 77% for the home visit and 67% for both the home and clinic 

visits [83].  

 

Table 4.1 Sample size stratified by province 

Province Number of persons 

located 

Number of persons 

interviewed at home 

Number of persons 

who visited a clinic 

Newfoundland 3185 2394 2067 

Prince Edward Island 2318 2088 2026 

Nova Scotia 2735 2108 1798 

New Brunswick 2737 2093 1948 

Quebec 3052 2353 2095 

Ontario 3639 2538 2039 

Manitoba 3597 2766 2316 

Saskatchewan 2893 2158 1749 

Alberta 2739 2237 1993 

British Columbia 2960 2394 2064 

Total 29,855 23,129 20,095 

 

 

4.1.5 Outcome variable of interest 

The outcome variable of interest for our study was self-reported type 2 diabetes diagnosed 

by a physician or health-care professional. The outcome variable was a dichotomous (yes, no) 
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variable, where “yes” indicated a positive response and “no” indicated a negative response to the 

following question:  “Have you ever been told by a doctor that you have diabetes?”  

 

 

 

4.1.6 Risk factors of type 2 diabetes 

Based on the literature review, the potential risk factors that were available in the CHHS 

dataset and were considered for analysis were age in years, sex, location of residence, level of 

education, household income per year, marital status, employment status, physical activity, and 

body mass index. Detailed definitions of these variables are included below. 

Age in years:   

This variable indicates the age in years during the home interview of each participant in this 

study. The age variable was a continuous variable, and it was divided into three categories (18–44 

years, 45–64 years, and 65–74 years). Type 2 diabetes usually develops after the age of 40 and 

increases among older people. These age categories were made based on the literature review. 

Sex:  The sex of the participants was known from the demographic information. 

Location of residence (rural/urban): 

The location of the residence was a derived variable that was determined using the 

definitions of rural and urban areas provided by the Statistics Canada. Areas where 1000 or fewer 

people lived were called rural, and areas where more than 1000 people lived or the population 

density was 400 or more per square kilometer were called urban. 

Level of education: 

The education level variable represents the level of education for each participant in the 

CHHS. It was a categorical, derived variable and was further recoded into three categories for our 
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analysis: elementary (no schooling, elementary and some secondary), secondary (secondary school 

graduation, other post-secondary, some community college, and diploma/certificate: trade school), 

university (some university, diploma/certificate/CEGEP, bachelor’s degree, 

master’s/medicine/doctorate). The following question was asked: “What is the highest grade or year 

of school you have completed?” 

Household income per year: 

The household income variable described the total household income for each participant. It 

was a categorical variable and the categories were as follows: <$12,000; $12,000–$24,499; 

$25,000–$49,999; and >$50,000 per year. 

Employment: 

The employment variable illustrated the employment status of each participant. This was a 

categorical variable with the following categories:  full time (35 hours or more a week), part time 

(less than 35 hours a week)/student, unemployed/laid off, homemaker, and retired. 

Physical activity: 

The physical activity variable described whether or not the participants were involved in any 

physical activity once or more per week. The questionnaire for all provinces except Saskatchewan 

was similar. The physical activity variable was a categorical variable (yes, no), where “yes” meant 

the person engaged in physical exercise at least once a week and “no” meant the person did not 

engage in physical exercise. The following question was asked: “Do you regularly engage in 

physical exercise during your leisure time?  By regularly, we mean at least once a week during the 

past month”. 

Body mass index: 

The body mass index (BMI) variable was determined from the height and weight of each 

participant. It was calculated based on the following formula: 
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2metersinHeight

kilogramsinWeight
BMI .  The BMI was a continuous variable and was categorized into three 

groups for our analysis: normal weight (BMI<25 kg/m
2
), overweight (BMI≥ 25.0 kg/m

2 
 and < 30.0 

kg/m
2
) and obese (BMI≥30 kg/m

2
) [84]. 

 

4.2. Longitudinal complex survey data: National Population Health Survey (NPHS)  

The National Health Information Council (HNIC) first proposed conducting an ongoing 

national population health survey among Canadian populations in 1991, and Statistics Canada 

received funding to conduct this survey based on this recommendation in 1992. 

The NPHS was a cohort study consisting of longitudinal complex surveys on the same population 

that was commenced in 1994/95 by Statistics Canada [85]. It will continue every two years until 

2014. Longitudinal information on the health of the Canadian population and socio-demographic 

information was collected on those people who were selected in Cycle 1 (1994/95). The survey 

design for the NPHS was formed based on the Labor Force Survey (LFS) design. The questionnaire 

addressed health status, use of health services, determinants of health, chronic conditions, activity 

restrictions, and socio-demographics such as age, sex, education, household income, and labor force 

status.  

 

4.2.1 Study design 

         A stratified multistage sampling design was used to conduct the national population health 

survey (NPHS). The same sampling design was used for each province except Quebec.  In the first 

stage, each province was divided into three areas—major urban centers, urban towns and rural 

areas—and homogeneous strata were formed from each separate geographic and/or socio-economic 

stratum. The independent samples of clusters were selected using probability proportional to size 
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(PPS) from each stratum.  Six clusters were selected from each stratum. In the second stage, 

households were selected from the list of dwellings that was prepared from each selected cluster. In 

Quebec, the NPHS sample was selected from dwellings participating in a Santé Québec health 

survey in 1992/93, Enquête social et de santé (ESS). The survey sampled 16,010 dwellings using a 

two-stage sample design similar to other provinces. The province was divided geographically into 

15 health areas with four urban classes:  Montreal Census Metropolitan Area, regional capitals, 

small urban agglomerations and the rural sector. In each area, clusters were stratified by socio-

economic characteristics and selected using PPS sampling. Samples of dwellings were randomly 

drawn from each cluster. 
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Figure 4.1 The survey methodology for NPHS data. 

 

Province 

(Excluding 

Quebec) 

Major Urban 

Centers 

Urban Towns Rural areas 

Strata Strata Strata Strata Strata Strata 

Cluster 

Households 

Cluster 

Households 

Cluster 

Households 



 75 
 

4.2.2 Study population 

The target population of the household component included all residents in the ten Canadian 

provinces in 1994–95.  People who were living on Indian Reserves and Crown lands, who were 

residents of health institutions, were full-time members of Canadian Forces Bases and were in 

remote areas of Ontario and Quebec were excluded. 

The sample size of the longitudinal NPHS data was 17,276, with participants aged 12 to 99 years. 

No new participant was included after 1994–95. The sample size of the longitudinal study by 

province in 1994–95 and the number of participants that provided a full response to all six cycles 

are shown in Table 4.2.  

Table 4.2 Longitudinal sample size stratified by province 

Province Longitudinal Sample 

Cycle 1(1994–95) 

Number of respondents 

providing a full response in 

Cycles 1, 2, 3, 4, 5 and 6 

Newfoundland 1,082 768 

Prince Edward Island 1,037 746 

Nova Scotia 1,085  732 

New Brunswick 1,125  758 

Quebec 3,000 1,969 

Ontario 4,307 2,733 

Manitoba 1,205    868 

Saskatchewan 1,168    870 

Alberta 1,544  1,033 

British Columbia 1,723  1,116 

Total 17,276 11,593 

 

Note: Cycle1 = 1994-95, Cycle2= 1996-97, Cycle3 = 1998-99, Cycle4 = 2000-01, 

Cycle 5 = 2002-03, Cycle 6 = 2004-05, 
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4.2.3 NPHS data collection  

The NPHS collected socio-demographic information, such as age, sex, education, household 

income, labor force status, health status and use of health services. The NPHS started to conduct this 

survey initially with 19,600 households, with a minimum of 1,200 households in each province. The 

longitudinal survey did not include people who immigrated to Canada after 1994–1995. The NPHS 

has completed six cycles to date that are available for public use. The cycles are Cycle 1 (1994–95), 

Cycle 2 (1996–97), Cycle 3 (1998–99), Cycle 4 (2000–01), Cycle 5 (2002–03) and Cycle 6 (2004–

05). 

All participants aged 18 years and older were included in this study. This study was 

conducted based on questionnaires that were designed for computer-assisted interviewing (CAI).  

Participants were contacted by telephone. Proxy reporting was allowed for respondents who were 

less than 12 years of age; proxy reporting for those over 12 was allowed only for reasons of illness 

or incapacity.  The response rates of 17,276 panel members for each cycle are shown in Table 4.3. 

Table 4.3 Response rate for each cycle 

Cycle Response Rate 

Cycle1 86.0% 

Cycle2 93.6% 

Cycle3 88.9% 

Cycle4 84.8% 

Cycle5 80.6% 

Cycle6 77.4% 
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4.2.4 Probability weight 

Unequal probabilities of selection and non-response are the common features of longitudinal 

complex survey data.  Weighted data must be used to obtain valid estimates of parameters in 

complex survey data. The main role of weighting in complex survey data such as the NPHS is that 

each individual in the sample represents other individuals, including him- or herself. The estimate of 

parameters based on complex survey data cannot be meaningful without weighting. Weighting in 

longitudinal survey data represents the inverse of probability of selection of the individual analysis 

at the time of sample selection. In the NPHS, weighting represents the inverse of probability of 

selection of an individual who took part in cycle 1 (1994–95) but not in subsequent cycles. The 

probability weight in the NPHS was obtained by the post-stratifying cycle 1 stripped weights for the 

1994–95 population estimates based on a 1996 census count by age groups (0–11, 12–24, 25–44, 

45–64, 65 and older) and sex within each province. The post-stratification adjustment is given by 

the following ratio [85]:  

Population estimate in a province/age/sex category 

Sum of “stripped” weights of respondent household numbers in a province/age/sex category 

 

 

4.2.5 Outcome variable of interest 

The outcome variable of interest in our study was self-reported, professionally diagnosed 

type 2 diabetes. The outcome variable was a dichotomous variable (yes or no). The following 

question was asked of the participant: “Do you have any of the following long-term conditions that 

have been diagnosed by a health professional? – Diabetes”.  Here, “yes” indicated a positive 

response to this question, and “no” indicated a negative response to this question. 
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4.2.6 Risk factors for type 2 diabetes  

The possible covariates of our study, including confounding, were the following: age, sex, 

area, body mass index (BMI), education level, household income, physical activity, family history 

of type 2 diabetes (father or mother has diabetes), and cycle. These were expected to be independent 

risk factors for type 2 diabetes. All of these variables were available in the NPHS datasets. 

Confounders and effect modifiers for type 2 diabetes were also examined during the analysis.  

Age in years:  

This is a continuous variable that was collected every cycle during the interview period. The 

study population in our analysis included panel members who were 18 years and older at each cycle. 

The age variable was categorized into the following groups: 18–44 years, 45–64 years, and 65–75 

years. 

Sex:  

            The sex (male, female) of all participants in the NPHS data was known. 

Area (rural/urban)—Place of residence:  

Rural areas were defined as the areas where few than 1,000 people lived. Urban areas were 

defined as the areas where more than 1,000 people lived and the population density was 400 or more 

per square kilometer.  The urban areas included the urban core, the urban fringe and the urban area 

outside the census metropolitan area (CMA). The rural areas included the participants staying in a 

rural fringe or a rural area outside the CMAs.  

Body mass index (BMI):  

The body mass index was calculated based on the following formula: 
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2metersinHeight

kilogramsinWeight
BMI , where height and weight were self-reported.  Participants with a 

height of three feet or less or more than seven feet were excluded from this BMI calculation. The 

baseline BMI was a continuous variable and was categorized into three groups for our analysis: 

normal weight (BMI˂25 kg/m
2
), overweight (25.0 kg/m

2 
≤BMI < 30.0 kg/m

2
) and obese (BMI≥30 

kg/m
2
). These categories of BMI were made based on the Canadian guidelines for body weight 

classification in adults [86]. 

Household income per year:   

The household income variable represents the total household income from different sources 

of earning per year.  It was a categorical based on derived variable. This variable was recoded into 

four categories for our analysis: lowest income (0–$14,999/year), lower middle income ($15,000–

$29,999/year), middle income ($30,000–$49,999/year) and high income (≥$50,000/year). 

Education:  

The education variable represents the level of education for each participant. It was a 

categorical, derived variable and was further recoded into four categories for our analysis: 

elementary (no schooling, elementary and some secondary), secondary (secondary school 

graduation, other post-secondary, some community college, and diploma/certificate: trade school), 

bachelor’s degree and higher (some university, diploma/certificate/CEGEP, bachelor’s degree, 

master’s/medicine/doctorate). The following question was asked: “What is the highest level of 

education that you have attained?” 

Marital status:  

 This was a categorical variable indicating the present marital status for each participant, and 

it was further recoded into three categories:  widowed/separated/ divorced, never married/single, 
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and married/common law/living together. The following question was asked: “What is your current 

marital status?” 

Physical exercise:  

 This variable represents the frequency of all physical activities lasting more than 15 

minutes.  The categories of the variable were infrequent, occasion and regular. 

Father had type 2 diabetes: 

This variable represents the diabetic history of the father of the participants. The following 

question was asked of the participants: “Did your birth father ever have diabetes?” Father had 

diabetes (yes or no), where “yes” indicated a positive response and “no” indicated a negative 

response to this question. 

Mother had type 2 diabetes: 

This variable represents the diabetic history of the mother of the participants. The following 

question was asked of the participants: “Did your birth mother ever have diabetes?” Mother had 

diabetes (yes, no), where “yes” indicated a positive response and “no” indicated a negative 

response. 

   

4.3 Simulated data for Monte Carlo simulation technique 

For the Monte Carlo simulation study, it was required to generate the cross-sectional 

complex survey data to accomplish the third objective that was to assess the performance of the 

multilevel modeling-scaled weights  technique and the standard regression-robust variance 

estimation technique to analyze the cross-sectional complex survey data based on Monte Carlo 

simulation study.  The sampling design for the simulated cross-sectional complex survey data was 

similar to that of the sampling design of Saskatchewan survey. The complex survey design factors 

such as stratification, clustering, and unequal probability of selection have a significant effect on 
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parameter estimates.  The CHHS is a cross-sectional complex survey which was conducted among 

ten Canadian provinces. For simplicity I used only Saskatchewan data (a part of the CHHS) with 

sample size 1,731 for the  simulation study.  

For this simulation study, the outcome variable was type 2 diabetes (yes, no) where ‘yes’ means 

participants who had type 2 diabetes and ‘no’ means participants  who did not  have type 2 diabetes 

and only two independent variables body mass index(˂25 kg/m
2
, ≥25 kg/m

2
)  and education level 

(<secondary,  ≥secondary)  were used.  

It was necessary to determine the approximate number of replications for generating the  

simulated data.  The Monte Carlo simulation technique was based on a real life complex survey 

Saskatchewan data. The estimated regression coefficients and their standard errors obtained from 

the analysis of the observed Saskatchewan data were used to determine the number of replications 

using the equation (3,27). The estimated regression coefficients and their standard errors for two 

covariates (body mass index (˂25 kg/m
2
, ≥25 kg/m

2
)  and education level (<secondary,  

≥secondary)  were shown in the following table 4.4. The calculated 5% accuracy )( of 

corresponding regression coefficients (e.g. 5%*0.75945=0.0379725 for BMI) are also shown in 

Table 4.4. 

Table 4.4 The estimated number of replications based on observed parameter estimates and their 

standard errors and expected accuracy. 

Variables Parameter estimates (SE) 

( )( true ) 

5% accuracy  

)(  

Number of 

simulations 

)(  

Body mass index 

(BMI) 

˂25 kg/m
2
 (ref) 

≥25 kg/m
2
 

 

 

0.75945 (0.2073) 

 

 

0.0379725 

 

 

115 

Education level 

<secondary   

≥secondary (ref) 

 

0.4374059(0.3000) 

 

 

0.0218703 

 

 

723 
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          Based on the calculation of the approximate numbers of replications using the formula given 

in equation (3.27), 115 replications were required based on  the body mass index (˂25 kg/m
2
, ≥25 

kg/m
2
)  variable  and  723 replications were required based on  the education level (<secondary,  

≥secondary) variable to conduct a Monte Carlo simulation. Using these reflections I decided to 

generate two groups of simulated data sets, one with 100 replications and the other with 1000 

replications.  The simulated cross-sectional complex survey data sets with the 100 and 1000 

numbers of replications were generated using the following steps: 

 

4.3.1 Data set used for Monte Carlo simulation technique 

Saskatchewan data were extracted from the complete CHHS data set. The Saskatchewan 

data was sorted by area (rural, urban), sex, age groups (18-44 yrs, 45-64 yrs, 65 yrs and above) and 

PSU level (six levels). There were six PSU level in the Saskatchewan data. In order to create the 

weight file for only weight variables from Saskatchewan data, we sorted this data set by the 

combination of above variables. The probability weight and 500 bootstrap weights variables were 

calculated using the combinations of these variables.  

 

4.3.2 Creation of ‘weight’ data file 

A data file called ‘weight file’ was created only with probability weight variable and 500 

bootstrap weights for the Saskatchewan data. A new ID variable was created in the ‘weight file’ to 

merge with simulated data sets. The sample sizes for each simulated data sets and Saskatchewan 

data were same and they had unique identification number for each patient. The ‘weight file’ with 

weight variables (probability weight and 500 bootstrap weights) was linked later on with each 

simulated data set. 
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4.3.3 Generating simulated data with the combinations of area, sex, age groups and PSU level 

 

In this stage, the following steps were used to generate the simulated data: 

1) The proportions of each category of body mass index (˂25 kg/m
2
, ≥25 kg/m

2
)  and education 

level (<secondary, ≥secondary)  were estimated with the combinations of area (rural, urban),  sex, 

age groups (18-44 yrs, 45-64 yrs, 65 yrs and above) and PSU levels (six levels) from the 

Saskatchewan data.  

2) There were 44 such combinations of area (rural, urban) sex, age groups (18-44 yrs, 45-64 yrs, 65 

yrs and above) and PSU levels (six levels) in the Saskatchewan data 

3) Simulated data sets were generated based on each of these combinations using the obtained 

proportion for each category of each covariate.  

