
Dependable IPTV Hosting

A Thesis Submitted to the College of

Graduate Studies and Research

In Partial Fulfillment of the Requirements

For the Degree of Computer Science

In the Department of Computer Science

University of Saskatchewan

Saskatoon

By

DANIEL MERINO

 Copyright Daniel Merino, March, 2012. All rights reserved.

i

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from

the University of Saskatchewan, I agree that the Libraries of this University may make it freely

available for inspection. I further agree that permission for copying of this thesis in any manner,

in whole or in part, for scholarly purposes may be granted by the professor or professors who

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the

College in which my thesis work was done. It is understood that any copying or publication or

use of this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the University

of Saskatchewan in any scholarly use which may be made of any material in my thesis.

 Requests for permission to copy or to make other use of material in this thesis in whole or

part should be addressed to:

 Head of the Department of Computer Science

 University of Saskatchewan

 Saskatoon, Saskatchewan S7N 5C9

ii

ABSTRACT

This research focuses on the challenges of hosting 3
rd

 party RESTful applications that have to

meet specific dependability standards. To provide a proof of concept I have implemented an

architecture and framework for the use case of internet protocol television. Delivering TV

services via internet protocols over high-speed connections is commonly referred to as IPTV

(internet protocol television). Similar to the app-stores of smartphones, IPTV platforms enable

the emergence of IPTV services in which 3
rd

 party developers provide services to consumer that

add value to the IPTV experience. A key issue in the IPTV ecosystem is that currently

telecommunications IPTV providers do not have a system that allows 3
rd

 party developers to

create applications that meet their standards. The main challenges are that the 3
rd

 party

applications must be dependable, scalable and adhere to service level agreements. This research

provides an architecture and framework to overcome these challenges.

iii

ACKNOWLEDGEMENTS

I would like to thank Jacqueline Arroyo, my mother, for supporting me throughout my scholastic

career. I also would like to thank Ralph Deters for providing me with the opportunity to do

research under his guidance; support and giving me the liberty to explore various research topics.

Finally, I would like to thank Telecommunications Research Labs, specially the Head of

Converged Digital Media R&D Andrew Kostiuk, for the privilege of working with the topics

mentioned in this research, support and funding.

iv

v

TABLE OF CONTENTS

page

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... ix

LIST OF FIGURES ...x

LIST OF ABBREVIATIONS .. xiii

INTRODUCTION ...1

1.1. Internet Protocol Television ...3

PROBLEM DEFINITION ...5

2.1. Dependable execution of 3
rd

 party services ...7

2.2. Scalability of 3
rd

 party services ..7

2.3. Service Level Agreements 3
rd

 party services ...8

LITERATURE REVIEW ..9

3.1. Web Services SOA - WS* and REST..10

3.1.1. Web Services using SOA - WS* ...10

3.1.2. Service Registries...11

3.1.3. Service Repositories...11

3.1.4. Service Definitions...11

3.1.5. Service Frameworks...11

3.1.6. SOA Architectural Workflow ..11

3.1.6.1. Boundaries are explicit ... 12

3.1.6.2. Services are autonomous... 13

3.1.6.3. Services share schema and contract, not class 13

3.1.6.4. Services compatibility is determined based on policy 14

vi

3.1.7. WSDL ..14

3.1.8. Summary: SOA-WS*...16

3.1.9. Web Services using RESTful Architectures ..16

3.1.9.1. Request Line ... 17

3.1.9.2. Richardson Maturity Model on REST .. 20

3.1.9.3. Level 0 .. 21

3.1.9.4. Level 1 .. 21

3.1.9.5. Level 2 .. 21

3.1.9.6. Level 3 .. 22

3.1.10. Summary: Web Services SOA-WS* VS REST...23

3.2. Dependable Web Services ...23

3.2.1 Summary: Dependable Web Services ..25

3.3. A new approach of defining Dependability in Web Services26

3.3.1. Attributes of Dependability..28

3.3.1.1. Confidentiality .. 28

3.3.1.2. Reliable ... 28

3.3.1.3. Availability ... 29

3.3.1.4. Safe ... 29

3.3.1.5. Integrity ... 30

3.3.1.6. Maintainability .. 30

3.3.2. Summary: Adding Dependability to Web Services ...30

3.4. Fault Injection ..31

3.5. CAP Theorem ..32

3.5.1. Summary: CAP Theorem ...34

3.6. Databases ...34

vii

3.6.1. Summary: Databases ..37

3.7. Cloud Computing ...37

3.7.1. Infrastructure as a Service ..38

3.7.2. Platform as a Service ...38

3.7.3. Software as a Service (SaaS) ...38

3.7.4. Summary: Cloud Computing ...40

3.8. Sandboxing ..41

3.9. Service Level Agreements ...42

3.10. Summary of Literature Review ..44

3.11. Issues Tackled in this Research ...46

IMPLEMENTATION ..47

4.1. Overview ..47

4.1.1. Detailed explanation of how a request is handled by the architecture48

4.2. Core Architectural Components ..52

4.3. Worker API ..56

4.4. Workers - Resources ..60

4.5. Simplify IPTV Development ...68

4.6. Service Level Agreements ...68

EXPERIMENTS ..69

5.1. Setup ..70

5.2. Load Generation...71

5.3. EX1 - Overhead Test ...71

5.4. EX2 - Dependability vs. Performance Test ...73

5.5. EX3 - Scalability Test ..76

5.6. EX4 - Service Level Agreements Test...76

viii

Results ..78

6.1. EX1 ..78

6.1.1. Services without the architecture ...78

6.1.2. Services with the architecture ..82

6.2. EX2 ..86

Summary and Contribution ..91

Future Work ...93

8.1. Future Work ...93

8.1.1. Web Sockets...93

8.1.2. CQRS ...94

8.1.3. Pre-Processed Static Resources Hosted on the Cloud95

8.1.4. Publish Subscribe Client Cache Push ..95

LIST OF REFERENCES ...96

LIST OF WEBSITES ..101

ix

LIST OF TABLES

Table page

Table 3-1. HTTP Verb List ...17

Table 3-2. Common HTTP Response List ..19

Table 3-3. Cap Theorem Breakdown ..32

Table 6-4. Overhead 10 RPS Summary ..79

Table 6-5. Overhead 20 RPS Summary ..80

Table 6-6. Overhead 30 RPS Summary ..81

Table 6-7. Overhead Architecture10 RPS Summary ..83

Table 6-8. Overhead Architecture 20 RPS Summary ...84

Table 6-9. Overhead Architecture 30 RPS Summary ...85

Table 6-10. Dependability VS Performance Summary ..86

Table 6-11. Scalability Instances Summary..88

Table 6-12. Scalability Summary ...89

x

LIST OF FIGURES

Figure page

Figure 1-1. MRML Code for Store Front ...2

Figure 1-2. Rendering of MRML Store Front ..3

Figure 2-2. Basic IPTV Setup ...5

Figure 3-1. SOA Architecture ...12

Figure 3-3. Sample HTTP requests with their Status Response17

Figure 3-4. Sample HTTP Response ..17

Figure 3-5. Richardson Maturity Model [14] ...20

Figure 3-6. Dependability Tree [22] ...27

Figure 3-7. Cap Theorem Balance ..32

Figure 4-1. Architecture ..47

Figure 4-2. HTTPS Request generated by user. If found in cache, return request.48

Figure 4-3. Create an operation to be sent to the 3
rd

 party services.49

Figure 4-4. Send the operation to the 3
rd

 party service ...50

Figure 4-5. Save the operation to the cache ..51

Figure 4-6. Distributing the load for scalability and dependability52

Figure 4-7. Login ..57

Figure 4-8. Create Projects ...57

Figure 4-9. List of all the projects created by the user..57

Figure 4-10. Upload a worker resource that plugs into the architecture58

Figure 4-11. List of all workers resources uploaded by user ..58

xi

Figure 4-12. Give the worker permissions ..59

Figure 4-13. Create instances of the worker projects so they can accept requests59

Figure 4-14. Find a free port for the resource ...60

Figure 4-15. Hard coded example of how to permissions are given61

Figure 4-16. Interface that allows to adhere to the RESTful MVC61

Figure 4-17. Hard coded example of a worker binding ..62

Figure 4-18. Dependency injection at runtime using a central HTTP based repository ...62

Figure 4-19. Round-Robin in memory lookup of available resources63

Figure 4-20. Personalized Application Hub ..64

Figure 4-21. Applications the user has purchased ..65

Figure 4-22. Twitter Application ..66

Figure 4-23. Facebook Application ..66

Figure 4-24. Alerts sent from a mobile device ...67

Figure 5-1. Cloud Instances ..70

Figure 5-2. Services Layout ..73

Figure 5-3. Faulty Services Layout ...75

Figure 5-4. Unavailable Services Layout..75

Figure 6-1. Overhead 10 RPS – 10 Minutes ...79

Figure 6-2. Overhead 20 RPS – 10 Minutes ...80

Figure 6-3. Overhead 30 RPS – 10 Minutes ...81

Figure 6-4. Overhead Architecture 10 RPS – 10 Minutes ..83

Figure 6-5. Overhead Architecture 20 RPS – 10 Minutes ..84

Figure 6-6. Overhead Architecture 30 RPS – 10 Minutes ..85

Figure 6-7. Dependability VS Performance – 10 Minutes ...87

Figure 6-8. Scalability – 10 Minutes...89

xii

xiii

LIST OF ABBREVIATIONS

API Application Programming Interface

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

JSON JavaScript Object Notation

PaaS Platform as a Service

REST Representational State Transfer

RSS RDF Site Summary

SaaS Software as a Service

SLA Service Level Agreement

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

Telco Telecommunications Provider

xiv

URI Uniform Resource Identifier

WSDL Web Service Definition Language

XML Extensible Markup Language

xv

1

CHAPTER 1

INTRODUCTION

IPTV is delivering TV services though internet protocols over a high-speed connection. IPTV

platforms differ from internet-based multimedia platforms (e.g. Crunchyroll [W1], Netflix [W2],

YouTube [W3], iTunes [W4], Amazon Video on Demand [W5], Roku [W6], Google TV [W7],

etc.) in terms of content, delivery and costs.

Subscription based IPTV offers its subscriber’s TV content in addition to the stored content of

multi-media platforms. The regular internet-based multimedia video-on-demand streaming

and/or downloading services are therefore a superset of the services provided by the internet-

based multimedia platforms.

To ensure that content-providers grant access to premium content, subscription based IPTV

platforms offer very dependable (secure, safe, reliable and available) service delivery. Using

bandwidth provisioning and secure protocols, it becomes possible to allow subscribers instant

access to highly sought after digital assets (e.g. new tv-shows, new movie releases in HD)

without compromising the DRM constraints of the content owners.

However all this comes at nearly twice the costs based on regular video on demand internet-

based multimedia. In Canada (Saskatchewan) the video on demand Netflix service can costs a

user $38 a month (30$ internet + 8$ Netflix), a medium live IPTV service package from SaskTel

is however, $72 (internet included).

To combat the migration of customers from IPTV to basic internet-based multimedia services,

IPTV subscription providers have begun the move towards interactive IPTV platforms that allow

for apps on the TV.

Interactive IPTV platforms allow providers to blur the lines between classical TV and

computers. Platforms like Microsoft Mediaroom allow IPTV providers to embed applications

2

into the video-stream and thus increase the interactivity of TV (see figure 1-1 and figure 1-2).

Microsoft Mediaroom [W8] is one of the leading platforms in this market segment. Especially

telecommunications companies (telcos) across the globe (e.g. AT&T, Bell, Deutsche Telekom,

BTVision, etc.) favor Mediaroom since it offers backend support that fits their specific needs.

The Microsoft Mediaroom platform is a server centric IPTV solution that is based on XML

documents delivered over HTTP. This server-centric design is partially due to resource

limitations and the need for a secure solution.

The application below is an example that provides an overlay over-the-top of the video and

the user is able to interact with the “Shopping Channel” to purchase items.

Figure 1-1. MRML Code for Store Front

<Text id="TVTextProductInformation"

 top="160" left="172"

 height="59" width="358">

 If you like to purchase click BUY NOW

</Text>

<Button id="TVButtonBuyNow" left="200"

 top="242" width="220">

 BUY NOW

 <Actions>

 <Event type="onclick"

 action="DialogAction" />

 </Actions>

</Button>

3

Figure 1-2. Rendering of MRML Store Front

1.1. Internet Protocol Television

As of 2010, it was announced on the broadband forum year-end report that there has been a total

increase in IPTV telecommunications subscribers by 34.6% [W9]. On the side of internet-based

media, Internet related streaming applications are becoming more popular because home

entertainment devices are becoming media clients that are augmenting the video experience.

Some of these devices are the Xbox 360 [W10], PlayStation 3 [W11] and Nintendo Wii [W12].

In the next few years, it is expected that consumers want to use interactive television experiences

by default such as the ones that come from Samsung Smart TVs which connect directly to a

network connection to augment user experience with widgets and internet content.

As the interactive experience from users increases, the number of simultaneous requests

increases. The requests can even come from multiple devices [1][2][3], which means that

4

multiple active connections and sessions must be kept for each client. This causes the load on the

servers to increase. To increase diversification, interactivity and to appeal to group audiences

[4][5] in the IPTV applications ecosystem, 3
rd

 party developers must be allowed to deploy IPTV

applications. There has been one particular API created to give a personalized IPTV experience

[6] but one common problem is that subscription companies must be able to control 3
rd

 party

applications. Also a system must be created to help 3
rd

 party applications handle large amounts

of load. Therefore, making requests directly to 3
rd

 party applications is not feasible.

Consequently, special measures must be taken to create a dependable and robust system. Finally,

many of the 3
rd

 party developers must be able to count on specific service contracts to provision

their applications and to check the health of the applications.

The remainder of this thesis is structured as follows: Chapter 2 defines the problem,

Chapter 3 has a compilation of work previously done that I use to support our work, Chapter 4

goes over our implementation, Chapter 5 has an evaluation, and Chapter 6 has the results from

the evaluation, Chapter 7 is the conclusion of the research and Chapter 8 contains future work.

5

CHAPTER 2

PROBLEM DEFINITION

In this research the goal is to create an ecosystem for 3
rd

 party developers to create their own

IPTV applications to develop a highly diverse IPTV applications. Such 3
rd

 party service

providers will develop their own applications to be deployed on my IPTV architecture. Allowing

them to fully develop their applications with their own creativity will generate TV content to be

relevant, personalized, and different. This 3
rd

 party development will allow for a great diversity

of applications. Hence, 3
rd

 party services can be used to increase the experience of users who

subscribe to an IPTV service.

