
SOFTWARE FOR VISUALIZATION AND COORDINATION OF

THE DISTRIBUTED SIMULATION MODELING PROCESS

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Yudi Xue

c©Yudi Xue, April/2012. All rights reserved.

PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this University

may make it freely available for inspection. I further agree that permission for copying

of this thesis in any manner, in whole or in part, for scholarly purposes may be granted

by the professor or professors who supervised my thesis work or, in their absence, by the

Head of the Department or the Dean of the College in which my thesis work was done.

It is understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to the University of Saskatchewan in any

scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

ABSTRACT

Simulation modeling projects commonly involve distributed team collaboration. It is

currently difficult to perform collaboration in distributed modeling process for two rea-

sons: 1) Simulation modeling in general requires modelers to manage complexities (such

as tracking model revisions, recording scenario assumptions and organizing external arti-

facts) related to the model. 2) Distributed collaboration requires collaborators to maintain

change awareness. While proper information technology support is known to lessen the

difficulties of collaborations, there is limited software support for complexity management

in generic modeling process and change awareness in distributed collaboration, therefore

require tremendous amount of effort in management and communication. This thesis de-

scribes a new system that supports distributed modeling process. The system provides

modeling repositories to help manage modeling complexities and a visual workspace to

provide change awareness information. The system has been shown to substantially re-

duce modeling effort in distributed modeling, is extensible and easy to use.

ii

ACKNOWLEDGEMENTS

I would like to thank my thesis advisors, Carl Gutwin and Nate Osgood, for their help

and extreme patience during the course of my thesis program.

Additionally, I would like to give my extreme thanks to my wife, my parents and friends

for all the love and support they have continually and unconditionally given to me through-

out the years. Their support is fundamental to all my successes.

iii

Dedicated to my parents – Xue, Zheng and Zheng, Shaoping.

iv

CONTENTS

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables vii

List of Figures viii

List of Abbreviations ix

1 Introduction 1
1.1 Problem . 3
1.2 Goals and Motivation . 4
1.3 Solution . 4
1.4 Steps in the Solution . 5

1.4.1 Identification of System Requirements . 6
1.4.2 Development of a Modeling Process Hierarchy . 6
1.4.3 Development of the Visual Workspace . 7
1.4.4 Development of Model Package Support . 7

1.5 Evaluation . 8
1.6 Contributions . 8
1.7 Thesis Outline . 8

2 Background and Related Work 10
2.1 The Modeling Process . 10

2.1.1 Theory of Modeling Process . 10
2.1.2 Overview of System Dynamics Modeling . 10
2.1.3 Overview of Agent-based Modeling . 13
2.1.4 Modeling Process Hierarchy . 15
2.1.5 Modeling Software . 16

2.2 Awareness . 16
2.2.1 What Information Makes Up Change Awareness? 18
2.2.2 How is Change Awareness Generally Supported in Collaboration? 22

2.3 Component Software . 23
2.3.1 Equinox OSGi . 23

3 System Requirements 24
3.1 System Integration for the Modeling Process Hierarchy . 24
3.2 Modeling Process Support . 25

3.2.1 Modeling Version Control . 26
3.2.2 Scenario Bookkeeping . 26
3.2.3 Linking External Artifacts . 26
3.2.4 Simulation Support . 26

3.3 User Interface In SILVER . 27
3.3.1 Main Interface . 27
3.3.2 Dedicated Collaborative Workspace for Change Awareness 28

v

3.4 Change Awareness Information in Each User Interface Component 30

4 System Design and Implementation 34
4.1 New Support Features Provided by SILVER . 35

4.1.1 System Highlights . 36
4.1.2 Distribution Architecture . 36

4.2 System Infrastructure . 38
4.2.1 General Design Goals . 38
4.2.2 System Implementation Goals . 39
4.2.3 Business Logic Component Design . 40
4.2.4 Storage Component Design . 43
4.2.5 Database Design . 44
4.2.6 Change Logging . 46
4.2.7 Internationalization . 46

4.3 UI Component Design . 46
4.3.1 Visual Workspace Component Design . 47

4.4 Simulation Software Support . 49
4.4.1 Vensim Support . 49
4.4.2 AnyLogic Support . 50

5 The Visual Workspace 53
5.1 The Visual Workspace . 53

5.1.1 Visualizing the Model Hierarchy . 53
5.1.2 Displaying ChangeSet . 55

5.2 ChangeSet Editor . 56

6 The Modeling Process with SILVER 57
6.1 Working with an Anylogic model . 57
6.2 Working with a Vensim Model . 59
6.3 Working with Models Stored Remotely . 61

6.3.1 Adding External Documents . 62

7 Evaluation 63
7.1 Evaluation Process . 64
7.2 Extensibility . 65

7.2.1 Example to Extend SILVER . 66
7.3 Effectiveness from the User’s Perspective . 66

7.3.1 Effectiveness of Modeling Process Hierarchy . 68
7.3.2 Effectiveness of Change Awareness . 69

7.4 Limitations . 69

8 Conclusion 72
8.1 Summary of Research and Contributions . 72
8.2 Future Work . 74

References 76

A Database ER Diagram 79

B SILVER Evaluation Form 80

vi

LIST OF TABLES

2.1 Informational elements related to the ’where’ aspect of change awareness [56] 19
2.2 Informational elements related to the ’who’ aspect of change awareness [56] 20
2.3 Informational elements related to the ’what’ aspect of change awareness [56] 20
2.4 Informational elements related to the ’how’ aspect of change awareness [56] 21
2.5 Informational elements related to the ’when’ aspect of change awareness [56] 21
2.6 Informational elements related to the ’why’ aspect of change awareness [56] 22

3.1 Supported Actions in MPH . 25
3.2 Supported change awareness in the information panel . 31
3.3 Supported change awareness in the visual workspace . 32
3.4 Supported change awareness in the change log panel . 33

4.1 Database Table Specification . 52

7.1 Change Awareness Evaluation . 68

vii

LIST OF FIGURES

2.1 Iterative System Dynamics Modeling Process from [55] . 11
2.2 The modeling cycle from Railsback et al 2011 . 14

3.1 Overview of the SILVER User Interface . 27
3.2 SILVER Visual Workspace . 29
3.3 SILVER Change History Panel . 30

4.1 A High-Level View of the SILVER Architecture . 35
4.2 Example request flow in the business logic component . 40
4.3 Business logic component design . 42
4.4 Storage component architecture . 44
4.5 Database Entity Relationship . 45
4.6 User Interface Component Design . 46
4.7 The Infovis Model in Prefuse, (figure from Heer 2005) . 48
4.8 Infovis Model in the Visual Workspace . 48
4.9 Anylogic Support in SILVER . 51

5.1 The Visual Workspace . 54
5.2 Highlighting Changes . 55
5.3 ChangeSet editor . 56

6.1 Create an Anylogic model . 58
6.2 Import an Anylogic model to SILVER . 59
6.3 Publish an Vensim model . 60

7.1 Create test plugin . 63
7.2 Import base plugin in test plugin . 64
7.3 Import test plugin in SILVER . 65
7.4 SILVER evaluation analysis . 67

A.1 Database Entity Relationship . 79

viii

LIST OF ABBREVIATIONS

LOF List of Figures
LOT List of Tables
ACID atomicity, consistency, isolation, durability
JDBC Java Database Connectivity
OSGi Open Services Gateway initiative
RCP Rich Client Platform
JTA Java Transaction API
API Application Programming Interface
MPH Modeling Process Hierarchy
CSCW Computer Supported Cooperative Work
GUI Graphical User Interface
IDE Integrated Development Environment
UI User Interface
SQL Structured Query Language
XML Extensible Markup Language
UUID Universally Unique Identifier
JVM Java Virtual Machine
UTF-8 UCS Transformation Format 8-bit
ANSI American National Standards Institute

ix

CHAPTER 1

INTRODUCTION

The simulation modeling process (henceforth termed the “modeling process”), is the

process of stating hypotheses and gaining understanding regarding how the interaction of

parts of a system give rise to the behavior of the system as a whole. It involves building

a model that is a simplified representation of a system and manipulating it in a simula-

tion that runs over time based on defined rules and interactions within the model. The

modeling process is valuable because it allows stake-holders to rise above the welter of

operation detail in a complex system, explore various hypotheses and seek answers to

“what-if” questions. Regardless of the scope of model or the field of application, model-

ers adhere to an experimental process while performing the modeling process to improve

their understanding about complex systems. Modelers – i.e model builders – are skilled

professionals who are responsible for building a model based on a client’s domain system

and requirements, and for performing analysis to address the client’s concerns. Clients are

stakeholders who demand inexpensive and rigorous simulation of a system to investigate

ideas and to understand the system. As a scientific methodology, simulation modeling is

notable for the depth and flexibility of evaluation and revision performed, and – in many

cases – by an insistence upon empirical evidence to support hypotheses and formulated

questions. As a result, the simulation modeling process is iterative in nature to reflect in-

sights from evaluation and testing. The iteration cycle in the modeling process involves

several steps: hypothesis formulation and “problem articulation”, model building, model

testing and model evaluation [31].

Previous researchers have described the theory for modeling process iteration in the

following fashion:

“Model revision may consist of changes in system boundary, level of aggregation, or

detailed formulation. Revisions often result in greater model complexity, but realistic

1

detail should not be introduced at the expense of comprehensibility. The iterative process

may, in theory, continue as long as the model fails to satisfy some evaluative criterion

[51, 52].”

A modeling process involving a diverse team of stakeholders is a form of collabora-

tion for the purpose of creating and refining a model. Similar collaboration in artifact

creation is common in many fields, such as co-authoring papers or developing medium to

large scale software systems [44]. In the context of collaboration, steps in the modeling

process are managed across geographically distributed organizations and teams. I refer to

a modeling process performed through distributed collaboration as collaborative model-

ing. I define remote collaborative modeling as performing iterative modeling in teams of

modelers, clients and other stakeholders, some or all of whom are spatially distributed.

Increases in computing power and communications infrastructure allow simulation

modeling to involve large teams across regions or organizations. In these situations, it

has been difficult to perform collaborative modeling [45]. When multiple people con-

tribute during collaborative modeling, changes can quickly spiral out of control because

changes made by one person can affect the work of others and add to the burden of tracking

changes. As pointed out by Osgood, the difficulties in collaborative modeling are mainly

involve model version control, scenario bookkeeping, linking artifacts to external support-

ing artifacts, recording modeling intentions and expressing high-level scenario structure

[48]. The difficulties encountered in collaborative modeling require collaborators to put

effort into collecting and recording information about version-specific structural changes,

recording assumptions underlying scenario-specific simulations, and maintaining change

awareness about group activities over time. Change awareness is an extention of Gutwin’s

concept of workspace awareness [28]. It represents the ability for individuals to track

asynchronous changes made in collaboration [56]. Change awareness involves informa-

tion about who is participating in the project, what have they been working on, and what

changes they have made.

This thesis is concerned with providing tools to support the modeling process in dis-

tributed collaboration. The provision of this support has been accomplished in several

steps. The first step involves building a software system which constructs an organized,

virtual hierarchy to support the general steps that are carried out in the modeling process.

2

We term the virtual hierarchy provided in the system as Modeling Process Hierarchy.

The modeling process hierarchy consists of mechanisms for model version control, sce-

nario exploration and the attachment of documentation. Next, the system provides change

awareness information based on the modeling process hierarchy. Finally, the system has

been developed such that it can be easily extended to work with multiple types of modeling

software; it currently directly interprets models created by Vensim and Anylogic, but also

permits storage of models and scenario information created by other systems. Therefore,

the scope of models this system can be supported are aggregate models built by Vensim

and Agent-based models built by Anylogic [11, 1].

1.1 Problem

The problem addressed by this thesis is that modelers have difficulty in conducting dis-

tributed collaboration in the modeling process.

Conducting the modeling process involving distributed collaboration is difficult be-

cause:

(i) Such collaboration traditionally lacks an explicit virtual structure to organize the

large amount of information generated during the modeling process.

(ii) Maintaining change awareness is necessary but difficult in collaborative modeling.

There are several factors that must be considered when supporting collaborative mod-

eling. First, system support needs to reduce information complexity involved in the mod-

eling process. This includes explicitly representing and maintaining the relationships be-

tween each step of the modeling process. For example, the output from a scenario simula-

tion is specific to a model version and a particular parameter set. Second, the system needs

to support two different contexts of use: in the distributed modeling process, the individ-

ual modeling process and the collaborative modeling process. This is because a modeler

needs a way to keep certain work in private while also contributing to the team. The

system should provide modelers with a private modeling process hierarchy for individual

purposes and access the shared modeling process hierarchy for collaboration purposes.

Finally, as with distributed system, the technical issue of maintaining a stable and scalable

data transfer mechanism over the Internet is essential.

3

In collaborative modeling, modelers and clients work as a team in the modeling pro-

cess. After completing a set of tasks with respect to a model, a modeler often needs to

find out what each of the other modelers has done, or to learn about scenarios run by

clients. The research problem suggests that the system should provide a mechanism to

display detailed information about how the modeling process has been updated. This in-

volves identifying and sharing changes, highlighting changed components of the modeling

process hierarchy, and the freedom to browse the information when required.

1.2 Goals and Motivation

The main goal of this thesis is to provide an infrastructure to capture and support the mod-

eling process hierarchy. The modeling process hierarchy is used to reduce the difficulty in

dealing with work directly related to the modeling process.

A second goal of the research is to support the collaborative modeling process by pro-

viding change awareness information on top of the modeling process hierarchy. The moti-

vation for this goal is that maintaining change awareness reduces the difficulty in tracking

others’ changes and in coordinating the progress of the overall modeling process.