4) In order to augment each of these simulated data set with probability weight and 500 bootstrap 

weights, each of the simulated data sets was  linked with ‘weight’ file by the above combinations. 

For linkage process (see Figure 4.2). 

5)  For each of the 44 combinations, RANTBL (SEED, P1, P2, …,Pn, X) function in SAS
®
 was used 

to generate the simulated data (with 100 and 1000 numbers of replications ) for body mass index 

(˂25 kg/m
2
, ≥25 kg/m

2
)  and education levels (<secondary,  ≥secondary)   independently. The 

logistic regression was used to generate the outcome variable (type 2 diabetes (yes, no)) using body 

mass index (˂25 kg/m
2
, ≥25 kg/m

2
)  and education levels (<secondary,  ≥secondary)   as 

independent variables in the model. In this process,  first the linear predictor  was generated,  where 

initial intercept and initial regression coefficients for body mass index (˂25 kg/m
2
, ≥25 kg/m

2
)  and 

education level (<secondary,  ≥secondary)  were estimated from the analysis of observed 

Saskatchewan data using multilevel modeling – scaled weight technique and standard regression-

robust variance estimation technique separately, then the inverse link function was used to calculate 

predicted probability. Finally, the outcome variable of interest (type 2 diabetes) was constructed 
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using uniform (0,1) distribution. If the random number is less than predicted probability then the 

observation was defined as ‘1’ otherwise observation was define as ‘0’. This step was conducted 

based on two number of replications, One is for 100 replications and other one for 1000 replications. 

 

4.3.4 Creating the simulated data sets with 100 and 1000 number of replications 

One hundred simulated datasets, each of size 1,731, were obtained by appending the  

simulated data sets  obtained from  each of the 44 combinations with 100 replications.  

Similarly, One thousand simulated datasets, each of size 1,731, were obtained by  

appending the simulated data sets  obtained from  each of the 44 combinations with 

 1000 replications. 

 

4.3.5 Creating final simulated data sets after linking each simulated data with weight file 

 

After generating the simulated data sets, I merged each of simulated data  sets with the 

‘weight file’ which was created for weight variable  (see Figure 4.2).  The probability weight and 

500 bootstrap weights were available in Saskatchewan data. After completion of above steps, the 

two groups of  final simulated cross-sectional complex survey data were created:  one with 100 

number of simulations and other one with 1000 numbers of simulations. 
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Figure  4.2  Data linkage between simulated data and weight file  created from Saskatchewan data 
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41 19 …   …    …    41 19 …      

42 11 …   …    …    42 11 …      

43 25 1698 

… 

… 
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  1698 
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… 
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   1698 

… 

… 
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… 
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44 9 1723 

… 
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1731 
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1731 

   1723 
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1731 

   44 9 1723 
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  1731   1731    1731      1731      
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CHAPTER 5  

ANALYSIS OF RESULTS 

5.1 MODELS FOR CROSS-SECTIONAL COMPLEX SURVEY DATA 

The overall objective of this thesis was to compare the multilevel modeling–scaled weights 

(MM-SW) technique with the standard regression–robust variance(SR-RV) estimation technique for 

analyzing cross-sectional and longitudinal complex survey data.  

The first objective of this thesis was to compare the MM-SW technique with the SR-RV estimation 

technique based on an analysis of the cross-sectional Canadian Heart Health Survey (CHHS). 

The statistical modeling procedures based on the Canadian Hearth Health Survey (CHHS) using the 

MM-SW technique and the SR-RV estimation technique are discussed in this chapter. 

Characteristics of the study population and their descriptive analyses are described in sections 5.1.1 

and 5.1.2, respectively. The estimations of crude prevalence are discussed in section 5.1.3.  

The modeling approach for cross-sectional complex survey data (CHHS) and the comparison 

between the MM-SW technique and the SR-RV  estimation technique based on the obtained results 

are discussed in sections 5.1.4 and 5.1.5, respectively. Interpretations of the empirical results 

obtained from analyses of the CHHS are discussed in section 5.1.6. 

 

5.1.1 Study Population  

The Canadian Heart Health Survey (CHHS) datasets contain 21,021 participants from nine 

Canadian provinces. All male and female participants, aged 18 to 74 years, from the nine Canadian 

provinces were included in our analysis.  The people living on Indian reserves, in military camps, 

and in institutions such as prisons were excluded from this survey.  

The province of Nova Scotia was not included in the analysis because the variable ‘location 

of residence (rural or urban)’ was missing for this province. One of the objectives was to compare 
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the prevalence of self-reported type 2 diabetes (crude and adjusted) between rural and urban 

residents.  The total number of participants, stratified by self-reported type 2 diabetic status, from 

the nine Canadian provinces is presented in Table 5.1. The response for type 2 diabetic status is 

based on the question, “Have you ever been told by a doctor that you have diabetes?” The 

proportions of self-reported, physician-diagnosed type 2 diabetes were highest in Manitoba (7.2%), 

followed by Alberta (5.5%), Saskatchewan (5.4%), Quebec (5.2%) and Newfoundland (5.1%). 

Prince Edward Island (3.4%) had the lowest proportion of type 2 diabetes compared with the other 

provinces. 

Table 5.1 Number of participants with type 2 diabetic status in each province 

Provinces Un-weighted  Weighted  

 Type 2 

Diabetes 

 Type 2 

Diabetes 

 

 Yes (%) No (%) Yes (%) 

(95% C.I.) 

No (%) 

(95% C.I.) 

Newfoundland 123 (5.1%) 2271 (94.9%) 5.4% 

(4.8 – 6.2) 

94.6% 

(93.8 – 95.2) 

 

Prince Edward 

Island 

70 (3.4%) 2018 (96.6%) 4.1% 

(3.1 – 5.5) 

95.9% 

(94.5 – 96.9) 

 

New Brunswick 100 (4.8%) 1993 (95.2%) 5.5% 

(4.7 – 6.4) 

94.5% 

(93.6 – 95.3) 

 

Quebec 122 (5.2%) 2227 (94.8%) 4.9% 

(3.9 – 6.2) 

95.1% 

(93.8 – 96.1) 

Ontario 112 (4.4%) 2426 (95.6%) 4.0% 

(3.3 – 4.8) 

96.0% 

(95.2 – 96.7) 

Manitoba 200 (7.2%) 2566 (92.8%) 4.9% 

(4.1 – 5.8) 

95.1% 

(94.2 – 95.9) 

Saskatchewan 114 (5.3%) 2044 (94.7%) 5.4% 

(3.6 – 8.0) 

94.6% 

(92.0 – 96.4) 

Alberta 124 (5.5%) 2113 (94.5%) 4.9% 

(4.3 – 5.6) 

95.1% 

(94.4 – 95.7) 

British 

Columbia 

101 (4.2%) 2293 (95.8%) 4.4% 

(3.9 – 5.0) 

95.6% 

(95.0 – 96.1) 
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Proportions of type 2 diabetes in nine Canadian provinces
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Figure 5.1 Distribution of self-reported, physician-diagnosed type 2 diabetes among provinces from 

CHHS  

 

 

5.1.2 Descriptive Analysis 

The number of participants and proportions stratified by self-reported, physician-diagnosed 

type 2 diabetic status for each potential covariate are presented in Table 5.2. The proportions of 

male and female participants who were diagnosed with self-reported type 2 diabetes were 45.7% 

and 54.3%, respectively. Based on the self-reported type 2 diabetic status stratified by age group, 

the proportions of participants with self-reported type 2 diabetes were 27.6%, 26.9% and 45.5% for 

the age groups 18–44 years, 45–64 years and 65–74 years, respectively.  The proportion of 

participants with self-reported type 2 diabetes was higher among the age groups 45–64 years and 

65–74 years compared with the age group for younger participants (18–44 years). 
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Among the participants with self-reported type 2 diabetes, 38.5% of them lived in rural areas 

and 61.5% lived in urban areas.  Stratifying participants with self-reported type 2 diabetes by 

employment status,  23.3% of them were full-time workers, 9.4%  of them were part-time workers, 

23.9% of them were homemakers, 35.5% of them were retired, and 8.0% of them were unemployed.  

Of participants with self-reported type 2 diabetes, 14.9% of them attended or completed only 

elementary school, 75.7% of them attended or completed secondary school, and 9.4% of them 

attended or completed university. The proportion of self-reported type 2 diabetic participants was 

lowest among the participants with a bachelor’s degree or higher education. 

Stratifying the self-reported type 2 diabetes status by household income level indicated that 

about 37.3% of the participants reporting type 2 diabetes were in the household income level 

$12,000 to $24,999 per year, 31.1%  were in the household income level $25,000 to $49,999 per 

year, 17.2% were in the household income level $12,000  or less per year, followed by 14.4% in the 

household income level $50,000 or above per year. Among the participants who reported physician-

diagnosed  type 2 diabetes,  30.6% of them were in the normal weight group (BMI˂25 kg/m
2
), 

31.1% of them were in the overweight group (BMI = 25.0–29.9 kg/m
2
), and 32.0% of them were  in 

the obese group (>29.9 kg/m
2
). Of participants who had type 2 diabetes, 56.9% of them were 

involved in physical activity, and 43.1% of them were not involved in physical activity.  
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Table 5.2 The number of participants in each covariate, stratified by self-reported type 2 diabetic 

status 

 

              Un-weighted              Weighted 

               Diabetes              Diabetes 

 Yes (%) No (%) Yes (%) No (%) 

Sex 

  Male  

  Female 

 

487 (45.7%) 

579 (54.3%) 

 

9869 (49.5%) 

10082(50.5%) 

 

48.8% 

51.8% 

 

49.5% 

50.5% 

Age Groups 

  18–44 years 

  45–64 years 

  65–74 years 

 

294 (27.6%) 

287 (26.9%) 

485 (45.5%) 

 

13275 (66.5%) 

3415 (17.1%) 

3261 (16.4%) 

 

29.7% 

45.4% 

24.9% 

 

63.6% 

27.1% 

9.4% 

Location of 

Residence 

  Rural 

  Urban 

 

 

410 (38.5%) 

656 (61.5%) 

 

 

7340 (36.8%) 

12611 (63.2%) 

 

 

21.4% 

78.6% 

 

 

23.5% 

76.5% 

Employment 

Status 

  Retired 

  Part-time 

  Unemployed 

  Homemaker 

  Full-time 

 

 

378 (35.5%) 

100 (9.4%) 

85 (8.0%) 

254 (23.9%) 

248 (23.3%) 

 

 

2511 (12.6%) 

3226 (16.2%) 

1666 (8.4%) 

2815 (14.1%) 

9727 (48.8%) 

 

 

25.6% 

9.5% 

10.8% 

21.1% 

33.0% 

 

 

9.5% 

16.9% 

8.5% 

12.8% 

52.3% 

Education 

  Elementary 

  Secondary 

  University 

 

158 (14.9%) 

803 (75.7%) 

100 (9.4%) 

 

910 (4.6%) 

15750 (79.1%) 

3245 (16.3%) 

 

15.7% 

73.7% 

10.7% 

 

5.6% 

73.8% 

20.6% 

Household 

Income 

>$50,000(ref) 

$25,000–$49,999 

$12,000–$24,999 

<$12,000 

 

 

133 (14.4%) 

287 (31.1%) 

344 (37.3%) 

159 (17.2%) 

 

 

4685 (26.4%) 

6941 (39.0%) 

4475 (25.2%) 

1679 (9.4%) 

 

 

25.3% 

37.4% 

24.7% 

12.5% 

 

 

35.3% 

37.8% 

17.4% 

9.4% 

Body Mass 

Index(BMI) 

  BMI<25 

  BMI: 25.0–29.9 

  BMI>29.9 

 

 

278 (30.6%) 

340 (37.4%) 

291 (32.0%) 

 

 

8627 (50.4%) 

5913 (34.5%) 

2590 (15.1%) 

 

 

29.5% 

41.3% 

29.3% 

 

 

52.8% 

34.0% 

13.2% 

Physical Activity 

   Yes  

   No 

 

606 (56.9%) 

460 (43.1%) 

 

12513 (62.7%) 

7435 (37.3%) 

 

51.5% 

48.5% 

 

62.9% 

37.1% 
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5.1.3 Crude prevalence estimation  

The Canadian Heart Health Survey (CHHS), a population-based multistage complex survey, 

was conducted in ten Canadian provinces between 1986 and 1992. Nine Canadian provinces, except 

Nova Scotia, were included in the present study. Self-reported, physician-diagnosed type 2 diabetes 

was the outcome variable of interest in this study. A bivariate analysis indicated that the prevalences 

of self-reported, physician-diagnosed type 2 diabetes in nine Canadian provinces were not identical. 

The prevalence of self-reported type 2 diabetes in Newfoundland and Labrador (5.4%), New 

Brunswick (5.5%) and Saskatchewan (5.4%)  were  higher compared with the other provinces 

(Table 5.4).  Table 5.5 provides the prevalence of self-reported, physician-diagnosed type 2 diabetes 

stratified by location of residence (rural or urban) in each province. The prevalence of self-reported, 

physician-diagnosed type 2 diabetes was higher among the rural residents in Newfoundland (5.9%), 

Prince Edward Island (4.6%), Manitoba (6.5%), and Alberta (5.7%) compared with urban residents 

in the respective provinces. In contrast, the prevalence of self-reported type 2 diabetes was higher 

among the urban residents in Quebec (5.2%), Ontario (4.3%) and Saskatchewan (5.8%) compared 

with the rural residents in the same provinces. The overall prevalence of self-reported, physician-

diagnosed type 2 diabetes among urban residents (4.7%) was higher than among rural residents 

(4.2%) (Table 5.3). 

The prevalence of self-reported, physician-diagnosed type 2 diabetes stratified by the 

important covariates is described in Table 5.3. There was no significant difference in the prevalence 

of self-reported, physician-diagnosed type 2 diabetes between males and females.  Participants aged 

45 years and above had a higher prevalence of self-reported, physician-diagnosed type 2 diabetes 

compared with the participants aged less than 45 years. The retired (11.3%), homemaker (7.3%), 

and unemployed (5.7%) participants had a higher prevalence of self-reported, physician-diagnosed 

type 2 diabetes compared with the full-time employed (2.9%) participants (Table 5.3). 
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Participants with only an elementary school education had the highest prevalence (11.7%) of self-

reported, physician-diagnosed type 2 diabetes, followed by participants with secondary school 

education (4.5%). These two groups had higher prevalence of self-reported, physician-diagnosed 

type 2 diabetes compared with the participants with university education (2.4%). The prevalence of 

self-reported, physician-diagnosed type 2 diabetes was higher among the lower household  income 

(less than $25,000 per year) compared with the participants with household incomes of $49,000 and 

above per year. The prevalence of self-reported, physician-diagnosed type 2 diabetes was higher 

among the participants who were not involved physical activity (5.9%) compared with the people 

who were involved in  physical activity (3.7%) at least once a week. The prevalence of self-

reported, physician-diagnosed type 2 diabetes among obese (BMI>29.9 kg/m
2
) participants was the 

highest, followed by overweight (BMI=25–29.9 kg/m
2
) participants. These two groups had a higher 

prevalence of self-reported, physician-diagnosed type 2 diabetes compared with the normal weight 

(BMI<25kg/m
2
) participants.   
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Table 5.3 Self-reported type 2 diabetes prevalence (95% C.I.) for all potential covariates included in 

the model 

 

Covariates                             Type 2  diabetes                  

Yes (95% C.I.)                         No (95% C.I.) 

   Sex 

  Male  

  Female 

 

4.5% ( 3.6–5.8) 

4.6% (3.4–5.9) 

 

95.5% (94.1 – 96.6) 

95.4% (94.2 – 96.4) 

Age group 

  18–44 years 

  45–64 years 

   65–74 years 

 

2.2% (1.8–2.7) 

7.4% (6.2–8.8) 

11.2% (9.6–13.0) 

 

97.8% (97.3 – 98.3) 

92.6% (91.2 – 93.8) 

88.8% (87.0 – 90.4) 

Location of Residence 

  Rural 

  Urban 

 

4.2% (3.4–5.0) 

4.7% (4.1–5.2) 

 

95.8% (95.0 – 96.6) 

95.3% (94.8 – 95.9) 

Employment status 

  Retired 

  Part-time 

  Unemployed 

  Homemaker 

  Full-time 

 

11.3% (9.3–13.7) 

3.2% (2.2–4.5) 

5.7% (3.7–8.7) 

7.3% (5.5–9.6) 

2.8% (2.2–3.5) 

 

88.7% (86.3 – 90.7) 

96.9% (95.5 – 97.8) 

94.3% (91.3 – 96.3) 

92.7% (90.4 – 94.5) 

97.2% (96.5 – 97.8) 

Education level 

  Elementary 

  Secondary 

  University 

 

11.7% (8.0–16.8) 

4.5% (4.0–5.1) 

2.4% (1.6–3.6) 

 

88.3% (83.2 – 92.0) 

95.5% (94.9 – 96.0) 

97.6% (96.4 – 98.4) 

Household Income 

>$50,000 (ref) 

$25,000–$49,999 

$12,000–$24,999 

<$12,000 

 

3.2% (2.3–4.5) 

4.3% (3.6–5.2) 

6.1% (5.2–7.2) 

5.8% (3.0–10.9) 

 

96.8% (95.5 – 97.7) 

95.7% (94.8 – 96.4) 

93.9% (92.8 – 94.8) 

94.2% (89.1 – 97.1) 

Body mass index (BMI) 

   BMI<25 kg/m
2 

   BMI=25–29.9 kg/m
2 

   BMI>29.9 kg/m
2 

 

2.7% (2.2–3.4) 

5.7% (4.2–7.7) 

10.0% (8.0–12.4) 

 

97.3% (96.6 – 97.8) 

94.3% (92.3 – 95.8) 

90.0% (87.6 – 92.0) 

Physical activity 

   Yes  

   No 

 

3.7% (3.2–4.4) 

5.9% (4.9–6.9) 

 

96.3% (95.6 – 96.8) 

94.2% (93.1 – 95.1) 
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Table 5.4 Diabetes prevalence (%) stratified by type 2 diabetic status for each province 

 

Province Type 2  diabetes                                

Yes (95% C.I.)                         No (95% C.I.) 