To be able to have a 3
rd

 party ecosystem telcos must be able to host 3
rd

 party IPTV services; a

large architectural support is needed for a large number of diverse applications with many

concurrent users. To be able to understand how to allow 3
rd

 party hosting into the IPTV space,

an overview of how the telco companies setup their IPTV infrastructure is required. Figure 2-2 is

a diagram of a basic IPTV setup for telco companies.

IPTV Server
Mobile

STB

User

SQL Server

Internal Web Services

BSS

OSS

TV

SOAP Web
Services

IPTV HTTP Application Cluster

User Space

Figure 2-2. Basic IPTV Setup

6

The left hand side of the diagram represents the user space. The user space involves one

or multiple set-top boxes and devices that can make requests to web services, such as mobile

devices. On the other side, the IPTV deployments involve an IPTV server. The IPTV server can

give IPTV related information, which includes several types of web services, and a basic HTTP

server. The IPTV applications reside on a very large dedicated server or cluster as depicted by

the IPTV HTTP Application Server on the diagram above. There are several web services in the

IPTV server that allow developers to build a distributed architecture and allow for extension.

They are mainly broken down into internal web services and API (subdivided into Operational

Support Systems and Business Support Systems) SOAP web services. The internal web services

are not meant to be for developers’ use but only for internal IPTV components that have to

interact with each other. The OSS API web services allow for control over multiple functional

aspects of the environment, such as video on demand, electronic program guide, emergency alert

system, and many others. The BSS API web services allow control over user billing-related and

package management aspects. The functionality of these services must be exposed to third party

developers so that they can work with them. Also, as stated on the server documentation, if the

web services are executed concurrently without being throttled, general performance will suffer

greatly due to the concurrent process model. Many of these services require a connection to the

database and will hang until the work has been completed. Because we do not have access to the

code to these web services, it is only possible to speculate that the reason for performance issues

is due to heavy CPU bound operations and non-asynchronous operations with a database.

In this research the goal is to integrate middleware that will incorporate to this architecture to

provide a dependable, scalable, and open architecture. Having a dependable, scalable, and open

architecture to 3rd party developers IPTV architecture has many challenges and therefore, more

7

components (and as a result, overhead) need to be added to overcome the challenges. The

primary challenges that I plan to include are:

 IPTV Architecture that allows for 3
rd

 party code

o Dependable execution of 3
rd

 party services

o Scalability of 3
rd

 party services

o Service Level Agreements 3
rd

 party services

2.1. Dependable execution of 3
rd

 party services

3
rd

 party applications must interact with each other, and yet be able to perform without behavior

alteration from other applications. Behavior alteration, intentional or unintentional, is a concern

since ideally one machine would run multiple IPTV applications as tenants. For example, one

application should not be able to delete other files, and application errors should stay within the

application. For this goal there are two properties that must be included: secure and safe

execution of code. From a security standpoint, applications should not affect other applications’

behavior. From a safety standpoint, applications that are designed to be unaffected by other

applications are isolated from danger. With either option, it is needed to prevent alteration of

behavior across applications.

2.2. Scalability of 3
rd

 party services

The stress due to requests/load on the applications varies extensively and is linked to the

television programs being watched by users. For example, if there is an application that enhances

the viewing experience of the Super Bowl by showing real time statistics of players, it could

potentially bring the viewer numbers up to 48.66 million viewers in the United States of

America at once, as once before, during the Super Bowl XLII (New York Giants vs. New

England Patriots) in 2008. Because buying hardware to be able to keep up with infrastructure

needs would be extremely expensive and many resources would be wasted, especially when they

are not necessary, a cloud computing component must be used. Since there is interdependence

8

between components, a publish-subscribe system will be used to report when resources are ready

and are working at their full capacity. It is important to note that since resources need to be

deployed very efficiently, the environment must be able to respond quickly.

2.3. Service Level Agreements 3
rd

 party services

To ensure quality of service, we require service level agreements [6], which would allow us to

plan to handle requests in specified amounts, while providing the most accurate data. To be able

to allow an open environment, the development of a custom platform for the 3
rd

 party code is

necessary while trying to reduce the overhead. All of the applications should be managed in such

way that pushing updates to resources and their dependencies is automated, requiring minimal or

no downtime.

In order to handle large loads of simultaneous users, the applications must be distributed and

have several workers. This makes things difficult, as calculating quality of service for clients

involves many variables.

The main goal of a service level agreement is to provide some promise based on best

estimates of how the applications will behave under different types of loads. This way

developers can do their capacity planning to make sure the provisioning of resources is efficient.

9

CHAPTER 3

LITERATURE REVIEW

This chapter discusses related research in the following fields: Web Services, Dependable

Web Services, Fault Injection, Cloud Computing, CAP Theorem, Database Storage, Service

Level Agreements and Sandboxing.

The importance of Web Services is that they are a well understood pattern of distributed

systems. Since the architecture has many components and many of these components are not

under our control, it is required to add dependability to web services. Sandboxing is investigated

to provide the means for the dependable system with 3
rd

 party applications. Fault injection is

researched as a means to test the dependability vs. performance considerations of the architecture

and the framework. Cloud computing is also significant because it simplifies provisioning to the

growing architecture needs due to the large amount of users while trying to keep costs to the

minimum. The CAP theorem is presented because it puts constraints on any distributed

architecture. An overview of databases is done to showcase the alternatives available and how

they are affected by the CAP theorem. Service Level Agreements are researched to be able to

provide contracts with 3
rd

 party applications.

10

3.1. Web Services SOA - WS* and REST

Web Services are a well understood pattern actively being used in distributed systems [W13].

Web services are a standardized mechanism in which distributed applications can communicate

with each other. In simple terms each application becomes exposed to the Internet by using web

services [8]. One of the main points of web services is that they are designed to be modular and

extensible which gives them great extensibility. We will use web services since our architecture

has many components that need to communicate with each other. For this task I have chosen to

explore SOA and REST. Based on the findings I will explain where each component makes

sense to be used as they are very different and therefore have many diverse

strengths/weaknesses.

3.1.1. Web Services using SOA - WS*

WS-* is a compilation of specifications that have been passed by W3C [W14], OASIS [W15],

and WS-I [W16]. The main points of WS-* are using Simple Object Access Protocol (SOAP)

[W17] for data transfer, Web Services Description Language (WSDL) [W18], WS-Security

(WSS) [W19], and many others.

All of the design principles of WS-* are what is commonly called Service Oriented

Architectures (SOA) [W20]. On an ideal SOA architecture, there are four main types of SOA

support mechanisms that allow it to be a well-known distributed architecture [8]:

 Service Registries

 Services Repositories

 Service Definition

 Service Frameworks

11

3.1.2. Service Registries

Service Registries are public services where web services can expose their location and

capabilities. This is the primary source where consumers go to find web services. Extensive

research has been performed to make sure the service registries can give relevant information to

find the best-suited web services [10].

3.1.3. Service Repositories

There are many different types of service repositories but their main function is to work as

metadata sources for the web services, primarily, to hold service descriptions and policies [11].

Some of the information includes service level agreements (SLA) and security requirements.

Service repositories are extremely important as they are used for design, implementation, and

deployment of web services. Finally, service repositories help version control the repositories

with their contracts.

3.1.4. Service Definitions

Contracts and behaviors are defined in a XML file using the web service definition language

(WSDL).

3.1.5. Service Frameworks

The platforms allow the developers to create an abstraction layer to support the SOA architecture

by providing design time support and automatic implementation of the requirements based on the

contracts. In some cases they also provide runtime support on some frameworks.

3.1.6. SOA Architectural Workflow

Figure 3-1 shows the SOA architecture workflow. The Universal Description Discovery and

Integration (UDDI) [8] service is a repository, where web services can register and provide their

operational information, WSDL. From the UDDI, they can be discovered by clients, who can

then invoke services, which are usually behind a service bus [7].

12

WSDL

2) Search
Services

Service Bus

3)Invoke Service

SOAPWeb Service

UDDI
1) Service Registers with UDDI

Figure 3-1. SOA Architecture

For the creation of web services, there are several platforms and the most common ones are

.NET and Java.

Service-orientation has evolved over the years but many still abide by Don Box’s design

guidelines. Don Box specifies that there are four main principles, which he calls tenants [W21]:

• Boundaries are explicit

• Services are autonomous

• Services share schema and contract, not class

• Service compatibility is based on policy

3.1.6.1. Boundaries are explicit

This is a very important notion that separates RPC style communication from SOA. This is an

architectural style, which acknowledges that in a distributed architecture, messaging is usually

the most expensive operation and the most susceptible to network failure. The basic architectural

pattern of SOA makes it clear that there are boundaries and that there are specific costs when

working with the boundaries.

13

3.1.6.2. Services are autonomous

SOA principles define an architecture, where there is not a single component but multiple

distributed components. Because there is no single entity, all of the components are strictly

decoupled and allow for individual deployment, updates, upgrades and extension. This also

applies to failures of the consuming applications. SOA applies principles that allow for failures

that do not have to be propagated to the whole system for it to be maintaining functionality.

Finally, under this SOA principle, all of the messages are to be proofed because they may come

from malicious senders, may be malformed, or may even not have the proper privileges.

3.1.6.3. Services share schema and contract, not class

In SOA, the abstraction levels of structures called schemas, and behaviours are all called

contracts. In contrast with classic object orientated programming, the pattern is to combine

structure and behavior under the same abstraction; this is to avoid marshaling objects across a

network and simplify the consumption of services. Services publish their structures and

behaviors to allow many different types of heterogeneous clients to have their own specifics.

This way, only the transport and communication level is under the contract facilitating the

distributed architecture by providing a verification and validation required. This further has

another benefit, as evolving each service is far easier than the whole distributed architecture, and

backward compatibility does not depend on objects but on contracts. The backward compatibly

can be added by adding SOAP headers, which distinguishes messages for different contracts.

14

3.1.6.4. Services compatibility is determined based on policy

Policy allows for every service to publish its capabilities and requirements that allow consumers

to implement policy. This policy is in place to ensure the ongoing operation of the services. The

policies allow for assertions, which are based on unique names that are globally consistent

through the time and space, based on any service.

3.1.7. WSDL

The WSDL is a contract which the clients use to communicate with the web service. The

contract allows for structured communication without having to share the same implementation,

which specifies to Don Box’s main principles behind service orientation. Figure 3-2 is a basic

description snippet of a WSDL.

Figure 3-2. Snippet from WSDL file

WSDL documents have predefined elements that allow the contract to be defined. The

predefined elements are:

 “Types– a container for data type definitions using some type system (such as XSD).

 Message– an abstract; typed definition of the data being communicated.

 Operation– an abstract description of an action supported by the service.

 Port Type–an abstract set of operations supported by one or more endpoints.

 Binding– a concrete protocol and data format specification for a particular port type.

15

 Port– a single endpoint defined as a combination of a binding and a network address.

 Service– a collection of related endpoints.”

Most of the major business vendors like Microsoft WCF [W22], IBM SOA [W23], Oracle

(previously BEA) [W24], and many others, are supporting SOA. Therefore, SOA currently runs

most business operations.

One of the problems with SOA is that it is relies usually on complex constructs and

sometimes described as “big” [12]. The tooling provided by vendors for SOA creates a big

abstraction layer. The abstraction layer generates increased overhead and can cause side effects if

the user does not know how to master a specific framework. This is because most of the

frameworks rely on configurations that are located in XML files, like web.config in WCF.

SOA is taxing on clients due to XML parsing. Clients have to create SOAP document

envelopes [W25] and transfer all of the data through POST commands. On thin clients, this type

of operation can take a significant toil on performance, as thin clients usually prefer to have few

light threads working in the background, besides the user interface thread [W26].

SOA can also cause significant problems on caching operations. Because files are transferred

back and forth between the client and servers, the documents have to be parsed to decipher the

data that needs to be sent from the cache. Also, deciphering what is cacheable and what is non-

cacheable can be a challenge. It is fairly easy to design an SOA architecture that does not have a

semantic way of invalidating cache.

SOA forces the client to keep state information. The client must know all of the operations

that it must perform. Usually the clients must be updated every time operations change on the

server. This can be very costly, as this means that the client application must know a lot of the

16

details of the server and how they work. Security in SOA is very easy to implement, but it is also

taxing on clients because it requires parsing the documents.

SOA forces the client to keep state information. The client must know all of the operations

that it must perform. Usually the clients must be updated every time operations change on the

server. On the other side, because SOA has great tools available, it allows developers to get

started in minutes and update their services with a few clicks.

3.1.8. Summary: SOA-WS*

SOA is a great architectural pattern for implementing web services quickly due to the large

number of tools available on the platforms. Sadly, the main problem in SOA comes from the

overhead in tooling, transfer, security protocols, and a caching mechanisms make it less optimal

to scale.

3.1.9. Web Services using RESTful Architectures

To be able to understand RESTful architectures one must first understand the HTTP protocol.

The protocol is a request response based protocol in which a client/consumer sends requests to a

server, Figure 3-3 and the server sends a response, Figure 3-4.

A HTTP request is composed of:

 Request Line

 Headers (optional)

 Empty line (as a separator)

 Body (optional)

17

Figure 3-3. Sample HTTP requests with their Status Response

Figure 3-4. Sample HTTP Response

3.1.9.1. Request Line

The request line is composed of nine verbs that tell the server how the request should be

processed.

Table 3-1. HTTP Verb List

HEAD Requests for metadata information for the

resource. The metadata is composed of all

of the headers involved in a usual GET

response but without the body of the

response. It is an idempotent operation.

GET Is a retrieval operation for a resource that

should not have any side effects. It is an

18

idempotent operation.

POST Sends data as form of the body. The goal of

this operation is to annotate existing

resources, posting an HTML form, data-

handling, or appending to a database.

PUT Sends request data that creates/updates a

current resource on the server. It is an

idempotent operation.

DELETE Removes a resource from the server. It is

an idempotent operation.

TRACE Echoes the request back to the

consumer/client. The goal is to check for

any changes, additions, or removals of

intermediate resources. It is an idempotent

operation.

OPTIONS Is mainly a response that serves all of the

possible HTTP methods supported by the

resource. It is usually to check

functionality. It is an idempotent operation.

CONNECT Changes the request and falls back to a

TCP/IP tunnel, which can be used to

encrypt communications on an unencrypted

connection.