1.3 Solution

The research problem states that it is difficult to perform collaborative modeling without

explicit support for the modeling process and for change awareness. Our solution is to

design a software system that simplifies the bookkeeping tasks in the modeling process

by providing an implementation of the modeling process hierarchy for both individual

and collaborative modeling. The software system also provides a visual depiction of the

modeling process hierarchy, representing either individual or collaborative modeling. The

visual workspace consists of a set of user interface components that visualize both the

modeling process hierarchy and change awareness information. We will discuss how the

modeling process hierarchy and visual workspace will aid individual modeling and col-

laborative modeling below.

The system provides access to both the individual and the collaborative modeling pro-

cess hierarchies. For the individual modeling process, the system stores all data in an

embedded database that is located on the user’s computer. For collaborative modeling, the

system provides a connection to a remote web server that stores a shared hierarchy. While

4

the connection to a remote model repository is open, the user interaction for operating on a

remote model repository is functionally identical to operating on a local model repository.

The system allows a user to operate on both local and remote model repositories at the

same time. Regardless of the nature of the storage, both mechanisms allow the user to

download artifacts from a model repository and execute simulations without the need of

the simulation platform provided by modeling software.

The system also provides the user with a visualization and logging infrastructure that

helps users track changes within the group. The two change tracking mechanisms are an

extension on top of the modeling process hierarchy that shows change information in the

visual workspace, and a change list. The visual workspace provides a visual representation

of the modeling process hierarchy and highlights changes in the hierarchy through visual

cues. The change list collects all changes and displays them in a list-based view.

The system has been designed and implemented to support models built with various

modeling software. This allows a broad user base to benefit from the system for both

individual modeling and collaborative modeling. Currently supported modeling software

includes Anylogic and Vensim. Vensim is modeling software that provides support to build

System Dynamics models [11]. Vensim provides an independent dynamic linking library

file that allows users to load packaged models and run simulations based on different sets

of parameter values. Anylogic is modeling software that supports building System Dy-

namics models, Agent-based models, and models for discrete event simulations. Support

for running a simulation from an Anylogic model is introduced in Chapter 6 [1].

1.4 Steps in the Solution

The following steps have been carried out in completing the solution. Among these, vari-

ous steps will be implemented in a software tool called SILVER:

(1) Identification of system requirements.

(2) Development of the system infrastructure and support for third party modeling soft-

ware.

(3) Development of the visual workspace.

(4) Development of a hierarchical representation of the modeling process.

5

(5) Development of support for the individual and collaborative modeling process.

(6) System evaluation.

1.4.1 Identification of System Requirements

Requirements for the system have been determined in these areas:

(1) The general structure of the modeling process hierarchy.

(2) The type of modeling software needed for constructing and executing models.

(3) The types of change awareness information and features needed for collaborative mod-

eling.

For the first area, the focus was on requirements to provide an access solution for

the modeling process hierarchy. The storage solution formulates a virtual structure that

consists of modeling projects, model versions, scenarios and related documentation. For

the second area, the focus was on supporting external modeling applications (in particular,

Vensim and Anylogic) with external support. For the third area, the focus was on features

that provide asynchronous change awareness information.

1.4.2 Development of a Modeling Process Hierarchy

The modeling process hierarchy is one area of core functionality provided by the system.

This infrastructure needs to provide a technical foundation for data management for both

individual and collaborative modeling processes, as well as supporting models from var-

ious modeling software. The mechanism to provide such support is implemented in two

components.

The implementation of the modeling process hierarchy is based on standard data stor-

age technology. We use databases to provide a storage implementation for the model

repository. The storage component is only responsible for maintaining data integrity while

transferring and storing data in various modeling contexts. For the individual modeling

process, the system creates and manages a single-user model repository on the user’s com-

puter. For the distributed collaborative modeling process, the system connects to an ex-

isting centralized model repository on a remote database. For the thesis implementation,

6

Java Database Connectivity (JDBC) and Java Transaction API (JTA) were the selected

technologies for the repository management middleware. It should be noted that the sys-

tem design is such that data integrity is maintained in the model repository even if an error

occurs during user operation. JTA is a key element making this guarantee possible. Each

time a user initiates an operation that affects data storage, a transaction will be created for

that operation. If an error occurs during an operation, the associated transaction will cause

storage to ‘roll back’ to the state right before the operation initiated execution.

The data structure and operational logic in the model repository is implemented in

the business-logic component, which utilizes the storage component. The purpose of the

business-logic component is to support user operations specified in a modeling process

hierarchy while delegating technical details of database operations to the storage com-

ponent. The separation of business-logic and storage will allow a model repository to

be hosted on various databases that support JDBC and JTA [46, 47]. This allows us to

develop an interface on top of the same set of database operations and supports various

modeling software.

This step of the solution produced the architecture and code base for the modeling

process hierarchy infrastructure.

1.4.3 Development of the Visual Workspace

The visual workspace is part of the change awareness support used to provide a visual

representation of the modeling process structure and associated change information. To

build the visual representation, the visual workspace uses the Prefuse toolkit to gener-

ate a graph-based visualization and represents each item in the original modeling process

hierarchy with a node in the graph [29]. The visual workspace also adds additional visu-

alizations to show useful change awareness information.

1.4.4 Development of Model Package Support

The sections above noted various problems in the modeling process and proposed model-

ing process elements that should be supported. Because of the limited scope of the project

and legal user agreements, complete external support of all modeling software was not de-

veloped. Instead, support for Vensim (version 5.6) and Anylogic (version 6.2.2) has been

7

offered. The deliverable from this step in the solution is the suite of modeling software

components in the system.

1.5 Evaluation

We asked a group of 5 experienced modelers to perform collaborative modeling using

SILVER to evaluate the software. The evaluation process is initial and informal. Answers

related the following questions were assessed:

1. Are users able to maintain change awareness using the visual workspace?

2. Does the visualization help the user come to high-level insights from models?

3. What visual cues are most effective for collaboration related tasks?

4. Can the modeling process be improved with support from the visual workspace?

5. How often do users need to interpret the information provided by the visual workspace?

1.6 Contributions

Three contributions are presented in this thesis. The first contribution is a component-

based system which implements a modeling process hierarchy to support the modeling

process. The second contribution is components – built on top of the first contribution –

designed to support change awareness in a collaborative modeling process. The support

of the change awareness workspace is discussed in chapter 2, chapter 3 and chapter 5. The

third contribution is the evaluation of the system. The results can be found in chapter 7.

1.7 Thesis Outline

The remainder of the thesis is organized as follows:

• Chapter 2 reviews prior work in the area of simulation modeling and groupware. The

areas overviewed in the chapter include component-based development, the simu-

lation modeling process and group awareness. The chapter provides background

knowledge regarding principles which form the basis of system design.

• Chapter 3 identifies the system support requirements in the distributed modeling pro-

cess, identifies specific requirements of the change awareness components, and in-

troduces the user interface that is provided in the thesis system implementation.

• Chapter 4 discusses the design and implementation of the modeling process hierarchy

8

infrastructure, underlying storage, and desktop GUI infrastructure of the system.

• Chapter 5 introduces and discusses the visual workspace that was implemented to

support change awareness in distributed collaborative modeling.

• Chapter 6 walks through an example of the modeling process conducted with the

thesis project.

• Chapter 7 discusses the evaluation of the system, as well as some weaknesses and

drawbacks of the system architecture and thesis implementation.

• Chapter 8 provides a summary of the system, discusses the important lessons learned

in the course of the research, and proposes directions for future work.

9

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides background information for the research project. Areas of dis-

cussion include modeling process steps, modeling methodologies, modeling process hier-

archy, collaborative modeling, change awareness and component-based architectures.

2.1 The Modeling Process

The thesis focuses on supporting the process of modeling. This section provides a de-

scription of the modeling process and looks at the theoretical foundations of the modeling

process as defined by previous researchers in the area of System Dynamics.

2.1.1 Theory of Modeling Process

The modeling process has been described as a scientific process that is iterative, involving

a certain amount of trial and error, and often requiring significant time and effort to come

to fruition [31]. The nature of iteration reflects the requirement for multiple rounds of

revision and evaluation before a model can be further formulated or delivered. With the

development of computing power and increased complexity in problems investigated by

the modeling process, new modeling methodologies have been developed and supported

by modeling software. System Dynamics modeling and Agent-based modeling are two

common modeling methodologies.

2.1.2 Overview of System Dynamics Modeling

System Dynamics modeling is a mathematical modeling technique that is used to under-

stand dynamic behaviors and cause-effect relationships among variables in complex sys-

tems over time [20]. It aims to capture circular causal effects (feedback) and conceptualize

the structure of a complex system through through investigating feedback and accumula-

10

Figure 2.1: Iterative System Dynamics Modeling Process from [55]

tion [20, 21]. Based on Homer’s theory of modeling iteration, Sterman described System

Dynamics modeling process as an iterative process that involves problem articulation, dy-

namic hypothesis, formulation, testing, policy formulation and evaluation [55].

In Figure 2.1, most stages in the process commonly involve collaboration between

modelers and clients on different subjects. These stages are discussed below:

(a) Problem Articulation Problem articulation is a stage where modelers perceive and

understand the problem to be addressed. The stage allows modelers and clients to

work together to frame the scope of the model by setting a time horizon and variables

that are important to understand the problem. The time horizon is the time interval

allowed for the symptom of the problem to appear or over which to investigate impact

of interventions. Modelers often also need to take notes about background literature

and historical data which concerns the domain of the system.

(b) Formulating a Dynamic Hypothesis Once the problem has been identified from Part

A, modelers must begin to develop a theory, called a dynamic hypothesis. A dynamic

hypothesis is a working theory of how the problem arose based on the feedback and

stock and flow structure of the system. Formulating a dynamic hypothesis requires

frequent and close communication between modelers and clients. The goal for such

11

close collaboration is to build a conceptual specification of the model by describing

how the system is structured and the rules of interaction. The responsibility of the

modeler is to acknowledge and capture details of operations from the clients. The

posited hypothesis, underlying the design of the model, is evaluated and tested in the

following steps.

(c) Formulating a Simulation Model Model formulation is a technical stage where the

goal is to let modelers move from a conceptual understanding of a model to a fully

specified formal model, which is complete with equations, parameters and initial con-

ditions. The process of formulating a model is technical in nature and generally is

centered around modelers operating on modeling software. It may happen that the

conceptual model is complex or contains vague ideas that the modeling software is

unable to fulfill. The simulation helps modelers identify vague concepts and test their

understanding regarding the concept while addressing the uncertainties. To complete

a simulation model, a modeler must unambiguously specify model equations, param-

eters and initial conditions. In larger modeling projects, the model formulation stage

may also be accomplished through collaboration by a team of modelers.

(d) Testing The testing stage requires real-world historical data or qualitative reference

modes applied to the formal model to compare the simulated behavior in the model

to the actual behavior of the system. In particular, this stage consists of two impor-

tant processes: structure verification and sensitivity analysis. Structure verification

is conducted by running the simulation with real-world data or reference modes and

comparing the state of the model with real-world data or modes for each unit of time.

Once the model structure is verified, modelers perform sensitivity analysis by setting

initial conditions to alternative (or extreme) cases in terms of both parametric settings

and structural settings. The feedback from sensitivity analysis provides modelers and

clients with high-level understanding about alternative cases and insights into system

behaviours.

2.1.3 Overview of Agent-based Modeling

An Agent-based model (ABM) is a form of computational model where individuals or

agents are described as unique and autonomous entities that interact with each other within

12

Figure 2.2: The modeling cycle from Railsback et al 2011

an environment [43]. In Agent-based models, agents may be organisms, organizations

or any other entity that pursues a certain goal. This modeling technique differs from

System Dynamics modeling in several ways, including organizing the model according

to individuals in the population (with the state of each such individual stored within the

representation for that individual), as opposed to by distinguishing a population according

to state (with each state counting the number of individuals who are currently in that state).

A similar notion of modeling iteration to that used in System Dynamics is introduced by

Railsback et al. [49].

From Figure 2.2, similar modeling tasks are demonstrated for the Agent-based model-

ing process:

(a) Formulate the questions. Similar to the System Dynamics modeling process, this stage

13

suggests starting with clear research questions which will serve as the primary com-

pass and filter for model design. Often this involves identification of patterns that

require explanation.

(b) Assemble hypotheses for essential processes and structures. The goal for this stage is

to identify simplified assumptions and hypotheses to represent the system of interest,

then specify agents and their behavior.

(c) Choose scales, entities, state variables, processes, and parameters. In this step, based

on the hypothesis established above, a written formulation of the model is produced

with detailed decisions regarding temporal and spatial scales, entities (different types

of elements being modeled, including not just agents but also one or more levels of

environments), variables, processes and parameters.

(d) Implement the model. This stage is the most technical part of the process, where

modelers use modeling software to build a model produced by the written formulation

produced by the previous step.

(e) Analyze, test, and revise the model. This step involves running the simulation from the

established model. The agents’ observed behaviours in the simulation will be analyzed

to compare to characteristics of real systems (particularly to the patterns identified in

step a). Based on the result, modelers and clients will go back to the first step to

formulate new questions.

2.1.4 Modeling Process Hierarchy

From the descriptions of the System Dynamics modeling process and the Agent-based

modeling process, it is clear that both methodologies adhere to similar steps of an iterative

scientific process. While tasks associated with building conceptual models and model

formulation differ due to the nature of the applied methodology, the goal for the overall

modeling process is to study and understand complex system behavior through an iterative

process.