Newfoundland and 

Labrador 

5.4% (4.8 – 6.2) 

 

      94.6% (93.8 – 95.2) 

 

Prince Edward Island 4.1% (3.1 – 5.5) 95.9% (94.5 – 96.9) 

New Brunswick 5.5% (4.7 – 6.4) 94.5% (93.6 – 95.3) 

Quebec 4.9% (3.9 – 6.2) 95.1% (93.8 – 96.1) 

Ontario 4.0% (3.3 – 4.8) 96.0% (95.2 – 96.7) 

Manitoba 4.9% (4.1 – 5.8) 95.1% (94.2 – 95.9) 

Alberta 4.9% (4.3 – 5.6) 95.1% (94.4 – 95.7) 

Saskatchewan 5.4% (3.6 – 8.0) 94.6% (92.0 – 96.4) 

British Columbia 4.4% (3.9 – 5.0) 95.6% (95.0 – 96.1) 

 

 

 

 

 

Table 5.5 Diabetes prevalence (%) stratified by type 2 diabetic status and  location of residence for 

each province 

Province Rural 

Type 2  diabetes                                   

Yes (95% C.I.)   No (95% C.I.) 

Urban 

Type 2  diabetes                                    

Yes (95% C.I.)   No (95% C.I.) 

Newfoundland and 

Labrador 

5.9%                          94.1% 

(5.1 – 6.8)              (93.2 – 94.9) 

4.8%             95.2% 

(3.7 – 6.2)            (93.8 – 96.3) 

Prince Edward Island 4.6%                          95.4% 

(3.1 – 6.7)              (93.3 – 96.9) 

3.5%                  96.5% 

(2.4 – 5.2)            (94.8 – 97.6) 

New Brunswick 5.5%                          94.5% 

(4.3 – 7.0)              (93.0 – 95.7) 

5.4%                  94.6% 

(3.9 – 7.3)              (92.7 – 96.1) 

Quebec 3.6%                          96.4% 

(1.9 – 6.6)            (93.4 – 98.1) 

5.2%                       94.8% 

(4.1 – 6.5)               (93.5 – 95.9) 

Ontario 3.0%                          97.0% 

(2.0 – 4.4)            (95.6 – 98.0) 

4.3%                  95.7% 

(2.8 – 6.5)        (93.5 – 97.20 

Manitoba 6.5%                          93.5% 

(4.7 –8.9)               (91.1 – 95.3) 

4.4%                     95.6% 

(3.3 – 5.7)         (94.3 – 96.7) 

Alberta 5.7%                          94.3% 

(4.7 – 6.9)             (93.1 – 95.3) 

4.6%                    95.4% 

(3.4 – 6.2)           (93.8 – 96.6) 

Saskatchewan 4.5%                          95.5% 

(4.0 – 5.1)              (94.9 – 96.0) 

5.8%                 94.2% 

(4.5 – 7.5)        (92.5 – 95.5) 

British Columbia 4.7%                          95.3% 

(3.5 – 6.3)               (93.7 –96.5) 

4.3%                  95.7% 

(3.3 – 5.7)      (94.5 – 96.7) 
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5.1.4 Modeling approach for cross-sectional complex survey data and results 

In order to compare the MM-SW technique and the SR-RV  estimation technique, the 

estimated regression coefficients and the standard errors obtained from the two statistical techniques 

were estimated. The MM-SW  technique and the SR-RV estimation technique were used to analyze 

the Canadian Heart Health Survey (CHHS) data. Both statistical techniques take into account the 

complexities of complex surveys, but the way of accounting for these complexities are different.  

In the SR-RV estimation technique, the pseudo maximum likelihood (PML) function was used to 

estimate the regression coefficients. Bootstrap re-sampling methods were used to estimate the 

standard errors of the regression coefficients. Five hundred bootstrap weights, including the final 

weight, which were available in the CHHS, were used to estimate the standard errors of the 

regression coefficients using a bootstrap re-sampling method.  

In the MM-SW technique, the two-level random-intercept logistic regression models were 

used to analyze the CHHS data sets. The individuals represented the level 1 unit, and the primary 

sampling units (PSU) represented the level 2 units in the CHHS dataset. Multilevel pseudo-

maximum likelihood was used to estimate the regression coefficients via adaptive quadrature with 

scaled weights in the multilevel modeling technique.  Appropriate scaling of level 1 weight might 

reduce the bias of the standard errors [7, 57, 58, 60].  The standard errors of the regression 

coefficients were estimated using the sandwich estimator, which takes into account the stratification 

and the clustering, the two important characteristics of complex survey data. The statistical analysis 

based on multilevel modeling was conducted using “GLLAMM” in STATA software. 

The outcome variable of interest was self-reported, physician-diagnosed type 2 diabetes, which was 

dichotomous (yes, no), where “yes” means participants who had type 2 diabetes and “no” means 

those who didn’t have type 2 diabetes. The independent covariates, considered to be risk factors for 

the prevalence of type 2 diabetes, were selected using standard model-building techniques. A 
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bivariate analysis was conducted with the outcome variable of self-reported type 2 diabetes (yes, no) 

and important covariates thought to be risk factors for the prevalence of type 2 diabetes. Those 

covariates with p≤0.25 or with biological significance were selected for the final model. The 

selected covariates for the final model were as follows: sex, age group, location of residence (rural 

or urban), household income per year, employment status, physical activity, and body mass index. 

All of the covariates that were included in the final model were categorical. The estimated 

regression coefficients and the standard errors based on the analyses of the CHHS using the MM-

SW technique are presented in Table 5.6.  Multilevel pseudo-maximum likelihood (MPML) was 

used to estimate the regression coefficient estimators, and sandwich estimators were used to 

estimate the standard errors of the regression coefficient estimators after taking into account the 

design effects of complex surveys, such as stratification and clustering. The regression coefficient 

estimators and their standard errors based on the standard regression–robust variance estimation 

technique are also presented in Table 5.6.  

To our knowledge, no goodness-of-fit test for survey data is available for the multilevel 

modeling technique. This could be an active research area for future research. In the SR-RV 

estimation technique, pseudo maximum likelihood was used to estimate the regression coefficient 

estimators, and bootstrap methods were used to estimate the standard errors. After fitting the logistic 

regression model using the standard regression-robust variance estimation technique, a goodness-of-

fit test was used to see whether the model fit the survey data adequately or not. The command estat 

gof  in STATA applied the residual goodness-of-fit test for the survey data. This goodness-of-fit test 

for survey data was discussed in section 3.1.3.1.  The goodness-of-fit test indicated that the final 

logistic regression model fit the survey data with p-value 0.105 Therefore; the final logistic 

regression model fit the survey data adequately. 
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Finally, the estimated regression coefficients and their standard errors from the multilevel 

modeling (random-intercept logistic regression)–scaled weights technique and the standard 

regression (logistic regression)–robust variance estimation technique were different. The standard 

errors of the regression coefficients were higher for the SR-RV estimation technique compared with 

the MM-SW technique. The estimated 95% confidence intervals for the regression coefficients were 

wider for the SR-RV estimation technique compared with the MM-SW technique. 

 

5.1.5 Comparison between the multilevel modeling–scaled weights technique and the standard 

regression–robust variance estimation technique based on the analysis of CHHS 

 

The first objective of the thesis was to compare the MM-SW technique and the SR-RV 

estimation technique based on analyses of cross-sectional complex survey data. These two statistical 

techniques were applied to analyze the Canadian Heart Health Survey (CHHS) data. The estimated 

regression coefficients, standard errors and the 95% confidence intervals obtained from both 

statistical techniques was presented in Table 5.6. The results, based on the analyses of the CHHS, 

indicated that the estimated regression coefficients were not similar between the two statistical 

techniques. The MM-SW technique used multilevel pseudo maximum likelihood (MPML) to 

estimate the regression coefficients, and the SR-RV technique used pseudo maximum likelihood 

(PML) to estimate the regression coefficients. The probability weights of sampling units for each 

level of complex survey data were used in MPML. In contrast, only the overall probability weights 

of level 1 units were used in PML. The scaling of probability weights for level 1 unit was used in 

MPML, whereas raw probability weights were used in PML. These are possible reasons for the 

differences in regression coefficients and the standard errors between these two statistical 

techniques. 

The standard errors of each estimated regression coefficient based on the MM-SW technique 

were smaller than the standard errors of regression coefficients obtained from the SR-RV estimation 
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technique. Sandwich variance estimators were used to estimate standard errors after taking into 

account the effects of sampling design in the MM-SW technique, while the bootstrap re-sampling 

technique was used to estimate the standard errors of the regression coefficients in the SR-RV 

estimation technique. These are possible reasons for the different standard errors obtained from the 

two statistical techniques. The sandwich variance estimator may underestimate the variance of 

parameters based on design-based analysis [36].   

The 95% confidence intervals (95% C.I.) for the estimated regression coefficients are 

narrower for the MM-SW technique than SR-RV estimation technique. These results indicate that 

the performance of the MM-SW technique might be better than the SR-RV estimation technique for 

analyzing cross-sectional complex survey data. The results based on the analysis of a single real life 

complex survey data may not possible to generalize. A Monte Carlo simulation study based on 

cross-sectional complex survey data may provide firm results to compare the performance of these 

statistical techniques which is the third objective of the thesis. 
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Table 5.6 Parameter estimates (standard errors) and their 95% confidence intervals based on the 

CHHS 

 

 Multilevel modeling Standard regression 

 Scaled weight Robust(Bootstrap) 

Covariates Estimates 

(SE) 

95% C.I. Estimates 

(SE) 

95% C.I. 

Intercepts –4.72 (0.26)
* 

–5.23, –4.21 –4.89 (0.28)
* 

–5.44, –4.34 

Age 

18–44 years (ref) 

45–64 years 

65–74 years 

 

 

0.24 (0.19) 

0.49 (0.18)
* 

 

 

–0.13, 0.61 

 0.14,  0.84 

 

 

0.25 (0.21) 

0.74 (0.33)
* 

 

 

–0.16, 0.66 

 0.10, 1.37 

Location of residence 

Rural (ref) 

Urban 

 

 

0.09 (0.12) 

 

 

–0.15, 0.32 

 

 

0.20 (0.15) 

 

 

–0.08, 0.49 

Sex 

Female (ref) 

Male 

 

 

–0.60 (0.19)
* 

 

 

–0.98, –0.23 

 

 

–0.41 (0.34) 

 

 

–1.08, 0.26 

Education 

University (ref) 

Secondary 

Elementary 

 

 

0.34 (0.20) 

0.50 (0.33) 

 

 

–0.05, 0.72 

–0.15, 1.14 

 

 

0.40 (0.26) 

0.69 (0.34)
* 

 

 

–0.11, 0.91 

 0.02, 1.37 

Household Income 

>$50,000 (ref) 

$25,000–$49,999 

$12,000–$24,999 

<$12,000 

 

 

0.22 (0.16) 

0.43 (0.17)
* 

0.41 (0.20)
* 

 

 

–0.91, 0.54 

 0.10, 0.76 

 0.02,0.80 

 

 

 0.17 (0.32) 

 0.17 (0.23) 

–0.04 (0.24) 

 

 

–0.47, 0.80 

–0.28, 0.63 

–0.50, 0.43 

Employment Status 

Full-time (ref) 

Part-time 

/students 

Unemployment 

Homemaker 

Retired 

 

 

–0.05 (0.23) 

 

0.85 (0.24)
* 

0.80 (0.18)
* 

0.83 (0.21)
* 

 

 

–0.51, 0.41 

 

0.38, 1.32 

0.45, 1.16 

0.42, 1.24 

 

 

–0.17 (0.24) 

 

0.60 (0.30)* 

0.69 (0.27)* 

0.59 (0.36) 

 

 

–0.57, 0.26 

 

0.01, 1.18 

0.15, 1.23 

–0.12,1.30 

Physical Activity 

Yes (ref) 

No 

 

 

0.27 (0.12)* 

 

 

0.03, 0.52 

 

 

0.36 (0.20) 

 

 

–0.03, 0.75 

Body Mass Index 

(BMI) 

BMI: ˂25(ref) 

BMI: 25.0–29.9 

BMI: >29.9 

 

 

 

0.41 (0.17)* 

1.15 (0.13)* 

 

 

 

0.06, 0.75 

0.90, 1.41 

 

 

 

0.60 (0.23)* 

1.24 (0.16)* 

 

 

 

0.15, 1.05 

0.93, 1.56 
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Cont’d Table 5.6 

 Multilevel modeling Standard regression 

 Scaled weight Robust(Bootstrap) 

Interaction 

Age groups * sex 

18–44yrs*female (ref) 

45–64yrs*male 

65–74yrs*male 

 

 

 

1.26 (0.26)* 

0.87 (0.28)* 

 

 

 

0.76, 1.77 

0.32, 1.42 

 

 

 

1.21 (0.38)* 

0.84 (0.35)* 

 

 

 

0.47, 1.95 

0.16, 1.52 

 

* indicates  p-value≤0.05 
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5.2 Models for longitudinal complex survey data 

The second objective of this thesis was to compare the MM-SW technique and the SR-RV 

estimation technique based on analyses of longitudinal complex survey data. In order to compare 

these two statistical techniques, they were utilized to analyze the longitudinal national population 

health survey (NPHS) data. Repeated measurements of each subject over time were an additional 

character of longitudinal data. Statistical analyses of longitudinal complex survey data is more 

complicated compared with cross-sectional complex survey data because of repeated within-subject 

measurements [1, 25, and 48]. The chosen statistical technique should take into account within-

subject correlation due to repeated measurements, including complex survey design effects such as 

stratification and clustering in longitudinal complex survey data. 

Sections 5.2.1 and 5.2.2 describe the characteristics of the study population and the 

descriptive analysis, respectively.  The results related to crude prevalence estimation of self-

reported, physician-diagnosed type 2 diabetes are presented in section 5.2.3. The results based on 

the two multi-variable techniques of interest are discussed in section 5.2.4.  The results based on the 

Monte Carlo simulation study are presented in section 5.3.  Section 5.4 describes the interpretation 

of results obtained from the analysis of the CHHS and NPHS datasets. 

 

5.2.1 Study Population 

The total number of participants in the NPHS from the ten Canadian provinces was 17,276 

in 1994–95 (Cycle 1). All participants (14,117) who were 18 years and older at the beginning of 

cycle 1 (1994–95) were included in our analysis. People living on Indian Reserves and Crown lands, 

residents of health institutions, full-time members of the Canadian Forces Bases and those living in 

remote areas in Ontario and Quebec were excluded from this survey. The number of people who 
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provided a full response to all six cycles is shown in Table 4.2. Detail descriptions of all participants 

who were included in the NPHS were given in Chapter 4. 

 

5.2.2 Descriptive analysis 

The number of participants from all Canadian provinces who were included in this study was 

14,117 in Cycle 1 (1994–95); they were followed up every two years until 2005. The numbers of 

participants, stratified by cycles and self-reported, physician-diagnosed type 2 diabetic status, are 

presented in Table 5.7. The numbers of self-reported, physician-diagnosed type 2 diabetic cases 

increased over time from Cycle 1 to Cycle 6. The number of non-diabetic participants decreased 

over time. 

         

Table 5.7 Distribution of self-reported, physician-diagnosed type 2 diabetic and non-diabetic 

participants (%), stratified by cycles 

 

Cycles                           Diabetes 

 Yes (%) No (%) Totals 

Cycle 1 (1994–95) 529 (14.7%) 13565 (19.4%) 14094 

Cycle 2 (1996–97) 557 (15.5%) 12693 (18.2%) 13250 

Cycle 3 (1998–99) 567 (15.8%) 12006 (17.2%) 12573 

Cycle 4 (2000–01) 600 (16.7%) 11262 (16.1%) 11862 

Cycle 5 (2002–03) 661 (18.4%) 10,521 (15.0%) 11182 

Cycle 6 (2004–05) 681 (18.9%) 9890 (14.1%) 10571 

 

The distribution of self-reported, physician-diagnosed type 2 diabetic and non-diabetic cases 

based on Cycle 1 (1994–95), according to potential covariates, is shown in Table 5.8. The 

percentage of self-reported, physician-diagnosed type 2 diabetic cases was higher among females 

(55.4%) compared with males (44.6%). The percentage of self-reported, physician-diagnosed type 2 

diabetic cases, stratified by age group is as follows: 18–44 years, 45–65 years, and >65 years were 

13.8%, 32.3%, and 53.9%, respectively. The percentage of self-reported, physician-diagnosed type 

2 diabetic cases was higher among urban (59.2%) residences compared with rural (40.8%) 
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residences in Canada. The self-reported, physician-diagnosed type 2 diabetic status was stratified by 

education levels. The percentage of self-reported type 2 diabetic cases was much higher among 

participants with elementary (53.6%) and secondary (33.3%) school levels of education compared 

with participants with university degrees (13.1%).  

The percentages of self-reported, physician-diagnosed type 2 diabetic cases for the following 

ranges of household incomes: <$15,000, $15,000–$29,999, $30,000–$49,999, and >$50,000 were 

30.7%, 34.5%, 21.8% and 13.1%, respectively. The results based on the descriptive analysis 

indicated that the percentage of self-reported, physician-diagnosed type 2 diabetes was higher 

among participants with lower household income.            

            Based on the stratification of self-reported, physician-diagnosed type 2 diabetic cases by the 

status of physical exercise, the percentage of participants who were not involved in any physical 

exercise was 39.1% and the percentage of participants who were occasionally or regularly involved 

in physical exercise was 61%. 

The participants were stratified by self-reported, physician-diagnosed type 2 diabetic status 

and body mass index levels: normal weight (˂25 kg/m
2
), overweight (25–29.9kg/m

2
), and obese 

(>29.9 kg/m
2
). The percentage of self-reported, physician-diagnosed type 2 diabetic cases was 

higher among  participants who were overweight (39.2%) or obese (31.9%) compared with 

participants with a normal weight (28.9%). 