19

PATCH Provides partial modifications at any point

of the resource.

A well-formed HTTP response should contain a response status and a body, depending on the

resource on the server.

Some of the most common response status codes are:

Table 3-2. Common HTTP Response List

100 Continue

200 Ok

201 Resource Created

301 Moved Permanently

307 Temporary Redirect

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

405 Method Not Allowed

408 Request Timeout

505 Internal Server Error

On the other hand, RESTful architectures are very different. They were proposed by Roy

Fielding. He describes REST as “a hybrid style derived from several of the network-based

20

architectural styles and combined with additional constraints that define a uniform connector

interface.” [13]

REST, as in SOA, is a distributed system that allows the service side and the consumer side to

be decoupled. The main difference between REST and SOA is hypermedia and the uniform

connector interface, which is explained below using the Richardson Maturity Model [14].

3.1.9.2. Richardson Maturity Model on REST

Leonard Richardson [14] explains the main points of REST as levels of maturity in the protocol

Figure 3-5.

Figure 3-5. Richardson Maturity Model [14]

21

3.1.9.3. Level 0

Level 0 is a just a plain transport level for data for remote interactions using the HTTP protocol.

This is how the remote procedure invocation works by posting messages from one machine to

another, usually using XML documents.

3.1.9.4. Level 1

Level 1 is composed of resources. Resources are important because they allow the system to be

decoupled and to abide by the single responsibility principle to a specific resource. This allows

for a resource to have decoupling from the interface level with the data that the resource

contains. This decoupling allows for a better implementation of the resource, as updates to a

single resource can be easily differentiated from other resources by URI.

3.1.9.5. Level 2

Level 2 has distinct verb interaction with the resources. The distinct use of verbs allows for the

use of idempotent verbs, which permits retrieval operations to happen at any point without any

consequence. It might not seem like an important feature but due to this feature, it is possible to

build a scalable and an available system using features of HTTP. Using only the verb GET for

retrieval implies that a system that depends on sub systems is capable of keeping a resource

cached (as long as there is enough memory on the machine) and not having to alter the state of

the sub systems. This allows for the resource to perform extremely fast and even be replicated

among multiple machines, performing as that resource. The only time a resource cache has to be

invalidated is when a CREATE, UPDATE, or a DELETE operation has been performed, that can

be easily distinguished by the method used when using verbs for interaction.

22

3.1.9.6. Level 3

Level 3 is being able to keep state on the server. The crucial difference between all of the other

levels and this level is that this level is hypermedia. Hypermedia is a runtime retrieval system

that allows users or programs to retrieve related information particular to a specific subject. It

uses a decentralized manner to retrieve resources. As opposed to SOA, REST is much more

flexible and therefore, more scalable. As previously discussed, SOA has many platforms that

leverage the nature of contracts and behavior in service orientation. The main disadvantage with

this approach is that the consumer is hard bound to the service by the type of data that it must

receive and by the specific methods that it has to call. In a properly developed REST service by

just having to know the specific uniform connector interface the entire interface contract can be

removed from the client-service interaction because the client is just following the servers

behaviors.

The flexibly of REST can be seen by the use of the “content-type” and “accept” headers in

REST requests. The important aspect of hypermedia is that state is kept by the uniform connector

interface. The biggest impact of REST is due to hypermedia and the URI. The server keeps the

state of the client and therefore, fewer resources are needed by the client.

RESTful services resources usually have clear specifications of a small set of verbs to

perform operations over those resources. The RESTful services that use GET and POST as their

primary verbs, are called lo-REST [12].

The services that use the full set of verbs are called hi-REST [12]:

• GET

• PUT

• POST

• DELETE

23

3.1.10. Summary: Web Services SOA-WS* VS REST

Based on background research it is clear to see that RESTful architectures can provide greater

scalability. RESTful architectures require less overhead because they are usually custom built,

are easily cacheable due to the semantics of their verb operations. Finally they are great for thin

clients as the operational state is kept on the client.

3.2. Dependable Web Services

Dependability in web services has been tackled in many areas in the WS* with SOA. The

following is a review of the work performed in that area but there is almost no information about

dependable RESTful web services. From here I will look into the definition dependability and

strategies to enhance it in web services. In many of the cases dependability has been described as

the trustworthiness of a service [15] under the web service environment. For a service to be fully

dependable it is necessary to look into several areas where services can fail. A list of potential

problems include:

“1) Crash of services

2) Crash of server

3) Hang of service

4) Corruption of data

5) Duplicate messages

6) Omission of messages

7) Delays” [16]

Based on this list it is necessary to have control over the hardware, software and

communication of the services to be able to identify when there might be a failure like the one

mentioned above. Some of the techniques [16] to detect failures are designed based on

24

middleware detecting/rejecting corrupt data, duplicated messages, omitted messages, timeouts

and giving proper error messages.

To be able to prove that it is a dependable architecture it is necessary to use known methods

of determining dependability. The two methods available [15] are modeling or measurement

techniques. Modeling requires full access to the 3
rd

 party service to generate a model of the

service behavior and measurement techniques involve basically blackbox testing. Measurement

techniques are necessary on this system because there are many components we will not have

full access to and which might not reside under our system.

Under the work performed “Web Services Dependability and Performance Monitoring” it was

established that it was possible to develop a tool that could measure

1. availability

2. functionality

3. performance

4. faults/exceptions.

 From here it is possible to dive deeper into each one of the properties.

Looking at “Enhancing Web Services Availability” [17] it is possible to also think in terms of

the system as that is composed of infrastructure, middleware and application availability. High

availability [17] can be described as r = (1-p)
 lmn

where l is the number of activities per day, n is

the number of tiers in a web service architecture and m is the number of web services the activity

utilizes, p is the probability the service will fail leaving r as the probability of having the system

available. With the introduction of a highly available system it is possible to look into the

functionality of the system. For the functionality of the system it is appropriate to look into

reliability. The reliability of the system is highly dependent of the availability of the system

25

using web service replication. There are three main ways of using replication to provide reliable

web services. The first technique is N-version programming [19] which involves having different

implementations for web services. If there is a faulty web service then other implementations can

be tried since they might be able to avoid the error state. In is necessary to avoid using this

versioning method as it would put a high level of overhead on 3
rd

 party developers by making

multiple versions, it would be difficult to deploy and not be cost effective. Active Replication

[20] [21] is the second technique, active replication is basically sending messages in a FIFO

manner in a multicast to multiple services which would perform the same task. This way

multiple services can respond. The one that responds the fastest and with a correct answer is the

one that is taken. The final third technique is using passive replication [19] which involves

having a replication manager, fault detection and fault notifications, recovery and logging.

Enforcing dependability in web services is a tricky task because web services are not meant to

be transactional by nature as described by “Dependability in the Web Services Architecture”

[21]. There are two main problems: management of transactions and locking of resources. In the

management of transactions a common interface is required that some web services may not

have and it violates the autonomy and isolation of web services. Finally locking of resources is

not appropriate for web services because of their autonomy and for scalability reasons. On the

good side, because all of the subscribers are known to the applications since they must sign up

with the telco company for the paid service, it is not required to worry about how many resources

are needed to be provisioned, since the exact number of users are known.

3.2.1 Summary: Dependable Web Services

There has been a lot of work performed under the WS* SOA stack for dependable web services.

Much of the research in WS* SOA involves increasing availability and reliability through

availability. For reliability there were two main methods that are viable, active and passive

26

replication. It is also clear the functionality and performance are also key aspects of

dependability. From here I will aim to specify a standardized way to define dependability,

directed towards web services using the REST architectural pattern.

3.3. A new approach of defining Dependability in Web Services

Allowing 3
rd

 party developers to integrate their services to an open IPTV architecture causes

discrepancies when attributing failures or blame. Most of the time, the telecommunication

companies will be attributed with the blame that their IPTV service is not working correctly,

when in reality, it is a failure from a 3rd party application. Service call complaints, on average,

cost $8; therefore, it is vital to have dependability over the 3rd party applications.

For our purpose, we have broken down dependability into the following components based on

the fundamental concepts of dependability [22]:

 Confidentiality

 Reliability

 Availability

 Safety

 Integrity

 Maintainability

These fundamental concepts have led to a view of dependability regarding the main affliction

factors:

 Faults

 Errors

 Failures

27

Using those concepts we plan to increase dependability using the attributes of dependability

by providing:

 Fault prevention

 Fault tolerance

 Fault removal

 Fault forecasting

We can summarize this information with Figure 3-6, as the dependability tree from the

“Fundamental Concepts of Dependability” [22]:

Figure 3-6. Dependability Tree [22]

Errors

We are treating errors as a state that causes a failure and may propagate to cause other

failures.

Fault

We define faults as the reason why errors appear in the system.

Failure

We define failures as a breakdown or a malfunction in the system.

28

3.3.1. Attributes of Dependability

To ensure that our system is dependable, we need to add the following attributes to our

architecture. Since our system is based on web services, we have to apply the following

attributes to the web services components in the architecture.

3.3.1.1. Confidentiality

“Ensuring that information is accessible only to those authorized to have access” [23]. To add

value to the user experience, 3rd party applications must have access to user information. In

some cases, this user information can be anything from username to personal address. Therefore,

it is important to make sure that no information leaks by just using architecture. For most usual

purposes, the standard technology, which provides secure transfer of information, is Secure

Sockets Layer using HTTPS [W27].

3.3.1.2. Reliable

“The probability that the software will give the correct result…” [24]. A user must be able to

open up IPTV programs from their set top box and interact with them. More importantly, the

program will be able to perform its function to the best possible effort. To be able to ensure that

we are able to provide the correct service, we will work the benefits of the HTTP protocol status

codes. Using status codes, we are able to ensure that the right result is being delivered (in the 200

level) in a specified amount of time to keep quality of service. One of the techniques available is

fault removal and reliability of service is strongly coupled with our ability to be highly available.

We can remove the faults to make sure that they never reach the users and we can use other

services to correct service using high availability.

29

3.3.1.3. Availability

“The ability of an item to be in a state to perform a required function at a given instant of time or

at any instant of time within a given time interval, assuming that the external resources, if

required, are provide” [W28]. One of the main issues with web services is availability. This is an

important issue, especially when a large amount of users are not able to perform actions, due to

unavailability problems with the web services. This lack of assurance can cause extreme

dissatisfaction, lower expectations, and eventually, cause users to leave a provider for another.

Using high availability tied with high reliability we can increase fault tolerance. If we look at

the definition of reliability in the sense of “probability of failure-free operation of a computer

program for a specified time in a specified environment” [25], the services provided by 3rd party

applications must have enough availability to increase the probability of a failure free operation

and be available for the users to have the expected result.

We expect to have a high level of redundancy, which allows for a highly availability

environment. Also, we will have services that easily attach to the architecture and therefore,

increase capabilities. One of the advantages is that we are able to select the web services that

perform the best and skip the ones that are in an error state, which cause errors to propagate.

Finally, in some cases, even multiple services that perform the same function can be invoked at

the same time to increase chances of a correct result that will return in the smallest amount of

time possible.

3.3.1.4. Safe

“Absence of catastrophic consequences on the users and the environment” [26]. The architecture

must be safe and shield failure of one service from another. Failure in a 3rd party system must be

isolated in order to avoid the creation of cascading failures that affect other parties. We are

concerned with the following reliability problems [W29]:

30

•“A failure [that] could cause the client system to crash while performing an operation, and;

•An outage [that] could disrupt connections from the client system to other services.”

3.3.1.5. Integrity

“Absence of improper system state alterations” [22]; for this, we deal with unauthorized changes

to the states of the web services. Therefore, we are shielding and sandboxing each web service to

make sure that only the web service itself can change its state, fault prevention.

3.3.1.6. Maintainability

“Ability to undergo repairs and modifications” [22]; in a highly redundant and available

environment, a lot of the modifications and repairs to the system must occur in a fast manner and

be automated to be feasible. Also, it is important that all of the changes done to the architecture

are under version control and as modular as possible. Modularity is an important aspect, as only

the smallest unit change will require the least effort to change in a distributed environment and to

make rollback easier.

3.3.2. Summary: Adding Dependability to Web Services

To be able to have dependable web services the following properties will be added to our

architecture:

 Availability

 Reliability

 Safety

 Confidentiality

 Integrity

 Maintainability

31

3.4. Fault Injection

Fault injection is a well proven technique to assess the dependability of a system [27]. This is a

technique specially designed to see how a system behaves when an error occurs and how errors

are handled. In our particular case we primarily want to make sure that any errors found in the

system will not propagate to other areas and are contained. The containment of the errors, and

when possible, fixing the errors will be the primary way to check the correctness of our system.

To prove that the architecture has the attributes of dependability that we mentioned above, we

are going to introduce fault injection as a way to validate dependability [28]. Our goal is to:

 “Identify dependability bottlenecks”

 “Be aware of the behavior changes due to the presence of faults”

 “Error detection and recovery”

Using these goals, we will be able to successfully quantify the dependability of the system. To

quantify the dependability of the system it is necessary to add meaningful and specific faults to

the system. It was decided not to use random corruption of bytes because to give better coverage

we want to change individual values that will cause specific failures. With the specific failures it

is possible to have specific test coverage in a black box system like the one created. Many

systems that provide dependability rely on a backward recovery system which usually means that

it will be able to roll back to erase the error state [29]. In our case we do not want to have to roll

back errors as they block the progress of other requests so the technique we use is forward which

can be simplified as exception handling [29]. The main focus of the fault injection is researching

how the system can move forward without having to go backward causing locking of resources.

32

3.5. CAP Theorem

The possibility of a distributed architecture that has consistent, available, and partition-tolerant

properties is a balance issue, Figure 3-7, with any distributed web service centric architecture

[29].

Figure 3-7. Cap Theorem Balance

Table 3-3. Cap Theorem Breakdown

Consistency The systems with all of the nodes have access to the exact same data.

Availability The system is capable of responding to requests, even if the responses

are out of date or reporting that no correct response could be found.

Partition

Tolerance

The system is able to still operate even when some messages cannot be

delivered.

33

Consistency is broken down into hard state and soft state. Hard state involves having all nodes

stop working until all of them share the same data. Soft state is having all nodes working even if

the data is a bit stale. Of course the complexity increases significantly as the system grows.

When there are more nodes in the hard state, the time when a lock is in place will increase until

the data is propagated to all the nodes, therefore making the system temporarily unavailable. In

the soft state, as the number of nodes increases, the inconsistency of every node increases as a

function of latency and will be able to integrate the new data.