To support a general modeling process that is iterative in nature, Osgood gave defini-

tion to a set of terminological conventions associated with the modeling process [48]. A

consistent set of terminology was based on the idea of viewing modeling as taking place

14

within the context of modeling projects, with each such modeling project including one

or more threads of work that produce incremental versions of modeling artifacts, and as-

sociated simulations for each model version. We term the virtual structure that uses these

ideas to organize the tasks in the modeling process as the Modeling Process Hierarchy.

The modeling process hierarchy described by Osgood is comprised of the following parts:

The Model Project is the root of the project tree hierarchy which contains all works

regarding a model. Each model project will be associated with at least one model version.

The Model Version denotes a specific model structure. The initial model project is

termed model version one. Future model structural modifications are recorded as model

versions in successive order. Each model version may have one or more scenario collec-

tions.

A Scenario contains assumptions associated with a particular model version. It of-

ten specifies values for specific parameters meant to describe some particular “what if”

situation. In many pieces of modeling software, output from specific scenario yields a

simulation trajectory.

A Scenario Collection is a group of one or more scenarios associated with a model

version. It is added to ease scenario organizing. Specifically, modelers may group a set

of scenarios that share a certain intention in a collection. For example, one scenario col-

lection might contain scenarios used in sensitivity analyses, another might store scenarios

representing in investigations of different interventions, yet another those scenarios inves-

tigating the impact of assuming different initial state, etc.

2.1.5 Modeling Software

Extant modeling software varies from desktop-based to web-based [53, 5, 8, 11, 1]. The

project developed from this thesis provides support for Vensim models as a way to support

System Dynamics modeling, and Anylogic as a way to support Agent-based modeling

[11, 1].

Anylogic is Java-based software that allows users to build Agent-based models from a

graphical user interface and allows users to save the model in a text file. The text file is

denoted as an alp file on the computer hard drive and is formatted in XML [38]. Anylogic

also allows a user to export a simulation from a particular model to a Java Applet that can

15

be opened and run in a web browser [42].

Vensim is modeling software that allows a user to build System Dynamics models.

Version 5.6 comes with the Vensim dynamic-link library which allows us to build third-

party applications that interact with Vensim models.

2.2 Awareness

In large group-based collaborative modeling, team-based communication regarding learn-

ings and findings from each stage – and for model formulation, results, evaluation, testing

in particular – is important. The importance of ensuring how group meeting and commu-

nication is carried out in the modeling process was highlighted in Vennix’s group model

building theory [58]. Establishing efficient communication in the modeling process is im-

portant to success in the modeling process. To achieve this, modelers should be aware of

what others in the modeling group are doing. This is awareness about “knowing what is

going on” [19]. Human Factors and CSCW researchers have explored and identified six

main categories of awareness that a person may maintain:

1) Situation awareness concerns people in critical environments. Failure to maintain a

minimum level of situation awareness in critical environments may result in undesirable

outcomes. In this context, awareness is dependent upon perceiving information in the

surrounding environment and interpreting this information so that it is meaningful for the

task at hand. Examples can be seen in basketball playing, aircraft piloting and field combat

[19].

2) Informal awareness supports casual interaction and provides other information such

as knowing who is around in the workplace, what others are doing, and whether or not

they are available for conversation [17].

3) Conversational awareness facilitates how people talk to one another in real time.

Awareness is based on visual and audio cues that one picks up when talking to others, and

helps one track how the conversation is going [14].

4) Structural awareness concerns social and task structures. Structural awareness al-

lows one to know how a work group is organized and the relationships between the people

within the group [28].

5) Workspace awareness supports people’s up-to-the-moment understanding of what is

16

going on during real-time collaboration in a shared visual workspace. Workspace aware-

ness is limited to events happening in the workspace – inside the temporal and physical

bounds of the task that the group is carrying out [28].

6) Change awareness is an extension of workspace awareness that focuses on the abil-

ity of a person within a group collaboration to track and understand past changes. Change

awareness is similar to workspace awareness but differs in focusing on past changes over

present events and by supporting asynchronous collaboration rather than real-time collab-

oration [56].

The collaborative modeling process is concerned with a few categories of awareness

listed above. Conversational awareness is required during face-to-face meetings between

modelers and clients in problem articulation and model evaluation stages. Considering

that most large-scale collaborative modeling processes play out over days to years, change

awareness is also required to track past changes in the project. This thesis focuses on using

Tam’s framework for change awareness to help gather necessary requirements to support

change awareness in the modeling process [56].

The framework tries to answer the following main questions regarding change aware-

ness:

• What information makes up change awareness?

• How is change awareness generally supported in collaboration?

The next subsection will provide more backgrounds and details regarding change aware-

ness. Chapter 3 includes further discussion of requirements from collaborative modeling

and how change awareness may be supported to fulfill the requirements.

2.2.1 What Information Makes Up Change Awareness?

Change awareness provides information to help answer the question “Is anything differ-

ent since I last looked at the workspace?” regarding the tracking of past changes in the

workspace. Tam’s framework for change awareness involves providing answers for who,

what, where, when, how and why questions. These categories of awareness for each aspect

of change awareness focus on particular informational elements. The categories are shown

in Table 2.1 to Table 2.6. For each of the categories, the framework provides information

17

Where

Informational

elements

Specific Questions

Artifact-based

view

Person-based view Workspace view

• Location history

• Gaze history

• Edit history

• Where was this
artifact (when I
left)?

• Where is the ar-
tifact now?

• Where has this
artifact been dur-
ing the time that I
have been away?

• Where in the workspace
has a person visited?

• Where in the workspace
has a person viewed?

• Where in the workspace
has a person made
changes?

• Where have people
been in the workspace?

• Where were artifacts
in the workspace?

• Which parts of the
workspace have people
viwed?

• In which parts of the
workspace have people
made changes?

Table 2.1: Informational elements related to the ’where’ aspect of change awareness [56]

about different views in the workspace. In particular, a person may be looking for:

• Changes associated with an artifact (artifact-based view)

• Changes associated with people who made them (person-based view)

• Changes within one or a set of locales (workspace-based view)

The categories of change awareness combined with location are discussed in more

detail in Table 2.1.

The informational elements pertaining to ’where’ questions include location history,

gaze history and edit history. Location history describes parts of the workspace that a

person has visited. Gaze history describes parts of the workspace a person has looked at.

Edit history describes parts of the workspace in which people have made changes. The

’who’ elements are presence history, identity, readership history and authorship history.

Presence history describes who has made changes in the workspace. Identity identifies

all specific individuals associated with a change or an event. Readership history lists

18

Who

Informational

elements

Specific Questions

Artifact-based view Person-based view Workspace view

• Presence history

• Identity

• Readership history

• Authorship history

• Who has looked at this
artifact?

• Who has changed this
artifact?

• Who has this person
interacted with?

• Who made changes
with this person?

• Who has been in
the workspace?

• Who has looked at
the workspace?

• Who has made
changes to the
workspace?

Table 2.2: Informational elements related to the ’who’ aspect of change awareness [56]

What

Informational

elements

Specific Questions

Artifact-based view Person-based view Workspace view

• Action history • What changes have
been made to the arti-
fact?

• What artifacts has a
person looked at?

• What artifacts has a
person changed?

• What activities has a
person engaged in?

• What changes
have occurred in the
workspace?

• What artifacts were
viewed?

• What artifacts were
changed?

Table 2.3: Informational elements related to the ’what’ aspect of change awareness [56]

19

How

Informational

elements

Specific Questions

Artifact-based view Person-based view Workspace view

• Process history

• Outcome history

• How has this artifact
changed?

• How has a person
changed things?

• How has this
workspace changed?

Table 2.4: Informational elements related to the ’how’ aspect of change awareness [56]

When

Informational

elements

Specific Questions

Artifact-based view Person-based view Workspace view

• Event history • When was this artifact
changed?

• When was a particu-
lar change to this arti-
fact made?

• In what order were
changes made to this ar-
tifact?

• When did a person
make changes?

• When did a person
make a particular
change?

• In what order did this
person make changes?

• When were
changes made to
the workspace?

• When did a partic-
ular change in the
workspace occur?

• In what order
did changes to the
workspace occur?

Table 2.5: Informational elements related to the ’when’ aspect of change awareness [56]

20

Why

Informational

elements

Specific Questions

Artifact-based view Person-based view Workspace view

• Cognitive history

• Motivation history

• Why was this arti-
fact changed?

• Why did a person
make that change?

• Why was that change
made in the workspace?

Table 2.6: Informational elements related to the ’why’ aspect of change awareness [56]

all the people who have viewed a particular artifact, or, conversely, listing all the items

that a particular person has seen. Similar to readership history, authorship history lists

the people who have made changes to an artifact. The ’what’ element is action history.

Action history varies depending upon the perspective (or “view”) that a person has of the

workspace. With the artifact-based view, action history describes changes that have made

to a particular artifact. With the person-based view, action history describes what actions

a person has undertaken. With the workspace-based view, the questions ask about the

actions that were carried out on the artifact in the workspace. The ’how’ elements are

process history and outcome history. Process history describes how the project evolved

from a previous state (e.g., the state that it was in when a person last looked at it) to its

present state. Outcome history describes the ’bottom line’ understanding of a change by

only reporting those things that differ between the initial and the final state. The ’when’

element is event history. Event history provides chronological context for understanding

and interpreting changes. The ’why’ category reflects the need for knowing the thought

and motives behind the change. The two elements in the ’why’ category are cognitive

history and motivational history. Cognitive history describes the logic or reasoning that

may be behind a change. Motivational history deals more with the desires that are the

impetus for making a change.

2.2.2 How is Change Awareness Generally Supported in Collaboration?

Change awareness is widely used in asynchronous collaboration, and change awareness

information can be supported in several ways:

21

Version Control automates and enhances the process of manually tracking progressive

versions of documents and their changes [37].

File differencing occurs when a user manually specifies two documents and asks the

system to compare them for differences [32].

Overviews communicate changes made to an entire artifact at a glance [30].

Highlighting displays differences within the artifact itself by directly marking up the

appearance of the artifact structure or contents [12].

History systems track all incremental changes made to a document, typically so they

can be played back at a later time or so actions can be undone [35].

One of the main focus of the system contributed by this thesis is to provide necessary

change awareness information to users. In particular, the system focuses on providing

information for the categories of ’where’, ’who’, ’what’ and ’when’. In order to do so,

information related to changes in the modeling process hierarchy must be tracked.

2.3 Component Software

According to Szyperski, component software is a coherent application comprised of sep-

arate pieces called components. Sparling provides a more concise definition for a compo-

nent: “A component is a language neutral, independently implemented package of soft-

ware services, delivered in an encapsulated and replaceable container, accessed via one or

more published interfaces.” (p. 47) [15, 54].

According to Sparling, component software provides a few advantages over traditional

software design. First, it allows component to be reused without knowing the implementa-

tion details of the component. Next, it lowers development costs and shortens development

timelines. Also, components can be plugged and unplugged since they are separate and

independent. Finally, component version upgrades typically do not require changes to

applications due to well-defined public interfaces. The work of this thesis involves the

creation of a system that facilitates the modeling process by assembling components that

support various modeling software. As a result, the thesis work will benefit from use

of a component software platform. Equinox OSGi has been selected as the component

platform to implement the work for this thesis and is discussed in the next subsection.

22

2.3.1 Equinox OSGi

The system contributed by this thesis is a component software package built with Equinox

OSGi [57, 40]. OSGi stands for Open Services Gateway initiative. It is a module system

and service platform for the Java programming language that implements a complete and

dynamic component model. This section provides an introduction to the Equinox OSGi

specification and features of the OSGi platform. Equinox OSGi is an implementation of

the OSGi specification [6]. As an implementation framework, Equinox OSGi provides an

environment for the modularization of applications into smaller bundles such as a GUI

bundle, a database bundle and a middle-ware bundle. Each bundle is a tightly coupled,

dynamically loadable collection of Java classes, Java jar files and configuration files used

to explicitly declare external dependencies. Equinox OSGi has undergone heavy testing

and is robust enough to provide a program runtime for the popular Eclipse IDE [23].

23

CHAPTER 3

SYSTEM REQUIREMENTS

This chapter discusses the first step of the thesis solution: gathering requirements for

system support for collaborative modeling. The requirements analysis involves the fol-

lowing activities:

(a) Identify and determine the basic operations associated with the modeling process hi-

erarchy that can be used to support both individual and collaborative modeling pro-

cesses.

(b) Determine the user interface (UI) for the system to allow users to participate in both

individual and collaborative modeling processes.

(c) Identify the information and changes that are to be tracked by the system.

(d) Determine the strategy for integrating a collaborative workspace into SILVER to sup-

port change awareness.

3.1 System Integration for the Modeling Process Hierarchy

The idea of Osgood’s modeling process hierarchy, or MPH, has been introduced in section

2.1.4. It provides a virtual structure to help organize modeling process iteration. While

Osgood’s MPH suggested Model Project as the highest level (root) of the structure, we

added Group and User to the structure to address requirements associated with the col-

laborative modeling process. In the new MPH structure, User is the highest level of the

hierarchy for a user. Each ’User’ item contains one or multiple ’Group’ items to specify

the creation and ownership relationship. A Group item represents a virtual work group

that involves multiple model projects. From the user’s point of view, each item in the

MPH represents an entity or a step in the modeling process.

24

SILVER provides an implementation of the MPH and a set of available user actions

for each type of item in the MPH. To achieve this, we first identified a list of actions that

apply to the needs of one or more types of MPH items:

(1) Create and add an item.

(2) Import information from an external model and create a corresponding item.