Self-reported, physician-diagnosed type 2 diabetic participants were stratified based on their 

birth parents’ type 2 diabetic status. The percentage (31.2%) of self-reported, physician-diagnosed 

type 2 diabetic participants whose birth mother had type 2 diabetes was higher compared with 

participants (12.1%) whose birth mother did not have type 2 diabetes.  

The percentage (19.6%) of self-reported, physician-diagnosed type 2 diabetic participants 

whose birth father had type 2 diabetes was higher compared with participants (10.1%) whose birth 
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father did not have type 2 diabetes. The distribution of participants in the ten Canadian provinces 

over the six cycles is presented in Table 5.9. The participants’ rate of diabetes was highest in 

Ontario (25.3%), followed by Quebec (17.1%), British Columbia (10.1%) and Alberta (8.8%). The 

participants’ rate of diabetes was lowest in Newfoundland and Labrador (6.0%). 
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Table 5.8 Number (%) of self-reported, physician-diagnosed type 2 diabetic cases according to the 

potential risk factors based on Cycle 1(1994-95) 

 

Covariates                              Diabetes 

 Yes (%) No (%) Total 

Sex 

Male 

Female 

 

236 (44.6%) 

293 (55.4%) 

 

6,210 (45.8%) 

7,355 (54.2%) 

 

6446 

7648 

Age group 

18–44 years 

45–65 years 

>65    years 

 

73 (13.8%) 

171 (32.3%) 

285 (53.9%) 

 

7,405 (54.6%) 

3,711 (27.3%) 

2,449 (18.1%) 

 

7478 

3882 

2734 

Location of 

residence 

Rural 

Urban 

 

 

211 (40.8%) 

306 (59.2%) 

 

 

4524 (34.2%) 

8689 (65.8%) 

 

 

4735 

8995 

Level of education 

University 

Secondary 

elementary 

 

69 (13.1%) 

175 (33.3%) 

282 (53.6%) 

 

3583 (26.5%) 

6065 (44.8%) 

3888 (28.7%) 

 

3652 

6240 

4170 

Household income 

per year 

>$50,000 

$30,000–$49,999 

$15,000–$29,999 

<$15,000 

 

 

66 (13.1%) 

110 (21.8%) 

174 (34.5%) 

155 (30.7%) 

 

 

 

3733 (28.8%) 

3541 (27.3%) 

3268 (25.2%) 

2413 (18.6%) 

 

 

3799 

3651 

3442 

2568 

Physical Activity 

Regular 

Infrequent 

 

295 (60.99%) 

189 (39.1%) 

 

9439 (74.7%) 

3191 (25.3%) 

 

9734 

3380 

Body mass index 

(BMI) 

Normal weight 

(BMI˂25kg/m
2
) 

Overweight 

(BMI=25.0 –

29.9kg/m
2
) 

Obese 

(BMI>29.9kg/m
2
) 

 

 

 

146 (28.9%) 

 

198 (39.2%) 

 

161 (31.9%) 

 

 

 

6594 (51.3%) 

 

4551 (35.3%) 

 

1703 (13.3%) 

 

 

 

6740 

 

4749 

 

1864 

Mother had 

diabetes 

Yes 

No 

 

 

97 (31.2%) 

214 (68.8%) 

 

 

1235 (12.1%) 

8961 (87.9%) 

 

 

1332 

9175 

Father had 

diabetes 

Yes 

No 

 

 

60 (19.6%) 

246 (80.4%) 

 

 

1004 (10.1%) 

8986 (89.9%) 

 

 

1064 

9232 
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Table 5.9 Distribution of participants (%) stratified by cycles and provinces 

Province Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 

Newfoundland and 

Labrador 

849 (6.0%) 841 (5.7%) 831 (5.5%) 839 (5.4%) 861 (5.5%) 864 (5.4%) 

 

Prince Edward Island 868 (6.2%) 867 (5.9%) 867 (5.8%) 878 (5.7%) 885 (5.6%) 893 (5.6%) 

 

Novas Scotia 895 (6.3%) 919 (6.3%) 929 (6.2%) 944 (6.1%) 959 (6.1%) 985 (6.2%) 

 

New Brunswick 916 (6.5%) 939 (6.4%) 974 (6.5%) 993 (6.4%) 1005 (6.4/%) 1017 (6.4%) 

 

Quebec 2417 (17.1%) 2522 (17.2%) 2600 (17.2%) 2667 (17.3%) 2746 (17.5%) 2802 (17.5%) 

 

Manitoba 985 (7.0%) 1016 (6.9%) 1024 (6.8%) 1040 (6.7%) 1054 (6.7%) 1067 (6.7%) 

 

Alberta 1236 (8.8%) 1330 (9.1%) 1423 (9.4%) 1484 (9.6%) 1541 (9.8%) 1592 (9.9%) 

 

Saskatchewan 955 (6.8%) 965 (6.6%) 986 (6.5%) 984 (6.4%) 995 (6.3%) 1005 (6.3%) 

 

British Columbia 1428 (10.1%) 1532 (10.5%) 1587 (10.5%) 1617 (10.5%) 1620 (10.3%) 1652 (10.3%) 

 

Ontario 3568 (25.3%) 3720 (25.4%) 3867 (25.6%) 3991 (25.9%) 4041 (25.1%) 4146 (25.9%) 

 

1
0
8
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Table 5.10 describes the prevalence of self-reported, physician-diagnosed type 2 diabetes 

among Canadian adults (18 years or older), stratified by the cycles. The prevalence of self-reported 

type 2 diabetes and the 95% confidence intervals (95% C.I.) were determined using the BOOTVAR 

macro provided by Statistics Canada. The trend of prevalence of self-reported, physician-diagnosed 

type 2 diabetes indicates that the numbers of self-reported, physician-diagnosed type 2 diabetic 

cases are increasing among Canadians participants. 

 

Table 5.10 Prevalence of type 2 diabetes (95% confidence interval) stratified by cycles 

 

Cycle Prevalence 95% Confidence Interval 

Cycle 1 (1994–1995) 3.4 3.0 – 3.8 

Cycle 2 (1996–1997) 3.8 3.4 – 4.2 

Cycle 3 (1998–1999) 3.9 3.5 – 4.3 

Cycle 4 (2000–2001) 4.5 4.3 – 4.7 

Cycle 5 (2002–2003) 5.1 4.6 – 5.7 

Cycle 6 (2004–2005) 5.7 5.1 – 6.2 

 

Trend of development of type 2 diabetes

0

1

2

3

4

5

6
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e

 

Figure 5.2 Prevalence of self-reported, physician-diagnosed type 2 diabetes over time 
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5.2.3 Estimation of crude prevalence  

The prevalence of self-reported, physician-diagnosed type 2 diabetes stratified by the 

potential covariates that were included in the final multivariable logistic regression model is 

described in Table 5.11. The BOOTVAR macro provided by Statistics Canada was used to calculate 

the prevalence and their 95% confidence intervals.  

The prevalence of self-reported, physician-diagnosed type 2 diabetes increased with age.  

The prevalence of self-reported, physician-diagnosed type 2 diabetes among participants in age 

group 44–64 years and age > 65 years was higher compared with the participants in age group 18–

44 years. The prevalence of self-reported, physician-diagnosed type 2 diabetes had an increasing 

trend over time among participants aged 45–64 years and 65 years and above. The prevalence of 

self-reported, physician-diagnosed type 2 diabetes was slightly higher among rural residents 

compared with urban residents in Canada, but this did not change over time. The male participants 

had a slightly higher prevalence of self-reported, physician-diagnosed type 2 diabetes compared 

with females. The prevalence of self-reported, physician-diagnosed type 2 diabetes among males 

increased from Cycle 1 to Cycle 3 and then slightly decreased and became steady from Cycle 4 to 

Cycle 6.  It was almost unchanged among females over time. Participants with only an elementary 

school education had the highest prevalence of self-reported, physician-diagnosed type 2 diabetes, 

followed by participants with secondary school education. The prevalence of self-reported type 2 

diabetes increased rapidly over time among both groups of participants compared with participants 

with a university degree. The prevalence of self-reported, physician-diagnosed type 2 diabetes was 

higher among participants with lower education. The prevalence of self-reported, physician-

diagnosed type 2 diabetes was higher among participants with irregular or infrequent physical 

exercise habits compared with participants with regular physical exercise habits. The prevalence of 
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self-reported, physician-diagnosed type 2 diabetes increased rapidly among participants with 

irregular or infrequent physical exercise habits, but slowly among people with regular physical 

exercise habits over time. The prevalence of self-reported, physician-diagnosed type 2 diabetes was 

highest among obese (BMI> 29.9 kg/m
2
) participants compared with participants with a normal 

(BMI<25 kg/m
2
) weight. The prevalence of self-reported, physician-diagnosed type 2 diabetes was 

also higher among overweight participants than among participants with normal weight.  

The rate of prevalence of self-reported, physician-diagnosed type 2 diabetes among obese and 

overweight participants also increased over time compared with normal weight participants. 

The prevalence of self-reported, physician-diagnosed type 2 diabetes was higher among 

participants whose birth mother had type 2 diabetes than among participants whose birth mother did 

not have type 2 diabetes, and also the rate of prevalence over time increased among participants 

whose birth mother had type 2 diabetes compared with participants whose birth mother did not have 

type 2 diabetes. The prevalence of self-reported, physician-diagnosed type 2 diabetes was higher 

among participants whose birth father had type 2 diabetes than among participants whose birth 

father did not have type 2 diabetes. The prevalence of self-reported, physician-diagnosed type 2 

diabetes increased over time among participants whose birth father had type 2 diabetes compared 

with the participants whose birth father did not have type 2 diabetes. 
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Table 5.11 Self-reported and physician diagnosed type 2 diabetes prevalence (95% confidence interval) for potential covariates included   

                   in the final multivariable logistic regression model  

 

Covariate               Cycle 1             Cycle 2                 Cycle 3              Cycle 4                        Cycle 5                       Cycle 6 

                                   (1994–95)          (1996–97)             (1998–99)          (2000–01)                     (2002–03)                  (2004–05) 

Age group 

18–44 years             1.0                   0.9                         0.9                       1.0                                 0.9                           1.3  

                                  (0.7 – 1.2)        (0.6 – 1.2)               (0.1 – 0.7)            (0.7 – 1.4)                     (0.6 – 1.2)                (0.9 – 1.7) 

45–64 years            4.0                    4.8                         4.7                       5.6                                 6.6                           6.1 

                                   (3.1 – 4.9)          (3.9 – 5.7)              (3.9 – 5.6)            (4.6 – 6.6)                     (5.6 – 7.7)                (5.1 – 7.1) 

65–75 years             11.2                 11.6                       11.7                      12.7                              14.0                           15.3 

                                    (9.4 – 13.0)      (10.0 – 13.3)          (10.2 –13.2)          (10.9 – 14.6)              (12.3 – 15.8)               (13.4 – 17.3) 

Area       

Rural                       3.9                       4.2                         4.7                        3.8                               4.4                                4.3 

                                   (3.1 – 4.7)           (3.5 – 5.0)             (3.6 – 5.8)             (3.0 – 4.7)                    (3.5 – 5.3)                   (3.2 – 5.4) 

Urban                     3.2                        3.6                          3.8                         3.4                              3.6                                 3.7 

                              (2.8 – 3.7)            (3.1 – 4.1)              (3.3 –  4.2)             (3.0 – 3.9)                    (3.2 – 4.0)                   (3.3 – 4.1) 

Sex 

Male                        3.5                        4.0                         4.3                       3.7                                3.8                               3.9 

                             (2.9 – 4.0)             (3.3 – 4.6)              (3.6 – 4.9)           (3.1 – 4.3)                     (3.2 – 4.4)                   (3.3 – 4.5) 

Female                     3.3                        3.6                          3.5                       3.7                                3.7                               3.6 

                             (2.7 – 3.8)             (3.0 – 4.1)              (3.0 – 4.0)            (2.8 – 3.7)                     (3.2 – 4.1)                  (3.2 – 4.1) 

Education 

Elementary               6.1                       7.2                           7.1                       8.2                                9.8                               10.4 

                               (5.1 – 7.1)            (6.0 – 8.3)               (6.0 – 8.1)            (6.8 – 9.7)                   (8.2 – 11.4)                 (8.7 – 12.0) 

Secondary                 2.7                       2.9                           3.3                       4.1                                4.9                               5.7 

                             (2.2 – 3.2)             (2.4 – 3.5)               (2.8 – 3.9)             (3.4 – 4.7)                   (4.2 – 5.6)                  (4.9 – 6.4) 

      Bachelor                                              

and above                1.8                        2.2                           2.1                       2.5                                2.8                              3.2 

                           (1.2 – 2.4)            (1.5 – 2.9)              (1.4 – 2.7)            (1.8 – 3.1)                     (2.2 – 3.5)                 (2.5 – 3.9) 

 

 

 

 

1
1
2
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Cont’d Table 5.11 

Covariates             Cycle 1              Cycle 2               Cycle 3            Cycle 4                       Cycle 5                      Cycle 6 

                                   (1994–95)          (1996–97)           (1998–99)        (2000–01)                   (2002–03)                  (2004–05) 

Physical 

Exercise 

Infrequent                    4.8                     6.0                       6.0                    6.7                                 8.5                            9.8 

                                       (3.9 – 5.7)           (4.9 – 7.0)           (4.8 – 7.2)        (5.4 – 8.0)                      (6.8 – 10.2)              (8.0 – 11.6) 

            Regular                        2.9                      3.0                       3.4                     3.7                                4.3                            4.7 

                                     (2.4 – 3.3)            (2.6 – 3.5)          (2.9 – 3.9)          (3.3 – 4.2)                     (3.8 – 4.8)                 (4.1 – 5.3) 

Body mass 

index(BMI)          
Normal Weight            2.1                      2.2                        2.1                    2.4                                 2.5                            3.2 

                                     (1.6 – 2.5)           (1.7 – 2.7)            (1.7 – 2.5)         (1.8 – 2.9)                      (2.0 – 3.0)                (2.4 – 3.9) 

Overweight                  4.0                      4.6                        4.4                    5.5                                  5.8                            5.7 

                                   (3.2 – 4.8)           (3.9 – 5.4)            (3.7 – 5.2)        (4.5 – 6.4)                       (4.8 – 6.8)                (4.8 – 6.6) 

Obese                          7.5                       7.9                        8.3                    8.2                                 10.6                           11.4 

                                     (6.0 – 9.0)            (6.4 – 9.4)            (6.6 – 9.9)        (6.8 – 9.6)                        (8.9 – 12.3)             (9.7 – 13.1) 

Mother had  

diabetes 

Yes                              7.0                       7.4                         9.0                    9.8                                  11.4                           10.8 

                                    (5.2 – 8.6)            (5.7 – 9.0)             (7.1 – 10.9)      (7.8 – 11.8)                       (9.2 – 13.6)              (8.7 – 12.9) 

No                             2.1                       2.5                          2.9                   3.3                                     3.6                            4.0 

                                   (1.7 – 2.6)             (2.1 – 2.9)              (2.5 – 3.3)       (2.8 – 3.8)                          (3.2 – 4.1)                 (3.5 – 4.5) 

Father had  

Diabetes     

 

Yes                            5.3                        6.1                          6.6                    6.5                                    8.0                               8.7 

                                  (3.5 – 7.1)             (4.2 – 8.0)              (4.7 – 8.4          (4.6 – 8.4)                        (5.9 – 10.0)                 (6.5 –10.8) 

No                              2.5                        2.8                           3.3                   3.8                                     4.2                             4.4 

                                  (2.1 – 2.9)            (2.4 – 3.3)               (2.9 – 3.8)         (3.3 – 4.2)                         (3.8 – 4.7)                 (3.9 – 4.9) 

 

 

1
1
3
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5.2.4 Modeling approach for longitudinal complex survey data  

The second objective of this thesis was to compare the MM-SW technique and the SR-RV 

estimation technique through an analysis of longitudinal complex survey data.  

For the SR-RV estimation technique, the marginal logistic regression model was utilized to analyze 

the National Population Health Survey (NPHS) data. The dichotomous outcome variable of interest 

was self-reported, physician-diagnosed type 2 diabetes with responses of ‘yes’ or ‘no’. The response 

for the outcome variable was based on the question, “Do you have any of the following long-term 

conditions that have been diagnosed by a health professional? – Diabetes?” The independent 

covariates for the multivariable model were selected based on the standard model building 

technique. A bivariate analysis was conducted with the outcome variable of self-reported, physician-

diagnosed type 2 diabetes (yes, no) and selected covariates that are thought to be risk factors for 

type 2 diabetes. Covariates with p≤0.25 or biological significance were included in the multivariable 

model, and covariates with p≤0.05 were retained in the final model. The selected covariates for the 

final models were: sex, age group, location of residence (rural or urban), education level, household 

income per year, physical activity, body mass index, and birth mother had diabetes, and birth father 

had diabetes. All covariates that were retained in the final model were categorical. All statistical 

analyses were conducted based on weighted data. The generalized estimating equations (GEE) 

based on quasi-likelihood function were used to estimate the regression coefficients and the adjusted 

odds ratios using GENMOD in the SAS
®
 software program.   

After selecting all significant covariates and interactions for final model, we conducted a 

goodness-of-fit test to determine whether or not the model was a good fit to the observed data. Since 

the GEE model was based on the quasi-likelihood method, the QIC and QICu(R) statistics were used 

to test the adequacy of the model fitting. These were discussed in section 3.2.2.6. The final model 

was selected based on the smallest difference between the QIC and QICu(R) values [SAS 
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documents]. The GEE model with three correlation structures: Autoregressive (AR(1)), 

exchangeable (EXCH), and unstructured (UN) were performed. A convergence problem occurred 

with the unstructured correlation for the final model. Generally, a convergence problem occurs 

when the Hessian matrix is not definitely positive. I selected the exchangeable within-subject 

correlation structure for the final GEE model, based on smallest values of the QIC. 