Availability can be measured by the number of nodes that have the same data. As the number

of nodes with the same data increases, consistency decreases in a soft state system. Also, for data

to be fully available all of the nodes must share all of the data and therefore bandwidth will be an

issue. To lessen the problem fast, large pipe networks transports must be used. The main problem

arises when even a single message is lost because then the specific data is not available.

Partition tolerance means that messages may be lost but no problems arise since the system

has countermeasures. These countermeasures can consist of data being partitioned by specific

data value keys between nodes. Also for further checks under replication such as two face

commits can be added but that increases latency, which can become a very bad problem in larger

distributed systems since components have to interact with many other components increasing

time spent with each transaction.

Consistency and Availability

By providing consistency and availability means that the system has the accurate data

available on all of the nodes. The main problem with this approach is that there is no partition

tolerance; therefore if even one single message is lost the system becomes unavailable.

34

Partition Tolerance and Availability

By providing partition tolerance and availability it means that the system has higher

resilience because even when messages are lost, the system can still function and the system

will always reply with some response, even if the response is old or an error message.

Consistency and Partition Tolerance

Providing consistency and partition tolerance means that the system has all of the data

synchronized and it is able to deal with lost messages. The main problem with this approach is

that the system will have to use locks to make sure the data is up to date, making the system

unavailable.

Because we want to create a fully available system we have decided to forego consistency for

a highly available and partition tolerant system that has as few locks as possible.

3.5.1. Summary: CAP Theorem

Consistency, availability, and partition-tolerance are some key elements necessary to have a

perfect distributed system. Unfortunately, the main point of the CAP theorem is that it is

impossible to deliver all three properties; only two can be served at any time. The main problems

increase in complexity as the number of nodes in the system increases. We will sacrifice

consistency to acquire the highest level of availability and partition tolerance.

3.6. Databases

MySQL, Microsoft SQL, and PostgreSQL [W30] all follow the ACID principle properties

[W31]:

• Atomicity

• Consistency

• Isolation

35

• Durability

Because of the properties of these databases we will have the ACID properties on our

architecture when performing transactions. These high performance databases still have a

drawback especially since they work by locking. Locking prevents operations to be performed

concurrently and therefore, decreases performance. Also when tables grow large, performance

decreases significantly. When tables grow significantly large that they do not fit in RAM and

tables are not indexed in a careful fashion, performance will suffer significantly. As the

databases grow larger the harder it is to join data, especially if the data tablets with data have not

been optimized to be indexed. Even if they have been indexed, indexing causes overhead when

writing the data. These problems occur specially on large data sets. To be able to deal with large

datasets companies are now offering databases on the cloud. Databases on the cloud allow

developers to store large quantities of data and not worry about the storage problems. Some

examples are:

 Microsoft SQL Azure [W31]

 Xeround [W32]

The main problem is that these offerings do not particularly provide performance guarantees but

mostly storage capacities guarantees.

Since these ACID based databases promote data normalization, it takes longer for the

databases to aggregate the appropriate data requested. Secondly, one of the problems arising

from performance in databases is that most developers use querying frameworks or object

relational mappers to create the queries on a higher abstraction level. Many of these frameworks

are very popular:

• LINQ to Entities [W33]

36

• Hibernate [W34]

• Active Record [W35]

The main problem is that a great degree of expertise on the specific framework is required to

make sure the query is written in an optimal fashion. The most common problem is N+1 queries,

when fetching lists with specific information; each row must be checked as its own query [W36].

This is because the primary query did not fetch enough information and has to perform multiple

queries. This can be prevented by eager loading techniques.

Recently, there has been a movement for many developers to drop normalized storage for

denormalized storage. This is what is commonly known as No-SQL. No-SQL storage is (mostly)

unstructured storage that is combined with sharding [W37] and caching in most cases. There are

many different available solutions for No-SQL databases, such as:

• MongoDB [W38]

• Cassandra [W39]

• CouchDB [W40]

• SimpleDB [W41]

• Google Big Table [W42]

• Azure Table Storage [W43]

Usually, each row will contain different types of data and all of the data that a single request

should need. This allows for single fast queries.

No-SQL excels at throughput and scalability. The main reason why No-SQL databases are

extremely fast is because they have constraints that favor doing queries with identity keys for

each item. Also, they tend to facilitate scalability as they are designed for distributed storage.

This means that a database might only have to handle some queries based on specifications of the

37

identity keys. This is done especially for partition tolerance and availability, which increases

scalability. Since partition tolerance and availability are primarily taken with No-SQL,

consistency is neglected.

They work under the BASE approach [W44]:

• Best Available

• Soft state

• Eventual consistency

This approach allows for multiple data replicas to increase availability and scalability that

might not be in sync with each other (consistent) but give the best performance. We would like

to use the BASE approach for caching our information since it will give the best availability and

performance for non-critical information.

3.6.1. Summary: Databases

With the use of SQL and No-SQL databases it is possible to have the best availability and keep

the ACID properties in transactional systems.

3.7. Cloud Computing

It soon becomes clear that for large telecommunication companies providing IPTV services,

there are many important issues, such as scalability. As of 2008, Sasktel had 70,463 Max

subscribers [W45]. This means that every single one of those users is consuming high levels of

bandwidth to interact with IPTV content. As the number of Max subscribers increases and the

subscribers buy companion devices, the number of thin clients grows exponentially. Most web

applications are not optimized to scale to such a large audience. There are three types of cloud

computing:

 Infrastructure as a Service (IaaS)

 Platform as a Service (PaaS)

38

 Software as a Service (SaaS)

3.7.1. Infrastructure as a Service

It provides developers with dedicated virtual machines that they must fully manage. This also

means that the developers have full control over the whole server and what operating system,

features, and software it contains. This is what Amazon currently provides on their EC2 [W46]

cloud. This type of approach has the advantages that the computers can have any type of

operating system, license, and security features, which are fully controllable. Due to this full

control, IaaS requires much more maintenance. If 3
rd

 party developers create applications under

an IaaS it would mean that they would have to manage everything themselves.

3.7.2. Platform as a Service

It is a cloud architecture that was built to conform to specific sets of standards and uses. The

developers have very little to no control over how the virtual machines behave. This is what

Heroku [W47], AppHarbor [W48], and Windows Azure [W49] provide on their platforms. The

advantage of using these platforms is that developers just have to know how the platform stack

works and they are able to have freedom on how to develop functionality, as long as they stay

within the limits of the platform. Deviating from the main goals of the platform will usually

cause things to be difficult to maintain or develop.

3.7.3. Software as a Service (SaaS)

 SaaS allows clients to use software functions exposed through an API, usually over web

services. Some examples include Facebook Graph API, Google, Twitter, and Ebay. The main

advantage of this approach is that the level of abstraction is high and developers mainly have to

worry about their business product, instead of the how a platform works or of the infrastructure.

Cloud architectures are very appealing because of [W50]:

1. “Cost Efficiency

39

a. Dealing with burst loads, only pay what is used

2. Storage Capabilities

a. Unlimited storage capacity, only pay what is used

3. Redundancy

a. The data is securely stored; most cloud providers give up to 3 levels of

redundancy”

As described by Amazon, there are many benefits for many small companies, such as [W51]:

• “Scale Capacity on demand

• Turns fixed costs into variable costs

• Always available

• Rock-solid reliability

• Simple APIs and conceptual models

• Cost-effective

• Reduces time to market

• Focuses on Product & core competencies”

In a cloud context [31], there are several benefits for thin clients and REST:

 “Rest is stateless

o minimizing the impact of network volatility

 REST is URL based

o therefore easy to invoke

 REST responses are usually HTTP based

o therefore discrete

o also minimizes the impact of network volatility

 REST delivery can be made very succinct

o lends itself to constrained memory environments

o no superfluous protocol elements”

40

One of the main and most popular techniques to increase availability is to use intermediaries.

It helps by making services available from a number of devices and it can utilize a fast content

delivery network (CDN). The CDN network also reduces latency, which is an extremely

important variable, when scaling web applications, especially if clients are all over the world,

because resources are tied up until the network delivers content. The CDN network uses its own

resources and does not use any resources from a business application, when transferring data.

There are two types of intermediaries: functional and optimizing [32]. With either method, one

of the biggest helpers of scalability is to avoid optimization but to have a high level of

redundancy [33].

One of the main benefits of RESTful architectures in the cloud is that they provide multiple

layers, where content can be cached. Also, it provides the HEAD [W52] verb request, which

allows a developer to check if a resource has been changed since it was last accessed by

providing a hash called ETag [W53]. This is especially important in layered systems, where

resources might have to be aggregated; only the resources that have changed have to be fetched

again.

Using HTTP verbs, it is possible to optimize systems because the GET operation is

idempotent and it is only meant for retrieval of information. PUT, POST and DELETE can

change the state of a resource and therefore can be used to invalidate the cache for the GET

operations.

3.7.4. Summary: Cloud Computing

Cloud computing can help provision enough resources to support the large needs for hosting 3
rd

party IPTV services. In this way 3
rd

 party developers can have SaaS cloud applications that can

scale. With the use of REST having multiple resources that cache content is very effective as the

cache can be easily invalidated when needed.

41

3.8. Sandboxing

“Sandboxing is a technique for creating confined execution environments to protect sensitive

resources from illegal access. A sandbox, as a container, limits or reduces the level of access its

applications have.” [34]. The main idea of sandboxing is creating confined environments that are

fully under control of a supervisor. There are three main techniques for this tasks which include

access control lists (ACLs) [34] and special purpose sandboxes specific for the

application/service being run [34] and application sandboxes based on system call contexts [35].

The following are the primary techniques available for sandboxing:

 Virtualization

 Rule-based Execution

We have looked extensibly into virtualization but sadly the costs of giving each 3
rd

 party

service is currently at least 12 cents per resource on amazon EC2 . If we want to have high

availability and reliability the services must be replicated to multiple dedicated instances which

multiply the costs based on the availability and reliability desired making it very expensive and

wasteful since some resources might not be heavily used and it could waste CPU cycles. One

option would be to buy a large machine and virtualize several environments but that carries

several performance drawbacks due to the overhead of each of the virtualization environments

[34]. The main advantage to the virtualization approach is that it has full fault isolation as it is on

its own environment.

We have chosen a rule-based execution to avoid the performance drawbacks of virtualization

and utilize resources in the best way possible. In particular, we have chosen application domain

under the .NET framework which has several advantages [W54] [W55] that we will explain

below.

42

One of the main advantages to .NET AppDomains is that it is possible to have specific

configurations for each service. This allows us to have expressive policies for each 3
rd

 party

application. Each policy is built from several rules, rule based configuration for each application

under the application domain. Each application can have a smaller memory footprint; multiple

applications can run under the same process, this can even increase performance as these

applications can share the .NET runtime libraries. The way that the AppDomains are set up also

provides full fault isolation for each application that runs in the master process which means that

multiple applications can run in the same process without affecting each other. Faults from one

application domain will not crash the entire host application or affect other applications in

different domains.

3.9. Service Level Agreements

“Service Level Agreements (SLA)s are signed between two parties for satisfying clients,

managing expectations, regulating resources and controlling costs” [36]. Most of the time, these

guaranties involve parameters such as response time, throughput, and a condition stating that

when there is a deviation and/or failure to meet the agreement, the consumer must be informed.

In a complex environment, metrics must be captured and aggregated to have some relevant

data for the SLA parameters. For this, a supervisor must be injected to be able to capture and

monitor all of the data to make sure the SLA are not violated. Currently, there is the WSLA

language [6], which is capable of describing these types of service level agreements for web

services.

The descriptions include:

 Parties, Roles and Actions

 SLA parameters, measures, aggregation and appointment of a supervisor

43

 Service Level Objectives and Action guarantees

We want our system to be able to have the following functionality:

 SLA parameters, measurements, aggregation and appointment

 Service Level Objectives and Action guarantees

Using this information we can generate table and give different users different types of services

based on the categories as described in “A concept for QoS integration in Web services” [37] of

processing times and services.

Table 3-4. Types of SLA based services

Class of Service Platinum Gold Bronze

Max Processing
Time

.10ms .30ms .70ms

Throughput
5000

requests/s
1000 requests/s

500
requests/s

Price per service
usage in hours

$0.24 $0.14 $0.05

SLA based web service quality monitoring allows to differentiate between the types of

services that are provided to 3
rd

 party applications. This can be best performed by a system that is

broken into three different areas [38]:

1. Measurement

2. Monitor

3. Analyzer

The way the SLAs are set is a bit different because we are working with services backed by

the cloud. This means that we can drive provision based on the SLAs. The work performed by

“Autonomic SLA-driven Provisioning for Cloud Applications” explores specific approaches on

WS* based web services towards [39]:

44

 Adaptive adjustment

 Cost-effective resources allocation

 Detection and removal/replacement of stale resources

 Component replication and migration depending on load variations

For the focus of this research I am mainly interested in being able to provide a way of

providing the events/alerts to be able to later allow for the approaches mentioned above. That

would be the focus for the future work of this thesis since we are primarily working with

RESTful web services.

3.10. Summary of Literature Review

Using the review from the CAP Theorem, Web Services, Dependable Web Services, Fault

Injection, Cloud Computing, Service Level Agreements and Sandboxing I have identified the

following patterns. From the CAP theorem we have decided that we will focus on availability

and partition tolerance. We have chosen RESTful web services as they are easy to cache and

have inherited properties that we can use to provide the greatest dependability. I will use

availability, reliability, safety, confidentiality, integrity and maintainability to have a dependable

system. Fault injection is used to check the dependability of the system. Cloud computing is used

to provision resources and provide scalability in conjunction with REST. Service level

agreements are used to make sure the system is able to keep its promises to 3
rd

 party developers

in terms of performance and sandboxing using rule-based execution prevents any harm to the

system because it does not require full operating system virtualization.