(3) Update fields in a particular item, such as item name, description, etc.

(4) Duplicate an item, including all included items.

(5) Remove an item.

(6) Associate an external file with this item.

(7) Run a simulation with a given parameter set (a mapping from parameters to values).

In Table 3.1, the labeled actions above are mapped to items types in the MPH. The

table is used to indicate the available user operations on an item in SILVER.

Modeling Process Hierarchy Items Supported Actions

Group 1, 3, 5,6

Model Project 1, 2, 3, 5, 6

Model Version 1, 2, 3, 5, 6

Scenario Collection 1, 2 (Vensim only), 3, 5, 6, 4

Scenario 1, 2, 3, 5, 6, 4

Table 3.1: Supported Actions in MPH

3.2 Modeling Process Support

The previous section introduced available user operations in MPH. This section will ex-

plain how SILVER is a solution to many gaps in practice in the modeling process [48]. A

few gaps that were mentioned by Osgood are mentioned below:

25

3.2.1 Modeling Version Control

Version control is a technique widely used to support the software engineering processes

that allows people to keep multiple snapshots of an artifact and to be able to roll back to

previous snapshots if required [37]. However, the version control technique is uncommon

in the modeling domain. As pointed out by Osgood, lack of the version control technique

can easily result in an inability to retrieve earlier versions of the model. In SILVER, The

structure of the MPH should allow a user to create a new model version by importing a

model. As a result, this technique allows saving snapshots of a model after a structural

change (e.g. adding a variable) is made by modeling software.

3.2.2 Scenario Bookkeeping

An important relationship exist between version, parameters and simulations simulated.

Such relationship is termed scenario by Osgood [48]. Often, scenario bookkeeping are not

directly supported by modeling software, thus a tedious to maintain. In SILVER, MPH

should support scenario bookkeeping by giving users the ability to run model simulations

and by saving results in each version of the model. Simulation results include captured

datasets with certain parameters and simulation screenshots. Scenario bookkeeping also

strongly benefits from the ability to be able to record assumptions by updating parameter

values, re-running the simulation and saving the results.

3.2.3 Linking External Artifacts

In many situations, external files might be needed as a reference in explaining or moti-

vating decisions that are made during the modeling process, or in further exploring model

results. As the modeling project progresses, the amount of external files grows easily,

which makes it difficult for modelers to record where in the modeling project the external

file should be associated with. An implementation of MPH should allow users to attach

external files to items at multiple levels of the modeling hierarchy.

3.2.4 Simulation Support

While the integrity of information in model building is important, the relationship be-

tween the applied assumptions and corresponding simulation outputs is the key to suc-

26

cessful model analysis. Modelers have no support from the modeling software but have

to remember maps to correlate model outputs and corresponding assumptions within a set

of past simulations. Simulation support should allow users to check simulation results or

re-run the simulation from the corresponding scenario that records assumptions.

3.3 User Interface In SILVER

3.3.1 Main Interface

The interface for SILVER has been designed based on the requirements gathered from

section 3.1.

Figure 3.1: Overview of the SILVER User Interface

Figure 3.1 displays the main user interface of SILVER. Highlighted by three different

colors are three components associated with distinct occupied display regions in the main

interface. The green area (top left panel) represents the MPH view that is physically stored

on the user’s computer and is to be used in the individual modeling process; we name it

the Local MPH View. The red area (lower left paanel) represents the MPH view that is

27

physically stored on a remote web server and is accessed through Internet; we name it the

Remote MPH View. The blue area (right side of screen) represents detailed information

about selected items in the MPH views; we name it the Information Panel Area. Within

the information panel area, the user can edit and update entries about an item such as its

name or description. Once the main user interface is present, a user will typically start

browsing or creating items in either the local MPH view or the remote MPH view. Also,

the user is able to work with both MPH views simultaneously (e.g. dragging a project

from the local to the remote area).

3.3.2 Dedicated Collaborative Workspace for Change Awareness

SILVER supports change awareness by offering users two components: a visual workspace

and a change history panel. Figure 3.2 is the visual workspace component in SILVER. It

can be activated either from a group item or a model project item. Based on the item se-

lected, a visual workspace component interprets all MPH items that are associated under

the item and constructs a visual workspace in a separate window. The visual workspace

comprises three column views.

The left column displays the change history associated with the displayed items, using

a fish-eye visualization [25]. The change history responds to mouse hovering by focusing

and zooming in on the item with high magnification and detail. The fish-eye visualization

technique is used to display a history of changes primarily because people are interested

in seeing the detail of selected parts without losing overall context.

The middle column displays an animated graph using a force-directed layout algorithm

[24]. As part of the graph, each node represents a particular item in the MPH; all nodes are

connected based on their relationship in the particular MPH being represented. Double-

clicking on the node will show information about the corresponding item in the main user

interface. The force-directed algorithm grants a graph the ability to self-balance by adjust-

ing edge lengths based on the number of connections of the node until an overall state of

balance has been reached. The graph-based MPH responds to a change in the selected date

from the change history in the left column by using a Bubble Set visualization to include

the nodes which represent the items that have been changed on that date [16]. As shown

in Figure 3.3, six items that have been changed on the selected date of December 1st are

28

Figure 3.2: SILVER Visual Workspace

highlighted. Selecting other dates will result in different sets of nodes being highlighted

to reflect locations of changes.

The right column contains a set of control groups, which are the “configuration panel”

group and the “display information” group. The “configuration panel” group holds a slider

which will adjust the length of the edge. It is used to adjust the overall size of the graph

to the user’s most comfortable view and to reduce clutter in display area. The “display

information” group displays a set of radio buttons which are “Name”, “Author”, “Type”

and “Time”. Each radio button represents content to be displayed in the nodes of the MPH

graph visualization.

Figure 3.3 shows the change history panel that can be activated through summoning

a context menu in the MPH and choosing “Show list of changes.” The change history

contains the full log of changes in a list view, regardless of the particular item on which

the change occured. Each row record listed in the change log represents a change that

was made by a user at a specific time. Except for the “remove” change, double-clicking a

record in change log will display detailed information of the particular MPH item that has

29

Figure 3.3: SILVER Change History Panel

been changed. The list of changes contains five columns of data: “Time”, “Committer”,

“Change”, “Updated Value” and “id”. The display of changes can be sorted based on each

column category. The “Time” column specifies the time of change made; the “Committer”

column indicates the name of the user who made the change; the “Change” column gives

a description of the change; the “Updated Value” column specifies the new value that

resulted from the change; “id” is an incremental integer value which is used to help sort

according to the temporal order of the changes.

3.4 Change Awareness Information in Each User Interface Compo-

nent

For each type of user interface component identified above, the following sections list a

table of the features the system supports for each change awareness category.

(a) MPH Views

30

Both local and remote MPH views do not provide awareness features themselves.

(b) Information Panel

Table 3.2 shows change awareness support from the information panels in SILVER.

Information Panel

Category Information Support Features

Who Identity The name of creator is shown in the item’s

information panel.

Table 3.2: Supported change awareness in the information panel

(c) Visual Workspace

Table 3.3 shows the change awareness support of the visual workspace in SILVER.

(d) Change Log Panel.

Table 3.4 shows change awareness support from change log panels in SILVER.

The software requrements addressed in SILVER demands support to diversified fea-

tures and configuration. The next section will introduce SILVER infrastructure as a solu-

tion based on component-based software architecture.

31

Visual Workspace

Category Information Support Features

Where Location history Location of changes are highlighted in the

form of Bubble Set visualizations on the

MPH graph.

Edit history What MPH item (e.g., Model Version)

has been changed in the past?

Who Identity The identity of the person that has made a

change can be found in the change history

of the visual workspace.

Authorship

history

Name of people who have been involved

in the project can be seen by switching

“Display information” to “Author” in the

visual workspace.

What Action history Partially supported by selecting a date

from the change history view; the

changed items will be highlighted in the

visual history.

When Event history Supported by change history view: time

of changes are listed in history view.

Table 3.3: Supported change awareness in the visual workspace

32

Change Log Panel

Category Information Support Features

Where Edit history Edit history can be seen by showing

change logs in chronological order.

Who Authorship

history

Authorship history for a particular item

can be seen by showing change logs or-

dered by item names.

What Action history Partially supported by either re-ordering

change logs by “Committer” or by

“Time”

When Event history Supported by re-ordering by “Time” col-

umn in the change log.

Table 3.4: Supported change awareness in the change log panel

33

CHAPTER 4

SYSTEM DESIGN AND IMPLEMENTATION

This chapter discusses the second and third steps in the thesis solution introduced in

Chapter 1: development of the modeling process hierarchy infrastructure, and develop-

ment of the graphic user interface (GUI) infrastructure. These steps comprise the design

and implementation phases for the core of the system.

SILVER is a multi-layer architecture, as shown in Figure 4.1 below. Each rectangular

component is modular and hides the implementation details. At the base of the SIL-

VER architecture is the Eclipse OSGi and Eclipse Runtime platform. The OSGi platform,

mentioned in Section 2.3.1, reduced the development effort in specifying dependencies

between components and shortened the development process by providing pre-built com-

ponents. The storage component is responsible for providing a database storage mecha-

nism to construct and modify the structure of an MPH either on a user’s computer or on

a web server. The business logic component is built on top of the storage component and

provides support that helps allow both front-end GUI components and visual workspace

components to access and modify the modeling process hierarchy. The GUI component

encapsulates all user interface and interaction related entities and is responsible for the

main user interface. The visual workspace is responsible for providing the user with a set

of visualizations as an alternative way to browse the modeling process hierarchy. Both the

GUI component and the visual workspace component use the business logic component

to modify information related to the modeling process hierarchy.

This chapter gives a high-level overview of the highlights and features of SILVER,

which is followed by a discussion of the design and implementation of the storage compo-

nent infrastructure, business logic component infrastructure, GUI component infrastruc-

ture, and the visual workspace infrastructure.

34

Figure 4.1: A High-Level View of the SILVER Architecture

4.1 New Support Features Provided by SILVER

The SILVER system attempts to fill several gaps in the modeling process in terms of col-

laboration, which existing modeling software fails to support. These gaps are caused by

a lack of a generic and extensible visual workspace that provide workspace awareness

support. Due to the scope of this project, SILVER will not include a complete implemen-

tation for all workspace awareness features of the system that were listed in Chapter 3.

SILVER provides a component-based architecture with an API that will allow expansion

of the system for further functionality. The purpose of developing the system is to demon-

strate that the proposed architecture fulfills basic user requirements for MPH that facilitate

change awareness. The significant and unique features that the proposed system provides

are listed below:

1. A fully extensible modeling process hierarchy infrastructure that provides support to

basic model version control, attaching external documents and scenario bookkeeping.

2. A concise visual workspace that provides change awareness to help user track changes

in the collaborative modeling process.

3. Support for two popular pieces of external modeling software by directly running

simulations and capturing simulation output and stopping conditions.

35

4.1.1 System Highlights

This section gives a high-level overview of the architecture and design of the system, as

well as of the significant features that have been built into the system. The system has

been developed using the following technologies:

1. Java programming language. Java’s strong object-oriented nature and platform in-

dependence provides SILVER with sufficient technology support. Additionally, Java

as a platform is popular and widely-used for various toolkits, include those that were

used to build SILVER.

2. Eclipse Equinox OSGi and RCP. Both Equinox and RCP (Rich Client Platform) are

Eclipse open-source projects that are essential parts of the Eclipse integrated devel-

opment environment (IDE). Equinox provides implementation to the OSGi bundle

specification. The term “bundle” is equivalent to the meaning of “component” in

component-based architectures. Equinox OSGi forms the basis of the Eclipse Run-

time. RCP is a set of integrated tools that allow developers to build desktop software

with OSGi based components. This allows SILVER to be built upon the Eclipse run-

time and to integrate other components that, in turn, allow it to be integrated as an

OSGi bundle.

4.1.2 Distribution Architecture

In terms of distribution architecture, the system provides:

1. An embedded database storage component that allows a user to create and main-

tain a model repository in SILVER on the modeler’s computer. The created model

repository can be accessed/modified without an Internet connection.

2. A remote database storage server used by SILVER when users plan to share or col-

laborate over the Internet. Since the server component is not the main focus of the

system, the choice of distribution management was delegated to the database.

In terms of distributed communication and message passing, the system uses:

1. Java Transaction API. JTA is a high-level specification in Java that allows SILVER

to perform distributed transactions that access and update data on two or more net-

36

worked computer resources. The system makes use of an open source transaction

manager to process transactions at the application level. Transaction Processing al-

lows multiple individual operations to be linked together automatically as a single,

indivisible transaction. The transaction-processing system ensures that either all op-

erations in a transaction are completed without error, or none of them are [27]. In

SILVER, once a user issues a command to retrieve or modify data, a transaction will

be initiated to carry out one or more tasks to achieve the goal. If a task fails due to an

unexpected error during execution, the data that were to be modified by that transac-

tion will remain intact. Applying JTA will prevent data stored in SILVER from being

corrupted due to unexpected error conditions. This is particularly important when

modelers are collaborating through an unreliable or slow Internet connection.

2. JDBC Connections. SILVER uses Java database connectivity, or JDBC, to maintain

connections to both local and remote database at the same time [46]. This allows

the user to work with two model repositories stored at two different locations (one

on the local computer, the other at the remote host) simultaneously. All data that are

passed over JDBC will be managed by an application-level transaction manager that

provides JTA support.

In terms of the user interface and change awareness support, the system:

1. Provides change awareness information processing for data stored on both embedded

and remote storage;

2. Displays the model process hierarchy visualization with awareness support in an in-

teractive visual workspace.