The BOOTVAR program provided by Statistics Canada contains a set of macros that was available 

along with the NPHS data. The BOOTVAR macro takes into account the design features 

(stratification, clustering and unequal probability of selection) for longitudinal complex survey data 

in order to estimate valid standard errors of regression coefficient estimators. Five hundred sets of 

bootstrap weights based on the re-sampling technique were used to estimate the standard errors of 

the regression coefficients estimators and the corresponding 95% confidence intervals (95% C.I.) of 

the regression coefficients estimators and odds ratios. The regression coefficients estimators, their 

standard errors and the 95% confidence intervals based on the SR-RV estimation technique are 

presented in Table 5.12.  

In the MM-SW technique, two-level random-intercept logistic regression models were used 

to analyze the NPHS data. In this technique, level 1 represented the repeated measurements within-

subject, and subjects indicated level 2 units. The outcome variable and the independent covariates of 

interest were exactly the same as  in the SR-RV estimation technique. In order to select the 

independent covariates for the initial multivariable model, the standard model building technique 

was used, based on a selection criteria of  p≤0.25, which means the independent covariates with 

p≤0.25 in the univariate analysis were selected for the initial multivariable model. 

In the multilevel modeling technique for longitudinal complex survey data, repeated measurements 

were nested within subjects and subjects were nested within the PSU (primary sampling unit). The 

“GLLAMM” procedure in the STATA software program was used to fit the data in random-
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intercept logistic regression models. In the “GLLAMM” procedure, multilevel pseudo maximum 

likelihood was used via ordinary quadrature to estimate the regression coefficient estimators and 

odds ratios with scaled weights. The scaling method of weights was discussed in Chapter 3. The 

sandwich estimator method was used to determine the valid standard errors of the regression 

coefficients.  The regression coefficients estimators, their standard errors and 95% confidence 

intervals (95% C.I.) based on the MM-SW technique using the NPHS are shown in Table 5.12.  

 

5.2.5 Risk factors for type 2 diabetes based on the NPHS 

Based on the MM-SW technique, the significant predictors of diabetes were age group (18–

44 years, 45–64 years and 65 years and above), education level (elementary, secondary and 

university), household income (<$12,000,   $12,000–$24,999,  $25,000–$49,999 ,   and >$50,000),   

body mass index (BMI<25 kg/m
2
, BMI = 25.0–29.9 kg/m

2
, BMI>29.9 kg/m

2
), mother had type 2 

diabetes (yes, no), father had type 2 diabetes (yes, no) and cycles (time1, time2, time3, time4, time5 

and time6). No interaction terms were significant at p≤0.05.  

Based on the SR-RV estimation technique, the significant predictors of diabetes at the 

p≤0.05 level were age (18–44 years, 45–64 years and 65 years and above), sex (male, female), 

education level (elementary, secondary and university), household income (<$12,000,  $12,000–

$24,999, $25,000–$49,999,  and >$50,000), body mass index (BMI<25 kg/m
2
, BMI = 25.0–29.9 

kg/m
2
, BMI>29.9 kg/m

2
 ), mother had type 2 diabetes (yes, no), father had type 2 diabetes(yes, no), 

cycles (time1, time2, time3, time4, time5 and time6), and an interaction term—sex*household 

income. In the SR-RV estimation technique, the interaction between sex and household income was 

significant at p≤0.05, whereas no interaction was significant at the p≤0.05 significance level in the 

MM-SW technique. 
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The results based on the analyses of the NPHS data indicated that the regression coefficient 

estimators and their standard errors for all covariates in the MM-SW technique were larger 

compared with the SR-RV estimation technique (Table 5.12). 

 

5.2.6 Comparison of the results obtained from the two techniques 

The results, based on the analysis of the NPHS, indicated that the estimated regression 

coefficients were not similar between the two techniques. The estimated regression coefficient 

estimators were higher for the MM-SW technique compared with the SR-RV estimation technique 

which was expected. The MM-SW technique produced higher standard errors of the regression 

coefficient estimators compared with the standard errors of estimated regression coefficients in the 

SR-RV estimation technique. Consequently, the 95% confidence intervals (95% C.I.) for the 

estimated regression coefficient estimators were narrower in the SR-RV estimation technique. Both 

statistical techniques provided the same number of significant predictors associated with the 

prevalence of self-reported, physician-diagnosed type 2 diabetes.  The common significant 

predictors for both models were: age group, education level, household income, body mass index, 

mother had diabetes, father had diabetes,  and time of observation. The variable sex was not 

significant in multilevel model, the interaction term household income and sex was significant in 

regression model but not in multilevel model. The interaction between sex and income level was 

significant (p≤0.05) in the SR-RV estimation technique but was not significant in the MM-SW 

technique. There are many possible reasons for this difference. The estimated regression coefficients 

obtained from multilevel modeling and standard regression (generalized estimating equations) can 

be approximately connected by the following relationship: 
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23.01 





 ml

sr  where     2 jVar ,   sr  and ml  denote the regression coefficients obtained 

from SR-RV estimation technique and MM-SW  respectively. From this relationship,  it is clear that 

if 02   then the regression coefficients obtained from both methods are equal, and if  02   

then mlsr    that means the regression coefficients obtained from multilevel modeling are larger 

than the regression coefficients obtained from standard regression.  For example, the regression 

coefficients ( ml ) of  age(45-64yrs)  is  2.29  obtained from multilevel modeling-scaled weights 

technique (Table 5.12) then  534.0
75.57*3.01

29.2

3.01 2











 ml

sr  which is smaller than 

2.29.   Similarly, the regression coefficients ( ml ) of cycle 2= 0.79 obtained from multilevel 

modeling-scaled weights technique  then 18.0
75.57*3.01

79.0

3.01 2











 ml

sr  which is 

smaller than 0.79 and exactly similar to the estimated regression coefficient obtained from standard 

regression. This is one of the main reasons for this difference between the regression coefficients 

obtained from MM-SW and SR-RV estimation technique. 

The MM-SW technique used multilevel pseudo maximum likelihood (MPML) to estimate 

the regression coefficients estimators where probability weights for each level unit were used, and 

the SR-RV technique used generalized estimating equations (GEE) based on quasi-likelihood 

function to estimate the regression coefficient estimators where overall probability weight were used 

[14, 25, 57]. Scaling of the probability weight was used in the MM-SW technique, whereas raw 

probability weight was used in the SR-RV  estimation technique. Scaling of the weights had an 

influence on the estimation of the standard errors [25, 56, and 60]. The quasi-likelihood and pseudo 

likelihood approaches are different, but the pseudo likelihood approach may have complexity for 

non-normal data [40]. 
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The findings based on our analyses of the longitudinal NPHS data indicate that the 

performance of the SR-RV estimation technique might be better than the MM-SW  technique for 

analyzing longitudinal complex survey data. 

 

 

Table 5.12 Estimates (Standard Errors) and their 95% confidence intervals based on the NPHS 

 

 Multilevel modeling Standard regression 

Covariates Scaled weights Robust(Bootstrap) 

 

 Estimate (SE) 95% C.I. Estimate (SE) 95% C.I. 

 

Intercepts –21.89 

(1.09)* 

–24.03, –

19.75 

–5.30 (0.19)* –5.69, –4.91 

Age Groups 

18–44years (ref) 

45–64 years 

65 years and above 

 

 

2.29 (0.31)* 

5.00 (0.40)* 

 

 

1.69, 2.89 

4.22–5.77 

 

 

0.64 (0.11)* 

1.23 (0.14)* 

 

 

0.44, 0.85 

0.96, 1.51 

Location of Residence 

Urban (ref) 

Rural 

 

 

0.37 (0.23) 

 

 

–0.08, 0.83 

 

 

–0.12 (0.07) 

 

 

–0.26, 0.01 

Sex 

Female (ref) 

Male 

 

 

0.91 (0.49) 

 

 

–0.05, 1.87 

 

 

0.50 (0.16)* 

 

 

0.12, 0.80 

Education Levels 

University (ref) 

Secondary 

Elementary 

 

 

1.09 (0.67) 

2.50 (0.57)* 

 

 

–0.22, 2.39 

1.42, 3.66 

 

 

0.38 (0.15)* 

0.71 (0.18)* 

 

 

0.09, 0.67 

0.36, 1.05 

Household Income 

>$50,000 (ref) 

$30,000–$49,999 

$15,000–$29,999 

<$15,000 

 

 

0.88 (0.40)* 

1.14 (0.40)* 

0.92 (0.41)* 

 

 

0.10, 1.65 

0.36, 1.92 

0.12, 1.73 

 

 

0.33 (0.11)* 

0.50 (0.14)* 

0.57 (0.16)* 

 

 

0.11, 0.54 

0.23, 0.78 

0.26, 0.88 

Physical Activity 

Yes (ref) 

No 

 

 

0.14 (0.16) 

 

 

–0.18, 0.46 

 

 

–0.05 (0.05) 

 

 

–0.15, 0.05 

Body Mass Index 

BMI: <25 (ref) 

BMI: 25–29.9 

BMI:>29.9 

 

 

0.63 (0.22)* 

1.09 (0.29)* 

 

 

0.19, 1.07 

0.52, 1.65 

 

 

0.06 (0.07) 

0.30 (0.11)* 

 

 

–0.09, 0.20 

 0.08, 0.52 
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Cont’d Table 5.12 

 Multilevel modeling Standard regression 

Covariates Scaled weights Robust(Bootstrap) 

 Estimate (SE) 95% C.I. Estimate (SE) 95% C.I. 

 

     

Mother had diabetes 

No (ref) 

Yes 

 

 

2.78 (0.58)* 

 

 

1.64, 3.91 

 

 

0.95 (0.14)* 

 

 

 0.68, 1.22 

Father had diabetes 

No (ref) 

Yes 

 

 

4.13 (0.84)* 

 

 

2.48, 5.79 

 

 

0.70 (0.16)* 

 

 

 0.38, 1.02 

 

Time 

Cycle 1 (ref) 

Cycle 2 

Cycle 3 

Cycle 4 

Cycle 5 

Cycle 6 

 

 

 

0.79 (0.19)* 

1.56 (0.20)* 

2.44 (0.26)* 

3.50 (0.32)* 

4.11 (0.34)* 

 

 

 

0.42, 1.15 

1.18, 1.96 

1.93, 2.95 

2.90, 4.14 

3.44, 4.79 

 

 

 

0.18 (0.05)* 

0.32 (0.07)* 

0.56 (0.07)* 

0.75 (0.08)* 

0.89 (0.08)* 

 

 

 

0.08, 0.28 

0.18, 0.46 

0.42, 0.70 

0.60, 0.91 

0.73, 1.05 

Interaction  

(Sex*household 

income) 

Male*$30,000–$49,999 

Male*$15,000–$29,999 

Male*<$15,000 

 

 

 

–0.59 (0.49) 

–0.60 (0.61) 

–0.46 (0.70) 

 

 

 

–1.55, 0.37 

–1.80, 0.61 

–1.84, 0.91 

 

 

 

–0.29 (0.14)* 

–0.32 (0.17) 

–0.40 (0.20)* 

 

 

 

 

–0.56, –0.01 

–0.65,   0.01 

–0.80, –0.002 

 

 

* indicates  p-value ≤ 0.05
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5.3 Results based on Monte Carlo Simulation Technique 

 

The third objective of this thesis was to investigate which statistical method was optimal for 

analyzing cross-sectional complex survey data using Monte Carlo simulation study. It is often 

challenging for applied researchers to find the appropriate statistical method to analyze the complex 

survey data. The performance of the MM-SW technique and the SR-RV estimation technique was 

assessed based on the empirical results obtained from the analyses of simulated cross-sectional 

complex survey data. To accomplish the assessment of performance between these two statistical 

techniques, a Monte Carlo simulation study was conducted to generate simulated data and analyze 

the simulated data using the MM-SW technique and the SR-RV estimation technique. 

The sampling design for the Monte Carlo simulation technique was similar to Saskatchewan 

data. The simulated cross-sectional complex survey data were generated with the 100 and 1000 

replications separately. In the Monte Carlo simulation technique, the RANTBL function in SAS
®
 

program was used to generate the simulated data for two  independents variables: Body Mass Index 

(BMI) (<25 kg/m
2
, ≥25kg/m

2
) and EDUCATION (<secondary,  ≥secondary) . Both independent 

variables were categorical (i.e. dichotomous). The logistic regression was used to generate the 

outcome variable of interest (type 2 diabetes (yes, no)) using above two independents variables: 

BMI (<25 kg/m
2
, ≥25kg/m

2
) and EDUCATION (<secondary,  ≥secondary)  . The detail procedures 

of generating simulated data using Monte Carlo simulation technique based on  the Saskatchewan 

data was discussed in Section 4.3. Each of the simulated data sets with 100 and 1000 replications 

was analyzed using the multilevel modeling–scaled weights technique and the standard regression–

robust variance estimation technique where outcome variable was type 2 diabetes (yes, no) and the 

independent variables were BMI (<25 kg/m
2
, ≥25kg/m

2
) and EDUCATION (<secondary,  

≥secondary).  The logistic regression model with the given two independents variables was  

Logit (Pr(diabètes = yes |x)) =    ondaryEducationmkgBMI edubmi secˆ/25ˆˆ 2

0   . 
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The two statistical techniques (the MM-SW and the SR-RV estimation technique) were also 

used to analyze the observed Saskatchewan data (part of CHHS).  The parameter estimates obtained 

from the analysis of observed Saskatchewan data was considered as a true parameter estimates. The 

assessment criteria to  assess the performance of  the MM-SW technique and the SR-RV estimation 

technique were bias of regression coefficients , percentage bias of regression coefficients, 

standardized bias of regression coefficients, means square errors (MSE), length of 95% confidence 

intervals, coverage of true regression coefficients in corresponding simulated 95% confidence 

intervals,  and relative efficiency. The definition for each of assessment criteria was described in 

Table 3.3.1. The following Table 5.13 described the results of assessment criteria obtained from the 

Monte Carlo simulation study. It was mentioned in simulation procedure that the  two groups of 

simulated data were generated: one with 100 replications and other one with 1000 replications. The 

results obtained from the analysis of the two groups of simulated data sets by applying multilevel 

modeling-scaled weights technique and standard regression-robust variance estimation technique 

were discussed below. 

 

Results based on simulated data with 1000 replications 

Results based on the analysis of simulated data with the 1000 replications using the 

multilevel modeling–scaled weights technique and the standard regression–robust variance 

estimation technique indicated  that the biases, percentage biases, standardized biases for the 

regression coefficients of BMI (<25 kg/m
2
, ≥25kg/m

2
) were higher in the multilevel modeling-

scaled weights compared to the standard regression-robust variance estimation technique. The 

biases, percentage biases, standardized biases for the regression coefficients of education level 

(<secondary,  ≥secondary)  were almost similar between the multilevel modeling-scaled weights 

technique and the standard regression-robust variance estimation technique (Table 5.13). Means 
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square errors, length of 95% C.I. of regression coefficients were also  similar between the MM-SW  

technique and the SR-RV estimation technique (Table 5.13). 

The coverage of the true regression coefficients for both independent variables in the 

corresponding simulated 95% confidence intervals was higher in the MM-SW technique compared 

to the SR-RV estimation technique. The efficiency of the MM-SW technique and the SR-RV 

technique was similar according to the calculation of relative efficiency.  The results from the bias 

(biases, percentage biases, standardized biases) of regression coefficients indicated that the 

performance of the SR-RV estimation technique was better than the MM-SW technique based on 

simulated data with 1000 replications. 

The results from other criteria such as MSE, length of 95% C.I. of regression coefficients 

and relative efficiency indicated that the performance of the MM-SW technique and the SR-RV 

estimation technique was similar. The performance of the MM-SW technique was slightly  better 

compared to the SR-RV estimation technique based on coverage of true regression coefficients in 

corresponding simulated 95% confidence interval to analyze complex survey data.  

 

Results based on simulated data with 100 replications 

Based on the analysis of simulated data with the 100 replications using the MM-SW  

technique and the SR-RV estimation technique,  results indicated  that  the biases , percentage 

biases, standardized biases of regression coefficients for  both independents variables : (BMI (<25 

kg/m
2
, ≥25kg/m

2
) and EDUCATION (<secondary,  ≥secondary)    were higher in the  MM-SW 

technique compared to the SR-RV  estimation technique . Means square errors, length of 95% C.I. 

of regression coefficients were lower in the MM-SW technique compared to the SR-RV estimation 

technique (Table 5.13). 



 124 
 

The coverage of the true regression coefficients for the both independent variables in the 

corresponding 95% confidence intervals obtained from the simulated data were higher in the MM-

SW  technique compared to the SR-RV estimation technique (Table 5.13). According to the 

calculation of relative efficiency, the efficiency of MM-SW technique was higher than SR-RV  

technique (Table 5.13).  The results based on bias of regression coefficients from the analysis of 

simulated data with 100 replications indicated that the performance of the SR-RV  estimation 

technique was better compared to  the MM-SW  technique. The obtained results based on MSE, 

length of 95% C.I. of regression coefficients and coverage of true regression coefficients in 

corresponding simulated 95% C.I.  also indicated that the performance of the MM-SW technique 

was better than the SR-RV estimation technique.  