45

Table 3-5. Summary of Literary Review

Web Services SOA –WS* and REST  Adoption of web services [W13]

 Distributed applications with web

services [8]

 Finding suitable Web Services [10]

 Service descriptions and policies [11]

[23]

 Rest over SOA [9]

Dependable Web Services  Definition [15] [16] [17] [26]

 Fundamental Concepts of

Dependability [22]

 High Availability [18] [32][33]

 Dependability/Reliability [16]

 Assessing dependability [15]

 Dependability Techniques [19][20][21]

Fault Injection  Testing dependability using fault

injection [27]

 Fault injection techniques [29]

Cloud Computing  Cloud architecture benefits [W50]

[W51]

 REST with cloud computing [31]

 Cloud computing middleware [32]

46

CAP Theorem  CAP theorem [30]

Database Storage  ACID properties [W31]

 BASE [W44]

Services Level Agreements  Definition [36]

 Service level agreement properties [36]

 Service level agreement services [37]

 Service level agreements core

components [38]

 Techniques of service level agreements

on a cloud environment [39]

Sandboxing  Sandboxing techniques [34] [35]

 .NET framework sandboxing

[W54][W55]

3.11. Issues Tackled in this Research

The issues not covered by the literary review that are covered in this thesis are the following:

 Dependability using Restful web services instead of WS-*

 Offering a new definition for web service dependability based on availability,

reliability, safety, confidentiality, integrity and maintainability

 Hosting 3
rd

 party web services in a sandboxed environment

 Scalable interactive cloud IPTV architectures

 RESTful tracking of SLA agreements

47

CHAPTER 4

IMPLEMENTATION

This chapter explains the IPTV multi-tenant implementation, based on the requirements

outlined in Chapter 2. The IPTV multi-tenant architecture and framework intended to deal with

the research goals of dependability, scalability and service level agreements. Figure 4-1 is an

overview of the multi-tenant architecture.

4.1. Overview

Sandbox Worker 2 with 3rd party code
Resource State 2

Load Balancer

Concurrent Operation Database

Sandbox Worker 1 with 3rd party codeCache Resource

Dispatcher Control Bus

Resource State 1

HTTP/S

Figure 4-1. Architecture

48

4.1.1. Detailed explanation of how a request is handled by the architecture

First a user request is generated from a user set top box. The set top box creates a request that

gets routed to one of the load balancers in the architecture. The load balancers will then check if

the resource has been found on memory. If the request has been found on memory it will respond

to that request as per Figure 4-2.

Load Balancer

Cache Resource

HTTP/S

Figure 4-2. HTTPS Request generated by user. If found in cache, return request.

49

If not cached, the load balancer will decrypt HTTPS at the load balancer level. From

there the load balancer will create an operation to be sent to the dispatcher control bus to be

processed and wait asynchronously for a result, as in Figure 4-3. The dispatcher control bus is

where all of the requests are logged and managed to be able to provide most of the dependability

properties on the architecture. The processes and dependability properties at this level of the

architecture are explained in detail later in this chapter.

Load Balancer

Concurrent Operation Database

Cache Resource

Dispatcher Control Bus

HTTP/S

Figure 4-3. Create an operation to be sent to the 3
rd

 party services.

50

The dispatcher control bus will create an operation to be sent to the 3
rd

 party services to

be processed and wait asynchronously for a result, as in Figure 4-4. The 3
rd

 party services are

stored in sandboxes environments where from there they can communicate to other sources to

create/read/update/delete their state.

Load Balancer

Concurrent Operation Database

Sandbox Worker 1 with 3rd party codeCache Resource

Dispatcher Control Bus

Resource State 1

HTTP/S

Figure 4-4. Send the operation to the 3

rd
 party service

51

The dispatcher control bus will then receive the result where then the result will then can

be saved. The result can then be saved at the load balancer level or the dispatcher control level.

The main difference is that the invalidation of cache can have the greatest control at the

dispatcher control bus level since it can perform quick head requests to check if a resource has

changed. Saving the result at the load balancer level will have the greatest performance but least

cache control, as shown in Figure 4-5.

Load Balancer

Concurrent Operation Database

Sandbox Worker 1 with 3rd party code

Dispatcher Control Bus

Resource State 1

HTTP/S

Cache Resource

Figure 4-5. Save the operation to the cache

52

To distribute the workload, the next request that is not found in the cache will then be

sent to a different 3rd party resource, as in Figure 4-6. In the case a request fails another resource

can be tried or even multicasting a request to multiple 3
rd

 party resources depending on the

priority of the request.

Sandbox Worker 2 with 3rd party code
Resource State 2

Load Balancer

Concurrent Operation Database

Sandbox Worker 1 with 3rd party codeCache Resource

Dispatcher Control Bus

Resource State 1

HTTP/S

Figure 4-6. Distributing the load for scalability and dependability

4.2. Core Architectural Components

Reverse proxy – The reverse proxy acts as a load balancer, which is an entity that is specialized

to receive a larger number of requests and decrypt incoming requests. The main goal of the load

balancer is accept all of the connections of users and offload all of the SSL decryption. The load

balancer is also responsible for caching the content. It is based on event-driven architecture,

which makes it very fast and highly scalable. The event-driven architecture is based on

epool/kqueue. Firstly, by setting up the architecture in this way, we are able to use the spoon-

feeding technique. The spoon-feeding technique basically allows for the resources of the load

balancer to be consumed when dealing with slow clients.

53

Restful Service Dispatcher Bus – The service bus is in charge of distributed workers. It uses a

round robin algorithm to distribute the requests. Because the service bus has control over the

requests from beginning to end, it is able to prioritize, cancel, and augment all of the requests.

The dispatcher bus is also able to cancel requests that can cause harm to the architecture, which

is considered fault prevention. Due to its properties the restful service dispatcher bus can

perform fault removal. We have added a special feature to the dispatcher bus, which is for

workers to automatically bind to the dispatcher bus. This allows for multiple workers to be

started asynchronously and increase the power of the architecture. The main goal of the Restful

Service Dispatchers is to offload the load from the service workers that actually return data. The

service workers should have the minimum amount of resources to keep a service level

agreement; therefore, it is vital that their resources are not wasted. For this, we will use Little’s

Law [W56]:

 NQ / N = XRQ / XR = RQ/R

Using Little’s law, we can gather that the queuing time delay is the same as the percentage of the

total cycle time (R) when the queued items (NQ) is the same to the total number of items

currently being processed (N). One of the main ways to speed up the queuing time delay is to

minimize the number of items actively being processed by the main system. This can be done by

not wasting resources from allowing slow clients to directly connect to the workers, as they

increase the queuing time delay.

The implementation of the Dispatcher Control Bus is based on the .NET framework. The main

advantage is that it is a reliably fast runtime environment. We decided not to use a standard

server to host the service bus because while there are many are great frameworks, they have a

few drawbacks for dynamic web applications that do not conform to default guidelines:

54

 Do not work well with prolonged sustained connections

 When a server project are loaded for the first time, can take up to several seconds for the

first request to load if the default configuration is used

 If the server workers become idle, application performance is diminished on the first hit

(this can be mitigated by not recycling application pools and warming up applications but

this could create potential problems, when trying to meet service level objectives)

 Use a threading based model

For this, we have developed our own server from scratch. It is an event driven asynchronous

server under the .NET framework. The server performs fairly well; the average throughput of the

server is 5,000 requests per second, which is much higher of the basic, non-cached, typical

website running under IIS or Apache.

One of the main advantages of using the Dispatcher Control Bus is that it has the role of a

supervisor allowing us to inject dependability to the architecture. The Dispatcher Control Bus

helps to provide confidentiality, reliability, availability, maintainability, integrity and monitor the

service level agreements:

Confidentiality is added to this architecture because the Dispatcher Control Bus sends the

information only to the specified resources. This way, we are limiting the data that is available

through the network to specific machines running the 3
rd

 party code. As a result, we are able to

minimize the unauthorized disclosure of information.

Reliability is performed by the Dispatcher Control Bus by checking the return status of every

request that is performed by the resources. If the return status of the resource result is not what is

expected, then the Dispatcher Control Bus can send the request again to a different redundant

55

resource to be able to correct the error state of the first resource. This way we are able to correct

the service.

For availability we are using k-safety. Basically it is safety in numbers as the distributed

system is capable of responding requests as long as at least K+1 services are operational, where

K is the number of tolerable failures. The Dispatcher Control Bus architecture allows for several

resources to perform the same task. It does not matter which way the resources perform the task.

It is very easy to create multiple resources that bind to the dispatcher bus and when a fault

occurs, they are ready to correct any problems with other resources with the services provided.

The systems maintainability is partly performed by the Dispatcher Bus by being able to route

requests to different locations. This is very important when hardware fails or when partial

failures happen because the requests can be routed and throttled to the functional servers.

The Dispatcher Control Bus is capable of accepting and blocking requests for integrity. This

way it is capable of staying within its technical parameters and prescribed limits. Also it is

capable of blocking requests that might be harmful to the resources. For example, some of the

resources might only allow specific verbs to be called within the system but not externally, the

dispatcher bus is capable of filtering those requests.

 Service Level Agreements are governed because the Dispatcher Control Bus has control

over the incoming and outgoing traffic of requests/responses to the clients and we are able to

collect all the relevant data required to fulfill the service level agreements. If the agreements may

not be maintained then the Dispatcher Control Bus contacts a resource that alerts the developers

that there might be a possible problem. This is part of the action guarantees of a service level

agreement which helps prevent future problems and report them which is part of fault

56

forecasting. Alerts are email based and developers can either see if the problem is an error on

their code or provision more resources in our architecture.

4.3. Worker API

The worker API is a SOA based interface that allows developers to quickly scale their resources.

The main reason for using SOA is that it allows developers to quickly get started with the use of

SOA tooling that generates the code for them. This is because many developers will want to

automate deployment and by giving them access to the SOA API it will be a lot easier for them

to get started. We have also developed a website that allows developers to scale their resources

and communicates to the same SOA backend.

The website allows us to create projects Figure 4-8. Each account may hold many projects

Figure 4-9. Then it is possible to add third party plugin workers Figure 4-10. Each account can

have several workers Figure 4-11. All of the plugins must be given permissions to perform

specific tasks such as access the file system. Figure 4-12 shows how to give each plugin worker

permissions within the architecture. From there it is easy to deploy multiple instances of those

workers Figure 4-13. On this site we are also capable of viewing all the statistics and health of all

the workers. For management, we have decided to add a secure website that allows developers to

easily deploy their projects. The projects are a container for workers that run 3
rd

 party code. The

management site allows several developers to work on different parts of the 3
rd

 party code,

deploy independent parts, and to extend the sizes of projects, without having to change the whole

project. This is due to the fact that projects work based on hypermedia and the fact that the

structure of the projects is separated based on worker resources.

57

Figure 4-7. Login

Figure 4-8. Create Projects

Figure 4-9. List of all the projects created by the user

58

Figure 4-10. Upload a worker resource that plugs into the architecture

Figure 4-11. List of all workers resources uploaded by user

59

Figure 4-12. Give the worker permissions

Figure 4-13. Create instances of the worker projects so they can accept requests

60

4.4. Workers - Resources

The workers pre-initialize all resources at startup. To increase performance, the dependencies of

the workers are optimized by NGEN. NGEN stands for Native Image Generator and it creates

native code for a specific system so that the just-in-time compiler does not have to perform work

when the workers are started. Also, one of the benefits is that the native images are able to share

the dependencies, when multiple instances of the workers that share the dependencies are started.

This is extremely important as multiple workers are able to consume less memory because they

are able to share the dependencies. The startup time is minimized because the JIT compiler is

not needed, as the image is now native. Because the services are able to startup very fast, servers

can scale much faster. Each worker uses its own port within a machine. Ports are found with the

following code on Figure 4-14 and it checks up to port 10000.

Figure 4-14. Find a free port for the resource

Each worker has their own sandbox. The workers house all 3
rd

 party code in a dependable

fashion.

Safety

The workers are sandboxed and dependable because they use AppDomains. The AppDomains

allow for the 3
rd

 party code to have specific permissions, which may not harm other workers, if

61

the code is not trusted. Figure 4-15 is an example of how to set permissions, we have hardcoded

the permissions this example so it is easier to understand.

Figure 4-15. Hard coded example of how to permissions are given

There is overhead from using AppDomains but the benefits allow for a multi-tenant

architecture. Each worker loads the 3
rd

 party code at runtime. The code adheres to an interface,

Figure 4-16, designed to use the HTTP verbs as the main functions. To enforce HTTP guidelines,

the GET verb only take parameters that can be passed as query strings. The POST verb is able to

take an object, which is the body of the request.

Figure 4-16. Interface that allows to adhere to the RESTful MVC

62

To simplify the platform as a service for 3
rd

 party developers, the code allows for templates,

such as MVC pattern. The templates from the views can be downloaded from digital link

libraries. Using the HTTP verb TRACE, the workers automatically bind to the service bus.

Figure 4-17 is an example of information the service passes in the headers of the binding request

to the service bus with hard coded values to simplify understanding.

Figure 4-17. Hard coded example of a worker binding

To make it easier for 3
rd

 party developers, all of the dependencies can be downloaded from a

repository.

Then all of the plugins generated by the third party developers are stored in a central

repository. The central repository allows for newly created instances to grab code at runtime for

updating dependencies on the fly. Figure 4-18 show the code responsible for grabbing

dependencies from the code repository.

Figure 4-18. Dependency injection at runtime using a central HTTP based repository

From the management site, developers can upload their DLLs so that they conform to the

specific interface in the HTTP verbs that it can handle.

63

Mapping is done at runtime when the worker binds to the resource manager. This mapping

was designed so that there is no overhead for the resource manager to check a worker database.

The workers’ addresses are all in memory in a dictionary. All requests then come out from a

queue to a round robbing distribution, Figure 4-19.

Figure 4-19. Round-Robin in memory lookup of available resources

To show the effectiveness of the architecture, we have developed applications that

demonstrate different common scenarios faced by 3
rd

 party developers:

 Personalized user transactions Figure 4-20 and Figure 4-21

 Calls to 3
rd

 party services Twitter (Figure 4-22) and Facebook (Figure 4-23)

 Long pooling real-time notifications Figure 4-24

Personalized user transactions come from an application hub that we have developed to mimic

an application store for mobile devices. The application store is the main component of the

system, as it has to be able to allow users to purchase applications and redirect them to other

applications. The application hub is completely personalized to every user. For this to happen,

the application hub allows each user to log in securely using its portal.

64

Figure 4-20. Personalized Application Hub

The portal is built on asynchronous controls that belong to Mediaroom 2.0 and therefore allow

for great user experience. The user experience is enhanced because the main page is loaded first

and then it performs the asynchronous requests for the menus. The menus load gradually and

allow the users to interact with the menus while they load. We have opted for this

compartmentalization, as it allows for great use of cacheability. It enhances the use of cache

because the main page is a compromise of requests that are small and easily cacheable, instead of

large pages customized for every user. Because the asynchronous requests return specially

formatted and regular XML, the services can be developed under many different environments.