In terms of external modeling software support, the system supports:

1. Anylogic logging. SILVER supports Anylogic simulation logging by applying As-

pectJ load-time weaving to Anylogic exported simulations [50]. Once the simulation

is finished, the values of DataSet objects will be logged to csv files and attached to

the corresponding scenario in SILVER. In addition, the simulation result page will

be copied into a snapshot picture and attached to the same Scenario in SILVER.

37

2. Vensim logging. SILVER supports Vensim logging by using the Vensim DLL pro-

vided by Ventana System Inc [11]. The Vensim DLL only works in the Windows

environment due to limitations on cross-platform DLL support.

4.2 System Infrastructure

At the heart of SILVER is the storage component. This component is designed to hide

all the technical details about database related operations from the rest of the system by

providing a generic programming interface. In particular, the storage component has two

responsibilities. The first responsibility is to establish connections between SILVER and

databases on hard drives or over the internet; the second responsibility is transactional

management, which maintains data integrity. It also provides implementation to granular

and basic operations to create and modify the model repository for databases.

On top of the storage component is the business logic component. The purpose of the

business logic component is to make use of the storage component to provide support to

build model repositories for various modeling applications. The business logic component

is designed with stateless Java objects to ensure data transactionality and scalability to

large-scale concurrent processing. It is also to ensure that the system provides guarantees

(part of the ACID transactional guarantees) by using the data storage mechanisms.

4.2.1 General Design Goals

For the scope of the system implementation of SILVER, there were a number of design

goals. These goals are outlined below:

1. Lightweight data traffic. The data traffic between SILVER and a remote storage

server needs to be optimized for repetitive or batch operations.

2. Generic and flexible design. The database storage schema should be flexible and

generic enough to be used by a “black box” storage implementation with a number

of relational databases that support JDBC.

3. Extensibility. The design should be extensible such that new types of models and

simulations can be created and incorporated into the infrastructure, supporting of

new modeling software or other aspects of change awareness.

38

4. Robustness and Stability. Regardless of the system configuration, the system ought

to be robust and stable in daily modeling operations.

5. Data integrity. The design should maintain data integrity and prevent it from being

corrupted by unexpected errors.

4.2.2 System Implementation Goals

For the thesis implementation of the system architecture, there are some extra goals based

on the technology used for the implementation. More specifically, there are goals of the

implementation based on development using the Java language. These goals are outlined

below.

1. Use of Transaction Management. The Java JDBC protocol includes transaction

management on a per database connection basis. A Connection is a request to the

database that generally modifies stored data or finds information based on a SQL

query. By default, each connection will initiate a transaction before contacting the

database server to ensure the restore point is set up for that particular session. In SIL-

VER, transaction management has been made to support nested transactions, where

a transaction may be composited of multiple connection requests to a database. Such

support is mainly used in the business logic component, which initiates multiple re-

quests in scenarios, such as importing and recreating a model project from an existing

model.

2. Use of Object Pooling. Object pooling is a technique to create a pool of Java objects

before any execution in the system. The goal of the technique is to enhance scalability

by leveraging the cost of initializing an object at runtime and reduce memory use

overall [41]. In SILVER, the technique is used in the business logic component to

initialize a pool of stateless objects.

3. Use of XML Data Representation. XML is a language for defining markup languages

[38]. XML allows information to be more usable and accessible. In SILVER, the

structure of the entirety or part of the modeling process hierarchy are represented in

XML format while being transferred between the storage component and the business

logic component.

39

4.2.3 Business Logic Component Design

The MPH concepts are important to coordinate collaborative modeling work flow. The

business logic component is middle-ware that encapsulates the logic defined in the MPH

and determines how support for multiple modeling software can be integrated into the

process. In particular, the business logic component is responsible for maintaining the

specification, implementation and external modeling package support for the MPH. The

requests to retrieve or modify information are passed from the client component to the

business logic component. Based on the context of the request, the business logic compo-

nent initiates a transaction and passes the request to the storage component. As mentioned

in the previous section, a transaction ensures that one or more actions are executed in

a unit; either all actions are executed, or none of the actions is executed. In the example

shown in Figure 4.2, the flow of requests within the business logic component is conducted

in six steps:

Figure 4.2: Example request flow in the business logic component

(Step 1) A request is initiated by a user action from the client side, and originates either

in the desktop software or the visual workspace. The request in the example

scenario here is to create a model project item within MPH.

(Step 2) The AutoManagedObjectFactory provides a (stateless) ModelProject object from

the ModelProject object pool to carry out the request.

(Step 3) The ModelProject object initiates a new transaction and calls the corresponding

service from the storage component to create a new model project.

(Step 4) The storage component evaluates the information from the request, creates a new

model project and passes back an a universally unique identifier, or UUID object

40

that represents the newly created data back to the ModelProject object.

(Step 5) The ModelProject object further creates a ModelProjectID based on the id data

UUID and passes it back to the Client Component.

(Step 6) After step 6 is finished, the ModelProject object is returned to the ModelProject

object pool for future use.

The MPH interfaces inside the business logic component have been implemented using

the object pooling pattern [41]. Because the MPH implementation follows the pooling

pattern, the class diagram in Figure 4.3 shows the general MPH and related classes of the

business logic component.

At the left of the diagram is the MPH programming interface, found in the stateless

package. The MPH programming interface consists of 7 interfaces. Each interface is im-

plemented by a concrete class designed as stateless object. A stateless object is simply a

group of procedures and does not retain observable state at application runtime. Except

for the SilverService interface, all other interfaces are provided so as to support each item

in the modeling hierarchy. The SilverService interface provides support to configuration

details related to the database and to external modeling software. The MPH-related in-

terfaces include GroupI, ModelProjectI, ModelVersionI, UserI, ScenarioCollectionI and

ScenarioI. Each of them specifies operations that relate to the MPH. Each interface is fol-

lowed by a default implementation class, which is labeled with a name similar to that of its

interface. Instead of having client classes directly instantiate objects, all implementation

objects are managed by a pooling object created by the AutoManagedObjectFactory class.

As mentioned in Step 2 above, the object pool creates a set of objects that can be reused

anywhere in the system. It bears noting that different simultaneous uses of the business

logic (as might be required to support a web GUI or a web service) must use separate

objects from the pool, so that they make use of different connections (each associated with

different transaction state). Once a designated task completes its use of the object, the

object will return to the pool and wait to be used later. Depending on the infrastructure,

there are many object pooling techniques available. SILVER uses reference object pools

provided by the Apache Commons Pool library, which will activate garbage collection to

reduce the JVM’s heap if necessary [2, 36].

41

At the right of the Figure 4.3, the TransactionalManager class provides transaction

management for all stateless objects that provide implementation to the interfaces. As

illustrated from Step 3 to Step 5 in Figure 4.2, a transaction is created to include all op-

erations, including those that are performed in the storage component. The transaction

will recognize and manage all new transactions that are created in the storage component.

The transaction manager will ensure no operations are performed unless no error has been

raised from the beginning of the operation until the end of the operation. As illustrated

by Step 5, all transactions that represent a sub-task of the operation, or parent transaction,

will be committed together to perform the modification. This mechanism is very common

in many enterprise applications and web applications that involves relational database sup-

port. It is extended to the application level in SILVER to prevent database corruption due

to errors between a set of combined operations.

Figure 4.3: Business logic component design

The business logic component includes specific supports for two modeling software:

Vensim and Anylogic. The details of their infrastructure are discussed in Section 4.4.1 and

in Section 4.4.2.

42

4.2.4 Storage Component Design

This section discusses the storage component. The storage component is responsible for:

1. Managing the database based on configuration information provided from the busi-

ness logic component

2. Storing all MPH information in a local database,

3. Storing all MPH information in a remote database,

4. Logging MPH modifications in the database, and

5. Forming XML representations for MPH structures for an MPH item or a complete

log of changes.

Figure 4.4 displays the design of the storage component. At the top of the diagram,

the StorageI interface gives the entire set of available operations at the storage level. The

local database and remote database use exactly the same schema. The related tasks in

storing MPH information in the storage layer are eventually accessed by clients through

the business logic layer. Each data request from the client would be either require an one-

step data access or a combination of results from multiple data access. To support the

complexity of data operations in business logic layer, the StorageI interface is designed to

provide flexibility to data access by providing fine-grained data operations that can either

be executed independently or grouped as a batch operation. As a result, all operations

defined in storage layer are to perform exactly one data operation about the data stored in

the database. The supported data operations are ’CREATE’, ’UPDATE’ and ’DELETE’.

This will allow the business logic component to combine two or more operations to fulfill

a request from the client component.

The AbstractStorage class is a partial implementation of the StorageI interface that im-

plements all data-related operations that are concerned with using SQL queries to perform

data manipulation [13]. This also provides SQL queries to create or to destroy a database.

All SQL queries used adhere to the SQL 2003 standard [18]. This standard is supported

by Derby, the Java-based database project used by SILVER, as well as by other popular

database projects [22]. This will allow the AbstractStorage class to be reused in building

support from other database projects.

43

Figure 4.4: Storage component architecture

The AbstractStorage class is extended by two concrete Implementation classes called

EmbeddedDerbyStorage and RemoteDerbyStorage. They are “driver classes” since they

contain only information about database configuration that is specific to the context of

connection and the type of database. For example, the EmbeddedDerbyStorage contains

information about how to configure a Derby database on a hard drive in the user’s com-

puter. The RemoteDerbyStorage contains information about how to configure a Derby

database on a remote webserver through the Internet.

Finally, the “driver classes” are supported by the DataSourceFactory class that provides

DataSource objects. The design of DataSourceFactory object follows the abstract factory

pattern [26]. The goal of the abstract factory pattern is to provide ways to create families

of related or dependent objects without specifying their concrete classes. In this case,

the DataSourceFactory class provides various DataSource objects based on what has been

requested by the “driver class”.

4.2.5 Database Design

As mentioned in Section 4.2.4, one of the responsibilities for the AbstractStorage class is

creating a new database. In particular, this involves specifying tables and relationships to

form the data schema in the database. An entity relationship diagram, or ER diagram, is

shown in Appendix A; it displays the conceptual representation of data for SILVER.

In the entity relationship diagram, a table is created for each item in the MPH. This

44

includes the SGROUP, MPROJECT, MVERSION, SCENARIOCOLLECTION and SCE-

NARIO tables. Additional tables are added for the purpose of recording file attachments

and change logging.

Figure 4.5: Database Entity Relationship

The design of the database and the responsibilities of each table are listed in Table 4.1.

In Table 4.1, the primary key to each table is set to the type CHAR with size 36 in

order to store an UUID. The primary key has been set to UUID for all tables except for

45

the PARAMETER table. UUID assures that the same MPH data will be recognized and

synchronized through different storage repositories.

4.2.6 Change Logging

Changes made in SILVER are recorded at the database level. The scope of changes in-

cludes creation, removal and modifications to each MPH item. The logging of changes is

realized through database triggers. As part of the SQL specification, a database trigger can

be appended or prepended to a single SQL query execution[18]. Therefore, the informa-

tion about each modification related to MPH is recorded by a database trigger and stored

to the CHANGESET table. The CHANGESET table contains the logging for an entire

database.

4.2.7 Internationalization

All text-based information passed to the storage component is parsed by Base64 encoding

[3]. The Base64 encoding allows encoding and decoding of any UTF8 based text to ANSI

based text.

4.3 UI Component Design

Figure 4.6: User Interface Component Design

46

The UI component is designed on top of the Eclipse rich client application framework

[39]. The main classes and packages in the UI component are illustrated in Figure 4.6.

At the left of the figure, the dialog classes support user actions in various contexts. The

handler classes follow the command design pattern [26]. Each handler class responds to

a command invocation and carries out the actual process. The command is an entity that

can be placed at multiple locations in the UI; its corresponding handler is set in a script

that is interpreted at system compile time. The project view classes are responsible for the

two project views displayed at the left of the main user interface. The AbstractProjectView

class contains a specification for the layout of the tree-structured interface. Each of the Lo-

calProjectView class and RemoteProjectView class extends the AbstractProjectView class

and initiate separate threads to allow concurrent access to various storage repositories.

4.3.1 Visual Workspace Component Design

As state in chapter 3, the visual workspace component is responsible to display change

awareness. In fact, the visual workspace needs to re-construct the MPH display because

the display space in the project view is too limited to display varied visual cue. The

priorities of the goals for designing MPH re-construction in the visual workspace are:

• Provide overview of MPH

• Provide visual cues on MPH that convey change awareness information

• Allow user to interact with the visual workspace to explore change awareness infor-

mation

A good way to provide an overview a visual structure is to provide its layout on a two

dimentional surface. In this case, MPH can be displayed as tree structure. In order to fulfill

the third requirement, the MPH can be envisioned using force-directed graph algorithm.

In a force-directed graph, the position of all graph nodes is constantly updated until all

edges reaches the balanced length. In SILVER, force-directed graph will allow users to

adjust the position of all nodes in MPH to their best conveniency. In addition, since all

nodes in a graph are displayed, it is easy to add visual cues directly to the graph to convey

change awareness information.

47

As a result, the visual workspace component architecture consists of a graph-based

visualization that represents parts of or the entire MPH. The component makes use of the

Prefuse visualization toolkit to generate visualizations based on data input at application

runtime [29]. The Prefuse toolkit follows the theoretical visualization framework [25].