 

Results based on simulated data with 100 and 1000 replications using multilevel modeling-

scaled weights technique 

 

Based on the empirical results obtained from the analysis of the simulated data with 100 and 

1000 numbers of replications using the MM-SW technique, results pointed out  that  the standard 

errors of regression coefficients were smaller  when the numbers of replications were increased 

from 100 to 1000. The biases, percentage biases, standardized biases, means square errors for the 

regression coefficients of both covariates (BMI (<25 kg/m
2
, ≥25kg/m

2
) and EDUCATION 

(<secondary,  ≥secondary)  were lower in the simulated data with 1000 replications compared to the  

simulated data with 100 replications using multilevel MM-SW technique. This result indicated that 

the higher number of simulations reduced the bias for the regression coefficients. The MSE were 

also lower in simulated data with 1000 replications compared to simulated data 100 replications 

data. The coverage of the true regression coefficients obtained from the observed Saskatchewan data 

for both independent variables in the corresponding simulated 95% confidence intervals obtained 

from simulated data with 1000 replications was higher compared to the simulated data with 100 
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replications in multilevel modeling-scaled weights technique. Lengths of 95% C.I. of regression 

coefficients obtained from the analysis of both simulated data with the 100 and 1000 replications 

were similar in MM-SW technique.  The results obtained from the analysis of simulated complex 

survey data sets using MM-SW indicated that the data with higher numbers of replications provides 

more reliable and consistent parameters estimates. 

 

 

Results based on simulated data with 100 and 1000 replications using standard regression-

robust variance estimation technique 

 

The empirical results obtained from the analysis of the simulated data with 100 and 1000 

replications using the SR-RV  estimation technique indicated that  the standard errors of regression 

coefficients were smaller  when the numbers of replications were increased from 100 to 1000. The 

biases, percentage biases, standardized biases of regression coefficients for the  body mass index 

(<25 kg/m
2
, ≥25kg/m

2
)  were lower in the simulated data with 1000 replications compared to the  

simulated data with 100 replications  using SR-RV estimation technique. The biases, percentage 

biases and standardized biases for the regression coefficients of the  education (<secondary,  

≥secondary)  were higher in the simulated data with 1000 replications compared to the  simulated 

data with 100 replications  using SR-RV estimation technique. The MSE were lower in simulated 

data with 1000 replications compared to simulated data with 100 replications. The coverage of the 

true regression coefficients obtained from the observed Saskatchewan data for both independent 

variables in the corresponding simulated 95% confidence intervals obtained from simulated data 

with 1000 replications was higher compared to the simulated data with 100 replications in SR-RV 

estimation technique. Lengths of 95% C.I. of regression coefficients for both covariates obtained 

from the analysis of both simulated data with the 100 and 1000 replications were similar in SR-RV 

estimation technique.   
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Based on the comparison of results of assessment criteria from the analysis of simulated data 

with two types of number of replications or sample sizes such as 100 and 1000 using both statistical 

techniques, the results from the analysis of data with the higher replications (1000) provided the 

precise results compared to the results obtained from the analysis of data with the lower replications 

(100).  

To summarize based on 1000 replications, the five assessment criteria: bias (variation of bias 

of regression coefficients, percentage bias of regression coefficients and standardize bias of 

regression coefficients), means square errors (MSE), coverage of the true regression coefficients in 

simulated  95% C.I. , length of 95% C.I. of regression coefficients, and relative efficiency to assess 

which method is appropriate to analyze the cross-sectional complex survey data.  The three 

assessment criteria such MSE, coverage of the true regression coefficients in simulated  95% C.I. 

and  length of 95% C.I. of regression coefficients did not reveal that the two analytical techniques 

under investigative would provide different results. However, we did observe that based on bias, 

SR-RV estimation technique is an appropriate method compared to MM-SW technique.  
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Table 5.13 Results for assessment criteria to compare the performance of the MM-SW technique and the SR-RV estimation technique 

based on Monte Carlo simulation 

Evaluation criteria variables Multilevel modeling-scaled 

weights 

Standard regression-robust 

 variance 

  1000 simulated 

data sets 

100 simulated 

data sets 

1000 simulated  

data sets 

100 simulated  

data sets 

      

Bias of regression 

coefficients 

BMI:  

<25 kg/m
2
(ref) 

  ≥25kg/m
2
 

 

EDUCATION: 

≥secondary (ref) 

<secondary 

 

 

0.00820 

 

 

 

0.02560 

 

 

0.0925 

 

 

 

0.0491 

 

 

0.0009 

 

 

 

0.0330 

 

 

0.0829 

 

 

 

0.0059 

 

Percentage bias of 

regression 

coefficients 

 

BMI:  

<25 kg/m
2
(ref) 

  ≥25kg/m
2
 

 

EDUCATION: 

≥secondary (ref) 

<secondary 

 

 

 

1.08% 

 

 

 

5.50% 

 

 

 

12.22% 

 

 

 

10.54% 

 

 

 

0.11% 

 

 

 

8.09% 

 

 

 

10.85% 

 

 

 

0.55% 

 

Standardize bias of 

regression 

coefficients 

 

BMI:  

<25 kg/m
2
(ref) 

  ≥25kg/m
2
 

 

EDUCATION: 

≥secondary (ref) 

<secondary 

 

 

 

5.46% 

 

 

 

17.21% 

 

 

 

40.08% 

 

 

 

30.49% 

 

 

 

0.587% 

 

 

 

22.24% 

 

 

 

34.79% 

 

 

 

3.21% 

      

 

 

1
2
7
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Cont’d Table 5.13 

Evaluation criteria variables Multilevel modeling-scaled 

weights 

Standard regression-robust  

variance 

  1000 simulated 

data sets 

100 simulated 

data sets 

1000 simulated  

data sets 

100 simulated  

data sets 

      

 

Means square 

errors 

 

BMI:  

<25 kg/m
2
(ref) 

  ≥25 kg/m
2
 

EDUCATION: 

≥secondary (ref) 

<secondary 

 

 

 

0.0225 

 

 

0.0228 

 

 

 

0.0618 

 

 

0.0284 

 

 

 

0.0212 

 

 

0.0232 

 

 

 

0.0632 

 

 

0.0296 

Coverage of the 

true regression 

coefficients in 

simulated  

95% C.I. 

BMI:  

<25 kg/m
2
(ref) 

  ≥25 kg/m
2
 

EDUCATION: 

≥secondary (ref) 

<secondary 

 

 

91% 

 

 

89% 

 

 

78% 

 

 

78% 

 

 

83% 

 

 

81% 

 

 

72% 

 

 

72% 

 

Average length of 

95% confidence 

intervals of 

regression 

coefficients 

 

BMI:  

<25 kg/m
2
(ref) 

  ≥25.kg/m
2
 

 

EDUCATION: 

≥secondary (ref) 

<secondary 

 

 

 

0.6037 

 

 

 

0.5616 

 

 

 

0.5859 

 

 

 

0.5494 

 

 

 

0.5938 

 

 

 

0.5766 

 

 

 

0.5898 

 

 

 

0.5775 

 

 

 

 

 

 

1
2
8
 



 129 
 

 

 

 

Cont’d  Table 5.13 

Evaluation criteria variables Multilevel modeling-scaled 

weights 

Standard regression-robust  

variance 

  1000 simulated 

data sets 

100 simulated 

data sets 

1000 simulated  

data sets 

100 simulated  

data sets 

Relative efficiency BMI:  

<25 kg/m
2
(ref) 

  ≥25 kg/m
2
 

 

EDUCATION: 

≥secondary (ref) 

<secondary 

 

 

1.06 

 

 

 

1.00 

 

 

0.94 

 

 

 

0.88 

 

 

1.00 

 

 

 

1.00 

 

 

1.00 

 

 

 

1.00 

 

 

 

The statistical formula for each criteria are shown in Table 3.3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
2
9
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Figure 5.3  Comparison between MM-SW technique and SR-RV technique based on the results obtained from the analysis of simulated 

data with two sample sizes  
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Goodness of fit test for the logistic regression model based on Monte Carlo simulation 

study 

A number of 1000 simulated data sets, each of sample size 1,731  were generated. The 

binary outcome variable was type 2 diabetes and explanatory variables were education and BMI. 

Both explanatory variables were categorical. The logistic regression model with two explanatory 

variables was fitted for each of 1000 simulated data sets in this Monte Carlo simulation study. In 

order to test the goodness of fit for the model, 1000 simulated data sets were divided into four 

batches 250 each batch. Random sample of the twenty data sets were selected from each batch to 

create four groups. The estat gof   STATA code was used to estimate the goodness of fit statistic 

and the corresponding p-value. Based on the results of goodness of fit test for each data set in 

each group, only one data set was not fitted well in the first group and another data set was not 

fitted well in third group (Table 5.14.1, Table 5.14.2, Table 5.14.3, Table 5.14.4). This results 

indicated that  almost all data sets in each group were fitted the logistic regression model 

adequately. Hence, based on  the results of goodness of fit test  it can be concluded  that the 

logistic regression models  fitted the simulated data adequately (Table 5.14.1, Table 5.14.2, 

Table 5.14.3, Table 5.14.4). 
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Table 5.14.1 Goodness of fit statistic with p-value based on 20 simulated data sets (Group 1) 

 

Data sets  92  P-value 

1 1.38 0.9979 

2 1.56 0.9966 

3 3.50 0.9411 

4 3.31 0.9505 

5 0.61 0.9999 

6 0.99 0.9995 

7 4.17 0.9001 

8 0.02 1.00 

9 45.44 0.00 

10 5.05 0.8297 

11 0.60 0.9999 

12 2.87 0.9692 

13 2.86 0.9695 

14 0.29 1.00 

15 2.91 0.9676 

16 0.08 1.00 

17 3.12 0.9592 

18 1.53 0.9969 

19 1.40 0.9978 

20 5.26 0.8115 

 

Table 5.14.2  Goodness of fit statistic with p-value based on 20 simulated data sets (Group 2) 

 

Data sets  92  P-value 

1 0.38 1.00 

2 0.87 0.9979 

3 0.01 1.00 

4 0.10 1.00 

5 8.17 0.5172 

6 0.41 1.00 

7 0.41 1.00 

8 0.41 1.00 

9 0.08 1.00 

10 0.27 1.00 

11 0.00 1.00 

12 0.08 1.00 

13 0.02 1.00 

14 2.43 0.9828 

15 0.41 1.00 

16 0.61 0.9999 

17 2.83 0.9707 

18 0.01 1.00 

19 0.27 1.00 

20 0.05 1.00 
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Table 5.14.3  Goodness of fit statistic with p-value based on 20 simulated data sets  (Group 3) 

 

Data sets  92  P-value 

1 1.78 0.9945 

2 0.43 1.00 

3 0.87 0.9997 

4 10.18 0.3365 

5 0.28 1.00 

6 0.59 0.9999 

7 0.34 1.00 

8 22.20 0.008 

9 0.04 1.00 

10 0.75 0.9998 

11 5.83 0.7567 

12 0.51 1.00 

13 0.03 1.00 

14 0.00 1.00 

15 0.86 0.9997 

16 9.59 0.3848 

17 0.05 1.00 

18 2.51 0.9805 

19 0.53 1.00 

20 0.04 1.00 

 

 

Table 5.14.4  Goodness of fit statistic with p-value based on 20 simulated data sets (Group 4) 

 

Data sets  92  P-value 

1 0.23 1.00 

2 11.32 0.2542 

3 0.32 1.00 

4 3.09 0.9604 

5 1.23 0.9987 

6 0.44 1.00 

7 4.87 0.8453 

8 0.09 1.00 

9 6.31 0.7087 

10 1.11 0.9991 

11 1.53 0.9969 

12 0.55 1.00 

13 0.01 1.00 

14 0.51 1.00 

15 0.45 1.00 

16 0.15 1.00 

17 0.12 1.00 

18 3.43 0.9445 

19 2.76 0.9731 

20 0.07 1.00 
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5.4 Interpretation of results 

For cross-sectional complex survey data, the findings from the Monte Carlo simulation 

technique indicated that the MM-SW  technique and SR-RV  estimation technique performed 

equally well to analyze cross-sectional complex survey data. However, the interpretation of the 

results is based on the SR-RV  estimation technique, as other  researchers have suggested that it 

is appropriate to use bootstrap variance estimates because this technique accounts for 

design effects (stratification and clustering) more accurately as compared to MM-SW  

technique which still has some deficiencies because weights are not available at each level 

for publicly used complex survey data sets. Statistics Canada develops bootstrap weights 

for surveys based on multi-stage complex design  for the purposes of formulating correct 

inferences [106].  Hence, the estimated regression coefficients from standard regression – 

robust variance technique and their robust standard errors were used for interpretation purposes.  

These results are presented in section 5.4.1. 

For longitudinal complex survey data, the findings from the analyses of the NPHS data 

were reliable compared to the results based on MM-SW technique. Because the former technique 

accounted for unequal probability of selection, design effects and it also accounted for within-

subject correlation. The MM-SW technique did not have provision to account for within-subject 

correlation when analyzing longitudinal complex survey data. The results obtained from the 

analyses of the longitudbnal complex survey data (NPHS) using the SR-RV  estimation 

technique were used for interpretation. Hence, the estimated regression coefficients and their 

robust standard errors were used for interpretation purposes. The interpretation of the results 

obtained from the SR-RV estimation technique based on the longitudinal complex survey 

(NPHS) was presented in section 5.4.2. 
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           The interpretations of estimated regression coefficients and odds ratios are different 

between MM-SW and SR-RV estimation technique because MM-SW is a subject-specific 

method and SR-RV is a population averaged model. For example, interpretation of OR =2.5 for 

obese individual compared to normal individual, obtained from MM-SW:  The odds of 

developing type 2 diabetes for an obese  individual is 2.5 times higher compared to a normal 

individual controlling for the other covariates. Interpretation of OR =1.8  for obese people 

compared to normal people, obtained from SR-RV:  The odds of developing type 2 diabetes 

among obese people  is 1.8 times higher compared to the normal people. 

 

5.4.1 Interpretation of results based on standard regression-robust variance estimation 

technique from the cross-sectional complex survey: CHHS 

 

Participants who were unemployed (OR: 1.82, 95% C.I. 1.01, 3.25) were more likely to 

have self-reported, physician-diagnosed type 2 diabetes compared with the participants who had 

full-time jobs controlling for the other covariates. Participants who were homemakers (OR: 1.99, 

95% C.I. 1.16, 3.42) or retired (OR: 1.80, 95% C.I. 0.89, 3.67) were also more likely to have 

self-reported, physician-diagnosed type 2 diabetes compared with the participants who had full-

time jobs controlling for the other covariates. The odds of developing self-reported, physician-

diagnosed type 2 diabetes were 16%  lower among the participants who worked part-time or 

were students (OR: 0.84, 95% C.I. 0.57, 1.30)  compared with the participants who had full-time 

jobs. The probability of developing self-reported, physician-diagnosed type 2 diabetes was 

higher among obese (BMI>29.9 kg/m
2
) participants (OR: 3.46, 95% C.I. 2.53, 4.76) than among 

participants with a normal weight (BMI<25 kg/m
2
). Similarly, the probability of developing self-

reported, physician-diagnosed type 2 diabetes was higher among overweight (BMI = 25 – 29.9 
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kg/m
2
) participants (OR: 1.82, 95% C.I. 1.16, 2.86) than among participants with a normal 

weight (BMI<25 kg/m
2
). 

         In the final model based on CHHS, there was a significant interaction between sex and age 

group associated with the development of self-reported, physician-diagnosed type 2 diabetes. 

Odd ratios were calculated for the interaction term using Hosmer and Lemeshow’s approach 

[27]. The estimated odd ratios and their 95% confidence interval were shown in Table 5.16. The 

results indicated  that the risk of type 2 diabetes were significantly increased among male and 

female with both (45-64 years and 65-74 years) age groups with exception of  45-64 years 

female group.  When comparing between male and female, male participants had higher risk of 

type 2 diabetes compared to female participants for  both  (45-64 years and 65-74 years)  age 

groups. 

         The prediction of the probability of type 2 diabetes and the risk factors can be summarized 

using the following final logistic regression models based on SR-RV  estimation technique with 

the main effects and the interaction terms: 

Logit [Pr((Type 2 Diabetes)i =1)] = –4.89 + 0.25*(45 – 64 years)i + 0.74*(65 – 74 years)i + 

0.20*(Urban)i  – 0.41*(male)i + 0.40*(secondary)i + 0.69*(elementary)i + 0.17*($25,000–

$49,999)i + 0.17*($12,000 – $24,999)i  -  0.04*(<$12,000)i  – 0.17*(part-time/students)i  

+0.60*(unemployment)i + 0.69*(homemaker)i + 0.59*(retired)i +0.36*(no physical activity)i  + 

0.60*(bmi:25 – 29.9 kg/m
2
)i  + 1.24*(bmi>29.9 kg/m

2
)  + 1.21*(45–64 years-male)i  + 0.84* (65 

– 74 years – male)i. 
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Table 5.15 Odds ratios (OR) and 95% confidence intervals (95% C.I.) based on the SR-RV 

estimation technique using the CHHS 

Covariates  Estimates (SE) Odds Ratio (95% C.I.) 

Age  

18–44years (ref) 

45–64 years 

65 years and above 

 

 

0.25 (0.21) 

0.74(0.33)* 

 

 

1.28 (0.85 – 1.93) 

2.10 (1.11 – 3.94) 

Location of Residence 

Rural (ref) 

Urban 

 

 

0.20 (0.15) 

 

 

1.22 (0.92 – 1.63) 

Sex 

Female (ref) 

Male 

 

 

–0.41 (0.34) 

 

 

 0.66 (0.34 – 1.30) 

Education Levels 

University (ref) 

Secondary 

Elementary 

 

 

0.40 (0.26) 

0.69 (0.34)* 

 

 

1.49 (0.90 – 2.048) 

1.99 (1.02 – 3.94) 

Household Income 

>$50,000 (ref) 

$25,000–$49,999 

$12,000–$24,999 

<$12,000 

 

 

0.17 (0.32) 

0.17 (0.23) 

-0.04 (0.24) 

 

 

1.19 (0.63 – 2.23) 

1.19 (0.76 – 1.88) 

0.96 (0.61 – 1.54) 

Employment Status 

Full-time (ref) 

Part-time/students 

Unemployment 

Homemaker 

Retired 

 

 

–0.17 (0.24) 

0.60 (0.30)* 

0.69 (0.27)* 

0.59 (0.36) 

 

 

0.84 (0.57 – 1.30) 

1.82 (1.01 – 3.25) 

1.99 (1.16 – 3.42) 

1.80 (0.89 – 3.67) 

Physical Activity 

Yes (ref) 

No 

 

 

0.36 (0.20) 

 

 

1.43 (0.97 – 2.12) 

Body Mass Index 

BMI: ˂25 (ref) 

BMI: 25.0–29.9 

BMI:>29.9 

 

 

0.60 (0.23)* 

1.24 (0.16)* 

 

 

1.82 (1.16 – 2.86) 

3.46 (2.53 – 4.76) 

Interaction 

Age groups * sex 

18–44yrs*female (ref) 

45–64yrs*male 

65–74yrs*male 

 

 

 

1.21 (0.38)* 

0.84 (0.35)* 

 

 

 

3.35 (1.60 – 7.03) 

2.32 (1.17 – 4.57) 

* indicates P-value ≤0.05 
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Table 5.16 Calculation of odd ratios for interaction terms based on CHHS 

Effect Among OR 95% C.I.  