In our case, we have developed in C# using the new dynamic features of version 4.0. This

enables different types of objects to be passed to the services, which can then be formatted to this

special XML, as long as some basic properties are on the object.

65

Figure 4-21. Applications the user has purchased

For the Twitter and Facebook applications, the service requests run through a web service that

converts all of the data at runtime. Because of the nature of the process, everything is run

through the asynchronous controls. This allows for complete control over any errors that might

happen when performing the requests, as their competition is out of our scope. If the requests fail

within a specific amount of time, the default content is returned to the user to explain that the 3
rd

party service has failed. This also allows for all of these requests to be cached so that if they

failed, they can be retrieved from the cache.

66

Figure 4-22. Twitter Application

Figure 4-23. Facebook Application

67

The long pooling real-time notifications example Figure 4-24 involves having requests

performed with lower frequency but the server does not respond to the requests immediately,

therefore the servers keep an open connection and it is based on a Hypermedia as the Engine of

Application State (HATEOAS) [W57] to retrieve new application code (XML) and state. Also,

to make sure the messages are returned to the users as fast as possible, they are saved on a server

that stores the messages in memory. The mechanisms are making constant requests to databases,

such as VoltDB, or using a publish-subscribe mechanism, such as the one from Redis. Both of

those approaches would be the ones followed, if there are thousands of users for critical

notifications.

Figure 4-24. Alerts sent from a mobile device

68

4.5. Simplify IPTV Development

Mediaroom IPTV development has significant barriers of entry for 3
rd

 party developers.

Development of the applications is done on a tightly protected specification developed by

Microsoft. To enable ease in usability for all users, all 3
rd

 party applications must follow similar

design guidelines for the user interface that we must set up.

Many third party developers need to integrate their own web services into the IPTV

architecture. This way the 3rd parties developers will not have to develop their code twice and it

will enable them to use their existing infrastructure to consistently show the same content using

the Mediaroom platform.

Development and deployment must be created in such way so that it is very simple and

intuitive for first time developers. This will help with the steep learning curve that comes with

the learning process for Mediaroom IPTV development due to the lack of resources available.

4.6. Service Level Agreements

The service level agreements are implemented by using the Dispatcher Control Bus. The

Dispatcher Control Bus holds all of the service level agreements. It keeps track of all of the

outstanding requests and keeps a log of all of the responses of the requests. Using this

information it is capable to ensure the following service level objectives of the 3
rd

 party services:

 Requests/Second

 Internal response time

All of this information is aggregated and can be queried by a RESTful api.

69

CHAPTER 5

EXPERIMENTS

The following list of experiments ensures that we have covered all of the problems relating to

building a dependable IPTV architecture that is capable of running 3
rd

 party code, as stated on

chapter 2 and explained in chapter 3.

Table 5-1. Test Summaries

Goal Properties Experiment

Ability to execute 3
rd

party code in a

dependable

environment

Being able to run execute binaries

on the architecture with the

following properties:

 Confidentiality

 Reliability

 Availability

 Safety

 Integrity

 Maintainability

 EX1

o Overhead of the

properties

 EX2

o Tests dependability

using faulty and

unavailable services

while measuring

performance

Scalability Being to handle growing amounts of

stress

 EX3

o Handling increasing

loads until

maximum

throughput is

reached then

70

increasing

resources

Service Level

Agreements

Being able to stay within a specified

service level agreement and when

those objectives are not met, to

notify the 3rd party developers

 Ex4

o Violation of

specified service

agreements and

prompt notification

Table 5-1 shows the designed experiments, each test is designed to test dependability,

scalability, and the service level agreements. We have designed each experiment to test the

properties that we have introduced in the architecture.

5.1. Setup

The set-up of the experiments will be on the Amazon EC2 cloud. The machines will use the

specs of the default instances [W58]:

Figure 5-1. Cloud Instances

We will have in total four machines. Not all of the machines will be used at the same time but

their roles are detailed within each experiment.

71

5.2. Load Generation

To create a realistic load, we will use our applications and capture the data generated. We will

use the applications we developed:

 Application Hub (for personalized transactions)

 Facebook and Twitter (calling external services)

 Notifications application

To capture the data, we will use a packet sniffer. The packet sniffer captures all of the

requests coming in and out of the set-top box. We will also make sure to capture the appropriate

think time from the packet sniffer. Think time is the amount of time a user takes absorbing the

content from one page until they perform an action, such as clicking the remote, to view another

page with different content. Because not all users behave the same, the think time will be

randomly changed for specific experiments mentioned.

5.3. EX1 - Overhead Test

First, we will test how much overhead is added by the architecture. For the test, we will use two

machines. One will use the service dispatcher bus and another will have a service running a

simple application. Load testing will be performed on the service itself. The service is stripped of

all of the functionality, except for serving HTTP requests. The tests will involve firing sequential

GET requests to the service directly, following the pattern outlined below. The load we have

outlined below is a minimal load to make sure we are only measuring the overhead. We have

chosen a minimal load to make sure our measurements are not affected by bottlenecks in any part

of the system.

72

Table 5-2. EX1 Tests Overview

Requests/Second Duration (minutes)

10 10

20 10

30 10

Afterwards, we will introduce the dependability aspects to the service and perform the same

load. Finally, we will introduce the dispatch service bus and run the same load. From there, we

will generate graphs showing the amount of overhead from the framework and architecture.

The first part of the test involves using a normal version of the custom-built http server

consuming data from middleware and 3
rd

 party data providers (Facebook). Since we are

subjecting the server to a low load of requests per second then we do not expect to have any

significant variation with the latency. This is done to be able to chart only the latency of the

server without having to worry that any component is going thought a starvation of resources.

Our hypothesis is that the latency of the service will be constant since the amount of work

performed by the server is constant. The only changes that we might see are if there are any

network problems between the clients to the server or between the server and 3
rd

 party state

resources (Facebook).

The second part of the test involves the whole architecture, which has caching components.

The caching components have the advantage of not having to perform calculations or contact

background resources and therefore are able to return the requests right away. Due to this

73

advantage we expect that the architecture might increase the performance of the system by

lowering latency. Since we are only going to keep the cache available for 1 second for the

requests we expect to have a high variance in the latency since the work performed will vary

depending on the arrival rate and time of the requests.

5.4. EX2 - Dependability vs. Performance Test

For this test, we will use three different computers. The first computer will have the service

dispatcher coordinator running as a single process. The other two computers will have a total of

two services; this means the whole architecture has four services running as in Figure 5-2.

Figure 5-2. Services Layout

74

All of the services will be returning almost the same state, including an identification number for

the service performing the work. At the beginning, all of the services will be running. We will

perform the following load. The following load is based on half of the subscribers from SaskTel

to simulate the traffic from a city, such as Saskatoon. We are interested in measuring the

performance of the system for an application that a user might check once or twice a day, such as

a Daily Deal application for Saskatoon. We will assume that, based on the number of SaskTel

subscribers quoted in chapter 3, there are 70,463 that are actively using an IPTV applications

from 10 pm to 11 pm, which includes Primetime television. Also, each subscriber checks the

application four times during this period, which is a one-hour period, which is 3600 seconds.

Table 5-3. Dependability VS Performance Test

Requests/Second Duration (minutes)

78.3 10

After the first run, within machine service one, we will make one of the services perform faulty

Figure 5-3 and throw exceptions, and another to be fully operational. We will, then, run the tests

again.

75

Figure 5-3. Faulty Services Layout

This will test the performance of the architecture when there are faulty services under the same

load. For the last part of this test, we will bring back the services on machine one to be fully

operational and on machine two, one of the services will be unavailable Figure 5-4, and upgrade

the service to a new code base under the same load.

Figure 5-4. Unavailable Services Layout

Using those results, we will create a graph to illustrate how the performance of the system is

affected by providing the dependability properties.

76

5.5. EX3 - Scalability Test

For this test, we will generate the maximum amount of load the application can handle. At the

beginning, we will only use the dispatcher bus on one machine and one service on another

machine. We will find out the throughput of the architecture using the data captured from the

load generation from real generated traffic one standard deviation from the curve. Next, we will

increase the number of services until we find the precise saturation amount when throughput

plateaus, no matter how many services are added. Finally, we will add a load balancer and

introduce two dispatcher busses, each with a single service. From there, we will increase the

number of services until the throughput stabilizes.

Finally, we will introduce a third dispatcher bus and saturate all of the busses with resources

until the throughput becomes stable. This will give us a good idea of the scalability capabilities

of the architecture.

5.6. EX4 - Service Level Agreements Test

To test the service level agreements, we want to test the SLA parameters, measurements, and

aggregation. This will be done through the specification of service level objectives and when the

objectives are not met, then it will trigger the action guarantees

For this, we will enter the following objectives for a 3
rd

 party service:

 Requests/Second

 Internal response time

When the service level objectives are not being met we should receive email notifications with

the current load and the internal response time. This mechanism allows 3
rd

 party administrators

to start a new instance of their services in our architecture to meet higher demands.

Due to the large capacity of this system, we will develop services that are underperforming by

wasting CPU cycles. This will allow us to easily breach the service level agreements.

77

For the experiment, we will have the following parameters:

 100 requests/second

 10 milliseconds internal response time

We will perform the following load to test the service level agreements:

Table 5-4. Description of SLA based Tests

Minutes Requests/Second

0 50

1 60

2 70

3 80

4 90

5 100

6 110

7 120

78

CHAPTER 6

RESULTS

6.1. EX1

6.1.1. Services without the architecture

The experiments are the overhead experiments which measure the amount of operational costs of

using the architecture. The data shows that as expected the latency had a constant tendency. The

latency average was over 500 milliseconds because the raw data is being consumed and

transformed from middleware and 3rd party data services (Facebook). This extra layer of

abstraction is great for developing 3rd party applications as it is easier to develop applications

using the APIs but it also causes for http servers to have higher latency. As with a normal

system, the larger the amount of requests being handled by the architecture, there is an increase

in the total latency time. The minimum values gathered show the fastest intervals of time when

the results were received. The maximum values show the slowest times intervals when the

results were received. The minimum and maximum spikes are very close to each other indicating

a homogenous trend. The major spikes of the max values in latency are due to problems with

latency from the 3
rd

 party services, in this case, Facebook. For every request done to the

architecture that requires 3
rd

 party data, the architecture will contact directly those services. This

means that for every request to the archiecture for the Facebook application requires another

request that goes to an API that connects to Facebook. Also 3
rd

 party providers of data start to

throthle requests to make sure they are not flooded with requests that could cause a denial of

service attack. When those requests from Facebook are not recived in time, the services show

high lentency as showend in the graph. The spikes can also be due to problems with I/O usage in

the EC2 architecture. The following are the cumulative values we have gathered with the

architecture:

79

Table 6-4. Overhead 10 RPS Summary

Summary Milliseconds

Minimum 394

Maximum 31330

Average 630.3

Values of 394 milliseconds are great but values of 31 seconds would timeout, create horrible user

experience and basically make the system unusable.

Figure 6-1. Overhead 10 RPS – 10 Minutes

In Figure 6-1 the spikes in this graph show the latency of the system under a load of 10 requests

per second for a period of 10 minutes. Several spikes that can be due to throttling from

Facebook, latency from shared I/O from EC2 or latency issues with Facebook.

80

Table 6-5. Overhead 20 RPS Summary

Summary Milliseconds

Minimum 361

Maximum 2252

Average 576.7

Values of 361 milliseconds are great and values of up to 2 seconds are acceptable but would

decrease user experience.

Figure 6-2. Overhead 20 RPS – 10 Minutes

In Figure 6-2 the spikes in this graph show the latency of the system under a load of 20 requests

per second for a period of 10 minutes. The average value for spikes is under 576.7 milliseconds

which is good. There is a huge spike in latency due to throttling from Facebook.

81

Table 6-6. Overhead 30 RPS Summary

Summary Milliseconds

Minimum 422

Maximum 4410

Average 595.6

Values of 422 milliseconds are great and values of 4.4 seconds decrease user experience

significantly but it is still usable.

Figure 6-3. Overhead 30 RPS – 10 Minutes

In Figure 6-3 the spikes in this graph show the latency of the system under a load of 30 requests

per second for a period of 10 minutes. The average value for spikes is under 576.7 milliseconds.

There is a huge spike in latency due to throttling from Facebook, latency from shared I/O from

EC2 or latency issues with Facebook. At this point we see that consistently there is a spike

around 400-430 seconds into the test. It is due to throttling of Facebook.

82

6.1.2. Services with the architecture

The architecture performs much better as the number of requests increase. The cache is available

for one second and it only takes one request with the proper result to be able to respond to any of

the other requests the front side of the architecture. The amount of requests being handled

becomes a function of the amount of requests the front side of the architecture can handle.

Therefore one of the important things we have learned is that the front instances with the

dispatcher bus should be most powerful to be able to handle loads as fast as possible. For this

experiment we are only using one backend resource service but if we introduce multiple ones the

load will be balanced across multiple services which would decrease the load of each individual

service. Then the bottleneck of the architecture is the front end dispatcher receiving the requests.

At that point when it reaches saturation a larger front instance should be introduced or multiple

dispatchers can be added which would be accessible through the same DNS address. This

method of having powerful front side instances is vertical scalability and having several less

expensive instances to communicate with backend services to perform state fetches or changes is

horizontal scalability.

83

Table 6-7. Overhead Architecture10 RPS Summary

Summary Milliseconds

Minimum 0

Maximum 1261

Average 49.8

Values of 0 milliseconds are amazing, it means that the load generator would need smaller

measuring magnitudes to capture the latency and values of 1.2 seconds are not bad.

Figure 6-4. Overhead Architecture 10 RPS – 10 Minutes

In Figure 6-4 the spikes in this graph show the latency of the system under a load of 10 requests

per second for a period of 10 minutes. The average value for spikes is under 49.8 milliseconds.

Latency is significantly diminished due to caching. The max latency values are still present but a

huge spike in latency due to throttling from Facebook.

84

Table 6-8. Overhead Architecture 20 RPS Summary

Summary Milliseconds

Minimum 0

Maximum 3114

Average 35.9

Values of 0 milliseconds are amazing, it means that the load generator would need smaller

measuring magnitudes to capture the latency and values of 3 seconds make the system usable

but with signicantly deminished user experience.

Figure 6-5. Overhead Architecture 20 RPS – 10 Minutes

In Figure 6-5 the spikes in this graph show the latency of the system under a load of 10 requests

per second for a period of 10 minutes. The average value for spikes is under 49.8 milliseconds.