Figure 4.7: The Infovis Model in Prefuse, (figure from Heer 2005)

Figure 4.7 displays the visualization model provided by the Prefuse toolkit. The Infovis

model decomposes design into a process consisting of several steps: abstract data repre-

sentation, visual form and data mapping, and visual item display. The visual workspace

integrates the process with the business logic infrastructure. The integrated model in the

visual workspace is shown in Figure 4.8.

Figure 4.8: Infovis Model in the Visual Workspace

To integrate the Prefuse visualization process in to SILVER, the visual workspace first

re-creates the data from the business logic component in the in-memory database provided

48

by Prefuse. For each record of the data, an object is created to help represent the abstract

data in a visual environment. The visual workspace contains two sets of visualizations as

part of the interface.

4.4 Simulation Software Support

This section talks about the architecture for the integration of external simulation software

support in SILVER. In Section 4.2.3, the support has been described as a programming

interface for Anylogic and Vensim models. Since both Anylogic and Vensim provide

support in different ways, the corresponding supports are separated in different classes in

SILVER.

The support for each software package consists of four sub-categories: model import,

simulation execution, logging, and trajectory harvesting. Model import means importing

all necessary information to create a baseline scenario that contains a parameter set, which

is to be altered and analyzed for future use. Simulation execution requires information and

files to run a simulation of a scenario based on the corresponding parameter values. Log-

ging requires the states of the modeled system to be recorded along with the simulation.

Normally a state is represented by certain datasets within the model system. The dataset is

important feedback as the assumptions made prior to running the simulation, and for the

consequences of those assumptions. It is important to locate the dataset and allow users to

share it along with further documentations.

Each of the following sections will break the discussion into four steps with respect to

the sub-categories above.

4.4.1 Vensim Support

Vensim support consists of parameter logging done through the VENDLL runtime library.

VENDLL runtime library provides API that provides programming access to Vensim func-

tionalities without the support of the Vensim modeling software.

1. Model import. The model import requires a Vensim published model (vpm file) as

the model source file. All types of variables in the model can be accessed through

the Vensim runtime library.

2. Simulation running. Executing a Vensim simulation requires the user to enter a name

49

for the simulation run.

3. Logging. Datasets are automatically generated during the Vensim simulation. The

Vensim simulation exports datasets to a file by the end of the simulation. The ex-

ported simulation is called vdf file.

4. Trajectory harvesting. A vdf file that contains the dataset is generated after the Ven-

sim simulation is executed.

With support of the Vensim programming interface and Vensim runtime library, most

support procedures can be accomplished using Vensim API.

4.4.2 AnyLogic Support

The Anylogic support includes taking a screen shot of the simulation result and logging

data sets to exported Anylogic simulation. An exported Anylogic simulation is an self-

packed Java Applet that executes a simulation without the support of Anylogic software.

Both screenshot and logging is realized through AspectJ load-time weaving to the simu-

lation applet. AspectJ is an aspect-oriented extension to the Java programming language.

[34]. It allows SILVER to control an exported simulation based on the user’s needs.

1. Model import. The model support for Anylogic takes the model source file (in the

form of an XML-based .alp file) as well as the corresponding exported simulation.

2. Simulation. The simulation will execute the exported simulation and override param-

eters values with what has been set in the scenario prior to simulation start.

3. Logging. Logging is realized through keeping track of DataSet objects in Anylogic.

DataSet objects are used to keep samples of parameter values over each time frame.

4. Trajectory harvesting. The DataSet values will be saved to a csv file after the simu-

lation is finished. A csv file contains comma-separated values in plain-text form.

Figure 4.9 gives a concise overview of how an Anylogic simulation is supported in

SILVER. Each time a simulation is initiated, SILVER exports the simulation applet and

an XML file that consists of parameter values to the hard drive. The exported simulation

applet is then controlled by AspectJ load-time weaving to perform necessary changes and

simulation.

50

Figure 4.9: Anylogic Support in SILVER

51

Table Name Specification and Responsibilities
SUSER

• all information for other user to recognize a person.
• required information to specify identity of a user in the collaborative modeling

process.

SGROUP
• represent a work group
• can specify the creator of the group

U2GROUP
• specifies how many users are participating in the group

CHANGESET
• record the time, the type and the action detail of the change
• specify the associated person that has made the change

MPROJECT
• the group in which this project is residing
• original/baseline model version
• associated files

MVERSION
• the model project for which this is a version
• baseline scenario
• associated files

SCENARIOCOLLECTION
• the model version with which this scenario collection is associated
• associated files

SCENARIO
• the belonging scenario collection with which this scenario is associated
• the model source file and related files required to run the simulation
• the associated parameter set

PARAMETERSET
• the scenario it belongs to

P2PS
• specify the parameter set in the PARAMETERSET table and its associated pa-

rameter values in the PARAMETER table

PARAMETER
• a parameter value and unit

FILE
• file name
• file content

MP2F
• specify a model project and its associated file

MV2F
• specify a model version and its associated file

SC2F
• specify a scenario collection and its associated file

S2F
• specify a scenario and its associated file

Table 4.1: Database Table Specification

52

CHAPTER 5

THE VISUAL WORKSPACE

This chapter introduces the collaborative workspace that has been developed as part

of SILVER. The collaborative wolrkspace has been built using the GUI component in-

frastructure discussed in Chapter 4, and has been designed to apply part of the change-

awareness framework to the modeling process hierarchy detailed in Chapter 3.

The collaborative workspace is divided into two components. Section 5.1 discusses a

visual workspace that contains iterative visualizations to support part of change awareness;

Section 5.2 discusses a ChangeSet editor that displays a history of changes.

5.1 The Visual Workspace

The visual workspace combines information related to user activity with the visual rep-

resentation of the MPH. The goal of building the visual workspace is to reduce the effort

required in activites such as exploring and collecting change awareness information from

an established or a work-in-progress model in SILVER. This involves designing a visual

representation of the MPH, additional visual embodiments, and control widgets.

5.1.1 Visualizing the Model Hierarchy

A visual workspace is generated at runtime once a user selects an item and chooses ‘show

visual workspace’ in a model repository view. The visual workspace is generated at run-

time based on the user’s selection. As shown in Figure 5.1, the middle of the visual

workspace depicts a MPH structure containing a group and two model projects in a graph

based visualization, where nodes represent items of the MPH and edges represent associ-

ations between those items. The nodes can be dragged around, and open detailed infor-

mation about the item upon mouse double-click. In this visualization, network members

are presented using both their names and a color. The color indicates the type of item.

53

Figure 5.1: The Visual Workspace

The graph based network is generated by the Prefuse toolkit and uses force-directed lay-

out to maintain the relative display location for each node [29, 33]. The network layout is

computed using a spring-embedding (force-directed) algorithm, in which the edges act as

springs and both draw distant neighboring towards itself but repels nearby neighbouring

nodes [33]. The network layout of the representation is computed in real time. When a

node has been moved by a modeler, the displacement of the node will exert a force on

its neighbouring nodes. The edges in the network will react to the deflection and trigger

(dissipative) readjustment until the system re-establishes a static equilibrium. This ap-

proach grants users the freedom to move the structure into a convenient, memorable, and

aesthetically pleasing arrangement.

The length of graph edge in the visual workspace can be adjusted by the control widgets

at the right side of the visual workspace. This can be used to enlarge or shrink the overall

graph based on the display area available. On top of the edge length adjustment widget,

four radio buttons are provided to allow users to choose one of “name”, “type”, “author”

and “time”. After a user makes a selection, each graph node displays the new information

within itself.

54

Figure 5.2: Highlighting Changes

5.1.2 Displaying ChangeSet

At the left of the graph visualization of the MPH is a timeline view represented via fish-

eye visualization. The timeline lists dates that contains changes in a column and arranges

them in decending in chronological order. With the fish-eye visualization, the dates that

are adjacent to the mouse pointer on the screen are magnified based on their proximity

to the mouse position. The closest date to the mouse pointer will be the bigger than the

remainder of the dates and therefore would be more readily selected with a left mouse-

click.

A left mouse-click on a highlighted date highlights the items in the MPH that have

been changed on that day. In Figure 5.2, a few nodes were highlighted in the graph vi-

sualization of the MPH to indicate that they have been changed. The grouping technique

used on top of the visualization is called Bubble Sets [16]. According to Collins, Bub-

ble Sets is a visualization technique for data that has both a primary data relation with a

semantically significant spatial organization and a significant set membership relation in

which members of the same set are not necessarily adjacent in the primary layout. In the

context of a dynamic environment, the contour of Bubble Sets is constantly updated to

avoid overlapping and blocking nodes that not members to the set. For example, in Figure

5.2, the purple set groups five nodes that were changed by the specific date while avoiding

55

Figure 5.3: ChangeSet editor

the node that would otherwise be likely to be included among the highlighted nodes.

5.2 ChangeSet Editor

As shown in Figure 5.3, the ChangeSet editor contains a list of changes associated with an

entire modeling process hierachy in a model repository. The ChangeSet editor can be ac-

tivated by ‘right-mouse clicking’ in the project view and select ‘Show Change Sets’ from

the pop-up menu. The editor then appears in the editor area and shows five categories of

metadata associated with each change within the storage. They are: “Time”, “Committer”,

“Change”, “Updated Value” and “id”. Each category is labeled by particular column in the

editor. The user may choose to re-arrange the editor display by selecting a particular col-

umn. The ChangeSet editor also supports user in selecting and opening particular entities

in the modeling process hierarchy that were involved in the change.

56

CHAPTER 6

THE MODELING PROCESS WITH SILVER

This chapter provides a detailed guide on the use of SILVER to assist individual and

collaborative modeling process. The guide assumes that the reader is familiar with mod-

eling process via one of the two modeling tools, so it provides separate discussions for

modeling with Anylogic and with Vensim. Additionally, the guide assumes that the reader

has some familiarity with domain terminologies defined by model repository concepts

outlined in chapter 2, such as model project and the use of the model version and scenario.

6.1 Working with an Anylogic model

This section will provide instructions on the basics of performing individual and collabo-

rative modeling with SILVER and Anylogic. Although the steps in creating Agent-based

model and in System Dynamics model may be different within Anylogic, the created mod-

els do not require extra steps to be loaded to SILVER.

Steps for creating a simple Anylogic model and importing it into SILVER:

(a) Creating a new Anylogic model

Start up Anylogic, and create a model in Anylogic, as shown in Figure 6.1.

(b) Export the Anylogic simulation

Use the export functionalities in Anylogic, choose “export to Java Applet”.

(c) Load the existing model and simulation by creating a new Model Project or a Model

Version on SILVER. Because these processes differ, we describe each separately.

(c-1) Create a model project

In SILVER, create a new model project by right-clicking in the project view and choose

“add model project” in the context menu. In the “Add Model Project” dialog, the user can

specify the path to the .alp file for the model source field and the path to the exported applet

for the exported applet field. The user is required to give a name and a description for the

57

Figure 6.1: Create an Anylogic model

model project. It is optional to specify additional files on the hard drive that are related to

the project. After user has filled in the necessary information (shown in Figure 6.2) and

clicked “OK” button in the “Add Model Project” dialog, a model project, its associated

baseline model version, and a baseline scenario will be created.

(c-2) Browse to baseline scenario

The user can expand the model project and reveal the associated model versions by

double-clicking on the project. From the baseline model version that has been revealed,

double-click on it again will reveal the associated baseline scenario.

(d) Run simulation in the scenario panel

Once the user selects the baseline scenario and double-clicks on it in the project view,

detailed information about the scenario is shown in the information panel to the right of

the project view. The “run simulation” button at the bottom of the panel will execute the

Anylogic simulation. The simulation will be executed in a different system process.

(e) Loading simulation trajectories

58

Figure 6.2: Import an Anylogic model to SILVER

Once the Anylogic simulation is finished, a screenshot of the simulation and the values

of DataSet objects are SILVER will be saved in separate files and loaded as associated

files to the scenario where the simulation was executed. The user may double-click on the

files to open them with the software determined by the operating system.

6.2 Working with a Vensim Model

This section provides instructions on the basics for getting started with individual and

collaborative modeling with SILVER and Vensim.

Steps in creating a simple Vensim model and importing it into SILVER.

(a) In Vensim, create a new Vensim model

Start Vensim and build a vensim model with the tools provided.

(b) Setup the Vensim dynamic-link library with SILVER

The Vensim dynamic-link library is loaded through preferences page that can be ac-

cessed through “preferences” button on the toolbar.

59

Figure 6.3: Publish an Vensim model

(c) In Vensim, with the model finished, choose ‘Publish’ from the File menu, as shown

in Figure 6.3. Within the dialog, determin the file name and save the published model to

hard drive.

(d) Loading an existing model by creating a new Model Project or a new Model Version.

As has been explained in Section 6.1, create a new model project by right-clicking in

the project view and choose “Add Model Project” in the context menu. In the “Add Model

Project” dialog, the information required to be filled by a user is similar to that for adding

a model project by importing it into an Anylogic model. Instead, the user can specify the

path to the .vpm file for the model source and leave the path to the exported applet as

blank.

(e) Run simulation in the scenario panel

Once the user runs the Vensim model through the scenario panel, the Vensim runtime

will load the Vensim model, load parameter set values from the scenario to the simulation,

60

and ask user to assign a name to the simulation run.

(f) Loading simulation trajectories

Vensim dynamic-link library will generate .vdf files that allows Vensim users to share

simulation results with other collaborators. The .vdf file generated will be loaded and

saved in SILVER under the scenario that has been opened.

6.3 Working with Models Stored Remotely

This section provides instructions on the basics for working with models that are stored

on the remote model repository in SILVER.

The following steps describes sharing a model on remote model repository; p

(a) Uploading an existing model to remote model repository by creating a new Model

Project and a new Model Version.