Age group    

45-64 years male 4.31 1.49 – 12.47 

65-74 years male 4.85 1.43 – 16.44 

45-64 years female 1.28 0.85 – 1.94 

65-74 years female 2.10 1.10 – 4.00 

 

 

5.4.2 Interpretation of the results obtained from SR-RV  estimation technique based on the 

longitudinal complex survey: NPHS 

 

 

Participants in the age group 45–64 years were more likely (OR: 1.90, 95% C.I. 1.55–

2.34) to develop self-reported, physician-diagnosed type 2 diabetes compared with the younger 

participants in the age group 18–44 years after controlling for the other covariates. In the same 

way, participants in the age group 65 years and over were more likely (OR: 3.43, 95% C.I. 2.60–

4.51) to develop self-reported, physician-diagnosed type 2 diabetes than were younger 

participants in the age group 18–44 years after controlling for the other covariates. 

 Participants with elementary school or less education were more likely (OR: 2.03, 95% C.I. 

1.44, 2.86) to develop self-reported, physician-diagnosed type 2 diabetes compared with those 

who had university degrees. Similarly, participants with secondary education (OR: 1.47, 95% 

C.I. 1.1, 1.96) were more likely to develop self-reported, physician-diagnosed type 2 diabetes 

compared with those who had university degrees after controlling for the other covariates. 

The risk of developing self-reported, physician-diagnosed type 2 diabetes was higher (OR: 1.35, 

95% C.I. 1.09, 1.69) among obese (BMI>29.9 kg/m
2
) participants compared with the participants 

with a normal weight (BMI<25 kg/m
2
) after controlling for the other covariates. The risk of 

developing self-reported, physician-diagnosed type 2 diabetes was also higher (OR: 1.06, 95% 

C.I. 0.91, 1.23) among overweight (BMI: 25–29.9 kg/m
2
) participants than among participants 

with a normal weight (BMI<25 kg/m
2
) after controlling for the other covariates. 
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Participants who reported that their birth mother had type 2 diabetes were more likely 

(OR: 2.59, 95% C.I. 1.98, 3.40)  to develop self-reported, physician-diagnosed type 2 diabetes 

compared with participants who did not report that their birth mother had type 2 diabetes. 

Participants who reported that their birth father had type 2 diabetes were more likely (OR: 2.01, 

95% C.I. 1.46, 2.77) to develop self-reported, physician-diagnosed type 2 diabetes compared 

with participants who did not report that their birth father had type 2 diabetes.  

There was a significant interaction between sex and household income associated with 

the development of self-reported, physician-diagnosed type 2 diabetes. Odd ratios were 

calculated for the interaction term based on  Hosmer and Lemeshow’s approach [27]. Estimated 

odd ratios (OR) were shown in Table 5.18.  Odd ratios for interaction terms indicated that lower 

household income significantly increased the risk of type 2 diabetes among female participants 

but not true for male participants.  

The prediction of the probability of type 2 diabetes and the risk factors can be 

summarized using the following final logistic regression models  from SR-RV estimation 

technique that are based on the main effects and interaction terms:  

Logit [Pr((Type 2 Diabetes)ij =1)] = –5.30 + 0.64*(45 – 64 years)ij + 1.23*(65 and above years)ij 

– 0.12*(Rural)ij  + 0.50*(male)ij + 0.38*(secondary)ij + 0.71*(elementary)ij +  0.57*(<$15,000)ij  

+0.50*($15,000 – $29,999)ij + 0.33*($30,000 – $49,999)ij  –0.05*(physical activity)ij  + 

0.06*(bmi:25 – 29.9 kg/m
2
)ij  + 0.30*(bmi>29.9 kg/m

2
)  + 0.95*(Birth mother had diabetes)ij+ 

0.70*(Birth father  had diabetes)ij + 0.18*(Cycle 2)ij + 0.32*(Cycle 3)ij  + 0.56*(Cycle 4)ij + 

0.75*(Cycle 5)ij + 0.89*(Cycle 6)ij  – 0.29*($30,000 – $49,999 –male)ij  – 0.32*($15,000 – 

$29,999 –male)ij  – 0.40*(<$15,000–male)ij. 
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Table 5.17   Odd ratios (95% confidence intervals) based on the SR-RV estimation technique 

using the NPHS 

Covariates Estimates (SE) Odd Ratio (95% C.I.) 

Age Groups 

18–44years (ref) 

45– 64 years 

65 years and above 

 

 

0.64 (0.11)* 

1.23 (0.14)* 

 

 

1.90 (1.55 – 2.34) 

3.43 (2.60 – 4.51) 

Location of Residence 

Urban (ref) 

Rural 

 

 

–0.12 (0.07) 

 

 

0.88 (0.77 – 1.01) 

Sex 

Female (ref) 

Male 

 

 

0.50 (0.16)* 

 

 

1.64 (1.21 – 2.23) 

Education Levels 

University (ref) 

Secondary 

Elementary 

 

 

0.38 (0.15)* 

0.71 (0.18)* 

 

 

1.47 (1.1 – 1.96) 

2.03 (1.44 – 2.86) 

Household Income 

>$50,000 (ref) 

$30,000–$49,999 

$15,000–$29,999 

<$15,000 

 

 

0.33 (0.11)* 

0.50 (0.14)* 

0.57 (0.16)* 

 

 

1.39 (1.12 – 1.72) 

1.66 (1.26 – 2.17) 

1.77 (1.30 – 2.42) 

Physical Activity 

Yes (ref) 

No 

 

 

–0.05 (0.05) 

 

 

0.95 (0.86 – 1.05) 

Body Mass Index 

BMI: <25 (ref) 

BMI: 25–29.9 

BMI:>29.9 

 

 

0.06 (0.07) 

0.30 (0.11)* 

 

 

1.06 (0.91 – 1.23) 

1.35 (1.09 – 1.69) 

Mother had diabetes 

No (ref) 

Yes 

 

 

0.95 (0.14)* 

 

 

2.59 (1.98 – 3.40) 

Father had diabetes 

No (ref) 

Yes 

 

 

0.70 (0.16)* 

 

 

2.01 (1.46 – 2.77) 

Time 

Cycle 1 (ref) 

Cycle 2 

Cycle 3 

Cycle 4 

Cycle 5 

Cycle 6 

 

 

0.18 (0.05)* 

0.32 (0.07)* 

0.56 (0.07)* 

0.75 (0.08)* 

0.89 (0.08)* 

 

 

1.20 (1.10 – 1.32) 

1.38 (1.20 – 1.59) 

1.75 (1.52 – 2.01) 

2.13 (1.82 – 2.49) 

2.43 (2.10 – 2.84) 
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Cont’d Table 5.17 

Covariates Estimates (SE) Odds Ratio (95% C.I.) 

Interaction  

(Sex*household income) 

 

Male*$30,000–$49,999 

Male*$15,000–$29,999 

Male*<$15,000 

 

 

 

–0.29 (0.14)* 

–0.32 (0.17) 

–0.40 (0.20)* 

 

 

 

0.67 (0.45 – 1.00) 

0.73 (0.52 – 1.01) 

0.75 (0.57 – 0.99) 

 

* indicates P-value ≤0.05 

 

Table 5.18 Calculation of odd ratios for interaction terms based on NPHS 

Effect Among OR 95% C.I.  

Household income    

<$15,000/year male 1.20 0.63 – 2.22 

$15,000 - $29,999/year male 1.20 0.69 – 2.07 

$30,000-$49,999/year male 1.04 0.67 – 1.62 

<$15,000/year female 1.77 1.29 – 2.42 

$15,000 - $29,999/year female 1.65 1.25 – 2.17 

$30,000-$49,999/year female 1.39 1.12 – 1.73 
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CHAPTER 6 

DISCUSSION AND CRITIQUE OF RESULTS 

6.1 Introduction 

Statistical methods are well established for data from a simple random sampling (SRS) 

framework in which the observations are independent of each other. Observations may not be 

independent of each other in real-life, complex surveys that are based on multistage design. 

Traditional statistical methods, which assume observations are independent of each other, are not 

appropriate for analysis of such surveys. The MM-SW technique and the SR-RV estimation 

technique are commonly used statistical techniques to analyze data obtained from cross-sectional 

and longitudinal complex surveys. In this thesis, these two statistical methods were compared by 

using them to analyze binary data obtained from cross-sectional (CHHS) and longitudinal 

(NPHS) complex surveys. The outcome variable of interest was type 2 diabetes. A Monte Carle 

simulation study was also conducted to assess and identify the more suitable statistical method 

between these two methods for cross-sectional complex survey data.  

In section 6.2, a comparison between these two statistical techniques was made based on 

the results of the analyses of the data obtained from cross-sectional complex surveys. In section 

6.3, a comparison between these two statistical techniques was made based on the results of the 

analyses of the data obtained from longitudinal complex surveys. Finally, a comparison between 

these two statistical techniques was made based on the results obtained from the Monte Carlo 

simulation study in section 6.4. 
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6.2 Objective 1: To compare the multilevel modeling–scaled weights(MM-SW) technique 

and the standard regression–robust variance (SR-RV) estimation technique by analyzing 

cross-sectional complex survey data.  
 

The first objective of this thesis was to compare these two statistical techniques based on 

the estimated standard errors and 95% confidence intervals for the estimated regression 

coefficients obtained from the analysis of the CHHS.  The results from the analysis of the CHHS 

data indicated that the estimated regression coefficients were different between the two 

techniques. With the exception of a few variables, the regression coefficient estimates obtained 

from the MM-SW  technique were higher compared with the SR-RV  estimation technique 

(Table 5.6). This was expected, as is explained below. In the MM-SW technique, the regression 

coefficients were calculated using multilevel pseudo maximum likelihood (MPML) with 

numerical integration via adaptive quadrature, where the probability weight for each level were 

incorporated in the MPML [58].  It is difficult to have a closed-form of the marginal likelihood 

in generalized linear mixed models or multilevel models. Marginal likelihood is a joint 

probability of all observed responses, given the covariates. Gauss–Hermite or ordinary 

quadrature is often used to evaluate and maximize the marginal likelihood for parameter 

estimation. Adaptive quadrature is an approximate method, and it can be used to approximate the 

marginal likelihood. Adaptive quadrature is more efficient at approximating the marginal 

likelihood than ordinary quadrature or Gauss–Hermite quadrature is at estimating the parameters, 

and it can be implemented in GLLAMM in STATA software program [87, 88].  Non-responses 

and unequal probabilities of selection occur at each level in multistage complex surveys.  The 

effects of the non-response and unequal probability of selection are taken into account by 

probability weight variables at the analysis stage. In the multilevel modeling technique, separate 

probability weight for sampling units  at each level of data are required to take into account these 
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design effects of complex surveys. For example, let kp be the probability of selection for level 2 

units (PSU level in the CHHS) and  k  (where 
k

k
p

1
 ) be the corresponding probability 

weights for level 2 units. Let  kip |  be the probability of selection for a level 1 unit (individual in 

the CHHS) within level 2 (PSU in the CHHS) and ki|  (where
ki

ki
p |

|

1
 ) be the corresponding 

probability weights for level 1 units. These probability weights for each level were incorporated 

in the multilevel pseudo maximum likelihood (MPML) approach to determine the parameter 

estimates.  

On the other hand, the overall single level probability weight were incorporated in pseudo 

maximum likelihood (PML) to take into account the non-responses and unequal probability of 

selection for sampling units in the SR-RV estimation technique. This might be the main reason 

for the differences in the regression coefficients and their standard errors between the two 

techniques. In the analysis of data obtained from cross-sectional complex surveys, the multilevel 

modeling technique assumes that observations are dependent on each other, but standard logistic 

regression assumes that observations are independent of each other [49].  

The relationship (
23.01 





 ml

sr ) between the regression coefficients obtained from 

multilevel models (random-effects models) and standard regression indicated that regression 

coefficient estimates can be higher in the MM-SW technique than in the SR-RV estimation 

technique. This is one of the main reasons of difference in the values of regression coefficients 

between two techniques. In the MM-SW technique, the probability weight variable was used for 

each level, whereas a single probability weight variable was used in SR-RV estimation 

technique. If the weight variable for any level of multistage complex survey data is not available, 
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then the multilevel modeling technique assumes that this weight variable is equal to one for that 

level of complex survey data. This might be one of the reasons for the differences in the 

regression coefficient estimators between the two techniques. 

The estimated standard errors of the estimated regression coefficients using the MM-SW  

technique were smaller compared with the SR-RV estimation technique, based on the analysis of 

the CHHS. The bootstrap variance estimation technique was used to estimate the standard errors 

of the parameter estimates in the SR-RV estimation technique, and sandwich variance estimators 

were used to estimate the standard errors of the parameter estimates in the MM-SW technique.  

The subpopulation might be the reason for this difference in the standard errors. The impact of 

clustering was taken into account by including additive random effects in the multilevel 

modeling, which can produce significantly underestimated standard errors [42].  Scaling of the 

level 1 weight has an influence on the parameter and their standard error estimations [57, 60]. 

Scaling of the probability weight might be another reason for the differences in the parameter 

estimates between the two statistical techniques. 

Based on the results obtained from the analysis of the CHHS, it is difficult to recommend 

one technique as preferable for analyzing complex survey data. A Monte Carlo simulation study 

was conducted to determine the preferable statistical method. The preferable statistical method 

for analyzing cross-sectional complex survey data can be determined based on the results of the 

Monte Carlo simulation technique.   
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6.2.1 Prevalence of self-reported, physician-diagnosed type 2 diabetes and its risk factors 

among Canadians 

 

Type 2 diabetes is a major health burden for Canadians, and it is also a well-known cause 

of heart disease, blindness and kidney failure.  In this thesis, the prevalence of self-reported, 

physician-diagnosed type 2 diabetes and its risk factors among Canadian adults were studied, 

based on Canadian heart health surveys (CHHS). The prevalence of type 2 diabetes was higher in 

New Brunswick (5.5%, 95% C.I. 4.7–6.4), Newfoundland and Labrador (5.4%, 95% C.I. 4.8–

6.2), and Saskatchewan (5.4%, 95% C.I. 3.6–8.0) compared with other provinces (Table 5.4).  

Based on the analyses of the CHHS using the multilevel modeling–scaled weights technique, the 

statistically significant predictors associated with the development of self-reported, physician-

diagnosed type 2 diabetes (yes, no) were household income (<$12,000;  $12,000–$24,999; 

$25,000–$49,999; >$50,000), employment status (full-time, part-time/student, unemployed, 

homemaker, retired), physical activity (yes, no) and body mass index (BMI<25  kg/m
2
, BMI = 

25–29.9kg/m
2
, BMI>29.9kg/m

2
). An interaction between age (18–44 years, 45–64 years, 65 

years and above) and sex (male, female) was significantly associated with the development of 

self-reported, physician-diagnosed type 2 diabetes. 

Several studies, including Canadian studies, have been conducted to determine the 

relationship between household income and the prevalence of type 2 diabetes. The study findings 

indicated that people with lower incomes are significantly associated with type 2 diabetes, which 

is similar to this study finding [89-91]. The probable reasons might be that people with lower 

incomes consume less nutritive food and have less access to fitness clubs because they cannot 

afford the membership cost.  
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Few studies have been conducted to establish the relationship between employment or 

occupational status and the prevalence of type 2 diabetes [ 92]. This study found that 

employment status made a significant contribution to whether Canadian participants developed 

type 2 diabetes, a result that supported the findings of previous studies. Several studies have 

indicated that obesity was a significant predictor of type 2 diabetes among Canadian women and 

the Métis of western Canada [17, 93]. A study in Canada found that obese (BMI>29.9) women 

were more likely to have type 2 diabetes [17]. The relationship between BMI and the prevalence 

of type 2 diabetes has been studied extensively. Being overweight (BMI: 25–29.9 kg/m
2
) or 

obese (BMI>29.9kg/m
2
) is significantly associated with the prevalence of type 2 diabetes [72, 

94, 95]. This study findings were consistent with other findings. A Canadian study reported  that 

physical activity was a significant predictor of type 2 diabetes, which this study findings 

supported [96]. Some studies found a weak relationship between physical activity and the 

prevalence of type 2 diabetes after adjusting the other covariates, such as BMI and gender [97]. 

Age and sex are significant risk factors among Iranian and Canadian adults [74, 93]. 

Canadian women over 40 and with a low SES have a higher prevalence of type 2 diabetes, but 

Canadian men do not [90]. These study findings found a combined effect of age and sex on the 

prevalence of type 2 diabetes among Canadian residents.  

 

6.3 Objective 2: To compare the MM-SW technique and the SR-RV estimation technique 

for analyzing longitudinal complex survey data 

 

The second objective of this thesis was to compare the performance of  the SR-RV  

estimation technique (GEE-Liang and Zeger with bootstrap variance) and  the MM-SW 

technique for longitudinal complex survey data.  Based on the analyses of the NPHS data, the 

estimated regression coefficients obtained from the MM-SW technique were larger than the 
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estimated regression coefficients obtained from the standard regression (GEE)–robust variance 

estimation technique which is expected. The relationship between the regression coefficients 

obtained from MM-SW technique and SR-RV estimation technique indicated that the regression 

coefficients obtained from MM-SW technique were higher compared with standard regression-

robust variance estimation technique. The estimated regression coefficients obtained from MM-

SW  were larger than the regression coefficients obtained from SR-RV estimation technique 

which is the agreement of the relationship between  regression coefficients obtained from the   

MM-SW  technique and SR-RV estimation technique.  The standard errors of the estimated 

regression coefficients obtained from the MM-SW   technique were also larger than the standard 

errors of the estimated regression coefficients obtained from the SR-RV technique .The 95% 

confidence intervals of the estimated regression coefficients were also wider for the MM-SW   

technique compare with the SR-RV estimation technique. 