Latency keeps going down due to the use of resource caching which prevents problems due to

throttling or 3rd party latency.

85

Table 6-9. Overhead Architecture 30 RPS Summary

Summary Milliseconds

Minimum 0

Maximum 1424

Average 13

Values of 0 milliseconds are amazing, it means that the load generator would need smaller

measuring magnitudes to capture the latency and values of 1.4 seconds are not bad.

Figure 6-6. Overhead Architecture 30 RPS – 10 Minutes

In Figure 6-6 the spikes in this graph show the latency of the system under a load of 30 requests

per second for a period of 10 minutes. The average value for spikes is under 13 milliseconds.

Latency keeps going down. Comparably from having the architecture and not having the

architecture there is an improvement of 576.7 milliseconds from to 13 milliseconds at 30

requests per second.

86

6.2. EX2

The test for dependability tests if the architecture is capable of handling expected load which

being able to respond accordingly in a dependable way. In this case we are checking that no

errors get returned on the tests and that the latency times are also minimal with the architecture.

To make sure that the latency times are minimal we are using four backend resource servers. At

four minutes into our experiment we are going to simulate maintenance of a service. The

dependability of the service is affected primarily by the amount of requests the service that is

temporarily offline. Also this offline service is causing extra overhead because the dispatch

control bus takes some time to realize that the service is unavailable instead of continuously

waiting to achieve the connection. In Figure 6-7 the spikes in this graph show the latency of the

system under a load of 78.3 requests per second for a period of 10 minutes. The average value

for spikes is under 9.5 milliseconds. Latency was minimal in the system.

Table 6-10. Dependability VS Performance Summary

Summary Milliseconds

Minimum 0

Maximum 31516

Average 9.5

87

Figure 6-7. Dependability VS Performance – 10 Minutes

The spikes in this system show how performance fluctuates based on the damages in the system

based on unavailability or errors. It also shows that even if the system undergoes unavailability

or errors the system can recover by using replication and it is able to perform with low latency

due to caching as can be seen from the average.

88

EX3

In this scalability experiement we incrementatilly increased the load using a step function. When

there was a big latency spike in the system we introduced another instance of a service worker

resource. We ended up with four service instances entered sequencially at specific times. The the

constant latency proves that as more intances are introduced into the system we are able to

stabilise the system.

Table 6-11. Scalability Instances Summary

Time Number of Services

0 1

84 2

284 3

436 4

89

Table 6-12. Scalability Summary

Summary Milliseconds

Minimum 0

Maximum 8627

Average 1.9

Figure 6-8. Scalability – 10 Minutes

In this case we have introduced four services since it was the number of services that allowed us

to have a stable system, Figure 6-8, at the level of latency we experienced. It is also important to

note that the latency average was only of 1.9 milliseconds making it a very high performance

system that scales horizontally.

90

EX4

To test services level agreements we made sure to have restful reporting of the data. The data

then is used for anotification service. The real time statistics can be accessed and succesfully

show the breach of the agreements during the times marked on the following tablet in red.

Minutes Requests/Second

0 50

1 60

2 70

3 80

4 90

5 100

6 110

7 120

The results show that the data from the system can be aggregated and used to provide

comprehensive information to 3
rd

 party developers and maintaners of the architecture. Using this

information it is possible to ensure that 3
rd

 party agreements are not breached and if they are

breached then due compensations can be done. The advantage of having this information over a

RESTful resource is that many other applications can consume this data to provide interesting

reports whenever, for example, more than 100 request per second are not being responded by the

3
rd

 party services in the architecture.

91

CHAPTER 7

SUMMARY AND CONTRIBUTION

As more services are being ported to the cloud it is important that we are able to have the same

or higher dependability for those services. The current trend for developing high end services is

to have 3rd pary developers create applications. These applications become part of an ecosystem.

To have dependable and scalable systems that are goverend by service level agreements allows

for the new type of ecosystems. It is possible to have all the benefits of 3
rd

 party applicaitons

without the need to settle for less confidence in the overall user experience in the system. The

main contribution of the research is that we have developed a fully working IPTV architecture

that provides dependability, scalability and SLA agreements for TRLabs (www.trlabs.ca). The

dispatcher control bus handles dependability properties through the REST protocol. Availabiilty

is achived through reduendacy of services. Reliabiilty is achived by using the HTTP protocol

status codes. Integrity is achived by making sure that state changes can only occur through the

web service itself and isolating errors from propagating inside the system to other components

through using sandboxing. Safety is achived by isolating errors from propagating to the user and

sandboxing of the resource services using appdomains. The architecture can scale horizontally

by adding more services which balances the use of resources, higher peformance is achived by

the use of caching. Finally the statistics of how these services are peforming is captured by the

dispatcher service bus and exposed through as a RESTful resource.

The system allows for multiple web services inside the same machine to conserve resources

while shielding them from each other. Also it protects the user experience by preventing errors

from propagating to the end users. With this architecture it is possible of having an architecture

that outperforms regular consumption of 3rd party services. The peformance boost is due to the

92

heavy use of caching and balancing the high request load to several web services. Using high

redundancy it is possible to handle failure of multiple services as long as there are enough

working replicas. High redundancy along with round-robin allows having high scalability since

new 3rd party services are able to start up instantly and bind to the architecture at runtime.

Finally the service level agreements allow us to check that the architecture is able to keep its

promises to the 3rd party services.

93

CHAPTER 8

FUTURE WORK

8.1. Future Work

In the process of finding a working prototype for this research we have found many different

aspects that could augment this thesis or other viable solutions.

8.1.1. Web Sockets

Sockets are the new standard for full duplex communication available in HTML5 enabled

browsers. Sockets allow for real-time even driven communication between the client and server.

The current standard for web transports basically are retrieval based which means the client has

full control over when the information is sent to the client. The client has to initiate the

integration and therefore the server is not capable of sending information to the client whenever

it relevant to the client. This is especially important for displaying information such as

notifications, alerts, medical and time sensitive information.

 In the architecture for this research we used streaming techniques to circumvent the

limitations of not having sockets available in the current IPTV frameworks. Some of the

techniques are pooling, long pooling and streaming. Pooling involves the client continuously

requesting data to the server with very short intervals to check if information has changed, this

method has a high level of overhead as each client produces high levels of requests. Long

pooling involves having requests performed with lower frequency but the server does not

respond to the requests immediately, therefore the servers keep an open connection for a

prolonged period of time until a little bit before the client connection times out. Finally,

streaming is having an open connection due to a non-complete response; therefore multiple

results can come from the same open connection. The main problem with streaming is that it

94

does not work well with proxy’s that sometimes buffer requests and firewalls. All of these

methods rely on the HTTP protocol and send/receive headers, which in some cases include

latency. For our research we rely on the HTTP protocol to be able to provide caching and

dependability due to the semantics of the headers. For future work, it would be interesting to

implement this architecture using a mix of the REST HTTP protocol and the use of web sockets

for real time event driven communication. The challenge would be when it would be proper to

have RPC style communication of web sockets and when it would be proper to use REST with

caching. The answer to this problem could be CQRS.

8.1.2. CQRS

Command Query Responsibility Segregation is a pattern designed for scalability and separation

of concerns on large systems. CQRS is primarily used in distributed architectures for

asynchronous propagation of updates to separate components. Like in our architecture it trades

consistency over availability and partition tolerance as described previously with the CAP

theorem. CQRS separates the reads and writes in an architecture and it uses events to propagate

changes to the architecture. In this case it possible to have very complex logic involving the

creation and update process of an object including the use an ACID database to hand all of the

writes in the architecture and use a NoSQL database to handle all of the reads. Therefore it

would be a good addition to the architecture since we can guarantee that all operations in the

system are eventually consistent due to the ACID properties. All of the reads come from a very

different de-normalized model of the data which require a preferably a single object from the

database to display all the data needed for the request. Also by segregating the read and write

operations it is possible to use this semantic pattern of CQRS in the use of sockets. Since CQRS

allows for complex create and update logic of objects specific procedures can be handled so

some objects are specifically flagged for the use of sockets. Finally, using a publish subscribe

95

system the 3
rd

 party systems could automatically update our data with all of the information so

that no fetching needs to be done from the 3
rd

 party. Therefore all of the information would come

directly from our NoSQL store and then the information would be sent from web sockets.

8.1.3. Pre-Processed Static Resources Hosted on the Cloud

Another technique available could be to preprocess all of the state required in the form of

hypermedia files. This way the 3
rd

 party developers only need to upload template files that then

are processed for every single user that will be using the architecture. Whenever a new user signs

up, an asynchronous process will generate the static resources in cloud storage. Then all of the

files will be stored in CDN where the files can be served world wide in a very efficient and fast

manner. Recently most CDN networks now support encrypted transport protocols (https), which

would provide some security. The main problem with this technique might be being able to

enforce security in complex scenarios. The main basic approach would be generate a few

methods that would help 3
rd

 party developers to create random resources addresses, and they

should be random enough so that others will not be able to compromise others privacy.

8.1.4. Publish Subscribe Client Cache Push

For clients with higher capacities, it would be possible to have embedded RESTful databases

inside the client. In this case the static resources could be pre-processed on the server and then

they would be pushed directly to the client. Then these clients could directly talk with other

clients lowering latency in LAN environments just like a P2P environment for dependability.

This way 3
rd

 party developers would still be able to create applications for these devices but we

would have to be careful. Since the code would be hosted from inside the device there are

problems with sandboxing the content and making sure privacy is still maintained to provide

dependability.

96

LIST OF REFERENCES

[1] S. Robertson, C. Wharton, C. Ashworth, M. Franzke, Dual device user interface design:

PDAs and interactive television, Proceedings of the SIGCHI conference on Human factors in

computing systems: common ground, p.79-86, April 13-18, 1996, Vancouver, British Columbia,

Canada.

[2] P. Cesar, D. Bulterman, and A. J. Jansen. Usages of the Secondary Screen in an

Interactive Television Environment: Control, Enrich, Share, and Transfer Television Content. In

Proceedings of the 6th European conference on Changing Television Environments (EUROITV

'08), Manfred Tscheligi, Marianna Obrist, and Artur Lugmayr (Eds.). Springer-Verlag, Berlin,

Heidelberg, 168-177.

[3] A. Al-Hezmi, Y. Rebahi, T. Magedanz, S. Arbanowski, "Towards an Interactive IPTV

for Mobile Subscribers," icdt, pp.45, International Conference on Digital Telecommunications

(ICDT'06), 2006

[4] P. Vorderer, 2000. Interactive entertainment and beyond. In Media Entertainment:The

Psychology of Its Appeal, D. Zillmann and P. Vorderer, eds., Lawrence Erlbaum Associates, 21-

-36.

[5] J. Masthoff, Group Modeling: Selecting a Sequence of Television Items to Suit a Group

of Viewers. In Proceedings of User Model. User-Adapt. Interact.. 2004, 37-85.

[6] L. Jihye, P. Shinjee, L. Jeongyeon, K. Munchurl, L. Sunhwan, K. Sangki, "Design of

Open APIs for Personalized IPTV Service," Advanced Communication Technology, The 9th

International Conference on , vol.1, no., pp.305-310, 12-14 Feb. 2007 doi:

10.1109/ICACT.2007.358361

[7] A. Keller, H. Ludwig, The WSLA Framework: Specifying and Monitoring Service Level

Agreements for Web Services, Journal of Network and Systems Management, 2003-03-01,

Springer New York, http://dx.doi.org/10.1023/A:

[8] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S. Weerawarana, "Unraveling the

Web services web: an introduction to SOAP, WSDL, and UDDI," Internet Computing, IEEE ,

vol.6, no.2, pp.86-93, Mar/Apr 2002 doi: 10.1109/4236.991449

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=991449&isnumber=21386

[9] S. Vinoski, "REST Eye for the SOA Guy," 2007. IEEE Internet Computing, pp. 82-84,

January/February

[10] E. Al-Masri and Q. H. Mahmoud. 2007. Discovering the best web service. In Proceedings

of the 16th international conference on World Wide Web (WWW '07). ACM, New York, NY,

USA, 1257-1258. DOI=10.1145/1242572.1242795 http://doi.acm.org/10.1145/1242572.1242795

97

[11] M. Sabou, J. Pan, Towards semantically enhanced Web service repositories, Web

Semantics: Science, Services and Agents on the World Wide Web.

[12] C. Pautasso, O. Zimmermann, F. Leymann. “Restful web services vs. "big"' web services:

making the right architectural decision”. 2008. In Proceeding of the 17th international

conference on World Wide Web (WWW '08). ACM, New York, NY, USA, 805-814.

DOI=10.1145/1367497.1367606 http://doi.acm.org/10.1145/1367497.1367606

[13] Roy Fielding. “Representational State Transfer (REST)”

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

[14] M. Fowler. “Richardson Maturity Model: steps toward the glory of REST”

http://martinfowler.com/articles/richardsonMaturityModel.html

[15] N. Looker , M. Munro. X. Jie, "WS-FIT: a tool for dependability analysis of Web

services", Computer Software and Applications Conference, 2004. COMPSAC 2004.

Proceedings of the 28th Annual International , vol.2, no., pp. 120- 123 vol.2, 28-30 Sept. 2004

doi: 10.1109/CMPSAC.2004.1342690

[16] N. Looker, X. Jie, "Assessing the Dependability of SOAP RPC-Based Web Services by

Fault Injection", Object-Oriented Real-Time Dependable Systems, 2003. WORDS 2003 Fall.