As has been explained in Section 6.1 and in Section 6.2, in the remote project view,

create a new model project by right-clicking in the project view and choose “Add Model

Project” in the context menu. User can decide whether to add Anylogic model project,

Vensim model project, or simply a generic model project that does not have a model

source.

(b) Run a remotely added simulation in the scenario panel

Once the model project is created, all users that are connected to the remote repository

are able to run the model. The criteria for a user to run a model are the same compared to

running the model created in local model repository. For example, If the model is created

in Vensim, the user who tries to run the model need to have Vensim DLL library configured

in SILVER before running the simulation.

(c) Sharing and loading simulation trajectories

Once a simulation is executed and stopped, SILVER will harvest the trajectory files

(.vdf for Vensim models, .csv for Anylogic models) and upload them to the scenario where

the simulation has been triggered. Once the trajectory files have been uploaded, all users

that are connected to the remote model repository may simply re-open the scenario infor-

mation panel and double-click on the file the user wished to see.

61

6.3.1 Adding External Documents

This section provides instructions for importing or sharing documents with respect to MPH

entities during the modeling collaboration.

Steps in adding an external file to an MPH entity.

(a) Create or select the entity in the modeling process hierarchy

(b) Double-click on the entity to open the information panel about the entity to the right

of MPH view.

(c) In the “associated files” section of the information panel, click “Add” to add one or

more associated files to the entity.

62

CHAPTER 7

EVALUATION

SILVER has been informally evaluated based on a number of criteria that are important

to modelers and collaborators. With respect to modelers, the criteria include effort reduc-

tion, modeling support, flexibility and extensibility. From the user‘s perspective, some

analysis should be done to determine the adequacy of the awareness information provided

by the ChangeSets and the visualization of that awareness information. The remainder of

this chapter will discuss the evaluation process in general before delving into each of the

evaluation criteria in detail.

Figure 7.1: Create test plugin

63

Figure 7.2: Import base plugin in test plugin

7.1 Evaluation Process

To assess SILVER, two different evaluations1 were performed. The first evaluation in-

volved a user participating in a distributed modeling process to determine how easy it is

to participate and collaborate in a modeling process using SILVER and other modeling

software. More specifically, the evaluator was asked to perform constructive tasks under

a few pre-built modeling projects. In building the model versions or scenarios based on

what others have contributed, the performance and limitations of modeling with SILVER

could also be determined.

The second evaluation involved looking for information related to changes within two

different model projects that had already been formulated by a large team. The visual

workspace and changeset history were both used in contextual tasks in modeling. The

evaluation provided information about difficulty reduction when using SILVER, for col-

laborative modeling, when compared to conducting the same process without SILVER.

1Behavioural ethics approval number: BSC 2001-192

64

Figure 7.3: Import test plugin in SILVER

7.2 Extensibility

Extensibility refers to the ability of the SILVER architecture and component set to be ex-

tended to add new features that are not provided in its standard form. This includes adding

supports for additional modeling software, extending ad hoc package-specific features,

and changing the communication infrastructure. Support to additional modeling software

can be provided by implementing modeling process hierarchy APIs. Depending on the

nature of the modeling software and underlying modeling techniques applied, this may

require different levels of complexity. As mentioned previously, the business logic com-

ponent can be extended to help specify particular needs in each stage of modeling process

hierarchy. To ease the development, the business logic component provides separate data

structures for the modeling process hierarchy and change history. The data structures can

be used in the creation of new interactions and visualizations to support awareness in col-

laboration. Finally, because SILVER is a component based system that is built on top

of Eclipse OSGi runtime, additional plugins that address missing functionalities can be

added easily to the system. To illustrate how to add a plugin to SILVER, an example to

add an empty plugin is provided.

65

7.2.1 Example to Extend SILVER

This section provides a simple guide to show how to extend SILVER by adding an empty

plugin that has access to business logic API.

• A Download the source code from SILVER project website to hard drive [9].

• Eclipse RCP IDE, load up the source code by importing projects to workspace [4].

• create a ‘Plugin-in project’ and name it ‘test’, as shown in Figure 7.1; select ‘No’

when encountered question ‘Would you like to create a rich client application?’; click

‘Finish’.

• Once added, the ‘MENIFEST.MF’ file under the ‘test’ project is automatically opened;

Open ‘Dependencies’ tab, click ‘Add...’ to trigger a dialogue that allows us to add

an existing plugin to the ‘required plugins’, as shown in Figure 7.2. Adding an ex-

isting plugin to ‘required plugins’ allows a plugin to access resources specified by

another plugin. The plugin that shares resources becomes an required dependency to

the client plugin. In this case, add ‘edu.cs.usask.ca.silver.plugin.base(1.0.0)‘ which

provides business logic API to ‘required Plug-ins’. Thus, Java programs specified in

the ‘test’ plugin now have the ability to access the business logic API.

• To package the ‘test’ plugin to the system, open ‘plugin.xml’ under project named

‘edu.cs.usask.ca.silver.plugin.rcp’. Under dependencies tab, add ‘test’ plugin to the

‘required Plug-ins’, as shown in Figure 7.3.

Now the newly added test plugin is added to SILVER.

7.3 Effectiveness from the User’s Perspective

It is important that the system provides users with adequate supports that allows them to

perform the tasks that they desire. As part of the evaluation process, a user evaluation with

a small group of five experienced modelers (with modeling experience from 6 months to

2 years) was performed. The group members were given the two sample model projects

introduced in Chapter 6 on which to provides feedback with respect to the adequacy of the

model hierarchy support, change awareness information and visualization provided by the

66

system workspace. During the evaluation, the modelers were asked to perform collabora-

tive modeling tasks on provided projects. The tasks involved information finding, model

version creation and scenario analysis based on the progress that the group of modelers

have made. Together the modelers performed distributed collaborative modeling without

using other collaboration tools such as Email or FTP that otherwise would have been used

without SILVER. After the evaluation, each modeler was asked to fill in a questionnaire to

rate difficulty (1 as the least difficult, 6 as almost impossible) to perform change awareness

related tasks during collaboration. Figure 7.4 presents the result from the evaluation ques-

tionnaire filled by the modelers immediately after the evaluation. The detailed SILVER

evaluation questionnaire can be found in the Appendix B.

Figure 7.4: SILVER evaluation analysis

In general, all group members agreed that both modeling process hierarchy and change

awareness information provided was beneficial to the modeling process in which they

were participating, and that it made the modeling process in general more productive than

if SILVER was not used.

Given that modeling process hierarchy and change awareness are different aspects in

supporting the modeling process, the discussion for each evaluation is separated in two

67

Category Information Sample Question

Where Location history Which model version con-

tains the latest scenario

Edit history What model versions has

been changed yesterday?

Who Identity Who has created the model

project?

Authorship history Who were participating in the

model project?

What Action history What has been changed by a

particular person yesterday?

When Event history When was the latest model

version created in a project?

Why Cognitive history Why were a set of new sce-

narios added to a particular

model version?

Motivation history Why did Person A add a

new model version to a model

project?

Table 7.1: Change Awareness Evaluation

sections below.

7.3.1 Effectiveness of Modeling Process Hierarchy

The evaluation of the modeling process hierarchy include modeling tasks that cover model

buliding, analysis and simulation sharing. The modelers found the concept of modeling

process hierarchy suitable for their day-to-day work. In particular they found much effort

was reduced while saving successive versions of models, organizing simulation outputs

and communicating updates regarding particular entities from the modeling process hi-

erarchy. In spite of the tasks associated with the modeling process itself, the modelers

68

requested additional features such as automation in running a set of simulations, the abil-

ity to create custom tags based on the content in the modeling process hierarchy and the

ability to work with more types of models such as Monte Carlo and modeling software

such as powersim, etc [8].

7.3.2 Effectiveness of Change Awareness

The evaluation of the awareness workspace include information finding tasks with respect

to each section of change awareness. In particular, the effectiveness of the following

awareness information were investigated. Table 7.1 gave sample question with respect to

each change awareness category supported by SILVER:

While all modelers agreed that the change awareness information was useful in keeping

the higher level overview of the modeling process, all users provided comments about

how the change awarenes information from the awareness workspace could be accessed

differently

One of the users felt that it was important to ensure consistency in the operation of the

widgets and the visualization of the awareness information. This is an issue that will be

focussed on more heavily in future work.

7.4 Limitations

This section will discuss the limitations of modeling with SILVER. The limitations are

based on the feedbacks from modelers who have participated in SILVER evaluation. Many

of the limitations discussed are due to the scope of the current project, and future develop-

ment will attempt to address limitations of this nature.

• Data synchronization between storage spaces. Currently, SILVER lacks a data syn-

chronization mechanism that allows users to synchronize all changes of a modeling

project between local and remote storage. The only way for users to share changes

in collaboration is to redo the changes on the other storage. Providing a synchroniza-

tion mechanism requires identity of the updated entity as well as the data describing

how an entity was updated. SILVER is currently able to provide both information

by assigning an UUID to each entity in the modeling process hierarchy and to each

change within the modeling process hierarchy at database level. UUIDs are 128 bit

69

numbers which are intended to have a high likelihood of uniqueness over space and

time. They can be locally generated in database without contacting a global regis-

tration authority [7]. However, developing the synchronization mechanism which

employs techniques in data comparing, change scripting and data serialization over

the network is beyond the scope of this project.

• Immediate change notification modeling process hierarchy. SILVER offers partial

support to change awareness through awareness workspace. However, a user will not

typically be aware of a change until they look up changes through the workspace.

It would be useful if SILVER were proactive in notifying immediate changes in a

near-to-real-time fashion.

• Change history contains all changes across storage. The capacity to display of spe-

cific changes in respect to particular entity within the modeling process hierarchy is

not currently supported. This limits the user who is looking for information about a

particular project or versions from abundant data that contains much unneeded infor-

mation. Another solution would be adding an interactive search tool to the change

history.

• Incomplete support for modeling packages. While popular, Vensim and Anylogic are

a small sub set among modeling tools. With the current architecture, it is possible to

add support to additional popular modeling tools such as PowerSim, Stella, Repast

and NetLogo in the future [8, 10, 5].

• No method of merging models For example in System Dynamics modeling, modelers

often pursue assumptions based on equations applied in the model. They require

a tool that allows the system to compare the equation difference between models

and the ability to merge them. Such a feature can be added by comparing different

versions of model source files and then save away equation differences using SILVER

Business Logic API.

• Visual Workspace is Not Updated After Changes Have Been Applied The activated

awareness workspace could not be updated after changes have been applied to the

modeling process hierarchy. This is due to the in-memory database constructed for

70

visual workspace and ChangeSet history. However, the user can proactively maintain

the awareness by closing and re-opening the visual workspace.

• Import or Export Data SILVER currently does not support exporting data to file

on disk or re-constructing a database from external data. Such feature is useful in

migrating database between computers or manually perform database backup. Espe-

cially given that most modelers may already have a large base of model artifacts, it

would be valuable efficient to allow users quickly construct data from such existing

outputs.

71

CHAPTER 8

CONCLUSION

This chapter concludes the thesis by providing a brief summary of the research prob-

lem, goals, and approach to the solution. The major and minor contributions of the thesis

are restated. The final section of the chapter provides an introduction to the planned future

work and directions for the research started in this thesis.

8.1 Summary of Research and Contributions

This thesis confronted the problem that it is difficult to perform collaborative modeling.

Collaborative modeling is the modeling process performed by teams of modelers and other

stakeholders who are spatially distributed. The difficulties exists because of the effort re-

quired in maintaining various modeling related artifacts and in being aware of overall

progress of the project. This is mainly due to the lack of software that focuses on sup-

porting the process of modeling other than manipulation of the artifact itself. The issues

includes model versioning, scenario bookkeeping, documenting intentions, linking to ex-

ternal documentation, distributed communication, automated logging of user changes, and

transforming the changes to meaningful updates on the GUIs of the remote users.

The main goal of the research was to provide a platform to reduce the effort in collabo-

rative modeling. A second goal of the research was to provide an informative collaborative

environment for modeling collaborators. The motivation is the notion that better support

of change awareness and artifact management means better collaboration for modelers.

The problem was addressed by building a software system that allows modelers to easily

perform the iterative modeling process in a modeling team. The main focus of the sys-

tem is the modeling process hierarchy, compatibility with external modeling software, and

change awareness support. The information about “When” and “Who” in past changes is

the key awareness information provided by SILVER.

72

SILVER simplifies the construction of groupware that supports group awareness in four

ways:

• It provides a modeling process hierarchy to support a rigorous modeling process.

• It provides both distributed and centralized storage infrastructure.

• It provides support of a set of popular modeling software.

• It has visual workspace component that provides support of change awareness in

collaborative modeling.

A number of steps were completed in the research:

• Specifying the modeling process hierarchy in terms of collaborative modeling

• Specifying modeling requirements in terms of change awareness

• Developing storage infrastructure

• Developing business logic infrastructure

• Developing GUI component infrastructure

• Developing the visual workspace infrastructure

• Developing support for the Anylogic and Vensim simulation packages.

The major contributions of the research are:

• A software system that reduces difficulty in collaborative modeling. The system

includes mechanisms to create a model project from existing Anylogic or Vensim

simulations and to create initial versions and baseline scenarios for modeling process

hierarchy.

• A quicker way to create incremental version of models. The system allows a user

to quickly reflect model structural changes by importing and reviewing revisions as

roll-backs if necessary.

• An easier way to explore models by creating scenarios, changing parameter values

and running simulations for results.

73

• Workspace components that provide support for change awareness.