Multilevel modeling is known as subject-specific (SS) or random-effects modeling, and 

standard regression (GEE) is known as population-averaged or marginal modeling [38]. 

Several studies have indicated that the regression coefficient estimates were larger for the MM-

SW  technique compared with the regression coefficient estimates from GEE [10, 11, 21, 26]. 

This study results support those findings. The MM-SW   technique has more computational 

problems, such as convergence issues, compared with the SR-RV estimation technique [20]. As a 

result, the SR-RV estimation technique might be better for analyzing data from epidemiologic 

studies and clinical trials. 

The estimated regression coefficients obtained from the standard regression technique or 

from population-averaged models were the average value of individual regression lines. In 

contrast, the estimated regression coefficients obtained from multilevel modeling or subject-
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specific models were the values of individuals [10, 22]. The question, then, is as follows: which 

method is preferable for analyzing longitudinal complex survey data? Although no concrete 

answer to this question is known, if the research question of interest is about a group of subjects, 

then the SR-RV estimation technique is appropriate, but if the research question of interest is 

about individual development, then MM-SW technique is appropriate [38]. 

In longitudinal data, there are two types of covariates: time-dependent (e.g., body mass 

index) and time-independent (e.g., sex). The standard errors of regression coefficients of time-

dependent covariates can be underestimated and the standard errors of regression coefficients of 

time-independent covariates can be overestimated if the dependency among repeated 

measurements of each individual are ignored [11, 14].  Repeated measurements were treated as 

level 1 units that were nested within subjects, and subjects were treated as level 2 units that were 

nested within primary sampling units (PSU) in the NPHS. In the analyses of the NPHS data 

using the MM-SW technique, no correlation structure was used to take into account within-

subject correlations. It is important to check whether the dependency of observations within a 

subject was considered precisely without considering the within-subject correlation structure. 

The estimated standard errors of the regression coefficients obtained from the analyses of the 

NPHS data using the MM-SW  technique were larger than the SR-RV estimation technique. The 

reason for the larger standard errors as well as the wider 95% confidence intervals might be that 

the MM-SW technique did not accurately take into account the dependency among repeated 

measurements of each subject and the effects of sampling design. In contrast, SR-RV estimation 

technique might take into account within-subject correlation using an appropriate correlation 

structure and the effects of the sampling design, such as clustering and stratification, to estimate 
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the standard errors of the regression coefficients accurately using bootstrap variance estimation 

technique.  

In order to analyze longitudinal complex survey data using the MM-SW technique, the 

weight variable for each level of complex survey data and the corresponding identification 

number are required. In real-life, publicly available complex survey data, it is difficult to obtain 

the corresponding identification number of sampling units because of privacy concern. So, it 

may not possible to determine the weight variable for each sampling unit for each level of real 

life complex survey data without knowing the identification number of each sampling unit. 

Many statistical software programs are available to analyze complex survey data, but not all 

statistical software can handle the weight variable for each level of complex survey data.  

Although both the MM-SW  technique and the SR-RV estimation technique were used to 

analyze the longitudinal complex survey data, it is important to be cautious about using software 

to apply the MM-SW  technique with dichotomous outcomes because the theory of multilevel 

modeling–scaled weights has not yet been developed as a universal feature in all statistical 

software programs.  

The conclusion based on the analysis of longitudinal complex survey data is that the 

standard regression–robust variance (SR-RV) estimation technique might be the appropriate 

statistical technique compared with multilevel modeling–scaled weights (MM-SW) technique. 

 

 

6.4 Objective 3: To investigate which statistical technique is optimal for analyzing cross-

sectional complex survey data sets using a Monte Carlo simulation Technique 

 

The third objective of this thesis was to assess and compare the performance of two 

statistical techniques: (i) the MM-SW technique and (ii) the SR-RV estimation technique by 
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analyzing simulated cross-sectional complex survey data via a Monte Carlo simulation 

technique.  

The Monte Carlo simulation technique is an alternative to analytical methods. It is an 

empirical method based on random sampling from a known population to assess the behavior of 

a statistic. It is often impractical to collect data multiple times to assess the performance of the 

statistical technique. The main purpose of a Monte Carlo simulation technique is to produce 

artificial random samples multiple times (number of simulations or replications) from a known 

population and then to analyze these multiple random samples to investigate the behavior of a 

statistical procedure or methods of interest based on obtained results. 

In Monte Carlo simulation technique, the RANTBL function in SAS
®
 software program 

was used to generate 100 and 1000 cross-sectional complex survey data sets  and,  the sampling 

design of each simulated data sets were similar to the Saskatchewan data with sample size 1,731. 

The Saskatchewan data which is part of CHHS is a cross-sectional complex survey data and the 

sampling design of Saskatchewan data is similar to CHHS. 

  Both the MM-SW  technique and the SR-RV estimation technique were applied to each 

of the 100 and 1000   simulated data sets, and the performance of both statistical techniques was 

assessed based on the assessment criteria: (i) bias of regression coefficients (ii) standardized bias 

of regression coefficients (iii) percentage bias of regression coefficients (iv) length of 95% 

confidence intervals of regression coefficients (v) coverage of  true regression coefficients in the 

corresponding 95% C.I. obtained from simulated data and (vi) relative efficiency. These 

assessment criteria were estimated based on analysis of 100 and 1000 simulated data sets using 

both MM-SW  technique and SR-RV estimation technique.  The parameters estimates obtained 

from the analysis of 1000 simulated data sets were efficient and consistent based on estimated 
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values of assessment criteria compared to the analysis of 100 simulated data sets using MM-SW . 

The parameters estimates obtained from the analysis of 1000 simulated data sets were efficient 

and consistent based on estimated values of assessment criteria compared to the analysis of 100 

simulated data sets using SR-RV estimation technique. Although the estimated bias for one 

covariates (education level) is lower for 100 simulated data sets compared to 1000 simulated data 

sets using SR-RV estimation technique.  

Standardize bias and percentage biases are lower for this covariate due to the lower bias. 

Parameter estimates might be differed for multiple covariates in a model compared to single 

covariate in a model . The further study is required  to figure out the reasons for this differences. 

Two covariates ( BMI and education) were used  in the model but  no  interaction was considered 

between these covariates using simulated data. It might be one of the reasons for the differences. 

The overall simulated results indicated that the parameter estimates were efficient and 

consistent based on the analysis of data with  the higher numbers of replications. The higher 

number of replications increased the accuracy and reliability of parameter estimates [100] which 

is the agreement of my obtained simulations results. The study in literature indicated that 1000 

numbers of replications might be the reasonable sample size to obtain the reliable parameter 

estimates [100]. 

Based on the analysis of 1000 simulated data sets, the estimated bias, percentage bias, 

standardize bias for regression coefficients were higher in MM-SW technique for body mass 

index (< 25 kg/m
2
,     ≥25 kg/m

2
) compared to SR-RV estimation technique but  the estimated 

values of these criteria  were almost similar between   MM-SW  technique and SR-RV 

estimation technique for education level (<secondary,   ≥ secondary).  The estimated biases of 

regression coefficient for body mass index (<25 kg/m
2
,     ≥25 kg/m

2
) in MM-SW technique and 



 153 
 

SR-RV estimation technique were 0.0082 and 0.0009 respectively (Table 5.13). These both 

estimated biases were small. These small values of biases indicated that both statistical 

techniques provided almost unbiased regression coefficients. The calculations of the percentage 

bias and the standardize bias were depended on bias. So, the values of percentage bias and the 

standardize bias were also differing between these two techniques but not much.  

The estimated biases for regression coefficient of education level (<secondary,   ≥ 

secondary) in MM-SW technique and SR-RV estimation technique were 0.0256 and 0.033 

respectively (Table 5.13). These estimated biases were almost similar. So, the percentage bias 

and the standardize bias were also similar between these two techniques based   on simulated 

data. 

The results based on the calculation of bias, percentage bias and standardized bias for 

regression coefficients indicated that both MM-SW technique and SR-RV estimation technique 

provide unbiased regression coefficients in the simulation technique. The means square errors 

(MSE), length of 95% confidence intervals of regression coefficients and relative efficiency for 

both covariates were similar between MM-SW technique and SR-RV estimation technique 

(Table 5.13).  The results from these assessment criteria indicated that the performance of both 

statistical techniques were comparable. The coverage rate of the true regression coefficients in 

corresponding simulated 95% confidence intervals were 91% for body mass index (< 25 kg/m
2
,     

≥25 kg/m
2
) and 89% for education level (<secondary,   ≥  secondary) in MM-SW   technique.  In 

contrast, the coverage of the true regression coefficients in corresponding simulated 95% 

confidence intervals were 83% for body mass index (<25 kg/m
2
,   ≥25 kg/m

2
) and 81% for 

education level (<secondary,   ≥  secondary) in SR-RV  estimation technique.  The results from 
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this assessment criterion also indicated that the performance was not differed between  MM-SW  

technique and SR-RV estimation technique. 

Several studies indicated that estimated regression coefficients and their standard errors 

were higher for the MM-SW   technique than with the SR-RV estimation technique [6, 21, 24]. 

The results based on our simulation technique support the previously published results. The 

parameter estimates and their standard errors obtained from the simulation technique with 1000 

simulated data sets  provide the higher regression coefficients and their standard errors  in MM-

SW  compared to SR-RV estimation technique except only the regression coefficients of 

education level (Table 5.13).  

Based on the first objective, we found inconsistent results between the MM-SW 

technique and the SR-RV estimation technique. The estimated regression coefficients obtained 

from these two techniques were not consistent, but the standard errors and 95% C.I. were 

consistently smaller for the MM-SW   technique compared with the SR-RV estimation 

technique. The difference in the results could be due to many things. First, cross-sectional and 

longitudinal complex surveys (longitudinal surveys were not the focus of my Monte Carlo 

simulation study) often have problems with missing values. Second, complex surveys based on 

stratification and clustering quite often have small sample sizes for some clusters. Simulated 

datasets based on the Monte Carlo or some other techniques do not have these problems. It is 

generally preferable to use a simulation technique with single or two covariates. Therefore, 

simulated data for a cross-sectional complex survey with only  two covariates was generated. 

The results based on assessment criteria in Monte Carlo simulation suggested that there might 

not have huge difference of performance between the MM-SW technique and the SR-RV 

estimation technique to analyze the cross-sectional complex survey data.  
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The theoretical assumption of the SR-RV estimation technique was not similar to the 

theoretical assumption of the MM-SW   technique. Because observations were assumed to be 

independent in the SR-RV estimation technique, the observations were assumed to be dependent 

within clusters in the MM-SW   technique [6, 49, 50, and 98]. Standard regression with a binary 

outcome underestimates the standard errors of regression coefficients when it violates the 

assumption of independence [50].  

The regression coefficients and standard errors were affected by the multilevel modeling 

technique if the sampling design is unbalanced [12]. In the standard regression–robust variance 

estimation technique, the bootstrap re-sampling variance estimation technique was used to 

estimate the standard errors, which takes into account the effect of design features of complex 

surveys and weight adjustments. The effects of the design features and the weight adjustments 

were taken into account using sandwich estimators in multilevel modeling – scaled weights 

technique. The design features such as stratifications, clustering and unequal probability of 

selection was taken into account in both techniques but the ways were different.  

The conclusion based on the Monte Carlo simulation study is that the MM-SW  technique 

and the SR-RV estimation technique are equally acceptable for analyzing cross-sectional 

complex survey data set. However, we observed low coverage which indicates there is a room  

for improvement in both methods for analyzing complex survey data. 

 

6.5   Strengths  

i) Data sets:   

Both surveys (NPHS and CHHS) were conducted in all Canadian provinces and the 

sample sizes for both data sets were large. The power of statistical analysis was increased due to 
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large sample sizes. The longitudinal NPHS provides repeated measurements on each individual 

over time which further enhance the power of statistical analysis. Statistical analyses using 

NPHS and CHHS were conducted based on weighted data. Detailed information on risk factors 

is available in both data sets. The NPHS being longitudinal survey also provides information on 

time-dependent variables. Appropriates weights (overall weight to obtain the regression 

coefficient estimates and bootstrap weights to obtain the standard errors of regression estimates) 

were used to analyze CHHS and NPHS data sets. Hence, the results obtained from both surveys 

can be generalized to the entire Canadian population.   

ii) Analytical Technique:  

Both statistical methods used to analyze NPHS and CHHS data sets  provided valid 

estimates of regression coefficients and their standard errors because non-response and design 

effects were taken into account by both methods at the analyses stages. Monte Carlo simulation 

technique is most commonly used either to compare more than two statistical methods or to 

identify the most appropriate or optimum statistical method to analyze a given data set  obtained 

using a certain study design. Monte Carlo simulation technique was one of the main strengths of 

this thesis that was used to compare the performance of MM-SW   technique and SR-RV 

estimation technique and to identify the preferable statistical technique to analyze complex 

survey data set.  

  

6.6 Limitations 

i) Data sets:  

In both data sets (NPHS, CHHS), presence of type 2 diabetes was based on the positive 

response to the question “Do you have any of the following long-term conditions that have been 
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diagnosed by a health professional? – Diabetes”.  Hence the diagnostic criteria were self-reported 

physician diagnosed type 2 diabetes. In population health study, self-reported disease 

information is commonly used to measure the health status. The self-reported health information 

can be affected by gender, ethnicity and education. So, it is required to consider the validity of 

self-reported disease status.  Validity of self-reported type 2 diabetes has been examined and 

reported by other researchers [105]. In CHHS data analyses, participants from Novas Scotia are 

not included in this analysis because the location of residence (rural, urban) was measured.   

  ii) Analytical Technique:  

Theoretically, weight variables for each level are required to conduct the multilevel 

modeling analyses. However, overall weight generally is available for complex surveys 

conducted by Statistics Canada or statistical organizations of other countries. There is no 

literature available which recommends how to conduct multilevel modeling in the presence of 

missing weight information at each level. Therefore, as suggested by Rabe-Hesketh et al [6], 

weight of 1(one) was used at PSU and strata level. In the analyses of CHHS and NPHS based on 

multilevel modeling technique, might have led to unreliable results.    

There are several methodological limitations especially in MM-SW  such as: (i) 

multilevel pseudo maximum likelihood function is very complicated. The integral function is 

complex and it is not easily integrable. The numerical methods such as Newton-Raphson or 

Gauss-Hermite quadrature are commonly used to estimate parameters. (ii) Multilevel modeling 

assumes that covariates are measured at different levels but  information on covariates at PSU 

and STRATA  levels were not available in both data sets; (iii) Researchers proposed several 

scaling of weight methods but no one has recommended  the best methods for scaling that can be 

used as a gold standard method;  (iv) in practice, we often conduct the subgroup analysis (for 
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example: population >18 years and nine province out of 10 province for this thesis)  but no 

literature is available that describes the adjustment of weights for subgroup analyses.  Therefore, 

the weight variables which were available for both data sets for the entire Canadian population 

were used to conduct the analyses.  

 

6.7 Future studies and recommendations 

Further research is still needed to test the utility of MM-SW and SR-RV estimation 

techniques to analyze complex survey data, especially for longitudinal complex survey data. 

Some of the other areas related to complex survey data analyses which need attention are  

handling missing data  and goodness of fit (especially for dichotomous outcomes).  These areas 

are well developed for classical cross-sectional and longitudinal studies.  But have received little 

attention for complex surveys. 

Missing data is one of the important issues to be considered when analyzing complex 

survey data [1, 25]. The assumptions regarding missing data were different for the two 

techniques utilized in this thesis. The marginal model using GEE assumed the missing data were 

missing completely at random (MCAR), or in other words cases with complete data are 

indistinguishable from cases with incomplete data. In contrast, the multilevel model assumed the 

missing data was missing at random (MAR), or in other words the probability of the missing 

value depends on the observed variable [21, 62]. This might be the reason for the different results 

between the MM-SW technique and the SR-RV estimation technique. The effect of missing 

values on parameter estimation can be a new research area.  As we found that the weight variable 

for each level of multistage complex survey is not commonly available in publicly used data sets 

or data sets available at Statistics Canada Research Data Centers.  It would be   an important area 
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to explore how missing weights information or missing data influence the results. Computation 

of weight variable for each level from overall weight variable and incorporating these weight 

variables for missing data will be an interesting area for future research. 

Multilevel modeling does not have provision to specify various types of covariance 

structures in order to account for within-subject correlation to analyze the longitudinal complex 

survey data. It will be an interesting research area to explore how to incorporate the covariance 

structure in multilevel modeling procedure. Assessment of model fit and model diagnostics are 

not developed yet which can be a challenging work for future. Analysis of subsample data 

(obtained from complex survey)  is commonly conducted  to test special hypothesis and answer 

research questions but how to handle information related to design variables (strata, psu and 

weight)  is not commonly   known.  Hence, the analysis of subsample data from complex survey 

will be an important future research area.   

Statistical methodology depends on research question to analyze the complex survey 

data. If the research question or hypotheses is related to determine the impact on the population 

then SR-RV estimation might be the appropriate method. In contrast the MM-SW   might be the 

appropriate method if the research question is related to determine the impact on an individual 

level. MM-SW might be the appropriate method if the weight variables are available in each 

level. SR-RV estimation might be the appropriate method if only overall weight or single level 

weight and bootstrap weights are available with the complex survey data. If the cluster size is 

small then SR-RV estimation technique might be the appropriate method compared to MM-SW. 
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