The Ninth IEEE International Workshop on , vol., no., pp. 163, 01-03 Oct. 2003

[17] S. Abraham, M. Thomas, J. Thomas, "Enhancing Web services availability" e-Business

Engineering, 2005. ICEBE 2005. IEEE International Conference on , vol., no., pp.352-355, 12-

18 Oct. 2005 doi: 10.1109/ICEBE.2005.62

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1552915&isnumber=33062

[18] L.E Moser, P.M. Melliar-Smith, W. Zhao , "Making Web services dependable,"

Availability, Reliability and Security, 2006. ARES 2006. The First International Conference on ,

vol., no., pp. 9 pp., 20-22 April 2006

doi: 10.1109/ARES.2006.79

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1625341&isnumber=34117

[19] E. Nourani, "A new architecture for Dependable Web Services using N-version

programming" Computer Research and Development (ICCRD), 2011 3rd International

Conference on , vol.2, no., pp.333-336, 11-13 March 2011

doi: 10.1109/ICCRD.2011.5764144

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5764144&isnumber=5764069

[20] Y. Xinfeng, "Providing Reliable Web Services through Active Replication" Computer and

Information Science, 2007. ICIS 2007. 6th IEEE/ACIS International Conference on , vol., no.,

pp.1111-1116, 11-13 July 2007

98

doi: 10.1109/ICIS.2007.151

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4276532&isnumber=4276339

[21] X. Ye, Y. Shen, "A middleware for replicated Web services" Web Services, 2005. ICWS

2005. Proceedings. 2005. IEEE International Conference on , vol., no., pp. 2 vol. (xxxiii+856),

11-15 July 2005 doi: 10.1109/ICWS.2005.8

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1530855&isnumber=32665

[22] A. Avizienis , J. C. Laprie, B. Randell, B. Randell. “Fundamental Concepts of

Dependability”. 2001. Technical Report Series university Of Newcastle Upon Tyne Computing

Science, 1145(010028), 7-12. Citeseer. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.120&rep=rep1&type=pdf

[23] J.H. Hammer, G. Schneider, "On the Definition and Policies of Confidentiality"

Information Assurance and Security, 2007. IAS 2007. Third International Symposium on , vol.,

no., pp.337-342, 29-31 Aug. 2007 doi: 10.1109/IAS.2007.20

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4299796&isnumber=4299732

[24] Poore, J.H.; Mills, H.D.; Mutchler, D.; , "Planning and certifying software system

reliability," Software, IEEE , vol.10, no.1, pp.88-99, Jan 1993 doi: 10.1109/52.207234

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=207234&isnumber=5302

10.1109/WORDS.2003.1267504 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1410959&isnumber=30574

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1342690&isnumber=29573

[25] JD Musa, A Iannino, Software reliability: measurement, prediction, application,

McGrawHill, New York, 1987

2007, Pages 142-150, ISSN 1570-8268, 10.1016/j.websem.2006.11.004.

http://www.sciencedirect.com/science/article/pii/S1570826807000066)

[26] Zamojski, W.; Caban, D.; , "Introduction to the Dependability Modeling of Computer

Systems," Dependability of Computer Systems, 2006. DepCos-RELCOMEX '06. International

Conference on , vol., no., pp.100-109, 25-27 May 2006

doi: 10.1109/DEPCOS-RELCOMEX.2006.35

[27] Looker, N.; Jie Xu; , "Assessing the Dependability of SOAP RPC-Based Web Services

by Fault Injection," Object-Oriented Real-Time Dependable Systems, 2003. WORDS 2003 Fall.

The Ninth IEEE International Workshop on , vol., no., pp. 163, 01-03 Oct. 2003 doi:

10.1109/WORDS.2003.1267504

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1410959&isnumber=30574

[28] H. Mei-Chen, T.K. Tsai, R.K. Iyer, "Fault injection techniques and tools" Computer ,

vol.30, no.4, pp.75-82, Apr 1997

doi: 10.1109/2.585157

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=585157&isnumber=12687

99

[29] N. Sasikaladevi, L. Arockiam, "Extended WS-FIT model to enhance the fault tolerance in

the dynamic composite web service" Electronics Computer Technology (ICECT), 2011 3rd

International Conference on , vol.5, no., pp.21-25, 8-10 April 2011

doi: 10.1109/ICECTECH.2011.5941949

[30] G. Seth, N. Lynch, “Brewer's conjecture and the feasibility of consistent, available,

partition-tolerant web services”. 2002. SIGACT News 33, 2 (June 2002), 51-59.

DOI=10.1145/564585.564601 http://doi.acm.org/10.1145/564585.564601

[31] J. H. Christensen. “Using RESTful web-services and cloud computing to create next

generation mobile applications”. 2009. In Proceeding of the 24th ACM SIGPLAN conference

companion on Object oriented programming systems languages and applications (OOPSLA '09).

ACM, New York, NY, USA, 627-634. DOI=10.1145/1639950.1639958

http://doi.acm.org/10.1145/1639950.1639958

[32] K. Birman, R. V. Renesse, W. Vogels, “Adding High Availability and Autonomic

Behavior to Web Services” 2004. In Proceedings of the 26th International Conference on

Software Engineering (ICSE '04). IEEE Computer Society, Washington, DC, USA, 17-26.

[33] J. Salas, F. Perez-Sorrosal, M. Patio-Martinez, R. Jimenez-Peris. 2006. “WS-replication:

a framework for highly available web services”. In Proceedings of the 15th international

conference on World Wide Web (WWW '06). ACM, New York, NY, USA, 357-366.

DOI=10.1145/1135777.1135831 http://doi.acm.org/10.1145/1135777.1135831

[34] L. Zhen, T. Jun-Feng, W. Feng-Xian, "Sandbox System Based on Role and

Virtualization" Information Engineering and Electronic Commerce, 2009. IEEC '09.

International Symposium on , vol., no., pp.342-346, 16-17 May 2009

doi: 10.1109/IEEC.2009.77

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5175134&isnumber=5175055

[35] Zhen Li; Hongyun Cai; Junfeng Tian; Wu Chen; , "Application Sandbox Model Based on

System Call Context," Communications and Mobile Computing (CMC), 2010 International

Conference on , vol.1, no., pp.102-106, 12-14 April 2010

doi: 10.1109/CMC.2010.77

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5471505&isnumber=5471384

[36] A. Sahai, V. Machiraju, M. Sayal A. V. Moorsel, F. Casati, “Automated SLA Monitoring

for Web Services”, Management Technologies for E-Commerce and E-Business Applications,

Book Series, 2002, Springer Berlin / Heidelberg, Isbn: 978-3-540-00080-8 Url:

http://dx.doi.org/10.1007/3-540-36110-3_6 Doi: 10.1007/3-540-36110-3_6

[37] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J.S. Freie, "A concept for QoS integration

in Web services", Web Information Systems Engineering Workshops, 2003. Proceedings. Fourth

International Conference on , vol., no., pp. 149- 155, 13 Dec. 2003

doi: 10.1109/WISEW.2003.1286797

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1286797&isnumber=28684

100

[38] L. Liang, S. Meina; Z. Xiaoqi, "An SLA based Web Service quality monitor system"

Pervasive Computing (JCPC), 2009 Joint Conferences on , vol., no., pp.661-664, 3-5 Dec. 2009

doi: 10.1109/JCPC.2009.5420099

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5420099&isnumber=5420061

[39] N. Bonvin, T.G. Papaioannou, K. Aberer, "Autonomic SLA-Driven Provisioning for

Cloud Applications" Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM

International Symposium on , vol., no., pp.434-443, 23-26 May 2011 doi:

10.1109/CCGrid.2011.24

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5948634&isnumber=5948590

101

LIST OF WEBSITES

[W1] Crunchyroll. http://crunchyroll.com , Last Accessed: January 20, 2012

[W2] Netflix. http://netflix.ca, Last Accessed: January 20, 2012

[W3] Youtube. http://youtube.ca, Last Accessed: January 20, 2012

[W4] iTunes. http://www.apple.com/ca/itunes/, Last Accessed: January 20, 2012

[W5] Amazon Video on Demand http://www.amazon.com/gp/video/ontv/start , Last Accessed:

January 20, 2012

[W6] Roku Stream Player. http://www.roku.com/, Last Accessed: January 20, 2012

[W7] Google TV. http://www.google.com/tv/, Last Accessed: January 20, 2012

[W8] Microsoft Mediaroom http://www.microsoft.com/mediaroom/, Last Accessed: January

20, 2012

[W9] Year-End 2010 Broadband And Iptv Report Highlights: Global Broadband Penetration Is

The Critical Driver Behind Broadband Forum’s Ipv6 Solutions http://point-

topic.com/content/press/YE2010_BB_IPTV_IPv6%20release%20FINAL%2023%20Mar%

202011.doc

[W10] Xbox 360 Live. http://www.xbox.com/en-US/live?xr=shellnav , Last Accessed: January

20, 2012

[W11] PlayStation Video Store. http://www.playstation.ca/ps/videostore.aspx, Last Accessed:

January 20, 2012

[W12] Netflix at Nintendo Wii. http://www.nintendo.com/wii/netflix, Last Accessed: January

20, 2012

[W13] SOA User Survey: Adoption Trends and Characteristics. 2008. Gartner, Last Accessed:

January 20, 2012

[W14] World Wide Web Consortium (W3C) http://www.w3.org/, Last Accessed: January 20,

2012

[W15] OASIS: Advancing open standards for the global information society http://www.oasis-

open.org/home/index.php, Last Accessed: January 20, 2012

[W16] Web Services Interoperability http://www.ws-i.org/, Last Accessed: January 20, 2012

[W17] SOAP Specifications. http://www.w3.org/TR/soap/, Last Accessed: January 20, 2012

102

[W18] Web Services Description Language. http://www.w3.org/TR/wsdl, Last Accessed:

January 20, 2012

[W19] OSSIS Web Services Security (WSS) TC. http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wss, Last Accessed: January 20, 2012

[W20] Understanding Service-Oriented Architecture. http://msdn.microsoft.com/en-

us/library/aa480021.aspx, Last Accessed: January 20, 2012

[W21] A Guide to Developing and Running Connected Systems with Indigo.

http://msdn.microsoft.com/en-us/magazine/cc164026.aspx, Last Accessed: January 20, 2012

[W22] Windows Communication Foundation. http://msdn.microsoft.com/en-

us/netframework/aa663324, Last Accessed: January 20, 2012

[W23] IBM Service Oriented Architecture — SOA http://www-

01.ibm.com/software/solutions/soa/, Last Accessed: January 20, 2012

[W24] Oracle Service-Oriented Architecture.

http://www.oracle.com/us/technologies/soa/index.html, Last Accessed: January 20, 2012

[W25] SOAP Envelope Element. http://www.w3schools.com/soap/soap_envelope.asp, Last

Accessed: January 20, 2012

[W26] Performance Considerations in Applications for Windows Phone.

http://msdn.microsoft.com/en-us/library/ff967560%28v=vs.92%29.aspx#BKMK_Threads, Last

Accessed: January 20, 2012

[W27] SSL and Online Trust Information Center. http://www.verisign.com/ssl/ssl-information-

center/index.html , Last Accessed: January 20, 2012

[W28] ITU-T Recommendation E.800 http://wapiti.telecom-

lille1.eu/commun/ens/peda/options/ST/RIO/pub/exposes/exposesrio2008-ttnfa2009/Belhachemi-

Arab/files/IUT-T%20E800.pdf, Last Accessed: January 20, 2012

[W29] Web Service Scalability and Performance with Optimizing Intermediaries.

http://www.w3.org/2001/04/wsws-proceedings/mnot/wsws-nottingham.pdf, Last Accessed:

January 20, 2012

[W30] Brief Summary of Popular Database Systems.

http://www.paragoncorporation.com/ArticleDetail.aspx?ArticleID=22, Last Accessed: January

20, 2012

[W31] Microsoft SQL Azure http://www.windowsazure.com/en-us/home/tour/storage/, Last

Accessed: January 20, 2012

103

[W31] ACID. http://en.wikipedia.org/wiki/ACID, Last Accessed: January 20, 2012

[W32] Xeround the cloud database http://xeround.com/, Last Accessed: January 20, 2012

[W33] Linq to Entities http://msdn.microsoft.com/en-us/library/bb386964.aspx, Last Accessed:

January 20, 2012

[W34] Hibernate. http://www.hibernate.org/, Last Accessed: January 20, 2012

[W35] Class: Active Record::Base. http://api.rubyonrails.org/classes/ActiveRecord/Base.html,

Last Accessed: January 20, 2012

[W36] Combating the Select N + 1 Problem In NHibernate.

http://ayende.com/Blog/archive/2006/05/02/CombatingTheSelectN1ProblemInNHibernate.aspx,

Last Accessed: January 20, 2012

[W37] Shard (database architecture).

http://en.wikipedia.org/wiki/Shard_%28database_architecture%29, Last Accessed: January 20,

2012

[W38] MongoDB. http://www.mongodb.org/, Last Accessed: January 20, 2012

[W39] Cassandra. http://cassandra.apache.org/, Last Accessed: January 20, 2012

[W40] CouchDB. http://couchdb.apache.org/, Last Accessed: January 20, 2012

[W41] Amazon SimpleDB. http://aws.amazon.com/simpledb/, Last Accessed: January 20, 2012

[W42] Bigtable: A Distributed Storage System for Structured Data.

http://labs.google.com/papers/bigtable.html, Last Accessed: January 20, 2012

[W43] Table Service API. http://msdn.microsoft.com/en-us/library/dd179423.aspx, Last

Accessed: January 20, 2012

[W44] Eventual Consistency. http://en.wikipedia.org/wiki/Eventual_consistency, Last Accessed:

January 20, 2012

[W45] Sasktel Annual Report 2008. http://www.sasktel.com/about-us/company-

information/financial-reports/attachments/08-annual-report.pdf, Last Accessed: January 20, 2012

[W46] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/, Last

Accessed: January 20, 2012

[W47] Heroku. http://heroku.com/, Last Accessed: January 20, 2012

104

[W48] AppHarbor. http://appharbor.com/, Last Accessed: January 20, 2012

[W49] Windows Azure. http://www.microsoft.com/windowsazure/windowsazure/, Last

Accessed: January 20, 2012

[W50] Six Benefits of Cloud Computing. http://web2.sys-con.com/node/640237, Last Accessed:

January 20, 2012

[W51] Building Highly Scalable Web Applications

http://www.slideshare.net/iwmw/buildinghighly-

scalable-web-applications, Last Accessed: January 20, 2012

[W52] Method Definitions. http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html, Last

Accessed: January 20, 2012

[W53] Caching in HTTP. http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html, Last

Accessed: January 20, 2012

[W54] What is an application domain – an explanation for .NET beginners

http://codebetter.com/raymondlewallen/2005/04/04/what-is-an-application-domain-an-

explanation-for-net-beginners/, Last Accessed: January 20, 2012

[W55] AppDomain Class http://msdn.microsoft.com/en-us/library/system.appdomain.aspx, Last

Accessed: January 20, 2012

[W56] Notes on Little’s Law http://www.columbia.edu/~ks20/stochastic-I/stochastic-I-LL.pdf,

Last Accessed: January 20, 2012

[W57] HATEOAS http://www.infoq.com/news/2009/06/hateoas-dsl-protocol-description, Last

Accessed: January 20, 2012

[W58] Amazon EC2 Instance Types, Last Accessed: January 20, 2012