• A mechanism that allows users to associate external files with particular entities in

the modeling process hierarchy as additional documentation.

A minor contribution of the research is:

• Controlling Anylogic simulation by employing AspectJ load-time weaving.

Before the research started, a prototype of SILVER using a different set of technologies

were built by Yudi Xue, Daniel Funk and Mike Taylor as a class project. Due to the limita-

tions of the technology, the prototype could never been built into binary executable form.

The research inherited the basic data storage schema and the idea of component-based

desktop software from the prototype. However, the actual code have been completely

re-written.

Overall, given the summarized list of research steps and the list of contributions, SIL-

VER reduced the efforts in distributed modeling process by providing support to MPH

and to change awareness as a whole.

8.2 Future Work

Following the completion of the thesis, enhancements and extensions have been planned

for a future release of the SILVER system. First, more testing and bug fixes will be per-

formed on the existing system. Currently, SILVER contains strong unit tests coverage over

the core storage components. However, from a software engineering perspective, SILVER

lacks automated system tests and functional tests to ensure proper behaviors in business

logic and GUI components. The components are error-prone and will be tested along fu-

ture releases. Second, users felt reluctant to use SILVER for collaboration since they are

not equipped with the requisite technical knowledge to set up a remote database. This

problem can be solved by abstracting away the details of configuration by use of automa-

tion. Or, through SILVER development, a potential idea has been noted that a web-based

hub might be useful for remote modeling collaboration. In this scheme, SILVER will be

used as an desktop client which allows user to freely collaborate with other registered

users on the hub and explore models. However, such idea require extensive resource and

imply additional web-based technologies to make it possible. Third, more discussions and

74

studies will occur regarding change awareness support. Information about all changes and

actions a modeler made before reaching a goal can reflect how a modeler performs sim-

ulation modeling other than building the model. Such information regarding past actions

may become useful for education purposes and enhancing confidence between the team

and clients. Following this, more UI components will be developed to display particular

change awareness information that is missing in certain modeling context. Fourth, SIL-

VER lacks the ability to let users to re-use old scenarios in a new version of the model,

it can be partially done by copying old scenarios to the new model version. However, if

newer model version have removed certain parameters, SILVER will require a mechanism

to verify that all scenario parameters are available in the new model version. Next, support

to load-balanced simulation across a cluster would allow multiple simulations to be exe-

cuted in a batch. It is possible to delegate SILVER’s simulation runner to server cluster by

further automating the simulation running process and by developing an adapter on SIL-

VER to send scenario information to the server cluster. Such infrastructure require further

investigation on simulation control over multiple packages as well as determining cluster

architecture. These tasks are outside the scope of this thesis. Finally, all other components

that are discovered through discussion and evaluation will be created. All newly created

components will be followed by more testing.

Support of data synchronization between storage will be added by scripts that will

compare copies of a particular model project stored in different locations and execute

necessary action for the purpose of synchronization. Also, the capability to run simulations

on additional modeling packages will be investigated. The re-usability of the business

logic component will be tested by integrating various modeling packages that requires

different forms of support.

75

REFERENCES

[1] Anylogic — XJ Technologies Inc. http://www.xjtek.com accessed Dec, 2011.

[2] Apache commons pool: A mini-framework to correctly implement object pooling in java.
http://commons.apache.org/pool/ accessed Dec, 2011.

[3] The base16, base32, and base64 data encodings. http://tools.ietf.org/html/rfc4648, accessed Dec, 2011.

[4] Eclipse Rich Client Platform IDE. http://www.eclipse.org/downloads/packages/eclipse-rcp-and-rap-
developers/indigosr2, accessed Apr, 2012.

[5] Netlogo homepage. http://ccl.northwestern.edu/netlogo/ accessed Dec, 2011.

[6] OSGi Alliance — Specifications. http://www.osgi.org/Specifications/HomePage accessed Dec, 2011.

[7] OSSP: OSSP uuid. http://www.ossp.org/pkg/lib/uuid/ accessed Dec, 2011.

[8] Powersim studio 8 — powersim software. http://www.powersim.com/ accessed Dec, 2011.

[9] Silver. http://code.google.com/p/uofs-silver-hg, accessed April, 2012.

[10] Stella modeling & simulation software. http://www.iseesystems.com accessed Dec, 2011.

[11] Vensim — Ventana Systems, Inc. www.vensim.com accessed Dec, 2011, Dec 2011.

[12] Y. Borodin, J. Bigham, R. Raman, and I. V. Ramakrishnan. What’s new?: making web page updates
accessible. In Proceedings of the 10th international ACM SIGACCESS conference on Computers and
accessibility, Assets ’08, pages 145–152, New York, NY, USA, 2008. ACM.

[13] D. Chamberlin and R. Boyce. Sequel: A structured english query language. In Proceedings of the
1974 ACM SIGFIDET (now SIGMOD) workshop on Data description, access and control, SIGFIDET
’74, pages 249–264, New York, NY, USA, 1974. ACM.

[14] H. H. Clark and S. Brennan. Grounding in communication. pages 127–149, 1991.

[15] S. Clemens. Component Software. New York : ACM Press ; Harlow, England ; Reading, Mass. :
Addison-Wesley, 1997.

[16] C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set relations with isocontours over
existing visualizations. IEEE Transactions on Visualization and Computer Graphics, 15:1009–1016,
November 2009.

[17] P. Dourish and S. Bly. Portholes: supporting awareness in a distributed work group. In Proceedings of
the SIGCHI conference on Human factors in computing systems, CHI ’92, pages 541–547, New York,
NY, USA, 1992. ACM.

[18] A. Eisenberg, J. Melton, K. Kulkarni, J. Michels, and F. Zemke. Sql:2003 has been published. SIG-
MOD Rec., 33:119–126, March 2004.

[19] M. Endsley. Measurement of situation awareness in dynamic systems. Human Factors The Journal of
the Human Factors and Ergonomics Society, 37(1):65–84, 1995.

[20] J. Forrester. Industrial Dynamics. Pegasus Communications, 1961.

76

[21] J. Forrester. Urban Dynamics. Pegasus Communications, 1969.

[22] Apache Foundation. Apache Derby. http://db.apache.org/derby/ accessed Dec, 2011.

[23] Eclipse Foundation. Eclipse - the eclipse foundation open source community. http://www.eclipse.org/
accessed Dec, 2011.

[24] T. Fruchterman and E. Reingold. Graph drawing by force-directed placement. Software: Practice and
Experience, 21(11):1129–1164, 1991.

[25] G. W. Furnas. Readings in information visualization. chapter The FISHEYE view: a new look at
structured files, pages 312–330. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable object-
oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[27] J. Grey and A. Reuter. Transaction processing: concepts and techniques. Morgan K., September 1992.

[28] C. Gutwin. Workspace Awareness in Real-Time Distributed Groupware. PhD thesis, Department of
Computer Science, University of Calgary, 1997.

[29] J. Heer, S. Card, and J. Landay. prefuse: a toolkit for interactive information visualization. In Pro-
ceedings of the SIGCHI conference on Human factors in computing systems, CHI ’05, pages 421–430,
New York, NY, USA, 2005. ACM.

[30] W. Hill, J. Hollan, D. Wroblewski, and T. McCandless. Edit wear and read wear. In Proceedings of
the SIGCHI conference on Human factors in computing systems, CHI ’92, pages 3–9, New York, NY,
USA, 1992. ACM.

[31] J. Homer. Why we iterate: scientific modeling in theory and practice. System Dynamics Review,
12(1):1–19, 1996.

[32] J.W. Hunt and M.D. Mcllroy. An algorithm for differential file comparison. Computing Science
Technical Report 41, Bell Laboratories, 1975.

[33] T. Ioannis, B. Giuseppe, E. Peter, and T. Roberto. Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice Hall, 1999.

[34] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An overview of aspectj. In
Proceedings of the 15th European Conference on Object-Oriented Programming, ECOOP ’01, pages
327–353, London, UK, UK, 2001. Springer-Verlag.

[35] D. Kurlander. Graphical editing by example (abstract). In Proceedings of the INTERACT ’93 and CHI
’93 conference on Human factors in computing systems, CHI ’93, pages 529–, New York, NY, USA,
1993. ACM.

[36] T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification. Sun, April 1999.

[37] R. Marc. The source code control system. IEEE Transition, Software Engineering SE-1,4:364–70,
Dec 1975.

[38] N. Mark. Xml. Serials Review, 25(1):117 – 121, 1999.

[39] J. McAffer, J. Lemieux, and C. Aniszczyk. Eclipse Rich Client Platform. Addison-Wesley Profes-
sional, 2nd edition, May 2010.

[40] J. McAffer, P. Vanderlei, and S. Archer. OSGi and Equinox: Creating Highly Modular Java Systems.
Addison-Wesley Professional, Feb 2010.

[41] K. Michael and J. Prashant. Pooling pattern. In EuroPLoP, pages 497–510, 2002.

[42] Sun Developer Network. Java applet. http://java.sun.com/applets/ accessed Dec, 2011.

77

[43] G. Nigel. Agent-Based Models (Quantitative Applications in the Social Sciences). SAGE publications,
2007.

[44] Jr. Nunamaker, F. Jay, R. Briggs, D. Mittleman, D. Vogel, and P. Balthazard. Lessons from a dozen
years of group support systems research: a discussion of lab and field findings. J. Manage. Inf. Syst.,
13:163–207, December 1996.

[45] G. Olson and J. Olson. Distance matters. Hum.-Comput. Interact., 15:139–178, September 2000.

[46] Oracle. Java se technologies - database. http://www.oracle.com/technetwork/java/javase/jdbc/index.html
accessed Dec, 2011.

[47] Oracle. Java transaction api (jta). http://www.oracle.com/technetwork/java/javaee/jta/index.html ac-
cessed Dec, 2011.

[48] N. Osgood. Silver: Software in support of the system dynamics modeling process. ICSD, 2009.

[49] S. Railsback and V. Grimm. Agent-based and Individual-based Modeling: A Practical Introduction.
Princeton University Press, 2011.

[50] L. Ramnivas. AspectJ in Action. Manning Publications, July 2003.

[51] J. Randers. Conceptualizing Dynamic Models of Social Systems: Lessons from a Study of Social
Change. PhD thesis, MIT, 1973.

[52] J. Randers. Guidelines for Model Conceptualization. In Elements of the System Dynamics Method, ed.
J. Randers. MIT Press., 1980.

[53] Forio Online Simulations. Forio online simulations. http://forio.com/ accessed Dec, 2011.

[54] M. Sparling. Lessons learned through six years of component-based development. Commun. ACM,
43:47–53, October 2000.

[55] J. Sterman. Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw Hill,
2000.

[56] J. Tam and S. Greenberg. A framework for asynchronous change awareness in collaborative documents
and workspaces. Int. J. Hum.-Comput. Stud., 64:583–598, July 2006.

[57] A. Tavares and M.T. Valente. A gentle introduction to OSGi. SIGSOFT Softw. Eng. Notes, 33:8:1–8:5,
August 2008.

[58] J. Vennix. Group model building: facilitating team learning using system dynamics. Wiley, 1996.

78

APPENDIX A

DATABASE ER DIAGRAM

Figure A.1: Database Entity Relationship

79

APPENDIX B

SILVER EVALUATION FORM

Thank you for helping in SILVER evaluation! You have already gone through two
procedures. Please answer each question in the following questionnaire.

* Required
Participant ID *
Where are you located? * please specify your city and province
How long have you been involved in modeling process? * includes learning and using

Vensim or Anylogic software
never less than a month 1 - 6 months 6 months - 1 year 1 year - 2 years 2 years and

longer
How many modeling projects were you involved in collaboration? * Please give a

rough estimation about the number of projects
What is the average length of the modeling projects you have participated? *
2 weeks 2 weeks - 1 month 1 - 2 months 3 - 6 months 6 months - 1 year longer than 1

year
How many modeling project you were involved in parallel at most? * give the largest

number of projects that you have been involved at the same time
How difficult to understand the concept of modeling process collaboration model im-

plemented in SILVER? *
1 2 3 4 5
very easy very difficult
How difficult it is to look up changes done by a particular person. *
1 2 3 4 5 very easy very difficult
How difficult it is to look up all changes associated for a particular date (for example

yesterday)? *
1 2 3 4 5 very easy very difficult
How difficult it is to find a particular model version or scenario created by particular

person? *
1 2 3 4 5 very easy very difficult
How difficult it is to locate a scenario without the knowledge of which version the

scenario might be associated with? *
1 2 3 4 5 very easy very difficult
How difficult it is to find what have been changed overall (across multiple projects) in

a certain period of time? *
1 2 3 4 5 very easy very difficult
How difficult it is to find what have been changed within a particular model project

within a certain period of time? *
1 2 3 4 5 very easy very difficult
How difficult it is to locate a certain document attached by a person without knowing

where the document is located? *
1 2 3 4 5 very easy very difficult
How difficult it is to locate all scenarios associated to a certain version of model? *

80

1 2 3 4 5 very easy very difficult
How difficult it is for you to reach an overview about the progress of the modeling

process? *
1 2 3 4 5 very easy very difficult
How difficult it is to notice that a model project has been updated? *
1 2 3 4 5 very easy very difficult
Who is the most active contributor in the modeling process? (a particular project) *
1 2 3 4 5 very easy very difficult
Did you come across comments from scenario that reflects suggestions that is impor-

tant? *
1 2 3 4 5 very easy very difficult
How do you think about the overall network/performance quality *
1 2 3 4 5 very easy very difficult
Additional comments on functionalities
Powered by Google Docs Report Abuse - Terms of Service - Additional Terms

81

